
Chapter 24
Bits Don’t Have Error Bars: Upward
Conceptualization and Downward
Approximation

Russ Abbott

Abstract How engineering enabled abstraction in computer science. Engineering
and computer science are both constructive disciplines: both fields build new arti-
facts. Computer science has evolved to focus primarily on abstractions: what aspects
of a construction can be factored out and used elsewhere and more generically?
Engineering has evolved to focus primarily on approximating physical reality: how
close does one have to come to the underlying physics so that the construction is
successful? The primary reason for this difference is that computer science builds
on the foundation of the bit, a physically implemented symbol.

24.1 Turning Dreams into Reality

What has been is what will be, and what has been done is what will be done; there is nothing
new under the sun. Is there a thing of which it is said, “See, this is new”? – Ecclesiastes
1:9-10

Although Ecclesiastes says “No,” engineers and computer scientists say “Yes, there
are things that are new under the sun – and we create them.” Where do these new
things come from? They start as ideas in our minds. A poetic, if overused, way to put
this is that we – and I’m writing as a computer scientist – turn our dreams into reality.
Trite though this phrase may be, I mean to take seriously the relationship between
ideas and material reality. Engineers and computer scientists transform subjective
experience into phenomena of the material world.

The previous statement notwithstanding, this chapter is not a theory of mind. I
am not claiming to explain how subjective experience comes into being or how we
map subjective experience to anything outside the mind. I do plan to talk about the
relationship between ideas and material reality. Section 24.2 provides more detail

R. Abbott (B)
Department of Computer Science, California State University, Los Angeles, CA, USA
e-mail: russ.abbott@gmail.com

285I. van de Poel, D.E. Goldberg (eds.), Philosophy and Engineering,
Philosophy of Engineering and Technology 2, DOI 10.1007/978-90-481-2804-4_24,
C© Springer Science+Business Media B.V. 2010

286 R. Abbott

on the approach to consciousness I’m adopting. It also provides an introduction to
the notion of a level of abstraction and its significance.

Section 24.3 returns to thought externalization, the ways in which engineers and
computer scientists turn ideas into material reality. As Ferguson (1992) says, “The
conversion of an idea to an artifact . . . is a complex and subtle process that will
always be far closer to art than to science.” Section 24.4 discusses both the bit, the
fundamental level of abstraction, and the price computer science pays for working at
the bit level and above. Section 24.5 describes the different approaches engineering
and computer science take to design.

Much of this chapter talks about how computer scientists and engineers think.
For computer science I rely my own intuitions and self-awareness (Abbott 2008a).
To a great extent I rely on Ferguson (1992) for the thought processes of engineers.

24.2 Subjective Experience and Levels of Abstraction

A reader of an earlier draft wondered whether I intended to embrace dualism by
talking about transforming ideas into physical reality. This section explains why not
and goes on to discuss levels of abstraction in general.

24.2.1 The Hard Problem of Consciousness

Subjective experience seems to be universal among human beings.1 Yet we don’t
know how it comes about. Presumably it arises from brain activity, but we have
no way of explaining how brain activity results in subjective experience. Chalmers
(1995) calls this “the hard problem of consciousness.”

The really hard problem of consciousness is the problem of experience. . . . When we see,
. . . we experience visual sensations: the felt quality of redness, the experience of dark and
light, the quality of depth in a visual field. Other experiences go along with perception in
different modalities: the sound of a clarinet, the smell of mothballs. Then there are bodily
sensations, from pains to orgasms; mental images that are conjured up internally; the felt
quality of emotion, and the experience of a stream of conscious thought. . . . It is widely
agreed that experience arises from a physical basis, but we have no good explanation of
why and how it so arises.

Chalmers was echoing a problem described much earlier by Leibniz (1714).

Supposing there were a machine, so constructed as to think, feel, and have percep-
tion, It might be conceived as increased in size, while keeping the same proportions, so
that one might go into it as into a mill. On examining its interior, we would find only
parts which work one upon another, and never anything by which to explain [subjective
experience].

1Dennett (1988) denies the existence of qualia on “eliminative materialism” grounds. I don’t under-
stand that argument. As I discuss later in this chapter – and in more detail in (Abbott 2009) – that
something can be reduced to physical primitives doesn’t demonstrate its eliminability.

