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It therefore remains that either Ptolemy committed fraud with
fabricated observations, or from a kind of awe and reverence
for the ancients preferred to confirm rather than refute them,
neither of which is likely in the philosopher Ptolemy, a
defender of candor and truth, as is witnessed by many
judgments, especially since he could expect no advantage or
fame from this, but rather greater advantage and fame from
correcting the ancients. But that he was not obsequious to the
ancients, he left witnessed in many ways, refuting Hipparchus
where it was required.

Johannes Kepler (1937–, 21.1.324).

It is well known that there are errors in Ptolemy’s observations of the Sun with
consequences for his own astronomy and for later astronomy up to some time in the
seventeenth century. The principal problems and their consequences in Ptolemy’s
astronomy are the following:

(1) The latitude of Alexandria is taken to be ϕ = 30;58◦ when correctly it is 31;13◦,
an error of −0;15◦. In Almagest 2.5 Ptolemy describes, although does not rec-
ommend, a method of finding the latitude from the length of the Sun’s shadow
at both solstices or a solstice and equinox, which would make the latitude an
error in measurement of the Sun’s zenith distance. Indeed, for ϕ = 30;58◦,
tan ϕ = 0;36,0 = 3/5, so that where the length of a gnomon is 60, in the
equator the length of the shadow is 36, which does suggest use of or adjustment
to a rounded shadow length. The consequence is that the meridian altitude of
the celestial equator is too high, or its zenith distance too low, by 0;15◦, about
15 hours in the motion of the Sun in declination and 0;37◦ in longitude near the
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equinoxes, and the error of 0;15◦ in meridian altitude and zenith distance affects
the entire ecliptic.

(2) The obliquity of the ecliptic is taken to be ε = 23;51,20◦ when by modern com-
putation in 140 it was 23;40,39◦ an error of nearly +0;11◦. From measurements
of the zenith distance of the Sun at summer and winter solstice, Ptolemy found
the arc between the tropics 2ε to lie between 47 2

3
◦

and 47 3
4

◦
, and converted the

lower limit to a ratio by 47 2
3/360 = 143/1080 = (11 · 13)/1080 = 11/83 1

3 ≈
11/83, that is, the arc between the tropics is about 11 (parts) of which the
meridian is 83. He notes that he derives nearly the same ratio as Eratosthenes,
which Hipparchus also retained, a cryptic remark that has provoked a great deal
of fanciful speculation. The derivation given here is by Delambre, although he
attributes it to Eratosthenes rather than Ptolemy, which is scarcely possible.
Before considering any other explanation of the ratio, it is first necessary to
show that Delambre’s is not correct. In any case, 2ε = 11/83·360◦ ≈ 47;42,40◦

and ε = 23;51,20◦.
(3) The dates of Ptolemy’s observations of three equinoxes and one summer solstice

are from about 21 to 36 hours late. The consequences are to confirm exactly
Hipparchus’s length of the tropical years, 365 1

4 − 1
300 days = 365;14,48d =

365d 5;55,12h, too long by +0;6,26h, and to establish an epoch of the mean
longitude of the Sun too low by −1;5◦ in 132, which indirectly affects the longi-
tudes of the Moon, planets, and fixed stars. Because of the error in the length of
the year, the error in the times of equinoxes accumulates at the rate of +10;43h

per century and the error in the mean longitude of the Sun at −0;26,25◦ per
century, and this too affects the longitudes of the Moon, planets, and fixed stars.
The equinoxes and solstices cited by Ptolemy with specific dates and times are
compared with modern computation in the Appendix and cited here by number.

(4) Ptolemy uses the same intervals as Hipparchus between the equinoxes and sum-
mer solstice, to one-half day, and derives the same eccentricity and direction
of the apsidal line. Thus, from the vernal equinox to summer solstice 94 1

2
d
,

summer solstice to autumnal equinox 92 1
2

d
, vernal to autumnal equinox 187d,

he finds that where the radius of the Sun’s eccentric R = 60, the eccentricity
e = 2;29,30 ≈ 2;30 so that e/R = 1/24, the maximum equation cm = 2;23◦,
and the direction of the apogee λA = 65;30◦. He concludes that the eccentricity
has not changed and the apogee is tropically fixed. Taking twice the modern
eccentricity, in −145, the time of Hipparchus, e = 2;6,22, cm = 2;1◦, and
λA = 66;16◦; in 140, the time of Ptolemy, e = 2;5,37, cm = 2;0◦, and
λA = 71;6◦. Hence, e is in error by +0;24 and cm by +0;23◦ and have barely
changed, but λA is in error by −0;46◦ in −145 and −5;36◦ in 140, and its lon-
gitude has increased +4;50◦ in 285 years, of which about 4◦ is the precession
of the equinoxes and 0;50◦ the proper or sidereal motion of the apsidal line.

(5) As a result of the error in the mean longitude of the Sun, Ptolemy’s measure-
ments of longitudes of fundamental stars have a systematic error of just over
−1◦. He therefore finds a difference in longitude of stars in the 265 years since
Hipparchus of 2;40◦ when it should be just over 3;40◦, and corresponding dif-
ferences are found from other early observations. These confirm Hipparchus’s
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low estimate of the motion of the fixed stars, or precession of the equinoxes, of
1◦ per century or 36′′ per year, less by about −14′′ than the correct 50′′ per year
or 1◦ in 72 years. The error in the tropical longitude of stars accumulates at the
rate of −0;23,20◦ per century.

So much for the errors and their consequences in Ptolemy’s astronomy. The
more interesting story begins several hundred years later when Arabic astronomers
derived parameters from their own observations of the Sun and stars, and used
Ptolemy’s observations for finding motions over the intervening period. Without
exception, compared to Ptolemy’s parameters, it was found that: the obliquity of the
ecliptic is smaller, the tropical year shorter, the eccentricity of the Sun smaller, the
solar apogee advanced in longitude, and the motion of the fixed stars faster. What is
to be done? One solution, for example by al-Battānı, was to accept the new parame-
ters as correct and Ptolemy’s, by implication, as erroneous.1 And it was concluded,
for example in De anno solis attributed to Thābit ibn Qurra, that Hipparchus’s obser-
vations of equinoxes and longitudes of stars were preferable to Ptolemy’s for finding
the length of the sidereal and tropical year and the motion of the fixed stars, which
accounts for their difference. But another, more complex solution was to assume that
the parameters had changed over the intervening centuries and develop models and
parameters for these long-period variations. Among those that came to be known
in Europe are a model for a nonuniform motion of the “eighth sphere,” of the fixed
stars, in De motu octavae sphaerae attributed (incorrectly) to Thābit, included in
the Toledan Tables, a model for a variation of the solar eccentricity by az-Zarqāl,
not included in the Toledan Tables, and a very well-known nonuniform motion of
the eight sphere in the Alfonsine Tables, for which there are tables but no model.
The apogees of the Sun and planets were taken to be sidereally fixed, and thus to
follow the motion of the eight sphere, and the apogee of the Sun was sometimes
given its own proper sidereal motion. Implicit in models for the motion of the eight
sphere is a variation of the obliquity of the ecliptic, although this was, it appears,
not tabulated as a variable parameter, nor was an implied variation in the length of
the tropical or sidereal year tabulated. The last thing these theories can be called is
consistent. In the Theoricae novae planetarum, Peurbach described his understand-
ing of the model in De motu octavae sphaerae and explained what may be his own
model for the Alfonsine motion. Regiomontanus considered both theories to be false
(mendacem), which was his opinion of the Alfonsine Tables in general.

All of these attempts to include long-period variation of parameters were super-
seded by Copernicus, who developed more or less consistent models of some com-
plexity, based upon motions of the Earth rather than the sphere of the fixed stars
and the Sun, for nonuniform variations of the obliquity of the ecliptic, rate of the
“precession of the equinoxes” (Copernicus’s own term), length of the tropical year,
solar eccentricity, and sidereal and tropical motion of the solar apogee. Copernicus’s
models were described and the parameters derived, with some wishful thinking, in
De revolutionibus (1543), and all the long-period motions were included in Erasmus
Reinhold’s Prutenic Tables (1551), which became the basis for the computation of
ephemerides in the later sixteenth and early seventeenth centuries. And Copernicus’s
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models were carried over into geocentric theory, as by Giovanni Magini, by trans-
ferring the various motions of the Earth to the sphere of the fixed stars and the
Sun. Hence, the complex legacy of the errors in Ptolemy’s solar observations was
fundamental to the astronomy in this period in both theory and tables. But already
questions were being raised about the reliability of the observations. Copernicus
told Rheticus of his fear that very many of the observations of the ancients were
not genuine but were accommodated to their theory, as Rheticus reports in his
Ephemerides novae (1550), although these doubts may have come after Copernicus
erected much of his astronomy upon these very observations. Girolamo Cardano, in
De restitutione temporum et motuum coelestium (1543), attempted, after a fashion,
to find the cause of error and correct some of Ptolemy’s observations and param-
eters, although he was more critical of Thābit’s motion of the eighth sphere and
the Alfonsine Tables. A more expert examination did not come until the ancient
observations and parameters were considered by Tycho, who intended more than
he accomplished, Tycho’s former assistant Christian Longomontanus, who set out
the most radical criticism and correction, and Kepler, who had his own reasons for
carrying out such an investigation. In this paper, we shall consider all three.2

Tycho Brahe

It is commonly said that Tycho did away with all the long-period variation of
parameters that had so concerned Copernicus and established new and improved
parameters for the obliquity, solar theory, and precession on the basis of his own
observations, more accurate than any that came before. There is some truth in this,
as he did all of these things, but in the Progymnasmata he explains several times
that the parameters established here are only for his own time and he intends to
investigate their variation over a long period in a complete restoration of astronomy,
which was never written. In fact, Tycho always believed with Copernicus that the
obliquity of the ecliptic and the solar eccentricity had decreased and the apsidal line
advanced from antiquity to his own time, meaning that he took the observations
and theory of Hipparchus and Ptolemy seriously, although he never worked out a
hypothesis, model, of his own for long-period variation. Initially, he accepted Coper-
nicus’s hypothesis for the Sun, but because Copernicus’s eccentricity was smaller
than he found, he concluded that it must be erroneous. In a letter of 4 November
1580 (7.59–60) he tells Thadaeus Hagecius of a restoration of the motion of the
Sun, which he investigated in preceding years, so careful that it agrees with daily
observations, as (Paul) Wittich often tested with me, from which the computation
of Alfonso and Copernicus deviates sometimes by half a degree, sometimes by a
little more. For the motion of the center of the eccentric of the Sun in its small
circle is far different than our predecessors found, or even Copernicus himself estab-
lished, so that the eccentricity of the Sun is now 2;5 parts (where the radius of the
eccentric is 60), 0;13 greater than the opinion of Copernicus, but the apogee of
the Sun is near Cancer 5◦, far before (west of) the hypotheses of Copernicus.3 For
otherwise the solar appearances do not agree, as I have demonstrated from many
observations and will soon, God willing, communicate to the learned. Tycho thus
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accepts Copernicus’s hypothesis with variable eccentricity and apsidal line, but is
attempting to correct the parameters, and the same is true of the variable precession.
For I have also discovered, he reports, that the motion of the eighth sphere (of the
fixed stars) is now so much faster than Copernicus established that the equinox has
precessed about one-quarter degree faster (in the period since Copernicus), which,
by observation of Spica made in the same way as Copernicus, I have observed and
demonstrated many times.

In the Progymnasmata, Tycho establishes a solar theory from his own observa-
tions in the years 1584–1588, which he considers more accurate than any earlier
observations because he corrects for solar parallax, which he believes reaches 3′ in
the horizon, the standard value since Ptolemy, and refraction, reaching 34′ in the
horizon. In 1584 he found his definitive value of the obliquity, 23;31,30◦, which he
continued to check in the following years. For his derivation of the solar eccentricity
and direction of the apogee (2.19–23), he uses the two equinoxes and Taurus 15◦

or Leo 15◦, following the method described by Regiomontanus in the Epitome of
the Almagest 3.14. Copernicus had done something like this in De revolutionibus
3.16 using Scorpio 15◦, which, Tycho points out, led to errors due to neglect of
refraction at a low altitude although he believes that Copernicus did correct for par-
allax. From two derivations for 1588, he finds that where R = 100,000, e = 3584,
or where R = 60, e ≈ 2;9, cm ≈ 2;3,15◦, and λA = Cancer 5;30◦, which he
says are confirmed by yet other derivations. But he does not believe the parameters
are permanent, indeed, with Copernicus, he had reason to believe that the solar
eccentricity decreased and the longitude of the apogee increased since antiquity,
as he explains (2.28). Hipparchus and Ptolemy found by observation at their times
λA = Gemini 5;30◦ and e = 415 where R = 10,000, so cm = 2;23◦, and since
Ptolemy found these again in the same way as Hipparchus, before him by an inter-
val of 260 years, he believed the apogee entirely immovable and the eccentricity to
remain for ever the same. It may, however, be suspected that some error is concealed
in the observations of both or at least one of them, which could easily happen in
so sensitive an undertaking, especially because they began their demonstration in
this investigation through equinoxes combined with transits of the solstice, which
are observed with great difficulty. And it is likely that Ptolemy, because he did not
find so great a difference, did not wish to disagree with the records of Hipparchus,
but instead assigned to his own age the same eccentricity of the Sun and the same
apogee, affirming too confidently for this reason that both are immovable. He goes
on to review briefly, following the Epitome of the Almagest and De revolutionibus,
the solar theories of al-Battānı and az-Zarqāl, and then carries out a detailed anal-
ysis of the errors in Copernicus’s solar theory because Copernicus found a smaller
eccentricity and a more advanced apsidal line for 1515 than he found for 1588,
contradicting in a mere 73 years the record of nearly 1450 years since Ptolemy.
Thus, Tycho still believes that a notable variation of the eccentricity and advance of
the apsidal line have occurred, that the theory of Hipparchus and Ptolemy, although
open to question, must still be taken seriously, but that Copernicus’s own hypothesis
and parameters are incorrect.

And there is more, for Tycho also believes, with Copernicus, that the length of
the tropical year has varied from antiquity to his own time, as evidence for which
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he presents the following comparisons in days and hours to which we have added
sexagesimal fractions of days (2.33):

From Hipparchus to Ptolemy 365d 5;55,12h 365;14,48d

From Ptolemy to al-Battānı 365 5;46,20 365;14,26
From al-Battānı to our observations 365 5;49,29 365;14,34
From Ptolemy to our observations 365 5;47,52 365;14,29,40

That the year is nonuniform and has become shorter since antiquity is apparent,
although it is also apparent that the values cited here are not consistent and some-
thing is wrong, as Tycho recognizes. What could cause such a variation? Tycho
explains that the inequality of the tropical year is the result of the variation of the
apogee and eccentricity of the Sun producing a motion of the ecliptic, on account of
which the equinoctial points recede along the equator with respect to the fixed stars.
Thus, the inequality of the year is the result of inequalities in the motion of the Sun
affecting the location of the equinoxes, the precession of the equinoxes is a part of
solar theory, and there is no motion of the sphere of the fixed stars, which he consid-
ers at rest except for the diurnal rotation of the heavens. This is a difficult subject,
the interpretation and cause of precession, the theory of which Tycho never fully
worked out although he later suggested something like his model for the regression
of the nodes in the lunar latitude theory, and we shall return to it below.

Also with Copernicus, Tycho believes the sidereal year invariable, and this is of
some interest as it is in finding the length of the sidereal year that he makes the
most direct use of Ptolemy’s observations and theory (2.33–37). That earlier values
differ, he says, is because of errors in observation, failure to take account of solar
parallax and refraction, insufficiently accurate locations of fixed stars, or from all
of these causes coming together, as could easily happen in so sensitive an investi-
gation. Of earlier values, he cites, from the Latin version of al-Battānı, “the most

ancient Egyptians and Babylonians,” 365 1
4 + 1

131
d = 365;15,27,30d = 365d 6;11h;

Thābit ibn Qurra, 365;15,23d = 365d 6; 9,12h; and Copernicus, 365;15,24,10d =
365d 6; 9,40h. Then, in order that we may find the length of the sidereal year more
accurately, we have carefully compared Ptolemy’s observations of the Sun and fixed
stars with our own, for I am convinced that his observations are more accurate and
secure than those of Hipparchus. (Delambre calls this a “choix singulier.”) What
Tycho does is use Ptolemy’s solar theory and tropical longitude of fixed stars as
correct for Ptolemy’s time, and his own solar theory and longitude of fixed stars as
correct for his own time, to find the sidereal longitude of the Sun at each time. He
also assumes that Ptolemy’s rate of precession, 36′′ per year, is correct for Ptolemy’s
time and his own rate, 51′′ per year, not yet set out, is correct for his own time.
And like Copernicus, he takes the longitude of the first star of Aries in Ptolemy’s
catalogue, γ Arietis, as the measure of precession.

Thus, at Ptolemy’s autumnal equinox (11) of 25 September 132 at 2h after noon
in Alexandria, the true longitude of the Sun λs = 180◦ and the mean longitude
λ̄s = 180◦ + 2;10◦ = 182;10◦. Taking Ptolemy’s longitude of Regulus on 23
February 139 of 122;30◦ and the interval to γ Arietis of −115;50◦, the longitude
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of γ Arietis is 6;40◦, as in Ptolemy’s star catalogue. Since for 6 years and 7 months
(corr. 5 months) earlier Δπ = −4′, π = 6;36◦ and the mean sidereal longitude
of the Sun λ̄∗

s = 182;10◦ − 6;36◦ = 175;34◦. At Tycho’s autumnal equinox of 12
September 1588 at 15;15h after noon (13 Sep 3;15 AM) at Uraniborg, λs = 180◦

and λ̄s = 180◦ + 2;2 1
2

◦ = 182;2,30◦. From our observations, he says, at this time
the precession of the equinoxes π = 28;5 1

2
◦
—as we shall show in the follow-

ing chapter from accurate observations made earlier—so the mean sidereal lon-
gitude of the Sun λ̄∗

s = 182;2,30◦ − 28;5,30◦ = 153;57◦.4 The difference in
sidereal longitude Δλ̄∗

s = 153;57◦ − 175;34◦ = −21;37◦ = +338;23◦. Next, in
his list of longitudes and latitudes of places (5.309–10), the difference in longi-
tude of Alexandria and Uraniborg is 60;30◦ − 36;45◦ = 23;45◦ = 1;35h (corr.
29;55◦ − 12;42◦ = 17;13◦ = 1;9h). Hence, at the meridian of Uraniborg, the time
of Ptolemy’s equinox is 2h − 1;35h = 0;25h after noon. Now, between the two
autumnal equinoxes, including complete revolutions and years, the difference of
mean sidereal longitude Δλ̄∗

s = 1455r +338;23◦ and the difference of time in Julian
years Δt = 1455jy +355d 14;50h. Thus, the mean sidereal motion of the Sun ν̄∗

s and
the length of the sidereal year sy are

ν̄∗
s = 524138;23◦

531791;37,5d = 0;59,8,11,27,14,26,54◦/d,

sy = 360◦/ν̄∗
s = 365d 6;9,26,43 1

2
h
.

