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Introduction

Among the scientific authors of the ancient Greco-Roman world, none gives us such
a strong impression of writing for posterity as Ptolemy. He lives in a time when
learned and eloquent men seek and attain public adulation and private patronage,
when the physician Galen performs dissections of pigs and sheep before the elite
of Rome and when the sophist Alexander the “Clay Plato” dazzles the Athenian
masses as much by his grooming and deportment as by his declamation. From this
milieu Ptolemy is utterly remote. Outside of his books he is nothing; no contempo-
rary mentions the man, and no later account of his life or person will preserve an
authentic report. He addresses his books without flourish to a certain Syros, about
whom we know nothing, and in them there is no personality, no reference to himself
except as an observer, scholar, and theoretician, no allusion to his environment. His
criticisms of other scientific practitioners are free of polemic. He habitually uses
sesquipedalian verbs and writes vast, labyrinthine sentences; but his vocabulary and
phrasing are repetitive, eschewing figurative language, and his tangled syntax results
from the impulse to express the conditions and consequences of a thought all at
once, and is worlds away from self-conscious rhetoric. Galen cannot refrain from
bragging how profitable any book ascribed to himself is for the booksellers of Rome;
one suspects that even in studious Alexandria Ptolemy’s technical treatises are not
exactly bestsellers. Nor is there anything meretricious about Ptolemy’s efforts to
give his science a public face: the inscription he erects at Canopus represents his
cosmos as a bare list of highly precise numerical parameters, and his world map is
a geometrical construction unembellished by crocodiles and pygmies.

And so Ptolemy’s biography is practically complete when we have said that his
full name was Klaudios Ptolemaios, and that he lived in or near Alexandria, made
astronomical observations between the mid-120s and the early 140s of our era,
and wrote books on scientific topics of which about a dozen have come down to
us.1 About half are astronomical, and of these, three are especially important. The
Mathematical Composition (Mathematikê Syntaxis), better known since the Middle
Ages as the Almagest, is a systematic treatise in thirteen books in which Ptolemy
deduces the structure and quantitative parameters of geometrical models for the
heavenly bodies from empirical evidence including specific dated observations. The
Almagest also uses these models to derive tables for calculating the positions of the
heavenly bodies on any given date, together with other phenomena such as eclipses
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xii Introduction

and planetary first and last visibilities, but the tables also had a life of their own in
slightly revised form as a separate publication that Ptolemy called the Handy Tables
(Prokheiroi Kanones). Lastly, Ptolemy’s Planetary Hypotheses (Hypotheseis tôn
Planômenôn), a treatise in two books, gives a technical description, again slightly
revised, of Ptolemy’s celestial models, suggests how they are likely to be arranged
relative to each other and what their absolute dimensions would be, and offers a
physical interpretation of the geometrical models in terms of systems of revolving
bodies composed of aithêr, the Aristotelian fifth element.

All Ptolemy’s other writings have at least a glancing connection to his astronomy,
but two are especially close. The Tetrabiblos (again a nickname—we do not know
Ptolemy’s own title, but a credible guess is Apotelesmatika, roughly “Astrological
Influences”) is a four-book treatise arguing for the viability of astrology as a phys-
ical science of the effects of celestial bodies on the terrestrial environment and on
individuals, and on this basis Ptolemy undertakes a systematic reform of the gen-
eral principles of astrological prediction. The Geography (Geôgraphikê Hyphêgêsis,
“Guide to World-Cartography,” also commonly known before modern times as the
Cosmography) provides the principles and materials for the drawing of a map of the
known parts of the world based on a critical analysis of astronomical measurements
and other geographical reports.

Ptolemy crafted each of his major treatises to be self-standing, so that no
reader would have to be familiar with other texts on the same topic to follow
Ptolemy’s argument on its own terms. Perhaps in part for that very reason, Ptolemy’s
tended to be the only works of their genres to survive into late antiquity and the
medieval Byzantine and Arabic traditions. (The exception is astrology, which was
handed down through many other texts in addition to the Tetrabiblos.) Each of
Ptolemy’s treatises has a distinct, sometimes complex path of subsequent recep-
tion and exploitation as a text of living scientific value, or of criticism that could
lead to rejection. In the case of the Almagest, the presence of observation reports
that, if trustworthy, might contribute to the measurement of the Earth’s variable rate
of rotation has kept that work from entirely subsiding into a condition of purely
historical interest up to our own time.

From May 31 through June 2, 2007 the Division of the Humanities and Social
Sciences at the California Institute of Technology, with generous support from the
Francis Bacon Foundation, hosted a conference on uses and criticisms of Ptolemy’s
astronomical, geographical, and astrological works from antiquity through modern
times, the focus being on the role of Ptolemy in current scientific practice and dis-
pute. The present volume gathers most of the papers from that conference together
with a new paper by the editor.

In the Almagest Ptolemy treats Hipparchus as his only legitimate predecessor in
theoretical astronomy, making only brief and dismissively vague allusions to the
astronomers of the intervening three centuries and his own time. Modern eluci-
dation of traces of Greek astronomy in Indian sources (a field of evidence by no
means exhausted, though tricky) have revealed that Ptolemy elided over a great deal
of work in mathematical astronomy that had been done after Hipparchus, and the
ongoing discovery of astronomical texts and tables among the papyri from Roman
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Egypt is providing the historian with a still small but growing body of material
relating to the immediate background against which Ptolemy’s astronomy was first
received. In the first paper in this volume, Anne Tihon gives us a first glimpse of
a deeply interesting new papyrus manuscript containing passages from a work of
unknown authorship written during the years when Ptolemy was still making the
observations on which the Almagest was based. The topic is how to calculate the
Sun’s longitude in the zodiac using a set of tables that had surprising points of
resemblance to Ptolemy’s tables, and even more surprising differences. Among the
lessons offered by this papyrus is that Ptolemy’s was not the only version of solar
theory descended from Hipparchus’ researches, and that its correctness would not
have been a straightforward matter to his better-informed contemporaries.

Alexander Jones (the editor) takes up a closely related topic, the problem of
defining a frame of reference for celestial longitudes. The astrologers of Ptolemy’s
period did not distinguish between the tropical and the sidereal year, and used a
frame of reference that was assumed to be tropical but in fact was approximately
sidereal. Ptolemy’s tables assume a tropical frame while attributing a precessional
motion to the fixed stars. Papyri show that for two centuries after his time, Ptolemy’s
tables were commonly used only together with a correction that brought computed
positions into a standardization of the prevalent frame of reference; this correction
is identical to a formula associated by Theon of Alexandria with the doctrine of
trepidation, or oscillating solstitial points. Jones attempts to account for the origin
and motivation of this formula, and the cause of its later abandonment.

In the Tetrabiblos Ptolemy states his dissatisfaction with two methods of dividing
the signs of the zodiac into Terms, that is, zones of a few degrees governed astrolog-
ically by one or another of the planets, and he recounts his discovery of a superior
method in an old and damaged manuscript. Stephan Heilen offers a thorough critical
treatment of the question whether Ptolemy’s story is true or an audacious fabrication
before exploring the reception of Ptolemy’s system of Terms by astrologers from
Ptolemy’s day to the Seventeenth Century. This specimen of Ptolemy’s reforming
approach to astrology experienced a rather sad fate: transmitted in variously cor-
rupted forms, it won little acceptance even from authors who gave lip service to
Ptolemy’s rationale for the system.

The Geography provides a set of resources for drawing maps of the world,
including a catalogue of some eight thousand localities with their longitudes and lat-
itudes. The earliest manuscript copies of the Geography that we have were produced
more than a millennium after Ptolemy, and many of them have maps accompanying
the text. The origin of these maps, and whether they descend through graphical
copying from maps made by or for Ptolemy himself, have long been vigorously
disputed. Relying on minute study of the manuscript maps and texts, Florian Mit-
tenhuber makes a lucid and convincing case that the extant maps are the end of an
unbroken chain of maps originating in antiquity, if not in Ptolemy’s time, contrary to
the belief of several scholars (including, hitherto, the editor) that they were recreated
around A.D. 1300 purely on the basis of the transmitted text.

When astronomers or geographers attempted to repeat certain of Ptolemy’s
observations and measurements, different sorts of consequences could follow. In
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antiquity we know of no initiative to correct Ptolemy. Thus around A.D. 500 the
Alexandrian Neoplatonist philosophers Heliodorus and Ammonius made a handful
of observations of the positions of the Moon and planets, and on one occasion they
noticed a discrepancy with Ptolemy’s tables, but they apparently made nothing of it.
On another occasion, Ammonius observed the position of Arcturus, finding it just
where it was predicted from Ptolemy’s star catalogue and precession rate; this obser-
vation did have the conservative effect of establishing the credibility of Ptolemy’s
precession theory in the eyes of Ammonius’ pupil Simplicius. To help understand
comparable but more complicated episodes from the Arabic astronomical tradition,
Jamil Ragep draws a distinction between observations made to confirm a standing
measurement, which are biased in favor of the status quo, and observations made to
test. Ptolemy’s estimate of the size of the Earth (from the Geography) was easy to
revise once a test yielded a different figure, since there was no question of the Earth’s
changing size since Ptolemy’s day. Tests conflicting with Ptolemy’s values for the
length of the tropical year and the obliquity of the ecliptic led to greater difficulties
because of uncertainty about whether Ptolemy’s measurements were inaccurate or
the parameters had changed over time. Ragep argues that the sporadic occurrence
of testing rather than confirming parameters in Arabic astronomy is a practice the
historian should not take for granted but one demanding explanation.

The history of astrology in Europe during and after the Renaissance remains
largely underexplored, and this is particularly true of the roles played by the Tetra-
biblos. Darrel Rutkin presents two specimens of the uses to which Ptolemy could
be put in polemic and education during the Fifteenth and Sixteenth Centuries. Pico
della Mirandola professes a qualified respect for Ptolemy while twisting Ptolemy’s
discussion of the nature and validity of astrology into weapons in his attack on
the discipline. A century later, Filippo Fantoni’s lectures on the Tetrabiblos are
the vehicle for a vigorous rebuttal of Pico, while Fantoni attempts to reconcile
Ptolemy’s theory that the heavenly bodies influence the sublunar world through the
exertion of the elementary qualities hot, cold, moist, and dry with a more rigorous
Aristotelianism.

N. M. Swerdlow takes up the threads of Ptolemy’s solar and precessional theory,
which have run through several of the preceding papers, with a precise account of
how Tycho, Longomontanus, and Kepler tried to sort out the confusion of mod-
els and parameters that had resulted in part from the discrepancies between the
Almagest and observations by Arabic and European astronomers. Tycho believed
that the solar parameters had indeed changed since antiquity, but he deferred his
solution of the long term behavior of the solar model to an ultimate comprehen-
sive solar theory that he did not live to produce, meanwhile engaging in a dispute
with Scaliger on the nature of precession that incidentally illuminates Scaliger’s
obstinate conviction that classical scholarship, not modern astronomy, held the key.
Longomontanus’ solar theory professed to be the fulfilment of Tycho’s promise
of a solution for all time; he proves to have been acutely critical of, though still
dependent on, the observation reports in the Almagest, while also favoring certain
parameters for their numerological perfection. Kepler, in turn, succeeded in isolating
Ptolemy’s reports of his own observations of equinoxes and solstices as the outliers
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(though the question of what caused Ptolemy’s errors continued to trouble him), and
thus he reintroduced a near-Ptolemaic simplicity into his solar theory by upholding
the constancy of both the sidereal and tropical years, while including in his model a
variable obliquity of the ecliptic.

Ptolemy’s solar observations had not long been superannuated when his eclipse
reports seemed to acquire a new utility from Halley’s discovery of the secular accel-
eration of the Moon. John Steele narrates how Dunthorne, Mayer, and Lalande
attempted to sift through the ancient eclipse records transmitted by Ptolemy and
other sources. Dunthorne considered Ptolemy’s reports to be insufficiently precise,
while Mayer and Lalande suspected Ptolemy of tampering with them. But all three
made some use of them, especially Dunthorne who singled out three reports that
proved the phenomenon of secular acceleration and provided a basis for measur-
ing it (though Mayer and Lalande preferred to use more recent but more precise
observations for the latter purpose).

Notes

1. For detailed biography see Toomer (1975) and Jones (2008).



An Unpublished Astronomical Papyrus 
Contemporary with Ptolemy 

Anne Tihon 

Several years ago, Jean-Luc Fournet drew my attention to an unpublished astro-
nomical papyrus which is preserved in the Library of the Institut Français 
d’Archéologie Orientale (IFAO) in Cairo (P. Fouad 267 A). This text appeared to 
me at once to be an interesting document, and we decided to make a joint publica-
tion. But I was far from guessing how difficult and important it would be. At first 
glance I believed that we had a fragment of an ordinary commentary on Ptolemy’s 
Handy Tables, or a fragment of an astrological treatise explaining with an example 
the use of the tables. But quickly I realized that we had here something rather dif-
ferent, a sophisticated document which has, to our knowledge, no equivalent in the 
astronomical material coming from late Antiquity. 

The papyrus is a folio from a codex, and we thus have two parts: Part a (recto) 
and Part b (verso). The papyrus is remarkable for a number of reasons: it is a long 
text (22 lines plus tables on the recto, 32 lines on the verso), and moreover it is an 
extract from an astronomical or astrological treatise. It mentions an observation of 
Hipparchus not known elsewhere, and uses tables different from those of Ptolemy. 
Finally it gives an example set in the year A.D. 130, making it contemporary with 
Ptolemy. 

The analysis of the text proved to be especially difficult, and there remain some 
unsolved problems. However it seemed to us useful to make the document known 
and to present the results of our study, as well as the questions raised by the papy-
rus. This paper is a preliminary presentation of the document. I will give here a 
provisional translation of Part a with a short summary and a quick analysis of its 
content. The reading of Part b is much more difficult, and I am not able to give a 
provisional translation at this stage of my research; but I will summarize briefly 
the matters treated in this part. The text itself will be edited critically, with photos 
and full commentary, in a book by J. L. Fournet and myself to appear in the Publi-
cations de l’Institut Orientaliste de Louvain (Louvain-la-Neuve), with the collabo-
ration of Raymond Mercier. The analysis of such a document is a difficult and 
perilous exercise: the text cannot be read properly without having a precise idea of 
its content while the content cannot be understood without a perfect reading of the 
text! What I present here is thus a first approach based on the securest possible 
readings of the text and confirmed by calculation. But many questions and details 
need improvement and correction. 

A. Jones (ed.), Ptolemy in Perspective, Archimedes 23,
DOI 10.1007/978-90-481-2788-7 1, C© Springer Science+Business Media B.V. 2010
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Part a: Provisional Translation1 

1. … 
2. … 
3. of the Sun… 
4. at 9 h of the night2 we have established <first of all> starting with the point  

the observations of Hipparchus 
8. he realised; showing thus for the present years  how many degrees… 
9. the tropical points are displaced in the retrograde sense (εἰς τὰ προηγούμενα) since 

the time of Hipparchus 
10. with the degrees from the beginning of the table of the Syntaxis up to 
11. the observation of Hipparchus which occurred in the year 166 after the death of Alex-

ander ( = 26 June 158 B.C.) 
12. 28 Pachon at …4 hours of the day. (Thus) in the retrograde sense 
13. the tropical points were displaced in longitude by …5 degrees which one must subtract 
14. from the sum of the (numbers) of the tropical longitude of the Sun as we will show in 

the example. 
15. Therefore making (the sum) of the mean numbers of the three (motions) of the Sun  
16. one obtains for each the mean motion of the concentricity of the Sun from the apogee 

and with the magnitude obtained 
17. we enter into the second column (or table?) of the eccentricity,6 to be subtracted up to 

180°. 
18. Take as example the <15th> year of Hadrian 
19. Athyr 11, according to the Egyptians, Choiak 20, the night (of 20) to 21 at 9 h 
20. There are for the Sun up to the death of Alexander Μ

Γ
 Ζ 334 years 

21. and from Alexander up to the <15th> year of Hadrian 454 years. In all one has Μ
Γ

 … 
22. I have given the result (?) of the degrees for each year thus: 
 

 

5. calculating the nativity… by using 365 days  1/4 less 1/.9 (=1/309?) ; <secondly>, without 
fraction3 

6. since only a quarter day elapsed beyond the year, and that is the average (value); 
7. and thirdly starting with the solstices, based on 365 days 1/4 1/102 which, conforming to 
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Commentary on Part a 

Summary 

In broad outline one can understand the text as follows: 
(ll. 1–7) It is a question of calculating a nativity, that is an astrological thema. 

Here only the position of the Sun is involved. The text gives the method, then an 
example. The position of the Sun is calculated in three ways. We may complete 
the data in the following way: 

 

The expression απο σημιου (1) means “starting at a point.” In some ancient 
astronomical texts the expression is used for the revolution from one point of the 
celestial sphere to the same point. This is in contrast to the rotation from one sol-
stitial or equinoctial point to the same solstitial or equinoctial point. The meaning 
of απο σημιου is clearly the sidereal revolution. In the text however there is a 
transposition between (1) and (3) since the value given for (3) is that of the side-
real year. As a philologist I do not like to suppose that the text is corrupted or er-
roneous. But here one can see by the title of the third column that the scribe erred, 
and corrected the title απο σημιου to τροπικος. We will see later how the numbers 
have been calculated, but they are rather clear in the papyrus. 

(ll. 15–17) We have the εγκεντροτης of the Sun, i.e. the “concentricity” of the 
Sun. With this quantity one must enter into a second table, a table of eccentricity, 
but this is not entirely clear. One finds a correction that must be subtracted up to 
180°. 

The terminology differs from that of Ptolemy: the word εγκεντροτης, “concen-
tric,” does not appear in Ptolemy, who uses “homocentric,” but is used by Theon 
of Smyrna who often refers to Hipparchus.  Thus, as it seems, the papyrus as-9

(ll. 7–14) The value given for the sidereal year, 365 1/4 + 1/102 days, is said to 
agree with the observations of Hipparchus. The author of the “Syntaxis” used here 
has shown that the tropical points were displaced retrograde since the beginning of 
this Syntaxis up to the observation made by Hipparchus on Pachon 28 of the year 
of Alexander 166 (158 B.C. June 26). The number of degrees cannot be read in the 
text as preserved. These values must be subtracted from the tropical longitude of 
the Sun (col.  3). 

We therefore have here three important data: (1) the length of the sidereal year 
according to Hipparchus: 365 1/4 + 1/102 days; (2) the mention of a “Syntaxis” dif-
ferent from that of Ptolemy; (3) a new observation of Hipparchus of the summer 
solstice, 26 June 158 B.C. 
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sumes a model with an eccentric, with a correction table like that of Ptolemy, but 
the text is not perfectly clear.  

(ll. 18–22) The text gives an example for 11 Athyr (Alexandrian) = 20 Choiak 
Egyptian at 9 h of the night, that is A.D. 130, November 8. The text of the papyrus 
is therefore contemporary with Ptolemy. There is a problem concerning the Alex-
andrian day which should be the 12th of Athyr. 

The chronological sum is the following: 

 
The starting point of the tables—after the sections Μ

Γ
 and Ζ which will be dis-

cussed later—is 658 B.C. Thoth 1 (this date is without historical significance, but 
is 500 Egyptian years before the observation by Hipparchus mentioned in the 
text.) Then follow the tables with calculation which will be commented later. This 
the content of Part a. 

Explanation 

Let us consider the following figure, which I find useful for understanding and 
commenting on the text. We suppose that at the beginning of the era the Sun (S) is 
placed at an equinoctial or solstitial point.  For convenience, we take Γ0 as the 
Vernal Equinox, while E0 is the corresponding point of the sidereal sphere, and M0 
the corresponding point on the “mean motion” sphere. 

The three ways of calculating the longitude of the Sun are shown in Fig. 1: 

 
Fig. 1 The three mean motions in the papyrus 

10
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The points M0 and Γ0 are subject to a retrograde motion, that of Γ0 being the pre-
cession. So at a given date the motion in longitude (over complete circles) during 
the periods of time given in the tables is: 

E
1 
– S for the sidereal longitude of the Sun given in col. 1 

M
1 
– S for the mean longitude given in col. 2 

Γ
1 
– S for the tropical longitude given in col. 3 

and Γ0 – Γ1 is the precession. 

Dating and Chronological Divisions 

As we have seen, the text gives an example, according to the Alexandrian and 
Egyptian calendar, using the regnal year of Hadrian; it also refers to the death of 
Alexander. The date is thus November 8, A.D. 130—exactly the time of Ptolemy. 
The chronological division is partly identical to that of the Handy Tables: groups 
of 25 years, single years, Egyptian month, day, and hour, as one can see in the ta-
bles: 775 years, 13 single years, Egyptian month (Choiak), day (20) and hours (9th 
of the night). The years here are elapsed years, contrary to the usage of the Handy 
Tables (where one would find for example 776 instead of 775). 

The Length of the Years Used in the Tables 

As we have already seen, the length of the different years used for those calcula-
tions is given in the text itself, but it can be reconstructed also from the values 
given in the tables. The concordance between text and calculation is a guarantee of 
the validity of our reconstruction. Since we have the motion of the sun during pe-
riods of 775 Egyptian years, 13 years and so on, it is possible to derive the follow-
ing values: 

 
The value of the tropical year remains somewhat uncertain, because the right 

edge of the papyrus is cut off, and the sexagesimal fractions are missing. But the 
value must be very close to the Ptolemaic value and the last figure: 9 (Θ) is clearly 

numbers, we may reconstruct the daily motion of the Sun and the yearly motion 
(in 365 days) as follows: 

readible in the papyrus. I thus suggest reading 1/309 (<Τ>Θ). With help of these 
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The Value of Precession 

The text mentions explicitly the precession of the tropical points: between the start 
of this Syntaxis and the Summer Solstice of B.C. 158 June 26 observed by Hip-
parchus, the solstitial points are displaced in the retrograde direction; unfortu-
nately the value of the displacement is not identifiable in the papyrus. 

However the value of the movement of precession can be inferred with a good 
approximation from the data in the text. If one calculates the difference between 
the sidereal year of the papyrus and the tropical year one obtains an approximate 
value of 

0;0,45,56,51,55° ≅ 0 ;0,46° 

In the two first lines of the tables, one finds two signs, the meaning of which is the 
most mysterious question posed by this document. The Greek letter Μ (mu) with a 
small Γ (gamma) written above is a common way of writing 3 myriades (30,000), 
but prima facie such a huge number made no sense in this kind of astronomical 
calculation, which seemed rather similar to any calculation performed with 
Ptolemy’s tables. The second line marked by a Ζ (zêta crossed with a bar) raised 
the same problem. 

I had the idea that Μ
Γ
 could be an abbreviation for μέγας, and Ζ for ζύγος (or 

ζεῦγος), both being well attested in the papyri. One would have had here an 
equivalent of the Sanskrit mahayuga (a great period), and yuga (a smaller period). 
In the end, I realized that these are indeed large periods, the magnitudes of which 

are given by the two symbols Μ
Γ
 = 30,000 and Ζ = 7,000. So the comparison with 

the Sanskrit yuga had to be abandoned. 

which is 1°/78y. At this stage of our research, other values (such as 1°/79y) are still 
acceptable, but the next step of our analysis will decide in favour of 1°/78y. 

The Meaning of the Abbreviations Μ
Γ
 and Ζ 
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We know that the difference between col. 3 and col. 1 gives the precession 
during the given period. So, if we combine such periods with the value of the 

30,000 (Μ
Γ
) years / 78 = 384;36,55,…°– 360° = 24;36,55,…° 

This corresponds to the difference between col. 3 and col. 1: 

264° – 240° = 24° 

which gives the value of the precession for this period. In the same way, 

7,000 (Ζ) years/78 = 89;44,36…° 

corresponding to the difference between col. 3 and col. 1: 

97° – 8° = 89° 

which is again the value of the precession for this period. If we apply the same 

very far from the papyrus. 
These periods are consistent with the results found if we recalculate the longi-

tude for each tables, for these periods: 

The Tropical Longitude of the Sun at the Date of the Example 
and at the Beginning of the Era 

Now we have elucidated all the lines of the calculations written at the bottom of 
the Part a. We are able more or less to complete the numbers—but some problems 
are caused by the fact that we do not know how many sexagesimal terms must be 
considered. For large periods like 30,000 or 7,000 years, it makes a real difference 
if one neglects the fourth or the fifth sexagesimal place. 

Another problem arises from the fact that one expects to find as a final result 
the position of the Sun at the given date, namely A.D. 130 November 8, expressed 

precession (1°/78y), we get the following results which are quite convincing: 

procedure using another rate for the precession, for example, 1°/79y, the results are 
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in either sidereal, mean, or tropical longitude. This is not the case. According to a 
modern calculation, the tropical longitude of the Sun must be around 15° of Scor-
pio; according to Ptolemy’s tables, at 225;49,35° (mean position) and 224;58,35° 
(true position).12 None of the tables directly gives such a position. But two posi-
tions of the Sun are given in Part b, both in Scorpio (approximately 14° and 18°) 
but the reading of them is not well established. 

Between the end of the tables in Part a and the legible text of Part b there is 
quite a large a gap, and one may suppose that the last part of the calculation was 
given there. One may think that, as in the Almagest, the epoch position at the be-
ginning of the era is not built into the tables. At the end of a calculation made with 
the tables of the Almagest, one has to add this epoch position which is written at 
the top of the tables. Here, we know the time of the origin: the 1st of Thoth 37,788 
Egyptian years (30,000 + 7,000 + 788) before the date of the example (A.D. 130), 
but we do not know the epoch position of the Sun. However it may be recon-
structed from the data of the text. We may take the beginning of the third row of 
the tables which correspond to the 1st of Thoth 658 B.C. (4th of February 658 
B.C.). The tropical longitude of the Sun at that moment, calculated with the Alma-
gest, is 309;6,42° (mean position) and 311;16,42° (true position). Since the sum of 
the two first rows for the tropical longitude is around 361°, the approximate mean 
tropical longitude of the Sun was around 308° at the beginning of the era—though 
one would like to have these figures recalculated with more precision. If one adds 
this position, the result is: 

~308° + ~ 278° = 226° or Scorpio 16° (mean position) 

a result which is roughly approaching the expected tropical longitude of the Sun at 
the date of the example.13 

Sidereal Longitude 

A sidereal longitude implies a reference star, but no name of a star is given in the 
text. In our explanation, we have taken an arbitrary starting point, E0, which was 
the corresponding point of Aries 0° Aries (Γ0) on the sidereal sphere at the begin-
ning of the era. But we do not know if that point corresponds to a special star, and 
we do not know which was the shift between the tropical zodiac and the “sidereal 
zodiac” at the date of the example. 

Nevertheless we note that the distance between Γ1 and Γ0 (the precession), 
which is here about 124°, is not far from the longitude of Regulus as given in the 
Handy Tables for the year A.D. 130: 
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On the other hand, one may also remark that during the 37,500 Egyptian years 
counted from the beginning of the era to the observation of Hipparchus in 158 

37,500/78 = 360° + 120;46,9…° 

This could explain the bizarre choice of these unusual periods of 30,000 and 
7,000 years. At the starting point of the system, the unknown author of this Syn-
taxis would have assumed that Regulus and the Spring equinox are both placed at 
the point E0. But this hypothesis is rather uncertain. What we can say is that in the 
Handy Tables Ptolemy uses two systems for counting the longitude of the planets: 
they are first calculated from Regulus (α Leonis) and then adjusted to the usual 
tropical longitude measured from Aries 0°. 

There are other questions which need more investigation, for example, why 

derlying construction with an “enkentros” and an “ekkentros”? There is nothing in 
the text which can be interpreted as a reference to an apogee, but a construction 
with an eccentric certainly implies fixing an apogee and a perigee.15 

Part b 

The second part of the text (Part b) is difficult to read, but the problems treated in 
the text are rather clear: it is a matter of correcting the time, meaning seasonal and 
equinoctial time, and the author uses a table of oblique ascensions for the clima of 
Alexandria. The data are close to the Handy tables, but not exactly the same. One 
must note that the ascensions are expressed in terms of zodiacal signs—in the pa-
pyrus, the sidereal circle, the tropical ecliptic, and the equator are all divided in 
“zodiacal signs.” 

After converting the seasonal time in equinoctial hours, the author corrects the 
position of the Sun. There are two different positions given here, Scorpio 14° 
<…> and 18° <…>, but the sexagesimal figures are not clearly established.16 
Moreover, it is hard to decide which one is the sidereal longitude, and which one 
is the tropical longitude. After adjustment of the Sun’s position due to the correc-
tion of the given time, the author continues with the calculation of the declination. 
Obviously, his table is very close to the Almagest table, but not exactly the same. 
The text is coming to an end, as it seems, with an explanation concerning the “di-
rection” of the Sun, how to know if the Sun is in the “ascending” or the “descend-
ing” part of the ecliptic, and in the northern or the southern part, a problem which 

B.C., the precession at the rate of 1°/78y is 

calculate also a “mean” longitude with a year of 365 1/4 days?14 What was the un-
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has no great interest for a modern scientist, but which is commonly discussed in 
the ancient astronomical commentaries. 

As a conclusion, I would like to underline the exceptional interest of this papyrus. 
We find here a striking evidence of the fact that many different tables and astro-
nomical Syntaxeis did exist at the time of Ptolemy.17 

Notes 

                                                           
1. Underlined words are suggestions for a better understanding of the text. 
2. Uncertain. 
3. Uncertain. 
4. The number is missing. 
5. Illegible. 
6. In the text “concentricity”? 
7  Uncertain. 
8  The border of the papyrus is damaged and the sexagesimal rows have disappeared. 
9. Hiller 1878, 181 lines 7–9. 
10. Since this paper was written, I have succeeded in identifying in the papyrus the symbol for 

the apogee of the Sun; so it is clear that the text implies a model with an eccentric. But the 
terminology still has to be clarified. 

11. This starting point has been taken arbitrarily, and the real position of the Sun at the begin-
ning of the era will be estimated later. 

12. Calculation made to 2 sexagesimal places. 
13. The figures given here are rough approximations. 
14. Nallino 1903, vol. 1, 40: Hipparchus autem longitudinem anni ex 365 diebus et ¼ diei tan-

tum constare fecit. 
15. As I remarked above, I am now able to identify in the papyrus a symbol which represents 

the apogee; doubt about an eccentric model can be eliminated (see note 10). 
16. The two positions of the Sun have been identified in Cairo as Scorpio 18;30° (sidereal lon-

gitude) and Scorpio 14;20,18° (tropical longitude), but they still have to be confirmed by a 
new examination of the original document. 

17. Postscript: Since the meeting at Caltech in June 2007, I had the opportunity to examine 
the papyrus in Cairo with Jean-Luc Fournet in February 2008. Thanks to his talent, almost 
magical, and his expertise in the reading of papyri, significant progress was made in the 
edition of the text, especially in Part b. As a result, changes will have to be introduced in 
the translation and in many points of my analysis even if the general interpretation pre-
sented here can be maintained. Points which need to be improved or modified are indicated 
in the footnotes. I would like to express my warm thanks to Mme L. Pantalacci, Directrice 
of the IFAO in Cairo, who allowed me to work on the papyrus in the Institut Français 
d’Archéologie Orientale. 



Ancient Rejection and Adoption of Ptolemy’s 
Frame of Reference for Longitudes 

Alexander Jones 

Theon and Ptolemy 

Easily the most often cited passage in Theon of Alexandria’s Little Commentary 
on Ptolemy’s Handy Tables is the twelfth chapter, which is brief enough to quote 
in its entirety:1 

But since, following certain opinions [κατά τινας δόξας] the astrologers of old  
[οἱ παλαιοὶ τῶν ἀποτελεσματικῶν] want to have the solstitial points shift starting from 
some starting point of time in the direction of the trailing parts [i.e. eastwards in longi-
tude] for 8 degrees, and to turn back again for the same [8 degrees]—which Ptolemy does 
not believe, because of the fact that without the addition arising from this kind of supple-
mentary computation the aforesaid calculations by means of the tables agree with the em-
pirical determinations [ταῖς καταλήψεσιν] by means of instruments, which is why we too 
advise not to adopt this kind of correction—nevertheless we will set out the method con-
cerning this supplementary computation made by them. 

They take the 128 years before the reign of Augustus, on the hypothesis that the maxi-
mum shift of 8 degrees was in effect then, and that [the solstitial points] take this as the 
starting point of turning back [καὶ ἀρχὴν λαμβανόντων ὑποστρέφειν], and adding to 
these [128 years] the 313 years from the beginning of Augustus’ reign to the beginning [of 
the reign] of Diocletian and the given number [of years] from Diocletian, and taking the 
eightieth part of the sum on the hypothesis that every 80 years they [i.e. the solstitial 
points] shift one degree, and subtracting the degrees resulting from the division from 8 
degrees, they add the remainder, as being [the degrees] of the shift of the solstitial points 
[in effect] at that time, to the positions of Sun and Moon and the five planets that are ob-
tained by means of the aforesaid calculations. 

Theon’s chapter is well known as the earliest testimony for “trepidation,” the 
theory of a slow oscillating component in the positions of the equinoctial and sol-
stitial points, and as, probably, the principal (if not the only) Greek authority be-
hind medieval Arabic discussions of trepidation.2 Less generally remarked on is 
the oddness of Theon’s presentation taken in its own right and in the context of the 
Little Commentary. .
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The first odd thing is that the chapter is there at all. Theon’s work, though it is 
customarily given the title “Commentary” in modern languages, is really no more 
than a set of instructions, with worked examples, for the use of Ptolemy’s Handy 
Tables. Outside this one chapter, Theon’s instructions cover much the same 
ground as the much terser ones that Ptolemy provided in his own monograph, 
Arrangement of and Computation by the Handy Tables, 3 but neither in that work 
nor in his other surviving writings does Ptolemy so much as hint at a doctrine re-
sembling trepidation. Theon’s huge commentary on Ptolemy’s Almagest and his 
Great Commentary on the Handy Tables say nothing on this topic; nor does Theon 
bring up comparable historical sidelights elsewhere in the Little Commentary. 

Then there is the chapter’s title, περὶ τροπῆς, or as some manuscripts have it, 
περὶ τροπῶν. The second version, using the plural of the noun τροπή, is the lectio 
facilior, seeming easy to translate: “concerning solstices.” But as a description of a 
chapter that is not exactly about solstices, but about a certain doctrine about the 
solstitial points (τροπικὰ σημεῖα), this does not seem to be quite apt. The first 
version with the singular form of the noun has a somewhat better claim according 
to the manuscript tradition of the Little Commentary, but since “concerning sol-
stice” would be unidiomatic as well as inaccurate, we are left wondering whether 
there can be another technical meaning of τροπή (which literally means “turning” 
or “reversal of direction”) that fits the context. Could it mean what we call trepidation? 

Our next puzzle is the identity, and more particularly the date, of the “astrolo-
gers of old.” The Greek adjective, παλαιός, is often translated “ancient,” but the 
past time to which it refers need not be very remote from the author’s present (i.e., 
for Theon’s Little Commentary, the 360s or 370s). Theon offers his reader con-
flicting signals. On the one hand a natural interpretation of his assertion that 
“Ptolemy does not believe” the opinions of the astrologers is that Ptolemy rejected 
a theory already current in his time. (Theon would have to mean a tacit rejection.) 
On the other hand, Theon presents the supplementary computation (ἐπιλογισμός) 
that the astrologers are said to have made as a kind of add-on to the normal calcu-
lation of planetary positions based on the Handy Tables, and the algorithm is 
framed in the expectation that the given date employs the Era Diocletian, which 
began with Diocletian’s first regnal year in A.D. 284/285. 

The theory of the astrologers is at first set out in rather vague terms. Starting at 
some epoch date, the solstitial (and equinoctial) points are supposed to begin shift-
ing eastwards, that is, increasing in longitude—relative to what?—and after 8° of 
this motion, they are supposed to retrace the same interval in the opposite direction. 
(Theon does not state, though it is natural to infer, that similar cycles of back-and-
forth motion of the solstitial points preceded and followed the cycle he describes ad 
infinitum.) Bridging this general statement of the theory to the algorithm that is sup-
posed to yield a numerical correction based on the theory are the statements 
inserted in the algorithm as participial clauses expressing grounds of belief, here 
translated “on the hypothesis….” An epoch year 128 years (Egyptian civil calendar 
years, apparently) before the “zeroth” regnal year of Augustus, that is, 159/158 B.C., 
is said to have been when the shift was at its maximum of 8° and the solstitial 
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points “turned back.”4 The rate of motion of the solstitial points is given as a con-
stant 1° in 80 (again civil) years. The difference resulting from subtracting one-
eightieth of the number of years elapsed since the epoch year from 8° is interpreted 
as the shift of the solstitial points in effect on the desired date. A reasonable read-
ing of these statements as clarifications of the previously outlined theory is that in 
the more distant past, leading up to 159/158 B.C., the longitude of, say, the sum-
mer solstitial point increased from Cancer 0° to Cancer 8° at a rate of 1° in 80 
years, whereas after this epoch year its longitude decreased at the same rate from 
Cancer 8° back to Cancer 0°; the whole cycle would have spanned the interval 
from 799/798 B.C. to A.D. 482/483. 

We still have to consider the algorithm on its own terms, independent of the ration-
alizations that Theon has inserted. He makes it clear in the chapter’s last sentence that 
the algorithm is supposed to yield a correction to be applied to the longitude of any 
heavenly body (Sun, Moon, planet, or fixed star) that has been computed by 
means of the Handy Tables, and this fact explains the placement of this chapter 
immediately following the last of the chapters describing how to use the longitude 
tables.5 As expressed by Theon, the algorithm can only be applied to given dates 
between Diocletian 1 and Diocletian 199 (i.e. A.D. 284/285 through 482/483), but 
can trivially be adapted to work for years as far back as 129/128 B.C. merely by 
counting civil years directly from the epoch year. If y is the total number of civil 
years since the epoch, one calculates the correction 

 c = 8–y/80 (1) 

which is to be reckoned as degrees to be added to any longitude derived from 
Ptolemy’s tables for the year in question. It is easy to see that the algorithm is consis-
tent with our interpretation of Theon’s explanation of the trepidation model, that is, 
that by adding the correction c we shift the longitude of the heavenly body by the 
same amount in the same direction as the model says the equinoctial and solstitial 
points are shifted in the same year.6 Theon does not say how the algorithm could be 
extended to dates before 129/128 B.C. or after A.D. 482/483—after all, he would not 
expect his readers to need to compute positions of heavenly bodies so far in the past 
or future—but one would imagine that the correction should reflect the change of di-
rection of the equinoctial and solstitial points. Thus before 129/128 B.C. we can use 
the same formula, where y is now the number of years by which the given date pre-
cedes the epoch date, whereas for a date y years after 482/483 one just uses c = y/80. 

But it is worth asking once more the question, relative to what? In other words, 
what meaning did the astrologers assign to a statement such as that in A.D. 
323/324 the longitude of the summer solstitial point was (for the sake of argu-
ment) Cancer 2°? And again, if after applying the algorithm to “correct” a longi-
tude of Saturn computed by the Handy Tables for a particular date, an astrologer 
obtained the result Gemini 23°, what was this result supposed to mean? 

Ptolemy’s treatment of the question of the appropriate frame of reference for 
celestial longitudes in the Almagest is straightforward and lucid.7 In 1.8 he defines 
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the ecliptic as the apparent path described by the motion of the Sun, and asserts 
that the ecliptic is a great circle, bisected by and bisecting the celestial equator.8 
The frame of reference for measuring longitudes along the ecliptic is established, 
almost casually, in 2.7, where Ptolemy writes, 

We shall employ the names of the zodiacal constellations [ταῖς τῶν ζῳδίων ὀνομασίαις] 
also for the twelfth-divisions of the inclined circle [i.e. the ecliptic] and on the hypothesis 
that their starting points are taken from the solstitial and equinoctial points, calling the 
first twelfth-division starting from the vernal equinox in the direction of the trailing parts 
in the motion of the totality [i.e. eastwards] “Aries,” the second one “Taurus,” and like-
wise for the ones that come next, according to the order of the twelve zodiacal constella-
tions that has been handed down to us. 

Ptolemy establishes two things here: that that for the purpose of expressing longi-
tudes the ecliptic is considered as divided into twelve equal arcs of 30° named after 
the zodiacal constellations, with the degrees counted eastwards, and that these arcs 
(i.e. zodiacal signs, as distinct from constellations) are fixed such that Aries 0° is the 
vernal equinoctial point. Thus the frame of reference is strictly tropical. 

The equality and nomenclature of the zodiacal signs and their alignment such 
that the vernal equinox is at Aries 0° rather than, say, Aries 8°, is purely conven-
tional for Ptolemy, but the elementary principle that longitudes are to be counted 
relative to the equinoctial and solstitial points is a necessary part of Ptolemy’s expo-
sition in the Almagest. At this point in Book 2, Ptolemy has no celestial objects 
available for reference except the uniformly revolving celestial equator and the 
ecliptic, which he assumes is fixed relative to the equator so that the equinoctial 
and solstitial points revolve uniformly. Later, in 3.1, he will demonstrate that the 
tropical year, the interval between the Sun’s successive passages of the same 
equinoctial or solstitial point, is constant (whether reckoned in true solar days or in 
uniform time units), a conclusion that effectively confirms the hypothesis of a 
fixed ecliptic and the appropriateness of the tropical frame of reference. In the 
same chapter, Ptolemy points out that it would be absurd [ἄτοπον] to define the 
starting point for a solar year as the Sun’s passage of a planet or fixed star (which, 
looking forward to the precession theory of Book 7, he regards as no better than a 
planet for such purposes) rather than by the cardinal points of the Sun’s own mo-
tion. Though he is here addressing the problem of defining a specific periodicity, 
the same considerations would rule out Ptolemy’s accepting any of the visible 
heavenly bodies as a reference point for longitudes. 

Hence the meaning of any longitude computed according to Ptolemy’s tables, 
whether in the Almagest or in the Handy Tables, is unambiguous. The vernal equi-
noctial point is by definition Aries 0° for all time, and a computed longitude Sagittarius 
23° means that the heavenly body is 263° east of the vernal equinoctial point. 

Now Theon says nothing about frames of reference in his chapter on the trepi-
dation theory. It goes without saying that if the vernal equinoctial point is supposed 
to be at Aries 8° in 159/158 B.C. but at Aries 0° in A.D. 482/483, the frame of ref-
erence for these longitudes is not tropical. But it is not at all clear whether we 
should think of the frame of reference (however it is to be defined) as being somehow 
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fixed while the equinoctial points move back and forth, or whether it is really the 
equinoctial points that are fixed while whatever defines the new frame of reference 
moves back and forth. Theon’s description of the theory of course implies the for-
mer. But since his correction algorithm is designed to preserve the elongations of all 
the heavenly bodies from the vernal equinoctial point exactly as they result from 
Ptolemy’s tables, it follows that if the vernal equinoctial point performs a back-and-
forth motion, all the heavenly bodies must be performing exactly the same slow 
oscillating motion in addition to their other motions, which scarcely seems plausible. 
To take the simplest example, according to the Handy Tables, reflecting Ptolemy’s 
precession model, any fixed star’s longitude increases uniformly in Ptolemy’s tropi-
cal frame of reference at a rate of 1° in 100 years, or 0;0,36° per year. In the astrolo-
gers’ frame of reference, however, the star’s longitude would decrease uniformly, 
though by just 0;0,9° per year between 159/158 B.C. and A.D. 482/483, but before 
and after that interval the rate would be a constant increase of 0;1,21° per year. 

Another way of considering the matter is in terms of time. According to Ptolemy’s 
solar theory, based on his extensive discussion of the constancy and duration of the 
tropical year in Almagest 3.1, the Sun traverses 360° (in either mean or true motion) in 
Ptolemy’s tropical frame of reference in 365 1/4 – 1/300 days (365;14,48 days). 
Hence in the frame of reference of Theon’s astrologers during the interval between 
159/158 B.C. and A.D. 482/483, in 365;14,48 days the Sun will traverse 360° – 1°/80 
(359;59,15°). This interval is still a tropical year, because the solstitial and equinoctial 
points will have regressed by 1°/80.9 The Sun’s mean period of longitudinal revolution 
according to the astrologers’ frame of reference, however, will be: 

 ytrep1 = 365;14,48 d × 360/359;59,15 ≅ 365;15,33,39,… d ≅ 365 1/4 + 1/107 d (2) 

On the other hand, during the intervals when the solstitial points are shifting in 
the opposite direction, the Sun’s mean longitudinal period will be: 

ytrep1 would be credible as a value for the sidereal year, though it is not Ptolemy’s 
value.10 Van der Waerden maintained that the frame of reference of the astrologers 
was meant to be sidereal, notwithstanding the difficulty of making sense of the 
changes of direction and the conflict with Ptolemy’s precessional rate.11 In the fol-
lowing we shall verify this interpretation and further attempt to trace the rise and 
fall of Theon’s formula. 

Longitudes and Years in the Earlier Greek Horoscopes 

An interpretation of Theon’s formula as a conversion from Ptolemy’s tropical 
frame of reference to a sidereal frame of reference is strongly supported by con-
sideration of the computed longitudes of heavenly bodies that we find in Greek 

 ytrep2 = 365;14,48 d × 360/360;0,45 ≅ 365;14,2,20,… d ≅ 365 1/4 – 1/62 d (3) 
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documents and texts produced during the centuries immediately before and after 
Ptolemy. These sources include horoscopes and astronomical tables preserved on 
Greco-Egyptian papyri as well as astrological treatises transmitted through the 
medieval tradition. Systematic study of this material, including the frame of refer-
ence problem, was begun by O. Neugebauer in the mid twentieth century. The 
considerable expansion of the body of evidence since them justifies a new look at 
the problem. 

In 1942 Neugebauer published an edition of two planetary almanacs written in 
Egyptian Demotic script, the papyrus P. Berlin 8279 and the Stobart Tablets, a set 
of wooden boards.12 These are instances of a variety of table, now referred to as 
sign-entry almanacs, that was widely used in Roman Egypt and of which we now 
have numerous fragmentary examples ranging from the late second century B.C. 
to the fourth century of our era. They consist of lists of dates when each of the five 
planets was supposed to have crossed the boundary from one zodiacal sign to one 
of its neighbors. The two Demotic almanacs edited by Neugebauer remain the 
most extensive known sign-entry almanacs, as well as the only ones not written in 
Greek. Neugebauer recognized that the dates in the almanacs were generated by 
computation, not observation, and he found that on average the planets’ crossings 
of sign boundaries tended to be assigned in the texts to dates on which modern 
theory yields a tropical longitude a small number of degrees less than that of the 
tropical sign boundary.13 Hypothesizing that the cause of the differences was that 
the almanacs employed a sidereal frame of reference such that one of the bounda-
ries was aligned with a particular star, he deduced that there should be a slow pre-
cessional decrease in the differences, a decrease that he believed was apparent in 
the data. 

Nearly two decades later Neugebauer produced, in collaboration with H.B. van 
Hoesen, a collection and study of all the ancient Greek horoscopes then known 
from papyri and other documentary sources as well as from medieval astrological 
manuscripts.14 Unlike the Demotic almanacs, Neugebauer’s corpus of Greek horo-
scopes was far from homogeneous, and most of the horoscopes could not be used 
for investigation of the longitudes because they only specified the zodiacal sign 
occupied by each heavenly body without further precision. Neugebauer identified 
two sets that gave positions to at least degree precision and that were sufficiently 
numerous to permit meaningful analysis. 

First, he found that in the horoscopes for fifth and early sixth century dates 
from medieval manuscript (“literary”) sources, the longitudes tend to average 
about 2–3° less than modern theory tropical recomputations, with no noticeable 
shift taking place over an interval of several decades.15 He suggested that part of 
the difference between the text and modern theory longitudes might be attributable 
to the “defect in the value of Ptolemy’s constant of precession”; although he was 
unable to account in this way for about 1° worth of the difference, he was pre-
pared to say that the frame of reference of the horoscopes was simply Ptolemy’s.16 

Secondly, he showed that the nearly thirty dated solar longitudes recorded in 
the astrological treatise of Vettius Valens, covering dates spanning just over a century 



Ancient Rejection and Adoption of Ptolemy’s Frame   17 

from A.D. 54 to 157, are consistently greater than modern theory tropical longi-
tudes, with a clear shift such that the average difference about A.D. 50 would be 
about 5°, and about A.D. 160 would be about 3 1/2°, evidently a sidereal frame of 
reference.17 He further noted that the lunar and planetary longitudes in Vettius 
Valens, though more erratic and, in the case of the planets, less abundant, appear 
to confirm this frame of reference. 

N. Kollerstrom has recently taken a different approach to examining the longi-
tudes in the Greek Horoscopes material.18 To reduce the “noise” in the data attrib-
utable to defects in the ancient planetary models, he considered only horoscopes 
(from all sources) in which degree-precise longitudes were preserved for at least 
four of the heavenly bodies (excluding Mercury), and calculated from them an av-
erage text-minus-modern value for the horoscope as a whole.19 Kollerstrom found 
that, treated in this manner, the horoscopes—including the late ones—clustered 
around a trend line representing the difference between a sidereal and tropical 
frame of reference, and he further argued that this line was approximately the ex-
trapolation of the trend line found by P. Huber for the sidereal frame of reference 
of Babylonian astronomical texts of the last three centuries B.C.20 

The predominance of sidereal longitudes in the astronomy of the papyri and as-
trological texts, at least as late as the third century, is not in doubt. It is instructive, 
however, to make the comparison, not with modern theory calculations, but with 
the tropical longitudes generated by Ptolemy’s tables.21 Moreover, since we have 
very limited knowledge of the planetary theories used by the astrologers except 
that there could be considerable differences between their predictions and those of 
Ptolemy’s models, we will limit consideration to solar and lunar longitudes. There 
undoubtedly existed many models for the Sun’s motion during the Roman period, 
but in principle the differences in predicted longitudes based on different models 
ought seldom to exceed a fraction of a degree. For lunar longitudes one probably 
has to allow a slightly more generous tolerance, but very large discrepancies 
would not be expected among models calibrated with respect to eclipses. 

Figure 1 shows the text-minus-Ptolemy differences for solar longitudes in 
horoscopes preserved in papyri and astrological texts; the corpus includes several 
papyri that came to light since 1959.22 Most of the text longitudes are given as a 
whole number of degrees; these are marked with asymmetrical error bars to allow 
for the possibility that the values have been either truncated or rounded off from 
more precise values.23 The solid line represents the correction to Ptolemy’s tropical 
longitudes prescribed by Theon’s formula. Most of the data points are near the 
line, even at the earliest period when there can be no question of use of Ptolemy’s 
tables; this is a clear demonstration that Theon’s formula effectively converts 
Ptolemy’s longitudes to the prevailing sidereal frame of reference. The outliers 
exhibit no pattern, and many of them are probably to be explained as resulting 
from scribal or computational errors. From the first century to the first half of the 
fourth there are no more than one or two data points that could be interpreted as 
tropical longitudes, and these are just as likely to be errors. 
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Fig. 1 Solar longitudes in Greek horoscopes: text minus Ptolemy 
 

Text-minus-Ptolemy differences for the lunar longitudes in the horoscopes are 
graphed in Fig. 2. Since, however, it does not appear that the Moon’s second 
anomaly was known before Ptolemy, we also graph in Fig. 3 the differences be-
tween the text longitudes and longitudes computed according to the simple epi-
cyclic theory that Ptolemy presents in Almagest Book 4 before modifying it in 
Book 5 to accommodate the second anomaly. As it turns out, the scatter in the data 
up to the fourth century (partly due to uncertainty about the precise time of day or 
night of the nativities) makes it difficult to judge whether a single-anomaly or two-
fold-anomaly model is the more appropriate for comparison. The later horoscopes 
 

 
 
Fig. 2 Lunar longitudes in Greek horoscopes: text minus Ptolemy 
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Fig. 3 Lunar longitudes in Greek horoscopes: text minus Ptolemy’s simple epicyclic model 
 
clearly conform more closely to Ptolemy’s final model. Both graphs show essen-
tially the same trend in the differences as we find for the solar longitudes. 

The graphs show the ambiguity of the situation for the fifth century: since 
Theon’s formula reaches zero towards the end of the century, the cluster of data 
points between A.D. 400 and 500 might appear consistent with either Ptolemy’s 
tropical longitudes or sidereal longitudes. Since the horoscopes from before the 
middle of the fourth century are consistently sidereal, it would be reasonable to as-
sume that they continued to be so afterwards. However, this is a question to which 
we will return in section “Ptolemy’s Tables and Theon’s Formula in Practice”. 

In Fig. 4, text-minus-Ptolemy differences are graphed for the solar longitudes 
in Vettius Valens Book 8 Chapters 7–8 and Book 9 Chapter 19, which are not  
 

 
Fig. 4 Solar longitudes in Vettius Valens 8.7---8 and 9.19: text minus Ptolemy 
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presented in the context of complete horoscopes.24 These are also evidently side-
real longitudes, with an obvious precessional shift, though the scatter is too great 
to be explained merely in terms of a solar theory different from Ptolemy’s. Erratic 
computation, use of more than one set of tables, or astrologically motivated tam-
pering with the data must be at work, as one can see from the case of Vettius 
Valens’s solar longitude for July 19, A.D. 75, which in 8.7 is given as Cancer 
27;43° but in 3.5 as Cancer 29;30°. Figure 5 graphs the differences between 
Valens’ lunar longitudes and those predicted by Ptolemy’s simple epicycle 
model.25 Interestingly, these show less scatter than the solar longitudes, and their 
general proximity to Theon’s formula is striking. 

Two passages in Valens’ treatise comment on the astronomical tables available 
in his time; though the passages are characteristically murky and textually corrupt, 
their gist is clear enough. In one (6.4), he draws a distinction between the tables on 
which the ignorant rely, which make no effort to avoid error (εὐχερεῖς), and the 
accurate tables that, though in agreement with nature, are shunned because the 
method of their use is contorted (διὰ τὸ σκολιὸν τῆς εἰσόδου). One should, of 
course, use the latter tables, though even they are only approximate; for Apolli-
narius himself, notwithstanding his thorough astronomical researches, concedes 
that his tables may err by as much as a degree or two. The other passage (9.12) 
makes a similar point with particular emphasis on solar tables. Various authorities 
have given different values for the length of the year, all slightly greater than 365 
1/4 days—Valens gives several examples of year lengths according to specific in-
dividuals and nations—but certain authors of solar tables have constructed them 
according to a four-year cycle as if the year was exactly 365 1/4 days. After recounting 
 

 
Fig. 5 Lunar longitudes in Vettius Valens 8.7---8 and 9.19: text minus Ptolemy’s simple epicyclic 
model 
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his resolution to compile a better table for both the Sun and Moon, a project he gave 
up for lack of time, Valens tells us that he “thought it best to use Hipparchus for the 
Sun, Soudines and Kidynas and Apollonius [read Apollinarius?] for the Moon, and 
what is more, Apollonius [read Apollinarius] for both kinds, if one uses the addition 
of 8° [τῇ προσθέσει τῶν η μοιρῶν] as I thought best to do.”26 

Valens’ list of year lengths is unfortunately marred by corruptions in the unique 
independent manuscript (Oxford Selden 22), as shown in the following tabulation 
where the first column gives the manuscript text, the second gives the readings 
(incorporating emendations by Kroll, Boll, and Pingree) suggested in Pingree’s 
text and apparatus, and the third gives a translation of the suggested readings:27 

 

κανονογράφοι (“authors of tables”). The source was certainly a lost copy of 
Valens, but the names and numbers are scrambled, with Apollinarius and Soudines 
inserted from further down in Valens’ text.28 Here we find purporting to be year 
lengths: 

 
τξε θι ε, apparently associated with (i.e. preceding the names of) Euctemon, 
Philippus, and Apollinarius 

τξε δ ιδ or τξε δ ρδ (the reading is unclear), associated with Aristarchus of 
Samos (“σαβῖνος”) 

τξε δ εζ, associated with “a Babylonian” (Βαβυλώνιος) 

τξε δ γ ε, associated with Soudines (“Σωδίνων”) 

τξε δ ρσ, with no associated name 
 

A hopelessly garbled version of the list survives, without any of the context 
of Valens’ treatise, in another manuscript (Vat. gr. 381) under the heading 
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Out of this mess, the only readings that inspire confidence are 365 5/19 days29 for 
Meton, Euctemon, and Philippus, because this is the year length resulting from the 
Metonic period equation 

 19 years = 235 synodic months = 6940 days, (4) 

and the Babylonians’ 365 1/4 1/144 (i.e. 365;15,25 days), because this is, rounded to 
two sexagesimal places, Ptolemy’s sidereal year (though we have no confirmation 
that it was a Babylonian parameter).30 If we wished to play the emendation game fur-
ther, it would be tempting to change the Chaldeans’ certainly corrupt τξε δ εζ not to 
τξε δ σζ (365 1/4 1/207) but to τξε δ ρζ (365 1/4 1/107), which approximates the 
year length implied by Theon’s formula (cf. equation 2 above) as well as a year 
length indirectly attested in a cuneiform text from (probably) Babylon.31 

The textual fog does not obscure the fact that every year length cited by Valens 
was greater than 365 1/4 days, and this is confirmed by his speaking of an “added 
supplement” (προστεθεῖσαν ἐπουσίαν) to the 365 1/4 day year. It is also most in-
teresting that when he comes to the choice of the best solar and lunar tables, 
Valens mentions “the addition of 8°
nection with the 8° of the Theon’s trepidation model and conversion formula, 
though in Theon’s formula, of course, the amount to be added to longitudes is 8° 
minus a variable quantity. 

Valens fails to explain in this passage whether his supplement is to be added to 
the longitudes yielded by Apollinarius’ tables, or whether it was already built into 
the tables. The meaning becomes clear if we look at certain abstruse astrological 
calculations of length of life illustrated in 8.8. The principle is that the length of a 
person’s life is the oblique ascension of the ascendant point at the time of the per-
son’s birth multiplied by a fraction that is also functionally dependent on the as-
cendant according to a cyclical pattern. Valens assumes that one is informed of the 
time of birth to a precision of one seasonal hour (e.g. “third hour of night”), and he 
delineates an astrological technique for finding the time of birth to a precision of a 
fraction of an hour, but this need not concern us here. To obtain the ascendant 
point, Valens uses an astronomically correct algorithm, essentially the same one 
that one would use with Ptolemy’s Handy Tables (for simplicity I give the form 
appropriate for a diurnal birth): 

(1)  In the table of oblique ascensions, look up the Sun’s longitude and find (a) the 
corresponding number of degrees of the equator that rise in one seasonal hour 
(what in the Handy Tables are called ὡριαῖοι χρόνοι, “hourly time-degrees”), 
and (b) the Sun’s oblique ascension. 

(2)  Multiply the hourly time-degrees by the number of seasonal hours since sun-
rise, and add the product to the Sun’s oblique ascension. 

(3)  In the table of oblique ascensions, look up this sum in the column of oblique 
ascensions, and find the corresponding degree of the ecliptic, which is the 
ascendant. 

” as an option. This obviously has some con-



Ancient Rejection and Adoption of Ptolemy’s Frame   23 

However, before step (1) Valens subtracts 8° from the Sun’s longitude, and af-
ter step (3) he adds 8° to the ascendant; and he refers to these operations as “the 
subtraction of the 8°” and “the addition of the 8°.” Thus there must have been an 
eight degree difference between the frame of reference in which Valens expresses 
the horoscope—which was also the frame of reference of the solar tables that he 
used—and the frame of reference of the ascension table. Now Valens gives com-
plete numerical specifications for his ascension tables in 1.7. They were structured 
on an arithmetical pattern extrapolated for a range of terrestrial latitudes from the 
schemes of ascensions built into the Babylonian lunar theories, but unlike the 
Babylonian schemes they were normed such that the equinoctial points are fixed at 
Aries 0° and Libra 0°, just as in Ptolemy’s tables.32  But since Valens subtracts 8° 
from any longitude before entering it in the table, and adds 8° to any longitude 
read off the table, his frame of reference is ostensibly a tropical frame of reference 
normed such that the equinoctial points are at 8° within their signs. 

It must be stressed that though Valens knew of tables that employed a 0° norm 
as well as tables with the 8° norm, he nowhere hints at any awareness of preces-
sion. His treatment of the longitudinal frame of reference is essentially identical to 
that of the Babylonian lunar theories, in which longitudes and rates of longitudinal 
motion are effectively sidereal (e.g. the period of the Sun’s longitude is slightly 
longer than 365 1/4 days) while the tropical and equinoctial points are assigned 
fixed longitudes, so that according to the internal logic of the system the frame of 
reference is tropical.33 The 8° norm is in fact that of the Babylonian System B lu-
nar theory, which was apparently the better known of the two Babylonian systems 
in the Greco-Roman world.34 A certain disconnection from astronomical reality 
applies to Valens’ frame of reference. Thus in one of his sample calculations in 
8.7 he gives the Sun’s longitude on A.D. 79 March 16, about 2 h before midnight, 
as Pisces 29°, so that the Sun should have reached the vernal equinoctial point, 
Aries 8° during the night of March 25/26; whereas in reality the equinox occurred 
during the night of March 22/23, about three days earlier. The divergence in-
creases with time at the rate of precession, or, to be more exact, at the rate corre-
sponding to the difference between the year length built into Valens’ solar tables 
and the true tropical year, so that by the mid second century dates that are the lat-
est cited in Valens’ treatise his theoretical equinox would be about four days later 
than the true equinox. 

Longitudes and Years in Astronomical Papyri 

At the date of publication of Greek Horoscopes little direct evidence was yet 
available for the varieties of table that were used by the Greek astrologers to cal-
culate longitudes of the heavenly bodies, except of course for Ptolemy’s tables. In 
fact aside from the obscure remarks on tables in Vettius Valens, the only relevant 
documents known were two papyri, P. Rylands 1.27 and P. Lund inv. 35a, from 
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which Neugebauer and van der Waerden deduced a scheme for generating series 
of epoch dates on which the Moon is near minimum apparent speed, with associ-
ated lunar longitudes and arguments of latitude.35 The epoch dates follow a cycle 
of 3031 days (comprising 110 periods of lunar anomaly), and the longitudes over 
each cycle increase by a constant: 

 Δ3031λ = 337;31,19,7° + 110 × 360° (5) 

implying a mean daily motion 

 Δ1λ = 13;10,34,51,57,…° (6) 

Since the Moon’s mean motion in tropical longitude is 13;10,34,58,…°/d, van 
der Waerden deduced from the difference in the third sexagesimal place that the 
longitudes of the scheme in the papyri were sidereal. 

It is now known that this epoch cycle formed part of a complete scheme for 
computing lunar longitudes and arguments of latitude on arbitrary dates, which 
now is designated the “Standard Lunar Scheme” since its use was remarkably 
widespread during the first four centuries of our era.36 Between epoch dates, the 
Moon’s progress was calculated as the running total of a linear zigzag function for 
daily motion; the ideal mean value of the function, i.e. the mean of the theoretical 
maximum M and minimum m, is 

  μ = 13;10,34,52° (7) 

The Standard Scheme shows every sign of having been constructed with great 
care, and it may be presumed that it was meant to combine with a suitable solar 
theory to generate accurate predictions of conjunctions and full Moons. Hence al-
though the scheme does not directly incorporate a parameter representing the 
Moon’s mean daily motion in elongation from the Sun (which is not dependent on 
the frame of reference), we may assume an accurate approximation, 

 Δ1η = 12;11,26,41° (8) 

so that the Sun’s implied mean daily motion is approximately 

 Δ1λSun = 0;59,8,11° (9) 

However, because the function has an odd-numbered period (3031 days) and 
the tabulated values include the minimum m, there is a slight bias in the 3031 val-
ues of a complete period such that their total is not 3031μ but 3031Δ1λ, which is in 
fact the minimum possible total for a cycle of values generated according to the 
parameters of the zigzag function.37 The difference between μ and Δ1λ is too small 
to be astronomically significant, and I suspect that μ was the parameter around 
which the Standard Scheme was originally designed. 
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and the corresponding value for the sidereal year is 

 ySS ≈ 365;15,26 days (10) 

This is close to Ptolemy’s sidereal year, approximately 365;15,25 days. The 
three-sexagesimal-place precision of the Standard Scheme’s parameters is just suf-
ficient to make this a significant result, since if μ had been chosen as 
13;10,34,51°, one would have obtained a sidereal year of approximately 365;15,33 
days, close to the sidereal year from Theon’s formula (equation 2 above).38 

The epoch positions of the Standard Scheme were supposed to be valid for sun-
set of the evening preceding the nominal epoch date; since there was no correction 
for the varying length of daylight, we can consider the epoch time to be 6 h past 
noon, more or less for the meridian of Alexandria. Thus we can compare one of 
the Standard Scheme epochs from P. Rylands 1.27 with computation using 
Ptolemy’s simple epicyclic lunar model as we did for Valens’ lunar longitudes: 

 33 B.C., October 26, 6 h past noon 
 λSS ≈ 42;19° 
 λPtol ≈ 36;51° 
 Δλ ≈ 5;28°  (11) 

This is about a degree less than the quantity that Theon’s formula yields for this 
date, 6;26°. Since the Standard Scheme’s implied sidereal year is slightly shorter 
than that of Theon’s formula, the Standard Scheme’s frame of reference very 
gradually approaches that of Theon’s formula as time progresses, the difference 
diminishing by about a tenth of a degree per century. 

P. Oxy. astron. 4220 comprises four fragments from three distinct papyrus 
manuscripts of astronomical tables. One of two fragments belonging to a set of lunar 
tables structured rather like the mean motion tables of the Handy Tables tabulates 
the motion of the lunar apogee in multiples of an (unreformed) Egyptian calendar 
year of 365 days, from which we can estimate the motion in 365 days as approxi-
mately 40;38,35,30°±0;0,0,3°. According to Ptolemy’s lunar parameters, the 
tropical motion of the apogee in 365 days is approximately 40;39,38,45°. If the 
difference was due entirely to a divergence between an assumed sidereal year and 
Ptolemy’s tropical year, the precessional rate relative to Ptolemy’s frame of refer-
ence would be about 1° in 57 years; however, we cannot rule out inaccuracy in 
determining the Moon’s period of latitude as a component of the difference. 

Nearly twenty fragments of papyrus tables of planetary epochs are known.39 
These tables are structurally similar to the Standard Scheme epoch tables for the 
Moon, but they were computed according to algorithms similar or (in most respects) 
identical to the algorithms of Babylonian planetary tables. In almost all these 
tables, the synodic time in days between successive occurrences of a specific phe-
nomenon (say Mercury’s first morning visibility) is related to the synodic arc in de-
grees traversed by the planet between the two dates according to the simple relation: 
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  Δt = Δλ + c (12) 

where c is a constant derived from the assumed period relation for the planet 

  Π phenomena = Z revolutions in longitude = Y years (13) 

by the equation 

  Πc = Yy – 360°×Z (14) 

We can thus derive the assumed length of the year, y, from c so long as c is 
known to sufficient precision, which for our present purposes means to two sexa-
gesimal fractional places. 

In P. Oxy. astron. 4160a, a table of epochs for Jupiter, we have: 

 c = 365;44,37 
 Π = 391 
 Z = 36 
 Y = 427, hence 
 y ≈ 365;15,34±0;0,1 days (15) 

which is close to the sidereal year from Theon’s formula (equation 2 above). 
However, in P. Oxy. astron. 4158, a table for Mars, we find a significantly longer 
sidereal year: 

 c = 731;14,4 
 Π = 133 
 Z = 18 
 Y = 284, hence 
 y ≈ 365;15,40,19±0;0,0,30 days (16) 

This is interesting, as suggesting that the adaptation of the Babylonian algo-
rithms from the Babylonian to the Egyptian calendar, entailing a shift in the fun-
damental time unit from synodic months to days, was not performed consistently 
for all the planets. Unfortunately these are the only planetary tables currently 
known to have used values of c precise beyond one sexagesimal place. 

The examples we have of non-Ptolemy solar tables on papyrus also use the prin-
ciple of tabulating epoch positions at regular intervals, the gaps between which are 
to be bridged by a second “template” table.40 In this case it was sufficient for the 
epoch table to list dates, precise to a fraction of a day, when the Sun was supposed 
to be at a particular longitude marking the start of a longitudinal revolution, while 
the template table gave the longitude for each whole number of days after the epoch 
moment. Two fragments of solar templates are extant; neither gives the longitudes 
to sufficient precision to allow deduction of the length of the longitudinal period, 
which would be the constant interval between dates in the lost accompanying epoch 
table. P. Oxy. astron. 4162 counts days from an epoch such that the Sun is at 
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Sagittarius 13;30°, which is also the point of least daily motion. Since this epoch 
longitude is exactly 8° greater than the tropical longitude of the solar perigee accord-
ing to the model of Hipparchus and Ptolemy, it is obvious that the set of tables to 
which the template belonged was based on a frame of reference such that the sol-
stitial and equinoctial points are supposed to be at 8° in their zodiacal signs. On 
the other hand, P. Oxy. astron. 4163 counts days from an epoch such that the Sun 
is at Cancer 0°, implying a tropical frame of reference like Ptolemy’s. 

Our only solar epoch table, P. Oxy. astron. 4148, lists epoch dates with frac-
tional days expressed to a precision of three sexagesimal places. The constant 
interval is 365;15,33,46 days, and the sequence is extrapolated from a fundamen-
tal epoch date in the year preceding Augustus’ first regnal year, according to the 
unreformed Egyptian calendar month Epeiph day 1;0,0,0 exactly. This date is 
equivalent to 30 B.C., June 27, and the epoch dates are evidently meant to be 
summer solstices, though the year length is appropriate for a sidereal year. We 
note that it is extremely close to the year length derived from Theon’s formula 
(equation 2 above) and that it expresses, to three sexagesimal places, the year 
length implied by the Babylonian tablet BCM A1845–1982.2.41 Conversely, the 
shift per 365-day Egyptian year between Ptolemy’s tropical frame of reference 
and the frame of reference of this papyrus’ epochs is: 

 365×(360°/365;14,48 – 360°/365;15,33,46) ≈ 0;0,45,4,38° ≈ 1/79.86 (17) 

so that if one wanted to construct a formula like Theon’s to convert longitudes 
from Ptolemy’s frame of reference to the papyrus table’s, the variable term would 
be excellently represented by subtracting the number of years divided by eighty. 

Though the papyrus does not tell us what solar longitude corresponds to the epoch 
dates, it is plausible to assume that the lost accompanying template used the 8° 
norm. Hence at the fundamental epoch date, 30 B.C. June 27, these tables would 
have put the Sun at Cancer 8°. However, we do not know what time of day was 
represented by a fraction of zero; it could have been as early as “sunset” (6 h past 
noon) of the preceding evening, or as late as noon of the day. Using the evening 
epoch (i.e. the convention of the Standard Scheme), we find the Sun’s longitude 
from Ptolemy’s tables as Cancer 0;23°, so that the difference of frames of refer-
ence is approximately 7;37°. Using the noon epoch, the longitude from Ptolemy’s 
tables is Cancer 1;20°, and the difference is approximately 6;40°. Theon’s formula 
gives 6;24° for this date. On balance I think the evening epoch is more likely. 

P. Oxy. astron. 4179 is an ephemeris (a calendrically structured table of daily 
longitudes of all the heavenly bodies) for part of A.D. 348. It is the earliest 
ephemeris to contain a column for solar longitudes, which are given to a precision 
of one fractional sexagesimal place. The lunar longitudes of this ephemeris are 
from the Standard Scheme, computed for the “sunset” concluding the day; one can 
assume that the solar longitudes are computed for the same time. The preserved 
solar longitudes are tabulated below together with the corresponding longitudes 
from Ptolemy’s tables: 
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Date Ephemeris Ptolemy Difference  

May 19 Taurus 27;54 Taurus 26;17 1;37  

20 28;51 27;14 1;37  

21 29;49 28;11 1;38  

22 Gemini 0;45 29;8 1;37  

23 1;42 Gemini 0;4 1;38  

24 2;3[9] 1;1 1;38  

25 3;36 1;58 1;38 (18)

26 4;33 2;55 1;38  

27 5;30 3;52 1;38  

28 6;27 4;48 1;39  

29 7;23 5;45 1;38  

30 8;21 6;42 1;39  

31 9;17 7;39 1;38  
 

(Incidentally, the slight upward trend of the differences suggests that the solar 
model might not have been identical to the Hipparchus-Ptolemy solar model.) 
Moreover the ephemeris indicates the times and longitudes of syzygies, and on 
May 29 a full Moon is indicated at 2 1/4 h of day at Sagittarius 6;54°; Ptolemy’s 
tables put the full Moon at about 18 equinoctial hours past the preceding noon and 
at Sagittarius 5;16°, so the offset is again 1;38°.42 This is in very close agreement 
with the offset from Theon’s formula for this date, 1;42°. 

From the combined evidence of the papyri and the astrological texts (especially 
Vettius Valens) we can see that the astrologers of the first four centuries of our era 
knew and used a great variety of tables to compute the longitudes of the heavenly 
bodies and the cardinal points of their horoscopes: tables closely adhering to the 
algorithms of Babylonian astronomy, tables blending Babylonian-style arithmeti-
cal methodology with elements from Hipparchus-style geometrical modelling, and 
Ptolemy-style tables based on tabulated uniform motions and trigonometrical 
analysis of geometrical models. Yet there is a broad consistency in the longitudes, 
whether we look at the long-term pattern exhibited by horoscopes that were com-
puted from unidentified tables, or we look at the parameters built into the extant 
tables. The longitudes tend to be greater than the ostensibly tropical longitudes 
yielded by Ptolemy’s tables; and in the case of the Sun and Moon, for which we 
do not expect large discrepancies arising out of different theoretical models, the 
amount by which the longitudes exceeds Ptolemy’s tends to be within 1 or 2° of 
the quantity prescribed by Theon’s formula, ostensibly to account for the trepida-
tion theory. 

Theon obtains the trepidating frame of reference by adding an oscillating correc-
tion to Ptolemy’s frame of reference. If we take Theon’s chapter at its word, the cor-
rections generated by Theon’s formula behave like a linearly decreasing function 
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over the centuries to which the papyri and Valens belong only because the model 
assumes that these centuries fall between extreme points of the trepidation, and 
because the correction is modelled as a linear zigzag function. The tables extant in 
papyri tell a different story. The planetary epoch tables simply perpetuate the algo-
rithms of Babylonian planetary tables, preserving their sidereal period relations 
and, at least roughly, their sidereal alignment. The solar and lunar epoch tables 
and the lunar mean motion in P. Oxy. astron. 4220 embody essentially the same 
continuous frame of reference directly in the constant increments. It would be 
preposterous to imagine that the compiling of these tables also involved adding 
a periodic trepidation element that happened to be zero throughout the entire 
span of time with which we are concerned. 

