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Abstract. This article concentrates on the interplay between structural damage and
risk assessment on one hand and numerical techniques, especially for uncertainty quan-
tification, on the other hand. It shows the connection between damage assessment and
risk quantification, touching on the methods of probabilistic risk assessment (PRA). It
then details on how to initially asses the damage, which by necessity will involve some
uncertainty, and how to update that initial assessment through additional testing. This
is essential a statistical system identification process. The decision making process of
finding whether the structure should be repaired or demolished is also mentioned shortly.
It should involve a cost/benefit appraisal in the light of the information gained on the
extent of the damage. Especially if the damage was caused by environmental forces,
e.g. such as seismic action, it may be advantageous to determine the characteristic of
this external action which caused the damage. This is a similar problem to the system
identification of the structure, only that the testing is purely computational. Having
identified the cause and the extent of the damage, one may want to draw lessons as
to mitigate the hazard due future extreme environmental effect, in the form of robust
design, minimizing vulnerability of life-lines and the fragility of structures.
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1. Introduction

Structural Damage Assessment means to conduct damage and safety assess-
ments of civil engineering structures and of infrastructure, and to perform
structural inspections, and mitigation activities. The capability includes be-
ing able to provide contractor management, construction management, cost
estimating, technical assistance, and other engineering services to support
and manage response and recovery operations.

Here we will look at the role that uncertainty quantification can play
in this process. The desired outcome of such an activity is the efficient
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implementation, management, and coordination of resources, aids emer-
gency response, and recovery operations which restore the affected area to
pre-event conditions.

For this to occur future hazards from the sustained damage has to be
identified, the exposure to further threats has to be estimated, and the vul-
nerability of structures, infrastructure, and life-lines has to be considered.
This is very similar to the usual risk assessment procedure, only that now
the state of the system to be considered is also very uncertain, inasmuch
as the amount of damage is not known yet.

For any kind of activity its benefit has to be weighed versus its risk
(Starr, 1969). With structures and infrastructure that has been damaged,
it is similar. These notes will concentrate on these more fundamental issues
as well as on how a general procedure may actually be designed in structural
damage and risk assessment, rather than give any specific prescriptions or
guidelines on how to actually do the damage assessment, which may be
found e.g. in FEMA (2004).

2. Damage, hazard, risk, and uncertainty

First of course it is necessary to dwell a bit on ontology, as to what is really
meant by those terms damage, hazard, risk, and uncertainty.

2.1. ONTOLOGY

Let us start with the simplest of these, damage: Legally, as we are con-
cerned with structures and infrastructure, it is a property damage we are
talking about. It means that the object has changed in some way so that
it cannot be used any more in the way originally designed or intended.
A moment’s thought shows that it is not only the monetary damage to
objects (structures, infrastructure) which counts; as these may be life-
lines for the population living there, a damage can threaten health and
maybe even lives. Beyond that the damage maybe hampering economic
possibilities, this one could term opportunity costs (King et al., 1997). All
this of course enters into the decision which structures or infrastructure
to repair first in case many have been damaged. Certainly on top of the
priority list should be to avoid loss of life or hazards to health. When purely
monetary terms count, then of course the opportunity costs have to enter
the decision as well.

The term hazard is usually understood as the potential to cause harm
in some way, i.e. the possibility of something happening which would cause
further damage, or even loss of life. The larger the consequences or the
potential of a damage or loss, the higher the hazard. To identify hazard, it
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is necessary to follow a proper way of reasoning (Pearl, 2000) in order to
arrive at valid conclusions.

Hazard then has to be in some way combined with its frequency — or
rather probability — of occurrence, and a combination of these two is usually
taken to define risk (Kaplan and Garrick, 1981; Wilson and Crouch, 2001).
Often it is the product of these two quantities which are taken as the
definition of risk. In quite a number of cases, especially for very high or
very low hazards, or very low or high probabilities, this simple combination
seems not to be reasonable. It implicitly assumes that the decision-maker
taking a certain risk is risk-neutral, which most people are not. In fact most
people try to avoid risk, hence the institution of insurance.