24 Bits Don’t Have Error Bars 287

24.2.2 Levels of Abstraction

Leibniz and Chalmers are describing emergence, a problem more general than sub-
jective experience. Here’s how O’Connor and Wong (2006) put it.

[Emergent entities and properties] ‘arise’ out of more fundamental entities and yet are
‘novel’ or ‘irreducible’ with respect to them. (For example, it is sometimes said that con-
sciousness is an emergent property of the brain.)

I argue (2006, 2007, 2008b, 2009) that emergence is what is known in computer
science as a level of abstraction. A level of abstraction is a collection of types (cat-
egories of entities) and operations on entities of those types. Every level of abstrac-
tion has two important properties. (a) It can be characterized independently of its
implementation – the (emergent) entity types, properties, and operations can be
described abstractly. (b) When implemented, it is reducible to pre-existing levels of
abstraction.

Consider any computer program, say Microsoft Word. It implements a level of
abstraction that has such (emergent) entities as words, paragraphs, documents, etc.
These entities have such (emergent) properties as font size and style, margins, etc.
If one looks at the code that implements Microsoft Word one will not see words,
paragraphs, documents, or their components or properties. But we do not consider
it mysterious that words, paragraphs, etc. “emerge” from that code.

A specification pins down the entities and properties on a level of abstraction.
One may require of Microsoft Word, for example, that when one double clicks the
text one “selects” a “word,” and when one triple clicks one “selects” a “paragraph.”
These requirements define (abstract) relationships among paragraphs, words, and
click operations. They don’t define what a word is in terms of simpler physical
elements such as bits or electrons.

That’s how it should be. A level of abstraction may be implemented by software
in any number of ways. There is no necessary relationship between words and bits
or electrons. All that matters is that words behave as expected with respect to the
other elements on its level of abstraction. It’s up to the implementation to decide
how to implement words.

Searle (2004) invented a nice phrase to describe entities and entity types on
a level of abstraction. He called them causally reducible but ontologically real.
Higher-level entities are causally reducible because when a level of abstraction is
implemented one can see how it works by looking at the implementation.

Higher-level entities are ontologically real because their functioning can only be
described in terms of the entities themselves. When the entities are man-made, that
description is a specification. But naturally occurring entities must also be described
in terms of themselves. Biological organisms, for example, have the properties of
being alive or dead, and they perform functions such as eating, sleeping, seeing,
moving, and reproducing. These concepts apply only at the biological level; they
make no sense at the level of chemistry or physics. The reality of higher-level entities
and entity types inheres in their specifications.

288 R. Abbott

24.2.3 Functional Decomposition vs. Stigmergic Design

Where did we get the idea that higher level entities and properties must be reducible
to lower level components? Well, how could it be otherwise? If an entity is
composed of lower level elements, how could it not be that those lower level
elements serve as the components of the higher level entity? This idea is so nat-
ural and intuitive that it has been adopted as the design strategy known as func-
tional decomposition. Using functional decomposition one designs a system as a
collection of independent component subsystems so that the system’s functional-
ity is a composition of the functionalities of the subsystems. Applied recursively
this leads to a hierarchy of functional units. The result is a system whose phys-
ical (component) structure corresponds to its functional structure – a very clean
design.

But as Microsoft Word illustrates, the functionality that software produces can
result from an interaction among elements that do not have any of the properties of
the resulting entities. In fact, most software does not lend itself to functional decom-
position. (See Section 24.5.) Yet according to O’Connor and Wong (quoted above)
that’s why emergence seems so mysterious. Even the brilliant Leibniz was misled.
After concluding that one wouldn’t find the components of subjective experience in
the mechanical workings of a mind, he wrote the following.

Thus it is in a simple substance, and not in a compound or in a machine, that [subjective
experience] must be sought for.

In other words, Leibniz concluded that since subjective experience is not com-
posed from lower level elements, it must be primitive, i.e., a “simple substance.”

The design strategy that produces emergent functionality – and that contrasts
with functional decomposition – might be called stigmergic design.2 Software
developers use it all the time.3 Nature uses it in biological and social entities. What
is philosophically important is the realization (a) that stigmergic design is a valid
design strategy and (b) that it can produce entities and properties from apparently
unrelated lower level entities and properties. Had this concept been available to
Leibniz, he might not have drawn the conclusion he did. I return to the discussion
of stigmergic design in Section 24.5.