The correct length of the sidereal year is 365d 6;9,10h, about 17′′ less, which
accumulates to 1h in 212 years and nearly 7h in the 1456 years since Ptolemy’s
equinox. The principal cause of the difference is an error of about −30h in Δt ,
from Ptolemy’s equinox, which is 33h late, compensated slightly by Tycho’s, about
3h late.

Tycho does better with the tropical year, for which his goal is more modest but
the required work greater (2.37–45). He explains that he does not here attempt a
complete restitution of the solar motion for all ages, which he decided to reserve for
his complete work of restored astronomy, but only as suffices for the nearest periods,
within 300 or 400 years, for in that time an inequality in the tropical year that dis-
turbs what we propose to do cannot occur. Therefore, instead of using the sidereal
year and separating out the precession of the equinoxes, which would here be very
lengthy (because over long periods the precession is variable), we shall instead be
satisfied with the equinoctial or tropical year confirmed for this very period. We
shall investigate this from observations of meridian altitudes of the Sun a hundred
years ago in Nuremberg by the learned Bernhard Walther, of lasting memory and
especially worthy of praise, the distinguished student of Regiomontanus. What he
then does is derive the parameters of solar theory for the year 1488 using Walther’s
observations of chords of meridian zenith distances of the Sun to locate the Sun at
the equinoxes and at Taurus 15◦ and Leo 15◦, and from two derivations settles on
e = 0.035481, cm = 2;2◦, and λA = Cancer 4;15◦. Note that e and cm are slightly
smaller than Tycho’s for 1588, and he also finds an obliquity of 23;31◦, slightly
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less than his own 23;31,30◦. He takes these differences seriously and remarks that
it seems consistent that from that time the obliquity of the ecliptic has increased
slightly, because meanwhile the eccentricity of the Sun has also increased some-
what, and not (as the Copernican reasoning erroneously maintains) decreased. Then,
from the difference in time between the equinoxes, both vernal and autumnal, of
1488 and 1588—with small errors in the differences in longitude of Nuremberg and
Uraniborg and in the mean longitudes of the Sun—he derives for the length of the
tropical year 365d 5;48,45h exactly, an excellent value. The mean daily motion is
computed to no less than seven places, of which the first four are 0;59,8,19,49◦/d.
The epoch for noon of 1 Jan 1588 is 290;4,50◦.

Since Tycho considers the tropical year variable over longer periods, the mean
motion is intended for a limited time, and he tabulates epochs only for the period
1400–1800, that is, 1600 ± 200 years. The rate of precession is later found (2.253)
from the difference between the sidereal and tropical year, 365d 6;9,27h−365d 5;48,

45h = 0;20,42h. Since the Sun moves about 0;2,28◦/h, the precession π =
0;2,28◦/h · 0;20,42h ≈ 51′′ per year, 1◦ in 70 years and 7 months, which will be
confirmed for longer periods from observations of fixed stars. It was found that in
1488 λA = 94;15◦ and in 1588 λA = 95;30◦, a change of 1;15◦ in 100 years, from
which the motion of the apogee is 45′′ per year. Since the precession is 51′′ per
year, the sidereal motion of the solar apogee is −6′′ per year, that is, retrograde,
which Tycho does not mention. But since it may not be uniform over longer peri-
ods, perhaps at some other time it is direct. This then is the solar theory Tycho
established for his own time and two centuries before and after. Although doubts
have been raised about Ptolemy’s solar observations and theory and observations of
fixed stars, they have not been rejected, but in fact accepted for the determination of
the sidereal year.

Tycho has more doubts about the observations of fixed stars used to confirm the
rate of precession. He has no confidence in any earlier determination of precession:
Ptolemy’s 1◦ in 100 years is too slow, al-Battānı’s 1◦ in 66 years is too fast, and
Copernicus’s variable precession is defective, as we shall see below. Nor does he
consider earlier coordinates of stars reliable, although he does use some to confirm
his own rate of precession. And he believes that Ptolemy’s catalogue of stars is
that of Hipparchus corrected for precession (2.151). “After these (Timocharis and
Hipparchus), Claudius Ptolemy also, about the year 140 after the birth of Christ, and
at Alexandria in Egypt, attempted to observe and commit to writing some amount in
the advancement of these (stars, nonnulla in harum progressione), yet concerning
the placement of them with respect to each other in longitude and latitude com-
pletely preserving the Hipparchan table.” And the same is true of the catalogues
of Battānı, Alfonso, and Copernicus, so in this sense, there has been only one star
catalogue, that of Hipparchus, successively adjusted for precession.

We have seen that Tycho accepts long-period variation of parameters of solar
theory, the eccentricity, direction of the apogee, length of the tropical year, and also,
as we shall see, the obliquity of the ecliptic and the precession of the equinoxes,
to which the variation in the length of the tropical year is related. Several times
he states that the parameters derived here are only for the closest periods, and he
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also says that their definitive examination for all ages is deferred to his complete
restoration of astronomy, which he never wrote. Although he admits the possibility
of smaller errors, nowhere does he say that Hipparchus and Ptolemy were abso-
lutely wrong about the eccentricity of the Sun, the direction of the apsidal line,
the length of the tropical year, and the obliquity of the ecliptic, which thus have
changed notably since antiquity. But the most important problem is the precession
of the equinoxes or, as Tycho prefers, the (apparent) motion of the fixed stars: is
it uniform or nonuniform over long periods and what is its cause? We begin with
Tycho’s treatment in the Progymnasmata, which comes after the establishment of
locations of fundamental stars for the star catalogue and the explanation of how
locations of other stars are found. The section is called “On the proper motion of
the fixed stars corresponding to this age” (2.253–57). He begins with the derivation
of the rate of precession from the difference of the sidereal and tropical years we
have just shown. The length of the sidereal year is 365d 6;9,26,43h, the length of
the tropical year “in this age” is 365d 5;48,45h, less than the sidereal year by about
0;20,42h. In so much time the Sun, after traversing an entire circle, again overtakes
a fixed star which has advanced slightly, meanwhile passing over exactly 51′′ in its
motion, and therefore such a small amount is the annual advancement of the fixed
stars “in our age.”

He then sets out confirmations of this rate using pairs of locations of Spica and
Regulus from observations of his own, Copernicus, Battānı, Ptolemy, Hipparchus,
and Timocharis. We summarize these in the following table giving the observers,
star, earlier and later longitudes λ1 and λ2, difference in longitude Δλ = λ2 −
λ1, difference in time Δt in years, and the annual rate of precession π = Δλ/Δt
computed by Tycho.

Observers Star λ1 λ2 Δλ Δt π

Cop.-Tycho Spica 197; 3,30◦ 198;3◦ 0;59,30◦ 70y 0;0,51◦/y

Hip.-Tycho Regulus 119;50 144;5 24;15 1713 0;0,50,59,47
Hip.-Bat. Regulus 119;50 134;5 14;15 1006 0;0,51
Bat.-Tycho Regulus 134; 5 144;5 10; 0 705 0;0,51,4
Tim.-Tycho Spica 172;20 198;3 25;43 1879 0;0,49,15
Ptol.-Tycho Spica 176;40 198;3 22;23 1446 0;0,53,15

The results are not quite straightforward and most of the values of π have
small errors of little consequence.5 To explain the discrepancies of about ±2′′ in
the comparisons with Timocharis and Ptolemy, he notes that the comparison with
Hipparchus in between them is correct, which is confirmed by al-Battānı, that the
mean of their values is about 51′′, and that their observations are not sufficiently
accurate for this purpose. For this reason, it is useless to give direct comparisons
between Timocharis, Hipparchus, and Ptolemy, which would be close to Ptolemy’s
36′′ per year. Hence, it appears that 51′′ per year is confirmed for nearly 1900 years.
But Tycho is more cautious, for he writes that assuming that the annual motion of
the fixed stars is exactly 51′′, in no way shall we depart from the required goal in
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any experiences that can occur in the nearest three or four centuries (as concerning
more I shall not speak). Like the epochs of the Sun’s mean motion, the epochs of
the motion of the fixed stars are tabulated only for 1400–1800, as they are in the
Restoration of the Fixed Stars with the catalogue of 1,000 stars completed in 1598
(3.343,374). He goes on to say, and this seems to be his main point, that Coperni-
cus’s theory of the inequality of the precession of the equinoxes, to reconcile and
preserve all the discoveries of his predecessors, is in no way correct, as in the motion
of the seventy years from his first observation of Spica, which is much faster than he
believed it would be, not one degree in about one hundred years but in seventy, and
in the length of the tropical year, which is not as long as he believed, for according to
Copernicus the two are connected such that the motion of the fixed stars is slowest
when the year is longest. But the accurate observations of recent years refute this
since they do not correspond in their periodic returns, meaning that the precession
is not as slow or the tropical year as long as in Copernicus’s theory.6 He concludes
(2.255–56):

It is not now our intention to set out the universal motion of the eighth
sphere (as it is called) and also corresponding to all periods in the age of
the world, so that the inequality discovered by first some and then other prac-
titioners will, as far as possible, be justified, leaving aside the undertaking
of such labor to a special restoring of astronomy. Nevertheless, convinced
in this matter by good reasons, I do not hesitate to affirm that so immense
an anomaly is hardly concealed in the motion of the fixed stars as is come
upon from the observations of Timocharis and Ptolemy compared with Hip-
parchus and al-Battānı. For it is not likely that sometimes they pass over 1◦

in 100 years, as Ptolemy reckoned, but sometimes in 66 years, as al-Battānı
believed, but rather without doubt some error has escaped detection in the
actual observations of the practitioners, which appears clearly enough from
the fact that the longitudes of the very stars they report specifically to have
observed are not distant from each other in heaven itself by the amount
their record claims, so much so that a deviation from the arrangement of
heaven is found of a third and even half a degree, which will be clear to
anyone by comparing our intervals of longitude with their records regarding
the same stars. We also see how little of more refined accuracy the mod-
erns have shown in these matters, as is clear from the published observa-
tions of Regiomontanus and his student Bernhard Walther, and of Werner.
Nevertheless, I shall not suppose that the observations of the ancients of the
fixed stars were so erroneous that it cannot be gathered from them that some
kind of inequality of motion is concealed in them, although I believe this
takes place from some external cause and indirectly, and with good reason
is not to be attributed to the stars themselves. Still, it is not yet suitable to
make known a final judgment on this matter, considering more deliberately to
reserve it to the comprehensive study of astronomy to be published in several
years.
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Although the comprehensive study of astronomy was never written, Tycho does
say more on the question in his correspondence with Joseph Scaliger. The cor-
respondence, of considerable interest on both sides, has been treated in detail by
Anthony Grafton (1993) concerning Tycho’s correction, or attempted correction, of
Scaliger’s notions about the sidereal year and precession, and our own examination
of this curious subject owes much to Grafton’s. Tycho knew Scaliger’s work well. In
1584 he asked his friend Heinrich Brucaeus, Professor of Medicine at Rostock, for
a copy of the recently published De emendatione temporum, the first of Scaliger’s
two great works on chronology, which Brucaeus promptly sent. In 1595, through
his former assistant Johann Isaac Pontanus, then in Amsterdam, he sent Scaliger
in Leiden several printed quaternions of the solar theory in the Progymnasmata so
that he could compare his equinoxes with ancient equinoxes to find a more correct
measure of the relation of the tropical and Julian year. He hoped that in this way
the length of the tropical year, which he had established for the recent period from
Walther’s observations, could be found more accurately by extending the interval
back to antiquity and in so doing refute Copernicus’s theory of the variation of
the tropical year and precession, which he says is not as great or as important
as astronomers suspect (7.373–74). He seemed to think that Scaliger had original
reports of ancient observations of equinoxes, by Hipparchus in particular, other than
the citations in the Almagest, which of course he did not. In a letter of 14 March
1598 written from Wandesburg (8.31–33), he asks Scaliger to send him all Hip-
parchus’s observations he has of vernal and autumnal equinoxes, perhaps from the
Commentary on Aratus which contains no such equinoxes, set out in a table so that
he could compare them with his equinoxes; if he has other very old observations
of equinoxes, he would wish them, and also the most ancient epoch of the Jews,
when it is believed the equinox took place on 21 April at 6 hours after noon. This
would have been about 3800 BC, close to the date of Creation. Scaliger included
Tycho’s equinoxes in the second edition of De emendatione temporum (1598),
and concluded from a comparison of Hipparchus’s and Tycho’s equinoxes that the
Alfonsine tropical year of 365d 5;49,16h is correct and preferable to the year of
“Gelalaeus.”7

Now on 9 July 1598 Scaliger sent Tycho the second edition of De emendatione
temporum with a letter setting out his ideas about the tropical and sidereal years and
the precession (8.83–87). He believes that the sidereal year is not longer than, but
equal to, the Julian year, because the same star always rises in the evening and sets
in the morning on the same Julian date, which in truth the judgment of the Egyptians
that decrees that Sirius always rises on the same Julian date proved to us, the evi-
dence for which is that what we call the Julian year the Egyptians called “Canicular”
because for more than 1500 years Sirius (Canicula) rose on the same date of the
Julian year. This observation, as I hope, he tells Tycho, will not be unwelcome to
you. He did not reach this conclusion from a record of Egyptian observations of
the rising of Sirius, which does not exist, but, it appears, by interpreting the Sothic
Cycle, 1461 Egyptian years = 1460 Julian years, in which 1 Thoth in the Egyptian
calendar returns to the same date in the Julian calendar, plus an additional 44 Julian
years for the effect of the precession of the equinoxes, advancing the equinox by 11
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days in 1460 Julian years, as a period of more than 1500 Julian years in which Sirius
rose on the same date.8 Further, he continues, there is no trepidation nor motion of
the eighth sphere, of the fixed stars, from west to east because it is the equinoctial
points in the ecliptic that move from east to west, for the equinoctial circles (of the
equator) are described as a consequence of them. These points are surely movable,
and therefore the circles described as a consequence of their motion are movable and
consequently the pole of the equator is movable. And thus in the time of Hipparchus,
the pole of the equator was distant from the tail of Cynosura (Polaris) by 12;24◦; now
it is distant by less than 3◦.9

Scaliger’s theory is this: the pole of the world, meaning of the sphere of the fixed
stars, passes through the Pole Star itself or is not far removed from it, and the pole
of the world, the arctic and antarctic circles, and the fixed stars do not move at
all—aside from the daily rotation—there is no motion of the eighth sphere. Instead,
the pole of the equator is movable, and has never been the pole of the world although
at some time it will be as it is approaching closer to the Pole Star. As a consequence
of the motion of the pole of the equator, the equator moves along the ecliptic and
the tropic circles also move parallel to the equator—these circles are not parallel to
the arctic and antarctic circles—and it is this motion that produces the precession
of the equinoxes and solstices. Just how Scaliger came up with this explanation of
precession, which he regarded as eliminating the motion of the fixed stars, is not
certain. He was no Copernican in the sense of holding the heliocentric theory and
the motion of the Earth, but it may have been an attempt to adapt Copernicus’s
theory of precession, which is a motion of the equator along the ecliptic while the
fixed stars and the ecliptic do not move, to an unmoving central Earth and unmoving
sphere of the fixed stars, although without Copernicus’s inequalities which Scaliger
definitely rejects.

Tycho wrote a long, detailed, and patient answer from Wandesburg between 17
and 23 August 1598 (8.100–09). He had his work cut out for him. He says he cannot
support Scaliger in his proposal concerning the equator and its movable poles and
that they differ from the poles of the world as his experience from instruments is
otherwise (8.102–02).

For I have found from the change in latitude of fixed stars in accordance
with the proportion of the change in the obliquity of the ecliptic from the
times of Timocharis, Hipparchus, and Ptolemy up to the present (if only what
they observed in the angle of the maximum obliquity and the rest are free
of any error, concerning which, not without reasons I am in doubt) that it is
the ecliptic that is unstable rather than the equator with its poles, the Sun not
always describing the same ecliptic through a great interval of centuries, and
at the same time successively anticipating the places at which it crosses the
equator. Hence, it happens that the fixed stars appear to progress as much as
the Sun returns earlier to these points. And since what fits the deficit of the
tropical year from the Julian year is clearly not equal to that motion, it is
not possible that the fixed stars rise or set with the Sun on the same days of
the Julian year through intervals of several centuries, and likewise from other
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concurrent causes which will give rise to a discrepancy. And although it (the
rising of stars) can somehow coincide (with the same days of the Julian year)
for some few stars for a long interval of years, nevertheless not always or for
all stars. Also, there is no difference at all between the pole of the equator and
of the world, as you infer both in your book and here, for they are one and
the same. And the last star in the tail of Ursa Minor, called Polaris because
it is near the pole, is not the pole of the world or the closest to it unless you
understand that to mean the pole of the equator, which, as I said, does not
differ from the pole of the world. This star was distant from the pole of the
equator by 12 2

5
◦

in the time of Hipparchus, but in this year according to our
discoveries it has approached it within 2;51 1

2
◦
, as 25 years earlier we found it

removed from the pole by precisely 3◦ with a quadrant 14 cubits in radius in
the garden near the estate of Councillor Heinzel in Augsburg. The approach
to the pole of the equator or of the world takes place, not because this star is
the pole or near (the pole) of any sphere, but through its change of longitude
about the poles of the ecliptic, by which its declination increases, since it is
now near the end of Gemini but at the time of Hipparchus was near the end
of Taurus, in the intervening time having covered a little more than 24◦ in
longitude, but in latitude altered not more than the decrease of the obliquity
of the ecliptic produces, through a third part of a degree (if it is even that
much), for the (latitude) which the table of Ptolemy places at 66◦ exactly is
approximately confirmed. And if this star is referred to the equator in our own
age, it will not fall in the equinoctial colure, as perhaps you believe, but will
be removed from it by 5 3

4
◦

of the equator, as has itself been demonstrated
by certain experience. But it can never be exactly united with the pole of the
equator, for after about 500 years, when the beginning of Cancer reaches the
solstitial colure, it will be distant from the pole toward the equator or eclip-
tic by 27 1

2
′
. For although the inclination of the ecliptic will perhaps then be

increased a little (which, however, I scarcely think will come about), yet this
will alter only the latitude of the star and not on account of that move it closer
to the pole, as the stars definitely look to the fixed poles of the ecliptic while
the Sun describes somewhat movable poles through the ages (i.e. a movable
ecliptic with movable poles), in so far as the records of the ancients are worthy
to be trusted.

Tycho goes on to explain that the heliacal rising of Sirius changed, according to
his computation, by only one day in the Julian year for 1500 years before Ptolemy,
which would have been difficult to detect, not because the sidereal year is equal to
the Julian year, but by chance in that particular star because in the interval of so
many centuries its declination changed by 2 2

3
◦

such that this alteration of declina-
tion corrects and nearly eliminates the change that could occur from the difference
between the Julian and sidereal year. This explanation, which Tycho was surely
the first to formulate, is correct.10 But our concern here is not so much Tycho’s
correction of Scaliger, as his own ideas concerning the precession, which he says is
a result, not of the motion of the fixed stars, but of the ecliptic. He enlarges on this
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in correcting Scaliger’s dismissal of the sidereal year and its relation to precession
(8.103–04).

