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1. INTRODUCTION

Tsunamis are considered the most devastating natural hazard on coastal environments ever known. Densely
populated cities on coastal belts are the engines of economic growth and the centers of innovation for
global economy and hinterlands of respective nations. As we know most of global cities are located near
the coast facilitating trade and commerce. They are also located near the mouths of major perennial
rivers which serve as conduits for commerce connecting rest of the world. These locations place major
cities at a greater risk of natural hazards viz., cyclones, flooding, sea-level rise, tsunamis, etc. With the
increasing intensity of economic exploitation in coastal belts, there is also an increase in socio-economic
consequences resulting from the hazardous action of tsunami waves generated from submarine seismic
activity and other causes. On 26 December 2004, the countries within the vicinity of East Indian Ocean
experienced and witnessed the most devastating tsunami in recorded history. This tsunami was triggered
by an earthquake of magnitude 9.0 on the Richter scale at 3.4° N, 95.7° E off the coast of Sumatra in the
Indonesian Archipelago at 06:29 hrs IST (00:59 hrs GMT).

Historical records of past tsunamis reveal that the most damaging world tsunamis generated by
earthquakes during the past five decades are: (i) 1952 – Kamchatka Peninsula (Russian Far East): 18–19
m high (more than 2000 fatalities); (ii) 1960 – Chile: 25 m high (more than 500 fatalities); (iii) 1964 –
Alaska: 67 m (more than 100 fatalities reported); and (iv) 26 December 2004 - Indian Ocean: up to 30 m
high (more than 200,000 people dead) and 12 countries affected in three continents. The run-up levels
associated with the past Indian Ocean tsunamis are summarized in Table 1.

While earthquakes could not be predicted in advance, once the signatures of an earthquake is detected
it would have been possible to give warning of a potential Tsunami to the coastal stations. Such a warning
system at present is in place across the Pacific Ocean. However, the tsunami warning system in the
Indian Ocean had been set up quite recently after the 2004 event. In addition, coastal dwellers within the
Pacific Ocean littoral belt are educated to get high ground quickly following waves. However, those in
the Indian Ocean are quite unaware. In less than a day, tsunamis can travel from one side of the ocean to
the other. People living near areas where large earthquakes occur may find that the tsunami waves will
reach their shores within minutes of the earthquake. For these reasons, the tsunami threat for many areas,
e.g., Indonesia, Philippines, Java, etc. can be immediate for tsunamis resulting from nearby earthquakes
which take only few minutes to reach coastal areas, in comparison with sufficient response time for
tsunamis from distant earthquakes which take approximately about 3 to 22 hours reaching other coastal
destinations.

Tsunamis are rare in the Indian Ocean as the seismic activity is much less than what exist in the
Pacific. Historical records state that there have been seven tsunamis set off by earthquakes near Indonesia,
Pakistan and one at Bay of Bengal. Earthquakes occur due to collision of plates at their boundaries.
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Scientists now believe that one plate that comprised the landmass from India to Australia has broken up
into two (Orman et al., 1995). The earthquake location of recent 2004 Indian Ocean tsunami was near the
meeting point of Australian, Indian and the Burmese plates. Scientists have advocated that this is a
region of compression as the Australian plate is rotating counterclockwise into the Indian plate. The
implication of this also means that a region of seismic activity has become active in the South-eastern
Indian Ocean which has potential of triggering another deadly tsunami. Within the close vicinity of
India, there are two potential tsunamigenic zones: Andaman-Sumatra trench (East India) and the Makran
coast (West India).

Tsunamis are known as long gravity waves, and hence their travel time in the ocean depends only on
the water depth and gravity, at least to the zeroth-order. As of today, no technology exists to predict a
tsunami event well in advance (Synolakis, 1995). Contrary to popular belief, the tsunami travel times do

Table 1. Summary of tsunami occurrences in the Indian Ocean during 1700-2007 period

Sl. Affected location Run-up Date/Year Earthquake Source location
No. height (m) magnitude

at source

1 Tributaries of Ganges 1.83 12 April, 1762 N.A. Bay of Bengal
River (Bangladesh)

2 Port Blair, Andaman Islands 4.00 19 August, 1868 MW 7.5 Bay of Bengal
3 Car Nicobar Islands,

Nicobar Islands 0.76 31 December, 1881 MS 7.9 Car Nicobar Islands,
Andaman Sea

4 Dublat, India 0.30
5 Nagapattinam, India 1.22
6 Port Blair, Andaman Islands 1.22
7 Chennai 1.5 (wave 26 August, 1883 Krakatao Volcanic Islands of Java

height)  Eruption and Sumatra
8 Andaman & Nicobar Islands N.A. 26 June, 1941 MW 7.7 Andaman Sea

(12.5°N; 92.57°E)
9 Mumbai, India 1.98 27 November, 1945 MS 8.3 Arabian Sea

(24.5°N; 63°E)
10 Karachi, Pakistan 1.37
11 Ormara, Pakistan 13.0
12 Pasni, Pakistan 13.0
13 Victoria, Mahe Islands, 0.30

Seychelles
14 Not felt in India - 19 August, 1977 MS 8.1 West of Sumba

Islands, Indonesia
15 Cocos Islands, Australia 0.30 18 June, 2000 MS 7.8 Arabian Sea
16 13 countries surrounding 34.90 26 December, 2004 MS 9.0 West coast of

Indian Ocean rim directly Northern Sumatra,
affected Indonesian

Archipelago
17 Indonesia 1.0 28 March, 2005 MS 8.6 Indonesia
18 Java 2.0 17 June, 2006 MS 7.7 Indonesia

Source: Information from the website of NGDC (National Geophysical Data Centre, NOAA, USA; http://
www.ngdc.noaa.gov/hazard/tsu.shtml).
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not depend upon the magnitude of the under-water disturbance that generated the tsunami. For the Pacific
Ocean, it has been clearly demonstrated that the computed tsunami travel times using the zero-order
approximation are correct to plus or minus one minute for each hour of travel. The advantage of this
zero-order approximation is that tsunami travel times to selected locations around the rim of the Indian
Ocean as well as to selected island sites can all be pre-computed in advance once and for all. This set of
information can be stored in the electronic format as well as a tsunami travel time atlas format and can be
quickly accessed in real tsunami events with a minimum effort.

Isochrome charts on tsunami travel time were first made in 1947 by the American Coastal Service
after the Aleutian disastrous tsunami in the Pacific coast (Zetler, 1947). Subsequently, in 1971 these
charts were evaluated and about fifty such charts were used by the tsunami warning system (Holloway et
al., 1986). In concurrence with the disastrous tsunami of Hawaii on 1 April 1946 (Okal et al., 2002) from
an earthquake in the Aleutian Islands of USA, a Pacific Ocean tsunami warning system was established
based in Ewa Beach, Oahu Island, Hawaii, USA. In the immediate vicinity of islands, the catastrophe
resulting from a tsunami is advocated as enormous (Yeh et al., 1994).

The goal of this chapter is to present a brief review on tsunamis which affected Indian sub-continent,
current status of tsunami warning system for the Indian Ocean, and methodology used in the construction
of tsunami travel time charts for the Indian Ocean. Further, the importance of artificial neural network
(ANN) to expedite warnings has been demonstrated, which is considered an essential pre-requisite for
an early warning system in the Indian Ocean.