On the other hand, there is nothing in the papyri to suggest that their authors or 
users thought of the frame of reference primarily as sidereal. Like Valens, they 
probably computed the ascendant and other cardinal points of their horoscopes on 
the assumption that the vernal equinoctial point was fixed at Aries 8°, which 
would make the frame of notionally ostensibly tropical. A distinction between 
sidereal and tropical longitudes or years seems to be entirely absent. Different val-
ues for the length of the year were assumed, but these were almost always greater 
than 365 1/4 days, and values around 365 1/4 1/107 days appear to have seen 
especially widespread use.43 

Such was the general practice of the astrologers, and it cannot be emphasized 
too strongly that up to the present we have not seen a single complete horoscope 
computed for a date before the late fourth century that, taken as a whole, fits 
Ptolemy’s tropical frame of reference better than the common sidereal frame of 
reference, nor a single table other than Ptolemy’s that assumes a solar longitudinal 
period less than 365 1/4 days. One might be inclined to assert categorically that 
the phenomenon of precession was wholly unknown among the astrologers were it 
not for the recent discovery of the astonishing papyrus P. Fouad 267A, discussed 
provisionally by A. Tihon in the preceding paper in this volume. 

The text in the papyrus was composed during Ptolemy’s lifetime by an astrolo-
ger for astrologers, for it is part of an explanation of the method of computing a 
horoscope, with a worked example for A.D. November 8. The side of the papyrus 
on which Tihon comments preserves part of the instructions and example for the 
calculation of the Sun’s longitude from a set of tables that appears to have been 
associated with a treatise (σύνταξις) by an unknown author. Among the many 
remarkable points about this text, we may single out the following: 

(1) Using the tables, solar mean motions are computed from an epoch date up to 
the given date according to three longitudinal frames of reference, corre-
sponding to longitudinal periods slightly less than, equal to, and slightly 
greater than 365 1/4 days. The shortest period is close to, but slightly longer 
than, Ptolemy’s tropical year, while the longest is close to, but again slightly 
longer than, the sidereal year implied by Theon’s formula.44 The shortest is 
also expressly designated as tropical, though the writer also seems in the 
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opening lines to confuse the tropical year with the one that looks sidereal 
(designated “from a point”). 

(2)  The epoch is set in the extremely distant past, 37500 Egyptian years before 
the year 159/158 B.C., during which the text states that Hipparchus observed 
a summer solstice (on 158 B.C. June 26). Thus these tables were an instance 
of the sort of tables that Ptolemy disparages as claiming to be accurate for in-
tervals many times that of the observational record.45 The period 37500 years 
is a numerologically appealing figure (a product of the smallest prime factors 
2, 3, and 5), apparently chosen such that the differences between the three 
mean motions over the entire period could be made exactly 360° and 120° 
respectively.46 

(3)  There is an explicit mention of a displacement of the solstitial points since the 
Hipparchus solstice, and associated with this, a quantity equal to this dis-
placement that is supposed to be subtracted from the Sun’s tropical longitude 
as found from the tables. 

Thus the tables themselves represented a complex solar theory that appears to 
have recognized some form of precession, though with a sidereal year signifi-
cantly longer than Ptolemy’s accurate value and near the one of Theon’s formula. 
There is also a possible suggestion of a correction analogous to Theon’s formula, 
to be applied to the tropical longitudes because of a presumed shifting of the sol-
stitial points; whether this adjustment was prescribed by the author of the tables or 
by someone else is not clear. There has to be a connection between the role of 
Hipparchus’ solstice observation in 159/158 B.C.—both structurally in the mean 
motion tables and in the account of the shifting of the solstitial points—and 
Theon’s marking out of this very year as the year of maximum displacement of the 
solstitial points. This solstice observation, which is not mentioned by Ptolemy, 
must have been regarded by his contemporaries as in some way pivotal.47 

Ptolemy’s Tables and Theon’s Formula in Practice 

In 1956 Neugebauer published an edition and study of a Greek astronomical papy-
rus, P. Heid. inv. 34, which, as he showed, contains on both sides of the papyrus 
tables of planetary and lunar longitudes at regular intervals (five days for the plan-
ets, daily for the Moon).48 Although indications of the year number do not survive, 
he succeeded in dating the planetary positions to A.D. 348/349, while finding un-
acceptable discrepancies if the lunar positions were supposed to pertain to that 
year. Two years later, in a postscript to a paper on a different papyrus, Neugebauer 
reported his realization that the Heidelberg papyrus preserved parts of a codex 
bifolium such that the planetary positions were originally on a different leaf of the 
codex from the lunar positions; still later, he identified the year of the lunar posi-
tions as A.D. 345/346, so that there must have been several lost leaves bound 
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within the extant bifolium in the original codex.49 In the meantime, however, 
J. J. Burckhardt and van der Waerden had made a more important discovery, that 
the planetary longitudes of the papyrus were computed by Ptolemy’s tables, but 
with the longitudes corrected by addition of an approximately constant supplement 
averaging about 1;40°, in excellent agreement with Theon’s formula which pre-
scribes an supplement of 1;40° for that year.50 

For a long time this papyrus was the only known Greek astronomical almanac 
tabulating planetary positions at fixed intervals of several days, and also the only 
known apparent instance of Theon’s formula applied in practice.51 Now, however, 
we have among the Oxyrhynchus papyri a further nine fragments of planetary al-
manacs using the same tabulation interval of five days, covering years ranging 
from A.D. 217/218 to 306/307, and every one of them was computed using 
Ptolemy’s tables and Theon’s formula.52 The same turns out to be true of another 
group of five almanacs from Oxyrhynchus that use the same “sign-entry” format 
as the much earlier demotic almanacs discussed in section “Longitudes and Years 
in the Earlier Greek Horoscopes” above, but that are distinguished by the provi-
sion of a tabular column giving the hour of day or night when the planet is sup-
posed to cross the boundary between zodiacal signs; the years covered range from 
A.D. 218/219 to 303/304.53 Almanacs may in some cases have been compiled a 
few decades after the dates that they cover, but even so, these texts attest to a con-
sistent practice extending over at least a century. The circumstance that, with the 
exception of the unprovenanced P. Heid. Inv. 34, the almanacs attesting to use of 
Theon’s formula are all from Oxyrhynchus is probably due only to the abundance 
of third and fourth century astronomical papyri from that site. 

I have deliberately described the tables on which the almanacs were based as 
“Ptolemy’s” without further specification. The five-day almanacs given planetary 
longitudes to a precision of minutes of arc, while it is not clear what the underly-
ing precision of the sign-entry almanacs. Ptolemy’s planetary tables in the Alma-
gest and the Handy Tables also have a precision of minutes, and in practice the 
user of the tables has so much discretion in rounding intermediate results that in-
dependent computations for the same date may differ by several minutes. Mean 
noon according to the Almagest is about 32 min later than mean noon according to 
the Handy Tables due to the equation of time between their epochs, but Ptolemy 
took account of this difference only in the tables for the Moon’s mean motions; 
and the almanacs do not preserve lunar longitudes computed from Ptolemy’s 
tables.54 

Direct use of the Almagest tables in their original context, dispersed through 
Ptolemy’s treatise, is the least likely possibility. The Almagest was of course not 
entirely unknown during the first centuries after its publication (about A.D. 150). 
An anonymous early third-century commentator on the Handy Tables drew on 
Almagest Book 4 and quotes a certain Artemidorus’ somewhat confused criticism 
of Ptolemy’s observational basis for the definition of the lunar epicycle’s apogee 
in Book 5, while the slightly later P. Rylands 1.27 cites Ptolemy’s solar observa-
tions of A.D.139/140.55 Yet no fragment of a copy of the Almagest has to date 
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come to light among the papyri, an absence that suggests that the work was sel-
dom found on astrologers’ shelves. By contrast fragments from five papyrus 
manuscripts of the Handy Tables copied during the third, fourth, and fifth centu-
ries are known, with the tables more or less conforming to their counterparts in the 
medieval tradition.56 But we also have fragments from several collections of tables 
from this same period that closely resemble the Handy Tables but with significant 
differences of content or format.57 Some of these tables betray an independent 
derivation from the Almagest, either by employing the Almagest’s Era Nabonassar 
epoch instead of the Handy Tables’ Era Philip epoch (P. Lond. 1278 frs. 1–3 and 
5–6) or by presenting data with systematic numerical divergences or to a greater 
precision than the Handy Tables (P. Lond. 1278 fr. 4, P. Ryl. 3.522–523, P. Oxy. 
astron. 4173). So far as we can tell, these sets of tables operated with Ptolemy’s 
tropical frame of reference, and any of them might as well have been used to com-
pute the planetary longitudes in the almanacs as the “normal” Handy Tables. 

The spread of Ptolemy’s tables during the first two centuries after Ptolemy, as 
evinced by the extant copies on papyrus and the planetary almanacs dependent on 
Ptolemy, seems to have had surprisingly little effect on the methods of generating 
horoscopes. This is unfortunately a period for which we have comparatively poor 
documentation; in fact not a single certifiably genuine horoscope with precise (to 
the degree) longitudes for a date between A.D. 150 and 350 is known to have been 
transmitted through the medieval tradition.58 There are, however, five known pre-
cise horoscopes from this interval on papyrus, and two more inscribed respectively 
on a gem and on a gold ring, and among these seven horoscopes only the one on 
the gold ring, for the date A.D. 327 August 17, appears to be based on Ptolemy’s 
tables, with the longitudes increased by approximately 1;56° according to 
Theon’s formula.59 We may compare the longitudes on the ring, which are given 
to a precision of degrees, with recomputation using the Almagest tables for A.D. 
327 August 17, four seasonal hours before sunrise on the parallel though Rhodes 
and meridian through Alexandria: 

 
 Text Almagest 

(tropical) 
Almagest (with 

Theon’s formula) 
 

Sun Leo 23° Leo 20;50° Leo 22;46°  
Moon Capricorn 27° Capricorn 24;21° Capricorn 26;17°  
Saturn Cancer 27° Cancer 25;22° Cancer 27;18°  
Jupiter Taurus 1° Aries 29;9° Taurus 1;5° (19) 

Mars Scorpio 21° Scorpio 18;55° Scorpio 20;51°  
Venus Cancer 8° Cancer 6;5° Cancer 8;1°  

Mercury Leo 8° Leo 5;59° Leo 7;55°  
Ascendant Cancer 10° Cancer 7;25° Cancer 9;21°  

The agreement is too close to be accidental, especially if we allow for some un-
certainty about the exact time and location of the nativity, which would affect the 
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longitudes of the Moon and the ascendant. Moreover, without more precise infor-
mation, we cannot tell whether the ascendant was computed before the application 
of Theon’s formula or after, with the solstitial points assumed to be at (say) 8° in 
their signs. It is tempting to connect the use of Ptolemy’s tables in this horoscope 
but not in any of the papyrus horoscopes from this time with the fact that this was 
a luxury object made for a rich person. 

The papyrological record is remarkably bleak for the interval from A.D. 350 to 
450: there are no known almanacs in any format, and of the nine known papyrus 
horoscopes none give precise longitudes. Between 450 and 550, we have only four 
papyrus horoscopes, but two of them are precise; and four fragments of 
ephemerides, giving day-by-day longitudes of all the heavenly bodies, survive 
covering parts of A.D. 465, 467, 471, and 489.60 The ephemerides have all been 
shown to be derived from the Handy Tables (definitely not the Almagest, because 
of the equation-of-time difference in the lunar longitudes) with no application of 
Theon’s formula.61 The two precise horoscopes also appear to derive from Ptolemy’s 
tables, though with—mostly modest—discrepancies that may result from sloppy 
computation or interpolation. One of these horoscopes falls almost exactly at the 
point when Theon’s formula vanishes; the other is a quarter century later, and 
shows no sign of a systematic shift of longitudes in either direction relative to 
Ptolemy’s frame of reference. 

If the papyri only hint at the possibility of new conditions for Ptolemy’s tables 
in the fifth century, the “literary” sources leave us in no doubt. In contrast to the 
second century, where the large number of surviving horoscopes is due to a single 
author, Vettius Valens, this period’s horoscopes come from several sources.62 The 
genuineness of the majority of the horoscopes in the late sources is assured by 
their providing an explicit date. Among those that lack this information, a few can 
be eliminated as probably fictitious by the impossibility of finding any historically 
plausible date for which an acceptable number of the heavenly bodies were any-
where near the longitudes assigned to them in the text.63 In striking contrast to the 
earlier periods, every one of the genuine late horoscopes preserved in a Greek 
source, and almost every one surviving in Arabic texts, provides longitudes to at 
least a precision of degrees, and in about a third of them we have minutes as well. 
The following table lists the genuine horoscopes grouped according to source. 
Dates in brackets are deduced from the planetary positions; unbracketed dates are 
explicit in the text. The column headed “computation” indicates whether a horo-
scope’s longitudes are in close enough agreement with Ptolemy’s tables to establish 
dependence. For these comparisons I did not apply Theon’s formula to the recom-
puted positions, and the close agreement of longitudes for the horoscopes giving 
precision to minutes proves that Theon’s formula was not used by the ancient 
astrologers, even for dates in the late fourth and early fifth centuries when the for-
mula still yielded a significant correction. Lack of precision in the time of day or 
corruptions in the lunar longitudes prevent us in most instances from determining 
whether the Handy Tables or the Almagest tables were used. 
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Source and 
horoscope no. 

Date Minutes? Computation 

Hephaestio    

 L380 380 November 26 Yes Ptolemy (Handy Tables) 

Marinus, Vita Procli 
 L41264 [412 February 7] Yes Ptolemy 

“Additimenta” to Vettius Valens 
 L419 419 July 2 Yes Ptolemy 
 L431 431 January 9 Yes Ptolemy 

Par. gr. 2506 (“Rhetorius Epitome IV”)65 
 L428 428 September 28 Yes Ptolemy 
 L482 [482 March 21] Sun only Ptolemy 

Par. gr. 2506 
 L46366 463 April 25  Ptolemy 

Par. gr. 2425, “Book 5” 
 L44067 [440 September 29] Yes Ptolemy 

Vind. phil. gr. 108 
 L478 478 August 29  Ptolemy 
 L479 479 July 14  Ptolemy 
 L483 483 July 8  Ptolemy 
 L48468 484 July 18  Ptolemy? 
 L48669 486 March 17  Ptolemy 
 L487 487 September 5 Some Ptolemy 

Angelicus gr. 29 (pseudo-Palchus)70 
 L474 474 October 1  Ptolemy 
 L475 475 July 16  Ptolemy? 

Eutocius 
 L497 497 October 28 Yes Ptolemy (Handy Tables) 

al-Qas. rānī, Jāmi’ al-kitāb71 
 Pingree VI72 [475 January 12]  Ptolemy 
 Pingree VIII73 [483 April 9]  Ptolemy? 

Māshā’allāh, Kitāb al-mawālīd74 
 K–P 3.8 439 October 18  ? 
 K–P 3.11 442 February 7  Ptolemy 
 K–P 3.9 464 November 25  Ptolemy? 

 
Thus we can see a remarkable discontinuity in the astrologers’ practice. Before 

about A.D. 350, although Ptolemy’s tables as well as almanacs computed from 
Ptolemy’s tables had wide circulation, the astrologers appear more often to have 
relied on other tables for computing horoscopes; and when they did depend on 
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Ptolemy, they applied Theon’s formula. After 350, Ptolemy is practically the 
exclusive resource, and Theon’s formula is abandoned. 

It was not quite forgotten, though. The horoscope L497, which in its authen-
tic form in the manuscripts Laur. plut. 2834 and Par. gr. 2425 is ascribed to the 
famous mathematical commentator Eutocius, is exceptionally detailed and 
elaborated even by the standards of its time, and in the prefatory section the author 
writes:75 

The example of a horoscope [θέμα] is as follows. Let there be assumed the 214th year 
from the beginning of Diocletian’s rule, which is the 821st from the death of Alexander of 
Macedon, the 1st of the month Hathyr according to the Alexandrians, at the 7th and 1/12 
seasonal hour for Alexandria in Egypt. So at this time and the stated place, that is Alexan-
dria, I calculated the positions of the stars and the [astrological] centers accurately and I 
set them out without τροπή, since this seems right to the divine Ptolemy. 

There can be no doubt that by τροπή Eutocius means Theon’s trepidation cor-
rection—and thus we have the clarification of the chapter title in the Little Com-
mentary. It must have been a jargon term among the astrologers for what we have 
been speaking of as Theon’s formula. The word is revealing, since there is no rea-
son why a monotonically decreasing correction for precession should be called 
“reversal of direction”; it must refer to the alternations of the trepidation theory. 
Theon seems to have known what he was doing when he associated the formula 
with trepidation, even if the formula, as he states it, does not bring about the 
changes of direction. 

The Rise and Fall of Trepidation in Greek Astronomy 

Theon’s trepidation formula can be reduced to four elements: (1) Ptolemy’s tropi-

calculated from the Handy Tables; (2) the year of approximately 365 1/4 + 1/107 
days that defines the frame of reference for longitudes corrected by the formula; 
(3) the epoch date, 159/158 B.C.; and (4) the 8° maximum that the formula pre-
scribes for that epoch. This last is, as we have already seen, surely related in some 
way to the Babylonian lunar System B norm placing the solstitial and equinoctial 
points at 8° in their zodiacal signs. At least two of the other elements might indi-
cate a connection with Hipparchus. 

Ptolemy insists in Almagest 3.1 that his tropical year was the value endorsed by 
Hipparchus, and he quotes from several of Hipparchus’ writings (all now lost to 
us) to prove his point. The information that Ptolemy retails about Hipparchus’ so-
lar theory is deliberately selective, and we have some reason to believe that 
Hipparchus derived more than one estimate of the tropical year by comparing 
widely spaced observations of summer solstices; but the quotations leave no doubt 

cal year of 365 1/4 – 1/300 days that defines the frame of reference for longitudes 

that 365 1/4 – 1/300 days was the value that Hipparchus adopted in some of his 
latest works, written after 128 B.C.76 
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Though most of the dated observations of Hipparchus preserved in the  
Almagest fall within the interval between 147 and 127 B.C., in the list of equinox 
observations that Ptolemy extracted from Hipparchus’ On the Displacement of the 
Solstitial and Equinoctial Points in Almagest 3.1 there are three distinctly earlier 
autumnal equinoxes, from 162, 159, and 158 B.C., that have usually been attrib-

(according to the Egyptian calendar) of Theon’s formula. And now, from 
P. Fouad 267A, we know that Hipparchus also observed the summer solstice in 
this year. 

Ptolemy does not tell us what sidereal year Hipparchus assumed, but in Alma-
gest 7.2 he quotes a sentence from On the Length of the Year in which Hipparchus 
calculated the westward precessional shift (in a sidereal frame of reference) of the 
solstitial and equinoctial points taking place in 300 years on the assumption that 
the rate was “not less than” 1/100 of a degree per year. Ptolemy cites this as the 
best evidence he has that Hipparchus agreed with his own precessional rate of 1° 
in 100 years, though his case is weakened by the hypothetical character of the 
quoted sentence and the fact that it speaks only of a lower bound. If Hipparchus 

he wrote On the Length of the Year (and retrospectively, in a later summary of his 
own books, he said that he had demonstrated this year length in that work), he ap-
parently believed that the sidereal year was at least about 365 1/4 + 1/147 days. 
However, in an apparently earlier work on lunar periodicities, as we know from 
Almagest 4.2, Hipparchus verified a lunar period relation incorporating the equation: 

 126007 d 1 h = 345 × 360°–7 1/2° of solar mean motion in longitude (20) 

where the frame of reference is sidereal. From this we can derive a fairly precise 
value for the sidereal year, approximately 365;15,35,29 days ± 0;0,3 days (assum-
ing that the time is rounded to the nearest hour and the interval of mean longitude 
to the nearest half degree).78 This is fairly close to the year of approximately 
365;15,33,39 days implied by Theon’s formula (and also close to the sidereal year 
in P. Fouad 267A, which that papyrus speaks of as “conforming to the observa-
tions of Hipparchus”). 

Neugebauer argued that Hipparchus could hardly have avoided comparing this 
sidereal year with his tropical year, thereby deriving a precessional rate of about 
1° in 77 years.79 Pointing out the resemblance of this to the rate in Theon’s for-
mula, as well as the circumstance that the formula’s epoch coincided with 
Hipparchus’ earlier equinox observations, he further suggested that Hipparchus 
invented the theory of trepidation, and that Ptolemy suppressed this aspect of his 
solar theory. But while the loss of all Hipparchus’ writings on solar theory makes 
Neugebauer’s conjecture impossible to disprove, the trepidation model’s behavior 
during the period following 158 B.C. seems if anything to be a contradiction of his 
known deductions on precession (which he made some thirty years later). 

uted to Hipparchus.77 The latest of these equinoxes fell precisely in the epoch year 

was confident that the tropical year was approximately 365 1/4 – 1/300 days when 
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I would suggest rather that the theory and associated formula were devised at a 
later date, as a response to the propagation of tables that yielded longitudes of the 
heavenly bodies according to an ostensible tropical frame of reference based on a 
tropical year like Ptolemy’s; from the point of view of the originators of the 
theory, such tables were pseudo-tropical since they rejected the underlying tropi-
cal year. The primary object was to preserve the prevailing “true” frame of refer-
ence based on a year of about 365 1/4 + 1/107 days, which was assumed to be 
both sidereal and tropical; that is, precession was rejected. P. Fouad 267A hints 
that a correction analogous to Theon’s formula might have been applied to tropi-
cally-based tables before Ptolemy’s, and that 159/158 B.C. was adopted as the 
epoch for the correction formula because this year already had the status of an epoch 
(at least for calculations for recent dates) in the tables to which the correction for-
mula was applied, or more fundamentally, because Hipparchus’ observations from 
that year were accepted as valid. Hipparchus observed summer solstices in at least 
one other year (135 B.C.); we will probably never know just why this one was 
chosen. 

Thus (still from the point of view of the theory’s authors) if one believed that 
Hipparchus had observed the summer solstice at the correct date and time in 
158 B.C., one would equate Cancer 0° in the frame of reference of the pseudo-
tropical tables based on Hipparchus’ solstice with Cancer 8° in the true frame of 
reference, because the true frame of reference by hypothesis placed the solstitial 
point at Cancer 8°. In subsequent years, therefore, one would continue to place the 
solstice at Cancer 8° in the true frame of reference, while its counterpart in the 
pseudo-tropical frame of reference of the tables would gradually decrease in longi-
tude. In other words, it is in the tables’ frame of reference, not the true one, that the 
solstitial and equinoctial points are imagined as shifting. It is doubtful whether any 
empirical considerations led to the stipulation that the direction of the shift should 
reverse whenever the correction reached 0° or 8°; this may just have been a facti-
tious doctrine arising from a belief that the difference in norms between the Babylo-
nian System B and Hipparchus’ tropical system was astronomically significant. 

It must be stressed that, while we tend to think of the frame of reference of 
Theon’s formula as sidereal because its year length is longer than 365 1/4 days, 
the astrologers who employed it did not accept the distinction between tropical 
and sidereal. And since they were incessantly computing the cardinal points of 
horoscopes, which depend on oblique and right ascensions, but hardly ever oper-
ated with fixed stars, the tropical aspect was foremost. They were probably 
scarcely conscious of the fact that the longitudes of the fixed stars, if computed by 
the Handy Tables and corrected by Theon’s formula, were not constant as they 
should have been in a truly sidereal frame of reference, but shifted very slowly be-
cause of the discrepancy between Ptolemy’s sidereal year and theirs. 

Why, then, did they not believe Ptolemy’s panoply of arguments in Almagest 
3.1 that the tropical year is shorter than 365 1/4 days, or those in 7.2–3 demon-
strating the fact and rate of precession? Most users of the trepidation formula of 
course never read the Almagest, but the people who devised the formula in the 
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specific form in which Theon presents it presumably did. Their motive was not 
laziness, since Ptolemy’s tables were comparatively laborious to use, and the con-
version formula just added to the number of arithmetical operations. They may 
have been sceptical of Ptolemy’s empirical arguments, and particularly of his 
claimed observations of dates of equinoxes and solstices (and in this they would 
have had some justification), but probably they would not have had an alternative 
set of astronomical observations to back up their own theory. 

The real objection to Ptolemy’s precession theory was not astronomical in na-
ture but astrological. Change the frame of reference for a horoscope, and you will 
find the Sun, Moon, and planets not only at different degrees, but often in different 
zodiacal signs possessing radically diverse qualities and influences; and when the 
equinoctial and solstitial points shift, this affects also the division of the zodiac by 
the ascendant and the other cardinal points. The interpretation of the horoscope 
will be utterly different. But the old methods resulted in successful astrological 
predictions, did they not? 

Ptolemy’s Tetrabiblos (or Apotelesmatica) does not directly mention preces-
sion, but of course the fact that with precession one could no longer treat position 
relative to fixed stars and position relative to the solstitial and equinoctial points as 
interchangeable concepts was very much on Ptolemy’s mind. Ptolemy holds that 
the tropical frame of reference, with the zodiacal sign boundaries aligned with the 
tropical and equinoctial points, corresponds to physical reality. (From time to time, 
nevertheless, he endows zodiacal signs with attributes—“quadripedal,” “watery,” 
etc.—that are obviously derivatives of the zodiacal constellations that approxi-
mately coincided with the tropically-defined signs in Ptolemy’s time.) The deeply 
reforming character of Ptolemy’s astrology must have been offensive to contem-
poraries who believed that their astrology already was a successful science 
founded on ancient revelations as well as ancient observations, and this would 
only have compounded the difficulties his precession theory had in winning 
adherents. 

An echo of the contra-precession arguments that would have been in the air 
around the second century of our era may be heard in commentary on Plato’s 
Timaeus by the precession-sceptic Proclus:80 

And if [the believers in Ptolemy’s precession theory] adduce the computations of the mo-
tion of the planets and the settings out of nativities [made] on the hypothesis that the fixed 
stars move with this motion in the direction of the trailing parts [i.e. the westward motion 
at a rate of 1° per 100 years] and think that they pronounce things in agreement with the 
phenomena, it has to be said to them that those who do not believe that the fixed stars 
move with this motion, they too, are in exceptional agreement with the phenomena, and 
they have published tables concerning the motions of the planets and labored diligently 
about the subject of horoscope interpretation [γενεθλιαλογίαν] without being in the least 
forced to adduce this [motion] in the setting out of tables or the discovery of nativities. I 
might say that the Chaldeans were such people par excellence, whose observations com-
prised entire cosmic periods and whose foretellings of things happening to individuals and 
the broad community [τῶν τε ἰδίων καὶ τῶν κοινῶν παθημάτων] were irrefutable. Why 
do we appeal then to the testimony of newfangled displays researched from a few observa-
tions and without such great accuracy when those others are testifying to the teachings of 



Ancient Rejection and Adoption of Ptolemy’s Frame   39 

the ancients concerning the motion of the fixed stars? Do we not know this, that it is pos-
sible to arrive at a true conclusion also from false hypotheses, and that one ought not to 
consider the conclusion’s agreement with the phenomena as sufficient evidence of the 
truth of the hypotheses? 

But in Ptolemy’s day and for some time after, horoscopy based on Ptolemy’s 
frame of reference could not yet claim a successful track record to complete with 
the established standing of the old precession-free horoscopy. 

We now have proof that Ptolemy’s were not the first tables to employ a frame 
of reference tied to a tropical year close to 365 1/4 – 1/300 days, but the abun-
dance of papyrus manuscripts of his tables and adaptations of them shows that 
somehow his planetary theories acquired the repute of being superior to anything 
else available, once one had made a systematic correction to the longitudes. (This 
was, in fact, true: excepting the case of Mercury, the error arising from Ptolemy’s 
inaccurate placement of the solstitial and tropical points in his own time was the 
largest component of the error in longitudes computed from his models and ta-
bles.) What is striking is the unanimity of the response, the consistent application 
of the same correction formula by practically every astrologer who used the tables 
over a span of two centuries. At a very early stage, therefore, someone who had 
sufficient authority to persuade more or less the entire astrological community 
must have promulgated Theon’s formula as a required supplement to Ptolemy.  

I would guess that the original vehicle for this injunction was an early manual 
of instructions for the tables. Ptolemy’s crabbed and unillustrated introduction to 
the Handy Tables left a need for something more accessible to the common run of 
astrologers (Theon writes in the preface of his Little Commentary that most were 
barely capable of understanding multiplications and divisions), and many hand-
books of this genre were written, as we know from several papyrus fragments.81 
Theon probably consulted some of them while composing his Little Commentary, 
and his chapter περὶ τροπῆς would have been modelled on analogous sections in 
them, where, however, the formula would have prescribed without any protest that 
Ptolemy knew best. 

The ancient reception of Ptolemy’s astronomical tables went in two stages: ini-
tial, gradual and limited acceptance during the first two centuries following the 
Almagest’s publication, and an apparently abrupt transition to complete accep-
tance, to the exclusion of other sets of tables and without adjustment of the frame 
of reference, during the fourth century. We do not know the reasons for Ptolemy’s 
belated triumph, but perhaps one can attribute it in part to two circumstances. 
First, it was during the fourth century that the Almagest seems to have acquired the 
status of a mathematical classic and schooltext, as we know from the Alexandrian 
commentaries of Pappus and Theon. The elevation of the theoretical foundations 
of Ptolemy’s tables beyond the threshold of criticism must have endowed the 
tables themselves with additional credibility, even among users who did not them-
selves study the Almagest as part of a mathematical curriculum. Secondly, the 
drop in the number of surviving horoscopes from the fourth century, whether 
archeologically recovered or transmitted through the medieval tradition, as 
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compared to the second and third centuries hints at a significant diminishing in astro-
logical activity at this time, perhaps reacting to the empire-wide bans on astrology 
during the reigns of Diocletian and the early Christian emperors.82 A partial sup-
pression of the practice and practitioners of astrology could have had a differential 
effect, favoring the more sophisticated and better educated astrologers who are 
more likely to have followed Ptolemy in all things; when astrology rebounded dur-
ing the fifth century, the old practices had been swept away. 

Notes 

1.  Text: Tihon (1978, 236–237). Whether the τροπὴ of the chapter title designates a solstice, a 
solstitial point, or the phenomenon of trepidation is unclear—as is also whether the noun 
should be singular or plural. 

2.  Ragep (1996). The only other ancient descriptions of trepidation are Proclus, Hypotyposis 
3.54 (Manitius 1909, 66–68), which expresses the general idea without specific parameters, 
and a scholion to the same work (no. 316 in Manitius 1909, 275), where however an 8° os-
cillation is confusedly attributed to Ursa Major and Minor. 

3.  Text: Heiberg (1908, 159–185). 
4.  Throughout the Little Commentary Theon assumes that dates given for astronomical compu-

tations are in the first instance civil Egyptian dates expressed according to the reformed 
(καθ᾿ Ἕλληνας or “Alexandrian”) Egyptian calendar with a year number according to the 
Era Diocletian, which was the customary convention for specifying the Egyptian year of a 
horoscope in the fourth and fifth centuries. Such dates must be converted to the unreformed 
(κατ᾿ Αἰγυπτίους) Egyptian calendar for entry into Ptolemy’s tables, but at that stage the 
Era Diocletian is no longer used. Theon’s algorithm thus operates directly with civil calen-
dar years. 

.
al-Andalusī, al-Zarqāllu, and al-Bit.rūjī that Ragep (p. 276) reports, such that for a fixed star 
the alternating trepidational motion would be superimposed on Ptolemy’s precessional 
motion, was absolutely correct. In the Handy Tables precession is built into the method of 
determining a star’s longitude, since its star catalogue only provides elongations from 
Regulus, not absolute longitudes valid for an epoch date. 

6.  We disregard as practically insignificant the fact that the supposed motion of the solstitial 
point is continuous whereas the algorithm, if applied to integer y, describes a function decreasing 
by discrete steps. The algorithm entails a likewise negligible difference in its rate of change 
between the period before Augustus when the calendar year is a constant 365 days and the 
period after Augustus when the mean calendar year is 365 1/4 days. 

7.  Text: Heiberg (1898–1903). 
8.  Ptolemy offers empirical considerations for identifying the ecliptic as a great circle, but none 

are precise enough to rule out the possibility that the Sun might make small latitudinal devia-
tions (say on the order of magnitude of a degree) from a great circle. He never addresses this 
possibility explicitly in the Almagest. 

9.  For numerical clarity I here treat the formula as if it prescribed a regression of 1° in 80 of 
Ptolemy’s tropical years, not Egyptian calendar years. On this order of time the difference is 
not significant. 

10.  Ptolemy does not give a value for the sidereal year in the Almagest, but assuming his rate for 
precession of 1° in 100 years, one obtains the value 365;15,24,31,…. The planetary period 

5.  Ragep (1996, 269–270) with note 9 misses this point. The interpretation of Theon by Sā’id 
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relations in his Planetary Hypotheses are based on a sidereal year of exactly 
365;15,24,31,32,27,7 days, which results from assuming a precessional rate of 1° in 100 
tropical years (cf. Neugebauer 1975, 902, where the parameter is misprinted). In the earlier 
Canobic Inscription, on the other hand, Ptolemy gives a precessional rate based on 1° in one 
Egyptian calendar year (365 days), from which one would derive a sidereal year of 
365;15,24,33,… days, or about 365 1/4 + 1/147 days (Neugebauer 1975, 914; Jones 2005a, 
88). Ptolemy obviously recognized that precessional rates of 1° in one Egyptian year or one 
tropical year were for all intents and purposes indistinguishable. 

11.  Van der Waerden in Burckhardt (1958, 86 and 92), Neugebauer (1975, 633), Jones (1999a, 
49), Mercier (2007, 264). 

12.  Neugebauer (1942). Revised editions of the texts in Neugebauer & Parker 1960–1968, v. 3. 
13.  Neugebauer (1942, 229–231). The exception was Mercury, for which Neugebauer found 

modern theory tropical longitudes consistently a little higher than the sign boundaries. 
14.  Neugebauer and van Hoesen (1959). 
15.  Neugebauer and van Hoesen (1959, 171–172) with Figs. 37 and 38 on pp. 188–189. 
16.  Neugebauer and van Hoesen (1959, 172). In fact Neugebauer underestimated both the error 

of Ptolemy’s tropical frame of reference for his own time (mid second century) and the accu-
mulated further error over the three subsequent centuries. Hence longitudes from Ptolemy’s 
tables should average about 2 1/4° less than modern theory values for the middle of the fifth 
century, which is consistent with Neugebauer’s results for the late horoscopes. 

17.  Neugebauer and van Hoesen (1959, 179–183). These were “eyeball” estimates, not the result 
of any statistical analysis of the data. Most of the dated solar longitudes in Vettius Valens do 
not come from complete horoscopes but from examples of astrological calculations involv-
ing only the Sun, Moon, and ascendant. 

18. Kollerstrom (2001). 
19. Kollerstrom excludes Mercury’s longitudes because of the comparatively large errors found 

in ancient theories for this planet. 
20. Huber (1958). 
21. For calculations according to Ptolemy’s tables I have relied on the excellent Java Script pro-

grams of R. van Gent (http://www.phys.uu.nl/~vgent/astro/almagestephemeris.htm), which 
are based directly on Ptolemy’s models and on the epoch positions of the Almagest. Calcula-
tions based on the Handy Tables would not be significantly different for our present pur-
poses, except that lunar longitudes from the Almagest represent the Moon’s position about 
half an hour later than longitudes computed for the same date by the Handy Tables because 
of the equation of time separating the epochs of the two sets of tables; see Neugebauer 
(1975, 984–989). 

22. The most complete inventory of Greek horoscopes is Heilen (2006, 501–569). I exclude 
unreliably dated, grossly erroneous, and apparently fictitious horoscopes. The documentary 
horoscopes include Neugebauer and van Hoesen (1959), nos. 46, 81, 95, 137a, 137c, 258, 
260, 284, and 478; Baccani (1992), nos. 215 and 327; P. Oxy. astron. 4237, 4239, 4245, 

23. Kollerstrom assumes that one should always round these longitudes up. 
24. References to Vettius Valens are to Pingree (1986). Note that the division and numbering of 

chapters is often different in Kroll (1908). Divergences from Pingree’s text and Julian date 
equivalences (cf. his index of themata, i.e. datable horoscopes whether complete or not, 

4274, and 4275 in Jones (1999a); and a horoscope gem and ring published in Neugebauer 
(1969) and Neugebauer and van Hoesen (1964, 69–70). The “literary” horoscopes include 
Neugebauer and van Hoesen (1959), nos. L–71, L–42, L40, L74IV, L75, L76, L110III, 
L114V, L115II, L127XI, L380, and all horoscopes later than A.D. 400 except L401, L412, 
L488, and L516. For the solar longitude of Neugebauer and van Hoesen (1959), no. 46 (P. 
Oxy. 307) I read on the basis of photographs Capricorn 15 instead of Capricorn 11 1/2. I also 
adopt the emendation of the solar longitude in L478 proposed by Neugebauer and van Hoesen 
(1959), 144 note 4, which is required by the subsequent astrological data. 
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xviii–xx): thema 66 (8.7.64), I assume year 18 of Trajan is a scribal error for year 14, with 
equivalent date A.D. 110 September 12; thema 25 (8.7.167), equivalent date A.D. 83 March 
15, not May (misprint); thema 113 (8.8.36), I assume year 15 of Antoninus Pius is a scribal 
error for year 10, with equivalent date A.D. 146 November 22. I include thema 22 (8.7.194) 
as transmitted, with date equivalent to A.D. 79 November 28, with misgivings; for this date 
the text’s lunar longitude is off by a full zodiacal sign, but I do not see how to remove the 
discrepancy by a simple emendation to either the date or the longitude. 

25. The graph omits the wildly discrepant thema 22 (see preceding note). 
26. The second “Apollonius” in this passage is a manuscript corruption of “Apollinarius,” as is 

clear from the fact that Valens goes on to paraphrase his same disclaimer about possible er-
rors of a degree or two. Whether the first “Apollonius” should also read “Apollinarius” is open 
to dispute. See Jones (1990, 12–17) for review of this crux and on Apollinarius in general. 

27. I omit diacritical marks distinguishing whole numbers from fractions, since in my experi-
ence the testimony of manuscripts is practically worthless with respect to them. 

28. Text from Maass (1892, 140). I do not know whether the version in Pingree (1986, 455), 
which reports the first year length as τξε θ ιε (“365 9 15”) instead of τξε θι ε (“365 19 5”), 
derives from an independent reading of the manuscript. 

29. The notation is not the common one expressing the fractional part as a series of unit frac-
tions to be added together, but as a divisor and dividend as in a modern fraction. The variant 
in Vat. gr. 381 makes sense as it stands, and indicates that the original text was probably 
written with divisor first (“365 and a 19th part of 5”). It is not clear why Valens did not 
write, using the standard notation, 365 1/4 1/76. 

30. See note 9 above. Neugebauer (1949b) suggests that a year length 365 1/4 1/288 days attrib-
uted by Galen, On Seven-Month Children, to Hipparchus (in the form 1/2 year = 182 days 
15 h plus about 1/24 h) is an error, resulting from repeated halving, for 365 1/4 1/144 days; 
though it seems at least as plausible that a tropical half-year of 182 days 15 h minus about 
1/24 h lies behind Galen’s text. 

31. The tablet, BCM A1845–1982.2, is published in Britton et al. (2007). Obverse lines 15′–16′ 
give a solar mean daily motion of 0;59,8,9,48,40°, from which one obtains a year of 
365;15,33,45,39,… days. 

32. Valens’ ascension tables are of the System A variety in Neugebauer’s nomenclature; see 
Neugebauer (1975, 712–721) (esp. 719). 

33. Neugebauer (1955, 41–85). 
34. Jones (2002a). While the mathematical structure of the System A ascension table was 

widely adapted in Greek astronomy, the System A norm according to which the equinoctial 
and solstitial points are at 10° in their signs is attested only in one Greco-Roman source, 
Manilius 3.681. 

35. Neugebauer (1949a) and van der Waerden (1958a). 
36. Jones (1997a). 
37. Jones (1997a, 18–21). For an analytic treatment of this property of the zigzag function, see 

Mercier (2007). 
38. A lunar mean daily motion of 13;10,34,51° is in fact attested in the Babylonian tablet BCM 

A1845–1982.2, Obverse line 9’. This is the same tablet that implies a year length close to that 
of Theon’s formula (note 30 above), so that in this respect the tablet is internally consistent. 

39. Jones (1998). 
40. Jones (1997b). 
41. See note 30 above. 
42. The data for the conjunction on May 14 are imperfectly legible. 
43. P. Rylands 1.27, the papyrus containing algorithms for generating the epoch dates and posi-

tions of the Standard Lunar Scheme, strangely continues with instructions for extrapolating 
solstice and equinox dates from a set of given dates in A.D. 139/140, assuming a tropical 
year of 365;14,48 days, i.e. precisely Ptolemy’s value. The papyrus claims that the initial 
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dates were observed by Ptolemy, and in fact three of the four are reported in Almagest 3.1 
and 3.4. The papyrus does not associate specific longitudes with the solstices and equinoxes. 

44. At present is not clear what meaning should be assigned to the intermediate year length of 
365 1/4 days, unless it is perhaps a period of solar anomaly. There does not seem to be a 
connection with the curious, precession-free solar model of P. Oxy. astron. 4174a, in which 
the Sun has distinct periods of longitude (365 1/4 days), anomaly (365 1/2 days), and lati-
tude (365 1/8 days); cf. Jones (2000). 

45. Almagest 3.1 (Heiberg 1898–1903, v. 1, 202; cf. Toomer 1984, 137 with note 18). 
46. The tables evidently broke time up into tens of thousands and thousands of Egyptian years, 

as well as the shorter units familiar from the Handy Tables. The increments in mean motion 
appear to be based (notwithstanding some doubtful readings) on daily motions of exactly 
0;59,8,9,36° (359;44,38,24° per Egyptian year, thus 37473 × 360° + 120° in 37500 Egyptian 
years), approximately 0;59,8,15,16,52° (exactly 359;45,12,57,36° per Egyptian year, thus 
37474 × 360° + 120° in 37500 Egyptian years), and approximately 0;59,8,17,10,29° (exactly 
359;45,24,28,48° per Egyptian year, thus 37474 × 360° + 240° in 37500 Egyptian years). 
These imply year lengths slightly different from the values stated explicitly in the papyrus. 
The principle resembles that of a “great year” and in particular the 29160 Egyptian year 
combined planetary period of the Keskintos Inscription, for which see Jones (2006). 

47. In Almagest 3.1 Ptolemy does cite Hipparchus’ book On the displacement of the solstitial 
and equinoctial points for observations of the autumnal equinoxes of 162, 159, and 158 
B.C., and Neugebauer (1975, 633), already suggested a connection between these and the 
trepidation epoch. For what Neugebauer thought this connection was, see section “The Rise 
and Fall of Trepidation in Greek Astronomy” below. 

48. Neugebauer (1956). 
49. Neugebauer (1958, 112), Neugebauer and van Hoesen (1964, 385–386). 
50. Burckhardt (1958). For example the mean difference between the papyrus readings and 

Burckhardt’s recomputations using the Handy Tables for 65 legible positions of Saturn is 
approximately 1;39°, with a standard deviation of approximately 0;3°. 

51. Neugebauer (1956, 14–16) very plausibly suggested that P. Heid. Inv. 34 was representative 
of a class of ancient tables from which the medieval Almanacs descended. 

52. P. Oxy. astron. 4205–4213. In addition a small undatable fragment, P. Oxy. astron. 4205a, 
employs ten-day as well as five-day intervals. Detailed comparison of the texts with recom-
putation in the relevant commentaries in Jones (1999a). 

53. P. Oxy. astron. 4190, 4192, 4194, 4195, and 4196; 4196a has the same format but is undatable. 
Comparisons of text with recomputation in Jones (1999a). 

54. Neugebauer (1975, 984–988). The lunar longitudes in P. Heid. Inv. 34 are not in agreement 
with Ptolemy’s model. There are no lunar positions preserved in any of the other almanacs 
that have planetary longitudes from Ptolemy’s tables. 

55. Jones (1990, 10–12); note 42 above. 
56. Jones (1999a, 38–39). 
57. Jones (1999a, 39–40). 
58. Two undated horoscopes discovered by Pingree in an anonymous commentary on Ptolemy’s 

Tetrabiblos published in Wolf (1559, 112–115 and 98 with 168–171) would, if genuine, best 
fit respectively A.D. 175 December 22 and 213 June 13 (not 241 July 29 as reported in 
Neugebauer and van Hoesen 1964, 66). I strongly suspect, however, that they are contrived 
illustrations. Aside from the 1559 edition, which is not free of textual inconsistencies, only a 
partial summary of the first horoscope has been published in Pingree (1982). 

59. The horoscope ring has been independently dated twice: see Neugebauer and van Hoesen 
(1964, 69), Rea (1980) with Rea (1984). According to Stutzinger (1984, 557–558) (where 
there is a good photograph of it), the ring is from Tartus, Syria. 

60. P. Oxy. astron. 4180; P. Mich. Inv. 1454 (Curtis and Robbins 1935); P. Vind. G. 29370b and 
29370 (Gerstinger and Neugebauer 1962). 
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61. P. Mich. Inv. 1454: Burckhardt (1958, 87–92); P. Vind. G. 29370 and 29370b: Jones (1994); 
P. Oxy. astron. 4180: Jones (1999a, 190). 

62. Some horoscopes appear in more than one extant source. It is impossible to tell how many 
distinct astrologers were responsible for producing them. 

63. On these grounds I regard as fictitious Neugebauer and van Hoesen (1959) nos. L401, L488, 
and L516, all of which are undated horoscopes from “Rhetorius Epitome IV” preserved in 
Par. gr. 2506 (Pingree 1977, 216–219); an undated horoscope from Book 5 of the astrologi-
cal compilation in Par. gr. 2425 attributed to Rhetorius by Pingree (Pingree 1977, 221), 
dated by Pingree to A.D. 601 February 24 (Pingree 1976b, xii, and Burnett and Pingree 
1997, 134–135); and three undated and incomplete horoscopes in the commentary on Paulus 
Alexandrinus attributed to Olympiodorus that Pingree dated to A.D. 492–493 (Pingree in 
Boer 1962, 149). The genuineness of L401, L488, and L516 was already questioned by 
Neugebauer and van Hoesen (1959, 134, 152, and 158), and that of the Olympiodorus exam-
ples by Toomer (1963) and Neugebauer (1975, 1044) note 11. The supposed A.D. 601 horo-
scope, which has serious discrepancies for four out of seven heavenly bodies for the date in 
question, appears to be the chief basis for Pingree’s belief that Rhetorius was active around 
A.D. 620 (Pingree 2001, 6–13). 

64. See Jones (1999b). 
65. Pingree (1977, 216–219). 
66. New edition in Pingree (1976a, 146–148). 
67. New edition in Pingree (1976a, 144–146), where the source is described as “the collection 

mistakenly ascribed to Rhetorius of Egypt,” though Pingree (2001, 12) takes it to be an au-
thentic part of Rhetorius’ composition. 

68. New edition, with Arabic version from al-Qas. rānī, in Pingree (1976a, 139–142). 
69. New edition in Pingree (1976a, 148–149). 
70. This collection also includes L483, L484, L486, and L487 which are in Vind. phil. gr. 108. 
71. This work also contains L484 which is in Vind. phil. gr. 108. 
72. Pingree (1976a, 137–138). 
73. Pingree (1976a, 142–144). 
74. Apparently extant only in a Latin translation, though the horoscopes are also reported by 

Māshā’allāh’s pupil Abū ‘Alī al-Khayyāt.; the degree numbers in the two versions often dis-
agree, suggesting extensive corruption or deliberate alteration. This work also contains L428 
which is in “Rhetorius Epitome IV” in Par. gr. 2506. 

75. Text: Olivieri (1898, 170–171). Neither Olivieri nor Neugebauer and van Hoesen (1959, 
188–189), were aware of the copy in “Book 6” of Par. gr. 2425 (ff. 216v–219v, see Pingree 
1977, 222; and Pingree 2001, 12). 

76. The first work in which Hipparchus deduced a tropical year of approximately 365 1/4 – 1/300 
days was On the Length of the Year (although the parameter may not have been explicitly 
stated in that work); according to Almagest 7.3 this was written after his On the Displace-
ment of the Solstitial and Equinoctial Points, which cited an observation of the vernal equi-
nox in 128 B.C. For Ptolemy’s selectivity see Jones (2005b, 18–27). 

77. For doubts, see Toomer (1984, 133) note 8. 
78. This derivation of a Hipparchian sidereal year was first found independently by Biot and 

Sédillot (Sédillot 1845, 11–14), and subsequently rediscovered by Petersen (1966). 
79. Neugebauer (1975, 297–298). Toomer (1980, 108) note 7 dismisses this hypothetical pre-

cession rate as “of no historical significance for anyone who has examined the evidence for 
the chronology and basis of Hipparchus’ discovery of precession.” 

80. Diehl (1903–1906 v. 3, 125–126). 
81. P. Oxy. astron. 4142 and 4143; I know of one further unpublished example. 
82. For frequency of horoscopes according to date see Neugebauer and van Hoesen (1959, 162) 

Fig. 23 (for the “literary” horoscopes) and Jones (1999a, 6) Fig. 1 (for papyri). 



Ptolemy’s Doctrine of the Terms and Its 
Reception 

Stephan Heilen 

This contribution is devoted to Ptolemy’s astrological treatise which is commonly 
called Tetrabiblos (“treatise in four books”), a Greek surname to be found in 
various branches of the medieval manuscript tradition and used by most editors 
starting with the first edition by J. Camerarius (1535).1 The original Greek title, 
however, seems to have been Apotelesmatiká (biblía), “(books on) effects,” and I 
shall follow the authoritative edition of Hübner (1998) in using this.2 The 
authenticity of this work, which was first questioned by Arabic scholars in the 
Middle Ages and later also by Western humanists, is now generally acknowledged.3 

The modern enlightened distinction between the “science” of astronomy and the 
“superstition” of astrology did not exist in antiquity. The Greek terms ἀστρονομία 
and ἀστρολογία (astronomía and astrología) were both used to denote either one, 
and it was not uncommon that one and the same scholar wrote treatises on either 
one.4 In his introduction to the Apotelesmatika, Ptolemy asserts that there are two 
important and valid methods of making predictions through astronomía.5 The first is 
concerned with the movement of the heavenly bodies (κίνησις, kínēsis), the second 
with the effects of these movements on Earth (ἀποτελέσματα, apotelésmata). The 
first part had been treated in the Syntaxis (Arabic: Almagest), and the Apotelesmatika 
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were intended by Ptolemy as a complement to the Syntaxis in order to give a thor-
ough account of both areas of astronomía. 

 

considerable space: the doctrine of the Terms (ὅρια, hória), in Apotel. 1.21.6 Terms 
are one among several dignities that a planet can enjoy according to Hellenistic as-
trological doctrine. The five canonical dignities are called “Houses,” “Triangles,” 
“Exaltations,” “Terms”, and “Decans.”7 Suffice it to say that whenever a planet’s 
longitude is such as to make the planetary deity enjoy one or more of its dignities, it 
is supposed to have a stronger and more benefic astrological influence on Earth. 
Greco-Roman astrologers never established a universally accepted hierarchy of the 
planetary dignities, but it is fair to say that “Houses,” “Triangles,” and “Exaltations” 
were usually considered to come first, and to be more important than Terms 

S. Heilen ( ) 
Institut für Romanistik/Latinistik, Universität Osnabrück, Germany 
e-mail: stephan.heilen@uni-osnabrueck.de 

There is one special problem in the Apotelesmatika to which Ptolemy devotes 
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Table 1 Ptolemy’s treatment of the planetary dignities (Apotel. 1.18–21)8 

 Lines 

“Houses” (1.18) 45 

“Triangles” (1.19) 62 

“Exaltations” (1.20) 36 

Terms (1.21) 169 

“Decans” (–) 0 

 

Why did Ptolemy pay so much attention to the seemingly marginal doctrine of 
the Terms? And how did his treatment of this topic influence later writers? In my 
account of the ancient reactions I shall aim at completeness. However, no such 
claim can be made for the later reception from the Arabic, Byzantine and Latin 
Middle Ages through the Renaissance to the very present, and I shall but outline 
that vast array of post-antique reception to the best of my knowledge. 

The English word Terms goes back to Latin termini, which in turn is the trans-
lation of Greek ὅρια (hória), meaning “boundaries.”9 The classical version of this 
system was attributed to “the Egyptians,” that is: to Nechepso the King and Peto-
siris his High Priest.10 Under these pseudonyms, which evoke the idea of a far re-
mote age, the core of Hellenistic astrology had in truth been created and dispersed 
by unknown, Greek writing authors in the second or first century BCE. 

 
Table 2 The Egyptian terms11 

 
 

and extension. When Ptolemy embarked upon the arduous task of finding rational, 
physically convincing explanations of astrological doctrine, the Egyptian Terms 

Within the 30° of each zodiacal sign, each of the five planets known to anti-
quity is allotted a delimited area.12 These Terms vary with regard to their sequence 

and “Decans.” Therefore it is interesting to see that Ptolemy devotes more space to 
the treatment of the Terms than to all other dignities taken together (Table 1). 
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posed a serious problem because they follow no apparent rational order, neither 
with regard to their sequence (τάξις, táxis) nor with regard to their extension 
(ποσότης, posótēs).13 As Bouché-Leclercq put it, “l’incompréhensible […] atteint 
sa pleine floraison dans le système des ὅρια.”14 Despite the lack of a consistent ra-
tionale in the Egyptian Terms, it was unthinkable simply to dismiss them as 
Ptolemy did in the case of some other astrological tenets. This easy solution was 
impossible for two reasons: firstly, the Terms were allegedly based on empirical 
evidence, namely on certain exemplary nativities that “the Egyptians” (i.e. 
Pseudo-Nechepso and Petosiris) had recorded in their manual(s),15 and secondly, 
what is more important, because they were linked to the most important task of 
ancient astrology, the prediction of life expectancy.16 It was an adamant tenet that 
the sum of the Terms of each planet in the Egyptian system equals the maximum 
number of years that this planet grants if it is particularly well positioned in a per-
son’s horoscope. Due to the tension between the importance of the Egyptian 
Terms on the one hand and their lack of order on the other hand, this topic is 
among the most interesting chapters of Ptolemy’s attempt at rationalizing astro-
logical doctrine. 

 
Table 3 Years of life granted by the planetary deities17 

 
 Maximum 

(τέλεια ἔτη) 
Mean 

(μέσα ἔτη) 
Minimum 

(ἐλάχιστα ἔτη) 

Saturn 57 43 30 
Jupiter 79 45 12 
Mars 66 40 15 

Venus 82 45 8 
Mercury 76 48 20 

Sun 120 69 19 
Moon 108 66 25 

 
Ptolemy’s main discussion of the Terms (Apotel. 1.21) falls into three parts.18 

First he explains the unsatisfactory characteristics of the widespread Egyptian sys-
tem (Apotel. 1.21.1–11). He explicitly refutes the attempts of certain unnamed 
people who had argued that this system was based on the evenly progressing as-
cension tables of the zodiacal signs in the various klimata,19 a caveat that did not 
keep some modern scholars from dabbling in the same sort of futile explanations.20 
The implicit information that “the Egyptians” did not explain the rationale of their 
system with respect to Ptolemy’s leading criteria (i.e. order and extension) is later 
made explicit in Apotel. 1.21.19.21 

Second, Ptolemy presents an alternative system which he attributes to “the 
Chaldeans” (Apotel. 1.21.12–19). As Neugebauer pointed out, the assignment 
of the degrees in this system “is made in good Babylonian spirit”, strictly linear, 
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with difference 1 from Term to Term, which does not mean, however, that the 
whole pattern really is of Babylonian origin; on the contrary, it seems to be a 
Hellenistic invention.22 This second system is perfectly orderly but over-schematic 
and unknown from other sources; still worse: the totals of each planet’s Terms are 
much different from the Egyptian totals (Apotel. 1.21.17), with an unwelcome em-
phasis on the astrological evil-doers Mars and Saturn. Therefore Ptolemy concludes 
that this is not a useful alternative to the Egyptian system (Apotel. 1.21.18). 

Lastly, he presents a third system (Apotel. 1.21.20–30) which, like the Chaldean 
one, is unknown from other sources. Even if Ptolemy does not explicitly say so, 
this third system is obviously his favorite,23 not only because of its final position in 
his presentation of the competing systems but also because it is credited with 
uniting no less than three advantages: (1) it contains a natural and consistent 
explanation of the order and extension of the Terms, (2) it agrees with the degrees 
reported in the aforesaid exemplary nativities put forth by the “men of old,” and 
(3) it also agrees with the Egyptian totals of each planet’s Terms.24  

The only disadvantage of this third system, one might object, is its lack of autho-
rity compared to the widespread Egyptian system. This leads us to the third sys-
tem’s origin which will be examined shortly. First, however, let us quickly round 
off the picture by looking at other systems of Terms that are known from 
antiquity, though not mentioned by Ptolemy. A fourth one which assigns Terms 
not only to the five true planets but also to the luminaries is described by Vettius 
Valens. It seems to be Valens’ own invention and was analyzed by Bouché-
Leclercq.25 Besides, three more Greek systems have come to light that were still 
unknown to Bouché-Leclercq.26 One of these goes back to the early astrologer 
Critodemus who assigned Terms to the five planets and to the Sun, but not to the 
Moon.27 Critodemus is also credited with having devised an enlarged version of 
the basic Egyptian system that specifies the names and apotelesmatic cha-
racteristics of the Egyptian Terms.28 Entirely different is a system of unknown 
authorship that is preserved in a second century Michigan papyrus. This system is 
based on the epicycles of the planets.29 Outside the Greek astrological tradition we 
have two more ancient systems of Terms, an indigenous Egyptian one on a 
Demotic papyrus from Tebtunis which seems to be a combination, devised for 
mnemonic purposes, of the traditional Egyptian system with that of Critodemus,30 
and an Indian one (of Greek origin?) that Sphujidhvaja included in his work on 
Greek horoscopy (Yavanajātaka, 269/270 A.D.).31 Both the Demotic and the 
Indian system allot Terms only to the five true planets.32 

Now back to the origin of Ptolemy’s preferred system. He says that he recently 
came upon an ancient manuscript, much damaged (ἀντιγράφῳ παλαιῷ καὶ τὰ 
πολλὰ διεφθαρμένῳ) which contained an astrological treatise that was very 
lengthy in expression and excessive in demonstration. The book’s damaged state 
made it hard to read, so that he could barely gain an idea of its general purport. 
Fortunately, certain tabulations of the Terms were better preserved because they 
were placed at the end of the book. This last information points to the form of a 
papyrus roll, for there the last leaves would be protected. The first and last pages 
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of a codex, instead, would be liable to damage, since they would be outermost.33 
One more detail on the material appearance of this manuscript is given later, 
towards the end of Ptolemy’s analysis of its astrological rationale (Apotel. 
1.21.22–27), namely that certain extra degrees allotted to this or that planet’s 
Terms were marked with dots (1.21.26 οἷς καὶ παρέκειντο στιγμαί). 

While earlier readers had generally not questioned the authenticity of that old 
manuscript described in such detail by Ptolemy, modern scholars tend to doubt 
that it ever existed.34 Their critical remarks are mostly brief and unsupported by 
detailed argument. But it makes an important difference whether Ptolemy really 
found such a document or if he only pretended in order to bestow dignity and 
authority on a system that is actually his own invention. A fair assessment of this 
question requires that various aspects be taken into consideration. I shall first 
discuss the topic of book finds in general and then address the specific case of 
Ptolemy’s old manuscript. 

As Speyer (1970) has amply demonstrated, pretended finds of books are a 
widely spread phenomenon in the ancient world, especially in the geographical 
area of Egypt and in the thematic areas of magic, astrology, and religion. The sur-
viving evidence is so vast that Speyer overlooked some instances that deserve ex-
amination, including Ptol. Apotel. 1.21. Generally speaking, the situation is com-
plicated by the fact that there are numerous certain cases of forgeries and 
pretended book finds, but also cases of real book finds, mostly from Egyptian 
tombs and temple libraries.35 In most cases, we are informed about the alleged 
provenance of the book, be this from heaven (“Himmelsbrief”), from a tomb viz. 
from the Earth, or from a temple, library, or archive. In his section devoted to pa-
gan antiquity (as opposed to Christian book finds in late antiquity), Speyer pre-
sents three detailed reports.36 Among these, one is particularly interesting: the 
pretended find, in 181 BCE, of the coffin of Numa containing this early Roman 
king’s books, that is: papyrus rolls with writings of Pythagorean philosophy and 
pontifical law.37 Pliny the Elder describes this case (Plin. nat. 13.84–87) following 
the report of various Roman annalists, especially Cassius Hemina (first half 2nd c. 
BCE). According to Roman chronology, 535 years had elapsed, at the time of the 
find, since the reign of Numa in the late eighth century BCE. Therefore the good 
status of preservation of the rolls called for explanation. For this reason, the for-
gers adduced a detailed account of how the rolls had allegedly been protected. 
Pliny quotes literally from the fourth book of Hemina: “Other people wondered 
how those books could have lasted so long, but Terentius’s explanation [i.e. the 
discoverer’s who allegedly turned up the coffer when digging over his land on the 
Janiculum] was that about in the middle of the coffer there had been a square 
stone tied all round with waxed cords, and that the three books had been placed on 
the top of this stone; and he thought this position was the reason why they had 
not decayed; and that the books had been soaked in citrus-oil, and he thought that 
this was why they were not moth-eaten.”38 In antiquity no one has doubted the au-
thenticity of the find. Only the teacher-student relationship between Pythagoras 
and Numa was rejected on chronological grounds. Today we know that those 
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pretended book finds described by Speyer in the same fashion are diaries of the 
Cretan Dictys and the Apocalypse of Paul.41 Note that through the whole period of 
the Middle Ages and even in early modern times Dictys and his Trojan counter-
part Dares were considered to be historians of a remote age who deserved uncon-
ditioned faith.42 

In the specific field of the exact sciences in antiquity, the case of the 
geometrician Dionysodorus of Melos (he lived sometime between 240 and 25 
BCE) deserves to be mentioned, even if it is not exactly comparable to Ptolemy’s. 
Pliny reports that on the day after Dionysodorus’s burial his female relatives, 
while carrying out the due rites, found in the tomb a letter signed with his name and 
addressed to those on Earth, which stated that he had passed from his tomb to the 
center of the Earthly globe and that it was a distance of 42,000 stades. Probably 
the geometrician himself had devised this literary fraud shortly before his death in 
order to bestow plausibility onto his scientific claims. While the content of this 
message reflects Greek science, the literary form follows Egyptian models. Pliny 
mockingly introduces the anecdote as an exemplum vanitatis Graecae maximum.43 

In the field of magic and alchemy,44 the most famous forgery is from the Arabic 
Middle Ages, the Emerald Tablet (Tabula Smaragdina).45 Containing the 
pretended teaching of Hermes Trismegistus, this text was the foundation of the 
alchemic belief in the possibility of transformation of metal, a revelation of 
highest divine truth and the key to the ultimate secrets of nature. Allegedly the 
Emerald Tablet had been found by Apollonius of Tyana (1st c. A.D.) in a cave 
underneath a statue of Hermes.46 Its actual date of composition is sometime 
between the sixth and the middle of the eighth century A.D. It was only in 1603 
that N. Guibert first attempted to prove that the Tabula Smaragdina is a forgery. 
The alchemists themselves have defended its authenticity until the middle of the 
nineteenth century and, far from being content with that, invented even the alleged 
original text in Phoenician language. 

In the field of astrology, one may think of the pretended find of an Apocalypse 
of Daniel under the reign of Constans II (642–688 A.D.).47 Remotely similar is the 
opening of the fifth book of the astrological poet Pseudo-Manetho (of uncertain 
date) who promises to sing of what he learned “from the books of the temple sanc-
tuaries and the hidden (!) steles, which all-wise Hermes erected and inscribed with 
his own forecasts of the heavenly stars.”48 Festugière 1950, in his chapter on 
“Révélation par la découverte d’un livre ou d’une stèle,” further mentions a lunarium 

books were a forgery by Neo-Pythagorean circles, but we do not know whether 
the story about their discovery is entirely faked or if someone really buried the 
forged books in order to have them discovered in a more realistic and convincing 
fashion.39 This example is all the more striking because it seems to have had a con-
siderable public dimension: Pliny reports that these volumes were burned by the 
praetor Quintus Petilius who thereby executed a Resolution of the Senate that had 
been taken because the content of the newly found books threatened traditional re-
ligion.40 In comparison, Ptolemy had a much easier task, if his is a forgery. Similar 
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that had allegedly been composed in hieroglyphs under the pharao Psammeticus 
and found in the inner sanctuary of the temple of Heliopolis.49 

Seen against that background of numerous pretended book finds in Greco-
Roman culture which spans from the early fourth century BCE50 into the Middle 
Ages, it seems well possible that Ptolemy is only pretending in Apotel. 1.21. But 
we should distinguish more clearly between two kinds of forgeries, on the one 
hand that of which a material product existed that could be examined or even 
burned, like the pretended books of Numa, and on the other hand forgeries without 
a corpus delicti, those that served literary purposes only, like the Tabula 
Smaragdina.51 Speyer adduces ample evidence that the motif of book finds as a 
mere literary device to certify authenticity began already in the Hellenistic period 
(i.e. the last three centuries BCE).52 Ptolemy may well be standing in this latter 
tradition. Although he does not say in which locality he found the old manuscript, 
one may most reasonably think of a library, an archive, or a temple with its own 
library like the Alexandrian Serapeum.53 These cases are typical of the Egyptian 
environment where libraries and their archives garantueed the authenticity and 
value of a text.54 One might object that Ptolemy’s detailed information on the old 
manuscript, like the precarious state of preservation and the dots marking certain 
kinds of degrees (Apotel. 1.21.20–21 and 1.21.26), points to a real book find, but 
this argument is ambiguous: it is the shrewd forger’s method to impress the reader 
with such details invented for the purpose of plausibility, and to emphasize the 
deteriorated state of preservation of their pretended manuscripts while assuring the 
reader that all the essential features were still readable.55 In other words: even if 
we find, for instance, other papyri with dots similar to those described by Pto-
lemy,56 that can be taken as an argument for the existence of his old manuscript as 
well as for his ability as a forger. 

But all this dos not prove that Ptolemy was lying. That may be the reason why 
different scholars hold different views. While Houlding (2007) takes the old 
manuscript’s authenticity for granted and does not even mention the wide-spread 
doubts of other scholars, Festugière is convinced that Ptolemy is only pretending: 
“Le prestige du livre très ancient est si grand que Ptolémée, dans la Tetrabible, ne 
craint pas d’user lui-même de cette fiction.”57 Boll takes a curious intermediate 
view point which leans towards authenticity: he thinks that Ptolemy’s story is 
“certainly credible” yet “unconsciously following those widespread concepts of 
revealed knowledge” (because he finds it noteworthy to adduce those typical 
details of old book finds, whether true or not).58 

We must therefore look for additional arguments pro and contra, related more 
specifically to Ptolemy as an author, to the doctrine in question, and to the typical 
features of astrological manuals. Four points deserve being made: 

1.  There is no supporting evidence that the third system really existed before the 
time of Ptolemy. And no one of the other ancient systems of Terms that are 
known to us is suited to fulfill Ptolemy’s criteria.59 
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2.  Elementary matters like the dignities of the planets typically belong to the 
beginning of astrological manuals, including the relevant tables. Compare, 
besides Ptolemy’s own arrangement in Apotel. 1.21, Paulus Alexandrinus, 
Chapter 3, on the Terms. I know of no parallel case of an astrological 
manual with tables related to elementary matters put separately at the end 
of the manual. If, however, Ptolemy is only pretending, then his description 
provides a perfect explanation why the tabularized summary is preserved 
while the description of the underlying rationale is too damaged to be 
understood thoroughly. 

3.  Ptolemy’s description is that of a papyrus which is at least one, or rather two 
centuries old.60 This takes us back to the period of early Hellenistic astrology 
which is characterized by mystification and revelation,61 a circumstance that 
makes the detailed—even excessive—demonstration62 adduced by Ptolemy’s 
old manuscript look anachronistic. Again, the problem disappears when 
viewing the find as made up: Ptolemy could not of his own question the 
overwhelming authority of “the Egyptians.” In order to stand up against that 
well established tradition and to propose an acceptable alternative to their 
system of Terms, he needed an authority dignified by similarly old age.63  

4.  There might be a parallel case for Ptolemy’s creating a non-existant ancient 
authority as a cover for his own invention. As the independent scholar John P. 
Britton points out to me,64 he suspects that Ptolemy’s reference to “the anci-
ents” in Book IV, Chapter 2 of the Almagest may also be made-up. In that 
chapter Ptolemy attributes to “the ancients” efforts to find a constant interval 
between eclipses which would therefore also be a period of return in lunar 
anomaly. Two paragraphs later, however, he says that Hipparchus had 
“already” (πάλιν) solved the problem, making it highly doubtful that anyone 
subsequently pursued the theoretically logical but utterly impractical 
methodology proposed by Ptolemy.65 

In conclusion, a definitive answer is impossible, but there is a considerable pro-
bability that Ptolemy himself invented the third system of Terms. 

It is now time to compare Ptolemy’s Terms to the Egyptian ones (Table 4). One 
finds an overlap of 184 out of 360° (51%). The discrepancy in the remaining 49% 
grows still bigger when taking into account the fact that Ptolemy (Apotel. 1.22) 
wants his table of Terms to be applied to the tropical zodiac, not to the sidereal 
one which was used by all contemporary practitioners. This point tends to be 
overlooked but is an important contribution that Ptolemy made to the history of 
astrology.66 At the time when he wrote the Apotelesmatika, the shift between 
sidereal and tropical zodiac was still some 3.5°. 

 



Ptolemy’s Doctrine of the Terms and Its Reception  53 

 
 
The above table is correct as long as one takes the sequence and extension of 

the Terms as edited by Hübner 1998 for granted. However, here lurks a problem. 
Besides the table given by the direct manuscript tradition we have several indirect 
sources that give slightly different versions of the Ptolemaic table of Terms.67 
Which one is correct? And how did the variants originate? These questions will be 
addressed more fully in the now following, chronologically arranged survey of the 
reception of Ptolemy’s doctrine of the Terms. It falls into two sections: first, Gre-
co-Roman Antiquity, and second the later reception from the Middle Ages to the 
present. Regrettably, there is not yet an article on Ptolemy available in the 
Catalogus Translationum et Commentariorum.68 It is to be hoped for that the follo-
wing survey contain some useful suggestions for those who will investigate the re-
ception of Ptolemy, especially of his Apotelesmatika, on a broader scale. 

Greco-Roman Antiquity 

By Greco-Roman antiquity I mean the time-span down to the Arabic conquest of 
Egypt in 641 A.D. Within this section, I shall first discuss the evidence from 
original documents for the Terms, and then the literary sources. 

Original Documents 

Table 4 Egyptian vs. Ptolemaic terms (discrepancies are greyed) 

My analysis is based on the following list of texts (Table 5). They are all Greek 
horoscopes.69 Exact calendar dates refer to the planetary alignments discussed 
by the authors, not to the unknown dates of composition. In each case, the au-
thoritative modern discussion is referred to in parenthesis (“GH” stands for the 
collection of Greek Horoscopes by Neugebauer and van Hoesen 1959). 
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Table 5 Original Greek horoscopes indicating the terms 

P. Oxy. II 307 Jan. 3, 46 A.D. 

(GH, pp. 19–20, n. 46)  

P. Oxy. XXXI 2555 May 13, 46 A.D. 

(Baccani 1992, pp. 81–95, n. 1)  

P. Oxy. astron. 4236 Nov. 25, 63 A.D. 

(Jones 1999a, v. 1, pp. 250–251; v. 2, pp. 372–373)  

P. Lond. I 130 Mar. 31, 81 A.D. 

(GH, pp. 21–28, n. 81)  

P. Lond. I 98 Apr. 13, 95 A.D. 

(GH, pp. 28–38, n. 95)  

P. Oxy. astron. 4279 c. 100 A.D. 

(Jones 1999a, v. 1, p. 287; v. 2, pp. 428–429)  

P. Oxy. astron. 4280 c. 100 A.D. 

(Jones 1999a, v. 1, p. 287; v. 2, pp. 428–429)  

P. Paris 19 = P. Lond. I 110 Dec. 4, 137 A.D. 

(GH, pp. 39–44, n. 137a,b)  

P. Princeton II 75 138/161 A.D. 

(GH, pp. 44–45, n. 138/161)  

P. Oxy. astron. 4281 Second century A.D. 

(Jones 1999a, v. 1, p. 288; v. 2, pp. 430–431)  

P. Oxy. astron. 4276 c. 200 A.D. 

P. Oxy. astron. 4277 c. 200 A.D. 

P. Oxy. astron. 4245 218 A.D. 

P. Oxy. astron. 4285 Third century A.D. 

(Jones 1999a, v. 1, p. 290; v. 2, pp. 434–435)  

P. Oxy. astron. 4284 Late third century A.D. 

(Jones 1999a, v. 1, p. 289; v. 2, pp. 434–435)  

P. Oxy. astron. 4282 c. 300 A.D. 

(Jones 1999a, v. 1, p. 288; v. 2, pp. 430–431)  

P. Oxy. astron. 4283 c. 300 A.D. 

(Jones 1999a, v. 1, p. 289; v. 2, pp. 432–433)  

PSI I 23,a Dec. 24, 338 A.D. 

