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Preface

Mathematical and Statistical Estimation Approaches in Epidemiology compiles the-
oretical and practical contributions of experts in the analysis of infectious disease
epidemics in a single volume. Recent collections have focused in the analyses and
simulation of deterministic and stochastic models whose aim is to identify and rank
epidemiological and social mechanisms responsible for disease transmission. The
contributions in this volume focus on the connections between models and disease
data with emphasis on the application of mathematical and statistical approaches
that quantify model and data uncertainty.

The book is aimed at public health experts, applied mathematicians and scien-
tists in the life and social sciences, particularly graduate or advanced undergraduate
students, who are interested not only in building and connecting models to data but
also in applying and developing methods that quantify uncertainty in the context
of infectious diseases. Chowell and Brauer open this volume with an overview
of the classical disease transmission models of Kermack-McKendrick including
extensions that account for increased levels of epidemiological heterogeneity. Their
theoretical tour is followed by the introduction of a simple methodology for the
estimation of, the basic reproduction number, R0. The use of this methodology
is illustrated, using regional data for 1918–1919 and 1968 influenza pandemics.
This chapter is followed by Greenwood and Gordillo’s introduction to an analogous
probabilistic framework. The emphasis is now on the computation of the distri-
bution of the final epidemic size and the quantification of stochastically sustained
oscillations. Next, the differences between observable and unobservable events in
infectious disease epidemiology and their relationship to rigorous contact tracing
and microbiological methodology are discussed in Chapter 3 by Nishiura et al. Fur-
thermore, concepts like “dependent happening” and their role in identifying sources
of infectious disease risk or in assessing vaccine efficacy are also discussed. In
Chapter 4, Tennenbaum’s engages us in a discussion of modeling perspectives and
approaches through his discussion of the meaning of “contact”. He challenges the
reader to come up with novel approaches that bring together “ignored” biological
and mechanistic aspects of the infection process.

Chapter 5 (Nishiura and Chowell) and Chapter 7 (Bettencourt) focus on real-time
assessments of the reproduction number. The exposition is spiced with references to
recent epidemic outbreaks. For example, Bettencourt uses his framework to estimate
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vi Preface

disease epidemiological parameters and to assess the effects of interventions in real
time using data from the 2005 outbreak of Marburg hemorrhagic fever in Angola.
In Chapter 8, Burr and colleagues review the theoretical and practical challenges
associated with biosurveillance including the detection of disease outbreaks using
traditional diagnosed case rates or syndromic surveillance data. In Chapter 6, Lloyd
notes that parameter estimates are subject to uncertainty that arise not only from
errors (noise) in the data but also from the structure of the model used in the fitting
process. In other words, he argues that uncertainty must be evaluated at multiple
levels to account for our ignorance or for the balance that each modeler must reach
between biological detail and model complexity and objectives. Parameter estima-
tion, Lloyd argues, must include structural sensitivity analyses. The use of historical
data in epidemiological research is highlighted in Chapter 9 by Acuña-Soto’s con-
tribution. As he notes epidemiologists are reluctant to consider systematically the
possibility of working with historical data albeit, as we have seen in the first Chapter,
it is possible to extract valuable information from such data on influenza outbreaks.
In fact, we acquired the kind of quantitative knowledge that let us quantify some of
the differences between seasonal and pandemic influenza. Acuña-Soto’s work1, for
example, on the epidemic of 1576 that killed 45% of the entire population of Mex-
ico, highlights but a myriad of new possibilities for which the quantitative methods
and approaches highlighted in this book can be put to good use.

Banks and colleagues in Chapter 11 provide a succinct overview of the statistical
and computational aspects associated with inverse or parameter estimation prob-
lems for deterministic dynamical systems. Their results illustrate the impact that the
marriage between statistical theory and applied mathematics is having in the study
of infectious diseases while Chapter 10 (Arriola and Hyman) provides a general and
thorough introduction to the field of sensitivity and uncertainty analyses, a central
piece of any scientific work that is based on modeling.

The challenges and opportunities generated by studies of disease outbreak or
disease dynamics in specific contexts are highlighted in the final chapters. Shim
and Castillo-Chavez (Chapter 12) evaluate the potential impact that ongoing age-
dependent vaccination strategies (in the United States and Mexico) are likely to
have in reducing the prevalence of severe rotavirus infections. Rios-Doria et al.
(Chapter 13) analyze the spatial and temporal dynamics of rubella in Peru,
1997–2006 via a wavelet time series analysis and other methods. The study is carried
out in the context of changing policies that include the introduction of a vaccine
and/or increases in vaccination rates. Cintron-Arias and colleagues (Chapter 15)
model drinking as a “communicable” disease and, in the process, they highlight a
new set of opportunities and possibilities for the applications of the mathematical
and statistical approaches used in this volume. The focus here is on the evaluation
of the role of relapse (ineffective treatment) on drinking dynamics but as a function
of social network heterogeneity.

1 R Acuna-Soto, LC Romero, and JH Maguire; Large epidemics of hemorrhagic fevers in Mexico
1545–1815; Am. J. Trop. Med. Hyg, 62(6), 2000, pp. 733–739.
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The Basic Reproduction Number of Infectious
Diseases: Computation and Estimation Using
Compartmental Epidemic Models

Gerardo Chowell and Fred Brauer

Abstract The basic reproduction number (R0) is a central quantity in epidemi-
ology as it measures the transmission potential of infectious diseases. In this
chapter we review the basic theory of the spread of infectious diseases using
simple compartmental models based on ordinary differential equations including
the simple Kermack-McKendrick epidemic model, SIR (susceptible-infectious-
removed) models with demographics, the SIS (susceptible-infectious-susceptible)
model, backward bifurcations, endemic equilibria, and the analytical derivation of
R0 using the next-generation approach. This theory is followed by simple methodol-
ogy for the estimation of R0 with its corresponding uncertainty from epidemic time
series data. The 1918–1919 influenza pandemic in Winnipeg, Canada, and the 1968
influenza pandemic in US cities are used for illustration.

Keywords Influenza · Pandemic · Epidemiology · Basic reproduction number ·
Model

1 Thresholds in Disease Transmission Models

One of the fundamental results in mathematical epidemiology is that mathematical
epidemic models, including those that include a high degree of heterogeneity exhibit
a “threshold” behavior. In epidemiological terms, this can be stated as follows:
There is a difference in epidemic behavior when the average number of secondary
infections caused by an average infective during his/her period of infectiousness,
called the basic reproduction number, is less than one and when this quantity
exceeds one.

G. Chowell (B)
School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287,
USA; Mathematical, Computational, Modeling Sciences Center, Arizona State University, Tempe,
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G. Chowell et al. (eds.), Mathematical and Statistical Estimation Approaches
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2 G. Chowell and F. Brauer

There are two different situations. If the course of the disease outbreak is rapid
enough that there are no significant demographic effects (births, natural deaths,
recruitment) on the population being studied, then the disease will die out if the
basic reproduction number is less than one, and if it exceeds one there will be an
epidemic.

If, on the other hand, there is a flow into the population of individuals who may
become infected, through births, recruitment, or recovery of infected individuals
with no immunity against reinfection, then there is a different alternative. If the
basic reproduction number is less than one, the disease dies out in the population.
Mathematically this is expressed by the fact that there is a disease-free equilibrium
approached by solutions of the model describing the situation. If the basic repro-
duction number exceeds one, the disease-free equilibrium is unstable and solutions
flow away from it. There is also an endemic equilibrium, with a positive number of
infective individuals, indicating that the disease remains in the population.

However, the situation may be more complicated. We shall see later that in certain
circumstances it is possible to have an endemic equilibrium with a reproduction
number less than one.

We begin by describing the threshold phenomenon and the basic reproduction
number in epidemic models.

2 The Simple Kermack-McKendrick Epidemic Model

An epidemic, which acts on a short temporal scale, may be described as a sudden
outbreak of a disease that infects a substantial portion of the population in a region
before it disappears. Epidemics usually leave many members untouched. Often these
attacks recur with intervals of several years between outbreaks, possibly diminishing
in severity as populations develop some immunity.

One of the questions that first attracted the attention of scientists interested in the
study of the spread of communicable diseases was why diseases would suddenly
develop in a community and then disappear just as suddenly without infecting the
entire community. One of the early triumphs of mathematical epidemiology [54]
was the formulation of a simple model that predicted behavior very similar to that
observed in countless epidemics. The Kermack-McKendrick model is a compart-
mental model based on relatively simple assumptions on the rates of flow between
different classes of members of the population.

We formulate our descriptions as compartmental models, with the population
under study being divided into compartments and with assumptions about the nature
and time rate of transfer from one compartment to another. Diseases that confer
immunity have a different compartmental structure from diseases without immunity.
We will use the terminology SI R to describe a disease which confers immunity
against re-infection, to indicate that the passage of individuals is from the suscep-
tible class S to the infective class I to the removed class R. On the other hand,
we will use the terminology SI S to describe a disease with no immunity against
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re-infection, to indicate that the passage of individuals is from the susceptible class
to the infective class and then back to the susceptible class. Other possibilities
include SE I R and SE I S models, with an exposed period between being infected
and becoming infective, and SI RS models, with temporary immunity on recovery
from infection.

In order to model such an epidemic we divide the population being studied into
three classes labeled S, I , and R. We let S(t) denote the number of individuals
who are susceptible to the disease, that is, who are not (yet) infected at time t . I (t)
denotes the number of infected individuals, assumed infectious and able to spread
the disease by contact with susceptibles. R(t) denotes the number of individuals
who have been infected and then removed from the possibility of being infected
again or of spreading infection. Removal is carried out either through isolation from
the rest of the population or through immunization against infection or through
recovery from the disease with full immunity against reinfection or through death
caused by the disease. These characterizations of removed members are different
from an epidemiological perspective but are often equivalent from a modeling point
of view which takes into account only the state of an individual with respect to the
disease.

In formulating models in terms of the derivatives of the sizes of each com-
partment we are assuming that the number of members in a compartment is a
differentiable function of time. This may be a reasonable approximation if there
are many members in a compartment, but it is certainly suspect otherwise.

The basic compartmental models to describe the transmission of communicable
diseases are contained in a sequence of three papers by W.O. Kermack and A.G.
McKendrick in 1927, 1932, and 1933 [54–56]. The first of these papers described
epidemic models. What is often called the Kermack-McKendrick epidemic model
is actually a special case of the general model introduced in this paper. The general
model included dependence on age of infection, that is, the time since becoming
infected.

The special case of the model proposed by Kermack and McKendrick in 1927
which is the starting point for our study of epidemic models is

S′ = −βSI

I ′ = βSI − α I

R′ = α I .

It is based on the following assumptions:

(i) An average member of the population makes contact sufficient to transmit
infection with βN others per unit time, where N represents total population
size (mass action incidence).

(ii) Infectives leave the infective class at rate α I per unit time.
(iii) There is no entry into or departure from the population; in particular there are

no deaths from the disease. Thus population size is a constant N0.
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The assumptions of a rate of contacts proportional to population size N0 with
constant of proportionality β, and of an exponentially distributed recovery rate are
unrealistically simple. More general models can be constructed and analyzed, but
our goal here is to show what may be deduced from extremely simple models. It will
turn out that many more realistic models exhibit very similar qualitative behaviors.
In our model R is determined once S and I are known, and we can drop the R
equation from our model, leaving the system of two equations

S′ = −βSI (1)

I ′ = (βS − α)I ,

together with initial conditions for S(0), I (0). We are unable to solve this system
analytically but we learn a great deal about the behaviour of its solutions by a
qualitative approach. We remark that the model makes sense only so long as S(t)
and I (t) remain non-negative. Thus if either S(t) or I (t) reaches zero we consider
the system to have terminated. We observe that S′ < 0 for all t and I ′ > 0
if and only if S > α/β. Thus I increases so long as S > α/β but since S
decreases for all t , I ultimately decreases and approaches zero. If S(0) < α/β, I
decreases to zero (no epidemic), while if S(0) > α/β, I first increases to a maxi-
mum attained when S = α/β and then decreases to zero (epidemic). We think of
introducing a small number of infectives into a population of susceptibles and ask
whether there will be an epidemic. It is not difficult to show that I (t) → 0 and
S(t) → S∞ > 0 as t → ∞. The quantity βS(0)/α is a threshold quantity, called
the basic reproduction number and denoted by R0, which determines whether there
is an epidemic or not. If R0 < 1 the infection dies out, while if R0 > 1 there is an
epidemic.

The definition of the basic reproduction number R0 is that the basic reproduction
number is the number of secondary infections caused by a single infective intro-
duced into a wholly susceptible population of size N0 ≈ S(0) over the course of the
infection of this single infective. In this situation, an infective makes βN0 contacts
in unit time, all of which are with susceptibles and thus produce new infections,
and the mean infective period is 1/α; thus the basic reproduction number is actually
βN0/α rather than βS(0)/α.

If we integrate the sum of the two equations of (1) from 0 to ∞ and let t → ∞
we obtain

α

∫ ∞

0
I (s)ds = S(0) + I (0) − S∞ = N0 − S∞.

The first equation of (1) may be written as

− S′(t)
S(t)

= β I (t).
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Integration from 0 to ∞ gives the final size relation

log
S(0)

S∞
=
∫ ∞

0
β I (t)dt

= β(N0 − S∞)

α
(2)

= R0

[
1 − S∞

N0

]
.

This final size relation shows that the size of the epidemic N0 − S∞ is completely
determined by the basic reproduction number.

3 More Elaborate Epidemic Models

There are many elaborations of the basic model (1). For example, one might assume
an exposed period of mean duration κ following infection and preceding becoming
fully infective, possibly with infectivity during the exposed period but reduced by a
factor ε,

S′ = −βS(I + εE)

E ′ = βS(I + εE) − κ E (3)

I ′ = κ E − α I.

In addition we have initial conditions

S(0) = S0, E(0) = E0, I (0) = I0, S(0) + E(0) + I (0) = N0.

In order to calculate the basic reproduction number, we observe that an exposed
member introduced into a susceptible population transmits εβN0 infections in unit
time for a mean duration of 1/κ followed by βN0 infections in unit time during the
infective period of mean length 1/α. Thus

R0 = βN0

(
1

α
+ ε

κ

)
.

A calculation very similar to the derivation of the final size relation for (1) gives

log
S(0)

S∞
=
∫ ∞

0
β[I (t) + εE(t)]dt

= R0

[
1 − S∞

N0

]
− εβ I0

κ
.
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If all initially infected members of the population are latent, this takes exactly the
same form as (2), but if some have already completed the exposed stage there is a
correction term in the final size relation.

Another extension of the model (1) is an SI R model in which a fraction γ of
infected members in unit time are removed for treatment. The mean period for
treated members before recovery is 1/η and treatment decreases infectivity by a
factor σ . This leads to a model

S′ = −βS(I + σ T )

I ′ = βS(I + σ T ) − (α + γ )I (4)

T ′ = γ I − ηT .

Much as for the model (3) we calculate

R0 = βN0

[
1

α + γ
+ γ

α + γ

σ

η

]

and we obtain exactly the same final size relation (2).
These refinements of the simple Kermack-McKendrick epidemic model and

models with more compartments are included in the general epidemic model of
Kermack and McKendrick [54]. This model include a dependence of infectivity
on the time since becoming infected (age of infection). In this model ϕ(t) is the
total infectivity at time t , defined as the sum of products of the number of infected
members with each infection age and the mean infectivity for that infection age. We
let B(τ ) be the fraction of infected members remaining infected at infection age τ

and let π (τ ) with 0 ≤ π (τ ) ≤ 1 be the mean infectivity at infection age τ . Then
we let

A(τ ) = π (τ )B(τ ),

the mean infectivity of members of the population with infection age τ .
The age of infection epidemic model is

S′ = −βSϕ

ϕ(t) = ϕ0(t) +
∫ t

0
βS(t − τ )ϕ(t − τ )A(τ )dτ (5)

= ϕ0(t) +
∫ t

0
[−S′(t − τ )]A(τ )dτ.

The basic reproduction number is

R0 = βN0

∫ ∞

0
A(τ )dτ,
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because an infective introduced into a susceptible population makes βN0 contacts
in unit time and the total infectivity over the duration of the infection is

∫∞
0 A(τ )dτ .

We write

− S′(t)
S(t)

= βϕ0(t) + β

∫ t

0
[−S′(t − τ )]A(τ )dτ.

Integration with respect to t from 0 to ∞ gives

ln
S0

S∞
= β

∫ ∞

0
ϕ0(t)dt + β

∫ ∞

0

∫ t

0
[−S′(t − τ )]A(τ )dτdt

= β

∫ ∞

0
ϕ0(t)dt + β

∫ ∞

0
A(τ )

∫ ∞

τ

[−S′(t − τ )]dtdτ

= β

∫ ∞

0
ϕ0(t)dt + β[S0 − S∞]

∫ ∞

0
A(τ )dτ (6)

= β[N0 − S∞]
∫ ∞

0
A(τ )dτ + β

∫ ∞

0
[ϕ0(t) − (N0 − S0)A(t)]dt

= R0

[
1 − S∞

N0

]
− β

∫ ∞

0
[(N0 − S0)A(t) − ϕ0(t)]dt.

Here, ϕ0(t) is the total infectivity of the initial infectives when they reach age of
infection t . If all initial infectives have infection age zero at t = 0, ϕ0(t) = [N0 −
S0]A(t), and

∫ ∞

0
[(N0 − S0)A(t) − ϕ0(t)]dt = 0.

Then (6) takes the form

ln
S0

S∞
= R0

(
1 − S∞

N0

)
, (7)

and this is the general final size relation, exactly the same form as for the simple
model (1).

If there are initial infectives with infection age greater than zero, let u0(τ ) be the
average infectivity of these individuals. Then, since u0(τ ) ≤ B(τ ),

ϕ0(t) = (N0 − S0)u0(τ )π (t + τ )
B(t + τ )

B(τ )
≤ (N0 − S0)A(t + τ ) ≤ (N0 − S0)A(τ ).

Thus, the initial term satisfies

∫ ∞

0
[(N0 − S0)A(t) − ϕ0(t)]dt ≥ 0.
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The final size relation is sometimes presented in the slightly different form

ln
S0

S∞
= R0

(
1 − S∞

S0

)
, (8)

with an initial term which is assumed small and omitted, see for example [5, 30, 87].
Calculation of R0 for the model (5) requires calculation of the integral

∫∞
0 A(τ )dτ .

In a model with multiple stages this calculation may be complicated but the approach
given in [90] can simplify it.

The results we have developed assume mass action incidence, and this is not
realistic. It is more plausible to assume that incidence is a saturating function of total
population size. If there are no disease deaths, the total population size is constant
and there is no loss of generality in assuming mass action incidence. If there are
disease deaths, the total population size decreases with time. This does not affect
the calculation of the reproduction number, but the final size relation becomes an
inequality. If the disease death rate is small, the final size relation is an approximate
equality and may still be used to estimate the epidemic size.

4 SI R Models with Demographics

Epidemics may sweep through a population and then disappear, but there are dis-
eases which are endemic in many parts of the world and which cause millions of
deaths each year. We have omitted births and deaths in our description of epidemic
models because the time scale of an epidemic is generally much shorter than the
demographic time scale. In effect, we have used a time scale on which the number
of births and deaths in unit time is negligible. To model a disease which may be
endemic we need to think on a longer time scale and include births and deaths.

The simplest SI R model with births and deaths is formulated by adding births
and deaths to the epidemic model (1). We assume that the birth rate is a func-
tion Λ(N ) of total population size N and that there is a natural death rate in
each compartment proportional to the size of the compartment; this corresponds
to an assumption of an exponentially distributed life span. We assume also a
density-dependent contact rate and that there are no disease deaths. This gives a
model

S′ = Λ(N ) − β(N )SI − μS

I ′ = β(N )SI − μI − α I (9)

N ′ = Λ(N ) − μN .

The total population size N uncouples in this model and satisfies the differential
equation

N ′ = Λ(N ) − μN .
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The carrying capacity of population size is the limiting population size K ,
satisfying

Λ(K ) = μK , Λ′(K ) < μ .

The condition Λ′(K ) < μ assures the asymptotic stability of the equilibrium pop-
ulation size K . It is reasonable to assume that K is the only positive equilibrium,
so that

Λ(N ) > μN

for 0 ≤ N ≤ K . For most population models,

Λ(0) = 0, Λ′′(N ) ≤ 0 .

However, if Λ(N ) represents recruitment into a behavioral class, as would be natural
for models of sexually transmitted diseases, it would be plausible to have Λ(0) > 0,
or even to consider Λ(N ) to be a constant function. If Λ(0) = 0, we require Λ′(0) >

μ because if this requirement is not satisfied there is no positive equilibrium and the
population would die out even in the absence of disease.

The theory of asymptotically autonomous systems [15, 64, 80, 81] implies that
if N has a constant limit then the system is equivalent to the system in which N is
replaced by this limit. Then the system (9) is equivalent to the system

S′ = Λ − βSI − μS

I ′ = βSI − μI − α I (10)

in which β stands for the constant β(K ) and Λ for the constant Λ(K ) = μK .
We shall analyze the model (10) qualitatively; our analysis will also apply to the

more general model (9) if there are no disease deaths.
Just as for the epidemic models considered earlier, the basic reproduction number

is the number of secondary infections caused by a single infective introduced into
a wholly susceptible population. Because the number of contacts per infective in
unit time is βN0, and the mean infective period (corrected for natural mortality) is
1/(μ + α),the basic reproduction number is

R0 = βN0

μ + α
.

Our approach will be to identify equilibria (constant solutions) and then to
determine the asymptotic stability of each equilibrium. Asymptotic stability of
an equilibrium means that a solution starting sufficiently close to the equilibrium
remains close to the equilibrium and approaches the equilibrium as t → ∞, while
instability of the equilibrium means that there are solutions starting arbitrarily close
to the equilibrium which do not approach it. To find equilibria (S∞, I∞) we set the
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right side of each of the two equations equal to zero. The second of the resulting
algebraic equations factors, giving two alternatives. The first alternative is I∞ = 0,
which will give a disease-free equilibrium, and the second alternative is βS∞ =
μ + α, which will give an endemic equilibrium, provided βS∞ = μ + α < βN0.
If I∞ = 0 the other equation gives S∞ = N0 = Λ/μ. For the endemic equilibrium
the first equation gives

I∞ = Λ

μ + α
− μ

β
. (11)

We linearize about an equilibrium (S∞, I∞) by letting y = S − S∞, z = I − I∞,
writing the system in terms of the new variables y and z and retaining only the
linear terms in a Taylor expansion. We obtain a system of two linear differential
equations,

y′ = −(β I∞ + μ)y − βS∞z

z′ = β I∞y + (βS∞ − μ − α)z .

The coefficient matrix of this linear system is

[−β I∞ − μ −βS∞
β I∞ βS∞ − μ − α

]

We then look for solutions whose components are constant multiples of eλt ; this
means that λ must be an eigenvalue of the coefficient matrix. The condition that all
solutions of the linearization at an equilibrium tend to zero as t → ∞ is that the real
part of every eigenvalue of this coefficient matrix is negative. At the disease-free
equilibrium the matrix is

[−μ −βN0

0 βK − μ − α

]
,

which has eigenvalues −μ and βN0 − μ − α. Thus, the disease-free equilibrium is
asymptotically stable if βN0 < μ + α and unstable if βN0 > μ + α. Note that this
condition for instability of the disease-free equilibrium is the same as the condition
for the existence of an endemic equilibrium.

In general, the condition that the eigenvalues of a 2 × 2 matrix have negative
real part is that the determinant be positive and the trace (the sum of the diagonal
elements) be negative. Since βS∞ = μ + α at an endemic equilibrium, the matrix
of the linearization at an endemic equilibrium is

[−β I∞ − μ −βS∞
β I∞ 0

]
(12)
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and this matrix has positive determinant and negative trace. Thus, the endemic
equilibrium, if there is one, is always asymptotically stable. If the quantity

R0 = βN0

μ + α
= N0

S∞
(13)

is less than one, the system has only the disease-free equilibrium and this equilib-
rium is asymptotically stable. In fact, it is not difficult to prove that this asymptotic
stability is global, that is, that every solution approaches the disease-free equilib-
rium. If the quantity R0 is greater than one then the disease-free equilibrium is
unstable, but there is an endemic equilibrium that is asymptotically stable. The dis-
ease model exhibits a threshold behavior: If the basic reproduction number is less
than one the disease will die out, but if the basic reproduction number is greater than
one the disease will be endemic. The asymptotic stability of the endemic equilibrium
means that the compartment sizes approach a steady state. If the equilibrium had
been unstable, there would have been a possibility of sustained oscillations. Oscil-
lations in a disease model mean fluctuations in the number of cases to be expected,
and if the oscillations have long period could also mean that experimental data for a
short period would be quite unreliable as a predictor of the future. Epidemiological
models which incorporate additional factors may exhibit oscillations. A variety of
such situations is described in [45, 46]. In general, a reproduction number greater
than one signifies persistence of the infection.

Like epidemic models, disease transmission models including births and deaths
can be put into an age of infection framework as in [13]. This allows the calcu-
lation of the reproduction number for models with multiple infective or treatment
compartments.

If there are disease deaths in an SI R model with births and deaths, the analysis is
more complicated. Because the total population size is not constant, the dimension
of the model can not be reduced to two, and the stability analysis of a system of
higher dimension is more complicated. However, the fundamental threshold prop-
erty continues to hold [13]. This also extends to more complicated models with more
compartments.

Epidemic models also exhibit a threshold behavior but of a different kind. For
these models, SI R models without births or natural deaths, the threshold distin-
guishes between a dying out of the disease and an epidemic, or short term spread of
disease.

5 The SI S Model

In order to describe a model for a disease from which infectives recover with no
immunity against reinfection and that includes births and natural deaths but no
disease deaths as in the model (9), we may modify the model (9) by removing
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the equation for R and moving the term α I describing the rate of recovery from
infection to the equation for S. This gives the model

S′ = Λ(N ) − β(N )SI − μS + α I (14)

I ′ = β(N )SI − α I − μI

describing a population with a density-dependent birth rate Λ(N ) per unit time, a
proportional death rate μ in each class, and with a rate α of departure from the
infective class through recovery with no immunity against reinfection.

As for the SI R model, since the system (14) is asymptotically autonomous and
since S + I is a constant N0, it is equivalent to the single equation

I ′ = β I (N0 − I ) − (α + μ)I, (15)

where S has been replaced by N0 − I . But (15) is a logistic equation which is easily
solved by an equilibrium analysis. We find that I → 0 if

R0 = βN0

μ + α
< 1

and I → I∞ > 0 with

I∞ = N0 − μ + α

β
= N0

(
1 − 1

R0

)

if R0 > 1. Thus the SI S model exhibits the same threshold behavior as the SI R
model. In fact, this holds even without births and natural deaths; the flow of new
susceptibles coming from recovery from infection maintains the disease.

If there are disease deaths in the SI S model, the analysis is more complicated
but the result is the same.

6 Backward Bifurcations

In compartmental models for the transmission of communicable diseases there
is usually a basic reproduction number R0, representing the mean number of
secondary infections caused by a single infective introduced into a susceptible pop-
ulation. If R0 < 1 there is a disease-free equilibrium which is asymptotically stable,
and the infection dies out. If R0 > 1 the usual situation is that there is an endemic
equilibrium which is asymptotically stable, and the infection persists. Even if the
endemic equilibrium is unstable, the instability commonly arises from a Hopf bifur-
cation and the infection still persists but in an oscillatory manner. More precisely, as
R0 increases through 1 there is an exchange of stability between the disease-free
equilibrium and the endemic equilibrium (which is negative as well as unstable
and thus biologically meaningless if R0 < 1). There is a bifurcation, or change
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in equilibrium behavior, at R0 = 1 but the equilibrium infective population size
depends continuously on R0. Such a transition is called a forward, or transcritical,
bifurcation.

It has been noted [33, 39, 40, 57] that in epidemic models with multiple groups
and asymmetry between groups or multiple interaction mechanisms it is possible to
have a very different bifurcation behavior at R0 = 1. There may be multiple positive
endemic equilibria for values of R0 < 1 and a backward bifurcation at R0 = 1.

The qualitative behavior of an epidemic system with a backward bifurcation dif-
fers from that of a system with a forward bifurcation in at least three important ways.
If there is a forward bifurcation at R0 = 1 it is not possible for a disease to invade a
population if R0 < 1 because the system will return to the disease-free equilibrium
I = 0 if some infectives are introduced into the population. On the other hand, if
there is a backward bifurcation at R0 = 1 and enough infectives are introduced into
the population to put the initial state of the system above the unstable endemic equi-
librium with R0 < 1, the system will approach the asymptotically stable endemic
equilibrium.

Other differences are observed if the parameters of the system change to produce
a change in R0. With a forward bifurcation at R0 = 1 the equilibrium infective
population remains zero so long as R0 < 1 and then increases continuously as
R0 increases. With a backward bifurcation at R0 = 1, the equilibrium infective
population size also remains zero so long as R0 < 1 but then jumps to the positive
endemic equilibrium as R0 increases through 1. In the other direction, if a disease
is being controlled by means which decrease R0 it is sufficient to decrease R0 to 1
if there is a forward bifurcation at R0 = 1 but it is necessary to bring R0 below 1 if
there is a backward bifurcation.

These behavior differences are important in planning how to control a disease; a
backward bifurcation at R0 = 1 makes control more difficult. One control measure
often used is the reduction of susceptibility to infection produced by vaccination. By
vaccination we mean either an inoculation which reduces susceptibility to infection
or an education program such as encouragement of better hygiene or avoidance of
risky behavior for sexually transmitted diseases. Whether vaccination is inoculation
or education, typically it reaches only a fraction of the susceptible population and is
not perfectly effective. In an apparent paradox, models with vaccination may exhibit
backward bifurcations, making the behavior of the model more complicated than
the corresponding model without vaccination. It has been argued [9] that a partially
effective vaccination program applied to only part of the population at risk may
increase the severity of outbreaks of such diseases as HIV/AIDS.

We give a simple example of a backward bifurcation by incorporating vaccination
into a simple SI S model, following the elementary approach of [11].

The model we will study adds vaccination to the simple SIS model (15) described
in the preceding section. We add the assumption that in unit time a fraction ϕ of
the susceptible class is vaccinated. The vaccination may reduce but not completely
eliminate susceptibility to infection. We model this by including a factor σ , 0 ≤
σ ≤ 1, in the infection rate of vaccinated members with σ = 0 meaning that the
vaccine is perfectly effective and σ = 1 meaning that the vaccine has no effect. We
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assume also that the vaccination loses effect at a proportional rate θ . We describe
the new model by including a vaccinated class V , with

I ′ = β [N0 − I − (1 − σ )V ] I − (μ + γ )I (16)

V ′ = ϕ[N0 − I ] − σβV I − (μ + θ + φ)V .

The system (16) is the basic vaccination model which we will analyze. We remark
that if the vaccine is completely ineffective (σ = 1), then (16) is equivalent to
the SIS model (15). If there is no loss of effectiveness of vaccine, θ = 0, and if
all susceptibles are vaccinated immediately (formally, ϕ → ∞), the model (16) is
equivalent to (15) with β replaced by σβ and has basic reproduction number

R∗
0 = σβK

μ + γ
= σR0 ≤ R0.

We will think of the parameters μ, γ , θ , ϕ and σ as fixed and will view β as
variable. In practice, the parameter ϕ is the one most easily controlled, and with this
interpretation in mind, we will use R(ϕ) to denote the basic reproduction number of
the model (16), and we will see that

R∗
0 ≤ R(ϕ) ≤ R0.

Equilibria of the model (16) are solutions of

β I [N0 − I − (1 − σ )V ] = (μ + γ )I (17)

ϕ[N0 − I ] = σβV I + (μ + θ + ϕ)V .

If I = 0 then the first equation of (17) is satisfied and the second equation leads to

S = μ + θ

μ + θ + ϕ
N0, V = ϕ

μ + θ + ϕ
N0.

This is the disease-free equilibrium.
The matrix of the linearization of (16) at an equilibrium (I, V ) is

[−2β I − (1 − σ )βV − (μ + α) + βN0

−(ϕ + σβV )
−(1 − σ )β I

−(μ + θ + ϕ + σβ I )

]

At the disease-free equilibrium this matrix is

[−(1 − σ )βV − (μ + α) + βN0

−(φ + σβV )
0

−(μ + θ + ϕ)

]
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which has negative eigenvalues, implying the asymptotic stability of the disease-free
equilibrium, if and only if

−(1 − σ )βV − (μ + α) + βN0 < 0.

Using the value of V at the disease-free equilibrium this condition is equivalent to

R(ϕ) = βN0

μ + α
· μ + θ + σφ

μ + θ + ϕ
= R0

μ + θ + σϕ

μ + θ + ϕ
< 1.

The case ϕ = 0 is that of no vaccination with R(ϕ) = R0, and R(ϕ) < R0 if ϕ > 0.
In fact, it is not difficult to show, using a standard a priori bound argument, that if
R0 < 1 the disease-free equilibrium is globally asymptotically stable [57]. We note
that R∗

0 = σR0 = limϕ→∞ R(φ) < R0.

6.1 Endemic Equilibria

If 0 ≤ σ < 1 endemic equilibria are solutions of the pair of equations

β [N0 − I − (1 − σ )V ] = μ + γ (18)

ϕ[N0 − I ] = σβV I + (μ + θ + ϕ)V .

We eliminate V using the first equation of (18) and substitute into the second
equation to give an equation of the form

AI 2 + B I + C = 0 (19)

with

A = σβ

B = (μ + θ + σϕ) + σ (μ + γ ) − σβN0 (20)

C = (μ + γ )(μ + θ + ϕ)

β
− (μ + θ + σϕ)N0.

If σ = 0 (19) is a linear equation with unique solution.

I = N0 − (μ + γ )(μ + θ + ϕ)

β(μ + θ )
= N0

[
1 − 1

R(ϕ)

]

which is positive if and only if R(ϕ) > 1. Thus if σ = 0 there is a unique endemic
equilibrium if R(ϕ) > 1 which approaches zero as R(φ) → 1+ and there can not
be an endemic equilibrium if R(ϕ) < 1. In this case it is not possible to have a
backward bifurcation at R(ϕ) = 1.
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We note that C < 0 if R(ϕ) > 1, C = 0 if R(ϕ) = 1, and C > 0 if R(ϕ) < 1. If
σ > 0, so that (19) is quadratic and if R(ϕ) > 1 then there is a unique positive root
of (19) and thus there is a unique endemic equilibrium. If R(ϕ) = 1, then C = 0
and there is a unique non-zero solution of (19) I = −B/A which is positive if and
only if B < 0. If B < 0 when C = 0 there is a positive endemic equilibrium for
R(ϕ) = 1. Since equilibria depend continuously on ϕ there must then be an interval
to the left of R(ϕ) = 1 on which there are two positive equilibria. This establishes
that the system (16) has a backward bifurcation at R(ϕ) = 1 if and only if B < 0
when β is chosen to make C = 0.

We can give an explicit criterion in terms of the parameters μ, α, θ , ϕ, σ for the
existence of a backward bifurcation at R(ϕ) = 1. When R(ϕ) = 1, C = 0 so that

(μ + θ + σϕ)βN0 = (μ + α)(μ + θ + ϕ) (21)

The condition B < 0 is

(μ + θ + σϕ) + σ (μ + α) < σβN0

with βN0 determined by (21), or

σ (μ + α)(μ + θ + ϕ) > (μ + θ + σϕ) [(μ + θ + σϕ) + σ (μ + α)]

which reduces to

σ (1 − σ )(μ + γ )ϕ > (μ + θ + σϕ)2. (22)

A backward bifurcation occurs at R(ϕ) = 1 if and only if (22) is satisfied. We point
out that there can not be a backward bifurcation if the vaccine is perfectly effective,
σ = 0. Also, it is possible to prove that for the corresponding SI R model with
vaccination a backward bifurcation is not possible.

If (22) is satisfied, so that there is a backward bifurcation at R(ϕ) = 1, there are
two endemic equilibria for an interval of values of β from

βN0 = (μ + α)(μ + θ + ϕ)

μ + θ + σϕ

corresponding to R(ϕ) = 1 to a value βc defined by B = −2
√

AC . Thus there are
two endemic equilibria if β is chosen so that

−2
√

AC < B < 0.

It is possible to prove that the larger one is asymptotically stable while the lower one
is unstable and separates the regions of attraction of the disease-free equilibrium and
the asymptotically stable endemic equilibrium.
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7 Calculation of Reproduction Numbers

We have calculated reproduction numbers directly by following the course of a dis-
ease through a population from an initial infective. This is possible because we have
examined only situations in which all new infections are in a single compartment. If
new infections may be in multiple compartments, it is necessary to use a next gen-
eration operator approach [29, 30]. If the model is a system of ordinary differential
equations,the next generation approach may be formulated in matrix-theoretic terms
[82]. In this section we outline this approach, referring the reader to [82] for details.

A compartment is called a disease compartment if its members are infected.
Note that exposed and asymptomatic compartments are disease compartments in
this sense. Suppose that there are n disease compartments and m non-disease com-
partments, and let x ∈ Rn and y ∈ Rm be the subpopulations in these compartments
respectively. We denote by Fi the rate at which secondary infections increase the
ith disease compartment. We define the n × nmatrix V describing the transitions
between infected states as well as removals from infected states through death and
recovery. For any non-negative vector x , the components of the vector V x represent
the net rate of decrease of each infected compartment. Since this rate cannot be
positive if the compartment is empty, it follows that the off-diagonal entries of V
must be negative or zero. Similarly, the sum of the components of the vector V x ,
which represents the net rate of decrease in infected individuals due to death and
recovery, must be non-negative for every non-negative vector x .

The compartmental model can then be written in the form

x ′ = F(x, y) − V x (23)

y′ = g(x, y),

with non-negative initial conditions such that at least one component of x(0) is
positive.

The disease-free set {(x, y)|x = 0, y ≥ 0} is invariant. Suppose that a point
(0, y0) is a locally asymptotically stable equilibrium of the system without disease

y′ = g(0, y)

in the sense that solutions that start close to (0, y0) remain close to (0, y0). Such
a point is referred to as a disease-free equilibrium. The community matrix of the
system without disease at this equilibrium is

gy(0, y0),

and this assumption implies that all the eigenvalues of gy(0, y0) have negative or
zero real parts.

The point (0, y0) is also an equilibrium of the system (23). We define

F = Fx (0, y0).
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If all eigenvalues of F − V have negative real parts, then this equilibrium is also
asymptotically stable for (23).

The number of secondary infections produced by a single infected individual
can be expressed as the product of the expected duration of the infectious period
and the rate at which secondary infections occur. For the general model with n
disease compartments, these are computed for each compartment for a hypothetical
index case. The expected time the index case spends in each compartment is given
by the integral

∫∞
0 ϕ(t, x0) dt , where ϕ(t, x0) is the solution of (23) with F = 0

(no secondary infections) and nonnegative initial conditions, x0, representing an
infected index case:

x ′ = −V x, x(0) = x0. (24)

In effect, this solution shows the path of the index case through the disease compart-
ments from the initial exposure through to death or recovery with the i th component
of ϕ(t, x0) interpreted as the probability that the index case (introduced at time
t = 0) is in disease state i at time t . The solution to (24) is ϕ(t, x0) = e−V t x0,
where the exponential of a matrix is defined by the Taylor series

eA = I + A + A2

2!
+ A3

3!
+ · · · + Ak

k!
+ · · ·

This series converges for all t . Thus

∫ ∞

0
ϕ(t, x0) dt =

∫ ∞

0
e−V t x0 dt = V −1x0.

The (i, j) entry of the matrix V −1 can be interpreted as the expected time an individ-
ual initially introduced into disease compartment j spends in disease compartment
i . The (i, j) entry of the matrix F is the at which rate secondary infections are
produced in compartment i by an index case in compartment j . Hence, the expected
number of secondary infections produced by the index case is given by

∫ ∞

0
Fe−V t x0 dt = FV −1x0.

The matrix K = FV −1 is called the next generation matrix [29, 30] for the system
at the disease-free equilibrium. The (i, j) entry of K is the expected number of
secondary infections in compartment i produced by individuals initially in compart-
ment j , assuming, of course, that the environment seen by the individual remains
homogeneous for the duration of its infection.

It is shown in [82] that V is a non-singular M-matrix. This implies that the eigen-
values of V all have positive real part, and V −1 is a matrix with non-negative entries
[7]. The next generation matrix, K = FV −1, is nonnegative and the properties of
matrices imply that K has a nonnegative eigenvalue, ρ(FV −1), such that there are
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no other eigenvalues of K with modulus greater than R0 and there is a nonnegative
eigenvector ω associated with R0. This eigenvector is in some sense the distribution
of infected individuals that produces the greatest number, R0, of secondary infec-
tions per generation. Thus, R0 and the associated eigenvector ω suitably define a
“typical” infective and the basic reproduction number can be defined rigorously as
the spectral radius of the next generation matrix, K .

It is possible to show that the spectral radius of K = FV −1 has absolute value
less than 1 if and only if all eigenvalues of the matrix F − V have negative real part
[82]. Thus the disease-free equilibrium (0, y0) of (23) is (locally) asymptotically
stable if and only if R0 < 1.

If all new infections are in one compartment, the matrix F has rank 1 and thus
the matrix K = FV −1 also has rank 1. Then all but one of the eigenvalues of K
are zero, and since the sum of the eigenvalues of K is equal to the trace of K , the
spectral radius is the remaining eigenvalue,

ρ(K ) = tr (K ).

8 Estimating R0 Using a Compartmental Epidemic Model

In practice, the reproduction number denoted simply by R and defined as the
number of secondary cases generated by a primary infectious cases in a partially
protected population might be useful. R can also be estimated from the initial
growth phase of an epidemic in such a partially immunized population. In a ran-
domly mixing population, the relationship between the basic reproduction number
(R0) and the reproduction number (R) is given by R = (1 − p)R0 where p is the
proportion of the population that is effectively protected against infection (in the
beginning of an epidemic). Besides, for many recurrent infectious diseases includ-
ing seasonal influenza, estimating the background immunity p in the population is
extremely difficult due to cross-immunity of antigenically-related influenza strains
and vaccination campaigns.

Statistical methods to quantitatively estimate R0 have been reviewed by Klaus
Dietz [32]. Depending on the characteristics of data and underlying assumptions of
the models, R0 can be estimated using various different approaches [28]. Here we
focus on the estimation of R0 from an inverse problem perspective using compart-
mental epidemic models based on systems of ordinary differential equations. While
in previous sections the focus is on mass action incidence, here we model epidemics
assuming standard incidence. A recent review on methods for the estimation of the
basic reproduction number in the context of the 1918–1919 influenza pandemic has
been given by Chowell and Nishiura (2008) [25].

The simple SEIR model classifies individuals as susceptible (S), exposed (E),
infectious (I), recovered (R), and dead (D) [3]. Susceptible individuals in contact
with the virus enter the exposed class at the rate β I (t)/N , where β is the transmis-
sion rate, I (t) is the number of infectious individuals at time t and
N = S(t) + E(t) + I (t) + R(t) is the total population for any t . The entire
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population is assumed to be susceptible at the beginning of the epidemic. Individ-
uals in latent period (E) progress to the infectious class at the rate k (where 1/k
suggests the mean latent period). We assume homogeneous mixing (i.e. random
mixing) between individuals and, therefore, the fraction I (t)/N is the probability
of a random contact with an infectious individual in a population of size N . Since
we assume that the time-scale of the epidemic is much faster than characteristic
times for demographic processes (natural birth and death), background demographic
processes are not included in the model. Infectious individuals either recover or
die from influenza at the mean rates γ and δ, respectively. Recovered individu-
als are assumed protected for the duration of the outbreak. The mortality rate is
given by δ = γ [CFP/(1-CFP)], where CFP is the mean case fatality proportion.
The transmission process can be modeled using the system of nonlinear differential
equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d S(t)

dt
= −βS(t)I (t)

N

d E(t)

dt
= βS(t)I (t)

N (t)
− k E(t)

d I (t)

dt
= k E(t) − (γ + δ)I (t)

d R(t)

dt
= γ I (t)

d D(t)

dt
= δ I (t)

dC(t)

dt
= k E(t)

(25)

where C(t) is the cumulative number of infectious individuals. The basic repro-
duction number of the above system (25) is given by the product of the mean
transmission rate and the mean infectious period, R0 = β/(γ + δ).

8.1 Parameter Estimation

In the simplest manner, model parameters can be estimated via least-square fitting of
the model solution to the observed data. That is, one looks for the set of parameters
�̂ whose model solution best fits the epidemic data by minimizing the sum of the
squared differences between the observed data yt and the model solution C(t,�).
That is, we minimize:

X (�) =
n∑

t=1

(yt − C(t,�))2 (26)
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The standard deviation of the parameters can be estimated by computing the
asymptotic variance-covariance AV (�̂) matrix of the least-squares estimate by [27]:

AV(�̂) = σ 2(∇�C(�0) ∇�C(�0)T)−1 (27)

which can be estimated by

σ̂ 2( ˆ∇�̂C(�̂) ˆ∇�̂C(�̂)T)−1 (28)

where n is the total number of observations, σ̂ 2 is the estimated variance, and ∇̂C
are numerical derivatives of C . Estimates of R̂0 can be obtained by substituting
the corresponding individual parameter estimates into an analytical formula of R0.
Further, using the delta method [8], we can derive an expression for the variance of
the estimated basic reproduction number R̂0. An expression for the variance of R0

for the simple SEIR model (Equations (25)) is given by:

V (R̂0) ≈ R̂0
2
{

V (β̂)

β̂2
+ V (γ̂ )

(γ̂ + δ̂)2
+ V (δ̂)

(γ̂ + δ̂)2

−
(

2

β̂(γ̂ + δ̂)

)(
Cov(γ̂ , β̂) − β̂Cov(δ̂, γ̂ )

γ̂ + δ̂
+ Cov(δ̂, β̂)

)}
. (29)

This expression depends on the variance (denoted by V ) of the individual
parameter estimates as well as their covariance (denoted by Cov).

8.2 Bootstrap Confidence Intervals

Another method to generate uncertainty bounds on the reproduction number is com-
puting bootstrap confidence intervals by generating sets of realizations of the best-fit
curve C(t) [34]. Each realization of the cumulative number of case notifications
Ci (t) (i = 1, 2, . . ., m) is generated as follows: for each observation C(t) for
t = 2, 3, . . ., n days generate a new observation C

′
i (t) for t ≥ 2 (C

′
i (1) = C(1))

that is sampled from a Poisson distribution with mean: C(t) − C(t − 1) (the daily
increment in C(t) from day t − 1 to day t). The corresponding realization of the
cumulative number of influenza notifications is given by Ci (t) =∑t

j=1 C
′
i (t) where

t = 1, 2, 3, . . ., n. The reproduction number was then estimated from each of 1000
simulated epidemic curves to generate a distribution of R estimates from which sim-
ple statistics can be computed including 95% confidence intervals. These statistics
need to be interpreted with caution. For example, 95% confidence intervals for R
derived from our bootstrap sample of R should be interpreted as containing 95% of
future estimates when the same assumptions are made and the only noise source is
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observation error. It is tempting but incorrect to interpret these confidence intervals
as containing the true parameters with probability 0.95.

8.3 Example: The Transmissibility of the 1918 Influenza
Pandemic in Winnipeg, Canada

The 1918–1919 influenza pandemic known as the Spanish influenza has been the
most devastating in recent history with estimated worldwide mortality ranging from
20 to 100 million deaths [26, 67] with a case fatality of 2–6% [63, 79]. The first
pandemic wave arrived to Winnipeg at the end of September 1918 probably brought
by returning soldiers at the end of war (Fig. 1). The pandemic appears to have moved
from the south of the city into the north (from the wealthy to the poor populations)
[50]. The influenza mortality rate of influenza was 90 deaths per thousand in the
north end, and 46 per thousand in the south.

Because influenza pandemics such as the Spanish flu from 1918 to 1919 are
associated to the emergence of novel influenza strains to which most of the popula-
tion is susceptible, it might be reasonable to assume that the reproduction number
R ≈ R0. Previous studies have estimated that R0 of the 1918–1919 influenza
pandemic ranged between 1.5 and 5.4 [4, 19, 20, 22, 38, 65, 66, 70, 77, 83, 84]
depending on the specific location and pandemic wave considered, type of data,
estimation method, and level of spatial aggregation, which has ranged from small
towns to entire nations with several million inhabitants. The variability of R0 esti-
mates suggests that local factors, including geographic and demographic conditions,
could play an important role in disease spread [24, 76].

We estimated the reproduction number of the 1918 influenza pandemic in Win-
nipeg, Canada by fitting the simple SEIR model (25) to the initial phase of the
cumulative number of reported cases. Figures 2 and 3 show the model fit to the epi-
demic data and the corresponding distributions of the reproduction number obtained

Fig. 1 Temporal distribution
of Spanish influenza in
Winnipeg, Canada in 1918.
A total of 14868 cases were
reported from October 3rd to
January 22nd. Data
source: [14]
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Fig. 2 Model fits (top panels) and the resulting distributions of the reproduction number (bottom
panels) obtained assuming a generation interval of 3 days after fitting the simple SEIR epi-
demic model to the initial phase of the Fall influenza wave using 14, 21 and 28 epidemic days
of the Spanish Flu Pandemic in Winnipeg, Canada. In the top panel, the epidemic data of the
cumulative number of reported influenza cases are the circles and the solid blue lines are 200
realizations of the model fit to the data obtained through parametric bootstrapping as explained in
the text

from parametric bootstrap of the model best fit using 14, 21 and 28 epidemic
days of data and a generation interval of 3 and 6 days, respectively. Following
a generation interval of 3 days [17, 88], the reproduction number was estimated
to be ∼2 (SD 0.1) using the first 14 days and ∼1.6 (SD 0.03) using the first 21
epidemic days.

9 Estimation of the Reproduction Number
Using the Intrinsic Growth Rate r

It is possible to relate the basic reproduction number (R0) with the intrinsic growth
rate (r ). Moving forward from the compartmental epidemic models presented in the
previous sections, the intrinsic growth rate is essentially the dominant eigenvalue
of the characteristic equation obtained after linearizing the system of differential
equations of the epidemic model around the disease free equilibrium. For the clas-
sical SIR model, the basic reproduction number as a function of the early-time and
per-capita free growth rate r is given by R0 = 1 + r/γ [3] where 1/γ is the mean
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Fig. 3 Model fits (top panels) and the resulting distributions of the reproduction number (bottom
panels) obtained assuming a generation interval of 6 days after fitting the simple SEIR epi-
demic model to the initial phase of the Fall influenza wave using 14, 21 and 28 epidemic days
of the Spanish Flu Pandemic in Winnipeg, Canada. In the top panel, the epidemic data of the
cumulative number of reported influenza cases are the circles and the solid blue lines are 200
realizations of the model fit to the data obtained through parametric bootstrapping as explained in
the text

infectious period. When a latency period (1/k) is included in the model, the rela-
tionship between R0 and r becomes R0 = 1 + r2+(k+γ )

kγ
. It is important to highlight

that these relationships are obtained under the assumption of exponential waiting
times for the latent and infectious periods, and the impact of this assumption on esti-
mates of R0 has been highlighted in several publications (e.g., [59, 60, 73, 87, 89]).
Wallinga and Lipsitch (2008) [86] have recently elucidated a general relationship
between the generation time and R0 and derived the following estimator for R0

using the intrinsic growth rate:

R̂0 = 1

M(−r )
, (30)

where M(−r ) is the moment generating function of the generation time distribution
w(τ ), given the intrinsic growth rate r [86]. For example, when the generation time
of the disease in question is considered to be fixed (no variance), an upper bound for
the basic reproduction number can be easily obtained through the formula R0 = erT

where T is the mean generation time. Similarly for generation intervals that are
approximately normally distributed with mean T and variance σ 2 the reproduction
number can be approximated by R ≈ erT − 1

2 r2σ 2
.
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Fig. 4 The weekly pneumonia and influenza (P&I) deaths from August 1968 to June 1971 for nine
representative US cities

9.1 Example: The Transmissibility of the 1968 Influenza
Pandemic in US Cities

Following the devastating 1918–1919 influenza pandemic caused by the influenza
virus A (H1N1), subsequent pandemics during the 20th century are attributed to
subtypes A (H2N2) from 1957 to 1958 (Asian influenza) and A (H3N2) in 1968
(Hong Kong influenza) [62].

We estimated the reproduction number of the 1968 influenza pandemic for 85 US
cities using weekly pneumonia and influenza (P&I) mortality [1]. The weekly
series of P&I deaths for 9 representative US cties are shown for illustration in
Fig. 4. We assumed an influenza generation interval of 3 days [17, 88]. We used
the median P&I mortality during the 1970–1971 season as a constant baseline to
extract influenza-related deaths during the 1968 influenza pandemic (e.g., excess
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Fig. 5 Estimates of the reproduction number of the 1968 influenza pandemic for 85 US cities
assuming an exponentially distributed (blue) or a fixed generation interval (red) with a mean of
3 days

P&I deaths above that median were considered to be influenza-related deaths). We
estimated the intrinsic growth rate “r” for all those cities for which the initial epi-
demic phase comprised at least three epidemic weeks of data. We estimated “r”
assuming an exponential growth phase y = Cert . The longest epidemic period that
is consistent with exponential growth and used to estimate “r” is determined via the
goodness-of-fit test statistic.

We estimated a mean R for all the 85 US cities of 1.33 (95% CI: 1.29, 1.38)
assuming exponentially distributed latent and infectious periods of 1.5 days each
(3-day generation interval) while assuming a fixed generation interval of 3 days
(zero variance) yielded an upper bound with mean R = 1.37 (95% CI: 1.32, 1.43).
The city level R estimates assuming an exponentially distributed or a fixed gen-
eration interval are given in Fig. 5. For comparison, Rvachev and Longini (1985)
[75] estimated R = 1.89 from influenza case incidence data for the pandemic wave
starting in July 1968 in Hong Kong.
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Stochastic Epidemic Modeling

Priscilla E. Greenwood and Luis F. Gordillo

Abstract We review the topic of stochastic epidemic modeling with emphasis on
compartmental stochastic models. A main theme is the usefulness of the correspon-
dence between these and their large population deterministic limits, which describe
dynamical systems. The dynamics of an ODE system informs us of the deterministic
skeleton upon which the behavior of corresponding stochastic systems are built. In
this chapter we present a number of examples, mostly in the context of susceptible-
infected-removed (SIR) models, and point out how this way of thinking may be
useful in understanding other stochastic models. In particular we discuss the distri-
bution of final epidemic size, the effect of different patterns of infectiousness, and
the quantification of stochastically sustained oscillations.

Keywords Epidemic modeling · Stochastic SIR · Final size distribution ·
Vaccination · Stochastically sustained oscillations · Variable infectiousness

1 Introduction

The topic of stochastic epidemic modeling is huge. There are many possible types
of stochastic epidemic model. The decision of which type of model to choose, or
to invent a new one, depends on the specific question to be explored and the data
which is at hand or can be obtained. This chapter is a brief guide for newcomers,
to the literature and to the construction of compartmental stochastic models. We
will indicate some of the history of the subject in the next section. The one class of
stochastic models which we will describe in some detail, compartmental models, is
introduced in Section 3. Their natural form is multivariate Markov jump processes.
When populations are large, they correspond, in the sense of non-limit approxima-
tion, to systems of stochastic differential equations. Their large population limits are
systems of ordinary differential equations.

P.E. Greenwood (B)
Department of Mathematics and Statistics, Arizona State University, Tempe, AZ 85287-1804, USA
e-mail: pgreenw@math.asu.edu

G. Chowell et al. (eds.), Mathematical and Statistical Estimation Approaches
in Epidemiology, DOI 10.1007/978-90-481-2313-1 2,
C© Springer Science+Business Media B.V. 2009

31



32 P.E. Greenwood and L.F. Gordillo

Following the section on stochastic compartmental models we will describe three
stochastic phenomena that illustrate some of the questions to which these models
can yield answers. They happen to be questions to which we have recently con-
tributed. The first, in Section 4, concerns the form of the distribution of the final size
of an epidemic. In the context of a susceptible-infected-removed (SIR) epidemic, the
final size distribution is bimodal, quite strikingly if the reproduction number is just
slightly larger than one. Hence a prediction of epidemic size based on deterministic
modeling may be meaningless.

Section 5 concerns stochastically sustained oscillations, which occur if the cor-
responding dynamical system has damped oscillations. Such sustained oscillations
may help to explain the semi-regular recurrence of infectious disease outbreaks.
Multiscale analysis has allowed the phenomenon to be interpreted in terms of
stochastic process behavior, so that the role it plays in oscillatory disease phenomena
can be quantified.

Another interesting stochastic effect, in Section 6, concerns a class of stochastic
models in which nearly all homogeneity is abandoned. Still it is possible to say
something about the distribution of epidemic size. It depends on the infectiousness
of infected participants only through their total, or integrated, infectiousness.

A concluding section contains general observations about the essential role of
dynamical systems analysis in the understanding of stochastic dynamic effects in
epidemic models and additional examples.

2 History

An early stochastic epidemic model was proposed by A.G. McKendrick in 1926,
[38], which precedes his work with Kermack on deterministic models, [28]. An
account of McKendrick’s paper can be found in [25]. In 1928 and 1931, Reed and
Frost, and Greenwood proposed discrete time stochastic models, which proceeded
by generations of infectives, [18]. The Reed-Frost model was not published at the
time, but was presented in lectures in 1928. Bartlett, [14], studied a continuous time
stochastic SIR model, and this began a large literature of which we mention only
a few highlights. The book of Bailey [6] (first printed in 1957) is about both deter-
ministic and stochastic epidemic models and the estimation of their parameters. In
1993 the Isaac Newton Institute in Cambridge held a semester-long workshop on
stochastic epidemic modeling. Three collections of papers edited by Mollison [40],
by Isham and Medley [26], and by Grenfell and Dobson [21] resulted. The mono-
graph of Daley and Gani [18] is probably the best general source on this subject. In
particular their Chapter 1 is a fine account of the early history of epidemic modeling
in general. In fact Daley and Gani are two of the outstanding figures on this area.
Another authoritative survey, including maximum likelihood estimation and Monte
Carlo Markov Chain (MCMC) methods is by Anderson and Britton, [3]. A revised
edition is currently under preparation. Among further prominent contributors to the
area are Frank Ball [7–9, 11] Andrew Barbour [12, 13], Niels Becker [15, 16],
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Fig. 1 A schematic compartmental representation. Particles “move” between different categories

David Kendall [27], Donald Ludwig [36], Anders Martin-Löf [39], Ingemar Nåsell
[41, 42], Gian Paulo Scalia-Tomba [11, 46, 47], Tom Sellke [48].

3 Stochastic Compartmental Models

Before looking at particular epidemic models, let us become familiar with some
notation and ideas about stochastic compartmental models. Later the compartments
will become disease states and their members, which we refer to here as particles,
will be individuals. We will represent compartments, or classes of individuals by
boxes, for example three of them as in Fig. 1, and define a vector-valued process
which describes the movement of particles into, and out of each box. Time is con-
tinuous. For each time, t ≥ 0, (X1(t), X2(t), X3(t)) is the number of particles in
boxes 1, 2, and 3 respectively, where these three numbers sum up to N (t), the total
number of particles at that time.

An underlying structure, basic to the class of stochastic compartmental models,
and indeed to all Markov jump processes, is the Poisson process. Suppose there
is just one compartment, and just one process, X (t), representing the number of
particles in the box at time t . Particles enter the box at random times. The initial
value, X (0), is fixed and for some λ > 0,

P(X (t + Δt) − X (t) = 1) = λΔt + o(Δt), (1)

P(X (t + Δt) − X (t) = 0) = 1 − λΔt + o(Δt). (2)

The increments of X (t) in disjoint time intervals are independent. Then X (t), t ≥ 0
is called a Poisson process. The number λ is called the intensity or the stochastic rate
of the process. The times between successive jumps of the process are exponentially
distributed with parameter λ. Instead of being constant, λ = λ(t) may depend on t
and may also depend on the value of the process at time t . For example, if

P(X (t + Δt) − X (t) = 1) = aX (t)Δt + o(Δt), (3)

then we say aX (t) is the conditional instantaneous stochastic rate of the process at
time t , where the conditioning is on the value of X (t), or, once this is understood, we
shorten this to : aX (t) is the stochastic rate, or simply the rate. The rate per particle
is a. This process is a pure birth process. If our model has several compartments, so
that our stochastic process of counts has several components, then the conditional
instantaneous stochastic rates of particles entering or leaving each compartment at
time t may depend on the sizes of any of the components.
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A Markov jump process necessarily has exponentially distributed times between
the jumps. We saw this above in the description of the pure birth process, which
involves just one component process and one type of jump. A compartmental
epidemic model is a vector-valued process with a vector component for each com-
partment. There are several types of jumps, one type of jump for each arrow in the
diagram. If the resulting multi-component process is Markov, each type of jump
will occur according to a locally Poisson probability as in (1) above, and the times
between jumps of any one type, given that nothing occurs in the interim to alter
the rate, will be exponentially distributed with parameter given in terms of the
states of the component processes at the beginning of the interval. Each component
of the Markov jump process can be regarded as a birth and death process, with
instantaneous stochastic rates depending on all the components.

The requirement that the inter-jump times be exponentially distributed is not
essentially restrictive. There are ways to generalize without losing the advantages
of Markov modeling. For example, additional stages can be introduced so that,
for instance, one infective step occurs in a sum of independent exponential times,
and the result will be a gamma-distributed time. What is important to the result-
ing stochastic process is how the conditional mean of each increment, each change
between t and t +Δt , relates to the conditional variance of the increment. In the case
of conditionally Poisson increments, which are often used in this type of modeling,
and yield a Markov structure, the mean and variance are equal. The paper of Lloyd
in this volume discusses this point further.

Example 1. A simple stochastic epidemic. In this example we will consider two com-
partments corresponding to susceptible and infective individuals. We will use the
letters S and I respectively to refer to the compartments and also, without confusion
we hope, to the number of individuals in each class. We will assume that the total
number of individuals is constant and equal to N , that is, S + I = N . An individual
who belongs to the class S may be contacted by an individual in I , who can transfer
the infection. If that is the case, the susceptible individual changes his classification
and belongs now to the class I , where he will remain indefinitely. Assume that
individuals in each compartment are interchangeable, that the classes are homoge-
neously mixed, and that contacts between susceptible and infective individuals, or
equivalently the movement of individuals from the class S to the class I , occur at
random times. If β is the average number of contacts made by an average infective
per unit of time that leads to an infection, the probability of a susceptible individual
moving from class S to class I in the time interval [t, t + Δt], that is, S → S − 1
and I → I + 1, is β SI

N Δt + o(Δt).
This stochastic infection rate has come to be widely used, with various possible

interpretations of the N in the denominator. One can think of each susceptible con-
tacting everyone in the population with a rate β and encountering a proportion I/N
of infectives. Or one may think of each infective contacting everyone in the popula-
tion with a rate β and encountering a proportion S/N of susceptibles. Or one may
think of the N in the denominator as a reduction of the infection rate due to incom-
plete mixing in population. From this last point of view, the denominator might be
a different power of N or some other function of N . This point is discussed in [49].
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The process (St , It ), will represent the number of susceptible and infective indi-
viduals at time t . The probability of an infection during the time interval [t, t+Δt] is

P((St+Δt , It+Δt ) − (St , It ) = (−1, 1)) = β
St It

N
Δt + o(Δt), (4)

with the complementary probability

P((St+Δt , It+Δt ) − (St , It ) = (0, 0)) = 1 − β
St It

N
Δt + o(Δt). (5)

Example 2. The stochastic SIR model. Consider three classes of individuals: sus-
ceptible, infected, and removed (by recovery or death). As in the previous example,
we will use S, I and R to represent the compartments themselves, as well as the
numbers of individuals in each compartment, and assume S + I + R = N , a con-
stant. Thus, in the time interval [t, t + Δt], the probability of an infection, that is,
the simultaneous transitions S → S − 1 and I → I + 1 occur, is β SI

N Δt + o(Δt),
as in Example 1. If it is assumed that infected individuals recover with rate γ , the
probability for a recovery, I → I − 1 and R → R + 1, in the interval [t, t + Δt],
is γ IΔt + o(Δt). Because R = N − S − I , it is enough to consider the process
(St , It ). Thus, the probabilities of an infection and of a recovery during the time
interval [t, t + Δt] are

P((St+Δt , It+Δt ) − (St , It ) = (−1, 1)) = β
St It

N
Δt + o(Δt), (6)

P((St+Δt , It+Δt ) − (St , It ) = (0,−1)) = γ ItΔt + o(Δt), (7)

with the complementary probability

P((St+Δt , It+Δt ) − (St , It ) = (0, 0)) = 1 −
(

β
St

N
+ γ

)
ItΔt + o(Δt). (8)

This model, widely known as the general stochastic epidemic, was introduced by
Barlett in 1949, [14]. An extensive study can be found, for instance, in [3, 18].
The stochastic equations describing this process, which are going to be used in
Section 4, are obtained by adding and subtracting, to each increment of St and It ,
the conditional expectations, given the value of the process at the beginning of the
corresponding time increment, say, of length Δt , [6]. Each increment of the process
can be expressed as the expected value of the increment plus a sum of centered
increments. In our example, the expected values of the increments ΔS = St+Δt −
St and ΔI = It+Δt − It are (−β St It

N )Δt and (β St It
N − γ It )Δt respectively, so the

increments can be written as

ΔS =
(

−β
St It

N

)
Δt + ΔZ1 (9)

ΔI =
(

β
St It

N
− γ It

)
Δt − ΔZ1 + ΔZ2, (10)
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where ΔZ1 and ΔZ2 are conditionally centered Poisson increments with mean zero
and conditional variances β(St It/N )Δt and γ ItΔt .

Now let us consider what happens if we drop the terms ΔZi from Equations (9)
and (10), and let Δt go to zero. The resulting ordinary differential equations,

d S

dt
= −β

St It

N
,

d I

dt
= β

St It

N
− γ It ,

define a deterministic model. If β̂St It is used instead of βSt It/N , with β̂ = β/N ,
we have, after dropping the hats, the so called Kermack and McKendrick ODE
model, [19],

d S

dt
= −βSt It , (11)

d I

dt
= βSt It − γ It . (12)

In these first two examples, many aspects of a real contagion process have been put
aside, for instance latent periods, varying infection and recovery rates, partial immu-
nity, behavioral changes. The inclusion of such features would make the model more
realistic, but would complicate the analysis. The strategy in modeling a particular
system is first to consider the simplest model, even though some of the aspects one
might eventually wish to include are absent. One looks at the analysis and then
one may add, one step at a time, additional features. Adding compartments rapidly
complicates the analysis. It may be necessary to evaluate the effect of an additional
feature by numerical methods or simulation. In the next example, to which we return
in Section 5, the effect of births and deaths is taken into account.