The calculation of the sidereal year, introduced by the Babylonians and Egyp-
tians and after that improved by Thābit, but restored in our age by Copernicus,
is not so empty and useless as you think, if only it is determined exactly. We
have corrected it still more accurately in our Progymnasmata astronomica
in so far as Ptolemaic observations are compared with our own. But when
through you I receive the Hipparchan observations in some quantity, I will
examine this more precisely. For with you, I also consider it preferable to
depend upon Hipparchus than Ptolemy. However, I believe no less than Coper-
nicus that with respect to themselves the fixed stars remain forever unmoved.
But I do not allow that progression, which they appear to make, through the
precession and libration of the axis of the Earth, as he (Copernicus) preferred,
since in truth nothing of the kind is suitable to the Earth. But if the reports
of the ancients are worthy to be considered in every way certain, it will be
very likely that the Sun itself describes one and another ecliptic in different
ages. And however small the inequality concealed in it could be, in so far as
it will be permitted to explain from past observations of the practitioners, we
shall, God willing, save it through the universal hypothesis of the Sun. And
the calculation of the sidereal year will also be of use for this purpose, as also
for finding the simple motion of the planets from a fixed and immovable point
and establishing it more accurately than up to now.

The “Hipparchan observations” refer to the original reports or additional obser-
vations, especially of equinoxes, Tycho requested earlier—the next year Scaliger
sent him a copy of the Commentary on Aratus, in which he would have seen that it
contained nothing of the kind—and again he asks for the most ancient equinox of the
Jews. The meaning of the sentence about believing with Copernicus that the fixed
stars are forever unmoved is, not that they do not move among themselves, which
everyone believes, but that the fixed stars as a whole, the sphere of the fixed stars
itself, is unmoved, as Copernicus alone believed and as Scaliger and Tycho now also
believe, which is confirmed by the statement that the simple (sidereal) motion of the
planets be found from a fixed, immovable point, as Copernicus also held. The only
motion of the sphere of the fixed stars is the diurnal rotation about the pole of the
equator, which Tycho considers the pole of the world and absolutely fixed. Instead,
the precession is due, not to the motion of the stars, but to the motion of the Sun,
describing different ecliptics in different ages, possibly with a small inequality. This
agrees with his statement that the Sun does not always describe the same ecliptic
through a great interval of centuries, and at the same time successively anticipates
the places at which it crosses the equator, so that the fixed stars appear to progress
as much as the Sun returns earlier to these points.

The discussion, the issue, between Tycho and Scaliger is this: Both believe with
Copernicus that the fixed stars do not move at all, that there is no motion of the
eighth sphere, although they also believe, differing from Copernicus, that the diur-
nal rotation is of the entire universe, including the sphere of the fixed stars, about
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an unmoving, central Earth. But again with Copernicus both believe there is a pre-
cession of the equinoxes with respect to the fixed stars which is not caused by any
motion of the stars. Scaliger believes the precession is caused by a motion of the
pole of the equator with respect to the pole of the world, of the sphere of the fixed
stars, at or very near Polaris, shifting the equator and thus the intersections of the
equator with the ecliptic, the equinoxes, with respect to the stars and the ecliptic,
which is also fixed with respect to the stars. This appears to be an adaptation to a
fixed, central Earth of Copernicus’s theory, in which the equator moves with respect
to the ecliptic and the fixed stars, although without the inequality in the motion of
the equinoxes. Scaliger also believes that the sidereal year is equal to the Julian
year, as shown by the constant Julian date of the rising of Sirius, and those who say
it is longer are simply wrong. Tycho believes instead that the pole of the equator
is the fixed pole of the world and that the precession is the result of the motion of
the Sun, describing successively different ecliptics, that is, an ecliptic that moves,
rotates, along the equator so that the Sun crosses the equator at successively different
points, causing the equinoxes to precess with respect to the fixed stars and fixed
equator. There is probably also some small inequality concealed in this motion of
the equinoxes, which accounts for the variation of the length of the tropical year, but
the sidereal year, the Sun’s return with respect to the fixed stars, is constant, as the
fixed stars do not move, and is longer than a Julian year. The nearly fixed Julian date
of the rising of Sirius is fortuitous, because the star’s change in declination nearly
compensates the difference between the sidereal and Julian year, which is not true
of most stars. Tycho believes that he has established the length of the constant side-
real year correctly for all times and the length of the variable tropical year for 100
years since Walther and probably for 200 years before and after his own time; more
than that and a complete explanation of the precession is reserved for his universal
hypothesis of the Sun.

Scaliger was not convinced by Tycho’s arguments, indeed, he became more cer-
tain than ever that he, the philologist with a profound knowledge of antiquity, was
correct, and Tycho, the astronomer, and all other astronomers, who know noth-
ing of antiquity, were wrong. He was writing a Diatribe on the precession of the
equinoxes (De aequinoctiorum anticipatione diatriba), completed in 1601 but prob-
ably never seen by Tycho, and only published posthumously in 1613.11 On (NS) 10
March 1600, he wrote to Tycho in Wittenberg (8.261–64), referring to a letter he
had received recently, and summarizing what he planned to write in his Diatribe.
The word “diatribe” then meant a critical dissertation, not necessarily an invec-
tive, although that is hardly lacking in Scaliger’s Diatribe or his letter to Tycho
(8.262–63).

For I intend to send you my diatribe on the precession of the equinoxes and
refutation of the motion of the eighth sphere, in which we have both dili-
gently assembled innumerable testimonies of the ancients and shall demon-
strate by five clear testimonies of the most ancient authors that the star called
Polaris has remained for 1966 years in the place where it is today. Further,
we shall adduce so many incongruities and absurdities which follow from the
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hypothesis of the motion of the eighth sphere that there will be no one except
the ignorant or envious who will dare speak to the contrary. I add also, because
it has thus far been entirely unknown, that the precession of the equinoxes had
been accepted from Thales and Anaximander up to the time of Hipparchus,
and that Hipparchus was the first of all to reject it, having introduced the
eastward motion of the eighth sphere, so that against the evidence of sight,
he recorded the last star in the tail of Cynosura, or Polaris as it is commonly
called, to be the most southern of all seven stars in that constellation, which
nevertheless was before him, and is today, and will always be the most north-
ern of all. See how the authority of such a man has misled posterity! For
from him up to the present day, you believe such things, and for no reason
other than that “the Master spoke” ( ), which should never have
a place in mathematics. For to no sort of men has more harm been done
by ignorance of antiquity than to the race of astrologers. Nothing occurs to
me to be more surprising than that not one astrologer has had even a clue
of the error of that hypothesis and how many and great are the absurdities
necessarily born of it, if you except only Copernicus, who also recognized
the precession of the equinoxes and the obliquity of the equinoctial circle (the
equator), but through ignorance of antiquity took refuge in absurd hypotheses.
In fact, the regular and uniform decrease of the maximum declination of the
Sun necessarily follows from the precession of the equinoxes alone, which
we have demonstrated completely, for otherwise it is not possible except by
false hypotheses. Therefore it follows that the pole of the world differs from
the pole of the equator, and that the meridian lines move and do not always
remain in the same place, which we shall demonstrate perfectly from ancient
authors.

Scaliger’s history of precession may seem bizarre, but far more preposterous
things have been written in our own time; indeed, precession always seems to inspire
both learned and ignorant nonsense. The period of 1966 years during which the
Pole Star has been in the same place is since Eudoxus as cited by Hipparchus,
critically in fact, although Scaliger considers Eudoxus, with the likes of Thales and
Anaximander, preferable to Hipparchus, the originator of the false understanding
of precession as a motion of the fixed stars. This curious history, and there is far
more of it in the Diatribe, has been treated at length by Grafton. It is clear that
Tycho’s attempt at correction had no effect, for Scaliger has changed his mind on
nothing, and is certain that the testimony of some ancients correctly understood is
of greater value to understanding precession than a sound knowledge of astronomy.
Yet it can be said in Scaliger’s defense that in the basic principle of moving the
equator with respect to a fixed ecliptic and unmoving sphere of the fixed stars, in
which he follows Copernicus, he is doing the right thing. Tycho answered in a letter
written from Prague on (NS) 23 July 1600 (8.328–29), in which it appears that the
great astronomer is not doing the right thing; the essential part is this:

I eagerly await your thoughts, which you promised, about saving the equinoxes
and the motion of the eighth sphere in another way. I readily grant you that
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the Pole Star, just as all the other stars of the eighth sphere (as it is called),
remains in the same place in heaven, if only you acknowledge in this star, as in
the others, changes in declination and right ascension, as well as in longitude
and even some change in latitude. I also agree with you that this will take
place, not by the advance of the eighth sphere, but by the precession of the
equinoxes, as the great Copernicus likewise seems to have apprehended. But
the critical point in this matter turns upon how this precession is to be under-
stood and accomplished. That it takes place, as Copernicus theorized, through
a motion of the axis of the Earth, reciprocated and librated and not entirely
coincident with the annual revolution, is in error; rather, the assumption is
utterly absurd and does not satisfy the appearances in this age, much less in
all other ages. I am convinced that the Sun itself causes this variation as it
describes one and another ecliptic in different ages, and moreover draws the
intersections of the ecliptic with the equator backwards, and in fact not at all
uniformly, as I intend to show more fully, God willing, in its proper place. For
I have discovered that the lowest Moon also varies its orbit in single months in
a way not much different such that, not only does its maximum latitude vary
up to a third part of a degree (in fact just as much as the difference thus far
discovered in the obliquity of the ecliptic), but I also learned that the nodes and
intersections with the ecliptic, although they move westward with a uniform
motion, yet this takes place reciprocally and by a nonuniform quantity and
a fairly notable difference which can reach 1 3

4
◦
, as will be explained more

completely, God willing, in publishing before long the restoration of the lunar
motion in our Progymnasmata. If by chance there has become known to you a
way different from ours by which these things can be explained properly, and
it can be ascertained from ancient records and certain observations, I wish you
to impart it to me. For the present, the matter is as I say, that I cannot compre-
hend what you have made known both in your letter and elsewhere: that the
pole of the world is undoubtedly different from the pole of the equator and
that meridian lines move. For it appears not quite suitable, unless perhaps I do
not yet understand your meaning, which is rather obscure, so that concerning
this matter I wish to be more fully instructed by you.

Tycho’s answer is a lesson in gentle irony to a vain man who has nothing but
abuse for those who do not submit to his teachings and acknowledge his genius.
Since Scaliger’s diatribe on precession has been considered by Grafton, we shall
go on to our principal subject, Tycho’s own explanation of precession in this letter,
which appears to be the most complete statement of what he had in mind. The essen-
tial clue is the comparison to the model for lunar latitude, in which the inclination
of the lunar orbit to the ecliptic is variable and the regression of the nodes along
the ecliptic nonuniform. This model is to be transferred to the precession of the
equinoxes, which, as we shall see, leads to problems.

Scaliger’s and Tycho’s hypotheses for precession are shown in Fig. 1. We are
not concerned with Scaliger’s ideas that the sidereal year is equal to the Julian year
and that the pole of the equator will eventually reach Polaris, only that a motion of
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Fig. 1 Hypotheses for precession of the equinoxes according to (a) Scaliger, (b) Tycho, (c) cor-
rection of Tycho

the equator accounts for precession, which is shown in Fig. 1a. The Sun S moves
on the ecliptic in the direction of increasing longitude +λ and initially crosses the
equator at the vernal equinox 1; a northern star sn and southern star ss are shown
with longitude λ1 = 1l, latitudes βn = snl and βs = ssl, and declinations δn = snd1

and δs = ssd1. Now after some time the pole of the equator has moved, shifting the
equator so that the Sun crosses it at the vernal equinox 2, and the precession of the
equinox along the ecliptic is π = 1 2 in the direction of decreasing longitude −λ.
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The longitude of the stars has increased to λ2 = 2l = 1l + π , the latitudes have
remained unchanged, and the declinations have changed, sn increasing to δn = snd2

and ss decreasing to δs = ssd2. And if the pole of the equator has moved closer to
the pole of the ecliptic—this motion is not shown in the figure—the inclination of
the equator to the ecliptic has decreased, which also affects the declination but not
the latitude of stars. All of this is just as it should be, and is essentially Copernicus’s
model but without the inequality and without the motion of the Earth. But if the
axis of the Earth does not move, how is the equator shifted? Scaliger seems to think
that the equator and its poles are located on a sphere, which moves in relation to the
unmoving sphere of the fixed stars. This does raise a problem. If the sphere is inside
the sphere of the fixed stars, it may move in this way, but a sphere with identical
equator and poles, and with the identical motion, must still be located outside the
sphere of the fixed stars to produce the diurnal rotation of the heavens parallel to the
equator. If the sphere is only outside the sphere of the fixed stars and also produces
the diurnal rotation, then it is difficult to consider the poles of the sphere of the fixed
stars as not moving with respect to the poles of this outer sphere moving the equator.
There is nothing wrong with that, and it is a way of transferring Copernicus’s model
for precession to the heavens, but one can hardly then say that the sphere of the fixed
stars is absolutely at rest, of course aside from the daily rotation, which strictly, or
usually, is required to have yet another sphere of its own.

Tycho’s model for lunar latitude produces both a variation of the inclination of the
lunar orbit to the ecliptic and a nonuniform regression of the nodes, and he believes
that both can be applied to the Sun to produce the variation of the obliquity of
the ecliptic and the nonuniform precession of the equinoxes. Tycho’s model for the
precession is shown in Fig. 1b, in which the Sun S moves on the ecliptic, crossing the
equator at 1, and stars sn and ss have the longitude λ1 = 1l1, latitudes βn = snl1

and βs = ssl1, and declinations δn = snd1 and δs = ssd1. The Sun, as Tycho says,
“describes one and another ecliptic in different ages, and moreover draws the inter-
sections of the ecliptic with the equator backwards, and in fact not at all uniformly,”
so that after some time the Sun crosses the equator at 2, which is projected on to
the previous position of the ecliptic at ′

2 in the direction of decreasing longitude
− λ by the precession π = 1

′
2, which may be nonuniform, as the regression of

the nodes in the lunar model, and thus the period of the Sun’s return to the equinox,
the tropical year, may be nonuniform. Along with this nonuniform motion of the
equinoxes, as in the lunar model, there is a variation in the inclination of the ecliptic
to the equator, that is, a variation of the obliquity, which is not shown in the figure.
So far, so good, but when we consider the effect on stars, there are problems. If the
ecliptic moves and the sphere of the fixed stars does not move, then the longitude
of stars increases to λ2 = 2l2 = 1l1 + π , which is correct. But the latitudes of
stars also change, sn reduced to βn = snl2 and ss increased to βs = ssl2, which is not
correct and distinct from the change in latitude from the variation of the obliquity
that Tycho has in mind, and the declinations do not change, which is also not correct.
The solution to these difficulties, shown in Fig. 1c, is to make the fixed stars move
with the ecliptic, so the latitudes βn = sn2l2 = sn1l1 and βs = ss2l2 = ss1l1 are
unchanged, aside from the change produced by the variation of the obliquity, and
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the declinations are changed, from δn = sn1d1 to δn = sn2d2 and from δs = ss1d1 to
δs = ss2d2. But that contradicts Tycho’s belief that the fixed stars do not move and
that the precession takes place, not by the advance of the eighth sphere, but by the
precession of the equinoxes, which is the reason for applying his model for lunar
latitude to the precession. Tycho would surely have discovered these difficulties had
he worked out his model for the precession more carefully, but he did not do so, and
all we have is this suggestion of applying the model for lunar latitude to account for
a nonuniform precession and change of obliquity, which clearly fails.

Tycho’s solar and precession theories, like so much he intended to do, were left
unfinished. Both were established for about two hundred years before and after his
own time, as shown by the tables in the Progymnasmata, and he clearly stated in
that work and the letters to Scaliger that the consideration of long-period varia-
tions is deferred for his universal hypothesis of the Sun and complete restoration of
astronomy. We have seen that in finding the length of the sidereal year, he applies
Ptolemy’s precession of 36′′ per year to Ptolemy’s observations even though in
establishing his own rate of 51′′ per year he shows that it applies not only to his
own time, but is supported, more or less, by observations since antiquity. There
would appear to be a contradiction, but Tycho does not see it that way, instead,
perhaps, taking 51′′ per year as close to a mean value over a long period, subject
to an inequality of magnitude and period not yet known. He also accepts, at least
as more or less correct, Ptolemy’s eccentricity and direction of the apogee, also
used to find the length of the sidereal year, and length of the tropical year for the
period between Hipparchus and Ptolemy, and he believes the obliquity varies over
a range of about 20′, meaning that he accepts something close to Ptolemy’s large
obliquity of 23;51,20◦ in antiquity, nearly 20′ greater than his own 23;31,30◦. He
was cautious about doubting the observations and parameters of his predecessors,
except for Copernicus close to his own time, and while admitting the possibility
of errors by Hipparchus and Ptolemy, did not consider their errors as large as his
own parameters would suggest, believing instead that their observations could not
be seriously inaccurate and there had to be changes of some kind in parameters over
so long a period.

Scaliger had pointed out (8.85), correctly, that some of Hipparchus’s equinoxes
were in error by a quarter of a day, as shown in Almagest 3.1, and accused Ptolemy
of errors of an entire day, which we know also to be true. Tycho’s answer is more
cautious (8.101–02). He admits that because Hipparchus’s instruments were not
graduated to single minutes, but only to twelfths of a degree, and because of neglect
of solar parallax and refraction, errors of six hours in times of equinoxes were possi-
ble, and further, that Ptolemy’s observations have even less certainty. But he will not
say that there was an error of an entire day in the entries into Ptolemy’s equinoxes,
for this would require admitting an error in the declination of the Sun of about five-
twelfths of a degree, which the size and precision of the instruments, by which the
interval between the tropics or the obliquity of the ecliptic was investigated within
one-third of a minute (unless he also borrowed this from Hipparchus), does not
allow. The reasoning here is that since Ptolemy states the obliquity as 23;51,20◦,
to a precision of 1

3
′
, he could not possibly be in error by 25′, the daily change in
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declination of the Sun around equinox, so the equinoxes could not be in error by a
full day. He also points out that the maximum latitude of the Moon of 5◦, found by
Ptolemy with parallactic rulers, does not show so great an error of the instrument,
meaning close to 25′. Since so much depends upon the times of these equinoxes, as
they are used to find the length of the tropical year, the eccentricity and direction of
the apsidal line, the mean motion in longitude and epoch, and indirectly the longi-
tudes of stars from which the rate of precession is found, that is, all the parameters
which show long-period variation except the obliquity of the ecliptic, which depends
upon altitudes of solstices, the absence of serious errors in the observations shows
an absence of serious errors in the parameters. And a variation of 20′ in the obliquity
is also accepted. Thus a variation of parameters over a long period must be taken
seriously and accounted for by the universal hypothesis of the Sun in the complete
restoration of astronomy, and that is what Tycho intended to do. Of course he did not
do it, and it is not possible to know how or whether he would have changed his mind
in attempting to do so. He, or an assistant to whom he assigned the work, would pre-
sumably have caught the error of applying the lunar latitude model to account for the
nonuniform precession, at least as described in the letter to Scaliger, but more than
this we cannot say. We may only conclude that he took the long-period variation
of parameters in solar theory following from Ptolemy’s observations, including the
precession and obliquity as part of solar theory, as seriously as Copernicus did in his
theory of the motions of the Earth. So although Tycho did not believe Copernicus
had described these variations correctly or accurately, he was of the same mind as
Copernicus with regard to the effects, although not the cause.