(GH, pp. 65–67, n. 338)  

P. Kell. I Gr. 84 May 16, 373 A.D. 

(De Jong and Worp 1995)  
 

(Jones 1999a, v. 1, pp. 282–283; v. 2, pp. 418–419)  

(Jones 1999a, v. 1, pp. 284–286; v. 2, pp. 420–427)  

(Jones 1999a, v. 1, pp. 258–259; v. 2, pp. 382–383)  
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Most of these 19 papyri have been found in the ancient rubbish mounds of 
Oxyrhynchus in Upper Egypt. The horoscope for January 3, 46 A.D., contains our 
earliest datable reference to astrological Terms. All texts on the above list refer to 
the Egyptian Terms, including those that would, chronologically speaking, allow 
for a reception of Ptolemy’s Apotelesmatika. There is only one dubious case, 
P. Oxy. astron. 4281, the fragment of a deluxe horoscope from Oxyrhynchus 
which was dated on palaeographical grounds to the second century A.D. All that is 
left of the text are three lines on Saturn: “Saturn in Aquarius, 15° and 36 min, its 
own house and terms of Venus, at its first station.”70 That is correct only with 
reference to the Ptolemaic system of Terms because in the Egyptian one the 16th 
degree of Aquarius is assigned to Jupiter: 

 

 
There is no doubt about the reading because the numerals iota epsilon for “15” 

are easily visible in the right upper angle of the papyrus (see Fig. 1). 
However, it is possible that the scribe was negligent or incompetent, as is 

clearly the case in a few completely preserved horoscopes. Since this would be the  

Fig. 1 P. Oxy. astron. 4281 (copyright Egypt Exploration Society) 

 
Table 6 Egyptian vs. Ptolemaic Terms in Aquarius 
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only known case in which a documentary text refers to the Ptolemaic Terms, it is 
better not to stress the meager evidence, especially because the early date (2nd c. 
A.D.) makes it unlikely that we are dealing with a reception of Ptolemy.71 

Besides the original horoscopic texts, horoscopic boards deserve our attention. 
These so-called πίνακες (pínakes) were used by astrologers during consultations 
with their clients to illustrate the heavenly alignment at a person’s birth.72 Take, 
for instance, the astrological tablets from Grand (Fig. 2).73 These ivory tablets 
were produced in Egypt and made their way to northern France where they were 
destroyed c. 170 A.D. and thrown into an ancient sanctuary’s well.74 On such 
boards, various semi-precious stones were used as planetary markers in order to 
visualize the positions of the planets and luminaries in the twelve zodiacal signs.75 
On the tablets from Grand, the Terms are clearly indicated with Greek numerals 
on a ring between the zodiacal signs and the Egyptian decans (Fig. 2). In the signs 
Aquarius, Pisces, and Aries, the sequence is (beginning counter-clockwise from 
Aquarius): ζ % ζ ε ε / ιβ δ …, i.e. 7 6 7 5 5 / 12 4 … Although the respective 
planets are not specified, this sequence clearly refers to the Egyptian Terms, as the 
above Table 6 shows. A similar find is the fragment that remains of the Tabula 
Bianchini (Fig. 3), a marble board found on the Aventine Hill in Rome in 1705 
and now in the Louvre; it can be dated to the second or third century A.D.76 In 
each of these cases the ring that indicates the respective extension of the Terms is 
positioned between the inner ring(s)77 of the zodiacal constellations and the outer 
ring of the Egyptian decans. Whenever such boards indicate the Terms, they refer 
to the traditional Egyptian system, not to Ptolemy’s. 

 
 

Fig. 2 Tablets from Grand (detail)78 



Ptolemy’s Doctrine of the Terms and Its Reception  57 

 
 

Fig. 3 Tabula Bianchini (detail)79 

Literary Texts 

In the field of literary texts, our earliest sources on astrological Terms are difficult 
to date: Besides the already mentioned Critodemus (early 1st c. A.D.)80 there is 
Teucer of Babylon who must have written around the same time, certainly before 
Manilius (c. 14 A.D.) who drew on him. However, it is only through a late excerpt 
by Rhetorius (7th c. A.D.) that we know Teucer’s chapter about the twelve 
zodiacal signs in which the complete table of the Egyptian Terms is quoted.81 

Our first reliable testimony of the Terms is the astrological poem of Dorotheus 
of Sidon from around 70 A.D.82 The preserved Greek fragments of this poem 
include a full set of mnemonic verses.83 This complete hexametrical versification 
of the Egyptian table of Terms leaves no doubt about the authenticity of both the se-
quence and the extension of each single Term. We can therefore be sure that the 
irrational order of the Egyptian Terms is not due to scribal errors in the course 
of textual transmission.84 

Antigonus of Nicaea (c. 150 A.D.) is the author of the earliest preserved 
literary horoscopes that mention the Terms. Since Antigonus stands in the 
tradition that harks back to Pseudo-Nechepso and Petosiris, he employs the 
Egyptian system.85 As far as we can tell from the preserved fragments of his 
manual, Antigonus did not know Ptolemy. 

Vettius Valens of Antioch (c. 175 A.D.) is slightly later than Ptolemy, but his 
Anthologiai (ed. Pingree 1986) contain no reference at all to Ptolemy’s Apoteles-
matika. Apparently the two authors did not know each other. Valens reports the 
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Egyptian Terms in full, but those of Libra are corrupt in the only preserved manu-
script (Marc. gr. 314) on which the edition of the relevant chapter (1.3) is based: 
while they should be ♄6 S8 V7 T7 U2 (see above Table 2), Val. 1.3.31–35 gives 
♄6 S5 V8 T7 U4. The total is still 30.86 

The first two authors who possibly mention the Ptolemaic Terms are Antiochus 
of Athens and Sextus Empiricus (both late second century). Note, however, that 
both cases are far from being certain. As to Antiochus, we do not have the original 
text of his astrological manual called Treasures (Θησαυροί, Thēsauroí), but an 
epitome of it made by Rhetorius in the early seventh century. This late epitome 
explicitly mentions the disagreement between Ptolemy and the Egyptians on the 
Terms, but a few chapters of this epitome are evidently taken from sources later 
than Antiochus. Therefore we cannot be sure that the chapter on the Terms is 
genuine. The relevant lines read as follows: “Now Ptolemy did not agree with the 
Egyptians on some Terms. Therefore I had to mention these, too. And his Terms 
agree only in their effects” (i.e. with the Egyptian ones, not in their sequence 
and/or extension).87 As to Sextus, we do have his original text, but Sextus never in 
his whole work mentions the name of Ptolemy. The chapter in question only says 
that there is a considerable disagreement among astrologers on the Terms.88 

The first certain reception of Ptolemy’s Apotelesmatika is Porphyry’s 
introduction to it, written in the late third century. However, Chapter 49 which 
deals with the Terms is a very late appendix to this introduction, made by 
Demophilus in the tenth century, who drew the material from Rhetorius (7th c.).89 
Therefore Porphyry adds nothing, as far as the Ptolemaic Terms are concerned, to 
what has already been said on behalf of Antiochus. There is, however, a curious 
reference to the Egyptian Terms in a fragment of Porphyry’s treatise “On what 
depends on us” (Περὶ τοῦ ἐφ᾿ ἡμῖν), whose authenticity cannot be doubted.90 In 
the myth of Er at the end of Plato’s Republic, the choice of their future lives that 
the souls take is most important with regard to their freedom. Porphyry wonders 
how Plato came to imagine his technical explanation of the correspondence 
between each single soul’s choice and its subsequent individual live on Earth. He 
suggests that Plato was inspired by Egyptian astrology, especially by the Egyptian 
doctrine of the Terms.91 The decisive lines say that the first degrees of each 
zodiacal sign, being allotted to the governor of that sign, were traditionally 
considered to be of large extension while the last degrees in each sign were given 
to the so-called evil-doers among the planets (i.e. Mars and Saturn). These two 
conditions are then reflected in the lives of the souls that pass through the 
respective degrees of the revolving zodiac into the world, the former ones being 
privileged, the latter ones straitened.92 There can be no doubt that Porphyry means 
the traditional Egyptian system of Terms.93 No matter how bizarre this association 
with Plato’s Republic is, it proves that the Egyptian system of Terms, which was 
in all likelihood devised in the second or first century BCE, enjoyed the reputation 
of a much higher age. 

Roughly contemporary with Porphyry is Pancharius who wrote a commentary 
on the Apotelesmatika.94 This text is lost except for some fragments from the 
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section that was devoted to Ptolemy’s famous chapter on the length of life (3.11).95 
It would be interesting to know if and to which effect Pancharius discussed the 
Ptolemaic Terms because the preserved fragments show that his general attitude 
towards Ptolemy was very critical.  

Firmicus Maternus (c. 335 A.D.) and Paulus Alexandrinus (378 A.D.) both 
give the full table of the Egyptian Terms without mentioning the existence of the 
Ptolemaic system.96 Note that there are scholia (explanatory notes) of uncertain 
date to the astrological manual of Paulus Alexandrinus.97 One of these informs the 
reader that Paulus’ Terms are the Egyptian ones, not those from the old book 
found by Ptolemy.98 Another one points to the relevance of the totals of the terms 
to the maximum life expectancy.99 

Hephaestio of Thebes 

It is only in the fifth century that we find the first explicit, securely datable refe-
rences to Ptolemy’s Terms in the work of Hephaestio of Thebes.100 Hephaestio was 
born on Nov. 26, 380 A.D.101 and must therefore have written in the early fifth 
century.102 He draws most of his material from Ptolemy and Dorotheus. Therefore 
it is no wonder that he quotes, for each single zodiacal sign, first the Egyptian 
Terms according to Dorotheus103 and then the alternative arrangement according to 
Ptolemy.104 Hephaestio abstains from any sort of commentary or judgement on the 
two systems. On closer examination, one finds that his report is in partial 
disagreement with the sequence and extension of the Ptolemaic Terms as printed 
in the authoritative edition of Ptolemy’s Apotelesmatika by Hübner 1998.105 Since 
a versified and indisputable account like Dorotheus’ of the Egyptian Terms does 
not exist in Ptolemy’s case, and since no ancient board (πίναξ) with the Ptolemaic 
Terms inscribed on it has ever been found, it is difficult to verify the authenticity 
of the transmitted sequence and extension of his Terms. This difficulty is further 
increased by the circumstance that Ptolemy’s explanatory remarks on which he 
believes to be the principles underlying the “old manuscript’s” system (Apotel. 
1.21.22–27) provide some insight into its rationale but are insufficient to account 
satisfactorily for each single detail. In other words: We cannot verify the data 
transmitted in Apotel. 1.21.28–29 with certainty by applying the principles laid 
out in Apotel. 1.21.22–27. Under these circumstances the testimony of Hephaestio 
is to be taken into serious consideration, especially because we know that in his 
time the textual transmission of Ptolemy, which originated from a common 
ancestor ω,106 had already split up into three branches designated ψ, α, and β 
by Hübner107 and that Hephaestio’s quotations and excerpts from Ptolemy 
represent an independent testimony that lends support now to this, now to that 
branch of the direct transmission, sometimes even being the only source for the 
correct reading, against all direct manuscripts.108 
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Before comparing the Ptolemaic Terms in Ptolemy’s and Hephaestio’s manu-
scripts (see Table 7 below), some further remarks on these manuscripts are 
needed. In a recent article on the Ptolemaic Terms, D. Houlding (2007, p. 266 
n. 10 and p. 277) emphasizes the fact that the extant Greek manuscripts of the 
Apotelesmatika are mostly late, from the fourteenth and fifteenth centuries, and 
that only one manuscript (Vat. gr. 1038, = V), the oldest of all, is from the 
thirteenth century, still more than a millennium after the date of Ptolemy’s 
composition of the text. Therefore, Houlding argues, the indirect testimony of 
earlier sources is particularly valuable. This inference sounds convincing,109 and it 
does so even more when considering the fact (overlooked by Houlding) that the 
13th c. manuscript V omits the table of Ptolemaic Terms in Apotel. 1.21.28–29,110 
thereby leaving the testimony to manuscripts from the fourteenth and fifteenth 
centuries. But Houlding’s premise calls for correction. Her statement that we have 
no direct manuscript tradition of Ptolemy’s Apotelesmatika older than the 
thirteenth century, for which she refers to the English introduction of Robbins 
1940, is true only for the complete manuscripts, not for the incomplete ones. 
Robbins was ignorant of the Florentine manuscript Laur. gr. 28,34 (L) from the 
eleventh century, the most important copy of that lost ninth-century anthology of 
astrological texts commonly known as Syntagma Laurentianum.111 L contains vari-
ous excerpts from the Apotelesmatika, including Chapter 1.21 on the Terms. The 
decisive table of the Ptolemaic Terms is on fol. 149r, preceded by the explanatory 
text of Apotel. 1.21.22–27 on fol. 148v.112 It is on L, which has not been used at all 
by Robbins 1940, that Hübner 1998 based his edition of the Ptolemaic table of 
Terms. Hübner did so because L stems from the highly valuable subarchetype ψ, 
as does V.113 The total agreement of L and V wherever their readings can be 
compared shows that we have here the text of the Apotelesmatika as it was in ψ in 
the early ninth century.114 And there is more: We have an excerpt of nothing but 
Apotel. 1.21.28–29, the Ptolemaic table of Terms, in ms. Vatic. gr. 1291, a deluxe 
manuscript of Ptolemy’s Handy Tables that can securely be dated to 813–820 
A.D.115 Hübner 1998 used this important manuscript (plus L) in his edition of 
Apotel. 1.21.28–29116 but did not assign it a siglum (identification letter) in his list 
of incomplete manuscripts.117 I shall henceforth call it z. The excerpt containing 
the Ptolemaic table of Terms is on fol. 3v, written—according to Boll—in a 
somewhat later uncial script (“etwas spätere Unciale”) then the rest of z.118 This 
seems to indicate a date still in the ninth century. The sequence and extension of 
the Ptolemaic Terms are identical in L and z (and confirmed by the later 
manuscripts from the fourteenth and fifteenth centuries). To conclude this 
excursus, it deserves to be emphasized that within the direct transmission of 
Ptolemy’s Apotelesmatika we have plenty of evidence from the ninth century—
five centuries earlier than the manuscripts used by Robbins 1940!—for the data 
contained in the Ptolemaic table of Terms. 

Now back to the indirect transmission in Hephaestio’s manual. The only two 
existing manuscripts of Heph. 1.1 are Paris. gr. 2841 (A) and 2417 (P), both from 
the thirteenth century. L and z agree with A and P insofar as the total of all Terms 
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is always 360°. But the individual sums of Terms assigned to each of the five 
planets present a small discrepancy insofar as AP, compared to Lz, assign 1° more 
to Mars and 1° less to Venus. This slight deviation from the canonical values in 
Table 3 (above) tends to discredit Hephaestio’s account.119 Interestingly, among 
the four Byzantine epitomes of Hephaestio’s manual, which are neglected by 
many scholars and have not been included in Schmidt’s English translation of 
1994, there is one (n. 4) that contains the relevant first chapter of the first book. In 
this epitome the account of the Ptolemaic Terms120 is basically identical with the 
direct transmission in L and z, as the following table shows. 

 
Table 7 Comparison of the Ptolemaic Terms in Ptolemy’s and Hephaestio’s manuscripts (“a” 
stands for agreement)121 
 

 
122 

If we assume, instead, that epitome n. 4 preserves the original values given by 
Hephaestio, it is difficult to explain how the data in AP which are scattered over 
many pages of text126 have been modified here and there with regard to various 
signs without ending up far from the required total of 360° and the canonical sums 
of each planet’s Terms. Therefore it seems that Hephaestio did actually offer a 
table of the Ptolemaic Terms which was different from the direct transmission in 
L, z, and later manuscripts. It is an issue of current scholarly debate which one of 
the two is to be preferred. In the course of this ongoing review of the reception of 
Apotel. 1.21, we shall return to this question. 

 
The manuscripts of Hephaestio’s fourth epitome (IJKM, 14th c.) are indepen-

(AP, 13th c.), especially when it comes to numerical values.123 Nevertheless they 
may in this particular case be of little or no value because it is well possible that 
the common ancestor of IJKM shared the data given by AP and was then cor-
rected by someone using a manuscript of the direct transmission of Ptolemy.124 
This might explain why the epitome, unlike Hephaestio’s main text, gives also 
the intermediate totals after addition of each new Term, just as the table in 
Ptolemy’s Apotelesmatika does.125 

dent of and often more reliable than those of the main stream of transmission 
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Eutocius of Ascalon 

An important case of the reception of the Ptolemaic Terms in Greco-Roman anti-
quity is a horoscope of considerable length that Eutocius of Ascalon composed in 
the early sixth century as a didactic example in his work Astrologumena.127 Eutocius 
is better known for his commentaries on various works of Archimedes and for his 
edition with commentary of the first four books of the Conics of Apollonius of 
Perge.128 However, he is also credited by al-Nadīm (10th c.), the biographer of 
Islamic writings, with being the author of a commentary on the first book of 
Ptolemy’s Apotelesmatika129—an interesting piece of information, provided that it 
does not refer to a pseudepigraphon. We cannot tell if this commentary is identical 
with the Astrologumena mentioned above. From this latter work, which is now 
lost, the horoscope was excerpted by Rhetorius in the early seventh century and 
thus preserved (Rhet. 6.52). Only a small part of this eight page horoscope has 
been published a century ago in the Catalogus Codicum Astrologorum Graecorum 
(CCAG). The full text will first become available in print in the late David 
Pingree’s edition of Rhetorius.130 Eutocius’ didactic horoscope is for the alignment 
of Oct. 28, 497 A.D.,131 which may be his own birthdate.132 It does not contain 
predictions of the future but an extensive, exemplary discussion of the planetary 
positions, the cardinal points, and the astrological lots (Rhet. 6.52.7–38). Eutocius 
specifies, in the case of each ecliptic longitude that he mentions, first the Terms 
according to Ptolemy and then the Terms according to the Egyptians.133 He thereby 
inverts the sequence that we encountered in the work of Hephaestio of Thebes. 
Both authors express their admiration for Ptolemy by calling him “divine.”134 

Eutocius’ juxtaposition of the Ptolemaic and Egyptian Terms is curious insofar as it 
is, methodologically speaking, slightly inconsistent. Eutocius explicitly states that he 
calculated all longitudes without converting the tropical data into sidereal ones (a 
practice that was widely spread among astrologers in late antiquity), thereby following 
the authority of Ptolemy.135 By doing so, he refers his tropical data to one system of 
Terms that is meant to be employed thus (Ptolemy’s)136 and at the same time to another 
system of Terms (the Egyptian one) that had been devised for sidereal data and 
allegedly grown out of the analysis of nativities computed in sidereal longitudes. 

This practical application will provide us with a unique opportunity to check 
the single data against the competing versions of the Ptolemaic table of Terms.137 
First, however, we need to take two more texts into consideration, the so-called 
Proclus Paraphrase and the Anonymous Commentary. 

The Proclus Paraphrase 

Under the name of the philosopher Proclus (412–485 A.D.) a paraphrase of 
Ptolemy’s Apotelesmatika has come down to us, but its authenticity is very doubt-
ful.138 This paraphrase aims to provide a more easily understandable version of the 
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difficult original text, while keeping the first person of Ptolemy speaking.139 There is 
no modern critical edition of this text. The oldest preserved manuscript (Vatic. gr. 
1453) dates from the tenth century, which means that it does not—as some think—
antedate all manuscripts of the direct transmission, at least not in the chapter on the 
Terms (1.21).140 The text was first printed in 1554 by Philipp Melanchthon in Basel 
and then again in 1635 by the Elzevir typesetters in Leyden together with Leo Al-
latius’ Latin translation of it. Regrettably, on both occasions the old MS Vatic. gr. 
1453 was not used.141 The anonymous preface to the edition of 1635 states that text 
and translation were printed from a manuscript copy that escaped Allatius’ control 
and had neither been authorized nor intended for print.142 Ptol. Apotel. 1.21 corre-
sponds to Procl. paraphr. 1.23–24 pp. 60–72 in the edition of 1635. As to the Ptole-
maic table of Terms, the paraphrase briefly mentions its alleged source, the old 
manuscript. But all information about its physical appearance (Apotel. 1.21.20–21) 
is omitted,143 except for the later reference to certain dots marking a specific sort of 
extra degrees.144 The Ptolemaic table of Terms (Fig. 4) is puzzling because in several 
cases it assigns alternative sequences of planets or extensions of their Terms. 
 

 

Fig. 4 Procl. paraphr. 1.24 pp. 71–72 ed. 1635 (Allatius)145 
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These alternative values are already present in the oldest existing manuscript, 
Vatic. gr. 1453, fol. 50r–v. On closer inspection one finds that they clearly fall into 
two chronologically discernable categories. I shall start with the later one: 
Whenever a cell contains two different planetary symbols, the right one 
corresponds to the data in MSS Laur. gr. 28,34 (L) and Vatic. gr. 1291 (z),146 on 
which the Ptolemaic table of Terms in Hübner’s edition (1998) is based, and 
whenever a cell contains two different numerical values, the upper one 
corresponds to L and z.147 In the oldest manuscript, moreover, one can still observe 
a feature which is absent from the edition of 1635: some of the right / upper values 
are rather tiny and squeezed into the upper or lower right corner of the respective 
cell. See, for example, the data for Scorpio (upper row, middle) or Capricorn 
(lower row, left) in the following illustration (Fig. 5). 
 

 

Fig. 5 Vatic. gr. 1453 (10th c.), fol. 50v (Libra—Pisces) 
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Altogether there can be no doubt that these right/upper values have been added 
in a second step to the already present left/lower values, and that they are the work 
of the same scribe. Although it is theoretically possible that the scribe of Vatic. gr. 
1453 most faithfully reproduced the appearance of an earlier, now lost manuscript 
from which he was copying, the simpler and more convincing explanation is that 
he compared, while copying, his exemplar of the paraphrase to a manuscript of the 
direct transmission of the Apotelesmatika, and that the addenda to the paraphrase’s 
table originated with him, in the tenth century.148 The fact that the earlier data are 
not expunged indicates that the addenda are not meant to be corrections but 
alternative values, added for the sake of completeness.149 

But what about the earlier values, those that are left/below in a cell? One finds 
striking correspondences between these values and the Ptolemaic table of Terms 
as transmitted by Hephaestio Chapter 1.1.150 These lead me to believe that both 
Hephaestio and the author of the paraphrase drew on the same (now lost) branch 
of manuscript tradition. In order to substantiate this hypothesis which—to my 
knowledge—has not occurred to other scholars so far, it is sufficient to compare 
Fig. 4 with Table 7 above. One finds that the paraphrase’s data concerning the 
twelve zodiacal signs fall into three groups: 

1. Five signs without addenda, because Ptol. Apotel. 1.21.27–28 and Heph. 1.1 agree 
with each other. These are Aries, Gemini, Virgo, Sagittarius,151 and Aquarius. 

2. Four signs with addenda where all the added values (left/below) agree with 
Hephaestio’s data. These are Libra, Scorpio, Capricornus, Pisces. 

3. Three signs with addenda where Hephaestio and the paraphrase disagree because 
one of them incurred in a lapse while copying. These are Taurus,152 Cancer,153 and 
Leo.154 

The above hypothesis can further be substantiated through reference to those 
numerous readings in other chapters of the Apotelesmatika on which Hephaestio 
and the Proclus Paraphrase agree against the manuscripts of the direct 
transmission.155 However, it would go beyond the purpose of this article to 
examine those instances systematically.156 Altogether it looks as if the Proclus 
Paraphrase not only goes back to the same branch of manuscript transmission as 
Hephaestio’s manual but that it underwent, probably at the time when Vatic. gr. 
1453 was written (10th c.), the same kind of correction of the Ptolemaic table of 
Terms based on a comparison with manuscripts of the direct transmission which 
occurred in the case of the fourth epitome of Hephaestio’s text.157 

The Anonymous Commentary 

Another large text in the reception of Ptolemy’s Apotelesmatika is the so-called 
Anonymous Commentary which was written in Greek at an uncertain date in either 
late antiquity or, less likely, the Byzantine period.158 It is preserved in numerous 
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manuscripts, often following or preceding Porphyry’s introduction.159 There is no 
modern critical edition. The text was printed in 1559 by Hieronymus Wolf from a 
heavily corrupted manuscript (we do not learn which one) that required numerous 
conjectures and emendations, and it was accompanied by a Latin translation that 
was done by a scholar whose name the editor does not reveal.160 In the title, Wolf 
informs the reader that some believe the author of the Greek original is Proclus. 
However, that attribution looks like guesswork, originating from the temptation to 
ascribe further works to the same author who was already credited with having 
composed the Paraphrase. Probably none of the two works is Proclus’, and it 
seems best to attribute them to two distinct Anomymi because of factual dis-
agreements in both texts, for instance with regard to the Ptolemaic Terms. Since 
the anonymous commentator quotes Porphyry, he must be later than c. 300 A.D.161 
Two horoscopes contained in this commentary have been dated by D. Pingree to 
Dec. 22, 175 A.D., and July 29, 241 A.D.162 This may, with all due caution, be 
taken as an argument for a date of composition before the end of antiquity. The 
section devoted to Apotel. 1.21 is on pp. 39–47 of Wolf’s Renaissance edition. 

This author is the first to assert explicitly that the Egyptian Terms are false, “a 
product of their inventors’ quest for idle glory,” while the Ptolemaic ones are 
true.163 He does not question the existence of Ptolemy’s old manuscript and 
remarks that its author seems to have combined the Egyptian Terms with the 
Chaldean ones, thus bringing the doctrine to perfection.164 This may actually be 
what Ptolemy himself did. The commentator rightly interprets Ptolemy’s remark 
about the dots for extra degrees as referring to the old manuscript.165 Eventually he 
declares that Ptolemy’s general explanation of the rationale underlying the old 
manuscript’s Terms (Apotel. 1.21.22–27) calls for a discussion of each single 
instance, in order to make things clear.166 What follows is a complicated discussion 
on which Bouché-Leclercq remarked: “Ce chapitre du scoliaste (pp. 44–47) est un 
spécimen curieux des tours de force de la logique obligée de justifier un dogme 
préexistant”.167  

At the end the commentator announces, for the sake of still greater clarity,168 a 
concluding table which however is missing in the manuscript tradition as well as 
in Wolf’s edition.169 The commentary’s data are in perfect agreement with Hübner’s 
table of the Ptolemaic Terms except for Gemini where Hübner 1998 (based on L, 

the canonical totals of the planetary Terms of Jupiter and Mars can be justified, 
the commentator does not say; on the contrary: he announces the final (now miss-
ing) table saying that it will show the agreement of his planetary totals with the 
canonical values of the writers of old.170 Maybe the damaged state of the Greek 
manuscript used for Wolf’s edition is to be taken into account.171 Bezza & Fuma-
galli as well as Houlding 2007 made admirable efforts to explain the rationale of 
the Ptolemaic Terms, taking the anonymous commentator’s application of the 
principles laid out by Ptolemy himself (Apotel. 1.21.22–27) a big step further. 

z, and the Proclus Paraphrase, and in agreement with Hephaestio) has S7 V6 T7 
U6 ♄4 while the Anonymous Commentary assigns S7 V7 T7 ♄4 U5. Note that 
this means 1° more for Jupiter, at the expense of Mars. How the implicit violation of 
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Their analyses do shed light on many details, but they also demonstrate that a co-
herent explanation of the whole system remains impossible. We shall return to this 
later. 

Concluding Remarks on Greco-Roman Antiquity 

Besides the texts mentioned so far, there is only one left that deserves to be 
mentioned in passing: The lost Greek original of Chapter 25 of the Liber 
Hermetis, which we know through its medieval Latin and Picard translations, 
specified (among other things) the full set of Egyptian Terms.172 It did not mention 
the Ptolemaic Terms. 

We find, thus, that there are some, though not many references to the Ptolemaic 
Terms in ancient astrological manuals. And the didactic horoscope of Eutocius of 
Ascalon is the only practical application of the Ptolemaic Terms in all that remains 
of ancient literature, including the more than threehundred original and literary 
Greek horoscopes.173 As a mathematician, Eutocius is a representative of the exact 
sciences in antiquity, which may account for his willingness and ability to comply 
with Ptolemy’s teaching. All other practical applications follow the Egyptian 
system, and there are even traces of its reception outside the strictly speaking 
astrological area, as Porphyry’s remarks on Plato have shown.174 The only author 
to embark upon a critical comparison of the Egyptian and the Ptolemaic Terms is 
the Anonymous Commentator, who may already belong to the Byzantine period. 
No ancient author ever questions the existence of Ptolemy’s old manuscript. 

The data of the Ptolemaic table of Terms have not come down to us with the 
same degree of certainty as the Egyptian ones. Besides the main line of this table’s 
transmission, which is represented by the direct manuscripts (esp. L and z), the 
addenda of the Proclus Paraphrase,175 and—except for a peculiarity in Gemini176—
also by the Anonymous Commentary (henceforth: group A),177 there must have 
been, latest by c. 400 A.D., a slightly different version that is represented by 
Hephaestio of Thebes, the original recension of the Proclus Paraphrase, and—as 
we shall see—an Arabic tradition and its Latin followers (henceforth: group B). 

It remains to check Eutocius’ data against these competing versions of the 
Ptolemaic table of Terms. Fortunately, in three out of twelve cases the longitudes 
computed by Eutocius fall into Terms on which groups A and B disagree. In all 
three cases Eutocius agrees with group A, assigning the planetary deities’ names 

as follows178: Mars at 17° 35′ Leo: Venus.179 Group B wants Mercury. Midheaven 
at 19° 22′ Scorpio: Venus.180 Group B wants Jupiter. Lot of Fortune at 16° 0′ Leo: 
Venus.181 This confirms the first case (Mars). Again, group B wants Mercury. 
Since in Eutocius’ didactic horoscope the Terms were computed and transmitted 
accurately in all twelve cases for both the Ptolemaic and Egyptian systems, the 
weight of evidence provided by the three critical cases above is sufficient to 
conclude that Eutocius lines up with group A.182 
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From the Middle Ages to the Present 

In the Middle Ages, Ptolemy’s Apotelesmatika were unknown to the Latin West,183 
but they enjoyed a wide reception in the Arabic world. They were first translated 
from Greek into Arabic in the eighth century by Abū Yah.yā ibn al-Bat.rīq (d. c. 
800 A.D.) and commented on by ‘Umar ibn al-Farrukhān (d. 815 A.D.). A new 
commented translation was provided in the ninth century by Ibrāhīm ibn al- S.alt, 
whose translation was, in two successive steps, improved by H. unayn ibn Ish. āq (c. 
809–873 A.D.) and then shortened by Thābit ibn Qurrah (836–901 A.D.). This last 
version is preserved. Further commentaries were composed by al-Nayrīzī (d. 
922/23), al-Battānī (lat. Albatenius, d. 929/30), and ‘Alī ibn Rid.wān (988–1068).184  

As to the Terms, the astrologers used the Egyptian system, despite the 
generally high reputation of Ptolemy. This is true especially of Abū Ma’shar (Lat. 
Albumasar, 787–886 A.D.), one of the most influential Arabic astrologers. In 
Chapters 5.8–13 of his Great Introduction to Astrology,185 he discusses five 
different systems: 

We found the terms to be of five kinds. The first of them is the terms of the people of 
Egypt, the second, those of Ptolemy, the third, those of the Chaldeans, i.e. the people of 
Babylon, the fourth, those of Astratu,186 and the fifth, those of the Indians.187 

As he asserts in his conclusion, “the most correct of these terms are those of the 
people of Egypt” (5.13.4).188 Abū Ma’shar accepts Ptolemy’s report on the old 
manuscript without discussion (5.8.9).189 He presents a contaminated table of the 
Ptolemaic Terms (5.10) whose data match neither group A nor group B entirely.190 
Note that Abū Ma’shar tends erroneously to distinguish the author of the 
Apotelesmatika (Tetrabiblos) from that of the Syntaxis (Almagest), while 
identifying the latter one with one of the kings of Egypt.191 

From about the same time we have an interesting didactic horoscope cast by a 
certain Aleim, son of the Jew Isaak, for an anonymous person born on September 
30, 858 A.D. Aleim was possibly a disciple of Abū Ma’shar. Aleim’s didactic 
horoscope is 35 printed columns long and based on Ptolemy, who is also the only 
authority explicitly mentioned in the text. However, the references to the Terms 
agree with the Egyptian system, a fact that Aleim does not deem worthy of 
explanation.192  

It is again in the ninth century, in the astrological writings of al-Kindī (801–866 
A.D.), that we can first grasp a hierarchy of the planetary dignities that had not 
existed in antiquity, at least not explicitly. This scale of numerical values is: 
“House” 5, “Exaltation” 4, Term 3, “Triangle” 2, “Decan” 1. It allows to add up 
each planet’s various dignities and to compare them, so as to determine with 
mathematical accuracy which is pre-eminent.193 

A modified version of this scale was devised by al-Qabīsī (Lat. Alcabitius, fl. c. 
950). In his Introduction to Astrology, he preferred the “Triangles” to the Terms 
while admitting that the sequence between these two is interchangeable. Al-Qabīsī 
illustrates his hierarchy by linking it to human society, a metaphor that reminds us 

.

.
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Al-Bīrūnī (973–1048 A.D.) discusses the Terms in Chapter 453 of his Book of 

Instruction in the Elements of the Art of Astrology.196 He first mentions the three 
systems of the Chaldeans, of Astaratus,197 and of the Hindus, adding that “none of 
these are employed by professional astrologers, who are unanimous in using the 
Egyptian terms, because they are more correct.” Nevertheless Ptolemy’s Terms 
deserve some attention, as the following makes clear: “Those who have 
expounded Ptolemy’s works use the terms which he records having found in an 
old book, and which he has inserted in his Tetrabiblos. We have constructed a 
table showing both the Egyptian and the Ptolemaic terms: there is no use 
discussing any others.”198 The left half of the following table contains the Egyptian 
Terms, wich are all correct. The Ptolemaic data (right half) agree throughout with 
those of L, z, and Hübner 1998, especially in those cases where Hephaestio’s 
group disagrees.199 

‘Alī ibn abī-r-Rijāl (Lat. Abenragel, fl. c. 1050 A.D.), in De iudiciis astrorum 
1.5, summarizes the reception of the Terms in words that are reminiscent of Abū 
Ma’shar’s assessment quoted earlier. Abenragel knows of five rivaling systems 
that he assigns to the Egyptians, Ptolemy, the Chaldeans, the Indians, and 
Attaratyh.200 There is a hierarchical order that underlies this list because Abenragel 
explains: “The opinion of the majority of men which is more truthful and more 
based on empirical proof is the opinion of the Egyptians; and only a few use the 
Terms of Ptolemy. And the other systems have no followers at all, and people do 
not care about them because they are plainly wrong.”201 

Some further interesting remarks can be found in the commentary that ‘Ali ibn 
Rid.wān (Lat. Haly, 988–1068 A.D.) wrote on the Apotelesmatika.202 In his 
introduction, he adduces ample evidence for the authenticity of that work. He criti-
cizes his predecessor Abū Ma’shar and certain unnamed historians for believing 
that the true author of the Apotelesmatika was not the scientist Claudius Ptolemy 
but one of the homonymous kings of Egypt, namely Ptolemy II Philadelphus 
(308–246 BCE), second king of the Ptolemaic dynasty.203 With regard to Chapter 
1.21, he thinks that the system of the Terms in Ptolemy’s old manuscript is not 
reconcilable with Ptolemy’s own criteria as put forth in his criticism of the 
Egyptian and Chaldean systems. Therefore Haly asserts that Ptolemy cannot be 
the author of the so-called Ptolemaic Terms and that he is rather to be praised 
for his honesty in reporting the find of the ancient book without any attempt at 
attributing its content to himself.204 He eventually recommends that in astrological 
practice the Terms should first be analyzed according to the Egyptian system, 
next according to Ptolemy’s, and last according to the Chaldeans.205 At the end of 
his commentary, Haly discusses three exemplary nativities (the first one is his 
own) employing exclusively the Egyptian system of Terms.206 

That the Egyptian Terms continued to be the most important system, as they 
had been in the Greek world, is also clear from a work by a contemporary of Haly, 
the philosopher Georg of Antioch (11th c.). The Arabic original of his treatise is 
lost, but a Latin translation—probably by Gerhard of Cremona—survived.207 In 

of the basically anthropomorphic character of the astrological planetary deities.194 
Al-Qabīsī presents the Terms according to the Egyptian system.195 .
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this Liber de astronomiae disciplinae peritia, the full Egyptian table of Terms is 
given.208 No other systems are mentioned. 

As my Latin quotations show, most of the Arabic sources became available in 
Latin translations from the twelfth century onwards, thanks to an increasing 
interest of that period in the natural sciences. The Apotelesmatika themselves were 
translated three times from the Arabic, first in 1138 by Plato of Tivoli (Plato 
Tiburtinus, first printed 1551), next by an Anonymous in 1206 (unpublished), and 
last by Egidio de’ Tebaldi (Aegidius de Thebaldis, 13th c., first printed 1484). It 
was only in the sixteenth century that the Greek original was first printed by 
J. Camerarius (Nürnberg 1535, 2nd revised ed. Basel 1553). Camerarius also 
provided the first direct translation from the Greek in his 1535 edition.209 Other 
Latin translations from the Greek followed soon after.210 

While scholars are generally aware of the fact that the first centuries of the 
Apotelesmatika’s reception in the Latin West rely on Arabic intermediaries, it has 
been pointed out only recently by Houlding that the values for the Ptolemaic 
Terms recorded by Hephaestio “found a relatively faithful line of transmission 
through Arabic sources”.211 On inspection of the evidence, I should prefer a 
slightly modified conclusion: the data of the Ptolemaic table of Terms in 
Hephaestio, in the Proclus Paraphrase (original recension) and in the Arabic 
version from which Plato of Tivoli’s Latin translation originated212 all seem to go 
back to a common source that must antedate Hephaestio. Apparently one or two 
copying errors occurred in each of these three branches of transmission.213 This 
does not, however, obscure the fact that they all drew on the same version which, 
in its turn, is to be sharply distinguished from the transmission in L and z 
(supported by Eutocius).214 Basically identical with L and z are the data of the 
Anonymous Commentary; they disagree only in Gemini.215 
 

Table 8 Synopsis of the transmitted values in Apotel. 1.21.27–28 
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216 The synopsis of the transmitted values in Apotel. 1.21.27-28 (Table 8) shows 
that the data of group B disagree in 15 out of 60 Terms with group A1. While the 
data in B for Leo, Libra, and Scorpio are different from A only with regard to the 
planetary sequence, which could theoretically be due to copying errors in either A 
or B, the data in B for Taurus, Capricorn and Pisces contain numerical 
discrepancies. This can hardly be due to negligence in copying because both 
peculiarities that B offers in Taurus, the subtraction of 2° from Saturn and the 
addition of 2° to Mars, are later made up in Capricorn and Pisces, so as to 
restore the planetary totals. In other words: Someone must have intentionally 
modified the data, probably as a result of Term by Term application of the rules 
laid out by Ptolemy (just as the Anonymous Commentator did). But this insight 
does not answer the question whether A1 represents Ptolemy’s original values and 
B is the result of later modification or viceversa (the only certain thing is that the 
data in A2 are a modification of A1).217 We cannot even exclude with certainty that 
Ptolemy himself revised the table in 1.21.28–29 at some point, but one should 
abstain from resorting all too easily to such hypotheses. We shall return to these 
questions later. Let us first examine the Western readers’ reception of the Latin 
translation (Quadripartitum) in the context of other astrological works that had 
equally been translated from Arabic. 

An early example is Guido Bonatti.218 In his De astronomia (c. 1277 A.D.), 
which was reputed “the most important astrological work produced in Latin in the 
thirteenth century,”219 he discusses the Terms in Chapter 1.14220 with references to 
Abū Ma’shar’s overview of the five systems of Terms, to Haly’s remarks on 

 
Bonatti does not question Ptolemy’s manuscript find and is (rightly) convinced 
that the Alexandrian scholar preferred that system which he presented last.222 
Unlike his Western predecessor Herman of Carinthia (1140 A.D.),223 Bonatti is 
more impressed with systematic consistency than with empirical arguments. 
Therefore he embarks upon a long analysis of the Ptolemaic Terms, of which he 
provides a table, while dismissing all other systems.  

Bonatti’s contemporary Roger Bacon (c. 1214–1294) applies the Ptolemaic 
doctrine of the Terms to the Persian and Arabic doctrine of the Great Conjunc-
tions. Bacon was particularly fascinated with Abū Ma’shar’s teaching that a spe-
cific conjunction of Jupiter and Mercury in Virgo had brought about Christianity, 
and that a similar one of Jupiter and the Moon would bring about the arrival of 
Antichrist. For Abū Ma’shar the iconography of the decans had been important in 
this context, because the first decan of Virgo (1°–10° ) was represented as a 
woman holding a child, which Abū Ma’shar interpreted as Mary with the Infant 
Jesus.224 This ultimately goes back to the ancient Egyptian iconography of the de-
cans which depicted the first decan of Virgo as Isis holding the child Horus. Now 
Bacon in his Opus magnum reports how impressed he was with the discovery that 
both the Egyptians and Ptolemy assign the first 7° of Virgo to Mercury (see above 
Table 4), the planet assigned to Christianity.225 In other words: Bacon finds an 

Ptolemy’s modesty, and to al-Qabīsī’s hierarchy of the planetary dignities.221 .
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important detail of his religious world view confirmed through application of the 
Ptolemaic Terms to historical astrology which did not yet exist at Ptolemy’s 
time.226 

Cardinal Pierre d’Ailly (1350–1420), who undertook a much more systematic 
reconciliation of Christian religion and astrology,227 refers to the Egyptian system 
when mentioning the Terms. See, for instance, his (hitherto unpublished) 
Tractatus de figura inceptionis mundi et coniunctionibus mediis sequentibus (c. 
1414).228 D’Ailly is representative of the fact that most astrologers followed the 
Egyptian Terms. Among the numerous pieces of evidence that could be adduced 
for this, suffice it to select the following manuscript illustration (Fig. 6). We have 
here exactly the same allocation of the Terms as more than a millennium earlier on 
the tablets from Grand and on the Tabula Bianchini. 

 

Fig. 6 The classification of Aquarius, c. 1350 (British Library, Add. 23770, f. 20v).229 Courtesy of 
the British Library 

 
For Giovanni Pico della Mirandola (1463–1494),230 the doctrine of the Terms is 

an easy victim, or at least he himself believes so. Pico’s attack on the Terms in 
Chapter 6.16 of his Disputationes adversus astrologiam divinatricem is logically 
questionable because his key argument is the disagreement on their sequence and 
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extension among astrologers (this does not exclude that one system may be 
right).231 Pico’s argument ultimately goes back to Sextus Empiricus (c. 200 A.D.). 
After his opening words on the discordia among the astrologers, Pico devotes the 
rest of this chapter to scornful examples of the discrepancies between the existing 
five systems.232  

Since much of the Renaissance reception of Ptolemy was based on Arabic com-
mentaries, it is not surprising to find that both the correct insights of those 
commentators and their misinterpretations, as well as their additions to the ancient 
tenets,233 were absorbed by their Western disciples. The Italian humanist Giuliano 
Ristori (1492–1556), for instance, embraced Haly’s hypercritical view of the 
Ptolemaic Terms (see above) and pushed it even further, so as to assert in his 
public lectures on the Apotelesmatika that Ptolemy disapproved of the old 
manuscript’s Terms and that he tacitly approved the Egyptian Terms.234  

At the same time, Agostino Nifo (1473–1546) in his Ad Apotelesmata 
Ptolemaei eruditiones (Naples 1513), proclaimed the opposite, namely that the last 
system of Terms explained by Ptolemy is really Ptolemy’s and that every good 
astrologer who wishes to predict the truth must follow this system. Then Nifo, 
being carried away by his enthusiasm, lets the discussion of the Terms culminate 
in the astonishing statement that “this is the system followed by myself, by 
Porphyry, by the Greek commentator and by all astrologers who care (omnes 
curiosi Mathematici).”235 This last point about the practice of all astrologers is 
clearly contradicted by the historical evidence.  

Girolamo Cardano (1501–1576) devotes no less than ten pages of his 
commentary on Ptolemy’s Apotelesmatika to the Terms.236 He begins noting the 
maxima confusio among astrologers with regard to the Terms and continues on a 
high level of self-confidence: First, he criticizes Haly for not undertstanding, then 
Porphyry for being no good at all, and eventually all Latin contemporaries and 
their Arabic predecessors for having messed up the art of astrology.237 Only 
Ptolemy is praised for his clear reasoning (claram rationem) in refusing the 
Egyptian system.238 Cardano wonders if the Ptolemaic Terms are an invention of 
Thrasyllus (1st c. A.D.), the court-astrologer of Tiberius, but then he rejects the 
idea.239 He correctly states that in antiquity only the Egyptian Terms were widely 
practiced, and he follows Ptolemy (Apotel. 1.22) in stressing the need of measu-
ring the Terms in tropical, not sidereal longitudes.240 However, in his own 
countless horoscopes one does (to my knowledge) not find any practical 
application of any system of Terms, not even in the extremely detailed analysis of 
his own nativity.241 At the theoretical level, he is inconsistent: In his “Book on the 
seven planets” he explicitly follows the Egyptians,242 but a surprising thing awaits 
the reader of his “Book on the judgement of nativities” where Cardano says that 
his own rationale of the Terms is profoundly different from all the others.243 After 
a brief display of the Egyptian table of Terms with some Latin mnemonic verses 
he presents the reader with a new system devised by himself which assigns Terms 
not only to the five planets but also to the luminaries.244 
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Francesco Giuntini’s (1523–1590) Speculum Astrologiae is disappointing with 
regard to the Terms because this 2,500 page work offers nothing but the Greek 
text of Apotel. 1.21 with the Latin translation of John Camerarius.245  

More stimulating is what the philosopher Tommaso Campanella (1568–1639) 
has to say in his Astrologicorum libri VI (Lyon 1629). During his long 
imprisonment for heresy, he let his mind wander widely. His astrological perspective 
extends to America and also to the southern hemisphere where, as he rightly 
observes, the Terms must all be shifted by 180°.246 This is an implicit application 
of Ptolemy’s request in Apotel. 1.22 that the Terms ought to refer to the tropical 
zodiac. However, Campanella admits freely that he is unable to judge the qualities 
of the rivaling systems of Terms. He also doubts that empirical knowledge of the 
Terms (as “the Egyptians” had claimed, being followed by Ptol. Apotel. 1.21.18–20) 
is possible.247 

Claude Saumaise (1588–1653) does not comment on Ptolemy’s old manuscript, 
nor does he give explicit preference to any system of Terms. After briefly noting 
the disagreement between Ptolemy and his forerunners, Saumaise moves right on 
to discuss the Egyptian system of Terms, because, as he says, Ptolemy’s opinion is 
well known.248 

The monk Placido Titi (1601–1668), in his Quæstionum physiomathematicarum 
libri (Milan 1650),249 Chapter 2.12, makes an attempt that implicitly threatens the 
Ptolemaic Terms, namely to provide a rational explanation of the Egyptian Terms. 
His explanation is based on geometrical relations and harmonic proportions. Titi’s 
disciple Gerolamo Vitali (1623–1698) is so impressed with what he calls the 
“majestic energy” of Titi’s explanation that he quotes the long text in full in his 
Lexicon Mathematicum Astronomicum Geometricum (Paris 1668), the most 
comprehensive historical dictionary of astrological terminology ever made.250 

My last author of the seventeenth century is William Lilly (1602–1681) who 
had an enormous influence on later astrologers right to the present day, especially 
in the English speaking world. In his Christian Astrology (London 1647), Lilly 
gives just one table of the various dignities of the planets, and that is based on 
Ptolemy.251 His interesting, yet misleading commentary reads as follows:  

There hath been much difference between the Arabians, Greeks and Indians concerning 
the Essential Dignities of the Planets; I meane how to dispose the severall degrees of the 
Sign fitly to every Planet, after many Ages had passed, and untill the time of Ptolomey, 
the Astrologans were not well resolved hereof; but since Ptolomey his time, the Grecians 
unanimously followed the method he left, and which ever since the other Christians 
of Europe to this day retain as most rationall; but the Moores of Barbary at present and 
those Astrologans of their Nation who lived in Spaine doe so somewhat at this day vary 
from us.252 

The incorrect statement that the Greeks unanimously followed Ptolemy may be 
a reminiscence of Pico della Mirandola253 or Agostino Nifo.254 

After the enlightenment of the eighteenth century had inflicted an almost 
deadly blow to astrology, it slowly recovered in the nineteenth and twentieth cen-
turies. The Terms do no longer play a role in contemporary astrology, not least 
because the discovery of new planets in modern times, beginning with William 
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Herschel’s (1738–1822) discovery of Uranus in 1781, was incompatible with 
those old systems of Terms.255 But a formerly unknown historical interest among 
some astrologers makes it worth tracing our survey down to the very present. The 
ultimate roots of this new historical interest seem to lie in the Romanticism and in 
the work of the Grimm brothers who brought about, in the late nineteenth century, 
the scholarly interest in the history of religion and astrology. Scholars like 
Hermann Usener (1834–1905), Auguste Bouché-Leclercq (1842–1923), Franz 
Boll (1867–1924), and Franz Cumont (1868–1947) laid the foundations of all sub-
sequent research into the history of ancient astrology. The best known product of 
their efforts is the Catalogus Codicum Astrologorum Graecorum (1898–1953), a 
12 volume catalogue of Greek astrological manuscripts that contains, in its large 
appendices, editions of many formerly unknown texts. It seems to be a response to 
these scholars’ groundbreaking work that a number of practicing astrologers 
started in the 1990s to do their own research in ancient astrology. Among the most 
active groups is the American Project Hindsight, founded 1993.256 Somewhere in 
between the world of traditional scholarly research and historically interested 
practitioners is the Italian Associazione Cielo e Terra, founded 1999.257 Both are 
non profit organizations with a wide range of activities such as seminars and con-
ferences. They have both produced a considerable amount of translations of and 
commentaries on hitherto untranslated Greek and Latin originals. 

The Warburg Institute of the University of London has responded to this new 
trend and taken the opportunity of bringing traditional scholars and historically in-
terested practitioners together in a workshop on the history of ancient astrology.258 
It is in this context that Houlding’s contribution on the Ptolemaic Terms (2007) 
has its roots.259 A large part of it is devoted to the discussion of each single Ptole-
maic Terms planetary ruler and extension, in the hope of overcoming the dis-
agreements in the manuscript tradition. A similar attempt has recently been made 
by Bezza & Fumagalli (Associazione Cielo e Terra). These two contributions 
stand in and are the most rigorous products of an exegetic tradition that extends 
back in time over the Renaissance (Agostino Nifo) and the Byzantine and late an-
tique periods (Anonymous Commentator) to Ptolemy’s own brief account of the 
rules that allegedly underly his preferred table of Terms (Apotel. 1.21.22–27). 
Both parties—Houlding as well as Bezza & Fumagalli—discuss each one of the 
60 (12×5) Terms separately, and with painstaking accuracy, basing their analyses 
on previous discussions of the criteria to be applied.260 They come independently, 
and with slightly different focuses of interest, to the same result, namely that no 
consistent explanation of any of the transmitted versions of the Ptolemaic table is 
possible. Particularly useful are the results concerning the reasoning of the 
Anonymous Commentary, whose table is (except for three data in Gemini) identi-
cal with that transmitted in L and z and printed by Hübner 1998: although persua-
sive in being able to explain most of the table, the anonymous commentary is
“fundamentally flawed in offering two alternative approaches, neither of which 
is capable of justifying the arrangement of all of its signs.”261 This ultimately 
shows that Ptolemy (or the author of that old manuscript, if it ever existed) 
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Although the Ptolemaic table cannot be reconstructed with certainty,263 the 

above analysis has shown that only 15 out of 60 Terms may be the object of 
reasonable doubt. These are the Terms where groups A1 and B in Table 8 above 
disagree. Figure 7 is an attempt to visualize the various relationships between 
manuscripts and printed books that have been discussed so far. Note that this 
diagram is concerned exclusively with the Ptolemaic table of Terms (Apotel. 
1.21.28–29), not with the whole Chapter 1.21, and still less with the whole 
Apotelesmatika.264 It remains to be investigated to which extent these insights can 
shed light on the complicated transmission of the Apotelesmatika as a whole. 

 

 
Fig. 7 Ptol. Apotel. 1.21.28–29: groupings and relationships (the area of direct transmission is 

struggled unsuccessfully with the conflicting requirements of applying a rea-
sonable set of rules consistently while respecting the traditional planetary to-
tals of the Terms. The general rules laid out by Ptolemy in Apotel. 1.21.22–27 
give the misleading impression that they are suitable to explain the following 
table (1.21.28–29) with the same perfection as it had been the case with the 
preceding Terms attributed to the Chaldeans (1.21.12–17).262 

greyed, as opposed to paraphrases, commentaries, translations, etc.) 
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In conclusion, it is to be emphasized that the reception of Ptolemy’s doctrine of 
the Terms is entirely theoretical, not practical. As part of this theoretical interest, 
an anonymous reader before Hephaestio, that is: before c. 400 A.D., must have 
checked and revised the data of Ptolemy’s table in Apotel. 1.21.28–29 so as to 
give rise to the 25% discordance between the recensions A and B. Neither A nor B 
can be securely validated as reflecting the original. The only historical horoscope 
based on the Ptolemaic Terms that I know of, that of Eutocius of Ascalon, is not 
a practitioner’s analysis of a real client’s nativity but a didactic example devised 
for a manual; this horoscope follows recension A. Over two millennia, astrologers 
made considerable efforts trying to understand the principles of the Ptolemaic 
system of Terms, but whenever it came to practical applications, the authority of 
the revered Egyptians and the alleged empirical basis of their system were 
stronger than Ptolemy’s old manuscript with its more rational and orderly approach. 
It is the merit of modern scholarship to have unmasked the fake character of the 
former authority265 and to have seriously shaken the credibility of the latter. Inde-
pendently of the fact that all ancient and medieval practitioners seem to have 
preferred the Egyptian system to Ptolemy’s, there is an interesting historical mis-
apprehension among commentators in the Latin West that extends from Pico della 
Mirandola (maybe even earlier) all the way down to William Lilly and his 
followers: these authors wrongly assume that the Greeks unanimously followed 
Ptolemy and his system of Terms.266 This phenomenon ties in with the broader 
misapprehension, widely spread in modern times, that Ptolemy’s Apotelesmatika 
are representative of Greek astrology, which is in many respects not true.267 They 
rather are a hybrid, yet fascinating and highly influential attempt to rationalize 
traditional astrological lore, and their intrinsic tension between science and 
superstition in the modern sense is best perceptible in the Ptolemaic doctrine of 
the Terms. 

Notes 

                                                           
1.  The Latin equivalent of Tetrabiblos is Quadripartitus (sc. liber) or Quadripartitum (sc. 

opus). 
2.  See the discussion of the original title in Hübner (1998, pp. XXXVI–XXXIX). 
3.  For the Arabic period, see below note 191 on Abū Ma’shar. In the Renaissance, Luca 

Gaurico (1475–1558) and Pierre Gassendi (1592–1655) discussed the idea that there might 
have been two Ptolemies, one who wrote the Almagest and one who wrote the Apoteles-
matika (see Tester 1987, p. 232). See also what the editor of Leo Allatius’ translation of the 

4. See Hübner (1989). 
5. Ptol. Apotel. 1.1.1. 
6. Recent commentaries on this chapter: Feraboli (1985, pp. 391–394); Bezza (1990, pp. 338–

350); Houlding (2007). Note that Apotel. 1.21 is counted as two chapters (1.20–21) in 
the obsolete edition of Robbins (1940). 

Proclus Paraphrase says on fol. 2*v (quoted in note 142 below). Boll 1894 argued convin-
cingly that all doubts concerning the authorship of the Apotelesmatika are to be dismissed. 
He has been followed by all subsequent scholars. 
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7. See Bouché-Leclercq (1899, pp. 182–240). Especially on the Terms see ibid. pp. 206–215 
and Gundel and Gundel (1950, coll. 2125–2128). 

8. The line count is based on the edition of Hübner (1998). 
9. Besides termini, there is a second Latin technical term for Greek ὅρια, fines. 
10.  See Riess (1891–1893) (incomplete, and partly obsolete), Pingree (1974, 1978, v. 2, 

pp. 436–437), Fournet (2000). An updated, thorough discussion of this ancient manual, its 
pretended authors, and the preserved fragments will be given in Heilen (forthcoming). 

11. Symbols:  Aries,  Taurus,  Gemini,  Cancer,  Leo,  Virgo,  Libra,  Scor-
pio,  Sagittarius,  Capricorn,  Aquarius,  Pisces; ♄ Saturn, V Jupiter, U Mars, T 
Venus, S Mercury. 

12. Still smaller units recommended (but probably not used) for prognostic purposes were the 
zodiacal dodecatemories (2.5° each, see Manil. 2.693–737) and the planetary dodecatemories 
(0.5° each, see Manil. 2.738–748 and below note 82). The highest degree of differentiation 
was reached in the Myriogenesis (“Ten-thousand-Nativity”), a system mentioned several 
times by Firmicus Maternus that took its name from the assignment of specific effects to 
each single minute of arc (360×60 = 21600). 

13. Ptol. Apotel. 1.21.1: ὁ μὲν οὖν Αἰγυπτιακὸς ὁ τῶν κοινῶς φερομένων ὁρίων οὐ πάνυ τι 
σῴζει τὴν ἀκολουθίαν οὔτε τῆς τάξεως οὔτε τῆς καθ᾿ ἕκαστον ποσότητος. (Engl. transl.: 
Robbins 1940, p. 91). 

14. Bouché-Leclercq (1899, p. 199). 
15. Ptol. Apotel. 1.21.18. 
16. Bouché-Leclercq (1899, p. 404): “Le calcul de la durée de la vie, avec indication du genre de 

mort préfixé par les astres, est le grand œuvre de l’astrologie, l’opération jugée la plus diffi-
cile par ses adeptes, la plus dangereuse et condamnable par ses ennemis.” 

17. Note that in the ancient geocentric model of the cosmos the furthest known planet was Sat-
urn. The luminaries (Sun and Moon) were both counted as planets revolving around the cen-
tral Earth. Since the luminaries are not allotted any Terms in the Egyptian system, the years 
of life given by them are based on a different rationale. For more details, see Bouché-
Leclercq (1899, pp. 407–410). The figures concerning the maximum numbers of years for 
each of the five true planets (they are surrounded by a bold frame in the above table) are ex-
plicitly mentioned by Ptol. Apotel. 1.21.11. Robbins (1940) omitted this paragraph which is 
absent from part of the manuscripts. For its authenticity, however, compare Apotel. 1.21.17 
where the corresponding figures of the Chaldean system are given, and esp. Apotel. 1.21.30 
where it is said that the Ptolemaic totals for each planet’s Terms are again such and such, 
which does not make sense without a previous reference to the same figures. The figures 
mentioned in Apotel. 1.21.11 are also given by Vettius Valens, Firmicus Maternus (partly 
flawed), Paulus Alexandrinus, Olympiodorus, and Rhetorius. 

18. He further mentions the Terms in Apotel. 1.18.1; 1.22.1–2; 2.8.2; 3.3.3; 3.11.13; 4.9.2; 
4.10.18; 4.10.23. None of these passages adds details that might be relevant for the present 
analysis, except for 1.22.1–2 on which more will be said in note 136. 

19. On the seven climates, see Honigmann (1929). 
20. For instance, Tester (1987, p. 76), argues that the Egyptian Terms are based on the rising 

times of the Babylonian system Ba (on which see Neugebauer 1975, v. 2, p. 732). 
21. In this paragraph Ptolemy speaks of σύνταξις (coordination) and ἀριθμός (number), thereby 

slightly modifying his hitherto consistent use of τάξις (order) and ποσότης (quantity). 
22. Neugebauer (1975, v. 2, p. 690). See also ibid. p. 606. 
23. I disagree with Houlding (2007, p. 279), who interprets Ptolemy as taking “a fairly neutral 

stance” in regard to the value of the data in the “old manuscript.” 
24. Apotel. 1.21.20: ἤδη μέντοι περιτετυχήκαμεν ἡμεῖς ἀντιγράφῳ παλαιῷ καὶ τὰ πολλὰ 

διεφθαρμένῳ, περιέχοντι φυσικὸν καὶ σύμφωνον λόγον τῆς τε τάξεως καὶ τῆς ποσότητος 
αὐτῶν, μετὰ τοῦ τάς τε τῶν προειρημένων γενέσεων μοιρογραφίας καὶ τὸν τῶν 
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συναγωγῶν ἀριθμὸν σύμφωνον εὑρίσκεσθαι τῇ τῶν παλαιῶν ἀναγραφῇ. (Engl. transl.: 
Robbins 1940, p. 103). 

25. Val. 3.6; see Bouché-Leclercq (1899, pp. 213–215). 
26. There may even be a fourth, by Erasistratus; see below note 186. 
27. As Pingree (1978, v. 2, pp. 212–213) has shown, this system can be reconstructed from the 

table at the end of Chapter 9 in the eighth book of Valens. Its only known application is in a 
didactic horoscope for Oct. 7, 2 A.D., by Critodemus himself (Val. 8.9.5–22 = Val. 3.[6,5–
22]). A more detailed discussion of these systems will be given in my forthcoming commen-
tary on the fragments of Antigonus of Nicaea, esp. on Antig. Nic. F1 § 26 ἐν ἰδίαις μοίραις 
(= Heph. 2.18.26, ed. Pingree 1973–1974). 

28. See CCAG v. VIII 1 (1929), pp. 257,21–261,2. The new authoritative edition of this text is 
Hübner (1995, v. 1, pp. 193–203). 

29. P. Mich. III 149, coll. VII,27–VIII,15. See the commentary of Robbins (1936, pp. 98–99), 
and also Neugebauer (1972) and Neugebauer (1975, pp. 805–808). 

30. P. CtYBR inv. 1132(B) in the Beinecke Rare Book and Manuscript Library, Yale University. 
See Depuydt (1994) and Bohleke (1996, esp. pp. 34–46). 

31. See Pingree (1978, v. 2, p. 211), with a table of these ὅρια (triṃśāṃśas). 
32. For more details, see my forthcoming commentary (as in note 27). 
33. I closely follow the translation of Ptol. Apotel. 1.21.20–21 in Robbins (1940, p. 103) (and 

note 1 ibidem). 
34. See esp. Bouché-Leclercq (1899, pp. 206–207): “Ptolémée … finit par en proposer un troi-

sième, qu’il n’ose pas donner comme sien, mais qu’il pretend avoir trouvé dans un vieux li-
vre […] Cette page de Ptolémée est un document psychologique de haute valeur; elle nous 
montre l’état d’esprit des croyants et les moyens, bien connus des fabricants d’apocryphes, 
dont il fallait se servir pour capter la foi. Enfin […] Ptolémée, en dépit de toutes ses précau-
tions, ne réussit pas à remplacer le vieux système égyptien par le nouveau, donné comme 
plus vieux que l’autre.” (cf. ibid. p. 208). This judgement has been adopted by many, often 
without explicit reference to Bouché-Leclercq. See Abry 1993b, p. 147, n. 13: “Selon Ptolé-
mée (Tetrab. I,21) il existe […] un autre système égyptien, ancient et infiniment plus satis-
faisant pour l’esprit, qu’il expose sans oser dire que c’est sa creation.” Feraboli (1985, p. 
392), says the same in Italian, with this moralizing addendum: “Tolomeo non ha resistito alla 
tentazione di avvalorare il proprio sistema con l’autorità del passato; ma il tempo ne ha fatto 
giustizia.” 

35. Speyer (1970, pp. 142–144). For a recent, concise survey on scholarly research on pseudepi-
graphy and literary forgery in ancient literatures, see Baum (2001, pp. 1–3). As to Speyer’s 
valuable monograph, note that what he (p. 142) takes as the best known authentic book find 
in the Greco-Roman world, the discovery of Aristotelian writings in a basement of a house in 
Scepsis as reported by Strabo, is an issue of scholarly disagreement. Aristotelian expert D. 
Frede writes that “der Bericht Strabons vom Verfall des Corpus der Lehrschriften in einem 
Keller in Skepsis in Kleinasien weithin als Legende angesehen wird, weil es ganz unwahr-
scheinlich ist, daß es in Athen im Lykeion keine weiteren Exemplare der Lehrschriften 
gegen haben sollte” (Frede 1996, col. 1143); Engl. transl. in Frede (2002, col. 1145): 
“Strabo’s report that the corpus of didactic writings lay mouldering in a cellar in Secpsis 
[read: Scepsis] in Asia Minor is still [read: by many; translator’s confusion of German 
weithin and weiterhin] seen as a legend, because it is improbable that no copies of these 
works existed in the Lyceum in Athens.” 

36. Speyer (1970, pp. 51–65). 
37. Speyer (1970, pp. 51–55). 
38. Plin. nat. 13.86 = Cassius Hemina frg. 37 in Peter (1914, pp. 109–110). The English transla-

tion is that of Rackham (1945, p. 151). 
39. Speyer judges the latter possibility less likely. 
40. Plin. nat. 13.87 (quoting from the third book of the historian Antias). 
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41. Speyer (1970, pp. 55–59 and 60–65). 
42. Speyer (1970, pp. 58–59). 
43. Plin. nat. 2.248; see Speyer (1970, p. 49). 
44. Speyer (1970, pp. 72–76). 
45. Speyer (1970, pp. 74–75). 
46. Burnett (2001, p. 118). 
47. See CCAG v. VIII 3 (1912), pp. 171–179, and Speyer (1970, p. 76, n. 53). 
48. Ps.-Maneth. 5[6],1–3: Ἐξ ἀδύτων ἱερῶν βίβλων, βασιλεῦ Πτολεμαῖε, / καὶ κρυφίμων 

στηλῶν, ἃς ἤρατο πάνσοφος Ἑρμῆς / οὐρανίων τ᾿ ἄστρων ἰδίαις ἐχάραξε προνοίαις, κτλ. 
(ed. Koechly 1858). Ps.-Manetho pretends to be writing to king Ptolemy II. Philadelphos 
(3rd c. BCE). The real date of composition is much later. See further Speyer (1970, p. 115), 
who mentions (besides Ps.-Manetho) the pretended transcriptions of the writings of Agatho-
daemon and their Greek translations. 

49. Festugière (1950, pp. 319–324, here: p. 320). The reference is to CCAG v. VIII 4 (1921), p. 
105, 4–5: τὸ δὲ ἕτερον βιβλίον εὑρέθη ἐν Ἡλιοπόλει τῆς Αἰγύπτου ἐν τῷ ἱερῷ ἐν ἀδύτοις 
γεγραμμένον ἱεροῖς γράμμασιν ἐπὶ βασιλέως Ψαμμητίχου. See also the introduction of F. 
Cumont ibid. pp. 102–103 and also CCAG v. VII (1908), p. 62, fol. 177. 

50. Interestingly, these earliest pretended book finds are already related to Egypt. See Speyer 
(1970, p. 70). 

51. Speyer (1970, p. 65). 
52. Speyer (1970, pp. 77–80), with special emphasis on myth, poetry, entertainment and satire. 
53. On this provenance of pretended book finds see Speyer (1970, pp. 125–141). 
54. See Speyer (1970, p. 134). The very reference to such an archive served in some cases to be-

stow credibility on a pretended book find. One such forger successfully deceived the church 
father Eusebius with regard to the pretended correspondence between Jesus Christ and the 
prince Abgar of Edessa (see Speyer 1970, p. 135). 

55. Besides the early case of the books of Numa (above p. 49), see, for instance, Odo of Glan-
feuil (9th c.) who falsified the history of St. Maurus pretending that at the opening of the 
saint’s tomb (845 A.D.) a small strip of parchment was found whose text was so badly faded 
that it could barely be read; eventually, however, thanks to most astute and patient analysis, 
its full text could be deciphered (see Speyer 1970, pp. 95–96, with quotation from the Latin 
original). See further Otloh’s Vita S. Magni (10th c.?) on the pretended find of the saint’s life 
in his tomb: it was allegedly written on an almost rotten strip of parchment (pitacium pene 
putidum), but the text was still readable (Speyer 1970, pp. 100–101). 

56. Such papyri have actually been found, but they have nothing to do with astrological Terms. 
57. Festugière (1950, p. 320). See also the authors mentioned above in note 34. 
58. Boll (1914, p. 7): “Wie diese Buchoffenbarung um sich griff, lehrt am besten ein so profaner 

und grundgelehrter Mann wie Ptolemaios, der ein Stück seiner astrologischen Lehre einem 
alten sehr zerstörten Buch entnommen zu haben versichert—gewiß ganz glaubhaft, und 
dennoch unbewußt in der Gefolgschaft solcher Offenbarungsvorstellungen.” See further ref-
erences ibid. n. 5. 

59. See above p. 48 (before and after note 24). 
60. Some 200–300 years were considered to be a long lifetime for a papyrus roll (Speyer 1970, 

p. 52, n. 7). The worst enemy of the papyrus was the bookworm.  
61. See Cumont (1937, p. 156). 
62. Apotel. 1.21.21 μετὰ περιττῆς τινος ἀποδείξεως. For περιττῆς (followed by Robbins 1940 

and Hübner 1998) there is a variant reading πολλῆς which has been adopted by Boll and 
Boer (1940). 

63. See below p. 58 (after note 93) on Porphyry’s belief that the Egyptian Terms had been devised 
long before the time of Plato. According to Bouché-Leclercq, Ptolemy presents his old manu-
script as even older than the revered Egyptians, and antedating their writings (see the end of my 
quotation in note 34 above), but this may be an overinterpretation: see above note 60. 
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64. Oral communication at the Conference, confirmed by email on July 12, 2009. 

66. It is emphasized by Holden (1996, p. 44); for details see note 136. 
67. This table (for which see my synopsis on p. 70, Table 8) must be an authentic part of 

Ptolemy’s Chapter 1.21 because it is firmly anchored in the context. See the introductory 
words 1.21.27: ἔστι δὲ καὶ ἡ τούτων τῶν ὁρίων ἔκθεσις τοιαύτη (“the tabulation of these 
terms is as follows,” Robbins 1940, p. 107). 

68. Catalogus Translationum et Commentariorum: Mediaeval and Renaissance Latin Transla-
tions and Commentaries. Annotated Lists and Guides, Washington, DC 1960—(so far 8 
vols.). CTC editor Prof. Virginia Brown (Toronto) informs me (e-mail Nov. 28, 2006) that 
the article on Ptolemy was originally assigned to Prof. David Pingree (Brown Univ., Provi-
dence). When he died on Nov. 11, 2005, Prof. Charles Burnett of the Warburg Institute, 
London, kindly took it over. 

69. No original Latin horoscopes have been preserved from antiquity. As to the very few literary 
examples (esp. Firm. math. 2.29.10–20), they do not mention the Terms. 

70. Κρόνος ἐν Ὑδρηχόωι μοιρῶν ι–ε– καὶ | λεπτῶν λ–%–, οἴκωι ἰδίῳ καὶ ὁρίοις | Ἀφροδείτης, 
στηριγμῷ πρώτῳ (Jones 1999a, v. 2, pp. 430–431). 

71. I am grateful to Dirk Obbink, Oxford, for his palaeographical expertise of the papyrus in 
question. He comes to the same conclusion as the editor (A. Jones). Obbink informs me (per 
litteras, Jan. 6, 2008): “I am convinced that it is of the second century. Whether it is earlier 
or later than 160 [the approximate date of composition of Ptolemy’s Apotelesmatika] is per-
haps more precise than we are able to be without any external dating criteria like archaeo-
logical data or another document on the back […]. But I wouldn’t rule out the possibility that 
it could be later than 160.” 

72. The most famous such πίναξ (pínax) is not an archaeological find but a literary fiction. It is 
described in the late Greek novel of Pseudo-Callisthenes on Alexander the Great where Nec-
tanebo shows Olympias the state of the heavens on a precious horoscopic board, urging her 
to endure her labour a little longer until the moment is suited to give birth to a world ruler. 
See Ps.-Call. Hist. Alex. Magn. 1.4.5 (ed. Kroll 1926, Engl. transl.: Stoneman 1991). 

73. They are amply described and analyzed in Abry (1993a). 
74. Bertaux (1993, p. 44). 
75. See Evans (2004). 
76. Gundel (1992, pp. 110–111) (with fig. 51) and p. 226, catalogue n. 63. Another famous pi-

nax is the Daressy tablet which, however, provides no information on the Terms. See 
Daressy (1916, pl. 2), = Abry (1993b, pl. II,1). See also Gundel (1992, p. 226), catalogue n. 
62, with plate on p. 227. 

77. The Tabula Bianchini has two such rings. 
78. Diptyque A, lunar half, from: Béal (1993, pl. 3). 
79. From: Boll (1903, pl. V). 
80. See above notes 27 and 28. For the date, see Pingree (2001, p. 10). 
81. CCAG v. 7 (1908), pp. 194–213 (= Boll 1903, pp. 16–21). On this text, see Pingree (1977, 

p. 220), and Hübner (1995, v. 1, pp. 92–93 and 104–107). 
82. Still earlier is the reference of Manilius to the fines within each single zodiacal constellation 

(Manil. 2.747–748) which, however, does not mean the Terms but planetary dodecatemories, 
a subdivision of the zodiacal dodecatemories. See Goold (1997, p. liv), and (on the textual 
problems involved) Feraboli (1992, p. 167). 

83. See Dorotheus, Appendix II B, in Pingree (1976b, pp. 429–430). The twelve relevant frag-
ments have been transmitted by Hephaestio Thebanus in various paragraphs of the long first 
chapter of the first book of his Apotelesmatika (ed. Pingree 1973–1974): Heph. 1.1.9; 28; 47; 
66; 86; 105; 124; 144; 164; 183; 202; 222. 

65. There is a considerable published literature on this topic, all of it referenced in the article by 
Toomer (1980). It is to be hoped for that Britton’s paper on Almag. IV.2 be published soon.
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84. The Egyptian Terms were much later versified a second time by John Camaterus (12th c.) in 
political verses in De zodiaco vv. 96–132 (ed. Miller 1877, pp. 57–59). 

85. See Antig. Nic. F1 § 26 and F2 § 54 (= Heph. 2.18.26 and 2.18.54) with my forthcoming 
commentary ad loc. (see above note 27). These two nativities can be dated to the years 76 
A.D. (Emperor Hadrian) and 40 A.D. (anonymous). 

86. The manuscript readings of Pingree (1986) are confirmed by the older edition of Kroll 
(1908). See further the table of Egyptian Terms in Valens, Additamentum 6 (Pingree 1986, 
p. 358) which is again (though in a different way) partially corrupt. 

87. This is my translation of Rhet. 5.12.5–6 in the forthcoming edition of the late David Pingree. 
The Greek text is: ὁ οὖν Πτολεμαῖος ἔν τισιν ὁρίοις 
ἠναγκάσθην καὶ τούτων ὑπόμνησιν ποιήσασθαι. συμβάλλονται δὲ τὰ ὅρια αὐτοῦ ἐν 
τοῖς αὐτῶν ἀποτελέσμασι μόνοις. These lines are preceded by a threefold casuistry explain-
ing how the effects of the planets depend on and are modified by the Terms in which the 
planets happen to be (Rhet. 5.12.3). 

88. Sext. Emp. adv. math. 5.37 (ed. Mau 1961): ὅρια δὲ ἀστέρων προσαγορεύουσιν ἐν ἑκάστῳ 
ζῳδίῳ ἐν οἷς ἕκαστος τῶν ἀστέρων ἀπὸ ποστῆς μοίρας ἐπὶ ποστὴν μοῖραν πλεῖστον 
δύναται· περὶ ὧν οὐχ ἡ τυχοῦσα παρ᾿ αὐτοῖς ἐστι καὶ κατὰ τοὺς πίνακας διαφωνία. 

89. Therefore the text of Ps.-Porph. introd. 49 pp. 222,18–21 in the edition of Boer and Wein-
stock (1940) is essentially identical with Rhet. 5.12.5–6 (see note 87 above). Note, however, 
that in the last sentence Boer and Weinstock, following MSS SDM, read τὰ ὅρια αὐτῶν 
(“their terms”) whereas Pingree, following Ms. L, reads τὰ ὅρια αὐτοῦ (“his terms,” i.e. 
Ptolemy’s). Pingree (2001, p. 8) adduces convincing evidence that Chapters 47–50 of Por-
phyry’s introduction are spurious (and probably also Chapters 51–52). 