2. REVIEW ON TSUNAMIS AFFECTING THE INDIAN SUBCONTINENT

Though majority of reported tsunamis are from countries surrounding the Pacific Ocean rim, there are
also few reported cases of tsunamis in the Indian Ocean. Considering the vast length of Indian coastline
(7516 km), the threat arising from tsunami-genic event is potentially hazardous. From our past experiences,
the tsunami-genic earthquakes occurred mostly at these three locations, viz.; (i) the Andaman Sea, (ii)
geographical area about 400-500 kilometers South south-west off Sri Lanka, and (iii) in Arabian Sea
about 70-100 km south off Pakistan coast. The oldest record of tsunami in the Indian Ocean dates back to
November 326 B.C. earthquake near the Indus Delta (presently the Kutch region) where a major earthquake
destroyed the Macedonian fleet (Lietzin, 1974). Historical records of tsunamis in the Indian Ocean reported
1.5 m at Chennai resulting from August 8, 1883 Krakatao volcanic eruption in Indonesia. Also, an
earthquake of magnitude 8.25 occurred about 70 km south of Karachi, Pakistan on November 27, 1945.
This resulted in a large tsunami magnitude of about 11.0 to 11.5 m high in the west coast of India (Kutch
region) (Pendse, 1945). There are few more cases of earthquakes with a magnitude less than 8.0 which
have given rise to some smaller tsunamis. Bapat et al. (1983) reported a few more earthquakes along the
coast of Myanmar.

In the Andaman Sea, an earthquake of magnitude 8.1 occurred on June 26, 1941 resulting in a
tsunami affecting the east coast of India. According to non-scientific sources, the heights of tsunami
waves were in the order of 0.75 to 1.25 meters as no tide-gauges were in operation then. This was the
strongest earthquake ever recorded in the Andaman & Nicobar Islands prior to which was the 1881
Nicobar Islands earthquake (magnitude 7.9 on the Richter scale). Hindcast studies employing mathematical
calculations suggested that the height could be in the order of 1.0 meter. It is believed that nearly 5,000
people were killed by this tsunami in the east coast of India. Local newspaper sources are believed to
have mistaken the deaths and damage to a storm surge; however, a search of meteorological records
(Murty, 1984) does not show any storm surge on that day in the Coromandel Coast. Tremors from this
earthquake were felt in cities along the Coromandel (eastern) Coast of India and even in Colombo,



Tsunami Early Warning System: An Indian Ocean Perspective 103

Sri Lanka. This earthquake was followed by several powerful aftershocks (Tandon et al., 1974). Two
events of magnitude 6.0 struck within 24 hours of the main shock on June 27, 1941. The first occurred at
07:32:47 UTC and was followed by another at 08:32:19 UTC. Consequently, these were then followed
by 14 earthquakes of magnitude 6.0 until January 1942.

Considering the build-up of seismic activity in the Southeastern Indian Ocean and associated calamities
which resulted from the past tsunami-genic events, a comprehensive tsunami travel time (TTT) atlas for
the Indian Ocean was developed by Prasad et al. (2005) which can serve as an important tool for the
early warning of tsunami. We discuss in subsequent sections how this information from the TTT atlas
can be used in the context of ANN to reduce response time for an early warning system in the Indian
Ocean.

3. CURRENT STATUS OF TSUNAMI WARNING SYSTEM FOR

THE INDIAN OCEAN

Recognizing the imperative to put in place an Early Warning System for the mitigation of oceanogenic
disasters that cause severe threat to nearly 400 million population living in the coastal belt with devastation
of life and property, and further driven by the national calamity due to the Indian Ocean Tsunami of
December 26, 2004, the Ministry of Earth Sciences (MoES), Government of India, has taken up the
responsibility of establishing a National Tsunami Early Warning System (NTEWS). The Warning System
has been established by MoES as the nodal ministry at a cost of Rs. 1,250 million in collaboration with
the Department of Science and Technology (DST), Department of Space (DOS) and the Council of
Scientific and Industrial Research (CSIR), Government of India. The National Tsunami Early Warning
Centre has been set up at the Indian National Centre for Ocean Information Services (INCOIS), Hyderabad,
Andhra Pradesh, India.

Tsunami-genic zones that threaten the Indian coast have been identified by considering the historical
tsunamis, earthquakes, their magnitudes, location of the area relative to a fault, and also by tsunami
modeling. The east and west coasts of India including the island regions are likely to be affected by
tsunamis generated mainly by subduction zone related earthquakes from the two potential source regions,
viz., the Andaman-Nicobar-Sumatra island arc and the Makran subduction zone north of Arabian Sea.
The Indian Tsunami Early Warning System comprises a real-time network of seismic stations, Bottom
Pressure Recorders (BPR) and tide gauges to detect tsunami-genic earthquakes and to monitor tsunamis.

The Early Warning Centre receives real-time seismic data from the national seismic network of the
India Meteorological Department (IMD), New Delhi, and other international seismic networks. The
system detects all the earthquake events of magnitude greater than 6 occurring in the Indian Ocean in
less than 20 minutes of occurrence. BPRs installed in the deep ocean are the key sensors to confirm the
triggering of a tsunami. The National Institute of Ocean Technology (NIOT) has installed four BPRs in
the Bay of Bengal and two BPRs in the Arabian Sea. In addition, NIOT and Survey of India (SOI) have
installed 30 Tide Gauges to monitor the progress of tsunami waves. Integrated Coastal and Marine Area
Management (ICMAM) has customized the tsunami model for five historical earthquakes and the predicted
inundation areas. The inundated areas are being overlaid on cadastral level maps of 1:5000 representative
scales. These community-level inundation maps are extremely useful for assessing the population and
infrastructure at risk. High-resolution coastal topography data required for modeling is generated by the
National Remote Sensing Agency (NRSA), Government of India, using ALTM and CARTOSAT data.
INCOIS has also generated a large database of model scenarios for different earthquakes that are being
used for operational tsunami early warning.
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Communication of real-time data from seismic stations, tide gauges and BPRs to the early warning
centre is very critical for generating timely tsunami warnings. A host of communication methods are
employed for timely reception of data from the sensors as well as for dissemination of alerts. Indian
Space Research Organization (ISRO), Bangalore, has made an end-to-end communication plan using
INSAT. A high level of efficiency is being built into the communication system to avoid single point
failures.

A state-of-the-art early warning center is established at INCOIS (Indian National Centre for Ocean
Information Services) located in Hyderabad, Andhra Pradesh, with all the necessary computational and
communication infrastructure that enables reception of real-time data from all the sensors, analysis of
the data, generation and dissemination of tsunami advisories following a standard operating procedure.
Seismic and sea-level data are continuously monitored in the Early Warning Centre using a custom-built
software application that generates alarms/alerts in the warning centre whenever a pre-set threshold is
crossed. Tsunami warnings/watches are then generated based on pre-set decision support rules and
disseminated to the concerned authorities for action, following a Standard Operating Procedure. The
efficiency of the end-to-end system was proved during the large under-sea earthquake of 8.4 M that
occurred on September 12, 2007 in the Indian Ocean.

The National Early Warning Centre will generate and disseminate timely advisories to the Control
Room of the Ministry of Home Affairs (MHA) for further dissemination to the public. For the dissemination
of alerts to MHA, a satellite-based virtual private network for disaster management support (VPN DMS)
has been established. This network enables early warning center to disseminate warnings to the MHA, as
well as to the State Emergency Operations Centers. In addition, alert messages will also be sent by
Phone, Fax, SMS and e-mails to authorized officials. In case of confirmed warnings, the National Early
Warning Centre is being equipped with necessary facilities to disseminate the advisories directly to the
administrators, media and public through SMS, e-mail, fax, etc. The cyclone warning network of IMD
and electronic ocean information boards of INCOIS could be effectively used for disseminating warnings
directly to the public.