Example 3. Stochastic SIR with demography. The stochastic SIR presented in Exam-
ple 2 might be appropriate when the rates of movement between compartments,
and hence the evolution of the disease, are fast enough so that the life span of an
individual does not need to be taken into account. This is often acceptable as an
idealization when one is interested in looking at functionals of a particular epidemic
outbreak such as epidemic size, which we discuss in the next section. However,
we may be interested in the longer term recurrent or endemic aspects of a disease,
such as the childhood diseases mumps, measles, smallpox, chickenpox, polio or
rubella. In this case, demography, meaning births and deaths of individuals, is often
included in the model. A scheme including demography is shown in Fig. 2, where

Fig. 2 Schematic
compartmental representation
of SIR including
“demography”
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births occur only in the susceptible class and deaths occur, at the same rate per indi-
vidual, in the three compartments. The transition rates for this model are shown in
Table 1 below.

Table 1 Transition rates for the stochastic SIR model with demography

Transition Rate

S → S + 1 μN
S → S − 1 β SI

N Δt + μS

I → I + 1 β SI
N Δt

I → I − 1 (γ + μ)I
R → R + 1 γ I
R → R − 1 μI

The stochastic rates of birth and death of individuals are assumed constant and
equal to μ. This makes the expected value of the total population constant and equal
to N . The corresponding probabilities of the events are

P((St+Δt , It+Δt ) − (St , It ) = (1, 0)) = P((St+Δt , It+Δt ) − (St , It ) = (−1, 0))

= μNΔt + o(Δt), (13)

P((St+Δt , It+Δt ) − (St , It ) = (−1, 1)) = β
St It

N
Δt + o(Δt), (14)

P((St+Δt , It+Δt ) − (St , It ) = (0,−1)) = (γ + μ)ItΔt + o(Δt). (15)

As in Example 2, it is enough to consider the process (St , It ), even though the total
population at time t has become a stochastic process. The equations for (St , It ) form
a closed system if we take N to be the constant E N , the expected value of Nt .
The stochastic equations describing this process, which will be used in Section 5,
are obtained similarly, by adding and subtracting to each increment of St and It ,
the conditional expectations, given the value of the process at the beginning of the
corresponding time increment. For this example, the expected values of the incre-
ments ΔS = St+Δt − St and ΔI = It+Δt − It are (μ(N − St ) − β St It

N )Δt and
(β St It

N − (γ + μ)It )Δt respectively, so the increments can be written as

ΔS =
(

μ(N − St ) − β
St It

N

)
Δt + ΔZ1 + ΔZ2, (16)

ΔI =
(

β
St It

N
− (γ + μ)It

)
Δt − ΔZ2 + ΔZ3, (17)

where ΔZ1 is the difference of the centered Poisson increments corresponding to
births and deaths in the susceptible class with mean zero and variance μ(N + St )Δt .
Similarly the centered Poisson increments corresponding to the infections and
removals are ΔZ2 and ΔZ3 respectively, both with conditional mean zero and with
conditional variances β(St It/N )Δt and (γ + μ)Δt . If we drop the terms ΔZi from
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Equations (16) and (17), and let Δt go to zero. The resulting ordinary differential
equations,

d S

dt
= μ(N − St ) − β

St It

N
,

d I

dt
= β

St It

N
− (γ + μ)It ,

define a deterministic model, namely the deterministic SIR with demography, which
has deterministic rates the same as the stochastic rates which yield the stochastic
model defined by Equations (16) and (17).

When N is large, there is often a diffusion approximation to a stochastic com-
partmental model. We illustrate this in the case of Example 3. Let us normalize
by dividing each of the stochastic processes in our model by N so that the state
variables are the proportions of the total expected population in the susceptible
and infective classes at each time, t and their jumps are of size 1/N . Suppose we
replace the conditionally centered Poisson increments, ΔZi/N , by increments of
Brownian motion, appropriate multiples of ΔWi , with the same standard deviations
as the Poisson increments they replace. We obtain a diffusion approximation to our
Markov jump process model which can be written as

ds = (μ(1 − s) − βsi) dt + G1dW1(t) − G2dW2(t),

di = (βsi − (γ + μ)i) dt + G2dW2(t) − G3dW3(t), (18)

G1 =
√

μ(1 + s), G2 =
√

βsi, G3 =
√

(γ + μ)i,

where s = S/N and i = I/N . Kurtz, [29, 30], showed that the normalized Markov
jump process and the approximating diffusion (18) can be constructed on the same
probability space in such a way that the maximum pointwise distance between their
sample paths on a fixed finite interval of time is of order log N/N . It is important
to note that the diffusion approximation is good for N large but becomes less useful
if N is too large. The limit of the solution of the stochastic system, as N goes to
infinity, is in fact the solution of the deterministic model, where the states are the
fractions of the total population in each class (18).

For epidemic models, a main concern is to find conditions under which a dis-
ease introduced into a community will develop into a large outbreak, and if it does,
conditions under which the disease may become endemic. For stochastic models, all
such questions are in terms of probabilities. A useful parameter in this regard, called
the basic reproductive number, R0, is defined as the expected number of secondary
infective cases per primary case in a completely susceptible population, [19]. In
Examples 2 and 3 above, the basic reproductive number is β/γ and β/(γ + μ),
respectively. If the basic reproductive number is smaller than or equal to one, with
a high probability the disease outbreak is relatively small. For this reason most



Stochastic Epidemic Modeling 39

studies of these examples concentrate on the complementary case. Arguably, the
most important and interesting case is where R0 is near one, as we shall see.

If the basic reproductive number is greater than one, the stochastic behavior
of Examples 2 and 3 are very different. In Example 2, with no demography, the
number of infected individuals generally increases, reaches a maximum and then
generally decreases to zero. In Example 3, with demography, the solutions of the
corresponding deterministic equations (see Section 5 below), will approach a non-
trivial equilibrium as t increases, called the endemic equilibrium. Simulations of
the stochastic model show almost periodic oscillations of the process around this
equilibrium. We return to this striking phenomenon in Section 5.

Other stochastic epidemic models can be defined along lines similar to these three
examples. Compartments may be added corresponding to latent, asymptomatic,
quarantined, or other disease-associated states. In this chapter we will confine our-
selves mostly to questions pertaining to Examples 2 and 3. It will be clear that
these and similar questions about other compartmental stochastic models might be
pursued using, in part, similar methods. The relation of stochastic compartmental
models to limiting deterministic models, and their approximations by diffusions,
are illustrated for the SIR model in this section. Essentially all stochastic compart-
mental models have deterministic limits and diffusion approximations which can
be obtained by the arguments analogous to those indicated here and given in detail
and in great generality by Kurtz [30]. Often it is useful, and justified, to work with
the diffusion approximation to the jump Markov chain model. The deterministic
large-N limit is also often of value for understanding the behavior of the stochastic
dynamical system defined by the Markov chain model. One example is the infor-
mation contained in the basic reproductive number, R0, which can be regarded as a
property of the deterministic limit. We see another example in Section 5 and discuss
this point more generally in Section 7.

4 Distribution of the Final Epidemic Size

Public health policy may be influenced by predictions of how large an epidemic
might be, that is, how many individuals ultimately become infected during the entire
time an epidemic lasts. This involves the assumption that the disease in question
does not become endemic and persist at a positive level indefinitely. In view of the
nature of the dynamics of Examples 2 and 3 in Section 3, the assumption that there
is a finite epidemic size pushes us in the direction of assuming that the population
is fixed and finite, with no demography. In this case, the number of infectives will
eventually reach zero, with probability one, so that the total number of individu-
als that are infected during the infectious process is almost surely finite, and the
distribution of the final size of the epidemic can, in principle, be computed.

It was first observed by Bailey in 1953, [5], that the final size distribution for the
stochastic SIR is bimodal, that is, there are two maxima. He provided formuli that
allow the computation of the distribution of the final size if the population is rather
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small. Since then, the final size distribution has been investigated for various models,
by Lefèvre and Picard [34, 35, 44], Ball [8, 9], Ball and Nåsell [10], Scalia-Tomba
[46, 47], Martin-Löf [39], Ludwig [36] among others. For large populations, the
computer storage needed for computation of the final size distribution, together with
numerical precision, have been important issues.

For the SIR, if the basic reproductive number is greater than one, the general
shape of the epidemic size distribution can be deduced intuitively as follows. With
a large enough population, during the first stages of an epidemic, the number of
infectives evolves approximately like a branching process. If the probability of zero
offspring in any family is positive, then the branching process goes extinct with
positive probability. The event of zero offspring corresponds to the event that an
infective infects no-one else, and this has positive probability. If extinction does
occur, it is likely to occur early. Correspondingly there are several sample paths of
the process of infectives, It , which reach zero relatively soon. On the other hand, if
early extinction does not happen then the finite number of susceptible individuals
begins to be depleted, so that the process no longer behaves as a branching process.
In this case the size of the epidemic may be approximately normally distributed.

There have been attempts to produce a rigorous argument for bimodality of the
epidemic size distribution along these lines, but apparently without success. On the
other hand, careful observation of simulations shows that some degree of bimodality
of this distribution is present for any combination of parameters. The most striking
biomodality occurs when the basic reproductive number is just slightly larger than
one, as in Fig. 3.

Martin Löf, [39], found a normalization and relative rates, under which the pro-
cess of infectives has a diffusion limit when, simultaneously, the total population,
N , and the basic reproductive number approach infinity and one, respectively. Also,
the distribution of the time until the epidemic stops converges to the time it takes a
Brownian motion to hit a parabolic boundary. Martin Löf used an elegant approx-
imation, using Airy functions, to produce the shape of the limiting epidemic size
distribution by computation. Marion and Greenwood [37] found a way of comput-
ing the final size distribution for very large N , from which one can see the degree
of agreement between Martin-Löf’s limiting distributions and the pre-limit for large
N . In this section we describe these results and others found in [22]. We look at the
questions:

� How does the epidemic size distribution depend on the parameters of the model?
� Is there a way to incorporate a process of vaccination in the stochastic SIR that

depends on the activity of the disease?
� How does the final epidemic size distribution change in the presence of

vaccination?

In order to simplify notation we will re-scale the time to γ t , and define λ = β/γ ,
which is the basic reproductive number. Then, in the notation of Example 2, β = λ,
and γ = 1. We observe how the shape of the final size distribution depends on the
parameters of the model by accurately computing the distribution in a memory-
efficient fashion, which we indicate here. For this we need to look only at the
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Fig. 3 Distribution of the final epidemic size for the pre-limit (red): population N = 50, 000 (dash-
dots) and N = 500, 000 (solid). The limit distribution (black) is in dash-dots. The parameters are
(a) a = 1, b = 1, (b) a = 3, b = 1 (c) a = 3, b = 0.5. For all the figures θ = 0. Notice that the
three figures have different scales. Epidemic size is about N 2/3 times the scaled value

times at which transitions occur, that is, points in time where an event, contagion or
removal, happens. Ignoring the waiting times between events, we obtain a discrete-
time Markovian structure from the continuous time SIR that has the same epidemic
size as the SIR process. This is called the discrete time embedded Markov chain of
jumps. Let us number the consecutive jumps of the continuous time Markov chain
by j , so that j becomes the time parameter of the discrete time embedded Markov
chain. The transition probabilities of this discrete time chain are given by

(ΔSj ,ΔI j ) =
{

(−1, 1) with probability λSj I j /N
λSj I j /N+I j

= λSj

λSj +N ,

(0,−1) with probability I j

λSj I j /N+I j
= N

λSj +N .
(19)

We introduce the possibility of immunization through an additional type of jump,
of the form (−1, 0). An individual is removed from the susceptible class through
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immunization, which may occur at each time step of the embedded chain. We denote
by θ the average ratio of the number of vaccinations to the number of jumps. Thus,
for instance, if θ = 0.5, there is one vaccination every two steps, on the average;
if θ = 2, there are two vaccinations per step, on the average. This entry into the
model of the vaccination procedure can be modified in various ways. For example,
immunization can be considered only at the times when someone is infected, or
only when a recovery occurs. The parameter θ can also depend on time or it may
even be random with its distribution being time-dependent, and/or dependent on the
current state of the process. Partial effectiveness can be modeled by multiplying θ

by the probability of successful vaccination. Note that in this model the number of
vaccinated persons is not directly related to the number of susceptibles, but is tied
to the intensity of the epidemic as it evolves.

Let U j count the total number of infections which occur up to, and including,
time j , disregarding the initial number of infected individuals. The probability that
an individual gets infected in the time step from j − 1 to j , given the value U j−1,
and if there were initially n and m susceptible and infected individuals, is

pk, j ≡ P(U j = k + 1|U j−1 = k) = λ(n − k − θ ( j − 1))

λ(n − k − θ ( j − 1)) + (n + m)
, (20)

with the complementary probability

qk, j ≡ P(U j = k|U j−1 = k) = 1 − pk, j . (21)

Although it does not appear in the notation, this probability is conditional on St

being positive.
Let T denote the time at which the epidemic stops. Then UT is the number of

individuals ultimately infected, in addition to the original m infectives. At each time
step an infection or a recovery happens. The process U j is a random walk starting
at 0, with a positive step when there is an infection and a zero step when there is a
recovery. The epidemic stops when

Ut + m − (number of recoveries) = 0,

and

T = UT + (number of recoveries).

Therefore, UT = (T − m)/2. To obtain the distribution of UT , it is enough to com-
pute the distribution of the hitting time T . To compute this distribution we will use
the following recursion. First define W j (k) = P(U j = k, T > j) for non-negative
integers, j . Notice that W0(k) = δk,0, P(T = 0) = 0 and, if j − m is even,

P(T = j) = W j−1

(
j − m

2

)
q j−m

2 , j . (22)
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If j −m is odd, then P(T = j) = 0. The defective distribution W j (·) is computed as

W j (k) =
{

W j−1(k − 1)pk−1, j + W j−1(k)qk, j , if k >
j−m

2 ;

0, if k ≤ j−m
2 .

(23)

This recursion allows us to compute the distribution P(T = j), j = 1, 2, . . ., and
the defective distributions W j (k), k = 1, . . . , n, j = 1, 2, . . ., while storing only the
values of W j (·) at stage j . As j increases, W j (·) loses mass.

This algorithm can be used for any finite number N of individuals in the popu-
lation. If N approaches infinity and simultaneously λ approaches one, with suitable
related rates, the distribution can be found using a diffusion approximation. For this,
we define new random variables X N

t and Y N
t by

St

N
= 1 − X N

t

Nα
,

It = Y N
t Nβ,

and let λN = 1 + a/N γ . Martin Löf [39] found exponents α, β and γ such that
X N

t and Y N
t converge weakly to a limiting diffusion, see [39] or [22] for details.

Appropriate values for these exponents are α = β = γ = 1/3. After re-scaling time
as s = t N−2/3 and letting N → ∞, X N

s and Y N
s converge weakly to diffusions Xs

and Ys , which satisfy the stochastic differential equations

d Xs = (1 + 2θ )ds,

dYs = (a − Xs)ds +
√

2 dWs,

where a = limN→∞ N 1/3(λN − 1).
The process Xs is deterministic linear drift, Xs = (1 + 2θ )s, so that Ys is defined

by

dYs = (a − (1 + 2θ )s)ds +
√

2 dWs .

After integration,

Ys = b + as − (1 + 2θ )s2/2 +
√

2 Ws, (24)

a diffusion with parabolic drift starting at

b = lim
N ,m→∞

m/N 1/3. (25)

The limiting epidemic stops when the right hand side of (24) is equal to zero, or
in other words, when the Brownian motion

√
2 Ws hits the parabola b + as − (1 +

2θ )s2/2 for the first time.
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Epidemic size defines a continuous functional with respect to the topology of
weak convergence of stochastic processes. Hence the weak convergence of the
pre-limit processes to Y implies convergence of the distribution of epidemic size
for finite N to a distribution associated with the time Brownian motion hits a
parabola.

Pre-limit and limiting distribution curves are shown in Fig. 3. In the figure we
can observe the convergence of epidemic size distributions and get an idea of the
size of N necessary for the pre-limit to approximate the limit to a certain degree of
accuracy. We compare the distributions obtained using the algorithm (22) and (23)
for the pre-limit and the limiting diffusion obtained in [39] for different values of
parameters a and b, with θ = 0. For the pre-limit, λ and m are chosen according to
λ = 1 + a/N 1/3, b = m/N 1/3. We see that the shape of the distribution is highly
sensitive to the values of the parameters a and b when the model is slightly super-
critical, that is, when λ > 1 is very close to 1. The degree of agreement between the
limit distribution and the pre-limit for N = 50, 000 and for N = 500, 000 is not as
precise as one might have expected.

The effect of vaccination in our model can be observed in Fig. 4. Vaccination
pushes the mass of the distribution in the direction of smaller epidemic size, but the
bimodality of the distribution persists. Increasing θ pushes the distribution towards
zero, as one would expect.

A scaling parameter less than 1/3 can also be used and leads to the limit
one would obtain from a branching process model. The limiting epidemic size
distribution using this scaling is not bimodal, [20].

The embedded chain in the algorithmic scheme for computing the distribution
of the final size, as presented in this section, ignores the amount of time between
events. This suggests that latency periods in infected individuals might not affect

Fig. 4 Distribution of the
final epidemic size for
N = 30, 000. The
vaccination levels are θ = 0
(dots), θ = 0.5 (dash-dot),
θ = 1 (dashes) and θ = 1.5
(solid). The other parameters
are a = 1 and b = 1.
Vaccination pushes the mass
of the distribution to the
region of short outbreaks.
Similar behavior can be
observed for other values of
the parameters a and b, [22]
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the distribution of the final size. In Section 6 we see that this is true in a very general
setting, where homogeneity of the susceptible and infectious classes is abandoned.

5 Stochastic Sustained Oscillations

In this section we will consider the model defined in Section 3, Example 3. As
mentioned before, when the basic reproductive number is greater than one, the
deterministic system has two equilibrium points, one unstable with no infectives,
and a stable endemic point with a positive number of infectives. It can be observed,
and shown analytically, that the solutions of the deterministic model oscillate around
the endemic point and rapidly damp to the endemic equilibrium as time increases.
However time-course data of diseases like measles or chickenpox show periodic
oscillations that do not damp as time goes by. It is possible [24, 32] to produce deter-
ministic models which have more slowly damped, or even sustained, oscillations
by including, for instance, age structure, quarantine, multiple strains of infectious
agents or delays. Of course seasonal periodic forcing produces seasonal oscillations
in a deterministic epidemic.

Simulations of a stochastic SIR model follow the damped deterministic trajectory
for a certain time after which the stochastic path remains oscillatory, with a varying
amplitude, as can be seen in Fig. 5 below.

The oscillations of stochatic SIR paths have a frequency distribution, evidenced
by the power spectral density of the process of infectives, and a stochastically
varying amplitude. This phenomenon, in which random fluctuations sustain nearly
periodic oscillations in a system which has a stable constant equilibrium in the
deterministic limit, has been called coherence resonance or autonomous stochastic
resonance. Coherence resonance has been observed in a number of experimental
studies of electrical, chemical and physiological phenomena, [43].

Fig. 5 A sample path of the
infective process of stochastic
SIR with demography
contrasted to the damped
oscillations of the
corresponding deterministic
system with the same initial
point. The parameters are
N = 2, 000, 000, average life
span 1/μ = 80 years,
R0 = 15, average time of
infectiousness 1/γ = 15
days. Notice that the
stochastic path initially
follows the deterministic
trajectory
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Fig. 6 The power spectral
density of the process of
infectives in the stochastic
SIR model (dot-dash) and the
multi-scale approximation
(solid). The values used are
R0 = 15, N = 500, 000,
1/μ = 55 years and
1/γ = 25 days
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Although coherence resonance has been recognized as a possible occurrence
in the presence of noise when a dynamical system has a small or hidden inher-
ent periodicity, the phenomenon is only beginning to be understood quantitatively,
from the stochastic process viewpoint. In [4], Aparicio and Solari give a convincing
explanation of the non-damping of stochastic SIR in terms of the average change
in a Liapunov function as the process moves inside and outside a parabola in phase
space. In [31] we use multi-scale analysis to show that a stationary version of the
system (16) and (17) can be rather closely approximated, in a neighborhood of the
endemic equilibrium, for a suitable range of the parameters β, γ and μ, by a linear
combination of sinusoids, where the coefficient processes in this approximation are
Ornstein-Uhlenbeck processes running on a slower time scale.

The accuracy of the multiscale approximation to (16), (17) for a particular choice
of parameters can be evaluated by comparing the power spectral densities of the two
processes as in Fig. 6.

6 Effects of Varying Infectiousness

If an individual becomes infected at time t , he may not become infectious immedi-
ately. There may be a latent period during which he is asymptomatic and/or remains
uninfectious to others. More generally, infectiousness may vary in a variety of
patterns following the event of disease transmission. In [23] we defined for each
individual, a function which quantifies how infectious he is at time t following
the event of his infection. This function may depend on many factors, including a
latent period, the response of the individual’s immune system, the effects of medical
treatments, etc. In epidemic modeling, it is natural to question how the pattern of
infectiousness affects disease dynamics. In particular we are interested to see how
the final size of an epidemic may be affected by how infectiousness varies.

In fact, a latency period does not influence the distribution of the final size of
the stochastic SIR. This result has been shown in various contexts, see for example
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[1, 3, 8]. In [23] we proposed a more general formulation and showed that the final
size depends only on the integrated infectiousness. Here are the main points of the
argument.

The individuals in a population of constant size are labelled with the values
1, . . . , N , for identification. We think of individuals as distributed in space and
related by a network of social or other connections, or as moving in space and
encountering one another with pair independent frequencies. The numbers ci j ≥ 0
measure the rates of contact from individual i to individual j for all pairs (i, j) with
1 ≤ i, j ≤ N . Notice that c ji �= ci j in general. Our model assumption is that the
time Ti j of first infectious contact from i to j happens in the time interval [t, t +Δt]
with probability

P(Ti j ∈ [t, t + Δt]|Ti j > t,Fi ) = ci j Xi (t)Δt + o(Δt). (26)

Time in (26) runs according to a clock which starts at the first infectious contact
made to individual i . The infectiousness process of individual i , Xi (t), measures, at
each time t , the probability that a contact made by i at time t is effective in trans-
mitting the disease. The collection of sets Fi represents the information generated
by the entire history of the random infectiousness process Xi , not including its start
time. The infectiousness clock of individual i may start at time 0, but it may be that
Xi (0) = 0, so that i is not actually infectious at time 0. Nevertheless we refer to such
individuals as initial infectives. The product in (26) should be read as the probability
of contact from i to j in the time increment [t, t + Δt], ci jΔt + o(Δt), times the
conditional probability of transmission of disease, given that contact is made, Xi (t).
The random function ci j Xi (t) is a random hazard function, which satisfies

P(Ti j > t |Fi ) = e− ∫ t
0 ci j Xi (s)ds, (27)

for every t ≥ 0. Notice that conditioning on Fi allows us to write a specific sample
path, Xi (s). If we let

Di =
∫ ∞

0
Xi (s)ds < ∞, (28)

the probability that an individual j has no infectious contact from individual i , given
a sample path of the process Xi , is

P(no infection from i to j |Fi ) = e−ci j Di .

We say that an individual i is nominally contacted when an infectious contact to i
occurs. This may not be the first infectious contact. Let F =⋃i Fi be the σ -algebra
generated by the infectiousness processes of all individuals in the population. F
contains the information of the patterns of infectiousness of the entire population.
Let P denote the set of all individuals in the population and let Xk and Yk , k =
0, 1, 2, . . . be



48 P.E. Greenwood and L.F. Gordillo

X0 = {initial infectives} ,

Y0 = P − X0,

X1 = { j : j ∈ Y0, ∃i ∈ X0 such that j is nominally contacted by i} ,

Y1 = Y0 − X1,

· · · .

We can see that Y0 ⊃ Y1 ⊃ . . . and that the set of all nominally contacted individ-
uals,

⋃∞
k=0 Xk , where Xi ∩ X j = ∅ if i �= j , is equal to the set of all individuals

who become infected. The size of this set is the total epidemic size. Thus, if we let
X ⊂ Y0, the probability that the random set X1 is exactly X , given F , is

P(X1 = X |F) =
∏
j∈X

⎛
⎝1 −

∏
i∈X0

e−Di ci j

⎞
⎠ ·

∏
j∈Y0−X

∏
i∈X0

e−Di ci j .

The distributions of Xk , given Xk−1, k = 2, 3, . . . can be computed similarly. There-
fore, the probability distribution of the number of individuals that have nominal
contacts, given all the patterns of infectiousness, is

P (| ∪k Xk | = n|F) =
∑
X⊂P
|X |=n

P (∪kXk = X |F) ,

which depends only on the random variables Di , i = 1, . . . , N and the ci j ’s.

7 Stochastic and Deterministic Dynamics
are Complementary

In this final section of the chapter we point out some useful general relation-
ships between compartmental stochastic and deterministic epidemic models. The
two types of model are alternate viewpoints on the same phenomenon, offering
complementary insights.

The class of stochastic epidemic models of this chapter is defined by two prop-
erties: first, the dynamics can be described by a compartmental diagram such as
Fig. 2, with inputs and outputs, and second, the process is a vector-valued contin-
uous time Markov process. This class of models is extremely large. For instance,
to Examples 1, 2, and 3 can be added compartments which correspond to the
latent, the asymptomatic, those quarantined, those vaccinated, the presence of mul-
tiple diseases, or classes of vectors such as mosquitoes which carry infectious
agents.

We have indicated in Section 3, using an SIR example, how each such model cor-
responds to a deterministic model. One can write the stochastic increment equations
as in (16) and (17), and then take the conditional expected value of each increment
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given the process at the beginning of that increment to obtain deterministic incre-
ment equations. Or one can divide each state variable by N to obtain equations for
the proportion of individuals in each class at time t , and apply the law of large
numbers to these equations [29].

On the other hand, starting with a family of ordinary differential equations, which
describes a dynamical system, one can arrive at a variety of corresponding stochastic
models by interpreting some or all the deterministic rates as stochastic rates in the
sense of (1), (2).

Each of these model formulations, the stochastic and the deterministic dynamical
system, augments our understanding of the other. The ODE model can be thought
of as a deterministic skeleton of any corresponding stochastic model. An indispens-
able step in understanding the behavior of a stochastic model is the analysis of the
dynamics of the ODE model. A dramatic example is the one described in Section 5.
In fact, the analysis of stochastically sustained oscillations involves the details of
the damped deterministic oscillations. Here are two additional examples.

In epidemic theory deterministic analysis often starts with the basic reproductive
number, R0. In Example 3, if R0 is less that one, the unique equilibrium has no infec-
tives. However in certain other models [2, 17], there is a more complex bifurcation
structure in which, for a range of R0 below one, there are two locally stable equilib-
ria, one with no infectives and one with a positive number of infectives, separated by
an unstable equilibrium. This structure is sometimes called a backward bifurcation
because of the shape of the bifurcation diagram, Fig. 7. An example is the model
with susceptible, infected, and vaccinated individuals, defined by Brauer [17]. The
dynamics tell us that a deterministic path is attracted to the equilibrium which is on
the same side of the unstable equilibrium as the initial point of the path. However,
a stochastic path started in a neighborhood of the unstable equilibrium will have
probability about one half of being attracted to either equilibrium in the stochastic
version of Brauer’s model [33]. The authors of [33] continue to study the details of

Fig. 7 A typical backward
bifurcation diagram. I ∗ is the
value of the infectives at the
equilibrium. The solid lines
stand for stability while
dashed lines for unstability.
Taken with permission
from [45]
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this problem. Of interest, for example, is the function which describes the probabil-
ity of attraction of the process of infectives to each locally stable equilibrium as the
distance of the starting point from the unstable equilibrium increases.

The deterministic susceptible-infected-susceptible (SIS) models are a bit sim-
pler than those of Examples 2 and 3. For R0 > 1, there is a stable equilibrium
of the ODE, and the convergence of the path of susceptibles to this equilibrium
is monotone rather than by damped oscillations as in Example 3. In fact this is a
logistic model, whose susceptible class converges to a saturation point. The paths of
the stochastic model lie near the deterministic path and continue to vary randomly
around the deterministic equilibrium for a rather long time with high probability.
The existence of an absorbing state, It = 0, in the finite state space means, accord-
ing to general Markov chain theory, that ultimately the Markov process goes to the
absorbing state.

Even in the simple SIS model the deterministic dynamic skeleton shows us a
great deal about the behavior of the stochastic paths, and brings to our attention
questions which pertain to the stochastic model: What is the nature of the stochastic
path of It as it varies near the deterministic equilibrium? Starting from the determin-
istic equilibrium, what is the distribution of the time until the stochastic path hits 0?
These questions have been studied by Nåsell [41] for the SIS and other processes.

We should point out, in closing, that the stochastic models we have discussed
here are simple ones, involving no more than two linked stochastic equations. The
difficulty of a stochastic model grows closely in step with the difficulty of its com-
panion ODE model. Additional stochastic models related to systems of ODE’s result
from the introduction of stochastic structure to parameters.
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10. Ball F, Nåsell I (1994) The shape of the size distribution of an epidemic in a finite population.
Mathematical Biosciences 123:167–181.



Stochastic Epidemic Modeling 51

11. Ball F, Mollison D, Scalia-Tomba G (1997) Epidemics with two levels of mixing. Annals of
Applied Probability 7:46–89.

12. Barbour AD (1972) The principle of diffusion of arbitrary constants. Journal of Applied
Probability 9:519–541.

13. Barbour AD (1974) On a functional central limit theorem for Markov population processes.
Advances in Applied Probability 6:21–39.

14. Bartlett MS (1949) Some evolutionary stochastic processes. Journal of the Royal Statistical
Sociey Series B 11:211–229.

15. Becker N (1989) Analysis of infectious disease data. Chapman and Hall, London.
16. Becker N, Dietz K (1995) The effect of the household distribution on transmission and control

of highly infectious diseases. Mathematical Biosciences 127:207–219.
17. Brauer F (2004) Backward bifurcations in simple vaccination models, Journal of Mathemati-

cal Analysis and Applications 298:418–431.
18. Daley DJ, Gani J (1999) Epidemic modeling: an introduction. Cambridge Studies in

Mathematical Biology, 15. Cambridge University Press, Cambridge.
19. Diekmann O, Heesterbeek JAP (2000) Mathematical epidemiology of infectious diseases.

Model building, analysis and interpretation. Wiley Series in Mathematical and Computational
Biology. John Wiley & Sons, Ltd., New York.

20. Dolgoarshinnykh RG, Lalley SP (2006) Critical scaling for the simple SIS stochastic
epidemic. Journal of Applied Probability. 43:892–898.

21. Grenfell BT, Dobson AP (1996) Ecology of infectious diseases in natural populations.
Cambridge University Press, Cambridge.
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Two Critical Issues in Quantitative Modeling
of Communicable Diseases: Inference
of Unobservables and Dependent Happening

Hiroshi Nishiura, Masayuki Kakehashi, and Hisashi Inaba

Abstract In this chapter, we discuss two critical issues which must be remem-
bered whenever we examine epidemiologic data of directly transmitted infectious
diseases. Firstly, we would like the readers to recognize the difference between
observable and unobservable events in infectious disease epidemiology. Since both
infection event and acquisition of infectiousness are generally not directly observ-
able, the total number of infected individuals could not be counted at a point of
time, unless very rigorous contact tracing and microbiological examinations were
performed. Directly observable intrinsic parameters, such as the incubation period
and serial interval, play key roles in translating observable to unobservable infor-
mation. Secondly, the concept of dependent happening must be remembered to
identify a risk of an infectious disease or to assess vaccine efficacy. Observation
of a single infected individual is not independent of observing other individuals. A
simple solution for dependent happening is to employ the transmission probability
which is conditioned on an exposure to infection.

Keywords Incubation period · Serial interval · Latent period · Generation time ·
Vaccine efficacy · Vaccine effectiveness · Herd immunity

1 Introduction

What is special about infectious disease epidemiology? Whenever researchers statis-
tically analyze infectious disease data, two important epidemiologic aspects, which
differ from the epidemiology of non-communicable diseases, must be remembered.

The first is concerned with observable events. Whereas onset events (e.g. onset
of fever and appearance of rash) are directly observable in the field (with or
without reporting delay), both infection event and acquirement of infectiousness
are unobservable without very rigorous contact tracing and experimental (e.g.
microbiological) efforts. Besides, almost all models for the population dynamics
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of infectious diseases have employed a number of assumptions for unobservable
events. Observable intrinsic parameters, which characterize the natural history of
infection and epidemiologic characteristics of the spread of disease in the absence
of public health interventions, must be systematically quantified and employed for
infering unobservable events in order to appropriately describe the transmission
dynamics.

The second issue is the so-called dependent happening, i.e., observation of a sin-
gle infected individual is not independent of observing other individuals. Because
of the dependence, our population can enjoy herd immunity. Moreover, a necessity
arises for theoretical epidemiologists to study infectious disease dynamics using
non-linear models. To conduct sound statistical analyses, we should always bear in
mind that it is inappropriate to directly apply the concept of relative risk and odds
ratio in epidemiology of non-communicable diseases to any assessments of com-
municable diseases (especially, when the diseases are not endemic). For example,
when we evaluate vaccine efficacy, it is far more feasible to employ the ratio of (con-
ditional) probabilities of infection per contact among vaccinated to unvaccinated
than directly using the relative risk of infection (which would inform population
effectiveness of vaccination).

This chapter is composed as follows. In Section 2, epidemiologic definitions of
two observable intervals, i.e., incubation period and serial interval, are discussed.
For illustration, we show how the incubation period and serial interval inform
infection events in the simplest settings. In Section 3, these two epidemiologic
measurements are effectivelly used to capture the dynamics of infectious diseases.
The backcalculation method and the estimation of the generation time are briefly
reviewed. In Section 4, the concept and definition of vaccine efficacy and effec-
tiveness of vaccination are considered. Dependent happening is comprehensively
reviewed in light of causal inference (i.e. identification and quantification of the
average causal parameter of effect in a population). A simple methodological solu-
tion for the dependent happening follows in Section 5. In particular, the usefulness
of household secondary attack rates for estimating vaccine efficacy is reviewed,
and the impact of different types of vaccine efficacy on the reproduction number is
discussed using a simple dynamic model.

2 Incubation Period and Serial Interval

The first issue is motivated by a need to improve limited practical utility of the
well-known SEIR (susceptible-exposed-infectious-recovered) model with respect to
the assumption of intrinsic parameters (e.g. latent and infectious periods) and its
use in quantifying the transmission potential. As we mentioned above, the event
of acquiring infectiousness is not directly observable (i.e. in reality, individuals
in latent and infectious periods are not distinguishable without microbiological
and contact-frequency information), whereas symptom onset of an apparent dis-
ease is readily observed and reported. In addition, infection events are not directly
observable for the majority of directly transmitted diseases (an exception is seen
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in sexually transmitted infections where the contact is countable by recall effort).
Although several theoretical studies have implicitly assumed that the latent period
is exactly the same as the incubation period, acquisition of infectiousness and symp-
tom onset differ clearly by definition and are not directly related [5, 73]. These facts
considerably affect the applicability of previous SEIR models that did not take into
account these differences. Besides, compartments I and/or R of classical SIR and
SEIR models have been fitted to the observed (and mostly onset) data to derive some
parameter estimates, although the observed data do not necessarily measure either
the theoretically defined I or R. Therefore, it should be noted that both SIR and
SEIR models do not clearly highlight the observable events in field epidemiology.
This complicates the application of theoretical models to observed data.

To resolve this issue, it is essential to understand how the observable intrinsic
measures are defined and how we should effectively use these epidemiologic mea-
surements to translate observable to unobservable information. Since onset event is
directly observable, two epidemiologic intervals, both of which are concerned with
symptom onset of a disease, would be useful. The first is the incubation period,
defined as the time from infection with a microorganism to symptom development
[16, 73]. The second is the serial interval, defined as the time since onset of a pri-
mary case to onset of the secondary case caused by the primary case [41]. In the
following subsections, these two intervals are separately discussed in relation to the
identification (i.e. statistical inference) of infection events.

2.1 Incubation Period

The incubation period of infectious diseases ranges from the order of a few hours,
which is common for toxic food poisoning, to a decade (or a few decades) as seen in
the case of tuberculosis, AIDS and variant Creutzfeldt-Jakob disease (vCJD). Since
symptom onset reflects pathogen growth and invasion, and excretion of toxins and
initiation of host-defense mechanisms, the length of the incubation period varies
largely according to the replication rate of the pathogen, the mechanism of disease
development, the route of infection and other underlying factors.

The incubation period of infectious diseases offers various insights into clini-
cal and public health practices, as well as being important for epidemiologic and
ecological studies. In clinical practice, the incubation period is useful not only for
making rough guesses as to the causes and sources of infection of individual cases,
but also for developing treatment strategies to extend the incubation period (e.g.
antiretroviral therapy for HIV infection [16]) and for performing early projection
of disease prognosis when the incubation period is clearly associated with clinical
severity due to dose-response mechanisms (e.g. diseases caused by exotoxin) [74].
Moreover, during an outbreak of a newly emerged directly transmitted disease, the
incubation period distribution permits determination of the length of quarantine
required for a potentially exposed individual (i.e. by restricting movement of an
exposed individual for a duration sufficiently longer than the incubation period)
[36]. Further, if the time lag between acquiring infectiousness and symptom onset
appears long (i.e., if the incubation period is relatively long compared to the latent
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period), it implies that isolation measures (e.g. restriction of movement until the
infectious individual loses infectiousness) are likely to be ineffective, complicating
disease control [42].

Understanding the incubation period distribution also enables statistical esti-
mation of the time of exposure during a point source outbreak [90] as well as a
hypothesis-testing to determine whether the outbreak has ended [20]; the former is
discussed below. The distribution is also useful in statistical approaches of epidemic
curve reconstruction and short-term predictions of slowly progressing diseases; the
backcalculation method uses the incubation period to estimate HIV prevalence and
project the future incidence of AIDS [19] . During the last decade, this method has
also been extended to prion diseases such as Bovine Spongiform Encephalopathy
(BSE) [31] and vCJD [24]. The backcalculation method is briefly discussed in the
next section. This approach has also recently diverged to quantification of the trans-
mission potential of diseases with an acute course of illness [35] and infectiousness
relative to disease-age [78]. Moreover, in cases such as the short and long incuba-
tion periods of Plasmodium vivax malaria in temperate zones, the incubation period
also enhances ecological understanding of adaptation strategies; in temperate zones,
clearly separate bimodal peaks with approximate lengths of 2 and 50 weeks are
observed [79], helping malaria transmissions continue over the winter season when
transmission is usually greatly reduced due to seasonal entomologic characteristics.

The epidemiologist Philip E. Sartwell (1908–1999) contributed most to the foun-
dation of the incubation period distribution modeling [73, 90]. Dr. Sartwell initially
found that the incubation period of acute infectious diseases tends to follow a log-
normal distribution, and applied such distribution to various diseases. Observing
that the distributions often skewed to the right, Dr. Sartwell suggested the use of two
parameters (i.e. an estimated median, which is also the geometric mean due to the
characteristics of the lognormal distribution, and a dispersion factor as a measure
of variability) rather than the sample mean and standard deviation. The lognormal
distribution has a probability density function (pdf) of the form:

f (x ; μ, σ 2) = 1

xσ
√

(2π )
exp

(
− (ln(x) − μ)2

2σ 2

)
(1)

for x > 0, where μ and σ are the mean and standard deviation of the vari-
able’s logarithm. The lognormal assumption for the incubation period was further
extended to the estimation of the time of exposure during a point source outbreak.
The theoretical basis is illustrated in Fig. 1, the logic of which is explained in the
following.

Since all cases in a point source outbreak share the same time of exposure, the
epidemic curve, which is drawn according to the time of onset (i.e. incidence), is
equivalent to the incubation period distribution (Fig. 1). Suppose that the median
point of the case frequency was observed x days after exposure and, further, that
there are 100α percentile points on both sides of the observed distribution (upper
and lower percentiles 100α where 0 ≤ α ≤ 1) with the distances from the median
to both percentiles points being a and b days, respectively, the following relationship
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Fig. 1 A method for estimating the time of exposure during a point source outbreak. The
horizontal axis shows the time since exposure and the distribution the frequency of cases according
to the time of onset. The vertical dashed line is the median incubation period observed x days after
exposure. The remaining two vertical lines indicate the times when fractions α and 1 − α of cases
developed the disease. The intervals between the median and other two vertical lines represent a
and b, respectively

is given (because the logarithm follows normal distribution)

ln(x) − ln(x − a) = ln(x + b) − ln(x) (2)

which is rearranged as

x

x − a
= x + b

x
(3)

Consequently, the time of exposure can be inferred using the distance from the time
of exposure to the median, x , by taking the distances to any equal percentiles on
both sides

x̂ = ab

b − a
(4)

Since recall bias (i.e. the extent of imperfection by recalling events in the past) is
unavoidable in retrospective epidemiologic studies of food poisoning requiring huge
efforts of food traceback, this method appears to be very useful in determining the
most plausible time of exposure and narrowing down the amount of information to
be traced.

The classic method likely includes sampling errors and does not achieve accept-
able precision. More precisely, estimation of the time of exposure is addressed, sta-
tistically, by precise solution of the three-parameter lognormal distribution [58, 95].
Let γ be the time of exposure, the pdf of the three-parameter lognormal distribution
is given by

f (x ; γ, μ, σ 2) = 1

(x − γ )σ
√

(2π )
exp

(
− (ln(x − γ ) − μ)2

2σ 2

)
(5)
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for x > γ . In other words, the statistical issue of the estimation of time of expo-
sure can be replaced by the estimation of the threshold parameter of a standard
3-parameter distribution of the incubation period.

It should be noted that we have limited explicit explanations for the biolog-
ical validity of assuming lognormal distribution for the incubation period. The
fundamental biological reason to assume a lognormal distribution is related to an
inoculation study of ectromelia virus (mouse pox) [38], which suggested exponen-
tial growth of pathogens within the host during the initial phase. Another similar
study suggested that a fixed threshold of pathogen load likely exists when the host
response is observed [71]. In other words, what we have learnt to date can be
described as follows: if the growth rate of a microorganism is implicitly assumed
to follow normal distribution, and if there is a fixed threshold of pathogen load
at which symptoms are revealed due to the host response, exponential growth of
microorganisms should result in an incubation period sufficiently approximated by a
lognormal distribution [73]. However, the host-defense mechanism, which is almost
entirely responsible for symptom onset, was later shown to be far more complex
than previously expected. For example, fever is induced by very complex reactions
and by several factors including circulating cytokines such as interluekin-2 [72].
Thus, whereas the lognormal distribution may be applied to the incubation periods
of many acute infectious diseases, it is necessary to bear in mind that the assumption
is supported only by previous experience. When other distributions (e.g. gamma
and Weibull distributions) are alternatively chosen to model the incubation period,
at least, the statistical issue of inferring time of exposure (during a point source
outbreak) can be addressed by estimating threshold parameter for these distributions
(i.e. as it can be done with Equation (5)).

2.2 Serial Interval

The serial intervals are observed when contact tracing is performed as a control
measure. The transmission network is then observed, which represents the chain
of transmission as a function of calendar time that yields the information of who
acquired infection from whom. This type of information has been explored to assess
the number of secondary transmissions over the course of an epidemic [56] and to
evaluate individual variations in transmission [66], but it also enables us to obtain the
serial interval [32, 65, 80, 97]. Using this information, here we consider a method
to infer the relative infectiousness of infected individuals to certain disease-age (i.e.
the time elapsed since onset of disease).

Specifically, we consider a situation when researchers would like to gain some
information of the relative frequency of infectiousness or of secondary transmissions
with respect to the time elapsed since infection or since onset of disease. Here we
give an example of the relative infectiousness of smallpox to disease-age.

The infectious period has traditionally been defined as the period in which
pathogens are discharged [7]. It presently refers to the period in which infected
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individuals are capable of generating secondary cases. Knowledge of the infectious
period allows us to determine for how long known cases need to be isolated and what
should be the latest time point after exposure at which newly infected individuals
should be in isolation. However, as we mentioned above, infectiousness itself is
unobservable, and thus, some inferential techniques to quantify this complicated
index are called for.

One approach to addressing this issue is to quantify how the pathogen load
changes over time using the most sensitive microbiological techniques (e.g. poly-
merase chain reaction), but such observations are usually limited to the period after
onset of symptoms. Several attempts have been made to measure the distribution of
the virus-positive period of smallpox cases [32, 89], but sample sizes were small and
only very few samples could be obtained during the early stage of illness. Moreover,
linking virus-positive results to the probability of causing secondary transmission
is difficult without further information, especially about infectious contact (e.g.
frequency, mode and degree of contact).

Another way of addressing this complicated issue is to determine the frequency
of secondary transmission relative to disease-age [78]. An estimate of the relative
infectiousness is obtained by analyzing historical data in which it is known who
acquired infection from whom. The known transmission network permits serial
intervals to be extracted, i.e. the times from symptom onset in a primary case to
symptom onset in the secondary case [41, 80]. Given the length of the serial interval
s and the corresponding length of the incubation period f , the disease-age l from
onset of a symptom in primary case to secondary transmission satisfies

s = l + f (6)

Considering the statistical distributions for each length results in a convolution
equation:

s(t) =
∫ t

0
l(t − τ ) f (τ ) dτ (7)

The frequency l(t − τ ) of secondary transmission relative to disease-age can be
backcalculated by extracting the serial interval distribution s(t) from a known trans-
mission network, and by using the incubation period distribution f (τ ) which is
assumed known. This concept is illustrated in Fig. 2A. If we have information on
the length ti of the serial interval for n cases, the likelihood function is given by

L =
n∏

i=1

s(ti ) (8)

=
n∏

i=1

∫ ti

0
l(ti − τ ) f (τ ) dτ

The parameters that describe the frequency of secondary transmission relative to
disease-age can be estimated by maximizing this function.
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Fig. 2 Relative frequency of secondary transmissions of smallpox by disease-age. A. Backcal-
culation of the transmission probability: case m infected case l who subsequently infected case k.
Their times of onset are tm , tl and tk , respectively. Using the difference of the disease onset (serial
interval) tk − tl together with the distribution of the incubation period, the disease-age specific
probability of transmission from case l to case k is obtained. B. Expected daily frequency of
secondary transmissions with corresponding 95% confidence intervals. The disease-age t = 0
denotes the onset of fever. The illustration was drawn by the author with reference to [76, 78]

Figure 2B shows the back-calculated infectiousness of smallpox relative to
disease-age [76, 78]. When the frequency is discussed as a function of disease-age
of smallpox, day 0 represents the onset of fever. Before onset of fever (i.e. between
day -5 and day -1) altogether only 2.7% of all transmissions occurred. Between day
0 and day 2 (i.e. in the prodromal period before the onset of rash) a total of 21.1%
of all transmissions occurred. The daily frequency of passing on the infection was
highest between day 3 and day 5, yielding a total of 61.8% of all transmissions.
These estimates help determine the latest time by which cases should be in isolation.
If each primary case infects on average 6 individuals (i.e. R0 = 6), and if the efficacy
of isolation is 100%, the isolation of a primary case before the onset of rash reduces
the expected number of victims to 6 × (0.027 + 0.211) = 1.428. In other words,
Fig. 2B implies that isolation could be extremely effective if performed before onset
of rash and that delayed isolation of symptomatic smallpox cases could still be effec-
tive if performed within a few days after onset of rash. Consequently, we can expect
that optimal isolation could substantially reduce the number of secondary cases, and
the outbreak could quickly be brought under control by additional countermeasures
(e.g. contact tracing [34]).

Nevertheless, it should be noted that the relative frequency of secondary trans-
missions tends to be biased by various factors in observation: small sample size
of serial intervals may have been influenced by local factors such as differences
in contact behavior and mobility of cases. Unless extrinsic factors (e.g. isolation
measure and behavioral changes) were explicitly adjusted in the statistical model
with more detailed data, the estimated infectiousness several days after appear-
ance of rash would be underestimated. This could partly explain a disagreement of
Fig. 2B with a previous epidemiologic study [35] in which the number of secondary
cases generated during the prodromal period was estimated as 8.2% of the overall
transmission potential.
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3 Backcalculation and Estimation of the Generation Time

We then consider how the incubation period and serial interval play their roles in
translating observable to unobservable information. Two practical issues are dis-
cussed as examples. The first is the so-called backcalculation method which has
been effectively employed to estimate the total number of HIV-infected individuals
in a population using the incubation period of AIDS and AIDS incidence [75]. The
second is concerned with the statistical estimation and mathematical definition of
the generation time which is interpreted as the time interval between infection of a
primary case and infection of a secondary case caused by the primary case [94]. As
will be shown using Euler-Lotka equation in the second subsection, probability den-
sity function of the generation time would be a critically important distribution for
the estimation of the basic reproduction number, R0, using the intrinsic growth rate
of an epidemic. In line with this, analytical insights into the relationship between
the serial interval and generation time are discussed.

3.1 Backcalculation

Whereas the number of AIDS cases is thought to be relatively accurately reported
and documented in industrialized countries, asymptomatic HIV infections are sel-
dom noticed unless the infected individual undertakes a voluntary blood test or
develops the disease. Backcalculation uses the statistical distribution of the incuba-
tion period as key information, and is frequently applied to HIV/AIDS in industrial-
ized countries where the previous AIDS incidence can be assumed to be confidently
diagnosed and reported [17, 18, 43]. The epidemic curve for HIV is reconstructed
using AIDS incidence and the incubation period, enabling estimation of HIV
prevalence and short-term projections of AIDS incidence.

The long incubation period of HIV infection enables assessment of the extent of
the epidemic during its course. Backcalculation uses AIDS incidence data at cal-
endar time t , a(t), and the incubation period distribution at time τ after infection,
ω(τ ), to reconstruct the number of HIV infections with calendar time. Assuming that
documentation of diagnosed AIDS cases is not significantly delayed, and assuming
the impact of antiretroviral therapy on the length of the incubation period is negli-
gible in the simplest setting, the fundamental relationship is given by the following
convolution equation

a(t) =
∫ t

0
h(t − u)ω(u) du (9)

where h(t − u) is the number of HIV infections at calendar time t − u. The basic
idea of backcalculation is to estimate h(t) using known a(t) and ω(u). It should
be noted that the structure of this simple convolution equation is principally the
same as what we discussed with Equation (7). Here, to ease understanding of the
deconvolution procedure, Equation (9) is considered in discrete time [10, 26]. Since
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surveillance-based data of AIDS incidence is obtained for a certain interval, t (e.g.
every 2 or 3 months), the following equation is obtained

at =
t∑

u=1

ht−uωu (10)

Assuming that ht is generated by a nonhomogeneous Poisson process, at is an inde-
pendent Poisson variate. Thus, the likelihood, which is needed to estimate HIV
infections (and, sometimes, the parameters of incubation period distribution), is
proportional to

T∏
t=1

(
t∑

u=1

ht−uωu

)rt

exp

(
−

t∑
u=1

ht−uωu

)
(11)

where rt is the observed number of AIDS cases at calendar time t and T is the
most recent time of observation. The shape of the curve of HIV infections, ht , is
usually modeled parametrically or non-parametrically [11, 14]. The main sources of
uncertainty arise from uncertainties in the incubation period distribution, the shape
of the HIV infection curve, and AIDS incidence data [87]. Short-term predictions
are obtained based on estimated numbers of HIV infected individuals who have
not yet developed AIDS. However, it should be noted that backcalculation such
as this provides no information about future infection rates and little information
about recent infection rates [39]. Further details of the backcalculation method are
described elsewhere [19, 23, 61].

3.2 Generation Time

We consider the generation time using a renewal equation:

j(t) =
∫ ∞

0
A(τ ) j(t − τ ) dτ (12)

where j(t) is the number of new infections (i.e. incidence) at calendar time t and
A(τ ) is the integral kernel informing the rate of secondary transmissions per single
primary case at infection-age τ (i.e. the time elapsed since infection). When the inci-
dence increases with constant (intrinsic) growth rate r0 (i.e. when j(t) = k exp(r0t)
where k is constant), the Equation (12) is simplified as

1 =
∫ ∞

0
A(τ ) exp(−r0τ ) dτ (13)

which is referred to as the Euler-Lotka equation. Since the integral kernel A(τ )
directly informs R0, defined as the average number of secondary cases generated by
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a single primary case in a fully susceptible population [28–30], by

R0 =
∫ ∞

0
A(τ ) dτ (14)

and because the density function of the generation time, g(τ ), can be interpreted as
the frequency of secondary transmission relative to infection-age τ , i.e.,

g(τ ) = A(τ )∫∞
0 A(τ ) dτ

(15)

the Euler-Lotka equation (13) offers an interpretation,

1

R0
=
∫ ∞

0
exp(−r0τ )g(τ ) dτ (16)

representing the relationship between R0 and the probability density function of the
generation time, g(τ ). From the initial growth phase of an epidemic, the intrinsic
growth rate, r0, i.e. the intrinsic rate of (natural) increase for infected individuals
[33], is estimated, and R0 can be subsequently estimated using the Equation (16).
Thus, the generation-time distribution has been recognized as playing a key role in
estimating the transmission potential of a disease [86, 96]. In many instances, R0

has been inferred from real-time growth data by using the estimate of r0 and by
assuming that the generation-time distribution is known.

However, it is very difficult to estimate the generation-time distribution in prac-
tice, because infection events are seldom directly observable. Indeed, the estimation
methods of the generation time and its sampling scheme have yet to be developed.
Previously, the distribution of the generation time (or, at least, the mean genera-
tion time) was implicitly (and wrongly) assumed to correspond exactly to that of
serial interval. However, this is not the case when the incubation period of the pri-
mary case depends on the time from onset to secondary transmission [94] and even
the means are different when we deal with diseases with asymptomatic secondary
transmissions (which will be discussed below).

Figure 3 illustrates an interpretation of the relationship between serial interval S,
incubation periods F1 and F2, and generation time G in the absence of asymptomatic
cases (i.e. where there is no infected individual who does not exhibit any symptoms
throughout the course of infection). We denote the time from onset of primary case
to secondary transmission by L (note that L can be negative if pre-symptomatic
transmission occurs). The serial interval S is given by

S = G + F2 − F1 (17)

which is interpreted as the sum of the generation time and incubation period of the
secondary case minus the incubation period of the primary case. Thus, if G, F1

and F2 were independent random variables, the serial interval distribution would be
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Fig. 3 The relationship
between generation time
and serial interval. Given
the serial interval, S, and
incubation periods of primary
and secondary cases, F1 and
F2, generation time G is
expressed as
G = S + F1 − F2

the convolution of the generation time and incubation period distributions followed
by the cross-correlation of this convolution and the incubation period distribution
(However, it should be noted that it is frequently biologically more natural to assume
that F1 and G are dependent). As it is intuitively clear from Equation (17), the
mean serial interval would be expected to be identical to the mean generation time,
provided that all infected individuals developed symptoms.

In the presence of asymptomatic secondary transmissions, caused by those who
were infected and have not developed symptoms yet, and also by those who were
infected and will not become symptomatic throughout the course of infection, the
interpretation of relationship between S and G is confused [60]. Figure 4 illus-
trates the most precise, but yet simplistic, model of a directly transmitted disease,
accounting for the presence of asymptomatic secondary transmission. Following
infection, asymptomatic individuals, i1(t, τ ), develop disease at the rate η(τ ) or
recover from infection without developing any symptoms at the rate γ1(τ ), where
τ is the infection-age. Symptomatic individuals, i2(t, σ ) recover from (or die of)
infection at the rate γ2(σ ) where σ is the disease-age. Assuming further that the rates

Fig. 4 Compartment model for symptom development of a disease. Following infection, all
infected individuals experience asymptomatic state i1(t, τ ) where τ is infection-age representing
the time elapsed since infection. Asymptomatic infected individuals will either develop symptom
at the rate η(τ ) or recover from infection without developing disease at the rate γ1(τ ). Symptomatic
individuals are denoted by i2(t, σ ) where σ is the disease-age representing the time elapsed since
onset of a disease
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of asymptomatic and symptomatic secondary transmissions are, respectively, β1(τ )
and β2(σ ) and that the initial number of susceptibles is S0, the linearlized system
(for initial growth phase of an epidemic) is governed by the following McKendrick
equations:

(
∂

∂t
+ ∂

∂τ

)
i1(t, τ ) = −(η(τ ) + γ1(τ ))i1(t, τ ), (18)

i1(t, 0) = S0

∫ ∞

0
β1(τ )i1(t, τ )dτ + S0

∫ ∞

0
β2(σ )i2(t, σ )dσ, (19)

(
∂

∂t
+ ∂

∂σ

)
i2(t, σ ) = −γ2(σ )i2(t, σ ), (20)

i2(t, 0) =
∫ ∞

0
η(τ )i1(t, τ )dτ. (21)

Integrating the McKendrick Equations (18), (19), (20), (21) along the characteristic
lines, and ignoring contribution from the initial data, we get the following renewal
equations:

j1(t) =
∫ t

0
A1(τ ) j1(t − τ )dτ +

∫ t

0
A2(σ ) j2(t − σ )dσ, (22)

j2(t) = α

∫ t

0
f (τ ) j1(t − τ )dτ, (23)

where j1(t) and j2(t) are, respectively, the numbers of new infections and new onsets
at calendar time t (i.e., j1(t) := i1(t, 0) and j2(t) := i2(t, 0)) and the remaining
functions are defined as

A1(τ ) := S0β1(τ ) exp

(
−
∫ τ

0
(η(x) + γ1(x)) dx

)
, (24)

A2(σ ) := S0β2(σ ) exp

(
−
∫ σ

0
γ2(s)ds

)
, (25)

α :=
∫ ∞

0
η(x) exp

(
−
∫ x

0
(η(s) + γ1(s)) ds

)
dx, (26)

f (τ ) := η(τ ) exp
(− ∫ τ

0 (η(x) + γ1(x)) dx
)

α
. (27)

Thus, A1(τ ) and A2(σ ) are interpreted as the rate of asymptomatic and symptomatic
secondary transmissions, respectively, per single primary case at infection-age τ

and disease-age σ . α is the probability that an infected individual ever devel-
ops symptoms. f (τ ) gives the probability density of the incubation period of
length τ .
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Replacing j2(t) in the right-hand side of (22) by that of (23), we get

j1(t) =
∫ t

0
A1(τ ) j1(t − τ )dτ + α

∫ t

0

(
A2(σ )

∫ t−σ

0
j1(t − σ − τ ) f (τ )dτ

)
dσ,

=
∫ t

0
A−(τ ) j1(t − τ )dτ, (28)

where

A−(τ ) = A1(τ ) + α

∫ τ

0
A2(τ − σ ) f (σ )dσ (29)

The Equation (28) describes the renewal process of newly infected individuals, and
thus, the basic reproduction number, R0, is given by

R0 =
∫ ∞

0
A−(τ )dτ (30)

Consequently, the mean generation time, Tg , is calculated as

Tg = 1

R0

∫ ∞

0
τ A−(τ )dτ (31)

= θ L1 + (1 − θ )(L2 + F),

where θ is the proportion of asymptomatic transmissions (0 ≤ θ ≤ 1) among the
total number of secondary transmissions, i.e.,

θ := 1

R0

∫ ∞

0
A1(τ )τ (32)

and L1, L2 and F are

L1 :=
∫∞

0 τ A1(τ )dτ∫∞
0 A1(x)dx

, (33)

L2 :=
∫∞

0 σ A2(σ )dσ∫∞
0 A2(y)dy

, (34)

F :=
∫ ∞

0
τ f (τ )dτ, (35)

which are interpreted as the mean infection-age of asymptomatic transmission, the
mean disease-age of symptomatic transmission and the mean incubation period,
respectively.
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Although we omit further technical details for simplicity (see [60] for original
descriptions, in particular, of the analytical expression of the integral kernel A+(σ )),
the mean serial interval, Ts,multi, can be analytically derived from another renewal
equation of symptomatic infected individuals:

j2(t) =
∫ t

0
A+(σ ) j2(t − σ )dσ, (36)

which leads to

Ts,multi =
∫∞

0 σ A+(σ )dσ∫∞
0 A+(s)ds

= R1

1 − R1
L1 + L2 + F, (37)

where R1, which is assumed to be less than unity, is the average number of
asymptomatic transmissions per single asymptomatic infected individual (i.e. the
reproduction number for asymptomatic transmission), expressed as

R1 =
∫ ∞

0
A1(τ )dτ, (38)

which can also be written as θ R0, and Q := ∫∞
0 A+(σ )dσ is what we call the

state reproduction number for the symptomatic class (i.e. the average number of
symptomatic secondary transmissions per single primary symptomatic case during
its entire course of infectiousness [60]). Here, it must be noted that Ts,multi is what we
call multi-step serial interval defined as the average length from the primary symp-
tomatic cases to the secondary symptomatic cases who are infected either directly
from the primary case or indirectly by way of asymptomatic cases. Rather than
this, classic definition of the mean one-step serial interval, Ts,one, is the period from
observation of symptom onset in one case to observation of symptom in a second
case directly infected from the first (i.e. indirect transmission is unobservable, and
thus, was not explicitly taken into account in the tranditional definitions given by
Pickles [84], Hope Simpson [59] and Bailey [7]). Ts,one is much easier than (37),
and expressed as

Ts,one = L2 + F (39)

which is exactly what we discussed in Section 2.2 using Equation (6).
Consequently, we get the following relationship

Tg ≤ Ts,one ≤ Ts,multi (40)

where equality holds if there is no asymptomatic transmission (which leads to R1 =
0 or θ = 0; see [60] for further details). In other words, it is analytically proven that
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the mean lengths of one-step and multi-step serial intervals are longer than the mean
generation time, as long as asymptomatic transmission exists.

In this way, key unobservable information has to be estimated mainly by extract-
ing observable and quantifiable parameters. If one would like to focus on symptom
onset as observable event, then the incubation period and serial interval, both def-
initions of which are concerned with onset event, would play the most important
roles among all epidemiologic measurements to translate observables to unobserv-
ables. To widen the applicability of mathematical models of infectious diseases, it
is essential to construct a theory by observable ingredients and derive an estima-
tor to address the issue of unobservability of infection event and acquirement of
infectiousness.

4 Dependent Happening

As seen in the origin of field epidemiology (i.e. an identification of the source of
environmental contamination with cholera, which is believed to have been initially
suggested by John Snow), causal inference has played a central role among all epi-
demiologic disciplines. In particular, epidemiologic studies of chronic illness have
been (and will be) focused on the cause of disease to find potentially effective pre-
ventive measures and therapeutic methods. The challenges posed by chronic illness
have pointed out to epidemiologists the multifactorial complex nature of disease
causality, which has been referred to as a web of causality. Appropriate epidemi-
ologic designs and sound statistical approaches to address the relevant issue have
been the main interests among general epidemiologists [44, 57].

Of course, efforts on the similar point have to be made for clarifying useful
prevention strategies against infectious diseases, but it must be remembered that
the epidemiology of directly transmitted infectious diseases is rather different from
other (e.g. chronic) non-communicable diseases in that the disease spreads from
person-to-person. That is, observation of a single infected individual is not indepen-
dent of observing other individuals in a population of interest [63]. If this is the case,
the usual formulation of risk assessment parameters, such as odds ratio, relative risk
and risk difference, which are so useful in chronic disease epidemiology, do not offer
stable assessments of risk for factors that affect contagion [64]. We first illustrate this
concept in the next subsection and thereafter discuss the definitions and properties
of vaccine efficacy, and direct and indirect effects of vaccination.

4.1 What Would Matter Due to Dependence?

In the epidemiology of non-communicable diseases, causal relationship between
disease and a single risk factor is usually measured by examining relative risk (syn-
onymous: risk ratio) or attributable risk (which will be denoted by RR and AR,
respectively). For example, supposing that the frequencies of lung cancer among
smokers and non-smokers are p1 and p0, RR and AR of smoking with respect to the
development of lung cancer are calculated as
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RR = p1

p0
(41)

AR = p1 − p0 (42)

Therefore, if the risk ratio is greater than 1, we suspect that smoking elevated
the risk of lung cancer, which is useful to discuss the causality. Moreover, the
attributable risk is useful to quantify the impact (or contribution) of smoking on
(to) development of lung cancer.

The similar simple discussion can be applied to the frequencies of Japanese
encephalitis cases among vaccinated and unvaccinated individuals, denoted by pv

and pu , respectively. Since the natural reservoir of Japanese encephalitis is believed
to be swine (and other animals including birds), and because human is belived to be
dead-end host (i.e. who does not generate secondary infections including infection
among mosquitoes), we can ignore the issue of dependence, at least, for now. Then,
the relative risk of vaccination with respect to infection with Japanese encephalitis
virus is given by RR in Equation (41) and, subsequently, the vaccine efficacy, VE,
is evaluated as

VE = 1 − RR (43)

= 1 − pv

pu

which has been a fundamental idea in field epidemiology [45, 83] . Here’s an
example:

Vaccination program for prevention against Japanese encephalitis was con-
ducted in a population where the disease is endemic. The cases are constantly
observed over time and, thus, we assume the disease is in an endemic equilib-
rium. Among vaccinated individuals, 20% experienced infection. On the other
hand, 80% of unvaccinated individuals experienced infection. The relative
risk is

RR = 0.2

0.8
= 0.25 (44)

and thus, we expect that the vaccination was effective because RR < 1.
Further, the vaccine efficacy is

VE = 1 − RR = 0.75 (45)

From these, we conclude that the risk of Japanese encephalitis among vac-
cinated individuals was 0.25 times as large as that among unvaccinated
individuals and moreover, the vaccine efficacy was estimated at 75%.
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This simple discussion required two of the key assumptions. The first is the
endemic equilibrium in which the frequency of infection would not be influenced
by time effect. The second is the independence between individuals. In statistical
terms, the latter is referred to as no interference [25] or stability assumptions [88].

Epidemiology should have been much easier, if we could directly attribute the
population effectiveness to the average causal effect at an individual level. In addi-
tion to the basics, infectious disease epidemiologists have to account for dependent
happening, the simplest illustration of which is given in Fig. 5. We consider the gen-
eration of cases, where each primary case causes 2 secondary cases in the absence
of vaccination (Fig. 5A).

What happens if a portion of this population was vaccinated? In Fig. 5B, two
individuals were vaccinated prior to the outbreak and were uninfected. Not only
these two vaccinated individuals, but also unvaccinated two individuals (who had
been expected to be cases in the absence of vaccination) were uninfected, due to
the protection of a vaccinated individual. Protection among the two unvaccinated
individuals can be deemed indirect effect of vaccination, which was caused by
dependence between individuals [54].