90. It was transmitted by Stobaeus 2.8.42. I shall, in the following, quote from Smith (1993, 
pp. 302–308) (Porph. Frg. 271F). 

91. Porph. Frg. 271F, lines 38–104. The text is partly difficult to understand. See the comments 
of Boll (1894, pp. 114–116), Bouché-Leclercq (1899, pp. 601–602), Gundel and Gundel 
(1966, p. 214), Deuse (1983, pp. 148–159), Dörrie and Baltes (2002, pp. 264–271, esp. 268–
269), Hübner (2006, p. 36, n. 142). The only modern translation that I know of is French, by 
Festugière (1970, pp. 349–357, here: pp. 356,11–19; I disagree on important details). 

92. Porph. Frg. 271F, lines 79–85: Ζῳδίων δὲ ὄντων δώδεκα, δι᾿ ὧν ἡ ὁδὸς ταῖς ψυχαῖς 
πεπίστευται τοῖς Αἰγυπτίοις γίγνεσθαι τῇδε πανταχοῦ σχεδόν, αἱ μὲν πρῶται ἑκάστου 
ζῳδίου μοῖραι, ὡς ἂν αὐτῷ νενεμημέναι τῷ κυρίῳ τοῦ ζῳδίου, παρεδόθησαν εἶναι 
ἀμφιλαφεῖς· αἱ δὲ τελευταῖαι ἐπὶ πάντων τοῖς κακοποιοῖς λεγομένοις ἀστράσιν 
ἀπενεμήθησαν. Ἐντεῦθεν οὖν ἡ τῶν πρώτων κλήρων εὐμοιρία ἀποδοχῆς ἠξίωται καὶ ἡ 
τῶν ὑστέρων ἐστενοχωρεῖσθαι λέγεται. Note that ἑκάστου ζῳδίου is my conjecture for the 
MSS reading τοῦ ζῳδιακοῦ. Heeren’s conjecture ἀγαθῷ for the MSS reading αὐτῷ (after 
ὡς ἂν) has rashly been accepted by Festugière (1970, p. 356), and Smith (1993, p. 306). 

93. Explanation: As Table 2 (above) shows, the first Egyptian Term in each sign is always larger 
than the last one, or at least of equal size, and the last Term is always occupied by either 
Mars or Saturn. Besides, the first Term is, indeed, usually given to the planet with the high-
est dignity in that sign, in other words: to its governor, a feature that recurs almost un-
changed in Ptolemy’s table of Terms (see his explanation of the rationale at Apotel. 1.21.22). 

94. See Gundel and Gundel (1966, p. 215), and Pingree (1978, v. 2, p. 437, n. 36). 
95. We owe these fragments to Hephaestio of Thebes who quotes them in his long chapter 2.11. 
96. Firm. math. 2.6 (ed. Kroll et al. 1968) and Paul. Alex. 3 (ed. Boer 1968). 
97. Ed. Boer (1968, pp. 102–134). Scholia n. 3–8 (γ–η) on pp. 103–104 belong to Chapter 3 on 

the Terms. 
98. Paul. Alex. schol. 4, p. 103,12–14: ταῦτα τὰ ὅριά εἰσι κατ᾿ Αἰγυπτίους, 〈οὐκ〉 ἀπὸ τοῦ 

παλαιοῦ βιβλίου τοῦ εὑρεθέντος τῷ Πτολεμαίῳ. 
99. Paul. Alex. schol. 6, p. 103,18–22. 

οὐ συνῄνεσε τοῖς Αἰγυπτίοις, διὸ 



Ptolemy’s Doctrine of the Terms and Its Reception  83 

100. It is the Egyptian Thebes, not the Greek one. 
101. He gives his own horoscope in Heph. 2.11.6–7 and 2.11.9–15 (ed. Pingree 1973–1974). 

See Neugebauer and Van Hoesen (1959, pp. 131–132, n. L 380), and Frommhold (2004, pp. 
151–162). 

102. Up to the present day, many scholars erroneously date Hephaestio’s manual to the 4th 
century. 

103. See above note 83. 
104. Heph. 1.1.10; 29; 48; 67; 87; 106; 125; 145; 165; 184; 203; 223. 
105. Hübner (1998) agrees exactly with the edition of Boll and Boer (1940). Robbins (1940), in-

stead, professes (p. 106, n. 1) to be following the Proclus Paraphrase. See the diagram at 
the end of this article. 

106. On this archetype’s errors which are shared by all extant manuscripts see Hübner (1998, 
p. XVII). 

107. See the stemma codicum in Hübner (1998, p. XXV). 
108. On the importance of Hephaestio for the textual criticism of Ptolemy’s Apotelesmatika see 

Hübner (1998, pp. XXIV and XXVIII). See also Pingree (1973–1974, v. 1, pp. VI–VII). 
109. I agree in principle, although older manuscripts are not necessarily better. Remember 

Pasquali’s maxim recentiores, non deteriores (Pasquali 1934, p. 41, title Chapter IV). 
110. See the apparatus criticus of Hübner (1998, p. 80). On the importance of V see ibid. 

p. XVIII. 
111. See the analysis of Boll (1899, pp. 85 and 88–110). 
112. See A. Olivieri’s codicological description of L in CCAG v. I (1898), pp. 60–72 (n. 12), 

esp. p. 70, and Hübner (1998, p. 68), app. test. (read “fol. 148v<–149r>“). 
113. See the stemma codicum in Hübner (1998, p. XXV). 
114. This is emphasized by Boll (1899, p. 85). On the very high quality of ψ and the purity of 

the Ptolemaic text once contained in it see ibid. pp. 82–84. Incidentally, ψ was also the an-
cestor of Vatic. gr. 1594, that immensely valuable 9th century manuscript of the Almagest. 

115. See Boll (1899, pp. 110–138) (on Vatic. gr. 1291), here: 114–115 (on its content and date 
of composition). 

116. See his apparatus criticus on p. 80. 
117. Hübner (1998, pp. XV–XVII). 
118. Boll (1899, p. 113). 
119. More about this in note 151 below. 
120. See esp. Heph. epit. 4.1.10; 28; 45; 62; 80; 98; 116; 135; 153; 170; 187; 204. This epitome 

is printed in Pingree (1973–1974, v. 2). 
121. This abstention from specifying all the data serves to highlight the disagreements. 
122. Instead of U6, it ought to be U7 to save the total. This is the only case in which the epit-

ome (Heph. epit. 4.1) gives a worse value than Hephaestio’s main text (Heph. 1.1). 
123. This will be demonstrated in my forthcoming commentary (see above note 27), esp. on An-

tig. Nic. F1 § 22 (= Heph. 2.18.22 = Heph. epit. 4.26.12). 
124. Cf. Pingree (1973–1974, vol. 1, p. xx, n. 1). 
125. For example in Aries (Heph. epit. 4.1.10): V6, 6, T8, 14, S7, 21, U5, 26, ♄4, 30. The same 

can be observed in the epitome’s report of the Egyptian Terms which again coincides with 
how the data are presented in Ptolemy’s Apotelesmatika (and which again departs from AP). 

126. See above note 104. 
127. The attribution to Julian of Laodicea, which was the dominant view in the early 20th cen-

tury and is still followed by some (for instance, Bezza 1990, pp. 339–340), is obsolete.  
128. See Bulmer-Thomas (1971, esp. p. 488). 
129. Al-Nad. Fihr. 7,2 pp. 638 and 640 Dodge. 
130. I am currently preparing this edition for publication with De Gruyter. 
131. See Neugebauer and van Hoesen (1959, pp. 152–157, n. L 497). 
132. This hypothesis has been advanced by Toomer (1976, p. 18, n. 2). 
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133. Rhet. 6.52.10; 13; 17; 21; 25; 29; 33; 34; 35; 36; 37; 38. I think that Eutocius does so 
merely for the sake of completeness. Bezza (1990, p. 350, n. 21), prefers a more compli-
cated explanation, drawing on a passage in Haly’s (i.e. ‘Ali ibn Rid.wān’s) commentary. 

134. Heph. 1.3.1. 1.20.1. 2.2.8. 2.2.42. Eutoc. ap. Rhet. 6.52.5. Even the superlative (ὁ 
θειότατος Πτολεμαῖος, “the most divine Ptolemy”) occurs in Greek astrological litera-
ture. See, for instance, the Anonymous of the year 379 in CCAG v. V 1 (1904), p. 204,9 
and John Lydus (c. 550 A.D.) in Chapter 2 of his book On signs (De ostentis).  

135. Rhet. 6.52.5: καὶ ἐξεθέμεθα αὐτὰ [sc. τάς τε ἐποχὰς τῶν ἀστέρων καὶ τὰ κέντρα] ἄνευ 
τροπῆς διὰ τὸ οὕτως καλῶς δοκεῖν τῷ θείῳ Πτολεμαίῳ. (“And I put them down [i.e. the 
positions of the planets and the cardinal points] without change because thus it seems right 
to the godly Ptolemy”). I thank A. Jones and A. Tihon for clarifying the meaning of ἄνευ 
τροπῆς to me and for directing my attention to Chapter 12 Περὶ τροπῆς in Theon’s Shorter 
Commentary on the Handy Tables (Tihon 1978, pp. 236–237; cf. Jones 1999a, v. 1, p. 343). 

137. See below, p. 67. 
138. In favor of authenticity: Boll (1899, p. 86), Gundel and Gundel (1966, pp. 213 and 215). 

Against authenticity: Boll (1903, p. 219, n. 1); Mansfeld (1998, p. 81); Hübner in Folkerts 
et al. (2001, col. 568): “wohl aus byz. Zeit”; Hübner (1998, p. LXXV): “Procli quae dicitur 
paraphrasis.” Undecided: Robbins (1940, p. xvi); Beutler (1957, col. 204, n. 33). 

139. See, for instance, ἡμεῖς / nos in note 143 below. 
140. See above p. 60, on L and z. The general remarks of Robbins (1940, p. xviii), are inappro-

priately quoted with regard to Ptol. Apotel. 1.21 by Houlding (2007, p. 266, n. 10).
141. Boer (1959, col. 1833). 
142. It says (fol. 2*r): Sumpserat [sc. Allatius] autem hunc laborem privatim sibi, & amicis 

quibusdam. verum, quod sæpe alias contigit, hujuscemodi scripta ubi semel ex autoris 
elapsa sunt manibus, pariter ex ejusdem potestate exiisse deprehenduntur. Hinc adeo 
evenit ut, relicta Roma, fœtus hic [!] Venetias pervenerit, atque inde à viro summo, & in 
illustri posito dignitate, ad me excudendi gratia fuerit transmissus. […] Proinde non destiti 
Elzevirios nostros, optimos accuratissimosque Typographos […], serio ad ejus editionem 
sollicitare. qui, ut publici litterarum boni amantes sunt, hac, quam vides, forma id excudi 
curarunt. See also the interesting remarks later on (fol. 2*v): Obiter moneo, esse nonnullos 
qui dubitant, utrum Ptolemæi genuinum hoc scriptum sit. Porphyrio certe & Proclo, 
Philosophis quidem, sed religionis Christianæ hostibus, dignum visum cui lucem aliquam 
affunderent commentando. (“In passing, I wish to draw your attention to the fact that there 

136. Eutocius’ reference in Rhet. 6.52.5 (see previous note) is to Ptol. Apotel. 1.22.2 where 
Ptolemy insists that it is reasonable to reckon the beginnings of the signs and the ‘Terms’ 
from the equinoxes and the solstices: ἐκεῖνο δὲ ἐπιστάσεως ἄξιον τυγχάνον οὐ 
παραλείψομεν ὅτι καὶ τὰς τῶν δωδεκατημορίων καὶ τὰς τῶν ὁρίων ἀρχὰς ἀπὸ τῶν 
τροπικῶν καὶ τῶν ἰσημερινῶν σημείων εὔλογόν ἐστι ποιεῖσθαι. Note that the words καὶ 
τὰς τῶν ὁρίων which refer to the ‘Terms’ are missing in branch α of the manuscript tradi-
tion. Robbins (1940, p. 109) follows these MSS. That leads to his mistranslation of the one 
remaining καὶ: “to reckon the beginnings of the signs also from the equinoxes” (correct:  
“to reckon the beginnings of both the signs and the terms from the equinoxes”). Note that 
the reading καὶ τὰς τῶν ὁρίων is supported by the oldest preserved MSS. of the text, L 
(saec. XI) and V (saec XIII). Still earlier is the testimony of the Proclus Paraphrase, which 
has the same words (Allatius 1635, p. 73) and whose oldest MS., Vatic. gr. 1453, dates 
from the 10th century. The words καὶ τὰς τῶν ὁρίων are further supported by the Arabic 
tradition of the text which goes back to Ibrahim ibn al-Salt (9th c.) and lead to the inclusion 
of the termini in the Latin translations from the Arabic by Plato Tiburtinus (12th c.) and 
Aegidius de Thebaldis (13th c.), both to be found in Haly (1493, p. 23r-v). Hephaestio 
Thebanus and the Anonymous Commentary do not provide additional evidence. Note that 
also Bezza (1990, p. 351) considers the reference to the terms to be genuine (“e dei confini”).

.
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143. All that remains of Apotel. 1.21.20–21 is Procl. paraphr. 1.23 (ed. 1635 p. 68): ἡμεῖς δὲ 
ἀντιγράφῳ παλαιῷ ἐνετύχομεν, φυσικὸν λόγον καὶ σύμφωνον καὶ τῆς τάξεως καὶ τῆς 
ποσότητος αὐτῶν περιέχοντι. ἔχει δὲ οὕτως . / Nos vero in antiquum volumen incidimus 
in quo naturalis ratio ordini & numero eorum congruens, & apta continebatur, ea autem 
hæc erat. What follows (Chapter 1.24) equals Apotel. 1.21.22–29. 

144. Apotel. 1.21.26 οἷς καὶ παρέκειντο στιγμαί = Procl. paraphr. 1.24 p. 70 (ed. 1635) οἷς καὶ 
παρέκειντο στιγμαί / & punctis hæc interstinguebantur. 

print for η (8) (ms. Vatic. gr. 1453, fol. 50v, has η). This is a standard letter confusion in 
Greek manuscripts, due to the very similar palaeographical appearance of κ and η. Com-
pare, in the Egyptian table of Terms (Procl. paraphr. 1.23 pp. 64–65 ed. 1635) the errone-
ous sum of the first three Terms in Leo = ικ instead of (correct) ιη (the Lat. transl. correctly 
reads 18). There is one more mistake in the Egyptian table which gives the sum of the first 
four Terms of Sagittarius as κδ (= 24 in the Lat. transl.), while it should be κ% (26). 

146. See above notes 112 and 115. 
147. This different spatial allocation of planetary symbols and numerical values has an obvious 

148. A theoretically possible, but unlikely variant of this scenario is that the scribe in question is 
himself the author of the whole paraphrase, and that he made some addenda to his own 
work. 

149. I agree on this with Robbins (1940, p. 106, n. 1), and Houlding (2007, pp. 267–268, 270, 
275). Note, however, that Houlding’s main argument on which her correct conclusion is 
based does not hold. She writes (p. 270): “That the first options are intended to be the main 
values is proven by a comment under the table where the total term values for each planet 
are listed. These are accurate only if the first planets and their associated numbers are 
used.” (The “comment” is Apotel. 1.21.30, a short paragraph that is present in the Vatic. gr. 
1453, fol. 50v, but absent from Allatius’ printed version.) The truth is that both sets of val-
ues lead to the same planetary totals: In Taurus, 2° are taken from Mars and given to Sat-
urn; in both Capricorn and Pisces 1° is taken from Saturn and given back to Mars. It is im-
portant not to overlook the obvious fact that in Leo the scribe forgot to add the symbol of 
Jupiter as an alternative to that of Venus. (See the reproduction of the Terms of Leo from 
Vat. gr. 1453, fol. 50r, at Houlding 2007, p. 271, Fig. 5.) This lapse happened because only 
in Leo three planets are affected by the addition of new data, not two planets as in all other 
cases, and the scribe had already made two addenda in Leo. The principles of the system 
require that also this third addendum be made, because otherwise there would be no Terms 
of Jupiter in Leo but two Terms of Venus. Houlding’s statement is true only when giving 
both Terms of 6° each to Venus, and none to Jupiter. 

150. Houlding and I made the same observation independently from each other. However, she 
does not discuss the stemmatic consequences. 

151. Sagittarius belongs into this group after correction of an obvious mistake in Heph. 1.1.165: 
It is here that Hephaestio unduly subtracts 1° from Venus, giving it instead to Aries, which 
leads to an impossible deviation from the canonical planetary totals put forth in Table 3. 
See above p. 61 (before note 119). 

152. The degree numbers of the last two Terms of Taurus agree with Heph. 1.1.29 (against Ptol. 
Apotel. 1.21.28). However, in Heph. 1.1.29 the order of the respective planets is reversed. 
Probably the lapse is Hephaestio’s, because the Arabic line of transmission agrees with the 

145. In the fourth Term of Libra the nonsensical figure κ (20) is an obvious yet overlooked mis-

reason: zodiacal degree numbers from eleven to thirty are rendered with two consecutive 
letters like κδ (= 24) which would make the corrected/expanded version four letters long 
and thereby not fit into one cell. 

are some who doubt whether this work is genuinely Ptolemy’s. To Porphyry and Proclus, 
who were philosophers but enemies of Christian religion, it certainly appeared worth the 
effort of shedding some light on it by way of commenting.”) The reference to Porphyry 
means the introduction published by Boer and Weinstock (1940). 
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where the three cells in question are filled in the same spatial arrangement as, for instance, 
the corresponding three cells of Pisces (the data themselves are, of course, different). 

153. Since Heph. 1.1.67 agrees with Ptol. Apotel. 1.21.28 and with the Arabic line of transmis-
sion, the reversed sequence of planetary symbols in the second and third Terms of Cancer 
is the paraphrase’s mistake. 

154. In Leo, Hephaestio’s and the paraphrase’s allocations of planets to the single Terms dis-
agree with each other as well as with Lz and also with the Arabic line of transmission. 
There may have been something seriously wrong in Leo at an early date. 

155. The relevant chapters that Hephaestio excerpted are: Apotel. 1.1; 1.3–7; 1.9; 1.15–17; 1.21; 
1.23; 2.4–10; 2.12; 2.14; 3.2–15; 4.1–10 (see Pingree 1973–1974, v. 1, p. VII). 

156. All the relevant agreements can be found in the critical apparatus of Hübner 1998 where 
they are attributed to “Heph. Procl.” 

157. See above p. 61, before note 125. 
158. See Boll (1899, p. 87): “ein nicht werthloser, aber unsäglich breiter anonymer Kommentar, 

gehört jedenfalls auch dem ausgehenden Alterthum an.” 
159. See above p. 58, after note 88. 
160. Wolf calls him doctum quendam amicum and explains that this learned friend’s motive for 

preferring anonymity was to escape reproaches for dabbling in this sort of literature: ac ne 
nomen quidem suum uoluit adijci, quòd aliquorum reprehensionem uereatur, qui non in 
meliore scriptore elaborarit. Non quod hos commentarios contemnendos esse putet (inesse 
enim multa quæ studiosis haud dubiè utilia & iucunda futura sint) sed quod turpe uideatur 
ab equis quodammodo ad asinos descendere. As to the badly damaged manuscript, Wolf 
reports the following complaints of the translator: Nam & scripturam Græcam esse pessi-
mam lectuque difficillimam, & authoris [i.e. Ptol.] atque interpretis [i.e. Anon.] uerba 
sæpiss(ime) confusa, & ipsum opus plurimis locis adeò deprauatum & mutilum ut nulla ex 
eo certa sententia possit elici. Se tamen solerti [sic] diuinatione multa loca citra temeri-
tatem correxisse & distinxisse: in cæteris id præstitisse quod potuerit, atque optare, ut suus 
labor studiosis sit utilior quàm sibi iucundior (Address to the Reader, fol. a3). See also the 
preceding epigram which invites the reader to “dig out hidden jewels from the excrement”: 
Quas tibi relliquias dedimus, studiose Mathesis, / Accipe. Barbaries non meliora sinit. / 
Omnia sunt mendis corrupta, nec Oedipus ipse / Soluerit hos griphos, æquior esto mihi. / 
Forsitan effodies tamen hoc è stercore gemmas: / Nullus enim liber est quin aliquando 
iuuet. 

161. See Gundel and Gundel (1966, p. 215). 
162. See Neugebauer and van Hoesen (1964, p. 66), on Anon. comm. in Ptol. apotel. 3.5.4 et 

3.11.5 (pp. 98 et 112 Wolf). 
163. He does so at the beginning of his next chapter (Anon. comm. in Ptol. Apotel. 1.22 p. 47 

Wolf): Ἄριστός ἐστι διδάσκαλος ὁ μὴ μόνα τὰ ἀληθῆ λέγων καὶ ὀρθὰ δόγματα ἀλλὰ 
καὶ τὰ διαπατᾶν μάτην τὴν ψυχὴν τοῦ νέου δυνάμενα διελέγχων. τοιοῦτος οὖν καὶ ὁ 
παλαιὸς [i.e. Ptol.] 
τοῖς αἰγυπτίοις δοξαζόμενα. καὶ νῦν δὲ ἐθέλει καὶ ἕτερα αὐτῶν ἐλέγξαι δόγματα πρὸς 
κενοδοξίαν ὁρῶντα./ Optimus est præceptor, qui non uera tantum & recta præcepta expli-
cat, sed falsa etiam, quæ adolescentis animum distrahere possunt, coarguit. Talem se 
Ptolemæus quoque in doctrina finium præbet, dum falsas Aegyptiorum de finibus opiniones 
reprehendit. ac nunc alias quoque sententias eorum ex falsæ gloriæ studio ortas refutat. 

164. Anon. comm. in Ptol. Apotel. 1.21 pp. 41–42 Wolf: Λοιπὸν δεῖ καὶ τὴν ἐκκειμένην ὑπὸ 

ἀλλ᾿ ἐξ ἀντιγράφου τινὸς [p. 42] διεφθαρμένου, καὶ εἰς αὐτὸν ἐληλυθότος, δυνηθῆναι 
μόλις ποτὲ ἀνευρεῖν. ὁ γὰρ γράψας τὸ εἰρημένον βιβλίον δῆλός ἐστι τάς γε τῶν 
χαλδαίων καὶ αἰγυπτίων δόξας εἰς ἓν συναγαγὼν καὶ οὕτω τὴν διδασκαλίαν 

ἐν τῇ περὶ τῶν ὁρίων ἐφάνη διδασκαλίᾳ ἐλέγχων τὰ ψευδῶς παρὰ 

τοῦ Πτολεμαίου τῶν ὁρίων διδασκαλίαν ἐπεξελθεῖν, ἣν οὐκ αὐτὸς φησὶν εὑρηκέναι, 

paraphrase (see below note 213 and the following Table 8). The marginal addenda con-
cerning Taurus in the printed edition (Fig. 4) are meant to be located on top of the figures 
that the three respective cells already contain, as is clear from ms. Vatic. gr. 1453, fol. 50r, 
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isse profitetur. Libri autem autorem apparet opiniones Aegyptiorum & Chaldeorum con-
catione doctrinam perfecisse. 

165. Anon. comm. in Ptol. Apotel. 1.21.26 οἷς καὶ παρέκειντο στιγμαί, p. 44 Wolf: ἐν τῷ 
βιβλιδίῳ φησὶ τῷ διεφθαρμένῳ προσθέσεσιν τῶν ἀστέρων πλείονας ἐχόντων λόγους 
παρέκειντο στιγμαὶ ἐνδεικνύμεναι δηλονότι ὅτι τοῦτό γε αὐτὸ, ὡς πρόσθεσις, αὐτοῖς 
τούτοις ἐγειόνει [read ἐγεγόνει]. / In codice corrupto, inquit, stellarum additionibus quæ 
plus quam ratio postulat habebant, puncta erant adiecta, quæ indicarent scilicet idipsum 
esse adiectitium. 

166. Anon. comm. in Ptol. Apotel. 1.21.27 ἀφαιροῦνται δὲ αἱ προστιθέμεναι, p. 44 Wolf: διὰ 
τούτους τοίνυν τοὺς προσδιορισμοὺς ἀναγκαζόμεθα πολὺν τῆς σαφηνείας λόγον 
ποιούμενοι τὴν καθόλου μέθοδον ἐπὶ τῶν κατὰ μέρος γυμνάσαι καὶ δεῖξαι τὰς αἰτίας 
ἐφ᾿ ἕκαστον. / Ob has igitur declarationes perspicuitatis ratione in primis habita cogimur 
doctrinam hanc per partes tradere, & ostendere causas in singulis. 

167. Bouché-Leclercq (1899, p. 212, n. 1). 
168. Anon. comm. in Ptol. Apotel. 1.21 p. 47 Wolf: σαφηνείας δὲ πλείονος ἕνεκεν / ob maio-

rem perspicuitatem. 
169. Wolf’s edition provides summaries of the data for each single zodiacal sign in margine, 

comparable to the content of each cell of the missing table, but in Taurus and Cancer these 
marginalia contain some inaccuracies compared to the text of the commentary itself. 

170. Anon. comm. in Ptol. Apotel. 1.21 p. 47 Wolf: καὶ εὑρήσεις τὴν ἐπισυναγωγὴν τῶν 
ὁρίων ἑκάστου ἀστέρος συνᾴδουσαν τῇ τῶν παλαιῶν συγγραφέων συναγωγῇ. / in qua 
[sc. figura] summam finium stellæ cuiusque cum ueterum scriptorum summa consentire 
inuenies. 

171. See above note 160. 
172. Lib. Herm. Chapter 25 ed. Hübner (1995, v. 1, pp. 36–91). 
173. A full catalogue of all preserved Greek and Latin horoscopes will soon be published, either 

in my forthcoming edition of Antigonus of Nicaea (see above note 27) or separately. As to 
Latin horoscopes, see above note 69. 

174. See above p. 58, at note 90. 
175. See above p. 63–65. 
176. See above p. 66, after note 169. 
177. See below, Table 8. 
178. The manuscript tradition of these names is unanimous. 
179. Rhet. 6.52.25: ὁρίοις κατὰ μὲν Πτολεμαῖον Ἀφροδίτης, κατὰ δὲ Αἰγυπτίους Κρόνου. 
180. Rhet. 6.52.36: ὁρίοις κατὰ μὲν Πτολεμαῖον Ἀφροδίτης, κατὰ δὲ Αἰγυπτίους Ἑρμοῦ. 
181. Rhet. 6.52.37: ὁρίοις κατὰ μὲν Πτολεμαῖον Ἀφροδίτης, κατὰ δὲ Αἰγυπτίους Κρόνου. 
182. Note, however, a curious habit of Eutocius, namely to omit fractional rests. On examining 

all 24 specifications of Terms, one detects two such instances, one in each of the two sys-
tems: the position of Mercury (14° 32′ , cf. Rhet. 6.52.30) should be assigned to the first 
degree of the Ptolemaic Term of Venus (14°–21° ) but is actually given to the last degree 
of the preceeding Term of Jupiter (6°–14° ), and the position of the upper culmination 
(19° 22′ , cf. Rhet. 6.52.36) which should be assigned to the first degree of the Egyptian 
Term of Jupiter (19°–24° ) is actually given to the last degree of the preceeding Term of 
Mercury (11°–19° ). 

183. W. Hübner in: Folkerts et al. (2001, p. 567). 
184. Honigmann (1929, p. 116). We owe our knowledge on the early translators and commenta-

tors to Chapter 7.2 of the famous Fihrist of Ibn al-Nadīm (ed. Dodge 1970, v. 2, p. 640). 
185. In this section, a general discussion of the Terms (5.8) is followed by chapters on the dif-

ferent systems of the Egyptians (5.9, a flawless table), Ptolemy (5.10, a contaminated ta-
ble), the Chaldeans (5.11), Astratu (5.12, see next note), and the Indians (5.13). 

iunxisse, & sic ex utrarunque collo

τελειῶσαι συλλογισάμενος. / Restat ut expositam a Ptolemæo finium doctrinam recen-
seamus: quam non ipse sese inuenisse sed in uetusto [p. 42] & corrupto codice uix reper-
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186. This is in all likelihood the distorted form of a Greek personal name. The Latin translation 
of Herman of Carinthia reads Aristotua (Albumasar 1493, fol. e2v = p. 67 of the BNF 
online version). No certain identification is possible. Boll (1894, p. 160) (quoted by Bezza 
1990, p. 338), thought of Adrastus, but Wright (1934, p. 265, n. 3) adduced a variety of ar-
guments that rather point to the Greek astrologer Erasistratus who is known from other 
sources (his date, however, is unclear and no fragments are preserved). A third Greek 
name, Straton, is brought into play by the Byzantine translation (see the following note). 
According to Abū Ma’shar, Introd. mai. 5.8.3, this Astratu was the only authority to assign 
Terms to all seven “planets,” including the luminaries. 

187. This is Chapter 5.8.2 in the forthcoming edition of the Arabic original with English transla-
tion by Ch. Burnett and K. Yamamoto. I thank the editors for sharing the unfinished draft 
of their translation with me. The corresponding passage of the somewhat shorter Byzantine 
Greek translation (Ἀποτελεσματικὰ μυστήρια τῆς ἐπιστήμης, Lat.: De mysteriis), which 
is edited by D. Pingree in the same volume, says (myst. 3.15.1): Εὕραμεν τοὺς ἀρχαίους 
πενταχῶς ἐκλαμβάνοντας τὰ ὅρια· εἰσὶ γὰρ ὅρια κατ᾿ Αἰγυπτίους καὶ εἰσὶν ὅρια κατὰ 
Πτολεμαῖον καὶ εἰσὶν ὅρια κατὰ Χαλδαίους καὶ εἰσὶν ὅρια κατὰ Στράτωνα καὶ εἰσὶν 
ὅρια κατ᾿ Ἰνδούς. Herman of Carinthia expanded Chapter 5.8.2 by remarking that the 
Egyptian Terms are of most frequent use and that experience proves them to be right. See 
his Latin text in Albumasar (1493), fol. e2v (= p. 67 of the BNF online version; Engl. 
transl. in Burnett’s and Yamamoto’s apparatus to 5.8.2). Herman’s Latin translation, which 
includes numerous addenda, is a personal interpretation of the Arabic original (see Burnett 
2007, p. 74). 

188. See also 5.8.9 where Abū Ma’shar says, without expressing his own preference, that all the 
early learned astrologers used the Terms of the people of Egypt. 

189. In this paragraph, Herman of Carinthia adds several details of his own imagination (Albu-
masar 1493, fol. e3r = p. 68 of the BNF online version). 

190. For groups A and B, see above p. 67, after note 176, and (in more detail) below, p. 70, Ta-
ble 8. I compared the Ptolemaic table (Chapter 5.10) as edited and translated by Burnett 
and Yamamoto with the earlier edition of Lemay 1995–1996, vol. II, p. 326 (I am grateful 
to G. Bezza, Bologna, for translating the Arabic data into English). From both editions it 
appears that Abū Ma’shar’s table (Chapter 5.10) agrees with the consensus of A1 and B in 

, , , , ; it agrees with A1 against B in  and with B against A1 in  and ; 
deviations from both A1 and B:  T4/5: ♄6 U2 (= closer to B = ♄2 U6 than to A1 = 
♄4 U4);  T4/5: T6 ♄4;  T4/5: U6 V5 (close to A1 = V6 U5);  T3/5: T6 … ♄4 
(close to A1 = T7 … ♄3). 

191. Abū Ma’shar, Introd. mai. 4.1.4: “There were a number of Greek kings immediately after 
the Two-Horned, Alexander, son of Philip, each of whom was called Ptolemy, namely ten, 
nine men and a woman. They lived in Egypt and their rule lasted 275 years. The majority 
of them were wise, and one of them was Ptolemy, the wise, who composed the book of the 
Almagest on the causes of the motion of the sphere and all the planets within it. Another of 
them composed a book on astrology and attributed it to Ptolemy, the author of the book of 
the Almagest. It is sometimes said that the very learned man who wrote the book of astrol-
ogy also wrote the book of the Almagest. The correct answer is not known because of his 
(?) error, but the one who was the author of the book of astrology mentioned the natures of 
the planets and their causes in his book.” The corresponding passage of the Greek transla-
tion (see above note 187) is Myst. 3.14.1–4. See also below on Haly (p.69 before note 203). 

192. Chapter XIa of this long horoscope (p. 321 in the edition of Bezza 2001) wants the Lot of 
Fortune to be 9° Cancer and to fall into the Terms of Venus which is correct only in the 
Egyptian system, not in Ptolemy’s. In Bezza (2001, p. 294, n. 10), correct “Xa” to “XIa.” 

193. The same can be found later in al-Bīrūnī’s Chapter 494 (transl. Wright 1934, pp. 306–307). 
For al-Kindī, I rely on the account of Bezza (1995, v. 1, p. 286). 
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194. See the fortitudines planetarum in Alcab. introd. 1.22–23 in Burnett et al. (2003, pp. 239–
240) (= Lat.; Arab./Engl.: ibid. pp. 32–33). The highest power (5) is that of the “House” 
(domus: similis viro in domo atque in dominatione sua), next (4) comes the dignity of “Ex-
altation” (exaltatio: similis viro in regno suo atque gloria), next the “Triangle” (3, triplici-
tas: sicut vir in honore suo et inter auxiliatores suos atque ministros) and the Terms (2, 
terminus: sicut vir inter parentes suos et cognatos atque gentes), with an option for rever-
sal of the sequence (2–3 instead of 3–2). The least power (1) is that of the “Decan” (facies: 
sicut vir in magisterio suo). Still different—though incomplete—is a hierarchy that can be 
found in Firm. math. 8.32.2 (1: “Exaltation”; 2: Terms; 3: “House”). 

195. Alcab. introd. 1.19 (ed. Burnett et al. 2003). 
196. Wright (1934, p. 265). For al-Bīrūnī’s hierarchy of planetary dignities see above note 193. 
197. On this astrologer see above note 186. 
198. Wright (1934, p. 265). 
199. Only Al-Bīrūnī’s data in Scorpio are strangely flawed, but without shaking the evident 

grouping with L, z, and Hübner 1998. Al-Bīrūnī does not mention each single Term’s ex-
tension but only the increasing sums within each sign. If one such figure is flawed, both the 
previous and the following Term are affected. Assuming that Wright’s English translation 
is correct, Al-Bīrūnī’s data in Scorpio are: U6 V12 T21 S24 U30. The single extensions are 
then: U6 V6 T9 S3 U6. (Hübner 1998 has: U6 V8 T7 S6 ♄3). Despite the apparent flaws it 
is clear that in the second and third Terms Al-Bīrūnī does not join Hephaestio’s group in 
inverting the order of the planets. —Note that Bezza (1992) provides a new Italian transla-
tion from the Arabic text edited by Wright (1934). Bezza (p. 80, Chapter 453) has the 
Ptolemaic Terms of Scorpio in agreement with Hübner (1998). Bezza’s commentary (p. 
158) does not mention the different data in Wright’s translation. 

200. This is the same as Aristotua in the Latin translation of Abū Ma’shar and as Al-Bīrūnī’s 
Astaratus. See above note 186. 

201. Opinio maioris partis hominum que est magis veridica et magis experta est opinio Egyptio-
rum; et pauci utuntur terminis Ptolemei. Et de nihilo utuntur aliis opinionibus, nec ad eas 
inspiciunt, quia sunt a veritate remote (Abenragel 1523, fol. 5ra-b; my transl.). 

202. Haly (1493, fol. 24v–27v). The correct year of birth (988, not 998) is clear from Ibn 
Rid.wān’s analysis of his own horoscope which Seymore (2001, pp. 222–232) translates 
from the Arabic MS Bodleian I 992 (Marsh. 206). The horoscope is for Jan. 15, 988 A.D.; 
see esp. Seymore (2001, p. 222, n. 2). 

203. See Seymore (2001, pp. 207–210) (Engl. transl. of the Arab. orig.) and Haly (1493, fol. 2va-b) 
(Latin transl. which omits the name of Ptolemy II Philadelphus) as well as note 191 above. 

204. Haly (1493, fol. 26vb) ad Apotel. 1.21.22: 
pthole. loquitur non fuerunt sui. quia si sui essent non preponeret dominum exaltationis 
etc. “We understand right away that these Terms of which Ptolemy speaks are not his 
own, because if they were his own, he would not put the lord of the exaltation first etc.”; 
ibid. fol. 26va ad Apotel. 1.21.21: Hec verba demonstrant magnam bonitatem ptholemei, 
qualiter multum diligebat veritatem, quoniam de verbis alienis noluit sibi attribuere glori-
am, nec verecundatus fuit palam dicere, quod in illis rationibus longis, que scripte erant in 
libro ipso, [et] non poterat reddere rationem. “These words demonstrate the great good-
ness of Ptolemy, how much he loved the truth, because he did not want to attribute to him-
self the glory that was due to other people’s words. And he also did not shy away from 
saying publicly that he was unable to explain those long reasonings that were written in 
that book.” (my transl.). 

205. Haly (1493, fol. 27va): Semper tamen conuenit quod ante inspicias ad terminos egyp-
tianorum. Postmodum ad terminos tphole. [sic] propter rationem quam dixit et subse-
quenter ad terminos caldeorum. See the commentary on this by Bezza (1990, p. 340). 

206. See Haly (1493, fol. 105ra–106vb) (Lat. transl.) and Seymore (2001, pp. 222–242) (Engl. 
transl. of the Arab. orig.). In his autobiographical horoscope, the use of the Egyptian Terms 

Ad hoc intelligimus quod isti termini de quibus 
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is clear from Ibn Rid.wān’s remarks on the Lot of Fortune (3° 48′ ), on the MC (0° ), 
on Jupiter (0° 28′ ), and on the Sun (0° 23′ ): all four positions are said to fall into a 
Term of Mercury, which is in all cases true for the Egyptian system while false for the 
Ptolemaic one. See esp. Seymore (2001, pp. 228–229, n. 12, 17, 18), as well as the tabular 
arrangement of the horoscope data ibid. p. 245. Further confirmation comes from the se-
cond horoscope (Haly 1493, pp. 105vb–106rb, Seymore 2001, pp. 232–238), that of a boy 
whose Lot of Fortune is 0° 36′ . This is again a Term of Mercury, as Ibn Rid.wān says (p. 
235); he emphasizes the agreement between the boy’s and his own Lots of Fortune (p. 
237). Note that Seymore’s note 37 on p. 235 is confused; it ought to read: “According to 
the Egyptian system the native’s Lot of Fortune is in the term ruled by Mercury.” 

207. It was edited by M.A.F. Šangin, CCAG v. XII (1936), pp. 216–229. 
208. Ibid. pp. 217,26–218,9. 
209. This translation covers the whole of books I and II plus parts of III and IV. 
210. One by Antonio Gogava was printed in 1548, one by Philipp Melanchthon was printed 

with Camerarius’ revised edition of 1553. For details on the early editions and translations, 
see Boer (1959, col. 1832), and Hübner (1998, pp. LII–LIV). 

211. Houlding (2007, p. 276). 
212. In the 1533 edition of Plato of Tivoli’s translation which I have used, the Ptolemaic table 

of Terms is on p. 19 (wrongly numbered 17). Plato of Tivoli’s Arabic source is to be dis-
tinguished from al-Bīrūnī’s version which has the same table of Ptolemaic Terms as L and 
z (see above p. 69). It would go beyond the purpose of this article to investigate the Arabic 
transmission of the Apotelesmatika systematically, so as to determine (if possible) the 
number of translations that were available, and their characteristics. 

213. Hephaestio gets the data in  T4/5 and  T2/5 wrong; see above notes 151 and 152. The 
Proclus Paraphrase (1st rec.) gets the data in  T2/3 and in  T2/3/4 wrong; see above 
notes 153 and 154. Plato of Tivoli’s Latin translation from the Arabic incorrectly antici-
pates  T5 before  T3/4 and is followed in this by Bonatti (1550). Plato of Tivoli 1533 
further has an obvious numerical mistake (5 instead of 7) in  T3, but I cannot tell wether 
this fault is to be attributed to the typesetter, to Plato himself, or to his Arabic source (in the 
two latter cases Bonatti’s correct value would be an intelligent restoration of the required 
figure). 

214. Since Eutocius (ap. Rhet. 6.52.25 and 6.52.37) assigns both Leo 17° 35′ and Leo 16° to 
Venus (see above notes 179 and 181), he belongs to group A. No agreement with any of 
the discordant planetary sequences reported in group B is possible, as the following table 
shows: 

 
A: L, z ♄6 S7 T6 V6 U5 (i.e. 13°–19° = T: this agrees with 

Eutocius) 
B: Heph. V6 T6 S7 ♄6 U5 (i.e. 12°–19° = S: contradicts Eut.) 
B: Procl. Par. (1st rec.) V6 S7 ♄6 T6 U5 (i.e. 13°–19° = ♄: contradicts Eut.) 
B: Plato of Tiv., Bonatti ♄6 S7 U5 T6 V6 (i.e. 13°–18° = U: contradicts Eut.) 
 
215. The Anonymous Commentary gives 1° too much to Jupiter (violation of planetary totals, 

see p. 66 after note 169). His values in Gemini are disproved by the Hephaestio-group. 
 

216. Since Robbins follows the Proclus Paraphrase, his data in Leo are V6 S7 ♄6 T6 U5 (see 
above note 214). 

217. A remotely similar problem is raised by the last paragraph of the Apotelesmatika (4.10.27) 
of which the manuscripts transmit two different versions. 

218. For Bonatti see Bònoli and Piliarvu (2001, pp. 39–43) with extensive references to further 
literature. 

219. Thorndike (1923–1958, v. 2, p. 826). 
220. Bonatti (1550, coll. 46–48) (47–48 are wrongly numbered “49”–”50”). 
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221. Only the first reference is explicit (col. 46 Albumasar recitauit). Haly is alluded to in col. 
46 ipse enim nolens se iactare, non attribuit sibi inuentionem illorum terminorum (cf. note 
204), al-Qabīs. ī in col. 47 quia dicitur quòd cum Planeta est in termino suo, est similis uiro 
existenti inter parentes suos & inter gentes quæ attinent ei, & diligent eum siue sint cog-
nate siue agnati siue affines (cf. note 194). 

222. Bonatti (1550, col. 46): & postea posuit suam opinionem, & fuit secutus dicta quorundam 
uetustorum, quæ ipse inuenit, in quodam libro uetustissimo, prout ipse refert, & approbauit 
dicta illorum (“and then [i.e. after the exposition of the Egyptian and Chaldean systems] he 
put forth his own opinion, and he was following the sayings of certain men of old, which 
he personally discovered in a certain very old manuscript, as he himself reports, and he ap-
proved their sayings”). 

223. See note 187 above. 
224. Abū Ma’shar, Introd. mai. 6.1.31: “In its [i.e. Virgo’s] first decan there ascend a maid 

whom Tinkalos (Teucer) called dūšaybuh. She is a pretty, clean, longhaired, and good-
looking virgin, with an ear of corn in her hand. She is sitting on a chair on which is a mat, 
and she is nourishing (?) a little boy, and feeds him with broth in a place called ‘atria.’ 
Some people call that boy Īsū

’

, whose meaning is Jesus.” The corresponding passage of the 
Greek translation (see above note 187) is Myst. 3.21.46. 

225. On the doctrine of the “Great Conjunctions” and its assignment of one planet to each world 
religion see, as introduction to the subject, North (1980) and Bertozzi (1996). 

226. Roger Bacon, Opus Maius, pars quarta, p. I 260 Bridges: Famosiores autem termini sunt 
Aegyptiorum. Jupiter habet sex primos gradus Arietis, Venus sex sequentes, Mercurius 
octo, Mars quinque, Saturnus quinque, Venus adhuc octo primos Tauri, Mercurius sex se-
quentes. Et sic mira diversitate variantur isti termini, ut patet in tabula terminorum, ita 
quod Mercurius habeat septem primos gradus Virginis pro termino, non solum secundum 
Aegyptios, sed secundum Ptolemaeum, et hoc est quod nunc quaerimus. “More famous, 
however, [i.e. than the triplicities and exaltations] are the Terms of the Egyptians. Jupiter 
has the first six degrees of Aries, Venus the next six, Mercury eight, Mars five, Saturn five, 
Venus then the first eight of Taurus, Mercury the six following ones. And so those Terms 
vary with remarkable diversity, as can be seen in the table of the Terms, so that Mercury 
has the first seven degrees of Virgo as his boundary, not only according to the Egyptians 
but (also) according to Ptolemy. And this is what we shall investigate now.” (my transl.). 

227. See Smoller (1994). 
228. On this work, see Smoller (1994, p. 59). I thank Laura Smoller for sending me photocopies 

of one of the two existing manuscripts, ms. Vienna (5266, fol. 46r–50v). The table of the 
Egyptian Terms is on fol. 49v. 

229. The illustration is from Page (2002, p. 22, Fig. 14). 
230. On Pico, see the contribution by Darrel Rutkin in this same volume. 
231. Pico disp. 6.16 (Garin 1946–1952, v. 2, p. 128): Reliquum est de finibus, quos non aliter 

quidem breviter confutabo, quam ex discordia ipsorum adhuc de finibus inter se litigan-
tium […]; eventually he concludes (ibid. p. 130): Vanissima igitur dogmata astrologorum, 
quae nec rationibus firmant, nec experimentis, quando in illis nugantur, in istis non con-
cordant. 

232. In the same vein, he returns to the topic of the Terms in Chapter 10.10, but without adding 
anything of substance (Garin 1946–1952, v. 2, pp. 414–416). 

233. For instance, al-Qabīs. ī’s hierarchy of the planetary dignities (see note 194) can be found in 
numerous printed books and manuscripts from the Renaissance like Johannes Stöffler’s 
Almanach Nova (1499), fol. D1v, and ms. Sloane 332, fol. 9v, of the British Library (see the 
photograph in Page 2002, p. 24, fig. 15). 

234. Reverendi ac eximij magistri Iuliani Ristori Pratensis per me Amerigum Troncianum, dum 
eum publice legeret in almo Pisauri ginnasio currente calamo collecta, MS Florence, Bibl. 
Ricc. Lat. 157, fol. 137r–138v (non vidi; I quote from Bezza 1990, pp. XXVII and 339). 

235. Nifo (1513, fol. 36vb, cf. 37ra) (non-vidi; see previous note). 
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236. Cardano (1578, pp. 190–199) (= Cardano 1663, v. 5, pp. 156a–162b). This is almost 10% 
of the length of Cardano’s entire commentary on the Apotelesmatika, a huge disproportion 
compared to the 3–4% that Apotel. 1.21 makes of the whole text. 

237. Cardano (1578, pp. 192 and 194) (= Cardano 1663, pp. 157a and 159a): Haly nullo modo 
intellexit …Porphyrius in nulla alia re utilis quàm in commemorandis huiusmodi nomini-
bus Trasibuli & Petosiridis …ut Porphyrius totam artem ut nunc etiam Latini & Arabes 
olim deturpari[n]t. The criticism of Porphyry is particularly inappropriate because that 
chapter on the Terms is not authentic; see above note 89 on Ps.-Porph. introd. 49. 

238. Cardano (1578, p. 192) (= Cardano 1663, p. 157a). 
239. Cardano (1578, p. 194) (= Cardano 1663, v. 5, p. 159a). 
240. Cardano (1578, pp. 194 and 196) (= Cardano 1663, v. 5, pp. 158b and 160a). 
241. Liber duodecim geniturarum […], Basel 21578 (11544), n. VIII. This autobiographical 

horoscope fills 50 columns in the folio format of the Opera omnia (Cardano 1663, v. 5, 
pp. 517a–541b). 

242. De septem erraticis stellis liber, Cardano (1663, v. 5, pp. 369–432). He opens each of the 
seven sections with a tabular set of astronomical and astrological data for the planet in 
question, beginning—as usual—with the outermost planet Saturn (pp. 369–382) whose 
data sheet (369–370) lists the Terms of Saturn with the remark: Notandum circa hos fines 
quod secutus sum opinionem Ægyptiorum, qui alios volet legat in Ptolemæo supra. (“Note 
about these Terms that I followed the opinion of the Egyptians. Who wishes other ones, 
may read in (my commentary on) Ptolemy above”; my transl.). 

243. Liber de iudiciis geniturarum, Cardano (1663, v. 5, pp. 433–457), here: Chapter 27 (pp. 
453–456) De viribus & dignitatibus planetarum, esp. pp. 455–456 (Terminorum vero ratio 
alia longe est nobis ac aliis … ). Cardano’s own table is on p. 456. 

244. In this regard Cardano’s system is indeed profoundly different from all three systems dis-
cussed by Ptolemy. Remember, however, that some ancient systems included the luminar-
ies (see above p. 48 on Valens and the Michigan papyrus, and also note 186 on Erasistratus). 

245. Junctinus (1581–1583, v. 1, pp. 73–77). Giuntini’s index (end of v. 2) has no further refer-
ences for the Terms. 

246. See esp. Campanella (1629, Chapter 1.7.6, p. 41) (appendix with a reference to America), and 
Chapter 1.7.7.4, p. 42: Aduertendum quod termini non sunt vbique locorum iidem […]: prop-
tereáque in hemicyclo vltra æquatorem terminos Arietis ponemus in , & è contra: sic  in 

, & è contra: &  in , & sic de cæteris seriatim etc. (“Note that the Terms are not in all 
locations the same […]: and therefore in the hemisphere beyond the equator we shall place 
the Terms of Aries in Libra, and viceversa; in the same fashion Taurus in Scorpio, and 
viceversa; and Gemini in Sagittarius; and so with the other ones in accordance with the series”). 

247. Ibid. Chapter 1.7.7.1, p. 41: At equidem nisi à Deo reueletur hoc negotium, haud credam potuisse 
singulorum graduum plurima experimenta facta fuisse satis vt inde scientia prodiret. […] Ego 
enim de his nil certi me habere profiteor, nisi quod ratiocinatio prædicat: In omnibus terminis, & 
bonos & malos euentus experiri. 

248. Salmasius (1648, pp. 288–292, esp. p. 289): Circa hanc ὁρίων distributionem Ptolemæus 
ab antiquis dissentit. Sed antiquiorem ad exemplum sumemus opinionem, cum Ptolemæi 
nota sit. 

249. There was a posthumous reprint in 1675 under the title Physiomathematica sive Cœlestis 
Philosophia. 

250. See Vitali (1668, p. 190) s.v. Finis (F17) and pp. 495–497 s.v. Termini (T19). In the reprint 
by Bezza and Faracovi (2003), see pp. 230 and 531–533. 

251. Lilly (1647, p. 104): “A Table of the Essentiall Dignities of the PLANETS according to 
Ptolomy.” 

252. Lilly (1647, p. 103). 

254. See p. 73 above, at note 235. 

253. Pico disp. 6.16 (Garin 1946–1952, v. 2, p. 128): iuniores Aegyptiis adhaerent, Graeci Pto- 
lemaeum sequuntur. 
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255. The few remaining astrologers who continued to use the Ptolemaic Terms in the 19th and 
20th centuries unanimously followed Lilly (see Houlding 2007, p. 269, with bibliographi-
cal references in note 15). 

256. See http://www.projecthindsight.com (it originated form The Golden Hind Press, 
founded 1985). 

257. See http://www.cieloeterra.it. This association is centered on the scholarly expertise of G. 
Bezza. My article profited greatly from Bezza’s learned commentary on the first book of 
the Apotelesmatika and their reception (Bezza 1990). 

258. The proceedings have been published in vol. 11 of Culture and Cosmos (2007). A similar 
conference was held in Amsterdam in 2004; for its proceedings see Oestmann et al. 2005. 

cle profited greatly from Houlding’s kind permission to read hers before it went to the 
press, especially with regard to the host of valuable material that she presents. As to the in-
sights that she draws from it, my notes make it clear where I am indebted to her. Note, 
however, that the two articles are dissimilar in purpose and method, mine being chrono-
logically arranged, strictly philological, and interested in the problem of the authenticity of 
the Ptolemaic Terms (while renouncing to the laborious discussion of each one of them).  

260. See Houlding (2007, pp. 286–306), and the twelve pages in Bezza and Fumagalli (online), one 
for each sign, starting with Aries at http://www.cieloeterra.it/articoli.confini/confini01.html. 

261. Houdling (2007, p. 293). 
262. Houlding (2007, p. 307), concludes her article providing an experimental table (Fig. 15) 

of what the Ptolemaic table of Terms should look like when one consistently applies “the 
rules that seem most reliably expressed” (p. 306) in the transmitted values. 

263. Houlding (2007, p. 306) comes to a similar conclusion: “it now seems impossible to vali-
date any historical table of Ptolemaic terms as demonstrably accurate and consistent in its 
logic.” 

264. This is particularly important with regard to Camerarius (1535) and Robbins (1940), who 
except for Apotel. 1.21.28–29 do not follow the Proclus Paraphrase, but manuscripts of 
the direct transmission. 

265. See above p. 46 after note 10. 
266. See the quotation from Lilly p. 74 above and the reference to Pico in note 253. 
267. See, for instance, the correct explanation of the substantial disagreements between Doro-

theus of Sidon and Ptolemy in Holden (1996, p. 33): “The reason is simple: Dorotheus was 
in the mainstream of Greek astrology, and Ptolemy was not.” 

 
 

259. Houlding works from a practitioner’s perspective. Her research project came to my know- 
ledge while I was preparing my own paper on the same topic for Caltech. The present arti-



The Tradition of Texts and Maps  
in Ptolemy’s Geography 

Florian Mittenhuber 

The Preserved Manuscripts 

There remain today fifty-three Greek manuscripts of Ptolemy’s Geography,1 none 
of which were written before the late thirteenth century. There is, therefore, a time 
span of about 1,000 years between the original work and the earliest extant manu-
scripts. The main lines of the textual tradition were outlined in the 1930s, in par-
ticular by Cuntz (1923), Schnabel (1930, 1938), and Fischer (1932a), and are—
more or less—undisputed. However, debate on the relationship between text and 
maps, and especially the tradition of the maps themselves, is far from over. 

The different viewpoints can be summed up as follows: 
 
Cuntz (1923), Fischer (1932a), Schnabel (1938), Polaschek (1965), and 
Schmidt (1999) all argue that Ptolemy’s original work contained maps. Most 
of them are also of the opinion that Agathodaimon designed or reworked the 
maps: Cuntz, Schnabel and Polaschek believe that he worked on the world 
map and 26 regional maps, Fischer on the world map in the first projection. 

By contrast, Polaschek (1965) – for the maps of manuscripts U, K, and 
F – Bagrow and Skelton (1985), Harley and Woodward (1987–1992), Aujac 
(1993), and Berggren and Jones (2000) do not see a tradition in the maps 
dating back to antiquity but rather believe that the maps were reconstructed 
by Planudes in Byzantine times. Sezgin (2000) is even of the opinion that 
Planudes reconstructed all the maps from Islamic models. 
 
The tradition of Ptolemy’s Geography can be divided into two main recensions: 

Ω and Ξ (Fig. 1). Recension Ω, which includes the majority of the manuscripts, is 
subdivided into two further groups: Δ and Π. Group Δ contains parchment manu-
scripts from the end of the thirteenth century, which are the earliest extant manu-
scripts of the Geography, and, therefore, the most important. They are:  
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Fig. 1 The tradition of Ptolemy’s Geography (Stemma) 

U: Codex Vaticanus Urbinas Graecus 82 (Vatican);2 
K: Codex Seragliensis GI 57 (Istanbul);3 
F: Fragmentum Fabricianum Hauniensis Graecus 23 (Copenhagen). 
 
Group Π includes: 
 
R: Codex Marcianus Graecus 516 (=904), beginning of the fourteenth century 
(Venice);4 
V: Codex Vaticanus Graecus 177, probably end of the thirteenth century 
(Vatican).5 
The other recension, Ξ, is represented by one codex only: 
 
X: Codex Vaticanus Graecus 191, middle/end of the thirteenth century 
(Vatican).6 
 
The so-called Codex X is of particular significance, because it contains many 

local names and coordinates that differ from the other manuscripts mentioned 
above, and which cannot be explained by mere errors in the tradition. Unfortu-
nately, none of the coordinates from Geography 5.13.17 onwards of this codex 
were ever copied. 

There are also a small number of so-called Mischhandschriften that have been 
influenced by both recensions. With regard to the tradition of the maps, the most 
important manuscript of this group is: 

 
O: Codex Florentinus Laurentianus Graecus 28.49, beginning of the fourteenth 
century (Florence).7 
 
As regards the maps, we can establish from the start that the textual differences 

between the manuscripts in recensions Ξ and Ω as well as the subdivision of the 
latter recension into groups Δ and Π are apposite to the tradition of the maps. 
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There are basically two different types of map sets: the first has a world map at 
the end of Book 7 and twenty-six regional maps in Book 8, and is the classical set 
on which Ptolemy’s entire work is conceptionally based. A second group of 
manuscripts shows a later redaction, with one world map and sixty-four regional 
maps, included in Books 2 to 7.8 

Altogether, sixteen of the fifty-three preserved Greek manuscripts still contain 
maps. However, not all these sets are complete, and their quality is uneven. Of 
these sixteen manuscripts, only four are of relevance to the tradition of the maps: 
in the classical set with twenty-six regional maps, manuscripts U and K and the 
fragment F are the most important, since their maps have been drawn with great 
accuracy and care; they also follow Ptolemy’s instructions concerning the maps’ 
proportions. The maps of Codex R are far less carefully drawn, and do not follow 
the proportions prescribed by Ptolemy. 

The following investigation focuses mainly on these four primary manuscripts. 
Of the other twelve map-containing manuscripts, only Codex O will be examined, 
since it is undoubtedly the earliest surviving manuscript with sixty-four regional 
maps.9 The other eleven manuscripts (seven with twenty-six regional maps, four 
with sixty-four) are derived, either directly or indirectly, from manuscripts U and 
O, and are, therefore, of secondary importance. 

Manuscripts V and X have no maps. Nevertheless, they are also relevant to the 
tradition of the maps, because they contain notes and scholia which refer to the 
maps of their master copies.10 

The Theoretical Conceptions of Map Drawing:  
The General Concept 

Ptolemy’s Geography can be divided into three sections: 
 
Part 1: Theoretical Introduction (Chapters 1.1–1.24). 
The first part contains the theoretical outlines for drawing world maps. In the introduction 
to Book 1, Ptolemy reflects on the reliability of geographical data in general (Chapters 
1.1–1.5), and follows this with a long critical discussion of the work of his predecessor, 
Marinos of Tyre (Chapters 1.6–1.17). The book closes with Ptolemy’s own conception of 
drawing a world map on a globe and on a plane surface (Chapters 1.18–1.24). 

Part 2: Catalogue of localities (Chapters 2.1–7.4). 
The second part covers Books 2 to 7.11 It begins with a short introduction (Chapter 2.1), 
and then continues with antiquity’s most detailed geographical database, that is, a cata-
logue of eighty-four provinces with about 8,000 localities (cities, rivers, mountains, and so 
on), among them around 6,300 localities that are determined by coordinates, and about 
1,400 peoples and 200 names of regions and seas for which no coordinates are given. The 
oikoumene described by Ptolemy is bound by the Islands of the Blest (Canary Islands) to 
the west, China to the east, Scotland and southern Scandinavia to the north, and Central 
Africa and Indonesia to the south. 
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Part 3: Atlas (Chapters 7.5–8.30). 
The third part of the Geography is a kind of atlas, containing one world map (originally 
there were three) at the end of Book 7 and twenty-six regional maps in Book 8. The maps 
are supplemented by instructions for constructing and drawing the maps, the so-called 
katagraphai and hypographai. Although they complement each other, they do not always 
follow on from each other. For instance, the katagraphe of Chapter 1.24, which contains 
Ptolemy’s detailed instructions for constructing the world maps in two different conical 
projections, is followed by the hypographe of Chapter 7.5, which consists of a brief de-
scription of the borders of the oikoumene and their corresponding parallels, with the addi-
tion of two drawn world maps in the first and second projections. The following chapter 
(7.6) contains a katagraphe for constructing an armillary sphere with an inscribed oik-
oumene, and ends with the hypographe of Chapter 7.7, with an additional world map in 
the third projection.12 

The same system is applied to the regional maps: the katagraphe of Chapter 8.1, which 
contains detailed instructions for constructing the regional maps, corresponds not only to 
the general hypographe of Chapter 8.2 but also to the special hypographai of Chapters 8.3 
to 8.28. These twenty-six chapters (one for each map) contain captions for the maps and 
the lists of “noteworthy cities” (poleis episemoi). 13 Chapters 8.29 and 8.30, which contain 
lists of the provinces and the frame borders of the maps, are probably not Ptolemaic. 

The Appearance of the Maps 

World Maps 

Almost all the surviving world maps are drawn in Ptolemy’s first projection, that 
is, in a simple conical projection with straight meridian lines; only the world map 
in manuscript K shows the second projection, that is, the modified conical projec-
tion with curved meridian lines. All the world maps are divided by thirty-six me-
ridians at intervals of five degrees from each other and by twenty-four parallels, 
starting from the equator and counting twenty-one parallels to the north and two 
parallels to the south. The position of the parallels follows the length of the long-
est day on the corresponding geographical latitude and agrees with the information 
of the corresponding text in the katagraphe of Chapter 1.23.14 

Table 1 Technical information on the parallels in the world maps 

Parallels Longest day Reference location Klima Length in stades 
21st 20 h Thule*  40,854 
15th 16 h Borysthenes 7  
14th 15 h 30′ Central Pontos 6  
12th 15 h Hellespont 5  
10th 14 h 30′ Rhodes* 4 72,812 
8th 14 h Alexandria 3  
6th 13 h 30′ Syene* 2 82,336 
4th 13 h Meroë* 1 86,333 
0 12 h Equator*  90,000 
1st south 12 h 30′ Cinnamon country   
2nd south 13 h Anti-Meroë*  86,333 
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Additional information on the parallels is given in the left margins of the world 
maps (Table 1). The simplest form mentions the number of the corresponding cir-
cle and the length of the longest day: for instance, tenth parallel, longest day 14 h 
and 30 min.15 In some cases, the length of the parallel is also given in stades, in the 
appropriate ratio to the equator, i.e., 90,000 stades multiplied by the cosine of the 
latitude.16 

Together with the number of hours, a reference location is also given: the 
original additions (marked in the table by an asterisk), which appear in all the 
manuscripts in the text of Chapter 1.23, cite the principal parallels of Thule, Rho-
des, Syene, Meroë, the equator and the opposing parallel of Meroë (Anti-Meroë), 
and are, therefore, indispensable for constructing the world maps. They are men-
tioned several times in the different katagraphai and hypographai (Chapters 1.24 
and 7.5–7). The reference locations that were added later appear only on the maps 
and in some of the texts of the secondary manuscripts, and are not relevant for 
constructing the world map. 

These later reference locations are related to the geographical tradition of the 
seven climes or klimata,17 which are zones of the same geographical latitude that 
extend over an area of half an hour of daylight time. These klimata do not appear 
in the text of the Geography but are only inscribed on the maps in relation to the 
corresponding parallels. Thus, we can assume that they did not appear in 
Ptolemy’s original world maps but were added by a later draftsman. 

All the surviving world maps show the twelve zodiacal signs, together with a 
stylized Sun, in the right margin of the map (Fig. 2). The zodiacal signs are 
grouped into two rows and extend between the Winter and the Summer Tropics 
according to the Sun’s position in the zodiac during one year. The names of the 
signs are given in Greek; in some maps, the names of the months are given in 
Egyptian and Latin. All the drawings of the signs on the different maps resemble 
each other and show typical late antique features: for example, the figures are na-
ked. The star catalogue in the so-called Aratus Leidensis, a Carolingian manu-
script containing the Latin translation by Germanicus, which clearly dates back to 
a master of late antiquity, has very similar illustrations.18 

Fig. 2 Zodiacal signs (Codex  
K, fol. 74r.)  
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Fig. 3 Winds (Codex K, fol. 73v.) 

 
 
Surrounding the maps are twelve human heads that symbolize the winds 

(Fig. 3). The names of the winds follow the twelve-part wind rose of Timosthenes 
of Rhodes, mentioned by Ptolemy as an author reference in Chapter 1.15. In a 
twelve-part wind rose, the distance between the single orientations is 30°. In this 
case, they mainly follow the cardinal directions north, east, south and west as well 
as the directions towards the polar circles and the Tropics. Ptolemy explicitly 
states that “the names of the Winds [shall be inserted on the map] in accordance to 
their indications on the armillary sphere at the five mentioned parallels and the 
poles” (7.16.15). However, these instructions are only appropriate to a map of the 
third projection. When this system, which was developed for the armillary sphere, 
is assigned to a world map of the first or second projections, the orientations 
change slightly. Thus, the names of the winds seem originally to have been written 
on a map of the third projection.19 Furthermore, all the surviving world maps are 
based on this reworked version of Ptolemy’s world maps. The original maps, in 
particular those of the third projection, can, therefore, be regarded as lost. 

Redaction with Twenty-Six Regional Maps 

Almost all the surviving manuscripts with maps follow Ptolemy’s original concep-
tion of twenty-six regional maps, divided into ten maps of Europe, four of Africa 
and twelve of Asia. This concept is explained by Ptolemy in the general hypogra-
phe of Chapter 8.2. In manuscripts U and K, all of these twenty-six maps have 
been preserved; in the bifolium of manuscript F, only three half maps have sur-
vived. In these manuscripts the maps are displayed in their original position fol-
lowing the special hypographai of Chapters 8.3–28; that is, after the list of “note-
worthy cities”, the corresponding map is shown. 
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The construction of the maps in manuscripts U, K, and F follows the instruc-
tions given in Book 8 extremely closely, carefully taking into account the ratio of 
the center parallel to the meridian as described in the captions of Chapters 8.3–28, 
as we can see in the recalculated graticule (Fig. 4).20 

 
Fig. 4 Third map of Europe from manuscript K (fol. 80r.): correct graticule 

By contrast, it is clear that, in manuscript R, in which all the maps have been 
assembled at the end of the Geography, the instructions of Chapters 8.3–28 re-
garding the correct ratio have not been understood: as the repetition of the maps’ 
format in manuscript R reveals, these maps have been drawn simply by following 
the framing format of the double page, resulting in an inappropriate distortion of 
the maps (Fig. 5).21 

Redaction with Sixty-Four Regional Maps 

Unlike the twenty-six maps of the aforementioned manuscripts, Codex O and its 
copies contain sixty-four smaller maps. These maps do not appear at the end of 
Book 8 but in the catalogue of localities in Books 2–7, following the description 
of each country. The maps of these versions also use the cylindrical projection. 
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Fig. 5 Third map of Europe from manuscript R (fol. 118v./119r.): distorted graticule 

This raises an important question. Could these sixty-four maps have resulted 
from the division of the original twenty-six maps? If so, the ratio of the center par-
allel to the meridian of the corresponding maps of O (for example, the partial 
maps of Spain) should be the same for each map, even though the latter have dif-
ferent center parallels.22 In the case of an independent drawing of the correspond-
ing maps, different ratios of the center parallel to the meridian would be expected. 

Table 2 Calculated and true ratios in the second and third maps of Europe in MSS U, K, and O 

Maps of MSS 
U and K 

Theoretical ratio 
(Chapters 8.3–8) Maps of MS O Calculated ratio 

(maps of MS O)
True ratio (maps 
of MS O) 

Second map 
of Europe  

3 : 4 = 0.750 Hispania Baetica 37.375° = 0.795 0.800 

 3 : 4 = 0.750 Hispania Lusitania 39.5° = 0.772 0.763 

 3 : 4 = 0.750 Hispania Tarraconensis 42° = 0.743 0.740 

Third map 
of Europe 

2 : 3 = 0.667 Gallia Aquitania 45.75° = 0.698 0.693 

 2 : 3 = 0.667 Gallia Lugdunensis 48.5° = 0.663 0.667 

 2 : 3 = 0.667 Gallia Belgica 49.625° = 0.648 0.662 

 2 : 3 = 0.667 Gallia Narbonensis 44° = 0.719 0.704 
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The data in Table 2 closely corresponds to the recalculated values of the differ-
ent center parallels and the related map, which implies that these sixty-four maps 
were, without any doubt, constructed independently. It seems clear that the copy 
editor of manuscript O decided from the start to create a completely new edition of 
the Geography, integrating all the maps into the catalogue of localities in Books 
2–7 —perhaps because a smaller page format was to be used. For this purpose, the 
space needed for the text and the maps had to be recalculated and, therefore, the 
frames of the maps had to be determined using the maxima and minima of the co-
ordinates, with the correct ratio also recalculated. In this way, the space needed for 
the maps or their respective formats could be determined. 

This conjecture can be backed up by examining the map of Gedrosia, where the 
land does not fit into the frame and extends into the text, protruding into the frame 
of the northern border (Fig. 6). This error obviously resulted from a mistake made 
by the copy editor of manuscript O. He did not recognize the coordinates of this 
point in the text, which is—significantly—not part of the description of the bor-
ders of Gedrosia (6.21.1f.) but can be found in an earlier part of the text, in the 
border description of the Karmanian Desert (6.6.1). From this mistake, an incor-
rect format for the map followed. Such an error would not have occurred had there 
been a map model. 

 
Fig. 6  Map of Gedrosia in 
manuscript O (fol. 86v.): text 
and map clearly overlap 
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Internal Manuscript Agreements and Differences Between 
Text and Maps 

In the broadest sense, the drawing of a map is the translation of a text into an im-
age. When the text contains instructions on how to create the drawing, and the 
original maps have also survived, the text and maps can be checked against each 
other. This is particularly advantageous when—as in the case of the Geography—
some of the connecting links may have been lost and transcription errors may have 
accumulated. Then, agreements and differences found on the maps allow one to 
reconstruct the history of the map tradition. 

Their relevance is twofold: first, agreements and differences between the text 
and the maps in the same manuscript prove that the map has been drawn according 
to the text; second, agreements among the maps of different manuscripts indicate 
an older tradition, especially when these agreements cannot be derived from the 
text. 

The Common Ancestry of Manuscripts U, K, and F 

As shown above, the construction of the maps in manuscripts U, K, and F and 
their positioning in Chapters 8.3–28 are very similar. The technical execution of 
the drawings with their frame borders and the subdivision of the degrees of longi-
tude23 also strongly indicate a common archetype. 

Furthermore, features in the maps common to U, K, and F show additional in-
dications of a common ancestry: for example, the maps contain some needless but 
exactly concordant entries—such as “the two Balearic islands, called Gymnesiai in 
Greek” (2.6.78), which were copied directly from the corresponding text. 

Especially interesting are entries on the maps that have been erroneously taken 
from a misleading textual source. On the fourth map of Europe in manuscripts U 
and K, for instance, we can read the tribe’s name “Protoi Sidones” (the first Si-
dons), whereas the texts of both manuscripts speak of “the first [living south of 
these] are the Sidons” (2.11.21). 

Similar errors can be found in the transmitted coordinates. A good example is 
the legendary Island of Thule on the northern boundary of Ptolemy’s oikoumene 
(Fig. 7): following the transmitted data in the texts (2.3.32), the center of the is-
land is supposed to be situated at 33° of longitude, that is, more than one degree 
further east than the easternmost part of the island (31° 40′ of longitude). Because 
the maps in manuscripts U and K have been drawn according to the coordinates 
given in the texts, the center of the island is located on the eastern edge, while the 
eastern edge has been placed in the center. This inconsistency has clearly been 
caused by a transcription error in the separation of degrees and minutes. By 
making a paleographically simple correction, the coordinates can be changed from 
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λγ° = 33° to λ° γ′ = 30° 20′, and the correct outlines of the island can then be re-
stored. 

 

  

Fig. 7 The island of Thule in manuscript K (fol. 77r.), and the corrected version 

These examples may be evidence that the draftsman closely followed the mas-
ter text and that the maps of manuscripts U and K—all showing the same errors—
have the same ancestry. 

In addition to the textual evidence, drawing characteristics can also be used to 
prove a common tradition for the maps: many characteristics of the drawings in 
the maps of U, K, and F, which cannot be explained by the texts, show significant 
agreement, for instance the system of coloration, the drawings representing riv-
ers,24 and the tendency to connect the mountain ranges.25 

On all the maps of manuscripts U, K, and F, the so-called city vignettes26 have 
two forms: “noteworthy cities” are shown as large vignettes with three pinnacle-
crowned towers, and are marked with a small cross indicating their location. The 
other cities have smaller vignettes without towers but with pinnacles at the top, 
and their location is indicated by a simple dot. The drawings of these vignettes are 
virtually identical. In addition to the location points and their names, the vignettes 
in all three manuscripts have symbols indicating their relationship to a people.27 
With only a few exceptions, these symbols are the same in all the manuscripts. As 
they only appear on the maps, we can assume that they share a common source. 

The maps of manuscripts U, K, and F also concur in the course of their coast-
lines, which cannot be taken from the text: where there are long stretches between 
points determined by coordinates, the course of the coastline was left to the fan-
tasy of the draftsman. However, on the maps of manuscripts U and K the coast-
lines are identical, as the example of the Novantes Peninsula in the north of 
mainland Britain illustrates, even though only three points with coordinates are 
given in the texts. By connecting these points, a simple triangle would have re-
sulted. Therefore, the almost identical coastline on the maps of manuscripts U and 
K again strongly indicates a common source (Fig. 8).28 
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Fig. 8  The identical coastline of the Novantes Peninsula in manuscripts U (fol. 64r.) and K (fol. 77r.) 

Maps in Manuscript R, Copied from the Text of This Manuscript 

It has been demonstrated that solely the available space was used for the map 
drawings in manuscript R.29 The maps in this manuscript, therefore, differ signifi-
cantly in their conception from those in manuscripts U, K, and F and were not 
constructed following the instructions of Book 8.30 This is also true of the drawing 
characteristics. For example, typical features of the maps in U, K, and F, such as 
the drawing of coastlines or rivers, cannot be found on the maps of manuscript R.31 
On the other hand, the latter show some unique characteristics, such as many 
small mountains, not mentioned in the text, that are depicted as river sources. The 
size of the city vignettes in the maps of manuscript R has been determined by the 
available space; no differentiation has been made between normal and “notewor-
thy” cities. 

Indications of the source for the maps in manuscript R are provided by many 
seemingly meaningless entries, such as to metaxy (the middle), showing that the 
draftsman closely followed his textual source. However, this source often seems to 
have been misinterpreted, as can be concluded from the many entries of regions or 
peoples that are also mentioned several times in the text. Where the text displays 
incorrect or missing information, the maps mirror these as well. 

Especially significant are cases where the text of manuscript R contains con-
spicuous errors. For instance, on the second map of Europe, the cities of Juliobriga 
and Morika are missing because in the master text the scribe entered the coordi-
nates of Morika in the line of Kamarika, which is mentioned earlier in the text; 
this has resulted in a gap in the text (2.6.51). As Kamarika now occupies the posi-
tion of Morika on the map and the other cities have been omitted, this map can 
only have been derived from this text.32 Therefore, the inscriptions as well as the 
drawing characteristics of the maps of R clearly point to an R text master as their 
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source. In short, the maps in manuscript R are the result of a remarkable but 
poorly executed attempt to arrive at a new conception of Ptolemy’s maps. 