Periodic workshops will be organized in future for the user community by INCOIS to familiarize
them with the use of tsunami and storm surge advisories as well as inundation maps. Easily understandable
publicity material on earthquake, tsunami and storm surges will be generated by INCOIS and will be
distributed in future to the general public for awareness.

4. ORGANIZATION OF TRAVEL TIME CHARTS

The locations for the present study have been chosen mainly for population centers around the Indian
Ocean (Fig. 1). Also, any location deserving special consideration, even if it is not a major population
center, has also been included. Database on countries surrounding the Indian Ocean rim was first identified.
Accordingly, 35 countries surrounding the Indian Ocean has been selected listing major cities and
population. Table 2 summarizes the country name and number of locations used in this study.

The study domain encompasses starting at the south-eastern end of the Indian Ocean (west coast of
Australia) and proceeding northward to Bay of Bengal, then to the Arabian Sea. It should be noted that
the Red Sea and the Persian Gulf (Arabian Gulf) are part of the Arabian Sea system which have experienced
Tsunamis in the past, one notable example being the Arabian Sea tsunami of November 27, 1945. From
the Red Sea, we proceed southward along the east coast of Africa until the Cape of Good Hope, and that
limits the geographic domain for the TTT computation, as our interest here is only the Indian Ocean and
not the Atlantic Ocean. Figure 2 depicts the earthquake locations for which TTT computations were
conducted.
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Table 2. List of countries and corresponding number of coastal stations used for generating
Tsunami Travel Time (TTT)

Country Number of Country Number of Country Number of
locations locations locations

Australia 19 Malaysia 12 Singapore 1
Bahrain 1 Maldives 1 Somalia 8
Bangladesh 3 Mauritius 1 South Africa 11
Brunei 1 Mozambique 9 Sri Lanka 15
Comoros 2 Myanmar 9 Sudan 2
Egypt 3 Oman 5 Taiwan 2
India 47 Pakistan 3 Tanzania 7
Indonesia 31 Philippines 11 Thailand 6
Iran 3 Qatar 2 U.A.E. 3
Kenya 3 Reunion 4 Vietnam 8
Kuwait 1 Saudi Arabia 3 Yemen 2
Madagascar 10 Seychelles 1
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5. COMPUTATION AND DESCRIPTION OF TSUNAMI TRAVEL TIME CHARTS

The technique used to compute travel times over the entire grid is an application of Huygens principle
which states that all points on a wave-front are point sources for secondary spherical waves. From the
starting point, times are computed to all surrounding points. The grid point with minimum time is then
taken as the next starting point and times are computed from there to all surrounding points. The starting
point is continually moved to the point with minimum total travel time until all grid points have been
evaluated. In the countries surrounding the Indian Ocean rim, 250 locations as mentioned above were
selected for this study. The travel time of tsunami waves from the epicenter to various coastal regions has
been evaluated for all the sample points identified.

On 26 December 2004, the countries in the Eastern Indian Ocean experienced the most devastating
tsunami in recorded history (Bindra, 2005). This tsunami was triggered by an earthquake of magnitude
9.0 on the Richter scale off the coast of Sumatra in the Indonesian Archipelago at 06:29 hrs IST (00:59
hrs GMT). The extent of damage resulting from this tsunami has been cited in the post-tsunami field
survey (Chapman, 2005). The dispersive signals of this energetic event were recorded by hydrophones
and seismic stations in coastal locations around the Indian Ocean rim (Hanson and Bowman, 2005). The
computational example for this Indian Ocean tsunami using our computational algorithm is shown in
Fig. 3.

Fig. 2 Geographical coordinates of 250 past earthquake events in the Indian Ocean for which TTT
were computed.
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The most basic information a tsunami warning center requires is ETA (Expected Time of Arrival) of
the first tsunami wave at selected coastal locations from the area of tsunami generation in the ocean.
Almost always, the first wave in a tsunami event is not the wave with the greatest amplitude; nevertheless,
tsunami travel time charts are generally constructed for the first wave, rather than the wave with the
highest amplitude. Advanced knowledge of travel time for the first wave provides some additional valuable
time for the evacuation of people, if and when evacuation is needed. In addition, tsunami travel times can
be pre-computed, independent of the seismic moment magnitude of the earthquake, only for the first
wave. The heights of the subsequent waves are not known until the event actually happens, and hence no
pre-determination of the travel time of the highest wave can be made.

To the zeroth order, tsunami travel times are governed by the long gravity wave formula, which
defines the speed of travel of the tsunami as equal to the square root of water depth, multiplied by the
acceleration due to gravity (Murty et al., 1987). Of course there are higher order correction terms to the

Fig. 3 Travel time of tsunami waves that resulted from the 26 December, 2004 event in the Indian Ocean.
The contour intervals are sampled at every half an hour.
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speed of tsunami travel, based upon dispersion characteristics. While these higher order terms are of
scientific interest, nevertheless, for practical purposes, one can ignore the contributions from these terms,
and use the simple long wave formula.

The calculation algorithm adopted by the authors for computing the isochromes tables is based on

the well-known Huygens method and is actually a group of methods which obtain the time required for
passing a given space interval with a given speed (Yuri et al., 1995). In this technique all the nodes of the

calculated grid are partitioned into three sets, set M1 containing the nodes with finally calculated tsunami
travel times, set M2 contains the nodes with preliminary estimated values that may later be refined and

set M3 the nodes with arrival time that has not been obtained yet. Each node (U) is associated with the
notion of its domain of influence (Su) which is aggregate of neighboring nodes satisfying criterion of

proximity. It is considered that during one step of an algorithm the perturbation can cover the distance
from the specified node only to its nearest pattern neighbors.

At the initial time all the nodes in the domain of the initial perturbation are assigned zero value of the
arrival time (T0) corresponding to the time of beginning of the earthquake and included in the set M 0

2.

The remaining nodes of the calculation domain are included in M 0
3. Then the nodes of  M 0

2 with patterns
not influenced by the ones of the set M 0

3
 are transferred to the set M 1

1
 and excluded from further calculations.

The algorithm afterwards acquires the regular character. Hence, at the nth step the exhaustive search of
the nodes from the set M n

2
 is performed in order of increasing tsunami travel times known at this point of

time.

Let the node A � M n
2 (1)

and  TA =  min{TAi} (where, Ai�� M n
2); then the node for B such that B � SA the tentative estimate (A) of

arrival time is found from the relation:

T = TA + TAB  (2)

where TAB = 
2

�
AB

A B

L
C C  which is the time of perturbation propagation from the node ‘A’ to ‘B’.

Here LAB = R × arccos (sin�A × sin�B + cos�A × cos�B × cos��) denotes the distance from node ‘A’

to ‘B’ through the great circle arc; ‘R’ stands for the radius of the earth; and � ic gh  is the local rate of

perturbation propagation (hi denotes the depth of the i-th node and ‘g’ the acceleration due to gravity).

In case where, B � M n
3, relation from (Equation 1) first yields the value of ‘T’ and the node ‘B’ itself

is transferred to 1
2
�nM , and if B � 

2
nM , the value of ‘T’ is refined from the minimizing relation:

TB = min{TA, TA + TAB} (where A � SB 	
2
nM )  (3)

After the values of T, 
B : B � SA are obtained from Equations 1 and 2, the node ‘A’ is transferred to

the set 1
1
�nM . This procedure is repeated to the next node A �

2
nM  satisfying the condition (Equation 1)

and so on until the set 
2
nM  is exhausted. For the next (n+1) time step, the algorithm is reproduced

without any changes and the computation goes on until step ‘k’ where all calculation node of the water

area are included in the set 
1
kM .