We consider this issue using response variables X0 and X1 for unvaccinated and
vaccinated populations, following a series of studies by Halloran [53–55]. Since the
response of interest is infection, which is dichotomous, we write Xi = 1 if infected
under treatment i and Xi = 0 if uninfected under treatment i where i = 1 or 0.
The causal effect of vaccination, T, is usually measured by attributable risk (see
Equation (42)) as the average of the individual effects, and more strictly speaking,
is expressed as the difference between the expected value of the potential outcomes

Fig. 5 Theoretical initial courses of a communicable disease outbreak following a geometric
growth. A. The infection tree (i.e. transmission network) is shown by generation. Each primary
case generates 2 secondary cases. B. Infection tree under partial vaccination. Vaccination was
conducted prior to the outbreak among 2 individuals (i.e. two striped circles) who resulted in non-
infection. Due to the prevention of a vaccinated individual, two other unvaccinated individuals (i.e.
two dashed circles), who had been expected to be cases without vaccination, did not experience
infection, which is deemed indirect effect of vaccination
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if everyone received one treatment and the expected value of the potential outcomes
if everyone received the other treatment. That is,

T = E(X0) − E(X1) = E(X0 − X1) (46)

Since we cannot observe the potential outcomes of each individual under each
intervention, we have to rewrite Equation (46) to reflect each individual’s potential
outcome under the intervention that she/he used. Let Y be the particular intervention
that an individual used (i.e. Y = 1 and 0 for vaccinated and unvaccinated), the actual
observable difference, A, is

A = E(X0 | Y = 0) − E(X1 | Y = 1) (47)

where E(Xi | Y = i) is the average of the potential outcomes among individu-
als who received intervention i . Under two assumptions, i.e., non-interference and
independence, T and A are assumed equal [50].

Nevertheless, if the population expected value depends on fraction of vaccinated
(due to indirect effect), the relation does not hold, i.e.,

T = E(X0 − X1) �= E(X0 | Y = 0) − E(X1 | Y = 1) = A (48)

Therefore, directly applying risk assessment parameters, such as relative risk and
attributable risk, to the assessment of a specific risk (or evaluation of vaccine
efficacy) of communicable diseases would be unfortunately flawed [53, 64].

4.2 Herd Immunity and the Concept of Effectiveness

Let us compare two different small populations, each with 25 individuals (Fig. 6).
The vaccination coverage of population A is 20%, whereas that of population B

Fig. 6 Small populations with different vaccination coverage. Each circle represents an indi-
vidual. Black (and the striped individual in the center) denotes vaccinated, whereas white is
unvaccinated. The vaccination coverages of populations A and B are, respectively, 20 and 80%.
Assuming that the contact patterns are homogeneous and not different between A and B, the risk
of infection for a striped individual in population B is smaller than that in population A
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is 80%. Suppose that the contact pattern is homogeneous in both populations, and
assuming that the frequencies of contact are not different between A and B, how
different are the risks of infection of a vaccinated individual in the center of these
populations? Obviously, the risk in population A is higher than that in B, because
individuals surrounding striped (vaccinated) individual in population A are mainly
unvaccinated. In other words, even if the vaccination does not offer perfect protec-
tion, individuals in population B can enjoy better community benefit compared to
that in population A.

The community benefit extends to those who would have been infected by the
vaccinee, had he developed the disease. Consequently, vaccinees are not only pro-
tected to their own benefit, but to the benefit of the community, and moreover,
unvaccinated individuals are susceptible not only to their own adversity, but to the
adversity of the community. The degree of community protection is referred to as
herd immunity [40, 62, 77]. When it comes to the assessment of vaccination, this
is also referred to as indirect effect of vaccination. Because of the presence of herd
immunity, disease eradication (e.g. of smallpox) was (and can be for other diseases)
achieved without vaccinating all susceptible individuals. And, this concept indeed
results in a well known control relation to achieve a vaccination coverage, c, which
is sufficient to eradicate a disease in a randomly mixing population, i.e.,

c > κ = 1

ε

(
1 − 1

R0

)
(49)

where κ is referred to as critical coverage of vaccination for eradication, ε is vaccine
efficacy and R0 is the basic reproduction number of a disease [2, 93].

It should be noted that the threshold principle itself may better account for indi-
vidual heterogeneity (i.e. variance of contact frequency) to precisely reflect realistic
contact patterns. Let the mean and variance of contact rate be m and σ 2, respectively,
and let us assume that the transmission mechanism is described by the so-called
frequency dependence [15, 27, 70]. If the distribution of contact rate is explicitly
taken into account, R0 in the heterogeneouxly mixing population is expressed as

R0 = R0,random

(
1 +
(σ

m

)2
)

(50)

where R0,random denotes the basic reproduction number without individual het-
erogeneity (where σ 2 = 0) [1, 6]. Assuming that the vaccination takes place
independently (i.e. independent of contact) and that the vaccine effect is irrelevant to
secondary transmission (i.e. not reducing infectiousness of vaccinated individuals),
R0 in Equation (50) directly applies to the right-hand side of Equation (49) [37]. If
the distribution is extremely right-skewed (e.g. σ → ∞), this leads R0 → ∞,
making it impossible to control the disease by means of mass vaccination only
[22, 69].

Rather than discussing the herd immunity threshold of a disease using mathe-
matical models (which can be found elsewhere [3, 4, 40, 81]), here we emphasize
the issue of dependent happening which complicates statistical estimation of vaccine
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efficacy using epidemiologic observations. Although the effectiveness of vaccination
reflects the result of protection of a vaccinated population and can be measured using
observed data, this would not be connected to average causal effect at an individual
level (i.e. vaccine efficacy) which would have been identical to the effectiveness
under the stability assumption.

The definitions of direct and indirect effectiveness of vaccination (i.e. protection
at a population level) were formulated using final sizes of an epidemic (i.e. fraction
of those who experienced infection during an epidemic among a total of suscep-
tible individuals) among vaccinated and unvaccinated groups, zv and zu [47] and
the relevant discussions on epidemiologic study design have been made using these
definitions (which can be found elsewhere [51, 55]). The definition also uses another
final size which would have been observed in the absence of vaccination, zc. The
direct effectiveness, DE, indirect effectiveness, IE, and the total effetiveness, TE, of
vaccination are respectively defined as

DE = 1 − zv

zu
(51)

IE = 1 − zu

zc
(52)

TE = 1 − zv

zc
(53)

which measures the benefit to an vaccinated individual, the overall benefit of the
vaccination program to unvaccinated people and vaccinated people, respectively.
Moreover, if we define the average risk of infection in the study population, z0, as

z0 = (1 − p)zu + pzv (54)

where p is the vaccination coverage, the average effectiveness is defined as

AE = 1 − z0

zc
(55)

which measures the overall benefit of the vaccination program to the entire popula-
tion. Since DE does not directly inform vaccine efficacy, VE, because of dependent
happening, another definition of field efficacy, FE, has to be defined as

FE = 1 − βv

βu
(56)

as a solution, where βv and βu are the transmission rates among vaccinated and
unvaccinated, respectively (please continue reading for the details of their roles in a
population).

In a randomly mixing population, the relationship between FE and DE is analyt-
ically interpretable [47]. Here we consider this relationship as well as an analytical
interpretation of IE. Specifically, we theoretically consider two different types of
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vaccines. The first is the so-called leaky vaccine which would not offer perfect
protection from disease but would reduce the susceptibility among vaccinated. The
second is all-or-nothing type which offer perfect protection among a portion of
vaccinated individuals.

Let the numbers of vaccinated susceptible, infectious and recovered individuals
be Sv , Iv and Rv , respectively. Similarly, the numbers of unvaccinated susceptible,
infectious and recovered individuals are, respectively, denoted by Su , Iu and Ru .
When a leaky vaccine is considered, we assume Sv(0) = Nv and Su(0) = Nu

where Nv and Nu are the total number of vaccinated and unvaccinated individuals,
respectively. Assuming that the recovery rate γ is independent of vaccination, the
dynamics of vaccinated individuals are described by

d Sv

dt
= −βv Sv(Iv + Iu) (57)

d Iv
dt

= βv Sv(Iv + Iu) − γ Iv (58)

d Rv

dt
= γ Iv (59)

Similarly, the dynamics of unvaccinated individuals are described by

d Su

dt
= −βu Su(Iv + Iu) (60)

d Iu

dt
= βu Su(Iv + Iu) − γ Iu (61)

d Ru

dt
= γ Iu (62)

As written above, because we assume that there was no immune individuals (due
to infection) prior to an epidemic, Rv(0) = Ru(0) = 0. The final size equations are
subsequently derived as

ln (1 − zv) = −βv

γ
(Rv(∞) + Ru(∞)) (63)

= −βv N

γ
(pzv + (1 − p)zu)

ln (1 − zu) = −βu

γ
(Rv(∞) + Ru(∞)) (64)

= −βu N

γ
(pzv + (1 − p)zu)
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where p(:= Nv/(Nu + Nv)) is vaccination coverage (as utilized in (54)). Taking the
ratio of (63) to (64), we get

FE = 1 − βv

βu
= 1 − ln(1 − zv)

ln(1 − zu)
(65)

From (65), we observe that DE approximates FE of leaky vaccine in a randomly
mixing population, but it is also clear that DE is always smaller than FE and that
FE is more appropriate estimator to attribute observation at a population level to
the average individual effect (i.e. efficacy) of vaccination. Therefore, we’d better
use the ratio of transmission rates (and, more precisely, the ratio of transmission
probabilities per contact; see next section) among vaccinated to unvaccinated, rather
than using the ratio of the numbers of infected individuals, to appropriately interpret
the causal effect of vaccination.

When an all-or-nothing vaccine is considered, we assume Sv(0) = (1 − α)Nv ,
Rv(0) = αNv and Su(0) = Nu where α is regarded as field efficacy under the
all-or-nothing assumption (0 ≤ α ≤ 1). Since vaccines of this type (theoretically)
do not reduce susceptibility, we assume that the transmission rates are identical,
i.e., β := βv = βu . Assuming again that the recovery rate γ is independent of
vaccination, the final sizes satisfy

ln

(
1 − zv

1 − α

)
= −β

γ
(Rv(∞) − Rv(0) + Ru(∞)) (66)

ln (1 − zu) = −β

γ
(Rv(∞) − Rv(0) + Ru(∞)) (67)

It should be noted that zv = (Rv(∞) − Rv(0))/Nv . The Equations (66) and (67)
result in

α = 1 − zv

zu
(68)

which conincides with DE.
In reality, the leaky assumption may reflect the so-called imperfect vaccines

(e.g. vaccines against influenza, malaria and various bacterial diseases), whereas
the all-or-nothing assumption may be the case for vaccines against viral diseases
with narrow antigenic diversity (e.g. measles and smallpox).

Estimation of indirect effect, IE, has to consider another theoretical epidemic in
the absence of vaccination. The final size, zc, in the absence of vaccination satisfies

ln (1 − zc) = −zc
βu N

γ
(69)

where βu is assumed to be smaller than βv for the leaky assumption, and is assumed
identical to that among vaccinated (= β in (66) and (67)) for the all-or-nothing
assumption. No explicit analytical solution can be obtained from (69), but this can be
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iteratively solved (and it should be noted that βu N/γ in the right hand side is defined
as the basic reproduction number, R0). Subsequently, IE is estimated from (52). It
should be noted that even when the transmission rate among vaccinated is identical
to that among unvaccinated (i.e. all-or-nothing vaccine), IE is always positive due to
dependent happening (as long as we ignore demographic stochasticity which could
yield negative IE by chance). Conditional assessment for causal inference (which is
aimed at an appropriate estimation of vaccine efficacy) will be further elaborated in
the next section. Further technical details on the relevant modeling exercises can be
found elsewhere [47].

To be strict, it should be noted that the above mentioned definitions of (mainly
direct) effectiveness are flawed. Especially, DE is not precise as it contains indirect
effect in its definition (because the above mentioned arguments consider only indi-
rect effects on unvaccinated individuals). More appropriate definitions should take
into account the indirect effects on both vaccinated and unvaccinated individuals,
which yields three different definitions of IE, i.e., among vaccinated, unvaccinated
and the entire population, and two different definitions of DE, i.e., among vacci-
nated and the entire population. Theoretical foundations on this matter have been
developed by Haber [46] and Becker [13].

5 Addressing Dependent Happening

Because of the dependent happenings, quantitative modeling of infectious diseases
has an important role in appropriately predicting the likely population effectiveness
of a single intervention, yet mathematically separating the population effectiveness
from the individual effect (i.e. efficacy). In other words, we should always remember
that the need to assess causal effect or to simulate population effectiveness arises
from this complicated principle of infectious diseases. When it comes to the causal
inference, it is frequently the case that researchers have to clarify the average causal
effect using observed data and clearly (and possibly analytically) bridge between an
estimate at a population level and that at an individual level. This point is relevant
to the estimation of vaccine efficacy from observed data in field epidemiology [50].

In this section, we discuss a method to address dependent happening using a
conditional epidemiologic measurement. The method utilizes the household sec-
ondary attack rate (SAR) [49], which has been traditionally regarded as a measure
of infectiousness [21]. We first show that the use of SAR can separately estimate the
reductions in susceptibility and infectiousness among vaccinated individuals com-
pared to unvaccinated individuals, and then prove that the combined effect directly
and equally contribute to the reduction in the reproduction number.

5.1 Household Secondary Attack Rate

To address the dependence, recall causal effects under stability assumption T and A
in subsection 4.1. Since T �= A in (48), we have to consider alternative strategies for
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inference. One of the simplest methods to resolve dependent happening is to employ
conditional direct causal effect for examining the effect of a preventive measure
(e.g. vaccination) on susceptibility which is conditioned on a specified exposure
to infection [54]. That is, let K denote the exposure to infection where K = +
represents positive exposure to infection and K = − represents no exposure to
infection. We condition the expected values of potential outcomes among vaccinated
and unvaccinated on K ; i.e., let E(X1 | K = +) and E(X0 | K = +) be the expected
outcomes in the population, respectively, if everyone were vaccinated and exposed
to infection, and if everyone were unvaccinated and exposed to infection, the average
conditional causal effect of the vaccine in the population compared to that without
vaccination, Tconditioned, is

Tconditioned = E(X0 | K = +) − E(X1 | K = +) (70)

As we discussed with Equation (47), we have to rewrite (70) to reflect observation
(in real world scenarios) where only a portion of the population is vaccinated. In
the presence of an intervention, exposure to infection is influenced by the treatment
assignment (e.g. due to epidemiologic study design or irregular distribution of vac-
cination in the population), and thus, to be more precise, we write the exposure
K as a function of assignments Y , i.e., K (Y). Using this Y denoting the particular
intervention that an individual used, Equation (70) can be rewritten as

E(X0 | K = +) − E(X1 | K = +) = E(X0 | Y = 0, K (Y) = +) − E(X1 | Y

= 1, K (Y) = +) (71)

That is, causal effect of the vaccination (i.e. which leads to an estimator of vaccine
efficacy) can be defined by conditioning the outcome on exposure to infection [54],
which would be extremely useful to fill in the gap between individual and population
effects.

Furthermore, the average conditional indirect effect, IEconditioned, can also be
defined in a similar way:

IEconditioned = E(X0 | K (Y = 0 | +)) − E(X0 | K (Y = 1 | +)) (72)

where K (Y = 0 | +) and K (Y = 1 | +) are, respectively, the exposure to an
unvaccinated infectious individual and to a vaccinated infectious individual. In other
words, the Equation (72) measures the reduction in infectiousness among vaccinated
cases compared to unvaccinated cases.

In observation, this conditional measurement can be achieved, in the simplest
manner, using the household secondary attack rate. The secondary attack rate, SAR,
is the probability that infection occurs among susceptible individuals following a
known contact with an infected person (or another infectious source) [49]. In other
words, the SAR is conditional on the contact between an infectious source and a
susceptible host (it should be noted that the term with rate is a misnomer, because
this is actually a proportion). Thus, we write
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SAR = number of individuals exposed who developed disease

total number of susceptible exposed individuals
(73)

When estimating SAR from epidemiologically observed data, we have to account
for the correlation of susceptibles exposed to the same infectious source in order to
appropriately quantify SAR.

The ratio of two SARs would be extremely useful to estimate the relative infec-
tiousness and susceptibility of two types of populations [48]. Suppose that SARij

denotes the household secondary attack rate where i and j , respectively, give the
previous vaccination histories of the secondary and primary case (i.e. i or j = 1
represents previously vaccinated, whereas i or j = 0 represents unvaccinated indi-
viduals). Vaccine efficacy for susceptibility, VES, and infectiousness, VEI, can be
estimated using the following ratios:

VES = 1 − SAR10

SAR00
(74)

VEI = 1 − SAR01

SAR00
(75)

Moreover, we also get

VET = 1 − SAR11

SAR00
(76)

= 1 − (1 − VES)(1 − VEI)

which is interpreted as a combined effect of susceptibility and infectiousness and
can be thought of as the naive susceptible equivalent of a vaccinated compared to
an unvaccinated individual [49]. We consider the following household transmission
data of smallpox, which were observed in India [76, 85]:

The household SARs caused by unvaccinated primary cases among unvac-
cinated and vaccinated contacts were estimated to be SAR00 = 40/650 =
0.0615 and SAR10 = 11/583 = 0.0189, respectively. Those caused by
vaccinated primary cases among unvaccinated and vaccinated household con-
tacts were SAR01 = 10/499 = 0.0200 and SAR11 = 2/421 = 0.0048,
respectively. The crude efficacy of vaccine in reducing susceptibility VES,
infectiousness VEI, and a combined effect of both VET is then estimated by

VES = 1 − SAR10

SAR00
= 0.693 (77)

VEI = 1 − SAR01

SAR00
= 0.674 (78)
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VET = 1 − SAR11

SAR00
= 0.923 (79)

If we make the simplifying assumption that the biological effect of vaccination
was identical for all vaccinated individuals, vaccination reduced susceptibility
by 69.3%, infectiousness by 67.4%, and the combined effect was 92.3%.

Limiting our interest to the household transmission data (or conditioning obser-
vation on those with household contact which would not be too different by
individual), and stratifying the vaccination histories of both primary and secondary
cases, we can appropriately estimate not only the reduction in susceptibility but also
that in infectiousness among vaccinated individuals [55]. This method is useful not
only for assessing vaccine efficacy but also for estimating other treatment effect at
an individual level such as epidemiologic effects of antiviral agents against influenza
transmission [52].

In this way, although comparison of two groups (i.e. with and without interven-
tion) have been simply assessed by popualtion data for non-communicable diseases
(as long as their frequencies of exposures are identical), dependent happening in
communicable diseases confuses the interpretation of the population effectiveness.
The confusion is caused by indirect effect. To address this issue in infectious disease
epidemiology and attribute observation at a population level to an average causal
effect at an individual level, conditional measurement can be deemed extremely
useful to appropriately analyze epidemiologic datasets.

5.2 The Impact of Reductions in Susceptibility
and Infectiousness on the Transmission Dynamics

In relation to the conditional measurement in households, we lastly consider the
impact of different effects of vaccination (e.g. reductions in susceptibility and infec-
tiousness) on the transmission dynamics using SIR model. Specifically, we consider
a vaccine which elicits both all-or-nothing and leaky effects. The following model
simplifies the previously published exercise by Simon and Koopman [92]. As we
have done with Equations (57), (58), (59), (60), (61), (62), let Sv , Iv , Su and Iu be
the numbers of vaccinated susceptible and infectious individuals and of unvacci-
nated susceptible and infectious individuals, respectively. Rather than investigating
an epidemic which ignores background demographic dynamics, here we consider
the system with constant per capita birth rate, μ, which is assumed equivalent to
the natural mortality rate. Vaccination is assumed to take place at birth with the
coverage p. Because of all-or-nothing effect, the fraction pα of newborns becomes
permanently immune, and the remaining fraction p(1 − α) is susceptible. Since we
assume that the population sizes of both vaccinated and unvaccinated individuals are
constant over time, we ignore the recovered individuals, Rv and Ru , for simplicity.
We also assume that the recovery rate γ is independent of vaccination, because
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duration effect is seldom reported [76, 91] and moreover, such observations tend to
be limited to the symptomatic period (not infectious period). Then, the four equa-
tions of the system, representing the transmission dynamics in a randomly mixing
population, are

d Sv

dt
= μp(1 − α)N − βλS Sv(λI Iv + Iu) − μSv (80)

d Iv
dt

= βλS Sv(λI Iv + Iu) − (γ + μ)Iv (81)

d Su

dt
= μ(1 − p)N − βSu(λI Iv + Iu) − μSu (82)

d Iu

dt
= βSu(λI Iv + Iu) − (γ + μ)Iu (83)

where β is the transmission rate which is assumed identical among vaccinated and
unvaccinated individuals. However, due to leaky effect, susceptibility of vaccinated
individuals is reduced by a factor λS and infectiousness of vaccinated cases is
reduced by λI , both of which are assumed to lie in the range of 0 ≤ λS, λI ≤ 1. If
α = 0, it should be noted that λS and λI , respectively, correspond to 1 − VES and
1 − VEI in the last subsection, both of which are also referred to as transmission
probability ratio [48].

We combine Equations (81) and (83) to explore λI Iv + Iu , i.e.,

λI
d Iv
dt

+ d Iu

dt
= β(λSλI Sv + Su)(λI Iv + Iu) − (γ + μ)(λI Iv + Iu) (84)

Replacing λI Iv + Iu by Ic (where the subscript c is intended to represent combined),
Equation (84) is simplified as

d Ic

dt
= Ic (β(λSλI Sv + Su) − (γ + μ))

= β Ic

(
λSλI Sv + Su − N

R0

)
(85)

where R0 = βN/(γ + μ) and N is the total population size (here, N = Nv + Nu

under vaccination). Since we know that

λSλI Sv + Su ≤ λSλI (1 − α)pN + (1 − p)N , (86)

if

(1 − p) + λSλI (1 − α)p <
1

R0
(87)

or

R0 (1 − (1 − λSλI (1 − α))p) < 1 (88)
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the parenthesized term in the right hand side of Equation (85) will always be nega-
tive. Then, Ic(t) → 0 as t → ∞, and every solution of system (80), (81), (82), (83)
coverges to the disease-free equilibrium

(Su, Sv, Iu, Iv, Ru, Rv) = ((1 − p)N , p(1 − α)N , 0, 0, 0, pαN ) (89)

when the condition (88) holds. In other words, to achieve eradication of a disease in
question, the vaccination coverage p should satisfy

p >
1

1 − λSλI (1 − α)

(
1 − 1

R0

)
(90)

Nevertheless, if

(1 − p) + λSλI (1 − α)p >
1

R0
(91)

the solutions of the system (80), (81), (82), (83) move away from (89), indicating
that the disease-free equilibrium is unstable.

If everyone is vaccinated so that p = 1, the threshold condition (90) to eradicate
the disease is

λSλI (1 − α)R0 ≤ 1 (92)

From Equations (90) and (92), we clearly see that the different vaccine effects
(i.e. all-or-nothing effect and leaky effects in reducing susceptibility and infec-
tiousness) act mathematically in the same way to reduce the critical vaccination
fraction. Moreover, if α = 0, it should be noted that λSλI in (90) is equivalent
to 1 − VET in (76), which makes (90) idential to (49). From (90), we observe
that the more potent the vaccine (i.e., the smaller is λSλI (1 − α)), the smaller the
vaccination coverage p needs to be to achieve the herd immunity threshold. The
use of Ic is what we call the Lyapounov function approach, more detailed exercise
on this matter (with other types of biological effects of vaccination) can be found
elsewhere [92].

This kind of expectation (of different types of vaccine efficacy) arose from field
trials of vaccination against HIV/AIDS and malaria [67, 68], both of which have
yet to be developed. As we have seen, it has been very striking that the different
biological effects would work as the product to contribute to lower R0. Neverthe-
less, it has to be remembered that this equality of vaccine effects does not hold
for non-randomly mixing population. In heterogeneously mixing populations, no
single vaccination fraction can define the threshold level of vaccination. Therefore,
the challenging issue is that the eradition threshold in such a population will be
achieved by vaccinating different subgroups at different levels. In any case, to quan-
titatively address the issue of estimating different types of vaccine efficacy, the use
of household data would be recommended, because household outbreaks contain



82 H. Nishiura et al.

some information about the possible source of infection and the data reasonably
permit assuming homogeneous mixing within the household [12].

6 Conclusion

In this chapter, we discussed two critical issues which have to be remembered
whenever researchers analyze observed data of infectious diseases. First, since many
unobservable events would always be the source of uncertainty in all mathematical
models of the transmission dynamics, observable statistical distributions must be
effectively employed to translate observables to unobservables. For this reason, the
incubation period and serial interval are deemed critically important epidemiologic
measurements, if symptom onset is observable for a disease in question. Therefore,
it is essential to make sure that systematically collected data are aggregated and
stored for posterity in order to appropriately discuss the dynamics of infectious
diseases using observed data. Second, transmission probabilities (or other condi-
tional epidemiologic measurements) per exposure to infection should be effectively
employed to address the dependence between individuals, as long as we deal with
directly transmitted infectious diseases (i.e. communicable diseases). Although our
example of dependent happening was focused on an assessment of vaccine effi-
cacy, the readers are advised to remember (to gain some sense of quantitative
modeling) that the need for mathematical modeling in all practical settings arises
due to this complicated issue. Rather than numerical computations of complicated
models with lots of unsupported assumptions, it is often the case that an analytical
approach to conveniently address this issue or useful dataset which is conditioned
on infection event may work better to answer to key questions in the field of medical
epidemiology and public health.

One important future work still remains with respect to the issue of observability.
Although our framework permits estimating various unobservable epidemiologic
variables (e.g. the generation time), statistical and biological validity to assume a
specific distribution has yet to be clarified. For this reason, it is necessary to under-
stand the detailed natural history of an infection, especially, as to what is happening
within infected host. Symptom onset is not only determined by pathogen dynamics
within host but also regulated by complex immune responses [82]. For example, an
explicit reason why lognormal distribution fits well with the incubation period of
diseases with acute course of illness, and the similar reason for assuming Weibull
distribution for the incubation period of AIDS, have yet to be offered.

Since this chapter was intended to summarize the issue of dependent happening
in a rudimentary fashion, and because of the space limitation, we did not discuss the
details of heterogeneously mixing populations on this matter. Whereas various types
of effectiveness of vaccination during an epidemic were defined using final size
equations, final size would be greatly confused by heterogeneous contact patterns.
For example, even when we consider household transmission, dependence between
households must be addressed using an appropriate mathematical approach [9].
Although a mathematical foundation of household transmission has been developed
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and well-formulated [8], a quantitative method to effectively utilize the model (e.g.
to derive an estimator) has yet to be offered. Given that the final size is always
confused by contact heterogeneity, observational approaches to conditionalize key
epidemiologic measurements on exposure to infection would play a crucial role in
many epidemiological and statistical studies.

Much work remains to be carried out for powerful general analyses to give
insights into the transmission dynamics of communicable diseases using observed
data.
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The Chain of Infection, Contacts,
and Model Parametrization

Stephen Tennenbaum

Abstract Contact rates and transmission probabilities are based on complicated
environmental conditions, and biological and social dynamics. There are many
types of models that capture different aspects of these dynamics. Estimating contact
related parameter values and transmission probabilities requires a good understand-
ing of the details of the transmission process and the class of model being used
to describe it. In this paper we review the basic classes of models, the connection
between the chain of infection and the descriptions of the infection process including
the meaning of “contacts” in the various modeling approaches. Some suggestions
as to ways to better tie together the biological and mechanistic aspects of the infec-
tion process and the more phenomenological descriptions of model parameters are
discussed.

Keywords Chain of infection · Contact rates · Mixing · Model parametrization ·
Modes of transmission · Portal of entry · Portal of exit · Proportionate mixing

1 Modeling Infection

Infectious diseases, are primarily social phenomena. As such there are necessarily
interactions between individuals that take place enabling the transmission of the
pathogenic organism from one person to another. The many forms of this pro-
cess can be modeled in multiple ways. G.P. Garnett [16] for instance, provides
the following characterization of the modeling process. There are compartmental
models where the population is broken down into specific disease stages such as
“susceptible”, “latent”, “symptomatic”, etc. versus distributional models where the
disease would be described by some gradation of severity or immune response.
There are discrete time models versus continuous time models, the former can be
described by difference equations or a Markov process (for example) and the state
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of the population is updated in steps, while the latter can described by differential
equations and the state of the population is “updated” continuously. There are
deterministic models where parameter values are fixed; relationships are defined
by specific functions and the result (if simulated) is the same each time for the
same starting values. In contrast stochastic models encompass both models where
the occurrence of events are simulated as the result of some random process and
models where parameters are expressed in terms of probability distributions (rather
than point estimates) in a system of differential equations resulting in stochastic
differential equations. Populations can be represented by averages (mean field mod-
els) where we look at the numbers of persons in a particular state, or as probability
distributions of particular states at a particular time, or dispersion of numbers across
states, or represented as individuals (agent based models) where we keep track of
each person’s state over time. We can have models that are linear where the states of
the system are simple (linear) functions (deterministic – Markov process, or stochas-
tic – Kolmogorov equations), or models that have more complex (and harder to
analyze) non-linear terms. Results can be analytical or numerical and/or the result
of simulations. Models can have varying levels of structure from the simple SIS
(susceptible-infected-susceptible) model to those where we break down the popula-
tion by age, geographic location, activity, or other classification scheme in addition
to the state of infection. And by detailing the population even further structures can
be layered over each other or expressed in a hierarchy. For example we can create
a metapopulation model where cities are connected by transportation networks that
operate on different time scales than the disease dynamics of the populations within
those cities. Given all these complications, we can briefly describe a few examples
of the ways disease transmission can be handled.

One simple description of contagion employs the mass action assumption (see
for example Anderson and May [3]). This assumes that the population is well-mixed
and any two individuals are equally likely to encounter each other.

d S

dt
= −βSI, and

d I

dt
= βSI.

Here, S is the number of susceptible individuals; I is the number of infected indi-
viduals and β is known as the transmission rate. If this model is reformulated in
terms of the proportion of the contacts that a susceptible person has with infected
people [22] then we have

d S

dt
= − (βN ) S

I

N
, and

d I

dt
= (βN ) S

I

N
.

where N is the total size of the population. It is apparent here that the per capita
rate of infection (βN ) increases in direct proportion to the population size. This
may at first sight seem plausible however the exact relationship is dependent on
how people are infected through their daily encounters. For a variety of childhood
infectious diseases where direct contact is important the per capita rate of infection
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is, for the most part, independent of community size [22]. Using a per capita rate of
infection of the form βN v Anderson and May [3] found that data for communities
with population sizes from 1,000 to 400,000 gave values of v between 0.03 and
0.07. This strongly suggests that for these situations, the standard per capita rate of
infection corresponding to v = 0 where people have a fixed number of contacts per
day is more realistic approximation than per capita rate of infection corresponding
to v = 1. Thus we have the more often seen result

d S

dt
= −βS

I

N
, and

d I

dt
= βS

I

N
.

There are many modifications of this basic infection mechanism. For example
vertical infection wherein newborns are infected by their mothers, models with
population and subpopulation size – dependent contact functions have also been
considered [6]. Contact rates are most tractable when based on proportionate mix-
ing, that is the probability of a person contacting another from a given group is
proportional to that group’s weighted fractional representation in the population [8].
Various other forms of nonlinear incidences have been considered. Some lead to
periodicity in the disease prevalence; these necessarily involve loss of immunity or
some other form of renewal of susceptibles by birth or immigration. Models with
age structure of the population also lead to non-linearities in the infection rates
when there are differences in infectivity or shifts in infectious periods associated
with that structure [27]. The latter can occur due to non-exponentially distributed
waiting times in the compartments. These distributed delays lead to epidemiology
models with integral or integrodifferential or functional differential equations or
delay-differential Equations [22]. Detailed models of AIDs transmission or TB can
include some or all these aspects since the diseases are so long lasting and change
their character so significantly over the course of the infection [4].

Another effect is seasonal variations in transmission. These are modeled by
allowing the transmission parameter β, to be a function of time (usually measured in
years). For example many authors use a sinusoidal forcing function for the seasonal-
ity β (t) = β0 (1 + β1 cos 2π t) where β0 is the baseline level of transmission and β1

determines the amplitude of the seasonal variation (the “strength” of seasonality).
This forcing can result in quite complicated patterns of outbreaks over longer peri-
ods of time as the amplitude of the forcing function increases, eventually leading to
chaotic dynamics under the right conditions [30].

In most of these mean field modeling approaches the transmission rates are given
a specific form based broadly on a hypothesized mathematical relationship. The
conceptual basis of that form is usually, loosely based around some mechanistic
analogy to a physical process, e.g. mass action, or sinusoidal forcing function, etc.
The unknown parameters are almost always determined by inverse methods that find
the values that best fit the model to data.

Another, probabilistic, approach for very small populations (households or small
communities) is the use of “chain binomial models”. These models look at the prob-
ability that, for a fixed household size n, the infection will be transmitted from the
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first person to a number of susceptibles based on the given probability of trans-
mission to a single person at that time. In the Reed-Frost approach [11, 35] the
probability of infection of a single person is equal to q I (t) where q is the probability
of a single infected person infecting another person. In the Greenwood approach
[11, 18] the probability of infection of a single person is equal to q, that is, it is fixed
and not dependent on the number of people already infected (a single infected can
saturate the environment with contagion) [15]. A more sophisticated extension of
this approach was used by Longini et al. in their agent based models of pandemic
influenza [28].

Other complicating factors are involved in the study of vector transmitted dis-
eases. The transmission process is thus multi-population, multi-stage, and quite
often seasonal. Macroparasite diseases (where “infectious load” – the number of
infectious organisms per host – becomes an important aspect of the transmission
process) are metapopulation models in a very literal sense. Sexually transmitted
diseases are akin to vector transmitted diseases in that they are multi-population and
multi-stage, in addition most theoreticians have added serial monogamy between
sexes which requires a conservation of contacts constraint that is often built into the
transmission terms. Models that also include sexual preferences (based on age, race
or other social distinctions) can become quite complicated [7].

The result of Anderson and May [3] that showed independence of infectivity
from population size may be derived from the fact that the populations and popu-
lation sizes considered are above certain size or density thresholds. That is, they
are at levels where people in those populations are already making contacts at near
the maximum possible per-capita average number. Contact rates and by extension
transmission rates are in fact saturating functions of population density. Defining
density as δ (N ) ≡ N/area and setting

β (N ) = β
δ (N )

κ + δ (N )

= β
N

κ · area + N
,

leads to a typical model of a saturating function. The above observation begs the
question – what do we mean by “area” or even “population” (N ) for that matter?
For individuals that are limited to the range of movement in a given period (time
scales on the order of the generation time of the disease or less) and that encounter
one another in a random manner (within the period have the same probability of
meeting anyone), the “area” is the space in which this mixing takes place and “pop-
ulation” refers to the groups of individuals within that space, susceptibles are the
members of the population at risk, and so on. Of course once heterogeneities are
introduced such as long distance travel, individual preferences, or other assorting
or associating pressures, then the meanings of area or population are not so clear.
In addition the model itself may change as infectives change behavior or suscepti-
bles act to minimize risk. Direct measurements of these parameters become even
more difficult, and with increasing heterogeneity they become little more than fitted
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phenomenological constants that have little connection to basic principles. In order
to maintain a firm grounding another approach is needed. To this end there have
been a large number of models that use a network approach by which individuals or
subpopulations are modeled as nodes of a directed graph and the edges are the social
or transportation connections [29, 31]. Most recently much of this work has focused
on “small world” networks deriving from observations on social and communication
networks [1, 2, 34]. A useful practical group of studies (although strictly heuristic as
far as disease is concerned) is the spread of computer viruses over the World Wide
Web [1, 10, 26]. Rather than attempting to here explain the construction, measures,
and properties of the various network models of disease, we will simply describe the
main categories and types of these models and leave the more detailed explanations
for future work. These models are of three general sorts, as enumerated by Keeling
and Eames, 2005 [25].

First there are what Keeling and Eames call real networks (ostensibly a descrip-
tion of an actual community or population from a network perspective). A complete
description of a real network is almost impossible even for the smallest populations;
however, the sampling of these networks may provide an accurate picture of the
structure and function of disease spread among real people. Data for these stud-
ies come from infection tracing, where the source of infection for each case in an
epidemic is determined [21]; contact tracing, where all the contacts of a source indi-
vidual, the index case, are identified in order to head off progression of the disease
and further potential transmission [17]; and diary-based studies, where subjects keep
a record of contacts they make throughout the day. This allows for a larger number
of individuals to be sampled in detail [14].

Second we have simulation models incorporating networks. These simulations
are relatively straightforward and there have been a number of very good studies
incorporating networks [13, 20]. These model are typically agent based models that
keep track of each individual in the population and simulate their contacts (and
disease transmission) over time.

Third there are a plethora of studies involving idealized networks. These look
at some of the topological characteristics of networks constructed under given con-
straints and examine the effect that those characteristics have on the spread of a
disease. They include random networks where individuals represent nodes with
connections that are assigned at random according to some algorithm, for example a
fixed number of unique contacts for each node. The dynamics of diseases on random
networks can be studied as a simple branching process [12]. In lattice networks,
individuals are the nodes in a regular grid, and a fixed number of the adjacent
individuals are connected. Lattices are spatially localized and homogeneous and
thus highly clustered [19]. Small-world networks are midway between lattices and
random networks. Some algorithm is used to take a regular lattice and “rewire” a
certain number of connections randomly. At a certain level of rewiring, these net-
works exhibit both the local dynamics of the regular lattice and the global dynamics
of random networks [34]. Spatial networks position individuals within a given space
and connected with a probability that depends on their distance according to some
rule. In scale-free networks, new individuals are added to a network one by one with
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each new individual connecting preferentially to individuals that are already highly
connected. The result is a power-law distribution of contacts per individual [25].
And in exponential random graphs the probability of a connection between any two
nodes is fixed and independent of the probability of a connection between of any
other pair of nodes [5].

The essence of all these network approaches is that the edges of the network rep-
resent connections or contacts in the context of disease transmission. The different
approaches try to preserve some essential feature of the transactions and contacts
of the population being described while being as parsimonious as possible about
possible architectures. Since the nodes (usually) represent individuals, the whole
issue of defining the population and area of interest is implicit in these models. As in
the chain binomial models and the agent based models discussed above transmission
probabilities are estimated from data that are matched as closely as possible to the
particular class of connection being modeled [13].

2 The Chain of Infection

No matter what modeling approach is used, it is the elements of the chain of infec-
tion that must be understood if the spread of a particular disease is to be controlled
or prevented. The chain of infection consists of six components: (1) pathogens, (2)
reservoirs or carriers, (3) portals of exit, (4) modes of transmission, (5) portals of
entry, and (6) hosts (susceptibles).

The transmission process begins at the “portal of exit”. Table 1 lists the portals
of exit 1 and the common means by which the pathogen exits (Fig. 1).

The next link in the chain is the transmission of the pathogen by direct or indirect
means to a new host. Table 2 shows the portals of exit and the associated modes
of transmission. Transmission by coughing or sneezing, etc. is considered direct if
source and recipient are less than a meter apart, other then that direct transmission is
by physical contact. Air droplets are airborne fluids containing an infectious agent,

Table 1 Portals of exit and the activities or processes that enable exit

Portal of exit Some activities that enable exit

Respiration Coughing, sneezing and talking
Oral Saliva – spitting, talking, kissing
Genital Sexual activity
Intravenous Bites, needles, and wounds
Urinary Sexual activity, urination, poor hygiene, poor sanitation
Skin Lesions, wounds
Gastrointestinal Feces, vomitus, saliva – poor hygiene, poor sanitation
Cardiovascular (rare) Possible blood transfusion
Conjunctival Rubbing eyes, contact with objects
Transplacental Mother to fetus

1 Portals of entry and exit are listed in order of the frequency of pathogen entry [33].
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Mode of 
Transmission

Mode of 
Transmission

Mode of 
Transmission

Inanimate 
Reservoir 
(Fomes)

Animate 
Reservoir 
(Vector)

Pathogen

Susceptible 
Host

Infected 
Reservoir

Pathogen

Mode of 
Transmission

Portal of Entry Portal of Exit

Fig. 1 The “chain of infection”. Reservoirs can be any source of infection living or inanimate. In
the bottom loop the host becomes the next reservoir in the chain; in the top loop there are multiple
intermediate reservoirs

usually from coughing or sneezing, that has traveled over one meter away from the
reservoir. Air transport of the pathogen in dust or by itself is what is meant by “air
dust”. Water and food are similarly self explanatory. Fomites (fomes sing.) are any
inanimate objects or surfaces that can serve as reservoirs, they can be stationary or
move. A vector is any living organism that serves as a reservoir – biological means
that the pathogen lives in and possibly causes disease (but not necessarily) in the
carrier, mechanical means that the pathogen resides on the surface or tissues of the
carrier without using the carrier’s tissues for nutrition or reproduction.

Table 2 Portals of exit and the modes of transmission. (x’s are the most common modes)

Mode of transmission

Portal of exit Direct
Air
droplet

Air
dust Water Fomites Food

Vector
mechanical

Vector
biological

Respiratory < 1m x x x x
Oral x x x x
Genital x x x
Intravenous x x
Urinary x x x
Skin x x x x x x
Gastrointestinal x x x x x x x
Cardiovascular x x
Conjunctival x
Transplacental x
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Table 3 Portals of entry and the modes of transmission (x’s are the most common modes)

Mode of transmission

Portal of
entry Direct

Air
droplet

Air
dust Water Fomites Food

Vector
mechanical

Vector
biological

Respiratory < 1m x x
Oral x x x x x x
Genital x x x
Intravenous x x
Urinary x
Skin x x x x x x
Gastrointestinal x x x x
Cardiovascular x x
Conjunctival x x x x x
Transplacental x

Finally only certain modes of transmission are usually effective at delivering the
pathogen to an appropriate portal of entry – the means by which a new host can
become infected (Table 3) [33].

Entry by skin or mucosa is usually via a cut or lesion although some organisms
(insects, worms, molds, fungi, etc.) can penetrate through unbroken epithelium.
Respiratory entry is in the bronchial passages and lungs themselves, whereas
cardiovascular entry is into the bloodstream via the lungs.

Actual transmission from one diseased organism (infected) to new host (sus-
ceptible) can occur via multiple steps in the chain of transmission. For example,
a dog roles on a dead squirrel picking up a pathogen, then a person pats the dog
transferring the pathogen to hands, then the person prepares or handles food, which
is eaten by another unwary (and unfortunate) susceptible person. There are at least
4 reservoirs in this chain before reaching the final host.

3 Contact and Transmission Rates

Portals of exit and entry, mode of transmission, social mixing, and social structure,
effect the communicability of a disease. The environmental conditions (temperature,
humidity, light and other factors) affect the resilience and durability of the pathogen.
The ability of the pathogen to penetrate barriers and protections at the portals of
entry determine the invasiveness of the disease. And the virulence is the strength
of pathogenicity[33], the ability of an inoculate to cause, and the severity of the
subsequent disease measured relative to the response of the affected population.

For a typical structured compartmental model the “transmission rate” (β) absorbs
much of this information in a single parameter that phenomenologically describes
the rate at which new cases are formed from already existing ones. The other part
of the communicability is the number of susceptible people that can potentially pick
up the disease. This is a function of some sort of communication (direct or indirect)
of the pathogen between an infected carrier and the potential host.
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Starting with the rate at which one individual comes in contact with another,2 we
begin with a basic conservation principle that contacts are reciprocal [7]. The total
number of contacts of group i with group j must be the same as the total number of
contacts of group j with group i . In symbols,

n is the number of groups.
ci j is the contact rate of “i ” with “ j ” (units: contacts per person per unit time).
ci is the total contact rate of “i ′′; ci = ∑ j ci j (units: contacts per person per

unit time).
pi j is the fraction of “i’s” contacts with “ j ”(or in other words “i’s” probability

of contacting someone who is a member of “ j” given that a contact has taken
place); since pi j = ci j/ci (unitless) then

∑
j pi j = 1.

Ni is the number of individuals in group “i ” (units: number of people).

The total number of contacts per unit time between “i ” and “ j ” is the same as
the total number between “ j ” and “i ”, which is

ci j Ni = c ji N j

pi j ci Ni = p ji c j N j . (1)

Summing over all j
∑

j

p ji c j N j =
∑

j

pi j ci Ni

= ci Ni

∑
j

pi j

= ci Ni

Dividing both sides of the conservation of contacts Equation (1) by ci Ni

pi j ci Ni

ci Ni
= p ji c j N j

ci Ni

pi, j = p ji c j N j∑
k pki ck Nk

. (2)

If we assume that the probability of the member of any group i contacting a
member of any other group j (including their own) pi, j is separable, that means it
is the product of a function of i times a function of j (i.e. pi j = uiv j ) then

1 =
∑

j

pi j =
∑

j

uiv j = ui

∑
j

v j ,

2 For now we’ll use a intuitive sense of what “contact” means and leave more detailed analysis for
later.



98 S. Tennenbaum

or

ui = 1∑
j v j

for each i.

This implies that ui is constant for all i , that is ui = u, and that pi, j is a function of
just j ,

pi j = uiv j = uv j = v j∑
k vk

.

Using the relationship from Equation (2) we find that

pi j = p ji c j N j∑
k pki ck Nk

= uvi c j N j∑
k uvi ck Nk

= c j N j∑
k ck Nk

.

Define proportionate mixing by

ρ j ≡ c j N j∑
k ck Nk

, j = 1, 2, . . . , n,

that is, the probability (conditioned on a meeting occurring) that someone from
group i meets someone from group j is the same as someone from group h con-
tacting someone from group j . It is equal to the fraction of j’s contacts out of all
contacts by everyone in the population. The total number of contacts per unit time
between i and j in the proportionate mixing case is

pi j ci Ni = ci c j Ni N j∑
k ck Nk

ci j Ni = ci c j Ni N j∑
k ck Nk

.

As a brief aside, this last relationship lets us test if the contact probabilities are
separable, that is, if the mixing is proportionate. This is important because separabil-
ity often allows for much simpler analysis of the models. In general the total contacts
per unit time of everyone in group i with group j is ci j Ni = Ci j = c ji N j = C ji .

The contact matrix C = [Ci j
]

is symmetric, and the column sums and the row sums
are the same (

∑
j Ci j = ∑ j C ji = Ci ). The total of all contacts per unit time is∑

k ck Nk = ∑i

∑
j Ci j = CT . Thus if the contact probabilities are separable then

we should have

Ci j ≈ Ci C j

CT

The deviations of the observed elements of the contact matrix
(
Ci j
)

from the
expected elements Ci C j C

−1
T are

δi j = Ci j − Ci C j

CT
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Note that the sum of the deviations always adds to zero,

∑
j

δi j =
∑

j

(
Ci j − Ci C j

CT

)

= Ci − Ci

CT

∑
j

C j

= Ci − Ci

CT
CT = 0

We can use Pearson’s chi-square goodness of fit test, where the test statistic is

χ2 = CT

∑
j

∑
i

δ2
i j

Ci C j

to find the probability that the observed contact matrix is consistent with the null
hypothesis of proportionate mixing.

In order to calculate the rate of new infections in the general case, let π j be the
probability of an infected person in group “ j ” transmitting the pathogen given a
contact (probability of an effective contact)

(
π j ciS , jI

)
. And let ξi be the probability

of a susceptible person in group “i” getting infected given an effective contact .
The total number of new infections of susceptibles “i” from all infectives “ j ” is
ξiπ j ciS , jI Si or equivalently ξiπ j piS , jI ciS Si .3 The total rate of new infections of
susceptibles “i ” from all infectives is

new cases per unit time in group i is ξi ciS Si

∑
j

π j piS , jI

Letting ξi cSi = βi so that the transmission rate scales with cSi , leads to the following
expression for the new cases per unit time in group i

βi Si

∑
j

π j piS , jI

In the separable case with “M” denoting a generic non-susceptible, non-infected
class we have

piS , jI = c jI I j∑
k ckS Sk + ckI Ik + ckM Mk

,

3 The sub-subscripts are just indicators that the contacts (and contact rates) are between suscepti-
bles and infectives and do not affect the cardinality of the group indices. For example, in an age
classified model susceptibles age iS and infecteds age i I are both the same age – i.
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so we can write

new cases per unit time in group i is
βi Si

∑
j π j c jI I j∑

k ckS Sk + ckI Ik + ckM Mk
.

Now how does all this relate back to the chain of transmission? π– the proba-
bility of an infected person transmitting the pathogen given a contact is a function
of the portal(s) of exit for the disease, and the mode of transmission. For a given
population or group this function would be a weighted average based on the actual
frequency of all the possible portals and modes. What is defined as a “contact”
and thus contact rate

(
ci j
)

is also dependent on the disease’s mode of transmission,
portals of exit and entry, and the social and technological morphology of the popu-
lation in question. And ξ – the probability of a susceptible person getting infected
is a function of the condition of the susceptible person or group, the virulence of
the pathogen, the portal of entry, and mode of transmission. It would be no small
achievement to catalogue all of the possible values for these parameters for the most
common infectious diseases. Another approach might be to further break down
these parameters into factors determined by (i) the pathogen, (ii) the host (iii) local
and current environmental conditions and (iv) portals, and modes of transmission
alone (independent of the other 3 factors). The components of each can be set
up as products of conditional probabilities. For example a possible model for the
transmission might look like

π = πpathogen · πreservoir · πportal · πtransmission · πenv + error.

Each of these components could be analyzed in a generalized linear model from data
taken from as many different events as possible. The catalogue of different values
for each of the components could then be recombined to match the circumstances of
any new outbreak or pending epidemic in order to provide reasonable model results
without having to wait for data to come back from the current event.

4 Conclusions

By understanding the process of transmission and particular expression of the com-
ponents that come together to make up the transmission rate researchers and public
health officials have been able to make insightful recommendations about con-
trolling or preventing the spread of a disease. Currently there exists a variety of
resources to obtain information about plant, animal and human pathogens (see for
example [9, 23, 32]). These include such information as taxonomy, lifecycle, genetic
information, epidemiology, hosts, vectors, disease progression, treatments, diagnos-
tic tests, etc. Much information for the modeling of a disease outbreak or epidemic
can be gleaned from these sources such as latency and incubation periods, stage
progression, recovery periods, infective dose via common portal of entry. However,
there is no central database or publication organizing information for the modeling
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of the infectivity itself for broad range of diseases. By breaking down the infectivity
into separate components that can be related back to the chain of infection it may
be possible to assemble those parts that are disease independent and those that are
disease specific to allow modeling efforts to be possible even if there is very limited
information, or different options to be explored under a variety of scenarios. In the
mean time, the modeling of contacts between individuals via a matrix C, poten-
tially tied to clear social and biological mechanisms, must be seen, in the context
of models being fit to data, that is, as a matrix of simply fitted parameters. The
potential for incorporating relevant biological and environmental meaning within
these parameters exists but so far no clear data-driven methods have been developed
to do this.
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The Effective Reproduction Number
as a Prelude to Statistical Estimation
of Time-Dependent Epidemic Trends

Hiroshi Nishiura and Gerardo Chowell

Abstract Although the basic reproduction number, R0, is useful for understanding
the transmissibility of a disease and designing various intervention strategies, the
classic threshold quantity theoretically assumes that the epidemic first occurs in a
fully susceptible population, and hence, R0 is essentially a mathematically defined
quantity. In many instances, it is of practical importance to evaluate time-dependent
variations in the transmission potential of infectious diseases. Explanation of the
time course of an epidemic can be partly achieved by estimating the effective repro-
duction number, R(t), defined as the actual average number of secondary cases per
primary case at calendar time t (for t > 0). R(t) shows time-dependent variation due
to the decline in susceptible individuals (intrinsic factors) and the implementation
of control measures (extrinsic factors). If R(t) < 1, it suggests that the epidemic
is in decline and may be regarded as being under control at time t (vice versa, if
R(t) > 1). This chapter describes the primer of mathematics and statistics of R(t)
and discusses other similar markers of transmissibility as a function of time.

1 Introduction

The basic reproduction number, R0 (pronounced as R nought), is a key quantity
used to estimate transmissibility of infectious diseases. Theoretically, R0 is defined
as the average number of secondary cases generated by a single primary case dur-
ing its entire period of infectiousness in a fully susceptible population [14]. The
reproduction number, R, is directly related to the type and intensity of interventions
necessary to control an epidemic since the objective of public health efforts is to
achieve R < 1 as soon as possible. One of the best known utilities of R0 is in
determining the critical coverage of immunization required to eradicate a disease
in a randomly mixing population. When an effective vaccine is available against
the disease in question, it is of interest to estimate the critical proportion of the
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population that needs to be vaccinated (i.e. vaccination coverage) in order to attain
R < 1 [3, 4, 33]. Considering the so-called control relation, 1 − 1

R0
, the protection

conferred to the population by achieving a critical vaccination coverage, herd immu-
nity, yields the threshold condition for the eradication of a disease [18, 28]. As it is
extensively discussed elsewhere [13, 14], the mathematical definition of R0 is given
by using the next generation matrix where R0 is in the simplest case calculated as
the dominant eigenvalue (see Chapter 1). In addition to the threshold phenomena,
R0 has been classically used to suggest the severity of an epidemic, because the
proportion of those experiencing infection at the end of an epidemic (i.e. final size)
depends only on R0 [23]. The basic statistical methods to estimate R0 from observed
epidemiological datasets have been reviewed by Klaus Dietz elsewhere [15].

Although R0 may be useful for understanding the transmissibility of a disease
and designing various intervention strategies, the classic threshold quantity theoret-
ically assumes that the epidemic first occurs in a fully susceptible population, and
hence, R0 is essentially a mathematically defined quantity. In addition to R0, it is
of practical importance to evaluate time-dependent variations in the transmission
potential. Explanation of the time course of an epidemic can be partly achieved
by estimating the effective reproduction number, R(t), defined as the actual aver-
age number of secondary cases per primary case at calendar time t (for t > 0)
[6–10, 22, 29, 30, 35]. R(t) shows time-dependent variation due to the decline in
susceptible individuals (intrinsic factors) and the implementation of control mea-
sures (extrinsic factors). If R(t) < 1, it suggests that the epidemic is in decline
and may be regarded as being under control at time t (vice versa, if R(t) > 1). Even
when effective interventions against a specific disease are limited, it is plausible that
the contact frequency leading to infection varies as a function of time owing to the
recognition of epidemics and/or dissemination of the relevant information through
mass media. In this chapter, we show how R(t) is mathematically defined and how
it can be estimated from the observed epidemiological datasets. In addition, other
similar time-dependent threshold quantities, which have been proposed in a few
practical settings, are discussed.

2 Renewal Equation Offers the Conceptual
Understanding of R(t)

2.1 Infection-Age Structured Model

To understand the theoretical concept of R(t), we first consider an infection-age
structured epidemic model. Hereafter, infection-age stands for the time elapsed
since infection. Whereas the simple modified version (or widely known form) of the
Kermack-McKendrick model is governed by ODEs (e.g. SIR and SEIR models),
the very initial model employed the infection-age structured assumption from in
1927 [24]. Nevertheless, the mathematical importance of the original model was
recognized only after the 1970s [12, 27]. We denote the numbers of susceptible and
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recovered individuals by S(t) and U (t) (Note: to avoid any confusions between the
effective reproduction number and the recovered individuals, we denote the recov-
ered individuals by U (t) hereafter). Further, let i(t, τ ) be the density of infectious
individuals at calendar time t and infection-age τ . The infection-age structured SIR
model is given by

d S(t)

dt
= −λ(t)S(t)

(
∂

∂t
+ ∂

∂τ

)
i(t, τ ) = −γ (τ )i(t, τ ) (1)

i(t, 0) = λ(t)S(t)
dU (t)

dt
=
∫ ∞

0
γ (τ )i(t, τ ) dτ

where λ(t) is referred to as the force of infection (foi) at calendar time t (i.e.
foi is defined as the rate at which susceptible individuals get infected) which is
given by:

λ(t) =
∫ ∞

0
β(τ )i(t, τ ) dτ (2)

and β(τ ) and γ (τ ) are the rates of secondary transmissions per single infectious
case and recovery at infection-age τ , respectively. It should be noted that the above
model has not taken into account the background host demography (i.e. birth and
death). In a closed population, the total population size N is thus given by

N = S(t) +
∫ ∞

0
i(t, τ ) dτ + U (t) (3)

which is independent of calendar time t . The system (1) can be reasonably integrated
along the characteristic line

i(t, τ ) = Γ (τ ) j(t − τ ) (4)

for t − τ > 0 (and Γ (τ )
Γ (τ−t) j0(τ − t) for τ − t > 0) where

j(t) = i(t, 0) (5)

and

Γ (τ ) = exp

(
−
∫ τ

0
γ (σ ) dσ

)
(6)

and j0(τ ) informs the infection-age distribution of initially infected individuals at
the beginning of an epidemic. Accordingly, the number of new infections at calendar
time t , j(t), is referred to as the incidence of infection. It is not difficult to derive
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S(t) = S(0) −
∫ t

0
j(σ ) dσ (7)

from (1). Thus, the subequation of i(t, 0) in system (1) is rewritten as

j(t) = λ(t)

[
S(0) −

∫ t

0
j(σ ) dσ

]
(8)

Taking into account the initial condition in (4), Equation (8) is rewritten as

j(t) =
[

S(0) −
∫ t

0
j(σ ) dσ

] [
G(t) +

∫ t

0
ψ(τ ) j(t − τ ) dτ

]
(9)

where

ψ(τ ) = β(τ )Γ (τ ) (10)

G(t) =
∫ ∞

0
β(σ + t)

Γ (σ + t)

Γ (σ )
j0(σ ) dσ (11)

Considering the initial invasion phase (i.e. exponential growth phase of an epi-
demic), we get a linearized equation

j(t) = S(0)G(t) + S(0)
∫ t

0
ψ(τ ) j(t − τ ) dτ (12)

The Equation (12) represents Lotka’s integral equation, where the basic reproduc-
tion number, R0, is given by

R0 = S(0)
∫ ∞

0
ψ(τ ) dτ (13)

Thus, the epidemic will grow if R0 > 1 and decline to extinction if R0 < 1.
Assuming that the infection-age distribution is stable, we get a simplified renewal
equation

j(t) =
∫ ∞

0
A(τ ) j(t − τ ) dτ (14)

where A(τ ) is the product of ψ(τ ) and S(0), indicating the rate of secondary trans-
missions caused by a single primary case at calendar time 0 and infection-age τ .
Assuming that we observe an exponential growth of incidence during the initial
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phase (i.e. j(t) = k exp(r t) where k and r are, respectively, a constant (k > 0) and
the intrinsic growth rate), the following relationship is obtained:

j(t) = j(t − τ ) exp(rτ ) (15)

Replacing j(t − τ ) in the right hand side of (14) by (15), we get

j(t) =
∫ ∞

0
A(τ ) j(t) exp(−rτ ) dτ (16)

Removing j(t) from both sides of (16), we get the Euler-Lotka characteristic
equation:

1 =
∫ ∞

0
e−rτ A(τ ), dτ (17)

Further, we consider a probability density of the generation time (i.e. the time from
infection of a primary case to the infection of a secondary case by the primary case
[34]), denoted by w(τ ):

w(τ ) := A(τ )∫∞
0 A(x)dx

= A(τ )

R0
. (18)

Using (18), the Equation (17) is replaced by

1

R0
=
∫ ∞

0
exp(−rτ )w(τ ), dτ (19)

The Equations (15), (16), (17), (18), (19) are what Wallinga and Lipsitch have dis-
cussed, revisiting the classical theory of Lotka [16, 36], which reasonably suggests
the relationship between the generation-time distribution and R0. Accordingly, the
estimator of R0 using the intrinsic growth rate is given by:

R̂0 = 1

M(−r )
, (20)

where M(−r ) is the moment generating function of the generation-time distribution
w(τ ), given the intrinsic growth rate r [36]. Equation (20) significantly improved
the issue of estimating R0 using the intrinsic growth rate alone, because (20) permits
validating estimates of R0 by various different distributional assumptions for w(τ ).
The importance of realistic assumptions for the distributions of latent and infectious
periods has been emphasized in recent studies [25, 26, 32, 37, 39] and indeed, this
point is addressed by (20) to gain robust estimate of R0. It should be noted that the
convolution of latent and infectious periods yields w(τ ). Since the assumed lengths
of generation time most likely yielded different estimates of R0, for example, for
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Spanish influenza by different studies [30], Equation (20) highlights a critical need
to clarify the generation time distribution using observed data.

2.2 Deriving the Estimator of the Effective Reproduction Number

To further derive an estimator of R(t), we consider the non-linear phase of an
epidemic. Derivation of R0 given by (20) assumes an exponential growth which
is applicable only during the very initial phase of an epidemic (or, when the
transmission is stationary over time), and thus, it is of practical importance to
widen the applicability of the above-described renewal equations in order to appro-
priately interpret the time-course of an epidemic. We explicitly account for the
depletion of susceptible individuals, as we deal with an estimation issue with time-
inhomogeneous assumptions. Adopting the mass action principle of Kermack and
McKendrick, we get:

j(t) = S(t)
∫ ∞

0
ψ(τ ) j(t − τ ) dτ

=
∫ ∞

0
A(t, τ ) j(t − τ ) dτ (21)

where A(t, τ ) is interpreted as the reproductive power at calendar time t and
infection-age τ at which an infected individual generates secondary cases. We refer
to the Equation (21) as a non-autonomous renewal equation, where the number
of new infections at calendar time t is proportional to the number of infectious
individuals (as assumed in the renewal equation in the initial phase).

Using Equation (21), the effective reproduction number, R(t) (i.e. the instanta-
neous reproduction number at calendar time t) is defined as:

R(t) =
∫ ∞

0
A(t, τ ) dτ (22)

where A(t, τ ) is, in practical terms, decomposed as

A(t, τ ) = S(t)β(τ )Γ (τ ) (23)

Following (23), we can immediately see that R(t) with an autonomous assumption
(i.e. where contact and recovery rates do not vary with time) is given by:

R(t) = S(t)

S(0)
R0 (24)

which is shown in [14]. In practical terms, Equation (24) reflects the temporal
decline in the epidemic due to depletion of susceptible individuals. This corresponds
to the classic assumption of the Kermack and McKendrick model.
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However, as we discussed in the beginning of this chapter, we postulate that
human contact behaviors (and other extrinsic factors) modifies the dynamics as
a function of epidemic time, assuming that the decline in incidence does reflect
not only depletion of susceptibles but also various extrinsic dynamics (e.g. iso-
lation and contact tracing). Thus, instead of the assumption in (21), we assume
time-inhomogeneous ψ(t, τ ); i.e.

j(t) = S(t)
∫ ∞

0
ψ(t, τ ) j(t − τ ) dτ

=
∫ ∞

0
A(t, τ ) j(t − τ ) dτ (25)

to describe A(t, τ ).
Even so, it is convenient to assume separation of variables for A(t, τ ) to derive

simple estimator of R(t) (implicitly assuming that the relative infectiousness to
infection-age is independent of calendar time) [20]. Under this assumption, A(t, τ )
is rewritten as the product of two functions φ1(t) and φ2(τ ):

A(t, τ ) = φ1(t)φ2(τ ) (26)

Arbitrarily assuming a normalized density for φ2(τ ), i.e.,

∫ ∞

0
φ2(τ ) dτ ≡ 1 (27)

then, it is easy to find that

R(t) =
∫ ∞

0
A(t, τ ) dτ = φ1(t) (28)

suggesting that the function φ1(t) is equivalent to the (instantaneous) effective repro-
duction number R(t). Another function φ2(τ ) represents the density of infection
events as a function of infection-age τ . Accordingly, we can immediately see that
φ2(τ ) is exactly the same as w(τ ), the generation-time distribution. That is, the above
arguments suggest that A(t, τ ) (i.e. the rate at which an infectious individual at
calendar time t and infection-age τ produces secondary cases) is decomposed as:

A(t, τ ) = R(t)w(τ ) (29)

Inserting (29) into (25) yields an estimator of R(t) [20]:

R̂(t) = j(t)∫∞
0 j(t − τ )w(τ ) dτ

(30)
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Another type of the effective reproduction number as a function of time considers
the number of secondary cases per single primary case as a function of calendar time
when the primary case experienced infection. Due to this reason, the reproduction
number is referred to as the cohort reproduction number, Rc(t), defined as

Rc(t) =
∫ ∞

0
A(t + τ, τ ) dτ (31)

If the separable assumption (28) is the case, Equation (31) is rewritten as

Rc(t) =
∫ ∞

0
R(t + τ )w(τ ) dτ (32)

which is interpreted as a smoothed function of the instantaneous reproduction num-
ber [20, 21]. The above Equation (32) is exactly what was proposed in applications
to SARS [35] and foot and mouth disease [17]. Preceding these definitions in infec-
tious disease epidemiology [20], both R(t) and Rc(t) have been explicitly defined
as the period and cohort total fertility rates, respectively, in mathematical demog-
raphy [1]. The difference between R(t) and Rc(t) is highlighted when a specific
event at calendar time t occurs (e.g. a public health intervention starts at calen-
dar time t). Then, R(t) abruptly varies (e.g. declines) with calendar time t , but
Rc(t) smoothly varies, because Rc(t) smooth out the timing (i.e. infection-age)
of secondary transmissions among a cohort who experienced infection at calendar
time t .

Discretizing (30) and (32) to apply them to the daily incidence data (i.e. using
ji incident cases infected between time ti and time ti+1 and descretized generation
time distribution wi ),

R̂(ti ) = ji∑n
j=0 ji− jw j

(33)

can be used as the estimator of R(t), and

R̂c(ti ) =
n∑

m=0

ji+mw j∑n
k=0 ji+m−kwk

(34)

as the estimator of Rc(t). However, it should be noted that the study in SARS
implicitly assumed that onset data c(t) at calendar time t reflects the above discussed
infection event j(t) [35]. That is, supposing that we observed ci onset cases reported
between ti and ti+1, Rc(t) was calculated as

R̂c(ti ) = ci∑n
j=0 ci− j s j

(35)
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where s j is the discretized serial interval which is defined as the time from onset of
a primary case to onset of the secondary cases [19]. The method permits reasonable
transformation of an epidemic curve (i.e. temporal distribution of case onset) to the
estimates of time-inhomogeneous cohort reproduction number Rc(t). Employing the
relative likelihood of case k infected by case l using the density function of serial
interval s(t); i.e.,

p(k,l) = s(tk − tl |θ )∑
m �=k s(tk − tm |θ )

(36)

the expected value and variance of Rc(ti ) are given by the following

E(Rc(ti )) = 1

n2
t

∑
l:tl=t

n−q∑
k=1

p(k,l) (37)

Var(Rc(ti )) = 1

n2
t

n−q∑
k=1

⎛
⎝∑

l:tl=t

p(k,l)(1 − p(k,l)) −
∑

l,m:tl=tm=t

p(k,l) p(k,m)

⎞
⎠

where nt is the total number of reported case onsets at calendar time t [11].
Using the above described methods (or similar concepts with similar assump-

tions), we can transform epidemic curves into the effective reproduction number
and assess the impact of control measures on an epidemic. However, whereas the
Equations (33) and (35) are similar in theory, we need to explicitly account for the
difference between onset and infection event. In fact, when there are many asymp-
tomatic infections and asymptomatic secondary transmissions, serial interval is not
equivalent to the generation time, and thus, directly adopting the above methods
would be inappropriate.

