
Chapter 8
Methodology of Pollution Ecology: Problems 
and Perspectives

8.1  Importance of Observational Studies

Charles J. Krebs (1989) started his famous book Ecological Methodology with the 
following statement: ‘Ecologists collect data and, as in other fields in biology, the 
data they collect are to be used for testing hypotheses’. This is true, but where do 
the new hypotheses originate?

The roots of many theories, including the Newton’s law of universal gravitation 
and Darwin’s evolutionary theory, emerge from systematic or occasional observa-
tions. Accumulation of data on rainfall acidity, measurements of which for a long 
time were driven by scientific curiosity, in the 1950s and 1960s allowed scientists 
to determine the origin of acidity and recognise the damaging effects of acid rain. 
The importance of observational studies (sometimes termed mensurative experi-
ments) still remains high, especially for environmental sciences, which often face 
novel problems associated with the rapid development of our civilisation.

Environmental scientists have often been blamed for preferring a narrative 
approach to hypothesis testing. For example, only 20% of papers published in the 
Journal of Applied Ecology in 1999 explicitly stated clearly testable hypotheses 
(Ormerod et al. 1999). However, in our opinion, this situation reflects a shortage of 
relevant hypotheses rather than the incompetence of environmental scientists or 
their reluctance to use the hypothesis-testing approach. Our survey of several dozens 
of publications summarising the knowledge on pollution effects on biota (Smith 
1974; Miller & McBridge 1975; Kozlowski 1980; Auerbach 1981; Alstad et al. 
1982; Newman & Schreiber 1984; Odum 1985; Rapport et al. 1985; Schindler 
1987; Sigal & Suter 1987; Bååth 1989; Freedman 1989; Riemer & Whittaker 1989; 
Treshow & Anderson 1989; Barker & Tingey 1992; Heliövaara & Väisänen 1993; 
Clements & Newman 2002) turned up quite a few testable predictions.

The advancement of pollution ecology requires further accumulation of obser-
vational data on changes in landscapes, ecosystems, communities, populations and 
individual organisms occurring around industrial polluters. This information is 
necessary for exploratory analyses leading to the generation of specific hypotheses, 
which can be tested using field and laboratory experiments.
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8.2  Interpretation of Experimental Results

A substantial part of our knowledge of responses of organisms, populations, and 
communities to pollution originates from experimental studies, mostly conducted 
in artificial (laboratory) environments. For example, 42 of 50 relevant recent (2008) 
publications (25 from Environmental Pollution and another 25 from Water, Air, and 
Soil Pollution) referred to laboratory experiments, compared to 11 papers  
that reported field manipulations; only four papers combined these approaches. 
Six papers reported use of micro- or mesocosms, while the remaining majority of 
experimental systems were obviously oversimplified in terms of both abiotic and 
biotic environments.

More generally, ecosystem-level and community-level field experiments with 
industrial pollutants remain as rare as they were 2 decades ago (Schindler 1987), 
and most of these experiments are conducted in aquatic systems. The limited 
number of large-scale manipulations with terrestrial biota is considered a signifi-
cant shortcoming of ecotoxicology (Clements & Newman 2002). Harvesting the 
results of ‘unintentional pollution experiments’ (Lee 1998) established by indus-
tries long ago (Section 1.4) can partially overcome this problem.

Laboratory studies, by eliminating a substantial part of natural variability, are 
likely to produce biased results, in particular due to (a) investigation of only a few 
‘model’ species, with preferences for short-living and easy-to-handle organisms, 
(b) unrealistic environments, including the use of closed chambers, unnatural 
growth media for plants, the absence of mutualists, e.g., mycorrhizal fungi, 
competitors and benefactors, (c) unrealistic forms in which pollutants are applied 
to organisms, (d) unrealistic demographic structures of experimental populations, 
e.g., preferential use of seedlings to explore responses of woody plants, and (e) the 
short duration of the experiments relative to decades or even centuries of ecosystem 
exposure to industrial pollutants (Patterson & Olson 1983; Stenström 1991; 
Sandermann et al. 1997; Saxe et al. 1998; Weltje 1998; Ahonen-Jonnarth et al. 
2000; Koster et al. 2006). Importantly, the outcomes of field and laboratory studies 
addressing pollution effects on biota have not, to our knowledge, been compared 
systematically (except for some specific ecotoxicological tests: Hose et al. 2006), 
and therefore the biases introduced by experimental methodology remain insuffi-
ciently known.