For the Pacific Ocean, it has been shown that the travel time charts are accurate to plus or minus one

minute, for each hour of travel. There is no reason to expect that the travel time charts will be less precise
for the Indian Ocean. This level of error is considered acceptable for tsunami warning purposes. Since, at

present one cannot predict precisely the location and time of occurrence of a tsunami-genic earthquake;
it is not possible to construct tsunami travel time charts for all possible future tsunamis. In any case,
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travel time information is required for coastal locations, where disaster mitigation procedures have to be

invoked during real tsunami events. However, tsunami travel time charts are reversible, in the sense that
the travel times are exactly the same, no matter in which direction the tsunami travels on a given chart,

i.e., from an epicenter in the ocean to a coastal site or vice-versa (i.e., from a coastal site to an epicenter
in the ocean). Once a reasonable number of tsunami travel time charts are prepared for the Indian Ocean,

for selected coastal and island locations, as well as for all historical tsunami events, it is quite probable
that for any future tsunami events, the travel time information that is required could be quickly and

effortlessly obtained from these charts.

6. APPLICATION OF ARTIFICIAL NEURAL NETWORK IN

TSUNAMI TRAVEL TIME PREDICTION

Artificial Neural Networks (ANNs) are inspired by the biological nervous system. Composed of elements

operating in parallel, the network function is primarily determined by connections (weights) between

elements. A neural network can be trained to perform a particular function by adjusting the values of

these weights between elements. Commonly neural networks are adjusted, or trained so that a particular

input leads to a specific target output. The network can be trained based on a comparison of the output

and the target until the network output matches the target within a specified error level (supervised

learning). In this study, different combinations of input were used to train the network. The trained

network can be validated with the data that has not been used for training. If the system performs well

with the validation data, the system can be deployed real time to perform a specific job.

Neural networks can be trained to solve problems that are difficult for conventional computers.

Neural networks have been trained to perform complex functions in diverse fields of application which

include nonlinear regression, classification, identification, pattern recognition and control systems (Hinton,

1992; Navone and Ceccatto, 1994; Bishop, 1995; Venkatesan et al., 1997; Silverman and Dracup, 2000;

Li et al., 2005). The supervised training methods are commonly used, but other networks can be obtained

from unsupervised training techniques which can be used where there are no input/output pairs as such

but only input data. This for instance may be used to identify groups of data (Hopfield Networks).

Neural network approach has been also used to solve inverse problems which include a methodology

to assess the severity of a tsunami based on real-time water-level data near the source (Yong et al., 2003).

This inverse method which uses tsunami signals in water-level data to infer seismic source parameters is

extended to predict the tsunami waveforms away from the source. The present study which involves the

prediction of Tsunami Arrival Time is within the domain of nonlinear regression where MLP is used to

tackle the nonlinearity in the data. A brief description of the MLP used to tackle the prediction problem

is provided below.

An MLP (Fig. 4) is a feed forward network consisting of three classes of layers: the input layer, the

hidden layers (a network can have several hidden layers) and the output layer. The inputs to the network

are given at the input layer and the number of input nodes would be equal to the number of input

parameters. The input nodes receive the data and pass them onto the hidden layer nodes (neurons). The

neuron model and the architecture of a neural network then determine how the input is transformed into

an output. This transformation involves computation and can be represented with detailed mathematical

algorithms. The perceptron then computes single output from multiple real-valued inputs by forming a

linear combination according to its input weights and then possibly putting the output through a nonlinear

activation function. This can be expressed mathematically as (Simon, 1998):
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y = 
1

( )
�

� ��
N

i i
i

w x b , where w denotes the vector of weights, x the vector of inputs, b the bias and � the

activation function. The supervised learning problem of the MLP can be solved with the back-propagation
algorithm. This algorithm consists of two steps. In the forward pass, the predicted outputs corresponding
to the given inputs are evaluated and in the backward pass, partial derivatives of the cost function with
respect to the different parameters are propagated back through the network (Bishop, 1995). It may be
noted that chain rule of differentiation gives very similar computational rules for the backward pass as
the one in the forward pass. The networked weights can then be adapted using a gradient-based optimization
algorithm. The entire computational process is then iterated until the weights have converged (Simon,
1998).

7. DEVELOPMENT OF MODEL FOR TSUNAMI ARRIVAL TIME PREDICTION

The technique used to compute travel times over the study domain is an application of Huygens principle
which states that all points on a wave-front are point sources for secondary spherical waves. From the
starting point (actual epicenter location), travel times are computed to all surrounding equidistant grid
points. The grid point with minimum time is then taken as the next starting point (new location) and
computation is performed thereafter to all surrounding points. The starting point is then continually
moved to the point with minimum total travel time until all grid points have been evaluated. For the
countries surrounding the Indian Ocean rim, 250 coastal locations were selected for this study. The travel
time of tsunami waves from the epicenter to various coastal regions were evaluated for all the sample
points identified. This technique was used for multiple tsunami-genic locations in the Indian Ocean rim
facilitating the development of a comprehensive ETA database (Prasad et al., 2005), which has been
used for training the neural network in the present study. For the benefit of the readers, a detailed
methodology of ETA computations and further skill assessment with available observations for the 26
December 2004 event in the Indian Ocean was investigated (Prasad et al., 2006).

Fig. 4 Structure of an artificial neural network (Bishop, 1995).
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7.1 Data for Artificial Neural Network

This ANN-based study computes a new travel time chart which is highly efficient in the prediction of
ETA to several coastal destinations in the Indian Ocean for any given epicenter location in the study
domain. The input to the ANN model comprises the location of the underwater earthquake source viz.,
latitude and longitude and the ETA from the comprehensive database. In the 250 coastal destinations of
countries surrounding the Indian Ocean rim (Fig. 1), ETA for 47 coastal destinations is within the purview
of Indian sub-continent. The ANN model for this study has been trained to perform prediction to these 47
coastal destinations. The coastal locations used for this study is chosen mainly from high density population
centers depicted in Fig. 2. Minutiae shown in Table 3 list the country name and number of locations
taken from the comprehensive database of ETA for the present study. The epicenters of all past tsunami-
genic events in the Indian Ocean were compiled from information obtained from NGDC (National
Geophysical Data Center, NOAA, Boulder, USA; http://www.ngdc.noaa.gov/hazard/earthqks.html).
Figure 2 illustrates the epicenter locations of the past earthquake events (250 locations) having magnitude
greater than 6.0 on the Richter scale used in the comprehensive ETA database.

Table 3. Computed Expected Arrival Time (ETA) to 250 coastal stations for the December 26, 2004
tsunami event in the Indian Ocean

Location
Country City Population# Latitude Longitude Arrival time

(Degree) (Degree) (hour)

1. South Africa Mtunzini 12,050 28.97S 31.77E 11.222
Durban 2,117,650 29.87S 30.99E 11.002
Ladysmith 89,087 28.02S 32.66E 10.6756
Port St Johns 1,46,132 31.62S 29.53E 11.032
East London 212,323 32.97S 27.87E 11.4353
Port Elizabeth 1,100,000 33.96S 25.59E 12.131
Grahamstown 62,640 33.19S 26.31E 12.22
Mosselbaai 55,100 34.18S 22.13E 12.9163
Cape Agulhas 26,182 34.83S 20.00E 13.3881
Pietermaritzburg 229,000 29.36 S 30.23 E 11.1826
Cape Town 2,350,000 33.93S 18.47E 13.5143

2. Mozambique Pemba 84,897 12.58S 40.30E 9.34164
Nacala 158,248 14.31S 40.34E 9.38824
Angoche 74,624 16.17S 39.97E 9.64704
Pebane 1,274 17.23S 38.17E 10.2653
Quelimane 150,116 17.53S 36.58E 11.7402
Beira 397,368 19.50S 34.52E 13.8161
Vilanculos 19,371,057 22.02S 35.32E 10.8631
Inhambane 52,370 23.02S 35.92E 10.3011
Maputo 966,837 25.58S 32.32E 11.3468

3. Tanzania Mtwara 1,128,523 10.20S 40.20E 9.07369
Lindi 791,306 09.56S 39.61E 9.06953
Kilwa 171,057 08.55S 39.30E 9.31335
Dar es Salaam 1,292,973 06.50S 39.12E 9.52655
Tanga 1,642,015 05.05S 39.02E 9.27646

(Contd.)
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Table 3. (Contd.)