24.2.4 Subjective Experience as a Level of Abstraction

It seems reasonable to assume that consciousness is implemented as a level of
abstraction by physical processes in the brain. Here’s how Searle (2004) puts it.

2The term stigmergy was coined by Pierre-Paul Grassé (1959) to explain how social insect societies
operate. Social insects interact in part by leaving markers in the environment.
3Related software terms include object-oriented design, service oriented architecture, tiered design,
platform-based design, and (of course) levels of abstraction.

24 Bits Don’t Have Error Bars 289

[Conscious states] are real phenomena in the real world. . . . [They] are entirely caused by
lower level neurobiological processes in the brain. . . . You can do a causal reduction of
consciousness to its neuronal substrate, but that reduction does not lead to an ontological
reduction because consciousness has a first person ontology, and you lose the point of hav-
ing the concept if you redefine it in third person terms.

The problem is that we don’t know how the brain does it. We can explain how
Microsoft Word produces words, paragraphs, and documents, but we can’t yet
explain how brain functioning produces subjective experience. Nonetheless, from
here on I will assume (a) that subjective experience is a level of abstraction imple-
mented by the brain, (b) that we each have the experience referred to as having an
idea, (c) that we are aware of ourselves as having ideas, and (d) that we understand
in more or less the same way what it means to say that one has an idea.

Given the preceding, I will refer to the phenomenon of having an idea non-
dualistically and without further explanation or apology and will return to the per-
spective that engineers and computer scientists turn ideas into material reality.4

Although engineering and computer science are similar in that way, there is a differ-
ence in the kinds of realities created. Computer scientists create (physically imple-
mented) symbolic reality. Engineers create material objects that act in the physical
world.5 The consequences of this difference are far-reaching.

24.3 Thought Externalization: Engineering is to Sculpture as
Computer Science is to Music

If I could say it in words there would be no reason to paint. – Edward Hopper

The first step in turning an idea into reality is to externalize the idea. By exter-
nalizing an idea I’m referring to the conversion of the thought from something com-
pletely subjective to an external representation – a representation outside the mind
in a form that allows the thought to be examined, explored, and communicated.
The pervasive example is natural language. Most disciplines use natural language to
externalize thought. Diagrams and equations are other examples.

Most externalized thought is intended for human consumption. Expressions in
natural language as well as equations and diagrams are meaningless except to other
human beings. An externalized thought has the same intentional property as thought
itself. It is about something, and for an externalized thought to be about something
requires that it be re-internalized, i.e., understood and converted into (intentional)
thought. Here’s how Ferguson puts it.

Engineers start with visions of the complete machine, structure, or device. . . . [They first]
convert the visions in their minds to drawings and specifications, [which] are expressed in

4Mitcham (1978) made this point 3 decades ago. He also noted that science turns reality into ideas.
Debora Shuger (personal communication) added that humanists turn reality into dreams. And Paul
Erdos is widely quoted as saying that mathematicians turn coffee into theorems.
5In this chapter I won’t be discussing hybrid systems – physical systems with embedded software.

290 R. Abbott

a graphic language, the grammar and syntax of which are learned through use [and which]
has idioms that only initiates will recognize.

But as illustrated by Hopper’s remark, sometimes the thought is transformed
directly into the thing itself. A Hopper painting is the thing itself. No intermedi-
ate form can adequately represent the idea – or there would be no reason to paint.
Along the same lines Ferguson distinguishes between engineers and artisans.

If the idea [of the thing to be made] is in the head of an artisan, he can make the thing
directly. . . . If the idea of the thing to be made is not in the artisan’s head but in the engi-
neer’s, the engineer [uses] drawings to convey to workers what is in [his] head. . . . The
difference between the direct design of the artisan and the design drawing of the engineers
are differences of format rather than . . . conception.