The importance of indirect effects, which are usually neglected in manipulative 
studies with industrial pollutants, can be demonstrated by a seemingly paradoxical 
increase in plant performance, repeatedly observed in the heavily polluted sites 
near the nickel-copper smelter in Monchegorsk. For example, in industrial barrens, 
some dwarf shrubs grow and reproduce better than in unpolluted forests, especially 
when they are sheltered by mountain birch trees (Zvereva & Kozlov 2004, 2005). 
The leaf size and shoot growth of boreal willow, Salix borealis increased with an 
increase in pollution (Zvereva et al. 1997a). Similarly, birch seedlings planted in 
metal-contaminated bare ground after 3 years of exposure were taller, had longer 
leaves and had a higher survival rate than those in the unpolluted forest (Eränen & 
Kozlov 2009). In our opinion, these ‘positive’ effects observed in heavily polluted 
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environments resulted from the absence of competing vegetation that declined decades 
ago. In general, the effects of pollution on competitors or benefactors of the organ-
ism under study may be so strong that they counterbalance direct toxic effects of 
pollutants.

Additional uncertainties in interpretation of experimental results are introduced 
by using organisms from populations that have not been exposed to pollutants prior 
the experiments. One of the examples of an obvious discrepancy between observa-
tional and manipulative studies, presumably resulting from this approach, concerns 
the effects of industrial pollutants on the growth of herbaceous plants. Experimental 
studies, conducted both in fully controlled environments and under field conditions, 
usually report the adverse effects of different pollutants on herbaceous plants (Brun 
et al. 2003; Tuma 2003; Hassan 2004; Rämö et al. 2006; Ryser & Sauder 2006). 
Consistently, many ecotoxicological tests are based on measurements of plant size 
or biomass (Rajput & Agrawal 2005; An 2006; Everhart et al. 2006; Rombke et al. 
2006; Rooney et al. 2006). At the same time, herbaceous plants naturally occurring 
near big polluters only rarely differed from plants collected from unpolluted envi-
ronments in terms of growth characteristics (Kozlov & Zvereva 2007b; Figs. 4.11, 
4.12, 4.17 and 4.18). We hypothesise that micro-evolution, often leading to the 
development of pollution tolerance (Bradshaw & McNeilly 1981; Shaw 1990; 
Macnair 1997; Barnes et al. 1999; Medina et al. 2007), is a plausible explanation 
of the discrepancy between the results of controlled experiments and field-collected 
data (Kozlov & Zvereva 2007b).

We conclude that short-term experiments with non-adapted organisms in over-
simplified laboratory environments are likely to overestimate the adverse effects of 
industrial pollutants. Results of these experiments can be used for estimation of the 
relative toxicity of different substances, but they are of limited value for both 
explaining and predicting effects observed in polluted environments. Even more 
importantly, community responses cannot be inferred from the results of single-
species experiments. Thus, both dedicated observational studies and field experi-
ments remain of critical importance for the development of pollution ecology, in 
particular as a tool to validate the results of laboratory tests.

8.3  The Amount of Reliable Information

It seems that many ecologists consider exploration of the effects of industrial pol-
lution on biota outdated and believe that this research field is nearly exhausted. 
Both impressions are far from correct.

First and most importantly, inputs of industrial pollutants, primarily sulphur diox-
ide, into the atmosphere remain extremely high and continue to contribute to local 
air pollution, smog, acid rain, dry deposition, and global climate change. Although 
the global SO

2
 emissions at the beginning of the 2000s were reduced by 22% relative 

to the peak value observed at the end of the 1980s, still they remain at the level of 
the mid-1960s (Stern 2006). Sulphur dioxide was recently identified as the air pollutant 
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of the highest national concern for India (Agrawal 2005). Thus, there is no doubt that 
sulphur dioxide and many other pollutants, especially metals and fluorine accumu-
lated in soils, continue to affect terrestrial biota. Even under the most optimistic 
emission scenarios, these effects will remain an issue of importance for at least sev-
eral decades (Barcan 2002a; Fowler et al. 1999; Karnosky et al. 2003a).

Second, even the acute effects of pollution are not documented properly. In spite 
of the high number of publications, the amount of reliable data published in a form 
suitable for meta-analyses is surprisingly low (Fig. 1.2). Moreover, researchers tend 
to focus on the impacts imposed by ‘pollution superstars’, such as large non-ferrous 
smelters, while the effects caused by smaller industries (emitting 1,000 to 10,000 t 
SO

2
 annually) remain almost unexplored. This shortage of information decreases 

reliability of estimations of dose-response relationships at lower levels of pollu-
tion, i.e., in concentration ranges which are most important for predicting pollu-
tion effects at regional scales.

Third, researchers tended to explore pollution effects on species of the highest 
economic importance, primarily forest-forming conifers and agricultural crops. 
However, incorporation of pollution effects into biogeochemical models, such as 
LPJ-GUESS (General Ecosystem Simulator: Smith et al. 2001; Sitch et al. 2003), 
requires parameterisation of growth responses to pollution (including changes in 
competitive abilities as well) for all cohorts of plant functional types included. 
Absence of this information hampers the modelling of regional and global effects 
of industrial pollution on vegetation structure. Importantly, we are likely to under-
estimate the importance of both ‘low’ (i.e., not exceeding the critical loads) deposi-
tions of pollutants and ‘minor’ differences in pollution impacts on plant species or 
functional groups. For example, the introduction of a small biotic disturbance 
(insect herbivory) into the LPJ-GUESS model demonstrated that relatively minor 
damage to birch (annual removal of 1–10% of foliage) changes predictions of 
future forest composition (Wolf et al. 2008).

