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Abstract. After providing a concise overview on quasicrystals and their discovery more 
than a quarter of a century ago, I consider the unexpected interplay between nano-
technology and quasiperiodic crystals. Of particular relevance are efforts to fabricate 
artificial functional micro- or nanostructures, as well as efforts to control the self-
assembly of nanostructures, where current knowledge about the possibility of having 
long-range order without periodicity can provide significant advantages. I discuss 
examples of systems ranging from artificial metamaterials for photonic applications, 
through self-assembled soft matter, to surface waves and optically-induced nonlinear 
photonic quasicrystals. 
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1. Nanotechnology and Quasicrystals? 

When organizers of the NATO Advanced Research Workshop on nanotechnology, held 
in St. Petersburg in June 2008, asked me to deliver a keynote lecture on quasicrystals I 
was certain that they had made a mistake. I have been studying quasicrystals for over 15 
years and investigating nanomechanical systems for just about a decade, and although 
one always finds connections between different scientific fields, I had never expected 
such an invitation. Nevertheless, the organizers insisted and explained that they wanted 
to learn about the possibility of exploiting nontrivial symmetries – perhaps imitating 
what viruses do – and in general, learn the lesson of a scientific community that was 
forced by nature to keep an open mind and “think outside of the box”. 

This chapter is motivated by my presentation on quasicrystals at the NATO ARW on 
nanotechnology in St. Petersburg. I begin in Sec. 2 by describing the discovery of 
quasicrystals and the scientific revolution that followed. I argue that now that the 
surprise has long subsided, and we are well aware of the possibility for having long-range 
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order without periodicity, we are equipped with much knowledge that can be adopted in 
other fields – possibly nanotechnology. Particularly relevant are efforts to fabricate 
artificial functional micro- or nanostructures, as well as efforts to control the self-
assembly of nanostructures. I give an elementary introduction to quasicrystals in Sec. 3. 
I then continue in Sec. 4 with an overview on the use of quasicrystalline structures in 
artificial metamaterials for photonic applications, and proceed in Sec. 5 to give a 
description of our current studies of the self-assembly of soft matter, namely micelle-
forming dendrimers and polymeric stars, into quasicrystals. I make an interlude in Sec. 
6 to an even softer system – parametrically-excited surface waves in fluids – that 
spontaneously forms quasicrystalline patterns. I finish in Sec. 8 by mentioning some 
dynamical properties of quasicrystals that might be more easily investigated in soft-
matter quasicrystals than in solid-state quasicrystals, introducing yet another physical 
system, that of optically-induced nonlinear photonic quasicrystals, which we have been 
using to study quasicrystals.  

2. The Discovery of Quasicrystals as a Modern-Day 

2.1. SCIENTIFIC REVOLUTION 

For almost two millennia crystallography was predominantly concerned with the 
external morphology of crystals. Crystallographers studied the naturally-occurring 
facets of crystals, which always intersect at precise and characteristic angles. It was only 
in the 17th century that modern crystallography was born, thanks to the brilliant idea – 
attributed to such great scientists as Kepler and Hooke – that crystal shapes were the 
result of internal order of “atomic” units. In his study of tilings of the plane by 
polygons, Kepler [1] was quick to realize that very few regular polygons – namely the 
triangle, the square, and the hexagon – can tile the plane without introducing overlaps or 
leaving holes. Yet, this observation did not deter him from constructing a well-ordered 
tiling of the plane, consisting of pentagons and decagons that requires some of the 
decagons to overlap, and leaves holes in the form of 5-fold stars – a tiling that was to be 
rediscovered by Penrose more than 350 years later [2, 3]. Without realizing it, Kepler 
had discovered some of the basic properties of aperiodic order, commenting in his own 
words that “The structure is very elaborate and intricate.”  

