Chapter 23
Architecting Engineering Systems

Joel Moses

Abstract We discuss approaches to the overall design of large scale engineering
systems, such as planes, cars and large software systems. Such approaches are usu-
ally called design methodologies. We discuss the top-down structured methodology,
the layered or platform-based methodology, and the network-based methodology.
Such design methodologies are associated with organizational structures or archi-
tectures, such as tree-structured hierarchies, layered hierarchies and generic net-
works. We discuss the relationship of these approaches to Aristotle’s approach to
the organization of Greek city-states and his logic-based problem solving, to Plato’s
organization of the Just Society, and to Darwin’s use of evolution as an approach
to design. We point out how these design methodologies relate to cultural attitudes
toward engineering. We also point out that different engineering fields make dif-
ferent fundamental assumptions about properties of engineering systems, such as
flexibility. We believe that undergraduate engineering education would be greatly
improved if we taught design methodologies and their relation to philosophy. Simi-
larly, engineering education would be improved if we taught foundational concepts
regarding properties of engineering systems and the differing built-in assumptions
regarding such properties found in various engineering disciplines.

23.1 Introduction

Design is the soul of engineering. Much of engineering analysis relies on mathemat-
ics and science, but design usually differentiates engineering from these fields. Our
interest is in how one approaches the design of large scale and complex engineer-
ing systems, such as planes, cars and large software systems. It is difficult to teach
the design of large-scale systems to undergraduates. Undergraduate design projects

J. Moses (X))
Engineering Systems Division and Electrical Engineering and Computer Science Department, MIT,
Cambridge, Massachusetts, USA

1. van de Poel, D.E. Goldberg (eds.), Philosophy and Engineering, 275
Philosophy of Engineering and Technology 2, DOI 10.1007/978-90-481-2804-4_23,
© Springer Science+Business Media B.V. 2010



276 J. Moses

often simply emphasize getting a project done at all, given the limitations of time,
staff and money. It is assumed that most issues related to large scale design will be
learned by a practicing engineer on the job, often relying on approaches to design
taught by his or her engineering firm.

General approaches to the design of large-scale systems are called design
methodologies. Design methodologies, when they are taught at all to undergraduate
engineering students, go by names such as systems engineering. We will discuss the
advantages and disadvantages of several methodologies and how different method-
ologies relate to philosophical differences between Plato, Aristotle as well as others,
such as Darwin. Of course, we make no claim that Plato and Aristotle were engi-
neers. Our hope is that by analyzing different philosophical approaches and their
relationships to design methodologies future engineers will be able to design better
engineering systems.

We discuss the relationship of the design methodologies and organizational struc-
tures to different cultures. We indicate that there is a relationship between attitudes
toward engineering as a field and the popularity of certain design methodologies.

Finally, we discuss the reasons for the development of the graduate program
System Design and Management at MIT. One of the lessons learned in SDM is
that individuals in different engineering fields make different assumptions about
key system properties, such as flexibility and robustness. We believe that an analysis
of such assumptions for each engineering discipline will greatly benefit all of our
undergraduate engineering students.

23.2 Tree Structures

Design methodologies are not simply ways of architecting and designing technical
systems, but are closely related to the structure of human organizations as well as
general ways of attempting to solve problems. I believe that the first written descrip-
tion of a hierarchical structure for a human organization occurs in the Bible in
Exodus. Jethro, Moses’ father-in-law, visited him at the foot of Mount Sinai, just
before the giving of the Ten Commandments. He watched Moses spending all his
time judging. He told him that this is not good. Moses ought to appoint a judge for
every thousand, every hundred, every fifty, and every ten. Then Moses would only
need to judge the most difficult cases.

What Jethro is suggesting is a tree-structured organization of judges with Moses
at the top, followed by a number of judges for every thousand, each followed by a
number of judges for every hundred, etc. This is what I call a pure tree-structured
hierarchy. Every judge has exactly one judge above him to whom he would deliver
the most difficult cases he has. Such an organizational structure is very general and
quite common, so much so that many people think all hierarchies are necessarily
tree structured. Jethro’s description is top-down, from Moses to the judges for every
thousand, then to the level of judges for every hundred, etc. His description suggests
that the cases to be judged are passed from the bottom up to the top. Aristotle used a



23 Architecting Engineering Systems 277

similar tree structured organization for administrating Greek city-states in Politics.
He assumed that the tree-structured organization for a given city-state can have the
number of its levels increased as the city-state increases in population.