3 Applying Theory to the Data

3.1 A Simple Example

Here we consider a simplified example of pandemic influenza from 1918 to 1919
in Prussia, Germany [30]. Medical officers in Prussia recorded the daily number of
influenza deaths from 29 September 1918 to 1 February 1919 (Fig. 1) [31]; a total of
8911 deaths were reported. Throughout the pandemic period in Germany, the largest
number of deaths was seen in this fall wave. Prussia represents the northern part of
present Germany and at the time of the pandemic it was part of the Weimer Repub-
lic as a free state following World War I. The death data were collected from 28
different local districts surrounding the town of Arnsberg, which, at the time of the
epidemic, had a population of approximately 2.5 million individuals (the mortality
rate in this period being 0.36%). Although case fatality for the entire observation
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Fig. 1 Epidemic curve of
pandemic influenza in
Prussia, Germany, from
1918 to 1919. Reported daily
number of influenza deaths
(solid line) and the
back-calculated temporal
distribution of onset cases
(dashed line). Daily counts of
onset cases were obtained
using the time delay
distribution from onset to
death (Fig. 2). Data source:
Ref [31]

area was not documented, the numbers of cases and deaths during part of the fall
wave were recorded for 25 districts. Among a total of 61,824 cases, 1609 deaths
were observed, yielding a case fatality estimate of 2.60% (95% CI: 2.48, 2.73).
For simplicity, the inflow and outflow of individuals migrating between Prussia and
other areas were ignored in the following analysis.

The daily incidence (i.e. daily case onset) was back-calculated using the daily
number of influenza deaths (Fig. 1) and the time delay distribution from onset to
death (Fig. 2). Given f (τ ), the frequency of death τ days after onset, the relationship
between the reported daily number of deaths, D(t), and daily incidence, C(t), at
calendar time t is given by:

D(t) = p
∫ t

0
C(t − τ ) f (τ ) dτ (38)

where p is the case fatality ratio, which is independent of time. Although the case
fatality, p, was not taken into account in Fig. 1, the following model reasonably
cancels out the effect of p assuming that the conditional probability of death given
infection is independent of time.

Fig. 2 Distribution of the
time delay from onset to
death during the influenza
epidemic in Prussia,
Germany, from 1918 to
1919. Time from disease
onset (i.e. fever) to death is
given for 6233 influenza
deaths. A simple 5-day
moving average was applied
to the original data. Data
source: Ref [31]
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The effective reproduction number can be estimated using estimators (33) and
(34), but, unfortunately, detailed information on the distribution of the generation
time, w(τ ), has yet to be clarified for pandemic influenza, and historical records
often offer only the approximate mean length. Thus, the analyses conducted here
simplify the model using various mean lengths of the generation time assumed in
previous studies. Supposing that we observed Ci cases in generation i , the expected
number of cases in generation i +1, E(Ci+1) occurring a mean generation time after
onset of Ci is given by:

E(Ci+1) = Ci Ri (39)

where Ri is the effective (cohort) reproduction number in generation i . That is, cases
in each generation, C1, C2, C3, . . . , Cn are given by C0 R0, C1 R1, C2 R2, . . . , Cn−1

Rn−1 and also by C0 R0, C0 R0 R1, C0 R0 R1 R2, . . . , C0
∏n−1

k=0 Rk , respectively. By
incorporating variations in the number of secondary transmissions generated by
each case into the same generation (referred to as the offspring distribution), the
model can be formalized using a discrete-time branching process [5]. The Poisson
process is conventionally assumed to model the offspring distribution, representing
stochasticity (i.e. randomness) in the transmission process. This assumption indi-
cates that the conditional distribution of the number of cases in generation i + 1
given Ci is given by:

Ci+1 | Ci ∼ Poisson[Ci Ri ] (40)

For observation of cases from generation 0 to N , the likelihood of estimating Ri is
given by:

L = constant ×
N−1∏
j=0

(C j R j )
C j+1 exp(−C j R j ) (41)

Since the Poisson distribution represents a one parameter power series distribution,
the expected values and uncertainty bounds of Ri can be obtained for each gen-
eration. The 95% CI were derived from the profile likelihood. Since the length of
the generation time in previous studies ranged from 0.9 to 6 days, three different
fixed-length generation times (i.e. 1, 3 and 5 days) are assumed for Equation (41)
with respect to the observed data. Although application of the delta function for the
generation time suffers some overlapping of cases in successive generations, this
exercise ignored this and, rather, focused on the time variation in transmissibility
using this simple assumption. That is, assuming that the generation-time distribution
of length τ , w(τ ), is given by the following delta function with the mean length 1, 3
or 5 days,

w(τ ) = ∞, for τ = 1, 3 or 5 (42)
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and w(τ ) = 0 otherwise, and for each assumption of the mean length, the daily
number of cases was grouped by the determined generation time length. Whereas
the choice of generation time therefore affects estimates of Ri , it does not affect
the ability to predict the temporal distribution of cases. It should be noted that this
simple model assumes a homogeneous pattern of spread.

Figure 3 shows time variations in the estimated effective reproduction numbers
obtained assuming three different generation times (i.e. 1, 3 and 5 days) compared
with the corresponding epidemic curve. Epidemic date 0 represents 9 September
1918 when the back-calculated onset of cases initially yielded a value the near-
est integer of which was 1. Since the precision of the estimate is influenced by
the observed number of cases, wide 95% confidence intervals were observed for
estimates using a short generation time. However, these time variations in R(t)

Fig. 3 Epidemic curve and the corresponding effective reproduction numbers (R) with vari-
able generation times. Time variation in the effective reproduction number (the number of
secondary infections generated per case by generation) assuming three different generation times
is shown. The generation time was assumed to be 1 (second from the top), 3 (lower middle) and 5
days (bottom). Days are counted from September 9, 1918, onwards
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exhibited similar qualitative patterns: (i) although the R(t) was highest at the begin-
ning of the epidemic, the estimates fell below 1 when the epidemic curve came
close to the peak (i.e. Days 45–50). For example, the estimated R(t) at Day 50 was
0.92 (95% CI: 0.79, 1.06), 0.82 (0.75, 0.89) and 0.72 (0.67, 0.78), respectively, for a
generation time of 1, 3 and 5 days. This period corresponds to the time when public
health measures were instituted, e.g. obligatory case reporting, encouragement of
mask wearing, and closing of public buildings such as churches and theaters [31].
(ii) Thereafter, R(t) stayed slightly below unity, reflecting a slow decline in the num-
ber of onset cases. (iii) Shortly before the end of the epidemic (i.e. Days 90–120),
R(t) increased again above 1. (iv) Finally, the expected values of R(t) fell below
1 very close to the end of the epidemic. In this stage, estimates assuming a short
generation time exhibited wide uncertainty bounds, reflecting stochasticity due to
the small number of cases.

Figure 4 compares the expected values of R(t) assuming each of the generation
times employed. Although the possibility of individual heterogeneity (e.g. potential
superspreaders in the early stage) cannot be excluded, R(t) at calendar time t = 0
is theoretically equivalent to R0. Assuming generation times of 1, 3 and 5 days, R0

was estimated to be 1.58 (95% CI: 0.03, 10.32), 2.52 (0.75, 5.85) and 3.41 (1.91,
5.57), respectively. It is remarkable, therefore, to see that R(t) largely depends on
the assumed length of the generation time. That is, the longer the generation time,
the higher the R(t). It should also be noted that the relationship between R(t) and the
generation time is reversed when the epidemic is under control (i.e. when R(t) < 1
in the later stage of the epidemic). The finding is analytically interpretable from
Equation (20) which suggests that the absolute number of the reproduction number

Fig. 4 Comparison of the effective reproduction number assuming different generation
times. Expected values of the effective reproduction number with a generation time of 1 (grey),
3 (dashed black) and 5 days (solid black). The horizontal solid line represents the threshold value,
R = 1, below which the epidemic will decline to extinction. Days are counted from September 9,
1918, onwards



116 H. Nishiura and G. Chowell

is informed by the growth rate of an epidemic as well as the shape and scale of the
generation time distribution [32, 36].

3.2 What to do with the Coarsely Reported Data?

Although we usually seek for precisely reported data (e.g. daily counts of cases) to
estimate the reproduction number as a function of time, it is impractical in many
instances to report observations every day (or to be more precise). If the datasets are
reported in a very coarse interval, we have to consider alternative simple algorithms
to deal with interval censoring. There are two approaches.

The first is the geometric approximation. As above, we consider that the expected
number of cases in generations 0, 1, 2, . . . , i follows a simple geometric series, but
with a constant reproduction number, Rk , in a single reporting interval k:

a, a Rk, a Rk
2, . . . , a Rk

i (43)

where a denotes the number of index cases in the first generation of reporting inter-
val k. As a special case, suppose that the reporting interval, �t , is exactly a multiple
of the mean generation time (i.e. �t = ng where g and n are the mean generation
time and an integer, respectively). In that case, the numbers of cases in k-th and
(k + 1)-th reports, Jk and Jk+1, are

Jk = a + a Rk + a Rk
2 + . . . + a Rk

n−1 (44)

= a
n−1∑
i=0

Rk
i (45)

and

Jk+1 = a Rk
n + a Rk

n Rk+1 + a Rk
n Rk+1

2 + . . . + a Rk
n Rk+1

n−1 (46)

= a Rk
n

n−1∑
i=0

Rk+1
i (47)

where Rk and Rk+1 are the effective reproduction numbers in reporting intervals k
and k + 1, respectively. Thus, given an observation of Jk cases in interval k, the
expected number of cases in the next interval k + 1, E(Jk+1 | Jk), is given by

E(Jk+1 | Jk) = (1 − Rk)(1 − Rk+1
n)Rk

n Jk

(1 − Rk+1)(1 − Rk
n)

(48)

It should be noted that n is the number of generations included in each reporting
interval.
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When the geometric approximation is not feasible (e.g. when the reporting
interval is not exactly the multiple of the mean generation time), the exponen-
tial approximation should replace the geometric approach. Let rk and rk+1 be the
constant growth rates of cases in reporting intervals k and k + 1, the conditional
expectation (48) is replaced by

E(Jk+1 | Jk) = Jkrk exp(rk�t)

rk+1

exp(rk+1�t) − 1

exp(rk�t) − 1
(49)

where �t is the length of reporting interval. Using the maximum likelihood method,
the growth rates rk are estimated for each reporting interval k. Subsequently, Rk in
each reporting interval k is estimated as

Rk = 1

M(−rk)
(50)

which is analogous to Equation (20).
In this way, even when the reporting interval is coarse (e.g. exceeding the mean

generation time), we can still get approximate estimates of Rk which is assumed
constant during the single reporting interval. Nevertheless, the linear approximation
diminishes precision, and thus, it should be remembered that the observation in
more precise reporting interval always gives better insights into the time-course of
an epidemic.

4 Incidence-to-Prevalence Ratio
and the Actual Reproduction Number

As discussed in the last section, it is frequently the case that the generation time for
a specific disease has yet to be estimated, and we do not have the relevant data. Pre-
viously, another simple method was proposed; namely, the incidence-to-prevalence
ratio has been employed in interpreting the time course of an epidemic [2, 38]. In
particular, the method has been employed to understand the time course of the HIV
epidemic. Although it is true that the problem of long generation times for HIV
would complicate the interpretation of the simple method (and thus, the instanta-
neous and cohort reproduction numbers may always provide better information),
here we explicitly consider theoretical backgrounds of this simple method.

As we did in the previous sections, we consider the renewal equation:

j(t) = S(t)
∫ ∞

0
β(τ )i(t, τ ) dτ

= S(t)
∫ ∞

0
β(τ )Γ (τ ) j(t − τ ) dτ (51)
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which employs Kermack and McKendrick type assumption. Following Amundsen
et al. [2], here we mathematically define the actual reproduction number, Ra(t).
Since the prevalence at calendar time t , I (t), is given by

I (t) =
∫ ∞

0
i(t, τ ) dτ (52)

the incidence-to-prevalence ratio, IPR(t), of White et al. [38] at calendar time t is

IPR(t) = j(t)

I (t)

= S(t)
∫∞

0 β(τ )i(t, τ ) dτ∫∞
0 i(t, τ ) dτ

= S(t)
∫ ∞

0
β(τ )c(t, τ ) dτ (53)

where

c(t, τ ) = i(t, τ )∫∞
0 i(t, τ ) dτ

(54)

which informs the infection-age distribution (or what we call age-profile) of infec-
tious individuals. The actual reproduction number, Ra(t), is defined as

Ra(t) = IPR(t)D (55)

where

D =
∫ ∞

0
Γ (τ ) dτ (56)

which informs the average infectious period.
Of course, Equation (55) poses a problem for applying this simple method to

HIV epidemiology. If the transmission rate β(τ ) was independent of infection-age
(and was constant b), IPR(t) would be merely bS(t) and thus

R(t) = bS(t)D = Ra(t) (57)

Nevertheless, diseases with long generation time usually exhibits strong dependency
of infectiousness on infection-age, indicating that the method might not be as useful
as the cohort and instantaneous reproduction numbers. Instead, if it is the case that
we have both prevalence and incidence in hand for a disease with acute course of
illness, Ra(t) still stands as a useful measure of transmissibility as a function of time.



Effective Reproduction Number 119

5 Conclusion

In this chapter, we discussed the mathematical and statistical properties of the effec-
tive reproduction number as a function of time. We have shown that the renewal
theory gives us rich analytical insights into the definition and computation of vari-
ous time-dependent threshold quantities. The instantaneous and cohort reproduction
numbers are explicit measures of the transmissibility, where the former informs the
actual number of secondary transmissions at calendar time t , while the latter gives
the average number of secondary transmissions among cohort (i.e. infecteds) who
were born at calendar time t . These exactly correspond to the period and cohort total
fertility rates, respectively, in mathematical demography. The difference between
the two is highlighted when a specific event at calendar time t occurs (e.g. a pub-
lic health intervention starts at calendar time t). Then, R(t) abruptly varies with
calendar time t , while Rc(t) smoothly varies. For a disease with long generation
time, analysis of both quantities might be called for. We have also provided ana-
lytically explicit interpretations of the incidence-to-prevalence ratio and the actual
reproduction number. Although it appears that the ratio and the actual reproduction
number may not be useful for a disease with long generation time (e.g. HIV/AIDS),
these might be extremely useful for a disease with acute course of illness, especially
when we have both prevalence and incidence in hand. Applications of the above
discussed concepts are seen in other chapters in this volume, and we hope you’ll
enjoy our statistical approaches to various infectious diseases.
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Sensitivity of Model-Based Epidemiological
Parameter Estimation to Model Assumptions

A.L. Lloyd

Abstract Estimation of epidemiological parameters from disease outbreak data
often proceeds by fitting a mathematical model to the data set. The resulting param-
eter estimates are subject to uncertainty that arises from errors (noise) in the data;
standard statistical techniques can be used to estimate the magnitude of this uncer-
tainty. The estimates are also dependent on the structure of the model used in the
fitting process and so any uncertainty regarding this structure leads to additional
uncertainty in the parameter estimates. We argue that if we lack detailed knowledge
of the biology of the transmission process, parameter estimation should be accom-
panied by a structural sensitivity analysis, in addition to the standard statistical
uncertainty analysis. Here we focus on the estimation of the basic reproductive num-
ber from the initial growth rate of an outbreak as this is a setting in which parameter
estimation can be surprisingly sensitive to details of the time course of infection.

1 Introduction

Estimation of epidemiological parameters, such as the average duration of infec-
tiousness or the basic reproductive number of an infection, is often an important
task when examining disease outbreak data [see, for example, 12, 19, 26]. In many
instances, one or more parameters of interest cannot be estimated directly from the
available data, so an indirect approach is adopted in which a mathematical model
of the transmission process is formulated and is fitted to the data. The resulting
parameter estimates will have uncertainty due to noise in the data but they will also
depend on the form chosen for the model. Any uncertainties in our knowledge of the
biology underlying the transmission process lead to uncertainties in the parameter
estimates over and above those that arise from noise in the data.

Standard statistical approaches (see Chapters 1, 5, 7, 10 and 11 of this book) can
be used to quantify the uncertainty in parameter estimates that arises from noise in
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the data, but these are not designed to provide insight into the sensitivity of the esti-
mates to the structure of the model. In this chapter, we demonstrate that uncertainty
due to model structure can, in some instances, dwarf noise-related uncertainty by
discussing an estimation problem in which details of the description of the biology
of the transmission process can have an important impact. This argues that when
there is incomplete knowledge of the biology of the infection, structural sensitiv-
ity analysis should accompany statistical uncertainty analysis when model-based
approaches are used to interpret epidemiological data.

In this chapter, we illustrate the potential importance of model assumptions
by examining the model-based estimation of the basic reproductive number using
data obtained from the initial stages of a disease outbreak. We review studies
[21, 25, 27, 31, 33, 34] that illustrate that such estimates can be highly sensitive
to the assumptions made concerning the natural history of the infection, particularly
regarding the timing of secondary transmission events. These results are of major
significance in the setting of emerging infectious disease outbreaks, when a rapid
quantification of the basic reproductive number is highly desirable to guide control
efforts, but when information on the transmission cycle may be scarce. Importantly,
the work shows that the use of simple models can greatly underestimate the value
of the basic reproductive number, providing overly optimistic predictions for how
effective control measures have to be in order to curtail the spread of the disease.

2 The Basic Reproductive Number and Its Estimation
Using the Simple SIR Model

The basic reproductive number, R0, is defined as the average number of secondary
infections caused by a typical infective individual in an otherwise entirely sus-
ceptible population [see, for example, 11]. In the simplest settings, its value can
be calculated as the product of the rate at which such an individual gives rise to
infections and the duration of their infectious period. In turn, the infection rate is
a product of the rate at which an infective meets susceptible individuals, i.e. the
contact rate, and the per-contact probability of transmission.

Direct estimation of the basic reproductive number could be undertaken if sec-
ondary infections of individual infectives could be quantified. Unfortunately, the
most commonly available type of data—aggregated incidence data—does not reveal
transmission chains in sufficient detail to identify the source of secondary cases.
More detailed data, such as contact tracing data, can elucidate chains of transmis-
sion, but is rarely complete enough to allow direct calculation of R0. In the absence
of complete contact tracing data, statistical techniques have been suggested for the
estimation of R0 via reconstruction of transmission chains [13, 32].

The basic reproductive number could also be directly estimated if both the con-
tact rate and transmission probability were known. Again, direct estimation of
these quantities is typically difficult. Transmission probabilities can be estimated
using certain types of epidemiological data, obtained, for instance, from observation
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of transmission within families, or other transmission experiments. Such data,
however, are often unavailable during the early stages of a disease outbreak.

An alternative approach involves fitting a mathematical model to outbreak data,
obtaining estimates for the parameters of the model, allowing R0 to be calculated.
The simplest model that can be used for this purpose is the standard deterministic
compartmental SIR model [see, for example, 11]. Individuals are assumed to either
be susceptible, infectious or removed, with the numbers of each being written as
S, I , and R, respectively. Susceptible individuals acquire infection through con-
tacts with infectious individuals, and the simplest form of the model assumes that
new infections arise at rate βSI/N . Here N is the population size and β is the
transmission parameter, which is given by the product of the contact rate and the
transmission probability. Recovery of infectives is assumed to occur at a constant
rate γ , corresponding to an average duration of infection of 1/γ , and leads to per-
manent immunity. Throughout this chapter we shall denote the average duration of
infectiousness by DI and assume permanent immunity following infection. We shall
also ignore demographic processes (births and deaths), which is a good approxi-
mation if the disease outbreak is short-lived and the infection is non-fatal. Ignoring
demography leads to the population size N being constant. The model can be written
as the following set of differential equations

dS/dt = −βSI/N (1)

dI/dt = βSI/N − γ I (2)

dR/dt = γ I. (3)

During the early stages of an outbreak with a novel pathogen, almost the entire
population will be susceptible, and, since S ≈ N , the transmission rate equals
β I . The transmission parameter β is the rate at which each infective gives rise
to secondary infections and so the basic reproductive number can be written as
R0 = βDI = β/γ . During this initial period, the changing prevalence of infec-
tion can, to a very good approximation, be described by the single linear equation
d I/dt = γ (R0 − 1)I. (We remark that the S = N assumption corresponds to
linearizing the model about its infection free equilibrium.) In other words, provided
that R0 is greater than one, which we shall assume to be the case throughout this
chapter, prevalence initially increases exponentially with growth rate

r = γ (R0 − 1). (4)

The incidence of infection is given by βSI/N and so, during the early stages of
an outbreak, prevalence and incidence are proportional in the SIR setting, so this
equation also describes the rate at which incidence grows.

Equation (4) provides a relationship, R0 = 1 + r DI, between R0 and quan-
tities that can typically be measured (the initial growth rate of the epidemic and
the average duration of infection), and as a result has provided one of the most
straightforward ways to estimate R0.
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3 More Complex Compartmental Models

The SIR model of Section 2 employs a very simple, but quite unrealistic, descrip-
tion of the time course of infection. The infectious period is assumed to start
immediately upon infection, and the constant recovery rate corresponds to infec-
tious periods being exponentially distributed across the population. In reality, there
is a delay—the latent period—between acquisition of infection and the start of
infectiousness: an individual typically receives a small dose of an infectious agent
and several rounds of replication have to occur within the infected person before
they become infectious. The exponential distribution has a much larger variance
than infectious period distributions observed in the real world: it predicts that
a large number of individuals recover very soon after infection and that a size-
able number of individuals have infectious periods that are much longer than the
average. In reality, infectious periods are much more closely centered about their
mean [2, 4].

3.1 Inclusion of Latency

A latent period can easily be incorporated within the compartmental framework with
the addition of an exposed class (E) of infected but not yet infectious individuals.
Assuming that movement between the E and I classes occurs at a constant per-capita
rate of σ , we get the standard SEIR model

dS/dt = −βSI/N (5)

dE/dt = βSI/N − σ E (6)

dI/dt = σ E − γ I. (7)

The latent period here is exponentially distributed with average duration 1/σ .
Throughout this chapter, we shall refer to the average duration of latency as DE.
The inclusion of the exposed class does not affect the algebraic expression for the
basic reproductive number: we again have R0 = βDI = β/γ .

The initial behavior of an outbreak can be well described by a linear model,
consisting of Equations (6) and (7) with the transmission term being replaced by β I .
Provided that R0 is greater than one, and following an initial transient, prevalence
increases exponentially at rate r given by the dominant eigenvalue, the value of
which is the larger of the roots of the quadratic

r2 + (σ + γ )r − σγ (R0 − 1) = 0. (8)

Provided that both the average durations of latency and infectiousness are known,
Equation (8) can be rearranged to give R0 in terms of the initial growth rate, giving
R0 = (1+r DE)(1+r DI) [19, 25]. As for the SIR model, the incidence of infection
will also grow at this rate.
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Intuitively, it is clear that latency will decrease the initial growth rate of an out-
break: latency delays the start of an individual’s infectious period, making their
secondary infections occur later than they would if infectiousness were to begin
immediately. This can be confirmed mathematically by comparing the roots of
Equations (4) and (8). The constant coefficient of the quadratic in Equation (8) is
equal to the product of its roots, and, because R0 is greater than one, its value is
negative. The quadratic therefore has one negative and one positive root. The value
of the quadratic is negative when r = 0 and positive when r = γ (R0 − 1) and so its
positive root lies in the interval (0, γ (R0 − 1)). The growth rate for the SEIR model
is lower than it was for the SIR model.

This effect is illustrated in Fig. 1, where the prevalence of infection seen in an
SIR model outbreak (solid curve) is compared to that seen in the corresponding
SEIR model (dotted curve). In both cases, the average infectious period is 5 days and
R0 is 5, and for the SEIR model there is a two day average duration of latency. At
the initial time the entire population of one million people is taken to be susceptible
except for a single infective individual. The latent period has a dramatic effect on
the initial growth, and indeed on the entire timecourse, of the outbreak. (We remark
that the non-exponential change in prevalence seen at the start of the outbreak in the
SEIR model is the transient behavior mentioned above and arises from the second,
negative, value for r in Equation 8).
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Fig. 1 Impact of latency on a disease outbreak, comparing SIR and SEIR models. Solid curve:
no latent period (SIR model). Dotted curve: exponentially-distributed latent period (SEIR model).
The inset (plotted on log-linear axes) focuses on the initial behavior of the two outbreaks, when
the epidemics are well-described by linear models, and shows the slower initial growth rate of the
SEIR outbreak. The average infectious period is taken to be DI = 5 days, R0 is 5, and, for the
SEIR model, the latent period has an average duration of DE = 2 days. At the initial time, the
entire population of N = 106 is susceptible to the infection, except for one individual who is taken
to have just become infectious
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3.2 More General Compartmental Models: Gamma
Distributed Latent and Infectious Periods

An individual’s chance of recovery is not constant over time: typically, the recov-
ery rate increases over time. In terms of a mathematical model, this leads to the
complication that the times at which different individuals became infected must be
tracked. In contrast, the constant rate assumptions of the SIR and SEIR models
are mathematically convenient as their rates of recovery and loss of latency can be
written just in terms of the current numbers of infectives and exposeds.

A mathematical trick [1, 10, 17] allows the inclusion of non-exponential distri-
butions within the compartmental framework. The infective class can be subdivided
into n stages, arranged in series. Newly infected individuals enter the first infec-
tive stage, pass through each in turn, and recover upon leaving the nth stage. It is
assumed that progression between stages occurs at constant per-capita rate, leading
to an exponential waiting time in each stage and allowing movement between stages
to be described by a linear system of differential equations. The stage approach
allows the modeler to retain the convenience of the differential equation approach,
albeit at the cost of an increased number of state variables and hence dimensionality
of the model.

In the simplest setting, the average waiting time (or equivalently the departure
rate) in each stage is assumed to be equal: the overall infectious period is then
described by the sum of n independent exponential distributions, i.e. infectious
periods are gamma distributed [10, 17] with shape parameter n, as illustrated in
Fig. 2. To allow comparison between models with different numbers of stages, the
average duration of infectiousness is often held fixed, meaning that the departure
rate is equal to nγ for each stage. In a similar way, a non-exponential latent period
can be described by the use of m exposed stages. A general form of the SEIR model,
which we dub the SEmInR model, is then given by

dS/dt = −βSI/N (9)

dE1/dt = βSI/N − mσ E1 (10)

dE2/dt = mσ E1 − mσ E2 (11)
...

dEm/dt = mσ Em−1 − mσ Em (12)

dI1/dt = mσ Em − nγ I1 (13)

dI2/dt = nγ I1 − nγ I2 (14)
...

dIn/dt = nγ In−1 − nγ In. (15)

Here I = I1 + I2 + · · · + In is the total number of infectives. We remark that
the SEmInR model has just two extra parameters compared to the SEIR model, and
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Fig. 2 Gamma distributed infectious periods. The graph illustrates the probability density function
(pdf) of gamma distributions with n = 1 (dotted curve), n = 2 (dot-dashed curve), n = 5 (dashed
curve) or n = 50 (solid curve) stages. In each case, the average duration of infection DI is two
days. The variances of the gamma distributions are given by DI

2/n. As discussed in the text, for
large n, the gamma distribution approaches a normal distribution: for comparison, the curve with
circles depicts a normal distribution with mean and variance equal to those of the n = 50 gamma
distribution

that if n = m = 1, the model reduces to the standard SEIR model. If either m
or n is large, then, by the Central Limit Theorem, the relevant gamma distribution
becomes approximately normal (see Fig. 2). In the limit m → ∞ or n → ∞, either
the exposed or infectious period distribution becomes of fixed duration.

More general distributions can be described using variations of the stage device,
for instance by having unequal movement rates or more complicated arrangements
of stages, such as stages in parallel as well as in series. Furthermore, the infec-
tiousness of different stages can be allowed to vary, giving a transmission term of
the form Σiβi S Ii/N . In some instances, the stages are identified with biologically-
defined different stages of an infection, as, for example, in the case of a number
of models for HIV [23]. But we emphasize that, in general, the stages are a
mathematical device and need not have any biological interpretation.

Linearization of the model (9)–(15) gives the growth rate (of both prevalence and
incidence) as the dominant root of the equation

γ R0

{
1 −
(

1 + r DI

n

)−n
}

= r

(
1 + r DE

m

)m

. (16)

This equation is equivalent to Equation (9) of Anderson and Watson [1], but
Lloyd [21] employed this version in which $R 0$ appears explicitly. Here R0 is
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again equal to βDI = β/γ . We remark that in the limit of m approaching infinity,
the term (1 + r DE/m)m approaches exp(r DE), and as n approaches infinity, the
term (1 + r DI/n)−n approaches exp(−r DI). Fixed duration latent and/or infectious
periods lead to the appearance of exponential terms and a transcendental equation
for r in terms of R0.

Decreasing the variance of the latent period distribution, i.e., increasing m while
keeping σ constant, reduces the initial growth rate. This effect can be seen in Fig. 3a,
comparing the initial growth of the SEIR model (solid curve) to those seen in the
corresponding SE5IR and SE50IR models (dotted and dashed curves, respectively).
The impact of adding extra stages decreases as the value of m increases: a larger
change is seen in the growth rate when m is changed from 1 to 5 than is seen when
m is increased from 5 to 50.

Reduction in the variance of the infectious period distribution, i.e. increasing
n while keeping γ fixed increases the initial growth rate of an outbreak (Fig. 3b).

4 A General Formulation

The stage approach provides a simple way to incorporate gamma-distributed waiting
times within the compartmental framework. More general descriptions of the time-
course of infection can be accounted for using a number of different approaches,
including partial differential equations, delay differential equations, integral equa-
tions and integro-differential equations [5–7, 11, 14–16, 18]. As an example, the
following integro-differential equation can be used to describe the number of
susceptibles

d S

dt
= −δ(t) − S(t)

N

∫ ∞

0

(
−d S

dt

) ∣∣∣
(t−τ )

A(τ ) dτ. (17)

Here A(τ ) is the infectivity kernel, i.e., the expected infectiousness of an individual
τ time units after infection. (In an entirely susceptible population, this would be the
rate at which such an individual gives rise to secondary infections.) The delta func-
tion depicts the infection of a single individual at the initial time. The integral that
appears in this equation depicts the force of infection experienced by susceptibles
at time t , while the incidence of infection, which we shall write as X (t), is equal to
−d S/dt . Notice that, as with all the models we consider in this chapter, we ignore
replenishment of the susceptible population.

A number of variants of this formulation appear in the literature. In some
instances, the contact rate, c, appears explicitly in Equation (17), with the infec-
tivity kernel being written as cA(τ ). Several authors write the infectivity kernel as
the product A(τ ) = A(τ )β(τ ), where A(τ ) is the probability that an individual is
infectious at time τ and β(τ ) is the expected infectiousness of an individual who
is infectious at that time. In this formulation, if the duration of the latent period is
given by the random variable TE and the duration of the infectious period by the
random variable TI , then A(τ ) = Pr(TE ≤ τ < TE + TI ).
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Fig. 3 Impact of distributional assumptions on epidemic behavior seen in SIR and SEIR-type
models. Panel (a) shows the impact of the latent period distribution in SEIR-type models. In each
case the infectious period is exponentially distributed. Solid curve: exponentially-distributed latent
period (SEIR model). Dotted and dashed curves: gamma-distributed latent period, with m = 5 and
m = 50 exposed stages (SE5IR and SE50IR models), respectively. Panel (b) depicts the effect of
various descriptions of the infectious period in SIR-type models (no latent period). Solid curve:
exponentially distributed infectious period (SIR model). Dotted curve: gamma-distributed infec-
tious period with n = 2 stages. Dot-dashed curve: gamma-distributed infectious period with n = 5
stages. Dashed curve: gamma-distributed infectious period with n = 50 stages. For both panels
(a) and (b), the average infectious period DI is taken to be 5 days, R0 is 5, and, where relevant, the
latent period has an average duration of DE = 2 days. At the initial time, the entire population of
N = 106 is susceptible to the infection, except for one individual who is taken to have just become
infectious. The insets focus on the early behavior, including the phase when the behavior can be
well approximated by a linear model

The compartmental models described in previous sections can be recast in terms
of an infectivity kernel. For the SIR model, the constant level of infectivity over an
exponentially distributed infectious period of average duration 1/γ gives

A(τ ) = βe−γ τ , (18)
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and for the corresponding SEIR model, with average duration of latency DE equal
to 1/σ , we have

A(τ ) =
{

β
σ

γ − σ

(
e−στ − e−γ τ

)
if σ �= γ

βγ τe−γ τ if σ = γ.
(19)

The basic reproductive number for this model is given by

R0 =
∫ ∞

0
A(τ ) dτ. (20)

During the early stages of an outbreak, S(t) ≈ N , and use of the approximation
S(t) = N gives the following linear integral equation for the incidence

X (t) = δ(t) +
∫ ∞

0
X (t − τ )A(τ ) dτ. (21)

Substitution of an exponentially growing form for the incidence, X (t) = X (0)ert ,
for t ≥ 0 gives the equation

1 =
∫ ∞

0
e−rτA(τ ) dτ, (22)

which can be solved for the rate r at which incidence grows. This equation is the
familiar Euler-Lotka formula from demographic theory [see, for example, 30].

The integral that appears in Equation (22) is the Laplace transform of the infec-
tivity kernel. Yan [34] derived a relationship between R0 and r for a general class of
infectivity kernels for which the random variables describing the latent and infec-
tious periods, TE and TI , are independent and under the assumption that secondary
infections arise at constant rate β over the duration of the infectious period. Assum-
ing that the Laplace transforms of the distributions of both TE and TI exist, and
writing them as LE (r ) and LI (r ), Yan obtained the following general result

R0 = DI

LE (r )L∗
I (r )

. (23)

Here, L∗
I (r ) = (1 − LI (r ))/r .

All of the relationships between R0 and r obtained from compartmental models
in the earlier sections of this chapter can be obtained as special cases of this result.
In particular, the earlier Equation (16) can be seen as a special case of Yan’s general
result and holds for general gamma distributed latent and infectious periods (i.e.,
with any positive shape parameters—not just integers).
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5 Comparing R0 Estimates Obtained Using Different Models

The relationships between R0 and r described in previous sections, obtained from
a number of SIR and SEIR-type models, are collected together in Table 1. It is
immediately clear that use of the SIR-based formula provides a lower estimate of
R0 than would be obtained using the SEIR-based formula [21, 25, 33]. Ignoring an
infection’s latent period leads to underestimates of R0, with the underestimate being
more serious for faster growth rates or longer durations of latency (e.g., compare
Tables 2, 3 and 4).

The origin of the underestimate is clear from the analysis and simulations pre-
sented earlier: given the same values for the transmission parameter and the average

Table 1 Relationships between the initial growth rate r and the basic reproductive number R0

obtained from various models

Model Formula

SIR R0 = 1 + r DI

SInR R0 = r DI
1 − (1 + r DI/n)−n

SI∞R R0 = r DI

1 − e−r DI

SEIR R0 = (1 + r DI) (1 + r DE)

SEI∞R R0 = r DI(1 + r DE)
1 − e−r DI

SEm IR R0 = (1 + r DI) (1 + r DE/m)m

SEm InR R0 = r DI (1 + r DE/m)m

1 − (1 + r DI/n)−n

SE∞IR R0 = (1 + r DI) er DE

SE∞I∞R R0 = r DIe
r DE

1 − e−r DI

Table 2 R0 and pc estimates obtained using various models when r = 0.04 day−1, DE = 3 days
and DI = 8 days. These parameters were chosen to be similar to those employed in [8] to describe
SARS

Model R0 estimate Control fraction pc

SIR 1.32 0.242
SI5R 1.20 0.167
SI∞R 1.17 0.144
SEIR 1.48 0.324
SEI∞R 1.31 0.236
SE5IR 1.49 0.327
SE5I5R 1.35 0.260
SE∞IR 1.49 0.328
SE∞I∞R 1.32 0.241
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Table 3 Impact of faster growth rate on R0 estimates. Here, r = 0.12 day−1, while DE = 3 days
and DI = 8 days take the same values as in the previous table

Model R0 estimate Control fraction pc

SIR 1.96 0.490
SI5R 1.64 0.391
SI∞R 1.56 0.357
SEIR 2.67 0.625
SEI∞R 2.12 0.527
SE5IR 2.77 0.640
SE5I5R 2.33 0.570
SE∞IR 2.81 0.644
SE∞I∞R 2.23 0.552

duration of infectiousness, the SEIR model would predict a lower growth rate than
the corresponding SIR model. Consequently, in order to achieve the same growth
rate in this forward problem setting, a higher transmission parameter, and hence R0,
must be used in the SEIR model than in the corresponding SIR model.

Larger estimates of the basic reproductive number are obtained when non-
exponential descriptions of the latent period distribution are used. Because the
function (1 + a/x)x is monotonic increasing for a > 0, increasing the number of
latent stages m (i.e., reducing the variance of the latent period distribution) increases
the estimate [21, 27, 33, 34], with the estimate that employs a fixed duration of
latency (i.e., m → ∞) providing an upper bound. On the other hand, lower estimates
of the basic reproductive number are obtained when the number of infectious stages
n is increased [21, 27, 33, 34], with the estimate obtained using a fixed duration of
infectiousness (i.e., n → ∞) being a lower bound.

Because estimates of R0 are often used to determine the severity of measures
needed to bring an outbreak under control, assumptions made about the timecourse
of infection can have important public health consequences [21, 33]. If the aim of
control is to bring the basic reproductive number below one, the transmissibility
of the infection must be reduced by a factor of pc = 1 − 1/R0. Here, we call pc

the control fraction. (In the context of mass vaccination, pc is called the critical

Table 4 Impact of longer average duration of latency on R0 estimates. Here, DE = 5 days, while
r = 0.12 day−1 and DI = 8 days, as in the previous table

Model R0 estimate Control fraction pc

SIR 1.96 0.490
SInR 1.64 0.391
SI∞R 1.56 0.357
SEIR 3.14 0.681
SEI∞R 2.49 0.598
SEm IR 3.45 0.710
SEm InR 2.89 0.655
SE∞IR 3.57 0.720
SE∞I∞R 2.83 0.647
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vaccination fraction.) As we have seen, use of SIR models underestimates the basic
reproductive number and hence leads to lower estimates of pc compared to those
obtained using SEIR models. This could be a serious problem as it leads to an
overly optimistic prediction of the strength of control needed to curtail an outbreak:
a control measure that, on the basis of the incorrect model, is predicted to succeed
could, instead, be doomed to failure [21].

We first illustrate these results by providing a few examples using a growth rate
and durations of latency and infectiousness based roughly on a SARS modeling
study of Chowell et al. [8]. (The study of Chowell et al. accounted for treatment
and isolation, using a more complex model than those employed here, so direct
comparisons cannot be made.) Table 2 shows estimates obtained for an observed
growth rate of 0.04 per day, assuming a three day average duration of latency and an
eight day average duration of infectiousness. We imagine that details of how latent
and infectious periods are distributed about their means are unknown, and so present
estimates based on a number of models. This provides an indication of the degree
of uncertainty that arises from incomplete knowledge of these distributions. (Here
we ignore the additional complication that the estimate of r would also have some
uncertainty.) For this example, comparing the SIR and SEIR-based estimates, we
see that ignoring the latent period leads to R0 being underestimated by about 10%.
This translates into a 25% underestimate of the control fraction.

Interestingly, for this set of parameters, the distribution of the latent period (pro-
vided that one is used in the first place) has little impact on the estimates, while
the infectious period distribution has a more noticeable effect. In this case the latter
effect is sufficiently large to offset the differences introduced by ignoring a latent
period: the estimates obtained using the SIR and the SE∞I∞R models are almost
identical.

For a more rapidly growing outbreak, in which r = 0.12 day−1 is three times
larger than its previous value, the SIR model underestimates R0 by a larger amount,
roughly 25%, compared to the SEIR estimate (Table 3). This corresponds to a 22%
underestimate of the control fraction. We remark that while this underestimate is
slightly smaller in percentage terms than that seen under the previous set of param-
eters, it is larger in absolute terms. Also, given that the required level of control is
higher, the increase in effectiveness needed to go from the SIR-based estimate of pc

to the SEIR-based estimate may be much more difficult to achieve. For this set of
parameters, the form of the latent period distribution has a more noticeable impact.

If the infection is both more rapidly growing and has a longer duration of latency
the underestimate of R0 is more severe. In the example of Table 4, in which the
average duration of latency has been raised from 3 to 5 days, use of the SIR model
underestimates R0 by roughly 38% of the SEIR-based estimate. The two estimates
of the control fraction are 0.490 (SIR) and 0.681 (SEIR).

Figure 4 shows how estimates of R0 obtained using the SEmInR model depend
in turn on each of the quantities DE, DI, m, n and r for a situation corresponding to
Table 4. We take DE = 5 days, DI = 8 days, r = 0.12 day −1, m = 5 and n = 5
as a baseline, and vary just one of these at a time. As discussed above, the estimate
of R0 increases with m, DE, DI and r , but decreases with n. We also see that the
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Fig. 4 Sensitivity of the R0 estimate to variations in single parameter values or the initial growth
rate. One of five quantities is varied in turn: Panel (a) DE (solid curve) or DI (dashed curve); Panel
(b) m (solid curve) or n (dashed curve); Panel (c) r . The four other values are taken from the
baseline set of DE = 5 days, DI = 8 days, m = 5, n = 5, and r = 0.12 day −1

sensitivity of the estimate varies with these parameters, for instance, the R0 estimate
is less sensitive to m for larger values of m.

A dramatic example of the potential for the underestimation of R0 was provided
by Nowak et al. [25] in a within-host setting that can be modeled using virus dynam-
ics models that are directly analogous to the epidemiological models considered
here. The initial growth rate of simian immunodeficiency virus (SIV) in one par-
ticular animal in an experimental infection study was found to be 2.2 day−1 and
the average duration of infectiousness (of SIV infected cells) was 1.35 days. Use
of the SIR model gave an estimate of R0 = 4.0, the SEIR model, assuming a one
day latent period (i.e., the delay between a cell becoming infected and becoming
infectious), gave R0 = 13, while the SE∞IR model gave R0 = 36. We remark on the
large impact of the distribution of the latent period in this instance. In terms of con-
trol fractions, the three models predict values of 0.75 (SIR), 0.92 (SEIR) and 0.97
(SE∞IR). While there may be hope in achieving a 75% reduction in transmissibility,
a 92 or 97% reduction would be much harder to achieve. In this case, use of the SIR
model gives a wildly optimistic picture of the effectiveness required of a control
measure.
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If the latent period in this within-host example was instead assumed to be 0.5
days, the effect would be reduced, with the SEIR and SE∞IR-based estimates of
R0 falling to 8.3 and 12, respectively. These values are still considerably larger than
the SIR-based estimate of 4.0, and the estimate is still highly sensitive to the distri-
bution of the latent period. The corresponding control fractions are 0.88 and 0.92,
respectively.

6 Sensitivity Analysis

The numerical examples presented above give an idea of the dependency of R0

estimates on parameter values in particular settings, but a more systematic explo-
ration can be achieved using sensitivity analysis. It is straightforward to calculate
the partial derivatives of the estimated value of R0 as provided by the SEmInR model
(i.e., using Equation 16) with respect to the parameters DE, DI, m, n, and the initial
growth rate r . The elasticity Ex , which approximates the fractional change in the R0

estimate that results from a unit fractional change in parameter x (while keeping all
other parameters constant), is given by Ex = (x/R0) · ∂ R0/∂x . The elasticities for
the quantities of interest are

EDE = r DE

1 + r DE/m
(24)

EDI = 1 − r DI

(1 + r DI/n)
(
(1 + r DI/n)n − 1

) (25)

Em = m ln

(
1 + r DE

m

)
− r DE

1 + r DE/m
(26)

En = 1

(1 + r DI/n)n − 1

(
−n ln (1 + r DI/n) + r DI

1 + r DI/n

)
(27)

Er = 1 + r DE

1 + r DE/m
− r DI

(1 + r DI/n)
(
(1 + r DI/n)n − 1

) . (28)

We remark that if the curves that appear in Fig. 4 were replotted on log-log axes,
these elasticities would describe the slopes of these new graphs.

The signs of the elasticities confirm the earlier discussion of how the estimate
of R0 varies as parameter values are changed. Clearly EDE is positive, meaning
that increases in DE lead to larger estimates of R0. EDI is also seen to be positive,
since the second term in Equation (25) is smaller than one for positive values of
the parameters r , DI and n: increases in DI again lead to larger estimates of R0.
Em is seen to be positive when m, r and DE are positive because the function
m ln(1 + x/m) − x/(1 + x/m) is monotonic increasing in x and takes the value 0
when x equals zero. A similar argument shows that En is negative. Finally, Er equals
the sum of EDE and EDI and so is positive, and is greater than either EDE or EDI .
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A little algebra shows that EDE is an increasing function of r , DE or m, i.e., the
elasticity of the R0 estimate with respect to DE increases with these parameters. EDI

is an increasing function of r or DI, but parameter sets can be found for which it is
non-monotonic as n changes. Em increases with r or DE, but can be non-monotonic
as m changes. En can be non-monotonic as r or DI changes. As before, Er inherits
the properties of EDE and EDI , and so increases with DE, DI, m or r , but need not
be a monotonic function of n.

For the parameters of Table 2 and when m = n = 1 we find that the elasticities
are given by EDE = 0.107, EDI = 0.242, Em = 0.006, En = −0.110, and Er =
0.350. If, instead, we take m = n = 5 the elasticities are EDE = 0.117, EDI =
0.173, Em = 0.001, En = −0.026, and Er = 0.290. In both cases, the R0 estimate
is more sensitive to changes in DI than to changes in DE, and here we see that
sensitivities to m and n are of smaller magnitude for larger values of m and n, while
the sensitivity to DE increases with increasing m and the sensitivity to DI decreases
with increasing n.

Whether the estimate is more sensitive to changes in DE or DI (or to m or n)
depends on the values of the parameters. For example, if the parameters of Table
4 are taken, and m = n = 1 is assumed, the elasticities are EDE = 0.375, EDI =
0.490, Em = 0.095, En = −0.191, and Er = 0.865. If, instead, we assumed m =
n = 5, the estimate of R0 would be more sensitive to DE than to DI (EDE = 0.536
and EDI = 0.427), and if we took m = 1 and n = 5, the estimate would be more
sensitive to m than to n (Em = 0.095 and En = −0.052).

One important question that the elasticities discussed in this section do not
address is the impact of neglecting the latent period entirely. Having said this, they
are useful in understanding how uncertainties in the average duration of the latent or
infectious period, the dispersions of these distributions, as described by m or n, or
the initial growth rate impact the estimation of R0 in the SEmInR model framework.

7 Discussion

The importance of non-exponential infectious periods and time-varying infectious-
ness has long been appreciated for chronic infections, such as HIV, for which a
constant recovery rate assumption is clearly untenable [5–7, 16, 23, 24]. Even in
the setting of models of acute infections, there is a surprisingly long history of the
use of more complex models: Kermack and McKendrick’s groundbreaking paper
of 1927 [18] contains an integral equation formulation along the lines of Equation
(17), and Bailey [3] used the stage approach and the resulting SEmInR model. The
importance of distributional assumptions has typically been viewed in terms of their
impact on the behavior of a model for a given set of parameters (i.e., the forward
problem): effects such as the slower growth of epidemics for infections with latency
have long been appreciated.

The impact of distributional assumptions on the inverse problem, (i.e., the esti-
mation of parameters given the observed behavior), however, appears to have only
recently become fully appreciated. Nowak et al. [25] showed that the SIR-based
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estimates of the within-host basic reproductive number of SIV (simian immunod-
eficiency virus) severely underestimated R0 when compared to estimates obtained
using more realistic SEIR models. Little et al. [20] carried out a similar analysis in
the setting of HIV infection. Much of the theory and results discussed in this chap-
ter were laid out by Lloyd [21], in the setting of within-host infections, although,
because of the obvious correspondence between within-host and between-host mod-
els, the application to estimation in the epidemiological setting was highlighted [see
also the discussion of 22]. Wearing et al. [33] further illustrated these results in
an epidemiological setting, and broadened consideration to include estimation of
R0 based on data from the entire outbreak, as discussed below. A complementary
approach was taken by Wallinga and Lipsitch [31] and Roberts and Heesterbeek
[27], who examined the relationship between R0 and r in terms of the generation
interval of the infection (i.e., the time between an individual becoming infected and
the secondary infections that they cause). Both of these studies considered gamma
distributed latent and infectious periods, including the exponential and fixed dura-
tion cases, giving equivalent results to those discussed here. Additional families
of distributions were also considered, including trapezoidal infectivity kernels [27]
and normally distributed generation intervals [31]. Yan [34] provided a comprehen-
sive analysis that encompassed and unified most of these earlier studies, deriving
general results in terms of Laplace transforms of the latent and infectious period
distributions.

The results presented here demonstrate that estimates of the basic reproductive
number obtained from the initial growth rate of a disease outbreak can be sensitive
to the details of the timing of secondary infection events (i.e., to the distribution
of infectious and latent periods). Such details, while clearly important, are often
difficult to obtain. Data that identifies when an individual was exposed to infection
and when their secondary transmissions occurred, such as family-based transmis-
sion studies or contact tracing data—even if incomplete—can be highly informative
in this regard [2, 4, 12, 13]. It is important to realize that models are often framed in
terms of transmission status, e.g. whether an individual is infectious, while data may
reflect disease status, e.g. whether an individual is symptomatic or not. This distinc-
tion is important in the interpretation of the most commonly available distributional
data, namely the incubation period distribution [28], because the incubation period
of an infection may not, and often does not, correspond to its latent period [see, for
example, 29].

In this chapter we only considered the estimation of R0 from initial growth data,
but similar results are obtained if models are instead fitted to data obtained over the
entirety of an outbreak [33]. This makes sense given the observation that distribu-
tional assumptions affect not only the initial growth rate but the whole time course
of an outbreak in the forward problem (see Figs. 1 and 3). Whole-outbreak data is
considerably more informative than initial growth data, for instance Wearing et al.
[33] used a least-squares approach to estimate β, DE and DI as well as the shape
parameters m and n of the gamma distributions describing latency and infectious-
ness. Initial growth rate data, on the other hand, does not even allow β and γ to
be independently estimated. Capaldi et al. (manuscript in preparation) examine the
types of data that allow for the estimation of different parameters in more detail.
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Wearing et al. [33] also make the important observation that different estimates of
R0 can, in some instances, be obtained if initial data is used rather than data from an
entire outbreak [see also 9].

If detailed information on the distribution of latent and infectious periods is
absent, caution should be taken in basing an estimate of R0 by fitting a single
model. The use of a number of models can provide bounds on the estimate, giving
an indication of the uncertainty arising from our incomplete knowledge of the trans-
mission process. Any model-based uncertainty is in addition to that which arises
from noise in the data—an issue that we have not discussed in this chapter—and
so the most informative uncertainty estimate would account for both sources of
error. (Sensitivity calculations, such as those discussed above, can be informative
in this regard.) In some instances, however, model-based uncertainty may place
a much greater limit on our ability to estimate parameters. As in the within-host
example of Nowak et al. [25], this uncertainty can be so large as to render the esti-
mates almost uninformative—but at least the deficiency is exposed by the approach
advocated here.
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An Ensemble Trajectory Method
for Real-Time Modeling and Prediction of
Unfolding Epidemics: Analysis of the 2005
Marburg Fever Outbreak in Angola

Luı́s M. A. Bettencourt

Abstract We propose a new methodology for the modeling and real time prediction
of the course of unfolding epidemic outbreaks. The method posits a class of standard
epidemic models and explores uncertainty in empirical data to set up a family of
possible outbreak trajectories that span the probability distribution of models param-
eters and initial conditions. A genetic algorithm is used to estimate likely trajectories
consistent with the data and reconstruct the probability distribution of model param-
eters. In this way the ensemble of trajectories allows for temporal extrapolation to
produce estimates of future cases and deaths, with quantified levels of uncertainty.
We apply this methodology to an outbreak of Marburg hemorrhagic fever in Angola
during 2005 in order to estimate disease epidemiological parameters and assess the
effects of interventions. Data for cases and deaths was compiled from World Health
Organization as the epidemic unfolded. We describe the outbreak through a standard
epidemic model used in the past for Ebola, a closely related viral pathogen. The
application of our method allows us to make quantitative prognostics as the outbreak
unfolds for the expected time to the end of the epidemic and final numbers of cases
and fatalities, which were eventually confirmed. We provided a real time analysis of
the effects of intervention and possible under reporting and place bounds on popula-
tion movements necessary to guarantee that the epidemic did not regain momentum.

Keywords Epidemic models · Real time estimation · Marburg-like viruses ·
Measurements epidemiologic · Projections and predictions

1 Introduction

Over the last few years mathematical epidemiology [1, 4] has taken an increasing
interest in the quantitative study and prediction of unfolding epidemic outbreaks
[2, 3, 5, 6, 21]. This is both motivated by the spectacular progress in information
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technologies, which allow for the spread of epidemiological information worldwide
in real time, but also to the increased monitoring of emerging infectious diseases
[9, 12, 14, 22, 24–26] such as H5N1 influenza, as well as of potentially engineered
biological threats [10].

The well-established tools of mathematical epidemiology built primarily for a
posteriori analysis of outbreaks [1, 4] are however in several respects inadequate to
measure and predict the course of unfolding epidemics. The main challenge arises
from the necessary confrontation of model predictions to future data, which must be
probabilistic.

Standard epidemic models, such as SIR or SEIR [1, 4], are deterministic and
make a prediction for the average number of cases or deaths incurred during an
outbreak. It is expected that data for large outbreaks is representative of that mean
and a trajectory that fits well these data in terms of a goodness of fit measure
is well accepted as the canonical procedure to estimate average epidemiological
parameters.

The situation is murkier when outbreaks are small or, more to the point, when
predictions from the models are to be confronted with new observations. Then the
probabilistic nature of contagion becomes manifest in that no number of actual cases
or deaths will usually match the predicted mean value. Thus to assess whether a
model is representative of the epidemic under way it is necessary to add to this
type of prediction a measure of quantified uncertainty [2, 3], e.g. in the form of a
confidence interval. At that level of confidence we can then reject a model if future
predictions fall outside the predicted interval (through a simple p-test), or otherwise
accept the model as predictive.

This article introduces a methodology to do just this. It starts from the standard
mean field models of epidemics and takes them, as specified by their initial condi-
tions and parameter values, which we collectively denote Γ, as a possible trajectory
of the outbreak. Many such trajectories are proposed via a stochastic update rule
(a variant genetic algorithm) and weighted in terms of their agreement with the
data at a prescribed level of uncertainty. This allows us in turn to reconstruct a
probability distribution on Γ and estimate epidemiological parameters and any of
their correlations with quantified uncertainty.

The remaining of this paper introduces the mathematical ensemble trajectory
method and the associated estimation procedure, and then proceeds to apply it to an
outbreak of a poorly known disease: Marburg hemorrhagic fever in 2005 in Angola,
for which it was developed. The method made early accurate predictions of the final
toll of the epidemic and its termination time and revealed erroneous trends in late
reporting.

2 Uncertainty Quantification and Model Parameter Estimation

In this section we give a general description of the stochastic parameter estima-
tion procedure. We start from the observation that simple (homogeneous mixing)
population models, cannot be expected to give perfect descriptions of any actual
data set. This always results in a minimum level of discrepancy between the best
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model output and the data. We parameterize this discrepancy by the absolute value
deviation between the best model prediction and each data point, per point. This is
called the least deviation per datum (ldpd)

ldpp(Γ) = 1

NX NO

NX∑
i=1

NO∑
j=1

∣∣X M
i (t j ) − X O

i (t j )
∣∣ (A1)

where Xi
M(tj) is the ith state variable (e.g. deaths D, or number of cases C, see

below), as an output of the model (a function of a parameter set Γ) at observation
time tj. NX is the number of variables constrained by data and NO is the number of
observation points.

This measure allows us to discuss and compare how good models are at describ-
ing a specific data set, i.e. their goodness of fit. Secondly, we expect in general that
data contain errors, e.g. due to under reporting, false positives, accounting errors,
etc. An allowable level of uncertainty in the data will then translate into an ensemble
of acceptable model of solutions or trajectories, which correspond in turn to a set
of initial conditions and model parameters, which we write {Γ}. Each Γ in this set
can then be weighted by their goodness of fit in a way that generates an estimate
of the probability distribution function for the ensemble of model parameters that is
compatible with the data. As a whole this is a stochastic optimization problem (see,
e.g. [19] for a general discussion). Based on this idea we perform an estimation of
the joint parameter distribution of model parameters P(Γ), conditional on a set of
allowable deviations per datum.

To be more specific we write that the unknown exact data point XE(tj), can be
expressed in terms of the observed datum XO(tj) and an error ξ(tj) as

X E (t j ) = X O (t j ) + ξ (t j ). (1)

The error ξ(tj) is only known statistically so that in order to proceed we need to
specify a model for ξ. Because we expect the variance of the error to be bounded
we assumed a Gaussian distribution for ξ, such that

P[ξ (t j )] = P[X E (t j ) − X O (t j )] ∝ exp

[
− ξ 2(t j )

2σ 2(t j )

]
, (2)

where the standard deviation σ(tj) parameterizes the allowed discrepancy between
model outputs and data and is to be specified through general expectations on
the data.

This expectation for the errors defines implicitly an objective function that can
be minimized to produce optimal parameter estimates through a search proce-
dure. For example, for each model realization in terms of a set of parameters in
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a SEIR model Γ=[S(t0), E(t0), I(t0), D(t0), R(t0), β,ε,γ,p] we take this function
to be

A(Γ) = 1

NX NO

NX∑
i=1

NO∑
j=1

∣∣X M
i (t j ) − X O

i (t j )
∣∣

2σ 2(t j )

2

, (3)

which is an implicit function of Γ. If the model could generate exact results we could
then make the natural association XE(tj) → XM(tj). This is usually not the case,
since a residual minimal deviation always persists, the minimum ldpd. To account
for this we normalize this function to zero by taking H(Γ) = A(Γ) – A(best Γ), i.e.
by subtracting the minimal value of A(Γ), obtained for the best parameter set.

Given this choice of H we can produce, in analogy with standard procedures
in statistical physics, a joint probability distribution for model parameters. Since we
only have expectations on A(Γ) (and not higher moments A2, A3, etc) the maximum
entropy distribution in

P[Γ|{X O
i }] ∝ e−H . (4)

We can now see how this distribution can be reconstituted from sampling many
realizations of the model in terms of different Γ. Note that the probability of each
trajectory w(Γ) is

w(Γ) = 1
Nw

e−H (Γ), Nw = T r [wS]. (5)

Then P[Γ|{X O
i }] can be estimated from many trajectories Nt as

P[Γ|{X O
i }] ∼

Nt∑
i=1

δ(Γ − Γi )w(Γi ) (6)

Figure 1 illustrates an ensemble of trajectories with variable degree of goodness of
fit; trajectories with large deviations to the data points are exponentially suppressed
in their contributions to the parameter distribution.

This joint probability distribution can then be used to compute any moment of
any set of parameters in Γ,

〈F〉 = T r
[
P[Γ
∣∣{X O

i } ]F(Γ)
]→

Ns∑
i=1

F(s)w(Γi ) (7)

including single parameter distribution functions, and cross-parameter correlations,
such as covariances, but also any higher moments. The prediction of future observa-
tions can now be obtained by convolving the model with the parameter probability
distribution estimated to that point as

P[X O
i+1] = T rΓ

[
P[X O

i+1|Γ, {X O
i }]P[Γ|{X O

i }]] , (8)
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Fig. 1 Example of SEIR trajectories with varying degrees of goodness of fit for data for an out-
break of Ebola (data courtesy of Gerardo Chowell). Green trajectories fit the data (blue squares)
well

where P[X O
i+1|Γ, {X O

i }] is the model taken for a specific trajectory specified by a
particular Γ.

In practice the estimation procedure via trajectories, each corresponding to a
parameter set, is potentially difficult because we are dealing with an inverse problem
in which, given a trial set of parameters, comparison with the data is performed
only after the non-linear model dynamical equations have been solved. Fortunately
for models that consist of small numbers of ordinary differential equations the
computational effort is relatively trivial on a modern computer.

In every case discussed below, we used an ensemble of trial solutions, from which
we select a number of best sets Γ, according to a standard Monte Carlo procedure,
weighted by Eq. (5), to generate the next generation of the ensemble. In order to
do this we introduce a mutation implemented in terms of random Gaussian noise
around the previous best parameter set. This mutation, followed by the selection
of minima, yields an effective downhill search method, capable of exploring large
regions of parameter space. It also creates as a byproduct an ensemble of good
strings with small deviations to the data. For small enough deviations from the best
string we can sample parameter space in an unbiased manner. It is this ensemble, and
its best string, that is then used to estimate Eq. (6). Results given in the manuscript
involve ensembles with several million realizations and a choice of σ, common to
all data points, corresponding the 20% of the ldpd. The standard deviation σ can be
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made to vary from point to point if more information about the quality of the datum
is available. In this sense the procedure is able to incorporate variable expectations
of uncertainty as the data are collected.

3 Real Time Analysis of Outbreak of Marburg
Fever in Angola

We now proceed to describe the application of the method to estimate in real time the
course of an outbreak of the rare Marburg hemorrhagic fever in Uige, Angola during
2005. This example posed many of the challenges that lead to the development of
the present methodology. The pathogen is rare and its epidemiological parameters
were largely unknown beyond the observation of the apparent incubation time and
time from incidence of symptoms to death in a handful of cases. The mortality was
also extremely high and took the lives of many of the medical care providers that
intervened early in this remote African region. Because the disease affected dispro-
portionally children under five the implementation of isolation control measures was
also extremely difficult, and their results uncertain at the time according to reports
by the World Health Organization and journalists on the ground. Nevertheless even
with very scant information, model predictions were accurate from one case report
to the next and detected successfully the over-counting of cases and deaths that
characterized late stage reports.

The current work uses data from WHO reports, freely available online or via
email, together with basic epidemiological modeling to generate a characterization
and outlook for the outbreak. As sparse as the data are, we hoped that our results
would help quantify the progression of the disease and assess the efficacy of inter-
vention efforts necessary to stop the epidemic. Section 3.1 gives general background
information on the disease and the anatomy of the outbreak as far as it was reported
at the time in medical journals and the general media. Section 3.2 describes the
specific model and parameter estimation procedure. Section 3.3 analyses the sce-
narios of progression for the disease, taking into account the data points and some
qualitative information in WHO reports. In this way we were able to estimate the
effect of the interventions started shortly after March 23, in lowering contact rates,
and discuss here the effects of under reporting and place bounds on population
movement restrictions, so as not to reignite the epidemic. We also estimated the
time horizon at which the spread would cease, as well as the final number of cases
and fatalities.

3.1 Brief Anatomy of the Outbreak

The 2005 outbreak of Marburg hemorrhagic fever in Angola [13, 15–18, 27] has
highlighted the direst need for fast and creative intervention in the face of the most
severe infrastructure constraints imaginable. Intervention measures, which are the
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only way to stop the progression of the disease in the absence of a cure, were met
with significant levels of noncompliance from the population. Due to the extremely
high mortality and lack of adequate preparation initially, health workers took a large
toll of the early deaths, eroding confidence in their effectiveness. Furthermore the
viral strand attacked primarily children under five, making it extremely difficult
for families to entrust them to the healthcare system under the knowledge of very
probable fatality.

Under these circumstances it was paramount to provide the best quantitative
guidance and prognosis for the outbreak in real time so that limited resources can be
allocated optimally. This is now starting to be possible, thanks to several outbreak
surveillance and news systems, provided by the World Health Organization (WHO)
[27], Pro-Med mail [15], CDC [17] and others. We used these reports to generate a
data series, analyze the outbreak, and at each time elaborate scenarios for the future
course of the outbreak. These can also be used to help gauge the effectiveness of
the current levels of intervention and establish quantitative goals for new and/or
increased measures aiming at stopping the epidemic.

The 2005 outbreak of the Marburg fever in Angola was uncommon in several
respects [13, 15, 20, 27]. It was the largest of the disease to date in a general popula-
tion, it had an extremely high case fatality rate (88%, compared with 23% and 70%
in previous smaller outbreaks) and attacked disproportionately children under five
(75% of the cases). Marburg fever symptoms in their earliest stages are non-specific.
The condition can be easily confused with other more common endemic diseases in
the region such as malaria, yellow fever and typhoid fever, an issue that lead to
biases in reporting, especially once awareness was raised after the identification of
several hundred cases and deaths. Estimates for several of the outbreak’s relevant
rates are [27], an incubation period of about 3–9 days, a time to death (2005 out-
break) of 3–7 days after onset of symptoms, and a high proportion of cases develop
hemorrhagic symptoms within 5–7 days.

The Marburg virus is a member of the family Filoviridae, which also includes
Ebola. Marburg however is much rarer. The reservoir of the disease remains unknown
(some clues point to bats or other cave dwelling animals [11, 20]). Primates can
carry the virus but also contract the disease and manifest symptoms.

Uı́ge is a tropical province in the interior North West of Angola, bordering the
Democratic Republic of Congo. The total population of the province is estimated
at about half a million people and is mostly rural. In 2005 Uı́ge’s province two
largest cities were Uı́ge, with about 170,000 people, and Negage with about 25,000
people. These cities’ hospitals serve most of the province’s population. The pop-
ulation of Angola is young (43.5% under 14) and with high fertility rate (6.33
children/woman), creating conditions for very high and effective transmission of
the Marburg virus.

Intervention efforts by the Government and the World Health Organization
started in earnest in March 23, 2005 (judging from WHO reports), a few days
after the identification of the virus by the US Centers for Disease Control, Spe-
cial Pathogens Branch [17, 27]. Significant efforts were also developed by non-
governmental organizations such as Medicins sans Frontiers (Belgium, France,
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Holland and Spain). Additional efforts by other international organizations are
described in the WHO outbreak news reports, especially that of March 29 [27].