Unfortunately, by the end of the 18th century, when Haüy began formulating the 
mathematical theory of crystallography [4], Kepler’s insightful drawings of aperiodic 
tilings with decagonal symmetry were long forgotten. Consequently, mathematical 
crystallography was founded upon the premise that the internal order of crystals was 
necessarily achieved through a periodic filling of space. Thus, crystallography treated 
order and periodicity synonymously, using either property interchangeably to define the 
notion of a crystal. The periodic nature of crystals was “confirmed” with the discovery 
of x-ray crystallography and numerous other experimental techniques throughout the 
20th century. As they are more “elaborate and intricate” and less commonly found in 
Nature, aperiodic crystals were completely overlooked. Periodicity became the underlying 
paradigm, not only for crystallography itself, but also for other disciplines such as 
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materials science, solid state chemistry, and condensed matter physics, whose most 
basic experimental and theoretical tools rely on its existence. 

This historical oversight was corrected with Shechtman’s discovery of quasicrystals 
in 1982 – a discovery that sparked a bona fide Kuhnian scientific revolution [5], as 
described by Cahn [6], one of the co-authors of the announcement of the discovery, 
which appeared only 2 years later in 1984 [7]. In the famous Hargittai interviews [8] 
with all the scientists involved in the initial study of quasicrystals, Mackay is quoted as 
saying that 

It’s a discovery of a material which breaks the laws that were artificially constructed. They were 
not laws of nature; they were laws of the human classificatory system. 

Nature had found a way of achieving order without periodicity, and Shechtman was 
the first to pay attention to it, and not to dismiss it as an experimental artifact, as many 
must have done before him. He confronted a skeptical scientific community that was 
unwilling to relinquish its most basic paradigm that order stems from periodicity. His 
biggest challenger was Pauling, one of the greatest chemists of the 20th century and a 
leading crystallographer of that time. In a remarkable article, suggesting an alternative 
description of Shechtman’s icosahedral quasicrystal as multiple twinning of periodic 
cubic crystals – a description that not much later was shown to be incorrect [9] – 
Pauling [10] concluded by saying that 

Crystallographers can now cease to worry that the validity of one of the accepted bases of their 
science has been questioned. 

Today, thousands of diffraction diagrams later, compounded by high-quality experi-
mental data – such as images from high-resolution transmission electron microscopes 
and atomic-resolution scanning tunneling microscopes – the existence of order without 
periodicity has been unequivocally established. Not only has the periodicity paradigm 
been questioned, as Pauling worried, it has been completely shattered. By 1992, only a 
decade after the discovery, the International Union of Crystallography, through its 
Commission on Aperiodic Crystals [11], was ready to publish a provisional definition of 
the term crystal that abolishes periodicity, and implies that order should be its replace-
ment. The commission was not ready to give precise microscopic descriptions of all the 
ways in which order can be achieved. Clearly, periodicity is one way of achieving order, 
quasiperiodicity as in the Penrose–Kepler tiling is another, but the committee was 
uncertain whether there were other ways that were yet to be discovered. The Commission 
opted to shift the definition from a microscopic description of the crystal to a property 
of the data collected in a diffraction experiment. It decided on a temporary working-
definition whereby a crystal is 

any solid having an essentially discrete diffraction diagram. 

Thus, crystals that are periodic are now explicitly called periodic crystals, all others 
are called aperiodic crystals. 

The 1992 definition is consistent with the notion of long-range order – one of the 
basic notions of condensed-matter physics [12, 13] – dating back to ideas of Landau in 
which the symmetry-breaking transition from a disordered (high-symmetry) phase to an 
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ordered (low-symmetry) phase is quantified by the appearance of a non-zero order 
parameter – in this case, the appearance of Bragg peaks in the Fourier spectrum. Stated 
in plain words, long-range order – or in the context of our current discussion, long-range 
positional order – is a measure of the correlations between the positions of atoms in 
distant regions of the material. 

The 1992 definition was left sufficiently vague so as not to impose unnecessary 
constraints on any further study of crystallinity. Indeed, the discovery inspired a 
renaissance in crystallography, and has made a great impact on mathematics [14], as can 
be seen by an ever increasing number of books [15–18]. Much effort has been invested 
in studying the characteristics of order, as well as in the development of diffraction 
theory [19–21], once it was realized that periodicity was not a necessary condition for 
order and for the appearance of Bragg peaks in a diffraction spectrum. In particular, 
Baake and several co-workers [22–26] have performed a systematic study whose 
purpose is to characterize which distributions of matter diffract to produce a pure point 
component in their spectrum, and thus can qualify as possessing long-range order. 
Sufficient progress has already been made, that we are now ready to complete the 
paradigm shift and adopt a permanent definition of crystal that is firmly based on the 
notion of order [27]. 