Thus, there is acute need for reliable quantitative information concerning the 
responses of different groups of biota to industrial pollution. This information can 
be immediately utilised in both building phenomenological models and adjusting 
existing ecosystem simulators in order to improve our predictions of regional to 
global pollution effects on terrestrial ecosystems.

8.4  Quality of Information

8.4.1  Design of Impact Studies

For a long time, researchers exploring pollution effects on biota were advised to 
pay special attention to both experimental design and statistical analysis, because 
they ‘are as important as the choice of monitoring parameters and techniques’ 
(Sigal & Suter 1987). However, both recent meta-analyses (Ruotsalainen & Kozlov 
2006; Zvereva et al. 2008; Zvereva & Kozlov 2009; Roitto et al. 2009) and narrative 
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review of studies addressing forest health (Percy & Ferretti 2004) clearly demonstrated 
that the majority of primary studies suffer from a number of methodological 
shortcomings.

Different approaches have been suggested to monitor chronic, local environmental 
impacts (Stewart-Oaten & Bence 2001). The most well known include intervention 
analysis, which compares time series before and after an onset of impact at the 
affected site, so-called BACI design (Before-After, Control-Impact comparisons), 
and impact versus reference sites. The latter approach estimates error variation 
among sites, while intervention analysis and BACI estimate error variation over 
time (Stewart-Oaten & Bence 2001). All approaches require the selection of ade-
quate temporal and spatial scales (Hewitt et al. 2001), and the results of compari-
sons should always be interpreted with caution, especially in terms of the causality 
of the observed differences (Section 9.2.3).

Except for dendrochronological analysis, comparison between observations conducted 
before and after the beginning of impact is only rarely used in studies of biotic effects 
caused by industrial pollutants. This is mostly due to an absence of adequately col-
lected information about the state of the impacted ecosystems before the onset of 
pollution. As a rule, the error term in testing for the significance of the effect is 
obtained from comparisons among study sites. Therefore the quality of information, 
obtained by comparison between polluted (treatment) and unpolluted (control) habi-
tats depends critically on the number of study sites. For the following analysis, we 
used a database of approximately 2,000 primary studies that describe responses of 
terrestrial biota to industrial pollution and the fit criteria listed in Section 5.1.2.

Generally, the sampling design of published studies was poorly replicated.  
The median number of study sites in a random sample of 1,000 publications was 
five (Fig. 8.1). Even more importantly, 35% of publications were based on two or 

Fig. 8.1  Frequencies of studies based on different numbers of study sites in a random sample of 
1,000 publications reporting biotic responses to industrial pollution. For criteria used to select 
these publications consult Section 5.1.2
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three study sites, which means that either ‘treatment’ or ‘control’ or both were not 
replicated. The use of statistical analysis in this situation yields the pseudoreplica-
tion problem (Hurlbert 1984; Kozlov 2003, 2007; Kozlov & Hurlbert 2006). 
Because of repeated attempts to defend the use of non-replicated experimental 
design (Tatarnikov 2005; Veličković 2007b), we briefly explain the problems aris-
ing from comparisons between one polluted and one unpolluted study site.

A statement on the similarity or dissimilarity of two groups of objects is valid 
only when between-group differences are compared with within-group variation. 
Very importantly, the level at which the variation is measured within a group is 
critical. It is also obvious that assessment of within-group variation is only possible 
when the group consists of more than one object. When there is only a single 
experimental unit under each treatment, and within-group variation is calculated 
from measurements made on multiple samples or evaluation units within a single 
experimental unit (for definitions, consult Kozlov & Hurlbert 2006), then simple 
pseudoreplication is committed (Hurlbert 1984; Kozlov & Hurlbert 2006). Variation 
within study sites represents another level, one step down in the hierarchical analysis. 
This variation can only be used to test for differences between sites, but such tests 
cannot provide a statistical ground for attributing the differences to pollution 
(Kozlov 2007).