Location
Country City Population# Latitude Longitude Arrival time

(Degree) (Degree) (hour)

Zanzibar 391,002 06.10S 39.20E 9.68088
Wete 186,013 05.04S 39.43E 9.1367

4. Kenya Lamu 2,249 02.28S 40.90E 9.14886
Malindi 64,300 03.12S 40.05E 9.06343
Mombasa 1,880,000 04.02S 39.43E 9.04207

5. Somalia Berbera 200,000 10.47N 45.03E 9.17937
Boosaso 90,100 11.28N 49.18E 8.27345
Ras Hafun 5,000 10.48N 51.33E 7.79386
Eyl 682 08.00N 49.82E 7.69955
Obbia 386 05.33N 48.50E 7.82298
Mogadishu 1,262,000 02.06S 45.37E 7.8039
Merca 173,100 01.48N 44.50E 8.18546
Kisimayo 201,600 00.22S 42.32E 8.51144

6. Sudan Suakin 10,500 19.08 S 37.17  E 10.3177
Port Sudan 730,000 19.38 N 37.08 E 13.5179

7. Egypt Hurghada 182,526 27.15 N 33.50 E 15.492
Suez 417,610 30.00 N 32.30 E 18.5576
Al-Ghardaqah 71,800 23.88 N 35.27 E 14.6119

8. Yemen Aden 519,822 12.45N 45.00E 8.96302
Al Mukalla 890,246 14.33N 49.02E 8.12144

9. Saudi Arabia Jeddah 2801481 21.53N 39.17E 14.1548
Rabigh 31,963 22.50 N 39.05 E 14.0922
Al Qunfudhah 1,772 19.03N 41.04E 13.8529

10. U.A.E. Sharjah 320,095 25.20N 55.24E 11.8153
Abu Dhabi 398,695 24.28N 54.25E 14.8918
Dubai 669,181 25.271N 55.329E 11.4325

11. Qatar Doha 285,000 25.15N 51.36E 15.3089
Dukhan 9,835 25.3N 50.8E 18.6514

12. Bahrain Manama 143,035 26.236N 50.583E 16.4257
13. Kuwait Kuwait 28,747 28.59N 47.52E 19.3276
14. Iran Bandar-e-Bushehr 143,641 28.59N 50.46E 16.2342

Bandar Abbas 273,578 27.12N 56.15E 10.3892
Jask 66,128,965 25.642N 57.772E 8.2053

15. Oman Salalah 156,530 16.56N 53.59E 7.45856
Sur 66,785 22.34N 59.32E 7.46266
Muscat 540,000 23.37N 58.36E 7.90009
Duqm 4,269 19.65N 57.7E 7.60163
Masirah 841 20.417N 58.833E 7.29651

16. Pakistan Karachi 9,856,318 24.53N 67.00E 8.43242
Gwadar 185,498 25.10N 62.18E 7.66909
Jiwani 25,000 25.117N 61.733E 8.20665

17. Bangladesh Chittagong 6,545,078 24.05N 91.00E 6.37145
Cox Bazaar 1,757,321 21.26N 91.59E 4.44494
Dhulasar 27,046 21.87N 90.23E 5.20506

(Contd.)
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18. Myanmar Sittwe 107,620 20.15N 92.09E 3.76803
Kyaukpyu 19,456 19.45N 93.55E 4.47832
Sandoway 4,000 18.47N 94.45E 3.94103
Kadonkani 47,382,633 15.83N 95.18E 5.6117
Yangon 2,513,023 16.47N 96.10E 4.37541
Mawlamyine 219,961 16.30N 97.37E 4.53773
(Moulmein)
Tavoy 139,900 14.12N 98.30E 6.14122
Mergui 177,961 12.43N 98.56E 4.62463
Kawthaung 41,994,678 10.02N 98.53E 3.87474

19. Thailand Bangkok 7,506,700 13.45N 100.35E 26.6819
Surat Thani 153,500 09.06N 99.20E 24.5288
Songkhla 294,200 07.13N 100.37E 22.0887
Phuket 211,000 07.53N 98.24E 2.1819
Ranong 163,160 9.962N 98.638E 4.27555
Satun 270,802 6.617N 100.067E 4.61174

20. Taiwan Hsin-chu 384,384 24.80N 120.98E 12.0184
Kao-hsiung 1,500,000 22.60N 120.28E 10.563

21. Malaysia Georgetown 180,573 05.25N 100.20E 4.28901
Klang(Kelang) 563,173 03.02N 101.26E 6.98943
Kuala Lumpur 1,297,526 03.09N 101.41E 6.98113
Melaka 369,222 02.15N 102.15E 8.50881
Johor Bahru 384,613 01.28N 103.46E 10.8117
Kuantan 283,041 03.49N 103.20E 16.611
Kuala Terengganu 250,528 05.20N 103.08E 18.0761
Kota Bahru 233,673 06.07N 102.14E 20.1728
Kuching 579,900 01.53N 110.33E 15.4757
Bintulu 116,600 03.20N 113.02E 12.503
Kota Kinabalu 24,821,286 05.98N 116.06E 11.1984
Sandakan 24,385,858 05.86N 118.06E 9.18603

22. Brunei Bandar Seri 46,229 04.93N 114.96E 11.8372
23. Indonesia Jayapura 145,200 02.28S 140.38E 9.13068

Namlea 124,084 03.25S 127.12E 6.28019
Ambon 313,100 03.43S 128.12E 6.35841
Bula 57,474 03.12S 130.45E 6.94673
Tobelo 3,860 01.75N 127.98E 7.77472
Manado 398,900 01.29N 124.51E 7.55753
Majene 1,268,500 03.55S 118.98E 5.94927
Ujung Pandang 1,091,800 05.10S 119.20E 5.7257
Kupang 165,500 10.22S 123.63E 5.12295
Sumbawa Besar 52,654 08.50S 117.42E 4.87692
Mataram 306,600 08.35S 116.07E 4.21647
Denpasar 435,000 08.39S 115.13E 4.10912
Surabaya 3,092,400 07.17S 112.45E 8.02103
Semarang 1,366,500 07.00S 110.26E 7.81216
Yogyakarta 419,500 07.49S 110.22E 3.41068
Jakarta 8,987,800 06.09S 106.49E 4.7177

(Contd.)
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Table 3. (Contd.)

