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Abstract Geostatistical methods have been demonstrated to be very powerful
analytical tools in a variety of disciplines, most notably in mining, agriculture, me-
teorology, hydrology, geology and environmental science. Unfortunately, their use
in public health, medical geography, and spatial epidemiology has languished in
favor of Bayesian methods or the analytical methods developed in geography and
promoted via geographic information systems. In this presentation, we provide our
views concerning the use of geostatistical methods for analyzing spatial public health
data. We revisit the geostatistical paradigm in light of traditional analytical examples
from public health. We discuss the challenges that need to be faced in applying geo-
statistical methods to the analysis of public health data as well as the opportunities
for increasing the use of geostatistical methods in public health applications.

1 Introduction

Analysis of spatial data has come to be important for many studies in public health,
medical geography and spatial epidemiology. Whereas geostatistical methods have
been used extensively in a variety of disciplines, including mining, agriculture, me-
teorology, hydrology, geology and environmental science, they have found only
limited application in health studies where Bayesian methods and analytical meth-
ods developed in geography and implemented in geographic information systems
have dominated. Here, we consider some of the challenges encountered in our ef-
forts to use geostatistical methods for analyzing spatial public health data and some
of the solutions that have been proposed. This is not meant to be a comprehensive
list, but one that reflects our experiences and identifies needs for additional research.
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2 Motivating Study

Our work with Florida’s Environmental Public Health Tracking (EPHT) effort pro-
vides the motivating study (Young et al., 2008). Part of Florida’s efforts to move
toward implementation of EPHT is to develop models of the spatial and temporal
association between myocardial infarctions (MIs) and the changing levels of ozone
in outdoor air for Florida. To accomplish this, as with the majority of studies re-
lating environmental changes to public health, especially those that are national or
regional in scope, the analysis is based on pre-existing data. Florida’s Department of
Environmental Protection (FDEP) provided ozone measurements, recorded from a
network of 48 air monitors placed throughout the state. Florida’s Agency for Health
Care Administration (AHCA), consistent with a data sharing agreement, provided
all admissions to Florida’s public and private hospitals where either the primary
or secondary cause of admission was MI (International Classification of Diseases,
10th Revision (ICD-10) codes 410.0–414.0 [World Health Organization]). ACHA
also provided both the zip code and county of residence for each patient’s record
and selected patient demographic information, including sex, age, and race/eth-
nicity. Selected sociodemographic data (age, race/ethnicity, sex, education) were
obtained from the U.S. Census Bureau. Additional sociodemographic data were
obtained from CDC’s Behavioral Risk Factor Surveillance System (BRFSS). For
March, 2001, the number of MI admissions per 10,000 population and the 48 ozone
monitors functioning that month, are displayed in Fig. 1 (see Young et al., 2008 for
full details).

3 Challenges for Public Health

3.1 Spatial Support

As illustrated in our Florida study, increasingly interest extends beyond the simple
reporting of incidence or risk and turns to relating these responses to potential ex-
planatory variables. As is also common, the variables used in each of these studies
were collected from disparate sources and must be linked on a common set of spa-
tial units for analysis. Moving from one set of spatial units to another can result
in several challenging change of support problems (see Gotway and Young 2002
for a review). Most of the early geostatistical work on change of support problems
was motivated by mining applications in which the inferential unit of interest was a
block of ore. The rectangular shape of blocks made it possible to use a regular grid
to discretize the blocks into points and approximate the integrals needed for block
kriging using just a relatively few number of points. However, applications in the
public health field call for a reassessment and extension to this and other geostati-
stical approaches.