The hardest to define of those terms seems uncertainty (Lindley, 2006),
especially when contrasted with risk. While we have already defined — even
though not completely specified — risk, it seems now the only thing left is to
define uncertainty. But here we have the opinion of Frank Knight (1921),
who in his view established a distinction between risk and uncertainty in
this way:

Uncertainty must be taken in a sense radically distinct from the familiar
notion of Risk, from which it has never been properly separated. ... The
essential fact is that ‘risk’ means in some cases a quantity susceptible
of measurement, while at other times it is something distinctly not of
this character; and there are far-reaching and crucial differences in the
bearings of the phenomena depending on which of the two is really
present and operating. ... It will appear that a measurable uncertainty,
or ‘risk’ proper, as we shall use the term, is so far different from an
unmeasurable one that it is not in effect an uncertainty at all.

Douglas Hubbard (2007) on the other hand gives the following distinc-
tions, which by now have found widespread use in quantitative fields such
as decision theory and statistics:

Uncertainty is a state where it is impossible to exactly or accurately
describe the present state (of some system), or future outcome.

Quantification of uncertainty is the assignment of probabilities to each
possible state or outcome.

Risk is a state of uncertainty where some possible outcomes have an un-
desirable effect, e.g. loss of life or property, damage to property.

Measurement of risk is the combination of quantified uncertainties which
represent losses with their respective magnitudes of risk.

Often the term risk is used interchangeably with its measure; and the term
state — unless qualified to mean the state of a system — is the state (of
information) of the decision maker, or the one who might suffer the loss.
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Of course the term wuncertainty appears from philosophy, psychology,
decision theory, probability, information theory to medicine and economics.
It is hardly surprising that there are many different views (Tannert et al.,
2007). This does not have to involve any philosophical statement on de-
terminism, but may simply mean that certain things are not predictable,
hence uncertainty is concerned with unpredictability and not a fundamental
philosophical statement about the nature of the universe.

We will stick to the latter of the two views above (Kaplan and Garrick,
1981), and further only look at what is called objective uncertainty (Tannert
et al., 2007), although subjective uncertainty in the form of moral un-
certainty certainly enters many decisions concerned with structures and
infrastructure and involving the hazards of loss of life and monetary costs.
Objective uncertainty we will often think of as further subdivided on one
hand into aleatoric uncertainty, where it is in the nature of things that we
cannot give an exact description of future outcomes, and where also this un-
certainty cannot be reduced arbitrarily through e.g. further measurements.
The other aspect of objective uncertainty we will call epistemic uncertainty,
i.e. it arises from our lack of information, and could possibly be reduced
e.g. by further measurements. In any case one may take the uncertainty as
a measure of information, our ability to predict a present state or future
outcome.

While most scientists agree that aleatoric uncertainty can be measured
via probability theory, and while there are convincing arguments that this
is also the proper view for epistemic uncertainty (Jaynes, 2003), there are
methods which are claimed to be suitable to model this kind of uncer-
tainty, like propagation of convex sets (containing the uncertain informa-
tion) (Natke and Ben-Haim, 1997; Ben-Haim and Elishakoff, 1990), or fuzzy
methods (Zimmermann, 1992; Uncertainty in Engineering, 2000).

In relation to hazards, vulnerability is the extent to which changes can
harm a system, i.e. in a certain sense its sensitivity to outside influences, or
the susceptibility to damage. A very similar term is fragility, i.e. when small
damages may yield a structure or infrastructure more or less completely
useless.

2.2. INTERDEPENDENCE

To complete the picture, one should also point out the many interdepen-
dencies which exist between the various concepts.