Jethro’s idea is in retrospect quite obvious. Why did Moses not think of it? My
answer is that Moses had a different mind-set from Jethro, one that favored a very
different organizational structure. In Numbers we find Moses creating the struc-
ture for the Israelite religious hierarchy. He places Aaron as the high priest at the
top node of the hierarchy. He then places Aaron’s sons (and eventually their male
descendents) as priests at the top layer of the hierarchy. The rest of the tribe of Levi
forms the middle layer, and the remaining tribes form the bottom layer. Layered
hierarchies are different from tree structured ones is several respects. A judge in
Jethro’s structure has exactly one judge to whom he reports, and presumably he’ll
report to that judge for some time. The Levis, on the other hand, served whichever
priests needed their support at any given time, and these priests could change from
one day to the next. Priests worked in teams. So did Levis. In contrast, Jethro’s
judges likely were not intended to work in teams.

The structure of the Israelite religious hierarchy in Numbers is similar to Plato’s
Just Society in The Republic with a philosopher king instead of high priest, and a
layer of guardians instead of the layer of priests. There are important differences.
Moses has people born into their rank. Plato relies on testing to determine someone’s
final rank. I call such hierarchies layered hierarchies.

The two types of hierarchy can also be associated with approaches to problem
solving. The tree-structured hierarchy is associated with the “divide and conquer”
approach to problem solving. This approach works as follows: Given a problem, if
you can solve it, do so and you are done. If not, break it up into parts and attempt to
solve each part in turn as a subproblem. If you can solve a subproblem, do so and go
to solve one of the remaining subproblems. If you cannot solve a subproblem break
it also into parts and keep doing so until you either solve all the subproblems or you
give up.

A treasure trove set of examples of top-down problem solving is in mathe-
matical logic. Consider proving a theorem in Russell and Whitehead’s Principia
Mathematica. This process was actually automated in the 1950s in an Al pro-
gram by A. Newell, J. Shaw and H. Simon called the Logic Theorist (Newell
et al. 1957). The approach taken by that program is a top-down one. I associate
analytic philosophy, especially Bertrand Russell’s version of it, with the top-down
approach.

The design methodology associated with the top-down tree structured approach
is the systems engineering approach, which became popular in the US in the 1950s,
largely in the aerospace field. Classic systems engineering is a reason for the success
of the Apollo moon project in the 1960 s. A key reason for the success of systems
engineering in the Apollo project was that the design was frozen early on. This
avoided a weakness of the methodology, which shows up when changes are made
to the design requirements in the midst of the design process or later on during the
lifetime of the system. This weakness arises from the relative inflexibility of this
approach.



278 J. Moses
23.3 Platform-Based Architectures

In a tree structure each node has exactly one parent node, and the parent node
remains fixed for a long time. In a layered or platform-based system architecture,
the parent node can change readily, and the members of a layer can be viewed as
members of a team or set of teams. Current examples of human organizations that
are structured this way include large partnerships, such as law firms or consulting
firms. These are often structured in three layers — senior partners, junior partners
and associates. Associates may be asked to work on a team with different partners
in different engagements. Universities have vestiges of this structure — full profes-
sors, associate professors and assistant professors. Getting tenure is akin to making
partner. In this sense, a university is a partnership of the faculty. A president who
ignores this aspect of the organization of a university can get into serious difficulties
with his faculty.

An example of a platform-based engineering system is an automobile platform.
The bottom layer or the platform of the automobile is relatively fixed, and the top
layer can vary to create different automobile models. The advantage of this approach
to design is that it is usually cheaper to design a new car model based on an existing
platform than it is to design the model from scratch. I claim that the relative ease
of making such changes is a result of the flexibility of the platform-based design.
Another advantage of the approach is that one can improve the platform over time
due to its longer lifetime, which results in greater experience for the manufacturing
firm, and thus the possibility that its processes can be improved over time. A disad-
vantage of the approach is that the initial design of the platform is more expensive
than a specialized one for a new model. Another disadvantage is that the approach
is somewhat restrictive. In general, all design methodologies have advantages and
disadvantages. The choice of a methodology ought to depend on properties of the
system being designed and its environment.

Automobile platforms are examples of power or energy-centered systems. It
appears relatively difficult to create a hierarchy of platforms containing more than
two layers in an energy-centered system. Hierarchies with three or more layers are
easier in information- or communication-centered systems. We define the internal
flexibility in a system to be related to the number of paths in it from a top node to
the bottom nodes. Three layers are, in general, far more flexible than two using this
metric. The architecture of the AT&T telephone system with area codes, regional
numbers and local numbers indicates a three-layer architecture with a total of ten
digits for each phone number. Each layer was originally implemented with a differ-
ent architecture. The area code in the number indicates a node in a national telephone
network, whereas the last four digits represent one of ten thousand possible phone
lines in a local switch.