3.2 Homogeneously Mixing SEIR Population Model

We use a simple modification of the standard SEIR epidemic model, in order to
account for the high mortality rate of the present outbreak. The model applies to
homogeneously mixing population and thus does not distinguish individuals by e.g.
age, a factor that is important in the current outbreak. The data necessary to draw
such distinctions, if it exists at all, is not available in the public domain. Because
most cases have occurred in Uı́ge, or are thought to have originated through conta-
gion incurred there, we will take the total number of cases and the total number of
fatalities as the targets for parameter estimation.

The SEIR model [1, 4] has been shown to describe well the outbreak dynamics
of the related Ebola virus [7]. Specifically our model is:

d S

dt
= −β

SI

N
,

d E

dt
= β

SI

N
− εE,

d I

dt
= εE − γ I,

d D

dt
= pγ I,

d R

dt
= (1 − p)γ I.

(9)

Here, as usual, S(t) are the number of susceptibles at time t, E(t) the number of
exposed, which naturally progress to manifest the disease as Infective I(t). D(t) is
the number of fatalities at time t, whereas R(t) is the number of recovered.

With these choices the population, summed over all classes, is fixed. The total
number of cases, tallied at time t, is the sum of the presently infected, deceased and
recovered. The incubation time is parameterized by ε−1, β is the contact rate, which
is the product of the (assumed independent) probability of a contact between an
infected and a susceptible and the effectiveness of that contact. Lowering the value
of β is the target of intervention [7]. The mean time spent in the infective class is
γ−1, after which an individual transits to the recovered class with probability (1-p)
and dies with complementary probability p.

The set of parameters Γ={S(t0), E(t0), I(t0), D(t0), R(t0), β,ε,γ,p}, i.e. the initial
conditions for each of the state variables and the dynamical parameters, is the target
of our estimation procedure, as described in Section 2.

Parameter estimations will be bound within intervals dictated by knowledge of
the outbreak [27]. These intervals are summarized in Table 1 below:

3.3 Parameter Estimation and Outbreak Prediction

We started tracking the outbreak in the beginning of April shortly after it was first
identified on March 23. Our first predictions were made on April 26. At that time
there were two possible viable scenarios for the history of the outbreak: one where
it had started soon before March 23 (which we will call the simplest scenario)
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Table 1 Model parameters and their allowed ranges (see text). Some of the ranges are not known
and absolute maxima or minima are used

Name Symbol Minimum value Maximum value

Initial Susceptibles S(t0) 10 500,000
Initial Exposed E(t0) 0 500
Initial Infective I(t0) 0 100
Initial Deceased D(t0) 0 500
Initial Recovered R(t0) 0 500
Contact rate β 0 10
Incubation time ε−1 3 days 9 days
Lifetime infective γ−1 3 days 7 days
Case mortality p 0 0.95

and another where it would have started sometime during October 2004. The lat-
ter was supported by retrospective analysis [27], and was eventually confirmed by
our estimation procedure. We proceed to tell a brief history of our prognosis as it
happened.

3.3.1 April 27: Simplest Scenario

In the simplest scenario we constrain the model by the estimated number of cases
and deaths as reported by WHO, without any other further constraints. Below we
consider the fact that the epidemic is though to have started in October 2004 as an
additional qualitative constraint. The best fit trajectories for cases and fatalities are
shown in Fig. 1, together with the data points, while parameters are displayed in
Table 2.

These estimates predict an incubation time and lifetime of the infective state to
be on the shorter end of their allowed ranges and mortality at the higher end. The
contact rate is high leading to a large basic reproductive number, which measures the
expected number of new cases caused by the introduction of an infective individual
in a population of susceptibles. Given the population conditions, the high infant
mortality due to the disease, and cultural practices of care for the ill and deceased
we believe these numbers could not be excluded.

Table 2 Estimates for model parameters corresponding to the trajectories of Figs. 1 and 2. The
initial time t0 for parameter estimation is arbitrarily taken to be March 1

Name Symbol Best fit 95% CL interval

Initial Susceptibles S(t0) 200 [190, 218]
Initial Exposed E(t0) 0.2 [0.1, 0.3]
Initial Infective I(t0) 0. [0, 1]
Initial Deceased D(t0) 87.7 [84, 90]
Initial Recovered R(t0) 0 [0, 1]
Contact rate β 1.43 [1.18, 1.56]
Incubation time ε−1 4 days [3.5, 5]
Lifetime infective γ−1 3 days [3, 4]
Mortality P 0.92 [0.91, 0.93]
Basic reproductive number R0=β/γ 4.29 [3.58, 4.69]
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Fig. 2 Estimated best trajectories for total number of cases and deaths constrained to data from
WHO surveillance reports. The least deviation per datum (ldpd) is 5.22. The curves asymptote
to about 276 total cases and 261 deceased at around May 9, 2005 (the origin is the beginning of
March)

This estimate predicted that the outbreak was then nearly over. The number of
new infected cases was dropping in time. Its final state would be reached around
May 9, with a total number of cases of 276 and 261 deaths. The upper end of the
95% confidence level intervals, shown in Fig. 2, would take these numbers up to
304 cases and 287 deaths by May 9–10. We show below that this scenario could be
rejected as more data eventually came in.

Figure 3 shows the 95% confidence level intervals for number of cases and
deaths. This is drawn from an ensemble of about 100,000 realizations of the model
that fit the data within 20% of the best fit shown in Fig. 2.

3.3.2 Estimating Effectiveness of Intervention

The effectiveness of intervention can be assessed by allowing the contact rate β to
vary in time. This strategy was used by Chowell et al. [7] to model intervention in
recent Ebola epidemic outbreaks in Uganda and the Democratic Republic of Congo.
The varying contact rate can be parametrized as [7]

β =
{

β0, t ≤ tint

β1 + (β0 − β1)e−κ(t−tint), t > tint
(10)
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Fig. 3 95% confidence level intervals estimated from fitting the model to the data within 20% of
the best fit shown in Fig. 2, for the number of cases, between red lines (left) and for number of
deaths, between blue lines (right)

where tint is the time at which intervention starts. κ is the time for the intervention
to set in and β0 and β1 are the asymptotic contact rates before and after. We chose
tint to be March 23, when WHO reported for the first time to be “supporting efforts
by the Ministry of Health in Angola to strengthen infection control in hospitals, to
intensify case detection and contact tracing, and to improve public understanding of
the disease and its modes of transmission” [27] (March 23 report).

We find a modest but significant change in contact rates from β0=1.534 ± 0.013
to β1=1.401 ± 0.010 over a period of just over 10 days. i.e. a decrease in the contact
rate of about 8.7%. This gives the best fit to the data of all scenarios with ldpd=4.51.
This change in contact rate highlights both the monumental efforts on the ground
to contain the spread of the disease and the amply reported [8, 13] resistance they
encountered, due, in large extent to the unkind characteristics of the disease.

3.3.3 Population Movements and Possible Epidemic Restart

Although the model estimated that the epidemic was then contained there can still
be population movements that escape health care intervention, so that more peo-
ple can enter the susceptible class. These effects can be monitored in real time via
the estimation of the critical number of additional susceptibles that will cause the
epidemic to regain momentum.

The simplest estimate follows from asking what number of susceptibles will
reignite the growth of infected (i.e. make dI/dt>0). From Eqs. (1) this is

S∗

N
= γ

β
(11)

For S>S∗ the number of new infections will grow. We can further write S∗ =
Snow + ΔS and similarly N=Nnow + ΔS, where Snow, Nnow are the present numbers
of susceptible and of the population participating in the epidemic (i.e. the sum of
numbers over all classes) and ΔS is the critical number of additional susceptibles.
Given best parameter estimates for the simple scenario on April 27 this resulted in
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ΔS ≈ 70 individuals, which is clearly a very small fraction of the general popula-
tion. We repeat this procedure in other scenarios below.

3.3.4 Impact of Possible Under Reporting and Parameter Estimation

In discussing the results of parameter estimation in this simplest scenario we found
that both the case fatality rate and γ appeared at the higher end of their allowed
ranges. In this section we discuss how this may be the result of case under report-
ing. Under reporting is probable given the remoteness of the region and the initial
resistance to intervention efforts amply reported in the news [8].

To estimate the effects of under reporting we assume that number of infected
reported cases I(t) is in fact a (assumed fixed) fraction λ of the real number of total
cases Itot(t), so that

I (t) → λI (t) = I tot(t), λ > 1. (12)

We also assume that the fraction of under reporting in deaths is much smaller,
so that effectively D(t) ≈ Dtot(t). We can therefore ask for the transformation
in parameters that leave the dynamics of deaths invariant under the rescaling of
infected. The equation become

d D′

dt
= p′γ ′ I ′ = p′γ ′λI = d D

dt
= pγ I ⇒ p′γ ′λ = pγ (13)

Thus, since λ > 1, this implies that the actual mortality is lower than estimated,
and/or that the lifetime of the infectious state γ−1 is longer.

If we ask e.g. that γ−1 = 5 days and that the mortality is similar to that observed
in the previous outbreak of Marburg fever in the Democratic Republic of Congo
(about 70%), we would obtain

λ = pγ

p′γ ′
∼= 2.2, (14)

suggesting that less than half of infected cases may have been reported. This was at
the time most probably an overestimate. If we allow the mortality to remain above
90% then λ ≈ 5/3 = 1.67, which still suggests a large fraction of unaccounted cases
if the simplest scenario was to hold. This transformation has also implications for
the evolution of E and S, but as these states are unconstrained by the data we shall
not discuss such features here. Whether case underreporting was an explanation of
the high estimates for p and γ or the modeling of the progression of the infective
state was too simple in this scenario, was an issue that required more data. It was
resolved by the release of the next two data points, see below.
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3.3.5 April 27: Enforcing the Start of the Epidemic in October 2004

There is evidence, based on retrospective analysis [27] (March 23 report), that
the epidemic started in October 2004. This section enforces such constraint in the
parameter estimation procedure, analyses resulting parameter ranges and uses them
to make prognoses for the development of the epidemic.

There are two caveats in performing parameter estimates under these circum-
stances. First, the start of the epidemic in October 2004 introduces a constraint, 4–5
months (158–121 days taking the beginning and end of the month as bounds) before
the first number of cases was announced. Estimating epidemic parameters under
such distant constraint is delicate and tends to lead to high sensitivity in the param-
eter search. As such it is intrinsically more difficult to guarantee a fair sampling of
all possible solutions consistent with the data, at some error level. Second, in the
very early stages of the epidemic a stochastic model is probably more appropriate
than (9), which makes a number of assumptions about a homogeneously mixing
population, and the applicability of averages to single instance data.

As such the results of the present estimation should be considered more sus-
ceptible to systematic error than those given above. With these caveats in mind we
proceed with the estimate. Results are shown in Table 3 and in Fig. 4.

The essential qualitative consequence of enforcing that the epidemic started in
October 2004 is to make the derivative in the solution for the total number of cases
be positive, if small, when the virus started being tracked on March 23. Because
the model (9) is monotonic in the total number of cases and deaths this necessarily
generates a solution with a larger positive derivative at those first few data points.
Taken at face value this constraint had two consequences: (i) it suggests that initial
reported number of cases (until about March 31) were underestimates of the real
numbers, (although the number of deaths is well fit by the model, and may thus not
have been itself underestimated) and (ii) it led to a higher estimate – relative to the
simplest scenario above – of the eventual number of cases and deaths.

Without further intervention (which was then on the way), in the absence of
population movements, or any other significant external event, the epidemic was

Table 3 Estimates for model parameters corresponding to the trajectories of Figs. 4 and 5. The
initial time is October 1, 2004. The estimated value of the basic reproductive number is roughly
similar to that computed for recent Ebola outbreaks in Uganda and the Democratic republic of
Congo [7]

Name Symbol Best fit 95% CL interval

Initial Susceptibles S(t0) 763 [760, 765]
Initial Exposed E(t0) 0 [0, 0.1]
Initial Infective I(t0) 0 [0, 1]
Initial Deceased D(t0) 0.5 [0, 1]
Initial Recovered R(t0) 0.35 [0, 1]
Contact rate β 0.54 [1.18, 1.56]
Incubation time ε−1 6.5 days [6, 7]
Lifetime infective γ−1 3 days [3, 4]
Mortality P 0.91 [0.90, 0.92]
Basic reproductive number R0 1.62 [1.60, 1.64]
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Fig. 4 Best estimated trajectories for total number of cases and deaths, under the constraint that
the outbreak started October 1, 2004, without taking into account interventions. The deviation per
datum is 11.15. The curves eventually asymptote to about 495 total cases, with 451 deceased by
the last week of July

then expected to be extinguished only by the last week of July, with a total number
of cases around 495, and 451deceased. These numbers should be taken as upper
bounds. The upper end of the 95% confidence level intervals gave 519 cases and 471
deaths, whereas the lower estimated 486 cases and 440 deaths. The epidemic would

Fig. 5 The 95% confidence level intervals estimated from fitting the model to the data within 20%
of the best fit shown in Fig. 4, for the number of cases, between red lines (left) and for number of
deaths, between blue lines (right). The last point, reported April 27, suggests that this scenario is
ruled out at 95% confidence level. This was due to interventions, see below
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then need a number greater than about 180 people becoming new susceptibles, in
the days after April 26, to regain growth in the number of new infectious.

Changing this constraint for the start of the epidemic from the first of October
2004 to the last generates similar, if slightly higher, estimates. This is the result of
forcing the solution to be steeper, as it has to rise from zero to the case numbers
reported in March over a smaller period of time. Specifically this change predicted
a final number of 502 cases with 456 deaths, again by the end of July, which again
would be the results in the absence of interventions. The 95% confidence level
intervals are [495, 529] and [446, 480] for cases and deaths, respectively.

3.3.6 May 19: Accounting for Interventions and Distinguishing
Scenarios the Beginning and End of the Outbreak

The next two data points released by the WHO in the first half of May permitted the
clear distinction between the two scenarios for the beginning of the outbreak and a
clear estimate of the impact of the intervention on the further development of the
outbreak. Only the scenario where the outbreak started in October 2004 remained
viable.

The results show that intervention – modeled by allowing β to vary according to
(10), holding other parameters to the values of Table 3 – had by then managed to
curb the growth rate of the outbreak, but not stop it altogether. The pool of suscep-
tibles was estimated not to have grown over the weeks before May 9, although a
small growth could not be completely excluded and was suggested by news reports,
see below. The mean trajectory would eventually asymptote to an expected number
of 356 total cases, with 331 deaths. This compares to the estimates (done before
April 27) for 497 cases and 452 deaths, in the absence of intervention (black lines,
Fig. 6). Intervention cut contact rates by a factor of about 40% and is estimated to
have taken effect starting April 4, 2005 and taking about 12 days to be implemented
(Fig. 7).

3.3.7 May 26: Statistical Anomalies and Over Reporting

Interestingly, as the outbreak seemed to be simmering down, the next few data
points indicated a dramatic re-start of the epidemic. Results up to May 9 showed
that intervention was curbing the growth rate of the outbreak, but had not succeeded
at stopping it altogether. The new data released by the Angolan Government and
WHO on May 26 showed a dramatic reversal of that trend. Many new cases have
been registered: 399 from 337 a week before, accompanied by a sharp increase in
the number of deaths to 355 from 311.

These numbers were statistical anomalies, lying far above the upper end of the
95% confidence for cases and deaths estimated on May 9. Thus they required a
change in qualitative events on the ground. In the context of the model these new
data points could only be accounted for in two very different scenarios. First, the
new numbers could simply be wrong, attributing cases and deaths due to other
causes to Marburg. Alternatively, the new data could indicate that a large number of
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Fig. 6 Best trajectories for total number of cases and deaths, under the constraint that the outbreak
started October 1, 2004 (day 0). The deviation per datum (a measure of goodness of fit) is 14.11.
The color lines show the average solution under the effects of intervention and compare favorably
with the trajectories estimated on April 27 (black lines), where this was not taken into account

new individuals (several hundred) had entered the susceptible population over the
preceding few weeks and that the contact rate incurred by them had also increased,
possibly up to pre-intervention levels. Clearly such a dramatic expansion of the sus-
ceptible pool should have qualitative signatures on the ground. To be true, the new
data and model estimates under this scenario suggested that the epidemic threshold

Fig. 7 95% Confidence level intervals for the number of deaths (left) and cases (right), under the
constraint that the outbreak started October 1, 2004 (day 0)
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Fig. 8 Best trajectories for total number of cases and deaths, under the constraint that the outbreak
started October 1, 2004 (day 0). The deviation per datum (a measure of goodness of fit) is 13.20.
The new data of May 27 was an anomaly, far exceeding the upper bound of the 95% confidence
level intervals for cases and deaths, estimated up to May 9. The new best fit trajectories allow β

to vary upwards and require an linear inflow of people into the susceptible class at a rate of 68
persons a day

had been crossed again and that the number of new infected would subsequently
grow at an accelerated pace.

In fact we could estimate that the susceptible population would have to be grow-
ing then, after the very end of April, at a rate up to 68 individuals per day. This
was tantamount to an epidemic restart, visible in Fig. 8, as the average trajecto-
ries changed curvature. Needless to say, under such conditions the outlook for the
development of the outbreak was rather bleak, with hundreds more cases and deaths
predicted to follow.

These data points were eventually revised down, after a long hiatus in reporting
between June 17 and July 13, confirming the prognosis of May 9.

3.3.8 Epilogue

The outbreak of Marburg hemorrhagic fever in Uige, Angola was officially declared
over on November 7, 2005 by the Angolan Ministry of Health [23], with its last
laboratory confirmed case reported July 22. The outbreak claimed a total of 329
lives out of 374 identified cases, a case fatality rate of 88%. These numbers were
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correctly predicted on May 9, 2005, amid much uncertainty in WHO reports and in
the news about the future development of the outbreak.

4 Discussion and Conclusions

The principal objective of the present study was to investigate the possibility of
modeling in real time the spread of a new epidemic of a rare emerging disease,
with very sparse data available. We have used standard outbreak reports available
online from the WHO [27] and Pro-med mail [15] to construct a small data set,
which we then employed to estimate epidemiological parameters and future case
and death numbers with quantified uncertainty. The output of the model was used to
provide guidance for the outlook of the epidemic under given qualitative scenarios
and construct quantitative goals for intervention policy on the ground, creating the
potential for helping optimize quantitatively severe logistical constraints.

Among other quantities our approach allows for the quantitative estimate of
epidemiological parameters with quantified uncertainty, and to the projection for
the total number of cases and deaths at the also predicted time for the end of the
outbreak. These estimates can then be used to test qualitative scenarios about the
outbreak, such as the time for the occurrence of the index case, and to quantify
in real time the effects of interventions and estimate population movements. This
approach, much like any general epidemiological mathematical modeling [1, 4]
makes certain general simplifying assumptions about the nature of the outbreak.
While these may be suspect to practitioners on the ground, it has been amply
demonstrated that models retain substantial predictive power, which tends to trump
projections for case numbers and deaths generated by expert opinion.

We believe that even if not perfect this type of “real time“ epidemiological mod-
eling is now feasible [2, 3, 5, 6, 21] and could become an essential tool useful in
providing quantitative scenarios and targets for limited resource allocation on the
ground. It should also be used to inform the scientific community and the public, as
well as public health officials, of rational expectations and choices under unfolding
new outbreaks.
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Statistical Challenges in BioSurveillance

Tom Burr, Sarah Michalak, and Rick Picard

Abstract One goal in biosurveillance is to detect patterns in disease rates, such
as temporal and/or geographic clustering. Traditionally, disease rates are available
by geographic unit over weekly, monthly, or yearly time bins, and covariates such
as age, gender, and socio-economic status can be used to adjust predicted rates
prior to testing for clustering. Recently, more timely pre-diagnostic data including
emergency department visits have been used in “syndromic surveillance” in order
to more rapidly detect either natural or bioterrorist-related outbreaks. Typically,
such data are categorized by chief complaint into one of several syndromes such
as gastro-intestinal or respiratory.

This chapter describes outbreak detection using either traditional diagnosed case
rates or syndromic surveillance data. Outbreak detection involves many issues; our
focus is the associated statistical challenges, including: (1) approaches to character-
izing the natural background; (2) algorithms for detecting abnormal increases above
background disease rates, (3) methods for adjusting for covariates such as gender,
age, etc.; (4) detecting spatial-temporal clusters, and (5) methods for protecting data
confidentiality.

1 Introduction

Our topic is statistical aspects of detecting disease outbreaks. The definition of
disease “outbreak” depends on the context and analysis goals. In many cases, the
goal is to detect an outbreak in near real time, using, for example, daily counts of
a specific illness or perhaps of a less-specific syndrome. In other cases, purported
disease clusters are identified retrospectively. Although outbreak detection is too
broad a topic to fully cover in this chapter, we will focus on a few specific examples
that illustrate many of the statistical issues.
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In some contexts, various types of disease clusters (Section 2) are considered
to be outbreaks. Throughout this chapter, a disease outbreak will be defined as
any abnormal increase in disease rate. An effective definition of what is meant by
“abnormal” depends on the situation. Some diseases such as flu have roughly annual
peaks due to seasonal effects. Such annual peaks could be considered to be part of
the ordinary background of disease frequency and then would not be considered
to be an outbreak. In other applications, rapid detection of the beginning of the
annual peak might be the main goal and the annual peak would be regarded as an
outbreak. Even in the case of flu, epidemiologists are unlikely to agree on exactly
when a given year’s flu outbreak began in a particular region of the country. An
arbitrary but reasonable definition is that the starting day of the flu season is the day
on which the number of new flu cases exceeds some threshold defined on the basis
of the recent daily background case rate, and the numbers of new cases for each of
the following days are also above the recent background for at least some specified
number of days.

Although people often associate the word “outbreak” with a rapid increase in
disease frequency, we define a disease outbreak as any abnormal increase in disease
rate. Therefore, the example “outbreaks” discussed below include any elevation in
disease rate, which could occur as a subtle increase over multiple years, and thus
would not be a rapid increase in disease frequency. Note that if the normal back-
ground is nearly zero, such as anthrax cases in humans or relatively rare cancers in
humans, then the increase could be a small number of cases. If the normal back-
ground is substantial, such as with flu-like illnesses, then an abnormal increase in
frequency would be a relatively large number of cases.

Any of several types of public health outcome surveillance data such as yearly
cancer rates by geographic region or daily counts of patient chief complaints in
emergency departments (EDs) can be used, with varying levels of success, to mon-
itor for outbreaks. Roughly speaking, there is a tradeoff between timeliness and
quality of information. For example, in syndromic surveillance (SS), the chief
complaint of each patient visiting an ED is typically categorized into a syndrome
category, such as respiratory or gastro-intestinal. This is relatively low-quality count
data because of the coarseness and overlap of categories; however, it is available in
near real time. In practice, there are several challenges in using SS data that we
will describe, such as assessing the non-outbreak background rate of cases in each
syndrome category. An example of higher quality, less timely data is disease rates
by geographic region, perhaps available by week, month, or year, but even these will
suffer from misdiagnosis, and under reporting, for example, which we will discuss.

Outbreak detection is challenging in many ways; our focus is the associated
statistical challenges, including: (1) approaches to characterizing the natural back-
ground; (2) algorithms for detecting abnormal increases above background in dis-
ease rates, (3) methods for adjusting for covariates such as gender, age, etc.; (4)
detecting spatial-temporal clusters; and (5) methods for protecting data
confidentiality.

Following sections include background and discussion of the five issues above
for public health outcome surveillance and for syndromic surveillance.
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2 Background

The background disease rate is the expected risk of disease in the absence of other
information about an individual or group of individuals.

We will consider three types of elevated disease rates:

- a temporal cluster is an elevated disease rate for a period of time that is less than
the study period;

- a spatial cluster is an elevated disease rate throughout the study period in a
specific geographic region; and

- a spatio-temporal cluster is an elevated disease rate in a region of space for a
period of time less than the study period.

A temporal cluster that does not persist over the full study region is difficult to
detect. Because data from the full study region is used in searching for evidence of
temporal clustering, if the study region is too large, it might be difficult to detect a
temporal cluster. Similarly, if the period is too long, it might be difficult to detect a
spatial cluster (Chapter 14, [27]). Therefore, the study region and temporal period
are important. This chapter assumes that both have been well chosen and describes
methods to monitor for clusters of elevated risk.

There are other types of elevated risk not discussed here. For example, a goal in
some contexts is to detect elevated risk by demographic group or by individual-level
variables such as indicators of overall health.

3 Public Health Outcome Surveillance

Public Health Outcome Surveillance relies on diagnosed case rates, often by home
address, perhaps aggregated to zip code. A common example is spatial analysis
of small area health data where population and disease counts are available over
various time periods, such as by week, month, or year for each spatial unit.

Assume the study region is divided into N subregions or cells. Assume disease
rate data are available by cell, where a cell could, for example, be a zip code region
or census tract.

Denote the number of cases in cell i as xi and the expected number of cases as
Ei , where Ei could depend on covariates. Assume that xi has a Poisson distribution
with mean ri Ei , denoted xi ∼ Poisson(ri Ei ), where ri captures departures from Ei

and is called the standardized incidence ratio.
Statistical challenges in Public Health Outcome Surveillance to be described here

include:

(1) Adjusting for covariates, and
(2) Issues involving maximally selected measures of evidence of clustering associ-

ated with data mining.
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3.1 Adjusting for Covariates

Adjusting for covariates involves building a statistical model for cell i such as

E(xi ) = f (ri , gi , ai , ni |β) + ei , (1)

where E(xi ) denotes the expected value of the number of disease cases in cell i ,
f is a function, linear in the parameters β or not, and linear in the predictors or
not, and the vertical line indicates we are conditioning on values for the parameters
β (which will in practice be estimated). The predictor ri depicts racial information
(perhaps vector-valued) for cell i , gi denotes gender information for cell i (such as
the percent female), ai depicts age information for cell i (perhaps vector-valued),
ni is the number of individuals at risk for the disease in cell i , and e captures all
error sources. Other common predictors include smoking status, socio-economic
indicators, and body mass index. There is a large literature on fitting such models
and performing diagnostic tests of their goodness of fit. See for example Venables
and Ripley [40] and Hastie et al. [16].

Here our focus is observational data, which implies that spurious associations
could exist. For example, suppose we have gender data by county and a fit to
Equation (1) suggests that Caucasians have a higher rate of the monitored disease
than non-Caucasians. If the Caucasian population is predominantly male and the
non-Caucasian is predominantly female, but we are unaware of this demographic
information, then the disease rate could be higher in males, but we falsely attribute
the higher rate to something associated with being Caucasian. This could lead to
wrong conclusions in establishing causality, but does not necessarily harm our anal-
ysis because we could still successfully apply Equation (1) to adjust correctly for
elevated rates in a numerical sense, albeit for the wrong reason. Therefore, although
there are major distinctions between observational and experimental studies, they
will not be discussed. Note also that in some contexts not considered here, one goal
is to identify subgroups, such as Caucasians, for which disease rates are higher (or
lower).

We also point out that adjusting for covariates prior to testing for clustering
implicitly assumes there is no masking of covariates with the spatial and/or tempo-
ral clustering we are trying to detect. For example, assume a study area consisting
of coal mining areas and non mining areas and that more males than females of
working age live and work in the coal mining areas. Assume that, due to exposure
to carcinogenic coal dust, cancer rates are higher among coal miners. If the relative
population sizes are such that an apparent gender effect is present, once that effect
is corrected for using Equation (1), we could fail to notice the spatial clustering of
cases associated with mining.

3.2 Maximally Selected Measures of Evidence

Example 1 gives an example of “maximally selected” measure of evidence. Sup-
pose a researcher hypothesizes a reason for spatio-temporal clustering of a disease.
Reasons could be that the disease is contagious or that some environmental effect
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Table 1 Reproduction of one table from Knox [24] on clustering of childhood leukemia

Close in residence Not close in residence

Close in time a = 5 b = 147
Not close in time c = 20 d = 4388

impacted a small region over a short time period. For example, some have pro-
posed that childhood leukemia can be caused by an infection. If so, this would help
explain purported clusters of cases [24]. Here we simply examine the evidence for
clustering, without speculating why clustering might occur.

Example 1 (Knox Statistic). This example develops and then extends the example
provided in Knox [24], in which the onset times and residences for 96 childhood
leukemia cases were analyzed by partitioning the cases as either being “close in
time” or “close in residence” or both or neither, as shown in Table 1. Note that the
total number of Table 1 entries is N = (96

2

) = 4, 560. We do not know how the
“close in time” or “close in residence” thresholds were chosen. Therefore, later in
this example we will consider how to adjust for the possibility that the evidence for
clustering was quantified using each of several possible thresholds, as an example
of what we refer to as “maximally selected measure of evidence.”

The main goal for the Knox statistic is to identify spatio-temporal clustering if it
is present. Spatio-temporal clustering is defined here to occur if the probability of
cases being close in time is higher if they are close in space than if they are not close
in space. This would imply that the probability of two cases being close in space is
not independent of their time separation. In other contexts, if the joint probability
of being both close in time and close in space is high, this would be evidence of
clustering.

A commonly-used statistic to evaluate whether the two categories in a two-way

table are independent is S1 =∑i, j
(Oi j −Ei j )2

Ei j
, where Oi j is the observed count in cell

i, j and Ei j = N Ni ·
N

N· j

N = Ni · N· j

N is the estimated expected cell count assuming the
categories are independent. Here, N is the total number of table entries, Ni · is the
sum of counts in row i , N· j is the sum of counts in column j , and by “independent”
in this context, we mean that knowing two cases are close in space does not impact
whether they are likely to be close in time. More formally, independence in space
and time means here that the joint probability of being close in time and close in
space is the marginal probability of being close in space multiplied by the marginal
probability of being close in time. If the two categories are independent, then this S1

statistic is approximately distributed as a χ2
1 random variable (a chi-squared random

variable with one degree of freedom).

Exercise 1a. Compute S1 for Table 1 and evaluate the “p”-value, defined as p =
Prob(S1 ≥ S1,observed) assuming that S1 ∼ χ2

1 . Next, compare S1 to the 0.99

quantile of the χ2
1 , which is 6.63. A common statistical approach to evaluate whether

data contradicts a model assumption, such as the independence of “close in time”
and “close in space,” is to compare the value of an observed statistic such as the
S1,observed value to an appropriate reference distribution such as the χ2

1 in this
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case. If the observed S1 value is extreme (large rather than small in this case) com-
pared to the reference distribution, that is evidence against the modeling assumption
such as the independence of “close in time” and “close in space.” Does S1,observed
for Table 1 indicate a lack of fit to the “independent categories” assumption? To
summarize this exercise, the model assumes the two categories are independent,
and if so, then S1 should have approximately a χ2

1 distribution, which then serves as
a reference distribution against which to compare S1,observed. Here, S1,observed
could be large because a was larger or smaller than its expected value, and therefore,
the test based on S1 is two-sided.

Exercise 1b. Use the entries a, b, c, and d in Table 1 to compute the conditional
probability that a given pair is close in space given that it is close in time, and the
conditional probability that a given pair is close in space given that it is not close
in time.

Knox [24] further assumed that a ∼ Poisson( Ni · N· j

N ), and the corresponding Knox
statistic uses the observed value of a to test for nonindependence. Note that a

a+b =
0.033 and c

c+d = 0.0045 so the conditional probability a
a+b that a given pair is

close in space given that it is close in time is much larger than c
c+d , the conditional

probability that a given pair that is close in space is not close in time. Also note
that the expected count in the close in time and space cell is Ni · N· j

N = 0.833, which
is considerably less than the observed count of 5, thus providing some evidence
against the null hypothesis of independence between “close in space” and “close
in time.”

Exercise 1c. Compute the “p”-value of Knox’s statistic, where the “p”-value is
defined as p = Prob(a ≥ aobserved assuming that a ∼ Poisson( Ni · N· j

N )). Compare
this result to the “p”-value for the S1 from Exercise 1a. Caution: statistical analyses
depend on modeling assumptions, including distributional assumptions. It is not
unusual to reach different conclusions (such as different “p”-values) depending on
how the data are analyzed.

Recall that the S1 could be large because a was larger or smaller than its expected
value , and therefore, the test based on S1 in Exercise 1a is two-sided. The test based
on a ∼ Poisson( Ni · N· j

N ) in Exercise 1c is one-sided. Therefore, the tests rely on
different distributions, and one test is one-sided while the other test is two-sided.

A conceptually simple alternative to the χ2
1 test and the Poisson test just described

is a randomization test. The randomization test can be motivated by assuming that
the “close in time” and/or “close in residence” labels are merely labels, having
nothing to do with the actual times and locations. Suppose then that we randomly
permuted the time labels among the 96 cases, and reordered the cases according to
the sorted “incorrect” time labels. We could then recompute each of the four cell
counts in Table 1 and we could repeat the random permutation step many times.
Either the S1 statistic or Knox’s statistic could be recorded for each permutation to
produce a reference distribution of values, and the observed S1 value could be com-
pared to this reference distribution. Alternately, the space labels could be permuted,
or both the time and space labels could be permuted. It is statistically appropriate
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to permute either the time or space labels, but is also acceptable to permute both to
perform this type of randomization test.

Exercise 1d. How many permutations of the 96 onset times are possible? Is it likely
that the randomization test would actually compute this many values of the chosen
test statistic?

Note that because 96! is a huge number of distinct orderings, in practice, we
would typically randomly select 1,000 to 10,000 orderings, compute the chosen
statistic for each, and the resulting distribution is the randomization test distribution
against which the observed value of the statistic can be compared, as illustrated
above for the χ2

1 test and the Poisson test.
Table 1 appears to be a standard 2-by-2 table suited for a standard test for

association between space and time; however, the 4,560 pairs of cases are not
independent pairs. The non-independence arises because of the multiple triangle
inequalities among the pairs of time distances and among the pairs of spatial dis-
tances. For example, d(t1, t3) ≤ d(t1, t2) + d(t2, t3), so these three pairs of distances
are not mutually independent because d(t2, t3) and d(t1, t2) jointly provide infor-
mation about d(t1, t3). Therefore, neither the χ2

1 distribution for the S1 statistic nor
the Poisson distribution for a can hold exactly. Barbour and Eagleson [1] used the
Stein-Chen method to show that Knox’s Poisson assumption was very accurate for
the sample size Knox used. Although the technical details are beyond our scope
here, the Stein-Chen method provides tight bounds on approximation errors when
assumptions such as the independence assumption in this case are violated.

Before assuming that the Stein-Chen method justifies the use of the Knox statistic
for analysis of the Table 1 data, it is important to consider how “close in time” and
“close in space” were defined. For example, it is possible that the arbitrary defini-
tions of “close” were chosen while analyzing the data. Burr [6] uses simulation to
show that if both “close in time” and “close in space” were defined while analyzing
the data to maximize the evidence for clustering, and that if adjustments are made
to penalize for maximizing the evidence for clustering, then the p-values for the
S1 statistic and for Knox’s statistic are revised upward considerably. The simula-
tion in Burr [6] to adjust for maximally selecting a measure of evidence leads to
a reference distribution that combines the randomization approach described above
with a search over definitions of “close in time” and “close in space” that maximize
the evidence for spatio-temporal clustering. A few similar versions of this type of
approach are described in Example 2.

If the search for a maximally selected measure of evidence involves only one
of the “close in time” and “close in space” definitions, then an approach based on
the Wiener process [6, 35] provides a suitable analytical approximation to adjust
for maximally selecting the evidence for clustering. Alternatively, a simulation-
based reference distribution is of course also available as shown in Burr [6]. The
Wiener process is a well-known continuous time stochastic process having sta-
tionary (constant over time) independent increments and satisfying the conditions
W (t = 0) = 0, W (t) is almost surely continuous (“almost surely” continuous means
that it is continuous except perhaps for a set having probability 0), and W (t)− W (s)
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has independent increments with distribution N (0, t − s) for 0 ≤ s < t , where
N (μ, σ 2) denotes the normal distribution with mean μ and variance σ 2. The condi-
tion that it has independent increments means that if 0 ≤ s1 ≤ t1 ≤ s2 ≤ t2, then
W (t1) − W (s1) and W (t2) − W (s2) are independent random variables.

Using the standardized Wiener process (which is forced to start and end at 0,
and is called the “Brownian Bridge”), Miller and Seigmund [35] showed in another
setting that the statistic S2 = sup0<x1≤x≤x2<1(χ2

1 )(1/2) satisfies

P(S2 ≥ w) = 4φ(w)

w
+ φ(w)

(
w − 1

w

)
log10

(
τ2

τ1

)
+ o

(
φ(w)

w

)
, (2)

where the supremum is taken over the time or space threshold x to define close in
time or space, φ is the standard normal density (2π )−1/2exp(−w2/2), the “little oh”
notation o(φ(w)

w
) denotes a small term compared to φ(w)

w
, and x1 and x2 are values not

too close to 0 or 1, respectively. If x1 is very close to 0 and/or x2 is very close to 1,
then the approximation is not very accurate.

Miller and Siegmund [35] did not provide any simulation results to determine
what sample sizes are needed for Equation (2) to be a good approximation, and
their context allowed them to assume the two rows sums in their tables that corre-
spond to Table 1 here were nearly equal. Therefore, Burr [6] provided simulation
results to evaluate the quality of the Wiener approximation under various condi-
tions. Generally, the quality is acceptably good, but in this application, the table is
typically unbalanced, having more observations “not close in time” than “close in
time,” and more observations “not close in space” than “close in space,” because
the search for a threshold to define close in space or time is typically restricted to
a narrow range, such as between the 0.005 and 0.01 quantiles of the space or time
distance values. Because of this unbalance, the Equation (2) approximation will be
acceptably good, within approximately ±0.02 of the correct value, only if there are
at least 100 observations that are close in space and at least 100 observations that
are close in time. This is a relatively strong requirement, and therefore, the accuracy
of p-values from Equation (2) is unlikely to be within ±0.02 of the correct value
for the data in Table 1, because only 25 observations are close in space.

Another complication related to testing for spatio-temporal clustering involves
population shift bias. Mantel [30] showed that if population growth rates differ
among spatial regions, then this population shift bias creates spatio-temporal inter-
action among any random sample of individuals, thus tending to lead to spurious
evidence for clustering. Kulldorff and Hjalmers [25] illustrated how to include the
effect of population shifts in a simulated reference distribution.

Although Example 1 is a retrospective application of Knox’s statistic, Marshall
et al. [31] apply a local Knox statistic in a simulated real-time setting similar to
syndromic surveillance (Section 4).

Example 2 (Spatio-Temporal Scan Statistic). This example is based on Kulldorff
et al. [26], who applied a spatio-temporal scan statistic, which scans spatially and
temporally for maximal clustering as described below.
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A purported cancer cluster involved 10 brain cancer cases during the years 1986–
1990 in Los Alamos, New Mexico. The expected number of brain cancer cases was
3.7, or 3.9 when adjusted for population shift bias as mentioned above [26]. At the
time of the study, the state of NM had brain cancer records by year for each of
its 32 counties from 1973 to 1991. Demographics including age, gender, and race
are available by county each year to make adjustments if appropriate. The analysis
presented here does not adjust for covariates.

Exercise 2a. Assume the number of brain cancer cases X in Los Alamos, NM
from 1986 to 1990 is distributed as a Poisson variate having mean 3.7. Compute
Prob(X ≥ 10|μX = 3.7), where μX is the mean or expected value of X .

Assume that a spatial-temporal scan statistic was used to find maximal evidence
of clustering [26]. There are many varieties of scan statistic, but the general idea is
to scan for regions in search of relatively large (or small in some contexts) numbers
of events. We will describe this statistic in terms of how it is typically implemented
in the context of disease rate surveillance. There are a few other options available,
for example, at www.satscan.org.

A spatial-temporal scan statistic can be implemented using circular scanning
regions in space, using a particular county seat location as the center of a candidate
circle, varying the radius of the circle to include varying numbers of neighboring
counties, and simultaneously also scanning over blocks of 1, 2, 3, or more succes-
sive years. This can be repeated allowing each county seat to be the center of the
scanning circle, and the maximum evidence found for clustering can be reported.
Kulldorff suggests that the time windows could be any number of years ranging
from 1 year to one-half of the total study period.

To adjust for this type of “maximally selected measure of evidence,” Kulldorff
[26] suggests a simulation-based reference distribution obtained by simulating case
rates by county and year according to a Poisson distribution having a mean that
is estimated using the historical state-wide case rate, adjusting for demographics
if appropriate. Because the number of simulated cases will not typically exactly
equal the number of actual cases, this option is sometimes called the “uncondi-
tional” option. Another alternative, particularly when extensive historical data is
not available, is to constrain the number of simulated cases to equal the number of
observed cases (“conditional”), but to permute the time and/or spatial labels of the
cases during each repetition of the scan statistic.

Exercise 2b. Describe how to compute a simulation-based reference distribution
that accounts for the spatial-temporal scanning described.

The solution to Exercise 2b involves making decisions such as whether to con-
strain the number of simulated cases to equal the number of observed cases. Suppose
we do not enforce this constraint. Then, the solution can be described as follows.
Simulate one realization of cases according to a Poisson distribution, adjusting for
covariates if necessary. Implement the search of space and time regions to pro-
duce a large number of specific regions. For example, one specific region could
be “the space-time region centered at county A with a 100 mile radius and spanning
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1980–1990.” For each region in the search over space and time regions, the num-
bers of simulated cases inside and outside the region are counted and the expected
number of cases is calculated using the population at risk, adjusting for covariate
if necessary. Find and save the smallest p-value over all such regions. Repeat for
many (1000 or more) simulated realizations, saving the smallest p-value from each
realization. The archived smallest p-values from each realization are the simulation-
based reference distribution against which to compare the p value computed in
Exercise 2a. The small p-value found in Exercise 2a is then revised upward con-
siderably [26], because it is compared to the p-values in the reference distribution
of smallest p-values, which tend to be quite small, again reflecting the fact that
maximal evidence for clustering was used. For example, if the original unadjusted
p-value is 0.01, then 0.01 might be at the 25th percentile in the simulated reference
distribution, thus revising the p-value upward from 0.01 to 0.25.

Los Alamos, NM is a small rural community of approximately 20,000 residents.
In 1991, a community resident voiced concern over what appeared to be a neigh-
borhood brain cancer cluster. So, it is likely that the geographic region and time
window were not actually chosen by the maximal selection process assumed by
the simulation-based reference distribution. It is almost impossible to quantify the
selection process (what temporal window and what spatial region) that was actually
used. Therefore, choosing the most appropriate reference distribution to be used to
estimate the p-value for evidence of clustering is a difficult issue to resolve.

Health officials are often asked to evaluate what appears to be a local disease
cluster, as they were in this case. After agreeing on a case definition (what type of
brain cancer, whether it must be the primary cancer, etc.), in addition to the maximal
selection process over space and time described above, a related challenge not often
considered involves whether many other diseases were also evaluated (another type
of “selection of maximal evidence”) for clustering.

3.3 Other Statistical Issues

There are many other statistical issues in public health outcome surveillance,
including:

1. In order to apply the scan statistic as described, there must be a model for the
expected number of cases. Given such a model, summarized perhaps by the
expected number of cases in each cell in each time period, the observed number
of cases in cell i at time t , Oi,t can be compared to the expected number of
cases Ei,t , and a residual or forecast error, such as ei,t = (Oi,t − Ei,t )/Ei,t can
be computed. These errors ei,t can be monitored using standard methods quality
control, including sequential tests (see, for example, the description of Page’s
test in Section 4.6.3) that search over time and/or space for regions of elevated
observed numbers of cases [6, 40] and scan statistics (such as in Example 2).

2. Misdiagnosis and under or over reporting of diseases are related issues and both
lead to error sources that should be considered. Misdiagnosis includes both types
of error – labeling an individual as having the disease (as a “case”) when the
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individual does not, or labeling an individual as not having the disease when
the individual does have it. Under reporting occurs when not all cases are iden-
tified for various reasons, other than from misdiagnosis. If the under reporting
is approximately constant in all regions, it does not necessarily lead to spurious
conclusions, although prevalence estimates would be too low. On the other hand,
if a particular region has a much higher rate of reporting than other regions,
then it “over” reports, and especially for rare diseases, this could easily lead to
spurious evidence of a disease cluster.

3. The suitability of using home address as the “location” of a new case should be
considered. Whether the home address of each infected is suitable or adequate
will be case specific. For example, the work address could easily be more rele-
vant, depending on disease etiology. Also, binning cases by county and assigning
them to the county seat in location is done for convenience. Inference quality can
be impacted by choice of spatial and/or temporal scale.

4. Lack of effective training data having, for example, outbreaks with clearly
defined start and stop times, is a common problem in monitoring for disease
outbreaks. There is a general lack of well-established disease outbreak data that
can be used to test and compare methods for disease monitoring. Generally, all
methods of monitoring for disease outbreaks involve fitting a model that allows
the expected number of cases Ei to be computed for spatial region i for a spec-
ified time period, adjusting for covariates if appropriate and feasible. Having
computed each Ei , regions of elevated count rates can be detected as described
above.

5. Disease rates based on small population sizes, particularly for rare diseases,
are notorious for having relatively large variances. Disease mapping using hier-
archical Bayesian methods [29] can mitigate the effect of large variability in
small regional disease rate estimates. In MacNab et al. [29], the log-transformed
regional disease rates are assumed to arise from a Gaussian prior. Under reason-
able assumptions, this leads to “shrinkage to the mean” in which the estimated
local disease rates are smoothed by two effects: the estimated disease rate in
region i is modified by using the average rate among region i neighbors (local
averaging) and also by using the average rate over the entire study region (global
averaging). Such smoothing attempts to greatly reduce the relatively large vari-
ance of regional disease rate estimates in exchange for what should be an
acceptably small increase in bias due to pooling all of the data (more heavily
weighting data from neighboring regions) to estimate each region’s disease rate.
Hierarchical Bayesian methods are described further in Section 4.1 in the context
of inconsistent seasonal effects.

4 Syndromic Surveillance

We focus on frequent (usually daily) monitoring of counts of patient visits cat-
egorized into syndromes, which is one particular type of syndromic surveillance
(SS). Categorization arises upon mapping patient chief complaint and/or diagnosis
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data to syndrome categories such as respiratory, neurological, or gastro-intestinal.
A broader definition of SS also includes non-clinical data sources such as pharmacy
sales, absenteeism, nurse hotline calls, etc. Although we focus on syndrome counts,
seasonal patterns are sometimes present in these and other SS data sources. For
overviews of SS, see reports from the 2004 National SS Conference in the Morbid-
ity and Mortality Weekly Report (see, e.g., [28]) or publications available from the
International Society for Disease Surveillance [20].

Although SS appears promising, there are concerns regarding signal-to-noise
ratios, costs, data confidentiality, system maintainability, etc. Some of these con-
cerns involve statistical issues. The statistical challenges in SS to be described here
include:

(1) Inconsistent seasonal effects: some syndrome counts (such as respiratory) vary
with season in a manner that is not consistent from year to year. This implies
that modeling the ordinary background, which includes seasonal increases, is
difficult.

(2) Reporting delays: real systems tend to experience reporting delays, which must
be adjusted for in real time if the timeliness goals for SS are to be met.

(3) System population coverage: it is necessary to relate outbreak size in the cov-
ered population to additional counts in a SS data source. It is difficult to estimate
the system’s population coverage, which is needed in order to estimate the
expected number of extra counts in a SS data source (patient visits, medicine
sales, etc.) corresponding to an outbreak of a particular size in a particular
demographic subset. In other words, although it is simple to inject synthetic
counts into a real SS data source, it is difficult to estimate the corresponding
number of extra counts in the covered population. Therefore, the system alarm
probability (the probability that a decision threshold is exceeded, i.e., that a
small p-value is obtained, and an outbreak is detected) for a given outbreak size
in the covered population is also difficult to estimate.

(4) Lack of effective training data: in general there is a lack of training data that
includes real outbreaks having clearly defined start and stop times. Therefore,
most studies rely on injecting simulated counts into real background data to
estimate outbreak detection probabilities.

(5) Data confidentiality: some data such as personal information included in ED
visits must be protected as confidential.

4.1 Inconsistent Seasonal Effects

Some syndrome counts (such as respiratory) vary with season in a manner that is not
consistent from year to year. This implies that monitoring the ordinary background,
which includes seasonal increases, is difficult. See, for example, Fig. 1, which uses
weekly counts of new deaths due to pneumonia and influenza (P & I) to illustrate
the differences in three flu seasons in Albuquerque, NM. We assume here as others
have, that P & I deaths provide a surrogate or indicator for influenza case rates. The



Statistical Challenges in BioSurveillance 175

Three Albuquerque Flu Seasons
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Fig. 1 Illustration of inconsistent seasonal effects using three Albuquerque flu seasons that are
assumed to correspond to the annual P & I deaths

three smooth curves fit to the weekly counts show that the three flu seasons showed
considerably variability in onset time, duration, and magnitude.

To accommodate inconsistent seasonal effects, Burr et al. [7, 8] develop and
apply a hierarchical model by extending a non hierarchical “one-season-fits-all”
model [22] similar to

Cd ∼ Poisson

( 7∑
i=1

ci Ii (d) + c8 + c9d + c10 × cos

(
2πd

365.25

)
+ c11 × sin

(
2πd

365.25

))
.

(3)

In Equation (3), Cd is the day d counts,
∑7

i=1 ci Ii (d) captures day-of-week effects
and Ii (d) denotes the indicator function for day d, i.e., Ii (d) = 1 when day d is
the i-th day of the week and Ii (d) = 0 otherwise (and the seven model coefficients
ci are constrained to sum to zero), c8 + c9d captures a long-term linear effect, and
c10 × cos( 2πd

365.25 ) + c11 × sin( 2πd
365.25 ) captures the seasonal component, where the

average number of days per year is 365.25, and the coefficients c10 and c11 determine
the time and amplitude of the seasonal effect.

Bayesian hierarchical modeling in this context is a generalization of linear mod-
eling in which model parameters such as the seasonal and day-of-week coefficients
and other parameters follow a probability distribution whose parameters may be
estimated from the data [13]. The hierarchical model in Equation (4) is similar
to Equation (3), except the seasonal peak is modeled using a scalable Gaussian
function, instead of the fixed-width and fixed-location sine and cosine functions.
Also, the baseline is allowed to change linearly within a year as opposed to varying
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linearly over a longer time period. With this model,

E(Cd ) = by(d) + ay

σy
φ

(
d − δy

σy

)
+

7∑
i=1

ci Ii (d), (4)

where E(Cd ) is the expected value of the day d count, and variance(Cd |E(Cd )) =
1+ψ

ψ
, and as ψ → ∞, the variance to mean ratio approaches 1, as in the Poisson

distribution. The term by(d) = by−1 + d
365 (by − by−1) models changing baseline

by linearly interpolating between the current (by) and the previous (by−1) year’s
off-peak baseline, ay is the scaled peak amplitude for year y, φ is the probability
density for a standard normal variable as above, δy denotes the time of the peak for
year y, and σy corresponds to the duration of the peak in year y, and day-of-week
effects are as in Equation (3). Note that letting variance(Cd |E(Cd )) = 1+ψ

ψ
allows

for overdispersion (larger than Poisson variance), which has been observed in many
data sets.

The parameters such as ψ, δy, and σy in Equation (4) are not fixed, but instead
are assigned a prior distribution (the “hyperprior” in this context) having parameters
that are estimated from the data. For example, ψ is assigned a vague (large variance)
prior, and as with the other parameters, the data is used to update its prior. The hyper-
prior for each parameter is in the hierarchy of modeling assumptions (“Bayesian
hierarchical modeling”) relating data and parameters, and the hyperprior is updated,
resulting in a posterior distribution, by using the available data.

Graves and Picard [15] applied a hierarchical model to pneumonia and influenza
mortality data using Markov Chain Monte Carlo to generate observations from the
posterior distribution of the parameters (in a Bayesian setting suitable for hierar-
chical models) in a model similar to Equation (4), and the approach was also used
in Burr et al. [7, 8]. Burr et al. [7, 8] showed that outbreak detection probability
estimates are improved if based on data simulated from the hierarchical model rather
than the corresponding non hierarchical model.

Exercise 3. Choose values for the model parameters in Equation (3) and then sim-
ulate data from Equation (3) for two years and plot it. It might be necessary to use
trial-and-error to find reasonable parameter values. Is it likely that real data could
be this repeatable? If not, a hierarchical model might be more appropriate.

4.2 Reporting Delays

Some systems experience unfortunate reporting delays. For example, on a given
Monday, perhaps 60% of Monday’s final total count data are available by the end
of that particular day, with the remaining 40% trickling in over the next one to five
days. Of course such delays defeat the purpose of using timely pre diagnostic data.
If the 60/40 percentage were highly repeatable, it would be reasonable to adjust
each day’s counts by multiplying by 1/0.6. Of course, the delay distribution is not
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necessarily highly repeatable and in practice leads either to an undercount, an anal-
ysis delay, or to an increase in the system noise if an adjustment is attempted. The
BioSense initiative [28] is pursuing methods to adjust for such reporting delays. For
example, see the task description at www.cdc.gov/Biosense/extramuralprojects.

4.3 System Population Coverage

In order to estimate the probability that a given data stream will exhibit elevated
counts when an outbreak of a specified size occurs in the population, it is necessary
to estimate the fraction of the population that is served by the entity associated with
a given data stream, such as a nurse hot line or ED.

Human behavioral issues such as the propensity of those having the disease to go
to the ED, as opposed, say, to simply staying home or continuing to go to work or
school must be considered. There has been some research on this issue, such as in
New York City [34], which estimates that each ED visit for flu-like illness represents
approximately 60 such illnesses in the metropolitan area. Patient demographics and
socioeconomic factors are relevant; for example, the New York City study showed
that females are more likely to go to a hospital with flu-like symptoms than are
males and, not surprisingly, those with health insurance are far more likely to go
than are those without it. A similar study in Canada [33] found, in contrast, that
each respiratory visit represented only 7 upper respiratory infections in the popu-
lation, indicating that considerable study-to-study uncertainty exists in quantifying
behavior in this regard.

4.4 Lack of Effective Training Data

As with traditional public health outcome surveillance, there is a general lack of
training data having known start and stop times of outbreaks. Therefore, SS studies
typically rely on injecting synthetic counts into background data, although in a few
instances (e.g., [4, 23]) real outbreaks were identified retrospectively using other
data sources.

When injecting synthetic counts into real background data, relating the number
of injected counts to the number of cases in the population is very difficult. Some SS
studies have used models for the shape of an outbreak curve in a population [21],
with separate models used, for example, for an airborne biological weapon [5], a
point-source, and for community transmission. Such models together with a model
for population coverage of the data sources being used for SS guide the choice
for features (shape and magnitude) of simulated outbreaks to be superimposed on
background counts in order to assess the detection probability of various monitoring
schemes. However, there remains a general inability to verify that modeled outbreak
curves are sufficiently close to real outbreak curves for performance claims based
on modeled curves to be relevant.
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Airborne releases are usually modeled using plume dispersion models. Plume
dispersion modeling is a large topic, and not surprisingly, there is a wide range
in model quality. For community transmission models, a large literature in classi-
cal epidemiology involves disease etiology and associated model fitting once it is
established that an outbreak has occurred. An example is the well-known S-E-I-R
(susceptible, exposed, infected, recovered) model that partitions the at-risk popula-
tion into susceptible, exposed, infected, and recovered subgroups. Many statistical
challenges are involved in fitting and interpreting such models [9] and the associated
temporal shape of the corresponding disease outbreak. One goal is to estimate the
basic reproductive number R0 (the expected number of secondary cases per pri-
mary case in a completely susceptible population) using the shape of the outbreak
curve. Estimates of R0 can be used in real time to predict the cumulative number of
infected individuals (“outbreak size”). S-E-I-R type models can include mitigation
effects such as isolation and vaccination, and an active area of research is to predict
the impact on R0 and thus on final outbreak size resulting when various mitigation
strategies are applied [10].

One method of producing synthetic training data, and perhaps assisting with
estimation of population coverage, is agent-based epidemiological models such
as EpiSims [11]. EpiSims combines estimates of population mobility in social
networks using census and land-use data with models for simulating disease pro-
gression within a host. Such an approach would have to be modified to model the
data stream(s) of interest such as ED visits or nurse hot-line calls.

4.5 Data Confidentiality

Modern health-care-related patient confidentiality rules inhibit the widespread shar-
ing of SS data. For example, regulations resulting from the Health Insurance
Portability and Accountability Act (HIPAA) refer to the need for a statistical
expert to assist in applying statistical and scientific principles to render informa-
tion not individually identifiable [14]. Statistical approaches attempt to balance the
competing goals of effective analysis and patient confidentiality [12].

Two types of information disclosure are considered: exact and inferential. Exact
disclosure means that the identity of an individual respondent or participant is
revealed. Participant identity could be used to link records and maliciously exploit
the revealed identify. Identity or attributes are said to be inferred if the probability
of the inference being correct is less than one, but large enough that correct infer-
ence is likely. Much effort continues to be directed toward developing tools to limit
disclosure while providing usable statistical tables or databases. For example, data
swapping and perturbation can enable effective statistical inference while limiting
disclosure [12].
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4.6 Two SS Systems

The next two subsections briefly describe two SS systems.

4.6.1 BSafer

Features in the BSafer SS system [4] are common to many SS systems. The BSafer
dictionary for mapping chief complaints to syndromes such as respiratory, gastro-
intestinal, neurologic, skin, lymphatic, and undifferentiated infection is provided
in Brillman et al. [4], and Equation (3) is fit to daily counts from each syndrome.
The detection probability for Page’s sequential test [36] and a one-day-at-a-time
test is estimated for each of many randomly generated outbreaks that inject addi-
tional counts into eight years of background data at random onset times for random
durations. Page’s sequential test monitors for sequences of large (or perhaps small
in some contexts) counts; a one-day-at-a-time test monitors for a large count on
a single day. The inconsistent seasonal effects led Burr et al. [7, 8] to apply the
hierarchical model previously described. However, this hierarchical model has not
yet been implemented in any real SS system, and it is currently unknown to what
extent a hierarchical model can help identify outbreak regions in a timely manner.

4.6.2 BioSense

Oversimplifying somewhat, raw data for BioSense [28] include daily, zipcode-
specific counts for approximately 10 syndromic categories from various regions,
such as the southwestern United States. There are three sources for these data
streams: the Veteran’s Administration, the Department of Defense, and laboratory
test orders. Other sources such as civilian ED visits are anticipated.

To analyze count-level data, BioSense uses two analytic methods that are sup-
plemented by visual displays. It is important to realize that BioSense, like most
SS systems, is used primarily by non statisticians who may prefer relatively simple
analyses. The extent to which more elaborate methods would outperform the simple
methods described next is currently unknown.

The first method is based on Shewhart scores and cumulative sum (cusum) mon-
itoring, similar to standard quality control applications. The second method is a
regression-based approach as in Equation (3) that is designed to predict counts
for each day and, if the actual count differs sufficiently from the predicted count,
produce an alarm, indicating a potential outbreak.

4.6.3 Cusums

There are three cusum procedures implemented in BioSense, denoted C1, C2, and
C3 [17, 18]. These cusums are intended to be sensitive to different types of disease
outbreaks. The first, C1, uses a seven-day moving average with a one-day lag, with
the lag included to avoid problems related to delayed reporting and to effects of
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rapidly increasing counts. More formally, for C(d) denoting the syndromic count
for a given syndrome on day d, the seven-day moving average with a one-day lag
M A(1) is

M A(1) =
d−1∑

t=d−7

C(t) / 7

and the seven-day moving average with a three-day lag M A(3) is

M A(3) =
d−3∑

t=d−9

C(t) / 7 .

Similarly, standard deviations for the respective seven-day periods are

σ̂ (1) =
√√√√ d−1∑

t=d−7

[C(t) − M A(1)]2/6

and

σ̂ (3) =
√√√√ d−3∑

t=d−9

[C(t) − M A(3)]2/6 .

Using these estimates, conventional cusum statistics [36] are recursively com-
puted as

Sd (1) = max

{
0, Sd−1(1) + C(d) − M A(1)

σ̂ (1)
− 1

}

and

Sd (3) = max

{
0, Sd−1(3) + C(d) − M A(3)

σ̂ (3)
− 1

}
.

That is, excess counts (normalized by the standard deviations) are accumulated and
compared to a decision threshold. A single day having a sufficiently large count
could trigger an alarm, as could a string of days of smaller but nonetheless larger-
than-anticipated counts.

The statistics C1, C2, and C3 as implemented in BioSense, however, are not
traditional cusums. Instead, C1 and C2 are Shewhart scores, defined as

C1 ≡ Cd (1) ≡ C(d) − M A(1)

σ̂ (1)
− 1
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and

C2 ≡ Cd (2) ≡ C(d) − M A(3)

σ̂ (3)
− 1,

where values less than 0 are set to 0. The statistic C3 is a type of cumulative sum,
defined on day d as the sum Cd (2)+Cd−1(2)+Cd−2(2) where Cd−1(2) and Cd−2(2)
are set to 0 if they exceed a threshold. Cusums C1, C2, and C3 can be plotted in con-
trol charts and visually inspected. The underlying philosophy is virtually identical
to that in statistical process control.

[The above description is not quite complete. One minor complication involves
adjusting for the fact that counts are typically higher for weekdays than weekends.
Therefore, separate cusums are computed for weekdays only and weekend-days
only. A second minor complication is introduced by “bad dates” for which the
daily counts are deemed anomalous for various reasons. Counts from such dates
are excluded from the cusum calculation. Also, holiday or day-after-holiday effects
can be seen, although it is unclear whether it is helpful to adjust for holiday effects.]

4.6.4 Small Area Regression Testing Procedure

In addition to the above cusums, Small Area Regression Testing (SMART) scores
are computed using a model that is similar to Equation (3). A generalized linear
model (GLM) [32] is fit to the zipcode-specific, syndrome-specific daily counts,
incorporating seasonal and day-of-the-week effects. Using past data up through the
previous Friday, the regression predicts counts for the current week.

The SMART regression for the southwestern US, for example, involves over 150
parameters, including 1 offset parameter, 140 zipcode parameters, 6 day-of-week
parameters, 2 seasonal parameters, 1 holiday parameter, and 1 day-after holiday
parameter. SMART parameter estimation is carried out via a GLM using a log link
function. Once the model fitting on the log scale is completed, a predicted value is
then exponentiated to give a predicted count. That predicted count is then treated
as being the (known) mean for a Poisson distribution, and the p-value for the day’s
actual count is computed relative to that known mean.

The SMART model parameter estimates are updated each Saturday. That is,
parameter estimates are re-computed weekly upon incorporating the most recent
week’s data so that the effects of extrapolation on the predicted values are mini-
mized. This mitigates somewhat the impact of inconsistent seasonal effects; how-
ever Burr et al. [7, 8] applied weekly updating for BioSense data, and inconsistent
seasonal effects were still shown to have an important impact on outbreak detection
probabilities.

The cusum and SMART testing procedures are one-sided. That is, they alarm
only when counts are too large. Counts that are anomalously small relative to their
predictions, which might reflect modeling shortcomings, are ignored. Moreover,
although each procedure is sensitive to large counts in its own way, there is a partial
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redundancy among the test statistics. Generally, we have focused on detecting clus-
ters of high rather than low disease rates. Clusters of low disease rate are certainly
also of interest because they could lead to ways to improve health (such as avoiding
certain fats, which may explain why some nations have lower cancer rates than
others).

5 Discussion

Although our focus is statistical challenges in detecting disease clusters, there are
many practical considerations that make cluster detection difficult, some of which
we describe below.

5.1 Data Quality

Data quality is a key issue in surveillance for outbreaks using diagnosed case rates
and in SS. Therefore, the availability of timely and useful data is an ongoing concern
for many reasons, including the following.

(1) Few surveillance systems are specifically designed for the early detection of
disease outbreaks. Virtually all data sets used for disease surveillance are not
collected for purposes of timely detection of outbreaks. Instead, health care
facilities already collect data for other reasons, including billing, staffing, plan-
ning, and so on. Consequently, the effectiveness of surveillance activities has
been questioned [2–5]).
For example, as in Section 3.3, use of home address as the “location” for a
new case can be problematic – in some cases, a work or (for children) a school
address could easily be more relevant, depending on disease etiology. Subse-
quent binning of cases by county and assigning them the county seat as their
location is often done for reporting purposes, and the choice of spatial and/or
temporal scale may be done more for convenience than for optimal surveillance.

(2) The quality (or lack thereof as measured by mistake rates) of demographic and
other predictor variables, disease rates, home and/or work address, etc., can
easily overwhelm the signal of interest.

(3) There is little financial incentive for health care facilities to improve SS data
quality. Data quality therefore suffers from typing errors, inconsistency across
different facilities in terms used, procedure codes that change when billing rules
change, inadvertent duplication of records, etc. In light of the ongoing debate
regarding how to finance health care in the U.S., we do not see a clear path to
improve this situation, because it would require ongoing dedicated funding that
would not arise from pure market forces.
The bottom line regarding the use of (nearly) freely available data streams, but
which are collected for other purposes, is that “you get what you pay for.” Thus,
data cleansing is an essential precursor to good statistical analysis.
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(4) In surveillance for outbreaks using diagnosed case rates, it is important to estab-
lish the case definition prior to monitoring for clusters. Consider the Los Alamos
brain cancer example. Some almost unexplainable selection process among
all possible cancer types occurred by the local resident who noticed several
brain cancer cases in Los Alamos. Under- or over-reporting as mentioned in
Section 3.3 is another important consideration, particularly for small case rates.

5.2 Background Assessment

Another issue with SS is that assessing the background is difficult for several rea-
sons. Most facilities (such as EDs or pharmacies) have only tracked syndromic
counts for a short time, and have possibly modified the dictionary that maps chief
complaints to syndromes. Background levels also change as the result of chang-
ing population and/or demographic groups being served by the facility. Also, some
major events, such as a large SARS (severe acute respiratory syndrome) outbreak
in Toronto or the sarin gas release in Tokyo cause perturbations in the background
(including the effect of panic-related increases in health care usage) that should
be removed to obtain event-free background. Pooling data over multiple EDs in
an area, where each ED is likely to have its own dictionary is problematic. Even
at a given ED, the recording systems change periodically because of changes in
insurance rules which tend to cause coding changes that favor adequate or better
reimbursement. For example, if an ED cannot bill insurance for allowing the patient
to sleep off a state of inebriation, the ED is unlikely to code the chief complaint
as inebriation. Similarly, another type of coding change occurred in 1999 regarding
how the Centers for Disease Control collects pneumonia and influenza mortality
data, which can be used to monitor for outbreaks. The change arose because of a
revision to how death certificate information was used to categorize pneumonia and
influenza deaths. For more detail regarding this change, see Morbidity and Mortality
Weekly Report 49(09):173–177, available at www.cdc.gov/mmwr.