In October 2007 the quasicrystal community – consisting of mathematicians, physicists, 
chemists, materials scientists, surface scientists, and even photonics engineers – celebrated 
the 25th anniversary of the discovery in a “Silver Jubilee” conference [28]. Today, the 
science of quasicrystals, with its growing number of textbooks [15–18, 29–33], is a 
mature science. Old paradigms have been carefully transformed into new ones [34]; 
definitions have been changed [35]; space-group theory has been generalized to 
quasicrystals using two alternative approaches [36–39], and even extended to treat novel 
long-range order possessing color [40] or magnetic symmetry [41, 42]); and many 
fundamental problems – including Bak’s famous question: “Where are the atoms?” [43] – 
are finding their solutions [44, 45]. Nevertheless, other important questions have remained 
unanswered to this day. Many of these – such as the electronic and other physical properties 
of quasicrystals [46], the surface science of quasicrystals [47], and the importance of the 
phason degree of freedom [48] – were hotly debated at the “Silver Jubilee” conference 
[28], and continue to drive us forward. One particularly interesting set of questions, and 
the focus of this chapter, deals with metamaterials and soft-matter quasicrystals – the 
newly added members of the quasicrystal family. 

We know today that quasicrystals are more common than one had originally expected. 
Scores, or even hundreds, of binary and ternary metallic alloys are known to form 
quasicrystalline phases [49] – mostly with icosahedral or decagonal point-group 
symmetry – and more are continuously being discovered. Nevertheless, it is only in the 
last few years that quasicrystals have been discovered (independently) in two different 
soft-matter systems: micelle-forming dendrimers [50–52] and three-armed star block 
copolymers [53–55]. These newly discovered soft quasicrystals not only provide 
exciting alternative experimental platforms for the basic study of quasiperiodic long-
range order, but also hold the promise for new applications based on self-assembled 
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nanomaterials [56–58], with unique electronic or photonic properties that take advantage of 
the quasiperiodicity, which is relevant to our focus here. 

The current emphasis in the study of soft-matter quasicrystals is to find an explanation 
for their thermodynamic stability, and thus learn how to control their self-assembly. To 
this date, soft quasicrystals have been observed only with dodecagonal point-group 
symmetry. Their source of stability is therefore likely to be different from their solid-
state siblings, yet a good understanding of the stability of one quasiperiodic system may 
help to understand the stability of the other. In what follows I shall review our initial 
understanding of what might be the source of stability of soft quasicrystals, while 
providing a concise background on the subject. I will try to emphasize the important 
relations between the variety of different physical and chemical systems that form 
quasicrystalline phases – atomic quasicrystals, soft quasicrystals, surface waves, and 
also artificially-produced structures and metamaterials. 

3. Quasicrystals – Terminology and General Framework 

Let us consider a scalar function ρ(r) that describes the electronic density or the ionic 
potential of a material. The Fourier transform of a quasiperiodic density ρ(r) has the 
form 

                                                       ( ) ( ) i

L
e ⋅

∈

= ,∑ k r

k
r kρ ρ              (1) 

where the (reciprocal) lattice L is a finitely generated Z -module, i.e. it can be expressed 
as the set of all integral linear combinations of a finite number D of d-dimensional wave 
vectors, b(1), …, b(D). In the special case where D, called the rank of the crystal, is equal 
to the physical dimension d, the crystal is periodic. We refer to all quasiperiodic crystals 
that are not periodic as “quasicrystals”.1 This term was first coined by Levine and 
Steinhardt [59, 60] in the first of a series of important theoretical papers that were 
published in the 1980s. 