Location
Country City Population# Latitude Longitude Arrival time

(Degree) (Degree) (hour)

Genteng 79,652 07.35S 106.33E 2.6125
Bandar Lampung 832,400 05.30S 104.30E 2.45704
Mentok 26,709 02.07S 105.20E 10.3857
Tanjungbalai 142,506 01.00N 103.32E 11.2742
Langsa 117,256 04.47N 97.98E 3.17407
Banda Aceh 291,300 05.35N 95.20E 0.761689
Meulaboh 4,775 04.17N 96.15E 0.567799
Sibolga 22,513 01.70N 98.80E 1.97274
Padang 721,500 01.00S 100.20E 1.80631
Bengkulu 262,100 03.50S 102.12E 2.24429
Pontianak 449,100 00.03S 109.15E 12.8599
Ketapang 1,680 01.83S 109.98E 10.7732
Bandjarmasin 534,600 03.20S 114.35E 10.1546
Balikpapan 448,700 01.25S 116.83E 7.54061
Tarakan 98,800 03.33N 117.63E 7.71036

24. Madagascar Antsiranana 220,000 12.25S 49.20E 8.3672
Antalaha 75,000 14.88S 50.27E 7.67597
Toamasina 230,000 18.10S 49.25E 7.91618
Manakara 25,689 22.15S 48.00E 8.2238
Cape St Marie 31,592,805 25.57S 45.17E 9.50308
Toliary 150,000 21.50S 43.74E 10.3438
Morondava 33,372 20.32S 44.28E 10.4581
Tambohorano 406,564 17.50S 43.59E 9.63051
Mahajanga 200,000 15.40S 46.25E 8.71684
Hell Ville 23,050 13.40S 48.28E 8.62156

25. Seychelles Victoria 20,050 04.63S 55.47E 7.37542
26. Comoros Moroni 629,000 11.67S 43.27E 8.69479

Dzaoudzi 690,948 12.80S 45.30E 8.42018
27. Maldives Male 74,069 04.00N 73.00E 4.09193
28. Mauritius Port Louis 127,855 20.10S 57.30E 6.87434
29. Reunion Saint-Benoit 101,804 21.03S 55.71E 7.01025

Saint-Denis 236,599 20.87S 55.46E 7.07017
Saint-Paul 138,551 21.00S 55.27E 7.3678
Saint-Pierre 229,346 21.27S 55.53E 7.14395

30. Sri Lanka Kankesanturai 31,506 9.85N 80.08E 4.09997
Mullaittivu 7,900 09.25N 80.80E 3.09918
Trincomalee 91,000 08.38N 81.15E 3.13302
Batticaloa 515,707 7.72N 77.73E 3.46255
Okanda 9,594 06.65N 81.77E 2.55246
Hambantota 11,734 6.12N 81.12E 2.67229
Matara 643,786 5.95N 80.55E 2.73498
Galle 97,000 06.05N 80.10E 2.88227
Moratuwa 177,190 06.45N 79.55E 2.93046

(Contd.)
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Dehiwala-Lavinia 209,787 06.51N 79.52E 2.94426
Colombo 642,163 05.56N 79.58E 2.80593
Negombo 121,933 07.12N 79.50E 3.08903
Talalla 78,023 08.13N 79.70E 3.38355
Mannar 106,235 8.98N 79.92E 4.41793
Jaffna 177,190 09.45N 80.02E 4.71506

31. Singapore SingaporeCity 4,163,700 01.22N 103.55E 10.948
32. Philippines Laoag 89,468,677 18.23N 120.60E 10.2071

Quezon City 2,173,831 14.38N 121.00E 11.1002
Manila 1,581,082 14.40N 121.03E 11.1002
Bulan 28,529 12.66N 123.88E 9.406
Mindaro 81,159,644 13.00N 121.00E 9.89557
Iloilo 365,820 10.68N 122.55E 9.27341
Cebu City 718,821 10.18N 123.54E 9.73164
Siaton 64,258 09.08N 123.08E 8.67981
Palawan Is 737,000 9.50N 118.50E 8.81906
Zamboanga City 601,794 06.54N 122.04E 7.76695
Davao 1,725,355 7.08N 125.63E 8.23129

33. Australia Melbourne 3,488,800 37.50S 145.00E 12.5851
Adelaide 1,110,500 34.52S 138.30E 12.121
Nhulunbuy 3,202 12.50S 136.93E 14.293
Crocker 14,375 11.03S 136.63E 11.7589
Bathurst I 37,001 11.75S 130.68E 9.78129
Darwin 108,200 12.25S 130.51E 9.47687
C. St Lambert 20,976 14.28S 127.71E 9.12529
C. Leveque 12,330 16.41S 122.91E 6.05995
Broome 13,218 17.97S 122.25E 6.53677
Port Hedland 14,288 20.40S 118.60E 7.00693
Dampier Downs 770 18.52S 123.45E 9.1031
Onslow 700 21.68S 115.20E 5.95066
Exmouth 2,400 21.90S 114.16E 5.10908
Carnarvon 7,392 24.85S 113.75E 6.38753
Kalgoorlie 36,852 27.70S 114.16E 6.50292
Geraldton 27,258 28.81S 114.60E 6.23176
Perth 1,397,000 31.57S 115.52E 6.28896
Bunbury 26,369 33.33S 115.56E 6.77029
Albany 23,913 34.95S 117.90E 7.10817

34. Vietnam Haiphong 1,447,523 20.47N 106.41E 15.1392
Hon Gai 129,394 20.57N 107.05E 14.7076
Vinh 175,167 18.45N 105.38E 14.4124
Dong Hoi 40,290 17.53N 106.58E 13.7196
Hue 260,489 16.30N 107.35E 13.3015
Da Nang 369,734 16.04N 108.13E 12.9678
Qui Nhon 201,972 13.40N 109.13E 12.1071
Nha Trang 263,093 12.16N 109.10E 12.1088

35. India Rapur 5,380 23.05N 68.83E 8.71781
Kandla 175,000 23.00N 70.10E 10.1083
Dwarka 33,614 22.25N 69.05E 7.96334
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Porbandar 133,083 21.44N 69.43E 6.99742
Veraval 141,207 20.53N 70.27E 7.22848
Diu 21,576 20.40N 71.02E 7.74814
Bhavnagar 510,958 21.45N 72.10E 9.10254
Daman 113,949 20.25N 72.57E 8.5291
Dadar & Nagar Haveli 220,451 20.05N 73.00E 8.63183
Mahim 42,798 19.66N 72.76E 8.55693
Mumbai 11,914,398 18.55N 72.50E 7.47182
Ratnagiri 70,335 17.13N 73.32E 7.14562
Malvan 18,675 16.05N 73.50E 6.58475
Panaji 1,170,000 15.25N 73.50E 5.92902
Murmagao 189,383 15.25N 73.56E 5.99745
Karwar 62,960 14.83N 74.15E 6.28768
Kumta 27,597 14.48N 74.41E 6.26771
Bhatkal 31,785 13.96N 74.58E 6.04996
Mangalore 398,745 12.55N 74.47E 5.01031
Kozhikode 2,613,683 11.15N 75.43E 4.7295
Cochin(Kochi) 550,000 09.58N 76.20E 4.64342
Quilon(Kollam) 391,300 08.90N 76.63E 4.64503
Trivandrum 744,739 08.41N 77.00E 4.17903
Kanyakumari 208,149 08.07N 77.58E 3.92992
Thoothukkudi 216,058 08.50N 78.12E 3.73327
Rameswaram 38,035 09.28N 79.37E 3.90142
Nagapattinam 94,965 10.77N 79.88E 3.56652
Karaikal 170,640 10.59N 79.50E 4.57374
Pondicherry 735,004 11.59N 79.50E 3.36741
Chennai 4,216,268 13.08N 80.19E 3.57933
Nellore 378,947 14.27N 79.59E 3.71164
Chirala 85,455 15.98N 80.08E 4.22424
Machilipatnam 215,043 16.15N 81.20E 4.08971
Visakhapatnam 969,608 17.45N 83.20E 3.64451
Gopalpur 114,189 19.27N 84.95E 4.21065
Puri 157,610 19.50N 85.58E 3.79441
Haldia 170,695 22.03N 88.03E 5.62307
Henhoaha 1,018 06.80N 93.81E 0.961126
Misha 2,660 08.00N 93.36E 1.44183
Kakana 4,291 09.11N 92.81E 1.58246
Nachuge 2,233 10.71N 92.35E 2.06832
Port Blair 100,186 11.68N 92.77E 1.92749
Coco Channel 2,233 14.08N 93.30E 2.46952
Kavaratti Is 10,113 10.53N 72.71E 4.52211
Androth Is 10,000 11.00N 73.16E 4.54489
Chetlat Is 51,707 11.76N 76.83E 5.38175
Minicoy Is 9,957 08.48N 73.02E 4.20262