Thought externalization in computer science is different. Computer scientists
externalize thought as software. Software has the important property that it is both
intentional and the thing itself. It refers in the same way that expressions in natural
language refer: one can read it and understand it as having meaning. Software is also
the thing itself – almost. With the help of a computer, software acts without the need
for human understanding. (See Abbott 2008b.) To the best of my knowledge, music
is the only other discipline that can externalize thought in a form (a) that is inten-
tional/symbolic and (b) that may be actualized without further human participation.
Even before computers, player pianos were able to convert the symbolic expression
of musical thought into music. Engineering is approaching this capability, but it
isn’t there yet. A fully automated computer aided manufacturing capability – insert
a design; get a product – would be equivalent.

24.3.1 The Bit: Where Thought and Matter Meet

The term bit is used in three overlapping ways.

1. Bit can refer to a binary value, i.e., either true and false as in Boolean logic. A
bit in this sense, i.e., as the notion of true or false, is a thought, an idea in our
minds just as true and false are.

2. Bit can refer to a mechanism or means for recording such a value. A bit in this
sense is part of the material world, typically a unit of computer storage. It is a
physical device that (a) is capable of being in either of exactly two states and (b)
can be relied on always to be in one of them.

3. Bit can to refer to a unit of information as in information theory. I’m not using
bit in this sense in this chapter – although a bit in the second sense can be used
to represent a bit in this third sense.

The bit is a fundamental example of externalized thought. It is both a Boolean
value (a thought) and a physical device (a part of the material world). Circuits that
when run can be understood as performing Boolean operations provide a way to
glide gracefully back and forth between bit as thought and bit as material device.
Bits and the physical machinery that operate on them enable us to externalize

24 Bits Don’t Have Error Bars 291

Boolean operations and values (thoughts) and to manipulate them in the material
world. The bit is where thought and matter meet, an extraordinary achievement.

Engineering is a physical discipline. Physical disciplines involve physical devices
and materials, which are never perfect and never the same from one instance to
another. To determine how a physical device behaves, one measures it – often mul-
tiple times. The resulting sets of data points typically contain ranges of values. Such
data sets have average values and error bars.

The physical devices used to store and manipulate bits have the same properties
as any other physical device. In particular, they have error bars. Yet computer sci-
entists don’t see these aspects of physically implemented bits. Machinery built by
engineers hides the reality of analog values and error bars from those of us who use
bits. It is because of this machinery that as far as computer science is concerned
bits don’t have error bars. As the interface (a) between engineering and computer
science and (b) between thought and matter the bit serves as the foundation upon
which all other levels of abstraction can be implemented.

As externalized thought, the bit also externalizes the forbidden fruit of the tree
of knowledge. Like thought itself it both gives us a way of gaining leverage over
reality while at the same time separating us from it. Because every conceptual model
implemented in software is built on bits, every software-based conceptual model has
a fixed bottom level, a set of primitives. Whatever the bit – or the lowest level in the
model – represents, those primitives serve as the model’s floor. It’s not possible to
decompose them and model how they work–unless one builds a new, more detailed
model.6

Because software models have a fixed set of primitives, it is impossible to explore
phenomena that require dynamically varying lower levels. A good example of a
model that needs a dynamically varying lower level is a biological arms race. Imag-
ine a plant growing bark to protect itself from an insect. The insect may then develop
a way to bore through bark. The plant may develop a toxin – for which the insect
develops an anti-toxin. There are no software models in which evolutionary cre-
ativity of this richness occurs. To build software models of such phenomena would
require either that the model’s bottom level be porous enough that entities within the
model are able to develop capabilities that sabotage operations on that lowest level
or that the lowest level include all potentially relevant phenomena, from quanta on
up. Neither of these options is currently feasible.7

Another example of a model that needs a dynamically varying lower level
involves the gecko, a macro creature, which uses the quantum van der Waals force
to cling to vertical surfaces (Kellar et al. 2002). Imagine what would be required to
build a computer model of evolution in which that capability evolved. Again, one
would need to model physics and chemistry down to the quantum level.

6One might object that when bits are used to represent numeric values that are derived from
an equation-based model, they don’t represent primitive elements. I wouldn’t dispute that. But
equation-based models are science and engineering models, not computer science models.
7This poses a nice challenge to computer science: develop modeling mechanisms in which the
lowest level of the model can be varied dynamically as needed.

292 R. Abbott

The inability to develop models with dynamically varying lower levels is not
limited to software. It is a problem with any finite conceptual model. We don’t seem
capable of building models that at the same time (a) have a lowest level and (b) can
be extended downward below that lowest level. Yet engineering continually extends
its models downward. How? The next section answers that question.