It is useful to introduce a physical setting based on the notion of symmetry breaking 
that was mentioned earlier [12, 13, 62]. Let us assume that the quasiperiodically-ordered 
state, described by ρ(r), is a symmetry-broken stable ground state of some generic free 
energy F, invariant under all translations and rotations in dR . This is the same as saying 
that the physical interactions giving rise to the quasicrystal are themselves translationally 
and rotationally invariant, and that the ground state breaks this symmetry. The free 
energy F is a functional of ρ(r), which in Fourier space takes the general form 

______ 
1 Some older texts require crystals to possess so-called “forbidden symmetries” in order to be 

regarded as quasicrystals. It is now understood that such a requirement is inappropriate. See Ref. 
[35] for details, and Ref. [61] for examples of square and cubic quasicrystals. 
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Based on the idea of such a generic free energy, Rokhsar, Wright, and Mermin [36] 
introduced the notion of indistinguishability, namely that two functions ρ(r) and ρ'(r) 
are indistinguishable if a generic free energy cannot distinguish between them and 
assigns them both the same value. It then follows [36–38] that ρ(r) and ρ'(r) are 
indistinguishable if and only if 

                                                       2 ( )( ) ( )iL e′∀ ∈ : = ,kk k kπ χρ ρ              (3) 

where χ(k), called a gauge function, has the property that 1 2 1 2( ) ( ) ( )+ ≡ +k k k kχ χ χ  
whenever k1 and k2 are in L, where ‘≡ ’ denotes equality to within an additive integer. 

Gauge functions are useful in describing the relations between the different 
symmetry-broken ground states of F. Dräger and Mermin [63] showed that gauge 
functions form a vector space V* of all real-valued linear functions on the lattice L, and 
because L has rank D, V* is a D-dimensional vector space over the real numbers. The 
space V* contains, as a subspace, all the integral-valued linear functions on L. This 
subset, which has the algebraic structure of a rank-D Z -module (just like L itself) is 
denoted by L*. Gauge functions in L* leave the ground-state density invariant. Gauge 
functions that belong to the quotient space V*/L* take the ground state described by ρ 
into a different, yet indistinguishable, ground state described by some other density 
function ρ′. Thus, one can parameterize all the related symmetry-broken ground states of 
F on a simple D-torus – the order parameter space с. 

Different, yet indistinguishable, ground states may also be related by rotations 
( )g O d∈ . In this case ρ′ in (3) is simply a rotated version of ρ, and for each such 

rotation g there is a special gauge function ϕg, called a phase function, satisfying 

                                                2 ( )( ) ( )giL g e∀ ∈ : = .kk k kπ ϕρ ρ              (4) 

The set of all rotations satisfying (4) forms the point group of the crystal, and along 
with the corresponding phase functions completely characterizes its space group [36–38, 
40–42]. Unlike periodic crystals, quasicrystals are not restricted in the order of their 
rotational symmetry. The point-group condition (4) is applicable to operations of any 
order (as long as the rank of the crystal is finite). Thus, in general, g may be an n-fold 
rotation of any order n. 

4. Exploiting Quasicrystalline Order in Artificially Constructed 
Metamaterials 

Interesting applications are starting to emerge lately that take advantage of quasiperiodic 
long-range order in metamaterials, or artificially constructed quasicrystals [64]. Two 
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main features distinguish quasicrystals from periodic crystals in the practical sense of 
using them as metamaterials. The first and more obvious is the relaxation of any 
symmetry constraints. In dealing with quasicrystals for over a quarter of a century we 
have learned how to design structures with axes of symmetry of arbitrarily high order. 
Of course, as the order of symmetry increases, so does the rank of the crystal and 
therefore its complexity. Nevertheless, simple rank-4 2-dimensional structures already 
allow one to construct structures with axes of 5-fold, 8-fold, 10-fold, and 12-fold 
symmetry – a substantial improvement over the limited 2-fold, 3-fold, 4-fold, and 6-fold 
axes possible with periodic crystals. Most applications of quasicrysalline metamaterials 
to date are thus based on this notion. These are mostly linear photonic crystals, where 
quasiperiodic modulations of the index of refraction of different materials are used in 
order to engineer their optical response. These applications take advantage of the fact 
that there are no restrictions on the order of the rotational symmetry in order to obtain 
nearly-isotropic photonic band gaps [65, 66]. Dodecagonal (12-fold) quasicrystals are 
particularly useful as they are at the same time quite simple (the rank is only 4) yet the 
dodecagon is a far better approximation of a circle than the hexagon, which is the best 
one can achieve with periodic photonic crystals. Initial work is also carried out with 
phononic quasicrystals for controlling the propagation of sound waves [64]. 