A damage may incur further hazards, insomuch as a damage changes
the state of the structure. This in turn may change the risk, as it changes
maybe also the probabilities of other events stochastically dependent on the
damage. It may also change the risk by changing the amount of subsequent
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loss. for many interdependent systems, such as an urban area, this may
lead to a cascade of risk and uncertainty.

One may now see that structural damage assessment is very similar to
any other model building (Pearl, 2000) exercise, and estimation of a state
as treated in many control theory texts, and system identification (Ljung,
1999).

Also obvious are similarities with risk assessment (Kumamoto and Hen-
ley, 1996), integrity or structural health monitoring (Yao and Kawamura,
2001), and performance prediction and diagnosis (Natke and Cempel,
1997). And certainly risk assessment is an integral part of any kind of risk
management (Flyvbjerg, 2006).

Damage and structural reliability (Ditlevsen and Madsen, 1996; Yao and
Kawamura, 2001) are similarly linked, first because structural reliability is
concerned with avoiding damage, or minimizing the probability of damage
occurring, and secondly because after a damage the methods of structural
reliability may be used to define subsequent and dependent risks.

3. Methods

A good general overview — although somewhat restricted — for a specific
but fairly exemplary application area is contained in (Net, 2000).

Methods to identify damage range from the purely educated visual
(FEMA, 2004) which will always be needed as a first guess (Revadigar
and Mau, 1999), to further testing (Pearl, 2000), maybe involving the
theory of design of experiments (Box and Hunter, 2005), and sequential
optimum design (of experiments) (Chernoff, 1972). These techniques, as
well as those already mentioned in Section 2.2 in (Ljung, 1999), as well
as those used to estimate the state of a system, rely heavily on Bayesian
statistics (Lindley, 1972), enforcing the view to treat epistemic uncertainties
on an equal footing via probability theory, see Section 2.1.

Eventually we want to arrive at a probabilistic risk assessment (PRA)
(Kumamoto and Henley, 1996). To perform a PRA, an analysts may go
through the following steps:

1. Specify the hazard, the outcome(s) to be prevented or reduced.

2. Identify initiating events, those that could possibly lead to the specified
consequence.

3. Estimate the frequency/probability of each initiating event.

4. Assuming that the initiating event has occurred, identify the combina-
tions of failures that lead to a specific outcome.
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5. Compute the likelihood of each combination. The probabilities of all
those sequences that lead to the same outcome are added. To determine
how often this outcome might occur, these probabilities are multiplied
by the frequency of the initiating event(s).

As already mentioned, probability theory (Loeve, 1977; Krée and Soize,
1986; Jaynes, 2003) is used in most cases to address the uncertainty
(Augusti et al., 1984; Ditlevsen and Madsen, 1996), usually on a Bayesian
setting (Lindley, 1972; Jaynes, 2003). But combinations with supposedly
simpler theories (usually yielding considerably less information) are also
proposed. These are e.g. bounds — interval analysis, convex sets — (Natke
and Ben-Haim, 1997; Ben-Haim and Elishakoff, 1990), fuzzy analysis
(Zimmermann, 1992), and combinations such as fuzzy probability, (Un-
certainty in Engineering, 2000; Moller and Beer, 1998, 2004; Moller and
Reuter, 2007), see also (Elishakoff, 1999). A modification of the Bayesian
point of view, which tries to accommodate conflicting information and is
based on belief and plausibility is the Dempster-Shafer theory (Dempster,
1968; Shafer, 1976).

The uncertainty then has to be computationally propagated through
the system(s). Ideally, given the probability distributions of the input,
the numerical models should produce the probability distributions of the
outputs, or any other stochastic information desired. This may in the sim-
plest case be sensitivity analysis (Kleiber and Hien, 1992). It may pertain
only to (asymptotically) very small probabilities (Ditlevsen and Madsen,
1996). Conceptually the simplest is the Monte Carlo method or its vari-
ants (Caflisch, 1998). Overviews are given in (Matthies and Soares, 1997;
Schueller, 1997), and more recently in (Matthies, 2007a,b). Modern de-
velopments relate to the view of random variables (stochastic processes,
random fields) as elements of a vector space, to be approximated through
finite dimensional subspaces (Ghanem and Spanos, 1991; Matthies and
Bucher, 1999; Matthies and Keese, 2005; Xiu and Karniadakis, 2002) in
the sense of weighted residual Galerkin methods, which then also includes
collocation methods. In some ways this may be seen as a systematic way
of producing response surfaces (Khuri and Cornell, 1987).