Christian Longomontanus

Christian Severinus Longomontanus (1562–1647) was Tycho’s loyal and capable
assistant for nearly ten years at Uraniborg, and was with him for part of his travels
in Germany and then in Benatky and Prague. His last contribution while with Tycho
was the final form of Tycho’s lunar theory published in the Progymnasmata, most of
which was Longomontanus’s work, not always with Tycho’s complete approval. He
later became professor of mathematics at Copenhagen. His principal work, Astrono-
mia Danica, published in 1622, was intended as a complete exposition of astronomy
based upon Tycho’s methods and observations, including the theory of the planets
that Tycho did not live to complete, or even begin. Although no longer well known
or much studied, since the contemporary work of Kepler made nearly everything
in it obsolete, or about to be obsolete, it was regarded well enough in its day to
be reprinted in 1640. The work is in two parts, the first on spherical astronomy,
the second, of concern here, on the Sun, Moon, planets, and stars, and there is an
appendix on temporary phenomena of the heavens, new stars and comets. The title
of the second part is “Theories of the motions of the planets in accordance with the
observations of Tycho Brahe, and in fact his very own, re-established in a three-
fold form.” The “three-fold form” means that everything is set out in Ptolemaic,
Copernican, and Tychonic form, which Longomontanus prefers although giving
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the diurnal rotation, precession, and variation of obliquity to the Earth rather than
the heavens, which are absolutely at rest. In making use of ancient observations,
he does not take them as recorded by Ptolemy, as Copernicus did, but subjects them
to examination and correction, as Tycho intended to do, and he considers his work to
apply to all times, again as Tycho intended in his complete restoration of astronomy.
This is specifically stated in the separate title page of Part Two, which is worth quot-
ing: “The second part of Danish Astronomy, including the theories of the planets
restored in two books, of which the former, after a description and comparison of the
three-fold hypothesis of the world, namely, the ancient Ptolemaic, the astonishing
Copernican, the modern of Tycho Brahe, treats the apparent motions of the fixed
stars, likewise of the Sun and Moon in the same way, re-established and adapted to
all ages of the world, together with the entire theory of eclipses and besides this a
special treatment of the Moon; the latter treats the motions of the other five planets,
on the basis of the three-fold hypothesis, similarly restored to the appearances of the
heavens in the same way.”

Although Tycho did not carry out his intended investigation of the motion of the
Sun for all times, that is just what Longomontanus does in a lengthy history of solar
observations and theory from antiquity to Tycho (28–49). Much of it does not meet
with his approval, but he is also interested in explaining why things went wrong. He
is, to say the least, direct in his evaluation (29).

For although the proof of the perpetual constancy of the celestial phenomena
of the single motion of the Sun is evident, yet if the observations and likewise
theories of each of the astronomers are to be believed, in none other do I find
more disgraceful inconstancy, and this not only concerning the measure of the
annual revolution of the Sun, but also the change of its eccentricity (as it is
called) and the location of its apogee. Thus, it was determined by Ptolemy in
his demonstration of the hypothesis of the Sun, and proved by observations
of some kind, that in the nearly 300 years between Hipparchus and Ptolemy
they were without any change, but soon after in the course of the follow-
ing centuries they appear to be subject to inordinate change. Considering the
causes of this more carefully, I perceive that none belong to the absolutely
simple motion of the divine star, but all fault is deservedly to be ascribed to
the astronomers, whose records of the motion of the Sun in different ages, as
they maintain derived from the heavens, have been transmitted to posterity,
in which records the motion of the Sun is more or less erroneous in one way
or another from rather obvious causes. This disgraceful situation continued
until the beginning of the more accurate restoring of astronomy was divinely
granted to our age and to our Atlas, Tycho Brahe, the celestial observations
of whom alone, both because of the correct and careful preparation of instru-
ments as well as skill in observing, exclude all sensible error, as I, who was
a student of Brahe’s astronomy for ten continuous years, can perhaps be the
best witness. But since, as we know, equal care had by no means been shown
by his predecessors, therefore it is no wonder that with the progress of time,
very abundant error emerged, in other bodies, but especially in the Sun.
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Longomontanus is suspicious of all early observations taken from declinations
of the Sun, of equinoxes, where the daily change in declination is greatest, because
of the insufficient size or skill in manufacture of instruments, incorrectly assumed
latitude of the observer, and the effects of parallax and refraction. And the problems
are worse for intermediate places where the daily change of declination is sensibly
smaller, until the solstitial points where the location of the Sun cannot be obtained
from observations because its declination remains invariable for many days. He
believes that the length of the tropical year was obtained, not from such observa-
tions, but from cycles and syzygies of the luminaries, the Sun and Moon (30). All
before Hipparchus believed the year to be 365 1

4 days, as appears in the institution
of the Olympiad, beginning anew in the fourth year near the rising of Sirius, and
likewise other times of the year were recognized by the rising and setting of fixed
stars, the custom of the most ancient Hesiod and later the Greeks and Romans.
While all the observations of the Sun, which without doubt existed in Babylon
and Egypt during the rule of the Assyrians, have perished, first a certain Meton
of Athens, who flourished 430 years before the birth of Christ, also by use of the
common length of the year 365 1

4 days, a Julian year, estimated the mean periods
(simplices cursus) of the luminaries, not so much with respect to the equinoctial
and solstitial points, as to new Moons in his interval of 19 years, with a notable
error which in the course of time to Hipparchus was found to be 5 days by the same
Hipparchus—but to the correction of Callippus, instituted six years before the death
of Alexander, within four of his (Meton’s) periods, which contained 76 single years,
an anticipation of one day was observed in the new Moon—that is, in an interval
of 304 years, or somewhat shorter, 300 years, as Scaliger says, just as the following
words ascribed by Ptolemy to Hipparchus make clear. He then quotes Scaliger’s
quotation of Ptolemy’s paraphrase and quotation in Almagest 3.1 from Hipparchus’s
book “On intercalary months and days” that according to Meton and Euctemon the
years is 365 1

4 days,12 and that Hipparchus says he finds as many months in 19 years
as they did, but the year less than the quarter day by 1/300 day, and thus in 300
years lacking five days from the years of Meton but only one day from the years of
Callippus. He next paraphrases Copernicus’s account in De revolutionibus 4.4, and
explains everything at rather great length. Thus, Meton took the length of the year
in the cycle of 19 years equal to 235 months to be 365 1

4 days, as did Callippus, who
deducted one day in four cycles of 76 years equal to 940 months from observing an
eclipse of the Moon six years before the death of Alexander. (There is obviously a
contradiction if both took the year to be 365 1

4 days.) Hipparchus then corrected four
cycles of Callippus, 304 years equal to 3760 months, by removing one day, and thus
five days from Meton, so that, subtracting one day in 304 years, or shorter, in 300
years, he made the tropical year 365 1

4 days reduced by 1/300 day, that is 0;4,48h,
so the time is judged to be 365d 5;55,12h. His conclusion is striking (31).

And thus Hipparchus, together with his predecessors, attempted to hunt two
hares with one leap, that is, to restore the new Moons within a certain inter-
val of years and determine the individual periods from the mean motions of
the luminaries, and at the same time to measure the annual revolution. Since,
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however, one does not at all depend upon the other in this way, he obtained
a measure of the solar year, not, as it appears, from heaven or the Sun itself,
but from certain syzygies of the luminaries, incorrect and in fact excessive in
length. Unfortunately, Ptolemy chose to copy this error of Hipparchus rather
than repudiate his opinion, so that this lunar cycle was also pleasing to him.
What other evidence Ptolemy presents from Hipparchus for this assertion
proves nothing since, as we proved earlier, the tropical or solstitial points
were unobservable by the ancients, and moreover, the Hipparchan equinoxes
notably oppose this opinion of Ptolemy (ipsius), as we shall soon demon-
strate from Hipparchus’s (ipsius) very observations. And we have treated these
things at length so that men of our time will finally learn that the ancient
astronomers, Hipparchus especially and Ptolemy, have been exposed in errors
by reason of fairly obvious causes in assigning the period of the Sun.

This is, to say the least, strong language. Yet, although there is some confu-
sion in Longomontanus’s account, as the length of the year according to Meton, his
principal point, that the tropical year of Hipparchus and Ptolemy was derived from
a luni-solar cycle rather than from observations of the Sun alone is undoubtedly
correct.13 Very briefly, the length of the Callippic Cycle of 76 years = 940 months
is 76 · 365 1

4
d = 27,759d. But Hipparchus had himself confirmed the Babylo-

nian System B mean synodic month of 29;31,50,8,20d, from which 940 months
are equal to 940 · 29;31,50,8,20d = 27,758;45,30,33,20d, less than the Callip-
pic Cycle by about 0;15d, one-quarter day. Hence, in four Callippic Cycles, 304
years = 3760 months, called the Hipparchan Cycle, one day must be subtracted,
and the length of the cycle is 4 · 27,759d − 1d = 111,035d. The length of the
tropical year is thus 111,035d/304 = 365;14,48,9,28. . .d, which was rounded to
365;14,48d = 365 1

4
d − 1

300
d. Hipparchus confirmed this year as well as he could

from earlier observations of solstices, which is all he had, of which Ptolemy gives
one example: the summer solstice observed by Aristarchus at the end of the fifti-
eth year of the first Callippic Period (−279) and by Hipparchus at the end of the
forty-third year of the third Callippic Period (−134), an interval of 145 years in
which the number of days was less than 145 · 365 1

4
d by one-half day, or one day

in 290 years, close enough to 300 years to confirm a tropical year of 365 1
4

d − 1
300

d.
Ptolemy’s confirmation uses pairs of equinoxes of Hipparchus and his own, autum-
nal (5) and (12), vernal (6) and (13), each pair separated by 285 years = 15 · 19
years, surely no coincidence, which Longomontanus may have noticed although
he does not mention it. The tropical year of Hipparchus, and later of Ptolemy,
thus rests upon the application of the Babylonian System B month to the cycle
19 years = 235 months, or 76 years = 940 months, multiplied to an integer number
of days, 304 years = 3760 months ≈ 111,035 days, and an approximate confirma-
tion from independent observation of the Sun.

What Longomontanus does next is to set out nine of Hipparchus’s equinoxes,
six autumnal and three vernal, dated to the Era of the Death of Alexander (−323
Nov 12, here EA, also called Era Phillip), and subject them to an “examination,”
or rather criticism (32). He believes the observations were made in Alexandria, not
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Rhodes, and that the equinoxes were found, not by interpolating between meridian
altitudes of the Sun, but by an equatorial ring, so the stated times were directly
observed—this is curious since two of the times are midnight—and it is no wonder,
he says, that Hipparchus reached a precision of only one-quarter day. Further, the
reported times of most cannot be accepted because they were at sunrise or sunset
where the effect of refraction in the horizon makes the autumnal later and the vernal
earlier by over half a day at the least, although in part reduced by neglect of the
parallax of the Sun. Thus, as we shall see, when using two equinoxes observed at
dawn, 6 AM, he corrects for refraction: from the autumnal equinox (7) of −145 Sep
27 he subtracts five hours, and to the vernal equinox (6) of −145 Mar 24 he adds five
hours, from dawn to one hour before noon, the time Ptolemy reports the equinox
was observed by a ring in Alexandria. He then computes that the year derived
directly from various intervals between the equinoxes does not exceed 365 days
by 5;55,12h, but from the autumnal equinoxes by not more than 5;4h and from the
vernal equinoxes by not more than 5;43h, with a mean of only 5;24h, deficient from
5;55h by 0;31h. He notes that the parallax of the Sun in the equator at Alexandria,
at an altitude of 59◦, is 1 1

2
′, but does not use it to correct the times of the equinoxes

near noon (by about 1 1
2

h). Instead, he uses a curious computation for finding the
intervals between equinoxes equivalent to the following: The interval between the
autumnal equinox (4) of EA 167 Epagomenal 1 (−157 Sep 27) at noon and the
vernal equinox (6) of EA 178 Mechir 27 (−145 Mar 24), with the correction of +5h

from dawn to one hour before noon, is 4195d 23h. But eleven years of 365d 5;24h

are 4017d 11;40h. The difference of 178d 11;20h is the interval from the autumnal to
the vernal equinox, which, subtracted from the year of 365d 5;24h gives 186d 18;4h

from the vernal to the autumnal equinox. He makes one small mistake and finds the
intervals 178d 11;25h and 186d 17;59h, and notes that they differ, by several hours,
from Ptolemy’s intervals of 178d 6h and 187d 0h. We have carried out everything
precisely in accordance with the observations of Hipparchus, he says, not to show
in them the truth itself, for neither the length of the tropical year nor the interval
between the equinoxes which results is the truth, but so that it becomes clear how
great are the errors in the observations of the ancients, lest we be so devoted and so
bound to them that it will not be acceptable to change anything in them by applying
the fair weighing of comparison.

Longomontanus is hard on Hipparchus, but he is harder still on Ptolemy (33).

We explained earlier what the intention of Ptolemy was concerning the mea-
sure of the tropical year, and, unless I am very mistaken in this conjecture, he
observed both autumnal equinoxes at the very limit of the horizon—provided
that they differ (as without doubt they do) from the number of those which
occurred twice in one day due to the instrument, although in fact the instru-
ment rested on one side or the other with respect to the horizons—which
remarkably led to what he intended. And it is certainly worthy of notice that
in these observations Ptolemy has so far adapted himself to the Hipparchan
demonstration and hypothesis (constitutioni), of the measure of the tropical
year as well as of the immutable eccentricity of the Sun, that for this very
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reason he did not assign his observations to the exact cardinal points of the
days (i.e. sunrise, noon, sunset), but a little later, at one hour etc., so that you
would judge (he did this) to give satisfaction to the Ptolemaic computation
rather than to heaven. But lest some astronomers to whom I write these things
become indignant at our candor in investigating Ptolemy, prevailed upon by
his ancient and exceedingly great authority, I ask that they consider what he
relates elsewhere concerning the parallax of the Moon observed by him, and
carefully compare (it) with our restoration which, to the best of my knowl-
edge, in the lunar motion and distance corresponds exactly to the standard
of heaven. And finally, let them notice in that passage (as I pass over others
like it) Ptolemy reported from his observation the parallax of the Moon half
a degree and more above the true parallax, for no other reason (as I believe)
than that he pass off (obtruderet) upon posterity as genuine (pro legitima) that
hypothesis of the Moon he previously established himself or, if you prefer,
received from his predecessors, and only once confirmed by his computation.
But now, I ask, what will be the prohibition (religio) from suspecting that here
he was of the same intention, and relied upon those equinoctial observations
of the Sun which served his purpose, but the others, of which it is very likely
he made many more, he entirely concealed?

The remark about the instrument that showed two equinoxes in one day because it
was out of alignment refers to Ptolemy’s criticism of two bronze equatorial rings in
Alexandria. So Ptolemy too, according to Longomontanus, followed Hipparchus in
accepting the tropical year derived from the luni-solar cycle, as well as Hipparchus’s
eccentricity of the Sun, and adjusted his observations of equinoxes accordingly “to
give satisfaction to the Ptolemaic computation rather than to heaven.” This may be
true, or one may say that like Hipparchus he took the year derived from the cycle
to be correct in principle and confirmed it from observations of equinoxes, although
we know not well since his own equinoxes are late by from 21 to 36 hours. In any
case, it is evident that Longomontanus does not trust Ptolemy at all, as shown by the
observation of lunar parallax he reported (Almagest 5.13), more than half a degree
too large, and he suggests that Ptolemy’s reason for this was pass off on posterity
the defective hypothesis of the Moon that he invented or even received from his
predecessors. Clearly, he does not approve of Ptolemy.

The examination of Ptolemy’s equinoxes considers only one, the autumnal
equinox (12) of EA 463 Athyr 9 at one hour after sunrise (139 Sep 26, 7 AM),
which he believes was observed with an equatorial ring. Since the Sun was nearly
in the horizon, the refraction in altitude was 32′, which in the horizon in Alexandria
corresponds to about 32′ of longitude and 13 hours in time, all of which is about
correct. And since refraction makes the autumnal equinox later, with correction
for refraction the equinox occurred 13 hours earlier on Athyr 8 at 6 hours after
noon (139 Sep 25, 6 PM). Then, the interval to the following vernal equinox (13),
Pachon 7 at one hour after noon (140 Mar 22, 1 PM), taken here as exactly noon,
is 178d 18h—without the rounding, 178d 19h—which Ptolemy and Hipparchus took
as 178d 6h and the earlier correction of Hipparchus’s interval 178d 11;25h. From the
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corrected time of Ptolemy’s equinox, he computes the length of the tropical year
between Hipparchus and Ptolemy (35). He takes Hipparchus’s autumnal equinox
(4) of EA 167 Epagomenal 1 at noon (−157 Sep 27, 12 PM) and Ptolemy’s equinox
(12) of EA 463, corrected by −13h to Athyr 8 at six hours after noon (139 Sep 25,
6 PM), and finds an interval in Egyptian years of 296ey 72d 6h. In 296 Julian years,
the addition of one-quarter day is 296 · 1

4
d = 74d, exceeding 72d 6h by 1d 18h = 42h.

The deficit in one year from 365 1
4

d is thus 42h/296 = 0;8,30 4
5

h and the length of
the year 365d5;51,29 1

5
h, and from three pairs of equinoxes he finds it not greater

and even a little smaller. Then the interval from the vernal to the autumnal equinox
is 365d 5;51,30h − 178d 18h = 186d 11;51,30h.

In addition to the equinoxes of Hipparchus and Ptolemy, Longomontanus also
considers the equinoxes in the calendar of Julius Caesar, which he believes, follow-
ing Pliny, was the work of Sosigenes, and which he finds in the agricultural calendar
in Book 18 of Pliny’s Natural History. These are definitely schematic, but so too are
the intervals of Hipparchus and Ptolemy, from which they differ by one day, and the
year of 365d 6h used for deriving the eccentricity, which is not the exact length of
the year. In all, he now has four sets of intervals between the equinoxes, which we
give with the length of the year in the following table.