The second feature of quasicrystals, useful for metamaterial applications, is the complete 
relaxation of any constraints on the positions of Bragg peaks in their diffraction 
diagrams. One may design quasiperiodic metamaterials in which the Bragg peaks are 
placed at predetermined positions in Fourier space. We have exploited this idea in the 
nonlinear optical domain [67–69], where recent technological progress has enabled to 
modulate the second-order nonlinear susceptibility with micron-scale resolution in 
various materials, such as ferroelectrics, semiconductors, and polymers. In these nonlinear 
photonic crystals the modulation can be achieved by planar techniques, thereby offering 
either one or two dimensions for modulation. Moreover, there are no photonic band 
gaps in these metamaterials, because the first-order susceptibility, and hence the 
refractive index, remain constant. We emphasize that the advantage of using quasicrystals 
in this case is not in their arbitrarily-high symmetry, but rather in the fact that there is no 
restriction on the combinations of wave vectors that may appear in their reciprocal 
lattices (provided that the symmetry of the quasicrystal is not of particular importance 
[38, 70]). 

The novel optical devices that we have been developing are based on materials that 
facilitate the nonlinear interaction between light waves in the form of three-wave 
mixing. These are processes in which two incoming waves of frequencies ω1 and ω2 
interact through the quadratic dielectric tensor χ(2) of the material to produce a third 
wave of frequency 3 1 2= ±ω ω ω ; or the opposite processes in which a single wave 
spontaneously breaks up into two. Three-wave mixing is severely constrained in 
dispersive materials, where ω (k) is not a linear function, because the interacting 
photons must also conserve their total momentum. Even the slightest wave-vector 
mismatch Δk = k1 ± k2 – k3 appears as an oscillating phase that averages out the 
outgoing wave, giving rise to the so-called “phase-matching problem.” We have 
explained how one could fully solve the most general phase-matching problem using 
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well-known ideas from the theory of quasicrystals [67]. The solution is based on the 
idea that in crystals, whether periodic or not, continuous translation symmetry is broken, 
as described above in Sec. 3. As a consequence, momentum conservation is replaced by 
the less-restrictive conservation law of crystal momentum whereby momentum need 
only be conserved to within a wave vector from the reciprocal lattice of the crystal. The 
fabrication of an efficient frequency-conversion device is therefore a matter of reciprocal-
lattice engineering – designing an artificial crystal, from the quadratic dielectric field of 
the material χ(2)(r), whose reciprocal lattice contains any desired set of mismatch wave 
vectors Δk(j), j = 1…N, required for phase matching any arbitrary combination of N 
three-wave mixing processes.  

The idea of using a 1-dimensional periodic modulation of the relevant component of 
the quadratic dielectric tensor, for the purpose of phase matching a single three-wave 
process, was suggested already in the early 1960s [71–73], and is termed “quasi-phase 
matching”. Since then this approach has been generalized using more elaborate 1-
dimensional [74–76] and 2-dimensional [77–80] designs, but only as ad hoc solutions 
for multiple processes. We have demonstrated that engineering the reciprocal lattice of a 
nonlinear photonic quasicrystal to contain any desired set of mismatch vectors – a task 
that 25 years of research in quasicrystals have taught us how to solve – provides the 
most general solution for the long-standing problem of multiple phase-matching [67]. 
We described elsewhere [68, 69] a number of novel optical devices that have actually 
been fabricated using these ideas, and tested experimentally. These devices attest to the 
general nature of the quasicrystal-based solution to the multiple phase-matching 
problem. 