24.4 Static and Functional Structures

To a first approximation most systems may be understood from two complementary
perspectives: static and functional. A static view describes the system’s fixed skele-
tal structure – if it has one. A functional view describes how the system’s function-
ality is implemented by the functioning of and interactions among its components.
In medicine, for example, these two views are referred to as anatomy (structure) and
physiology (functioning).

Although structure vs. function makes a nice division of labor, most systems are
not so easily decomposable. Biological organisms may have what we think of as an
anatomy, but most of the atoms making up that anatomy are regularly replaced. Part
of the physiology of biological organisms is to repair and replace their anatomical
structures. The same is true for social organizations. The anatomy of an organi-
zation such as a government consists of its institutional organs – a legislature, a
judicial system, etc. But these are composed of people, who are replaced regularly.
In addition, even the constitutional structure of most social organizations is subject
to change – although usually with significant constraints.

24.4.1 Stigmergic Design and Upward Conceptualization

The rest of this section continues the discussion of functional decomposition and
stigmergic design begun in Section 24.2.

What about software? Does it have a static structure? The static structure of inter-
est is the structure in place when the software executes. Krutchen (1995) suggests
that it is useful to understand software from 5 perspectives. Only the Process View
– what happens during execution, including the creation and destruction of vari-
ables, objects, stack frames, tasks, etc. – captures the static structure of executing
software. Clearly this is not static. Yet at any instant, it is those elements and their
interrelationships that make up the static structure of the executing software.

A good way to think about executing software is as a continually changing col-
lection of interacting entities – variables, objects, tasks, etc. The job of a software
developer is to write software that creates and controls software entities. Software
creates functionality through the interaction of these entities. Section 24.2 referred
to this as stigmergic design. Since each software entity exists on some level of
abstraction, computer scientists tend to understand software as the art of using one
level of abstraction to implement another. Just as multi-celled organisms result from

24 Bits Don’t Have Error Bars 293

the patterned interactions of individual cells and social organizations result from
the patterned interactions of biological organisms, much of software grows in an
equally organic manner. The result is a series of upwardly conceptualized levels of
abstraction – starting with the bit.

24.4.2 Functional Decomposition and Downward Approximation

Unlike computer science, engineering builds objects whose design must work in the
material world. Ferguson quotes the definition of engineering from the 1828 charter
of the British Institution of Civil Engineers. “Engineering is the art of directing
the great sources of power in nature for the use and convenience of man.” Petroski
(1996) adds, “[Although] engineering is the art of rearranging the materials and
forces of nature, the immutable laws of nature are forever constraining the engineer
as to how those rearrangements can or cannot be made.”

Engineering is both cursed and blessed by its attachment to physicality. It is
cursed because in molding and modeling physical reality one can never be sure
of the ground on which one stands. All engineering models are approximations. But
engineering is also blessed by its attachment to physicality. For any issue one can
decide how deeply to dig for useable physical bedrock. Engineering design rests on
two techniques: physical approximation and functional decomposition.

Physical approximation. To reduce model complexity, engineers choose models
that provide the necessary assurances on as high a level as possible – a civil engi-
neering model may include the load bearing properties of a steel beam rather than
the chemical bonds that produce those properties. Ferguson puts it this way.

The engineering sciences . . . differ from pure science in that they have an array of abstract
concepts, independent of science, that serve as a framework within which technical prob-
lems can be analyzed. . . . Informed judgment must decide to what extent calculations
involving idealized processes can be depended upon . . . because mathematical models are
always less complex than [nature].

But engineering is also blessed by its attachment to physicality. If the accuracy of
a model is inadequate, engineers can replace it with one that models more primitive
physical phenomena. The secret of engineering’s ability to dig beneath the floor of
its models is that as humans engineers can create new models when needed.

Functional decomposition. Functional decomposition works well when func-
tional design can be mapped to static structure. Many engineered systems may be
decomposed into component subsystems. If the subsystems can be modeled inde-
pendently, then the system as a whole can be modeled as the collection of subsys-
tems along with a model that ties the subsystems together. This often works quite
well. But it is not infallible. To paraphrase the Commission on Engineering and
Technical Systems of the National Academy of Engineering (2000),

When engineering systems fail it is often because of unanticipated interactions (such as
acoustic resonance) among well designed components that could not be identified in isola-
tion from the operation of the full system.