4. Identifying the damage

As already mentioned, identifying the damage is very similar to system
identification. In case damage occurs to a structure, there has to be a quick
initial assessment of the kind

— Unsafe, dangerous to enter

— Safe, but unfit for human habitation — occupancy should be restricted
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— Lightly damaged, but habitable — occupancy permitted
— Not damaged, not requiring any or only cosmetic repair

This may also involve posting the structures as “unsafe to enter” or just
“inspected”, meaning safe to enter.

For life-lines and infrastructure similar criteria may be drawn up, and
especially for life-lines it is critical to quickly establish whether and/or to
what extent are they damaged, are they completely unusable, partly usable,
what is the most urgent repair to get them partly on line again? Damage
to critical infrastructure includes

— Water and sewage (leaks, damaged pipes de-pressurized?)
— Electric (e.g. exposed power lines de-energized?)
— Oil and gas pipelines (e.g. line breaks sealed?, leaks contained?)

— Gas and propane storage (e.g. tanks inspected, secured by qualified
experts?)

This may involve identifying qualified contractors offering damage as-
sessment services, developing damage assessment procedures, developing
mitigation plans and procedures, conducting debris assessment, and assess-
ing the requirement for decontamination or safe demolition, removal, and
disposition of contaminated debris.

It may include the provision of geo-coded status reports of commu-
nity, homes and facilities identified as safe or unsafe to re-enter and re-
occupy. Situation assessments are conducted using one of following methods
(FEMA, 2004):

1. Aerial reconnaissance
2. Remote sensing
3. Computer modelling (e.g., HAZUS [FEMA, 2004))

4. Rapid field assessments/windshield surveys

4.1. INITIAL ASSESSMENT OF DAMAGE

Hereby we mean a more formal assessment than the first assessment just
sketched, trying to identify the extent of damage and the state of the
structure. In a Bayesian setting it may be described as guessing a priori
information. Methods used beyond visual inspection are those used in any
other system identification process (Revadigar and Mau, 1999), such as
vibration test, (ultra-)sound testing, thermal image analysis, etc. (Natke
and Cempel, 1997).
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The approach yielding finally the most information is to apply a prob-
abilistic modelling, usually on a Bayesian setting (Lindley, 1972; Jaynes,
2003). This then means assigning so-called & priori probabilities, reflecting
the state of information. A modification of this is using two measures, belief
and plausibility instead of just probability (Dempster, 1968; Shafer, 1976).

Also sometimes used are supposedly simpler theories — yielding less
information. These include simple bounds in convex sets (Natke and Ben-
Haim, 1997; Ben-Haim and Elishakoff, 1990) fuzzy analysis (Zimmermann,
1992) using possibility instead of probability, and combinations like fuzzy
probability (Méller and Beer, 1998, 2004; Méller and Reuter, 2007), see
(Elishakoff, 1999) for some examples.

4.2. FURTHER TESTING AND UPDATING

If after the initial assessment described in Section 4.1 the uncertainty
on how to class a structure is still too large, especially when deciding
whether it is safe or not, and whether it should be demolished or repaired,
further testing may be required. This is intended to demonstrate the struc-
tural static/dynamic properties of the structure. It is a method to obtain
a posteriori information (Lindley, 1972; Jaynes, 2003), through carefully
selected experiments. This may use the techniques known as design of ex-
periments, and optimal sequential design (Chernoff, 1972; Pearl, 2000; Box
and Hunter, 2005). The a posteriori information in this approach will come
through Bayesian updating of the a priori distributions as new information
is included.