Source Year Vern. to Aut. Aut. to Vern.
Hipparchus-Ptolemy 365d 6h 187d 0h 178d 6h

Sosigenes 365 6 186 0 179 6
Hipparchus corrected 365 5;24 186 17;59 178 11;25
Ptolemy corrected 365 5;51,30 186 11;51,30 178 18

For deriving a corrected eccentricity for the time of Hipparchus (36), since it
is not possible to find the time of the solstice accurately, he uses the corrected
interval between Ptolemy’s vernal and autumnal equinoxes and an assumed lon-
gitude of the apogee near that found by Hipparchus, which makes for a very
simple demonstration although it is set out a great length and computed to no
less than seven places. We need not go through the steps, which have only the
smallest inconsistencies. The interval from the vernal to the autumnal equinox of
186d 11;51,30h gives a mean motion of 183;49,12◦, and taking the longitude of the
apogee λA = Gemini 6◦, where the radius of the eccentric R = 1, the eccentricity
e = 0.0364837, and the maximum equation cm = 2;5,26◦. Hipparchus and Ptolemy
found λA = Gemini 5;30◦, e = 0.0417, and cm = 2;23◦. It then follows that the
mean motion from the vernal equinox to the summer solstice is 93;43,36◦ and the
interval of time 94d 2;40h, which he notes is about midway between Hipparchus
and Ptolemy, 94d 12h, and Sosigenes reported by Pliny, 93d 12h, although somewhat
closer to Hipparchus.

He then examines (37–47) the solar theories derived from the observations of
al-Battānı, Walther, Copernicus, whose theory he corrects as he corrected Hip-
parchus and Ptolemy—Tycho had also corrected Copernicus’s solar theory—and
finally Tycho, finding that the maximum equations are all nearly the same, within
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±3′ of his own derivation of cm = 2;4,48◦, from e = 0.035714 = 1/28, based
upon his own small correction of Tycho’s observations, so the eccentricity has
remained constant, which shows that the eccentricity of Hipparchus and Ptolemy is
erroneous and Copernicus’s model for the variation of the eccentricity is incorrect.
And that the eccentricity is equal to 1/28, the divine unalterable proportion of the
second number in the order of perfect numbers, equal to the sum of their factors,
he takes as more evidence that Copernicus’s variation of the eccentricity should
be ignored. He also believes that the solar apogee has advanced with a uniform
(sidereal) motion, from the beginning of Aries, with the Sun at the perigee at the
beginning of Libra, at the Creation of the world—5554 years before 1588, thus
3967 BC at the autumnal equinox—to 95;30◦ in 1588 at the time of Tycho. We
shall take up his chronology below. He sets out a table comparing locations of the
apogee from Hipparchus to Tycho with his own corrected locations, which depend
upon his theory of precession yet to be explained, omitting Ptolemy as just plain
wrong and correcting Copernicus, in which the greatest differences are +37′ for
Battānı and −45′ for Copernicus, and concludes that Copernicus’s variation of the
direction of the apogee, which reaches ±7 2

5
◦
, is also incorrect. Indeed, he here cites

the opinion of his friend Holger Rosenkrantz (48) that a variation of eccentricity
of the Sun and the planets of the kind introduced by Copernicus is clearly contrary
to the perpetual nature of the heavenly revolutions and is only derived from false
principles, that is, from useless observations.14 Finally (48–49), from Hipparchus’s
vernal equinox (6) of −145 Mar 24 corrected by +5 hours, and Tycho’s equinox
of 1587 Mar 10, with a preliminary correction for the inequality of precession,
he finds the length of the tropical year 365d 5;49,20h but prefers 365d 5;49,30h

based upon his correction of observations of ancient lunar eclipses. However, this
is not the final length of the tropical year that underlies his tables of the mean
motion of the Sun, which requires a more careful investigation, including of the
precession.

The precession is taken up in the section on the fixed stars (53–56), and it is
not uniform, so neither is the tropical year. Tycho had derived a rate of precession of
51′′ per year for his own time directly from the difference of the tropical and sidereal
year, and then showed that it is mostly confirmed by observations of stars extending
as far back as Timocharis, although he left open the question of whether it is in fact
variable. Longomontanus instead begins with the observations, but he first corrects
them: Timocharis’s of occultations β Sco, η Tau, and Spica by the Moon corrected
by Tycho’s and Longomontanus’s lunar theory; Hipparchus’s of Spica in finding its
longitude from its declination (and some unspecified coordinate); Ptolemy’s lon-
gitude of Regulus measured from the Moon on an armillary by Longomontanus’s
solar theory; Battānı’s longitude of Regulus by its distance from β Sco in Tycho’s
catalogue. These corrections are not consistent, and all are also corrected to longi-
tude from the mean equinox using the equation of the nonuniform precession yet to
be explained. The corrections for Timocharis, Hipparchus, and Battānı are less than
0;30◦, but Ptolemy’s longitude of Regulus is advanced by +1;23◦ from Leo 2;30◦

to 3;53◦, of which +1◦ is from correcting Ptolemy’s longitude of the Sun from
the mean equinox and +0;20◦ from solar refraction reduced by parallax. Tycho’s
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longitudes of Regulus and Spica are corrected only by the equation of precession of
−0;8◦. From all these, and a number of computational errors, he finds motions of
from 44′′ to 57′′ per year, and settles on 0;0,49,45◦/y as the mean rate of precession,
close to 0;0,49,46◦/y between Hipparchus and Tycho (which correctly computed
is 0;0,49,30◦). For the obliquity of the ecliptic, he says he has corrected what his
predecessors found for solar parallax and finds it to vary from 23;53◦ in about the
year 3600 of the Creation of the world (−366) to about 23;31◦ in the year 5400 of
the world (1434), with the mean of 23;42◦, although the exact range is subject to a
“perfect” criterion, as we shall see. Still, he is close to Copernicus, whose range is
23;52◦ to 23;28◦ with a mean of 23;40◦.

Before considering the precession, we must say something of Longomontanus’s
chronology and epochs (47, 57–58). He says that earlier astronomers have used vari-
ous epochs for mean motions, as the Olympiad, Nabonassar, Alexander, Caesar, and
the Incarnation, but for we Christians, two beginnings ought to be especially distin-
guished before the others: first when this most beautiful theater of the world began
to exist by the word of omnipotent God, second when the only-begotten Son of God
himself took on our human flesh and deigned to be born to restore the fallen world
and liberate us from the power of the devil and eternal death. He acknowledges that
the years and the time of year of both epochs are disputed by chronologers, but
this dissension does not involve the celestial motions in any difficulty since they can
properly be derived from other intervals securely confirmed by celestial observation.
The point is that astronomical chronology can correct historical chronology. From
the Creation of the world to the passion of the Son of God on the cross, and through
him the salvation of the world, there elapsed 4000 solar years less one-half year.
Since the age of Christ was then about 33 1

2 years, the crucifixion was in AD 34 near
the time of the vernal equinox and the Creation in 34 − (4000 − 1

2 ) = −3966 near
the time of the autumnal equinox, that is, 3967 BC at the autumnal equinox. At this
time, the apogee of the Sun was at the beginning of Aries and the Sun at perigee at
the beginning of Libra. Further, the obliquity of the ecliptic was then greatest, the
precession of the equinoxes zero, and the inequality of the precession zero. In the
tables of mean motion, however, the Era of the World is set later to −3963 Jan 1
at noon at Copenhagen. The reason is that this is the first year of a Julian cycle of
four years with the leap year as the fourth year, as is the Era of Christ, AD 1 Jan
1 at noon, the other epoch of the tables, so both can be used with the same tables
of collected and single Julian years. Although the date of the autumnal equinox of
−3966 is not given, it can be computed from the solar tables and is −3966 Oct 24
at about 11 AM in Copenhagen.15

There is a fine study of Longomontanus’s model for the variable precession and
obliquity (85–93) by Moesgaard (1975), and we have found it very helpful for our
own exposition. In Fig. 2, the Earth is at O and the pole of the mean ecliptic is
at Ē , about which the pole of the equator N rotates, carrying with it the equator
of the Earth and thus the celestial equator, which intersects the mean ecliptic with
the mean obliquity ε̄. This is a conical motion of the axis of the Earth, causing
the mean vernal equinox ¯ to precess along the mean ecliptic opposite to the order
of the signs, from east to west, through the mean precession of 0;0,49,45◦/y in a
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Fig. 2 Longomontanus. Hypothesis for precession of the equinoxes and variation of obliquity of
the ecliptic

period of 26,050 years. Next, the pole of the true ecliptic E rotates in the same
direction measured from A in a small circle about Ē , causing a similar small cir-
cular motion of every point of the true ecliptic, the true path of the Sun around
the Earth.16 The result is that the intersection of the equator and the true ecliptic,
the true vernal equinox , oscillates along the equator on either side of the mean
equinox ¯ , and on the mean ecliptic there is a small inequality in the precession
cp = ¯ ′, which is zero when the pole of the true ecliptic is at A. The motion
of the true ecliptic also causes the true obliquity of the ecliptic ε to vary on either
side of the mean obliquity ε̄, with the maximum obliquity when the pole is at A,
and the variation of the obliquity in turn causes the latitudes of stars to vary; the
sphere of the fixed stars itself is absolutely at rest. The correction table gives the
inequality of precession, variation of obliquity, and a proportional coefficient for
the variation of latitude of stars, with the greatest variation at solstices, equal to the
total range of the obliquity, decreasing to zero at equinoxes. The parameters are only
slightly empirical. The range of the obliquity was given earlier as 23;42◦ ± 0;11◦,
but is now changed to 23;42◦ ± 0;10,53◦. Why? Because 0;10,53◦ ≈ 90◦/496, and
496 is the third in the order of perfect numbers. The maximum equation of pre-
cession, cpm = sin−1 (sin 0;10,53◦/ sin 23;42◦) = 0;27,5◦, is merely derived from
the variation of obliquity in the model. The period of the anomaly of precession
and obliquity, of the motion of E , is 3600 years = 1,0,0 years, a period considered
significant since antiquity, so the anomaly is exactly 6′ per year, the first in the
order of perfect numbers, although Longomontanus does not mention it. (These
are Julian, not tropical or sidereal, years, which means that the model “knows”
the Julian calendar. Copernicus’s period of the anomaly of the obliquity is 3434
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Egyptian years and of precession half of that, 1717 Egyptian years.) At the Creation
of the world, the mean precession is taken to be zero and the anomaly is zero, at A,
so the inequality is zero and the obliquity is maximum. That all the parameters are
determined by such criteria explains how Longomontanus can apply the equation of
precession to longitudes of stars in order to find the mean rate of precession as he
earlier did.

Longomontanus says that his model agrees well with the variation of obliquity,
if Ptolemy is corrected to 23;49◦ for the effect of solar parallax at the solstices and
Copernicus’s 23;28◦ is in error as Tycho already showed. The only examples of
precession, obliquity, and stellar longitude and latitude he computes are for the year
3000 of the world, 967 BC, 82 years after Hesiod flourished, and for the year 6000
of the world, sometimes taken as the year of the Second Coming, AD 2034, neither
particularly helpful for empirical confirmation. But it is easy enough to compute
the range of the variation of precession, which is minute, 0;0,49,45◦ ± 0;0,2,48◦

per year or 1;22,55◦ ± 0;4,40◦ per Julian century. Compare this with the Prutenic
Tables, 0;0,50,12◦ ± 0;0,15,41◦ per year or 1;23,43◦ ± 0;25,33◦ per Julian century.
Thus, the wide range of Copernicus’s precession and the slow rate of Hipparchus
and Ptolemy have been rejected entirely.

The determination of the refined length of the tropical year (94–96) is, to say
the least, interesting. It is done by finding the intervals between pairs of vernal and
autumnal equinoxes observed by Hipparchus and Tycho, taking the arithmetic mean
of the deficits from integral Julian years, doing the same for equinoxes observed
by Ptolemy and Tycho, again taking the mean of the deficits, and then taking the
mean of both means. The result of the procedure is called limitata, which means
bounded, placed within limits or accurately examined; the same term is used in
Tycho’s observational records for taking means and small adjustments, and it is pos-
sible that these too are the work of Longomontanus.17 He first corrects for the solar
inequality and the inequality of precession to find the time of the mean equinoxes
unaffected by either.

The solar inequality is shown in Fig. 3, in which (a) is the configuration at the
time of Hipparchus or Ptolemy and (b) at the time of Tycho; the difference is only
in the longitude of the apogee λA as the eccentricity found by Longomontanus is
invariable. The Earth is at O , from which the directions of the true equinoxes are

and , when the true longitudes are 0◦ and 180◦, and the center of the eccentric
at C , from which the directions of the mean equinoxes are and , when the
mean longitudes are 0◦ and 180◦. This may be Longomontanus’s own definition of
mean equinox. The difference in direction is given by the solar equation c, which
is the same at both equinoxes since the true distance of from apogee is λA and
of is 180◦ − λA, for which the equations are equal and of opposite sign. The
equations are computed from the true distance of the vernal equinox from apogee
by c = sin−1(sin e sin λA) where e = 1/28 and λA is specific to the date of each
observer; c is positive at the vernal equinox, mean equinox after true equinox, and
negative at the autumnal equinox, mean equinox before true equinox. He next adds
the inequality of precession cp to the solar equation c and converts the sum c + cp,
which is not given, to the interval of time Δt between the mean and true equinox by
dividing by the true hourly velocity of the Sun νs, which is also not given, that is,
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Fig. 3 Longomontanus. Determination of mean equinoxes at times of (a) Hipparchus and Ptolemy,
(b) Tycho

Δt = (c + cp)/νs. The following table gives the observer, year of the equinoxes, λA,
c, cp, and for each equinox, vernal and autumnal, c + cp and Δt .

Observer Year λA c cp Ver c + cp Ver Δt Aut c + cp AutΔt
Hipparchus −145 65;30◦ ±1;51,44◦ −0;10,12◦ +1;42,32◦ +1d 17;50h −2; 1,56◦ −2d 0;50h

Ptolemy 139/40 70; 0 ±1;55, 2 −0;21, 0 +1;34, 2 +1 14;45 −2;16, 2 −2 6;45
Tycho 1587/88 95;30 ±2; 2,14 +0; 7,12 +2; 9,26 +2 4;30 −1;55, 2 −1 22;50

The interval Δt is then added to the time of the true equinox to give time of the mean
equinox. The equinoxes are paired such that each is the same year of a four-year
Julian cycle, so the number of days in the interval of years is an integer. Hence,
the difference ΔT of the calendar dates and times of the equinoxes is the deficit
of the tropical years from an integral number of Julian years. The stated dates and
times are from noon preceding by 12 hours the next Julian calendar date beginning
at midnight. Hipparchus’s vernal equinox (6) of −145 Mar 23 at dawn is corrected
for refraction by +5 hours, from 18h to 23h, the time Ptolemy reports the ring in
Alexandria showed this equinox, and his autumnal equinox (7) of −145 Sep 26 at
dawn by −5 hours, from 18h to 13h. Tycho’s equinoxes were found by interpolation
between meridian altitudes already corrected for parallax and refraction. The merid-
ian of Alexandria (A) is adjusted to Uraniborg (U) by −1;35h, as did Tycho. Here is
a tabulation of the steps for the equinoxes of Hipparchus and Tycho:

Observer True Equinox t(A) t(U) Δt(c + cp) Mean Equinox
Hipparchus −145 23 Mar 23h 21;25h +1d 17; 50h 25 Mar 15;15h

Tycho 1587 10 Mar — 14;56 +2 4;30 12 Mar 19;26
ΔT 1732y− 12d 19;49h

Hipparchus −145 26 Sep 13 11;25 −2d 0;50h 24 Sep 10;35h

Tycho 1587 13 Sep — 9;26 −1 22;50 11 Sep 10;36
ΔT 1732y−12d 23;59h

The arithmetic mean of the two deficits of ΔT from 1732 years is 12d 21;54h, and
thus the deficit of the tropical year from the Julian year is 12d 21;54h/1732 =
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0;10,44,8h. Now we do the same with equinoxes observed by Ptolemy and Tycho.
Ptolemy’s autumnal equinox (12) of 139 Sep 25 at one hour after Sunrise is cor-
rected for refraction by −13 hours, as Longomontanus showed earlier, from 19h to
6h, but no correction is applied to the vernal equinox (13) of 140 Mar 22 since it is
close to the meridian at an altitude where refraction is negligible.

Observer True Equinox t(A) t(U) Δt(c + cp) Mean Equinox
Ptolemy 139 25 Sep 6h 4;25h −2d 6;45h 22 Sep 21;40h

Tycho 1587 13 Sep — 9;26 −1 22;50 11 Sep 10;36
ΔT 1448y −11d 11;4h

Ptolemy 140 22 Mar 1 21 Mar
23;25h

+1 14;45h 23 Mar 14;10h

Tycho 1588 9 Mar — 20;45 +2 4;30 12 Mar 1;15
ΔT 1448y −11d 12;55h

Here the arithmetic mean of the two deficits of ΔT from 1448 years is 11d 11;59,

30h ≈ 11d 12;0h, so the deficit of the tropical year from the Julian year is 11d 12;0h/

1448 = 0;11,26,11h. Now we take the arithmetic mean of the two means just found:

Hipparchus–Tycho 0;10,44, 8h

Ptolemy–Tycho 0;11,26,11h

Arithmetic mean 0;11, 5, 9,30h ≈ 0;11,5,10h

And since there is no sensible motion of the Sun in 0;0,0,10h, we round to 0;11,5h.
The length of the tropical year is therefore 365d 6h − 0;11,5h = 365d5;48,
55h. This exceeds Tycho’s tropical year by ten seconds, and, for all of Longomon-
tanus’s trouble, is less accurate.

Since the mean precession is 0;0,49,45◦/y, the difference between the side-
real and tropical year, the time for the mean Sun to move through this arc, is

0;0,49,45◦/0;2,28◦/h = 0;20,10h, although Longomontanus gives 0;20,18 1
3

h
, fol-

lowing very nearly from 0;0,49,45◦/0;2,27◦/h and not consistent with his own mean

motion of the Sun; but the length of the sidereal year, 365d 5;48,55h + 0;20,18 1
3

h =
365d 6;9,13 1

3
h
, is, by luck, much better than Tycho’s sidereal year. The variation

in the length of the tropical year, determined by the annual change of the inequal-
ity of precession, is quite small. Since the greatest annual change is ±0;0,2,48◦,
which the mean Sun covers in 0;0,2,48◦/0;2,28◦/h = 0;1,8h, the greatest vari-
ation of the tropical year is 365d 5;48,55h ± 0;1,8h, that is, the excess over
365 days is from 5;47,47h to 5;50,3h; this contains 5;49,16h of the Alfonsine and
Prutenic Tables, but is far short of Ptolemy’s 5;55,12h. Finally, in the tables of
the mean motion of the Sun, from the difference of the mean motions in longi-
tude and anomaly, the apogee has a tropical motion of 1;42,59◦ per Julian cen-
tury or 0;1,1,47◦/y. Subtracting the mean precession of 0;0,49,45◦/y, the sidereal
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motion of the apogee is about +12′′/y direct, differing notably from Tycho’s −6′′/y

retrograde.
Longomontanus, as noted, attempted to do what Copernicus earlier attempted

and Tycho intended, to derive a theory of the Sun, precession, and obliquity correct
for all times. He believed himself to be highly critical of ancient observations and
theory, and he was, which Copernicus was not, but he too had no choice but to use
at least the observations, with corrections if necessary, in order to achieve his goal.
His work is characterized by acute insights, as that Hipparchus’s tropical year was
derived from a luni-solar cycle rather than from observations of the Sun alone, which
at best served for confirmation of the year derived from the cycle. But also wishful
thinking, as the “perfect” parameters for solar theory, precession, and obliquity, even
the model for precession itself, and carelessness, as his corrections and even selec-
tions of ancient observations; and his computations are all too often at least slightly
inaccurate, as is also true in other parts of his work. Nevertheless, he does show that
one can be aware of the problems of ancient observations, but attempt to correct and
make use of them, and in this way he goes beyond what Copernicus did and what
Tycho was willing to do. Had Tycho carried through his reform of astronomy for all
ages, he too may have done much the same thing, but it is more likely that he would
have done nothing and left the work to an assistant, Longomontanus if he returned
to Tycho’s service, or Kepler if he were willing to follow Tycho’s orders. But when
Kepler did address these problems, Tycho was long gone, and thus he pursued them
in his own way, more ingeniously than Tycho but more cautiously than Longomon-
tanus. It is to Kepler’s investigations over a period of twenty years to which we
now turn.