For data streams such as over-the-counter medicine sales, it is necessary to
account for effects such as advertising promotions leading to increased medicine
sales. Finally, in real time situations such as in EDs, data are often manually entered,
with many errors, misspellings, and abbreviations for lengthy disease names. Con-
sidering only the issues mentioned above, it is clear that obtaining good background
data is itself a challenge.

5.3 Complications Arising From Monitoring
Multiple Data Sources

In surveillance for outbreaks using SS, Stoto et al. [37] mention concerns about
the wide net being cast over multiple syndromes, data streams, and regions. Such
a wide net implies that there are many opportunities for false alarms, and therefore
requires that each monitored stream have very wide alarm limits in to avoid high
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false alarm rates. Stoto et al. [37] presented a simple simulation study by injecting
various outbreaks onto “influenza-like illness” cases at the George Washington ED
from 1998 to 2001, which varied from approximate 3 per day to 20 per day during
the annual peak. Page’s cusum was one of the four statistical algorithms used to
monitor for outbreaks and the detection times and probabilities for small, medium,
and large outbreaks were evaluated, but with many uncertainties omitted, such as
the population coverage mentioned in Section 4.

Because SS is currently treated as a research topic, the importance of integrating
SS into public health systems was stressed. However, many facilities will continue
SS only if federal funds continue to support it.

5.4 Creating Synthetic Outbreak Data

The lack of effective training data was mentioned in Section 4.4, and one option
for producing realistic training data is agent-based epidemiological models such as
EpiSims. This would require considerable effort to implement because creating syn-
thetic outbreak data for assessing the merits of SS (e.g., [37]) requires understanding
how disease outbreaks are manifested in observed surveillance data. For BioSense
data streams, for example, one description of this process is:

(a) Certain people are infected immediately as a result of the exposure;
(b) The contagious disease propagates through the general public, possibly to

locations beyond the geographic area where the outbreak occurred;
(c) Of the people affected, some portion of them are among the BioSense patient

populations (e.g., they are eligible to go to hospitals/clinics within the domain
of BioSense monitoring);

(d) Of those eligible to go to BioSense-related facilities, some number of them
actually do, and their counts appear in the BioSense data streams; and

(e) The syndrome counts from those affected by the outbreak are combined with
the corresponding baseline counts.

Clearly it is time- and labor-intensive to develop realistic training data.

6 Open Challenges

Outbreak detection is a large topic and we have presented only a few subtopics,
focusing on statistical challenges. The topics discussed raise open challenges, some
of which we now describe.

Whether used retrospectively or not, in order to correct for maximal selection
over time and space, the only current approach is simulation. An example was
given in Burr [6], and free software is available at www.statscan.org. Is an approx-
imate analytical method possible, perhaps following the “selection over time” or
“selection over space” approximation based on the Wiener process described in
Section 3.2?
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Data in SS systems have exhibited more than Poisson variability. One approach
to model extra-variability is to use a hierarchical model such as that presented in
Section 4.1. Another approach is presented in Wieland et al. [39] who used one
regression for the mean count and a separate regression for the variance of the
count. Both regressions were similar to Equation (3). Neither approach has been
thoroughly tested with real data.

With respect to the hierarchical model in Section 4.1, it is currently unknown to
what extent a hierarchical model can improve outbreak detection in near real time.
An inherent performance limit involves the fact that in near real time, an outbreak
can have the same shape as the start of the annual peak, thus tending to modify the
current estimate of the onset time of the current year’s peak.

Another issue in SS is the inherent noise due to the nonspecific and overlapping
nature of the syndromes. A possible improvement (CADDY, computer aided differ-
ential diagnosis) described in Burr et al. [7, 8] tracks disease probabilities that are
estimated using each patient’s recorded symptoms. A forward model relating each
of approximately 250 diseases (including rare diseases such as anthrax) to probable
symptoms, allowing for probabilities of symptom combinations that are not based
on an independence assumption, is used to estimate the probability of the most likely
diseases given a test patient with observed measurements such as heart rate, blood
pressure, etc. The CADDY approach has the potential to detect diseases having very
low background levels, unlike SS, which suffers due to the nonspecific nature of the
syndromes.

7 Summary

We have described some of the statistical challenges in public health outcome
surveillance and in syndromic surveillance. Both types of surveillance require a
model for the background disease rate and a method of detecting departure from
that background. Performance assessments usually involve the injection of counts
corresponding to simulated outbreaks into the background data.

Although statistical analysis is a component of monitoring for disease outbreaks,
it cannot always recover signal from data having poor quality. Concerns about data
quality were discussed in Section 5. Typically, statistical analysis forces researchers
and users to consider limitations due to data quality. In some cases, poor data quality
simply translates into a reduction in the signal to noise ratio and commensurate
reduction in outbreak detection probability. In other cases, data quality can be too
poor to adequately assess outbreak detection probabilities.
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Death Records from Historical Archives:
A Valuable Source of Epidemiological
Information

Rodolfo Acuna-Soto

Abstract In almost every geographic location around the world, historic archives
store a wealth of valuable epidemiological information. Mostly scrutinized by
social scientists, historic information has an enormous potential for epidemiologic
research, yet this information remains largely forgotten. This situation is starting to
change. A renewed interest in historic data has flourished as recent reports, based on
the information retrieved from historic records, have demonstrated that the informa-
tion stored in historic archives is of an exceptional quality. Initially studied by a few
intrepid epidemiologists, the field is growing vigorously. The application of quanti-
tative methods and geographic information systems to historical data is producing a
more detailed picture of the dynamics of human disease in space and time.

Keywords Historical epidemiology · Historic data · Epidemics · Excess mortality ·
Mortality

1 Introduction

Today, reports on the analysis of epidemiological events based on historical data are
infrequent, despite the fact that there are massive amounts of information available
around the world. The reluctance of many epidemiologists to consider working with
historical data is not because they had previous unhelpful or bad experiences with
historical data, but rather because of the weight of tradition. Avoiding history can
be explained by the way modern epidemiology emerged as a renovated science
in the second half of the 20th century. As it relied on innovative concepts and
methods, modern epidemiology required also reliable data. Almost naturally, old
archives were the first victims of this new trend. Without laboratory confirmation,
and with too many ill-defined concepts and different diseases grouped under the
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same diagnosis, old archives turned into unsuitable sources of information for mod-
ern epidemiology. This concept was incorporated to every epidemiology course and
taught to generations of students.

Recently, two major events indirectly re-opened the interest in historical data.
The first was the possible use of smallpox virus or other highly pathogenic infectious
microorganisms of the past as agents of bioterrorism and the second was the emer-
gence of the H5N1 avian influenza virus and its possible recombination to become
a human pandemic strain, similar to the Spanish influenza of 1918. The possibility
that episodes comparable to past catastrophic events may arise has had a strong
influence on the usage and the analysis of the epidemiological information stored
in historic archives. When properly used, this information has proved to be of an
exceptional quality.

2 The Nature of Historical Death Records

For hundreds of years, different institutions in countries around the world have
recorded the birth and death of almost every person. Church and civil archives
commonly keep the information indefinitely and therefore their archives enclose
an immense source of epidemiological information. Frequently, the researcher is
confronted with the decision of choosing among numerous archives with potential
useful information. To help in the decision-making process, I recommend consulting
historians with expertise in the area and the period of time of interest. A primary
survey and comparison of several possible sources will rapidly give a good estimate
of the quality of the information as well as of the amount of work required for
data extraction. In general, retrieving long-term epidemiological data from historical
archives requires a rather large investment of time and effort. It is advisable to keep
the original nomenclature as this allows clarifying and extending the meaning of the
original data. To have a more complete picture of the general health situation for
the period under study, it is also very important to recover additional original infor-
mation: census, maps, routes of transportation, health practices, published historical
data, newspapers, and as many descriptions as possible of eyewitnesses. Needless to
say that historic material is very fragile and must be handled with extreme care. In
general, the custodians of the archives, civil and religious, are very protective about
the material. This is because the records are unique and contain important historic
documents projected to last for centuries.

Records from cemeteries are a very rich and valuable source of information on
the mortality trends of a given population over a long period of time. For hundred
of years Towns and cities had only one main cemetery, generally associated to the
local Church. In almost every case these records were kept in the Church’s office
for a certain period of time, after which most records were transferred to centralized
municipal or state archives; some of them remain in their original places. Fortu-
nately for us, most of those large collections of data remain organized and available
for research. In recent years, major efforts have been done to preserve these com-
plete records and to make then available on the Internet in Canada, United States,
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Germany, England, and other countries. Some of those are continuous series of
causes of death at individual level, dating from the sixteenth century to the present.
This is indeed a great opportunity for epidemiologists. Thus, data collection on the
historic trends of mortality can be performed in almost any part of the world [13]. I
will present the examples of Quebec, United States and Mexico City.

In Quebec, Canada all the provincial burial records have been copied and con-
centrated in the Bibliothèque et Archives Nationales du Québec in Montreal. This
material is extremely interesting since the information of a long period of time for
a large area is concentrated in one place. Much of this information is also available
on line today. With the information stored in those archives, epidemics of smallpox,
measles, influenza, polio and other infectious diseases can be followed day by day,
throughout the entire region.

In the United States, over the last two decades, local historical societies as well as
genealogical and religious organizations have taken the lead in organizing and pre-
serving historic archives. The result is an increasing number of valuable databases
available for research; many of them are already online.

In Mexico the situation is different; burial records from the sixteenth-century to
1861 were transferred to state Cathedrals or major Churches, where most of them
remain available for research. Almost all records dating from the sixteen century
to today include the cause of death. The records after 1861 are in the offices of
cemeteries or in municipal archives and most of them include date, age, sex, and
address in addition to the cause of death. Results built with information retrieved
from municipal archives and cemeteries produce long-term records on the causes of
death of specific communities. With few exceptions, almost all records remain on
paper; therefore to retrieve information from those records, a big investment of time
and effort is required.

Many infectious diseases can be identified easily in historical records (smallpox,
measles, syphilis, rabies, tuberculosis, cholera, whooping cough, diphtheria, yellow
fever, influenza, plague, polio, typhus, dengue and malaria). Other diseases are hid-
den under different names, but the information is still very reliable. However, some
specific diseases are impossible to identify since they are grouped under common
clinical manifestations. For example, the terms “intestinal infection“, “acute diar-
rhea” etc. include all the etiological causes of diarrhea. In any case, it is absolutely
necessary to be familiar with the medical terminology for the region and period of
time under study. Some common examples of old English medical terms for some
infectious diseases are presented in Table 1.

3 Uses of Historical Data

Although the analysis of historical trends of mortality is a relatively new field for
modern epidemiologists, this theme has been extensively investigated by demogra-
phers and other social scientists. Indeed, historic demography embraces a variety
of themes, methodologies and theories with many of the studies being centered
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Table 1 Old english medical terms for some important infectious diseases

Cholera Cholera Asiatica, Algid Cholera, Cholera Maligna
Croup Angina suffocata, Angina Trachealis, Roup

Dengue Dunga, Dingee, Breakbone Fever, Broken-wing Fever, Aden Fever,
Bouquet Fever, Bucket fever, Colorado Fever, Dandy Fever

Diphtheria White throat, Cyanche Maligna, Dyphtherits, Angina Diphterica,
Hogkin Angina

Erysipela Hell’s Fire, Saint Anthony’s Fire

Malaria Ague, Intermittent Fever, Febris Intermittans, Jungle Fever, Marsh
Fever, Paludal Fever, Congestive Chills, Tertian Fevers, Chills and
Fevers

Mumps Angina Parotidea, Antiades, Gissa, Cynanche Parotidea

Pulmonary
tuberculosis

Phthisis, Pulmonary Consumption, Consumption, White Plague

Rabies St. Hubert Disease

Rubella Bastard Measles, False Measles, French Measles, German Measles,
Hard Measles, Hybrid Measles

Syphilis Plague of Venus, Mal-Venerea, Lues Venerea, French Distemper,
Canton Disease, Russian Disease, Polish Disease, Neapolitan
Disease, Christian Disease, Italian Disease, Pox, Great Pox

Typhus (Rickettsia
prowasekii)

Ship Fever, Gaol Fever, Irish Ague, Spotted Ague, Petechial Fever,
Jail Fever, Famine Fever, Hunger Typhus, Typhus Gravior, Ataxic
Fever, Maculated Fever

Variola minor Milkpox, Cottonpox

Whooping cough Blue Cough, Dog Bark, Chin Cough, Kink Cough

Yellow fever Yellow Jack, Black Vomit, American Plague, Bronze John (Texas)

on analyses of the history, the social response, and the impact of epidemics. The
epidemiological analysis of historical material is currently expanding our under-
standing of the epidemic process. This has been demonstrated recently for almost
every aspect of human disease for which historical data have been used. Some of
the most relevant features are: transmission dynamics [3, 6, 14, 24, 25, 29], effect
of climate [1, 26], epidemic events [2, 5, 15], effects of public health interventions
[4, 18, 22] and spread geographic distribution [12, 16, 21].

Ever since Hippocrates wrote his classic text “Airs, water and Places” [19], there
has been an interest to understand how epidemic diseases originate and evolve in
human societies. For centuries, this initial work has been followed by numerous
studies. Among them, Noah Webster in the United States wrote a seminal work “A
Brief History of Epidemic and Pestilential Diseases” published in 1799 [28]. This
trend of recapitulation of epidemics culminate in the monumental work of August
Hirsch [20] published between 1860 and 1864. In this book Hirsch unified all the
information available to his days in the field of historic epidemiology. Recent history
started with the interest of the world’s disease distribution and transmission dynam-
ics during and after World War II. After the war, Hope-Simpson and others initiated
a new trend in the quantitative approach of disease transmission. This beginning
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was followed by Andrew D. Cliff, Peter Haggett, Matthew Smallman-Raynor, Klaus
Dietz, Niels Becker, Bryan Grenfell among others [7–12, 15, 17, 23, 27].

Today Hippocrates’s intention remains intact: understanding the paths by which
epidemics spread through human communities. Today’s geographic epidemiology
incorporates a synergetic combination of historic information, Geographic Infor-
mation Systems, and refined quantitative analysis. As a result, data provided by
these new and old disciplines have significantly contributed to improve the res-
olution of epidemiologic analysis. The field of historic epidemiology is growing
vigorously, feeding in part from historic records. This should not be surprising since
those records are the written record of our biological co- evolution with infectious
agents.
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Sensitivity Analysis for Uncertainty
Quantification in Mathematical Models

Leon Arriola and James M. Hyman

Abstract All mathematical models are approximate and their usefulness depends
on our understanding the uncertainty inherent in the predictions. Uncertainties can
affect the reliability of the results at every stage of computation; they may grow or
even shrink as the solution of the model evolves. Often these inherent uncertainties
cannot be made arbitrarily small by a more complex model or additional computa-
tion and we must understand how the uncertainty in the model parameters, the initial
conditions, and the model itself, lead to uncertainties in the model predictions. This
chapter is an introductory survey of sensitivity analysis and illustrates how to define
the derivative of the model solution as a function of the model input and determine
the relative importance of the model parameters on the model predictions.

1 Introduction and Overview

Sensitivity analysis (SA) can be used to quantify the effects of uncertainties on a
model’s input parameters and the subsequent effect on the model’s output
[2, 5–10, 13, 16, 19, 21–23, 27–30, 32]. That is, SA can determine how variability
of the inputs causes variability in the outputs. The purpose of SA is to quantify this
relationship through the ubiquitous derivative of the output as a function of the input.
We provide an introductory survey of SA, how it’s is done, what can go wrong, and
apply SA to examples from epidemiology, illustrating how these tools can be used
to improve mathematical models by quantitatively identifying key aspects that lead
to strategies for reducing the spread of a disease.

1.1 Sensitivity Analysis: Forward and Adjoint Sensitivity

Consider a mathematical model consisting of user specified inputs, which are sub-
sequently utilized by the model to create output solutions. Variations in the input
parameters create variations in the output. The primary objective of SA is to
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precisely quantify the ratio of output perturbations with respect to the input per-
turbations. That is, SA provides an approach to determine which parameters have
the most/least effect on the output solution. For example, if u denotes the output
solution to a mathematical model and p denotes any of the input parameters, the
primary objective of SA is to efficiently calculate ∂u/∂p.

We introduce and apply the concepts and methodology of SA to three types of
mathematical models:

� static problems
� dynamical systems
� optimization problems

Although static problems do not change in time, they can include complex
relationships between parameters and the solution. As a typical example, con-
sider solving a system of linear equations Au = b. SA can determine how the
solution u depends on perturbations to the coefficients ai j or the right-hand side
terms bi . Perturbations to these input parameters will directly affect the solution
and raises the question: Which of these parameters has the most effect on the
solution? To answer this question, we calculate the derivative expression ∂u/∂p,
where p represents any of the ai j or bi by introducing an auxiliary problem-the
adjoint problem. This adjoint problem will allow us to efficiently find the desired
derivative.

The same type of situation occurs for the common eigenvalue problem Au =
λu that arises, for example, in determining the reproductive number in epidemic
models. Since the eigenstructure of this linear operator depends on the under-
lying parameter space, uncertainty in the ai j produces uncertainty in the eigen-
values and eigenvectors of A. SA is an approach that can define how λ or u
will change if the elements of the matrix A change as measured by: ∂λ/∂ai j

and ∂u/∂ai j . We will use the adjoint SA methodology to derive explicit formula
for the derivatives of the eigenvalue and eigenvector. In epidemic models, the
elements of A are often functions of the parameters, such as the infectivity or pop-
ulation size, in the underlying mathematical model and SA is used to determine
how the eigenvalues change as a function of, say, a change in the transmission
rate.

Epidemiological phenomena are often modeled by time dependent ordinary
differential equations (ODEs), or if there is spatial, age, or other relational depen-
dences, by partial differential equations (PDEs). If the time or spatial dependence
is formulated on a lattice structure, then difference equations can be used as the
mathematical model. Often the parameters or initial conditions (IC’s) are not known
exactly. Again, SA is an approach that can quantify how the uncertainty in input
values is related to uncertainty in the model output u = u(t). As in the static
case, we will introduce an appropriate auxiliary problem, the adjoint problem. When
chosen properly, the adjoint formation can reduce the computational complexity to
answer targeted questions when the full SA is not needed, or is not computationally
feasible.
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1.2 Parameter Estimation

Parameter estimation is needed:

� when there is observational data with significant errors,
� when there are unknown or unspecified parameters, in the model that must be

estimated (parameter estimation (PE)),
� to quantify the inevitable effects of uncertainty, in the observed data set and on

the specification of parameter values, which ultimately leads to uncertainty in the
model prediction (forward sensitivity analysis (FSA)), and

� to determine which regions in time or parameter space have the most effect on
the model prediction (adjoint sensitivity analysis (ASA)).

Consider the graphical representation in Fig. 1 of the overall structure of the
FSA problem, where ODS represents observational data set, PS denotes the param-
eter space, and MP represents the set of model predictions. Notice that the PS is
partitioned into two disjoint sets; one containing those parameters for which we
currently do not have specified values: {p1, . . . , pk}, and the other set of parameters
which do have assigned values {pk+1, . . . , pk+l}. The application of a computational
algorithm whereby one uses the incomplete ODS and obtains specific values for the
unknown parameters can be viewed as the mapping F : ODS �→ {p1, . . . , pk}. This
is the objective of data assimilation. Once the unknown parameters are specified,
the mathematical model can be evaluated providing the MP, that is, G : PS �→ MP.

Measurement errors in the ODS (shown as the dashed curves in Fig. 2) introduce
uncertainties produce uncertainty in the PS, and hence uncertainty in the MP.

ODS MP

{P1,.....PK}

{PK+1,.....PK+L}

PS

Fig. 1 Using the observational data set (ODS) to obtain values for unspecified parameters
{p1, . . . , pk} in the parameter space (PS), which allows evaluation of the epidemiological model
to obtain the model prediction (MP)

ODS + δODS PS + δPS MP + δMP

{P1,.....PK}

{PK+1,.....PK+L}

Fig. 2 Uncertainty in the ODS, (shown as dashed curves), produces uncertainty in the PS, which
leads to uncertainty in the MP of the epidemiological model
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We will describe local SA approaches to estimating the change in the solution
resulting from small changes in nominal fixed values of the defining parameters.
This introduction to SA will not discuss in detail the methodology of data assim-
ilation, as applied to parameter estimation in epidemiology. However, we will
provide the basic tools needed for parameter estimation. Furthermore, global SA
(uncertainty quantification) [28] issues such as the sensitivity of bifurcation points,
critical/degenerate points, extrema, variance-based methods such as Monte Carlo
methods or the Fourier Amplitude Sensitivity Tests, Latin Hypercube or Fractional
Factorial sampling, or Bayesian SA.

2 Sensitivity Analysis

2.1 Normalized Sensitivity Index

The fundamental objective of SA is to quantitatively estimate how uncertainty of
inputs gives rise to uncertainties of the model outputs. In particular, we describe
FSA and ASA for deterministic (non-stochastic) mathematical models.

FSA quantitatively determines how the output solution u, to our mathematical
model, or some response function(al) J (u), changes as small perturbations are made
to a model parameter p, as is shown in Fig. 3. If the solution and functional are
differentiable wrt. a parameter p, then in FSA we calculate the derivatives ∂u/∂p
and ∂ J (u)/∂p and define the normalized sensitivity indexes (SI):

Su p := lim
δp→0

(
δu

u

)(
δp

p

)−1

=
( p

u

) ∂u

∂p
(1)

SJp := lim
δp→0

δ J

J

(
δp

p

)−1

=
(

J

p

)
∂u

∂p
. (2)

The normalized SI [13, 28–30] measure the relative change in the output δu/u or
δ J/J , wrt. a small relative change to the input δp/p.

Fig. 3 The forward problem
(FP-top figure) takes nominal
input parameters p and
produces the associated
output solution u. Forward
sensitivity analysis
(FSA-bottom figure)
introduces perturbations to
the input parameters, via δp
and quantifies the subsequent
perturbations to the output
solution via δu

P UFP

P + δP U + δUFP

FSA
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Fig. 4 Adjoint sensitivity
analysis (ASA) introduces
perturbations to the output
solution, via δu and
quantifies how these changes
are related to perturbations in
the input parameters via δp

P + δq U + δvFP

ASA

One of the pitfalls in applying the results of SA is in not paying close attention to
the relationships between the signs of S, u, δu, p, and δp. Often the output variable
u is nonnegative, such as the infected population in an epidemic model and, without
loss of generality, we will assume that the parameters and output variables in this
article are all positive. When this is not the case, then the analysis must pay close
attention to signs of the variables.

If the mathematical model is a dynamical system, then the SI can depend on
time and the relative importance of the parameters can also depend on time. For
example, for t ≤ tc, the parameter p1 might have more affect on the solution than
the parameter p2, whereas for t > tc the roles of importance might reverse. This
often occurs when comparing the relative importance of model parameters in early
and late stages of an epidemic.

Whereas, for dynamical systems, FSA measures the future change in the solution
caused by small changes in the parameters, ASA [12, 21–23] looks back in time, as
shown in Fig. 4.

2.2 Motivation for Sensitivity Analysis

Consider the two species symbiotic population model [26] given by

du1

dt
= u1(1 − u1 − au2) (3)

du2

dt
= bu2(1 − u2 − cu1), (4)

where the parameters a, b, and c are nonnegative, ac is constant, and we are given
the initial population of the two species as u1(0) and u2(0). For physical reasons, we
require that the parameters satisfy the conditions 0 < a, c < 1.

Some typical questions one might ask are

� Which of the parameters has the most influence on the value (not stability) of the
equilibrium point(s)?

� Which of the parameters has the most influence on the stability/instability of the
equilibrium points?

� Which of the parameters has the most influence on the time dependent solutions
u1 and u2?

For more sophisticated models [1], numerous other relevant questions could easily
come to mind. We will study this problem in more detail in the following sections.
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3 Linear System of Equations and Eigenvalue Problem

3.1 Linear System of Equations: Symbiotic Population

For the two species symbiotic population model given above, let us determine which
of the three parameters has the most influence on the value (not stability) of the
equilibrium point(s) (ū1, ū2) of Equations (3, 4). In other words, we would like to
know how the solutions (ū1, ū2) of the steady state system

ū1(1 − ū1 − aū2) = 0

bū2(1 − ū2 − cū1) = 0

are affected by changes to the two parameters a or c.
Solving this nonlinear system, we find the four equilibrium points

(ū1, ū2) =
{

(0, 0), (0, 1), (1, 0),

(
1 − a

1 − ac
,

1 − c

1 − ac

)}
.

Notice that the extinct and single species equilibrium points (0, 0), (0, 1), and (1, 0)
are independent of the a or c and therefore are unaffected by perturbations to
these parameters. The two species equilibrium point however does depend on these
parameters in which case we find the normalized relative sensitivity indices to be

a

ū1

∂ ū1

∂a
= − a(1 − c)

(1 − a)(1 − ac)
,

a

ū2

∂ ū2

∂a
= ac

1 − ac
,

c

ū1

∂ ū1

∂c
= ac

1 − ac
, and

c

ū2

∂ ū2

∂c
= − c(1 − a)

(1 − c)(1 − ac)
.

Notice that the sensitivity of u1 wrt. c is the same as it is for u2 wrt. a.
The relative importance, as measured by the sensitivity indices, may be different

in different regions of the parameter space. For this example, consider the sensitivity
of u1 wrt. a and u2 wrt. c, where we want to know what the ordering is;

a

ū1

∂ ū1

∂a
?

c

ū2

∂ ū1

∂c

− a(1 − c)

(1 − a)(1 − ac)
? − c(1 − a)

(1 − c)(1 − ac)
1 − c√

c
?

1 − a√
a

.

Here the symbol ? is an inequality symbol, such as < or >. Since the function
f (x) := (1− x)/

√
x , for x ∈ (0, 1) is a strictly decreasing function, if x1 < x2, then
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f (x1) > f (x2). In other words, the relative importance, via the sensitivity indices,
depends on whether c > a or c < a.

Although we now have a methodology for determining the sensitivity of the
equilibrium points, even more information can be gleaned by using SA for the
evolution of the solution. In simpler examples the closed form solution is easily
found and elementary calculus can be applied to find the associated sensitivity
indices.

Let us restate and reformulate the problem of interest, that is to obtain the deriva-
tives ∂ ū1/∂p and ∂ ū2/∂p, where p represents any of the three parameters a, b or
c. Even when the closed form solutions for the equilibrium points is not known,
then we can directly construct the FSA by differentiating the equilibrium problem.
The associated forward sensitivity equations (FSE) containing these derivatives are
found by taking the partial derivatives ∂/∂p of both equilibrium equations, and
applying the standard chain rule, to get the linear system

Du
∂u
∂p

= −∇p F,

where, the notation we use will become apparent shortly,

Du =
(

1 − 2ū1 − aū2 −aū1

−bcū2 b(1 − 2ū2 − cū1)

)
,

∂u
∂p

=

⎛
⎜⎜⎝

∂ ū1

∂p

∂ ū2

∂p

⎞
⎟⎟⎠ ,

∇p F =

⎛
⎜⎜⎝

−ū1ū2
∂a

∂p

−ū1ū2
∂c

∂p

⎞
⎟⎟⎠ .

One could calculate D−1
u directly, however for large systems of equations this

procedure is both analytically difficult or computationally expensive. Direct inver-
sion of the linear operator should always be avoided, except in very small systems.
Instead for large systems, we obtain D−1

u ∇p F by introducing an auxiliary problem
called the adjoint problem.

Before describing the adjoint problem, we make the important observation that
the system of equations defining the derivative du/dp is always a linear system,
even though the original system was nonlinear. This particular example suggests
that although the equilibrium point(s) could be solutions to nonlinear equations, the
FSE’s are linear in the derivative terms. To see this is true in general, consider the
2-D system

du1

dt
= f1(u1, u2; p)

du2

dt
= f2(u1, u2; p)
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where f1 and f2 are differentiable in u1, u2 and p. Since the equilibrium points are
solutions of the nonlinear system

f1(ū1, ū2; p) = 0

f2(ū1, ū2; p) = 0

then the associated FSE’s is the linear system

Du
∂u
∂p

= −∇p F, (5)

where

Du =

⎛
⎜⎜⎜⎝

∂ f1

∂ ū1

∂ f1

∂ ū2

∂ f2

∂ ū1

∂ f2

∂ ū2

⎞
⎟⎟⎟⎠ ,

∂u
∂p

=

⎛
⎜⎜⎜⎝

∂ ū1

∂p

∂ ū2

∂p

⎞
⎟⎟⎟⎠ , ∇p F =

⎛
⎜⎜⎜⎝

∂ f1

∂p

∂ f2

∂p
.

⎞
⎟⎟⎟⎠ .

The notation chosen is suggestive: Du denotes the Jacobian wrt. the variables u and
∇p F denotes the gradient wrt. the parameters p.

Thus, the FSE for the equilibrium solutions of the IVP can be written in the
general form

Aw = b, (6)

where A is a real N × N nonsymmetric and nonsingular matrix, which in this exam-
ple is the Jacobian matrix. Let p denote any of the parameters ai j or bi and assume
that for the specified values of p, the forward solution w is a differentiable function
of the parameters and is sufficiently far away from any singularities in the parameter
space, then the FSE are given by

A
∂w
∂p

= ∂b
∂p

− ∂A
∂p

w. (7)

Since perturbations to the parameter p produces perturbations in the forward solu-
tion w, FSA requires the calculation of the derivative ∂w/∂p. This FSE equation
could be solved by premultiplying by the matrix inverse A−1, however, for larger
systems, this procedure is computationally expensive, often numerically unstable,
and should be avoided if at all possible.

The ASA accomplishes the same goal, while avoiding computing A−1, by
introducing an auxiliary problem which isolates how the solution depends on the
parameters; that is, ∂w/∂p. This is accomplished by defining an appropriate inner
product and cleverly choosing conditions so as to isolate the desired quantity. For
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this simple case, we use the usual vector inner product for standard Euclidean space
and premultiply the FSE by some, as of yet unspecified, nontrivial vector vT

vT A
∂w
∂p

= vT

(
∂b
∂p

− ∂A
∂p

w
)

. (8)

Now consider the 1 × N vector cT := vT A, or written as the associated adjoint
problem

AT v = c. (9)

Since we wish to isolate the derivative term ∂w/∂p, choose N forcing vectors of the
form cT

i = (0 · · · 0 1 0 · · · 0
)
, where the 1 is located in the i th column. This forces

the product vT A to project out the desired components ∂wi/∂p, for i = 1, . . . , N ,
in which case

∂wi

∂p
= vT

i

(
∂b
∂p

− ∂A
∂p

w
)

. (10)

This particular choice for the adjoint problem leads to an intimate relation-
ship between the inverse matrix A−1 and the matrix of adjoint vectors V :=(
v1 v2 · · · vN

)
, namely VT = A−1. The relationships between the forward and

adjoint problems and sensitivity equations, in this example, shown in Fig. 5, illus-
trates connections between the forward and adjoint problem.

3.2 Stability of the Equilibrium Solution: The Eigenvalue Problem

The stability of the equilibrium solution of (3) and (4) depends upon the eigenval-
ues of the Jacobian of the linearized system at the equilibrium. These eigenvalues
are functions of the parameters p. Therefore, we can use sensitivity analysis to

Fig. 5 The relationships
between the forward
sensitivity and associated
adjoint problems creates a
self-consistant framework for
sensitivity analysis
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determine how the stability of an equilibrium point is affected by changes to the
parameters. The eigenvalues λ of the Jacobian

A =
(

1 − 2ū1 − aū2 −aū1

−bcū2 b (1 − 2ū2 − cū1)

)
(11)

could be found by constructing the characteristic polynomial and solving the asso-
ciated characteristic equation

p(λ) = λ2 − (1 − 2ū1 − aū2 + b(1 − cū1 − 2ū2) λ − abcū1ū2 and p(λ) = 0.

For this simple problem, the eigenvalues can be explicitly found, and subsequently
the derivatives ∂λ/∂p can be calculated. However, as the system of differential equa-
tions increases, so does the degree of the associated characteristic polynomial and
this approach becomes impracticable. The roots of high degree polynomials cannot
be defined analytically, and the numerical methods for finding these roots often
suffer from numerical instabilities.

As was done in the previous example of finding the sensitivity of a linear
system of equations, we proceed to find the sensitivity of the right eigenvalue
problem1

Au = λu (12)

where A is an N × N nonsymmetric matrix with distinct eigenvalues and an associ-
ated complete, nonorthonormal set of eigenvectors, which span R

N . This particular
example will shed light on a significant inherent limitation of ASE that is rarely
discussed, much less emphasized.

Since the eigenvalues λ and the eigenvectors u depend on the coefficients ai j ,
differentiate the right eigenvalue problem to get the FSE

A
∂u
∂ai j

+ ∂A
∂ai j

u = λ
∂u
∂ai j

+ ∂λ

∂ai j
u. (13)

The difficulty that arises in this example is that there are two unknown derivatives of
interest, the derivative of the eigenvalues ∂λ/∂ai j and the derivative of the eigenvec-
tors ∂u/∂ai j . The purpose of the adjoint methodology is to produce one, and only
one, additional auxiliary problem. That is, a single associated adjoint problem can
only be used to find the derivative of the eigenvalues or the derivative of the eigen-
vectors, but not both simultaneously. As we will show, using the adjoint problem to
find ∂λ/∂ai j precludes the ability to find ∂u/∂ai j , unless additional information is
provided.

1 As we will see shortly, the associated left eigenvalue problem is the adjoint problem for (12),
namely AT v = λv.



Sensitivity Analysis for Uncertainty Quantification in Mathematical Models 205

Let v be some nonzero, as yet unspecified, vector and take the inner product with
the FSE (13) to get

∂λ

∂ai j
〈u, v〉 =

〈
∂A
∂ai j

u, v
〉
+
〈
(A − λI)

∂u
∂ai j

, v
〉
. (14)

Because (A − λI)T = AT −λI, we can use the Lagrange identity for matrices, under
the usual inner product, to get

〈
(A − λI)

∂u
∂ai j

, v
〉

=
〈

∂u
∂ai j

,
(
AT − λI

)
v
〉
.

Now annihilate the second inner product by forcing the adjoint condition

AT v = λv, (15)

which is known as the left eigenvalue problem. For the original eigenvalue problem,
the left eigenvalue problem is the associated adjoint problem. (For more details, see
[18, 32].)

The properties of the left and right eigenvalue problems include:

� If the right eigenvalue problem has a solution, then the left eigenvalue also has a
solution.

� The right and left eigenvectors u and v are distinct, for a specified eigenvalue λ.
� The right eigenvectors u(k) = (u1

(k) u2
(k) · · · uN

(k)
)T

and left eigenvectors v(l) =(
v1

(l) v2
(l) · · · vN

(l)
)T

are orthogonal for k �= l and
〈
u(k), v(k)

〉 �= 0 for k = l.
� Using the previous result, the right and left eigenvectors can be normalized, i.e.,〈

u(k), v(k)
〉 = 1.

Using the left eigenvalue problem (adjoint problem), Equation (14) reduces to

∂λ

∂ai j
〈u, v〉 = vi u j .

Since the right and left eigenvectors are normalized, the explicit expression for the
derivative of the eigenvalue wrt. the coefficients ai j is

∂λ

∂ai j
= vi u j . (16)

To find an explicit expression for ∂u/∂ai j , we must introduce additional infor-
mation. The reason for this diversion is that no new information can be gleened
about ∂u/∂ai j from the adjoint problem. The key to making further progress is to
recall that we have assumed that the N × N matrix A has N distinct eigenvalues, in
which case there exists a complete set of N eigenvectors. We now make use of the
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fact that any vector in C
N can be expressed as a linear combination of the spanning

eigenvectors. Since ∂u/∂ai j is an N × 1 vector, we can write this derivative as a
linear combination of the eigenvectors.

It will be helpful to introduce some additional notation describing the right and
left eigenvector matrices U and V, whose columns are the individual eigenvectors
u(k) and v(k) respectively, and let Λ be the diagonal matrix of eigenvalues λk , that is

U := (u(1) u(2) · · · u(N )
)
, V := (v(1) v(2) · · · v(N )

)
and Λ :=

⎛
⎜⎜⎜⎝

λ1 0
λ2

. . .
0 λN

⎞
⎟⎟⎟⎠ .

Using this notation, the right and left eigenvalue problems can be written as

AU = UΛ and AT V = VΛ. (17)

Earlier we forced the right and left eigenvectors to be normalized, and therefore
the matrix of eigenvectors satisfy the identity

VT U = I. (18)

The derivative of the matrix of eigenvectors can written as a linear combination of
the eigenspace;

∂U
∂ai j

= UC . (19)

This equation defines the coefficient matrix

C :=

⎛
⎜⎜⎜⎝

c1
(1) c1

(2) c1
(3) · · · c1

(N )

c2
(1) c2

(2) c2
(3) · · · c2

(N )

...
...

...
cN

(1) cN
(2) cN

(3) · · · cN
(N )

⎞
⎟⎟⎟⎠ , (20)

where for a fixed eigenvector u(k), the derivative can be expanded as the sum

∂u(k)

∂ai j
= c1

(k)u(1) + · · · + ck
(k)u(k) + · · · cN

(k)u(N ). (21)

We now describe how to define the coefficients cl
(m).

Differentiating the right eigenvector matrix Equation (17) gives

A
∂U
∂ai j

+ ∂A
∂ai j

U = U
∂Λ

∂ai j
+ ∂U

∂ai j
Λ. (22)



Sensitivity Analysis for Uncertainty Quantification in Mathematical Models 207

Using Equation (17) and (19) and rearranging we get

U [Λ, C] = U
∂Λ

∂ai j
− ∂A

∂ai j
U, (23)

where [·, ] denotes the commutator bracket [Λ, C] := ΛC − CΛ.
Next, premultiply by the left eigenvector matrix and use the normalization

condition, this equation reduces to

[Λ, C] = ∂Λ

∂ai j
− VT ∂A

∂ai j
U. (24)

Expanding the commutator bracket we find that

[Λ, C] =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 c1
(2)(λ1 − λ2) c1

(3)(λ1 − λ3) · · · c1
(N )(λ1 − λN )

c2
(1)(λ2 − λ1) 0 c2

(3)(λ2 − λ3) · · · c2
(N )(λ2 − λN )

c3
(1)(λ3 − λ1) c3

(2)(λ3 − λ2) 0 · · · c3
(N )(λ3 − λN )

...
. . .

...

cN
(1)(λN − λ1) cN

(2)(λN − λ2) cN
(3)(λN − λ3) · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(25)
Since the right side of Equation (24) is known, and because we assumed that the
eigenvalues are distinct, we can solve for the off-diagonal coefficients

cl
(m) = − 1

λl − λm

[
VT ∂A

∂ai j
U
]

lm

for l �= m. (26)

The next task is to find the values of the diagonal coefficients. Once again, we
make use of the fact that the eigenvectors form a basis for C

N . To solve for the
scalar diagonal coefficients ck

(k) in (21), we first transform this vector equation to a
scalar equation by normalizing the right eigenvectors. That is, we force the condi-
tion
〈
uk, uk

〉 = 1. Next, we fix the indexes i, j and differentiate this normalization
condition to get

ukT ∂uk

∂ai j
+ ∂ukT

∂ai j
uk = 0.

Because

∂ukT

∂ai j
uk = ukT ∂uk

∂ai j
,
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it follows that uk and ∂uk/∂ai j are orthogonal, in which case we obtain the N
equations

〈
∂uk

∂ai j
, uk

〉
= 0, for k = 1, . . . N . (27)

Next premultiply, the summed version of the derivative of the eigenvector (21), by
u(k) to get

c1
(k)〈u(1), u(k)〉 + · · · + ck

(k)〈u(k), u(k)〉 + · · · cN
(k)〈u(N ), u(k)〉 = 0.

Since the individual eigenvectors have been normalized, we can solve for the
diagonal coefficients in terms of the known off diagonal coefficients:

ck
(k) = −

N∑
i=1
i �=k

ci
(k)〈u(i), u(k)〉. (28)

4 Dimensionality Reduction

When considering a mathematical model where some of the variables may be redun-
dant, one would like to be able to identify, with confidence, those variables that can
be safely eliminated without affecting the validity of the model. To not inadvertently
eliminate significant variables, one must identify groups of variables that are highly
correlated. In essence, one is trying to identify those aspects of the model that are
comprised of strongly interacting mechanisms. A problem arises when one uses
data, which contain errors or noise, to estimate the correlation between these vari-
ables and use these estimates to determine which variables can be safely eliminated.
Thus, uncertainty in the data can create uncertainty in the correlation estimates and
ultimately in the reduced model.

For example, consider an imaginary disease for which a specific blood test can,
with certainty, identify whether the patient has or does not have this disease. Now
suppose that there exists a medication whose sole purpose is to treat this particular
disease. When constructing a model of this scenario, the number of prescriptions
for this medication and the positive blood test results are highly correlated. Assum-
ing that the examining physician always prescribes this medication the correlation
would in fact be 1.0. The information contained in these two data sets are redun-
dant. Either the number of positive blood test results or the number of prescriptions
provides sufficient information about the number of positively diagnosed infections.
Taking a geometric perspective of this scenario, since the two data sets are so highly
correlated, a projection from a 2-dimensional parameter space to a 1-dimensional
space would be appropriate.

Now consider the more realistic scenario where public health officials are mon-
itoring a seasonal outbreak of a disease. Syndromic surveillance or biosurveil-
lance data of clinical symptoms such as fever, number of hospital admissions,
over-the-counter medication consumption, respiratory complaints, school or work
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absences, etc., while readily available, does not directly provide accurate numer-
ical quantification of the size of the outbreak. Furthermore, “noise” in the data
causes inaccuracy of any specific numerical assessments or predictions. Addition-
ally, symptoms such as fever and respiratory complaints have different levels of
correlation for different diseases, and therefore difficulties arise in determining
which factors are redundant and which factors are essential to the model. In other
words, it would be desirable to identify the highly correlated variables, in which
case we could reduce the dimension of the data, without significantly degrading the
validity of the model, and minimize the effects of noise.

4.1 Principal Component Analysis

Principal component analysis (PCA) is a powerful method of modern data analysis
that provides a systematic way to reduce the dimension of a complex data set to
a lower dimension, and oftentimes reveals hidden simplified structures that would
otherwise go unnoticed.

Consider an M × N matrix of data measurements A with M data types and N
observations of each data type. Each M×1 column of A represents the measurement
of the data types at some time t for which there are N time samples. Since any M ×1
vector lies in an M-dimensional vector space, then there exists an M-dimensional
orthonormal basis that spans the vector space. The goal of PCA is to transform the
noisy, and possibly redundant data, set to a lower dimensional orthonormal basis.
The desired result is that this new basis will effectively and successively filter out
the noisy data and reveal hidden structures among the data types.

The way this is accomplished is based on the idea of noise, rotation, and covari-
ance. When performing measurements, the problem of quantifying the effect of
noise has on the data set is often defined by the signal-to-noise ratio (SNR) and
is defined as the ratio of variances

SNR := σ 2
Signal

σ 2
Noise

. (29)

If the SNR is large, then the signal/measurements are accurate; whereas, if SNR is
small, then the data is significantly contaminated by noise. Since one of the goals
of PCA is transform the data to a basis that minimizes the effect of noise, PCA
increases the SNR by maximizing the signal variance. Secondly, data identified
having high covariance is used to guide in reducing the dimension of the data set.

4.2 Singular Value Decomposition (SVD)

Let A be a real M × N matrix and let r denote the rank of A. Recall some essential
geometric properties of matrices:

1. The matrix A maps the unit sphere in R
N and into a hyperellipsoid in R

M .
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2. The directions of the hyper-axes of the ellipsoid are denoted by the orthogonal
basis {u(k)}, for k = 1, . . . M (singular vectors).

3. The stretching/compression factors, (singular values) are denoted by {σk}.
4. The vectors σku(k) define the principal semi-axes of the hyperellipsoid.

The SVD defines the particular factorization of A, in terms of the above geometric
properties, as

A = U Σ∼ VT (30)
where

� the M × M matrix U is unitary (i.e., UT U = I, where T denotes transpose and I
is the M × M identity matrix) and the columns u(k) form an orthogonal basis for
R

M ,
� similarly, the N × N matrix V is also unitary and the column v(k) form an

orthogonal basis for R
N , and

� the M × N diagonal matrix Σ∼ is

Σ∼ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ1 0
. . .

σr

0
. . .

0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (31)

where the singular values are ordered as σ1 > σ2 > · · · > σr > σr+1 = · · · =
σp = 0 and p := min(M, N ).

The way to find the M columns u of U, and the N columns v of V, where

U := (u(1) u(2) · · · u(M)
)
, V := (v(1) v(2) · · · v(N )

)

is to solve the left and right eigenvalue problems

Av = σu, and AT u = σv. (32)

Note that because the columns of U and V are the eigenvectors of AAT, the
norms of these matrix vector products are the same as the norms of the eigenvectors.

4.3 Sensitivity of SVD

Because the singular values σ and the singular vectors u and v depend on the coef-
ficients ai j , we can differentiate the left and right eigenvalue problems (32) to get
the FSE
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A
∂v
∂ai j

+ ∂A
∂ai j

v = σ
∂u
∂ai j

+ ∂σ

∂ai j
u, (33)

AT ∂u
∂ai j

+ ∂AT

∂ai j
u = σ

∂v
∂ai j

+ ∂σ

∂ai j
v. (34)

Because the matrices U and V are unitary, the associated singular vectors u and
v are normalized, i.e.,

〈u, u〉 = 〈v, v〉 = 1.

Using this result we find the useful orthogonality condition

uT ∂u
∂ai j

= vT ∂v
∂ai j

= 0. (35)

Premultiply the left FSE given in (33) by uT and, using the orthogonality and
normalizing conditions, the FSE reduces to

uT A
∂v
∂ai j

+ uT ∂A
∂ai j

v = ∂σ

∂ai j
. (36)

The right eigenvalue problem, rewritten as uT A = σvT , is used with the
orthogonality condition (35) to eliminate the first term in (36) to give:

∂σ

∂ai j
= uT ∂A

∂ai j
v

= uiv j . (37)

for i = 1, . . . , M and j = 1, . . . , N

Now using the matrix notation, the left and right eigenvalue problems can be
written in matrix form

A V = U Σ∼ and AT U = V Σ∼
T . (38)

Since the derivative of the singular vector is in R
M , it can be written as a linear

combination of the singular vectors, define the coefficient matrix as

C :=

⎛
⎜⎜⎜⎝

c1
(1) c1

(2) c1
(3) · · · c1

(M)

c2
(1) c2

(2) c2
(3) · · · c2

(M)

...
...

...
cM

(1) cM
(2) cM

(3) · · · cM
(M)

⎞
⎟⎟⎟⎠ , (39)
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so that the derivative of the eigenvector matrix can be written as

∂U
∂ai j

= UC. (40)

Differentiating the right eigenvector matrix equation gives

AT ∂U
∂ai j

+ ∂AT

∂ai j
U = V

∂Σ∼
T

∂ai j
+ ∂V

∂ai j
Σ∼

T . (41)

Using (40), we get

AT UC − ∂V
∂ai j

Σ∼
T = V

∂Σ∼
T

∂ai j
− ∂AT

∂ai j
U. (42)

To replace the derivative ∂V/∂ai j in terms of the product UC, differentiate the left
eigenvalue problem to obtain

A
∂V
∂ai j

= U
∂Σ∼
∂ai j

+ UCΣ∼ − ∂A
∂ai j

V.

Next, premultiply Equation (42) by matrix A, and using this result gives

AAT UC − A
∂V
∂ai j

Σ∼
T = AV

∂Σ∼
T

∂ai j
− A

∂AT

∂ai j
U

AAT UC −
(

U
∂Σ∼
∂ai j

+ UCΣ∼ − ∂A
∂ai j

V

)
Σ∼

T = AV
∂Σ∼

T

∂ai j
− A

∂AT

∂ai j
U.

Rearranging so as to isolate the expressions containing UC, on the left side of the
equation, we get

AAT UC − UCΣ∼Σ∼
T = AV

∂Σ∼
T

∂ai j
− A

∂AT

∂ai j
U + U

∂Σ∼
∂ai j

Σ∼
T − ∂A

∂ai j
VΣ∼

T .

Consider the pair of expressions on the left side of this equation

AAT UC − UCΣ∼Σ∼
T = AVΣ∼

T C − UCΣ∼Σ∼
T

= UΣ∼Σ∼
T C − UCΣ∼Σ∼

T

= U
[
Σ∼Σ∼

T , C
]
,
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where [·,·] denotes the commutator bracket
[
Σ∼Σ∼

T , C
]

:= Σ∼Σ∼
T C−CΣ∼Σ∼

T . Next,

consider the two expressions

AV
∂Σ∼

T

∂ai j
+ U

∂Σ∼
∂ai j

Σ∼
T = UΣ∼

∂Σ∼
T

∂ai j
+ U

∂Σ∼
∂ai j

Σ∼
T

= U
∂

∂ai j

[
Σ∼Σ∼

T
]
.

Now consider the remaining two expressions

A
∂AT

∂ai j
U + ∂A

∂ai j
VΣ∼

T = A
∂AT

∂ai j
U + ∂A

∂ai j
AT U

=
(

∂

∂ai j

[
AAT ])U.

Using these simplifications in notation gives the system of equations in ck
(l)

U
[
Σ∼Σ∼

T , C
]

= U
∂

∂ai j

[
Σ∼Σ∼

T
]

−
(

∂

∂ai j

[
AAT

])
U.

Using the unitary condition UT U = I, where I is the M × M identity matrix, this
equation simplifies to the final form

[
Σ∼Σ∼

T , C
]

= ∂

∂ai j

[
Σ∼Σ∼

T
]

− UT

(
∂

∂ai j

[
AAT

])
U. (43)

Expanding the commutator bracket we find that

[
Σ∼Σ∼

T , C
]

kl
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 k = l or k and l > r ,

ck
(l)
(
(σk)2 − (σl)2

)
k, l ≤ r,

−ck
(l)(σl)2 l ≤ r and k ≥ r + 1,

ck
(l)(σk)2 k ≤ r and l ≥ r + 1.

(44)

Since the right side of Equation (43) is known, and since we have assumed that the
singular values are distinct, we can solve for the off-diagonal coefficients.

The final task is to find the values of the diagonal coefficients. Once again, we
make use of the fact that the singular vectors {u(k)} form a basis for R

M , that is, for
a fixed eigenvector u(k), the derivative is expanded as the sum

∂u(k)

∂ai j
= c1

(k)u(1) + · · · + ck
(k)u(k) + · · · cM

(k)u(M).
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When we use the orthogonality of the derivative of the singular vector with the
singular vector we get

c1
(k)〈u(1), u(k)〉 + · · · + ck

(k)〈u(k), u(k)〉 + · · · cM
(k)〈u(M), u(k)〉 = 0.

Since the individual singular vectors are orthonormal, the diagonal coefficients are
all identically zero.

Using this same approach, we can find ∂V/∂ai j . To accomplish this, write this
derivative as a linear combination of the singular vectors v(k)

∂V
∂ai j

= VD,

where

D :=

⎛
⎜⎜⎜⎝

d1
(1) d1

(2) d1
(3) · · · d1

(N )

d2
(1) d2

(2) d2
(3) · · · d2

(N )

...
...

...
dN

(1) dN
(2) dN

(3) · · · dN
(N )

⎞
⎟⎟⎟⎠ ,

and proceed as was done above.

5 Initial Value Problem

We now extend the initial value problem (IVP) (3) and (4) as the more general
system of equations

du1

dt
= f1(u1, u2, p1, p2, p3) u1(0) = u1

(0) (45)

du2

dt
= f2(u1, u2, p1, p2, p3) u2(0) = u2

(0) (46)

where the u1(t) and u2(t) denote the time dependent forward solutions, p1, p2, p3

denote some fixed or steady state parameters, u1
(0), u2

(0) are the initial conditions
(IC’s), and t ∈ [0, b]. To determine the sensitivity of an associated functional, or
response function, of the solution, we consider a generic form that encompasses
most functionals that one encounters [2, 13];

J [u] :=
b∫

t=0

g(u1, u2, p1, p2, p3) dt + h(u1, u2, p1, p2, p3)

∣∣∣∣
t=b

. (47)
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Here the functions g and h are sufficiently differentiable in their arguments. We
wish to determine how the functional J is affected by changes to the parameters or
IC’s. Specifically, we must calculate the derivatives

∂ J

∂p1
=

b∫

t=0

(
∂g

∂u1

∂u1

∂p1
+ ∂g

∂u2

∂u2

∂p1
+ ∂g

∂p1

)
dt

+
(

∂h

∂u1

∂u1

∂p1
+ ∂h

∂u2

∂u2

∂p1
+ ∂h

∂p1

) ∣∣∣∣
t=b

∂ J

∂p2
=

b∫

t=0

(
∂g

∂u1

∂u1

∂p2
+ ∂g

∂u2

∂u2

∂p2
+ ∂g

∂p2

)
dt

+
(

∂h

∂u1

∂u1

∂p2
+ ∂h

∂u2

∂u2

∂p2
+ ∂h

∂p2

) ∣∣∣∣
t=b

∂ J

∂p3
=

b∫

t=0

(
∂g

∂u1

∂u1

∂p3
+ ∂g

∂u2

∂u2

∂p3
+ ∂g

∂p3

)
dt

+
(

∂h

∂u1

∂u1

∂p3
+ ∂h

∂u2

∂u2

∂p3
+ ∂h

∂p3

) ∣∣∣∣
t=b

∂ J

∂u1
(0)

=
b∫

t=0

(
∂g

∂u1

∂u1

∂u1
(0)

+ ∂g

∂u2

∂u2

∂u1
(0)

)
dt

+
(

∂h

∂u1

∂u1

∂u1
(0)

+ ∂h

∂u2

∂u2

∂u1
(0)

) ∣∣∣∣
t=b

∂ J

∂u2
(0)

=
b∫

t=0

(
∂g

∂u1

∂u1

∂u2
(0)

+ ∂g

∂u2

∂u2

∂u2
(0)

)
dt

+
(

∂h

∂u1

∂u1

∂u2
(0)

+ ∂h

∂u2

∂u2

∂u2
(0)

) ∣∣∣∣
t=b

.

5.1 Forward Sensitivity of the IVP

To evaluate the functional, all of the derivative terms ∂u1/∂p1, ∂u1/∂p2, etc., must
be found. We start by differentiating the original IVP given in Equations (45), (46)
wrt. all of the parameters and ICs. Assuming that the derivative operators d/dt and
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∂/∂p commute, the forward sensitivity equations (FSE) are given by

d

dt

[
∂u1

∂p1

]
= ∂ f1

∂u1

∂u1

∂p1
+ ∂ f1

∂u2

∂u2

∂p1
+ ∂ f1

∂p1

d

dt

[
∂u1

∂p2

]
= ∂ f1

∂u1

∂u1

∂p2
+ ∂ f1

∂u2

∂u2

∂p2
+ ∂ f1

∂p2

d

dt

[
∂u1

∂p3

]
= ∂ f1

∂u1

∂u1

∂p3
+ ∂ f1

∂u2

∂u2

∂p3
+ ∂ f1

∂p3

d

dt

[
∂u1

∂u1
(0)

]
= ∂ f1

∂u1

∂u1

∂u1
(0)

+ ∂ f1

∂u2

∂u2

∂u1
(0)

d

dt

[
∂u1

∂u2
(0)

]
= ∂ f1

∂u1

∂u1

∂u2
(0)

+ ∂ f1

∂u2

∂u2

∂u2
(0)

d

dt

[
∂u2

∂p1

]
= ∂ f2

∂u1

∂u1

∂p1
+ ∂ f2

∂u2

∂u2

∂p1
+ ∂ f2

∂p1

d

dt

[
∂u2

∂p2

]
= ∂ f2

∂u1

∂u1

∂p2
+ ∂ f2

∂u2

∂u2

∂p2
+ ∂ f2

∂p2

d

dt

[
∂u2

∂p3

]
= ∂ f2

∂u1

∂u1

∂p3
+ ∂ f2

∂u2

∂u2

∂p3
+ ∂ f2

∂p3

d

dt

[
∂u2

∂u1
(0)

]
= ∂ f2

∂u1

∂u1

∂u1
(0)

+ ∂ f2

∂u2

∂u2

∂u1
(0)

d

dt

[
∂u2

∂u2
(0)

]
= ∂ f2

∂u1

∂u1

∂u2
(0)

+ ∂ f2

∂u2

∂u2

∂u2
(0)

.

In full FSA, the parameter FSE’s entails a total of six separate numerical solu-
tions perturbing each of the parameters, while the set of IC’s FSE’s requires a total of
four additional numerical runs perturbing each of the ICs. A significant drawback
of FSA is the proliferation of equations that occurs in the SA. In this example,
we had to introduce ten additional equations, six for the parameters and four for
the IC’s. When working with large systems of IVPs, performing a FSA can be
computationally prohibitive. Suppose that the original system of IVPs consists of
j equations and, hence, j initial conditions. If there are k parameters, then the total
number of IVPs that must be solved is j( j + k + 1). For example, in constructing
an age structured epidemiological model, it would not be unreasonable to have 10
equations with 20 parameters. In this simple case, to do a full FSA we would need
to solve a total of 310 IVPs. A 31-fold increase in the number of equations needed
to do a sensitivity analysis is a significant computational burden.

Sometimes this computational burden can be reduced if you are only interested
in obtaining the numerical estimation of some of the FSEs. Suppose that you were
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interested in only ∂u2/∂p3, then you could note that only other IVP that is involved
with this equation is the equation for (d/dt)[∂u1/∂p3] and these two equations
together do not involve any of the other FSEs. Therefore, only these two FSE’s
along with the original forward problem need to be solved.

Before discussing the adjoint approach, we summarize the procedure for finding
the FSE of the general first order IVP

du
dt

= F[u(t ; p)], u(0) = u0, (48)

where u is an n × 1 forward solution vector and p is an (k + n) × 1 vector
which represents any of the k parameters or n initial conditions associated with
the problem.

Differentiating the forward problem wrt. p produces the FSE

d

dt

[
Dp[u]

] = Du[F] · Dp[u] + Dp[F], (49)

where Dp[u] is the n × (k + n) Jacobian of u, wrt. the parameters p and IC’s u(0),
Du[F] is the n × n Jacobian of F, wrt. the forward solution u, and Dp[F] is the
n×(k +n) Jacobian of F, with respect to the parameters p and IC’s u(0). To calculate
the derivatives which define Dp[u], both the forward problem-IVP and the FSEs
given in Equations (48) and (49) respectively must be solved simultaneously. The
IC’s for the FSE is determined by the choice of parameter of interest. Notice that in
solving the FSE, the derivatives are obtained, in which case the Jacobian Dp[u] is
found.

If the sensitivity of an associated function(al) J is needed, then we must calculate
the derivatives of J with respect to each component of the vector p;

dJ

dp
=

b∫

t=0

(
Dp

T [u]∇ug + ∇pg
)

dt + (Dp
T [u]∇uh + ∇ph

) ∣∣∣∣
t=b

. (50)

As was noted above, the term Dp
T [u] obtained from the FSE’s is now used to find

the desired derivative ∂ J/∂p. As has been done in previous examples, we introduce
an associated adjoint problem to circumvent calculating Dp

T [u]. Specifically, by
cleverly choosing the adjoint problem and adjoint boundary conditions, eventually
we will eliminate/replace the expressions Dp

T [u]∇ug and Dp
T [u]∇uh|t=b.

5.2 Adjoint Sensitivity Analysis of the IVP

As was noted in previous examples, the next step in our analysis is to construct the
associated adjoint sensitivity equations (ASE). The key was to cleverly formulate
the ASE so as to eliminate the direct evaluation of Dp[u].



218 L. Arriola and J.M. Hyman

As in previous cases, the adjoint can be constructed only if an appropriate
inner product space exists for the forward problem. In this case, the natural inner
product is

b∫

t=0

vT

(
d

dt

[
Dp[u]

]− Du[F] · Dp[u] − Dp[F]

)
dt = 0, (51)

where v is the associated adjoint variable. Expanding the vT term and using
integration by parts on the first integrand gives

vT Dp[u]

∣∣∣∣
b

t=0

+
b∫

t=0

(
−dvT

dt
− vT Du[F]

)
Dp[u] dt −

b∫

t=0

vT Dp[F] dt = 0. (52)

If we compare the terms in the first integrand of this equation with the first
expression in the integrand of Equation (50) notice that two expressions are similar
in form. This can be seen by using the transpose operation, namely

(Dp
T [u]∇ug)T = (∇ug)T Dp[u], (53)

in which case we force the adjoint condition

−dvT

dt
− vT Du[F] = (∇ug)T (54)

Substituting and rearranging gives

b∫

t=0

(∇ug)T Dp[u] dt =
b∫

t=0

vT Dp[F] dt − vT Dp[u]

∣∣∣∣
t=b

. (55)

Take the transpose and substitute into the right hand side of d J/dp

dJ

dp
=

b∫

t=0

(Dp
T [F]v + ∇pg) dt − Dp

T [u]

∣∣∣∣
b

t=0

+ (Dp
T [u]∇uh + ∇ph)

∣∣∣∣
t=b

. (56)

Notice that in this formulation, the definite integral does not contain the expres-
sion Dp

T [u], only the boundary conditions contain this expression. Since Dp
T [u]|t=0

is easily calculated while the expression Dp
T [u]|t=b can only be calculated by

integrating the FSE’s for t ∈ [0, b], we can eliminate the upper BC by forcing

v(b) := ∇uh

∣∣∣∣
t=b

, (57)
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which reduces the expression for the derivative of J to be

dJ

dp
=

b∫

t=0

(Dp
T [F]v + ∇pg) dt + Dp

T [u]v

∣∣∣∣
t=0

+ ∇ph

∣∣∣∣
t=b

. (58)

Once again, by creating an associated adjoint problem, with appropriately chosen
BC’s, we are able to circumvent the problem of having to calculate Dp[u].

6 Principal Component Analysis of the IVP

6.1 Multiparameter Variation

In the previous section we constructed the FSEs for the IVP and obtained local
time dependent sensitivities for fixed parameter values. It was quite evident that as
the number of IVPs and parameters increase, the calculation of the FSEs becomes
burdensome. In this situation, the adjoint methodology becomes a more practical
alternative. With these limitations in mind, we now consider the case where the FSEs
are not too cumbersome to solve. With this caveat, suppose that the parameter vector
p = (p1 p2 . . . pK )T has an uncertainty, that is, the parameters are not specified as
precise values, but rather are given as some distribution, with expected value vector
E[p] = μp. The distinction between this analysis and previous results is that here
we wish to quantify the effects of uncertainty for multiparameter variations. In other
words, we wish to estimate the variation of the output, due to the effective strength
of coupling between parameters.

For “small” perturbations δp := p − μp to the parameter vector, the variation of
the output, to first order terms, is given by

δu := u(t ; μp + δp) − u(t ; μp) ≈ Dp[u]δp,

where as above, Dp[u] denotes the Jacobian of u, wrt. the parameters p. Now take
the outer product δu ⊗ δu = δu · δuT , to obtain an approximation of the variation
matrix of the output

δu · δuT ≈ Dp[u] δp · δpT Dp[u]T . (59)

Without giving all the details (see pp.120–126 [5], especially equation III.F.16 page
124), it can be shown that the temporal output covariance matrix, denoted as Cu,
can be written as

Cu = Dp[u] E
[
δp · δpT

]
Dp[u]T . (60)
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This time dependent matrix provides an approximation to the evolution of how the
coupling in the parameter variation affects the output.

Since covariance matrices are symmetric, we are guaranteed (see [15]) to have a
decomposition of Cu given by

Cu = Q Λ∼ QT =
K∑

i=1

λi qi (t) · qi
T (t), (61)

where Q is an orthonormal matrix whose columns consist of the eigenvectors qi (t),
for i = 1, . . . , K , of Cu, and Λ∼ is a diagonal matrix whose entries are the associated
eigenvalues, λi , written in decreasing order. Using this result we can examine the
effect of multiparameter variation in the principal component space. To accomplish
this, consider the transformation from solution space to principal component space
given by

v := QT
(
u(t ; μp + δp) − u(t ; μp)

) ≈ QT Dp[u]δp.

Taking the outer product v ⊗ v allows us to define the covariance matrix CPCS in
pricipal component space as

CPCS = QT Dp[u] E
[
δp · δpT

]
Dp[u]T Q

= QT CuQ

= QT QΛ∼QT Q

= Λ∼.

Notice that the covariance matrix CPCS is a diagonal matrix, which means that the
transformed vectors in principal component space are independent. Furthermore,
since the diagonal contains the eigenvalues, in decreasing order, the transformed
vectors are projected along the principal component axes formed by the eigenvectors
and in decreasing variance. This means that the greatest variation of v occurs along
the first eigenvector q1(t) with variance λ1, the second largest variation occurs along
q2(t) with variance λ2, etc.

7 Algorithmic Differentiation

When the problem of interest is to “find the derivative,” we must be careful to
distinguish which of the following two objectives we trying to accomplish:

1. explicitly finding a symbolic expression for the derivative, or
2. numerically estimating the derivative by a discrete approximation, such as finite

difference or a finite element method.
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The main focus of previous sections was to explicitly find the ubiquitous derivative
in various settings. We discussed how to find the derivative of an output variable
wrt. a particular parameter, or input variable. In this section, we provide a cur-
sory introduction to the methodology of algorithmic differentiation (AD), that is,
how a computer differentiates a algorithm. Since the researcher in epidemiology
will eventually want to numerically calculate derivatives, without having to write
computer code to accomplish this, standard packages such as ADIFOR, ADOL-C,
ADOL-F, DAFOR, TAMC, etc., should be used [25]. This section provides the basic
background needed in order to understand how AD works.

7.1 Sensitivity of the Reproductive Number R0

We introduce the AD methodology in a familiar epidemiological setting by consid-
ering the SEIR model

d S

dt
= bN − μS − βS

I

N

d E

dt
= βS

I

N
− (μ + k) E

d I

dt
= k E − (r + μ) I

d R

dt
= r I − μR,

where S, E , I , and R denote the susceptible, exposed, infectious, and recovered
populations respectively, and N = S + E + I + R is the total population. The
parameter β quantifies the efficacy of the infection in the susceptible population,
k is the per capita rate at which the exposed population becomes infectious, μ is
the per capita death rate, r is the per capita recovery rate, and b is the intrinsic
birth/migration rate.