Earlier meta-analyses (Zvereva & Kozlov 2006a, 2009) demonstrated that effect 
sizes calculated on the basis of pseudoreplicated studies may be both higher and the 
same as those based on properly replicated studies. Pseudoreplicated studies allow 
only calculation of Hedge’s d effect size, which increases with both decrease  
in within-group variation and increase in sample size (Rosenberg et al. 2000). 
The higher effect sizes obtained by pseudoreplicated studies on insect and plant 
responses to pollution result from both (a) the generally higher number of samples 
collected within a site, relative to the number of study sites in properly replicated 
studies, and (b) generally lower within-site variation relative to between-site varia-
tion. Research bias associated with the selection of two ‘typical’ study sites, one 
polluted and one unpolluted (control), is likely to further overestimate the effect 
(Zvereva & Kozlov 2009). Thus, when exclusion of pseudoreplicated studies from 
meta-analysis results in too low a number of suitable studies (Ruotsalainen & 
Kozlov 2006; Zvereva & Kozlov 2006a, 2009), the outcomes of these studies 
should be contrasted with the results based on properly replicated studies to account 
for the effects of methodology.

To conclude this part of the data quality assessment, we strongly recommend 
that the impact versus reference sites design includes at least two polluted and two 
control plots. This design allows correct testing of H0 (no differences between polluted 
sites and unpolluted sites) by using ANOVA based on site-specific mean values of 
the character under study. Furthermore, this design allows use of the data in meta-
analyses employing both Hedge’s d and correlation coefficients as measures of the 
effect size. However, although four study sites allow the correct use of statistical 
methods, both the accuracy of the effect estimate and the power of the analysis 
based on four study sites are rather low (Section 8.4.3).

Another insufficiently explored potential source of problems is the spatial 
arrangement of study sites. First, this information is reported much more seldom 
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than the number of study sites: it was missing in 493 of 1,000 publications randomly 
selected from our database. The majority of studies that reported sampling design 
in sufficient details either selected each study site in a different direction from the 
polluter (38%) or positioned study sites along a single gradient (transect) starting 
from the polluter (37%). The latter design is potentially dangerous due to the pos-
sibility to erroneously attribute effects caused by another environmental variable to 
the effects of pollution. For example, the selection of all study sites to the South of 
the nickel-copper smelter in Monchegorsk, with control sites located up to 200 km 
from the polluter (Norin & Yarmishko 1990; Kabirov 1993; Zhirov et al. 1993; 
Evdokimova 2000; Lukina et al. 2005), does not allow discrimination of the effects 
of pollution from climatic (latitudinal) variation. Choosing study sites in several 
directions from the polluter (Figs. 2.2–2.19) is likely to minimise impact of con-
founding variables on the outcome of data analyses.

8.4.2  Signal to Noise Ratio

Most of studies addressing pollution impacts on biota were initiated when effects 
were already evident, and papers describing severely degraded ecosystems around 
major smelters (Gordon & Gorham 1963; Wood & Nash 1976; Freedman & 
Hutchinson 1980b) are most frequently used to illustrate consequences of pollution 
impact on biota. However, it would be risky to rely on these studies alone to predict 
ecosystem responses to contamination (Schindler 1987).

Wolterbeek et al. (1996) criticised the literature on biomonitoring for focussing 
on the detected changes in monitored parameters (signal) and neglecting the infor-
mation about the range of natural variation (noise). The latter information is indeed 
essential to test whether the monitored character began to vary outside its normal 
range, thus indicating that the ecosystem is perturbed or stressed (Hurlbert 1984; 
Schindler 1987; Hewitt et al. 2001). The problem is that we usually do not know 
the normal range for any variable, at least for time periods greater than a few years 
(Schindler 1987). The only exception is dendrochronology, routinely accounting 
for natural variation in tree growth over decades or even centuries. Even explora-
tion of insect population dynamics is commonly (Turchin 1990; Berryman 1994) 
based on time series shorter than 30–40 generations (which are considered ideal for 
detecting factors that influence population dynamics: Royama 1992), because 
longer-term data are rare (Hunter & Price 1998). Cyclic fluctuations in many popu-
lation characteristics always pose a risk of erroneous interpretation of the results of 
short-term studies: different characteristics of populations from polluted and unpol-
luted habitats may result from asynchronous density changes in spatially isolated 
populations rather than from pollution impact on population dynamics (Zvereva  
et al. 2002; Zvereva & Kozlov 2006b, 2009).

In our study we detected significant between-site variation in 73.8% of 782 
statistical tests (Chapters 3–7); however, only 20.4% of 1,446 individual correlation 
coefficients demonstrated significant relationships between the explored character-
istics and pollution load. The proportion of significant correlations increased with 
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the proportion of significant tests of between-site variation (r
S
 = 0.66, N = 19 

characters, P = 0.0019), hinting that the contribution of detectable pollution-related 
effects to the overall spatial variation in all explored characteristics was more or 
less the same.