Computational models of the structure become very important in this
whole phase, as they serve to refine the estimate of the state of the structure.
They have to be able to propagate probability /uncertainty information, see
the description in Section 3 and the overviews in (Matthies and Soares,
1997; Schueller, 1997). These computational models can be of differing
complexity, but they may help in refining the assessment made as described
in the beginning of this Section 4.

5. Contribution of decision theory

Decision theory may be used to decide on possible courses of action (Pearl,
2000; Flyvbjerg, 2006), taking care to properly estimate costs, be they due
to repair, or demolition and rebuilding. There is a long history of cost-
overruns in civil engineering work, and there are methods to obtain an
outside view (Flyvbjerg, 2006). In any of these decisions, there will be a
cost/benefit appraisal (Starr, 1969; Wilson and Crouch, 2001). It involves
the allocation of resources for rehabilitation, rebuilding and strengthening.
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Again computational models of the structures/infrastructure are very
important here, as they help in evaluating different “what if?” scenarios.

If the only purpose of damage assessment was to decide what to do
with damaged structures or infrastructure, the task is finished here. But
if one wants to learn for the future, especially important if the damage
was caused by extreme environmental forces, such as floods, storms, or
earthquakes, more analysis is necessary.

6. Reconstructing/identifying the cause

In case of environmental loads leading to damage, it is often desirable to
identify the magnitude of those forces, in order to learn for future events.
The damaged structure or infrastructure may be used as a “measurement
device”. Otherwise the whole process is very similar to the one described
in Section 4. Only instead of the structure, here the objective is to identify
the cause for the damage, or the magnitude and nature of the environmen-
tal force. In this process, a computational model capable of propagating
uncertainty /stochastic information is definitely needed.

6.1. INITTIAL ASSESSMENT OF CAUSE

The initial assessment is similar to the state of the structure an “edu-
cated guess” as to the nature and magnitude of the causative action which
resulted in the damage, see Section 4.1. This should ideally involve a mod-
elling of the uncertainty of this educated guess, as to express the variation
deemed possible for the environmental forces.

Concerning environmental forces, there is common agreement that prob-
abilistic modelling is adequate, usually on a Bayesian setting (Lindley,
1972; Jaynes, 2003). This means assigning so-called a priori probabilities
to actions, based on the usually extensive knowledge on how they are
generated — e.g. storms, floods, earthquakes.

6.2. COMPUTATIONAL TESTING AND ACTION IDENTIFICATION

This step parallels the one in Section 4.2, only that the testing and updating
is performed numerically. The numerical results then may be compared to
the estimated state of the damaged structure. The whole process is very
akin to system identification, this time not of the structure, but of the
environmental action.

The numerical models have to propagate the probability through the
system(s), as described in Section 3. As already mentioned the simplest is
sensitivity analysis (Kleiber and Hien, 1992). For very small probabilities,
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asymptotical methods as in structural reliability may be used (Ditlevsen
and Madsen, 1996).

Conceptually the simplest method which can give complete distribu-
tional information is the Monte Carlo method or its variants (Caflisch,
1998). Overviews on all such methods is given in (Matthies and Soares,
1997; Schueller, 1997), and more recently in (Matthies, 2007a, b).

Newer developments relate to directly approximating random variables
(stochastic processes, random fields) as elements of a vector space through
finite dimensional subspaces (Ghanem and Spanos, 1991; Matthies and
Bucher, 1999; Matthies and Keese, 2005; Xiu and Karniadakis, 2002). As
already mentioned such approximations of the random quantities may be
seen as a systematic way of producing response surfaces (Khuri and Cornell,
1987).

In any case, the computational models should help answer the question
what are the likely distributions and magnitudes of the environmental ac-
tions, in the form of an Bayesian updating to a posteriori distributions of
the & priori distributions of Section 6.1, see (Lindley, 1972; Jaynes, 2003).