5. Towards Self-Assembly of Quasicrystalline Nanostructures –  
The Recent Discovery of Soft-Matter Quasicrystals 

An important development accured recently with the experimental discovery that even 
soft matter can self-assemble into structures with quasiperiodic long-range order.2 In 
one case, dendrimers that assume a conical shape assemble into micelles, which then 
pack to form a perfect dodecagonal (12-fold) quasicrystal [50–52]. In another case, ABC 
star-shaped block terpolymers – in which the length ratios of the three arms, B/A and 
C/A, can be chemically-controlled – assemble into a host of 2-dimensional columnar 
structures, one of which is, again, a dodecagonal quasicrystal [53–55]. This phase has 
also been reproduced numerically using lattice Monte Carlo simulations [87]. A similar 
square-triangle tiling has also been observed in a liquid crystal composed of T-shaped 
molecules [88], which forms yet a third soft system which may potentially self-assemble 
into a dodecagonal quasicrystal. The characteristic length of the basic building blocks 

______ 
2 For the sake of historical accuracy, it should be noted that at some point the blue phase III of 

liquid crystals, also known as the “blue fog”, was thought to have icosahedral quasicrystalline 
order [81, 82], but this eventually turned out not to be the case [83, 84]. Also, incommensurate 
helical twist-grain-boundary phases are known to exist in smectic liquid crystals [85, 86], but the 
quasiperiodic order in this case is essentially only along the 1-dimensional screw axis. 
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ranges in these systems from about 10 to about 100 nm – 2 to 3 orders of magnitude 
greater than the atomic length scales found in solid-state quasicrystals. This property of 
soft quasicrystals is what will potentially make them useful as functional self-assembled 
nanomaterials [56–58], and at the same time as a new experimental platform for detailed – 
real-space and real-time – study of quasiperiodic long-range order. 

Investigations of these new soft members of the quasicrystal family of materials, are 
only at their infancy. For example, even the space groups of the observed phases have 
not been determined, although from the diffraction patterns of the dendrimer liquid 
crystals given by Zeng et al. [50, 51] it seems that they have a 12-fold screw axis, and 
therefore, most likely, the nonsymmorphic space group P126/mcm [37]. More generally, 
the same questions [46–48] concerning the thermodynamic stability, the role of clusters 
in formation and dynamics, and the importance of phasons, apply to soft quasicrystals as 
they do to hard quasicrystals. Yet the answers may be more tractable (albeit possibly 
different as the systems are quite different). Thus, the study of soft quasicrystals will 
clearly have implications well beyond the limits of the specific soft systems that have 
been discovered so far, and is likely to promote the fundamental understanding of 
quasicrystals in general. Fortunately, the study of soft quasicrystals is happening at a 
point in time when the science of quasicrystals is ready and mature to tackle these newly 
discovered systems. We are no longer taken by surprise whenever a new chemical or 
physical system exhibits quasicrystalline structure. We are prepared with the appropriate 
tools to study and explore it, and hopefully also to exploit it for the control of the self-
assembly of useful nanomaterials. 

6. Insights from an Even Softer System – Quasicrystalline Surface Waves 

Motivated by experiments with parametrically-excited surface waves (Faraday waves), 
exhibiting dodecagonal quasiperiodic order [89], Lifshitz and Petrich [90] developed 
some years ago a model for describing the pattern-forming dynamics of a 2-dimensional 
field in which two length scales undergo a simultaneous instability. This model is an 
extension of the Swift–Hohenberg equation [91], which is used for describing a variety 
of different pattern-forming systems [92]. Its dynamics is relaxational, t F∂ = − /ρ δ δρ , 
driving a 2-dimensional field ( )x y t, ,ρ  towards the minimum of an “effective free 
energy” (2), 

                 2 2 2 2 2 3 41 1 1 1{ } { [( 1)( ) ] }
2 2 3 4LPF dx dy q= − + ∇ + ∇ + − +∫ρ ερ ρ αρ ρ ,          (5) 

yielding a dynamical equation of the form 

                                    2 2 2 2 2 2 3( 1) ( )t q∂ = − ∇ + ∇ + + −ρ ερ ρ αρ ρ              (6) 

It essentially mimics the dynamics of a generic 2-dimensional material in search of 
its ground state, and therefore offers us important insight and a good starting point for 
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our current investigation of soft quasicrystals. A Java simulation of the dynamical 
equation (6), starting from random initial conditions, and arriving at a quasicrystalline 
pattern can be found at http://www.its.caltech.edu/~mcc/Patterns/Demo4_6.html. 