Of course, the proportion of significant tests is a very rough measure of the 
frequency of detectable effects associated with pollution, because this proportion 
depends on both the accepted level of the significance and on the statistical power 
of the tests (Section 8.4.3). Still, we were able to detect pollution ‘signal’ in only 
about one fourth of situations when the between-plot variation was significant. 
Furthermore, the detected signal was rather small: on average, only about 15% of 
variability among our study sites, which always included both most and least 
polluted habitats (Figs. 2.2–2.19), was explained by pollution load. This conclusion 
further stresses the need to properly account for variation in the characteristics 
under study in order to partition pollution effects on biota from variation caused by 
other factors.

There is no doubt that regional increases in pollutant concentrations are gener-
ally below the levels of environmental contamination observed near industrial polluters. 
Since the localised and relatively strong environmental contamination generally 
causes biotic effects of low magnitude, accurate identification of the consequences 
of regional pollution may require more effort than commonly thought. Moreover, 
the low signal to noise ratio increases the probability of erroneous attribution of 
natural spatial or temporal variation to pollution. Properly replicated sampling 
design, selection of adequate temporal and spatial scales, careful use of statistics 
and exploration of causal relationships behind the observed effects are essential to 
overcome this problem.

8.4.3  Power of Correlation Analyses

Data collected around the industrial polluters are most frequently analysed by calcu-
lating correlations between the measured parameters and either distance from the 
polluter or concentration of some pollutant. In a random sample of 1,000 publica-
tions from our collection, correlation analysis was used in 32% of studies properly 
reporting the use of statistical methods. Together with publications that employed 
regression analysis (15%), they comprise nearly a half of all studies.

Analysis of 1,446 individual correlation coefficients calculated from our data 
(Chapters 3–7) demonstrated that the average absolute value of correlation was 
relatively small (mean ± S.E.: 0.395 ± 0.006), corresponding to the effect size 
(z-transformed correlation coefficient) of 0.42. According to classification by 
Cohen (1988), our sample included 24.9% of small effects (£0.20), 24.3% of 
medium effects (0.20–0.40) and 50.8% of large effects (>0.40).

Assuming that the effect size of 0.4 is sufficiently representative for correlations 
between the measures of pollution load and biotic variables, we conclude that the 
statistical power (a = 0.05, one-tailed test) of each individual correlation analysis 
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based on ten study sites was on average only 34%. In other words, two thirds of the 
individual analyses committed the Type II statistical error, i.e., acceptance of the 
null hypothesis (variation of measured variable is independent from variation in 
pollution load), while in fact H1 (variation of measured variable is associated with 
variation in pollution load) was true.

The average statistical power of 40–47% (to detect a medium effect size) of tests 
published in behavioural journals was considered ‘distressingly low’ by Jennions 
and Møller (2003). The situation in pollution ecology is even worse. The median 
number of study sites in a random sample of papers that have used correlation analy-
sis to detect the biotic effects of pollution was seven. Thus, on average only 25% of 
the published tests had a chance to detect an effect size of 0.4. Power of these pub-
lished tests was only sufficient (80%) to detect very large effects (|r| ³ 0.83, corre-
sponding to z

r
 = 1.19), which are extremely infrequent (5% of our sample).

The most straightforward solution to this problem is to increase sample sizes.  
To increase the statistical power of correlation analysis to the recommended level 
of 80% (to detect an effect size of 0.4), the number of study sites should be at least 
36. It may be argued (Jennions & Møller 2003) that logistic, ethical, conservation, 
and financial constraints make this impossible: only 7.2% of 1,000 publications 
from our database reported data sampling from 38 or more study sites (Fig. 8.1). 
Moreover, since many researchers tend to design their studies by analogy with 
previously published work, it seems unlikely that the number of study sites in field 
studies addressing pollution effects on biota will increase rapidly.

The low statistical power of tests based on small samples demonstrates the need 
to use meta-analysis for generalization of the accumulated data. Although this need 
was recognised long ago (Armentano & Bennett 1992), little was done to fully inter-
pret the literature and ascertain the likelihood of trends common to ecosystems and 
pollutant regimes (Ruotsalainen & Kozlov 2006; Zvereva et al. 2008; Zvereva & 
Kozlov 2009; Roitto et al. 2009). The experience of medical sciences demonstrated 
that meta-analysis of numerous small-scale studies (only few of which are likely to 
detect significant trends) may provide a more cost-effective way of assessing the 
value of a treatment than investing in a few large-scale studies (Song et al. 2000).

8.4.4  Correlation with Pollution or Correlation with Distance?

It has been frequently argued that comparisons of the results from the literature are 
complicated by varying methods and objectives (Armentano & Bennett 1992; 
Glasziou & Sanders 2002). One of specific sources of variation in methodology of 
pollution-oriented studies is the choice of explanatory variables for correlation 
analyses. Authors of primary studies correlate their results with a variety of para- 
meters, including distance from the polluter and concentrations of different pollutants 
in ambient air, snow, soils, or different organisms. Some authors constructs so-called 
‘toxicity indices’, usually computed as linear combinations of absolute or relative 
concentrations of several pollutants (Rühling & Tyler 1973; Vorobeichik et al. 
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1994; Mumtaz et al. 1997; Mowat & Bundy 2002; Simonsen et al. 2008). 
Consequently, the validity of a meta-analysis that combines studies based on cor-
relations with different explanatory variables can potentially be questioned.