# Population database is based on the latest information available through various sources from internet.
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7.2 Network Learning Principles and Algorithms

The input is transformed to an output through the hidden layers. Input vectors and the corresponding
output (target) vectors are used to train the network until it can approximate a function, associate input
vectors with specific output vectors, or classify input vectors in an appropriate way as defined. It has
been shown that networks with biases, sigmoid layers and a linear output layer are capable of approximating
any function with a finite number of discontinuities. In the present work, the back-propagation feed
forward type network is used for training the system where the objective is to minimize the global error
E given as:

E = 
1 � pE
P

 (4)

and

EP = 
21

( )
2

�� k ko t  (5)

where P is the total number of training patterns (the number of input/output pairs used for training), Ep is
the error for the p-th pattern, ok is the network output at the k-th output node and tk is the target output at
the k-th output pattern.

In this type of network the error between the target output and the network output are calculated and
this is back propagated. The term back-propagation refers to the manner in which the gradient is computed
for nonlinear multilayer networks. Standard back-propagation is a gradient descent algorithm. There are
a number of variations on the basic algorithm that are based on other standard optimization techniques.
A brief description on the working principle of a back-propagation neural network is given below.

7.3 Back-Propagation Learning

Back-propagation is a widely used algorithm for supervised learning with a multilayer feed forward
layer network which implements the repeated application of the chain rule to compute the influence of
each weight in the network with respect to an arbitrary error function E (Dayhoff, 1990):
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In the above equation [Eqn. (6)], ijw  is the weight from the neuron j to neuron i, is  is the output, and inet
is the weighted sum of the inputs of neuron i. Once the partial derivative for each weight is known, the
error function is minimized by performing a simple gradient descent (Zurada, 1992):

wij (t + 1) = wij (t) – � 
( )
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7.4 Resilient Back-Propagation Learning

Multilayer networks typically use sigmoid transfer functions in the hidden layers. Sigmoid functions
cause a problem while training a multilayer network using steepest descent since they compress an
infinite input range into a finite output range and are characterized by the fact that their slope must
approach zero as the input gets large. The gradient can have a very small magnitude; and therefore, cause
small changes in the weights and biases, even though the weights and biases are far from their optimal
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values. The purpose of the resilient back-propagation training algorithm is to eliminate contamination in
the magnitudes of the partial derivatives. Only the sign of the derivative is used to determine the direction
of the weight update; the magnitude of the derivative has no effect on the weight update. This adaptive
update value evolves during the learning process based on its local sight on the error function E, according
to the following learning rule (Reidmiller and Braun, 1993):
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The resilient back-propagation algorithm has been used in this study to train the neural network system.

8. NETWORK ARCHITECTURE AND PARAMETERS

The performance of the network depends on the network architecture and network parameters chosen to
model the system. Extensive trial and error tests have been performed with the comprehensive ETA
database (Barman et al., 2006). Based on this study, configurations mentioned below are near optimum
for the current prediction model.

8.1 Network Architecture

The optimum parameters of network architecture for prediction of tsunami travel time were chosen with
the configuration comprising two hidden layers with number of neurons ranging from 25 to 30 in each
hidden layer (recommended value for this study is 30). The transfer functions comprise the tan-sigmoid
functions in the hidden layers and the linear transfer function in the output layer. This is a useful structure
for regression problems.
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8.2 Network Parameters

Based on an earlier study (Barman et al., 2006), the following parameters are recommended as an optimum
configuration of the ANN network:

(i) Mean Squared Error (MSE) used in this study is 0.25.

(ii) Learning Rate and Momentum Factor: It was found that the performance of resilient back-

propagation is not very sensitive to the settings of these training parameters.

The resilient back-propagation has been used to train the system as we noticed convergence to the
specified MSE is obtained very fast using this algorithm. In fact, not many algorithms are able to converge
to the specified error level. Besides Resilient back-propagation, we used another algorithm called
Levenberg-Marquardt (More, 1978) which is also able to converge, but it was found that the time of
convergence is much greater than the former, typically about 100 times or so.

Prudently trained back-propagation network performs significantly well and tends to deliver
reasonable estimates when presented with input parameters. Typically, a new input leads to an output
similar to the correct output for input vectors used in training that are similar to the new input being
presented. This generalization property makes it possible to train a network on a representative set of
input/target pairs and get good results without training the network on all possible input/output pairs.

8.3 Training and Testing of ANN Model

For this study, 240 data points of past earthquake locations in the Indian Ocean taken from the ETA
database were used. For each of this earthquake event, we have computed tsunami travel time to 250
coastal destinations in the 35 countries surrounding the Indian Ocean rim which is published in the TTT
atlas for Indian Ocean. Using the above defined network parameters, we demonstrated that ANN model
is quite robust in tackling the non-linearity in the ETA database (Barman et al., 2006). Numerical
experiments were conducted with different combinations of data-points within the ETA database. In this
experiment, grouping of data within ETA is under two steps: (i) first set for training and testing, and (ii)
second set for validation which is not exposed to ANN during the learning stage. This set is used to check
the performance of the network with unseen data, and thus gives a measure of the network skill with real-
time data. Since performance of ANN solely depends on the nature of data being trained, the performance
of ANN model is questionable for a new earthquake location which is not within close vicinity of TTT
model. Hence, a situation which is rare to the training and testing set cannot be predicted well. For the
Indian Ocean, as seen in Fig. 2, considering the homogeneity in the distribution of earthquake locations
from past tsunami-genic events the highest degree of probability for an earthquake is within the vicinity
of Sumatra, Indonesia, etc. Therefore, under this circumstance the nonlinear technique based on ANN
can be suitably used for a real-time prediction of ETA for countries surrounding the Indian Ocean rim.