The Lifshitz–Petrich free energy FLP is indeed generic, imposing only two 
requirements on a material, described by a 2-dimensional density ρ(x, y, t): (a) The 
existence of two characteristic length scales, whose ratio is given by the parameter q; 
and (b) The existence of effective 3-body interactions, whose importance is given by the 
relative strength of the parameter α. In [90] we were able to show analytically (using 
standard methods [93, 94]), and demonstrate numerically, that if q is chosen around 

2cos( 12) 2 3 1 932π/ = + ≅ .  one can obtain a ground state with quasiperiodic long-
range order and dodecagonal symmetry, yet no choice of q yields globally-stable ground 
states with octagonal or decagonal symmetry. The latter two have insufficient triplets of 
wave vectors in the Fourier Lattice L [Eq. (1)] that add up to zero to overcome the cost 
of additional density modes, as compared with the hexagonal state. Thus, in 2-
dimensions, the requirements of two length scales and 3-body interactions are sufficient 
to stabilize dodecagonal quasicrystals, but insufficient to stabilize octagonal or decagonal 
quasicrystals. This raises the possibility that the fact that the soft quasicrystals 
discovered to date are all dodecagonal, may be accounted for using a free energy similar 
to FLP. Note that for hard quasicrystals the situation is different – decagonal quasicrystals 
are thermodynamically stable whereas octagonal and dodecagonal quasicrystals are 
believed to be metastable – indicating that the stabilization mechanism for soft 
quasicrystals might be quite different from that of hard quasicrystals. 

7. Validity of Density-Wave Theories of Quasicrystals 

At the outset, as we argue in more detail elsewhere [95], the experimental soft systems 
in which quasicrystalline order has been observed seem to satisfy the basic assumptions 
of the Lifshitz–Petrich theory described in Sec. 6. The asymmetric and heterogeneous 
structure of the star polymers and dendrimers will most likely require more than one 
length scale for an appropriate coarse-grained description.3 Their ultra-soft repulsion 
and resulting strong inter-penetration [99–105] imply that 3-body interactions should be 
significant [106]. Thus, we expect that studies that we are currently undertaking will 
yield functionals similar in nature to FLP of Eq. (5). Significant differences may emerge, 
nonetheless, as the systems considered here are 3-dimensional and differ in their 
microscopic structure. For instance, two order parameters rather than one might be 
required [55], which could potentially allow point-group symmetries other than 
dodecagonal to be observed.4 

Another key insight can be drawn from a recent theoretical observation, according to 
which dispersions of soft, fuzzy, particles are essentially different in their thermodynamics 

______ 
3 Indeed, coarse-grained free energies previously used for amphiphilic self-assembly [96] 

involve more than one characteristic length scale due to the asymmetry of the molecules and the 
resulting tendency to form curved interfaces. 

4 Models with two order parameters were suggested also for hard quasicrystals [97] and 
pattern-forming systems [98], yielding additional quasicrystalline ground-state symmetries. 
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from those of hard particles [107, 108]. The overlap of the soft “coronas” surrounding 
the particles leads to a driving force acting to minimize their interfacial area, in analogy 
with foams. Consequently, unusual liquid-crystalline structures can be stabilized in 
systems of soft spheres [107–110]. Both star polymers and flexible dendrimers fall into 
this fuzzy category [111, 112], yet they may be highly aspherical. Likos et al. [104] have 
also shown that stars and flexible dendrimers have the same kind of soft pair potentials. 
We thus expect such considerations of interfacial-area minimization to become highly 
relevant in the study of soft quasicrystals. 