Averaging the absolute values of Pearson’s linear coefficients across the entire 
study (Chapters 3–7) demonstrated that correlations with both log-transformed 
distance from the polluter and foliar concentration of one of the pollutants yielded 
apparently the same overall conclusions (z-transformed values: F

1, 1444
 = 0.00,  

P = 0.95). This is not surprising, since concentrations of all pollutants in all media 
(ambient air, soils, plant and animal tissues) decrease proportionally with increas-
ing distance from the smelter (Freedman & Hutchinson 1980a; Barkan 1993; 
Ruohomäki et al. 1996; Kozlov 2005a). Thus, the selection of the measure of the 
pollution load depends primarily on the study goals. If the study aims to demon-
strate the effect, then distance from the polluter may be the best proxy of pollution 
load. Even in medical studies, population exposure to pollution is often estimated 
on the basis of distance to pollution source (Gottlieb et al. 1982; Biggeri et al. 1996; 
Monge-Corella et al. 2008). Of course there are numerous exceptions related to 
local orography and meteorology (Vorobeichik et al. 1994; Kozlov et al. 1995), 
which may be critically important for case studies, but are of relatively little value 
for meta-analyses. Moreover, exploration of dose–response relationships requires 
the use of pollutant concentration (usually log-transformed) instead of distance.

Emissions of any polluter consist of dozens of substances, many of which are 
toxic. Since it is impossible to attribute the effects observed in the course of field 
studies to any of the individual pollutants, the best solution is to correlate the results 
with one of the ‘main’ pollutants, which may serve as an indicator of pollution load. 
Concentrations of metals, fluorine, or sulphur dioxide have been the most frequently 
used indicators in published primary studies. Importantly, estimates of pollutant 
concentrations in both ambient air and plant foliage show substantial temporal vari-
ation (Vorobeichik et al. 1994; Kozlov et al. 1995; Kozlov 2005a). Therefore, we 
recommend using the concentrations of individual pollutants (but not the toxicity 
indices) in media that accumulate pollutants during months (snow) or decades 
(soils and litter).

8.4.5  Gradient Approach or the Planned Contrast?

Keeping in mind that the median number of study sites in a random sample of 
1,000 published primary studies was five (Section 8.4.1), we checked whether a 
meta-analysis based on the contrast between the two most polluted and the two 
least polluted study sites (Hedge’s d effect size) yielded the same conclusion as a 
meta-analysis based on z-transformed correlation coefficients calculated from ten 
study sites.

Three methods of data analysis (correlation with distance, correlation with pol-
lution, and contrast between two most and two least polluted sites) after appropriate 
transformations produced similar effect sizes in all individual analyses (reported in 
Chapters 3–7) and in a pooled data set (F

2, 1824
 = 1.36, P = 0.26). However, this 
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result should not be interpreted as an excuse for using low number of study sites: 
although the average effect size was not affected, variance of each individual effect 
based on the contrast between the two most and two least polluted sites was on 
average seven times higher than for effect sizes based on ten study sites, thus affect-
ing the significance of the overall effect and hampering identification of the param-
eters explaining variation in effect sizes.

8.4.6  Importance of Supplementary Information

Information on the polluters, as well as on their environmental impacts, was poorly 
reported in most of the primary studies used in meta-analyses of the effects caused 
by industrial pollution (Ruotsalainen & Kozlov 2006; Zvereva et al. 2008; Zvereva 
& Kozlov 2009; Roitto et al. 2009). As a result, the values of many explanatory 
variables necessary for our analyses had to be found in additional publications, on 
the Internet and by personal contacts with authors, regional authorities or company 
representatives. This was the most difficult and time-consuming part of data collec-
tion; still, in some cases we were unable to obtain the data of critical importance, 
which affected the number of studies involved in individual analyses.

Integrating our experiences over the course of this work, we suggest the mini-
mum minimorum list of characteristics that need to be reported in each study 
addressing impact of industrial polluters on biota in order to allow its efficient use 
in subsequent comparative studies an\d meta-analyses.