A commonly used measure of the intensity of the infection is the basic repro-
ductive number R0 of the average number of susceptible individuals who have been
infected by a particular infectious individual, over the lifetime of that infected indi-
vidual. If R0 < 1, then on average, each infectious individual infects less than one
other individual, in which case we expect the infection to eventually subside. If
R0 > 1, then the infection is expected to spread throughout the susceptible pop-
ulation. This threshold condition provides a mathematical criteria for determining
whether the infection will spread or subside. Additionally, since R0 depends on the
parameters of the model, SA provides a way to measure which parameters have the
most effect on the spread or decrease in the infection.
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A particular problem in obtaining R0 is that there are numerous ways, which have
specific strengths/weaknesses, of deriving R0. Three of the most used approaches to
derive R0 are:

� Survival function method: This method is appropriate when explicit expres-
sions are available for the survival probability, (probability that a newly infected
individual remains infectious for time t) and the infectivity as a function of time.

� Next generation method: This method is appropriate when the population can
naturally be divided into discrete and disjoint classes, such as age, social status
(e.g., prostitute, day care worker, drug addict, etc..), demographic region, etc.

� Surrogate methods: The key concepts are the stability of the disease free equi-
librium point, locating a transcritical bifurcation of the endemic equilibrium,
etc.

The R0 for the above SEIR model is given by

R0 := kβ

(r + μ) (k + μ)
. (62)

Because the parameter values depend on the particular strain of infection, R0

will also depend on the specific infection. For example, consider the potentially life
threatening flu, which we broadly categorize in two forms: (1) seasonal flu, with
R0 ≈ 1.5, and (2) pandemic flu2 with R0 ∈ [2, 3]. For illustrative purposes only,
the seasonal flu will be modeled using the parameter values, in dimensional units
of days−1, of β = 0.375, k = 0.5, μ = 3.7 × 10−5), and r = 0.25, in which
case R0 ≈ 1.499. Since the reproductive number is greater than 1, the infection is
expected to spread. SA may now be used to determine how sensitive the spread is
to each of the defining parameters.

For example suppose, through some intervention strategy, we are able to slightly
alter the value of the parameter r , then the SI

SIr = −
(

r

r + μ

)
= −0.999852 < 0,

tells us that if we increase r by approximately 1%, then R0 decreases by approxi-
mately 1%, and vice versa. This is easily verified by increasing r : 0.25 → 0.2525,
which decreases R0 : 1.49967 → 1.48482 and results in a −0.989954% decrease
in R0, as estimated from the normalized SI.

A significant advantage of having this type of local analysis available is that now
the powerful tool of cost-benefit analysis is available. If the sensitivity of hypothet-
ical intervention strategy A is SI1 = 0.75 with associated cost of $1 × 104, while

2 Recall the devastating 1918–1919 influenza pandemic: “An estimated one third of the world’s
population (or ≈ 500 million persons) were infected and had clinically apparent illnesses during
the 1918–1919 influenza pandemic. The disease was exceptionally severe. Case-fatality rates were
> 2.5%, compared to < 0.1% in other influenza pandemics. Total deaths were estimated at ≈ 50
million and were arguably as high as 100 million.” [14]
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the sensitivity of intervention strategy B is SI2 = −0.25 with associated cost of
$4 × 103, then the cost-benefit ratios are

C B1 = $1 × 104

|0.75| = $13.3 × 103

unit
, and C B2 = $4 × 103

| − 0.25| = $16 × 104

unit
.

All other things being equal, since the first cost-benefit ratio is the smaller, this
suggests that intervention strategy A should be implemented. It should be noted that
the signs of the SIs and input and output variables be examined carefully, as was
noted in the beginning section discussing the definition of the SI.

7.2 Forward Sensitivity/Mode

We now describe the main idea behind AD, in the forward mode, without discussing
any of the coding quality, rounding, memory allocation, computational overhead,
etc., topics that are inherent to the actual implementation and execution of AD [25].
The basic idea in AD is quite simple, however the actual implementation is rather
sophisticated. Essentially, AD is an automatic implementation of the standard chain
rule from calculus. For example, consider the formal differential operations

d
[ u

v2

]
= v2 du − u d

[
v2
]

(v2)2

= v2 du − u (2v dv)

v4
.

The basic algebraic and differential operations performed were applications of the

� derivative of a quotient,
� derivative of a function to a power, and
� algebraic simplification rule of a base to an exponent, to another exponent.

In the jargon of AD, the standard rules of calculus would be written as the “tan-
gent operations,” using the elemental differentials in Fig. 6, and pseudo code for

Fig. 6 Templates used in AD
for the standard rules of
calculus, where the symbols�, �, and ♥ denote
“elemental functions”, and
the symbols d� and d♥
denote the “elemental
differentials”
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calculating the SI of R0 wrt. r , is first defined without any attempt at efficient
coding.

The first step is the initialization of the parameters.

p 1 = 0.375; // p1 = β

p 2 = 0.5; // p2 = k

p 3 = 3.7 ∗ (10ˆ(−5)); // p3 = μ

p 4 = 0.25; // p4 = r

Our intention is to calculate the normalized SI wrt. the parameter r , while the
other parameters β, k, and μ are constant. Therefore, we initialize the derivatives as

dp 1 = 0.0; // ∂β/∂r = 0

dp 2 = 0.0; // ∂k/∂r = 0

dp 3 = 0.0; // ∂μ/∂r = 0

dp 4 = 1.0; // ∂r/∂r = 1

In the jargon of AD, p1, . . . , p4, dp1, . . . , dp4 are referred to as the input
variables.

Next, we perform the forward evaluation of the intermediate variables u1 = kβ,
u2 = r + μ, u3 = k + μ, and u4 = (r + μ)(k + μ), along with the associated
derivatives.

u 1 = p 2 ∗ p 1 = 0.1875; // u1 = kβ

du 1 = p 2 ∗ dp 1 + dp 2 ∗ p 1 = 0.0; //
∂u1

∂r
= k

∂β

∂r
+ ∂k

∂r
β = 0

u 2 = p 4 + p 3 = 0.250038; // u2 = r + μ = 0.250038

du 2 = dp 4 + dp 3 = 1.0; //
∂u2

∂r
= ∂r

∂r
+ ∂μ

∂r
= 1.0

u 3 = p 2 + p 3 = 0.500038; // u3 = k + μ = 0.500038

du 3 = dp 2 + dp 3 = 0.0; //
∂u3

∂r
= ∂k

∂r
+ ∂μ

∂r
= 0.0.

u 4 = u 2 ∗ u 3 = 0.125028; //
u4 = (r + μ)(k + μ)

= 0.125028

du 4 = u 2 ∗ du 3 + du 2 ∗ u 3 = 0.500038; //

∂u4

∂r
= ∂

∂r
[(r + μ)(k + μ)]

= 0.500038
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Now form the reproductive number

R0 = u5 = u1

u4
= u1

u2u3
=

u1︷︸︸︷
kβ

(r + μ)︸ ︷︷ ︸
u2

(k + μ)︸ ︷︷ ︸
u3

(63)

and the derivative ∂ R0/∂r .

u 5 = u 1/u 4 = 1.49967; //
u5 = kβ

(r + μ) (k + μ)
= 1.49967

du 5 = (u 4 ∗ du 1 − u 1 ∗ du 4)/

(u 4)2 = −5.99778; //

∂u5

∂r
= ∂

∂r

[
kβ

(r + μ) (k + μ)

]

= −5.99778

Finally, the SI is calculated, as the output variable u6

u 6 = (p 4/u 5) ∗ du 5 = −0.999852?; //
u6 = r

R0

∂ R0

∂r
= −0.999852

as was found by direct calculation.
The above pseudo code for calculating, in the forward mode, the SI (r/R0)∂ R0/∂r

provides a glimpse into how AD is done. The execution of AD is that as one inter-
mediate calculation is completed, that result, along with other intermediate results,
become inputs for subsequent calculations. Furthermore, each forward evaluation
is also differentiated as well. Evaluation of these functions can be thought of as
the progression through a directed tree3, with vertices p1, . . . , p4, u1, . . . , u6, and
SIR0 as shown in Fig. 7. The input/independent variables, denoted as p1, . . . , p4 are
referred to as the roots of the graph, and the leaves of the graph are the dependent
variables u1, . . . , u6, and SIR0 . The standard convention is to place the roots to the
left, and the leaves to the right in the graph.

As another unrelated however instructive example, consider the sequence of
computations

u1 := f1[p1, p3]; u2 := f2[p2, u1]; u3 := f3[p1, p2, p4, u2];

u4 := f4[p2, u2, u3]; u := u4;

3 We are assuming that this particular algorithm does not have any loops, in which case the graph
has no cycles, which means the graph will be a tree. In the more general case, this restriction is not
necessary as sophisticated AD packages can handle these complications.
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p1

dp1

p2

dp2

p3

dp3

dp4

p4

u1

du1

u2

du2

u3

du3 u4

du4

u5

du5

u6 SIR0

Fig. 7 Directed computational graph for R0. Solid arrows denote forward evaluations and dashed
arrows denote forward derivative evaluations. The parameters p1, . . . , p4 and the derivative param-
eters dp1, . . . , dp4 are first initialized. Next the intermediate forward variables u1, . . . , u6 and the
intermediate forward derivative variables du1, . . . , du6 are calculated. The final step is the output
variable SIR0

where p1, . . . , p4 are the input variables, u1, . . . , u4, are the intermediate out-
puts/variables, and u: final output/variable, with the associated computational graph
as shown in Fig. 8

Suppose that we wish to calculate du/dp3. In the forward mode, we start at
the specified parameter p3 and successively take derivatives of every intermediate
variable by following the directed edges. Since there are two distinct directed paths
from p3 to u, namely p3 → u1 → u2 → u4 → u and p3 → u1 → u2 →
u3 → u4 → u, we expect that the final expression for du/dp3 has two terms

Fig. 8 Directed graph of an
algorithm with input
parameters p1, . . . , p4,
intermediate
outputs/variables u1, . . . , u4,
and final output/variable u

p2

p4

p3

p1

u3u1

u2

u4

u
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reflecting this observation. If we had wanted to obtain du/dp4, the progression
would be p4 → u3 → u4 → u and the associated derivative would contain only one
expression.

Assuming that the input parameters are independent of each other, then to find
du/dp3 the following forward calculations, taken in order, are performed:

du1

dp3
= ∂u1

∂p3

du2

dp3
= ∂u2

∂u1

du1

dp3

du3

dp3
= ∂u3

∂u2

du2

dp3

du4

dp3
= ∂u4

∂u2

du2

dp3
+ ∂u4

∂u3

du3

dp3

du

dp3
= ∂u

∂u4

du4

dp3
, where

∂u

∂u4
= 1

The actual progression needed to calculate the final output derivative is in the
forward direction and the explicit output derivative is given by

du

dp3
= ∂u

∂u4

∂u4

∂u2

∂u2

∂u1

∂u1

∂p3︸ ︷︷ ︸
p3→u1→u2→u4→u

+ ∂u

∂u4

∂u4

∂u3

∂u3

∂u2

∂u2

∂u1

∂u1

∂p3︸ ︷︷ ︸
p3→u1→u2→u3→u4→u

. (64)

Using these examples as a template, suppose that we have K input parameters
p ∈ {p1, . . . , pK } and N intermediate variables u1, . . . , uN , defined as the dif-
ferentiable functions u1 := f1 [p1, . . . , pK ], ui := fi

[
p1, . . . , pK , u1, . . . ui−1

]
,

for i = 2, . . . N , and the output variable only depends on uN , i.e., u = uN . The
derivatives dui/dp are given by

du1

dp
= ∂u1

∂p
(65)

dui

dp
=

i−1∑
j=1

∂ui

∂u j

du j

dp
+ ∂ui

∂p
(66)

du

dp
= duN

dp
(67)

for i = 2, . . . , N .
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7.3 Adjoint/Reverse Mode

In the forward mode, a particular parameter/input variable of interest was first cho-
sen, then moving forward on the directed tree, derivatives of successive intermediate
variables were taken. In the adjoint or reverse mode,4 a final output variable is cho-
sen and this output is differentiated wrt. each of the intermediate variables. The
actual order of calculation however is reversed.

For the specific example given in Fig. 8 the differentiation proceeds as fol-
lows. The output variable u is directly affected by the intermediate variable u4, in
which case

du

du4
= ∂u4

∂u4
= 1.

Now u is affected by u3 indirectly through u4, in which case the chain rule gives

∂u

∂u3
= ∂u

∂u4

∂u4

∂u3
= ∂u4

∂u3
.

Similarly, since u2 affects u indirectly through u3 and u4, then

∂u

∂u2
= ∂u

∂u3

∂u3

∂u2
+ ∂u

∂u4

∂u4

∂u2
.

Lastly, u1 affects u through u2 and p3 affects u through u1, then

∂u

∂u1
= ∂u

∂u2

∂u2

∂u1
and

du

dp
= ∂u

∂u1

∂u1

∂p3
.

Notice that the order of evaluation is reversed, namely, the path now taken is
∂u/∂u3 → · · · , and the result du/dp3, which is obtained by the composition of
the derivatives, is the same as the result given in Equation (64).

For the reproduction number example given in Fig. 7, we will only calculate
∂ R0/∂r = ∂u5/∂p4. To follow standard conventions in AD, define the output
variable u := u5, in which case we wish to calculate ∂u/∂p4.

Examining Fig. 7, ignoring the paths containing du vertices, there is only one
path from p4 to u5, namely p4 → u2 → u4 → u5, and since p4 does not affect u1,
pseudo code for the reverse/adjoint mode is given by

4 The reader is cautioned about the usage of the terminology “backward mode.” The stan-
dard methods in numerical analysis of the BDF (Backward Differentiation Formulas), which
are used in the numerical solution of stiff IVP’s, are not what is being discussed in the
adjoint/reverse mode of AD. Hence to avoid any confusion, we will refer to the differentia-
tion of the output variable, wrt. each of the intermediate variables as the adjoint or reverse
mode.
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du\du 5 = 1.0; //
∂u

∂u5
= ∂u5

∂u5

du\du 4 = du\du 5 ∗ du 5\du 4 = −11.9947; //
∂u

∂u4
= ∂u

∂u5

∂u5

∂u4

du\du 3 = du\du 4 ∗ du 4\du 3 = −2.9991; //
∂u

∂u3
= ∂u

∂u4

∂u4

∂u3

du\du 2 = du\du 4 ∗ du 4\du 2 = −5.9998; //
∂u

∂u2
= ∂u

∂u4

∂u4

∂u2

du\du 1 = du\du 5 ∗ du 5\du 1 = 7.9982; //
∂u

∂u1
= ∂u

∂u5

∂u5

∂u1

du\dr = du\du 2 ∗ du 2\dr = −5.9979; //
∂u

∂p4
= ∂u

∂u2

∂u2

∂p4

in which case SIR0 = (r/R0)∂ R0/∂r = (0.25/1.49967)(−5.9979) = −0.99987 as
agrees with the previous results.

For the general problem, in the actual order they are evaluated, the ASE are
given by

∂u

∂uN
= ∂uN

∂uN
= 1

∂u

∂uN−1
= ∂u

∂uN

∂uN

∂uN−1

∂u

∂uN−2
= ∂u

∂uN−1

∂uN−1

∂uN−2
+ ∂u

∂uN

∂uN

∂uN−2

∂u

∂uN−3
= ∂u

∂uN−2

∂uN−2

∂uN−3
+ ∂u

∂uN−1

∂uN−1

∂uN−3
+ ∂u

∂uN

∂uN

∂uN−3

...
∂u

∂u1
= ∂u

∂u2

∂u2

∂u1
+ ∂u

∂u3

∂u3

∂u1
+ · · · + ∂u

∂uN

∂uN

∂u1
(68)

and finally

du

dp
=

N∑
i=1

∂u

∂ui

∂ui

∂p
. (69)

The astute reader is probably wondering why the insistence on using the phrase
“adjoint mode,” rather than the more transparent “reverse mode,” since it is quite
clear that the derivative terms are being evaluated in reverse order, as compared to
the forward mode. To justify this terminology, reverse the order of the above ASE,
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given in (68). Without giving all the details, this system can be concisely written in
matrix form involving the transpose of the Jacobian5 D [u]

D [u] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0
∂u2

∂u1
1 0 · · · 0

∂u3

∂u1

∂u3

∂u2
1 0 · · · 0

...
...

. . .
...

∂uN

∂u1

∂uN

∂u2
· · · ∂uN

∂uN−1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (70)

To summarize, the essence of the calculations of the forward and the adjoint/
reverse modes is shown in the following diagram:

Forward Mode Adjoint/Reverse Mode
vs.

du1

dp
→ du2

dp
→ · · · → duN

dp
→ du

dp

∂u

∂uN
→ ∂u

∂uN−1
→ · · · → ∂u

∂u1
→ du

dp

For those readers who need more detail on the theory, implementation, software,
and generalizations see [25]. One cautionary note is in order: the input and out-
put variables must be independent variables; only the intermediate variables can be
dependent.

Input Variables Intermediate Variables Output Variables
u−K , . . . , u−2, u1 u1, u2, . . . , uM uM+1, uM+2, . . . , uM+L

Independent Dependent Independent

8 Optimization Problems

A major objective of epidemiology is to identify and quantify the relevant mecha-
nisms that determine how a disease propagates through a susceptible population.
This information can be used to develop intervention strategies that will effec-
tively and efficiently minimize the outbreak and the subsequent deleterious effects.
Inherent in the decision-making process is the fact that resources used to intervene,
such as money, vaccines, antibiotics, trained medical personnel, isolation, diagno-
sis using syndromic surveillance, etc., are limited. Determining what the optimal
strategy should be, and how to implement such a strategy, is not a trivial matter. In

5 For those readers who want more details on the theory and implementation of AD see [25].
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this section we discuss two commonly occurring optimization problems from the
decision-making sciences, namely the linear and quadratic programming problems.
Additionally, we introduce an optimization/control problem in the context of an
influenza pandemic.

8.1 Linear Programming Problem: BVD Disease

In the realm of veterinary epidemiology, bovine viral diarrhoea (BVD) [20] has, and
will continue to have, a significant economic impact on the farming industry. Since
this is such a competitive market, any losses caused by the disease must be balanced
with the associated costs of eradication, prevention and treatment strategies. For
example, replacement of the breeding stock will change the age structure of the
herd. This strategy affects the productivity of the herd and disease outbreak.

In light of these and many other practical aspects, it may be more realistic to
examine the economic options available to the farmer, which will have direct conse-
quences on the epidemiology of the spread of BVD, rather than modeling the disease
as an outbreak in isolation. In other words the economically motivated actions taken
by the farmer has significant implications for the epidemiology of the disease and
the bottom line. This viewpoint provides farm management with quantitative infor-
mation about the potential variability in income and hence a measure of potential
economic risk.

For this application, the constraints take on a wide range of aspects such as total
land area, silage area, silage consumption by cows and heifers, calving rates, sub-
sidies, labor rates, available capital, etc.. Decisions that affect the size and quality
of the herd, and the spread of disease include how many female or male calfs are
sold, how much graze land is used, number of replacement heifers, double fenc-
ing of pastures, vermin control, etc.. Since the primary motivation for any business
is profit, financial aspects are of primary concern to management. However, it is
well known that there is an associated risk in trying to maximize profit, as is easily
demonstrated by the stock market. A whole-farm business model [11] in this context
would quantify the cost of disease intervention strategies verses the variability of
income. Furthermore, a SA of the optimal solution, wrt. the constraints and lim-
ited resources, would give quantitative information about which aspects have the
most/least effect on the risk and a cost-benefit analysis.

A commonly used methodology in the decision-making sciences is to formulate
this problem as a linear programming problem (LPP) [31]. The essential compo-
nents of a LPP are (1) an objective function which is to be minimized (e.g. cost,
risk, etc.,) or maximized (e.g. profit, productivity, etc.,) and (2) constraints (limited
resources such as money, silage land, etc.).

Definition 1 (Standard/Forward/Primal LPP). Let u1, u2, . . . , un denote the indi-
vidual production levels of n commodities with associated unit profits c1, c2, . . . , cn.
Let ai j denote the unit amount of resource bi consumed in the production of
commodity j . The Standard/Forward/Primal LPP is defined as
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Maximize the profit function

J (u1, u2, . . . , un) := c1u1 + c2u2 + · · · + cnun = cT u,

subject to the linear inequality constraints

a11u1 + a12u2 + · · · + a1nun ≤ b1

a21u1 + a22u2 + · · · + a2nun ≤ b2

...

am1u1 + am2u2 + · · · + amnun ≤ bm

u1, u2, · · · , um ≥ 0,

or in matrix form, the constraints are written as Au ≤ b.

It is standard practice to assume that the parameters ai j , bi and c j are nonnegative.
When this is not the case, then usually a simple change of variables can map the
original parameters to a situation where it is true.

Sensitivity analysis allows the analyst a way to determine which of the parame-
ters ai j , bi , or c j , defining the problem, has the most effect on the profit function.
Since we are interested in how the profit function is affected by perturbations to
the defining parameters, we must explicitly find the derivative of the profit function,
wrt. changes in the defining parameters. Let p denote any of the parameters ai j , bi ,
or c j , in which case we wish to find

∂ J

∂p
= cT ∂u

∂p
+ ∂cT

∂p
u. (71)

Although rarely discussed, the associated adjoint or dual problem is crucial in
finding the sensitivity of the profit function. The main difficulty is in evaluating
the derivative expression cT ∂u/∂p term. To eliminate this problem, the associated
adjoint/dual problem will naturally occur, in which case a derivative does not need to
be explicitly calculated. Instead, we only need to obtain the solutions to the forward
and adjoint/dual problems. Since the simplex method produces both solutions simul-
taneously, no extra calculations are needed. For completeness, recall the associated
adjoint/dual LPP:

Definition 2 (Adjoint/Dual LPP). The Adjoint/Dual LPP is defined as

Minimize the cost function

J (v1, v2, . . . , vm) := b1v1 + b2v2 + · · · + bmvm = bT v,
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subject to the inequality constraints

a11v1 + a21v2 + · · · + am1vm ≥ c1

a12v1 + a22v2 + · · · + am2vm ≥ c2

...

a1nv1 + a2nv2 + · · · + amnvm ≥ cn

v1, v2, · · · , vm ≥ 0,

or in matrix form AT v ≥ c.

Sensitivity of the Parameter Space

Many of the commonly occurring optimization problems can be written in the form

Maximize/Minimize a given objective function

J (u) = F(u1, . . . , un)

subject to the K equality and L inequality constraints

fk(u) = 0 where k = 1, . . . , K

gl(u) ≤ 0 where l = 1, . . . , L .

To determine the sensitivity of the profit function to perturbations in the parameters,
we form a modified Lagrange function based on the Karush-Kuhn-Tucker (KKT)
theorem [17]. Recall from multivariable calculus that the technique of the method of
Lagrange multipliers was used to find the maximum/minimum of a given function,
subject to specified equality constraints. In the field of optimization, there exists an
analogous method when a mixture of equality and inequality constraints are present.

The procedure is based on a modified Lagrangian function, which is a result of
the KKT theorem. In applying this theorem, an adjoint problem naturally arises.
This modified Lagrangian function is constructed by forming a linear combination
of the objective functional and the constraints as

L (u; μ, λ) := F(u) +
K∑

k=1

μk fk(u) +
L∑

l=1

λl gl(u), (72)

where μk and λl are called the Lagrange multipliers. as we shall see, the Lagrange
multipliers are in fact adjoint variables.
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Theorem 1 (Karush/Kuhn/Tucker Theorem). An optimal solution is found by
solving the associated equations

∂ F(u∗)

∂u j
+

K∑
k=1

μk
∂ fk(u∗)

∂u j
+

L∑
l=1

λl
∂gl(u∗)

∂u j
= 0 for j = 1, . . . n

μk fk(u∗) = 0, for k = 1, . . . L

λl gl(u∗) = 0, for l = 1, . . . L

where u∗ is optimal in the sense that F(u∗) ≤ F(u), where u is any admissible
solution.

We begin by changing the linear inequality constraints in the forward problem
into equality constraints by introducing slack variables s1, s2, . . . , sm as follows:

a11u1 + a12u2 + · · · + a1nun + (s1)2 = b1

a21u1 + a22u2 + · · · + a2nun + (s2)2 = b2

...

am1u1 + am2u2 + · · · + amnun + (sm)2 = bm

u1, u2, · · · , um ≥ 0.

Notice that we have deviated from the usual procedure of introducing nonnegative
slack variables as (si )2 rather than just si .

To apply the KKT theorem, we next construct the associated Lagrange function

L := c1u1 + c2u2 + · · · cnun

+v1
(
b1 − a11u1 − a12u2 − · · · − a1nun − (s1)2)

+v2
(
b2 − a21u1 − a22u2 − · · · − a2nun − (s2)2

)
...

+vm
(
bm − am1u1 − am2u2 − · · · − amnun − (sm)2

)
,

where the vi are called the Lagrange multipliers. Using the usual inner product
notation, the Lagrange function can be written in the more concise form

L := cT u + vT

⎛
⎜⎜⎜⎝b − Au −

⎛
⎜⎜⎜⎝

(s1)2

(s2)2

...
(sm)2

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠ .
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The optimal solution occurs at a critical point of the Lagrange function, that is,
when the system of equations

∂L
∂u j

= 0,
∂L
∂si

= 0, and
∂L
∂vi

= 0

are satisfied. These equations respectively reduce to the adjoint problem:

AT v = c, (73)

the orthogonality conditions:

vi si = 0, for i = 1, . . . m, (74)

and lastly to the forward problem:

Au +

⎛
⎜⎜⎜⎝

(s1)2

(s2)2

...
(sm)2

⎞
⎟⎟⎟⎠ = b. (75)

Taking the transpose of the adjoint problem given in Equation (73) and substituting
into the derivative of the profit function given in Equation (71) gives

∂ J

∂p
= vT A

∂u
∂p

+ ∂cT

∂p
u. (76)

To evaluate this expression, we must somehow evaluate the derivative ∂u/∂p. We
will circumvent this problem by relating this derivative with the adjoint solution v.
To obtain this relationship, differentiate the forward problem given in Equation (75)
wrt. the parameter p to get

A
∂u
∂p

+ ∂A
∂p

u + 2

⎛
⎜⎜⎜⎜⎝

s1
∂s1
∂p

s2
∂s2
∂p
...

sm
∂sm
∂p

⎞
⎟⎟⎟⎟⎠ = ∂b

∂p
.

Now premultiply by vT and use the orthogonality conditions given in Equation
(74) to obtain

vT A
∂u
∂p

= vT

(
∂b
∂p

− ∂A
∂p

u
)

,
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in which case
∂ J

∂p
= vT A

∂u
∂p

+ ∂cT

∂p
u

= vT

(
∂b
∂p

− ∂A
∂p

u
)

+ ∂cT

∂p
u.

The utility of this formula is that to calculate ∂ J/∂p, only static/fixed quantities
need to be known, specifically the solutions to the forward and adjoint problems,
namely u and v. Since the simplex method calculates both solutions simultane-
ously, there is no need to make perturbations to the simplex tableau, and reapply
the simplex method for each change.

For the cases where p = bi , p = ai j , or p = c j the respective derivatives
reduce to

∂ J

∂bi
= vi for i = 1, . . . , m,

∂ J

∂ai j
= −vi u j for i = 1, . . . , m, and j = 1, . . . , n, and

∂ J

∂c j
= u j for j = 1, . . . , n.

Notice that ∂ J/∂bi and ∂ J/∂c j ≥ 0, while ∂ J/∂ai j ≤ 0. This means that as the
limited resources bi , or unit profits c j are increased, the profit is increased, whereas
if the unit consumption quantities ai j are increased, the profit is decreased, as is
expected.

8.2 Quadratic Programming Problem: Wheat Selection

In 1952, Harry Markowitz [24] published a seminal paper titled “Portfolio Selec-
tion” which laid the foundation for what is now called modern portfolio the-
ory. Markowitz constructed the mathematical framework for the well known and
accepted observation that investors, although seeking a maximum return on their
investments, also simultaneously want to minimize the associated risk. What his
work espoused was that the proper mixture of various investments can significantly
reduce the overall volatility of the portfolio, while maintaining a “high” rate of
return. More precisely, Markowitz was able to quantitatively provide two solutions:
a maximum amount of return for a given level of risk, or a minimum level of risk
for a given amount of return.

Since cereal grains, such as wheat, provide a substantial portion of the caloric
needs of humans worldwide, issues such as disease management and prevention are
of the utmost importance. In the United States, Kansas is the leading wheat grower
in the nation, and is acutely aware of the effects of soil type, average rainfall, disease
tolerance, etc., on the yield, and hence the bottom line. To further complicate the
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problem, agricultural researchers are attempting to produce perennial grain crops
that will displace the annual crops that are currently planted. The commonly used
practices, that reduce disease inoculum in annual crops, such as tillage, delayed
planting, or crop rotation, are not applicable to perennial crops. In this situation,
farmers would need to plant blends of seeds from a mixture of cultivars (varieties).
This strategy of using mixtures of cultivars has been shown to be effective in the
management/prevention of disease.

In the jargon of modern portfolio theory, investment in securities, stocks or bonds
is replaced with the planting of multiple wheat cultivars. The objective of maximiz-
ing the expected rate of return on the investments is replaced with maximizing the
wheat yield. Finally, minimize the financial risks is replaced by minimizing the vari-
ation in wheat yield due to “genotype-environment interaction,” that is, how each
cultivar responds to the inevitable unpredictable environmental conditions. Once
quantitative values can be established for the average yield, and the variance and
covariance of yields of each cultivar, an optimal portfolio is found by solving a
Quadratic Programming Problem (QPP) 6.

In the case of modern portfolio theory, risk is defined in terms of the standard
deviation/variance of the return on the assets, and is in fact a quadratic functional.
Since the risk in the wheat portfolio is also a function of the variance, this problem
will also be a QPP. Lastly, a SA of the optimal solution(s) provides quantitative
information on which aspects have the most effect on the optimal solution(s).

Definition 3 (Quadratic Programming Problem QPP). The Quadratic
Programming Problem (QPP) is defined as

Maximize the profit function

J (u1, u2, . . . , un) := cT u − 1

2
uT Q u,

subject to the linear inequality constraints

a11u1 + a12u2 + · · · + a1nun ≤ b1

a21u1 + a22u2 + · · · + a2nun ≤ b2

...

am1u1 + am2u2 + · · · + amnun ≤ bm

u1, u2, · · · , um ≥ 0,

or in matrix form, the constraints are written as Au ≤ b.

6 For the general LPP discussed earlier, it is assumed that the profit function is strictly linear in
terms of the production level of the associated products. Intuitively this assumption cannot hold true
for arbitrary levels of production. One would expect that if the level of production was sufficiently
high, the profit would decrease. A common way of incorporating this behavior into the model is to
subtract a quadratic term from the objective function. In essence, the quadratic expression can be
thought of as a penalty function for excessive production [3, 4].
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The matrix Q is assumed to be a symmetric, positive semi-definite matrix; it is some-
times referred to as the Hessian matrix. The expression (1/2)uT Q u is a quadratic
form and represents the penalty of excess production.

8.2.1 Sensitivity of the Parameter Space

As was done in the LPP, the inequality constraints are transformed into equality
constraints by the introduction of slack variables, as given in Equation (75). To
apply the Karush-Kuhn-Tucker theorem, construct the extended Lagrange function

L := cT u − 1

2
uT Q u + vT

⎛
⎜⎜⎜⎝b − Au −

⎛
⎜⎜⎜⎝

(s1)2

(s2)2

...
(sm)2

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠ .

Once again, the optimal solution occurs at a critical point of the Lagrange function,
that is, when the system of equations

∂L
∂u j

= 0,
∂L
∂si

= 0, and
∂L
∂vi

= 0

are satisfied. These equations respectively reduce to the nonhomogeneous adjoint
problem:

AT v = c − Qu, (77)

the orthogonality conditions given in Equation (74), and lastly to the forward prob-
lem given in Equation (75). Notice that if the matrix Q is the zero matrix, then the
nonhomogeneous adjoint problem for the QPP reduces to the homogeneous adjoint
problem for the LPP, as is to be expected.

Let p denote any of the parameters ai j , bi , c j , or qi j , where qi j denotes the i, j
entry of the matrix Q. Next, differentiate the cost function, wrt. parameter p:

∂ J

∂p
= ∂cT

∂p
u − 1

2
uT ∂Q

∂p
u + 1

2

(
2cT ∂u

∂p
− uT Q

∂u
∂p

− ∂uT

∂p
Qu
)

. (78)

Since the matrix Q is symmetric, then

(
Q

∂u
∂p

)T

= ∂uT

∂p
Q,

in which case Equation (78) reduces to

∂ J

∂p
= ∂cT

∂p
u − 1

2
uT ∂Q

∂p
u + (cT − uT Q

) ∂u
∂p

.
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The last expression in this equation contains the derivative term ∂u/∂p and will
be replaced by an expression containing the forward and adjoint solutions. This
expression is found by differentiating the forward problem given in Equation (75).

Next, premultiply this result by the modified adjoint solution vT , and lastly use
the orthogonality conditions given in Equation (74). Specifically,

vT A
∂u
∂p

= (cT − uT Q
) ∂u

∂p

= vT

(
∂b
∂p

− ∂A
∂p

u
)

,

in which case
∂ J

∂p
= vT

(
∂b
∂p

− ∂A
∂p

u
)

+ ∂cT

∂p
u − 1

2
uT ∂Q

∂p
u

︸ ︷︷ ︸
Additional Term

. (79)

Notice that only the solutions to the forward and adjoint problems are needed to find
the derivative of the objective function.

Comparing this result with the LPP, if the matrix Q is the zero matrix then
the QPP reduces to the LPP as expected. For the parameters ai j , bi , and c j , the
derivatives ∂ J/∂ai j , ∂ J/∂bi , and ∂ J/∂c j are the same form as given for the LPP.
However, it should be noted that the adjoint solution v of Equation (77) is not the
same as in the LPP.

8.3 Adjoint Operator, Problem, and Sensitivity

This section provides the generalization for constructing the adjoint problem in its
most powerful form. The crucial requirements to take note of are:

� there must be a natural way to define an inner product on the FSE
� the associated adjoint problem must provide a way to allow a natural evaluation

of the derivative ∂u/∂p, or some functional J (u).

The following sketch [19, 20] provides an overview of how the generalized
adjoint problem is constructed. The types of problems which are amenable to the
adjoint methodology are those that can be expressed in the form

F(u) = f,

where F is a linear/nonlinear operator F : X → Y , and f is the forward forcing
function. The domain and range X and Y are assumed to have sufficiently nice
topological properties. For example, both X and Y could be Hilbert or Sobolov
spaces. Also, associated with the forward problem is the task of determining the
sensitivity of some desired response function(al) J (u).
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The adjoint problem arises naturally by the introduction of an adjoint variable
v ∈ X , through the calculation of the Gâteaux derivative:

F ′(u)v := lim
ε→0

F(u + εv) − F(u)

ε
.

This definition can be thought of as a directional derivative of the operator F at
the point u, and in the direction of the adjoint variable v. The somewhat awkward
notation F ′(u)v is intended to suggest that the operator F takes the forward variable
u, and maps it to an operator F ′, which now depends on both u and the adjoint
variable v.

The next piece of necessary machinery is to formulate an extended representation
of the operator F . This is accomplished by assuming that F is sufficiently Gâteaux
differentiable. Application of the intermediate-value theorem of operators, about the
point u0, permits us to rewrite the forward operator F in extended form:

Φ(u)u = F(u),

where the operator Φ is defined in integral form

Φ(u)v := F(u0) +
∫ 1

τ=0
F ′(u0 + τ (u − u0)) dτ (v − u0),

Given that an appropriate inner product has been defined, consider the adjoint
operation

〈Φ(u)v,w〉 = SC1 + 〈v,Φ†(u)w〉,

where SC1 denotes the 1st solvability condition, and Φ† denotes the adjoint operator
associated with the forward operator Φ. When SC1 = 0, the result is referred to as
the Lagrange identity. The associated generalized adjoint problem is defined as

Φ†(u)v = g,

where the adjoint forcing function g has not yet been specified. As was illustrated
in the linear system problem, not specifying g at this time is advantageous, since it
may be cleverly related to the response functional J .

A second solvability condition SC2 occurs when the forward and adjoint prob-
lems are related. Assuming that the Lagrange identity is satisfied, i.e. SC1 = 0, then
taking the dot product of the forward problem with the adjoint solution gives

〈Φ(u)u, v〉 = 〈 f, v〉,
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while taking the dot product of the adjoint problem with the forward solution gives

〈Φ†(u)v, u〉 = 〈g, u〉
〈v,Φ(u)u〉 = 〈g, u〉

〈v, f 〉 = 〈g, u〉.

This invariance condition, or second solvability condition SC2, relates the forward
and adjoint solutions and forcing functions by

〈g, u〉 = 〈 f, v〉.

Finally, the adjoint forcing function g is cleverly chosen so that

〈g, u〉 = J (u).

We summarize the construction of the adjoint problem in the following diagram
(see Fig. 9 below):

For the linear system, the adjoint methodology produces the result that the adjoint
problem is AT v = c, provided the operator equation F(u) = f is constructed from
the forward sensitivity equation. Specifically, the results follow when

F(u) := A
∂u
∂q

+ ∂A
∂q

u, f := ∂b
∂q

,

and J (u) :=
〈
∂u
∂q

, c
〉
.

Fig. 9 Construction of the
Adjoint Problem
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9 Examples

In this section we highlight a warning: “Let the buyer beware!” The warnings are
a discussion of some of the pitfalls/shortcomings that can occur in FSA and ASA.
Here we list situations where the reader should proceed with caution:

� In order for an adjoint problem to be defined, an associated inner product
structure must exist. No inner product =⇒ No adjoint.

� To determine the sensitivity of the associated functional J = J (u), using the
adjoint methodology, the functional must be cleverly written in terms of the inner
product.

� Once an adjoint problem has been defined, if more than one sensitivity is
required, (e.g., recall the case of the sensitivity of the eigenvalues and eigen-
vectors), additional information must be introduced to make further progress.

� SA as discussed here is local in nature. The estimates of derivatives are valid only
in some “small” neighborhood of the specified nominal values of the parame-
ters. For a more global approach, uncertainty quantification methodology should
be used.

In the following examples we provide some insight into how one might attain
explicit formula for derivatives of aspects of solutions, which cannot be defined in
terms of an inner product. The basic tool is not exotic, rather ubiquitous: the chain
rule. As another disclaimer, the following examples are provided in the hopes that
they might be useful in your program of SA, and stimulate ideas that would allow
you to build additional tools of SA in your own specific realm of research.

9.1 Sensitivity of the Doubling Time

Suppose we have an IVP and we are interested in the time it takes for the solution
u = u(t) to double its initial value, i.e., u(tD) = 2u0. For example, we might wish to
know the doubling time for the number of people infected in an epidemic and how it
it affected by changes to specific parameters. The typical difficulty is that, in general,
we do not have the explicit forward solution, in which case explicit expressions
for the desired derivatives are not available. However, numerical values for these
derivatives can be calculated using the numerical solution of the forward sensitivity
equation(s). The derivatives of interest are found by application of the following
lemma.

Lemma 1 (Sensitivity of time to attain a multiple of the initial condition). Let
u = u(t ; p, u0) be the solution to the first order IVP

du

dt
= f (u, t ; p) with u(0) = u0, (80)
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where f is differentiable in u, t , and p. Let tk denote the time t for which u attains
the value u(tk) = ku0, where k > 0. The derivative dtk/dp is given by

dtk
dp

= −

∂u

∂p

∣∣∣∣
t=tk

f (ku0, tk ; p)
, (81)

and dtk/du0 is given by

dtk
du0

= −
k − ∂u

∂u0

∣∣∣∣
t=tk

f (ku0, tk ; p)
= 0. (82)

Proof. When t = tk the solution u satisfies the condition u(tk) = ku0 and upon
differentiation wrt. the parameter p, we obtain

d

dp
[u(t ; p, u0)]

∣∣∣∣
t=tk

= d

dp
[ku0] .

Assuming that k and u0 are independent of the parameter p, this equation reduces to

du

dt

∣∣∣∣
t=tk

dtk
dp

+ ∂u

∂p

∣∣∣∣
t=tk

= 0,

and upon solving for ∂tk/∂p, we obtain the result given in Equation (81). Similarly,
differentiate uk = ku0 wrt. u0 to get

d

du0
[u(t ; p, u0)]

∣∣∣∣
t=tk

= d

du0
[ku0] .

Assuming that k and p are independent of u0, this equation reduces to

du

dt

∣∣∣∣
t=tk

dtk
du0

+ ∂u

∂u0

∣∣∣∣
t=tk

= k.

But when t = tk then u(tk) = ku0, which means ∂u/∂u0|t=tk = k, in which case
dtk/du0 = 0.

9.2 Sensitivity of a Critical Point

An important application of SA is to determine which parameter(s), of an IVP mod-
eling the spread of an epidemic, has the most effect on the peak of the infection. In
other words, we want to determine the sensitivity of a critical point, to parameters



244 L. Arriola and J.M. Hyman

or initial conditions. Specifically we must calculate the derivatives ∂u/∂p|t=tcp and
∂t/∂p|t=tcp where tcp denotes the time when the solution is at a critical point ucp.

Lemma 2 (Sensitivity of Critical Points). The derivative dtcp/dp is given by

dtcp

dp
= −

(
∂ f

∂p
+ ∂ f

∂u

∂u

∂p

) ∣∣∣∣
t=tcp

∂ f

∂u

∣∣∣∣
t=tcp

, (83)

and ∂u/∂p|t=tcp is found numerically by solving the FSE

d

dt

[
∂u

∂p

]
= ∂ f

∂u

∂u

∂p
+ ∂ f

∂p
. (84)

Similarly, the derivative dtcp/dp is given by

dtcp

du0
= −

∂ f

∂u

∂u

∂u0

∣∣∣∣
t=tcp

∂ f

∂u

∣∣∣∣
t=tcp

, (85)

and ∂u/∂u0|t=tcp is found numerically by solving the FSE

d

dt

[
∂u

∂u0

]
= ∂ f

∂u

∂u

∂u0
. (86)

Proof. Now a critical point ucp at time tcp satisfies the property that

f (uc, tc; p) = 0. (87)

Differentiating this equation wrt. the parameter p gives the single equation

∂ f

∂u

∂u

∂p

∣∣∣∣
t=tcp

+ ∂ f

∂t

∂t

∂p

∣∣∣∣
t=tcp

+ ∂ f

∂p

∣∣∣∣
t=tcp

= 0. (88)

in the two unknowns ∂u/∂p|t=tcp ∂t/∂p|t=tcp . Solving this equation for ∂t/∂p|t=tcp

and numerically solving the above mentioned FSE for ∂u/∂p|t=tcp gives the desired
result. The other result is obtained in a similar fashion.
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9.3 Sensitivity of Periodic Solutions to Parameters

Consider the IVP where the forward solution u approaches a limit cycle of period
T as t → ∞. As is almost aways the case, a closed form of the forward solu-
tion is not available, in which case the derivative ∂T /∂p can not be explicitly
obtained.

As seen from the previous examples, the key to obtaining the desired derivative
is to state, mathematically, the desired property, apply the chain rule, and possibly
utilize the solution to the FSEs. In this example, the key observation is that if u is
periodic with period T , where t ∈ [0,∞), u0 and u0

′ are given initial conditions,
and p is a parameter, then

u(t + T ; u0, u0
′, p) = u(t ; u0, u0

′, p), ∀t ∈ [0,∞).

We will differentiate this expression wrt. the parameter p and find a numerical
expression for dT /dp, in terms of the forward sensitivity derivatives. The following
lemma gives the desired expressions.

Lemma 3 (Sensitivity of a periodic function). Let u = u(t ; u0, u0
′, p) be a family

of periodic functions with period T , that is,

u(t + T ; u0, u0
′, p) = u(t ; u0, u0

′, p), (89)

∀t ∈ [0,∞) and where u is differentiable in t , u0, u0
′, and p. The derivative of the

period T with respect to the parameter p is given by

dT
dp

=

∂u(t ; u0, u0
′, p)

∂p
− ∂u(s; u0, u0

′, p)

∂p

∣∣∣∣
s=t+T

du(t ; u0, u0
′, p)

dt

. (90)

The astute reader is no doubt immediately suspicious of this result, since the left
hand side seems to be independent of time, while the right hand side is apparently
time dependent. However, this “contradiction” will be addressed shortly.

Proof. Differentiate Equation (89) wrt. the parameter p to get

d

dp

[
u(s; u0, u0

′, p)
] ∣∣∣∣

s=t+T
= d

dp

[
u(t ; u0, u0

′, p)
]
,
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or in expanded form

du(s; u0, u0
′, p)

ds

∣∣∣∣
s=t+T

d[t + T ]

dp
+ ∂u(s; u0, u0

′, p)

∂u0

∣∣∣∣
s=t+T

du0

dp
+ ∂u(s; u0, u0

′, p)

∂u0
′

∣∣∣∣
s=t+T

du0
′

dp
+ ∂u(s; u0, u0

′, p)

∂p

∣∣∣∣
s=t+T

= du(t ; u0, u0
′, p)

dt

dt

dp
+ ∂u(t ; u0, u0

′, p)

∂u0

du0

dp

+∂u(t ; u0, u0
′, p)

∂u0
′

du0
′

dp
+ ∂u(t ; u0, u0

′ p)

∂p
. (91)

Since t , u0, and u0
′ are independent of p, then dt/dp = du0/dp = du0

′/dp = 0,
in which case this equation reduces to

du(s; u0, u0
′, p)

ds

∣∣∣∣
s=t+T

dT
dp

+ ∂u(s; u0, u0
′, p)

∂p

∣∣∣∣
s=t+T

= ∂u(t ; u0, u0
′, p)

∂p
.

Now solve for dT /dp and use the fact that since u is periodic in t , then

du(s; u0, u0
′, p)

ds

∣∣∣∣
s=t+T

= du(t ; u0, u0
′, p)

dt
,

to obtain the result stated as Equation (89).

A cautionary note is needed to prevent misapplication of this result. The formula
given in Equation (89) is for an arbitrary time t as compared to previous examples,
where the formula for the derivative of a particular aspect of a problem was valid
only at a particular specified point in time. In other words, for a fixed value of the
parameter p and initial conditions u0, and u0

′ the expression dT /dp should remain
constant if the period T is independent of time. That is, we must assume that the
periodicity of the solution is not changing, or, at worst, is approaching a fixed value.
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An Inverse Problem Statistical Methodology
Summary

H. Thomas Banks, Marie Davidian,
John R. Samuels, Jr., and Karyn L. Sutton

Abstract We discuss statistical and computational aspects of inverse or parameter
estimation problems for deterministic dynamical systems based on Ordinary Least
Squares and Generalized Least Squares with appropriate corresponding data noise
assumptions of constant variance and nonconstant variance (relative error), respec-
tively. Among the topics included here are mathematical model, statistical model
and data assumptions, and some techniques (residual plots, sensitivity analysis,
model comparison tests) for verifying these. The ideas are illustrated throughout
with the popular logistic growth model of Verhulst and Pearl as well as with a
recently developed population level model of pneumococcal disease spread.

Keywords Inference · Least squares inverse problems · Parameter estimation ·
Sensitivity and generalized sensitivity functions

1 Introduction

In this Chapter we discuss mathematical and statistical aspects of inverse or param-
eter estimation problems for deterministic differential equation models. While we
briefly discuss maximum likelihood estimators (MLE), our focus here will be on
ordinary least squares (OLS) and generalized least squares (GLS) estimation for-
mulations and issues related to use of these techniques in practice. Although we
choose a general nonlinear ordinary differential equation mathematical model to
discuss concepts and ideas, the discussions are also applicable to partial differential
equation models and other deterministic dynamical systems. As we shall explain,
the choice of an appropriate statistical model is of critical importance, and we dis-
cuss at length the difference between constant variance and nonconstant variance
noise in the observation process, the consequences for incorrect choices in this
regard, and computational techniques for investigating whether a good decision has
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been made. In particular, we illustrate the use of residual plots to suggest whether or
not a correct statistical model has been specified in an inverse problem formulation.
We illustrate these and other techniques with examples including the well known
Verhulst-Pearl logistic population model and a specific epidemiological model (a
pneumococcal disease dynamics model). We discuss the use of sensitivity equations
coupled with the asymptotic theory for sampling distributions and the computation
of associated covariances, standard errors and confidence intervals for the estimators
of model parameters. We also discuss sensitivity functions (traditional and gener-
alized) and their emerging use in design of experiments for data specific to models
and mechanism investigation. Traditional sensitivity involves sensitivity of outputs
to parameters while the recent concept of generalized sensitivity in inverse prob-
lems pertains to sensitivity of parameters (to be estimated) to data or observations.
That is, generalized sensitivity quantifies the relevance of data measurements for
identification of parameters in a typical parameter estimation problem. In a final
section we present and illustrate some methods for model comparison. Specifi-
cally, we discuss statistical tests that can be used with inverse problems when one
wishes to compare the “goodness of fit” to data of two deterministic models, one
of which includes the other by a simplification through a reduction of mechanisms/
interactions.

Our presentation is intended for scientists who have an interest in fitting mod-
els to data (inverse or parameter estimation problems) and who possess a modest
background in mathematics and elementary statistics. However, we do not assume a
specific detailed factual knowledge in either but do provide a number of references
for further reading as well as for background material. We note that our presentation
illustrates how inverse problems for completely deterministic systems result in the
need for statistical analysis in the usual situation where one has noisy data for use
in the inverse problems.

2 Parameter Estimation: MLE, OLS, and GLS

2.1 The Underlying Mathematical and Statistical Models

2.1.1 The Mathematical Model

We consider inverse or parameter estimation problems in the context of a parame-

terized (with vector parameter
→
θ ) dynamical system or mathematical model

d
→
x

dt
(t) = →

g(t,
→
x(t),

→
θ ) (1)

with observation process
→
y(t) = C→

x(t ;
→
θ ). (2)

The mathematical model is a deterministic system (here we treat ordinary differen-
tial equations, but as noted above, our discussions are relevant to problems involving
parameter dependent partial differential equations, delay differential equations, etc.,
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as long as the system is assumed to be well-posed, i.e., to possess unique solutions
that depend smoothly on the parameters and initial data). Following usual conven-
tion (which corresponds to the form of data usually available from experiments),
we assume a discrete form of the observations in which one has n longitudinal
observations corresponding to

→
y(t j ) = C→

x(t j ;
→
θ ), j = 1, . . . , n, (3)

where C is an observation operator as described below. In general the corresponding
observations or data {→

y j } will not be exactly
→
y(t j ). Because of the nature of the

phenomena leading to this discrepancy, we treat this uncertainty pertaining to the
observations with a statistical model for the observation process.

2.1.2 The Statistical Model

In our discussions here we consider a statistical model of the form

→
Y j = →

f (t j ,
→
θ0) + →

ε j , j = 1, . . . , n, (4)

where
→
f (t j ,

→
θ ) = C→

x(t j ;
→
θ ), j = 1, . . . , n, corresponds to the solution of the math-

ematical model (1) at the j th covariate or observation time for a particular vector

of parameters
→
θ ∈ R p,

→
x ∈ RN ,

→
f ∈ Rm, and C is an m × N matrix. The term

→
θ0

represents the “truth” or the parameters that generate the observations {→
Y j }n

j=1. (The

assumption of existence of a truth parameter
→
θ0 is standard in statistical formulations

and this along with the assumption that the means E[→
ε j ] are zero yields implicitly

that the (1) is a correct description of the process being modeled.) The terms →
ε j are

random variables which can represent observation or measurement error, “system
fluctuations” or other phenomena that cause observations to not fall exactly on the

points
→
f (t j ,

→
θ ) from the smooth path

→
f (t,

→
θ ). Since these fluctuations are unknown

to the modeler, we will assume →
ε j is generated from a probability distribution (with

mean zero throughout our discussions) that reflects the assumptions regarding these
phenomena. For instance, in a statistical model for pharmacokinetics of drug in
human blood samples, a natural distribution for →

ε = (ε1, . . . , εn)T might be a mul-
tivariate normal distribution. In other applications the distribution for →

ε might be
much more complicated [22].

The purpose of our presentation here is to discuss methodology related to the

estimation of the true value of the parameters
→
θ0 from a set � of admissible param-

eters, and its dependence on what is assumed about the variance var(→
ε j ) of the error

→
ε j . We discuss two inverse problem methodologies that can be used to calculate

estimates θ̂ for
→
θ0: the ordinary least-squares (OLS) and generalized least-squares

(GLS) formulations as well as the popular maximum likelihood estimate (MLE)
formulation in the case one assumes the distributions of the error process {→

ε j } are
known.
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2.2 Known Error Processes: Normally Distributed Error

In the introduction of the statistical model we initially made no mention of the
probability distribution that generates the error →

ε j . In many situations one readily
assumes that the errors →

ε j = 1, . . . , n, are independent and identically distributed
(we make the standing assumptions of independence across j throughout our dis-
cussions in this Chapter). We discuss a case where one is able to make further
assumptions on the error, namely that the distribution is known. In this case, maxi-
mum likelihood techniques may be used. We discuss first one such case for a scalar
observation system, i.e., m = 1. If, in addition, there is sufficient evidence to suspect
the error is generated by a normal distribution then we may be willing to assume

ε j ∼ N (0, σ 2
0 ), and hence Y j ∼ N ( f (t j ,

→
θ0), σ 2

0 ). We can then obtain an expression

for determining
→
θ0 and σ0 by seeking the maximum over (

→
θ, σ 2) ∈ � × (0,∞) of

the likelihood function for ε j = Y j − f (t j ,
→
θ ) which is defined by

L(
→
θ, σ 2|→

Y ) =
n∏

j=1

1√
2πσ 2

exp

{
− 1

2σ 2
[Y j − f (t j ,

→
θ )]2

}
. (5)

The resulting solutions θMLE and σ 2
MLE are the maximum likelihood estimators

(MLEs) for
→
θ0 and σ 2

0 , respectively. We point out that these solutions θMLE =
θn

MLE(
→
Y ) and σ 2

MLE = σ 2 n
MLE(

→
Y ) are random variables by virtue of the fact that

→
Y is

a random variable. The corresponding maximum likelihood estimates are obtained

by maximizing (5) with
→
Y = (Y1, . . . , Yn)T replaced by a given realization

→
y =

(y1, . . . , yn)T and will be denoted by θ̂MLE = θ̂n
MLE and σ̂MLE = σ̂ n

MLE respectively.
In our discussions here and below, almost every quantity of interest is dependent
on n, the size of the set of observations or the sampling size. On occasion we will
express this dependence explicitly by use of superscripts or subscripts, especially
when we wish to remind the reader of this dependence. However, for notational
convenience we will often suppress the notation of explicit dependence on n.

Maximizing (5) is equivalent to maximizing the log likelihood

log L(
→
θ, σ 2|→

Y ) = −n

2
log(2π ) − n

2
log σ 2 − 1

2σ 2

n∑
j=1

[Y j − f (t j ,
→
θ )]2. (6)

We determine the maximum of (6) by differentiating with respect to
→
θ (with σ 2

fixed) and with respect to σ 2 (with
→
θ fixed), setting the resulting equations equal to

zero and solving for
→
θ and σ 2. With σ 2 fixed we solve ∂

∂
→
θ

log L(
→
θ, σ 2|→

Y ) = 0 which

is equivalent to
n∑

j=1

[Y j − f (t j ,
→
θ )]∇ f (t j ,

→
θ ) = 0, (7)
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where as usual ∇ f = ∂

∂
→
θ

f = f→
θ

. We see that solving (7) is the same as the least

squares optimization

θMLE(
→
Y ) = arg min

→
θ ∈�

J (
→
Y ,

→
θ ) = arg min

→
θ ∈�

n∑
j=1

[Y j − f (t j ,
→
θ )]2. (8)

We next fix
→
θ to be θMLE and solve ∂

∂σ 2 log L(θMLE, σ 2|→
Y ) = 0, which yields

σ 2
MLE(

→
Y ) = 1

n
J (

→
Y , θMLE). (9)

Note that we can solve for θMLE and σ 2
MLE separately – a desirable feature, but

one that does not arise in more complicated formulations discussed below. The 2nd
derivative test (which is omitted here) verifies that the expressions above for θMLE

and σ 2
MLE do indeed maximize (6).

If, however, we have a vector of observations for the j th covariate t j then the
statistical model is reformulated as

→
Y j = →

f (t j ,
→
θ0) + →

ε j (10)

where
→
f ∈ Rm and

V0 = var(→
ε j ) = diag(σ 2

0,1, . . . , σ
2
0,m) (11)

for j = 1, . . . , n. In this setting we have allowed for the possibility that the obser-
vation coordinates Y i

j may have different constant variances σ 2
0,i , i.e., σ 2

0,i does not
necessarily have to equal σ 2

0,k . If (again) there is sufficient evidence to claim the
errors are independent and identically distributed and generated by a normal distri-
bution then →

ε j ∼ Nm(0, V0). We thus can obtain the maximum likelihood estimators

θMLE({→
Y j }) and VMLE({→

Y j }) for θ0 and V0 by determining the maximum of the log

of the likelihood function for →
ε j = →

Y j − →
f (t j ,

→
θ ) defined by

log L(
→
θ, V |{Y 1

j , . . . , Y m
j }) = −n

2

m∑
i=1

log σ 2
0,i − 1

2

m∑
i=1

1

σ 2
0,i

n∑
j=1

[Y i
j − f i (t j ,

→
θ )]2

= −n

2

m∑
i=1

log σ 2
0,i −

n∑
j=1

[
→
Y j − →

f (t j ,
→
θ )]T V −1[

→
Y j − →

f (t j ,
→
θ )].
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Using arguments similar to those given for the scalar case, we determine the

maximum likelihood estimators for
→
θ0 and V0 to be

θMLE = arg min
→
θ ∈�

n∑
j=1

[
→
Y j − →

f (t j ,
→
θ )]T V −1

MLE[
→
Y j − →

f (t j ,
→
θ )] (12)

VMLE = diag

⎛
⎝1

n

n∑
j=1

[
→
Y j − →

f (t j , θMLE)][
→
Y j − →

f (t j , θMLE)]T

⎞
⎠ . (13)

Unfortunately, this is a coupled system, which requires some care when solving
numerically. We will discuss this issue further in Sections 2.3.2 and 2.3.5 below.

2.3 Unspecified Error Distributions and Asymptotic Theory

In Section 2.2 we examined the estimates of
→
θ0 and V0 under the assumption that the

error is normally distributed, independent and has constant variance longitudinally.
But what if it is suspected that the error is not normally distributed, or the error

distribution is unknown to the modeler beyond the assumptions on E[
→
Y j ] embodied

in the model and the assumptions made on var(→
ε j ) (as in most applications)? How

should we proceed in estimating
→
θ0 and σ0 (or V0) in these circumstances? In this

section we will review two estimation procedures for such situations: ordinary least
squares (OLS) and generalized least squares (GLS).

2.3.1 Ordinary Least Squares (OLS)

The statistical model in the scalar case takes the form

Y j = f (t j ,
→
θ0) + ε j (14)

where the variance var(ε j ) = σ 2
0 is assumed constant in longitudinal data (note that

the error’s distribution is not specified). We also note that the assumption that the
observation errors are uncorrelated across j (i.e., time) may be a reasonable one
when the observations are taken with sufficient intermittency or when the primary
source of error is measurement error. If we define

θOLS(
→
Y ) = θn

OLS(
→
Y ) = arg min

→
θ ∈�

n∑
j=1

[Y j − f (t j ,
→
θ )]2 (15)

then θOLS can be viewed as minimizing the distance between the data and model
where all observations are treated as of equal importance. We note that minimizing

in (15) corresponds to solving for
→
θ in

n∑
j=1

[Y j − f (t j ,
→
θ )]∇ f (t j ,

→
θ ) = 0. (16)
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We point out that θOLS is a random variable (ε j = Y j − f (t j ,
→
θ ) is a random

variable); hence if {y j }n
j=1 is a realization of the random process {Y j }n

j=1 then
solving

θ̂OLS = θ̂n
OLS = arg min

→
θ ∈�

n∑
j=1

[y j − f (t j ,
→
θ )]2 (17)

provides a realization for θOLS. (A remark on notation: for a random variable or
estimator θ we will always denote a corresponding realization or estimate with an
over hat, e.g., θ̂ is an estimate for θ .)

Noting that

σ 2
0 = 1

n
E

⎡
⎣ n∑

j=1

[Y j − f (t j ,
→
θ0)]2

⎤
⎦ (18)

suggests that once we have solved for θOLS in (15), we may obtain an estimate
σ̂ 2

OLS = σ̂ 2 n
MLE for σ 2

0 .
Even though the error’s distribution is not specified we can use asymptotic theory

to approximate the mean and variance of the random variable θOLS [31]. As will be
explained in more detail below, as n → ∞, we have that

θOLS = θn
OLS ∼ Np(

→
θ0,Σ

n
0) ≈ Np(

→
θ0, σ

2
0 [χnT (

→
θ0)χn(

→
θ0)]−1) (19)

where the sensitivity matrix χ (
→
θ ) = χn(

→
θ ) = {χn

jk} is defined as

χn
jk(

→
θ ) = ∂ f (t j ,

→
θ )

∂
→
θ k

, j = 1, . . . , n, k = 1, . . . , p,

and

Σn
0 ≡ σ 2

0 [nΩ0]−1 (20)

with

Ω0 ≡ lim
n→∞

1

n
χnT (

→
θ0)χn(

→
θ0), (21)

where the limit is assumed to exist-see [31]. However,
→
θ0 and σ 2

0 are generally
unknown, so one usually will instead use the realization

→
y = (y1, . . . , yn)T of the

random process
→
Y to obtain the estimate

θ̂OLS = arg min
→
θ ∈�

n∑
j=1

[y j − f (t j ,
→
θ )]2 (22)
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and the bias adjusted estimate

σ̂ 2
OLS = 1

n − p

n∑
j=1

[y j − f (t j , θ̂ )]2 (23)

to use as an approximation in (19).
We note that (23) represents the estimate for σ 2

0 of (18) with the factor 1
n replaced

by the factor 1
n−p (in the linear case the estimate with 1

n can be shown to be biased
downward and the same behavior can be observed in the general nonlinear case–
see Chapter 12 of [31] and p. 28 of [22]). We remark that (18) is true even in the
general nonlinear case (it does not rely on any asymptotic theories although it does
depend on the assumption of constant variance being correct).

Both θ̂ = θ̂OLS and σ̂ 2 = σ̂ 2
OLS will then be used to approximate the covariance

matrix

Σn
0 ≈ Σ̂n ≡ σ̂ 2[χnT (θ̂)χn(θ̂)]−1. (24)

We can obtain the standard errors SE(θ̂OLS,k) (discussed in more detail in the next

section) for the kth element of θ̂OLS by calculating SE(θ̂OLS,k) ≈
√

Σ̂n
kk . Also note

the similarity between the MLE Equations (8) and (9), and the scalar OLS Equa-
tions (22) and (23). That is, under a normality assumption for the error, the MLE
and OLS formulations are equivalent.

If, however, we have a vector of observations for the j th covariate t j and we
assume the variance is still constant in longitudinal data, then the statistical model
is reformulated as

→
Y j = →

f (t j ,
→
θ0) + →

ε j (25)

where
→
f ∈ Rm and

V0 = var(→
ε j ) = diag(σ 2

0,1, . . . , σ
2
0,m) (26)

for j = 1, . . . , n. Just as in the MLE case we have allowed for the possibility
that the observation coordinates Y i

j may have different constant variances σ 2
0,i , i.e.

σ 2
0,i does not necessarily have to equal σ 2

0,k . We note that this formulation also can
be used to treat the case where V0 is used to simply scale the observations, i.e.,
V0 = diag(v1, . . . , vm) is known. In this case the formulation is simply a vector OLS
(sometimes also called a weighted least squares (WLS)). The problem will consist
of finding the minimizer

θOLS = arg min
→
θ ∈�

n∑
j=1

[
→
Y j − →

f (t j ,
→
θ )]T V −1

0 [
→
Y j − →

f (t j ,
→
θ )], (27)
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where the procedure weights elements of the vector
→
Y j − →

f (t j ,
→
θ ) according to

their variability. (Some authors refer to (27) as a generalized least squares (GLS)
procedure, but we will make use of this terminology in a different formulation in
subsequent discussions). Just as in the scalar OLS case, θOLS is a random variable

(again because →
ε j = →

Y j −
→
f (t j ,

→
θ ) is); hence if {→

y j }n
j=1 is a realization of the random

process {→
Y j }n

j=1 then solving

θ̂OLS = arg min
→
θ ∈�

n∑
j=1

[
→
y j − →

f (t j ,
→
θ )]T V −1

0 [
→
y j − →

f (t j ,
→
θ )] (28)

provides an estimate (realization) θ̂ = θ̂OLS for θOLS. By the definition of variance

V0 = diag E

⎛
⎝1

n

n∑
j=1

[
→
Y j − →

f (t j ,
→
θ0)][

→
Y j − →

f (t j ,
→
θ0)]T

⎞
⎠ ,

so an unbiased estimate of V0 for the realization {→
y j }n

j=1 is

V̂ = diag

⎛
⎝ 1

n − p

n∑
j=1

[
→
y j − →

f (t j , θ̂ )][
→
y j − →

f (t j , θ̂ )]T

⎞
⎠ . (29)

However, the estimate θ̂ requires the (generally unknown) matrix V0 and V0 requires

the unknown vector
→
θ0 so we will instead use the following expressions to calculate

θ̂ and V̂ :

→
θ0 ≈ θ̂ = arg min

→
θ ∈�

n∑
j=1

[
→
y j − →

f (t j ,
→
θ )]T V̂ −1[

→
y j − →

f (t j ,
→
θ )] (30)

V0 ≈ V̂ = diag

⎛
⎝ 1

n − p

n∑
j=1

[
→
y j − →

f (t j , θ̂ )][
→
y j − →

f (t j , θ̂ )]T

⎞
⎠ . (31)

Note that the expressions for θ̂ and V̂ constitute a coupled system of equations,
which will require greater effort in implementing a numerical scheme.

Just as in the scalar case we can determine the asymptotic properties of the OLS
estimator (27). As n → ∞, θOLS has the following asymptotic properties [22, 31]:

θOLS ∼ N (
→
θ 0,Σ

n
0), (32)
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where

Σn
0 ≈
⎛
⎝ n∑

j=1

DT
j (

→
θ0)V −1

0 D j (
→
θ0)

⎞
⎠

−1

, (33)

and the m × p matrix D j (
→
θ ) = Dn

j (
→
θ ) is given by

⎛
⎜⎜⎜⎜⎜⎜⎝

∂ f1(t j ,
→
θ )

∂θ1

∂ f1(t j ,
→
θ )

∂θ2
· · · ∂ f1(t j ,

→
θ )

∂θp
...

...
...