7. Damage tolerant design

Having identified the type of damage, as well as the environmental actions
which caused it, together with their uncertainty quantification, it is now
possible to do some kind of improvement /optimization.

7.1. MINIMISE EXPECTED DAMAGE

One way to reduce risks is to reduce the hazard, e.g. to make the structure
or infrastructure less prone to certain kinds of exterior actions. Especially
for infrastructure life-lines this can often achieved by choosing carefully
where they are installed, using redundancy, etc.

The other aspect of risk reduction is the minimization of potential loss
in case the hazard does occur.

All of these items require a cost/benefit analysis (Starr, 1969); a guide-
line here may be the so-called “ALARP” principle, an acronym meaning
As Low As Reasonably Practicable. It is a very common sense approach
regularly practised in the off-shore industry. After a probabilistic risk as-
sessment, the risks — of course forming a continuum — are divided into three
main categories. One are those which are considered negligible, here nothing
has to be done, no design optimization is necessary. At the other end are
risks which are considered unacceptable, and they have to be avoided cat-
egorically. In between is the ALARP region, where risks are not negligible,
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but the amount of reduction follows the ALARP principle. This means
that a risk has to be reduced if this incurs no substantial costs, and all
risks are reduced to the point where further efforts yield only marginal risk
reductions. At this point it is usually meaningless to try to reduce the risk
any further, at least not with the methods applied up to that point. Here a
decision has to be taken, as to whether the residual risk is acceptable; if not
the activity it is pertaining to has to be stopped, or a completely different
design has to be chosen.

7.2. REDUCE VULNERABILITY AND FRAGILITY

The reduction of possible losses has at least two aspects (Douglas, 2007),
one is the vulnerability, and the other the fragility.

Reduction of vulnerability may be achieved by reducing the possible
impact of the hazard, in general terms moving things out of harms way.
Infrastructure development considering vulnerability is especially impor-
tant, to ensure that life-lines remain operable to as large an extent as
possible. Structures may be valued in reference to vulnerability with impact
elements, to arrive at some overall idea of vulnerability.

Fragility is a property of the structures or the infrastructure. It may be
reduced through robust design, i.e. designs which do not suddenly increase
the risk due to smaller damages. It can often represented through so-called
fragility curves, showing the risk versus larger magnitude of the actions.
In these circumstances a design which has only slowly varying risk with a
gradual increase in magnitude is less fragile, there cannot be any unexpected
failures. Often, for structures, this boils down to the existence of several
load paths, i.e. statically highly indeterminate designs. This is often at vari-
ance with traditional design methods, and also often contradict “optimal
designs” which are optimal with respect to other criteria, like minimum
weight or minimal cost.

Methods used here are similar to those in structural reliability anal-
ysis (Augusti et al., 1984; Ditlevsen and Madsen, 1996), where it is also
important to estimate the sensitivity of the risk to design parameters.

8. Conclusion

This article has tried to illuminate the issues involved in structural dam-
age and risk assessment, and on the interplay between structural damage
and risk assessment on one hand and numerical techniques, especially for
uncertainty quantification, on the other hand.

Damage assessment and risk quantification are closely interrelated,
once the basic terms have been defined this becomes very clear. Damage
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assessment and risk quantification go hand in hand from very simple
to more and more sophisticated, such as time and possible expenses
allow, and as is meaningful for the questions at hand. The similarities
to statistical system identification have been highlighted. Any decision on
possible actions involves a cost/benefit appraisal on the basis of present
information.

If the damage was caused by environmental forces such as seismic ac-
tion, one may use the damaged structures as a “measurement device” to
determine the characteristic of this external action. This is similar to the
system identification of the structure with testing purely computational.
Reduction of risk is possible by considering the vulnerability and fragility
of design of life-lines, infrastructure, and structures.
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