294 R. Abbott

Problems often arise (a) at a level below the system primitives (approximation
fails) and (b) only when the system components are joined to make the entire system
(functional decomposition fails). So engineering design is often a continuing search
for models of reasonable complexity that provide an acceptable approximations to
reality. Engineering is continually approximating downwards.

24.5 Summary

Engineers and computer scientists say there are new things under the sun. Nature
agrees – new viruses, new bacterial, new species, lots of new things. Is nature a
blind engineer or a blind computer scientist? Engineers build systems top-down. But
like computer scientists, nature builds phenomena bottom-up, level of abstraction by
level of abstraction. Nature is a blind programmer.

References

Abbott, Russ. 2006. Emergence explained. Complexity 12(1): 13–26.
Abbott, Russ. 2007. Putting Complex Systems to Work. Complexity 13(2): 30–49.
Abbott, Russ and Chengyu Sun. 2008a. Abstraction abstracted. In Proceedings of the 2nd Interna-

tional Workshop on the Role of Abstraction in Software Engineering, 23–30. New York: ACM.
Abbott, Russ. 2008b. If a tree casts a shadow is it telling the time? Journal of Unconventional

Computation 5(1): 1–28.
Abbott, Russ. 2009. The reductionist blind spot. Complexity 14(5): 10–22.
Chalmers, David J. 1995. Facing up to the problem of consciousness. Journal of Consciousness

Studies 2(3): 200–219(20).
Commission on Engineering and Technical Systems, National Academy of Engineering. 2000.

Design in the New Millennium. National Academy Press.
Dennett, Daniel. 1988. Quining Qualia. In Consciousness in Modern Science, eds. A. Marcel and

E. Bisiach, 42–77, Oxford University Press. http://ase.tufts.edu/cogstud/papers/quinqual.htm.
Ferguson, Eugene. 1992. Engineering and the Mind’s Eye. MIT Press.
Grassé, Pierre-Paul. 1959. La Reconstruction du nid et les Coordinations Inter-Individuelles chez

Bellicositermes Natalensis et Cubitermes sp. La théorie de la Stigmergie: Essai d’interpretation
du Comportement des Termites Constructeurs. Insectes Sociaux, 6:41–81.

Kellar, Autumn et al. 2002. Evidence for van der Waals adhesion in gecko setae. In Proceedings
of the National Academy of Sciences. http://www.pnas.org/cgi/reprint/192252799v1. Accessed
26 May 2008.

Krutchen, Phillipe. 1995. Architectural Blueprints–The ‘4+1’ View Model of Software Architec-
ture. IEEE Software 12(6): 42–50.

Liebniz, Gottfried Wilhelm. 1714. Monadology.
Mitcham, Carl. 1978. Types of Technology. Research in Philosophy and Technology 1: 229–294.
O’Connor, Timothy and Hong Yu Wong. 2006. Emergent Properties. In The Stanford Ency-

clopedia of Philosophy (Winter 2006 Edition), ed. Edward N. Zalta . URL = <http://plato.
stanford.edu/archives/win2006/entries/properties-emergent/>

Petroski, Henry. 1996. Invention by Design; How Engineers Get from Thought to Thing. Harvard
University Press.

Searle, John. 2004. Mind: a brief introduction. Oxford University Press.

	24 Bits Dont Have Error Bars: Upward Conceptualization and Downward Approximation
	24.1 Turning Dreams into Reality
	24.2 Subjective Experience and Levels of Abstraction
	24.2.1 The Hard Problem of Consciousness
	24.2.2 Levels of Abstraction
	24.2.3 Functional Decomposition vs. Stigmergic Design
	24.2.4 Subjective Experience as a Level of Abstraction

	24.3 Thought Externalization: Engineering is to Sculpture as Computer Science is to Music
	24.3.1 The Bit: Where Thought and Matter Meet

	24.4 Static and Functional Structures
	24.4.1 Stigmergic Design and Upward Conceptualization
	24.4.2 Functional Decomposition and Downward Approximation

	24.5 Summary
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