Maps in Manuscript O, Drawn from the Text of This Manuscript 

As has been shown above, manuscript O is clearly the source of the redaction with 
sixty-four regional maps.33 This opinion is supported by the drawing characteris-
tics of its maps: the basic design concept of the maps in U and K can be recog-
nized in many of manuscript O’s regional maps—for instance, in the coastlines 
and city vignettes. There are also numerous traces of a source in recension Ξ that 
point to a working process in which the texts of both recensions were used as 
sources and in which attempts were made to eliminate errors or correct misleading 
text passages.34 In addition, there are many places in the text and on the maps 
which reveal that the author of manuscript O also used scholia and other textual 
sources, in particular those of Dionysius Periegetes.35 All these characteristics re-
veal that, although the author of manuscript O closely followed the text of O in 
composing the maps, he also had considerable cartographical knowledge. From 
these observations it seems plausible to infer that Codex O was the prototype of 
the conceptually new redaction with sixty-four regional maps that emerged in the 
fourteenth century, and is—in contrast to the maps in manuscript R—of extremely 
high quality. 

Therefore, even if we put the evidence from the drawings aside, there are nu-
merable and unequivocal indications (when the maps in the different manuscripts 
show common characteristics that cannot be deduced from the preserved texts, as 
is the case of the maps of manuscripts U, K, and F, but not of manuscripts R and 
O) that suggest that the maps descend from an independent tradition. From this we 
can conclude that the maps of U, K, and F are descended from a common ances-
tor. The maps in manuscripts R and O, however, closely follow their texts and do 
not lead back to a long tradition of maps; therefore, they are of no relevance to a 
map tradition dating back to antiquity. 

Evidence for a Map Tradition Dating Back to Antiquity 

Evidence from the Extant Maps 

It was shown in the previous section that most of the common characteristics of 
the maps in manuscripts U, K, and F point to a common archetype of this group. 
However, there are also many indications suggesting a map tradition dating back 
to the time before Planudes. The following details on the maps of manuscripts U, 
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K, and F are of special interest, because they not only show a bias on the part of 
the archetype’s draftsman but also provide additional information, and document 
actualities from antiquity, that are no longer part of the text and therefore indicate 
a map tradition dating back to this period. 

In the circumstances, it is worth mentioning that the maps in manuscripts U, K, 
and F have avoided many of the errors in the coordinates of localities that can be 
found in the accompanying texts, sometimes even providing a better version. For 
example, the preserved texts in manuscripts U and K locate the mouth of the River 
Trisanton in Britain at 23° longitude (2.3.4), although this position is impossible, 
since it is located on the other side of the English Channel in the province of Gal-
lia Belgica. However, by positioning the mouth of this river at a longitude of 20° 
20′, the maps of U and K give a more realistic position. The error is clearly palae-
ographical, that is, the copyist accidentally wrote κγ° instead of κ°γ′, resulting in a 
reading of 23° rather than 20° 20′.36 

Especially revealing in this case is the fact that the maps of manuscripts U and 
K and the text of manuscript X match perfectly. Therefore, the copies of the maps 
of manuscripts U and K seem to date back to an earlier version than the corrupted 
copies of the corresponding texts, thereby suggesting that the maps belong to an 
independent and older tradition. 

Differences between the texts and the maps in the localities of peoples point in 
a similar direction, as the positioning of peoples in the catalogue is not given by 
coordinates but by indications relative to other peoples or structures. For instance, 
in the description of Scotland, it is claimed that the “Vacomagi (1) live south of 
the Caledonians (2)” (2.3.13), which is also represented on the maps of manu-
scripts U and K (Fig. 9). However, in the texts of these two manuscripts hyper 
(above) has been mistaken for hypo (below), which would mean that the area in-
habited by the Vacomagi would be inaccurately located on the maps. While the 
texts again contain an easy-to-explain error in the transcription of their source,37 
the maps of manuscripts U and K—again in accordance with the text in manu-
script X—have the correct position. 

 

  

Fig. 9  The positioning of the Vacomagi in manuscripts U (fol. 63v.) and K (fol. 76v.) 
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In addition to the textual evidence for a map tradition dating back to a point be-
fore recensions Ξ and Ω first evolved, there are also indications in the drawings 
themselves. Perhaps the most important indication can be found by examining 
the representations of the two mouths of the Anas and Baetis rivers in Spain 
(Fig. 10), since they appear on the maps of all the manuscripts (including R and 
O). However, the corresponding texts (2.4.3 and 2.4.5) only mention the eastern 
mouth, neglecting any reference to the western mouth. The reason for this seems 
to be a line skip at an early stage of the tradition, as this line is already missing in 
manuscript X. Since the fact that the Anas and Baetis had two mouths is often 
documented in the geographical literature of antiquity,38 it seems reasonable to 
conclude that this was already the case in the Ptolemaic original (which is sup-
ported by the division into east and west). As the maps show the correct infor-
mation, they must reflect an earlier stage of the tradition. If Markianos of Herak-
leia,39 who used sections of Ptolemy’s Geography in the fifth century, only knew 
the eastern mouths of the rivers, we probably then have a terminus ante quem for 
the first occurrence of the textual error and, therefore, also for the maps. 

 

  
Fig. 10 The two mouths of the Anas and Baetis rivers in manuscripts U (fol. 65v.) and K (fol. 78v.) 

Indications in the Manuscripts 

Besides the aforementioned graphical elements, there are also several notes and 
scholia in the manuscripts that point to the maps of their master copies. 

The most important note seems to be the so-called Agathodaimon Subscriptio 
at the end of the texts in the manuscripts of recension Ω: 

Ἐκ τῶν Κλαυδίου Πτολεμαίου γεωγραφικῶν βιβλίων ὀκτὼ τὴν οἰκουμένην 
πᾶσαν Ἀγαθὸς Δαίμων Ἀλεξανδρεὺς μηχανικὸς ὑπετύπωσα. 
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On the basis of the geographical books of Klaudios Ptolemaios, I, the engi-
neer Agathodaimon from Alexandria, have sketched the drawings of the 
whole oikoumene. 

From this it follows that this otherwise unknown mechanikos40 Agathodaimon41 
from Alexandria seemed to be responsible for drawing the maps. 42 The note also 
suggests that a specialist was needed to work on this challenging duty. Because 
manuscript X does not have this note, the work on this redaction might be related 
to the development of recension Ω and may even be its origin. A clear dating of 
the new recension is difficult, but such an undertaking would seem to have been 
rather unlikely after the destruction of the Serapeion of Alexandria in A.D. 391, so 
that one could plausibly date it to the end of the fourth century.43 This dating can 
also be confirmed by the transcription of almost all literature from papyrus rolls to 
the far better durable and easier-to-handle parchment codices, which began, on a 
large scale, in the fourth century.44 

A note at the end of manuscript X (fol. 169v.) states that the master copy of X 
contained twenty-six or even twenty-seven maps: 

Ἐνταῦθα κς πίνακες (sic) κα<τα>τάσσει, ἐν αὐτῃ δὲ τῇ καταγραφῇ κζ· 
τὸν γὰρ ι πίνακα τῆς Εὐρώπης εἰς δύο διαιρεῖ, εἰς ἕνα μὲν τάσσων τὴν 
Μακαιδονίαν, εἰς δὲ ἕτερον Ἤπειρον καὶ Ἀχαίαν καὶ Πελοπόννησον καὶ 
Κρήτην καὶ Εὔβοιαν. 
Here he prescribes twenty-six maps, but in the katagraphe itself there are 
twenty-seven. For he divides the tenth map of Europe into two maps, putting 
Macedonia in one, Epirus, Achaea, the Peloponnese, Crete and Euboea in 
the other. 

Evidently, the draftsman of the maps divided the tenth map of Europe because 
of the numerous entries and the resulting lack of space. Therefore, the master copy 
must have contained twenty-seven regional maps,45 which also proves that at least 
one of the manuscripts of recension Ξ must have once contained maps, and—as in 
recension Ω—twenty-six regional maps. Unlike the members of group Δ, these 
regional maps all seem to have been assembled at the end of Book 8 (as in R), 
which might explain why they did not survive. 

The following scholia in manuscripts V and R are less well known: at the be-
ginning of Book 8 (fol. 213r.) and at the end of the original text of the Geography 
after Chapter 8.28 (fol. 237r.) in manuscript V, two scholia can be found pointing 
to the maps of its master copy. The first scholion reads: 

 
Ἐνταῦθα καταγράφεται ὁ πίναξ ὁ περιέχων ὅλην τὴν οἰκουμένην, μεθ’ ὃν 
γράφεται ταῦτα ἕως τοῦ ‘ὁ πρῶτος πίναξ τῆς Εὐρώπης’. Εἶτα γράφεται 
ἐκεῖνο ἑπόμενου τοῦ πίνακος μετὰ τοῦ ’ὁ δεύτερος πίναξ’. 
Here the world map is shown, after which this text [i.e. Chapters 8.1–3] is 
written up to the heading First Map of Europe. Then, the following 
[i.e. Chapter 8.4] is written, followed by a map in relation to the heading 
Second Map <of Europe>. 
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The second scholion reads: 
 
Ταῦτα ὀφείλει γραφῆναι μετὰ τὸν τελευταῖον πίνακα. 
The following has to be written after the last map [i.e. the twelfth map of 
Asia]. 

 
Therefore, both scholia indicate not only that the master copy of V included a 
world map and twenty-six regional maps but also that the maps were placed in the 
same order as the maps in manuscripts U, K, and F.46 

In manuscript R, the eastern half of the first map, the entire second map and the 
western half of the third map of Asia are missing. Because the eastern half of the 
third map of Asia comes immediately after the western half of the first map of 
Asia (fol. 129v./130r.), it can be assumed that the maps which should have been 
positioned between these two were included in one folio, which was later removed 
or fell out of the volume. 

However, we cannot explain the non-existence of the fourth map of Africa in 
this way, because the surrounding maps have survived. A clue lies in a note posi-
tioned below the third map of Africa (fol. 129r.): 

 
Γύρισον τὸν πρῶτον πίνακα τῆς Ἀσίας καὶ εὑρήσεις τὸν τέταρτον πίνακα 
τῆς Λιβύης, ἐπεὶ διὰ τὴν σμικρότητα τῶν μοίρων καὶ τὴν στενότητα τοῦ 
τεύχους ἐτέθη ἐάσαι ὡς ἔχει. 
Turn over the first map of Asia and you will find the fourth map of Africa, 
since because of the smallness of the grid and the density of entries it has 
been decided to leave it as it is. 
 
Clearly, in the codex to which this scholion refers, the fourth map of Africa 

could be found on the reverse side of the first map of Asia. This map was taken 
from the master copy, without any changes having been made to it, and placed in 
the new codex, perhaps because the draftsman found the densely inscribed map 
too onerous. In addition, we can assume that this decision was made after the 
maps had been completed. In any case, according to the scholion, the fourth map 
of Africa was placed where the folio containing the second map of Asia, which is 
now lost, should have been. Maybe this folio was pasted over or damaged and 
therefore removed for repairing. However, the folio was never reinserted. 

As Codex R is not damaged here, the scholion cannot relate to the state of 
manuscript R itself. Therefore, it must have already been included in the master of 
R and points to the master’s master, which may have been written on a larger for-
mat, which would then explain the difficulties the draftsman had copying all the 
information from the larger maps onto smaller ones.47 Furthermore, the small 
format might explain why there is no world map. Essentially, though, it can be 
concluded that the maps in R can be traced back to at least two generations of 
transcriptions. 
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In addition to such direct indications to maps in master copies that are now lost, 
the preserved maps contain other clues that cannot be dated exactly; usually, they 
can be found at the end of the main text of the Geography. 

In recension Ω Chapter 8.29 contains a list of ninety-four provinces. The same 
list also survives in one version of recension Ξ: it can be found in manuscript X at 
the end of Chapter 7.6. If we compare the different versions of this list, their 
common origin becomes clear. By contrast, the maps show only eighty-four prov-
inces, which are color-coded. These are exactly the same provinces given in the 
catalogue of localities in Books 2–7, with a description of their borders (perioris-
mos), which proves that the number of provinces on the maps is the original num-
ber. Since neither the number nor the names on the accompanying maps corre-
spond to those in the list of provinces, it follows that the maps cannot stem from 
this list. Therefore, the map tradition must predate the composition of Chapter 
8.29 and go back to a point before the development of recensions Ω and Ξ. There-
fore, the list of provinces in this chapter seems to come from a world map, perhaps 
because it was deemed necessary to have a kind of index of the world maps. This 
may have occurred when the two recensions first evolved, when the lists got their 
current form and position inside the Geography. 

Additional indications from the manuscripts regarding the tradition of the maps 
can be derived indirectly from the chapter headings in the catalogue of localities 
and from the tables of contents of the individual books, which have a larger num-
ber of countries and regions. None of the maps, however, have been touched by 
changes made to the texts. Clearly, during the tradition of the texts several sub-
headings seem to have been misread as chapter headings, which would explain the 
rise in the number of names of regions.48 These chapter headings, as well as the ta-
bles of contents, do not belong to the original version of the Geography, but are 
rather a result of later technical amplifications to the book.49 

External Testimonia for the Maps in the Texts of Other Authors 

These findings can be supported by several external testimonia from late antiquity 
and Byzantine times that relate to lost codices of Ptolemy’s Geography containing 
maps. 

A testimony relating to Ptolemaic maps can be found in Cassiodorus’ Institu-
tiones50 (c. A.D. 560), in which the author recommends that his monks read the 
Geography 

 
Tum, si vos notitiae nobilis cura inflammaverit, habetis Ptolemaei codicem, 
qui sic omnia loca evidenter expressit, ut eum cunctarum regionum paene 
incolam fuisse iudicetis. Eoque fit, ut uno loco positi, sicut monachos decet, 
animo percurratis, quod aliquorum peregrinatio plurimo labore collegit. 
(Institutiones 1, 25). 
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If you are taken by the noble interest in the knowledge (of geography), you 
have the codex of Ptolemy at your hand, which represents all locations so 
illustratively that one can get the impression he would have been at home 
everywhere. Therefore, you can visit in your mind all that others have 
collected information about in burdensome travels – staying at home, which 
is the duty of monks. 
 
If we admit that the text of the catalogue of localities consists, in large part, of 

topographical names and their coordinates only (which do not lend themselves to 
being illustrated), it seems hard to believe that Cassiodorus would have used the 
expression omnia loca evidenter expressit. However, his choice of words are par-
ticularly apt for describing the maps. Therefore, this testimony can only point to a 
sample of Ptolemy’s Geography illustrated by maps. 

There are also other clues, dating from late antiquity, from which we can de-
duce a usage of Ptolemaic maps: evidence in the writings of Markianos of Herak-
leia,51 of Ammianus Marcellinus (fourth century)52 and of Jacob of Edessa (seventh 
century),53 as well as in the anonymous books Diagnosis and Hypotyposis, which 
seem to have originated in the fifth or sixth centuries.54 The evidence that can be 
deduced from these works is related to passages of text that cannot be understood 
without using the maps. Therefore, at the end of the fourth, during the fifth and at 
the beginning of the sixth centuries, the existence of late antique (that is, written in 
majuscule) codices of the Geography can be confirmed by several sources. It 
would have been during this period that the carrying out of learned work would 
have moved from Alexandria to Constantinople. It is no coincidence that the well-
known palimpsest of Strabo, written in slightly slanted majuscule, dates from ex-
actly the same period, that is, the end of the fifth and the beginning of the sixth 
centuries. What remains of the palimpsest are contained in the two codices re-
scripti Vaticani Graeci 2306 and 2061A. That Ptolemy’s Geography was copied 
during this period due to a reawakening of interest in geographical works is en-
tirely plausible.55 In any case, the “very old manuscript” that Planudes rediscov-
ered and which formed the archetype of the so-called group Δ (manuscripts U, K, 
and F and their copies) must have been written during this period.  

Another unmistakable testimonium of a map-containing manuscript is given by 
the Byzantine scholar Maximus Planudes (c. 1255–1305), who lived—as we know 
from an ex libris in Codex V56—in the Chora monastery (Istanbul). In a poem, 
written in hexameter, Planudes enthuses over the recovery of an extremely old and 
splendid manuscript of the Geography that “had been hidden for countless 
years”.57 This manuscript obviously contained maps the colors of which Planudes 
compares to a woven dress of Athena or a meadow of flowers. 

If Planudes, who had undoubtedly seen many extremely precious manuscripts 
during his work as a philologist, praises the rediscovered manuscript so enthusias-
tically, we can assume that it must have been an exceptional codex. It seems rea-
sonable to suppose that it had survived from late antiquity and that it had been 
written in majuscule. 
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Fig. 11 Calligraphical entries in majuscule in manuscripts U (fol. 74r.) and K (fol. 85r.) 

This might explain the many majuscule errors in manuscripts U and K, and the 
almost identical calligraphical entries in majuscule on the maps of U and K, which 
were quite rare in the time of Planudes (Fig. 11). 

One can only conjecture the origin of this manuscript: it is highly likely that it 
came from the area of activity of Athanasios II, Patriarch of Alexandria. In this re-
gion we can also find traces of a Ptolemaic map tradition in Islamic culture. The 

his work Mur  (Meadows of Gold),58 written in about A.D. 950 in 
Egypt. In addition to several citations, there are also Islamic maps that point to the 
use of Ptolemaic maps. 

In an eleventh-century manuscript59 of the Kitab surat al-ard (Book of the Im-
age of the Earth), written by al-Khwārizmī (ninth century),60 there are four re-
gional maps, among them one of the Nile (Fig. 12). The drawn representation of 
the river’s course as well as the position of the klimata strikingly resemble the 
Ptolemaic maps; therefore, this Islamic map must go back to a Ptolemaic master. 

 

uj al-dhahab
Islamic polymath al-Mas’ūdī, for example, mentions a colored Ptolemaic atlas in 
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Fig. 12 Left, the River Nile by Ptolemy (MS K, fol. 99r.) and, right, by al-Hwarizmi (MS Stras-
bourg 4247) 

Reconstruction of the Different Stages of the Map Tradition 

To sum up our conclusions: at first glance, most of the clues mentioned in the 
manuscripts only prove that the drawn map is based on the text of the accompany-
ing manuscript. This can be seen when textual errors occur on the maps as well as 
in the texts, as happened in R and O, and on occasion in U, K, and F, for example 
in the case of Thule. 

However, where the different maps show common characteristics that cannot 
be deduced from the texts, as frequently occurs on the maps of manuscripts U, K, 
and F, it is clear that they must descend from a common archetype. As examples 
of this, the following characteristics can be cited from the maps of U, K, and F: 
the color-coding for different regions, the identical symbols for cities and peoples, 
the identical course of the coastline of the Novantes Peninsula, and the similar rep-
resentations of rivers and mountains. 

In addition, there are many indications on the maps of manuscripts U, K, and F 
that not only show a bias of the archetype’s draftsman but also provide additional 
information and document actualities from antiquity that are no longer part of the 
texts and therefore point to a copying process based on a set of maps that must 
predate the master copy that was used for the text. Of special interest is evidence 
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common to recensions Ω and Ξ, for example, in the instances of the mouth of the 
River Trisanton or the locating of the peoples in Scotland, where the maps of U 
and K, together with the text of X, provide a more accurate version of names and 
coordinates than the texts of U and K. Presumably, they can be dated to a period 
before the main lines of tradition of Ω and Ξ were separated in late antiquity. The 
same can be deduced from the information concerning the two mouths of the Anas 
and Baetis rivers, where the maps have not be affected by errors introduced into 
the texts and, therefore, show the state of the rivers (the fact that they then had two 
mouths) as it was in antiquity. 

Furthermore, other evidence suggests that the maps surely predate Planudes, 
for instance the mentioned scholion in R, which points to procedures in the copy-
ing process of the ancestor of R. In general, the very fact that the maps have sur-
vived or that their existence is confirmed by scholia in all the primary manuscripts 
point to a map tradition dating back to before Planudes. Therefore, one can as-
sume from the findings in the preserved manuscripts that the masters for the maps 
date back to late antiquity, which can be substantiated further by the zodiacal signs 
and the wind heads on the world maps and from the majuscule inscriptions on the 
maps, which are preserved in manuscripts U and K. Planudes’ description of the 
extremely old manuscript “that had been hidden for countless years” fits this con-
clusion nicely. 

 
and others strongly supports a map tradition that can be traced from antiquity up to 
the time of Planudes. The belief held by some that Ptolemy’s maps are new con-
structions from Byzantine times, and even the proposition that Ptolemy’s Geogra-
phy did not contain any maps at all, clearly contradict the facts that have been pre-
sented here. All the evidence suggests that—similar to the star constellations in 
the tradition of the Almagest—a continuing map tradition, dating back to Ptolemy 
himself, must have existed.61 

Notes 

The external evidence provided by Agathodaimon, Cassiodorus, al-Mas’ūdī

                                                           
1. Schnabel (1938, pp. 5–37). 
2. Fischer 1932a (investigation of the maps) and 1932b (facsimile of Codex U). 
3. Deissmann (1933, pp. 89–93), see also Diller (1940, pp. 62–67). 
4. Furlan (1981, pp. 30–48), Mioni (1983, pp. 57–67). 
5. Burri (2003, pp. 127–136). 
6. Müller (1880, pp. 300–305). 
7. Bandini (1764–1770, vol. 2, p. 71). 
8. Some of the manuscripts from this redaction contain four maps giving an overview of the 

continents. However, a scholion published by Fischer (1932a, p. 105, note 1) reveals that 
these maps are new constructions taken from the Codex Mediolanensis Ambrosianus 997 
(middle of the fourteenth century). See also Schnabel (1938, pp. 17–18). 

9. See section “Redaction with Sixty-Four Regional Maps” below. 
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10. See section “Indications in the Manuscripts” below. 
11. The books have been ordered in such a way as to facilitate the drawing of the maps (2.1.4), 

i.e., the descriptions of the regions usually run from the top left-hand corner (north west) to 
the bottom right-hand corner (south east). Thus, Book 2 covers northern and western 
Europe, Book 3 southern and eastern Europe, Book 4 Africa, Book 5 western Asia, Book 6 
Arabia and Central Asia, and Book 7 India and southeast Asia. 

12. Some of the later Latin manuscripts, e.g., Codex Parisinus Latinus 4801 (fol. 74r.), contain 
a representation of an armillary sphere. 

14. The maps in manuscripts U, K, and F have the same errors in noting down degrees as the 
text in Chapter 1.23 of recension Ω, e.g. at the seventh parallel, 27° 30′ instead of the cor-
rect 27° 10′; or at the sixteenth parallel, 51° instead of the correct 51° 30′; the maps in O 
correspond to the text (seventh parallel 27° 40′ instead of the correct 27° 10′) and in this re-
spect joins recension Ξ. See also Schnabel (1938, pp. 47–49), Diller (1941, pp. 4–7). 

15. These data appear on the right-hand side of the world map in O, while the left side contains 
the latitude data for the corresponding parallel in degrees. 

16. The length of the tenth parallel on 36° of latitude can be calculated according to the follow-
ing formula: 90,000 × cos 36° = 72,812 stades. 

17. The word klima is mentioned in the Geography 1.15.5f. in relation to Marinos, and in 5.9.16 
as well as in 7.5.15 as a general term for the most northerly regions of the Earth. The group-
ing of the German cities into four zones separated by parallel circles (2.11.27ff.) is also not 
related to the seven klimata (which would be klimata 7–10). The word is used in a similar 
way in the Almagest (Syntaxis 1.5): where the parallel circles are defined numerically, the 
word klima is not used (but the tables in Syntaxis 2.13 follow the order of the first seven 
klimata. On the question of the klimata in general, see Honigmann (1929, pp. 4–24 and 55–
60); on its usage in the Almagest, see Toomer (1984, p. 19). 

18. Cod. Leidensis Lat. Q 79, ninth century; cf. Bischoff and Eastwood (1987). 
19. In a similar way, the same is true of the scholia on the armillary sphere following Chapter 

8.29 (in manuscript X following Chapter 7.7) as well as of the table of the Sun’s path, 
which only survives in recension Ω (8.29.31a). 

20. The special hypographai in Chapters 8.3–28 lack important data for constructing the maps: 
for instance, every map has information on the ratio of the center parallel to the meridian, 
but not on the borders of the maps, the position of the center parallel, or the map’s format. 
Therefore, the maps in manuscripts U, K, and F occasionally differ from each other. 

21. One argument in favour of this assumption is that the frames of the empty double pages that 
follow the twelfth map of Asia have the same dimensions as those of the other maps. 

22. This would also be the case in a drawing following the specific hypographai in Chapters 
8.3–28, which in Codex O were also designed for 26 regional maps. 

23. The degrees of longitude in U, K, and F are divided into twelve parts by red and black lines 
according to the following system: full degrees are in long, black lines; half degrees are in 
long, red lines; one-third degrees are in black, half long; one-quarter degrees are in short, 
red lines; sixth and twelfth part degrees are in short, black lines. 

24. A fitting example is the River Danube in Pannonia, where the course of the river in the 
maps of U, K, and F is drawn skilfully around the vignettes of the Pannonian cities in very 
similar ways. Comparable cases can be found in the drawings of Spain’s rivers, which show 
remarkable meanders in the maps of U and K, even though no meanders are mentioned in 
the texts. 

25. In the maps of U and K mountain ranges have been connected and are often used as areas of 
the sources of rivers. This is especially striking in the mountainous source of the Dorias and 
Tagos rivers on the second map of Europe, which is not mentioned in the text. This un-

13. Related to this list is the Kanon of Noteworthy Cities, which is transmitted as a part of 
Ptolemy’s Handy Tables (procheiroi kanones). A complete edition of this list can be found 
in Stückelberger & Mittenhuber 2009, 136-217; see also Mittenhuber & Koch 2009. 
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named mountain region, which does not belong to the original text of the Geography, is 
shown in the maps of U, K, and F in exactly the same way. 

26. Fischer (1918, pp. 49–52; 1932a, pp. 143–146) claims that the cities on the original maps 
were at one stage differentiated into even more classes, containing “second-” and “third-
class cities”. I am not of this opinion. 

27. The maps with symbols for different peoples are: Europe 1 (Britain), Europe 2 (Spain), 
Europe 3 (Gallia), Europe 6 (Italy), Europe 10 (Greece), Asia 1 (Asia Minor), Asia 4 
(Syria), and Asia 10 and 11 (India). 

28. A clear indication of this are the drawn characteristics of the hypothetical land bridge con-
necting Africa and southeast Asia on the southern border of the oikoumene, as is shown in 
the world maps of manuscripts U and K. 

29. See section “Redaction with Twenty-Six Regional Maps” above. 
30. The maps contain no meridians or parallels; the remarks in the right margin for the parallels 

are often inaccurate or incorrect. 
31. In manuscript R, some structures have not been carefully separated and others have been 

omitted altogether; this has resulted in either an inexact or incongruent course of the provin-
cial borders or a non-conforming coloration of the regions. 

32. A similar example can be found on the fourth map of Europe, where, because of an error in 
the catalogue of localities in the text of manuscript R (2.11.1), the name of the Cimbrian 
Peninsula has been inserted between the mouths of the Visurgios and Albis rivers; as a con-
sequence, the people living on the peninsula have been wrongly located on the maps of 
manuscript R. 

33. See section “Redaction with Sixty-Four Regional Maps” above. 
34. This can clearly be seen by examining the representation of the Kemmena Mountains in 

Gallia, where the editor of O has amended a long-standing mistake in the coordinates and 
correctly repositioned the concerned cities and peoples. 

35. This is proven by the inclusion of ὃς καὶ Πεπηγὼς καλεῖται ἢ Κρόνιος ἢ Νεκρός ([the Hy-
perborean Sea], which is also called the Frozen Sea, Sea of Kornos or the Dead Sea) on the 
map of Hibernia, which can only be found in the text of O and follows Dionysius v. 32. 
Other examples are the city of Tartessos in the Baetica (Dionysius v. 337) or the two Libur-
nian peoples of the Hylleioi and Boulimeis (Dionysius vv. 386f.), which are also only men-
tioned on the maps of manuscript O. 

36. As in the case of Thule (see section “The Common Ancestry of Manuscripts U, K, and F” 
above), a simple transcription error in the separation of degrees and minutes occurred. An-
other typical error is when a single number sign has been mistakenly omitted, e.g., μ° γ' (40° 
20′) instead of μγ° γ' (43° 20′). 

37. This error can be even more easily understood when one takes into account that in manu-
scripts words often ended in ligatures. 

38. Strabo 3.1.9 (Anas and Baetis); Avienus vv. 208 (Anas) resp. 288f. (Baetis), Mela 3.5 
(Baetis). 

39. See Müller (1882a, pp. 515–562). 
40. A mechanikos could be a technician like Heron of Alexandria (c. first/second century A.D.), 

who was renowned for his construction of machines and their descriptions, illustrated by 
drawings (on the illustrations of the Heron manuscripts, see Stückelberger 1994, pp. 99–
109).  

41. Agathodaimon’s name appears in antique literature several times; an overview is given in 
Ganschinietz (1918). 

42. The view that Agathodaimon was the draftsman only of the world map (see Fischer 1932a, 
pp. 118–119) is unconvincing: Agathodaimon explicitly mentions “all of the eight books of 
the Geography”. 

43. The oldest known subscriptions date from the end of the fourth century. See the subscriptio 
by an unquestionably antique specialist of gynaecological drawings (gynaikeios hypozogra-
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phos) in a Soranus manuscript (Cod. Paris. Graec. 2153, fol. 218v.), mentioned by Stückel-
berger (1994, pp. 92–93). 

44. On this point, see also Hunger (1961, pp. 47–49). It cannot be merely coincidental that, in 
his study guide, Cassiodorus explicitly mentions a Codex Ptolemaei (for more on this, see 
below). 

45. Cf. Müller (1880, p. 301), Schnabel (1938, p. 10). 
46. Presumably, the codex had a folio format, which would explain why in the smaller Codex V 

the maps have been omitted; see also the notes in the scholion to Codex R. 
47. The fact that, in regions with a high density of entries (e.g., Italy, Greece or Egypt), the cit-

ies are only marked by a dot on the map itself, and their names are noted in the margins, 
confirms this assumption. 

48. For example, Armenia Minor appears in the texts of many of the manuscripts as a separate 
chapter, even though there is no description of its borders; on this topic, see especially Dil-
ler (1939, pp. 228–238). 

49. The same is true of the instructions to the draftsman that can be found at the end of the ta-
bles of contents of Books 2, 4, and 5. 

50. Mynors (1937). 
51. See end of section “Evidence from the Extant Maps” above. 
52. Ptolemy is mentioned explicitly in Ammianus’ Res Gestae (22.8.10); see Fischer (1932a, 

pp. 483–487), Polaschek (1965, pp. 764–772), den Boeft et al. (1998, p. 130). 
53. Hjelt (1892). On the topic, see Fischer (1932a, pp. 452–462), Schmidt (1999, pp. 57–66). 
54. Müller (1882b, pp. 488–493; 1882c, pp. 494–509); new editions by Mittenhuber 2009c and 

2009d 
55. The Strabo tradition converges with the Ptolemy tradition several times: the Strabo Codex 

Parisinus Graecus 1393 (end of the thirteenth century) was written by the same hand as the 
Ptolemy Codex Seragliensis GI 57 (see Diller 1975, pp. 70-71. and 89-97.); the Ptolemy 
codex Athous Vatopedi 655 (fourteenth century) also contains the text by Strabo (see Diller 
1937, pp. 174–184). 

56. Claudii Ptolemei liber Geographie et est proprius domini maximi philosophi greci ac 
monachi in monacerio Chore in Constantinupli. Emptus a quodam Andronico Yneote. It is 
not certain whether Planudes really did own Codex V (see Burri 2003, pp. 131–136); but in 
any case it is not this codex to which the poem refers. 

57. Poem by Planudes vv. 28f.; Stückelberger (1996, pp. 197–205). 
58. de Meynard and de Courteille (1861–1877). 
59. The manuscript is dated 1037 and today belongs to the University and Regional Library of 

Strasbourg (Codex 4247). 
60. See also von Mzik (1926), Wieber (1974). 
61. The topic of the present paper is treated in more detail, in German, in Mittenhuber (2009a); 

see also Stückelberger and Mittenhuber (2009), esp. pp. 34-108 and 322-357. 
 
 
 
 
 
 
 
 
 
 
 
 
 



Islamic Reactions to Ptolemy’s Imprecisions 

F. Jamil Ragep 

Consider the following quotation from the author of the treatise Fī sanat al-shams 
(“On the Solar Year”), most likely written in Baghdad in the first part of the ninth 
century: 

Ptolemy, in persuading himself that the period of the solar year should be taken according 
to points on the ecliptic, also persuaded himself as to the observations themselves and did 
not in reality perform them; coming from his imagination, this was of the greatest harm 
for what was described for the calculations (Morelon 1987, p. 61; my translation). 

Or the following from Ibn al-Haytham in the eleventh century: 
When we investigated the books of the man famous for his attainment, the 
polymath in things mathematical, he who is [constantly] referred to in the 
true sciences, i.e. Ptolemy the Qlūdhī, we found in them much knowledge, 
and many things of great benefit and utility. However when we contested 
them and judged them critically (but seeking to treat him and his truths 
justly), we found that there were dubious places, rather distasteful words, 
and contradictory meanings; but these were small in comparison with the 
correct meanings he was on target with (Ibn al-Haytham 1971, p. 4). 

As the quotation from Ibn al-Haytham indicates, there was a real ambivalence 
towards Ptolemy among Islamic scientists. Widely respected, he was held by 
many of them to be a paragon of the mathematician whose truths transcended cul-
tural and religious difference. And yet it was also clear that there were many flaws 
in his various works, many of which were puzzling and led to a variety of doubts 
(shukūk [ἀπορίαι]). There has been a great deal written in recent years about the 
doubts regarding his models. (For a summary, see Sabra 1998). In this paper, I 
would like to turn to another aspect of the Islamic doubts toward Ptolemy and 
other Greek astronomers, namely observations. 
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by providing some examples. I will then try to characterize these differences. And 
lastly I will provide some reasons, admittedly speculative, that might account for 
these differences. 

Before continuing, let me explain a few terms that I will be using. By exact 
methods, I mean those mathematical and observational procedures that could 
potentially lead to accurate results. By accurate results, I mean those that are in 
accord with modern values. Now exact methods may or may not lead to accurate 
results, depending on the underlying mathematical and observational tools that are 
used. Results may be precise, i.e. to several digits, without being accurate, since 
many of these digits could be spurious, i.e. the result of carrying out calculations 
to a greater precision than supported by the original data or measurements. In or-
der to determine accuracy, one needs to engage in testing, i.e. checking received 
values by some means to determine their accord with newer observations or theo-
ries. I distinguish between confirmation of earlier parameters or results that leads 
to the acceptance of a received value, and the testing of parameters or results that 
may or may not lead to the revision of those values. (I’ll have more to say about 
this later.) 

Let us take as our first example the measurement of the size of the Earth. 

The Measurement of the Earth 

There is a heroic story that is well-known in the secondary literature about the 
early measurements of the Earth. Eratosthenes (3rd c. BCE), head of the library of 
Alexandria, is said by Cleomedes (1st c. BCE) to have measured the size of the 
Earth using a simple but effective means (see Fig. 1). This consisted of taking a 
known distance along a meridian in linear distance, finding its equivalent angular 
distance, and then setting up a proportion that would yield the meridional circum-
ference. Eratosthenes is said to have taken the linear distance between Alexandria 
and Syene (modern day Aswan) to be 5,000 stades, and he found the angular dis-
tance to be 1/50 of a complete circle. In addition, Eratosthenes evidently made the 
following assumptions: 

(a) Syene is on the tropic of Cancer, so there would be no shadow cast by the Sun 
at noon on the day of the summer solstice. 

(b) The Sun is at an infinite distance, so all its rays are parallel. 
(c) Alexandria and Syene are on the same meridian. 

For quite some time, I have had the impression that there is a significant differ-
ence between the types of observations one finds in antiquity and those one finds 
in the Islamic world, beginning sometime in the early ninth century during the 
ʿAbbāsid period. In what follows, I shall first try to give a sense of the differences 
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Fig. 1 Eratosthenes’ measurement of the Earth’s circumference 

Now all three assumptions are false; the effect of (b) is negligible, but (a) and 
(c) could cause some distortion. But of more effect on the accuracy of the final re-
sult are the “observations” of 5,000 stades and 1/50 of a circle. Now the roundness 
of these numbers, as well as the final result of 250,000 stades, immediately puts 
one (or should put one) on guard. These numbers are just too nice. But let’s give 
Eratosthenes the benefit of the doubt. The 5,000 stades could be rounded from 
some value close to 5,000 (and given the uncertainties involved this might be rea-
sonable), and the 1/50 is said to have been from an observation of a shadow cast in 
a bowl at the summer solstice. But several modern authors have cast doubt on 
whether these numbers were the result of actual observations. R.R. Newton, for 
example, proposed that the 1/50 was calculated based on latitude differences, or 
more likely on equinoctial noontime shadow differences, between Alexandria and 
Syene (Newton 1980, p. 384). And others have pointed out that a survey of linear 
distance between Alexandria and Syene would have been difficult to attain in an-
tiquity to any degree of accuracy and that Eratosthenes was probably relying on 
travelers’ reports (Dutka 1993, p. 62). 

Other reports we have of Greek values for the Earth’s circumference confirm 
the sense that we are dealing with “guesstimates” of various sorts (see Table 1). 
Besides the obviously rounded numbers, the post-Aristotle values are divisible by 
the standard Babylonian base 60. The one exception that proves the rule is the 
value that comes out of Eratosthenes’ reported observations, namely 250,000, 
which was changed to 252,000 (perhaps by Eratosthenes himself?) in order to be 
divisible by 60. 
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Table 1 Greek values for the circumference of the Earth (cf. Dutka 1993) 

Authority Circumference (stades) 
Aristotle 400,000 
Anon. (mentioned by Archimedes and Cleomedes) 300,000 
Eratosthenes 250,000 
Eratosthenes 252,000 
Posidonius 240,000 
Posidonius 180,000 
Ptolemy 180,000 

 
A number of historians have attempted to save these numbers by coming up 

with truly ingenious arguments to show how accurate they are, based upon one or 
another of the many modern equivalents for an ancient stade. But as D. Engels has 
show in the case of Eratosthenes, such tortuous reconstructions have little to do 
with the historical record and much to do with the wishful thinking of modern his-
torians. In fact, Eratosthenes’s stade is most likely the Attic stade, which has an 
approximate length of 185 m (1/8 of a Roman mile), resulting in a circumference 
of 46,250 km, about 15% too great (Engels 1985). 

Despite the error in Eratosthenes’ result, I am reluctant to say that this is simply 
a case of a calculated value based upon latitudinal intervals expressed either in 
stades or shadow ratios. It seems to me possible, and given the amount of ancient 
testimony likely, that Eratosthenes and others “confirmed” the calculated values 
using observations of various sorts. Now one might ask how one can confirm an 
error that is within the limits of observation (cf. Rawlins 1982), but here the dis-
tinction between a confirmation and a test is important to keep in mind. Science 
students confirm results all the time, and it is the naïve teacher indeed who thinks 
that all the confirmations are the result of rigorous testing. Testing assumes that 
the observer wants to modify the received values, but I don’t think this is what 
was going on with the values listed in Table 1; rather, modifications are much 
more likely based upon changing equivalences of a stade. 

The conclusion that these values were unreliable is, interestingly enough, the 
judgment reached during the early ʿAbbāsid period. We have very good evidence 
that indicates that the Caliph al-Maʾmūn (r. 813–833) was not happy with 
Ptolemy’s 180,000-stade figure and wished to have it tested. (The following is a 
summary of a more extensive treatment in Ragep 1993, v. 2, pp. 501–510, which 
includes references; cf. King 2000 and Mercier 1992, both of whom evince a cer-
tain degree of skepticism regarding the Maʾmūnī measurement of the Earth. 
Though certain details are in doubt, in my opinion the amount of contemporane-
ous evidence makes a strong case for some sort of scientific observations ordered by 
Maʾmūn. Furthermore, there is no reason to distrust the evidence regarding 
Muḥammad ibn Mūsā, which is based upon his own words.) A text attributed to 
Muḥammad ibn Mūsā, one of the famous Banū Mūsā who was a protégé of Maʾmūn, 
as well as later sources, indicates that Muḥammad undertook a “confirmation” by 
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simply taking the latitude difference of two Syrian cities, Raqqa and Palmyra 
(assumed on the same meridian) with Ptolemaic latitudes of 35°20′ and 34°, 
respectively. (The modern values are 35°58′ and 34°35′; in actuality, Raqqa is 
about 45′ east of Palmyra.) Since the Ptolemaic distance was given as 90 Roman 
miles, this did more or less confirm the Ptolemaic value of 66⅔ miles/meridian 
degree or 180,000 stades for the Earth’s circumference. (Note this is based upon a 
Roman mile of 7.5 Ptolemaic stades rather than the 8 Attic stades presumably used 
by Eratosthenes; see above.) What is interesting about this story is that Maʾmūn 
seems not to have been happy with this “confirmation,” perhaps because he was, 
correctly, not convinced that his astronomers knew the exact length of a Roman 
mile. Maʾmūn’s reaction, judging from a number of reports, was then to order a 
scientific expedition to find a meridian degree by means of a survey. A group was 
sent to the Plain of Sinjār in upper Mesopotamia. (The Sinjār area is located in the 
northwestern part of Iraq and constitutes approximately 2,250 km2 of a flat plain. 
Sinjār Mountain (1,460 m height) is the major geomorphological feature in the 
area.) The method we find described in Ibn Yūnus (d. 1009 CE) is instructive. 
Two groups, one going due north, the other due south, laid out survey lines using 
long ropes until the Sun’s altitude descended or ascended one degree. The two 
groups then came back to the starting point and compared notes and arrived at an 
average figure of 56 Arabian miles. (There are other reports giving slightly differ-
ent numbers.) Since we know that each of these miles was 4,000 cubits, and we 
also know that the cubit used at the time of Maʾmūn was approximately 49 cm, 
Carlo Nallino in the early 1900s concluded that the Maʾmūnī value for the circum-
ference of the Earth was within a few hundred kilometers (off by less than 1%). It 
is instructive to compare this with a recent attempt by the MIT physicist Phillip 
Morrison and his wife Phyllis Morrison to measure a meridian line along 
370 miles of US 183, running between Nebraska and Kansas. Taking two observa-
tions of Antares at the beginning and end of the trip and using the car’s odometer 
to measure distance, they came up with a circumference of 26,500 statute miles, 
off by about 6% (actual value 24,900) (as reported by Dutka 1993, p. 64). 

Here we can usefully distinguish, I believe, between the conventionalist at-
tempt by Muḥammad ibn Mūsā to confirm the Ptolemaic value with Maʾmūn’s 
demand to test that value. We can also say that Muḥammad was using an ap-
proach not all that different from what seems to have occurred rather frequently in 
antiquity—taking a received value and then using some observation or other 
means to confirm that it was approximately correct without seeking in any way to 
modify it. What seems new here is that a patron, in this case representing the state, 
is intervening to demand observational accuracy. While state patronage of science 
was certainly not unprecedented (one thinks of the Ptolemies and several Sasanian 
rulers not to mention Babylonian and Assyrian kings), this type of personal inter-
vention by Maʾmūn as reported in contemporary accounts does seem to mark a 
new departure (Langermann 1985). We will return to this below. 
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The Length of the Year and the Sun’s Motion 

The Ptolemaic length for the tropical year, as well as others reported from anti-
quity, were clearly at variance with what was observed in the ninth century; the 
problem was how to interpret these conflicting values. Ptolemy’s (and most likely 
Hipparchus’s) length for a tropical year (365d5h55m12s) is about 6 min per year too 
long, so over the 300 years between Ptolemy and Hipparchus there would have 
been almost a 30-h disparity between, say, a predicted vernal equinox by Hip-
parchus for Ptolemy’s time and an actual observation made by Ptolemy himself. 
And indeed Ptolemy’s reports of the times of equinoxes and summer solstices are 
about a day later than they should have been, which is one of the bases for saying 
that he faked his observations in order to keep Hipparchus’s value. By the time we 
reach the ninth century, this discrepancy would have reached well over 4 days! Of 
course, Maʾmūn’s astronomers and Muḥammad ibn Jābir al-Battānī (d. 929 CE) 
had a longer baseline to work from than did Ptolemy, so it would be surprising, 
not to say shocking, if they hadn’t modified Ptolemy’s length for the tropical year. 
But let us look at this another way. Ptolemy decided not to tamper with the year he 
had inherited from Hipparchus, despite the fact that there would have been a dis-
crepancy of more than a day. The Islamic astronomers of the ninth century had, in 
some ways, a more difficult problem to confront. How were they to understand the 
values they had inherited from the Ancients? Were they simply better observers 
than their predecessors or were there actual changes that had occurred in the inter-
vening years in the motion of the Sun and, perhaps, in that of the stars as well that 
might account for the observed variations? 

Thābit ibn Qurra (d. 901 CE) wrote his friend and collaborator Isḥāq ibn 
Ḥunayn asking him if he knew of a solar observation between the time of Ptolemy 
and Maʾmūn. (See Ragep 1996 for details on this (esp. pp. 282–283) and on what 
follows in this section.) There are several things at work here. Presumably, he 
wanted to check how well Ptolemy’s tables would predict this intermediate posi-
tion of the Sun, which might indicate whether changes in the Sun’s motion and/or 
parameters had occurred in the years since Ptolemy. But I suspect he also wanted 
to ascertain whether this new observation might give a clue regarding the variation 
in year-lengths, which might then be coordinated with the varying precessional 
rates reported by Ptolemy and Maʾmūn’s astronomers (1°/100 years for the former, 
1°/66 years for the latter). Briefly, the reported differences in year-lengths could 
be the result of a speeding up of the rate of precession, here interpreted to mean a 
variable speed of the eighth orb containing the fixed stars that would be transmit-
ted to the solar orbs, causing the Sun to reach the vernal equinox sooner than it 
would otherwise and thus resulting in a variation in the tropical year (see Fig. 2). 
Given this possibility, Battānī in his Zīj (astronomical handbook) entertains 
the idea that variable precession (whether or not connected with an oscillatory  
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Fig. 2 A continuous speeding up (by trepidation or some other means) of the motion of the 
Eighth/Fixed Star Orb is here transmitted to the Sun’s orbs, causing the Sun to reach the fixed 
vernal equinox sooner than it would with a simple monotonic precession. Battānī claims this might 
explain the differences in year-lengths reported by the ancients and early Islamic astronomers. 

 
trepidation motion) could explain the observations. Here we may turn to Tables 2 
and 3 for an indication of what Battānī had in mind. Table 2 lists the tropical year 
lengths (and corresponding solar speeds) from the ancients and his own observa-
tions. (Note the odd value for Hipparchus, which is at variance with the normal  
 
 
Table 2 Year-lengths and solar motion as reported by Battānī 

 Years since Nabonassar 
(Julian year) 

Length of tropical year 
in days 

Motion of Sun per 
Egyptian year 

Babylonians 0 (–746) 365 1/4 + 1/120 
(=365;15,30) 

359°44′43″ 

Hipparchus 600 (–146) 365 1/4 (=365;15) 359°45′13″ 
Ptolemy 885 (+139) 365 1/4 – 1/300 

(=365;14,48) 
359°45′25″ 

Battānī 1,628 (+882) 365 1/4 – (3 2/5)/360 
(=365;14,26) 

359°45′46″ 
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reading from the Almagest; Battānī, who elsewhere indicates that Ptolemy used 
the same year length as Hipparchus, may here be fudging the figures to indicate a 
steadily decreasing year-length.) Table 3 represents my reconstruction of the ef-
fect of variable precession, following Battānī’s suggestion and using his year-
length and reported precessional difference between him and Ptolemy to calculate 
the earlier values. Note the close relationship between the predicted year-lengths    

Despite noting this correlation between an increasing rate of precession and an 
increased speed of the Sun (and thus a decreasing length of the tropical year), Bat-
tānī indicates his dilemma and that of the first generations of Islamic astronomers: 
how could he know whether Ptolemy’s values were correct or whether Ptolemy 
was simply a bad observer and/or whether he was using an instrument that had 
been miscalibrated or had warped over time. So Battānī must leave the matter as 
undecided, with the hope that what he calls “true reality” will be attained over 
time. By the thirteenth century, most eastern Islamic astronomers, with several 
hundred years of reliable data behind them, were able to conclude that Ptolemy’s 
year-length was bogus and that variable precession to account for the ancient val-
ues was unnecessary (Ragep 1993, v. 2, p. 396). 

 
Table 3 Effect of variable precession on year-lengths (reconstructed according to the suggestion 
by Battānī, indicating the correlation between a shorter tropical year and an increasing rate of 
precession) 

 Precession 
1°/x yearsa 

Precession y 
seconds/yearb 

Tropical year in 
daysb 

Motion of Sun per 
Egyptian yearb 

Babylonians 1°/261 years 14″/year 365;15,8 
(365;15,22=sidereal 
year) 

359°45′5″ 

Hipparchus 1°/125 years 29″/year 365;14,53 359°45′20″ 
Ptolemy 1°/100 years 36″/year 365;14,45 359°45′27½″ 
Battānī 1°/66 years 54½″/year 365;14,26 359°45′46″ 
aRounded to the nearest year. 
bIn general, rounded to the nearest second. 

The Obliquity of the Ecliptic 

A third example concerns Ptolemy’s value for the ecliptic, 23°51′20″, which has 
always been a bit mysterious inasmuch as it is off by almost 11 min. In a recent ar-
ticle, Alexander Jones provides us with a plausible and compelling argument for 
the origins of this number as well as another indication of Ptolemy’s observa-
tional procedures (Jones 2002b). Jones shows that with a simple calculation 
one can get this result, or one very close to it, from a rounded value for the lati-
tude of Alexandria of 31° (based upon an equinoctial shadow ratio of 3:5), the 
5,000-stade distance of Alexandria to Syene (presumed on the Tropic of Cancer), 

in Table 3 and the reported ones in Table 2. 
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and a circumference of the Earth of 252,000 stades. The ratio of the arc between 
the tropics, i.e. 47°42′40″, and 360° then translates by continued fractions into the 
enigmatic ratio 11/83 that is given by Ptolemy. Again we see the curious way in 
which Ptolemy has taken a Hellenistic value (probably from Eratosthenes) with 
evidently little attempt to verify it or its underlying parameters. (It is worth noting 
that Ptolemy’s own latitude value for his hometown of Alexandria (30°58′), 
apparently taken from Eratosthenes’ rather crude methods of equinoctial shadow 
ratios, is off by a quarter degree.) 

Moving into the ninth century, we again have a familiar tale. Maʾmūn’s astrono-
mers arrived at a figure of 23°35′, which is accurate to about half a minute. But 
again there was confusion: was their value the correct one, allowing them to safely 
discard Ptolemy’s, or had the obliquity actually been changing? In point of fact, 
the obliquity had been changing, but not so drastically as implied by Ptolemy’s 
figure. There are reports of early attempts to deal with this by postulating an addi-
tional orb that would eventually lead to the obliteration of the obliquity entirely, 
leading to catastrophe in the opinions of some because of the subsequent lack of 
seasons. By the tenth century, there began to appear a number of creative attempts 
to deal both with a changing obliquity and a changing rate of precession, in part, 
no doubt, because early models meant to deal with a changing obliquity probably 
were seen (correctly) as interfering with the precessional rate (Ragep 1993, v. 2, 
pp. 396–408). While these attempts to provide models that would explain both the 
ancient and Islamic values for the obliquity were progressing apace, there were 
quite a few new measurements of the obliquity as we can see from Abū al-Rayḥān 
al-Bīrūnī’s (d. ca. 1050) reports presented in Table 4 (al-Bīrūnī 1954–1956, v. 1, 
pp. 361–368). Note that most of these values are accurate to within a minute. 
(Bīrūnī himself notes that the two outliers, Abū al-Faḍl ibn al-ʿAmīd and Khujandī, 
were due to instrumental error.) 

Bīrūnī describes the ecliptic ring needed to make the observations and remarks 
that it needs to be large enough in order to inscribe divisions in minutes. We also 
have a report from Ibn Sīnā (Avicenna; d. 1037), who gives a much less detailed 
account of earlier work in the appendix to his own Almagest that is part of his 
monumental work, al-Shifāʾ. There he merely reports that an observation of 23°34′ 
had been made after Maʾmūn’s time. But then Ibn Sīnā gives his own observation 
to the nearest half minute, namely 23°33½′. This is a remarkably good value 
inasmuch as the estimate using modern tools gives 23°33′53″ for 1030. We have 
another report by Ibn Sīnā’s long-term collaborator, ʿAbd al-Wāḥid al-Jūzjānī, 
who, writing after Ibn Sīnā’s death, tells us that in Isfahan he obtained a value of 
23°33′40″, which for 1040 would have been correct to within 8 or 9 s (al-Jūzjānī, 
Khilāṣ kayfiyyat tarkīb al-aflāk, Mashhad MS Āstān-i Quds 392 (=Mashhad 
5593), p. 96). How they obtained such astonishing accuracy is not entirely clear, 
since they have not left us with detailed observational notes. We do, though, know 
that Ibn Sīnā was very interested in observations and invented an innovative 
observing device of some sophistication (Wiedemann and Juynboll 1927). It is 
also worth mentioning here that Ibn Sīnā claimed to have observed a Venus transit 
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and also found the longitude distance between Jurjān and Baghdad to be 9°20′ 
[modern: 10°3′; traditional: 8°] (Ragep and Ragep 2004, p. 10). Although Bīrūnī 
did not think much of Ibn Sīnā’s astronomical abilities, it is interesting that Bīrūnī 
basically ended up “confirming” the Maʾmūnī observations, whereas Ibn Sīnā and 
his circle seem to have embarked upon a serious observing program to test, and 
modify, previous results. Whether the remarkably accurate values they came up 
with are a matter of accident or due to innovative observational techniques remains a 
matter of conjecture. (It is worth noting that although the normal human visual 
acuity is limited to 1 min of arc, it is possible under certain circumstances involv-
ing the observation of a moving object to become hyperacute, with the capability 
to distinguish even 5 s of arc (Buchwald 2006, pp. 620–621)). 

 
Table 4 Obliquity reports from Bīrūnī’s al-Qānūn al-Masʿūdī 

Observer Obliquity value Modern estimate 

Euclid 24° 23°44′ (for –300) 

Eratosthenes/Hipparchus 23°51′20″ 23°43.5′ (–250)/23°43′ (–150) 

Ptolemy 23°51′20″ 23°40.5′ (140) 

Indian Group 24° 23°38′ (500) 

Yaḥyā b. Abī Manṣūr 23°33′ 23°35′25″ (830) 

Sanad ibn ʿAlī 
23°34′ (23°33′52″ or 
maybe 23°33′57″ or 
23°34′27″) 

23°35′25″ (830) 

Damascus tables 23°34′51″ 23°35′25″ (830) 

Banū Mūsā in Sāmarrā’ 23°34½′ 23°35′25″ (830) 

Banū Mūsā in Baghdād 23°35′ 23°35′25″ (830) 

Manṣūr b. Talḥa/Muḥammad b. ʿAlī al-
Makkī 23°34′ 23°35′16″ (850) 

Sulaymān b. ʿAṣma with  
parallax adj. 23°33′42″ 23°35′5″ (875) 

Sulaymān b. ʿAṣma without  
parallax 23°34′40″ 23°35′5″ (875) 

Battānī/Ṣūfī/Būzjānī/Ṣaghānī 23°35′ 23°34′53″ (900) 

Abū al-Faḍl ibn al-ʿAmīd 23°40′ 23°34′30″ (950) 

Khujandī 23°32′21″ 23°34′19″ (970) 

Bīrūnī 23°35′ 23°33′58″ (1020) 
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Confirming vs. Testing 

Let us look a bit more closely at the distinction I am trying to make between con-
firming and testing. (For the following, I am much indebted to Sabra 1968.) One 
often finds derived forms of the verb iʿtabara to indicate something like testing in 
the sense of checking whether a received value or parameter is correct; this is what 
Bīrūnī uses when saying that he wishes to test his predecessors’ values for the 
obliquity. We also find another word, imtiḥān, which is used in the names of some 
zījes such as the Mumtaḥan Zīj of the early ʿAbbāsid astronomer Yaḥya ibn Abī 
Manṣūr, and also in works that are meant to weed out incompetents, such as al-

gers). Now Ptolemy, of course, also uses the idea of testing in various places in the 
Almagest. For example, in Almagest VII.1 he discusses the question of whether all 
stars or only those along the zodiac participate in the precessional motion. He pro-
poses testing this by comparing his stellar observations with those of Hipparchus. 
Now the word used for comparison is σύγκρισις and for test πεῖρα. When the Al-
magest was first translated into Arabic by al-Ḥajjāj ibn Maṭar (early ninth cen-
tury), he used iʿtibār for σύγκρισις and tajriba for πεῖρα. Later, in the second half 
of the ninth century, Isḥāq b. Ḥunayn would translate σύγκρισις as muqāyasa and 
πεῖρα as al-miḥna wa-ʾl-iʿtibār thus using two words for one. Since Isḥāq some-
times uses iʿtibār to translate σύγκρισις, A.I. Sabra has suggested that he may 
well have been trying to capture the idea of testing values over a longer interval by 
using the two words together. There are many examples in Islamic astronomy of 
the use of the conjoined al-miḥna wa-ʾl-iʿtibār or of one or the other alone to indi-
cate testing. And Sabra has argued that iʿtibār from an astronomical context was 
used by Ibn al-Haytham for his idea of testing optical theories in his Kitāb al-
manāẓir. (Note that the Latin translator of this work used experimentum for 
iʿtibār.) 

Let me suggest that something more has been added in the translation process. 
When Isḥāq rendered πεῖρα as al-miḥna wa-ʾl-iʿtibār, he may well have meant to 
convey a stronger form of testing, one that was not simply a confirmation. Indeed, 
the word miḥna had attained a certain notoriety in the ninth century, since it was 
the inquisitory procedure used during the reign of the Caliph al-Maʾmūn to test 
adherence to the imposed state dogma of the createdness of the Qurʾān. Isḥāq was 
not translating in a vacuum. He was certainly aware that the author of Fī sanat al-
shams believed that Ptolemy’s πεῖρα for the solar year was suspect (see above). 
And his collaborator Thābit ibn Qurra was, as we have seen, suspicious as well. 
Thus this linguistic turn of phrase could well have reflected what had already hap-
pened in the first half of the ninth century, a felt need to critically test Ptolemy’s 
parameters. 

But what was the basis of this “need”? Given the many examples we have in 
Greek astronomy of confirmation rather than testing, I think we can safely say that 
there is nothing natural about testing with the intention to modify what has been 

Qabīṣī’s (10th c.) Risāla fī imtiḥān al-munajjimīn (treatise on testing the astrolo-
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received. Thomas Kuhn long ago made a persuasive case for the normalness of 
working within the paradigms of normal science, and though Kuhn did not neces-
sarily have the safeguarding of parameters in mind, one can certainly understand 
the reluctance to change established values, especially something as entrenched as 
the length of the year. What seems to me in need of explanation are the many ex-
amples in early Islamic astronomy that point to a process not of confirming but of 
critical testing, with an intention and methodology that could result in revisions, 
sometimes drastic, to the received and heretofore accepted values. 

Let us once again look at the case of measuring the Earth. Recall that 
Muḥammad ibn Mūsā seems to have followed the tried and true method of con-
firming earlier values in the way he went about using Ptolemy’s Geography to 
show that Ptolemy’s value was correct. But note the intervention of Maʾmūn, who 
exhibited a healthy skepticism and called for a new, indeed revolutionary, ap-
proach to the problem—he insisted upon each value being independently derived 
using reproducible methods that resulted in testable values. And from a modern 
perspective, the results are very good indeed. 

Now the question arises: what could possibly have motivated Maʾmūn? Of 
course in the case of the size of the Earth, the obvious answer might be that he 
wanted to be able to have a basis for making maps of his vast empire, which was 
growing all the time. But to me this practical argument, though appealing, lacks a 
certain sufficiency. Didn’t any ruler before Maʾmūn want a good value for the size 
of the Earth, going back to the Ptolemies and continuing through to the Romans, 
the Persians and many others? And this does not serve to explain the reports that 
show Maʾmūn riding his astronomers to produce better results on a whole range of 
observations (Langermann 1985). My own preference would be to see this as a 
kind of cultural transformation, one of many, that resulted from the appropriation 
of Greek science into Islam. Part of this transformation involved a much greater 
number of people involved in the enterprise, as is evidenced by Bīrūnī’s list of ob-
servations of the obliquity. One can well sympathize with Ptolemy, who after all 
was a pioneer in many ways without a huge body of good observations at his dis-
posal. But I think he also inherited an ambivalence about the phenomena that 
might well have stymied an excessive demand for accuracy. Though exactly what 
Ptolemy’s philosophical and metaphysical stances may have been regarding ulti-
mate reality is unclear, the Platonist strand at the time was strong, and Ptolemy 
may well have had to contend with attitudes such as we find in Proclus 
(4th c. CE): 

The great Plato, my friend, expects the true philosopher at least to say goodbye to the 
senses and the whole of wandering substance and to transfer astronomy above the heavens 
and to study there slowness-itself and speed-itself in true number. But you seem to me to 
lead us down from those contemplations to these periods in the heavens and to the 
observations of those clever at astronomy and to the hypotheses they devised from these, 
[hypotheses] which Aristarchuses and Hipparchuses and Ptolemies and such-like people 
are used to babbling about. For you desire indeed to hear also the doctrines of these men, 
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in your eagerness to leave, so far as possible, nothing uninvestigated of what has been 
discovered by the ancients in the inquiry into the universe. (Proclus, Hypotyposis; 
translation by Lloyd 1978, p. 207, who also provides the Greek text). 

What would the early Muslims have made of all this? I think, and here I must 
speculate, that they would have been profoundly puzzled. The religion of Islam 
reemphasized the concept of monotheism (tawḥīd) and the nobility of the created 
world. Thus in theory a Muslim so inclined could (some would say should) try to 
understand that world and its Maker’s intentions. For a Platonist, this is a fool’s 
errand, since what we experience through our senses is definitely not the Real. 
Furthermore Islamic law by its very nature emphasized the here and now to a re-
markable extent despite the strong Islamic belief in the afterlife. How might these 
tendencies have influenced the course of Islamic science? In at least three ways. 
On the one hand, the earliest Islamic theological writings indicate an extensive 
interest in the material world and the type of world that would be compatible with 
God’s will and intentions (Dhanani 1994). Another way in which interest in the 
mundane world could have been encouraged was in the demand for evidence 
brought by Islamic jurisprudence (uṣūl al-fiqh) and by the requirements needed to 
establish correct historical reconstructions to divine the Prophet’s actual sayings 
and deeds (the ḥadīth). The third is the effect these religious aspects had on Helle-
nistic philosophy and philosophers in Islam. Though they were arch rivals, the 
mutakallims (theologians) and falāsifa (Hellenized philosophers) grudgingly 
acknowledged the presence of one another and reacted to each other’s doctrines. 
One of the ways that this manifested itself was in the striking transformation of 
what we can call the philosophy of science of Islamic philosophers. It has been 
customary to refer to such people, such as al-Kindī, al-Fārābī and Ibn Sīnā 
(Avicenna), as neo-Platonists. But these are very odd neo-Platonists. As should be 
clear from Ibn Sīnā, he had more than a passing interest in the phenomenal world 
held in such low esteem by the neo-Platonists of late antiquity. And even when 
those neo-Platonists wrote on astronomy, as Proclus did in his Hypotyposis, we 
can not help but notice his skepticism (as above), something one rarely finds in the 
philosophers of Islam. The insistence by Islamic philosophers and astronomers on 
the importance of empirical studies, manifested, for example, in Ibn Sīnā’s strik-
ing observational program and in Fārābī’s studies of contemporary musical prac-
tice, also bespeak a shift from late antiquity. 

Could this shift in attitude account for Islamic astronomical exactitude? Here 
again we can only speculate since it is difficult to establish the relationship be-
tween ideological tendencies and actual practice. And we need to keep in mind 
that critical testing was episodic not universal in Islamic astronomy. Even Bīrūnī 
would seem to have succumbed to bouts of “confirmationism.” And in the thir-
teenth century it is striking that no less a personage than Quṭb al-Dīn al-Shīrāzī 
was skeptical about the Maʾmūnī value for the Earth’s circumference and thought 
it better to return to the authority of the Ancients (Ragep 1993, v. 2, pp. 509–510). 
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But the ongoing interest in observations and the ever increasing size of the instru-
ments to make those observations—eventually culminating in the creation of the 
large-scale observatory—were often justified in terms of glorifying God’s creation 
(Ragep 2001). If my suspicions are correct, it would seem that one of the unexpected 
consequences of the transplantation of ancient astronomy into Islamic soil was the 
subtle yet potent effect of monotheistic creationism in encouraging the astronomer 
to pay close attention to the sensual, phenomenal, and mundane world. 

 
 



The Use and Abuse of Ptolemy’s Tetrabiblos  
in Renaissance and Early Modern Europe: Two 
Case Studies (Giovanni Pico della Mirandola 
and Filippo Fantoni) 

H. Darrel Rutkin 

Not so very long ago, astrology was taught within the scientific curriculum of the 
finest European universities, especially in Italy, where it was taught from at least 
the beginning of the fourteenth through the middle of the seventeenth centuries. 
According to the University of Bologna’s 1405 statutes, which articulate the basic 
structures of arts education in the premodern Italian universities, astrology was 
primarily taught in the four-year mathematics course, although it was also taught 
in different respects in the natural philosophy and medical courses. After prerequi-
sites in arithmetic, geometry and elementary mathematical astronomy, the students 
began their study of astrology proper in the third year; in the fourth, they advanced 
to the higher levels of scientific astronomy and astrology by reading two of 
Ptolemy’s fundamental texts, the Almagest and Tetrabiblos.1 

Nevertheless, the actual teaching of Ptolemy’s Tetrabiblos at medieval, Renais-
sance and early modern universities, in Italy and elsewhere, is not well under-
stood. Indeed, the basic bibliographical and textual studies for understanding 
Ptolemy’s Nachleben for this period in Europe have not yet been accomplished. 
The Ptolemy volume in the Kristeller-Cranz-Brown Catalogus Translationum et 
Commentariorum is a glaring desideratum.2 To help develop the picture, I recently 
began to study a teaching manuscript from a year-long course on the Tetrabiblos. 
Delivered at the University of Pisa in 1585–1586, Filippo Fantoni (ca. 1530–1591) 
taught the entire text in 118 lectures during Galileo’s last year as a student there, 
but we have no direct evidence that he actually took the course. I will discuss how 
Fantoni used Ptolemy in this teaching manuscript as the second case study.3 

The first case study will explore how Giovanni Pico della Mirandola (1463–
1494) attempted to use Ptolemy, a pro-astrological authority of the highest magni-
tude, to undermine astrology.4 This was part of Pico’s methodology to turn the astro-
logers’ own arguments against their art in his extensive and multifaceted attack, 
the Disputationes adversus astrologiam divinatricem (Disputations against 
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Divinatory Astrology), which was composed in 1493–1494 and published, post-
humously, in 1496.5 I will approach Ptolemy’s use and abuse in Renaissance and 
Early Modern Europe by exploring two main themes of Pico’s attack on and 
Fantoni’s defense of astrology: (1) the disciplinary structure of astronomy-
astrology, including its configuration within the broader map of knowledge, and 
(2) its natural philosophical foundations. Ptolemy discussed these issues in the 
first four chapters of the Tetrabiblos. 

Pico 

At the end of his short but intense life, Giovanni Pico della Mirandola attacked 
astrology with every means at his disposal, rhetorical, philological, empirical, and 
otherwise. His use and abuse of Ptolemy is part of the larger dynamic of Pico’s 
use of authorities in the Disputations against Divinatory Astrology, a study yet to 
be undertaken. My first case study will provide an introduction to this rich and 
interesting subject; indeed, Ptolemy’s Tetrabiblos looms large in Pico’s 
Disputations, casting long shadows over the entire text.  

Pico’s attitude toward Ptolemy was respectful but mixed, with his complex 
usage deeply conditioned by his overall aim to destroy—not reform—astrology. 
Although truly respectful, Pico was ever willing to co-opt Ptolemy’s arguments 
and authority to support his overall destructive aim, in part because Ptolemy 
himself often criticized the earlier astrological tradition. As one of the most 
influential mathematical theorists and practitioners of all time, Ptolemy’s 
astrology was for Pico his only problematic feature. I will now explore how Pico 
used Ptolemy to attack and undermine astrology both explicitly and implicitly. 
Rarely launching a frontal assault, Pico normally attacked Ptolemy’s views 
without naming him. When named, however, it was usually positive, emphasizing 
his role as astrological critic. 

Pico discussed astrology’s place within the map of knowledge at the very 
beginning of the Disputations. After insulting astrology as the mother of all 
superstitions, a loaded theological term, Pico defines what he means. His 
definition relates directly to Ptolemy’s articulation in Tetrabiblos I, 1 of what 
became the standard premodern configuration of the science of the stars, but Pico 
does not mention this explicitly: 

But when I say astrologia, I do not understand that which measures the sizes and motions 
of the stars with mathematical argument, a certain and noble art, most honest in its 
benefits, and approved especially by the authority of the most learned men; but that 
which announces what will happen from the stars, a fraud of mercenary mendacity, 
prohibited by laws both civil and papal, retained by human curiosity, ridiculed by 
philosophers, worshipped by quacks, suspected by the best and most prudent, etc.6 

Pico refers here to the standard distinction between the two sciences of the stars, 
what we call astronomy and astrology, where astronomy measures the heavenly 
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motions and astrology treats their influence. His only description of the latter is 
that it announces what will happen from the stars (quae de sideribus eventura), 
which he then proceeds to abuse. Pico here differentiates the terms astronomia 
and astrologia, thus distancing himself from the practice of Ptolemy, Regio-
montanus (1434–1474) and most others. In normal usage, the same term, either 
astronomia or astrologia, in either Greek or Latin, refers indifferently to both sci-
ences of the stars, which are, nevertheless, conceptually differentiated in the same 
way Pico does here, but without his anti-astrological attitude.7 

Pico then further distinguishes these subjects before rapidly devolving again 
into vituperation. The upshot of his discussion is that we should not be deceived 
by the similarity of names. Astrology has sneaked surreptitiously into the 
otherwise respectable company of the liberal arts, along with the legitimate 
science of mathematical astronomy, like a wolf in sheep’s clothing. As Pico knew 
well, however, this disciplinary configuration was well-entrenched at the finest 
contemporary universities, including three he attended: Bologna, Padua and 
Ferrara. This context, with the odds of success stacked greatly against him, deeply 
informed Pico’s attack and its vehemence. 

In book one of the Disputations, Pico explicitly discusses this disciplinary 
structure in Guido Bonati and Ptolemy. After roundly criticizing all modern 
astrologers, Pico confronts the thirteenth century astrologer and writer: 

There is Bonatus among those of the highest authority; not only is he ignorant of 
philosophy, but he obviously raves and is delirious. Read the first book of his On 
Judgments, in which he himself introduces the work; I am lying if you do not judge this 
man worthy of hellebore. Where he is less stupid, he draws up certain arguments by which 
he proves that astrology is true; why should I call them false? One should rather call them 
puerile and ridiculous.8 

After this abusive introduction, Pico turns to a criticism of interest for our 
purposes: 

But he thinks this is the most efficacious [argument]: that the quadrivium would be des-
troyed if astrology were removed; for it is one of the four mathematical arts. See how he 
does not even know what he professes! For this divinatory astrology, which we are 
refuting, is as far from that enumerated among the mathematical [arts] as light is from 
darkness, as truth from falsehood.9 

After stating Bonati’s claim, Pico again showers him with abuse. Nevertheless, 
within both Bonati’s thirteenth- and Pico’s fifteenth century contexts with their 
characteristic disciplinary structures, Bonati’s claim is perfectly sound in using 
astrologia to refer to both sister sciences of the stars. Pico, on the other hand, 
provides a revisionary definition that terminologically distinguishes astronomy 
from astrology while delegitimizing astrology. 

After further abuse, Pico presents an argument to support his interpretation: 

And this one indeed, which claims to predict the future, cannot stand, if that prior and truer 
one [mathematical astronomy] were removed; but the corresponding argument [does not 
follow], that, when the divinatory [part] has been removed, also the mathematical would be 
taken away. This is so clear, even to those who have only attained to the first elements of 
these arts, that it would be superfluous to declare this with more [arguments].10 
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Pico thus disposes of Bonati’s argument by distorting his intention and ridiculing 
his results. 

To support this interpretation, Pico then turns explicitly to Ptolemy’s central 
text at Tetrabiblos I, 1: 

Ptolemy himself, in the introduction to the Tetrabiblos after he speaks of a twofold 
astronomia, nevertheless, referring to the prior mathematical discussion, he says thus: 
“The first of these, which has its own science, desirable in itself even though it does not 
attain the result given by the second [“astrology”], has been expounded to you as best we 
could in its own treatise [the Almagest].”11 

This passage from Ptolemy supports Pico’s misleading analysis of Bonati’s 
argument, where the removal of mathematical astronomy destroys astrology but 
not vice versa. This, however, was not the intent of Bonati’s argument, as Pico 
well knew. Bonati’s point was that if you remove “the science of the stars,” 
whether you call it astrologia or astronomia, you will remove one of the four 
mathematical arts (whose internal features he did not distinguish for this purpose), 
and thus destroy the fourfold nature of the quadrivium. Pico here thus appropriates 
Ptolemy’s argument for his own anti-astrological purposes. Pico began by 
redefining Ptolemy’s disciplinary structure without mentioning him, then he 
explicitly used a related element of that same structure to support his distortion of 
Bonati’s argument, even though it coheres precisely with Ptolemy’s analysis. 