A 3-dimensional version of an LP-like free energy may remind the reader of the early 
attempts by Kalugin et al. [113, KKL], who extended the model of Alexander and 
McTague [114], using density-wave theories to establish that the icosahedral 
quasicrystal has lower free energy than the competing bcc phase. Narasimhan and Ho 
[115, NH] managed to show in their model that there are regions in parameter space in 
which a dodecagonal quasicrystal is favored and other regions in which a decagonal 
quasicrystal is favored. These attempts were eventually discontinued after it was shown 
by Gronlund and Mermin [94] that the addition of a quartic term to the cubic free energy 
of KKL reverses the outcome of the calculation, establishing the bcc phase as the 
favored one. For hard crystals it is unclear where to truncate the density-wave expansion 
of the free energy and whether such a truncation is fully justified. As we discussed in 
[95], for the soft systems considered here the truncation of the expansion should be 
more valid. We are therefore in a position now to reexamine some of the old 
conclusions, based on density-wave theories of quasicrystals, as they are likely to apply 
to soft quasicrystals. Roan and Shakhnovich [116] performed such a stability study for 
the case of icosahedral order in diblock copolymers and concluded that such order is 
only metastable. Nevertheless, we are encouraged by the old results of NH who 
established the stability of dodecagonal, as well as decagonal, quasicrystals within the 
same model. 

8. Dislocation and Phason Dynamics – From Soft to Photonic 
Quasicrystals 

Valuable knowledge about the nature of quasiperiodic order, important also for the 
control of its self-assembly, can be obtained by studying its topological defects [12, 13, 
117], and its low-energy collective excitations – in particular those associated with the 
phason degrees of freedom. Much like phonons, phasons are low-energy excitations of 
the quasicrystal, only that instead of slightly shifting the atoms away from their 
equilibrium positions, the relative positions of atoms are interchanged. Their existence 
stems directly from the fact that the dimension D of the order parameter space V* /L* is 
greater than the physical dimension d. Thus, in addition to d independent (acoustic) 
phonon modes there are D – d independent phason modes. 

The existence of phasons as fundamental degrees of freedom, affecting the physical 
behavior of quasicrystals, has been clearly established over the years. Their role in a 
dynamical density-wave theory of quasicrystals was developed in a series of papers [9, 
118–124] immediately following the announcement of the discovery of quasicrystals. 
Phasons have been observed in numerous experiments, whether directly or indirectly, 
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throughout the past two decades [125–129], and are still a source of interesting 
analytical puzzles [130] and ongoing debate [48]. 

We have recently begun investigating the motion of dislocations and the dynamics of 
phasons in the dodecagonal ground state of the LP equation [131]. We are studying, 
both analytically and numerically, such questions as the climb velocity of dislocations 
under strain, the pinning of dislocations by the underlying quasiperiodic structure under 
conditions of weak diffusion, and the relaxation of phason strain as two dislocations of 
opposite topological sign merge and annihilate each other. These studies are impossible 
to conduct with either Faraday waves or hard atomic quasicrystals. Thus soft quasicrystals, 
with their 10 to 100 nm length scales, may become one of the first natural experimental 
system to provide real quantitative microscopic answers regarding the dynamics of the 
fundamental degrees of freedom in a quasicrystal – defects and low-energy excitations. 

In the meantime we have embarked on the study of these unique dynamical degrees 
of freedom in a fascinating new artificial form of quasicrystalline medium – an optically-
induced nonlinear photonic quasicrystal – which we have recently demonstrated [132]. 
In this systems beams of light interact nonlinearly by changing the index of refraction of 
a photorefractive material. Their dynamics is governed by a different type of equation – 
the so-called nonlinear Schrödinger equation. Nevertheless, it is capable of stabilizing 
structures with quasicrystalline order where the typical distance between crystal sites is 
15 to 30 μm. This has allowed us to study the microscopic dynamics of dislocations [132] 
as well as phasons [133]. These artificial systems already provide useful information 
regarding the dynamics of fundamental degrees of freedom in quasicrystals. Similar 
investigations of soft quasicrystals, should provide valuable insight into their physical 
nature, as well as that of all quasicrystals, regardless of the physical or chemical system 
in which they are realized. This insight will be most valuable in trying to design and 
control the self assembly of quasiperiodic nanomaterials. 
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