9. SIMULATION RESULTS

The results of ETA simulations using ANN with different network configurations for coastal destinations
in India (47 locations) are presented below. To study the effectiveness of the nonlinear technique, the
selection of validation points from ETA database was judicially grouped into three categories. Of the
total 240 locations, skill assessments were performed with 80, 60 and 48 points, respectively as shown in
Tables 4, 5 and 6. High values of correlation (around 95%) between the model outputs and the observations
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Table 4. Simulation results for 80 validation data when trained with 160 data (Combination 1)

Validation Data: 1 out of every 3 in ETA Database

Total number of data 240 Number of inputs 2
Training-Testing data 160 Number of outputs 47
Validation data 80

Neurons Goal Training time Training Validation correlation
(minutes) correlation Minimum Maximum Average

[20 20] 0.3 1 0.9799 0.945 0.9603 0.9553
[20 20] 0.25 1 0.9833 0.929 0.9632 0.9525
[20 20] 0.2 2 0.9866 0.9465 0.9658 0.9563
[25 25] 0.3 1 0.9802 0.9406 0.9692 0.9537
[25 25] 0.25 1 0.9834 0.9289 0.9539 0.9429
[25 25] 0.2 1 0.9866 0.9103 0.9475 0.9252
[30 30] 0.3 1 0.9801 0.9322 0.966 0.955
[30 30] 0.25 1 0.9834 0.9436 0.968 0.959
[30 30] 0.2 1 0.9866 0.9486 0.9655 0.9585

Table 5. Simulation results for 60 validation data when trained with 180 data  (Combination 2)

Validation Data: 1 out of every 4 in ETA Database

Total number of data 240 Number of inputs 2
Training-Testing data 180 Number of outputs 47
Validation data 60

Neurons Goal Training time Training Validation correlation
(minutes) correlation Minimum Maximum Average

[20 20] 0.3 1 0.979 0.9866 0.9886 0.9874
[20 20] 0.25 2 0.9819 0.9711 0.9797 0.9755
[20 20] 0.2 3 0.9855 0.979 0.9844 0.9809
[25 25] 0.3 1 0.9782 0.961 0.9772 0.9686
[25 25] 0.25 1 0.9819 0.9601 0.9718 0.967
[25 25] 0.2 8 0.9855 0.8206 0.8592 0.8431
[30 30] 0.3 1 0.9783 0.9544 0.9688 0.9615
[30 30] 0.25 1 0.9819 0.9652 0.9754 0.9667
[30 30] 0.2 > 10 0.9842 0.9585 0.9699 0.9651

shown in Tables 4, 5 and 6 suggest the feasibility of the model that can predict tsunami arrival time when
the underwater earthquake locations is provided within the study domain.

The correlation between the known and predicted ETA using three different combinations of data for
an optimally trained network with two hidden layers using 30 neurons each trained to a mean square
error of 0.25 using the resilient back-propagation is shown in Figs 5, 6 and 7 corresponding to Tables 4,
5 and 6, respectively. An optimum selection of 25 neurons each was found to be sufficient keeping in
mind the skill factor of prediction of ETA using ANN.
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Table 6. Simulation results for 48 validation data when trained with 192 data (Combination 3)

Validation Data: 1 out of every 5 in ETA Database

Total number of data 240 Number of inputs 2
Training-Testing data 192 Number of outputs 47
Validation data 48

Neurons Goal Training time Training Validation correlation
(minutes) correlation Minimum Maximum Average

[20 20] 0.3 1 0.9784 0.943 0.9518 0.9471
[20 20] 0.25 1 0.9821 0.941 0.9567 0.9513
[20 20] 0.2 1 0.9856 0.951 0.9597 0.9573
[25 25] 0.3 1 0.9785 0.9452 0.9624 0.9545
[25 25] 0.25 1 0.9821 0.9503 0.9572 0.9534
[25 25] 0.2 1 0.9857 0.9464 0.9557 0.9511
[30 30] 0.3 1 0.9786 0.9489 0.9612 0.9543
[30 30] 0.25 1 0.984 0.9497 0.9588 0.9548
[30 30] 0.2 1 0.9856 0.9402 0.9554 0.9485

Fig. 5 Actual and predicted outputs (Validation data, Combination 1) for the best correlated output (Left)
and the worst correlated output (Right) for 47 coastal locations in Indian sub-continent.

10. CONCLUDING REMARKS

An effective tsunami early warning system is achieved when all persons in vulnerable coastal communities
are prepared and respond appropriately, and in a timely manner, upon recognition that a potentially
destructive tsunami is approaching. Timely tsunami warnings issued by a recognized tsunami warning
center are essential. When these warning messages are received by the designated government agency,
tsunami emergency response plans must already be in place so that well-known and practiced actions are
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immediately taken to evaluate the scientifically-based warning, and communicate an appropriate course
of action to ordinary citizens. Tsunami preparedness programs must be implemented on a national level
so that good decisions can be made without delay.

In this chapter, we discussed travel times for the first wave of tsunami approaching the coast which
has been subsequently verified by the computation carried out for the recent December 2004 Indian
Ocean tsunami from tide gauges as well as signatures of satellite tracks. It does not provide information

Fig. 7 Actual and predicted outputs (Validation data, Combination 3) for the best correlated output (Left)
and the worst correlated output (Right) for 47 coastal locations in Indian sub-continent.

Fig. 6 Actual and predicted outputs (Validation data, Combination 2) for the best correlated output (Left)
and the worst correlated output (Right) for 47 coastal locations in Indian sub-continent.
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on the arrival times of subsequent waves, nor does it provide information on how many waves will be in
the tsunami event, which wave in succession will be the highest, at what time each wave will arrive at a
given location on the coast line, the run-up along littoral belts and resulting inundation, how strong the
currents will be in each wave, exactly at what locations should people and domestic animals be evacuated,
how long should they be evacuated, at what time it will be safe for them to return, nonlinear dispersive
effects of tsunami waves, etc. To obtain detailed information about all these parameters, separate numerical
models of tsunami generation and propagation, and of coastal inundation should be developed. The
importance of such study in computing TTT is to extend this computational algorithm for multiple
tsunami-genic locations in the Indian Ocean rim facilitating development of ETA database. This basic
information can be used as extremely important database for early response in the development of tsunami
warning systems.

We demonstrated here how soft computing tools like ANN could handle the non-linear system where
the prediction of ETA at different coastal destinations of Indian sub-continent is achieved in a real-time
mode. The algorithm uses earthquake locations and computed travel time from the ETA database. It
could be advocated that the major advantage of using ANN in a real-time tsunami travel time prediction
is its high merit in producing ETA at a much faster time and simultaneously preserving the consistency
of prediction. The model using ANN performs a rapid computation of ETA (on average of four seconds)
compared to the conventional travel time model which takes approximately 60 minutes. The correlation
is found very high for the unseen data as noted from different combinations of training and testing the
ANN. The importance of this model is highly justified for a tsunami warning system where the time
involved in computing ETA and the issue of warning messages to coastal destination is a critical factor.
The proposed method is expected to have direct practical applications for a real-time tsunami warning
system for the Indian Ocean as well as the global oceans. For the benefit of the readers, an atlas on
comprehensive database of Tsunami Travel Time for the Indian Ocean is available at http://
www.iitkgp.ac.in/topfiles/tsunami.html. Finally, the validation capability of the model was found to be
satisfactory and reliable which suggests its applicability for real-time prediction.

In context of known natural disasters such as earthquakes, floods, cyclones, storm surges, landslides,
volcanic eruptions, etc., warning systems exist for most of these disasters except for earthquakes.
Developed nations like the USA and Japan are prepared to cope even with earthquakes. Hence, developing
nations need to gear up with technology which can be helpful in the event of natural disasters. In case of
a tsunami event, the basic and vital information is the time of arrival at various coastal destinations of a
nation and hinterland. In this context, we demonstrated the importance of ANN as a tool for an effective
tsunami warning system. However, an effective tsunami warning system is a composite feedback
mechanism starting from in situ bottom pressure sensors, communication linkage from sensors via satellite
to land-based stations and final processing of information at a nodal agency for an alert warning to
various coastal destinations. The discussion in this chapter pertains to the computation of TTT and how
this vital information can be expedited using soft computing tools like ANN. For the operational purpose,
database within ETA needs to be periodically updated by TTT computations for earthquake locations
which is the future scope not covered in this study. Overall, it can be concluded that modern technology
can prevent or help in minimizing the loss of life and property provided we integrate all essential
components in the warning system and put it to the best possible use.
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