Emission source
  General information
    Name of the polluter
    Type of the polluter (e.g., copper smelter, coal-burning power plant)
  Geographical information
    Country, administrative region within the country
    Position relative to large settlement(s)
    Latitude, longitude, and altitude above sea level
  Historical information
    The year of establishment (beginning of pollution impact)
  Chemical information
    List of most important pollutants
    Amount of emissions during the study year(s)
Impact zone
  Geographical information
  �  Presence of other point polluters with similar or larger environmental impacts 

within the impact zone of the polluter under study
  Landscape information
    Biome
    Landscape characteristics (plain, hilly, river valley, rocky mountain slopes)
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  Ecological information
    Pre-industrial vegetation (type, physiognomy)
    Soil type and basic characteristics (including pre-industrial pH of topsoil)
  Historical information
    Brief history of environmental impact
  �  References to most important studies reporting pollution loads and environ-

mental effects
  Chemical information
  �  Spatial pattern of pollutant distribution (maximum concentrations, size and 

shape of the contaminated area)

8.5  Research and Publication Biases

Bias is a term used to describe a tendency or preference towards a particular perspective, 
ideology or result, especially when the tendency interferes with the ability to be 
impartial, unprejudiced, or objective. Investigation of biases and prevention of their 
impacts on general conclusions is of specific importance for meta-analyses (Begg 
1994; Palmer 1999; Murtaugh 2002; Leimu & Koricheva 2004; Delgado-Rodríguez 
2006; Formann 2008).

The accuracy of conclusions made on the basis of meta-analyses may suffer 
from the research bias - the tendency to perform experiments on organisms or under 
conditions in which one has a reasonable expectation of detecting statistically sig-
nificant effects (Gurevitch & Hedges 1999). For example, studies of herbivore 
populations are likely to start in the year and on the site when herbivore damage  
is apparent (Zvereva & Kozlov 2009). Similarly, studies of pollution impact on 
vegetation are generally initiated following the appearance of visible damage 
(Anderson 1966; Linzon 1966; Murtha 1972; Tikkanen & Niemelä 1995) and are 
often confined to sites where the damage is most prominent. Some of these impact 
studies were even lacking controls (Wong 1978; Banásová et al. 1987). On the other 
hand, the decline of forests near point polluters resulted in the exclusion of barren 
areas from forestry-oriented projects, reports of which (Wotton & Hogan 1981; 
Scale 1982) therefore provided no information on the consequences of the most 
severe impacts on vegetation. The non-random selection of a pair of ‘typical’ study 
sites (one polluted vs. one control site) tends to overestimate the effect through a 
bias towards intuitive results (Zvereva & Kozlov 2009). Last but not least, the 
majority of pollution studies originated from Europe and, to a lesser extent, from 
North America, while other regions remain almost unexplored (Ruotsalainen & 
Kozlov 2006; Zvereva et al. 2008; Zvereva & Kozlov 2009; Roitto et al. 2009). 
Especially critical for the generalization of the results is the absence of information 
on subtropical and tropical regions, housing the largest part of terrestrial biodiversity.

If the probability of publication depends on factors other than the quality of the 
research, then we may face the problem of publication bias. Studies that disagree 
with the prevailing trend will not be published, especially when they are based on 
relatively small samples (Light & Pillemer 1984; Begg 1994), or their publication 



8.5  Research and Publication Biases	 335

will be delayed (Møller & Jennions 2001), or they will appear in less visible jour-
nals (Leimu & Koricheva 2004). Preferential publication of studies with significant 
outcomes that confirm the general paradigm may result in a correlation between 
effect size and sample size. In our meta-analyses of the published results, effect 
sizes were generally independent of sample size (Ruotsalainen & Kozlov 2006; 
Zvereva et al. 2008; Zvereva & Kozlov 2009), except for studies on plant fluctuating 
asymmetry (Section 5.4.3). We also found bias in reporting the data when quantita-
tive information was provided only for species fitting the research hypothesis (density 
increase), while species that did not show density changes were only briefly mentioned 
(Selikhovkin 1986; Shelukho 2002).

Due to the sensitivity of the research topic, some studies may remain unpub-
lished due to efforts by industry to protect itself from unwanted examination of its 
impact on the environment and surrounding population (discussed by Moffatt et al. 
2000). The best known example is the governmental policy of the former USSR, 
where publication of ‘negative’ information was prohibited for decades (Komarov 
1978). We are aware of several recent examples, based on financial rather than legal 
restrictions. The experience of epidemiological research showed that opposite situ-
ations may also well exist, when negative or inconclusive evidence is likely to be 
discounted (Balshem 1991; Moffatt et al. 2000). This source of dissemination bias 
deserves special investigation.

The studies included in ISI databases reported stronger negative effects of pol-
lution on diversity of vascular plants (Zvereva et al. 2008) and abundance of her-
bivorous insects (Zvereva & Kozlov 2009) but weaker effects on plant growth and 
reproduction (Roitto et al. 2009) than other publications. The discovery of this bias 
emphasises the need to account for studies published in less visible data sources 
(book chapters, conference proceedings, journals published in national languages, 
and ‘grey’ literature) in order to obtain less biased estimates of effect size in meta-
analytical research syntheses (Murtaugh 2002).