Pico attacked astrology’s natural philosophical foundations in book III of the 
Disputations. His argument repays close analysis: 

At the same time as the astrologers say that every motion below depends on the motion of 
the heavens (motum omnem inferiorem a caeli motu dependere), they immediately 
contradict their teaching, since that commonplace among the philosophers follows from 
this, that the caelum is a universal cause of lower effects. Moreover, a universal cause 
does not distinguish effects, nor is why this comes-to-be or that sought from it, but from 
proximate causes, which are varied and different, to account for the difference and variety 
of effects; and since something makes different things from these [proximate causes], a 
universal cause makes everything with all [the proximate causes]. Since this appears 
obviously in things diverse in nature and species, it is amazing that they [the astrologers] 
do not understand by how much more the same thing should be believed about the variety 
of individuals, which, by how much more it is particular and, drawing its origin more from 
matter, it can be referred less particularly to a formal and universal cause. But who does 
not see that the heavens generate a horse with a horse, a lion with a lion, and that there is 
not any position of the stars under which a lion is not born from a lion, a horse from a 
horse.12 

Pico here discusses the caelum as the most universal cause along with two types of 
proximate causes: the specific form (the formal cause) and the matter (material 
cause). The caelum, then, is the universal efficient cause, which must work with 
the specific form and matter to generate individuals. Just as differences of seeds 
determine different species (on the species level), so differences in matter 
differentiate the individual members of species.13 

Ptolemy also treats these issues in Tetrabiblos I, 2, where he argues that astrol-
ogy is a valid science, in the process treating different objections that might arise. 
In these discussions he offers a clear and nuanced picture of what astrology can 
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and cannot provide insight into, and also what other factors must be taken into ac-
count to provide a full causal analysis; the details are very instructive. Ptolemy 
here defends astrology pre-emptively from those who would claim that the con-
figuration of the heavens alone indicates everything. He is absolutely clear in the 
very first chapter that astrology is not an exact science (as mathematical astron-
omy is). It is conjectural and thus probabilistic, among other reasons, because one 
must also take into account the recalcitrant affects of matter. Nevertheless, what it 
can inform us about is so important, Ptolemy contends, that it is still a worthwhile 
scientific pursuit: 

In an inquiry concerning nativities and individual temperaments in general, one can see 
that there are circumstances of no small importance and of no trifling character, which 
join to cause the special qualities of those who are born. For differences of seed [with their 
specific forms] exert a very great influence on the special traits of the genus, since if the 
ambient [the celestial configuration] and the horizon [the place, with its unique horizon] 
are the same, each seed prevails to express in general its own form, for example, man, 
horse, and so forth; and the places of birth bring about no small variation in what is 
produced. For if the seed is generically the same, human for example, and the condition of 
the ambient the same, those who are born differ much, both in body and soul, with the 
difference of countries. In addition to this, all the aforesaid conditions being equal, rearing 
and customs contribute to influence the particular way in which a life is lived. Unless each 
one of these factors is examined together with the causes derived from the ambient, 
although this latter be conceded to exercise the greatest influence (for the ambient is one 
of the causes for these things being what they are, while they in turn have no influence 
upon it), they can cause much difficulty for those who believe that in such cases 
everything can be understood, even things not wholly within its jurisdiction, from the 
motion of the heavenly bodies alone.14 

Ptolemy thus provides examples of the other causal factors involved, mainly 
differences of seed and the places of generation; he also presents the same and 
similar examples to those which Pico later used in his version of the astrologers’ 
argument, but, of course, without citing an actual astrologer. In fact, Pico 
presents as the astrologers’ the very same argument which Ptolemy himself had 
already criticized, and he used central features of Ptolemy’s analysis to refute it. 
Pico’s augmented argument is very coarse, stripped of all nuance; it is ultimately 
a caricature, as any informed reader would have realized.  

It is no surprise, then, that Pico did not mention Ptolemy here. We know from 
Disputationes II, 1, however, that Pico knew this argument well (as we would 
have suspected anyway), because he himself provided a revised Latin translation 
of this key text directly from a Greek manuscript in the Laurenziana, which he 
used there to delimit astrology’s domain.15 Thus, where Ptolemy serves Pico’s 
purposes, he holds him up as an authority. Pico is not, after all, attempting to 
reform astrology by returning it to a purified Ptolemaic basis, which the revised 
translation based on a Greek manuscript might imply; rather, Pico wants to 
obliterate astrology altogether while still retaining its Aristotelian cosmological 
and natural philosophical foundations.16 

I will now briefly analyze Pico’s attack on Ptolemy’s view that the planets act 
through the four qualities, a central feature of Ptolemy’s understanding of astrology’s 
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natural philosophical foundations from Tetrabiblos, I, 4. This argument is also 
not explicit. For Ptolemy, each planet’s nature is characterized by a particular 
pair of the two primordial sets of contrary qualities: hot and cold, dry and moist. 
The planetary pairs (except Mercury) each involve one contrary from each set. 
The planets act by means of these qualities; for example: “the active power (to 
poietikon) of the Sun’s essential nature is found to be heating and, to a certain 
degree, drying (Robbins 1940, p. 35).” 

For Pico’s revisionist views to be accepted, his analysis must also account for 
the same effects on Earth which the astrologers’ analyses do; but for his anti-
astrological purposes, he also needs to do so in a way that diminishes and 
preferably eradicates any individuating features the planets might have. Reducing 
planetary effects to motion, light and heat, Pico shows how the Sun and Moon in 
particular attain their perceived effects. This implicitly anti-Ptolemaic argument is 
more successful than the others we examined in that Pico does not first distort the 
pro-astrological argument. Rather, he provides a reasonable alternative analysis to 
account for the Sun’s and Moon’s heating and moistening, namely, the nature of 
the receiving matter and the intension and remission of light emanating from both 
luminaries.17 

This move de-individuating each planet’s particular nature by reducing them all 
to varying degrees of motion, light and heat is the primary structural 
metamorphosis Pico needs to co-opt and transform the normal astrologizing 
Aristotelianism to his anti-astrological ends. The heavens as the universal efficient 
working with the different limiting proximate causes—specific form and matter—
where distinctions of place profoundly affect generation is precisely the same in 
both systems. For the astrologers, however, each planet has a unique nature, 
emitting its own characteristic radiating energy, which serves to individuate its 
effects.18 For Pico, the planets and luminaries now all emit the very same 
radiations, modified only by degrees (more or less intense). To the extent that they 
can be measured—and their geometric relations to each other and to the place of 
generation—these reduced influences may still individuate what is generated, but 
for obvious reasons Pico himself does not make this turn. 

I conclude this section on Pico by presenting his assessment of how the 
“astrologers” evaluated Ptolemy: “They easily concede that Ptolemy is their leader 
[…]; for he is the most learned of the astrologers, and, with respect to 
mathematics, he is absolutely brilliant; but with respect to nativities, he should be 
called the best of the bad (optimus malorum).”19 This seems more like Pico’s 
editorializing than the astrologers’, however. In general, then, Pico often presented 
an overly simplistic caricature as the astrologers’ position. He then embraced 
their full argument—especially Ptolemy’s—as his own more sophisticated natural 
philosophical analysis. Although structurally similar, Pico’s analysis differed 
significantly at crucial points, thus turning his argument in an explicitly anti-
astrological direction and abusing Ptolemy’s status as a pro-astrological authority. 
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Fantoni 

Ptolemy’s Tetrabiblos was often used as a university textbook in medieval, 
Renaissance and early modern Europe. In this second case study I will offer a taste 
of what it was like to study astrology as a serious scientific subject at a 
distinguished Italian university.20 To provide this taste, I will very selectively 
discuss the first six lectures of Filippo Fantoni’s course on the Tetrabiblos at the 
University of Pisa in academic year 1585–1586.21 Fantoni used not only his own 
wits to interpret Ptolemy. Rather, he drew on a rich tradition of translation and 
commentary, including earlier translations from Arabic and Greek, commentaries 
from medieval Arabic and Latin, as well as more modern works by Agostino Nifo and 
Girolamo Cardano. Here I will explore aspects of how Fantoni used Ptolemy, 
including his defense of Ptolemy from Pico’s attacks. To do so, I will paraphrase 
and quote from the manuscript in Florence, which, as far as I know, has never 
been studied in detail.22 

A Camaldolese monk, Filippo Fantoni, who lived from roughly 1530 to 1591, 
taught mathematics at the University of Pisa from 1560 to 1567, and then again 
from 1582 to 1589, when he was replaced by Galileo.23 For his Ptolemy course, 
Fantoni used the Camerarius-Gogova translation of 1548 (Ptolemy 1548). One of 
Philipp Melanchthon’s closest associates and a highly skilled textual scholar, 
Joachim Camerarius established the Greek text, publishing its Editio princeps in 
1535 at Nuremberg with  Johannes Petreius, who later published Copernicus’s De 
revolutionibus orbium coelestium (1543) and some of Cardano’s writings.24 
Indeed, Camerarius’s Greek text was reprinted several times, but was only 
replaced with a modern edition in 1940, when it received two independently.25 

In addition to providing the 1535 Greek text, Camerarius also translated the 
first two books of Ptolemy’s treatise into Latin, providing brief summaries of 
books three and four. In 1548 Antonio Gogova, an associate of Gerard Mercator 
and Gemma Frisius at the University of Louvain, published a complete translation 
of the Tetrabiblos, where he took over Camerarius’s translation whole cloth, and 
himself rendered books three and four into Latin (see Vanden Broecke 2003). 
Gogova’s translation became standard in the Catholic world, whereas Philipp 
Melanchthon translated anew all four books in 1553, based on the revised edition 
of Camerarius’s Greek text (Ptolemy 1553); this was the standard edition in 
Protestant lands. Cardano used the Camerarius-Gogova translation in his 1554 
commentary on the Tetrabiblos (Cardano 1554), as did Fantoni for his course at 
the University of Pisa in 1585–1586. 

When Cosimo I de’ Medici refounded the University of Pisa in 1543, statutes 
were composed for the mathematics course that are clear and straighforward. I 
quote them in full: "The mathematics teacher in the first year will teach, [literally 
“read”], the author of the Sphere; in the second, Euclid; in the third, certain works 
of Ptolemy (quaedam Ptolemaei)."26  Since the Ptolemy requirement was left open 
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with respect to the specific work to be studied, we find that some professors taught 
from the Almagest, some from the Geography, and others from the Tetrabiblos.27 

Fantoni’s manuscript (Conventi Soppressi B.7.749)28 at the Biblioteca 
Nazionale Centrale in Florence contains a complete lecture course on Ptolemy’s 
Tetrabiblos in 118 lectures, written out in Latin in a fairly clear hand; there are 
many additions, corrections and deletions, seemingly in another hand (probably 
Fantoni’s). The manuscript is very long, consisting of 673 double-sided folio 
pages.29 Fantoni treats Ptolemy’s prologue in his first six lectures. For the rest of 
this chapter, I will offer a glimpse into what a student in an advanced scientific 
astrology course at a fine Early Modern Italian university would have studied, and 
perhaps from the very lectures that Galileo himself heard as a student there. In 
providing a taste of Fantoni’s course, I will focus once again on the disciplinary 
relationship between astronomy and astrology, and on astrology’s natural 
philosophical foundations.30 

In Chapter 1 of the Tetrabiblos, Ptolemy situates the current subject, astrology, 
in relation to another subject he had already treated thoroughly, namely, 
mathematical astronomy in the Almagest. Here is Fantoni’s treatment: 

Since the study is twofold, astrologia is twofold: one is a speculative science concerned 
with motions, or the configurations of the luminaries and planets among themselves, and 
their relationship to Earth. This part is independent, as Ptolemy says in the Almagest. The 
other astrologia is concerned with prognostications and operations and effects coming 
forth from those motions. Therefore he says that his intention is to treat the science and 
doctrine of this part, and because someone could doubt whether this second science is 
equal to or less perfect than the first, comparing these he said that the first is more perfect 
because it is not dependent on the second. That is, the second astrologia is said to be less 
perfect than the first because we cannot know future events, unless we know the motions 
and the configurations among the planets. […] In fact, simply stated, the first 
contemplates the celestial bodies with respect to their differences of motion, and the 
second only with respect to their influences coming forth onto sublunary things. For which 
reason, both Aristotle and Ptolemy himself say that this lower world [the Earth] which is 
alterable by the first body [namely, the heavens] is the subject of this art.31 

Despite Pico’s attempts at restructuring, then, astrology was still intimately 
configured among the mathematical disciplines—as sister science of the stars with 
mathematical astronomy—in the 1580s.32 

In Chapter 2 of the Tetrabiblos, Ptolemy argues strenuously that astrology 
should be considered a true science; but a conjectural one, not an exact science 
like mathematical astronomy. One of Ptolemy’s principle arguments is that the 
Sun and Moon have obvious effects, which he then extends to the other planets. 
Here Fantoni fleshes out and supports Ptolemy’s argument by discussing 
astrology’s natural philosophical foundations. I will go into some depth here. 
First Fantoni raises a set of relevant questions: 

Therefore we shall enquire, first, whether celestial bodies act on the lower world; 
secondly, how they act, whether by light or by an occult power, and whether the entire 
heavens act, or just a part; and third, whether we can distinguish particular effects, 
because they say that the heavens are the cause of sublunar things.33 
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Before turning to specific arguments, however, Fantoni provides preliminary 
support for his case by presenting a two-fold set of authorities, natural 
philosophical and theological. First the philosophers, primarily Aristotle. Indeed, 
Fantoni here cites what have been called “the charters of scientific astrology”:34 
First he cites a passage from book 2 of Aristotle’s Physics: “The Sun and a human 
being generate a human being.” Then he cites the second book of Aristotle’s De 
generatione et corruptione: “Generations and corruptions come to be through the 
access and recess of the Sun in the oblique circle [namely, the zodiac].” Finally he 
cites the first book of Aristotle’s Meteorology: “It is necessary that this lower 
world be contiguous with the higher motions [namely, of the luminaries and 
planets] so that all power (virtus) is regulated from there.” He also adds a quote 
from Alexander of Aphrodisias, that not only in coming into being, but also in 
conservation, things below depend on superiors, by which he means the heavens.35 

Then Fantoni turns to authoritative theological support. First sacred scripture, 
where he quotes the eighth book of Deuteronomy, which says that God made the 
planets to direct and govern human beings. Next he turns to Augustine, “a most 
excellent doctor of our Church,” who says, in the fifth book of De civitate Dei—in 
an argument against the deterministic theories of the Stoics—that it is not absurd 
to say that different stellar influences act on different human temperaments. He 
then cites John the Damascene, who said that things below are governed by things 
above, and that different planets make different complexions and actions. Finally, 
he cites Thomas Aquinus (divus Thomas)—in the second book of his commentary 
on Peter Lombard’s Sentences, and the second book of the Summa Contra 
Gentiles—that everything is referred causally to the celestial bodies, and he holds 
that they act on things below. Likewise, Fantoni concludes, Scotus and others hold 
this position as well.36 

After this powerful display of authoritative support, Fantoni directly addresses 
how the celestial bodies act. He begins with motion: 

But let us see how they act. We should first note that celestial bodies act by motion, as is 
clear from the second book of De caelo, where Aristotle says that heat and light are 
generated by air agitated from the motions of the heavenly bodies, and therefore by 
compressing the air they act on things below, because thus they perfect their motions.37 

Then, after arguing against the possibility (as some claim) that celestial bodies act 
by virtutes occultae, he aligns himself firmly with the Aristotelians, concluding 
that celestial bodies act only by motion and light, to which we will now turn. 

The next question Fantoni tackles is fundamental, namely, whether astrology 
can distinguish particular or only general effects. In fact, this was one of Pico’s 
most effective arguments in the Disputations against Divinatory Astrology, to which 
scientific astrologers responded from Lucio Bellanti ca. 1500 to Johannes Kepler 
and Placido Titi in the seventeenth century. Understanding how light works is key: 

To resolve this question, we say that light is understood in two ways, either qua genus or 
qua species. We say that light as light qua genus always has this distinguishing feature 
(proprium) to heat, just like an animal always has the proprium to be able to perceive 
(sensibile). Qua species, however, in so far as it follows the determinate species of stars, 
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light cools, moistens, dries or heats, and it has different intentional and not only real ac-
tions, therefore, because the light of Saturn differs from the light of Jupiter, and the light 
of Jupiter from that of Mars, and likewise with the rest. And this argument from propriety 
is confirmed, for the different heats in light have different effects. The light of Saturn is a 
dark light, but that of Mars is firey, for the planet Mars appears to be ignited; likewise, the 
other planets have different lights, therefore they do different things, from which it fol-
lows that their properties and actions are distinct.38 

Fantoni concludes this argument as follows: “[Therefore we can] say that celestial 
bodies act only by motion and light on these things below, and that motion and 
light are one qua genus. Moreover, light is many qua species, from which [it 
follows that] the same light in one species can cool, and in another, heat; 
nevertheless in itself it is the same.”39 

By arguing that the heavens act only by motion, light and heat, Fantoni thus 
situates himself within the now three hundred year old tradition in Europe of what 
I call an astrologizing Aristotelianism. In this system, astrological action is 
articulated in terms of Aristotelian natural philosophy operating within a 
Ptolemaic cosmographic framework with a geometrical optical model of planetary 
action.40 With respect to natural philosophy, Pico was also heir to this tradition, but 
he, of course, wanted to profoundly reorient it by removing the astrological 
superstructure from its still solid Aristotelian foundations.41 

The final argument to be examined concerns particular effects: 

It remains for us to see how the heavens distinguish particular effects, [since] Pico argued 
that there is no position of the stars under which a horse does not generate a horse, a 
human a human, [and] a lion a lion; therefore, the heavens do not distinguish 
particular effects. Again, two born in the same climate at the same longitude and latitude 
of cities and under the same position of the heavens; you cannot escape the argument that 
they are diverse in customs, in complexions, [and] in their fortuna [what happens to 
them]. What make the differences? Not the configuration of the heavens because it is the 
same, therefore the heavens do not distinguish particular effects.42 

Fantoni meets this argument head on, but first by flipping it around and posing 
his own question: 

Turning the argument into its opposite, you would say that there are two children born 
from the same parents and raised at the same breast, disciplined by the same teacher in the 
same home and nourished on the same food, but nevertheless they have different habits, 
diverse complexions and fortunes; what then makes them different? I would say not only 
that the heavens are a universal cause, but also that all the stars qua species distinguish 
particulars, as Aristotle says. Since they either distinguish particulars immediately or 
mediately, we say, therefore, with secondary causes mediating, that the Sun and a man 
generate a human being, as with an instrument, for the heavens are, as it were, the artisan 
(artifex) and we are the instruments, as Averroes says in the 8th book of the Physics, just 
as it happens in art. For an artisan cannot make artifacts (artificia) without an instrument. 
Rather, he uses many instruments different in kind (in specie) and quantity for [making] 
different artifacts; likewise the heavens make different things with different instruments 
[namely, with different parents].43 

The heavens working through different parents as with different instruments is 
mediated causality, whereas immediately or directly, the different planets qua 
species have different universal qualitative influences. 
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After establishing these principles, Fantoni turns directly to engage Pico’s 
arguments contra: “There is no position of the stars under which a horse does not 
generate a horse. [This is denied], although some affirm and concede it. But I deny 
it (he says emphatically in the first person: ego hanc nego), because there is some 
gathering of the stars under which a horse will not generate a horse,” but he does 
not press the point. Rather he discusses a more moderate position that most people 
would accept: 

But some say, conceding this nevertheless, that even if there is no position of the stars 
under which a horse does not generate a horse, there will be a difference in the generating 
because a horse can be born ferocious or sickly, that is, if it is not generated under a good 
constellation it will be a weak horse or aborted; regardless, I deny the major premise.44 

The second argument, about twins, he makes short work of: “We say it is not 
possible for two children even twins to be born at the very same moment (in 
eodem puncto et momento).” He then provides evidence from his own experience: 
“I have observed all the births of twins in Florence in the Church of San 
Giovanni,” namely, in the Baptistery, “and I have never seen nor has anyone seen 
twins born at the very same moment, but they can have different positions of the 
horizon and the meridian,” namely different ascending and midheaven degrees, 
factors crucial for interpreting a horoscope.45 Finally, he draws his conclusion: 

Let us say, therefore, that all these effects should not be referred only to celestial causes, 
because, as you have seen, one should also pay attention to the material subject, namely, 
this lower world, and laws, and customs, education and regions, as is clear from [the 
example of] a king’s son and a peasant’s. For the peasant’s son is a peasant and born to 
labor. But a king’s son is born a king and to rule.46 

Thus Fantoni reiterates Ptolemy’s fundamental point that although the celestial 
configurations are fundamental, they are by no means the only causal factor in 
accounting for why people are as they are. 

Conclusion 

This treatment of the use and abuse of Ptolemy’s astrology in Renaissance and 
Early Modern Europe is merely an introduction to a rich and important subject 
that remains to be properly studied. I have only discussed Ptolemy’s authentic 
Tetrabiblos. A full treatment would also discuss the extraordinarily influential but 
pseudonymous Centiloquium or Karpos, which Pico considered authentic but 
Cardano rejected.47 Finally, the complex reception of—and responses to—
Ptolemy’s astrology is intimately connected to the broader question of astrology’s 
long term acceptance within—but ultimate rejection from—the domain of 
legitimate natural and political knowledge, which took place during the 
seventeenth and eighteenth centuries in a complex process that is not yet fully 
understood.48 
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Notes 
                                                           

1.  For the evidence and further bibliography, see Rutkin (2002, Chapter 2), Rutkin (2006) and 
Vol. I part II of Rutkin (forthcoming). 

2.  Francis Carmody stated that he was currently working on this volume in the 1950s 
(Carmody 1956). Now it would ideally be composed by a team of scholars. 

3.  Fantoni based his course closely—but with various alterations, some dramatic—on Giuliano 
Ristori’s (1492–1556) earlier lecture course on the Tetrabiblos at Pisa delivered during the 
1540s. For more on Ristori, see i.a. Schmitt (1972). When I offered this paper, I had not yet 
worked on the text of Ristori’s lecture course in MS. Riccardiana 157. I will publish more 
on Ristori and the comparison with Fantoni in a forthcoming piece in a collection of essays 
originating from the conference, “From Masha’allah to Kepler: The Theory and Practice of 
Astrology in the Middle Ages and the Renaissance,” held at the Warburg Institute, Nov. 
2008. For now, however, much of what I present here under Fantoni’s name also applies to 
Ristori. 

4.  This material is drawn from Rutkin (2002, Chapters 5 and 6), where much further bibliog-
raphy can be found. For a splendid introduction to Pico, see Grafton (1997). 

5.  Garin’s national edition (Pico della Mirandola 1946) relies on the Editio princeps (Pico 
della Mirandola 1496), our primary textual witness, since no earlier manuscript evidence 
exists. See Garin’s introduction for more information on the text. Pico’s page and line num-
bers cited here are also to this edition. 

6.  “Astrologiam vero cum dico, non eam intelligo quae siderum moles et motus mathematica 
ratione metitur, artem certam et nobilem et suis meritis honestissimam auctoritateque homi-
num doctissimorum maxime comprobatam; sed quae de sideribus eventura pronunciat, 
fraudem mercenariae mendacitatis, legibus interdictam et civilibus et pontificiis, humana 
curiositate retentam, irrisam a philosophis, cultam a circulatoribus, optimo cuique pruden-
tissimoque suspectam, cuius olim professores gentilicio vocabulo Chaldaei, vel ab ipsa pro-
fessione genethliaci dicebantur (40, 1–11)[.]” All translations of Pico and Fantoni are mine. 
No English translation exists for either. I am currently translating Pico’s Disputations for 
the I Tatti Renaissance Library (Harvard University Press). 

7.  Regiomontanus discusses this in the extant inaugural oration for his course on al-Farghani’s 
De scientia stellarum, given at the University of Padua in 1464, the year after Pico’s birth, 
and at a university where Pico later studied. See Swerdlow (1993) and Rose (1975) for fur-
ther discussion of Regiomontanus’s oration, its context and significance. 

8.  Est Bonatus inter eos primae auctoritatis; is non ignarus modo est philosophiae, sed furit 
plane atque delirat. Lege eius primum librum de iudiciis in quo super opere ipse prooemia-
tur; mentior nisi helleboro dignum hominem iudicaveris. Struit, ubi desipit minus, rationes 
quasdam quibus astrologiam probet esse veram; illas quid dicam falsas? immo supra quam 
dici possit pueriles atque ridiculas (74, 17–76, 2). 

9.  Quam vero putat efficacissimam illa est: quadrivium destrui si astrologia tollatur; esse enim 
unam ex quattuor artibus mathematicis. Vide ut nescit etiam quid sit hoc ipsum quod profi-
tetur! Astrologia enim haec divinatrix, quam confutamus, tantum distat ab ea quae 
mathematicis annumeratur quantum a tenebris lux, quantum veritas distat a mendacio (76, 
2–7). 

10.  Et haec quidem, quae futurorum praedictionum usurpat, si prior illa veriorque tollatur, stare 
non potest; at non remeat ratio ut, divinatrice sublata, mathematica quoque illa auferatur. 
Quod adeo est perspicuum, vel his qui prima harum artium attigerit elementa, ut pluribus 
hoc declarare superfluum sit (76, 8–13). 

11.  “Ptolemaeus ipse, in prooemiis Apotelesmaton, postquam de duplici dicit astronomia, tamen 
ad priorem et mathematicam referens sermonem ita inquit: (76, 13–15).” Garin then prints 
the Greek here (76, 15–18); I quote Frank Robbins’s translation (Robbins 1940, p. 3). 
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12.  [N]am, quod ad primam attinet rationem, simul atque dixerunt astrologi motum omnem 
inferiorem a caeli motu dependere, statim dogmati suo contradixerunt, cum inde illud 
sequatur tritum apud philosophos, esse caelum universalem causam effectuum inferiorum. 
Causa autem universalis effectus non distinguit, neque cur hoc fiat, aut illud, quaeritur ab 
ea, sed a proximis causis, quae variae et differentes sunt, pro effectuum differentia et 
varietate; et cum ex his alia aliud faciat, universalis causa cum omnibus omnia facit. Quod 
cum manifeste appareat in rebus natura specieque diversis, mirum quomodo non intelligant 
multo magis idem credendum de varietate individuorum quae, quanto magis et particularis 
est et a materia plurimum trahens originem, minus referri potest in causam maxime et for-
malem et universalem. At quis non videt caelum cum equo equum generare, cum leone 
leonem, nec esse ullam siderum positionem sub qua de leone leo, de equo equus non nasca-
tur (188, 18–190, 7)? 

13.  I reconstruct in much greater detail the basic structures of the astrologizing Aristotelian 
natural philosophy Pico attacks here in Chapter 1 of my dissertation and Vol. 1 part I of my 
book. 

14.  I use Robbins’s translation (slightly modified) from Robbins (1940, pp. 17–19). 
15.  For a description of the manuscript (Plut. 28, 20) and further bibliography, see Gentile 

(1994, pp. 97–98). 
16.  This is one of the broader conclusions from Chapter 6 of my dissertation. 
17.  See 220, 20–222, 22, esp. 220, 20–222, 2: “Sic caelesti calori pro materiae conditionibus 

evenit, unde opinio nata Solem siccitatem facere, Lunam augere humiditatem, quia scilicet 
Solis calor ardentior, Lunae vero tepidior. Sed in idoneis affinibusque subiectis nec exsic-
cabit radius Solis humorem salutarem, nec generabit Luna inutilem noxiamve humiditatem, 
sed operabitur idem sua natura sidus utrumque, licet Luna remissius quod intensius Sol effi-
ciet; ex accidenti vero, per infectionem peregrinae materiae, dissimiliter illis eveniunt, Sol 
ut exsiccet, Lunae ut humefaciat.” 

18.  As Kepler does, for example, in De fundamentis astrologiae certioribus (On the More Cer-
tain Fundaments of Astrology, 1602), which I discuss in Chapter 7 of my dissertation and 
Vol. II of my book. There is an English translation in Field (1984). 

19.  Porro Ptolemaeum principem aliorum facile concedent; est enim doctissimus astrologorum 
et, quod attinet ad mathematica, vir ingeniosissimus; quod autem ad genethliacos, quemad-
modum dici solet, optimus malorum (70, 5–8). 

20.  Much more research needs to be undertaken before a satisfactory account can be offered. 
21.  Charles B. Schmitt signalled but only briefly discussed this manuscript in two articles (1972 

and 1978), the fruit of research undertaken while a Fellow at the Villa I Tatti, the Harvard 
University Center for Italian Renaissance Studies. This essay is offered to his memory. My 
thanks to Villa I Tatti for also making possible my research on Fantoni’s manuscript. 

22.  My transcription of the manuscript presented here is preliminary; the text offered is a work-
ing text. I describe the manuscript just below. 

23.  My knowledge of Fantoni comes from Schmitt’s articles, Pagano (1994) and the manuscript 
itself. 

24.  Camerarius (1535). For more on Camerarius, see Baron (1978). For Petreius, a printer wor-
thy of greater attention, see Swerdlow (1992) and Brosseder (2004, pp. 147–149). 

25.  Robbins (1940) and Boll and Boer (1940). Hübner’s recent Teubner text is the first to take 
both modern editions into account (Hübner 1998). I do not know of a satisfactory account of 
Ptolemy’s textual history, especially of the Latin translations and commentaries. A proper 
critical edition of Ptolemaeus Latinus is a desideratum. 

26.  Schmitt (1972, p. 257). I discuss this material as context for understanding Galileo’s study 
and practice of astrology in Rutkin (2005). 

27.  Lectures on the Tetrabiblos, were oriented, at least in part, to medical students, as we can 
see from Fantoni’s course for 1585–1586 (Schmitt 1978, p. 57): “Primum Euclidis, primum 
librum Quadripartiti Ptolomei, quaestiones ad facultatem medicinae pertinent[es], et secun-
dum planetarum delineationes et non aliud.” 
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28.  This corrects Schmitt’s misprint of B.7.479 (1972, p. 259 n. 82). 
29.  This is my description of the manuscript, which I examined in situ. 
30.  I presented an earlier version of this section as part of a mini-colloquium at Villa I Tatti 

(May 2006). I offer my sincere gratitude for that year’s fellowship, as well as to my col-
leagues in the colloquium and the audience. 

31.  Quod cum duplex sit studium, vel duplex sit Astrologia, una speculativa que versatur circa 
motus, configurationesve et luminum et planetarum inter se et habitudines circa terram, hec 
pars absoluta est, ut ipse dicit in altero libro magne compositionis. Alteram vero dixit Astro-
logiam, que versatur circa prognosticationes et operationes et effectus proficiscentes ex illis 
motibus. Ergo dic quod intenti sua est tradere scientiam et doctrinam huius partis. Et quia 
aliquis poterat dubitare an hec scientia secunda sit equalis vel minus perfecta quam prima, 
illas comparando dixit quod prima perfectior est quia non dependet a secunda. Secunda vero 
Astrologia eo quod a prima ea imperfectior dicetur, non enim futurorum eventus cognovere 
possemus nisi motus ac stellarum inter se configurationes cognoscamus. […] Etenim 
simpliciter celestia corpora quoad motum eiusque diversitatem contemplatur, et secunda 
impressiones tantum celestium corporum in sublunaribus proficiscentium. Unde dicitur et 
ex Aristotele et ipsomet Ptolomeo, quod mundus iste inferior alterabilis a corpore primo est 
subiectum huius artis (4v–5v). 

32.  The accurate study of Pico’s influence is still in its infancy; for some preliminary indica-
tions, see Chapter 7 of my dissertation. For a broad range of evidence to establish that as-
trology was still normally configured closely with astronomy throughout the sixteenth and 
well into the seventeenth century, see Vol. II of my forthcoming book, which significantly 
supercedes my earlier discussions. 

33.  Querebamus ergo an corpora celestia agunt in hec inferiora, secundo quomodo agant, vel 
lumine, vel virtute occulta, an totum celum, vel pars eius, 3.o utrum distinguat effectus, quia 
dicunt ipsum esse causam rerum sublunarium, an propter hoc quod sit causa virtutis distin-
guat effectus particulares (17r–v). 

34.  This is Richard Lemay’s phrase (1987, p. 57). 
35.  In oppositum tamen fuit Ptolomeus et Aristoteles 2.do physicorum Sol et homo generant 

hominem[.] Item 2.do de generatione tex.58. per accessum et recessum solis in circulo 
obliquo fiunt generationes et corruptiones[.] [I]n p[rim]o meth. dicit, necesse est mundum 
hunc inferiorem superioribus lationibus esse contiguum, ut omnis virtus inde regatur, ubi 
dicit Alexander quod non solum in fieri, sed etiam in conservari dependent hec inferiora a 
superioribus (18v–19r). 

36.  Habemus etiam sacros codices, nam 8.o deuteron. dicitur quod Deus fecit planetas ad minis-
terium hominis et ad gubernationem. Item ab Augustino doctore Ecc[ellentissi]mo nostre 
Ecclesie habetur in 5. de civitate Dei ad calcem eum disputavit contra stoicos. Dicit non est 
absurdum dicere, quosdam sidereos  afflatus afferre ad varias ac varias hominum complex-
iones, et Damascenus in 4.o cap.o 4.o dixit inferiora gubernari a superioribus, item in 
secundo, alii et alii planete aliam et aliam faciunt complexionem et actionem, sic etiam di-
vus Thomas in secundo sententiarum distinct. 24.a et 2.do contra gentes ab 80 usque ad 
92.m omnia refert in corpora celestia, et tenet quod agant in hec inferiora, similiter et sco-
tus, et alii (19r–v). 

37.  Sed videamus quomodo agunt. Est primum animadvertendum corpora celestia agere motu, 
quod autem ita sit patet in 2.do Celi ubi dicit quod calor, et lumen generantur aere attrito ex 
superiorum latione, igitur corpora celestia terendo, et comprimendo aerem agunt in hec infe-
riora, quia sic perficiunt motus (19v)[.] 

38.  “Pro solutione rationum dicimus quod lux dupliciter consideratur et accipitur, vel quo ad 
genus, vel quo ad species. Dicimus quod lux ut lux sub ratione generis semper est ei pro-
prium calefacere, sicut animali, ut animal est ei semper esse sensibile. Ut autem capitur pro 
specie, pro ut consequitur determinatas species stellarum lux frigefacit, humectat, ex[s]iccat, 
urit et agit alias actiones intentionales, non solum reales, adeo quod lux saturni differt a luce 
[Jupiter], et lux [Jupiter] a [Mars], et similiter de reliquis. Et argumento sumpto a pro-
prietate potest confirmari, diversi enim calores in luce agunt diversos effectus, modo lux 
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[Saturn] est obscura lux. [Mars] est quasi ignis, videtur enim stella [Mars] quasi ignita, 
similiter alii planete habent diversas luces, ergo videntur agere diversas res, ex quo sequitur 
quod proprietates, et actiones sint distincte (21r–v)[.]” I put the planetary names in English 
and in brackets to represent the glyphs in the manuscript. 

39.  […] et dicere quod corpora celestia agunt tantum motu et lumine in hac inferiora, et motus 
et lumen sunt unum secundum genus. Lux autem est plures secundum species, ex quo potest 
eadem lux in una specie infrigidare in alia calefacere, in se tamen est eadem (22v). 

40.  For a detailed reconstruction, see Chapter 1 of my dissertation and Vol. I part I of my book. 
41.  In this Giovanni Pico is to be distinguished from his nephew and editor, Gian Francesco 

Pico della Mirandola (1469–1533), who wished to destroy the entire edifice of Aristotelian 
natural philosophy; see Schmitt (1967). 

42.  Restat ut videamus quomodo celum distinguat effectus particulares. Arguit Picus non est 
positio siderum sub qua equus non generet equum, homo hominem, leo leonem, ergo celum 
non distinguit effectus particulares. Rursus nascantur duo in eodem clymate in eadem longi-
tudine et latitudine civitatum et sub eadem positione celi, ne possis fugere argumentum, isti 
sunt diversi in moribus, in complexionibus, in fortuna. Quid facit diverso? Non constellatio 
celi quia est eadem, ergo celum non distinguit effectus in particulares (23r–v)[.] 

43.  Sed dicetis vertendo argumentum in oppositum sint duo filii orti et nati ex eisdem parenti-
bus, educati eodem lacte, disciplinati sub eodem preceptore in eadem domo, eisdem cibis 
nutriti, et tamen habent diversos mores, diversas complexiones, et diversas fortunas, quid 
igitur facit illos diversos? Ideo dicamus quod non solum celum est causa universalis, et om-
nes stelle in specie tamen distinguuntur particularia sicut [Aristoteles] facit, quoniam aut 
distinguunt immediate, vel mediate non imediate, dicimus ergo mediantibus causis secun-
dis, quia [sun] et homo generant hominem tamquam instrumento. Celum enim est tamquam 
Artifex, et nos sumus instrumenta. Dicit Averroes 8.o Phys: 47.o sicut in arte contingit. Non 
enim artifex sine instrumento conficit artificia, immo pluribus instrumentis diversis specie 
et quantitate utitur ad diversa artificia, similiter celum diversis instrumentis agit diversa 
(23v). 

44.  Non est positio syderum sub qua equus non generet equum, [hoc negatur] licet aliqui affir-
ment et concedant. Sed ego hanc nego, quia est aliqua factio (sic) syderum sub qua equus 
non generabit equum. Dicunt aliqui concedendo ipsam tamen, quod si non sit aliqua positio 
siderum, sub qua equus non generet equum, sed erit differentia generationis quia poterit ge-
nerari equus ferox vel debilis, quia si non generabitur sub bona constellatione erit equus de-
bilis et abortivus, tamen ego nego maiorem (23v–24r)[.] 

45.  Ad aliud argumentum de duobus natis dicimus, quod non est possibile duos pueros et ge-
mellos nasci in eodem puncto et momento[.] Ego observavi Florentie omnes nativitates ge-
mellorum, que sunt in Ecclesia Divi Joannis, et nunquam vidi neque aliquis vidit gemellos 
notos in eodem puncto et momento, sed possunt habere alias positiones horizontis et meri-
diani (24r). 

46.  Dicamus igitur quod non sunt reducendi omnes isti effectus in causas celestes, quia ut vidis-
tis animadvertenda est, et materia subiecta et mundus iste inferior et leges et consuetudines, 
educationes et regiones, sicut patet ex puero Regis et Rustici. Puer enim rustici natus est 
rusticus et ad laborandum. Puer vero regis natus est Rex et ad dominandum (23r–v)[.] 

47.  Grafton (1999, p. 137) discusses Cardano’s rejection of Ptolemy’s authorship. 
48.  I address this fundamental question in Vol. II of my book. 
 
 
 



Tycho, Longomontanus, and Kepler
on Ptolemy’s Solar Observations and Theory,
Precession of the Equinoxes, and Obliquity
of the Ecliptic

N.M. Swerdlow

It therefore remains that either Ptolemy committed fraud with
fabricated observations, or from a kind of awe and reverence
for the ancients preferred to confirm rather than refute them,
neither of which is likely in the philosopher Ptolemy, a
defender of candor and truth, as is witnessed by many
judgments, especially since he could expect no advantage or
fame from this, but rather greater advantage and fame from
correcting the ancients. But that he was not obsequious to the
ancients, he left witnessed in many ways, refuting Hipparchus
where it was required.

Johannes Kepler (1937–, 21.1.324).

It is well known that there are errors in Ptolemy’s observations of the Sun with
consequences for his own astronomy and for later astronomy up to some time in the
seventeenth century. The principal problems and their consequences in Ptolemy’s
astronomy are the following:

(1) The latitude of Alexandria is taken to be ϕ = 30;58◦ when correctly it is 31;13◦,
an error of −0;15◦. In Almagest 2.5 Ptolemy describes, although does not rec-
ommend, a method of finding the latitude from the length of the Sun’s shadow
at both solstices or a solstice and equinox, which would make the latitude an
error in measurement of the Sun’s zenith distance. Indeed, for ϕ = 30;58◦,
tan ϕ = 0;36,0 = 3/5, so that where the length of a gnomon is 60, in the
equator the length of the shadow is 36, which does suggest use of or adjustment
to a rounded shadow length. The consequence is that the meridian altitude of
the celestial equator is too high, or its zenith distance too low, by 0;15◦, about
15 hours in the motion of the Sun in declination and 0;37◦ in longitude near the
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equinoxes, and the error of 0;15◦ in meridian altitude and zenith distance affects
the entire ecliptic.

(2) The obliquity of the ecliptic is taken to be ε = 23;51,20◦ when by modern com-
putation in 140 it was 23;40,39◦ an error of nearly +0;11◦. From measurements
of the zenith distance of the Sun at summer and winter solstice, Ptolemy found
the arc between the tropics 2ε to lie between 47 2

3
◦

and 47 3
4

◦
, and converted the

lower limit to a ratio by 47 2
3/360 = 143/1080 = (11 · 13)/1080 = 11/83 1

3 ≈
11/83, that is, the arc between the tropics is about 11 (parts) of which the
meridian is 83. He notes that he derives nearly the same ratio as Eratosthenes,
which Hipparchus also retained, a cryptic remark that has provoked a great deal
of fanciful speculation. The derivation given here is by Delambre, although he
attributes it to Eratosthenes rather than Ptolemy, which is scarcely possible.
Before considering any other explanation of the ratio, it is first necessary to
show that Delambre’s is not correct. In any case, 2ε = 11/83·360◦ ≈ 47;42,40◦

and ε = 23;51,20◦.
(3) The dates of Ptolemy’s observations of three equinoxes and one summer solstice

are from about 21 to 36 hours late. The consequences are to confirm exactly
Hipparchus’s length of the tropical years, 365 1

4 − 1
300 days = 365;14,48d =

365d 5;55,12h, too long by +0;6,26h, and to establish an epoch of the mean
longitude of the Sun too low by −1;5◦ in 132, which indirectly affects the longi-
tudes of the Moon, planets, and fixed stars. Because of the error in the length of
the year, the error in the times of equinoxes accumulates at the rate of +10;43h

per century and the error in the mean longitude of the Sun at −0;26,25◦ per
century, and this too affects the longitudes of the Moon, planets, and fixed stars.
The equinoxes and solstices cited by Ptolemy with specific dates and times are
compared with modern computation in the Appendix and cited here by number.

(4) Ptolemy uses the same intervals as Hipparchus between the equinoxes and sum-
mer solstice, to one-half day, and derives the same eccentricity and direction
of the apsidal line. Thus, from the vernal equinox to summer solstice 94 1

2
d
,

summer solstice to autumnal equinox 92 1
2

d
, vernal to autumnal equinox 187d,

he finds that where the radius of the Sun’s eccentric R = 60, the eccentricity
e = 2;29,30 ≈ 2;30 so that e/R = 1/24, the maximum equation cm = 2;23◦,
and the direction of the apogee λA = 65;30◦. He concludes that the eccentricity
has not changed and the apogee is tropically fixed. Taking twice the modern
eccentricity, in −145, the time of Hipparchus, e = 2;6,22, cm = 2;1◦, and
λA = 66;16◦; in 140, the time of Ptolemy, e = 2;5,37, cm = 2;0◦, and
λA = 71;6◦. Hence, e is in error by +0;24 and cm by +0;23◦ and have barely
changed, but λA is in error by −0;46◦ in −145 and −5;36◦ in 140, and its lon-
gitude has increased +4;50◦ in 285 years, of which about 4◦ is the precession
of the equinoxes and 0;50◦ the proper or sidereal motion of the apsidal line.

(5) As a result of the error in the mean longitude of the Sun, Ptolemy’s measure-
ments of longitudes of fundamental stars have a systematic error of just over
−1◦. He therefore finds a difference in longitude of stars in the 265 years since
Hipparchus of 2;40◦ when it should be just over 3;40◦, and corresponding dif-
ferences are found from other early observations. These confirm Hipparchus’s
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low estimate of the motion of the fixed stars, or precession of the equinoxes, of
1◦ per century or 36′′ per year, less by about −14′′ than the correct 50′′ per year
or 1◦ in 72 years. The error in the tropical longitude of stars accumulates at the
rate of −0;23,20◦ per century.

So much for the errors and their consequences in Ptolemy’s astronomy. The
more interesting story begins several hundred years later when Arabic astronomers
derived parameters from their own observations of the Sun and stars, and used
Ptolemy’s observations for finding motions over the intervening period. Without
exception, compared to Ptolemy’s parameters, it was found that: the obliquity of the
ecliptic is smaller, the tropical year shorter, the eccentricity of the Sun smaller, the
solar apogee advanced in longitude, and the motion of the fixed stars faster. What is
to be done? One solution, for example by al-Battānı, was to accept the new parame-
ters as correct and Ptolemy’s, by implication, as erroneous.1 And it was concluded,
for example in De anno solis attributed to Thābit ibn Qurra, that Hipparchus’s obser-
vations of equinoxes and longitudes of stars were preferable to Ptolemy’s for finding
the length of the sidereal and tropical year and the motion of the fixed stars, which
accounts for their difference. But another, more complex solution was to assume that
the parameters had changed over the intervening centuries and develop models and
parameters for these long-period variations. Among those that came to be known
in Europe are a model for a nonuniform motion of the “eighth sphere,” of the fixed
stars, in De motu octavae sphaerae attributed (incorrectly) to Thābit, included in
the Toledan Tables, a model for a variation of the solar eccentricity by az-Zarqāl,
not included in the Toledan Tables, and a very well-known nonuniform motion of
the eight sphere in the Alfonsine Tables, for which there are tables but no model.
The apogees of the Sun and planets were taken to be sidereally fixed, and thus to
follow the motion of the eight sphere, and the apogee of the Sun was sometimes
given its own proper sidereal motion. Implicit in models for the motion of the eight
sphere is a variation of the obliquity of the ecliptic, although this was, it appears,
not tabulated as a variable parameter, nor was an implied variation in the length of
the tropical or sidereal year tabulated. The last thing these theories can be called is
consistent. In the Theoricae novae planetarum, Peurbach described his understand-
ing of the model in De motu octavae sphaerae and explained what may be his own
model for the Alfonsine motion. Regiomontanus considered both theories to be false
(mendacem), which was his opinion of the Alfonsine Tables in general.

All of these attempts to include long-period variation of parameters were super-
seded by Copernicus, who developed more or less consistent models of some com-
plexity, based upon motions of the Earth rather than the sphere of the fixed stars
and the Sun, for nonuniform variations of the obliquity of the ecliptic, rate of the
“precession of the equinoxes” (Copernicus’s own term), length of the tropical year,
solar eccentricity, and sidereal and tropical motion of the solar apogee. Copernicus’s
models were described and the parameters derived, with some wishful thinking, in
De revolutionibus (1543), and all the long-period motions were included in Erasmus
Reinhold’s Prutenic Tables (1551), which became the basis for the computation of
ephemerides in the later sixteenth and early seventeenth centuries. And Copernicus’s
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models were carried over into geocentric theory, as by Giovanni Magini, by trans-
ferring the various motions of the Earth to the sphere of the fixed stars and the
Sun. Hence, the complex legacy of the errors in Ptolemy’s solar observations was
fundamental to the astronomy in this period in both theory and tables. But already
questions were being raised about the reliability of the observations. Copernicus
told Rheticus of his fear that very many of the observations of the ancients were
not genuine but were accommodated to their theory, as Rheticus reports in his
Ephemerides novae (1550), although these doubts may have come after Copernicus
erected much of his astronomy upon these very observations. Girolamo Cardano, in
De restitutione temporum et motuum coelestium (1543), attempted, after a fashion,
to find the cause of error and correct some of Ptolemy’s observations and param-
eters, although he was more critical of Thābit’s motion of the eighth sphere and
the Alfonsine Tables. A more expert examination did not come until the ancient
observations and parameters were considered by Tycho, who intended more than
he accomplished, Tycho’s former assistant Christian Longomontanus, who set out
the most radical criticism and correction, and Kepler, who had his own reasons for
carrying out such an investigation. In this paper, we shall consider all three.2

Tycho Brahe

It is commonly said that Tycho did away with all the long-period variation of
parameters that had so concerned Copernicus and established new and improved
parameters for the obliquity, solar theory, and precession on the basis of his own
observations, more accurate than any that came before. There is some truth in this,
as he did all of these things, but in the Progymnasmata he explains several times
that the parameters established here are only for his own time and he intends to
investigate their variation over a long period in a complete restoration of astronomy,
which was never written. In fact, Tycho always believed with Copernicus that the
obliquity of the ecliptic and the solar eccentricity had decreased and the apsidal line
advanced from antiquity to his own time, meaning that he took the observations
and theory of Hipparchus and Ptolemy seriously, although he never worked out a
hypothesis, model, of his own for long-period variation. Initially, he accepted Coper-
nicus’s hypothesis for the Sun, but because Copernicus’s eccentricity was smaller
than he found, he concluded that it must be erroneous. In a letter of 4 November
1580 (7.59–60) he tells Thadaeus Hagecius of a restoration of the motion of the
Sun, which he investigated in preceding years, so careful that it agrees with daily
observations, as (Paul) Wittich often tested with me, from which the computation
of Alfonso and Copernicus deviates sometimes by half a degree, sometimes by a
little more. For the motion of the center of the eccentric of the Sun in its small
circle is far different than our predecessors found, or even Copernicus himself estab-
lished, so that the eccentricity of the Sun is now 2;5 parts (where the radius of the
eccentric is 60), 0;13 greater than the opinion of Copernicus, but the apogee of
the Sun is near Cancer 5◦, far before (west of) the hypotheses of Copernicus.3 For
otherwise the solar appearances do not agree, as I have demonstrated from many
observations and will soon, God willing, communicate to the learned. Tycho thus
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accepts Copernicus’s hypothesis with variable eccentricity and apsidal line, but is
attempting to correct the parameters, and the same is true of the variable precession.
For I have also discovered, he reports, that the motion of the eighth sphere (of the
fixed stars) is now so much faster than Copernicus established that the equinox has
precessed about one-quarter degree faster (in the period since Copernicus), which,
by observation of Spica made in the same way as Copernicus, I have observed and
demonstrated many times.

In the Progymnasmata, Tycho establishes a solar theory from his own observa-
tions in the years 1584–1588, which he considers more accurate than any earlier
observations because he corrects for solar parallax, which he believes reaches 3′ in
the horizon, the standard value since Ptolemy, and refraction, reaching 34′ in the
horizon. In 1584 he found his definitive value of the obliquity, 23;31,30◦, which he
continued to check in the following years. For his derivation of the solar eccentricity
and direction of the apogee (2.19–23), he uses the two equinoxes and Taurus 15◦

or Leo 15◦, following the method described by Regiomontanus in the Epitome of
the Almagest 3.14. Copernicus had done something like this in De revolutionibus
3.16 using Scorpio 15◦, which, Tycho points out, led to errors due to neglect of
refraction at a low altitude although he believes that Copernicus did correct for par-
allax. From two derivations for 1588, he finds that where R = 100,000, e = 3584,
or where R = 60, e ≈ 2;9, cm ≈ 2;3,15◦, and λA = Cancer 5;30◦, which he
says are confirmed by yet other derivations. But he does not believe the parameters
are permanent, indeed, with Copernicus, he had reason to believe that the solar
eccentricity decreased and the longitude of the apogee increased since antiquity,
as he explains (2.28). Hipparchus and Ptolemy found by observation at their times
λA = Gemini 5;30◦ and e = 415 where R = 10,000, so cm = 2;23◦, and since
Ptolemy found these again in the same way as Hipparchus, before him by an inter-
val of 260 years, he believed the apogee entirely immovable and the eccentricity to
remain for ever the same. It may, however, be suspected that some error is concealed
in the observations of both or at least one of them, which could easily happen in
so sensitive an undertaking, especially because they began their demonstration in
this investigation through equinoxes combined with transits of the solstice, which
are observed with great difficulty. And it is likely that Ptolemy, because he did not
find so great a difference, did not wish to disagree with the records of Hipparchus,
but instead assigned to his own age the same eccentricity of the Sun and the same
apogee, affirming too confidently for this reason that both are immovable. He goes
on to review briefly, following the Epitome of the Almagest and De revolutionibus,
the solar theories of al-Battānı and az-Zarqāl, and then carries out a detailed anal-
ysis of the errors in Copernicus’s solar theory because Copernicus found a smaller
eccentricity and a more advanced apsidal line for 1515 than he found for 1588,
contradicting in a mere 73 years the record of nearly 1450 years since Ptolemy.
Thus, Tycho still believes that a notable variation of the eccentricity and advance of
the apsidal line have occurred, that the theory of Hipparchus and Ptolemy, although
open to question, must still be taken seriously, but that Copernicus’s own hypothesis
and parameters are incorrect.

And there is more, for Tycho also believes, with Copernicus, that the length of
the tropical year has varied from antiquity to his own time, as evidence for which
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he presents the following comparisons in days and hours to which we have added
sexagesimal fractions of days (2.33):

From Hipparchus to Ptolemy 365d 5;55,12h 365;14,48d

From Ptolemy to al-Battānı 365 5;46,20 365;14,26
From al-Battānı to our observations 365 5;49,29 365;14,34
From Ptolemy to our observations 365 5;47,52 365;14,29,40

That the year is nonuniform and has become shorter since antiquity is apparent,
although it is also apparent that the values cited here are not consistent and some-
thing is wrong, as Tycho recognizes. What could cause such a variation? Tycho
explains that the inequality of the tropical year is the result of the variation of the
apogee and eccentricity of the Sun producing a motion of the ecliptic, on account of
which the equinoctial points recede along the equator with respect to the fixed stars.
Thus, the inequality of the year is the result of inequalities in the motion of the Sun
affecting the location of the equinoxes, the precession of the equinoxes is a part of
solar theory, and there is no motion of the sphere of the fixed stars, which he consid-
ers at rest except for the diurnal rotation of the heavens. This is a difficult subject,
the interpretation and cause of precession, the theory of which Tycho never fully
worked out although he later suggested something like his model for the regression
of the nodes in the lunar latitude theory, and we shall return to it below.

Also with Copernicus, Tycho believes the sidereal year invariable, and this is of
some interest as it is in finding the length of the sidereal year that he makes the
most direct use of Ptolemy’s observations and theory (2.33–37). That earlier values
differ, he says, is because of errors in observation, failure to take account of solar
parallax and refraction, insufficiently accurate locations of fixed stars, or from all
of these causes coming together, as could easily happen in so sensitive an investi-
gation. Of earlier values, he cites, from the Latin version of al-Battānı, “the most

ancient Egyptians and Babylonians,” 365 1
4 + 1

131
d = 365;15,27,30d = 365d 6;11h;

Thābit ibn Qurra, 365;15,23d = 365d 6; 9,12h; and Copernicus, 365;15,24,10d =
365d 6; 9,40h. Then, in order that we may find the length of the sidereal year more
accurately, we have carefully compared Ptolemy’s observations of the Sun and fixed
stars with our own, for I am convinced that his observations are more accurate and
secure than those of Hipparchus. (Delambre calls this a “choix singulier.”) What
Tycho does is use Ptolemy’s solar theory and tropical longitude of fixed stars as
correct for Ptolemy’s time, and his own solar theory and longitude of fixed stars as
correct for his own time, to find the sidereal longitude of the Sun at each time. He
also assumes that Ptolemy’s rate of precession, 36′′ per year, is correct for Ptolemy’s
time and his own rate, 51′′ per year, not yet set out, is correct for his own time.
And like Copernicus, he takes the longitude of the first star of Aries in Ptolemy’s
catalogue, γ Arietis, as the measure of precession.

Thus, at Ptolemy’s autumnal equinox (11) of 25 September 132 at 2h after noon
in Alexandria, the true longitude of the Sun λs = 180◦ and the mean longitude
λ̄s = 180◦ + 2;10◦ = 182;10◦. Taking Ptolemy’s longitude of Regulus on 23
February 139 of 122;30◦ and the interval to γ Arietis of −115;50◦, the longitude
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of γ Arietis is 6;40◦, as in Ptolemy’s star catalogue. Since for 6 years and 7 months
(corr. 5 months) earlier Δπ = −4′, π = 6;36◦ and the mean sidereal longitude
of the Sun λ̄∗

s = 182;10◦ − 6;36◦ = 175;34◦. At Tycho’s autumnal equinox of 12
September 1588 at 15;15h after noon (13 Sep 3;15 AM) at Uraniborg, λs = 180◦

and λ̄s = 180◦ + 2;2 1
2

◦ = 182;2,30◦. From our observations, he says, at this time
the precession of the equinoxes π = 28;5 1

2
◦
—as we shall show in the follow-

ing chapter from accurate observations made earlier—so the mean sidereal lon-
gitude of the Sun λ̄∗

s = 182;2,30◦ − 28;5,30◦ = 153;57◦.4 The difference in
sidereal longitude Δλ̄∗

s = 153;57◦ − 175;34◦ = −21;37◦ = +338;23◦. Next, in
his list of longitudes and latitudes of places (5.309–10), the difference in longi-
tude of Alexandria and Uraniborg is 60;30◦ − 36;45◦ = 23;45◦ = 1;35h (corr.
29;55◦ − 12;42◦ = 17;13◦ = 1;9h). Hence, at the meridian of Uraniborg, the time
of Ptolemy’s equinox is 2h − 1;35h = 0;25h after noon. Now, between the two
autumnal equinoxes, including complete revolutions and years, the difference of
mean sidereal longitude Δλ̄∗

s = 1455r +338;23◦ and the difference of time in Julian
years Δt = 1455jy +355d 14;50h. Thus, the mean sidereal motion of the Sun ν̄∗

s and
the length of the sidereal year sy are

ν̄∗
s = 524138;23◦

531791;37,5d = 0;59,8,11,27,14,26,54◦/d,

sy = 360◦/ν̄∗
s = 365d 6;9,26,43 1

2
h
.

The correct length of the sidereal year is 365d 6;9,10h, about 17′′ less, which
accumulates to 1h in 212 years and nearly 7h in the 1456 years since Ptolemy’s
equinox. The principal cause of the difference is an error of about −30h in Δt ,
from Ptolemy’s equinox, which is 33h late, compensated slightly by Tycho’s, about
3h late.

Tycho does better with the tropical year, for which his goal is more modest but
the required work greater (2.37–45). He explains that he does not here attempt a
complete restitution of the solar motion for all ages, which he decided to reserve for
his complete work of restored astronomy, but only as suffices for the nearest periods,
within 300 or 400 years, for in that time an inequality in the tropical year that dis-
turbs what we propose to do cannot occur. Therefore, instead of using the sidereal
year and separating out the precession of the equinoxes, which would here be very
lengthy (because over long periods the precession is variable), we shall instead be
satisfied with the equinoctial or tropical year confirmed for this very period. We
shall investigate this from observations of meridian altitudes of the Sun a hundred
years ago in Nuremberg by the learned Bernhard Walther, of lasting memory and
especially worthy of praise, the distinguished student of Regiomontanus. What he
then does is derive the parameters of solar theory for the year 1488 using Walther’s
observations of chords of meridian zenith distances of the Sun to locate the Sun at
the equinoxes and at Taurus 15◦ and Leo 15◦, and from two derivations settles on
e = 0.035481, cm = 2;2◦, and λA = Cancer 4;15◦. Note that e and cm are slightly
smaller than Tycho’s for 1588, and he also finds an obliquity of 23;31◦, slightly
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less than his own 23;31,30◦. He takes these differences seriously and remarks that
it seems consistent that from that time the obliquity of the ecliptic has increased
slightly, because meanwhile the eccentricity of the Sun has also increased some-
what, and not (as the Copernican reasoning erroneously maintains) decreased. Then,
from the difference in time between the equinoxes, both vernal and autumnal, of
1488 and 1588—with small errors in the differences in longitude of Nuremberg and
Uraniborg and in the mean longitudes of the Sun—he derives for the length of the
tropical year 365d 5;48,45h exactly, an excellent value. The mean daily motion is
computed to no less than seven places, of which the first four are 0;59,8,19,49◦/d.
The epoch for noon of 1 Jan 1588 is 290;4,50◦.

Since Tycho considers the tropical year variable over longer periods, the mean
motion is intended for a limited time, and he tabulates epochs only for the period
1400–1800, that is, 1600 ± 200 years. The rate of precession is later found (2.253)
from the difference between the sidereal and tropical year, 365d 6;9,27h−365d 5;48,

45h = 0;20,42h. Since the Sun moves about 0;2,28◦/h, the precession π =
0;2,28◦/h · 0;20,42h ≈ 51′′ per year, 1◦ in 70 years and 7 months, which will be
confirmed for longer periods from observations of fixed stars. It was found that in
1488 λA = 94;15◦ and in 1588 λA = 95;30◦, a change of 1;15◦ in 100 years, from
which the motion of the apogee is 45′′ per year. Since the precession is 51′′ per
year, the sidereal motion of the solar apogee is −6′′ per year, that is, retrograde,
which Tycho does not mention. But since it may not be uniform over longer peri-
ods, perhaps at some other time it is direct. This then is the solar theory Tycho
established for his own time and two centuries before and after. Although doubts
have been raised about Ptolemy’s solar observations and theory and observations of
fixed stars, they have not been rejected, but in fact accepted for the determination of
the sidereal year.

Tycho has more doubts about the observations of fixed stars used to confirm the
rate of precession. He has no confidence in any earlier determination of precession:
Ptolemy’s 1◦ in 100 years is too slow, al-Battānı’s 1◦ in 66 years is too fast, and
Copernicus’s variable precession is defective, as we shall see below. Nor does he
consider earlier coordinates of stars reliable, although he does use some to confirm
his own rate of precession. And he believes that Ptolemy’s catalogue of stars is
that of Hipparchus corrected for precession (2.151). “After these (Timocharis and
Hipparchus), Claudius Ptolemy also, about the year 140 after the birth of Christ, and
at Alexandria in Egypt, attempted to observe and commit to writing some amount in
the advancement of these (stars, nonnulla in harum progressione), yet concerning
the placement of them with respect to each other in longitude and latitude com-
pletely preserving the Hipparchan table.” And the same is true of the catalogues
of Battānı, Alfonso, and Copernicus, so in this sense, there has been only one star
catalogue, that of Hipparchus, successively adjusted for precession.

We have seen that Tycho accepts long-period variation of parameters of solar
theory, the eccentricity, direction of the apogee, length of the tropical year, and also,
as we shall see, the obliquity of the ecliptic and the precession of the equinoxes,
to which the variation in the length of the tropical year is related. Several times
he states that the parameters derived here are only for the closest periods, and he
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also says that their definitive examination for all ages is deferred to his complete
restoration of astronomy, which he never wrote. Although he admits the possibility
of smaller errors, nowhere does he say that Hipparchus and Ptolemy were abso-
lutely wrong about the eccentricity of the Sun, the direction of the apsidal line,
the length of the tropical year, and the obliquity of the ecliptic, which thus have
changed notably since antiquity. But the most important problem is the precession
of the equinoxes or, as Tycho prefers, the (apparent) motion of the fixed stars: is
it uniform or nonuniform over long periods and what is its cause? We begin with
Tycho’s treatment in the Progymnasmata, which comes after the establishment of
locations of fundamental stars for the star catalogue and the explanation of how
locations of other stars are found. The section is called “On the proper motion of
the fixed stars corresponding to this age” (2.253–57). He begins with the derivation
of the rate of precession from the difference of the sidereal and tropical years we
have just shown. The length of the sidereal year is 365d 6;9,26,43h, the length of
the tropical year “in this age” is 365d 5;48,45h, less than the sidereal year by about
0;20,42h. In so much time the Sun, after traversing an entire circle, again overtakes
a fixed star which has advanced slightly, meanwhile passing over exactly 51′′ in its
motion, and therefore such a small amount is the annual advancement of the fixed
stars “in our age.”

He then sets out confirmations of this rate using pairs of locations of Spica and
Regulus from observations of his own, Copernicus, Battānı, Ptolemy, Hipparchus,
and Timocharis. We summarize these in the following table giving the observers,
star, earlier and later longitudes λ1 and λ2, difference in longitude Δλ = λ2 −
λ1, difference in time Δt in years, and the annual rate of precession π = Δλ/Δt
computed by Tycho.

Observers Star λ1 λ2 Δλ Δt π

Cop.-Tycho Spica 197; 3,30◦ 198;3◦ 0;59,30◦ 70y 0;0,51◦/y

Hip.-Tycho Regulus 119;50 144;5 24;15 1713 0;0,50,59,47
Hip.-Bat. Regulus 119;50 134;5 14;15 1006 0;0,51
Bat.-Tycho Regulus 134; 5 144;5 10; 0 705 0;0,51,4
Tim.-Tycho Spica 172;20 198;3 25;43 1879 0;0,49,15
Ptol.-Tycho Spica 176;40 198;3 22;23 1446 0;0,53,15

The results are not quite straightforward and most of the values of π have
small errors of little consequence.5 To explain the discrepancies of about ±2′′ in
the comparisons with Timocharis and Ptolemy, he notes that the comparison with
Hipparchus in between them is correct, which is confirmed by al-Battānı, that the
mean of their values is about 51′′, and that their observations are not sufficiently
accurate for this purpose. For this reason, it is useless to give direct comparisons
between Timocharis, Hipparchus, and Ptolemy, which would be close to Ptolemy’s
36′′ per year. Hence, it appears that 51′′ per year is confirmed for nearly 1900 years.
But Tycho is more cautious, for he writes that assuming that the annual motion of
the fixed stars is exactly 51′′, in no way shall we depart from the required goal in
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any experiences that can occur in the nearest three or four centuries (as concerning
more I shall not speak). Like the epochs of the Sun’s mean motion, the epochs of
the motion of the fixed stars are tabulated only for 1400–1800, as they are in the
Restoration of the Fixed Stars with the catalogue of 1,000 stars completed in 1598
(3.343,374). He goes on to say, and this seems to be his main point, that Coperni-
cus’s theory of the inequality of the precession of the equinoxes, to reconcile and
preserve all the discoveries of his predecessors, is in no way correct, as in the motion
of the seventy years from his first observation of Spica, which is much faster than he
believed it would be, not one degree in about one hundred years but in seventy, and
in the length of the tropical year, which is not as long as he believed, for according to
Copernicus the two are connected such that the motion of the fixed stars is slowest
when the year is longest. But the accurate observations of recent years refute this
since they do not correspond in their periodic returns, meaning that the precession
is not as slow or the tropical year as long as in Copernicus’s theory.6 He concludes
(2.255–56):

It is not now our intention to set out the universal motion of the eighth
sphere (as it is called) and also corresponding to all periods in the age of
the world, so that the inequality discovered by first some and then other prac-
titioners will, as far as possible, be justified, leaving aside the undertaking
of such labor to a special restoring of astronomy. Nevertheless, convinced
in this matter by good reasons, I do not hesitate to affirm that so immense
an anomaly is hardly concealed in the motion of the fixed stars as is come
upon from the observations of Timocharis and Ptolemy compared with Hip-
parchus and al-Battānı. For it is not likely that sometimes they pass over 1◦

in 100 years, as Ptolemy reckoned, but sometimes in 66 years, as al-Battānı
believed, but rather without doubt some error has escaped detection in the
actual observations of the practitioners, which appears clearly enough from
the fact that the longitudes of the very stars they report specifically to have
observed are not distant from each other in heaven itself by the amount
their record claims, so much so that a deviation from the arrangement of
heaven is found of a third and even half a degree, which will be clear to
anyone by comparing our intervals of longitude with their records regarding
the same stars. We also see how little of more refined accuracy the mod-
erns have shown in these matters, as is clear from the published observa-
tions of Regiomontanus and his student Bernhard Walther, and of Werner.
Nevertheless, I shall not suppose that the observations of the ancients of the
fixed stars were so erroneous that it cannot be gathered from them that some
kind of inequality of motion is concealed in them, although I believe this
takes place from some external cause and indirectly, and with good reason
is not to be attributed to the stars themselves. Still, it is not yet suitable to
make known a final judgment on this matter, considering more deliberately to
reserve it to the comprehensive study of astronomy to be published in several
years.
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Although the comprehensive study of astronomy was never written, Tycho does
say more on the question in his correspondence with Joseph Scaliger. The cor-
respondence, of considerable interest on both sides, has been treated in detail by
Anthony Grafton (1993) concerning Tycho’s correction, or attempted correction, of
Scaliger’s notions about the sidereal year and precession, and our own examination
of this curious subject owes much to Grafton’s. Tycho knew Scaliger’s work well. In
1584 he asked his friend Heinrich Brucaeus, Professor of Medicine at Rostock, for
a copy of the recently published De emendatione temporum, the first of Scaliger’s
two great works on chronology, which Brucaeus promptly sent. In 1595, through
his former assistant Johann Isaac Pontanus, then in Amsterdam, he sent Scaliger
in Leiden several printed quaternions of the solar theory in the Progymnasmata so
that he could compare his equinoxes with ancient equinoxes to find a more correct
measure of the relation of the tropical and Julian year. He hoped that in this way
the length of the tropical year, which he had established for the recent period from
Walther’s observations, could be found more accurately by extending the interval
back to antiquity and in so doing refute Copernicus’s theory of the variation of
the tropical year and precession, which he says is not as great or as important
as astronomers suspect (7.373–74). He seemed to think that Scaliger had original
reports of ancient observations of equinoxes, by Hipparchus in particular, other than
the citations in the Almagest, which of course he did not. In a letter of 14 March
1598 written from Wandesburg (8.31–33), he asks Scaliger to send him all Hip-
parchus’s observations he has of vernal and autumnal equinoxes, perhaps from the
Commentary on Aratus which contains no such equinoxes, set out in a table so that
he could compare them with his equinoxes; if he has other very old observations
of equinoxes, he would wish them, and also the most ancient epoch of the Jews,
when it is believed the equinox took place on 21 April at 6 hours after noon. This
would have been about 3800 BC, close to the date of Creation. Scaliger included
Tycho’s equinoxes in the second edition of De emendatione temporum (1598),
and concluded from a comparison of Hipparchus’s and Tycho’s equinoxes that the
Alfonsine tropical year of 365d 5;49,16h is correct and preferable to the year of
“Gelalaeus.”7

Now on 9 July 1598 Scaliger sent Tycho the second edition of De emendatione
temporum with a letter setting out his ideas about the tropical and sidereal years and
the precession (8.83–87). He believes that the sidereal year is not longer than, but
equal to, the Julian year, because the same star always rises in the evening and sets
in the morning on the same Julian date, which in truth the judgment of the Egyptians
that decrees that Sirius always rises on the same Julian date proved to us, the evi-
dence for which is that what we call the Julian year the Egyptians called “Canicular”
because for more than 1500 years Sirius (Canicula) rose on the same date of the
Julian year. This observation, as I hope, he tells Tycho, will not be unwelcome to
you. He did not reach this conclusion from a record of Egyptian observations of
the rising of Sirius, which does not exist, but, it appears, by interpreting the Sothic
Cycle, 1461 Egyptian years = 1460 Julian years, in which 1 Thoth in the Egyptian
calendar returns to the same date in the Julian calendar, plus an additional 44 Julian
years for the effect of the precession of the equinoxes, advancing the equinox by 11
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days in 1460 Julian years, as a period of more than 1500 Julian years in which Sirius
rose on the same date.8 Further, he continues, there is no trepidation nor motion of
the eighth sphere, of the fixed stars, from west to east because it is the equinoctial
points in the ecliptic that move from east to west, for the equinoctial circles (of the
equator) are described as a consequence of them. These points are surely movable,
and therefore the circles described as a consequence of their motion are movable and
consequently the pole of the equator is movable. And thus in the time of Hipparchus,
the pole of the equator was distant from the tail of Cynosura (Polaris) by 12;24◦; now
it is distant by less than 3◦.9

Scaliger’s theory is this: the pole of the world, meaning of the sphere of the fixed
stars, passes through the Pole Star itself or is not far removed from it, and the pole
of the world, the arctic and antarctic circles, and the fixed stars do not move at
all—aside from the daily rotation—there is no motion of the eighth sphere. Instead,
the pole of the equator is movable, and has never been the pole of the world although
at some time it will be as it is approaching closer to the Pole Star. As a consequence
of the motion of the pole of the equator, the equator moves along the ecliptic and
the tropic circles also move parallel to the equator—these circles are not parallel to
the arctic and antarctic circles—and it is this motion that produces the precession
of the equinoxes and solstices. Just how Scaliger came up with this explanation of
precession, which he regarded as eliminating the motion of the fixed stars, is not
certain. He was no Copernican in the sense of holding the heliocentric theory and
the motion of the Earth, but it may have been an attempt to adapt Copernicus’s
theory of precession, which is a motion of the equator along the ecliptic while the
fixed stars and the ecliptic do not move, to an unmoving central Earth and unmoving
sphere of the fixed stars, although without Copernicus’s inequalities which Scaliger
definitely rejects.

Tycho wrote a long, detailed, and patient answer from Wandesburg between 17
and 23 August 1598 (8.100–09). He had his work cut out for him. He says he cannot
support Scaliger in his proposal concerning the equator and its movable poles and
that they differ from the poles of the world as his experience from instruments is
otherwise (8.102–02).

For I have found from the change in latitude of fixed stars in accordance
with the proportion of the change in the obliquity of the ecliptic from the
times of Timocharis, Hipparchus, and Ptolemy up to the present (if only what
they observed in the angle of the maximum obliquity and the rest are free
of any error, concerning which, not without reasons I am in doubt) that it is
the ecliptic that is unstable rather than the equator with its poles, the Sun not
always describing the same ecliptic through a great interval of centuries, and
at the same time successively anticipating the places at which it crosses the
equator. Hence, it happens that the fixed stars appear to progress as much as
the Sun returns earlier to these points. And since what fits the deficit of the
tropical year from the Julian year is clearly not equal to that motion, it is
not possible that the fixed stars rise or set with the Sun on the same days of
the Julian year through intervals of several centuries, and likewise from other
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concurrent causes which will give rise to a discrepancy. And although it (the
rising of stars) can somehow coincide (with the same days of the Julian year)
for some few stars for a long interval of years, nevertheless not always or for
all stars. Also, there is no difference at all between the pole of the equator and
of the world, as you infer both in your book and here, for they are one and
the same. And the last star in the tail of Ursa Minor, called Polaris because
it is near the pole, is not the pole of the world or the closest to it unless you
understand that to mean the pole of the equator, which, as I said, does not
differ from the pole of the world. This star was distant from the pole of the
equator by 12 2

5
◦

in the time of Hipparchus, but in this year according to our
discoveries it has approached it within 2;51 1

2
◦
, as 25 years earlier we found it

removed from the pole by precisely 3◦ with a quadrant 14 cubits in radius in
the garden near the estate of Councillor Heinzel in Augsburg. The approach
to the pole of the equator or of the world takes place, not because this star is
the pole or near (the pole) of any sphere, but through its change of longitude
about the poles of the ecliptic, by which its declination increases, since it is
now near the end of Gemini but at the time of Hipparchus was near the end
of Taurus, in the intervening time having covered a little more than 24◦ in
longitude, but in latitude altered not more than the decrease of the obliquity
of the ecliptic produces, through a third part of a degree (if it is even that
much), for the (latitude) which the table of Ptolemy places at 66◦ exactly is
approximately confirmed. And if this star is referred to the equator in our own
age, it will not fall in the equinoctial colure, as perhaps you believe, but will
be removed from it by 5 3

4
◦

of the equator, as has itself been demonstrated
by certain experience. But it can never be exactly united with the pole of the
equator, for after about 500 years, when the beginning of Cancer reaches the
solstitial colure, it will be distant from the pole toward the equator or eclip-
tic by 27 1

2
′
. For although the inclination of the ecliptic will perhaps then be

increased a little (which, however, I scarcely think will come about), yet this
will alter only the latitude of the star and not on account of that move it closer
to the pole, as the stars definitely look to the fixed poles of the ecliptic while
the Sun describes somewhat movable poles through the ages (i.e. a movable
ecliptic with movable poles), in so far as the records of the ancients are worthy
to be trusted.