First, the “blocks” are seldom rectangular in shape or consistent in size. As an
example, note that the Florida counties (Fig. 1) vary considerably in size and are
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Fig. 1 The number of MI cases per 10,000 population recorded for each Florida county during
March 2001 and the location of the ozone monitors functioning during that month

irregular in shape. This is typical of the postal codes, political boundaries, and cen-
sus administration units often used in public health studies. Here we wanted to use
the 48 ozone monitors functioning during March, 2001, to obtain an average max-
imum ozone value for each county. A regular grid was placed across all of Florida,
and three counties did not have any grid points or monitors falling within them. One
option was to make the grid very fine. This would have slowed computations tremen-
dously and is inefficient because the larger counties would be over-characterized.
Alternatively, we augmented the grid with a finer sub-grid for those three counties.
Is this the best approach?

A second challenge results from the different change of support problems en-
countered in public health, often arising from data confidentiality concerns. Typi-
cally, the change of support problem is not one of upscaling (or aggregation). As an
example, the incidence of low birth weight babies is available at the county level,
but interest lies in incidence of low birth weight babies at the census tract level
(Gotway and Young, 2007). This downscaling (or disaggregation) should ideally
preserve the pycnophylactic property (Tobler, 1979) that the number of low birth
weight babies from the census tracts within a county should equal the county total.
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As another example, health outcomes are generally reported on the zip code level,
but demographic data are provided on the census tract level. Here the spatial units
from the two sources overlap and “side-scaling” is needed to properly assign demo-
graphic data to zip code units. Gotway and Young (2007) generalized geostatistical
methods, which have historically focused on upscaling, for use in general change-
of-support problems, including upscaling, down scaling, side-scaling, and intensity
estimation.

We should acknowledge that, in many studies, the change-of-support problem is
ignored, primarily due to the complexity of the solution proposed and the lack of
software. For example, when working with the March ozone data, one suggested
approach was to identify proxy monitors that would represent the ozone values for
any county without a monitor, an approach that does not address support, but greatly
simplifies the computational issues. Similarly, the non-geostatistical methods that
have been proposed for change-of-support often do not consider the support of the
data (e.g., proportional allocation, centroid smoothing). Further, instead of explic-
itly accounting for support in a geostatistical approach, Diggle and Robeiro (2007)
suggest that an alternative approach is to partition the spatial region into n discrete
spatial units, each with a response variable yi ; i D 1; : : : ; n, and then model the
multivariate distribution for the random variable Yi . Undoubtedly, accounting for
support in spatial analysis is challenging, both theoretically and computationally.
However, in mining, accounting for support was found to be critically important
and predicting a spatial average is very different from simply predicting an average
at a point. The lesson likely holds for public health as well, and we should learn
from the mining experience where accurate block-grade predictions and inferences
are critical to the profits of the industry.

3.2 Discrete Distributions

Geostatisticians working in public health and other application areas have responded
to the need for new methods for discrete distributions, especially the Poisson and bi-
nomial distributions. Unlike the Gaussian distribution, the variance of any discrete
probability distribution depends on the mean. For the Poisson, the mean and vari-
ance are equal; for the binomial, the variance is equal to the mean multiplied by a
constant that is less than one. The Box-Cox family of transformations includes trans-
formations which stabilize variance, and using the appropriate transformation from
this family in a trans-Gaussian kriging (Schabenberger and Gotway, 2005, pp. 270–
277) formulation may work well. However, models that explicitly account for the
variance–mean relationships inherent in many discrete distributions are warranted
for applications to other disciplines such as public health.

Poisson kriging was developed by Monestiez et al. (2005, 2006) for mapping the
spatial distribution of fin whales and used to predict cancer mortality rates in a public
health setting by Goovaerts (2005). In the public health context, we have Z.Bi /, the
count or total number of disease cases over the i th region with population n.Bi /
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at risk. Thus, R.Bi / D Z.Bi /=n.Bi / is the incidence proportion for region Bi ,
Assume that

˚
�.s/js 2 D � <2


is an unobserved intensity process, with œ.s/ � 0

for all s in D. Assume this process has mean �� and covariance function C��.si; sj/.
Further assume that, conditional on this process, the observed frequencies (counts),
Z.Bi /, associated with an areal region Bi are independent Poisson random variables
with means and variances both equal to �.s/n.Bi /. If we assume a linear prediction
function for �.s/, then the predictor of the intensity process at location s0 is