Software and mathematics provide many examples of layered or platform-based
architectures. Consider a polynomial in x, y and z with integer coefficients. Any
such polynomial can be written as a polynomial in x with coefficients that are poly-
nomials in y, with the latter having coefficients polynomials in z with coefficients
that are integers. Of course, the order of the variables can be changed. The order of



23 Architecting Engineering Systems 279

the layers will then change as well, although a polynomial expressed in one layered
structure will be equivalent to one expressed in such a reordered structure. Plato
was an idealist and close to mathematics, especially geometry. Although algebra
was not well developed in his time, the algebraic examples would have been well
appreciated by him.

Platform-based software systems abound. Consider a high level programming
language, such as Fortran, the first popular programming language. Consider a sys-
tem written entirely in Fortran, but one that runs on a particular microprocessor. The
microprocessor does not actually run Fortran code. Fortran is usually translated to
the machine language of the microprocessor through a series of steps. Thus we can
say that Fortran provides a platform that separates the Fortran program from the
actual bits of the machine language used by the microprocessor. Such a high-level-
language-based platform provides expressiveness and flexibility to the system. An
argument leveled against high-level languages is that their use loses some space and
increases run time relative to a hand optimized machine language code. Such losses
have been greatly reduced over the years as compilers have become better than most
human programmers.

In fact, many software systems are currently based on a number of platforms,
some of which are on top of each other creating a hierarchy of platforms that cor-
respond to levels of abstraction. For example, data base systems, operating sys-
tems and special user interfaces can all be considered to be platforms. Given the
prevalence of this approach to the architecture of large scale software systems, it is
surprising that the methodology associated with platform-based design is not nor-
mally taught to computer science undergraduates. Such a methodology would have
the architect of a new system spend significant time determining a new platform that
would make it easier to design a new large-scale system. Most such platforms would
be placed on top of existing platforms. Sometimes, especially when efficiency is a
major consideration, new platforms could be interspersed between or below existing
platforms.

In recent centuries the multi-layer architecture in the social and behavioral sci-
ences was most popular in German speaking countries. In particular Marx and Freud
can be said to use multi-layer architectures in their thinking. Freud emphasized the
conscious and subconscious layers, but as a medical doctor he certainly could not
ignore the physical layer of the brain underlying them both.

German speaking countries are not the only ones where can see a layered
or platform-based approach to organization, problem solving or design. Japanese
firms also use such an approach, and it is a reason why they were so success-
ful in manufacturing relative to the US for decades. The Japanese used platforms
in automobile design well before it became the norm in the US. Large Japanese
firms tended to rely on an organizational hierarchy, which is partly based on age
and provides little salary differentials for many years. They also rely on team-
work at each level. An advantage of this approach is that, within limits, it is
very flexible. A disadvantage is that it does not work well outside of certain lim-
its. Hence the appropriateness of the book on Japan entitled Flexible Rigidities
(Dore 1986).



280 J. Moses

Management thinkers often emphasize the top level of a firm (especially the
CEO). Japanese firms recognize the importance of middle management levels.
Middle managers can play key roles that Americans often do not fully appreciate.
One of their roles is to promulgate the firm’s culture to their staff. Another key role
is to get their staff to work well in teams. A related role is to build trust in the staff
in employees in other parts of the organization. Then when new teams need to be
formed, the team members can begin to work with each other relatively quickly and
effectively. For an analysis see (Ouchi 1981).

Let us summarize some of the strengths and weaknesses of design methodologies
that are associated with tree-structured and layered hierarchies. Tree structures are
quite general. Most problems can be attempted with a top-down design approach.
The approach is very logical. It works best when problems are relatively small or
do not change much. It does not work well when the rate of change is relatively
high since tree structures are quite inflexible. Flexibility in an organization occurs
when there are alternative paths to a solution. Tree structures, unfortunately, have
exactly one path from the top node to any particular node at the bottom. We associate
Aristotle with this approach. According to my late colleague, Thomas Kuhn, even
Aristotle’s physics relied on tree structures with the Unmoved Mover at the top of
the hierarchy.’