Tycho goes on to explain that the heliacal rising of Sirius changed, according to
his computation, by only one day in the Julian year for 1500 years before Ptolemy,
which would have been difficult to detect, not because the sidereal year is equal to
the Julian year, but by chance in that particular star because in the interval of so
many centuries its declination changed by 2 2

3
◦

such that this alteration of declina-
tion corrects and nearly eliminates the change that could occur from the difference
between the Julian and sidereal year. This explanation, which Tycho was surely
the first to formulate, is correct.10 But our concern here is not so much Tycho’s
correction of Scaliger, as his own ideas concerning the precession, which he says is
a result, not of the motion of the fixed stars, but of the ecliptic. He enlarges on this
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in correcting Scaliger’s dismissal of the sidereal year and its relation to precession
(8.103–04).

The calculation of the sidereal year, introduced by the Babylonians and Egyp-
tians and after that improved by Thābit, but restored in our age by Copernicus,
is not so empty and useless as you think, if only it is determined exactly. We
have corrected it still more accurately in our Progymnasmata astronomica
in so far as Ptolemaic observations are compared with our own. But when
through you I receive the Hipparchan observations in some quantity, I will
examine this more precisely. For with you, I also consider it preferable to
depend upon Hipparchus than Ptolemy. However, I believe no less than Coper-
nicus that with respect to themselves the fixed stars remain forever unmoved.
But I do not allow that progression, which they appear to make, through the
precession and libration of the axis of the Earth, as he (Copernicus) preferred,
since in truth nothing of the kind is suitable to the Earth. But if the reports
of the ancients are worthy to be considered in every way certain, it will be
very likely that the Sun itself describes one and another ecliptic in different
ages. And however small the inequality concealed in it could be, in so far as
it will be permitted to explain from past observations of the practitioners, we
shall, God willing, save it through the universal hypothesis of the Sun. And
the calculation of the sidereal year will also be of use for this purpose, as also
for finding the simple motion of the planets from a fixed and immovable point
and establishing it more accurately than up to now.

The “Hipparchan observations” refer to the original reports or additional obser-
vations, especially of equinoxes, Tycho requested earlier—the next year Scaliger
sent him a copy of the Commentary on Aratus, in which he would have seen that it
contained nothing of the kind—and again he asks for the most ancient equinox of the
Jews. The meaning of the sentence about believing with Copernicus that the fixed
stars are forever unmoved is, not that they do not move among themselves, which
everyone believes, but that the fixed stars as a whole, the sphere of the fixed stars
itself, is unmoved, as Copernicus alone believed and as Scaliger and Tycho now also
believe, which is confirmed by the statement that the simple (sidereal) motion of the
planets be found from a fixed, immovable point, as Copernicus also held. The only
motion of the sphere of the fixed stars is the diurnal rotation about the pole of the
equator, which Tycho considers the pole of the world and absolutely fixed. Instead,
the precession is due, not to the motion of the stars, but to the motion of the Sun,
describing different ecliptics in different ages, possibly with a small inequality. This
agrees with his statement that the Sun does not always describe the same ecliptic
through a great interval of centuries, and at the same time successively anticipates
the places at which it crosses the equator, so that the fixed stars appear to progress
as much as the Sun returns earlier to these points.

The discussion, the issue, between Tycho and Scaliger is this: Both believe with
Copernicus that the fixed stars do not move at all, that there is no motion of the
eighth sphere, although they also believe, differing from Copernicus, that the diur-
nal rotation is of the entire universe, including the sphere of the fixed stars, about



Tycho, Longomontanus, and Kepler on Ptolemy’s Solar Observations and Theory 165

an unmoving, central Earth. But again with Copernicus both believe there is a pre-
cession of the equinoxes with respect to the fixed stars which is not caused by any
motion of the stars. Scaliger believes the precession is caused by a motion of the
pole of the equator with respect to the pole of the world, of the sphere of the fixed
stars, at or very near Polaris, shifting the equator and thus the intersections of the
equator with the ecliptic, the equinoxes, with respect to the stars and the ecliptic,
which is also fixed with respect to the stars. This appears to be an adaptation to a
fixed, central Earth of Copernicus’s theory, in which the equator moves with respect
to the ecliptic and the fixed stars, although without the inequality in the motion of
the equinoxes. Scaliger also believes that the sidereal year is equal to the Julian
year, as shown by the constant Julian date of the rising of Sirius, and those who say
it is longer are simply wrong. Tycho believes instead that the pole of the equator
is the fixed pole of the world and that the precession is the result of the motion of
the Sun, describing successively different ecliptics, that is, an ecliptic that moves,
rotates, along the equator so that the Sun crosses the equator at successively different
points, causing the equinoxes to precess with respect to the fixed stars and fixed
equator. There is probably also some small inequality concealed in this motion of
the equinoxes, which accounts for the variation of the length of the tropical year, but
the sidereal year, the Sun’s return with respect to the fixed stars, is constant, as the
fixed stars do not move, and is longer than a Julian year. The nearly fixed Julian date
of the rising of Sirius is fortuitous, because the star’s change in declination nearly
compensates the difference between the sidereal and Julian year, which is not true
of most stars. Tycho believes that he has established the length of the constant side-
real year correctly for all times and the length of the variable tropical year for 100
years since Walther and probably for 200 years before and after his own time; more
than that and a complete explanation of the precession is reserved for his universal
hypothesis of the Sun.

Scaliger was not convinced by Tycho’s arguments, indeed, he became more cer-
tain than ever that he, the philologist with a profound knowledge of antiquity, was
correct, and Tycho, the astronomer, and all other astronomers, who know noth-
ing of antiquity, were wrong. He was writing a Diatribe on the precession of the
equinoxes (De aequinoctiorum anticipatione diatriba), completed in 1601 but prob-
ably never seen by Tycho, and only published posthumously in 1613.11 On (NS) 10
March 1600, he wrote to Tycho in Wittenberg (8.261–64), referring to a letter he
had received recently, and summarizing what he planned to write in his Diatribe.
The word “diatribe” then meant a critical dissertation, not necessarily an invec-
tive, although that is hardly lacking in Scaliger’s Diatribe or his letter to Tycho
(8.262–63).

For I intend to send you my diatribe on the precession of the equinoxes and
refutation of the motion of the eighth sphere, in which we have both dili-
gently assembled innumerable testimonies of the ancients and shall demon-
strate by five clear testimonies of the most ancient authors that the star called
Polaris has remained for 1966 years in the place where it is today. Further,
we shall adduce so many incongruities and absurdities which follow from the
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hypothesis of the motion of the eighth sphere that there will be no one except
the ignorant or envious who will dare speak to the contrary. I add also, because
it has thus far been entirely unknown, that the precession of the equinoxes had
been accepted from Thales and Anaximander up to the time of Hipparchus,
and that Hipparchus was the first of all to reject it, having introduced the
eastward motion of the eighth sphere, so that against the evidence of sight,
he recorded the last star in the tail of Cynosura, or Polaris as it is commonly
called, to be the most southern of all seven stars in that constellation, which
nevertheless was before him, and is today, and will always be the most north-
ern of all. See how the authority of such a man has misled posterity! For
from him up to the present day, you believe such things, and for no reason
other than that “the Master spoke” ( ), which should never have
a place in mathematics. For to no sort of men has more harm been done
by ignorance of antiquity than to the race of astrologers. Nothing occurs to
me to be more surprising than that not one astrologer has had even a clue
of the error of that hypothesis and how many and great are the absurdities
necessarily born of it, if you except only Copernicus, who also recognized
the precession of the equinoxes and the obliquity of the equinoctial circle (the
equator), but through ignorance of antiquity took refuge in absurd hypotheses.
In fact, the regular and uniform decrease of the maximum declination of the
Sun necessarily follows from the precession of the equinoxes alone, which
we have demonstrated completely, for otherwise it is not possible except by
false hypotheses. Therefore it follows that the pole of the world differs from
the pole of the equator, and that the meridian lines move and do not always
remain in the same place, which we shall demonstrate perfectly from ancient
authors.

Scaliger’s history of precession may seem bizarre, but far more preposterous
things have been written in our own time; indeed, precession always seems to inspire
both learned and ignorant nonsense. The period of 1966 years during which the
Pole Star has been in the same place is since Eudoxus as cited by Hipparchus,
critically in fact, although Scaliger considers Eudoxus, with the likes of Thales and
Anaximander, preferable to Hipparchus, the originator of the false understanding
of precession as a motion of the fixed stars. This curious history, and there is far
more of it in the Diatribe, has been treated at length by Grafton. It is clear that
Tycho’s attempt at correction had no effect, for Scaliger has changed his mind on
nothing, and is certain that the testimony of some ancients correctly understood is
of greater value to understanding precession than a sound knowledge of astronomy.
Yet it can be said in Scaliger’s defense that in the basic principle of moving the
equator with respect to a fixed ecliptic and unmoving sphere of the fixed stars, in
which he follows Copernicus, he is doing the right thing. Tycho answered in a letter
written from Prague on (NS) 23 July 1600 (8.328–29), in which it appears that the
great astronomer is not doing the right thing; the essential part is this:

I eagerly await your thoughts, which you promised, about saving the equinoxes
and the motion of the eighth sphere in another way. I readily grant you that
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the Pole Star, just as all the other stars of the eighth sphere (as it is called),
remains in the same place in heaven, if only you acknowledge in this star, as in
the others, changes in declination and right ascension, as well as in longitude
and even some change in latitude. I also agree with you that this will take
place, not by the advance of the eighth sphere, but by the precession of the
equinoxes, as the great Copernicus likewise seems to have apprehended. But
the critical point in this matter turns upon how this precession is to be under-
stood and accomplished. That it takes place, as Copernicus theorized, through
a motion of the axis of the Earth, reciprocated and librated and not entirely
coincident with the annual revolution, is in error; rather, the assumption is
utterly absurd and does not satisfy the appearances in this age, much less in
all other ages. I am convinced that the Sun itself causes this variation as it
describes one and another ecliptic in different ages, and moreover draws the
intersections of the ecliptic with the equator backwards, and in fact not at all
uniformly, as I intend to show more fully, God willing, in its proper place. For
I have discovered that the lowest Moon also varies its orbit in single months in
a way not much different such that, not only does its maximum latitude vary
up to a third part of a degree (in fact just as much as the difference thus far
discovered in the obliquity of the ecliptic), but I also learned that the nodes and
intersections with the ecliptic, although they move westward with a uniform
motion, yet this takes place reciprocally and by a nonuniform quantity and
a fairly notable difference which can reach 1 3

4
◦
, as will be explained more

completely, God willing, in publishing before long the restoration of the lunar
motion in our Progymnasmata. If by chance there has become known to you a
way different from ours by which these things can be explained properly, and
it can be ascertained from ancient records and certain observations, I wish you
to impart it to me. For the present, the matter is as I say, that I cannot compre-
hend what you have made known both in your letter and elsewhere: that the
pole of the world is undoubtedly different from the pole of the equator and
that meridian lines move. For it appears not quite suitable, unless perhaps I do
not yet understand your meaning, which is rather obscure, so that concerning
this matter I wish to be more fully instructed by you.

Tycho’s answer is a lesson in gentle irony to a vain man who has nothing but
abuse for those who do not submit to his teachings and acknowledge his genius.
Since Scaliger’s diatribe on precession has been considered by Grafton, we shall
go on to our principal subject, Tycho’s own explanation of precession in this letter,
which appears to be the most complete statement of what he had in mind. The essen-
tial clue is the comparison to the model for lunar latitude, in which the inclination
of the lunar orbit to the ecliptic is variable and the regression of the nodes along
the ecliptic nonuniform. This model is to be transferred to the precession of the
equinoxes, which, as we shall see, leads to problems.

Scaliger’s and Tycho’s hypotheses for precession are shown in Fig. 1. We are
not concerned with Scaliger’s ideas that the sidereal year is equal to the Julian year
and that the pole of the equator will eventually reach Polaris, only that a motion of
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Fig. 1 Hypotheses for precession of the equinoxes according to (a) Scaliger, (b) Tycho, (c) cor-
rection of Tycho

the equator accounts for precession, which is shown in Fig. 1a. The Sun S moves
on the ecliptic in the direction of increasing longitude +λ and initially crosses the
equator at the vernal equinox 1; a northern star sn and southern star ss are shown
with longitude λ1 = 1l, latitudes βn = snl and βs = ssl, and declinations δn = snd1

and δs = ssd1. Now after some time the pole of the equator has moved, shifting the
equator so that the Sun crosses it at the vernal equinox 2, and the precession of the
equinox along the ecliptic is π = 1 2 in the direction of decreasing longitude −λ.
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The longitude of the stars has increased to λ2 = 2l = 1l + π , the latitudes have
remained unchanged, and the declinations have changed, sn increasing to δn = snd2

and ss decreasing to δs = ssd2. And if the pole of the equator has moved closer to
the pole of the ecliptic—this motion is not shown in the figure—the inclination of
the equator to the ecliptic has decreased, which also affects the declination but not
the latitude of stars. All of this is just as it should be, and is essentially Copernicus’s
model but without the inequality and without the motion of the Earth. But if the
axis of the Earth does not move, how is the equator shifted? Scaliger seems to think
that the equator and its poles are located on a sphere, which moves in relation to the
unmoving sphere of the fixed stars. This does raise a problem. If the sphere is inside
the sphere of the fixed stars, it may move in this way, but a sphere with identical
equator and poles, and with the identical motion, must still be located outside the
sphere of the fixed stars to produce the diurnal rotation of the heavens parallel to the
equator. If the sphere is only outside the sphere of the fixed stars and also produces
the diurnal rotation, then it is difficult to consider the poles of the sphere of the fixed
stars as not moving with respect to the poles of this outer sphere moving the equator.
There is nothing wrong with that, and it is a way of transferring Copernicus’s model
for precession to the heavens, but one can hardly then say that the sphere of the fixed
stars is absolutely at rest, of course aside from the daily rotation, which strictly, or
usually, is required to have yet another sphere of its own.

Tycho’s model for lunar latitude produces both a variation of the inclination of the
lunar orbit to the ecliptic and a nonuniform regression of the nodes, and he believes
that both can be applied to the Sun to produce the variation of the obliquity of
the ecliptic and the nonuniform precession of the equinoxes. Tycho’s model for the
precession is shown in Fig. 1b, in which the Sun S moves on the ecliptic, crossing the
equator at 1, and stars sn and ss have the longitude λ1 = 1l1, latitudes βn = snl1

and βs = ssl1, and declinations δn = snd1 and δs = ssd1. The Sun, as Tycho says,
“describes one and another ecliptic in different ages, and moreover draws the inter-
sections of the ecliptic with the equator backwards, and in fact not at all uniformly,”
so that after some time the Sun crosses the equator at 2, which is projected on to
the previous position of the ecliptic at ′

2 in the direction of decreasing longitude
− λ by the precession π = 1

′
2, which may be nonuniform, as the regression of

the nodes in the lunar model, and thus the period of the Sun’s return to the equinox,
the tropical year, may be nonuniform. Along with this nonuniform motion of the
equinoxes, as in the lunar model, there is a variation in the inclination of the ecliptic
to the equator, that is, a variation of the obliquity, which is not shown in the figure.
So far, so good, but when we consider the effect on stars, there are problems. If the
ecliptic moves and the sphere of the fixed stars does not move, then the longitude
of stars increases to λ2 = 2l2 = 1l1 + π , which is correct. But the latitudes of
stars also change, sn reduced to βn = snl2 and ss increased to βs = ssl2, which is not
correct and distinct from the change in latitude from the variation of the obliquity
that Tycho has in mind, and the declinations do not change, which is also not correct.
The solution to these difficulties, shown in Fig. 1c, is to make the fixed stars move
with the ecliptic, so the latitudes βn = sn2l2 = sn1l1 and βs = ss2l2 = ss1l1 are
unchanged, aside from the change produced by the variation of the obliquity, and
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the declinations are changed, from δn = sn1d1 to δn = sn2d2 and from δs = ss1d1 to
δs = ss2d2. But that contradicts Tycho’s belief that the fixed stars do not move and
that the precession takes place, not by the advance of the eighth sphere, but by the
precession of the equinoxes, which is the reason for applying his model for lunar
latitude to the precession. Tycho would surely have discovered these difficulties had
he worked out his model for the precession more carefully, but he did not do so, and
all we have is this suggestion of applying the model for lunar latitude to account for
a nonuniform precession and change of obliquity, which clearly fails.

Tycho’s solar and precession theories, like so much he intended to do, were left
unfinished. Both were established for about two hundred years before and after his
own time, as shown by the tables in the Progymnasmata, and he clearly stated in
that work and the letters to Scaliger that the consideration of long-period varia-
tions is deferred for his universal hypothesis of the Sun and complete restoration of
astronomy. We have seen that in finding the length of the sidereal year, he applies
Ptolemy’s precession of 36′′ per year to Ptolemy’s observations even though in
establishing his own rate of 51′′ per year he shows that it applies not only to his
own time, but is supported, more or less, by observations since antiquity. There
would appear to be a contradiction, but Tycho does not see it that way, instead,
perhaps, taking 51′′ per year as close to a mean value over a long period, subject
to an inequality of magnitude and period not yet known. He also accepts, at least
as more or less correct, Ptolemy’s eccentricity and direction of the apogee, also
used to find the length of the sidereal year, and length of the tropical year for the
period between Hipparchus and Ptolemy, and he believes the obliquity varies over
a range of about 20′, meaning that he accepts something close to Ptolemy’s large
obliquity of 23;51,20◦ in antiquity, nearly 20′ greater than his own 23;31,30◦. He
was cautious about doubting the observations and parameters of his predecessors,
except for Copernicus close to his own time, and while admitting the possibility
of errors by Hipparchus and Ptolemy, did not consider their errors as large as his
own parameters would suggest, believing instead that their observations could not
be seriously inaccurate and there had to be changes of some kind in parameters over
so long a period.

Scaliger had pointed out (8.85), correctly, that some of Hipparchus’s equinoxes
were in error by a quarter of a day, as shown in Almagest 3.1, and accused Ptolemy
of errors of an entire day, which we know also to be true. Tycho’s answer is more
cautious (8.101–02). He admits that because Hipparchus’s instruments were not
graduated to single minutes, but only to twelfths of a degree, and because of neglect
of solar parallax and refraction, errors of six hours in times of equinoxes were possi-
ble, and further, that Ptolemy’s observations have even less certainty. But he will not
say that there was an error of an entire day in the entries into Ptolemy’s equinoxes,
for this would require admitting an error in the declination of the Sun of about five-
twelfths of a degree, which the size and precision of the instruments, by which the
interval between the tropics or the obliquity of the ecliptic was investigated within
one-third of a minute (unless he also borrowed this from Hipparchus), does not
allow. The reasoning here is that since Ptolemy states the obliquity as 23;51,20◦,
to a precision of 1

3
′
, he could not possibly be in error by 25′, the daily change in
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declination of the Sun around equinox, so the equinoxes could not be in error by a
full day. He also points out that the maximum latitude of the Moon of 5◦, found by
Ptolemy with parallactic rulers, does not show so great an error of the instrument,
meaning close to 25′. Since so much depends upon the times of these equinoxes, as
they are used to find the length of the tropical year, the eccentricity and direction of
the apsidal line, the mean motion in longitude and epoch, and indirectly the longi-
tudes of stars from which the rate of precession is found, that is, all the parameters
which show long-period variation except the obliquity of the ecliptic, which depends
upon altitudes of solstices, the absence of serious errors in the observations shows
an absence of serious errors in the parameters. And a variation of 20′ in the obliquity
is also accepted. Thus a variation of parameters over a long period must be taken
seriously and accounted for by the universal hypothesis of the Sun in the complete
restoration of astronomy, and that is what Tycho intended to do. Of course he did not
do it, and it is not possible to know how or whether he would have changed his mind
in attempting to do so. He, or an assistant to whom he assigned the work, would pre-
sumably have caught the error of applying the lunar latitude model to account for the
nonuniform precession, at least as described in the letter to Scaliger, but more than
this we cannot say. We may only conclude that he took the long-period variation
of parameters in solar theory following from Ptolemy’s observations, including the
precession and obliquity as part of solar theory, as seriously as Copernicus did in his
theory of the motions of the Earth. So although Tycho did not believe Copernicus
had described these variations correctly or accurately, he was of the same mind as
Copernicus with regard to the effects, although not the cause.

Christian Longomontanus

Christian Severinus Longomontanus (1562–1647) was Tycho’s loyal and capable
assistant for nearly ten years at Uraniborg, and was with him for part of his travels
in Germany and then in Benatky and Prague. His last contribution while with Tycho
was the final form of Tycho’s lunar theory published in the Progymnasmata, most of
which was Longomontanus’s work, not always with Tycho’s complete approval. He
later became professor of mathematics at Copenhagen. His principal work, Astrono-
mia Danica, published in 1622, was intended as a complete exposition of astronomy
based upon Tycho’s methods and observations, including the theory of the planets
that Tycho did not live to complete, or even begin. Although no longer well known
or much studied, since the contemporary work of Kepler made nearly everything
in it obsolete, or about to be obsolete, it was regarded well enough in its day to
be reprinted in 1640. The work is in two parts, the first on spherical astronomy,
the second, of concern here, on the Sun, Moon, planets, and stars, and there is an
appendix on temporary phenomena of the heavens, new stars and comets. The title
of the second part is “Theories of the motions of the planets in accordance with the
observations of Tycho Brahe, and in fact his very own, re-established in a three-
fold form.” The “three-fold form” means that everything is set out in Ptolemaic,
Copernican, and Tychonic form, which Longomontanus prefers although giving
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the diurnal rotation, precession, and variation of obliquity to the Earth rather than
the heavens, which are absolutely at rest. In making use of ancient observations,
he does not take them as recorded by Ptolemy, as Copernicus did, but subjects them
to examination and correction, as Tycho intended to do, and he considers his work to
apply to all times, again as Tycho intended in his complete restoration of astronomy.
This is specifically stated in the separate title page of Part Two, which is worth quot-
ing: “The second part of Danish Astronomy, including the theories of the planets
restored in two books, of which the former, after a description and comparison of the
three-fold hypothesis of the world, namely, the ancient Ptolemaic, the astonishing
Copernican, the modern of Tycho Brahe, treats the apparent motions of the fixed
stars, likewise of the Sun and Moon in the same way, re-established and adapted to
all ages of the world, together with the entire theory of eclipses and besides this a
special treatment of the Moon; the latter treats the motions of the other five planets,
on the basis of the three-fold hypothesis, similarly restored to the appearances of the
heavens in the same way.”

Although Tycho did not carry out his intended investigation of the motion of the
Sun for all times, that is just what Longomontanus does in a lengthy history of solar
observations and theory from antiquity to Tycho (28–49). Much of it does not meet
with his approval, but he is also interested in explaining why things went wrong. He
is, to say the least, direct in his evaluation (29).

For although the proof of the perpetual constancy of the celestial phenomena
of the single motion of the Sun is evident, yet if the observations and likewise
theories of each of the astronomers are to be believed, in none other do I find
more disgraceful inconstancy, and this not only concerning the measure of the
annual revolution of the Sun, but also the change of its eccentricity (as it is
called) and the location of its apogee. Thus, it was determined by Ptolemy in
his demonstration of the hypothesis of the Sun, and proved by observations
of some kind, that in the nearly 300 years between Hipparchus and Ptolemy
they were without any change, but soon after in the course of the follow-
ing centuries they appear to be subject to inordinate change. Considering the
causes of this more carefully, I perceive that none belong to the absolutely
simple motion of the divine star, but all fault is deservedly to be ascribed to
the astronomers, whose records of the motion of the Sun in different ages, as
they maintain derived from the heavens, have been transmitted to posterity,
in which records the motion of the Sun is more or less erroneous in one way
or another from rather obvious causes. This disgraceful situation continued
until the beginning of the more accurate restoring of astronomy was divinely
granted to our age and to our Atlas, Tycho Brahe, the celestial observations
of whom alone, both because of the correct and careful preparation of instru-
ments as well as skill in observing, exclude all sensible error, as I, who was
a student of Brahe’s astronomy for ten continuous years, can perhaps be the
best witness. But since, as we know, equal care had by no means been shown
by his predecessors, therefore it is no wonder that with the progress of time,
very abundant error emerged, in other bodies, but especially in the Sun.
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Longomontanus is suspicious of all early observations taken from declinations
of the Sun, of equinoxes, where the daily change in declination is greatest, because
of the insufficient size or skill in manufacture of instruments, incorrectly assumed
latitude of the observer, and the effects of parallax and refraction. And the problems
are worse for intermediate places where the daily change of declination is sensibly
smaller, until the solstitial points where the location of the Sun cannot be obtained
from observations because its declination remains invariable for many days. He
believes that the length of the tropical year was obtained, not from such observa-
tions, but from cycles and syzygies of the luminaries, the Sun and Moon (30). All
before Hipparchus believed the year to be 365 1

4 days, as appears in the institution
of the Olympiad, beginning anew in the fourth year near the rising of Sirius, and
likewise other times of the year were recognized by the rising and setting of fixed
stars, the custom of the most ancient Hesiod and later the Greeks and Romans.
While all the observations of the Sun, which without doubt existed in Babylon
and Egypt during the rule of the Assyrians, have perished, first a certain Meton
of Athens, who flourished 430 years before the birth of Christ, also by use of the
common length of the year 365 1

4 days, a Julian year, estimated the mean periods
(simplices cursus) of the luminaries, not so much with respect to the equinoctial
and solstitial points, as to new Moons in his interval of 19 years, with a notable
error which in the course of time to Hipparchus was found to be 5 days by the same
Hipparchus—but to the correction of Callippus, instituted six years before the death
of Alexander, within four of his (Meton’s) periods, which contained 76 single years,
an anticipation of one day was observed in the new Moon—that is, in an interval
of 304 years, or somewhat shorter, 300 years, as Scaliger says, just as the following
words ascribed by Ptolemy to Hipparchus make clear. He then quotes Scaliger’s
quotation of Ptolemy’s paraphrase and quotation in Almagest 3.1 from Hipparchus’s
book “On intercalary months and days” that according to Meton and Euctemon the
years is 365 1

4 days,12 and that Hipparchus says he finds as many months in 19 years
as they did, but the year less than the quarter day by 1/300 day, and thus in 300
years lacking five days from the years of Meton but only one day from the years of
Callippus. He next paraphrases Copernicus’s account in De revolutionibus 4.4, and
explains everything at rather great length. Thus, Meton took the length of the year
in the cycle of 19 years equal to 235 months to be 365 1

4 days, as did Callippus, who
deducted one day in four cycles of 76 years equal to 940 months from observing an
eclipse of the Moon six years before the death of Alexander. (There is obviously a
contradiction if both took the year to be 365 1

4 days.) Hipparchus then corrected four
cycles of Callippus, 304 years equal to 3760 months, by removing one day, and thus
five days from Meton, so that, subtracting one day in 304 years, or shorter, in 300
years, he made the tropical year 365 1

4 days reduced by 1/300 day, that is 0;4,48h,
so the time is judged to be 365d 5;55,12h. His conclusion is striking (31).

And thus Hipparchus, together with his predecessors, attempted to hunt two
hares with one leap, that is, to restore the new Moons within a certain inter-
val of years and determine the individual periods from the mean motions of
the luminaries, and at the same time to measure the annual revolution. Since,
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however, one does not at all depend upon the other in this way, he obtained
a measure of the solar year, not, as it appears, from heaven or the Sun itself,
but from certain syzygies of the luminaries, incorrect and in fact excessive in
length. Unfortunately, Ptolemy chose to copy this error of Hipparchus rather
than repudiate his opinion, so that this lunar cycle was also pleasing to him.
What other evidence Ptolemy presents from Hipparchus for this assertion
proves nothing since, as we proved earlier, the tropical or solstitial points
were unobservable by the ancients, and moreover, the Hipparchan equinoxes
notably oppose this opinion of Ptolemy (ipsius), as we shall soon demon-
strate from Hipparchus’s (ipsius) very observations. And we have treated these
things at length so that men of our time will finally learn that the ancient
astronomers, Hipparchus especially and Ptolemy, have been exposed in errors
by reason of fairly obvious causes in assigning the period of the Sun.

This is, to say the least, strong language. Yet, although there is some confu-
sion in Longomontanus’s account, as the length of the year according to Meton, his
principal point, that the tropical year of Hipparchus and Ptolemy was derived from
a luni-solar cycle rather than from observations of the Sun alone is undoubtedly
correct.13 Very briefly, the length of the Callippic Cycle of 76 years = 940 months
is 76 · 365 1

4
d = 27,759d. But Hipparchus had himself confirmed the Babylo-

nian System B mean synodic month of 29;31,50,8,20d, from which 940 months
are equal to 940 · 29;31,50,8,20d = 27,758;45,30,33,20d, less than the Callip-
pic Cycle by about 0;15d, one-quarter day. Hence, in four Callippic Cycles, 304
years = 3760 months, called the Hipparchan Cycle, one day must be subtracted,
and the length of the cycle is 4 · 27,759d − 1d = 111,035d. The length of the
tropical year is thus 111,035d/304 = 365;14,48,9,28. . .d, which was rounded to
365;14,48d = 365 1

4
d − 1

300
d. Hipparchus confirmed this year as well as he could

from earlier observations of solstices, which is all he had, of which Ptolemy gives
one example: the summer solstice observed by Aristarchus at the end of the fifti-
eth year of the first Callippic Period (−279) and by Hipparchus at the end of the
forty-third year of the third Callippic Period (−134), an interval of 145 years in
which the number of days was less than 145 · 365 1

4
d by one-half day, or one day

in 290 years, close enough to 300 years to confirm a tropical year of 365 1
4

d − 1
300

d.
Ptolemy’s confirmation uses pairs of equinoxes of Hipparchus and his own, autum-
nal (5) and (12), vernal (6) and (13), each pair separated by 285 years = 15 · 19
years, surely no coincidence, which Longomontanus may have noticed although
he does not mention it. The tropical year of Hipparchus, and later of Ptolemy,
thus rests upon the application of the Babylonian System B month to the cycle
19 years = 235 months, or 76 years = 940 months, multiplied to an integer number
of days, 304 years = 3760 months ≈ 111,035 days, and an approximate confirma-
tion from independent observation of the Sun.

What Longomontanus does next is to set out nine of Hipparchus’s equinoxes,
six autumnal and three vernal, dated to the Era of the Death of Alexander (−323
Nov 12, here EA, also called Era Phillip), and subject them to an “examination,”
or rather criticism (32). He believes the observations were made in Alexandria, not
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Rhodes, and that the equinoxes were found, not by interpolating between meridian
altitudes of the Sun, but by an equatorial ring, so the stated times were directly
observed—this is curious since two of the times are midnight—and it is no wonder,
he says, that Hipparchus reached a precision of only one-quarter day. Further, the
reported times of most cannot be accepted because they were at sunrise or sunset
where the effect of refraction in the horizon makes the autumnal later and the vernal
earlier by over half a day at the least, although in part reduced by neglect of the
parallax of the Sun. Thus, as we shall see, when using two equinoxes observed at
dawn, 6 AM, he corrects for refraction: from the autumnal equinox (7) of −145 Sep
27 he subtracts five hours, and to the vernal equinox (6) of −145 Mar 24 he adds five
hours, from dawn to one hour before noon, the time Ptolemy reports the equinox
was observed by a ring in Alexandria. He then computes that the year derived
directly from various intervals between the equinoxes does not exceed 365 days
by 5;55,12h, but from the autumnal equinoxes by not more than 5;4h and from the
vernal equinoxes by not more than 5;43h, with a mean of only 5;24h, deficient from
5;55h by 0;31h. He notes that the parallax of the Sun in the equator at Alexandria,
at an altitude of 59◦, is 1 1

2
′, but does not use it to correct the times of the equinoxes

near noon (by about 1 1
2

h). Instead, he uses a curious computation for finding the
intervals between equinoxes equivalent to the following: The interval between the
autumnal equinox (4) of EA 167 Epagomenal 1 (−157 Sep 27) at noon and the
vernal equinox (6) of EA 178 Mechir 27 (−145 Mar 24), with the correction of +5h

from dawn to one hour before noon, is 4195d 23h. But eleven years of 365d 5;24h

are 4017d 11;40h. The difference of 178d 11;20h is the interval from the autumnal to
the vernal equinox, which, subtracted from the year of 365d 5;24h gives 186d 18;4h

from the vernal to the autumnal equinox. He makes one small mistake and finds the
intervals 178d 11;25h and 186d 17;59h, and notes that they differ, by several hours,
from Ptolemy’s intervals of 178d 6h and 187d 0h. We have carried out everything
precisely in accordance with the observations of Hipparchus, he says, not to show
in them the truth itself, for neither the length of the tropical year nor the interval
between the equinoxes which results is the truth, but so that it becomes clear how
great are the errors in the observations of the ancients, lest we be so devoted and so
bound to them that it will not be acceptable to change anything in them by applying
the fair weighing of comparison.

Longomontanus is hard on Hipparchus, but he is harder still on Ptolemy (33).

We explained earlier what the intention of Ptolemy was concerning the mea-
sure of the tropical year, and, unless I am very mistaken in this conjecture, he
observed both autumnal equinoxes at the very limit of the horizon—provided
that they differ (as without doubt they do) from the number of those which
occurred twice in one day due to the instrument, although in fact the instru-
ment rested on one side or the other with respect to the horizons—which
remarkably led to what he intended. And it is certainly worthy of notice that
in these observations Ptolemy has so far adapted himself to the Hipparchan
demonstration and hypothesis (constitutioni), of the measure of the tropical
year as well as of the immutable eccentricity of the Sun, that for this very



176 N.M. Swerdlow

reason he did not assign his observations to the exact cardinal points of the
days (i.e. sunrise, noon, sunset), but a little later, at one hour etc., so that you
would judge (he did this) to give satisfaction to the Ptolemaic computation
rather than to heaven. But lest some astronomers to whom I write these things
become indignant at our candor in investigating Ptolemy, prevailed upon by
his ancient and exceedingly great authority, I ask that they consider what he
relates elsewhere concerning the parallax of the Moon observed by him, and
carefully compare (it) with our restoration which, to the best of my knowl-
edge, in the lunar motion and distance corresponds exactly to the standard
of heaven. And finally, let them notice in that passage (as I pass over others
like it) Ptolemy reported from his observation the parallax of the Moon half
a degree and more above the true parallax, for no other reason (as I believe)
than that he pass off (obtruderet) upon posterity as genuine (pro legitima) that
hypothesis of the Moon he previously established himself or, if you prefer,
received from his predecessors, and only once confirmed by his computation.
But now, I ask, what will be the prohibition (religio) from suspecting that here
he was of the same intention, and relied upon those equinoctial observations
of the Sun which served his purpose, but the others, of which it is very likely
he made many more, he entirely concealed?

The remark about the instrument that showed two equinoxes in one day because it
was out of alignment refers to Ptolemy’s criticism of two bronze equatorial rings in
Alexandria. So Ptolemy too, according to Longomontanus, followed Hipparchus in
accepting the tropical year derived from the luni-solar cycle, as well as Hipparchus’s
eccentricity of the Sun, and adjusted his observations of equinoxes accordingly “to
give satisfaction to the Ptolemaic computation rather than to heaven.” This may be
true, or one may say that like Hipparchus he took the year derived from the cycle
to be correct in principle and confirmed it from observations of equinoxes, although
we know not well since his own equinoxes are late by from 21 to 36 hours. In any
case, it is evident that Longomontanus does not trust Ptolemy at all, as shown by the
observation of lunar parallax he reported (Almagest 5.13), more than half a degree
too large, and he suggests that Ptolemy’s reason for this was pass off on posterity
the defective hypothesis of the Moon that he invented or even received from his
predecessors. Clearly, he does not approve of Ptolemy.

The examination of Ptolemy’s equinoxes considers only one, the autumnal
equinox (12) of EA 463 Athyr 9 at one hour after sunrise (139 Sep 26, 7 AM),
which he believes was observed with an equatorial ring. Since the Sun was nearly
in the horizon, the refraction in altitude was 32′, which in the horizon in Alexandria
corresponds to about 32′ of longitude and 13 hours in time, all of which is about
correct. And since refraction makes the autumnal equinox later, with correction
for refraction the equinox occurred 13 hours earlier on Athyr 8 at 6 hours after
noon (139 Sep 25, 6 PM). Then, the interval to the following vernal equinox (13),
Pachon 7 at one hour after noon (140 Mar 22, 1 PM), taken here as exactly noon,
is 178d 18h—without the rounding, 178d 19h—which Ptolemy and Hipparchus took
as 178d 6h and the earlier correction of Hipparchus’s interval 178d 11;25h. From the
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corrected time of Ptolemy’s equinox, he computes the length of the tropical year
between Hipparchus and Ptolemy (35). He takes Hipparchus’s autumnal equinox
(4) of EA 167 Epagomenal 1 at noon (−157 Sep 27, 12 PM) and Ptolemy’s equinox
(12) of EA 463, corrected by −13h to Athyr 8 at six hours after noon (139 Sep 25,
6 PM), and finds an interval in Egyptian years of 296ey 72d 6h. In 296 Julian years,
the addition of one-quarter day is 296 · 1

4
d = 74d, exceeding 72d 6h by 1d 18h = 42h.

The deficit in one year from 365 1
4

d is thus 42h/296 = 0;8,30 4
5

h and the length of
the year 365d5;51,29 1

5
h, and from three pairs of equinoxes he finds it not greater

and even a little smaller. Then the interval from the vernal to the autumnal equinox
is 365d 5;51,30h − 178d 18h = 186d 11;51,30h.

In addition to the equinoxes of Hipparchus and Ptolemy, Longomontanus also
considers the equinoxes in the calendar of Julius Caesar, which he believes, follow-
ing Pliny, was the work of Sosigenes, and which he finds in the agricultural calendar
in Book 18 of Pliny’s Natural History. These are definitely schematic, but so too are
the intervals of Hipparchus and Ptolemy, from which they differ by one day, and the
year of 365d 6h used for deriving the eccentricity, which is not the exact length of
the year. In all, he now has four sets of intervals between the equinoxes, which we
give with the length of the year in the following table.

Source Year Vern. to Aut. Aut. to Vern.
Hipparchus-Ptolemy 365d 6h 187d 0h 178d 6h

Sosigenes 365 6 186 0 179 6
Hipparchus corrected 365 5;24 186 17;59 178 11;25
Ptolemy corrected 365 5;51,30 186 11;51,30 178 18

For deriving a corrected eccentricity for the time of Hipparchus (36), since it
is not possible to find the time of the solstice accurately, he uses the corrected
interval between Ptolemy’s vernal and autumnal equinoxes and an assumed lon-
gitude of the apogee near that found by Hipparchus, which makes for a very
simple demonstration although it is set out a great length and computed to no
less than seven places. We need not go through the steps, which have only the
smallest inconsistencies. The interval from the vernal to the autumnal equinox of
186d 11;51,30h gives a mean motion of 183;49,12◦, and taking the longitude of the
apogee λA = Gemini 6◦, where the radius of the eccentric R = 1, the eccentricity
e = 0.0364837, and the maximum equation cm = 2;5,26◦. Hipparchus and Ptolemy
found λA = Gemini 5;30◦, e = 0.0417, and cm = 2;23◦. It then follows that the
mean motion from the vernal equinox to the summer solstice is 93;43,36◦ and the
interval of time 94d 2;40h, which he notes is about midway between Hipparchus
and Ptolemy, 94d 12h, and Sosigenes reported by Pliny, 93d 12h, although somewhat
closer to Hipparchus.

He then examines (37–47) the solar theories derived from the observations of
al-Battānı, Walther, Copernicus, whose theory he corrects as he corrected Hip-
parchus and Ptolemy—Tycho had also corrected Copernicus’s solar theory—and
finally Tycho, finding that the maximum equations are all nearly the same, within
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±3′ of his own derivation of cm = 2;4,48◦, from e = 0.035714 = 1/28, based
upon his own small correction of Tycho’s observations, so the eccentricity has
remained constant, which shows that the eccentricity of Hipparchus and Ptolemy is
erroneous and Copernicus’s model for the variation of the eccentricity is incorrect.
And that the eccentricity is equal to 1/28, the divine unalterable proportion of the
second number in the order of perfect numbers, equal to the sum of their factors,
he takes as more evidence that Copernicus’s variation of the eccentricity should
be ignored. He also believes that the solar apogee has advanced with a uniform
(sidereal) motion, from the beginning of Aries, with the Sun at the perigee at the
beginning of Libra, at the Creation of the world—5554 years before 1588, thus
3967 BC at the autumnal equinox—to 95;30◦ in 1588 at the time of Tycho. We
shall take up his chronology below. He sets out a table comparing locations of the
apogee from Hipparchus to Tycho with his own corrected locations, which depend
upon his theory of precession yet to be explained, omitting Ptolemy as just plain
wrong and correcting Copernicus, in which the greatest differences are +37′ for
Battānı and −45′ for Copernicus, and concludes that Copernicus’s variation of the
direction of the apogee, which reaches ±7 2

5
◦
, is also incorrect. Indeed, he here cites

the opinion of his friend Holger Rosenkrantz (48) that a variation of eccentricity
of the Sun and the planets of the kind introduced by Copernicus is clearly contrary
to the perpetual nature of the heavenly revolutions and is only derived from false
principles, that is, from useless observations.14 Finally (48–49), from Hipparchus’s
vernal equinox (6) of −145 Mar 24 corrected by +5 hours, and Tycho’s equinox
of 1587 Mar 10, with a preliminary correction for the inequality of precession,
he finds the length of the tropical year 365d 5;49,20h but prefers 365d 5;49,30h

based upon his correction of observations of ancient lunar eclipses. However, this
is not the final length of the tropical year that underlies his tables of the mean
motion of the Sun, which requires a more careful investigation, including of the
precession.

The precession is taken up in the section on the fixed stars (53–56), and it is
not uniform, so neither is the tropical year. Tycho had derived a rate of precession of
51′′ per year for his own time directly from the difference of the tropical and sidereal
year, and then showed that it is mostly confirmed by observations of stars extending
as far back as Timocharis, although he left open the question of whether it is in fact
variable. Longomontanus instead begins with the observations, but he first corrects
them: Timocharis’s of occultations β Sco, η Tau, and Spica by the Moon corrected
by Tycho’s and Longomontanus’s lunar theory; Hipparchus’s of Spica in finding its
longitude from its declination (and some unspecified coordinate); Ptolemy’s lon-
gitude of Regulus measured from the Moon on an armillary by Longomontanus’s
solar theory; Battānı’s longitude of Regulus by its distance from β Sco in Tycho’s
catalogue. These corrections are not consistent, and all are also corrected to longi-
tude from the mean equinox using the equation of the nonuniform precession yet to
be explained. The corrections for Timocharis, Hipparchus, and Battānı are less than
0;30◦, but Ptolemy’s longitude of Regulus is advanced by +1;23◦ from Leo 2;30◦

to 3;53◦, of which +1◦ is from correcting Ptolemy’s longitude of the Sun from
the mean equinox and +0;20◦ from solar refraction reduced by parallax. Tycho’s
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longitudes of Regulus and Spica are corrected only by the equation of precession of
−0;8◦. From all these, and a number of computational errors, he finds motions of
from 44′′ to 57′′ per year, and settles on 0;0,49,45◦/y as the mean rate of precession,
close to 0;0,49,46◦/y between Hipparchus and Tycho (which correctly computed
is 0;0,49,30◦). For the obliquity of the ecliptic, he says he has corrected what his
predecessors found for solar parallax and finds it to vary from 23;53◦ in about the
year 3600 of the Creation of the world (−366) to about 23;31◦ in the year 5400 of
the world (1434), with the mean of 23;42◦, although the exact range is subject to a
“perfect” criterion, as we shall see. Still, he is close to Copernicus, whose range is
23;52◦ to 23;28◦ with a mean of 23;40◦.

Before considering the precession, we must say something of Longomontanus’s
chronology and epochs (47, 57–58). He says that earlier astronomers have used vari-
ous epochs for mean motions, as the Olympiad, Nabonassar, Alexander, Caesar, and
the Incarnation, but for we Christians, two beginnings ought to be especially distin-
guished before the others: first when this most beautiful theater of the world began
to exist by the word of omnipotent God, second when the only-begotten Son of God
himself took on our human flesh and deigned to be born to restore the fallen world
and liberate us from the power of the devil and eternal death. He acknowledges that
the years and the time of year of both epochs are disputed by chronologers, but
this dissension does not involve the celestial motions in any difficulty since they can
properly be derived from other intervals securely confirmed by celestial observation.
The point is that astronomical chronology can correct historical chronology. From
the Creation of the world to the passion of the Son of God on the cross, and through
him the salvation of the world, there elapsed 4000 solar years less one-half year.
Since the age of Christ was then about 33 1

2 years, the crucifixion was in AD 34 near
the time of the vernal equinox and the Creation in 34 − (4000 − 1

2 ) = −3966 near
the time of the autumnal equinox, that is, 3967 BC at the autumnal equinox. At this
time, the apogee of the Sun was at the beginning of Aries and the Sun at perigee at
the beginning of Libra. Further, the obliquity of the ecliptic was then greatest, the
precession of the equinoxes zero, and the inequality of the precession zero. In the
tables of mean motion, however, the Era of the World is set later to −3963 Jan 1
at noon at Copenhagen. The reason is that this is the first year of a Julian cycle of
four years with the leap year as the fourth year, as is the Era of Christ, AD 1 Jan
1 at noon, the other epoch of the tables, so both can be used with the same tables
of collected and single Julian years. Although the date of the autumnal equinox of
−3966 is not given, it can be computed from the solar tables and is −3966 Oct 24
at about 11 AM in Copenhagen.15

There is a fine study of Longomontanus’s model for the variable precession and
obliquity (85–93) by Moesgaard (1975), and we have found it very helpful for our
own exposition. In Fig. 2, the Earth is at O and the pole of the mean ecliptic is
at Ē , about which the pole of the equator N rotates, carrying with it the equator
of the Earth and thus the celestial equator, which intersects the mean ecliptic with
the mean obliquity ε̄. This is a conical motion of the axis of the Earth, causing
the mean vernal equinox ¯ to precess along the mean ecliptic opposite to the order
of the signs, from east to west, through the mean precession of 0;0,49,45◦/y in a
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Fig. 2 Longomontanus. Hypothesis for precession of the equinoxes and variation of obliquity of
the ecliptic

period of 26,050 years. Next, the pole of the true ecliptic E rotates in the same
direction measured from A in a small circle about Ē , causing a similar small cir-
cular motion of every point of the true ecliptic, the true path of the Sun around
the Earth.16 The result is that the intersection of the equator and the true ecliptic,
the true vernal equinox , oscillates along the equator on either side of the mean
equinox ¯ , and on the mean ecliptic there is a small inequality in the precession
cp = ¯ ′, which is zero when the pole of the true ecliptic is at A. The motion
of the true ecliptic also causes the true obliquity of the ecliptic ε to vary on either
side of the mean obliquity ε̄, with the maximum obliquity when the pole is at A,
and the variation of the obliquity in turn causes the latitudes of stars to vary; the
sphere of the fixed stars itself is absolutely at rest. The correction table gives the
inequality of precession, variation of obliquity, and a proportional coefficient for
the variation of latitude of stars, with the greatest variation at solstices, equal to the
total range of the obliquity, decreasing to zero at equinoxes. The parameters are only
slightly empirical. The range of the obliquity was given earlier as 23;42◦ ± 0;11◦,
but is now changed to 23;42◦ ± 0;10,53◦. Why? Because 0;10,53◦ ≈ 90◦/496, and
496 is the third in the order of perfect numbers. The maximum equation of pre-
cession, cpm = sin−1 (sin 0;10,53◦/ sin 23;42◦) = 0;27,5◦, is merely derived from
the variation of obliquity in the model. The period of the anomaly of precession
and obliquity, of the motion of E , is 3600 years = 1,0,0 years, a period considered
significant since antiquity, so the anomaly is exactly 6′ per year, the first in the
order of perfect numbers, although Longomontanus does not mention it. (These
are Julian, not tropical or sidereal, years, which means that the model “knows”
the Julian calendar. Copernicus’s period of the anomaly of the obliquity is 3434
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Egyptian years and of precession half of that, 1717 Egyptian years.) At the Creation
of the world, the mean precession is taken to be zero and the anomaly is zero, at A,
so the inequality is zero and the obliquity is maximum. That all the parameters are
determined by such criteria explains how Longomontanus can apply the equation of
precession to longitudes of stars in order to find the mean rate of precession as he
earlier did.

Longomontanus says that his model agrees well with the variation of obliquity,
if Ptolemy is corrected to 23;49◦ for the effect of solar parallax at the solstices and
Copernicus’s 23;28◦ is in error as Tycho already showed. The only examples of
precession, obliquity, and stellar longitude and latitude he computes are for the year
3000 of the world, 967 BC, 82 years after Hesiod flourished, and for the year 6000
of the world, sometimes taken as the year of the Second Coming, AD 2034, neither
particularly helpful for empirical confirmation. But it is easy enough to compute
the range of the variation of precession, which is minute, 0;0,49,45◦ ± 0;0,2,48◦

per year or 1;22,55◦ ± 0;4,40◦ per Julian century. Compare this with the Prutenic
Tables, 0;0,50,12◦ ± 0;0,15,41◦ per year or 1;23,43◦ ± 0;25,33◦ per Julian century.
Thus, the wide range of Copernicus’s precession and the slow rate of Hipparchus
and Ptolemy have been rejected entirely.

The determination of the refined length of the tropical year (94–96) is, to say
the least, interesting. It is done by finding the intervals between pairs of vernal and
autumnal equinoxes observed by Hipparchus and Tycho, taking the arithmetic mean
of the deficits from integral Julian years, doing the same for equinoxes observed
by Ptolemy and Tycho, again taking the mean of the deficits, and then taking the
mean of both means. The result of the procedure is called limitata, which means
bounded, placed within limits or accurately examined; the same term is used in
Tycho’s observational records for taking means and small adjustments, and it is pos-
sible that these too are the work of Longomontanus.17 He first corrects for the solar
inequality and the inequality of precession to find the time of the mean equinoxes
unaffected by either.

The solar inequality is shown in Fig. 3, in which (a) is the configuration at the
time of Hipparchus or Ptolemy and (b) at the time of Tycho; the difference is only
in the longitude of the apogee λA as the eccentricity found by Longomontanus is
invariable. The Earth is at O , from which the directions of the true equinoxes are

and , when the true longitudes are 0◦ and 180◦, and the center of the eccentric
at C , from which the directions of the mean equinoxes are and , when the
mean longitudes are 0◦ and 180◦. This may be Longomontanus’s own definition of
mean equinox. The difference in direction is given by the solar equation c, which
is the same at both equinoxes since the true distance of from apogee is λA and
of is 180◦ − λA, for which the equations are equal and of opposite sign. The
equations are computed from the true distance of the vernal equinox from apogee
by c = sin−1(sin e sin λA) where e = 1/28 and λA is specific to the date of each
observer; c is positive at the vernal equinox, mean equinox after true equinox, and
negative at the autumnal equinox, mean equinox before true equinox. He next adds
the inequality of precession cp to the solar equation c and converts the sum c + cp,
which is not given, to the interval of time Δt between the mean and true equinox by
dividing by the true hourly velocity of the Sun νs, which is also not given, that is,
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Fig. 3 Longomontanus. Determination of mean equinoxes at times of (a) Hipparchus and Ptolemy,
(b) Tycho

Δt = (c + cp)/νs. The following table gives the observer, year of the equinoxes, λA,
c, cp, and for each equinox, vernal and autumnal, c + cp and Δt .

Observer Year λA c cp Ver c + cp Ver Δt Aut c + cp AutΔt
Hipparchus −145 65;30◦ ±1;51,44◦ −0;10,12◦ +1;42,32◦ +1d 17;50h −2; 1,56◦ −2d 0;50h

Ptolemy 139/40 70; 0 ±1;55, 2 −0;21, 0 +1;34, 2 +1 14;45 −2;16, 2 −2 6;45
Tycho 1587/88 95;30 ±2; 2,14 +0; 7,12 +2; 9,26 +2 4;30 −1;55, 2 −1 22;50

The interval Δt is then added to the time of the true equinox to give time of the mean
equinox. The equinoxes are paired such that each is the same year of a four-year
Julian cycle, so the number of days in the interval of years is an integer. Hence,
the difference ΔT of the calendar dates and times of the equinoxes is the deficit
of the tropical years from an integral number of Julian years. The stated dates and
times are from noon preceding by 12 hours the next Julian calendar date beginning
at midnight. Hipparchus’s vernal equinox (6) of −145 Mar 23 at dawn is corrected
for refraction by +5 hours, from 18h to 23h, the time Ptolemy reports the ring in
Alexandria showed this equinox, and his autumnal equinox (7) of −145 Sep 26 at
dawn by −5 hours, from 18h to 13h. Tycho’s equinoxes were found by interpolation
between meridian altitudes already corrected for parallax and refraction. The merid-
ian of Alexandria (A) is adjusted to Uraniborg (U) by −1;35h, as did Tycho. Here is
a tabulation of the steps for the equinoxes of Hipparchus and Tycho:

Observer True Equinox t(A) t(U) Δt(c + cp) Mean Equinox
Hipparchus −145 23 Mar 23h 21;25h +1d 17; 50h 25 Mar 15;15h

Tycho 1587 10 Mar — 14;56 +2 4;30 12 Mar 19;26
ΔT 1732y− 12d 19;49h

Hipparchus −145 26 Sep 13 11;25 −2d 0;50h 24 Sep 10;35h

Tycho 1587 13 Sep — 9;26 −1 22;50 11 Sep 10;36
ΔT 1732y−12d 23;59h

The arithmetic mean of the two deficits of ΔT from 1732 years is 12d 21;54h, and
thus the deficit of the tropical year from the Julian year is 12d 21;54h/1732 =
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0;10,44,8h. Now we do the same with equinoxes observed by Ptolemy and Tycho.
Ptolemy’s autumnal equinox (12) of 139 Sep 25 at one hour after Sunrise is cor-
rected for refraction by −13 hours, as Longomontanus showed earlier, from 19h to
6h, but no correction is applied to the vernal equinox (13) of 140 Mar 22 since it is
close to the meridian at an altitude where refraction is negligible.

Observer True Equinox t(A) t(U) Δt(c + cp) Mean Equinox
Ptolemy 139 25 Sep 6h 4;25h −2d 6;45h 22 Sep 21;40h

Tycho 1587 13 Sep — 9;26 −1 22;50 11 Sep 10;36
ΔT 1448y −11d 11;4h

Ptolemy 140 22 Mar 1 21 Mar
23;25h

+1 14;45h 23 Mar 14;10h

Tycho 1588 9 Mar — 20;45 +2 4;30 12 Mar 1;15
ΔT 1448y −11d 12;55h

Here the arithmetic mean of the two deficits of ΔT from 1448 years is 11d 11;59,

30h ≈ 11d 12;0h, so the deficit of the tropical year from the Julian year is 11d 12;0h/

1448 = 0;11,26,11h. Now we take the arithmetic mean of the two means just found:

Hipparchus–Tycho 0;10,44, 8h

Ptolemy–Tycho 0;11,26,11h

Arithmetic mean 0;11, 5, 9,30h ≈ 0;11,5,10h

And since there is no sensible motion of the Sun in 0;0,0,10h, we round to 0;11,5h.
The length of the tropical year is therefore 365d 6h − 0;11,5h = 365d5;48,
55h. This exceeds Tycho’s tropical year by ten seconds, and, for all of Longomon-
tanus’s trouble, is less accurate.

Since the mean precession is 0;0,49,45◦/y, the difference between the side-
real and tropical year, the time for the mean Sun to move through this arc, is

0;0,49,45◦/0;2,28◦/h = 0;20,10h, although Longomontanus gives 0;20,18 1
3

h
, fol-

lowing very nearly from 0;0,49,45◦/0;2,27◦/h and not consistent with his own mean

motion of the Sun; but the length of the sidereal year, 365d 5;48,55h + 0;20,18 1
3

h =
365d 6;9,13 1

3
h
, is, by luck, much better than Tycho’s sidereal year. The variation

in the length of the tropical year, determined by the annual change of the inequal-
ity of precession, is quite small. Since the greatest annual change is ±0;0,2,48◦,
which the mean Sun covers in 0;0,2,48◦/0;2,28◦/h = 0;1,8h, the greatest vari-
ation of the tropical year is 365d 5;48,55h ± 0;1,8h, that is, the excess over
365 days is from 5;47,47h to 5;50,3h; this contains 5;49,16h of the Alfonsine and
Prutenic Tables, but is far short of Ptolemy’s 5;55,12h. Finally, in the tables of
the mean motion of the Sun, from the difference of the mean motions in longi-
tude and anomaly, the apogee has a tropical motion of 1;42,59◦ per Julian cen-
tury or 0;1,1,47◦/y. Subtracting the mean precession of 0;0,49,45◦/y, the sidereal
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motion of the apogee is about +12′′/y direct, differing notably from Tycho’s −6′′/y

retrograde.
Longomontanus, as noted, attempted to do what Copernicus earlier attempted

and Tycho intended, to derive a theory of the Sun, precession, and obliquity correct
for all times. He believed himself to be highly critical of ancient observations and
theory, and he was, which Copernicus was not, but he too had no choice but to use
at least the observations, with corrections if necessary, in order to achieve his goal.
His work is characterized by acute insights, as that Hipparchus’s tropical year was
derived from a luni-solar cycle rather than from observations of the Sun alone, which
at best served for confirmation of the year derived from the cycle. But also wishful
thinking, as the “perfect” parameters for solar theory, precession, and obliquity, even
the model for precession itself, and carelessness, as his corrections and even selec-
tions of ancient observations; and his computations are all too often at least slightly
inaccurate, as is also true in other parts of his work. Nevertheless, he does show that
one can be aware of the problems of ancient observations, but attempt to correct and
make use of them, and in this way he goes beyond what Copernicus did and what
Tycho was willing to do. Had Tycho carried through his reform of astronomy for all
ages, he too may have done much the same thing, but it is more likely that he would
have done nothing and left the work to an assistant, Longomontanus if he returned
to Tycho’s service, or Kepler if he were willing to follow Tycho’s orders. But when
Kepler did address these problems, Tycho was long gone, and thus he pursued them
in his own way, more ingeniously than Tycho but more cautiously than Longomon-
tanus. It is to Kepler’s investigations over a period of twenty years to which we
now turn.

Johannes Kepler

Kepler was already concerned about the reliability of Ptolemy’s observations when
he wrote the Astronomia nova, the last two chapters of which (69–70) are devoted
to attempting to correct them in order to establish accurate ancient positions of
Mars for determining its mean motion and the motions of its aphelion and nodes.
He assumes, reasonably, that Ptolemy observed Mars by measuring its distance
from fixed stars with the armillary, although Ptolemy gives no details for the three
oppositions, and only for his one observation outside of opposition does he give
the distance from a star and the Moon. Since the armillary is aligned by set-
ting it on the Sun or on a star, the longitude of which depends upon an earlier
alignment on the Sun, it is necessary to investigate Ptolemy’s solar theory. He is
suspicious of Ptolemy’s procedures for establishing solar theory, and is uncertain
whether Ptolemy found the equinoxes using an equatorial ring or, as he would
prefer, meridian altitudes. But he has determined that Ptolemy’s equinoxes do not
agree within a day and a half in comparison with earlier observations of Hipparchus
and later observations of al-Battānı and Tycho, which all agree in the same uni-
formity from which Ptolemy’s equinoxes alone depart. Thus, he has isolated the
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errors in Ptolemy’s equinoxes by comparison with observations consistent with a
uniform tropical year, and he specifically rejects models for a nonuniform preces-
sion, which would produce a nonuniform tropical year. But then he notes that if
instrumental error made the vernal equinox late, meaning that the equator is placed
too high, it would make the autumnal equinox early, and if two days were sub-
tracted from the interval between the equinoxes, the eccentricity of the Sun would
change greatly. And since Ptolemy left the eccentricity as great as Hipparchus found,
we must believe that he correctly observed the time the Sun was at the beginning
of Aries.

However, the constancy of the solar equations found in our age by Tycho, and
about the same several centuries earlier by al-Battānı and az-Zarqāl, 20′ smaller than
Hipparchus seems to have demonstrated for himself and Ptolemy retained, argues
that the equations were the same in Ptolemy’s age and his own equation in error.
Since the equation is sensitive to small changes in the times of the observations, and
the ancient observations, especially of the solstices, were not sufficiently accurate,
we may use the modern equations to correct Ptolemy’s equinoxes, not by over a day,
but by correcting the time of day, making the vernal 8 (text: 3) hours later and the
autumnal as many hours earlier, so that in both there was an error of 8′ in the dec-
lination of the Sun, for Ptolemy’s instruments were surely graduated only to 10′.18

And a change of a quarter of a day in the time of the solstice, which is easily possible
because of its uncertainty, would produce a large change of 8◦ in the direction of the
apsidal line. Thus, we see that while Kepler recognizes the possibility of large errors
in Ptolemy’s equinoxes, like Tycho, he is not willing to believe that he could go so
wrong, and instead makes smaller corrections by applying the modern eccentricity,
which does show that he considers the eccentricity, as well as the tropical year, to
be constant. He then attempts to correct Ptolemy’s longitudes of Mars by making
a variety of assumptions about the eccentricity and apsidal longitude of the Sun
and the longitudes of the fixed stars, by which he means the observed longitude of
Mars since its longitude was measured by setting the armillary on some star. The
investigation of seven different cases is, to say the least, bewildering, and he finds
that changes in the longitude of stars, that is, of Mars, make a greater difference
than changes in the solar theory. He also examines, critically, Ptolemy’s report of
an occultation, or contact, of β Scorpii by Mars on −271 18 Jan at dawn, which he
decides applies better to ν Scorpii, and the report by Aristotle in De caelo 2.12 of
an occultation of Mars by the dark part of the half-Moon, which he dates to −356
4 May (the text reads 4 April).19

Although the investigation of Ptolemy’s solar observations and theory is incon-
clusive, Kepler does take seriously the decrease of the obliquity of the ecliptic and
the variation of the latitude of fixed stars. Tycho had found that, compared to the
time of Ptolemy, for stars located near the solstices, near summer solstice latitudes
of northern stars increased and of southern stars decreased, near winter solstice lat-
itudes of northern stars decreased and of southern stars increased, and these varia-
tions diminished approaching the equinoxes, where there were no changes. In the
correspondence with Scaliger, he accounted for both the decrease of the obliquity
and the variation of the latitude of stars by a variation of the obliquity of the ecliptic



186 N.M. Swerdlow

over a range of about 20′ with respect to a fixed celestial equator and sphere of
fixed stars, like the variation of the inclination of the Moon’s orbit to the ecliptic
in his lunar theory of about the same range and by essentially the same hypothesis.
This would indeed produce both effects although, as we have noted, the shift of the
equinoxes as the Sun crosses the equator at points moving successively westward,
producing a rotation of the ecliptic along the equator corresponding to the regression
of the nodes in the lunar theory, would also cause a second, unwanted and incorrect,
variation in the latitude of stars.

Kepler’s hypothesis to account for both the decrease of obliquity and the variation
of latitude of stars is entirely different, and avoids the problems of Tycho’s. It is part
of his theory of planetary latitude, and also accounts for the change of extreme
latitudes and regression of the nodes of Mars and, in principle, the other planets
since Ptolemy (68).20 It consists of a rotation of the “true ecliptic,” defined by the
motion of the Earth about the Sun, not along the celestial equator, which causes
the problems of Tycho’s hypothesis, but along the “mean ecliptic,” also called the
“royal road” and “royal circle,” defined by the plane of the equator of the rotating
Sun. Although either direction is possible, he believes it more likely that the rotation
takes place to the west, that is, the nodes and limits of the true ecliptic regress in
longitude as do the lunar nodes and limits, but very slowly, with a period of many
thousands of years. The effect on the latitude of stars is shown in Fig. 4, in which the
mean ecliptic is in the equatorial plane of the Sun S and the true ecliptic shifts from
the position “ecl 1” to “ecl 2”, shown by the westward shift of the nodal line
from 1 to 2. The nodal line is directed to the vicinity of the summer solstice and
winter solstice , the limits are near the vernal equinox and autumnal equinox ,

Fig. 4 Kepler. Rotation of true ecliptic to account for variation in latitude of stars
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although these locations will change slowly with time. As shown in the figure, the
latitudes of northern stars +β and southern stars −β change as Tycho found near
the solstices, the nodes, where the true ecliptic is most inclined to the mean ecliptic,
and the changes are small or zero near the equinoxes, the limits, where the true
ecliptic is parallel to the mean ecliptic. The very same motion of the true ecliptic
accounts for the variation of the obliquity. According to Kepler, the reason for the
decrease of the obliquity from 23;51 1

2
◦

in antiquity to 23;31 1
2

◦
at present, the range

of 20′ recognized by Tycho, is that the Earth’s equator holds a fixed inclination, not
to the true, but to the mean ecliptic; consequently the inclination varies with respect
to the moving true ecliptic, and this motion of the true ecliptic is also the cause of
an inequality in the precession of the equinoxes. In Fig. 5, the initial intersections
of the equator and true ecliptic, the equinoxes, are 1 and 1, and the solstices are

1 and 1. As the nodal line of the true ecliptic shifts westward from 1 to 2,
so do the true equinoxes to 2 and 2 and the true solstices to 2 and 2, although
nonuniformly because of the obliquity of the true ecliptic, which the same motion
causes to decrease from ε1 to ε2.

The theory is not worked out quantitatively or in detail, but it is clear that only
an inequality of the precession could result, not the mean precession itself, which
must be due to a motion of the Earth’s axis, because, compared to the precession,
the motion of the true ecliptic is very slow, according to Kepler’s speculation, none
other than the sidereal motion of the Earth’s apsidal line, although he later decided
that it is independent but still of very long period. Nevertheless, Kepler is on to
something important and entirely original. Attributing the change in latitude of fixed
stars and the decrease of the obliquity of the ecliptic to a rotation of the ecliptic,
of the Earth’s orbit around the Sun, is essentially correct, although the rotation,
produced by planetary perturbations, does not take place in a fixed plane of the
solar equator and is more irregular. So while the (Newtonian) celestial mechanics
of these motions is more complicated, Kepler here devised the first even remotely

Fig. 5 Kepler. Rotation of true ecliptic to account for variation of obliquity of the ecliptic
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correct model for secular changes in the orbit of the Earth, and likewise of the other
planets since such motions are not unique to the Earth.

In the Epitome of Copernican Astronomy 7, Kepler quantifies this model. In
Fig. 6a, Ē is the pole of the mean ecliptic, and thus of the solar equator, E the
pole of the true ecliptic, which moves about Ē in a small circle through ϑ , and
N the pole of the celestial equator, which moves about Ē through the mean pre-
cession, both motions in the direction of decreasing longitude, from east to west.
The motion of E about Ē corresponds to the rotation of the true ecliptic in Figs. 4
and 5, which show great circles a quadrant from the poles, and is a geometrical
result of the physical causes moving the Earth about the Sun just as the motion of N
is a geometrical result of the precessional motion of the Earth’s axis. Note that this
differs from Longomontanus’s model in Fig. 2, in which the motion of the pole of
the true ecliptic E in the small circle about the pole of the mean ecliptic Ē produces,
not a rotation of the true ecliptic with respect to the mean ecliptic, but a motion of
each point of the true ecliptic in a circle equal to the radius of the small circle. The
mean obliquity ε̄ = ĒN = 24;17,40◦ and the radius r = ĒE = 1;47,40◦; hence
the true obliquity ε = EN varies from 22;30◦ to 26;5,20◦, a very wide range. This
implies an inclination of the solar equator to the ecliptic of 1;47,40◦; correctly, as
later found from the motion of Sunspots, it is 7;15◦. And the maximum equation
of precession, where ĒN and EN extended meet the true ecliptic (not shown), is
sin−1 (cot ε̄ sin r ) = 3;58,45◦ (corr. 3;58,40◦). But, Kepler says, half the period is
more than 36,000 years, and E was at Eo, with the obliquity at its mean value, “at
the beginning of the world.” When would this be? Although no date is given in the
Epitome, in the 1621 edition of the Mysterium Cosmographicum (23) he takes the
evening of 24 July 3993 BC in Chaldea as the beginning of the second day, when
God created the firmament. Thus, only about 5600 years have elapsed, and the pole
of the true ecliptic has not moved all that far; in the Rudolphine Tables, from the
Creation to 1600 the motion is less than 26◦ and the entire period just over 77,758
years, far longer than the precession with a period of about 25,412 years. He notes
that the ratio of the motion of the pole of the ecliptic ϑ to the motion of the pole of
the world, the mean precession π̄, is fairly precisely as 4/3, a perfect fourth, although
that is not mentioned. In fact it is the sum (π̄ + ϑ))/π̄ ≈ 4/3.01 ≈ 4/3.

The model described here is the second, “entirely archetypal,” of no less than five
for the variation of the obliquity and the inequality of precession in the Rudolphine
Tables. Three are “mixed,” partly archetypal and partly observational, for ε̄ and r
and the periods and epochs of ϑ . The first, based “entirely upon trust of the ancient
observations,” has a smaller range of the obliquity of 23;28,28◦ to 23;53,16◦, close
to Copernicus’s 23;28◦ to 23;52◦—from ε̄ = 23;40,55◦ and r = 0;12,24◦—a max-
imum equation of precession of 0;30,31◦, and a period of just 2665 years. These
numbers are not consistent, and there are other inconsistencies among the different
methods, as computing the obliquity for motion of E on the small circle, which
is strictly correct, or for a libration on the diameter, as in Copernicus’s model, in
which it is the pole of the equator that librates. The libration, however, is intended
only as a simpler, approximate computation as it would not produce the rotation of
the true ecliptic that is essential to the model. Nevertheless, all the models show that
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Fig. 6 Kepler. (a) Motions of the poles of the true ecliptic and equator about the pole of the mean
ecliptic. (b) Climate zones of the earth at the minimum obliquity of the ecliptic

a variation of the obliquity and an inequality of precession are still a part of Kepler’s
astronomy.

In fact, Kepler established the “archetypal” variation of the obliquity from its
consequences for climate zones of the Earth (Epitome 3.4), shown in Fig. 6b. With
the minimum obliquity ε = 22;30◦, the Earth is divided by sides of an octagon sub-
tending 2ε = 45◦, that is, the torrid zone between the tropics subtends two sides, the
two frigid zones beyond the arctic circles subtend two sides, and the two temperate
zones in between subtend four sides, making eight sides of 45◦. And at Creation,
with the mean obliquity ε̄ = 24;17,40◦, the sum of the surface areas of the torrid and
frigid zones equals the surface areas of the temperate zones. Considering a hemi-
sphere on one side of the equator, the area of the torrid zone is as sin ε̄ = 0.4114, of
the frigid zone as 1 − cos ε̄ = 0.0886; their sum is 0.5 and the remaining 0.5 from
1 is as the equal area of the temperate zone. Since the same relation holds for the
other hemisphere, just as Kepler says, the sum of the areas of the torrid zone and two
frigid zones equals the sum of the areas of the two temperate zones. Interestingly,
this clever idea follows from Pappus’s theorem (Collection 5.36), which Kepler also
uses for summing the increments of libration in his physical planetary theory.

We have digressed from our principal subject of examinations of Ptolemy’s solar
observations and theory. In the Astronomia nova, Kepler recognized the possibility
of large errors in the observations, but made only small corrections and substi-
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tuted the modern eccentricity and equation in the solar theory. Some years later,
he decided that Ptolemy’s equinoxes could not be corrected so easily, but remained
uncertain about the cause of the errors. In a series of manuscript notes concerning
the obliquity of the ecliptic, dates of equinoxes and solstices, and length of the
tropical year, he considered evidence and reports from antiquity, in fact from Her-
cules, the founder of the Olympiads, who observed the solstices and equinoxes at
eight degrees of their signs 1260 years before Christ, through Meton and Euctemon,
Hipparchus and Ptolemy, al-Battānı and az-Zarqāl, to Regiomontanus, Walther,
Copernicus, and Tycho.21 Like Longomontanus, he believes that Hipparchus and
also Ptolemy observed the equinoxes with an armillary, so the stated times are those
observed, not interpolated, and could be affected by refraction and misalignment of
the instrument. There are two remarks we shall quote here. The first is (21.1.316):
“Since Hipparchus varied so much (by quarter days) in the autumnal equinoxes, is it
believable that Ptolemy found nothing clearly which differed from the Hipparchan
computation? Or did Hipparchus reach his goal unknowing (caecus, blind), with
fortune as his guide? Or should we rather believe Ptolemy favorable to Hipparchus
through trust in the observations, namely, (because) something of Pythagorean phi-
losophy lay hidden in the mystic numbers 94;30, 92;30, 178;15 (in margin: 378,
370, 713)? I note also that the year does not so precisely fill this number of hours.”
That the intervals in days between the equinoxes and solstices, multiplied to integers
(of quarter-days) in the margin, are based upon Pythagorean philosophy can hardly
be taken seriously, and Kepler poses it only as a question (to which the answer is
surely no). The second remark is one that has defined the problem of Ptolemy’s
equinoxes to this day (21.1.324): “It therefore remains that either Ptolemy commit-
ted fraud with fabricated observations, or from a kind of awe and reverence for the
ancients preferred to confirm rather than refute them, neither of which is likely in
the philosopher Ptolemy, a defender of candor and truth, as is witnessed by many
judgments (gnomis), especially since he could expect no advantage or fame from
this, but rather greater advantage and fame from correcting the ancients. But that
he was not obsequious to the ancients, he left witnessed in many ways, refuting
Hipparchus where it was required. Therefore in fact the year was longer.” This last
appears to hold that the observations were correct and the year in fact longer, but is
probably just speculation and not an opinion Kepler held.

In the Epitome of Copernican Astronomy 7, he is more certain of the error in
the equinoxes. He notes (7.523) that in the eleven or twelve centuries since Proclus,
the equinoctial points have precessed at a uniform rate, in which the observations
of Hipparchus and Timocharis also agree for eighteen centuries “if you disregard
Ptolemy alone.” “Therefore, if something happened to the axis of the Earth by which
it moved irregularly away from its proper position, it occurred between Hipparchus
and Ptolemy, in an interval shorter than 300 years, and it was restored to its for-
mer state between Ptolemy and Proclus, again in an interval of three centuries.
Therefore, not unjustly can there be doubt concerning Ptolemy’s observations of
the equinoxes.” He also notes (7.527) that Hipparchus determined the length of
300 years by omitting one day in four Callippic Cycles of 304 years, the same
explanation given by Longomontanus and, as it appears here, perhaps originally by
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Tycho. “Ptolemy retained this opinion of Hipparchus, much too carelessly, as was
evident to Tycho Brahe, even though Ptolemy himself appeared to prove it with his
observations. For immediately after Ptolemy, it (the length of the year) was found to
lose one day far more rapidly (than in 300 years). And thus if we disregard Ptolemy
alone, a uniform reckoning (of the year) will be consistent from Hipparchus, through
Proclus, al-Battānı, Persians, Arabs, Jews, Germans, up to our own time, which
makes the equinoxes earlier by one day in 134 years, 3 days in 400 years, as the
regulation of the Gregorian civil year represents very nearly.”