Johannes Kepler

Kepler was already concerned about the reliability of Ptolemy’s observations when
he wrote the Astronomia nova, the last two chapters of which (69–70) are devoted
to attempting to correct them in order to establish accurate ancient positions of
Mars for determining its mean motion and the motions of its aphelion and nodes.
He assumes, reasonably, that Ptolemy observed Mars by measuring its distance
from fixed stars with the armillary, although Ptolemy gives no details for the three
oppositions, and only for his one observation outside of opposition does he give
the distance from a star and the Moon. Since the armillary is aligned by set-
ting it on the Sun or on a star, the longitude of which depends upon an earlier
alignment on the Sun, it is necessary to investigate Ptolemy’s solar theory. He is
suspicious of Ptolemy’s procedures for establishing solar theory, and is uncertain
whether Ptolemy found the equinoxes using an equatorial ring or, as he would
prefer, meridian altitudes. But he has determined that Ptolemy’s equinoxes do not
agree within a day and a half in comparison with earlier observations of Hipparchus
and later observations of al-Battānı and Tycho, which all agree in the same uni-
formity from which Ptolemy’s equinoxes alone depart. Thus, he has isolated the
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errors in Ptolemy’s equinoxes by comparison with observations consistent with a
uniform tropical year, and he specifically rejects models for a nonuniform preces-
sion, which would produce a nonuniform tropical year. But then he notes that if
instrumental error made the vernal equinox late, meaning that the equator is placed
too high, it would make the autumnal equinox early, and if two days were sub-
tracted from the interval between the equinoxes, the eccentricity of the Sun would
change greatly. And since Ptolemy left the eccentricity as great as Hipparchus found,
we must believe that he correctly observed the time the Sun was at the beginning
of Aries.

However, the constancy of the solar equations found in our age by Tycho, and
about the same several centuries earlier by al-Battānı and az-Zarqāl, 20′ smaller than
Hipparchus seems to have demonstrated for himself and Ptolemy retained, argues
that the equations were the same in Ptolemy’s age and his own equation in error.
Since the equation is sensitive to small changes in the times of the observations, and
the ancient observations, especially of the solstices, were not sufficiently accurate,
we may use the modern equations to correct Ptolemy’s equinoxes, not by over a day,
but by correcting the time of day, making the vernal 8 (text: 3) hours later and the
autumnal as many hours earlier, so that in both there was an error of 8′ in the dec-
lination of the Sun, for Ptolemy’s instruments were surely graduated only to 10′.18

And a change of a quarter of a day in the time of the solstice, which is easily possible
because of its uncertainty, would produce a large change of 8◦ in the direction of the
apsidal line. Thus, we see that while Kepler recognizes the possibility of large errors
in Ptolemy’s equinoxes, like Tycho, he is not willing to believe that he could go so
wrong, and instead makes smaller corrections by applying the modern eccentricity,
which does show that he considers the eccentricity, as well as the tropical year, to
be constant. He then attempts to correct Ptolemy’s longitudes of Mars by making
a variety of assumptions about the eccentricity and apsidal longitude of the Sun
and the longitudes of the fixed stars, by which he means the observed longitude of
Mars since its longitude was measured by setting the armillary on some star. The
investigation of seven different cases is, to say the least, bewildering, and he finds
that changes in the longitude of stars, that is, of Mars, make a greater difference
than changes in the solar theory. He also examines, critically, Ptolemy’s report of
an occultation, or contact, of β Scorpii by Mars on −271 18 Jan at dawn, which he
decides applies better to ν Scorpii, and the report by Aristotle in De caelo 2.12 of
an occultation of Mars by the dark part of the half-Moon, which he dates to −356
4 May (the text reads 4 April).19

Although the investigation of Ptolemy’s solar observations and theory is incon-
clusive, Kepler does take seriously the decrease of the obliquity of the ecliptic and
the variation of the latitude of fixed stars. Tycho had found that, compared to the
time of Ptolemy, for stars located near the solstices, near summer solstice latitudes
of northern stars increased and of southern stars decreased, near winter solstice lat-
itudes of northern stars decreased and of southern stars increased, and these varia-
tions diminished approaching the equinoxes, where there were no changes. In the
correspondence with Scaliger, he accounted for both the decrease of the obliquity
and the variation of the latitude of stars by a variation of the obliquity of the ecliptic
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over a range of about 20′ with respect to a fixed celestial equator and sphere of
fixed stars, like the variation of the inclination of the Moon’s orbit to the ecliptic
in his lunar theory of about the same range and by essentially the same hypothesis.
This would indeed produce both effects although, as we have noted, the shift of the
equinoxes as the Sun crosses the equator at points moving successively westward,
producing a rotation of the ecliptic along the equator corresponding to the regression
of the nodes in the lunar theory, would also cause a second, unwanted and incorrect,
variation in the latitude of stars.

Kepler’s hypothesis to account for both the decrease of obliquity and the variation
of latitude of stars is entirely different, and avoids the problems of Tycho’s. It is part
of his theory of planetary latitude, and also accounts for the change of extreme
latitudes and regression of the nodes of Mars and, in principle, the other planets
since Ptolemy (68).20 It consists of a rotation of the “true ecliptic,” defined by the
motion of the Earth about the Sun, not along the celestial equator, which causes
the problems of Tycho’s hypothesis, but along the “mean ecliptic,” also called the
“royal road” and “royal circle,” defined by the plane of the equator of the rotating
Sun. Although either direction is possible, he believes it more likely that the rotation
takes place to the west, that is, the nodes and limits of the true ecliptic regress in
longitude as do the lunar nodes and limits, but very slowly, with a period of many
thousands of years. The effect on the latitude of stars is shown in Fig. 4, in which the
mean ecliptic is in the equatorial plane of the Sun S and the true ecliptic shifts from
the position “ecl 1” to “ecl 2”, shown by the westward shift of the nodal line
from 1 to 2. The nodal line is directed to the vicinity of the summer solstice and
winter solstice , the limits are near the vernal equinox and autumnal equinox ,

Fig. 4 Kepler. Rotation of true ecliptic to account for variation in latitude of stars
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although these locations will change slowly with time. As shown in the figure, the
latitudes of northern stars +β and southern stars −β change as Tycho found near
the solstices, the nodes, where the true ecliptic is most inclined to the mean ecliptic,
and the changes are small or zero near the equinoxes, the limits, where the true
ecliptic is parallel to the mean ecliptic. The very same motion of the true ecliptic
accounts for the variation of the obliquity. According to Kepler, the reason for the
decrease of the obliquity from 23;51 1

2
◦

in antiquity to 23;31 1
2

◦
at present, the range

of 20′ recognized by Tycho, is that the Earth’s equator holds a fixed inclination, not
to the true, but to the mean ecliptic; consequently the inclination varies with respect
to the moving true ecliptic, and this motion of the true ecliptic is also the cause of
an inequality in the precession of the equinoxes. In Fig. 5, the initial intersections
of the equator and true ecliptic, the equinoxes, are 1 and 1, and the solstices are

1 and 1. As the nodal line of the true ecliptic shifts westward from 1 to 2,
so do the true equinoxes to 2 and 2 and the true solstices to 2 and 2, although
nonuniformly because of the obliquity of the true ecliptic, which the same motion
causes to decrease from ε1 to ε2.

The theory is not worked out quantitatively or in detail, but it is clear that only
an inequality of the precession could result, not the mean precession itself, which
must be due to a motion of the Earth’s axis, because, compared to the precession,
the motion of the true ecliptic is very slow, according to Kepler’s speculation, none
other than the sidereal motion of the Earth’s apsidal line, although he later decided
that it is independent but still of very long period. Nevertheless, Kepler is on to
something important and entirely original. Attributing the change in latitude of fixed
stars and the decrease of the obliquity of the ecliptic to a rotation of the ecliptic,
of the Earth’s orbit around the Sun, is essentially correct, although the rotation,
produced by planetary perturbations, does not take place in a fixed plane of the
solar equator and is more irregular. So while the (Newtonian) celestial mechanics
of these motions is more complicated, Kepler here devised the first even remotely

Fig. 5 Kepler. Rotation of true ecliptic to account for variation of obliquity of the ecliptic
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correct model for secular changes in the orbit of the Earth, and likewise of the other
planets since such motions are not unique to the Earth.

In the Epitome of Copernican Astronomy 7, Kepler quantifies this model. In
Fig. 6a, Ē is the pole of the mean ecliptic, and thus of the solar equator, E the
pole of the true ecliptic, which moves about Ē in a small circle through ϑ , and
N the pole of the celestial equator, which moves about Ē through the mean pre-
cession, both motions in the direction of decreasing longitude, from east to west.
The motion of E about Ē corresponds to the rotation of the true ecliptic in Figs. 4
and 5, which show great circles a quadrant from the poles, and is a geometrical
result of the physical causes moving the Earth about the Sun just as the motion of N
is a geometrical result of the precessional motion of the Earth’s axis. Note that this
differs from Longomontanus’s model in Fig. 2, in which the motion of the pole of
the true ecliptic E in the small circle about the pole of the mean ecliptic Ē produces,
not a rotation of the true ecliptic with respect to the mean ecliptic, but a motion of
each point of the true ecliptic in a circle equal to the radius of the small circle. The
mean obliquity ε̄ = ĒN = 24;17,40◦ and the radius r = ĒE = 1;47,40◦; hence
the true obliquity ε = EN varies from 22;30◦ to 26;5,20◦, a very wide range. This
implies an inclination of the solar equator to the ecliptic of 1;47,40◦; correctly, as
later found from the motion of Sunspots, it is 7;15◦. And the maximum equation
of precession, where ĒN and EN extended meet the true ecliptic (not shown), is
sin−1 (cot ε̄ sin r ) = 3;58,45◦ (corr. 3;58,40◦). But, Kepler says, half the period is
more than 36,000 years, and E was at Eo, with the obliquity at its mean value, “at
the beginning of the world.” When would this be? Although no date is given in the
Epitome, in the 1621 edition of the Mysterium Cosmographicum (23) he takes the
evening of 24 July 3993 BC in Chaldea as the beginning of the second day, when
God created the firmament. Thus, only about 5600 years have elapsed, and the pole
of the true ecliptic has not moved all that far; in the Rudolphine Tables, from the
Creation to 1600 the motion is less than 26◦ and the entire period just over 77,758
years, far longer than the precession with a period of about 25,412 years. He notes
that the ratio of the motion of the pole of the ecliptic ϑ to the motion of the pole of
the world, the mean precession π̄, is fairly precisely as 4/3, a perfect fourth, although
that is not mentioned. In fact it is the sum (π̄ + ϑ))/π̄ ≈ 4/3.01 ≈ 4/3.

The model described here is the second, “entirely archetypal,” of no less than five
for the variation of the obliquity and the inequality of precession in the Rudolphine
Tables. Three are “mixed,” partly archetypal and partly observational, for ε̄ and r
and the periods and epochs of ϑ . The first, based “entirely upon trust of the ancient
observations,” has a smaller range of the obliquity of 23;28,28◦ to 23;53,16◦, close
to Copernicus’s 23;28◦ to 23;52◦—from ε̄ = 23;40,55◦ and r = 0;12,24◦—a max-
imum equation of precession of 0;30,31◦, and a period of just 2665 years. These
numbers are not consistent, and there are other inconsistencies among the different
methods, as computing the obliquity for motion of E on the small circle, which
is strictly correct, or for a libration on the diameter, as in Copernicus’s model, in
which it is the pole of the equator that librates. The libration, however, is intended
only as a simpler, approximate computation as it would not produce the rotation of
the true ecliptic that is essential to the model. Nevertheless, all the models show that
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Fig. 6 Kepler. (a) Motions of the poles of the true ecliptic and equator about the pole of the mean
ecliptic. (b) Climate zones of the earth at the minimum obliquity of the ecliptic

a variation of the obliquity and an inequality of precession are still a part of Kepler’s
astronomy.

In fact, Kepler established the “archetypal” variation of the obliquity from its
consequences for climate zones of the Earth (Epitome 3.4), shown in Fig. 6b. With
the minimum obliquity ε = 22;30◦, the Earth is divided by sides of an octagon sub-
tending 2ε = 45◦, that is, the torrid zone between the tropics subtends two sides, the
two frigid zones beyond the arctic circles subtend two sides, and the two temperate
zones in between subtend four sides, making eight sides of 45◦. And at Creation,
with the mean obliquity ε̄ = 24;17,40◦, the sum of the surface areas of the torrid and
frigid zones equals the surface areas of the temperate zones. Considering a hemi-
sphere on one side of the equator, the area of the torrid zone is as sin ε̄ = 0.4114, of
the frigid zone as 1 − cos ε̄ = 0.0886; their sum is 0.5 and the remaining 0.5 from
1 is as the equal area of the temperate zone. Since the same relation holds for the
other hemisphere, just as Kepler says, the sum of the areas of the torrid zone and two
frigid zones equals the sum of the areas of the two temperate zones. Interestingly,
this clever idea follows from Pappus’s theorem (Collection 5.36), which Kepler also
uses for summing the increments of libration in his physical planetary theory.

We have digressed from our principal subject of examinations of Ptolemy’s solar
observations and theory. In the Astronomia nova, Kepler recognized the possibility
of large errors in the observations, but made only small corrections and substi-
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tuted the modern eccentricity and equation in the solar theory. Some years later,
he decided that Ptolemy’s equinoxes could not be corrected so easily, but remained
uncertain about the cause of the errors. In a series of manuscript notes concerning
the obliquity of the ecliptic, dates of equinoxes and solstices, and length of the
tropical year, he considered evidence and reports from antiquity, in fact from Her-
cules, the founder of the Olympiads, who observed the solstices and equinoxes at
eight degrees of their signs 1260 years before Christ, through Meton and Euctemon,
Hipparchus and Ptolemy, al-Battānı and az-Zarqāl, to Regiomontanus, Walther,
Copernicus, and Tycho.21 Like Longomontanus, he believes that Hipparchus and
also Ptolemy observed the equinoxes with an armillary, so the stated times are those
observed, not interpolated, and could be affected by refraction and misalignment of
the instrument. There are two remarks we shall quote here. The first is (21.1.316):
“Since Hipparchus varied so much (by quarter days) in the autumnal equinoxes, is it
believable that Ptolemy found nothing clearly which differed from the Hipparchan
computation? Or did Hipparchus reach his goal unknowing (caecus, blind), with
fortune as his guide? Or should we rather believe Ptolemy favorable to Hipparchus
through trust in the observations, namely, (because) something of Pythagorean phi-
losophy lay hidden in the mystic numbers 94;30, 92;30, 178;15 (in margin: 378,
370, 713)? I note also that the year does not so precisely fill this number of hours.”
That the intervals in days between the equinoxes and solstices, multiplied to integers
(of quarter-days) in the margin, are based upon Pythagorean philosophy can hardly
be taken seriously, and Kepler poses it only as a question (to which the answer is
surely no). The second remark is one that has defined the problem of Ptolemy’s
equinoxes to this day (21.1.324): “It therefore remains that either Ptolemy commit-
ted fraud with fabricated observations, or from a kind of awe and reverence for the
ancients preferred to confirm rather than refute them, neither of which is likely in
the philosopher Ptolemy, a defender of candor and truth, as is witnessed by many
judgments (gnomis), especially since he could expect no advantage or fame from
this, but rather greater advantage and fame from correcting the ancients. But that
he was not obsequious to the ancients, he left witnessed in many ways, refuting
Hipparchus where it was required. Therefore in fact the year was longer.” This last
appears to hold that the observations were correct and the year in fact longer, but is
probably just speculation and not an opinion Kepler held.

In the Epitome of Copernican Astronomy 7, he is more certain of the error in
the equinoxes. He notes (7.523) that in the eleven or twelve centuries since Proclus,
the equinoctial points have precessed at a uniform rate, in which the observations
of Hipparchus and Timocharis also agree for eighteen centuries “if you disregard
Ptolemy alone.” “Therefore, if something happened to the axis of the Earth by which
it moved irregularly away from its proper position, it occurred between Hipparchus
and Ptolemy, in an interval shorter than 300 years, and it was restored to its for-
mer state between Ptolemy and Proclus, again in an interval of three centuries.
Therefore, not unjustly can there be doubt concerning Ptolemy’s observations of
the equinoxes.” He also notes (7.527) that Hipparchus determined the length of
300 years by omitting one day in four Callippic Cycles of 304 years, the same
explanation given by Longomontanus and, as it appears here, perhaps originally by
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Tycho. “Ptolemy retained this opinion of Hipparchus, much too carelessly, as was
evident to Tycho Brahe, even though Ptolemy himself appeared to prove it with his
observations. For immediately after Ptolemy, it (the length of the year) was found to
lose one day far more rapidly (than in 300 years). And thus if we disregard Ptolemy
alone, a uniform reckoning (of the year) will be consistent from Hipparchus, through
Proclus, al-Battānı, Persians, Arabs, Jews, Germans, up to our own time, which
makes the equinoxes earlier by one day in 134 years, 3 days in 400 years, as the
regulation of the Gregorian civil year represents very nearly.”

He now has a new speculation for the cause of Ptolemy’s errors, which we give
in the question and answer form of the Epitome (7.523–24).

Is it possible that Ptolemy was in error concerning the observation of the
correct day of the equinox, and in what way?