The temporal trend in the magnitude of the reported effects is a general phenom-
enon in ecology (Jennions & Møller 2002; Leimu & Koricheva 2004). We detected 
a decrease in the estimates of pollution effects on herbivore population density from 
1965–1989 to 1990–2008 (Zvereva & Kozlov 2009), which we tentatively attribute 
to the improvement in research methodology. The hypothesis on the increase in 
herbivory under pollution impact came through developmental stages that are typical 
for any ecological hypothesis (Leimu & Koricheva 2004): from supportive evidence of 
the newly formulated hypothesis to the accumulation of disconfirming evidence. 
This accumulation of non-supporting evidence during the period of most intensive 
studies in the 1990s resulted in a shift from highly significant positive effects to 
non-significant effects and caused doubts about the generality of this phenomenon. 
Meta-analysis of published data contributes to the third stage in the development 
of the hypothesis - the restriction of its scope by discovering sources of variation in 
herbivore responses to pollution (Zvereva & Kozlov 2009).

Comparison of original data (Chapters 3–7) with the outcomes of earlier studies 
(Table 8.1) demonstrated that published data generally overestimate (by a factor of 
5 on average) the magnitude of the effects of industrial pollution on terrestrial biota. 
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Furthermore, for both density of insect herbivores and plant damage by these 
insects, the original data indicated either no effect or a slight decrease with pollu-
tion, while published data reported strong increase with pollution (Table 8.1).  
Of course, it can be argued that we collected our data in the 2000s, when emissions 
from industrial enterprises were generally lower than in previous decades. However, 
we think that an overall decline of emissions explains only a minor part of the 
detected differences between the published and original data. A substantial part of 
the effects observed near the point polluters is due to a large pool of pollutants 
(metals and fluorine-containing substances) accumulated in soils (Haidouti et al. 
1993; Lyubashevsky et al. 1996; Giller et al. 1998; Nahmani & Lavelle 2002; 
Kozlov & Zvereva 2007a). Natural leaching of these pollutants will continue for 
decades or centuries before they approach pre-industrial levels (Tyler 1978; Barcan 
2002a), and only the very first signs of vegetation recovery were observed around 
some of the polluters explored by our team (Eeva & Lehikoinen 2000; Chernenkova 
et al. 2001). Therefore, we tend to attribute the differences detected between the 
effect sizes calculated from published and original data (Table 8.1) not to emission 
decline but to the biases discussed above.

Since we revealed a marked diversity of pollution effects on terrestrial biota, we 
strongly encourage researchers and editors to publish results that are unexpected or 
seem strange. The occasional observation of truly surprising phenomena is the 
norm in ecology, not the exception (Doak et al. 2008). Elimination of these results 
at the pre-publication stage (decision not to submit the manuscript) or by reviewers 
(frequently due to disagreement with the prevailing paradigm) is likely to bias our 
estimates of overall effects, sometimes leading to the dominance of incorrect or 
exaggerated opinions (partially discussed in Section 9.2). Even more importantly, 
these ‘outliers’ are critically important for the exploration of the sources of varia-
tion in responses of organisms and ecosystems to pollution.

Table 8.1  Comparison between mean effects sizes based on published studies and on the original 
data

Character

Published data Original data

r N Reference r N Reference

Leaf/needle size −0.48 204 Roitto et al. 2009 −0.11   88 Fig. 4.7
Shoot length −0.47 164 Roitto et al. 2009 −0.14 111 Fig. 4.13
Radial increment −0.59   40 Roitto et al. 2009 −0.35   10 Fig. 4.19
Plant fluctuating asymmetry 0.31   25 Section 5.4.3,  

Table 5.1
  0.00   61 Fig. 5.5

Plant diversity −0.64   45 Zvereva et al. 2008 −0.33   12 Fig. 6.9
Density of insect herbivores 0.44 142 Zvereva &  

Kozlov 2009
−0.06   45 Fig. 7.1

Plant damage by insect  
herbivores

0.64   17 Zvereva &  
Kozlov 2009

−0.23   59 Fig. 7.4

All effect sizes were converted to correlation coefficients.



8.6  Summary	 337

8.6  Summary

Further accumulation of reliable observational data remains of critical importance 
for the development of pollution ecology. Results of short-term experiments with 
non-adapted organisms in over-simplified laboratory environments should be inter-
preted cautiously, since they are likely to overestimate adverse effects. Proper 
replication of sampling at all hierarchical levels, selection of adequate temporal and 
spatial scales, and careful use of statistics are the key factors assuring the quality of 
information on the effects of pollution on terrestrial biota. This information, sum-
marised by meta-analyses or other appropriate procedures, is necessary for explora-
tory research followed by the generation of specific hypotheses, which can be 
tested using field and laboratory experiments. In research syntheses, the utmost 
care should be taken to recognise biases affecting the outcomes of individual studies 
and mitigate their impacts on our knowledge. 
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