O�.s0/ D
NX

iD1

wi R.Bi /;

where N is the number of regions and optimal weights, wi , can be obtained by
solving

NP
kD1

wk

h
CRR.Bi ; Bk/ C ıik

��

n.Bi /

i
C m D C�R.s0; Bi /; i D 1; : : : ; n

NP
kD1

wk D 1:

Here ıik D 1 if Bi D Bk and 0 otherwise, �� is an estimate of the mean of R.:/, and
m is a Lagrange multiplier. A key to the estimation process is estimation of the point-
support covariance function from which the cross-covariance function between the
intensity process and the observed frequencies is determined. In an effort to ad-
just for heterogeneous variances, Monestiez et al. (2005, 2006) proposed weighting
the difference pair by the corresponding population sizes. Extending the ideas of
Mockus (1998), Goovaerts (2008) proposes an iterative deconvolution method. Here
too is a change of support problem: �.si/ is assumed to be of point-support, but
R.Bi/ is aggregated over areal regions. Binomial kriging (McNeill, 1991) has a
similar derivation and leads to comparable challenges.

Gotway and Stroup (1997) developed models for generalized linear models, of
which the Poisson and binomial are special cases. In an approach similar to that of
trans-Gaussian kriging, they used Taylor series to linearize the problem so that the
usual kriging predictor is optimal, but with variance-mean relationships built into
models for spatial dependence. Gotway and Wolfinger (2003) compare these models
to those conditioned on a latent process as in Poisson kriging, binomial kriging, and
model-based geostatistics. Their results indicate that while conditionally-specified
models can be used to build complicated, non-stationary models, they tended to
under-predict both counts and rates and may severely over-estimate prediction un-
certainty for data sets with moderate-to-large marginal spatial autocorrelation. The
marginal models allow us to move away from any Gaussian assumptions and em-
ploy methods similar in form to least squares estimation. However, the estimation
algorithm was not as stable for these models, and the predictions tended to vary
more than those from the conditional model. Ordinary or universal kriging, with a
semivariogram weighted inversely proportional to the assumed variance of the data
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(in this case, inversely proportional to n.Bi// worked surprisingly well, demonstrat-
ing what most geostatistical practitioners have observed time and again: ordinary
kriging is relatively robust to a variety of violations in assumptions. Although pre-
dictions may not be theoretically optimal, they are not grossly inaccurate either.
Nevertheless, models that better describe the nature of the problem and the proper-
ties of the data are intuitively more appealing.

With both Poisson and binomial kriging, and marginal generalized linear models,
two issues have yet to be fully addressed. One important issue is that, in geostatis-
tical modelling, we are working with multivariate data and we need an underlying
joint multivariate distribution for valid inference. Although this may appear to be a
simple theoretical nuisance, the lack of such a multivariate distribution can cause
difficulties, such as “covariance” matrices that are not positive definite, numeri-
cal instability, and order-relations problems, in some practical applications. Herein
lies the problem with the non-parametric indicator approaches and Poisson, bi-
nomial, and generalized linear model approaches. A classic example is indicator
kriging which predicts probabilities, which, theoretically, should by contained in
[0,1]. However, any user of indicator methods has obtained predicted probabilities
outside this range.

A number of the challenges arise in constructing non-Gaussian, multivariate
distributions with specified correlation structure, marginal distributions, and con-
ditional distributions (see Schabenberger and Gotway, 2004, pp. 192–195, for a full
discussion). Constraints on the correlation exist for many multivariate distributions
that are not constructed from an underlying multivariate Gaussian distribution. As
an example, the multivariate binomial permits only negative correlations (Mardia
1970). For other models, no such multivariate distribution exists. For example, no
multivariate distribution exists having both marginal and conditional distributions
of Poisson form (Mardia, 1970).