Layered hierarchies can cope with changing environments better than tree-
structured ones due to their increased flexibility. This flexibility arises partly
through increased cooperation and interaction between members of the same layer.
Components of a layer can also have more than one parent node at a higher layer.
The approach, however, is not nearly as general as the one associated with tree struc-
tures. It is relatively easy to break most problems into parts, although the break-up
may not be unique, and a given break-up may not be best in the long run. It is
harder to design a new platform because many issues or trade-offs must be taken
into account. Thus greater attention must be paid to each such new platform design,
and system architects need to be both experienced and creative. On the other hand, a
platform can provide greater flexibility and expressiveness, as we noted earlier. We
associate the layered approach with Plato, although he clearly did not emphasize the
need for a capability for change in complex systems in his writings.

23.4 Network-Based Architectures

In recent years we have lived with technologies, such as the Internet, that undergo
many changes all the time. Although the architecture of the Internet is based, at least
initially, on the International Standards Organization seven-layer model, the topol-
ogy with which we as users are most familiar is that of a network. A network-based
architecture with nodes and edges is very general. All tree structured hierarchies
and layered hierarchies can be modeled as particular networks, yet most networks

Kuhn T., personal communication.



23 Architecting Engineering Systems 281

are not hierarchies at all. The physical and biological worlds can be modeled using
networks. Networks are extremely flexible, even exponentially so as a function of
the number of nodes. As a result a number of physicists and biologists have gravi-
tated to the modern network theory. Watts (2003) gives an overview of this approach.

Networks are in general highly decentralized. This can be an advantage and a
disadvantage. Decentralization gives a system great freedom and flexibility. The
economy of a market-oriented nation can be modeled as a decentralized network of
interacting actors. Centralization, such as that of the military, can give a fair amount
of control over the actions of the various actors, more control than would be the case
in a general network.

Networks are associated with problem solving approaches, just as hierarchies
are. The determination of the price of a commodity in a market economy is a result
of a multiplicity of actions of actors in a network. The open software movement in
recent decades relies, in part, on actions of many programmers over the Internet.
Wikipedia relies on a similar approach in its articles.

A related change to problem solving and design is due to the great success of
modern biology. Evolution can be viewed as an approach to design that is related to
a network-based architecture. The structure of relations of species to each other can
be viewed as a tree structure, as Darwin noted. Whether the tree grows bottom-up or
top-down is not of great importance here. Paths within a cell or an organism violate
tree-ness and hierarchy sufficiently that the overall structure is best considered a
network.

23.5 Attitudes Toward Engineering in Various Cultures

One of my concerns over the years, especially when I was Dean of Engineering, was
why engineering was viewed differently in various industrial countries. The typol-
ogy presented above of design methodologies and their relation to organizational
structures and philosophy helped me understand some of these differences. Japan
did not become a modern nation state until the Meiji restoration in 1868. Germany
was finally united in 1870. These two countries thus have a better memory of their
medieval past than Britain, for example. Layered organizations were relatively com-
mon in the Middle Ages, and became less so during the Enlightenment. The US was
founded by people who were strongly opposed to a layered class structure, and the
Founding Fathers were strongly influenced by the Enlightenment.

Science relies on logical arguments and tends to emphasize competition as well
as specialization. A tree structured approach to problem solving fits rather well in
science. Britain holds science in very high esteem. Engineers in Britain are often
thought to be people who operate engines. Engineering usually relies on science, but
also relies on teams to implement designs. Combining layered structures in addition
to the tree structures works well in engineering. Thus I am not surprised that atti-
tudes toward engineering are better in Germany and Japan than in Britain and even
the US.



282 J. Moses

Hofstede and Hofstede (2005) analyzed the attitudes of IBM employees in sixty
different countries. Geert Hofstede notes differences in the respective roles of the
individual and the collective in different cultures. Tree structured organizations can
be said to emphasize the individual, whereas layered ones tend to emphasize the
collective. While he does not discuss the typology of organizational structures we
use, the differences we note in national cultures show up in his work.

23.6 The System Design and Management Program

In my career I spent many years in the 1960s and 1970s arguing against the
strong attraction that top-down tree-structured approaches to problem solving and
design had to fields, such as Artificial Intelligence, Computer Science, Systems
Engineering, and Management Science. In the 1980 s I found the Japanese approach
to such issues a welcome endorsement of an alternative I had postulated in the
1960 s, namely layered or platform-based design. It was then that I realized that
these differences in approach go back thousands of years, and that they are now
deeply embedded in national cultures. In the late 1980 s American industry began
accepting elements of this alternative approach as a way of coping with the Japanese
success in manufacturing. Womack et al. (1990) analyze this approach, usually asso-
ciated with Toyota. Yet I found that this acceptance of the Toyota approach was lim-
ited in scope. Toyota remains the best automobile manufacturer in the world today.