He was not in error in the altitude of the pole, as this is confirmed by many
proofs, nor in the altitude of the Sun as this depends upon the altitude of
the pole. Perhaps, therefore, what follows happened to him, that since under
Augustus the observation of the Egyptian year was abolished, Ptolemy sought
the day of the Egyptian year through the Moon if he was concerned with the
Moon, or through the Sun and its calculation handed down by Hipparchus
if he was concerned with observation of the Sun; then neglecting agreement
with observations of the Moon and trusting too much in the calculation of
Hipparchus, he thought to himself that it was only necessary to be concerned
about the hour of the entry into Aries. For Ptolemy could not trust the Roman
calendar, which was necessarily observed in Egypt, because even after the
correction of Augustus, at some time on the authority of the priests one day
was omitted from the year and restored in the following year.

The point here is that because of arbitrary omissions and restorations by the priests
in the Roman calendar, in use in Egypt since introduced by Augustus, and even
after Augustus’s correction of the initial errors of intercalation following the Julian
reform (three incorrect additional leap years, compensated by making three follow-
ing leap years common years), Ptolemy would use the computation of the Moon or
Hipparchus’s computation of the Sun to determine the date of an observation in the
Egyptian year. Thus, he would determine only the hour of an equinox by observation
and trust Hipparchus’s solar theory to determine the day, since he could not believe
it to be in error by a full day, and then fail to check the position of the Moon, which
would immediately show the error of one day since the Moon moves about 13◦ per
day. This ingenious explanation would then account for the errors in the dates of
Ptolemy’s equinoxes without accusing him of fabricating observations, although it
is evident that he should have been more careful.

But is there evidence for the omission or addition of days in the Roman calen-
dar, and could the Roman calendar in fact be the cause of Ptolemy’s errors without
considering computation from Hipparchus’s theory? This is what Kepler believed
he found by 1622, the year after the publication of Epitome 7, as he explains in a
memoir called “Against the nonuniform precession of the equinoxes” addressed to
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Emperor Ferdinand II.22 He enlarges upon, and indeed contradicts, his speculation
in the Epitome, and is now more specific (20.1.134–35).

I reasoned that Ptolemy, an inhabitant of Egypt, was deceived by the Roman
calendar and by the license of the priests and impetuosity of the rulers of
Egypt, who intercalated at Rome, not as heaven required, but just as they
were incited (to do), this way and that, in accordance with some national
superstition; indeed those (priests and rulers) entirely annulled the perfectly
equal Egyptian months and introduced the Roman calendar into public use.
And thus the annual calendars were not computed locally, but were sent from
Rome, not the least instance of servitude. Of this not unsuitable conjecture,
there was lacking only historical testimony, by which it would be confirmed,
that in the year 139 after Christ or the previous year, one day had been
removed out of order. But behold the very thing, unless all sound reason
deserts me. For in the year 139 after Christ, Antoninus Pius II and Bruttius
Praesens Consuls, Censorinus, the most scrupulous and careful reckoner of
chronology, attributes the first of the Egyptian month Thoth to the twelfth day
before the Kalends of August or 21 July, which observed in regular order, as
elsewhere Censorinus preserves, ought to be attributed to the thirteenth day
before the Kalends of August or 20 July, unless a day was removed out of
order and the days of the Roman year occurred earlier.

One may not doubt that Ptolemy, since he had not given attention to what
Censorinus gave attention to, that an omission (of one day) had been made out
of order, believed that with the twelfth day before the Kalends of August (21
July), which day was then observed in Rome, there still coincided, as before,
the second day of Thoth, which nevertheless was (because of the omission
of one day) the first day of Thoth, and that it (the first day of Thoth) ought
from the perpetual reckoning of years be called the thirteenth day before the
Kalends or 20 July. In this way a superfluous day insinuated itself into his
calculation between Hipparchus and his own age and produced a longer year
and a slower motion of the Sun than are correct.

What Kepler is referring to is one of the most famous passages in ancient
chronology, the pertinence of which he appears to have discovered only recently,
Censorinus, De die natali 21.10: “But of these (Egyptian years), the beginnings are
always taken from the first day of its month the name of which among the Egyptians
is Thoth, and which in this year (238) was the seventh day before the Kalends of
July (25 Jun) although one hundred years ago (139), Emperor Antoninus Pius II and
Bruttius Praesens consuls at Rome, the same day was the twelfth (corr. thirteenth)
day before the Kalends of August (21 July, corr. 20 July), at which time Canicula is
accustomed to make its rising in Egypt.” Censorinus here gives the Roman calendar
date of the beginning of a Sothic Cycle, when the (nominal) heliacal rising of Sirius
in Lower Egypt occurs on 1 Thoth in the Egyptian calendar, in the year of the consul-
ship of Emperor Antoninus Pius for the second time and of Caius Bruttius Praesens,
139, which date appears as ante diem XII Kal. Aug. (21 July). This 1 Thoth was the
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beginning of Antoninus 3, the year in which Ptolemy observed both equinoxes and
the summer solstice about one day late, as Kepler knows. Now, correctly 1 Thoth
was on ante diem XIII Kal. Aug. (20 July), a simple enough emendation of XII to
XIII in the text of Censorinus, which was made by Scaliger, as Kepler soon learned
or perhaps already knew. But here he takes XII as the correct reading and explains
that in the year 139 the priests in Rome omitted one day “out of order” (extra
ordinem) so 1 Thoth occurred on XII Kal. Aug. instead of XIII Kal. Aug., which
Ptolemy in Egypt had not noticed, not “given attention to” (attenderet), meaning
that he did not know it. How this affects the conversion between the Roman and
Egyptian calendars will be taken up after reviewing Kepler’s later consideration of
this subject.

For it comes up again in a letter of 8/18 February 1624 to Paul Crüger as part
of a description of the configuration of the heavens at Creation, which we shall
also consider below. Kepler notes that the observations cited in the Almagest in
the calendar of Dionysius appear three or four days early, and suggests that it was
difficult for Hipparchus to convert those dates to the Egyptian calendar without error.
He then continues (18.157):

But also in the case of Ptolemy, I think that the three cardinal points, two
observations of Venus, and one of Mercury all correspond to the preceding
days. Unless there were observations of the Moon, which do not allow a day
to pass unnoticed, I believe that many of the preceding (observations) are to
be placed back to earlier days on account of what Censorinus observes, that
in the first (corr. third) year of Antoninus, the first day of Thoth was not on
20 July but on 21 July, from which you will gather that a displacement of the
Roman year was made for the sake of superstition or flattery, as was sometime
done earlier by the testimony of Dio, with a restitution made in the following
year. Therefore, if this displacement was announced in Egypt and received in
use there after the last observation of the Moon, since already the use of the
Egyptian year was abolished, Ptolemy could be deceived.

Now Kepler does not specify whether a day had been removed from or added to
the Roman calendar, only that there had been a displacement (luxatio), and the single
example he cites, from Cassius Dio (48.33), of one day added and later subtracted,
was around 41 BC, when intercalation was irregular, nowhere near the age of the
Antonines. Crüger must have pointed out to Kepler that the text of Censorinus is in
error and need only be emended from XII to XIII for the correct correspondence of
the Roman and Egyptian calendars, a conclusion Crüger seems to have reached on
his own. Kepler’s reply, in a letter of 1 May 1626 (18.264), shows that he already
knew this, but would prefer not to accept it as the alternatives are either accusing
Ptolemy of fraud or proposing a long-period inequality of the Sun not supported by
observation.

Joseph Scaliger warned me of the passage from Censorinus, and he, as
you, identifies it as an error.23 If I could excuse Ptolemy so that I were
not compelled to accuse him of fraud, I would congratulate myself. But if
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the probability of error in Censorinus will melt this buttery support for me
(colloquabit mihi hoc fulcrum butyraceum), I shall have recourse to secular
equations, to similar proofs (experimenta) in all the planets; in the Sun itself,
which, through eclipses of the Moon, is found to progress nonuniformly with
respect to the fixed stars (only) in minutes of arc, which I prove by four or five
eclipses of the Moon.

The “buttery support” is the text of Censorinus, but only if XII be considered cor-
rect. And this Kepler does not give up, although he does change his interpretation of
just what happened to the Roman calendar that led Ptolemy astray. His latest expla-
nation, which may have been written before the preceding letter, is in the Rudol-
phine Tables, in the rule (188) for finding the day of any year on which the equinox
occurs. After explaining the rule and giving a computed example for what he calls
Hipparchus’s vernal equinox of 147 BC, that is, −146 Mar 24—Ptolemy does not
record that equinox although he does record Hipparchus’s autumnal equinox (5) of
−146 Sep 26/27 and vernal equinox (6) of −145 Mar 24—he continues (10.238):

Caution: The days of the equinoxes are not in every case shown by this rule, as
for example those Ptolemy asserts were observed by himself. Consequently, in
this case, however much the equinoxes differ, either in time among themselves
or from the uniform precession, we should in no way be influenced by the
authority of Ptolemy, who appears to have been altogether mistaken in reck-
oning the days of the Egyptian year, perhaps mislead either by Hipparchus’s
calculation of the motion of the Sun or by the calendar and the Roman inter-
calation. This conjecture is confirmed by one passage of Censorinus, who—in
that very year (139) in which Ptolemy last observed the Moon, and after that,
when an extraordinary Roman intercalation had just been announced in Egypt,
observed both equinoxes—refers the first day of the first Egyptian month
Thoth to the twelfth day before the Kalends of August (21 July) although
it should be assigned to the thirteenth day (20 July) if the same uniformity of
Julian intercalation was observed then as now and no extraordinary intercala-
tion was revealed that year by the Priests.

But if the opinion of Ptolemy’s care is higher than (allows) that he could
be deluded by either calculation or the Roman year, one will have to have
recourse to the desperate measure of saying that around the time of Ptolemy
the equinoxes made a leap (forward in time), which they compensated in the
next centuries up to the time of Proclus. And in fact, I prove from the most
secure examples of observations of eclipses that the progress of the Sun with
respect to the fixed stars themselves is near the least degree nonuniform. If
God wills, I will publish one book on this subject.

An additional inequality in the motion of the Sun, also referred to in the letter
to Crüger, must be very small, for if it were large enough to change the time of the
equinox by one day, about 1◦ in longitude, it would affect the times of lunar eclipses
by about 2 hours, which is ruled out by the records of ancient eclipses, including
those observed by Ptolemy. Hence the motion of the Sun is “near the least degree
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nonuniform” (circa minima inaequalem), that is, very nearly uniform. Since any
additional inequality in the motion of the Sun, if present at all, is too small to affect
the times of equinoxes by one day, Kepler here offers two explanations for what can
now only be Ptolemy’s errors. The first is that he was misled (seductus) by Hip-
parchus’s solar theory, as he had suggested in the Epitome and as Longomontanus
also said although more strongly. In fact, Kepler notes in the margin: “Longomon-
tanus (Theor. Ast. 1.33) said that he (Ptolemy) was not only mistaken in observing,
but also clearly fabricated (finxisse) the observed (equinox), which he computed
from Hipparchus.” The other explanation is Censorinus’s correspondence of 1 Thoth
of Antoninus 3 in the Egyptian calendar to XII Kal. Aug. (21 July) instead of the
correct XIII Kal. Aug. (20 July), but he now attributes the correspondence, not to the
omission of one day, but to an “extraordinary Roman intercalation” (intercalatione
Romana extraordinaria), an intercalation out of order, which would appear to be
an addition of one day, made by the Priests (Pontificibus) in Rome, which was
then announced in Egypt. The intercalation occurred after Ptolemy’s latest dated
lunar observation, on 25 Phamenoth (139 9 February) of the Moon near quadrature
(Almagest 5.3), since the position of the Moon in that observation corresponds to the
correct date in the Egyptian calendar. The point in either case, omission or addition,
is that Ptolemy did not know that there had been a displacement in the Roman
calendar, which was announced in Egypt in an annual fasti, a calendar, sent from
Rome, and thus made errors in converting Roman to Egyptian dates in the year
Antoninus 3 in which he observed the equinoxes and solstice.

So which is it, an omission or an addition of one day? Kepler assumes, as noted,
that Ptolemy dated his observations in the Roman calendar and then converted to
the Egyptian calendar without knowing that a displacement had occurred in the
Roman calendar. The Egyptian calendar runs continuously with no displacement.
Kepler is not concerned with the different beginning of the day in each calendar,
the Julian day at midnight, the Egyptian day at the following sunrise, just with a
difference of one day. Figure 7 shows the effect of the conversion in three ways.
The first line is the Egyptian calendar in 139 beginning with the date of Ptolemy’s
latest lunar observation, 25 Phamenoth of Antoninus 2, and the next date shown

Fig. 7 Kepler and Censorinus. Conversions of Roman to Egyptian calendar in 139 for 1 Thoth
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is 1 Thoth of Antoninus 3. The second line shows the correct corresponding dates
in the Roman calendar, 9 February and 20 July (XIII Kal. Aug.); the conversion of
20 July to 1 Thoth is correct for the undisplaced Roman calendar. The third line with
−1d, as in the memoir to Ferdinand II, shows the effect of the omission of one day
after 9 February, by which 20 July (XIII Kal. Aug.) occurs one day before 1 Thoth,
which thus occurs on 21 July (XII Kal. Aug.), as in the text of Censorinus, and all
following dates in the Egyptian calendar correspond to one day later in the Roman
calendar. Hence, if Ptolemy did not know this, he would convert Roman dates to
Egyptian dates one day later than the undisplaced conversion, and this would have
the result of making the equinoxes and solstice observed in Antoninus 3 one day late
in the Egyptian calendar. For example, the autumnal equinox (12) in 139 actually
observed on VII Kal. Oct. (25 Sep) would, because of the omission of one day
in the Roman calendar, be dated VI Kal. Oct. (26 Sep) and converted to 9 Athyr
instead of 8 Athyr corresponding to VII Kal. Oct., thus one day late in the Egyptian
calendar.24 Finally, the fourth line with +1d shows the effect of the “extraordinary
Roman intercalation” in the Rudolphine Tables, which appears to be an addition
of one day after 9 February. Now 20 July (XIII Kal. Aug.) occurs after Thoth 1,
which occurs on 19 July (XIIII Kal. Aug.), so this cannot account for Censorinus’s
conversion of 1 Thoth to XII Kal. Aug., and the conversion of all subsequent dates
from the Roman to the Egyptian calendar would be one day early, not one day late.
Thus, if Ptolemy were not aware of the intercalation of one day, his conversion of the
dates of the equinoxes and solstice in Antoninus 3 from the Roman to the Egyptian
calendar would be one day early, which is clearly not so as they are all late. The
equinox observed on VII Kal. Oct. (25 Sep) would, because of the addition of one
day, be dated VIII Kal. Oct. (24 Sep) and converted to 7 Athyr instead of 8 Athyr,
which did not happen as the equinox is dated 9 Athyr. Hence, Kepler’s explanation
in the earlier memoir of an omission of one day can, in principle, explain the late
dates of the equinoxes and solstice in the Almagest, but the addition of one day in the
Rudolphine Tables cannot. Why he should have changed his mind about this I do not
know, and it does not seem likely that by “extraordinary Roman intercalation” he
still means an omission; but I can say from the effort of working it out and explaining
it that, as simple as it appears, it can be confusing, and it is easy to think that adding
one day to the Roman calendar will advance the date in the Egyptian calendar by
one day.

Without invoking an extraordinary omission or addition of a day, it might be
suggested that there was a systematic error of one day in the conversion between
the Roman and Egyptian calendars for Antoninus 3, and perhaps other years, com-
mon to Censorinus and Ptolemy, as unlikely and inexplicable as that might appear,
especially since they lived a hundred years apart. But even then there would be
the problem that the autumnal equinox (11) of 25 September 132, used to establish
the Sun’s epoch (Almagest 3.7), which correctly occurred on 24 September and is
thus also one day late, is several years before, not only the presumed extraordi-
nary omission or addition of a day, but also five correctly dated observations of the
Moon, including three eclipses. Thus, any error would have to occur intermittently.
And the very idea that Ptolemy would date observations in the Roman calendar in
Alexandria, which had its own Alexandrian calendar, is hardly possible.25 So as
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clever as Kepler’s explanation may be, and it is clever, it cannot be correct. Still,
he has no doubt that Ptolemy’s equinoxes are late by one day, and he later says
(10.242) that all of Ptolemy’s longitudes of planets are reduced by about −1;3◦,
which is very nearly correct since the error in the mean longitude of the Sun at the
autumnal equinox (11) of 25 September 132 is −1;5◦.

Kepler had a yet more ambitious reason for correcting Ptolemy’s equinoxes than
finding a correct and consistent solar theory. From the time of the Mysterium Cos-
mographicum (1596), and doubtless before that, he reasoned that God would not
create the world with the various bodies in arbitrary positions, but must have chosen
some rational initial configuration. He set out such a configuration in the Mysterium
(23) for 27 April 3978 BC, but later changed his mind, and in a note in the 1621
edition gives the date 24 July 3993 BC, with the Sun and Moon at the beginning of
Cancer near Regulus and the planets in the direction of solstices or equinoxes. After
finding that Longomontanus had done something similar in Astronomia Danica, the
Sun at apogee at the autumnal equinox in 3967 BC, he gives more details in the
letter to Paul Crüger of 8/18 February 1624, without the date, but with the loca-
tions near or at the solstices and equinoxes, together with a diagram in which the
locations are heliocentric (18.155–57). As we saw earlier, he notes possible errors
in the conversion of dates from the Dionysian to the Egyptian calendar in ancient
observations cited by Ptolemy and errors in Ptolemy’s observations of equinoxes
and the solstice, two observations of Mercury and one of Venus, and to explain them
refers to the displacement in the Roman calendar shown by Censorinus’s conversion
of 1 Thoth. This shows clearly that Kepler’s investigation of errors in Ptolemy’s
observations is related to the configuration of the heavens at Creation and thus to the
date of Creation. The locations at Creation, that is, the evening of the second day
(feria secunda, Monday) in Chaldea, when God created the firmament, 24 July 3993
BC at 0;33,26 hours after noon at Uraniborg, are finally set out in the Rudolphine
Tables. As examples of summing mean motions, he computes the mean heliocentric
longitude of each planet, the longitude of its aphelion and ascending node, and the
equivalent geocentric longitudes of the Sun and Moon (10.121–23), which he then
places in the tables of epochs. And for each, he asks “What if?” (Quid si), and gives
the locations exactly at the equinoxes and solstices according to God’s plan. The
computed and intended locations are as follows:
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What Kepler wishes to find is the mean longitude of every body and the longi-
tude of aphelia (apogees for Sun and Moon) and nodes at an equinox or solstice
at some date close to Creation according to scriptural chronology. Since there are
four possible locations, all mean longitudes near, if not exactly at, equinoxes and
solstices must occur periodically, and over a period of thousands of years very small
changes in mean motion in longitude can place each body exactly where required.
But the aphelia and nodes move so slowly that these locations occur very infre-
quently, although a surprisingly large number of the computed positions are already
at them. Presumably the exact date and time are determined by the Sun at the sum-
mer solstice, Cancer 0◦; by remarkable luck, Venus at Cancer 0◦ and Mercury within
1′′ of Aries 0◦ would seem to determine the year (in fact these are in error by several
degrees). The time required for the Moon to move to Cancer 0◦ is half a day, Mars
was at Cancer 0◦ 20 days, Jupiter at Capricorn 0◦ 85 days, and Saturn at Libra 0◦ 164
days earlier, so these could easily be adjusted over so long a period. But Jupiter’s
aphelion was at Cancer 0◦, if ever, 1800 years earlier, and Saturn’s aphelion will
not be at Libra 0◦ for 1500 years. Since the aphelion of Mars is at Taurus 15◦, it is
uncertain whether it should be at Aries 0◦ or Cancer 0◦; one way or the other, the
motion would take 2400 years. (That the nodes are, except for Mars, at the required
locations is the result of errors in their motions in the tables. For Saturn and Mercury
the differences are over 60◦, although Mars happens to be close to Aries 0◦.)