Generating multivariate distributions sequentially from specified conditions
overcomes some of these difficulties. In Bayesian hierarchical modeling, this se-
quential conditioning approach is used to generate fairly complex multivariate
distributions, but the properties of the resulting distribution may not always be
clear. As an example, suppose Z1.s/ is a second-order stationary process with
EŒZ1.s/� D 1 and CovŒZ1.u/; Z1.u C h/� D ¢2	1.h/. A simplified version of
a common model used for modeling and inference with count data is obtained by
conditioning Z2.s/, a white noise process with mean and variance given by

EŒZ2.s/jZ1.s/� D expfx.s/0ˇgZ1.s/ � �.s/; VarŒZ2.s/jZ1.s/� D �.s/

on Z1.s/. The marginal mean EŒZ2.s/ D exp fx.s/0“g, depends only on the un-
known parameter “, and the marginal variance, VarŒZ2.s/� D 
.s/ C ¢2
.s/2,
allows overdispersion in the data Z2.s/, making the model attractive. Now, consider
the marginal correlation of Z2.s/

CorrŒZ2.s/; Z2.s+h/� D 	1.h/h�
1 C 1

�2�.s/

� �
1 C 1

�2�.s+h/

�i1=2
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If �2; �.s/, and �.s C h/ are small, CorrŒZ2.s/; Z2.s C h/� << 	1.h/. Thus,
while the conditioning induces both overdispersion and autocorrelation in the Z2

process, the marginal correlation has a definite upper bound and so may not be a
good model for highly correlated data. Most Bayesian models have a similar con-
straint built in, although it is often difficult to test either theoretically or empirically.

The second fundamental issue is that the marginal variance and the covariance
function depends on n.Bi / (e.g., Goovaerts, 2005; Monestiez et al., 2005, 2006).
Thus, neither Poisson nor binomial kriging are based on an intrinsically stationary
process. Weighting the empirical semivariogram by factors that are inversely propor-
tional to the standard deviation of the data (Goovaerts, 2005; Monestiez et al., 2005,
2006) ameliorates the problem. However, the semivariogram of the data process is
only estimable (and arguably only defined) for intrinsically stationary processes.
This problem of non-stationarity affects the validity of all the geostatistical tools
such as measures of autocorrelation, spatial prediction, and geostatistical simula-
tion methods. Moreover, covariates may not be spatially continuous and are often
categorical. Thus, non-stationarity arises in two ways: differing populations and the
need to adjust for covariates. Although most geostatistical tools are robust to depar-
tures from the assumption of stationarity, the lack of a more general paradigm may
prevent their wide-spread adoption in public health.

More sophisticated models for prediction with discrete distribution have also
been developed, including disjunctive kriging methods and isofactorial models (e.g.,
Rivoirard, 1994) and Bayesian methods (Diggle et al., 1998). Unfortunately, none
of these approaches is ready for routine use, and the general Bayesian methods have
yet to be extended to complex change of support problems.

Given the above discussion, the reasons for the popularity of the multivariate
Gaussian distribution are evident. It has a closed form expression, permits pairwise
correlations in .�1; 1/, each .Zi ; Zj / has a bivariate Gaussian distribution, all
marginal distributions are Gaussian, and all conditional distributions are Gaussian.
Moreover, tractable multivariate distributions, such as the multivariate lognormal
and the multivariate t-distribution can be derived from the multivariate Gaussian.
The Gaussian distribution has truly earned its unique place in geostatistical theory.
Thus, for our motivating study, instead of using methods developed for discrete
distributions, the incidence of MI at the county level was indirectly standardized
by age, sex, and education to the Florida population and the standardized event
ratio (MI SER) computed. The MI SER was log-transformed (denoted by ln(SER)
because the natural logarithm was taken) so that the assumptions of linear regression
(normality and constant variance) would be more nearly met.