Just as it seemed that US firms were “getting it,” the success of the Internet and
modern biology led to the emphasis in the US on network-based methodologies.
In my view, there is no methodology that is ideal under all circumstances. Each
of the major methodologies has advantages in some situations. Networks are to be
preferred when the environment changes very quickly or when the number of actors
is extremely large. Layered systems are to be preferred in situations which are in
middle range in size and rate of change. How to account for the quick skipping of
the layered approach in the US? It cannot be that everything suddenly was getting
very large and undergoing great change. Is it a surprise that Adam Smith, Charles
Darwin and Bertrand Russell were British and that Marx and Freud were German
and Austrian? I think not. Would it not be useful if one could encapsulate the various
approaches to design, problem solving and organization of such thinkers so that
future generations can use the appropriate approach in differing circumstances?

At MIT we had successfully introduced the Leaders for Manufacturing program
in 1988 as a response to the Japanese success in manufacturing. LFM grants students
two masters degrees, one in management and one in engineering. When I became
dean of engineering I felt that LFM did not sufficiently address the issue of design
in large scale engineering systems. This eventually led to the creation of the System
Design and Management program, which grants a single masters degree in engi-
neering and management. SDM has a core that includes a graduate course on system
architecture. I had hoped to co-teach it, and make some of the points in this chapter
about the architecture of engineering systems. Then I became the provost of MIT,
and the teaching plan fell through. What happened is that the aeronautical engineers,



23 Architecting Engineering Systems 283

great teachers all, taught the subject and began with a base of systems engineering.
They broadened the classic approach to systems engineering to include discussions
of systems properties, such as flexibility. Yet the issues related to alternative design
methodologies, such as platform-based design, were not addressed very well.

What I realized is that different engineering fields, not just national cultures, had
different biases about systems issues. For example, a civil engineer would be happy
to design a structure that had a single alternative in its design (e.g., a parking garage
with four floors with the possibility of adding two more floors at a later point if
demand so warranted). Computer scientists might not be interested unless a system
had a billion alternatives in its operational use. Hence flexibility means different
things in different engineering disciplines. In my recent courses on engineering sys-
tems I start with defining my national background, and that of my parents. I also
describe the biases that I believe were introduced in my education in the fields of
mathematics, Al, computer science and engineering. I think it would be wonderful
if we had a deep analysis of the foundational assumptions of every engineering dis-
cipline. Our students would then have a far better notion of what they were getting
into in their choices of engineering discipline. Likely engineering faculty members
are too close to these issues. They could use help in such discussions from faculty
in the humanities and social sciences.

23.7 Summary

Three major approaches to the architecture and design of large scale engineer-
ing systems are discussed. These are the tree-structured hierarchy, the layered
or platform-based hierarchy and the network architecture. These architectures are
related to approaches to the structure of human organizations. We indicate the
relationship of these organizational structures to ones used by Aristotle and Plato.
Evolution is considered as a design methodology in networked systems.

We note that national cultures have a closer relationship to some of these
approaches to design than to others, although no single approach is ideal under
all circumstances. We also note that different engineering disciplines make different
assumptions regarding fundamental properties of systems, such as flexibility and
robustness.

Ideally an undergraduate engineering education ought to discuss all these issues.
Engineering faculty members are likely too close to these issues, and could use the
help of other faculty members in such discussions.

References

Newell A., J.C. Shaw, and H. Simon. 1957. Empirical Explorations with the Logic Theory
Machine. In Proceedings of the Western Joint Computer Conference, 218-239.

Dore R. 1986. Flexible Rigidities: Industrial Policy and Structural Adjustment in the Japanese
Economy. Stanford, California: Stanford University Press.



284 J. Moses

Ouchi, W.G. 1981. Theory Z. Reading, Mass: Addison-Wesley.

Watts D.J. 2003. Six Degrees: The Science of the Connected Age. New York: Norton.

Hofstede G., and G.J. Hofstede 2005. Cultures and organizations: Software of the mind, 2nd ed.
New York: McGraw-Hill.

Womack J.P., D.T. Jones, and D. Roos. 1990. The Machine that Changed the World. Cambridge,
Mass: MIT Press.



	23 Architecting Engineering Systems
	23.1 Introduction
	23.2 Tree Structures
	23.3 Platform-Based Architectures
	23.4 Network-Based Architectures
	23.5 Attitudes Toward Engineering in Various Cultures
	23.6 The System Design and Management Program
	23.7 Summary
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