It is here that an investigation of Ptolemy’s observations is essential because
errors of, in fact, many degrees in the longitudes of apsides and nodes found by
Ptolemy when corrected could bring these where they belong at the date of Cre-
ation, or so Kepler could hope. And this investigation he intends to take up, for
after the examples of computing the positions at Creation, he remarks (10.123):
“Concerning this situation and disposition of the initial positions from which all
the motions come forth, there is a large subject for philosophizing, if the proposed
material is accessible. But this speculation is to be deferred until another treatise
where the reasons and foundations will be set out from which the positions at the
time of Ptolemy have been brought to light.” Kepler is here referring to two works.
The first may be one, not completed but surviving among Kepler’s manuscripts,
known as the “Examination of the Observations of Regiomontanus and Walther,”
which also considers ancient observations reported by Ptolemy, with the object of
finding secular equations such that, perhaps, the bodies all could be at their required
positions at Creation.26 The second is a separate treatise on the positions at the time
of Ptolemy, perhaps also on Ptolemy’s observations in general with an analysis of
the errors and their causes and any applicable secular equations. This would have
been of interest, and with more detail than he had offered thus far. But it does not
appear that the treatise was ever written, although notes in Kepler’s manuscripts
may have been intended or useful for it. So it is evident that, just as for Tycho
and Longomontanus, Ptolemy’s observations were of serious concern, presenting
problems that had not been solved. And the literature of the last two hundred years
shows that they are still subject to discussion and speculation, much of it merely
repeating what was already written long ago, although not nearly so interesting or
ingenious.
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Appendix: Equinoxes and Solstices in the Almagest

Ptolemy cites twelve equinoxes and two solstices with specific dates and times and
several others with implied dates. For those with dates and times, here numbered in
chronological order, we give the observer, year, date, and time in the Almagest along
with the date and apparent time by modern computation, the difference in time Δt ,
cited time minus computed time, and for the cited time the differences in declination
Δδ and longitude Δλ from the declination and longitude at the computed time.
Thus, Δt , Δδ, and Δλ are the errors in time, declination, and longitude at the cited
times. Ptolemy’s times of earlier observations are approximate, midnight, dawn,
noon, sunset, evening, but he interprets them as occurring at quarter days, even for
the solstice of Meton at dawn, which we give here as 0, 6, 12, and 18 hours. Since
the cited times are approximate, the errors are also approximate. The computations,
of apparent (not mean) local time for the meridians of Athens (1), Rhodes (2–10),
and Alexandria (11–14), are geocentric, may have an uncertainty of a few minutes,
and small inequalities cause the intervals between equinoxes and the tropical year
to vary slightly from year to year. Reduced to the meridian of Alexandria, (1) is
+0;25h and (2–10) +0;7h later. We have used the Alcyone Ephemeris for these
calculations.

No. λ Obs. Year Date Time Mod. Date Time Δt Δδ Δλ

1 Can 0◦ Met. −431 27 Jun 6h 28 Jun 10;29h −28;29h −0; 0,18◦ −1; 8◦

2 Lib 0 Hip. −161 27 Sep 18 27 Sep 2;29 +15;31 −0;15,36 +0; 38,49
3 Lib 0 Hip. −158 27 Sep 6 26 Sep 19;57 +10; 3 −0;10, 7 +0; 25, 8
4 Lib 0 Hip. −157 27 Sep 6 27 Sep 1;43 +4;17 −0; 4,19 +0;10,41
5 Lib 0 Hip. −146 27 Sep 0 26 Sep 17;49 +6; 4 −0; 6,13 +0;15,26
6 Ari 0 Hip. −145 24 Mar 6 24 Mar 15; 1 −9; 1 −0; 8,47 −0;21,52
7 Lib 0 Hip. −145 27 Sep 6 26 Sep 23;41 +6;19 −0; 6,21 +0;15,46
8 Lib 0 Hip. −142 26 Sep 18 26 Sep 17; 9 +0; 51 −0; 0,51 +0; 2, 7
9 Ari 0 Hip. −134 24 Mar 0 24 Mar 6;59 −7; 6 −0; 6,50 −0;16,58

10 Ari 0 Hip. −127 23 Mar 18 23 Mar 23;23 −5;23 −0; 5,15 −0;13, 5
11 Lib 0 Ptol. 132 25 Sep 14 24 Sep 4;58 +33; 2 −0;33, 6 +1;22,25
12 Lib 0 Ptol. 139 26 Sep 7 24 Sep 21;44 +33;16 −0;33,18 +1;22,55
13 Ari 0 Ptol. 140 22 Mar 13 21 Mar 16;15 +20;45 +0;20,18 +0;50,31
14 Can 0 Ptol. 140 25 Jun 2 23 Jun 14; 9 +35;51 −0; 0,28 +1;25,31

Observations (2–4) were perhaps only reported by Hipparchus and not made by
him at Rhodes. The time of (8), with its very small Δt , is given as “evening,” which
could be later than 18h, but before 0h at which Δt = +6;51h. The negative Δδ in
(2–10) implies that the equator was set too low, in most by about 6′ ± 2′, and, aside
from (2–3), are consistent enough to show that they must be from interpolation
between measurements of meridian altitude, and not observed with an equatorial
ring close to the horizon where refraction would produce a larger range or even posi-
tive values of Δδ. Using meridian altitudes, refraction would change the times of the
equinoxes by less than ±0;45h, a small fraction of Δt . Ptolemy’s observations were
probably of meridian altitudes even though Δt is so large, since he criticizes the use
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of rings. Longomontanus assumes that both Hipparchus and Ptolemy observed with
a ring, and attempts to correct for refraction the times of equinoxes believed to be
observed close to the horizon. In fact, (6) was also observed in Alexandria with an
equatorial ring, which showed the time about 5 hours later, at 11h, reducing Δt to
−4;1h, Δδ to −0;3,55◦, and Δλ to −0;9,44◦.

Notes

1. This is the way Battānı was understood in Europe, by the writers we are considering, but in
Chapter 52 he suggests, and appears to favor, a variable precession and tropical year although
he proposes no model or parameters. There is a detailed study of this subject by Ragep (1996)
and further reference in his paper in this volume.

2. In the section on each, references in parentheses are to volume and page numbers in: Brahe
(1913–1929), Longomontanus (1622), and Kepler (1937– and 1858–1871). Full descriptions
of these are in the bibliography.

3. The text reads Capricorn 5◦. There is another error here as by Copernicus’s tables in 1580 the
eccentricity is about 0.03214 or 1;55,42, less than 2;5 by 0;9,18, and is never less than 0.0321
or 1;55,34; but the longitude of the apogee is 98;42◦, about 3 2

3
◦

to the east of Cancer 5◦, and
the Prutenic Tables are nearly the same.

4. How did Tycho find π = 28;5 1
2

◦
? From his star catalogue, for the end of 1600 the longitude

of Spica is 198;16◦, and from the table of precession, for 12 Sep 1588 Δπ = −0;10,28◦, so
the longitude of Spica is 198;5,32◦. Then, taking Ptolemy’s interval from Spica to γ Arietis,
−170;0◦, the longitude of γ Arietis and the precession π = 198;5,32◦ − 170;0◦ = 28;5,32◦ ≈
28;5,30◦. Tycho explains that from his own interval from Spica to γ Arietis, −170;39◦, π =
27;26◦ (strictly 27;26,32◦), but since the fixed stars do not move in relation to each other, it
does not matter which interval he applies to find the difference of precession as long as he
applies it at both equinoxes, and Ptolemy’s interval from Spica is consistent with the interval
from Regulus. This is correct since what Tycho finds is Δλ̄∗

s = Δλ̄s − Δπ .
5. Copernicus’s longitude of Spica in 1515 is 197;14◦—in fact, computed from his precession

theory and altered from his original computation of 197;10◦—and Tycho’s 197;3,30◦ is his
recomputation based upon the corrected latitude of Frauenburg (2.223). In 1586 he corrected
Copernicus’s 1525 longitude of 197;21◦ in the same way to 197;13,55◦ (10.125, text by error
53 for 13; 2.223 has 197;14◦), and paired it with his own longitude of 198;4,24◦ for 1586, from
which π = Δλ/Δt = 0;50,29◦/61y = 0;0,49,39◦/y or 1◦ in about 72 1

2 years. By modern
computation, the longitude of Spica in 1515 is 197; 5◦ and in 1525 197;14◦, close enough to
Tycho’s corrections.

6. This is correct, for in the late sixteenth century by Copernicus’s theory the rate of preces-
sion is about 36′′ per year and the tropical year 365;14,48d, the same as Ptolemy found, very
nearly the slowest precession and longest year, while Tycho found 51′′ per year, faster by
15′′, and 365;14,31,52,30d, shorter by 0;6,27h, which refutes Copernicus’s theory. However,
Tycho does note that Copernicus’s mean precession of 0;0,50,12,5◦/y differs from his by only
−0;0,0,48◦.

7. This is the year of Jālāl ad-Dın Malik Shāh of 1079, which Scaliger earlier favored and had
learned of from Ignatius Na‘matallah, Jacobite Patriarch of Antioch, then a refugee in Rome,
his source for much information on eastern calendars. The year is stated in various forms, but
Scaliger gives it as 365d 5h 880ch, where 1 hour = 1080 chalakim, a division of the hour in the
Hebrew calendar; the tropical year is thus 365d 5;48,53,20h, in fact superior to the Alfonsine
and differing from Tycho’s by +0;0,8,20h.

8. Cited by Grafton (1993, 201), from De emendatione temporum (1583, 128).
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9. Cynosura, literally “dog’s tail,” is a name for Ursa Minor, used notably by Aratus. Copernicus
also uses it in his star catalogue. That Hipparchus’s found Polaris 12;24◦ from the pole is cited
by Ptolemy from Marinus in Geography 1.7.4. Since it was then the most distant of the stars in
Ursa Minor in declination from the pole, it is called the “southernmost,” which Scaliger later
criticizes as an error because he believes the pole of the world is always at or near Polaris.
Grafton (1993, 487), notes that “southern” was sometimes emended to “northern” in transla-
tions of the Geography since by the sixteenth century Polaris had become the northernmost
star. He also notes (464) that in the second edition of De emendatione temporum, Scaliger
gives the least distance as 3;24◦ and concludes that the pole of the equator has approached the
pole star by about 9◦. The present distance of less than 3◦ he perhaps received from Tycho,
who also mentions it in his letter below.

10. It appears from examples for Regulus and η Gem that he was computing true risings, when the
Sun and star cross the horizon at the same time, rather than apparent risings, which are more
difficult and uncertain to compute. Nevertheless, his conclusion is correct, for by modern com-
putation at 100-year intervals, the apparent heliacal rising of Sirius in Alexandria for −1800 to
900 is on 20 July and 1000 to 1600 on 21 July (Julian), although different methods of compu-
tation can differ slightly. Scaliger refers to acronychal risings, although perhaps not explicitly
for Sirius, but these are not as constant, for −1800 to 1600 advancing from 25 December to 1
January. Tycho’s statement that after about 500 years Polaris will be 27 1

2
′
from the pole is very

accurate, for its minimum distance (without nutation), will be 0;27,15◦ in 2102–03.
11. Scaliger’s objections to the precession, including in the Diatribe, are treated by Grafton (1993,

459–488). The Diatribe was already much criticized in its day; a detailed analysis and very
sharp criticism by Kepler is published by Frisch (Kepler 1858–1871, 8.273–93).

12. The Greek text has 365 1
4 + 1

76 days, but the fraction 1
76 seems to be omitted in earlier para-

phrases of this passage and accounts of the Metonic cycle. It was commonly thought that the
cycle was 19 Julian years of 365 1

4 days, 6939 3
4 days, as in the ecclesiastical calendar, rather

than Meton’s 6940 days. It should be noted that a luni-solar calendrical cycle as applied to
months must be an integral number of days since new Moons appear only in the evening
separated by (nearly) integral days.

13. Longomontanus’s explanation was later proposed, surely independently, by Tobias Meyer in a
letter to Euler. Of course, neither knew the Babylonian origin of Hipparchus’s mean synodic
month. There is a rather detailed discussion of Hipparchus’s tropical year and precession by
Swerdlow (1980).

14. Holger Rosenkrantz (1574–1642), a friend and correspondent of Tycho’s, was married to
Tycho’s niece, supported Tycho’s claims in Denmark after he had left Hven, and doubtless
knew Longomontanus well. The correspondence is published in Dreyer’s edition and there is a
biography by Christianson (2000, 344–346). He assembled a great library and was particularly
concerned with theology, although sufficiently unorthodox and fanatical to be charged with
heresy in his later years.

15. For −3963 Jan 1 noon, λ̄s = 248;33,54◦, for −3966 Jan 1 noon, λ̄s = 248;17,45◦. Since the
equinoxes were then in the apsidal line where the equations are zero, the difference in longitude
to the following vernal equinox is 111;42,15◦ and to the autumnal equinox 291;42,15◦, for
which the difference in time is 291;42,15◦/0;59,8,19,45◦/d = 295d 22;50,50h, that is, 23 Oct
at 22;50,50h from noon or 24 Oct at about 11 AM Curiously, if one takes the true longitude
for −3966 Jan 1 noon, λs = 248;17,45◦ + 1;55,32◦ = 250;13,17◦, the difference in longitude
to the autumnal equinox is 289;46,43◦. If one then uses the mean motion of the Sun, the
difference in time is 293d 23;57,39h, that is, 21 Oct at 23;57,39h from noon or 22 Oct at about
noon. This is not strictly correct, but the result would be that God created the world at about
noon in Copenhagen.

16. Pole E is described as “in the surface of the globe of the Earth,” but that must be only a geo-
metrical direction as it makes no sense to give the motion of E to the Earth, and Moesgaard is
surely correct in describing it as the pole of the true orbit of the Sun around the Earth, that is, of
the true ecliptic itself. And the motion in the small circle produces only a motion of each point
of the true ecliptic, as the true vernal equinox, in a small circle centered on the mean ecliptic,
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unlike Kepler’s model, described later, which produces a rotation of the entire true ecliptic with
respect to the mean ecliptic. Moesgaard also notes inconsistencies in Longomontanus’s table
of the inequality of precession and suggests that the table was computed for an earlier model in
which the inequality of precession and variation of obliquity were produced by motions of the
pole of the Earth, thus of the equator with no motion of the ecliptic, as in Copernicus’s model.
The model does seem inconsistent, or hard to follow, and my description is only of what is
supposed to result from it.

17. There is a recent study by Buchwald (2006, 635–643) of this procedure applied to Tycho’s
observations along with other early methods of refining measurements or computations.

18. The text, three hours, is incorrect since at the equinoxes 1h of time corresponds to 1′ of decli-
nation. If the maximum equation is reduced by 20′, then with Ptolemy’s apogee, the reduction
at equinox is 20′ sin 65;30◦ ≈ 18′ of longitude, corresponding to 0;24 · 18′ ≈ 7′ of declination
and seven hours of time. Kepler must have computed 0;24 · 20′ = 8′ of declination and thus
eight hours of time, which would apply at 90◦ from apogee, not at the equinoxes.

19. By modern computation, the closest approach of Mars to β Sco was under 37′ on 19 Jan 2h and
to ν Sco over 2′ on 16 Jan 15h, which is much closer. There could be an error in converting the
date from the Dionysian to the Egyptian calendar, but there was no occultation of either star and
nothing even close at dawn in Alexandria on any nearby date. An occultation of Mars by the
Moon approaching first quarter was visible in Athens the evening of −356 4 May—from about
20h to 21;15h apparent time although the exact time varies by a few minutes depending upon
the value of the secular acceleration—as Kepler surely determined correctly, and “April” must
be only a transcription error since on 4 April the Moon was about 20◦ from Mars, which he
could not have missed. In manuscript notes on the occultation (Kepler 1937–, 20.2.497–505),
with 25 computations of the Sun, Moon, and Mars dated to the Foundation of Rome, AUC
380–431, the one for −356 is a fragment for AUC 395 (504–505), April completed, hence
May, plus day 5, but the occultation is not noted there.

20. Here we consider the theory only geometrically; there is an explanation of the underlying
physical theory of latitude by Stephenson (1987, 130–137), which we have found very helpful.

21. First published by Frisch (Kepler 1858–1871, 6.101–09) and more completely by Bialas
(Kepler 1937–, 21.1.314–29), who dates the notes to ca. 1616 and December 1621. The param-
eters for the variation of obliquity in the Epitome and Rudolphine Tables are found in the latter
part of the notes. There are related notes published by Frisch (Kepler 1858–1871, 6.78–87,
593–596) and Bialas (Kepler 1937–, 20.1.115–33), from both before and after the publication
of Epitome 7. Placing the equinoxes and solstices at eight degrees of their signs is Babylonian
and found in a number of Greek sources. That Hercules did it first is more surprising.

22. First published by Frisch (Kepler 1858–1871, 6.87–89) and then by Bialas (Kepler 1937–,
20.1.134–36), who provides the date 1622.

23. Loci ex Censorino admonuit me Jos. Scaliger, agnoscitque pro sphalmate, ut tu; ‘admonuit me’
also means ‘reminded me’ or ‘advised me’. A. Grafton, in considering the passage, believes it
refers only to Kepler’s seeing the correction in De emendatione temporum, not to a personal
communication from Scaliger since there is no evidence that Scaliger ever wrote to Kepler
following Kepler’s letter of May/June 1605, and Scaliger died in 1609, seventeen years before
this letter to Crüger.

24. In fact, equinox (12) occurred on 24 Sep at about 22h, earlier than the recorded 26 Sep 13h by
1d 9h, as in the Appendix.

25. The Alexandrian calendar, introduced under Augustus in −24, uses Egyptian month names
and equal months of thirty days numbered consecutively forward, with five epagomenal days
in common years and a sixth in a leap year. Ptolemy uses it in the Phases of the Fixed Stars,
and nowhere does he give a date in the Roman calendar, even when citing observations made
in Rome by Menelaus. In 139, 1 Thoth of Antoninus 3 in the Egyptian calendar corresponds
to 26 Epiphi of Antoninus 2, or Augustus 168, in the Alexandrian calendar.

26. First published by Frisch (Kepler 1858–1871, 6.725–74) and more recently by Bialas (Kepler
1937–, 20.1.395–455). This work is also referred to in the preface to the Rudolphine Tables
(10.44).