3.3 Spatial Regression

The traditional analytical approach, referred to here as global regression, is to
conduct a multivariate linear regression analysis relating the health outcome to po-
tential predictors with adjustments for sociodemographic variables (e.g., education,
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income, and percentage of smokers). For our study, a weighted regression was con-
ducted with the weight being equal to the expected MI SER, and the coefficient on
ozone was exponentiated to obtain the relative MI SER from the regression.

Just as ozone levels and the number of MI cases can vary over the state, the
relative MI SER could also vary over the state. Hastie and Tibshirani (1993) intro-
duced varying coefficient models, a class of regression and generalized regression
functions in which the coefficients are allowed to vary as smooth functions of other
variables. Müller (1998) adapted this idea to the spatial case and referred to the ap-
proach as local regression. Independently, Brunsdon et al. (1996) adapted the idea
of varying coefficient models to the spatial case and called their method geographi-
cally weighted regression. More generally, when regression coefficients are assumed
to vary smoothly over space, the models are referred to as spatially varying coeffi-
cient models (Gelfand et al., 2003).

To fit a local regression model, ideas from local smoothing and kernel regres-
sion are used to define spatial neighborhoods. The regression is performed by using
only data in the spatial neighborhoods. As a consequence, the error terms are not
necessarily constant for all locations. Further, because the spatial neighborhoods as-
sociated with different points in space overlap, the same data are used more than
once to estimate all the spatial regression parameters. Local regression models are
appealing because we expect risk to change over space as well as with time, and
this can be an important outcome for public health studies. Yet this method has
open questions. Because the same data are used more than once to estimate all the
spatial regression parameters .ˇs/, a correlation structure is induced among the ˇs.
One consequence of this correlation might be overly smoothed predictions. In our
motivating study, the estimated relative MI SERs are much smoother than either
the MI SERs or the predicted ozone values. This phenomenon can be observed for
other, similar local regression models for both frequentist (as presented here, see
also Nakaya et al., 2005) and Bayesian analyses (e.g., Waller et al., 2007). As is
often the case with Bayesian analyses, the local regression models are overparam-
eterized, and assumptions (e.g., the form of the prior distributions) allow one to
proceed with the analyses. In local regression, as in other analyses using overpa-
rameterized models, the impact of the assumptions is not fully evident.

Health outcomes are likely to depend on more than one environmental factor
(e.g., the ozone levels considered here). This leads us to include other explanatory
variables (e.g., PM2.5) in the models. Wheeler and Tiefelsdorf (2005) concluded
that, for local regression, multicollinearity among the coefficients at a single loca-
tion and the overall correlation between coefficients associated with two different
explanatory variables (e.g., ozone and PM2.5) can make interpretation of the model
coefficients problematic. Their results indicate that the collinearity among local re-
gression coefficients might be present even if the process generating the explanatory
variables leads them to be uncorrelated. This collinearity is likely caused by implicit
conditions that are placed on the parameters during the estimation process. This is an
open question worthy of further research, as is the more general concern of valid in-
ference from all local regression models, because they were designed as exploratory
smoothing methods and not inferential statistical tools.
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4 Conclusions

Throughout this work, we have been critical of the existing methods as they related
to public health studies. Our goal has been to emphasize the vast opportunities for
research on important geostatistical issues. Here we want to take time to applaud
the authors whose work we have critiqued. Although we have pointed out areas that
need further development, we are encouraged that efforts are being made to address
complex issues that arise.

Discrete and, more generally, non-Gaussian data are common in public health
studies. Satisfactory multivariate non-Gaussian models have severe limitations. Ei-
ther we do not get the marginal or conditional distributions that are desired or the
choice of covariance structures is severely limited. Is the best solution to transform
the data so that it is at least approximately normal and to then rely on the robustness
of the standard geostatistical methods? Or, even with the disadvantages outlined
here, is it better to use methods such as Poisson kriging? Is there a better approach?
These are examples of the basic guidance that those working in public health need
if geostatistical methods are to find broader application.
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