He now has a new speculation for the cause of Ptolemy’s errors, which we give
in the question and answer form of the Epitome (7.523–24).

Is it possible that Ptolemy was in error concerning the observation of the
correct day of the equinox, and in what way?

He was not in error in the altitude of the pole, as this is confirmed by many
proofs, nor in the altitude of the Sun as this depends upon the altitude of
the pole. Perhaps, therefore, what follows happened to him, that since under
Augustus the observation of the Egyptian year was abolished, Ptolemy sought
the day of the Egyptian year through the Moon if he was concerned with the
Moon, or through the Sun and its calculation handed down by Hipparchus
if he was concerned with observation of the Sun; then neglecting agreement
with observations of the Moon and trusting too much in the calculation of
Hipparchus, he thought to himself that it was only necessary to be concerned
about the hour of the entry into Aries. For Ptolemy could not trust the Roman
calendar, which was necessarily observed in Egypt, because even after the
correction of Augustus, at some time on the authority of the priests one day
was omitted from the year and restored in the following year.

The point here is that because of arbitrary omissions and restorations by the priests
in the Roman calendar, in use in Egypt since introduced by Augustus, and even
after Augustus’s correction of the initial errors of intercalation following the Julian
reform (three incorrect additional leap years, compensated by making three follow-
ing leap years common years), Ptolemy would use the computation of the Moon or
Hipparchus’s computation of the Sun to determine the date of an observation in the
Egyptian year. Thus, he would determine only the hour of an equinox by observation
and trust Hipparchus’s solar theory to determine the day, since he could not believe
it to be in error by a full day, and then fail to check the position of the Moon, which
would immediately show the error of one day since the Moon moves about 13◦ per
day. This ingenious explanation would then account for the errors in the dates of
Ptolemy’s equinoxes without accusing him of fabricating observations, although it
is evident that he should have been more careful.

But is there evidence for the omission or addition of days in the Roman calen-
dar, and could the Roman calendar in fact be the cause of Ptolemy’s errors without
considering computation from Hipparchus’s theory? This is what Kepler believed
he found by 1622, the year after the publication of Epitome 7, as he explains in a
memoir called “Against the nonuniform precession of the equinoxes” addressed to
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Emperor Ferdinand II.22 He enlarges upon, and indeed contradicts, his speculation
in the Epitome, and is now more specific (20.1.134–35).

I reasoned that Ptolemy, an inhabitant of Egypt, was deceived by the Roman
calendar and by the license of the priests and impetuosity of the rulers of
Egypt, who intercalated at Rome, not as heaven required, but just as they
were incited (to do), this way and that, in accordance with some national
superstition; indeed those (priests and rulers) entirely annulled the perfectly
equal Egyptian months and introduced the Roman calendar into public use.
And thus the annual calendars were not computed locally, but were sent from
Rome, not the least instance of servitude. Of this not unsuitable conjecture,
there was lacking only historical testimony, by which it would be confirmed,
that in the year 139 after Christ or the previous year, one day had been
removed out of order. But behold the very thing, unless all sound reason
deserts me. For in the year 139 after Christ, Antoninus Pius II and Bruttius
Praesens Consuls, Censorinus, the most scrupulous and careful reckoner of
chronology, attributes the first of the Egyptian month Thoth to the twelfth day
before the Kalends of August or 21 July, which observed in regular order, as
elsewhere Censorinus preserves, ought to be attributed to the thirteenth day
before the Kalends of August or 20 July, unless a day was removed out of
order and the days of the Roman year occurred earlier.

One may not doubt that Ptolemy, since he had not given attention to what
Censorinus gave attention to, that an omission (of one day) had been made out
of order, believed that with the twelfth day before the Kalends of August (21
July), which day was then observed in Rome, there still coincided, as before,
the second day of Thoth, which nevertheless was (because of the omission
of one day) the first day of Thoth, and that it (the first day of Thoth) ought
from the perpetual reckoning of years be called the thirteenth day before the
Kalends or 20 July. In this way a superfluous day insinuated itself into his
calculation between Hipparchus and his own age and produced a longer year
and a slower motion of the Sun than are correct.

What Kepler is referring to is one of the most famous passages in ancient
chronology, the pertinence of which he appears to have discovered only recently,
Censorinus, De die natali 21.10: “But of these (Egyptian years), the beginnings are
always taken from the first day of its month the name of which among the Egyptians
is Thoth, and which in this year (238) was the seventh day before the Kalends of
July (25 Jun) although one hundred years ago (139), Emperor Antoninus Pius II and
Bruttius Praesens consuls at Rome, the same day was the twelfth (corr. thirteenth)
day before the Kalends of August (21 July, corr. 20 July), at which time Canicula is
accustomed to make its rising in Egypt.” Censorinus here gives the Roman calendar
date of the beginning of a Sothic Cycle, when the (nominal) heliacal rising of Sirius
in Lower Egypt occurs on 1 Thoth in the Egyptian calendar, in the year of the consul-
ship of Emperor Antoninus Pius for the second time and of Caius Bruttius Praesens,
139, which date appears as ante diem XII Kal. Aug. (21 July). This 1 Thoth was the
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beginning of Antoninus 3, the year in which Ptolemy observed both equinoxes and
the summer solstice about one day late, as Kepler knows. Now, correctly 1 Thoth
was on ante diem XIII Kal. Aug. (20 July), a simple enough emendation of XII to
XIII in the text of Censorinus, which was made by Scaliger, as Kepler soon learned
or perhaps already knew. But here he takes XII as the correct reading and explains
that in the year 139 the priests in Rome omitted one day “out of order” (extra
ordinem) so 1 Thoth occurred on XII Kal. Aug. instead of XIII Kal. Aug., which
Ptolemy in Egypt had not noticed, not “given attention to” (attenderet), meaning
that he did not know it. How this affects the conversion between the Roman and
Egyptian calendars will be taken up after reviewing Kepler’s later consideration of
this subject.

For it comes up again in a letter of 8/18 February 1624 to Paul Crüger as part
of a description of the configuration of the heavens at Creation, which we shall
also consider below. Kepler notes that the observations cited in the Almagest in
the calendar of Dionysius appear three or four days early, and suggests that it was
difficult for Hipparchus to convert those dates to the Egyptian calendar without error.
He then continues (18.157):

But also in the case of Ptolemy, I think that the three cardinal points, two
observations of Venus, and one of Mercury all correspond to the preceding
days. Unless there were observations of the Moon, which do not allow a day
to pass unnoticed, I believe that many of the preceding (observations) are to
be placed back to earlier days on account of what Censorinus observes, that
in the first (corr. third) year of Antoninus, the first day of Thoth was not on
20 July but on 21 July, from which you will gather that a displacement of the
Roman year was made for the sake of superstition or flattery, as was sometime
done earlier by the testimony of Dio, with a restitution made in the following
year. Therefore, if this displacement was announced in Egypt and received in
use there after the last observation of the Moon, since already the use of the
Egyptian year was abolished, Ptolemy could be deceived.

Now Kepler does not specify whether a day had been removed from or added to
the Roman calendar, only that there had been a displacement (luxatio), and the single
example he cites, from Cassius Dio (48.33), of one day added and later subtracted,
was around 41 BC, when intercalation was irregular, nowhere near the age of the
Antonines. Crüger must have pointed out to Kepler that the text of Censorinus is in
error and need only be emended from XII to XIII for the correct correspondence of
the Roman and Egyptian calendars, a conclusion Crüger seems to have reached on
his own. Kepler’s reply, in a letter of 1 May 1626 (18.264), shows that he already
knew this, but would prefer not to accept it as the alternatives are either accusing
Ptolemy of fraud or proposing a long-period inequality of the Sun not supported by
observation.

Joseph Scaliger warned me of the passage from Censorinus, and he, as
you, identifies it as an error.23 If I could excuse Ptolemy so that I were
not compelled to accuse him of fraud, I would congratulate myself. But if
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the probability of error in Censorinus will melt this buttery support for me
(colloquabit mihi hoc fulcrum butyraceum), I shall have recourse to secular
equations, to similar proofs (experimenta) in all the planets; in the Sun itself,
which, through eclipses of the Moon, is found to progress nonuniformly with
respect to the fixed stars (only) in minutes of arc, which I prove by four or five
eclipses of the Moon.

The “buttery support” is the text of Censorinus, but only if XII be considered cor-
rect. And this Kepler does not give up, although he does change his interpretation of
just what happened to the Roman calendar that led Ptolemy astray. His latest expla-
nation, which may have been written before the preceding letter, is in the Rudol-
phine Tables, in the rule (188) for finding the day of any year on which the equinox
occurs. After explaining the rule and giving a computed example for what he calls
Hipparchus’s vernal equinox of 147 BC, that is, −146 Mar 24—Ptolemy does not
record that equinox although he does record Hipparchus’s autumnal equinox (5) of
−146 Sep 26/27 and vernal equinox (6) of −145 Mar 24—he continues (10.238):

Caution: The days of the equinoxes are not in every case shown by this rule, as
for example those Ptolemy asserts were observed by himself. Consequently, in
this case, however much the equinoxes differ, either in time among themselves
or from the uniform precession, we should in no way be influenced by the
authority of Ptolemy, who appears to have been altogether mistaken in reck-
oning the days of the Egyptian year, perhaps mislead either by Hipparchus’s
calculation of the motion of the Sun or by the calendar and the Roman inter-
calation. This conjecture is confirmed by one passage of Censorinus, who—in
that very year (139) in which Ptolemy last observed the Moon, and after that,
when an extraordinary Roman intercalation had just been announced in Egypt,
observed both equinoxes—refers the first day of the first Egyptian month
Thoth to the twelfth day before the Kalends of August (21 July) although
it should be assigned to the thirteenth day (20 July) if the same uniformity of
Julian intercalation was observed then as now and no extraordinary intercala-
tion was revealed that year by the Priests.

But if the opinion of Ptolemy’s care is higher than (allows) that he could
be deluded by either calculation or the Roman year, one will have to have
recourse to the desperate measure of saying that around the time of Ptolemy
the equinoxes made a leap (forward in time), which they compensated in the
next centuries up to the time of Proclus. And in fact, I prove from the most
secure examples of observations of eclipses that the progress of the Sun with
respect to the fixed stars themselves is near the least degree nonuniform. If
God wills, I will publish one book on this subject.

An additional inequality in the motion of the Sun, also referred to in the letter
to Crüger, must be very small, for if it were large enough to change the time of the
equinox by one day, about 1◦ in longitude, it would affect the times of lunar eclipses
by about 2 hours, which is ruled out by the records of ancient eclipses, including
those observed by Ptolemy. Hence the motion of the Sun is “near the least degree
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nonuniform” (circa minima inaequalem), that is, very nearly uniform. Since any
additional inequality in the motion of the Sun, if present at all, is too small to affect
the times of equinoxes by one day, Kepler here offers two explanations for what can
now only be Ptolemy’s errors. The first is that he was misled (seductus) by Hip-
parchus’s solar theory, as he had suggested in the Epitome and as Longomontanus
also said although more strongly. In fact, Kepler notes in the margin: “Longomon-
tanus (Theor. Ast. 1.33) said that he (Ptolemy) was not only mistaken in observing,
but also clearly fabricated (finxisse) the observed (equinox), which he computed
from Hipparchus.” The other explanation is Censorinus’s correspondence of 1 Thoth
of Antoninus 3 in the Egyptian calendar to XII Kal. Aug. (21 July) instead of the
correct XIII Kal. Aug. (20 July), but he now attributes the correspondence, not to the
omission of one day, but to an “extraordinary Roman intercalation” (intercalatione
Romana extraordinaria), an intercalation out of order, which would appear to be
an addition of one day, made by the Priests (Pontificibus) in Rome, which was
then announced in Egypt. The intercalation occurred after Ptolemy’s latest dated
lunar observation, on 25 Phamenoth (139 9 February) of the Moon near quadrature
(Almagest 5.3), since the position of the Moon in that observation corresponds to the
correct date in the Egyptian calendar. The point in either case, omission or addition,
is that Ptolemy did not know that there had been a displacement in the Roman
calendar, which was announced in Egypt in an annual fasti, a calendar, sent from
Rome, and thus made errors in converting Roman to Egyptian dates in the year
Antoninus 3 in which he observed the equinoxes and solstice.

So which is it, an omission or an addition of one day? Kepler assumes, as noted,
that Ptolemy dated his observations in the Roman calendar and then converted to
the Egyptian calendar without knowing that a displacement had occurred in the
Roman calendar. The Egyptian calendar runs continuously with no displacement.
Kepler is not concerned with the different beginning of the day in each calendar,
the Julian day at midnight, the Egyptian day at the following sunrise, just with a
difference of one day. Figure 7 shows the effect of the conversion in three ways.
The first line is the Egyptian calendar in 139 beginning with the date of Ptolemy’s
latest lunar observation, 25 Phamenoth of Antoninus 2, and the next date shown

Fig. 7 Kepler and Censorinus. Conversions of Roman to Egyptian calendar in 139 for 1 Thoth
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is 1 Thoth of Antoninus 3. The second line shows the correct corresponding dates
in the Roman calendar, 9 February and 20 July (XIII Kal. Aug.); the conversion of
20 July to 1 Thoth is correct for the undisplaced Roman calendar. The third line with
−1d, as in the memoir to Ferdinand II, shows the effect of the omission of one day
after 9 February, by which 20 July (XIII Kal. Aug.) occurs one day before 1 Thoth,
which thus occurs on 21 July (XII Kal. Aug.), as in the text of Censorinus, and all
following dates in the Egyptian calendar correspond to one day later in the Roman
calendar. Hence, if Ptolemy did not know this, he would convert Roman dates to
Egyptian dates one day later than the undisplaced conversion, and this would have
the result of making the equinoxes and solstice observed in Antoninus 3 one day late
in the Egyptian calendar. For example, the autumnal equinox (12) in 139 actually
observed on VII Kal. Oct. (25 Sep) would, because of the omission of one day
in the Roman calendar, be dated VI Kal. Oct. (26 Sep) and converted to 9 Athyr
instead of 8 Athyr corresponding to VII Kal. Oct., thus one day late in the Egyptian
calendar.24 Finally, the fourth line with +1d shows the effect of the “extraordinary
Roman intercalation” in the Rudolphine Tables, which appears to be an addition
of one day after 9 February. Now 20 July (XIII Kal. Aug.) occurs after Thoth 1,
which occurs on 19 July (XIIII Kal. Aug.), so this cannot account for Censorinus’s
conversion of 1 Thoth to XII Kal. Aug., and the conversion of all subsequent dates
from the Roman to the Egyptian calendar would be one day early, not one day late.
Thus, if Ptolemy were not aware of the intercalation of one day, his conversion of the
dates of the equinoxes and solstice in Antoninus 3 from the Roman to the Egyptian
calendar would be one day early, which is clearly not so as they are all late. The
equinox observed on VII Kal. Oct. (25 Sep) would, because of the addition of one
day, be dated VIII Kal. Oct. (24 Sep) and converted to 7 Athyr instead of 8 Athyr,
which did not happen as the equinox is dated 9 Athyr. Hence, Kepler’s explanation
in the earlier memoir of an omission of one day can, in principle, explain the late
dates of the equinoxes and solstice in the Almagest, but the addition of one day in the
Rudolphine Tables cannot. Why he should have changed his mind about this I do not
know, and it does not seem likely that by “extraordinary Roman intercalation” he
still means an omission; but I can say from the effort of working it out and explaining
it that, as simple as it appears, it can be confusing, and it is easy to think that adding
one day to the Roman calendar will advance the date in the Egyptian calendar by
one day.

Without invoking an extraordinary omission or addition of a day, it might be
suggested that there was a systematic error of one day in the conversion between
the Roman and Egyptian calendars for Antoninus 3, and perhaps other years, com-
mon to Censorinus and Ptolemy, as unlikely and inexplicable as that might appear,
especially since they lived a hundred years apart. But even then there would be
the problem that the autumnal equinox (11) of 25 September 132, used to establish
the Sun’s epoch (Almagest 3.7), which correctly occurred on 24 September and is
thus also one day late, is several years before, not only the presumed extraordi-
nary omission or addition of a day, but also five correctly dated observations of the
Moon, including three eclipses. Thus, any error would have to occur intermittently.
And the very idea that Ptolemy would date observations in the Roman calendar in
Alexandria, which had its own Alexandrian calendar, is hardly possible.25 So as
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clever as Kepler’s explanation may be, and it is clever, it cannot be correct. Still,
he has no doubt that Ptolemy’s equinoxes are late by one day, and he later says
(10.242) that all of Ptolemy’s longitudes of planets are reduced by about −1;3◦,
which is very nearly correct since the error in the mean longitude of the Sun at the
autumnal equinox (11) of 25 September 132 is −1;5◦.

Kepler had a yet more ambitious reason for correcting Ptolemy’s equinoxes than
finding a correct and consistent solar theory. From the time of the Mysterium Cos-
mographicum (1596), and doubtless before that, he reasoned that God would not
create the world with the various bodies in arbitrary positions, but must have chosen
some rational initial configuration. He set out such a configuration in the Mysterium
(23) for 27 April 3978 BC, but later changed his mind, and in a note in the 1621
edition gives the date 24 July 3993 BC, with the Sun and Moon at the beginning of
Cancer near Regulus and the planets in the direction of solstices or equinoxes. After
finding that Longomontanus had done something similar in Astronomia Danica, the
Sun at apogee at the autumnal equinox in 3967 BC, he gives more details in the
letter to Paul Crüger of 8/18 February 1624, without the date, but with the loca-
tions near or at the solstices and equinoxes, together with a diagram in which the
locations are heliocentric (18.155–57). As we saw earlier, he notes possible errors
in the conversion of dates from the Dionysian to the Egyptian calendar in ancient
observations cited by Ptolemy and errors in Ptolemy’s observations of equinoxes
and the solstice, two observations of Mercury and one of Venus, and to explain them
refers to the displacement in the Roman calendar shown by Censorinus’s conversion
of 1 Thoth. This shows clearly that Kepler’s investigation of errors in Ptolemy’s
observations is related to the configuration of the heavens at Creation and thus to the
date of Creation. The locations at Creation, that is, the evening of the second day
(feria secunda, Monday) in Chaldea, when God created the firmament, 24 July 3993
BC at 0;33,26 hours after noon at Uraniborg, are finally set out in the Rudolphine
Tables. As examples of summing mean motions, he computes the mean heliocentric
longitude of each planet, the longitude of its aphelion and ascending node, and the
equivalent geocentric longitudes of the Sun and Moon (10.121–23), which he then
places in the tables of epochs. And for each, he asks “What if?” (Quid si), and gives
the locations exactly at the equinoxes and solstices according to God’s plan. The
computed and intended locations are as follows:
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What Kepler wishes to find is the mean longitude of every body and the longi-
tude of aphelia (apogees for Sun and Moon) and nodes at an equinox or solstice
at some date close to Creation according to scriptural chronology. Since there are
four possible locations, all mean longitudes near, if not exactly at, equinoxes and
solstices must occur periodically, and over a period of thousands of years very small
changes in mean motion in longitude can place each body exactly where required.
But the aphelia and nodes move so slowly that these locations occur very infre-
quently, although a surprisingly large number of the computed positions are already
at them. Presumably the exact date and time are determined by the Sun at the sum-
mer solstice, Cancer 0◦; by remarkable luck, Venus at Cancer 0◦ and Mercury within
1′′ of Aries 0◦ would seem to determine the year (in fact these are in error by several
degrees). The time required for the Moon to move to Cancer 0◦ is half a day, Mars
was at Cancer 0◦ 20 days, Jupiter at Capricorn 0◦ 85 days, and Saturn at Libra 0◦ 164
days earlier, so these could easily be adjusted over so long a period. But Jupiter’s
aphelion was at Cancer 0◦, if ever, 1800 years earlier, and Saturn’s aphelion will
not be at Libra 0◦ for 1500 years. Since the aphelion of Mars is at Taurus 15◦, it is
uncertain whether it should be at Aries 0◦ or Cancer 0◦; one way or the other, the
motion would take 2400 years. (That the nodes are, except for Mars, at the required
locations is the result of errors in their motions in the tables. For Saturn and Mercury
the differences are over 60◦, although Mars happens to be close to Aries 0◦.)

It is here that an investigation of Ptolemy’s observations is essential because
errors of, in fact, many degrees in the longitudes of apsides and nodes found by
Ptolemy when corrected could bring these where they belong at the date of Cre-
ation, or so Kepler could hope. And this investigation he intends to take up, for
after the examples of computing the positions at Creation, he remarks (10.123):
“Concerning this situation and disposition of the initial positions from which all
the motions come forth, there is a large subject for philosophizing, if the proposed
material is accessible. But this speculation is to be deferred until another treatise
where the reasons and foundations will be set out from which the positions at the
time of Ptolemy have been brought to light.” Kepler is here referring to two works.
The first may be one, not completed but surviving among Kepler’s manuscripts,
known as the “Examination of the Observations of Regiomontanus and Walther,”
which also considers ancient observations reported by Ptolemy, with the object of
finding secular equations such that, perhaps, the bodies all could be at their required
positions at Creation.26 The second is a separate treatise on the positions at the time
of Ptolemy, perhaps also on Ptolemy’s observations in general with an analysis of
the errors and their causes and any applicable secular equations. This would have
been of interest, and with more detail than he had offered thus far. But it does not
appear that the treatise was ever written, although notes in Kepler’s manuscripts
may have been intended or useful for it. So it is evident that, just as for Tycho
and Longomontanus, Ptolemy’s observations were of serious concern, presenting
problems that had not been solved. And the literature of the last two hundred years
shows that they are still subject to discussion and speculation, much of it merely
repeating what was already written long ago, although not nearly so interesting or
ingenious.
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Appendix: Equinoxes and Solstices in the Almagest

Ptolemy cites twelve equinoxes and two solstices with specific dates and times and
several others with implied dates. For those with dates and times, here numbered in
chronological order, we give the observer, year, date, and time in the Almagest along
with the date and apparent time by modern computation, the difference in time Δt ,
cited time minus computed time, and for the cited time the differences in declination
Δδ and longitude Δλ from the declination and longitude at the computed time.
Thus, Δt , Δδ, and Δλ are the errors in time, declination, and longitude at the cited
times. Ptolemy’s times of earlier observations are approximate, midnight, dawn,
noon, sunset, evening, but he interprets them as occurring at quarter days, even for
the solstice of Meton at dawn, which we give here as 0, 6, 12, and 18 hours. Since
the cited times are approximate, the errors are also approximate. The computations,
of apparent (not mean) local time for the meridians of Athens (1), Rhodes (2–10),
and Alexandria (11–14), are geocentric, may have an uncertainty of a few minutes,
and small inequalities cause the intervals between equinoxes and the tropical year
to vary slightly from year to year. Reduced to the meridian of Alexandria, (1) is
+0;25h and (2–10) +0;7h later. We have used the Alcyone Ephemeris for these
calculations.

No. λ Obs. Year Date Time Mod. Date Time Δt Δδ Δλ

1 Can 0◦ Met. −431 27 Jun 6h 28 Jun 10;29h −28;29h −0; 0,18◦ −1; 8◦

2 Lib 0 Hip. −161 27 Sep 18 27 Sep 2;29 +15;31 −0;15,36 +0; 38,49
3 Lib 0 Hip. −158 27 Sep 6 26 Sep 19;57 +10; 3 −0;10, 7 +0; 25, 8
4 Lib 0 Hip. −157 27 Sep 6 27 Sep 1;43 +4;17 −0; 4,19 +0;10,41
5 Lib 0 Hip. −146 27 Sep 0 26 Sep 17;49 +6; 4 −0; 6,13 +0;15,26
6 Ari 0 Hip. −145 24 Mar 6 24 Mar 15; 1 −9; 1 −0; 8,47 −0;21,52
7 Lib 0 Hip. −145 27 Sep 6 26 Sep 23;41 +6;19 −0; 6,21 +0;15,46
8 Lib 0 Hip. −142 26 Sep 18 26 Sep 17; 9 +0; 51 −0; 0,51 +0; 2, 7
9 Ari 0 Hip. −134 24 Mar 0 24 Mar 6;59 −7; 6 −0; 6,50 −0;16,58

10 Ari 0 Hip. −127 23 Mar 18 23 Mar 23;23 −5;23 −0; 5,15 −0;13, 5
11 Lib 0 Ptol. 132 25 Sep 14 24 Sep 4;58 +33; 2 −0;33, 6 +1;22,25
12 Lib 0 Ptol. 139 26 Sep 7 24 Sep 21;44 +33;16 −0;33,18 +1;22,55
13 Ari 0 Ptol. 140 22 Mar 13 21 Mar 16;15 +20;45 +0;20,18 +0;50,31
14 Can 0 Ptol. 140 25 Jun 2 23 Jun 14; 9 +35;51 −0; 0,28 +1;25,31

Observations (2–4) were perhaps only reported by Hipparchus and not made by
him at Rhodes. The time of (8), with its very small Δt , is given as “evening,” which
could be later than 18h, but before 0h at which Δt = +6;51h. The negative Δδ in
(2–10) implies that the equator was set too low, in most by about 6′ ± 2′, and, aside
from (2–3), are consistent enough to show that they must be from interpolation
between measurements of meridian altitude, and not observed with an equatorial
ring close to the horizon where refraction would produce a larger range or even posi-
tive values of Δδ. Using meridian altitudes, refraction would change the times of the
equinoxes by less than ±0;45h, a small fraction of Δt . Ptolemy’s observations were
probably of meridian altitudes even though Δt is so large, since he criticizes the use
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of rings. Longomontanus assumes that both Hipparchus and Ptolemy observed with
a ring, and attempts to correct for refraction the times of equinoxes believed to be
observed close to the horizon. In fact, (6) was also observed in Alexandria with an
equatorial ring, which showed the time about 5 hours later, at 11h, reducing Δt to
−4;1h, Δδ to −0;3,55◦, and Δλ to −0;9,44◦.

Notes

1. This is the way Battānı was understood in Europe, by the writers we are considering, but in
Chapter 52 he suggests, and appears to favor, a variable precession and tropical year although
he proposes no model or parameters. There is a detailed study of this subject by Ragep (1996)
and further reference in his paper in this volume.

2. In the section on each, references in parentheses are to volume and page numbers in: Brahe
(1913–1929), Longomontanus (1622), and Kepler (1937– and 1858–1871). Full descriptions
of these are in the bibliography.

3. The text reads Capricorn 5◦. There is another error here as by Copernicus’s tables in 1580 the
eccentricity is about 0.03214 or 1;55,42, less than 2;5 by 0;9,18, and is never less than 0.0321
or 1;55,34; but the longitude of the apogee is 98;42◦, about 3 2

3
◦

to the east of Cancer 5◦, and
the Prutenic Tables are nearly the same.

4. How did Tycho find π = 28;5 1
2

◦
? From his star catalogue, for the end of 1600 the longitude

of Spica is 198;16◦, and from the table of precession, for 12 Sep 1588 Δπ = −0;10,28◦, so
the longitude of Spica is 198;5,32◦. Then, taking Ptolemy’s interval from Spica to γ Arietis,
−170;0◦, the longitude of γ Arietis and the precession π = 198;5,32◦ − 170;0◦ = 28;5,32◦ ≈
28;5,30◦. Tycho explains that from his own interval from Spica to γ Arietis, −170;39◦, π =
27;26◦ (strictly 27;26,32◦), but since the fixed stars do not move in relation to each other, it
does not matter which interval he applies to find the difference of precession as long as he
applies it at both equinoxes, and Ptolemy’s interval from Spica is consistent with the interval
from Regulus. This is correct since what Tycho finds is Δλ̄∗

s = Δλ̄s − Δπ .
5. Copernicus’s longitude of Spica in 1515 is 197;14◦—in fact, computed from his precession

theory and altered from his original computation of 197;10◦—and Tycho’s 197;3,30◦ is his
recomputation based upon the corrected latitude of Frauenburg (2.223). In 1586 he corrected
Copernicus’s 1525 longitude of 197;21◦ in the same way to 197;13,55◦ (10.125, text by error
53 for 13; 2.223 has 197;14◦), and paired it with his own longitude of 198;4,24◦ for 1586, from
which π = Δλ/Δt = 0;50,29◦/61y = 0;0,49,39◦/y or 1◦ in about 72 1

2 years. By modern
computation, the longitude of Spica in 1515 is 197; 5◦ and in 1525 197;14◦, close enough to
Tycho’s corrections.

6. This is correct, for in the late sixteenth century by Copernicus’s theory the rate of preces-
sion is about 36′′ per year and the tropical year 365;14,48d, the same as Ptolemy found, very
nearly the slowest precession and longest year, while Tycho found 51′′ per year, faster by
15′′, and 365;14,31,52,30d, shorter by 0;6,27h, which refutes Copernicus’s theory. However,
Tycho does note that Copernicus’s mean precession of 0;0,50,12,5◦/y differs from his by only
−0;0,0,48◦.

7. This is the year of Jālāl ad-Dın Malik Shāh of 1079, which Scaliger earlier favored and had
learned of from Ignatius Na‘matallah, Jacobite Patriarch of Antioch, then a refugee in Rome,
his source for much information on eastern calendars. The year is stated in various forms, but
Scaliger gives it as 365d 5h 880ch, where 1 hour = 1080 chalakim, a division of the hour in the
Hebrew calendar; the tropical year is thus 365d 5;48,53,20h, in fact superior to the Alfonsine
and differing from Tycho’s by +0;0,8,20h.

8. Cited by Grafton (1993, 201), from De emendatione temporum (1583, 128).
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9. Cynosura, literally “dog’s tail,” is a name for Ursa Minor, used notably by Aratus. Copernicus
also uses it in his star catalogue. That Hipparchus’s found Polaris 12;24◦ from the pole is cited
by Ptolemy from Marinus in Geography 1.7.4. Since it was then the most distant of the stars in
Ursa Minor in declination from the pole, it is called the “southernmost,” which Scaliger later
criticizes as an error because he believes the pole of the world is always at or near Polaris.
Grafton (1993, 487), notes that “southern” was sometimes emended to “northern” in transla-
tions of the Geography since by the sixteenth century Polaris had become the northernmost
star. He also notes (464) that in the second edition of De emendatione temporum, Scaliger
gives the least distance as 3;24◦ and concludes that the pole of the equator has approached the
pole star by about 9◦. The present distance of less than 3◦ he perhaps received from Tycho,
who also mentions it in his letter below.

10. It appears from examples for Regulus and η Gem that he was computing true risings, when the
Sun and star cross the horizon at the same time, rather than apparent risings, which are more
difficult and uncertain to compute. Nevertheless, his conclusion is correct, for by modern com-
putation at 100-year intervals, the apparent heliacal rising of Sirius in Alexandria for −1800 to
900 is on 20 July and 1000 to 1600 on 21 July (Julian), although different methods of compu-
tation can differ slightly. Scaliger refers to acronychal risings, although perhaps not explicitly
for Sirius, but these are not as constant, for −1800 to 1600 advancing from 25 December to 1
January. Tycho’s statement that after about 500 years Polaris will be 27 1

2
′
from the pole is very

accurate, for its minimum distance (without nutation), will be 0;27,15◦ in 2102–03.
11. Scaliger’s objections to the precession, including in the Diatribe, are treated by Grafton (1993,

459–488). The Diatribe was already much criticized in its day; a detailed analysis and very
sharp criticism by Kepler is published by Frisch (Kepler 1858–1871, 8.273–93).

12. The Greek text has 365 1
4 + 1

76 days, but the fraction 1
76 seems to be omitted in earlier para-

phrases of this passage and accounts of the Metonic cycle. It was commonly thought that the
cycle was 19 Julian years of 365 1

4 days, 6939 3
4 days, as in the ecclesiastical calendar, rather

than Meton’s 6940 days. It should be noted that a luni-solar calendrical cycle as applied to
months must be an integral number of days since new Moons appear only in the evening
separated by (nearly) integral days.

13. Longomontanus’s explanation was later proposed, surely independently, by Tobias Meyer in a
letter to Euler. Of course, neither knew the Babylonian origin of Hipparchus’s mean synodic
month. There is a rather detailed discussion of Hipparchus’s tropical year and precession by
Swerdlow (1980).

14. Holger Rosenkrantz (1574–1642), a friend and correspondent of Tycho’s, was married to
Tycho’s niece, supported Tycho’s claims in Denmark after he had left Hven, and doubtless
knew Longomontanus well. The correspondence is published in Dreyer’s edition and there is a
biography by Christianson (2000, 344–346). He assembled a great library and was particularly
concerned with theology, although sufficiently unorthodox and fanatical to be charged with
heresy in his later years.

15. For −3963 Jan 1 noon, λ̄s = 248;33,54◦, for −3966 Jan 1 noon, λ̄s = 248;17,45◦. Since the
equinoxes were then in the apsidal line where the equations are zero, the difference in longitude
to the following vernal equinox is 111;42,15◦ and to the autumnal equinox 291;42,15◦, for
which the difference in time is 291;42,15◦/0;59,8,19,45◦/d = 295d 22;50,50h, that is, 23 Oct
at 22;50,50h from noon or 24 Oct at about 11 AM Curiously, if one takes the true longitude
for −3966 Jan 1 noon, λs = 248;17,45◦ + 1;55,32◦ = 250;13,17◦, the difference in longitude
to the autumnal equinox is 289;46,43◦. If one then uses the mean motion of the Sun, the
difference in time is 293d 23;57,39h, that is, 21 Oct at 23;57,39h from noon or 22 Oct at about
noon. This is not strictly correct, but the result would be that God created the world at about
noon in Copenhagen.

16. Pole E is described as “in the surface of the globe of the Earth,” but that must be only a geo-
metrical direction as it makes no sense to give the motion of E to the Earth, and Moesgaard is
surely correct in describing it as the pole of the true orbit of the Sun around the Earth, that is, of
the true ecliptic itself. And the motion in the small circle produces only a motion of each point
of the true ecliptic, as the true vernal equinox, in a small circle centered on the mean ecliptic,
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unlike Kepler’s model, described later, which produces a rotation of the entire true ecliptic with
respect to the mean ecliptic. Moesgaard also notes inconsistencies in Longomontanus’s table
of the inequality of precession and suggests that the table was computed for an earlier model in
which the inequality of precession and variation of obliquity were produced by motions of the
pole of the Earth, thus of the equator with no motion of the ecliptic, as in Copernicus’s model.
The model does seem inconsistent, or hard to follow, and my description is only of what is
supposed to result from it.

17. There is a recent study by Buchwald (2006, 635–643) of this procedure applied to Tycho’s
observations along with other early methods of refining measurements or computations.

18. The text, three hours, is incorrect since at the equinoxes 1h of time corresponds to 1′ of decli-
nation. If the maximum equation is reduced by 20′, then with Ptolemy’s apogee, the reduction
at equinox is 20′ sin 65;30◦ ≈ 18′ of longitude, corresponding to 0;24 · 18′ ≈ 7′ of declination
and seven hours of time. Kepler must have computed 0;24 · 20′ = 8′ of declination and thus
eight hours of time, which would apply at 90◦ from apogee, not at the equinoxes.

19. By modern computation, the closest approach of Mars to β Sco was under 37′ on 19 Jan 2h and
to ν Sco over 2′ on 16 Jan 15h, which is much closer. There could be an error in converting the
date from the Dionysian to the Egyptian calendar, but there was no occultation of either star and
nothing even close at dawn in Alexandria on any nearby date. An occultation of Mars by the
Moon approaching first quarter was visible in Athens the evening of −356 4 May—from about
20h to 21;15h apparent time although the exact time varies by a few minutes depending upon
the value of the secular acceleration—as Kepler surely determined correctly, and “April” must
be only a transcription error since on 4 April the Moon was about 20◦ from Mars, which he
could not have missed. In manuscript notes on the occultation (Kepler 1937–, 20.2.497–505),
with 25 computations of the Sun, Moon, and Mars dated to the Foundation of Rome, AUC
380–431, the one for −356 is a fragment for AUC 395 (504–505), April completed, hence
May, plus day 5, but the occultation is not noted there.

20. Here we consider the theory only geometrically; there is an explanation of the underlying
physical theory of latitude by Stephenson (1987, 130–137), which we have found very helpful.

21. First published by Frisch (Kepler 1858–1871, 6.101–09) and more completely by Bialas
(Kepler 1937–, 21.1.314–29), who dates the notes to ca. 1616 and December 1621. The param-
eters for the variation of obliquity in the Epitome and Rudolphine Tables are found in the latter
part of the notes. There are related notes published by Frisch (Kepler 1858–1871, 6.78–87,
593–596) and Bialas (Kepler 1937–, 20.1.115–33), from both before and after the publication
of Epitome 7. Placing the equinoxes and solstices at eight degrees of their signs is Babylonian
and found in a number of Greek sources. That Hercules did it first is more surprising.

22. First published by Frisch (Kepler 1858–1871, 6.87–89) and then by Bialas (Kepler 1937–,
20.1.134–36), who provides the date 1622.

23. Loci ex Censorino admonuit me Jos. Scaliger, agnoscitque pro sphalmate, ut tu; ‘admonuit me’
also means ‘reminded me’ or ‘advised me’. A. Grafton, in considering the passage, believes it
refers only to Kepler’s seeing the correction in De emendatione temporum, not to a personal
communication from Scaliger since there is no evidence that Scaliger ever wrote to Kepler
following Kepler’s letter of May/June 1605, and Scaliger died in 1609, seventeen years before
this letter to Crüger.

24. In fact, equinox (12) occurred on 24 Sep at about 22h, earlier than the recorded 26 Sep 13h by
1d 9h, as in the Appendix.

25. The Alexandrian calendar, introduced under Augustus in −24, uses Egyptian month names
and equal months of thirty days numbered consecutively forward, with five epagomenal days
in common years and a sixth in a leap year. Ptolemy uses it in the Phases of the Fixed Stars,
and nowhere does he give a date in the Roman calendar, even when citing observations made
in Rome by Menelaus. In 139, 1 Thoth of Antoninus 3 in the Egyptian calendar corresponds
to 26 Epiphi of Antoninus 2, or Augustus 168, in the Alexandrian calendar.

26. First published by Frisch (Kepler 1858–1871, 6.725–74) and more recently by Bialas (Kepler
1937–, 20.1.395–455). This work is also referred to in the preface to the Rudolphine Tables
(10.44).
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Introduction 

On 19th October 1692 Edmond Halley read a paper to the Royal Society in which 
he claimed for the first time that the motion of the Moon was subject to a long-term 
acceleration. The Journal Book of the Royal Society notes the occasion as follows: 

October 19, 1692. Halley read a paper, wherein he endeavoured to prove that the opposition 
of the Medium of the Æther to the Planets passing through it, did in time become sensible. 
That to reconcile this retardation of the Motions the Ancients and Moderns had been 
forced to alter the differences of the Meridians preposterously. That Babylon was made 
more westerly than it ought by near half an hour, both by Ptolomaeus, and those since 
him. And to reconcile the Observations made by Albategnius at Antioch, and Aracla on 
the Euphrates, they have been forced to make these places ten degrees more Easterly, than 
they ought, particularly Mr. Street has made Antioch of Syria in his Table of Longitudes, 
and Latitudes of places half an hour more Easterly than Babylon, whereas in truth it is 
about 40 minutes more Westerly. That this difference is found by 4 Eclipses observ’d 
about the year 900 and that by an Artist not capable of mistaking, that they all 4 agree in 
the same result and are noe other ways to be reconciled. Hence he argued, that the Mo-
tions being retarded must necessarily conclude a finall period and that the eternity of the 
World was hence to be demonstrated impossible. He was ordered to prosecute this Notion, 
and to publish a discourse about it. (MacPike 1932, p. 229) 

Halley’s reasoning here is that the movement of the Sun, Moon and planets 
through the æther causes their motions to be retarded and that as a consequence 
geographical longitudes that have been derived from earlier astronomical observa-
tions are incorrect. During the following year Halley read further papers on the 
long-term change in length of the year and an analysis and correction of the Latin 
translation of al-Battānī by Plato of Tivoli. 

Halley’s paper on his corrections to al-Battānī was published in volume 17 of 
the Philosophical Transactions of the Royal Society (Halley 1693). It includes a 
detailed analysis of four eclipses, the solar eclipses of 8th August 891 and 23rd 
January 901 and the lunar eclipses of 23rd July 883 and 2nd August 901, but 
Halley remarked that Plato’s translation contains too many errors to allow him 
to determine the parameters of the Moon’s motion (Mercier 1994, pp. 194–195). 
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Although Halley does not mention to issue of whether the Moon’s motion is subject 
to a long-term acceleration in this paper, at the end of a report on the ruins of 
Palmyra published in volume 19 of the Philosophical Transactions (Halley 1695), 
he briefly returns to al-Battānī’s observations. Halley remarks that the city of Aracta, 
where al-Battānī made some of his observations, is the present-day city of Racca 
on the Euphrates river. Halley writes: 

The Latitude thereof was observed by that Albatâni with great accuranteness, about eight 
hundred years since; and therefore I recommend it to all that are curious of such Matters, 
to endeavour to get some good Observation made at this Place, to determin the Height of 
the Pole there, thereby to decide the Controversie, whether there hath really been any 
Change in the Axis of the Earth, in so long an Interval; which some great Authors, of late, 
have been willing to suppose. And if any curious Traveller, or Merchant residing there, 
would please to observe, with due care, the Phases of the Moons Eclipses at Bagdat, 
Aleppo and Alexandria, thereby to determine their Longitudes, they could not do the 
Science of Astronomy a greater Service: For in and near these Places were made all the 
Observations whereby the Middle Motions of the Sun and Moon are limited: And I could 
then pronounce in what Proportion the Moon’s Motion does Accelerate; which that it does, I 
think I can demonstrate, and shall (God willing) one day, make it appear to the Publick. 

Over the next fifty years, Halley’s discovery of a secular acceleration of the 
Moon went largely unremarked by other astronomers. A brief comment by Isaac 
Newton inserted following his final remarks on comets in Proposition 42 of Book 
III of the Principia in the second edition (but removed in the third edition), credits 
Halley with the discovery of the secular acceleration of the Moon: 

As the body of Sun also decreases, the mean motions of the planets around the Sun are 
slightly delayed, and as the Earth increases, the mean motion of the Moon around the 
Earth is slightly advanced. And by bringing together the eclipse observations of the Baby-
lonians and of Albategensis with those of today, our Halley showed that the mean motion 
of the Moon accelerates slightly by comparison with the diurnal motion of the Earth, the 
first of all, so far as I know, to have discovered it. (trans. Cook 1998, p. 479) 

but no further details are given. Between 1749 and 1757, however, three attempts 
were made to confirm the existence of the secular acceleration of the Moon and to 
determine its magnitude. All three investigations of the secular acceleration, by 
Richard Dunthorne, Tobias Mayer and Jerome Lalande, used ancient and medieval 
records of eclipses, principally those reported by Ptolemy in his Almagest and the 
eclipses known from al-Battānī and Ibn Yūnus, to derive the secular acceleration. 
Following Lalande’s results of 1757 an acceleration of about 10″ per century was 
accepted and after 1757 attention switched to trying to understand and model the 
physical causes of this acceleration. 

Halley’s remarks are the first direct claim for the existence of a secular accele-
ration of the Moon. Despite his plea for better determinations of the sites of 
ancient observations in order to analyse ancient eclipse observations in order 
to derive a quantitative assessment of the Moon’s secular acceleration, and his 
desire to make such a study public, Halley apparently did not return to the 
subject, at least in print. 
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In this paper I will discuss the pioneering work in using historical eclipse re-
cords to determine the secular acceleration by Dunthorne, Mayer and Lalande. 
Each scholar approached the task in a different manner, placing greater or less 
trust on the observations reported in each historical sources and using different 
techniques to derive the magnitude of the secular acceleration from the ancient ob-
servations. 

Richard Dunthorne 

In 1739 Dunthorne published The Practical Astronomy of the Moon: or, new 
Tables of the Moon’s motions, Exactly constructed from Sir Isaac Newton’s The-
ory, as published by Dr Gregory in his Astronomy, With Precepts for computing 
the Place of the Moon, and Eclipses of the luminaries. The book contained tables 
for calculating the position of the Moon based upon Newton’s lunar theory. Al-
though Newton’s theory had been published and described, Dunthorne claimed 
that no tables had previously been constructed from this theory which allowed lu-
nar positions to be simply calculated. Dunthorne explained his motivations in a 
note to the reader: 

The following Tables of the lunar Motions were at first calculated purely for my own pri-
vate use; but being informed by several friends who are more conversant in Books than 
myself, that there has not been a complete Set of such Tables framed from the Theory of 
Gravity, as yet published: I was willing to present you with these: They are constructed 
from Sir Isaac Newton’s Theory, as published by Dr. Gregory in his Astronomy 

Dunthorne’s tables were a remarkably accurate presentation of Newton’s theory 
(Kollerstrom 2000), but Dunthorne was well aware that there were slight discrep-
ancies between calculated lunar positions and those determined from observation. 
He continued his note to the reader: 

and though I find, by comparing them with observations, that the Newtonian Numbers are 
a little deficient, they will (at least) have this use, that such Persons as desire further to 

Richard Dunthorne was born in 1711 at Ramsey in Huntingdonshire where his 
father worked as a gardener (Lynn 1905). Dunthorne attended the free grammar-
school in Ramsay, where he was taught enough basic arithmetic to be able to pur-
sue his own study of mathematics. After the completion of his school education in 
Ramsay, Dunthorne ran a private school in the nearby town of Alconbury, before 
being persuaded by Dr Roger Long, the Master of Pembroke Hall, to come to 
Cambridge in Long’s service in order to continue his learning. Long later recom-
mended Dunthorne for the post of Master of the free school at Coggeshall in 
Essex, and then brought Dunthorne back to Cambridge to act as his personal assis-
tant and butler of Pembroke Hall (Cooper 1864). Dunthorne held this post for the 
remainder of his life, combining it with a role as superintendent of the Bedford 
Level, directing the construction of the locks on the Cam, and later in life under-
took comparisons for the Nautical Almanac. 
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rectify the Lunar Astronomy, may be being assisted with Tables already framed from 
nearly true Numbers, be better enabled to compare those Numbers with Observations, and 
by that means obtain Numbers still more exact. 

Dunthorne continued this theme in a letter sent to the Rev. Charles Mason 
published in the Philosophical Transactions for 1747. Dunthorne compared 
several sets of solar and lunar observations by Flamstead and others reported in 
Flamstead’s Historia Cœlestis, the Philosophical Transactions and the Memoires 
de l’Académie Royal des Sciences, finding good agreement between observation 
and theory after applying small corrections to some of the parameters underlying 
the tables. The observations Dunthorne analysed in his 1747 paper range in date 
from A.D. 1652 to 1732. 

Dunthorne now turned his attention to earlier observations. The Philosophical 
Transactions for 1749 included an eleven page “Letter from the Rev. Mr. Richard 
Dunthorne to the Reverend Mr. Richard Mason F. R. S. and Keeper of the Wood-
wardian Museum at Cambridge, concerning the Acceleration of the Moon”. Dun-
thorne began his paper: 

After I had compared a good Number of modern Observations made in different Situa-
tions of the Moon and her Orbit in respect of the Sun, with the Newtonian Thoery, as in 
my Letter of Nov. 4, 1746; I proceeded to examine the mean Motion of the Moon, of her 
Apogee, and Nodes, to see whether they were well represented by the Tables for any con-
siderable Number of Years, and whether I should be able to make out that Acceleration of 
the Moon’s Motion which Dr. Halley suspected. 

Dunthorne’s groundbreaking analysis of historical eclipse records in this paper 
provided the first proof of the existence of the secular acceleration of the Moon, 
and the first (and remarkably accurate) estimate of its magnitude. 

Before discussing the content of Dunthorne’s paper, some words concerning 
the title are in order. Within the twenty-nine words of the title are two printing er-
rors. The first error is in naming Dunthorne “The Rev. Mr. Richard Dunthorne.” 
This has given rise to many descriptions of Dunthorne as a Reverend in modern 
literature, but Dunthorne was never a clergyman. The second error is in naming 
Charles Mason as “Richard Mason.” As we shall see, there is also a typographical 
error in the date of one of the eclipses analysed by Dunthorne in the paper. 

Dunthorne proceeded by comparing observed accounts of historical eclipses 
with the circumstances of those eclipses as computed using his 1739 tables as cor-
rected in his 1747 paper. He discussed six sets of eclipse observations, in roughly 
reverse chronological order: 

(i) Several lunar eclipses observed by Tycho Brahe and reported in Tycho’s Progymnas-
mata. Dunthorne finds as good agreement as could be expected given the inaccuracy of 
Tycho’s clocks. In any case, Dunthorne remarks, Tycho’s observations are too near in 
time to those of Flamstead to be of use in his present enquiry. 

(ii) Several observations of lunar eclipses made by Bernard Walther and Regiomontanus. 
Dunthorne found that the computed longitudes of the Moon were generally about 5′ too 
great, which he believed was too large to be attributed to observational error. Accordingly, 
Dunthorne concluded that these observations indicated the presence of a secular accelera-
tion of the Moon, “though the Disagreement of the Observations between themselves is 
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too great to infer any thing from them with Certainty in so nice an Affair” (Dunthorne 
1749, p. 163). 

(iii) The four eclipses observed by al-Battānī. Dunthorne found that the computed longitude 
of the Moon was considerably too great in three of the four cases, but due to uncertainty in 
the geographical longitude of Aracta, he cannot claim this as proof of the presence of a lunar 
secular acceleration.  

(iv) Two eclipses of the Sun and one of the Moon observed in Cairo by Ibn Yūnus. Dunthorne’s 
source for these eclipses is Albertus Curtius’ Prolegomena to his Historia Cœlestis 
containing a compilation of Tycho Brahe’s observations put together by Curtius (Mercier 
1994, pp. 197–198). Dunthorne finds good agreement with his tables. 

(v) The solar eclipse observed by Theon of Alexandria in AD 364. Dunthorne summarizes 
the account of the eclipse. Interestingly, Dunthorne, without comment, says that Theon 
observed the eclipse to begin at 2;50 seasonal hours after noon, and ended at 4;30 seasonal 
hours afternoon, and converts these to 3;18 and nearly 5;15 equinoctial hours after noon 
respectively. Dunthorne cites the Basel edition of 1538 as the source of this record. How-
ever, the Basel edition clearly gives the observed times as in equinoctial, not seasonal 
hours. Fotheringham (1920), followed by most recent authors including Stephenson 
(1997, pp. 364–364) and Steele (2000, pp. 103–104), accepted the Basel edition without 
question, and noted that Theon’s eclipse times seem to be in error by about half an hour. 
Rome (1950), however, has convincingly demonstrated that the Basel edition is in error 
and that the times must be in seasonal hours, for only then is there the agreement between 
Ptolemy and observation that Theon claims. It appears that Dunthorne must have come to 
the same conclusion.  

(vi) The lunar eclipses recorded by Ptolemy in the Almagest. Dunthorne uses three of 
these eclipses to clearly demonstrate the presence of the secular acceleration of the Moon, 
and to estimate it to be equal to about 10″ per century. 

Dunthorne’s analysis of the lunar eclipses is fairly straightforward. He simply 
calculated the time of mid-eclipse using his corrected tables and compares this 
with the time of mid-eclipse derived from the report of the observation. The dif-
ference in time can then be converted easily into a difference in lunar longitude, 
and an estimate of the secular acceleration made. For the solar eclipses, however, 
Dunthorne knew that this simple method would not work due to the small size of 
the solar eclipse shadow. Therefore he devised a geometrical analysis that allowed 
him to derive the difference in longitude between the Sun and Moon at the mo-
ment of the eclipse maximum, which he can then compare against the same quan-
tity calculated from his tables. 

In attempting to quantify the magnitude of the secular acceleration, Dunthorne 
restricts himself to three solar eclipses (two observed by Ibn Yūnus and the one 
seen by Theon of Alexandria) and three of the Almagest lunar eclipses. He dis-
cusses the solar eclipses first. These eclipses, Dunthorne notes, are very valuable 
for his study because they were observed in locations, Cairo and Alexandria, 
whose geographical latitudes and longitudes have been precisely determined by 
M. Chazelles of the French Académie Royale des Sciences, whereas the geo-
graphical coordinates of the site of al-Battānī’s observations, for example, are not 
accurately known. Dunthorne finds that the longitude correction needed for the 
two eclipses observed by Ibn Yūnus in Cairo is +8′ 45″ for the eclipse of 8 June 
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978 and +7′ 36″ for the eclipse of 12 December 977. For Theon’s eclipse, Dunthorne 
finds a correction of –4′ 16″ is needed. 

Dunthorne now turns to the eclipses reported in Ptolemy’s Almagest. Being much 
earlier in date than the other eclipses available to Dunthorne, and hence affected to a 
greater extent by any secular acceleration of the Moon, these eclipses are potentially 
of great importance for Dunthorne’s study. However, as Dunthorne notes: 

The Eclipses recorded by Ptolemy in his Almagest, are most of them so loosely described, 
that, if they shew us the Moon’s mean Motion has been accelerated in the long Interval of 
Time since they happened, they are wholly incapable of shewing us, how much that 
Acceleration has been. 

Dunthorne’s conclusion that most of the Almagest eclipses are too imprecise to 
be of use in studying the long-term behaviour of the Moon has been borne out by 
recent studies (e.g. Steele 2000, pp. 91–103). However, Dunthorne rightly notes 
that three of the eclipses in the Almagest clearly prove the existence of the secular 
acceleration and provide critical constraints upon its magnitude. 

The first of the Almagest eclipses discussed by Dunthorne is the eclipse ob-
served in Babylon in the 366th year of Nabonassar. The Julian date of this eclipse 
is given in the paper as 22 December 313 B.C., instead of 22 December 383 B.C. 
This is not a mistake by Dunthorne (as assumed by Mercier 1994, p. 198), but 
simply a misprint (Britton 1992, p. 62). Full Moon in December 313 B.C. took 
place on the 28th, not the 22nd, thus Dunthorne could not have calculated the cir-
cumstances of an eclipse on 22 December 313 B.C. Furthermore, Dunthorne’s 
calculated circumstances for the eclipse are what we would expect for the correct 
date. 

Dunthorne realised that the eclipse of 22 December 383 B.C. was critical be-
cause the eclipse began just half an hour before sunrise and the Moon set eclipsed. 
Using his tables, however, Dunthorne computed that the Moon would have set 
more than an hour before the beginning of the eclipse. The visibility of the eclipse 
alone indicated the existence of the secular acceleration of the Moon. Dunthorne 
estimated that the Moon’s longitude at the time of the eclipse was about 40′ or 50′ 
in advance of that given by his tables. 

Dunthorne next discusses the eclipse observed in Alexandria on 22 September 
201 B.C. From his tables, Dunthorne computed that the beginning of the eclipse 
was at 6 h 12 min after midnight, or about 10 min after the rising of the Moon. 
However, according to the account in the Almagest the eclipse began half an hour 
before the Moon rose. A correction to the calculated time of at least 10 min is 
needed in order that the Moon rose eclipsed, and 40 min for the beginning of the 
eclipse to agree with the estimated time given in the Almagest report. Dunthorne 
converts this difference in time into a difference in longitude of near 20′. 

Finally, Dunthorne discusses the most ancient eclipse in the Almagest, ob-
served in Babylon on 19 March 721 B.C. Comparing the computed time from his 
tables with the observational report, and ensuring that the eclipse began after the 
Moon rose, Dunthorne concludes that the correction in longitude at this epoch 
could be no more than about 50′. 
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Dunthorne’s treatment of the Almagest eclipses demonstrates his ingenuity in 
this new field. He was aware that the eclipse reports were often vague, and the 
timings could be inaccurate, but realised that for certain eclipses the fact that the 
eclipse was visible at all demonstrated the presence of a secular acceleration of the 
Moon, and even allowed estimates of its magnitude. This approach is still one of the 
tools applied in using historical eclipse records in investigating the long-term 
changes in the Earth’s rate of rotation (e.g. Stephenson 1997, pp. 76–79 and 86–89). 

The importance Dunthorne places on the eclipse seen in Babylon on the night 
of the 22/23 December 383 B.C. is illustrative of Dunthorne’s approach. This 
eclipse required a large secular acceleration in order to make the eclipse visible at 
all. Later investigators such as E. Hartwig in 1860 remarked that the secular accel-
eration of the Moon implied by this eclipse was incompatible to that derived from 
the timings of other eclipses reported in the Almagest. Simon Newcomb, who un-
dertook an extremely detailed investigation of the secular acceleration in 1878, ar-
gued that the eclipse had been falsely recorded. Subsequently, Theodore von 
Oppolzer (1881) and E. Nevill (1906) suggested that the eclipse was seen in Ath-
ens, not Babylon, but there is no evidence in support of this interpretation (van der 
Waerden 1958b). More recently, this eclipse was claimed by R. R. Newton (1977) 
to have been faked by Ptolemy. However, recently a Babylonian account of the 
eclipse has come to light (Hunger 2001, No. 10). Although badly damaged this 
fragment does indicate that the eclipse was indeed seen in Babylon (Steele 2005). 
This would seem to vindicate Dunthorne’s choice to rely on a few critical eclipses 
reports in the Almagest where the Moon rose or set eclipsed, rather than a larger 
number of imprecise and inaccurate timed reports. 

One problem Dunthorne faced in his analysis of the eclipses that had been seen 
in Babylon was uncertainty of the geographical location of the city. Although 
Dunthorne could utilize Chazelles’ recent measurements of the latitude and longi-
tude of Alexandria, he had to rely on Ptolemy’s statement that Babylon was 50′ in 
time to the east of Alexandria, or only 12.5° of longitude; the true longitude dif-
ference is about 14.5° or 58′ of time. Since Dunthorne only uses the timings of the 
Babylon eclipses to make a rough estimate of the magnitude of the secular accel-
eration, however, the error in his assumed geographical longitude of Babylon was 
not too significant. 

At the end of his 1749 paper Dunthorne presents a table of longitude correc-
tions to be applied to his lunar tables at one hundred year intervals, and an esti-
mate of the value of the secular acceleration as 10″ per century. As Dunthorne 
notes, the aggregate longitude correction increases as the square of the time. Since 
the solar eclipses observed by Ibn Yūnus in A.D. 997 and 998 required a positive 
correction to the longitude, and that observed by Theon in A.D. 364 required a 
negative correction, Dunthorne estimates that the correction must be zero in about 
A.D. 700 (note this is not the time of Ibn Yūnus as remarked by Mercier 1994, p. 
198). 

Dunthorne’s analysis of historical eclipse records was one of the most signifi-
cant contributions to the development of lunar theory in the eighteenth century. He 



210  J.M. Steele 

provided the first proof of the existence of the secular acceleration of the Moon 
and an estimate of its magnitude that turned out to be more or less correct. Dun-
thorne never returned to the question of the secular acceleration. However, his 
subsequent astronomical papers published in the Philosophical Transactions, an 
analysis of a set of medieval cometary observations in the hope of identifying a 
short period comets whose return could be predicted and the derivation of new 
elements for planetary tables, continued his interest in the development of accurate 
astronomical tables and the study of early astronomical records. Following the 
death of his mentor Roger Long in 1770, Dunthorne wrote the final parts of 
Long’s Astronomy in Five Books. Dunthorne died on 3 March 1775 and was bur-
ied at St Benedict’s Church in Cambridge. 

Tobias Mayer 

Tobias Mayer was born in the small town of Marbach near Stuttgart on 17 Febru-
ary 1723 (for detailed biographical studies, see Forbes 1967 and 1980). More or 
less self-taught in mathematics, Mayer published his first work, a study of analytic 
geometry, shortly after his eighteenth birthday. His productive career, cut short by 
his untimely death in 1762 at the age of thirty-nine, encompassed studies on geog-
raphy and map-making, the science of artillery, the theory of the magnet, the sci-
ence of colour, and astronomy. His astronomical works included the development 
of new techniques of stellar observation, making a map of the Moon, and the con-
struction of lunar tables. Mayer’s lunar tables were significantly more accurate 
than other tables available at the time and were submitted by Mayer to the British 
Board of Longitude as being suitable for allowing the determination of longitude 
at sea. Mayer’s widow would eventually be awarded the sum of £3000 in recogni-
tion of his work (Forbes 1966). 

Mayer’s first lunar tables, published with the title “Novae Tabulae Motuum 
Solis et Lunae” in the Commentarii Societatis Regiae Scientiarum Gottingensis in 
1753, are the first set of tables to include a table for the correction of the mean 
longitude of the Moon to take into account the secular acceleration of the Moon. 
Whereas Dunthorne’s table of corrections to his lunar tables was constructed sev-
eral years after he had published his tables, for Mayer, the secular acceleration 
was integral to the formation of the tables. Mayer remarked in the introduction to 
the tables that he has examined the ancient eclipses from Babylon and those ob-
served by Hipparchus and Ptolemy, as well as the eclipse observations by Ibn 
Yūnus and al-Battānī’s in order to determine the secular acceleration, and also 
tested his tables against the more recent observations by Tycho, Walther and 
Regiomontanus. 

Mayer’s table to correct the mean longitude of the Moon to take into account 
the secular acceleration of the Moon gives values of this correction in degrees, 
minutes and seconds at hundred year intervals between 800 B.C. and A.D. 2000. 
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Mayer takes the year A.D. 1700 as his epoch and the corrections are a straightfor-
ward parabolic function of time. The table as published contains a typographical 
error in the entry for A.D. 100, giving the correction as 0º 38′ 35″ instead of 0º 28′ 
35″. The error is easily seen by inspecting the table and does not appear in the 
draft of the table found in his manuscript notes held at Göttingen University 
Library (Mayer 1541, fol. 167 recto). 

Mayer’s table is constructed on the basis of a secular acceleration of 6.7″ per 
century, a value considerably lower than Dunthorne had estimated. Mayer gives 
no details of how he has obtained this value for the secular acceleration in his pa-
per, but his reference to examining the eclipses reported by Ptolemy, Ibn Yūnus 
and al-Battānī indicates that Mayer derived his value from the same body of ob-
servations a Dunthorne had used. However, Mayer’s manuscript notes (Mayer 
1541, fol. 156 verso) indicate that he was mistrustful of Ptolemy’s account of the 
eclipse of 22/23 December 383 B.C., which as we have seen was crucial for Dun-
thorne’s analysis. Mayer remarks that the account of this eclipse should be exam-
ined in detail, especially its duration, which is crucial for whether the eclipse 
could have been seen before the Moon set. However, Mayer does not appear to 
have returned to this eclipse, and does not include it in the list of Ptolemy’s 
eclipses that he has analysed on Mayer 1541, fol. 163 verso where he concluded 
that the secular acceleration is 6″ 50″ per century. 

Mayer was clearly suspicious of Ptolemy’s accounts of ancient observations. 
His manuscript notes frequently refer to Bullialdus’s Astronomia philolaica, 
which had pointed to problems in Ptolemy’s reporting. In his introduction to his 
published tables Mayer remarks there are good reasons to suppose that Ptolemy al-
tered the time of some of the eclipses he reported in order to achieve agreement 
with his own numbers, and refers to Bullialdus’s book for examples of these. 
Mayer was equally suspicious of Ptolemy’s accounts of equinox observations. In a 
letter sent to Leonhard Euler on 22 August 1753, Mayer remarked 

It can be that Ptolemy perceived this error of his solar tables in his observations of the 
equinoxes, which are the very last of all his remaining observations; only, because he had 
already built his whole system upon it, perhaps he rather wanted to discard his observa-
tions than to attempt to revise his system from the outset. Since, however, no one could 
object to it, he pretended that the erroneous equinoxes of his tables were true and ob-
served. There are more and newer examples of an astronomer, from too great a love for 
his constructions, falsifying observations. This is certain at least in Lansberg and Riccioli. 
How much more simply could not Ptolemy, who perhaps did not imagine that one would 
ever be able to disclose his deception through more accurate observations, have fallen into 
error. (Forbes 1971, p. 75) 

Mayer made similar remarks about Ptolemy’s reporting of these observations in 
paragraphs 26–33 of his unpublished Vorlesungen über Sternkunde (Forbes 1972, 
pp. 83–86), albeit without the reference to Lansberg and Riccioli. With this in mind, 
Mayer expressed the hope that users of his tables will not object that calculations of 
the times of one or two of the eclipses reported by Ptolemy are off by more than 
half and hour. 
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In analysing the eclipses reported by Ptolemy to have been observed in Babylon, 
Mayer’s notes reveal that he took Babylon to be at a latitude of 32° 30′ north and a 
longitude 2 h 46′ east of the Paris meridian. In his analysis of the eclipses seen at 
Alexandria, Mayer took the longitude difference between Paris and Alexandria to be 
1 h 52′. This implies a difference in longitude between Alexandria and Babylon of 
54 min, somewhat above Ptolemy’s estimate of 50 min. Mayer gives no indication 
as to how he has obtained these co-ordinates, which are considerably more accurate 
than those adopted by either Dunthorne or Lalande (modern determinations place 
Babylon at a latitude of about 32° 33′ north and a longitude about 2 h 48′ to the east 
of Paris). 

Although Mayer tested his table for the secular acceleration using the eclipses 
from Ptolemy’s Almagest, he appears to have relied predominantly on the reports 
of the observations by Ibn Yūnus of two solar eclipses found in Curtius’ Prole-
gomena in deducing the magnitude of the secular acceleration. 

In early 1754 Mayer received from Euler copies of letters sent by the Jesuit 
Father Antoine Gaubil in Beijing concerning supposed references to solar eclipses 
in two ancient Chinese books: the Shujing 書經 and the Zhoushu 周書. Gaubil 
believed that the eclipse described in the Zhoushu must have taken place in 2128 
B.C., but Mayer wrote back to Euler on 6 March 1754: 

I return my most sincere thanks for the communication of the letter of P. Gaubil; as soon 
as I have studied it with proper attention, I shall sent it back to you. Meanwhile, I can state 
so much, that according to my tables the solar eclipse of the year 2128 B.C. was invisible 
in the whole of China. The Chinese reports seem to me very suspect, or at least to require 
severe criticism. (Forbes 1971, pp. 84–85) 

Mayer discussed these eclipses further in paragraphs 54–55 of his unpublished 
Vorlesungen über Sternkunde (Forbes 1972, pp. 96–97), showing remarkable cau-
tion. The great antiquity of these eclipses, if they could be confidently identified, 
would have provided important constraints on the magnitude of the secular accel-
eration, and it is to Mayer’s credit that he did attempt to use them for this purpose. 

Following the publication of his first lunar tables, Mayer frequently returned to 
the problem of the lunar theory (Wepster 2007). By the time of his final tables, 
published following his death by Nevil Maskelyne in both Latin and English, and 
which were used in computing the solar and lunar ephemerides for the Nautical 
Almanac, Mayer had revised the magnitude of the secular acceleration of the 
Moon to 9″ per century. 

Joseph-Jérôme Lalande 

Joseph-Jérôme Lalande was born on 11 July 1732 at Bourg-en-Bresse in France. 
The son of the director of the town’s post office and tobacco warehouse, Lalande 
was first educated at the Jesuit Collège de Lyon before moving to Paris to study 
law. Whilst in Paris, Lalande also attended lectures by Joseph-Nicholas Delisle, 
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and in time helped Delisle at his observatory. In 1751, Lalande travelled to Berlin 
to undertake measurements of the lunar parallax, and while there was welcomed into 
the Prussian Academy where he met Euler, Maupertuis and other mathematicians. 
Returning to Paris, Lalande was elected to the Paris Academy. In an eventful life, 
Lalande later became editor of the Connaissance des temps and in 1760 succeeded 
Delisle as astronomy professor at the Collège Royal. He died in 1807. 

Lalande’s 1757 paper on the secular acceleration of the Sun, Moon and outer 
planets brought to an end the search for an observationally derived value for the 
Moon’s secular acceleration for the next hundred years or so. Lalande’s paper, en-
titled “Mémoire sur les Équations Séculaires” and published in the Mémoires de 
l’Académie Royale des Sciences, reviewed the earlier studies of Dunthorne and 
Mayer into the Moon’s secular acceleration and then proposed a value of 10″ per 
century for this acceleration. Lalande’s value was widely accepted and became the 
standard used in almost all theoretical investigations of the secular acceleration 
until at least the mid-nineteenth century. 

Lalande begins his discussion of the Moon’s secular acceleration by reviewing 
Halley’s discovery of the phenomenon and its investigation by Dunthorne and 
Mayer. In Lalande’s opinion the two most important eclipse observations for the 
investigation of the Moon’s secular acceleration are the two solar eclipses ob-
served by Ibn Yūnus. Dunthorne and Mayer had known these eclipses from trans-
lations by Wilhelm Schickhard quoted in Curtius’ introduction to his Historia 
Coelestis. Schickhard had translated these observations from a copy of a manu-
script of Ibn Yūnus’s zīj in the possession of Golius in Leiden (Mercier 1994, p. 
197). According to Lalande, Delisle had obtained a copy of this manuscript from a 
M. Luloss, correspondent of the Leiden Academy, and they were hoping to have 
the work translated as it was known to contain further observations, though this 
does not seem to have happened. 

The two solar eclipses observed by Ibn Yūnus were considered particularly im-
portant by Lalande because the altitude of the Sun at the beginning and end of the 
eclipses had been carefully observed. Lalande converts these altitudes into local 
times obtaining almost identical results to Dunthorne. Comparing the longitude of 
the Moon deduced from these eclipses with Clairaut’s tables, Lalande finds clear 
evidence that there exists a secular acceleration and estimates its magnitude. 

Lalande was wary of Ptolemy’s accounts of these eclipses, remarking that “the 
observations which have passed through the hands of Ptolemy are suspect”. How-
ever, the discrepancies between the times of the eclipses given by Ptolemy and 
Clairaut’s tables are too great to be caused by Ptolemy’s adjustments and so pro-
vide further evidence of a secular acceleration of the Moon, even though the size 
of this acceleration deduced from these eclipses often disagree with one another. 
Lalande discusses the most ancient eclipse reported by Ptolemy, since the affect of 
the secular acceleration will be greatest for this eclipse, and so adjustment to the 
details of the observation by Ptolemy will be less significant. 

Ptolemy’s report of the observation of the eclipse of 19 March 721 B.C. in 
Babylon gives the time of the eclipse in seasonal hours. In order to concert this 
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time into equinoctial hours, it is necessary to know the latitude of Babylon. Using 
the map of Delisle, Lalande estimates that Babylon must be at a latitude of about 
32 2/3° North. However, Lalande suspects that Babylon must have been further 
north than this. The eclipse of 22 December 383 B.C. took place very close to the 
time of the solstice, and Ptolemy’s report indicates that the Sun rose at 4 h 48′. 
Correcting for refraction, Lalande deduces that the latitude of Babylon is 36° 10′. 
In order to bring the latitude down to even 33½°, Lalande notes that it would be 
necessary to suppose that Ptolemy gave the length of day wrong by one-quarter of 
an hour, or that the obliquity of the ecliptic was 24°, neither of which seem likely. 
In truth, the latitude of the site of Babylon is close to 32½°, very close to what La-
lande had estimated from Delisle’s map. It is worth remarking here that Lalande 
gives the incorrect date for the eclipse of 22 December 383 B.C., wrongly taking 
the year as 313 B.C. Although this had negligible affect on his use of the record to 
deduce the latitude of Babylon, it is interesting that Lalande make this mistake, 
especially as in Dunthorne’s paper this appears as a typographical error. Does this 
suggest that Lalande relied predominantly on Dunthorne for his information on the 
eclipses in Ptolemy’s Almagest? It is perhaps significant that the eclipse of 721 
B.C. analysed by Lalande was one of the three eclipses from Ptolemy that Dun-
thorne reported in his paper. 

Returning to the analysis of the eclipse of 721 B.C., Lalande derives the time of 
the eclipse at Paris by converting to equinoctial hours and correcting for the equa-
tion of time. He takes the difference in longitude between Babylon and Paris to be 
2 h 32′, probably on the basis of Delisle’s map; the true longitude difference is 
about 2 h 48′. Using Clairaut’s lunar tables, Lalande calculates that the longitude 
of the Moon implied by the observation is too great by 1° 27′, strong evidence for 
the existence of a secular acceleration. The magnitude of the acceleration implied 
by this eclipse, not given by Lalande, would be just a fraction under 9″ per century 

Lalande concludes his study of the secular acceleration of the Moon by propos-
ing a value of 10″ per century, the same as Dunthorne. Lalande deduces his value 
from the two eclipses observation by Ibn Yūnus, and then tests that value against 
the eclipse of Theon of Alexandria. Again, it appears that Lalande simply takes 
the times of this eclipse from Dunthorne as he gives the times in equinoctial hours, 
without reporting the times as recorded by Theon. 

Aftermath 

Dunthorne’s proof of the existence of a secular acceleration of the Moon was 
quickly accepted by a wide variety of scholars. Within three years of the publica-
tion of Dunthorne’s paper, the secular acceleration was mentioned in a letter by 
the Rev. Mr George Costard, Fellow of Wadham College, Oxford concerning the 
date of the eclipse of Thales, published in the Philosophical Transactions of 1753. 
Costard was using Halley’s tables in order to calculate the circumstances of solar 
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eclipses visible in Asia Minor and claimed that the eclipse of 603 B.C. was the 
one predicted by Thales. Costard writes: 

You will see, Sir, how this agrees with what is said in the Petersburg Acts, pag. 332, 
which, therefore, I shall not transcribe. I shall only add, that, if any allowance is to be 
made for the moon’s acceleration, or any other cause, the track here given, as you know, 
will be a little different. 

In a later paper (Costard 1753b) concerning an eclipse described by Xenophon, 
Costard again refers to the Moon’s acceleration. 

Following Lalande’s confirmation of Dunthorne’s value for the magnitude of 
the Moon’s secular acceleration attention shifted away from attempts to investi-
gate the secular acceleration using ancient observations towards constructing a 
theoretical model that accounted for the phenomenon. After unsuccessful attempts 
by Lagrange, Bernoulli and others, in which the reliability of Ptolemy’s reports 
was frequently questioned, in 1786 Laplace eventually showed that a slow varia-
tion in the eccentricity of the Earth’s orbit would produce such an acceleration and 
his predicted magnitude (11.135″ per century, later reduced to 10.18″ per century) 
agreed well enough with the 10″ per century found by Dunthorne and Lalande 
(Britton 1992, p. 157). Thus the matter rested until the middle of the nineteenth 
century when Adams and Delauney both pointed out an error in Laplace’s deter-
mination which took the theoretical value down to about 6″ per century. There fol-
lowed an intense and at times bitter dispute between Delauney and Leverrier, 
Pontécoulant and others (Kushner 1989), eventually resolved with the realisation 
that tidal retardation was responsible for the remainder of the observed accelera-
tion (Stephenson 1997, pp. 10–14). 
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