∂ fm(t j ,
→
θ )

∂θ1

∂ fm(t j ,
→
θ )

∂θ2
· · · ∂ fm(t j ,

→
θ )

∂θp

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Since the true value of the parameters
→
θ0 and V0 are unknown their estimates θ̂

and V̂ will be used to approximate the asymptotic properties of the least squares
estimator θOLS:

θOLS ∼ Np(
→
θ0,Σ

n
0) ≈ Np(θ̂ , Σ̂n) (34)

where

Σn
0 ≈ Σ̂n =

⎛
⎝ n∑

j=1

DT
j (θ̂ )V̂ −1 D j (θ̂)

⎞
⎠

−1

. (35)

The standard errors can then be calculated for the kth element of θ̂OLS (SE(θ̂OLS,k))
by SE(θ̂OLS,k) ≈

√
Σ̂kk . Again, we point out the similarity between the MLE Equa-

tions (12) and (13), and the OLS Equations (30) and (31) for the vector statistical
model (25).

2.3.2 Numerical Implementation of the OLS Procedure

In the scalar statistical model (14), the estimates θ̂ and σ̂ can be solved for separately
(this is also true of the vector OLS in the case V0 = σ 2

0 Im , where Im is the m × m
identity) and thus the numerical implementation is straightforward – first determine
θ̂OLS according to (22) and then calculate σ̂ 2

OLS according to (23). The estimates θ̂ and
V̂ in the case of the vector statistical model (25), however, require more effort since
they are coupled:

θ̂ = arg min
→
θ ∈�

n∑
j=1

[
→
y j − →

f (t j ,
→
θ )]T V̂ −1[

→
y j − →

f (t j ,
→
θ )] (36)

V̂ = diag

⎛
⎝ 1

n − p

n∑
j=1

[
→
y j − →

f (t j , θ̂ )][
→
y j − →

f (t j , θ̂ )]T

⎞
⎠ . (37)
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To solve this coupled system the following iterative process will be followed:

1. Set V̂ (0) = I and solve for the initial estimate θ̂ (0) using (36). Set k = 0.
2. Use θ̂ (k) to calculate V̂ (k+1) using (37).

3. Re-estimate
→
θ by solving (36) with V̂ = V̂ (k+1) to obtain θ̂ (k+1).

4. Set k = k + 1 and return to 2. Terminate the process and set θ̂OLS = θ̂ (k+1) when
two successive estimates for θ̂ are sufficiently close to one another.

2.3.3 Generalized Least Squares (GLS)

Although in Section 2.3.1 the error’s distribution remained unspecified, we did how-
ever require that the error remain constant in variance in longitudinal data. That
assumption may not be appropriate for data sets whose error is not constant in a
longitudinal sense. A common relative error model (e.g., one in which the size of
the observation error is assumed proportional to the size of the observed quantity, an
assumption which might be reasonable when counting individuals in a population)
that experimenters use in this instance for the scalar observation case [22] is

Y j = f (t j ,
→
θ0)
(
1 + ε j

)
(38)

where E(Y j ) = f (t j ,
→
θ0) and var(Y j ) = σ 2

0 f 2(t j ,
→
θ0) which derives from the

assumptions that E[ε j ] = 0 and var(ε j ) = σ 2
0 . We see that the variance generated in

this fashion is model dependent and hence generally is longitudinally non-constant

variance. The method we will use to estimate
→
θ0 and σ 2

0 can be viewed as a particular
form of the Generalized Least Squares (GLS) method.

To define the random variable θGLS the following equation must be solved for
the estimator θGLS:

n∑
j=1

w j [Y j − f (t j , θGLS)]∇ f (t j , θGLS) = 0, (39)

where Y j obeys (38) and w j = f −2(t j , θGLS). We note these are the normal
equations (obtained by equating to zero the gradient of the weighted least squares
criterion in the case the weights w j are not dependent on θ ). The quantity θGLS is
a random variable, hence if {y j }n

j=1 is a realization of the random process Y j then
solving

n∑
j=1

f −2(t j , θ̂ )[y j − f (t j , θ̂ )]∇ f (t j , θ̂ ) = 0, (40)

for θ̂ we obtain an estimate θ̂GLS for θGLS.
The GLS estimator θGLS = θn

GLS has the following asymptotic properties [22]:

θGLS ∼ Np(
→
θ0,Σ

n
0) (41)
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where

Σn
0 ≈ σ 2

0

(
F T

→
θ

(
→
θ0)W (

→
θ0)F→

θ
(

→
θ0)
)−1

, (42)

F→
θ

(
→
θ ) = Fn

→
θ

(
→
θ ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂ f (t1,
→
θ )

∂θ1

∂ f (t1,
→
θ )

∂θ2
· · · ∂ f (t1,

→
θ )

∂θp
...

...

∂ f (tn,
→
θ )

∂θ1

∂ f (tn,
→
θ )

∂θ2
· · · ∂ f (tn,

→
θ )

∂θp

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎝

∇ f (t1,
→
θ )T

...

∇ f (tn,
→
θ )T

⎞
⎟⎟⎠

and W −1(
→
θ ) = diag

(
f 2(t1,

→
θ ), . . . , f 2(tn,

→
θ )
)

. Note that because
→
θ0 and σ 2

0 are

unknown, the estimates θ̂ = θ̂GLS and σ̂ 2 = σ̂ 2
GLS will be used in (42) to calculate

Σn
0 ≈ Σ̂n = σ̂ 2

(
F T

→
θ

(θ̂)W (θ̂ )F→
θ

(θ̂ )
)−1

,

where [22] we take the approximation

σ 2
0 ≈ σ̂ 2

GLS = 1

n − p

n∑
j=1

1

f 2(t j , θ̂ )
[y j − f (t j , θ̂ )]2.

We can then approximate the standard errors of θ̂GLS by taking the square roots of
the diagonal elements of Σ̂. We will also mention that the solutions to (30) and (40)
depend upon the numerical method used to find the minimum or root, and since Σ0

depends upon the estimate for
→
θ0, the standard errors are therefore affected by the

numerical method chosen.

2.3.4 GLS Motivation

We note the similarity between (16) and (40). The GLS Equation (40) can be
motivated by examining the weighted least squares (WLS) estimator

θWLS = arg min
→
θ ∈�

n∑
j=1

w j [Y j − f (t j ,
→
θ )]2. (43)

In many situations where the observation process is well understood, the weights
{w j } may be known. The WLS estimate can be thought of minimizing the distance
between the data and model while taking into account unequal quality of the obser-

vations [22]. If we differentiate the sum of squares in (43) with respect to
→
θ , and

then choose w j = f −2(t j ,
→
θ ), an estimate θ̂GLS is obtained by solving

n∑
j=1

w j [y j − f (t j ,
→
θ )]∇ f (t j ,

→
θ ) = 0
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for
→
θ . However, we note the GLS relationship (40) does not follow from minimizing

the weighted least squares with weights chosen as w j = f −2(t j ,
→
θ ).

Another motivation for the GLS estimating Equation (40) can be found in [18].
In the text the authors claim that if the data are distributed according to the gamma

distribution, then the maximum-likelihood estimator for
→
θ is the solution to

n∑
j=1

f −2(t j ,
→
θ )[Y j − f (t j ,

→
θ )]∇ f (t j ,

→
θ ) = 0,

which is equivalent to (40). The connection between the MLE and our GLS method
is reassuring, but it also poses another interesting question: What if the variance of

the data is assumed to not depend on the model output f (t j ,
→
θ ), but rather on some

function g(t j ,
→
θ ) (i.e., var(Y j ) = σ 2

0 g2(t j ,
→
θ ) = σ 2

0 /w j )? Is there a corresponding

maximum likelihood estimator of
→
θ whose form is equivalent to the appropriate GLS

estimating equation (w j = g−2(t j ,
→
θ ))

n∑
j=1

g−2(t j ,
→
θ )[Y j − f (t j ,

→
θ )]∇ f (t j ,

→
θ ) = 0 ? (44)

In their text, Carroll and Rupert [18] briefly describe how distributions belonging
to the exponential family of distributions generate maximum-likelihood estimating
equations equivalent to (44).

2.3.5 Numerical Implementation of the GLS Procedure

Recall that an estimate θ̂GLS can either be solved for directly according to (40) or
iteratively using the equations outlined in Section 2.3.3. The iterative procedure as
described in [22] is summarized below:

1. Estimate θ̂GLS by θ̂ (0) using the OLS Equation (15). Set k = 0.
2. Form the weights ŵ j = f −2(t j , θ̂

(k)).
3. Re-estimate θ̂ by solving

θ̂ (k+1) = arg min
θ∈�

n∑
j=1

ŵ j

(
y j − f

(
t j ,

→
θ
))2

to obtain the k + 1 estimate θ̂ (k+1) for θ̂GLS.
4. Set k = k + 1 and return to 2. Terminate the process when two of the successive

estimates for θ̂GLS are sufficiently close.

We note that the above iterative procedure was formulated by minimizing (over
→
θ ∈ �)

n∑
j=1

f −2(t j , θ̃ )[y j − f (t j ,
→
θ )]2
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and then updating the weights w j = f −2(t j , θ̃ ) after each iteration. One would hope
that after a sufficient number of iterations ŵ j would converge to f −2(t j , θ̂GLS). For-
tunately, under reasonable conditions, if the process enumerated above is continued
a sufficient number of times [22], then ŵ j → f −2(t j , θ̂GLS).

3 Computation of Σ̂
n
, Standard Errors

and Confidence Intervals

We return to the case of n scalar longitudinal observations and consider the OLS
case of Section 2.3.1 (the extension of these ideas to vectors is completely straight-
forward). These n scalar observations are represented by the statistical model

Y j ≡ f (t j ,
→
θ0) + ε j , j = 1, 2, . . . , n, (45)

where f (t j ,
→
θ0) is the model for the observations in terms of the state variables

and
→
θ0 ∈ R

p is a set of theoretical “true” parameter values (assumed to exist in a
standard statistical approach). We further assume that the errors ε j , j = 1, 2, . . . , n,

are independent identically distributed (i.i.d.) random variables with mean E[ε j ] =
0 and constant variance var(ε j ) = σ 2

0 , where σ 2
0 is unknown. The observations Y j

are then i.i.d. with mean E[Y j ] = f (t j ,
→
θ0) and variance var(Y j ) = σ 2

0 .
Recall that in the ordinary least squares (OLS) approach, we seek to use a real-

ization {y j } of the observation process {Y j } along with the model to determine a
vector θ̂n

OLS where

θ̂n
OLS = arg min Jn(

→
θ ) =

n∑
j=1

[y j − f (t j ,
→
θ )]2. (46)

Since Y j is a random variable, the corresponding estimator θn = θn
OLS (here we

wish to emphasize the dependence on the sample size n) is also a random variable
with a distribution called the sampling distribution. Knowledge of this sampling dis-
tribution provides uncertainty information (e.g., standard errors) for the numerical
values of θ̂n obtained using a specific data set {y j }. In particular, loosely speaking
the sampling distribution characterizes the distribution of possible values the esti-
mator could take on across all possible realizations with data of size n that could be
collected. The standard errors thus approximate the extent of variability in possible
values across all possible realizations, and hence provide a measure of the extent of
uncertainty involved in estimating θ using the specific estimator and sample size n
in actual data collection.

Under reasonable assumptions on smoothness and regularity (the smoothness
requirements for model solutions are readily verified using continuous dependence
results for differential equations in most examples; the regularity requirements
include, among others, conditions on how the observations are taken as sample size
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increases, i.e., as n → ∞), the standard nonlinear regression approximation theory
([22, 26, 29], and Chapter 12 of [31]) for asymptotic (as n → ∞) distributions
can be invoked. As stated above, this theory yields that the sampling distribution for

the estimator θn(
→
Y ), where

→
Y = (Y1, . . . , Yn)T , is approximately a p-multivariate

Gaussian with mean E[θn(
→
Y )] ≈ →

θ0 and covariance matrix var(θn(
→
Y )) ≈ Σn

0 =
σ 2

0 [nΩ0]−1 ≈ σ 2
0 [χnT (

→
θ0)χn(

→
θ0)]−1. Here χn(

→
θ ) = F→

θ
(

→
θ ) is the n × p sensitivity

matrix with elements

χ jk(
→
θ ) = ∂ f (t j ,

→
θ )

∂θk
and F→

θ
(

→
θ ) ≡ ( f

1
→
θ

(
→
θ ), . . . , f

n
→
θ

(
→
θ ))T ,

where f
j
→
θ

(
→
θ ) = ∂ f

∂
→
θ

(t j ,
→
θ ). That is, for n large, the sampling distribution approxi-

mately satisfies

θn
OLS(

→
Y ) ∼ Np(

→
θ0,Σ

n
0) ≈ Np(

→
θ0, σ

2
0 [χnT (

→
θ0)χn(

→
θ0)]−1). (47)

There are typically several ways to compute the matrix F→
θ

(which are actu-
ally the well known sensitivity functions widely used in applied mathematics and
engineering–see the discussions in Section 6 below). First, the elements of the
matrix χ = (χ jk) can always be estimated using the forward difference

χ jk(
→
θ ) = ∂ f (t j ,

→
θ )

∂θk
≈ f (t j ,

→
θ + hk) − f (t j ,

→
θ )

|hk | ,

where hk is a p-vector with a nonzero entry in only the kth component. But, of
course, the choice of hk can be problematic in practice.

Alternatively, if the f (t j ,
→
θ ) correspond to longitudinal observations

→
y(t j ) =

C→
x(t j ;

→
θ ) of solutions

→
x ∈ R

N to a parameterized N -vector differential equation

system
→̇
x = →

g(t,
→
x(t),

→
θ ) as in (1), then one can use the N × p matrix sensitivity

equations (see [4, 9] and the references therein)

d

dt

(
∂

→
x

∂
→
θ

)
= ∂

→
g

∂
→
x

∂
→
x

∂
→
θ

+ ∂
→
g

∂
→
θ

(48)

to obtain

∂ f (t j ,
→
θ )

∂θk
= C ∂

→
x(t j ,

→
θ )

∂θk
.

Finally, in some cases the function f (t j ,
→
θ ) may be sufficiently simple so as to allow

one to derive analytical expressions for the components of F→
θ

.

Since
→
θ0, σ0 are unknown, we will use their estimates to make the approximation

Σn
0 ≈ σ 2

0 [χnT (
→
θ0)χn(

→
θ0)]−1 ≈ Σ̂n(θ̂n

OLS) = σ̂ 2[χnT (θ̂n
OLS)χn(θ̂n

OLS)]−1, (49)
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where the approximation σ̂ 2 to σ 2
0 , as discussed earlier, is given by

σ 2
0 ≈ σ̂ 2 = 1

n − p

n∑
j=1

[y j − f (t j , θ̂
n
OLS)]2. (50)

Standard errors to be used in the confidence interval calculations are thus given by
SEk(θ̂n) =

√
Σkk(θ̂n), k = 1, 2, . . . , p (see [19]).

In order to compute the confidence intervals (at the 100(1 − α)% level) for the
estimated parameters in our example, we define the confidence level parameters
associated with the estimated parameters so that

P{θn
k − t1−α/2SEk(θn) < θ0k < θn

k + t1−α/2SEk(θn)} = 1 − α, (51)

where α ∈ [0, 1] and t1−α/2 ∈ R+. Given a small α value (e.g., α = .05 for 95%
confidence intervals), the critical value t1−α/2 is computed from the Student’s t dis-
tribution tn−p with n − p degrees of freedom. The value of t1−α/2 is determined
by P{T ≥ t1−α/2} = α/2 where T ∼ tn−p. In general, a confidence interval is
constructed so that, if the confidence interval could be constructed for each possible
realization of data of size n that could have been collected, 100(1 − α)% of the
intervals so constructed would contain the true value θ0k . Thus, a confidence interval
provides further information on the extent of uncertainty involved in estimating θ0

using the given estimator and sample size n.
When one is taking longitudinal samples corresponding to solutions of a dynam-

ical system, the n × p sensitivity matrix depends explicitly on where in time the

observations are taken when f (t j ,
→
θ ) = Cx(t j ,

→
θ ) as mentioned above. That is, the

sensitivity matrix

χ (
→
θ ) = F→

θ
(

→
θ ) =

(
∂ f (t j ,

→
θ )

∂θk

)

depends on the number n and the nature (for example, how taken) of the sampling
times {t j }. Moreover, it is the matrix [χT χ ]−1 in (49) and the parameter σ̂ 2 in (50)
that ultimately determine the standard errors and confidence intervals. At first inves-
tigation of (50), it appears that an increased number n of samples might drive σ̂ 2

(and hence the SE) to zero as long as this is done in a way to maintain a bound on
the residual sum of squares in (50). However, we observe that the condition number
of the matrix χT χ is also very important in these considerations and increasing the
sampling could potentially adversely affect the inversion of χT χ . In this regard, we
note that among the important hypotheses in the asymptotic statistical theory (see

p. 571 of [31]) is the existence of a matrix function Ω(
→
θ ) such that

1

n
χnT (

→
θ )χn(

→
θ ) → Ω(

→
θ ) uniformly in

→
θ as n → ∞,
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with Ω0 = Ω(
→
θ0) a nonsingular matrix. It is this condition that is rather easily vio-

lated in practice when one is dealing with data from differential equation systems,
especially near an equilibrium or steady state (see the examples of [4]).

All of the above theory readily generalizes to vector systems with partial, non-
scalar observations. Suppose now we have the vector system (1) with partial vector
observations given by Equation (3), that is, we have m coordinate observations
where m ≤ N . In this case, we have

d
→
x

dt
(t) = →

g(t,
→
x(t),

→
θ ) (52)

and

→
y j = →

f (t j ,
→
θ0) + →

ε j = C→
x(t j ,

→
θ0) + →

ε j , (53)

where C is an m × N matrix and
→
f ∈ Rm,

→
x ∈ RN . As already explained in Sec-

tion 2.3.1, if we assume that different observation coordinates fi may have different
variances σ 2

i associated with different coordinates of the errors ε j , then we have that
→
ε j is an m-dimensional random vector with

E[→
ε j ] = 0, var(→

ε j ) = V0,

where V0 = diag(σ 2
0,1, ..., σ

2
0,m), and we may follow a similar asymptotic theory

to calculate approximate covariances, standard errors and confidence intervals for
parameter estimates.

Since the computations for standard errors and confidence intervals (and also
model comparison tests) depend on an asymptotic limit distribution theory, one
should interpret the findings as sometimes crude indicators of uncertainty inherent
in the inverse problem findings. Nonetheless, it is useful to consider the formal
mathematical requirements underpinning these techniques.

Among the more readily checked hypotheses are those of the statistical model
requiring that the errors ε j , j = 1, 2, . . . , n, are independent and identically dis-
tributed (i.i.d.) random variables with mean E[ε j ] = 0 and constant variance
var(ε j ) = σ 2

0 .

� After carrying out the estimation procedures, one can readily plot the residuals
r j = y j − f (t j , θ̂

n
OLS) vs. time t j and the residuals vs. the resulting estimated

model/observation f (t j , θ̂
n
OLS) values. A random pattern for the first is strong

support for validity of independence assumption; a non increasing, random
pattern for latter suggests assumption of constant variance may be reasonable.

� The underlying assumption that sampling size n must be large (recall the theory
is asymptotic in that it holds as n → ∞) is not so readily “verified”–often
ignored (albeit at the user’s peril in regard to the quality of the uncertainty
findings).



266 H. Thomas Banks et al.

Often asymptotic results provide remarkably good approximations to the true
sampling distributions for finite n. However, in practice there is no way to ascertain
whether theory holds for a specific example.

4 Investigation of Statistical Assumptions

The form of error in the data (which of course is rarely known) dictates which
method from those discussed above one should choose. The OLS method is most
appropriate for constant variance observations of the form Y j = f (t j ,

→
θ0) + ε j

whereas the GLS should be used for problems in which we have nonconstant

variance observations Y j = f (t j ,
→
θ0)(1 + ε j ).

We emphasize that in order to obtain the correct standard errors in an inverse
problem calculation, the OLS method (and corresponding asymptotic formulas)
must be used with constant variance generated data, while the GLS method (and
corresponding asymptotic formulas) should be applied to nonconstant variance
generated data.

Not doing so can lead to incorrect conclusions. In either case, the standard error
calculations are not valid unless the correct formulas (which depends on the error
structure) are employed. Unfortunately, it is very difficult to ascertain the structure
of the error, and hence the correct method to use, without a priori information.
Although the error structure cannot definitively be determined, the two residuals
tests can be performed after the estimation procedure has been completed to assist
in concluding whether or not the correct asymptotic statistics were used.

4.1 Residual Plots

One can carry out simulation studies with a proposed mathematical model to assist
in understanding the behavior of the model in inverse problems with different types
of data with respect to mis-specification of the statistical model. For example, we
consider a statistical model with constant variance noise

Y j = f (t j ,
→
θ0) + k

100
ε j , Var(Y j ) = k2

10000
σ 2,

and nonconstant variance noise

Y j = f (t j ,
→
θ0)

(
1 + k

100
ε j

)
, Var(Y j ) = k2

10000
σ 2 f 2(t j ,

→
θ0).

We can obtain a data set by considering a realization {y j }n
j=1 of the random process

{Y j }n
j=1 through a realization of {ε j }n

j=1 and then calculate an estimate θ̂ of
→
θ0 using

the OLS or GLS procedure.
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We will then use the residuals r j = y j − f (t j , θ̂ ) to test whether the data set is
i.i.d. and possesses the assumed variance structure. If a data set has constant variance
error then

Y j = f (t j ,
→
θ0) + ε j or ε j = Y j − f (t j ,

→
θ0).

Since it is assumed that the error ε j is i.i.d. a plot of the residuals r j = y j − f (t j , θ̂ )
vs. t j should be random. Also, the error in the constant variance case does not
depend on f (t j , θ0), and so a plot of the residuals r j = y j − f (t j , θ̂ ) vs. f (t j , θ̂ )
should also be random. Therefore, if the error has constant variance then a plot of
the residuals r j = y j − f (t j , θ̂ ) against t j and against f (t j , θ̂ )) should both be
random. If not, then the constant variance assumption is suspect.

We turn next to questions of what to expect if this residual test is applied to a data
set that has nonconstant variance generated error. That is, we wish to investigate
what happens if the data are incorrectly assumed to have constant variance error
when in fact they have nonconstant variance error. Since in the nonconstant variance

example, R j = Y j − f (t j ,
→
θ0) = f (t j ,

→
θ0) ε j depends upon the deterministic model

f (t j ,
→
θ0), we should expect that a plot of the residuals r j = y j − f (t j , θ̂ ) vs. t j

should exhibit some type of pattern. Also, the residuals actually depend on f (t j , θ̂ )
in the nonconstant variance case, and so as f (t j , θ̂ ) increases the variation of the
residuals r j = y j − f (t j , θ̂ ) should increase as well. Thus r j = y j − f (t j , θ̂ ) vs.
f (t j , θ̂ ) should have a fan shape in the nonconstant variance case.

In summary, if a data set has nonconstant variance generated data, then

Y j = f (t j ,
→
θ0) + f (t j ,

→
θ0) ε j or ε j = Y j − f (t j ,

→
θ0)

f (t j ,
→
θ0)

.

If the distribution ε j is i.i.d., then a plot of the modified residuals rm
j = (y j −

f (t j , θ̂ ))/ f (t j , θ̂ ) vs. t j should be random in nonconstant variance generated data.
A plot of rm

j = (y j − f (t j , θ̂ ))/ f (t j , θ̂ ) vs. f (t j , θ̂ ) should also be random.
Another question of interest concerns the case in which the data are incorrectly

assumed to have nonconstant variance error when in fact they have constant variance

error. Since Y j − f (t j ,
→
θ0) = ε j in the constant variance case, we should expect

that a plot of rm
j = (y j − f (t j , θ̂ ))/ f (t j , θ̂ ) vs. t j as well as that for rm

j = (y j −
f (t j , θ̂ ))/ f (t j , θ̂ ) vs. f (t j , θ̂ ) will possess some distinct pattern.

Two further issues regarding residual plots: As we shall see by examples, some
data sets might have values that are repeated or nearly repeated a large number
of times (for example when sampling near an equilibrium for the mathematical
model or when sampling a periodic system over many periods). If a certain value
is repeated numerous times (e.g., frepeat) then any plot with f (t j , θ̂ ) along the hor-
izontal axis should have a cluster of values along the vertical line x = frepeat. This
feature can easily be removed by excluding the data points corresponding to these
high frequency values (or simply excluding the corresponding points in the residual
plots). Another common technique when plotting against model predictions is to
plot against log f (t j , θ̂ ) instead of f (t j , θ̂ ) itself which has the effect of “stretching
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out” plots at the ends. Also, note that the model value f (t j , θ̂ ) could possibly be

zero or very near zero, in which case the modified residuals Rm
j = Y j − f (t j ,θ̂ )

f (t j ,θ̂ )
would

be undefined or extremely large. To remedy this situation one might exclude values
very close to zero (in either the plots or in the data themselves). We chose here
to reduce the data sets (although this sometimes could lead to a deterioration in
the estimation results obtained). In our examples below, estimates obtained using a
truncated data set will be denoted by θ̂ tcv

OLS for constant variance data and θ̂ tncv
OLS for

nonconstant variance data.

4.2 Example Using Residual Plots

We illustrate residual plot techniques by exploring a widely studied model – the
logistic population growth model of Verhulst/Pearl

ẋ = r x(1 − x

K
), x(0) = x0. (54)

Here K is the population’s carrying capacity, r is the intrinsic growth rate and x0 is
the initial population size. This well-known logistic model describes how popula-
tions grow when constrained by resources or competition. The closed form solution
of this simple model is given by

x(t) = K x0ert

K + x0 (ert − 1)
. (55)

The left plot in Fig. 1 depicts the solution of the logistic model for K = 17.5, r = .7
and x0 = 1 for 0 ≤ t ≤ 25. If high frequency repeated or nearly repeated values
(i.e., near the initial value x0 or near the asymptote x = K ) are removed from the
original plot, the resulting truncated plot is given in the right panel of Fig. 1 (there
are no near zero values for this function).
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Fig. 1 Original and truncated logistic curve with K = 17.5, r = .7 and x0 = .1
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Table 1 Estimation using the OLS procedure with constant variance data for k = 5

k
→
θ init

→
θ 0 θ̂ cv

OLS SE(θ̂ cv
OLS) θ̂ tcv

OLS SE(θ̂ tcv
OLS)

5 17 17.5 1.7500e+001 1.5800e−003 1.7494e+001 6.4215e−003
5 .8 .7 7.0018e−001 4.2841e−004 7.0062e−001 6.5796e−004
5 1.2 .1 9.9958e−002 3.1483e−004 9.9702e−002 4.3898e−004

Table 2 Estimation using the GLS procedure with constant variance data for k = 5

k
→
θ init

→
θ 0 θ̂ cv

GLS SE(θ̂ cv
GLS) θ̂ tcv

GLS SE(θ̂ tcv
GLS)

5 17 17.5 1.7500e+001 1.3824e−004 1.7494e+001 9.1213e−005
5 .8 .7 7.0021e−001 7.8139e−005 7.0060e−001 1.6009e−005
5 1.2 .1 9.9938e−002 6.6068e−005 9.9718e−002 1.2130e−005

For this example we generated both constant variance and nonconstant variance
noisy data ( we sampled from N (0, 1) random variables to obtain realizations of

ε j ) and obtained estimates θ̂ of
→
θ0 = (K , r, x0) by applying either the OLS or

GLS method to a realization {y j }n
j=1 of the random process {Y j }n

j=1. The initial

guesses
→
θ ini t = θ̂ (0) along with estimates for each method and error structure are

given in Tables 1-4 (the superscript tcv and tncv denote the estimate obtained using
the truncated data set). As expected, both methods do a good job of estimating
→
θ0, however the error structure was not always correctly specified since incorrect
asymptotic formulas were used in some cases.

When the OLS method was applied to nonconstant variance data and the GLS
method was applied to constant variance data, the residual plots given below do
reveal that the error structure was misspecified. For instance, the plot of the residuals
for θ̂ncv

OLS given in Figs. 4 and 5 reveal a fan shaped pattern, which indicates the
constant variance assumption is suspect. In addition, the plot of the residuals for
θ̂ cv

GLS given in Figs. 6 and 7 reveal an inverted fan shaped pattern, which indicates
the nonconstant variance assumption is suspect. As expected, when the correct error

Table 3 Estimation using the OLS procedure with nonconstant variance data for k = 5

k
→
θ init

→
θ 0 θ̂ncv

OLS SE(θ̂ncv
OLS) θ̂ tncv

OLS SE(θ̂ tncv
OLS)

5 17 17.5 1.7499e+001 2.2678e−002 1.7411e+001 7.1584e−002
5 .8 .7 7.0192e−001 6.1770e−003 7.0955e−001 7.6039e−003
5 1.2 .1 9.9496e−002 4.5115e−003 9.4967e−002 4.8295e−003

Table 4 Estimation using the GLS procedure with nonconstant variance data for k = 5

k
→
θ init

→
θ 0 θ̂ncv

GLS SE(θ̂ncv
GLS) θ̂ tncv

GLS SE(θ̂ tncv
GLS)

5 17 17.5 1.7498e+001 9.4366e−005 1.7411e+001 3.1271e−004
5 .8 .7 7.0217e−001 5.3616e−005 7.0959e−001 5.7181e−005
5 1.2 .1 9.9314e−002 4.4976e−005 9.4944e−002 4.1205e−005
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Fig. 8 Modified residual vs. time plots: Original and truncated logistic curve for θ̂ncv
GLS with k = 5

structure is specified, the i.i.d. test and the model dependence test each display a
random pattern (Figs. 2, 3, 8, and 9).

Also, included in the right panel of Figs. 2–9 are the residual plots with the
truncated data sets. In those plots only model values between one and seventeen
were considered (i.e. 1 ≤ y j ≤ 17). Doing so removed the dense vertical lines in
the plots with f (t j , θ̂ ) along the x-axis. Nonetheless, the conclusions regarding the
error structure remain the same.

In addition to the residual plots, we can also compare the standard errors obtained
for each simulation. At a quick glance of Tables 1–4, the standard error of the
parameter K in the truncated data set is larger than the standard error of K in
the original data set. This behavior is expected. If we remove the “flat” region in
the logistic curve, we actually discard measurements with high information content
about the carrying capacity K [4]. Doing so reduces the quality of the estimator K .
Another interesting observation is that the standard errors of the GLS estimate are
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GLS with k = 5
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more optimistic than that of the OLS estimate, even when the non-constant variance
assumption is wrong. This example further solidifies the conclusion we will make
with the epidemiological model described below – before one reports an estimate
and corresponding standard errors, there needs to be some assurance that the proper
error structure has been specified.

5 Pneumococcal Disease Dynamics Model

To explore these ideas in the context of epidemiology, we discuss a population level
model of pneumococcal disease dynamics as an example. This model has previously
been applied to surveillance data available via the Australian National Notifiable
Diseases Surveillance System in [32]. Monthly case notifications of invasive pneu-
mococcal disease (IPD) and annual vaccination information were used to estimate
unknown model parameters and to assess the impact of a newly implemented vac-
cination policy. Here we illustrate, with this example, the effects of incorrect versus
correct statistical models assumed to represent observed data in reporting parameter
values and their corresponding standard errors. Most importantly, we discuss rele-
vant residual plots and how to use these to determine if reasonable assumptions on
observed error have been made.

In this model, shown in Fig. 10, individuals are classified according to their epi-
demiological status with respect to invasive pneumococcal diseases, which include
pneumonia, bacteremia, meningitis and are defined as the presence of Streptococ-
cus pneumoniae in any normal sterile fluid in the body. Individuals are considered
susceptible, or in the S class, in the absence of this bacteria. The E class represents
individuals whose nasopharyngeal regions are asymptomatically colonized by S.

Fig. 10 Pneumococcal infection dynamics with vaccination
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pneumoniae, a stage that is typically transient, but always precedes infection. Should
a colony of S. pneumoniae be successful in establishing an infection, the individual
then exhibits a clinical condition described above, and is then considered infected or
in the I class. We consider vaccines which prevent progression to infection, or pos-
sibly, asymptomatic colonization. This protection is not complete, and the efficacy
with which this is accomplished is 1 − δ and 1 − ε, respectively. Once vaccinated,
individuals may enter any of the epidemiological states, SV , EV , and IV , although
they do so with altered rates. The model equations (for detailed derivations, see [32])
are given by

d S

dt
= λ − βS

E + EV + I + IV

N
+ αE + γ I − φS + ρSV − μS (56)

d E

dt
= βS

E + EV + I + IV

N
− αE − lκ(t)E − φE + ρEV − μE (57)

d SV

dt
= φS − εβSV

E + EV + I + IV

N
+ αEV + γ IV − ρSV − μSV (58)

d EV

dt
= εβSV

E + EV + I + IV

N
− αEV + φE − ρEV − δκ(t)EV − μEV (59)

d I

dt
= lκ(t)E − (γ + η + μ)I (60)

d IV

dt
= δκ(t)EV − (γ + η + μ)IV . (61)

Seasonality of invasive pneumococcal diseases has been observed and studies
support a seasonal infection rate, κ , rather than a seasonal effective contact rate, β.
Thus, we assume the form

κ(t) = κ0 (1 + κ1 cos[ω(t − τ )]) ,

for κ(t) to reflect seasonal changes in host susceptibility to pneumococcal infection.

5.1 Statistical Models of Case Notification Data

Monthly case notifications f (t j ,
→
θ ) are best represented as integrals of the new

infection rates,

f (t j ,
→
θ ) =

∫ t j+1

t j

[lκ(s)E(s) + δκ(s)EV (s)] ds,

(including those in the vaccinated class) over each month, since they represent the
number of cases reported during the month and do not provide any information
on how long individuals remain in an infected state. We use these data to estimate
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→
θ = (β, κ0, κ1)T . Before using the model with surveillance data, we test the model
and methodology capabilities with simulated “data”. Following the procedures in
the logistic example discussions in Section 4, we generate data according to two
statistical models:

Y j = f (t j , θ0) + ε j , (62)

Y j = f (t j , θ0)(1 + ε j ), (63)

for j = 1, . . . , n, where
→
θ0 are the “true” values of the parameters used to generate

the data. In both (62) and (63), the ε j are independent and identically distributed
(i.i.d.) random variables with E[ε j ] = 0 and var(ε j ) = σ 2

0 . In model (62), however,

the residual is then R j = Y j − f (t j ,
→
θ0) = ε j and thus R j satisfies E[R j ] = 0 and

var(R j ) = σ 2
0 . As before, we will refer to this error with constant variance, or CV.

The second case, (63), has residuals of the form R j = Y j − f (t j ,
→
θ0) = ε j f (t j ,

→
θ0),

so the residual is actually proportional to the model, f (t j ,
→
θ0), at each time point t j ,

and thus this is an example of error with nonconstant variance, or NCV. We note

that in this case E[R j ] = 0 and var(R j ) = σ 2
0 f 2(t j ,

→
θ0) or R j

f (t j ,
→
θ 0)

has mean zero

and variance σ 2
0 .

For illustration, we consider the same four cases as with the logistic example in
Section 4:

1. OLS estimation of θ̂ using data generated by model (62) with constant variance
observational error: θO L S(YCV ),

2. OLS estimation of θ̂ using data generated by model (63) with nonconstant
variance observational error: θO L S(YNCV ),

3. GLS estimation of θ̂ using data generated by model (62) with constant variance
observational error: θGL S(YCV ),

4. GLS estimation of θ̂ using data generated by model (63) with nonconstant
variance observational error: θGL S(YNCV ).

We compare the parameter estimates θ̂ and standard errors SE(θ̂ ) obtained in each
case. Further we discuss how to interpret plots of r j = y j − f (t j , θ̂ ) versus t j and
f (t j , θ̂ ) to assess whether reasonable assumptions have been made in assuming the
statistical model for the data.

5.2 Inverse Problem Results: Simulated Data

Data were generated with n = 60 time points (equivalent to five years of data), with
the set of parameters

→
θ0 =

⎛
⎝β

κ0

κ1

⎞
⎠ =

⎛
⎝ 1.5

1.4e−3

0.55

⎞
⎠ .
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Error was added to the forward solution according to two statistical models, as
described in Section 5.1. In the case of constant variance observational error, the
error is scaled to the magnitude of the model but not in a time-dependent manner. In
this case we generated noisy data by sampling from a N (0, 1) distribution (we could
of course have sampled from any other random variable). Therefore, for constant

variance error of about k% of the average magnitude of the f (t j ,
→
θ0),

ε j ∼ k

100
avg j f (t j ,

→
θ0)N (0, 1).

So in this case ε j ∼ N (0, [ k
100 avg j f (t j ,

→
θ0)]2) with ε j (and also R j ) i.i.d. In the

second statistical model, the error depends on time and is scaled by the model at
each time point, i.e., the error is relative. In this case the error is added to the
observations by

R j = f (t j ,
→
θ0)ε j ∼ f (t j ,

→
θ0)

k

100
N (0, 1),

with ε j ∼ N (0, [ k
100 f (t j ,

→
θ0)]2), and again the ε j are i.i.d., but now the R j are

not i.i.d. This enables us to compare different types of error on the same scale: one
independent of time and observation magnitude, and one dependent on observation
magnitude, and thus time. With the present examples, we have taken k = 10.

The results from using an OLS and GLS estimator with data generated with con-
stant variance error are displayed in Table 5, and the fitted model solutions displayed
in Fig. 11. Both estimators do an arguably similar job at producing the true values,
that is θ̂O L S and θ̂GL S are comparably close to θ0. The standard errors SE(θ̂GL S)
for the GLS estimator however, are all smaller, and seem to indicate that the corre-
sponding estimates are more “reliable”. This, however, is not true because they are
based on incorrect formulae, as we shall see in our examination of the error plots for
both of these cases. Note that from Fig. 11 and the residual sum of squares, RSS,
in both cases, there is no clear argument from these results as to which estimator is
better suited for use with the data.

When OLS and GLS estimation are each used with data with nonconstant vari-
ance error, the parameters and standard errors in Table 6 are obtained, and the plot
of these model solutions over the generated data is given in Fig. 12. Again, one
estimator does not do a clearly better job over the other in terms of predicting
parameter values closer to those used to generate the data. However, again, the

Table 5 Parameter estimates from data with constant variance CV error
→
θ

→
θ0

→
θ init θ̂O L S SE(θ̂O L S) θ̂GL S SE(θ̂GL S)

β 1.5 1.55 1.4845 0.038 1.51186 0.017
κ0 1.4e−3 1.3e−3 1.4188e−3 2.1e−4 1.3203e−3 1.2e−4

κ1 0.55 0.65 0.56203 0.050 0.56047 0.019
RSS 1.6831e4 1.722e4
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Fig. 11 Best fit model solutions to monthly case notifications with constant variance CV error

Table 6 Parameter estimates from data with nonconstant variance NCV error
→
θ

→
θ0

→
θ init θ̂O L S SE(θ̂O L S) θ̂GL S SE(θ̂GL S)

β 1.5 1.55 1.4876 0.037 1.4923 0.0079
κ0 1.4e−3 1.3e−3 1.4703e−3 2.0e−4 1.4301e−3 7e−5

κ1 0.55 0.65 0.54531 0.047 0.54232 0.012
RSS 1.6692e4 1.676e4

standard errors from the GLS estimation are smaller as compared to those of the
OLS estimation. From this, it would seem that the GLS estimation would always
give “better” parameter values, or do a better job at producing reliable results. How-
ever, we know that in the case of constant variance error, the GLS estimation makes
some incorrect assumptions on the data generation and therefore, the standard errors
reported there would give a false sense of confidence in the values (indeed they are
based on incorrect asymptotic formulae).
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Fig. 12 Best fit model solutions to monthly case notifications with nonconstant variance NCV
error
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5.2.1 Residual Plots

Here we illustrate use of residual plots to investigate whether our assumptions on
the errors incurred in observation of data are correct – that is, whether the ε j are
i.i.d. for all j = 1, . . . , n, and also are independent of the observation magnitude.
As we have already discussed in Section 4, if the errors are i.i.d. then a plot of
the residuals r j = y j − f (t j , θ̂ ) versus time t j should show no discernible pattern.
Similarly, a plot of the residual r j as a function of the model values f (t j , θ̂ ) should
be random if there is no relationship between these two quantities. While use of the
OLS estimation tacitly assumes the statistical model (62), and therefore the residual
is a realization of the error random variable, this is not true of the GLS estimation.
In that case, the assumed statistical model is shown in (62) with ε j i.i.d. but the
residual r j are not i.i.d. for all j = 1, . . . , n. Therefore, in the case of GLS we
should investigate plots of the residual/model values, R j = Y j − f (t j ,θ0)

f (t j ,θ0) instead of the
residuals.

In Fig. 13, we see the relationship between the residuals and time, and that
between residuals and the model values when the OLS estimation procedure is
applied to data which has been generated with constant variance error. In both the

0 2 4 6 8 10 12
−20

−15

−10

−5

0

5

10

15

20

25
OLS estimation with CV Data

R
es

id
ua

l 

Time t j (months)

0 10 20 30 40 50 60
−50

−40

−30

−20

−10

0

10

20

30

40
OLS estimation with CV Data

Time t j (months)

R
es

id
ua

l 

50 100 150 200 250 300
−50

−40

−30

−20

−10

0

10

20

30

40
OLS estimation with CV Data 

Model f(t j, θ)

R
es

id
ua

l 

Model f(t j, θ)

50 100 150 200 250 300
−20

−15

−10

−5

0

5

10

15

20

25
OLS estimation with CV Data 

R
es

id
ua

l 

Fig. 13 Residual (r j = y j − f (t j , θ̂ )) plots of the OLS estimation with CV data (ε j = Y j −
f (t j ,

→
θ0)); Left: nontruncated, Right: truncated
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top and bottom panels on the left, the full set of n = 60 points are used, while on the
right hand side, only one year, or n = 12 points have been used for the estimation.
Both top panels show a random pattern, so the errors are clearly i.i.d. But in the
bottom left plot, we observe clustering of residuals around certain model values,
although there is no clear pattern in the dependent variable, just in the independent
variable, f (t j , θ̂ ). However, we recognize that this is due to the seasonality of the
data and model, so that at regular repeated time points over many periods, there are
going to be repeated values of the model. As evidence of this, we see that when
only one period is plotted (the bottom right panel), a random pattern is seen, and
we confirm that the errors are not dependent on the model values. Thus, if there
are vertical bands on a plot such as this, it can be attributed to certain model values
repeating and does not indicate any dependence of the error on the model value. To
check, one can simply reduce the number of data points used in the estimation so
that there are few or no repeated values.

When OLS estimation is carried out with data that has been generated according
to the statistical model (63), however, the independence of the error from time is
not so clear, as these graphs (Fig. 14) do not show a random pattern. While there
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Fig. 14 Residual (r j = y j − f (t j , θ̂)) plots of the OLS estimation to NCV data (ε j = Y j − f (t j ,
→
θ 0)

f (t j ,
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θ 0)

);

Left: nontruncated, Right: truncated
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is no clear relationship, there is some randomness in the residuals, and the band
of residuals are tighter, not homogeneously distributed across the plot as in Fig. 13.
The dependence of the residuals on model value magnitude (seen in the bottom pan-
els) is apparent as the r j clearly increase with increasing model values, producing
a fan shape. In this case the OLS estimation is used incorrectly, and the residual
plots exhibit a clear dependence on model values and do not confirm independence
from time.

The GLS estimation procedure, however, gave smaller standard errors regardless
of the data set used, and therefore, more confidence in the parameter estimates.
However, in Fig. 15, we see evidence again of the dependence of the residuals on
time and model quantities, thus indicating that our assumptions have been incorrect
for GLS estimation. In this case, we would have assumed that the errors are pro-
portional to the observations, thus motivating a GLS estimator. If the variance is
constant across time and model values, and the GLS estimator is used, we should
expect a systematic behavior in the residual plots. Indeed, the plots in Fig. 15 reveal
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a tight band of points in the r j

f (t j ,θ̂ )
versus t j plots and the reverse fan shape of the plot

of the residual/model r j

f (t j ,θ̂ )
versus the model values f (t j , θ̂ ). This indicates that the

relations which give us the parameter estimates and their standard errors no longer
hold and we are essentially reporting incorrect values. As we saw in Section 5.2,
while the parameter estimates may not necessarily be poor, the reliability provided
by the standard errors is incorrect.

When the GLS estimator is used appropriately, however, the randomness of the
error plots suggest reasonability of assumptions, as seen in Fig. 16. Here, the error
in the data has been generated proportional to the model values, and therefore, not

longitudinally constant. So when we plot the ratios y j − f (t j ,θ̂ )
f (t j ,θ̂ )

, we allow for this

dependence and see the random patterns we would expect when plotting realizations
of a random variable. Again, the vertical bands seen in the bottom left panel indi-
cate repeated model values, as can be seen by the bottom right panel, where the
repetitions have been excluded from the data set.
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Fig. 16 Residual/Model ( r j

f (t j ,θ̂ )
) plots of the GLS estimation to NCV data (ε j = Y j − f (t j ,

→
θ 0)

f (t j ,
→
θ 0)

); Left:

nontruncated, Right: truncated
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5.3 Inverse Problem Results: Australian Surveillance Data

Using the iterative weighted least squares procedure described in Section 2.3.2, we
carried out inverse problem calculations with the model and observations as outlined
in the previous section using Australian IPD data in place of the simulated data. In
this case we assumed constant variance noise in the data and hence used WLS,
e.g., see Equation (27), for our estimation procedure. Details are given in [32]. We
discuss here the case where we used data for the period 2002–2004 (36 months of
monthly data n1 = 36, and n2 = 6 of annual vaccinated or unvaccinated cases) and

estimated
→
θ = (β, κ0, κ1, δ)T along with σ1, σ2 in a weighted least squares (WLS)

functional

J42(
→
θ, σ 2

1 , σ 2
2 ) = 1

σ 2
1

36∑
j=1

∣∣∣Y (1)
j − f (1)

j

∣∣∣2 + 9

σ 2
2

3∑
k=1

{∣∣∣Y (2)
k − f (2)

k

∣∣∣2 +
∣∣∣Y (3)

k − f (3)
k

∣∣∣2
}

.

(64)

As usual, we assume there exists a “true” parameter
→
θ0 which generated the data,

and our statistical model is then given by

Y (1)
j ≡ f (1)(t j ,

→
θ0) + ε

(1)
j j = 1, ..., 36, (65)

Y (2)
k ≡ f (2)(tk,

→
θ0) + ε

(2)
k k = 1, 2, 3, (66)

Y (3)
k ≡ f (3)(tk,

→
θ0) + ε

(3)
k k = 1, 2, 3. (67)

The errors (ε(i)
j in (65), (66), (67) for i = 1, 2, 3) in the above model are assumed

to be random variables with means E[ε(i)
j ] = 0 and constant variances var (ε(i)

j ) =
σ 2

0,i , where σ0,1 = σ1, σ0,2 = σ0,3 = σ2 are unknown. Thus we have assumed that
the size of the errors committed at each time for a given kind of “measurement”
is constant and also does not depend on the magnitude of the measurement itself.
We also assume that ε

(i)
j are independent and identically distributed (i.i.d.) random

variables for each fixed i . The observations and the model quantities are related by

� Y (1)
j ∼ f (1)(t j ,

→
θ ) = ∫ t j+1

t j
[κ(s)E(s) + δκ(s)EV (s)] ds for j = 1, 2, .., 36

(monthly cases),
� Y (2)

k ∼ f (2)(tk,
→
θ ) = ∫ tk+1

tk
κ(s)E(s)ds for k = 1, 2, 3 (yearly unvaccinated cases),

� Y (3)
k ∼ f (3)(tk,

→
θ ) = ∫ tk+1

tk
δκ(s)EV (s)ds for k = 1, 2, 3 (yearly vaccinated

cases).

The data fits in Fig. 17 reveal that the model solution with the parameters shown
in Table 7 fits the Australian surveillance data from 2002 to 2004, with the top
panel showing the fit to the monthly case notification data, the bottom left panel the
unvaccinated cases reported annually, and the bottom right the annual vaccinated
cases. The model solution and data agree well, and parameter values are on the
scale of our initial guesses, although their values differ slightly to minimize the cost
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Fig. 17 Best fit solution to Australian IPD data with parameters shown in Table 7. Top panel:
monthly cases; bottom left panel: annual unvaccinated cases; bottom right panel: annual vaccinated
cases

function in the functional (64). Further, the standard errors are relatively small and
suggests that the estimates obtained here are reliable.

To test the assumptions of the statistical model that we have chosen to represent
our data, we plotted the residuals between the model and observations as a func-
tion of the model, that is, r j = y(1)

j − f (1)(t j , θ̂ ) vs. the model values f (1)(t j , θ̂ )
(Fig. 18). The lack of a clear relationship between these two quantities suggests that
our assumptions are reasonable and the residuals of each observation do not depend
on the model values. However, we see six groups of points, which can be explained

Table 7 Model calibration to Australian IPD data from 2002 to 2004; estimation of ψ̂ =
(θ̂ , σ̂1, σ̂2)T = (β̂, κ̂0, κ̂1, δ̂, σ̂1, σ̂2)T

ψ ψ̂ SE(θ̂ )

β 1.52175 0.02
κ0 1.3656e−3 1.3e−4

κ1 0.56444 0.04
δ 0.7197 0.06
σ1 28.924
σ2 259.158



284 H. Thomas Banks et al.

Fig. 18 Residuals as a
function of model values. Top
panel is over the period
January 2003–June 2003,
middle panel is for January
2003–December 2003, and
bottom panel is for all three
years
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by the oscillatory pattern of the infections. In the top panel we have plotted just
one half of the period of the infection rate and see a completely random pattern,
indicating no relationship among these quantities. When we extend this time period
for another half of a period, thus plotting an entire period in the middle panel, we see
that there are two points in each group of points. Thus, the pattern observed is driven
by the seasonality of the infections and not by any incorrect assumptions. On the
contrary, only a pattern in the dependent variable (the residuals) would suggest that
incorrect assumptions have been made. This analysis suggests that it is reasonable to
assume constant variance among observations of the same type, providing support
for the statistical model underlying the parameter estimation procedure.

6 Sensitivity Functions

The sensitivity matrices χ = F→
θ

introduced in Section 3 to define covariances
for sampling distributions and associated standard errors are actually well known
in the applied mathematics and engineering literature, where they arise in routine
sensitivity analysis.

In actuality, sensitivity analysis is an ensemble of techniques [30] that can
provide information on parameter dependent model behavior, yielding a much bet-
ter understanding of the underlying mathematical model with a resulting marked
improvement in the estimation results obtained using the models in simulations and
inverse problems. Traditionally, sensitivity analysis referred to a procedure used in
simulation studies (direct problems) where one evaluated the effects of parameter
variations on the time course of model outputs and identified the parameters or the
initial conditions to which the model is most/least sensitive. In recent years however,
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investigators’ attention has also recently turned to the sensitivity of the solutions to
inverse problems with respect to data, in a quest for optimal selection of data mea-
surements in experimental design. As part of model validation and verification, one
typically needs to estimate model parameters from data measurements, and a related
question of paramount interest is related to sampling; specifically, at which time
points the measurements are most informative in the estimation of a given parameter.
Due to the fact that in practice the components of the parameter estimates are often
correlated, traditional sensitivity functions (TSF) used alone are not very efficient
in answering this question because TSF do not take into account how model out-
put variations affect parameter estimates in inverse problems. Investigators [11, 34]
recently proposed a new class of sensitivity functions, called generalized sensitivity
functions (GSF), which provide information on the relevance of measurements of
output variables of a system for the identification of specific parameters. For a given
set of time observations, Thomaseth and Cobelli use theoretical information criteria
(the Fisher information matrix) to establish a relationship between the monotonicity
of the GSF curves with respect to the model parameters and the information content
of these observations. Here our interest is in how to use this information content tool
along with TSF to improve data collection for estimation of parameters in inverse
problems. It is, of course, intuitive that sampling more data points from the region
indicated by the GSF to be the “most informative” with respect to a given parameter
would result in more information about that parameter, and therefore provide more
accurate estimates for it.

To define and discuss these sensitivity functions we consider the general mathe-

matical model (1) with N -vector solutions
→
x depending on p-vector parameters

→
θ .

6.1 Traditional Sensitivity Functions

Traditional sensitivity functions (TSF) are classical sensitivity functions used in
mathematical modeling to investigate variations in the output of a model resulting
from variations in the parameters and the initial conditions.

In order to quantify the variation in the state variable
→
x(t) with respect to changes

in the parameter
→
θ and the initial condition

→
x0, we are naturally led to consider

traditional sensitivity functions (TSF) as defined by the derivatives

→
s θk (t) = ∂

→
x

∂θk
(t), k = 1, . . . , p, (68)

and

→
r x0l (t) = ∂

→
x

∂x0l
(t), l = 1, . . . , N , (69)

where x0l is the l-th component of the initial condition
→
x0. If the function

→
g is

sufficiently regular, the solution
→
x is differentiable with respect to θk and x0l , and

therefore the sensitivity functions
→
s θk and

→
r x0l are well defined.
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In practice, the model under investigation often is sufficiently simple to allow one
to compute analytically the sensitivity functions (68) and (69). This is precisely the
case (see (55)) with the logistic growth population example of (54) to be discussed
below. However, when one deals with a more complex model, as with the epidemi-
ological example of Section 5, it is often preferable to consider these sensitivity
functions separately for clarity purposes.

The sensitivity functions are local in nature because they are defined by par-
tial derivatives which have a local character. Thus sensitivity and insensitivity (i.e.,
→
s θk = ∂

→
x/∂θk very close to zero) depend on the time interval, the state values

→
x ,

and the values of
→
θ for which they are considered. For example in a certain time

subinterval we might find that
→
s θk is small so that the state variable

→
x is insensitive

to the parameter θk on that particular interval. The same function
→
s θk can take large

values on a different subinterval, indicating that the state variable
→
x is quite sensitive

to the parameter θk on the latter interval. From the sensitivity analysis theory for
dynamical systems, one finds (e.g., see (48)) that s = (

→
s θ1 , . . . ,

→
s θp ) is an N × p

vector function that satisfies the matrix ODE system

ṡ(t) = →
g→

x
(t,

→
x(t),

→
θ )s(t) + →

g→
θ

(t,
→
x(t),

→
θ ), (70)

s(t0) = 0N×p,

so that the dependence of s on (t,
→
x(t)) as well as

→
θ is readily apparent. Here we

have used
→
g→

x
= ∂

→
g/∂

→
x and

→
g→

θ
= ∂

→
g/∂

→
θ to denote the derivatives of

→
g with respect

to
→
x and

→
θ , respectively.

The sensitivity functions with respect to the components of the initial condition
→
x0 define an N × N vector function r = (

→
r x01 , . . . ,

→
r x0N ), which satisfies the matrix

system

ṙ (t) = →
g→

x
(t,

→
x(t),

→
θ )r (t), (71)

r (t0) = IN×N .

Equations (70) and (71) can be used in conjunction with Equation (1) to numer-
ically compute the sensitivities s and r for general cases when the function

→
g is

sufficiently complicated to prohibit an analytical solution.
In many cases the parameters have different units and the state variables may

have varying orders of magnitude, and thus in practice it is sometimes more conve-
nient to work with the scaled versions of the TSF, referred to as relative sensitivity
functions (RSF). However, here we will focus solely on the non-scaled sensitivities,
i.e., TSF.

6.2 Generalized Sensitivity Functions

Recently, generalized sensitivity functions were proposed by Thomaseth and Cobelli
[34] as a new tool in identification studies to analyze, for a given set of observations,
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the distribution of the information content of observations relative to its influence
on the estimated model parameters. These are formulated in the context of an OLS
inverse problem framework in [11, 34] where a rather detailed motivation for defin-
ing these “cumulative information” functions is discussed. Roughly speaking, these
functions involve sensitivity of estimated parameters with respect to the data col-
lected up to a particular time observation. Recall that the usual sensitivity functions
involve influence of the parameters in a model on the model output.

We consider here a scalar observation model with discrete time measurements.
When m = 1 and C is a 1 × N array in (4)), the generalized sensitivity functions
(GSF) are defined as

gs(tl) =
l∑

i=1

1

σ 2(ti )
[F−1 × ∇→

θ
f (ti ,

→
θ0)] • ∇→

θ
f (ti ,

→
θ0), (72)

where {tl}, l = 1, . . . , n are the times when the measurements are taken,

F =
n∑

j=1

1

σ 2(t j )
∇→

θ
f (t j ,

→
θ0)∇→

θ
f (t j ,

→
θ0)T (73)

is the corresponding p × p Fisher information matrix and σ 2(t j ) is the observation
time dependent variance. The symbol “•” represents element-by-element vector
multiplication (for motivation and details which lead to the definition above, the
interested reader may consult [11, 34]). The Fisher information matrix measures the
information content of the data corresponding to the model parameters. In (72) we
see that this information is contained in the GSF, making them appropriate tools to
indicate the relevance of the measurements to estimation of a parameter in inverse
problems.

We observe that the generalized sensitivity functions (72) are vector-valued func-

tions with the same dimension as
→
θ . The k-th component gsk of the vector function

gs represents the generalized sensitivity function with respect to θk . The GSF in (72)
are defined only at the discrete time points {t j , j = 1, . . . , n} and they are cumula-
tive functions involving at time tl only the contributions of those measurements up
to and including tl ; thus gsk calculates the influence of measurements up to tl on the
parameter estimate for θk .

It is readily seen from the definition that all the components of gs are one at the
final time point tn , i.e., gs(tn) = 1. If one defines gs(t) = 0 for t < t1 (naturally, gs
is zero when no measurements are collected), then each component of gs transitions
(not necessarily monotonically) from zero to one. As developed in [11, 34], the time
subinterval during which the change in gsk has the sharpest increase corresponds to
the observations which provide the most information in the estimation of θk . That is,
regions of sharp increases in gsk indicate a high concentration of information in the
data about θk . Thus, the utility of these functions in design of experiments is rather
obvious.
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The numerical implementation of the generalized sensitivity functions (72) is

straightforward, since the gradient of f with respect to
→
θ (or

→
x0) is simply the Jaco-

bian of
→
x with respect to

→
θ (or

→
x0) multiplied by the observation operator C. These

Jacobian matrices can be obtained by numerically solving the sensitivity ODE sys-
tem (70) or (71) coupled with the system (1). One would need to use this approach
to compute the GSF for the epidemiological model of Section 5. For the logistic
model used below to illustrate ideas, the solution of Equation (54) given by (55) is
sufficiently simple to permit an analytical representation of the Jacobians.

6.3 TSF and GSF for the Logistic Equation

The Verhulst-Pearl logistic Equation (54) is a relatively simple example with easily
determined dynamics that is useful in demonstrating the utility of the traditional
sensitivity functions as well as the generalized sensitivity functions in inverse prob-
lems (see [2, 4] for more discussions on TSF and GSF for this example). Unless data
are sampled from regions with changing dynamics, it is possible that some of the
parameters will be difficult to estimate. Moreover, the parameters that are obtainable
may have high standard errors as a result of introducing redundancy in the sampling
region (this is illustrated in [2]). In order to investigate sensitivity for the logistic
growth example, we will examine varying behavior in the model depending on the
region from which t j is sampled. We consider points τ1 and τ2, as depicted in Fig. 19,
partitioning the logistic solution curve into three distinct regions: 0 < t j < τ1,
τ1 < t j < τ2, and τ2 < t j < T , with T sufficiently large for our solution to be near
its asymptote x = K . Based on the changing dynamics of the curve in Fig. 19, we
expect differences in the ability to estimate parameters depending on the region in
which the solution is observed.

We consider the logistic model with true parameters
→
θ0 = (17.5, 0.7, 0.1). We

analyze the TSF corresponding to each parameter in the initial region of the curve,

Fig. 19 Regions with
different growth in the
Verhulst-Pearl solution curve

K

τ1 τ2

x 0
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where the solution approaches x0 as t → 0. When we consider the initial region of
the curve, where 0 < t j < τ1 for j = 1, . . . , n, we have

∂x(t j )

∂K
≈ 0,

∂x(t j )

∂r
≈ 0,

∂x(t j )

∂x0
≈ 1;

this follows from considering the limits of the readily computed analytical sensi-
tivity functions as t → 0. Based on these analytical findings, which indicate low
sensitivities with respect to K and r , we expect to have little ability to determine
these parameters when we sample data from [0, τ1]; however we should be able to
estimate x0. This is confirmed by the computational examples in [2, 4].

We next consider the region of the curve which is near the asymptote at x = K ,
in this case for τ2 < t j < T , j = 1, . . . , n. Here we find that by considering the
limits as t → ∞, we have the approximations

∂x(t j )

∂K
≈ 1,

∂x(t j )

∂r
≈ 0,

∂x(t j )

∂x0
≈ 0.

Based on these approximations, we expect to be able to estimate K well when we
sample data from [τ2, T ]. However, using data only from this region, we do not
expect to be able to estimate very well either x0 or r . Again these expectations are
readily confirmed by the inverse problem calculations presented in [2, 4].

Finally, we consider the part of the solution curve where τ1 < t j < τ2 for j =
1, . . . , n and where it has nontrivially changing dynamics. We find that the partial
derivative values differ greatly from the values in regions [0, τ1] and [τ2, T ]. When
[τ1, τ2] is included in the sampling region we expect to recover good estimates for
all three parameters (expectations that are met in [2, 4]).

Our analytical observations are fully consistent with information contained in the
graphs of the TSF illustrated in Fig. 20(a) for T = 25. We note that the curve sK
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Fig. 20 (a) TSF and (b) GSF corresponding to each parameter for the logistic curve with
→
θ0 =
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slowly increases with time and it appears that the solution is insensitive to K until
around the flex point of the logistic curve, which occurs shortly after t = 7 in this
case. The sensitivities sK and sr both are close to zero when t is near the origin,
and hence we deduce that both K and r will be difficult or impossible to obtain
using data in that region. Also, we observe that sx0 and sr are nearly zero in [15,25],
which suggests that we will be unable to estimate x0 or r using observations in that
region.

We numerically computed the GSF using Equation (72) with σ = 1 and the

true value parameters
→
θ0 = (17.5, 0.7, 0.1). The plots of these functions are shown

in Fig. 20(b) where one can observe obvious regions of steep increase in each
curve. For the curves gsx0 (t), gsr (t) and gsK (t), we find by visual inspection that
these regions are approximately [4.5, 7.5], [7, 11] and [12, 25], respectively. By the
generalized sensitivity theory, if we increase the number of data points sampled
in one of these regions, the estimation of the corresponding parameter is expected
to improve. This is precisely what happens in the computational examples found
in [2, 4].

While the general algorithms are still under development, the following scenario
involving TSF and GSF in design of experiments for data to be used in OLS and
GLS formulations are envisioned:

1. One proposes a mechanism, interaction, etc., as represented by a term or terms
(such as a nonlinearity, probability distribution, etc.) in a model (ODE, PDE,
etc.). One then uses methodology based on the TSF, GSF and the Fisher Informa-
tion Matrix (FIM) calculations to suggest design of experiments to collect data
(duration of experiment, sampling sizes, frequency in time, space, age/size class,
etc.) to be used in inverse problem/parameter estimation techniques to investigate
the mechanistic based terms.

2. One then designs and carries out the experiments resulting from 1. with guidance
in data collection (variables required to be observed, sampling frequency, mea-
surement accuracy needed, etc) being provided for each class of models to be
used with the data; questions and models usually will be driven by mechanism
based formulation.

3. Finally, one can carry out post experimental modeling analysis (parameter esti-
mation and inverse problems with both OLS and GLS , statistical analysis of
variance in data and model fits with residual plots, hypothesis testing and model
comparison as described in the next several sections, Kullback-Leibler distance
based and information content based model selection techniques such as AIC and
recent generalizations [16, 17] and improvements, etc.) to provide a modeling
framework and methodology for future investigations of the type proposed here.
In the post analysis one can also carry out verification and validation type studies
as well as testing predictive capabilities. This can be done in part by comparing
the models with data that was not used in the inverse problems for estimation of
parameters.
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7 Statistically Based Model Comparison Techniques

In previous sections we have discussed techniques (e.g., residual plots) for investi-
gating correctness of the assumed statistical model underlying the estimation (OLS
or GLS) procedures used in inverse problems. To this point we have not discussed
correctness issues related to choice of the mathematical model. However there are
a number of ways in which questions related to the mathematical model may arise.
In general, modeling studies [7, 8] can raise questions as to whether a mathematical
model can be improved by more detail and/or further refinement? For example, one
might ask whether one can improve the mathematical model by assuming more
detail in a given mechanism (constant rate vs. time or spatially dependent rate –
e.g., see [1] for questions related to time dependent mortality rates during sub-lethal
damage in insect populations exposed to various levels of pesticides). Or one might
question whether an additional mechanism in the model might produce a better fit to
data-see [5–7] for diffusion alone or diffusion plus convection in cat brain transport
in grey vs. white matter considerations.

Before continuing an important point must be made: In model comparison results
outlined below, there are really two models being compared: the mathematical
model and the statistical model. If one embeds the mathematical model in the
wrong statistical model (for example, assumes constant variance when this really
isn’t true), then the mathematical model comparison results using the techniques
presented here will be invalid (e.g., worthless). An important remark in all this is
that you must have the mathematical model you want to simplify or improve (e.g.,
test whether V = 0 or not in the example below) embedded in the correct statistical
model (determined in large part by the observation process), so that the comparison
really is only with regard to the mathematical model.

To provide specific motivation, we illustrate the formulation of hypothesis test-
ing by considering a mathematical model for a diffusion-convection process. This
model was proposed for use with experiments designed to study substance (labeled
sucrose) transport in cat brains, which are heterogeneous, containing grey and white
matter [7]. In general, the transport of substance in cat’s brains can be described
by a PDE describing change in time and space. This convection/diffusion model,
which is widely discussed in the applied mathematics and engineering literature, has
the form

∂u

∂t
+ V ∂u

∂x
= D ∂2u

∂x2
. (74)

Here, the parameter
→
θ = (D,V), which belongs to some admissible parameter set

�, denotes the diffusion coefficient D and the bulk velocity V of the fluid, respec-
tively. Our problem: test whether the parameter V plays a significant role in the
mathematical model. That is, if the model (74) represents a diffusion-convection
process, we seek to determine whether diffusion alone or diffusion plus convec-
tion best describes transport phenomena represented in cat brain data sets {yi j } for
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{u(ti , x j ;
→
θ )}, the concentration of labeled sucrose at times {ti } and location {x j }.

We then may take H0 : V = 0 and the alternative HA : V �= 0. Consequently, the
restricted parameter set �H ⊂ � defined by

�H = {→
θ ∈ � : V = 0}

will be important. To carry out these determinations, we will need some model
comparison tests of analysis of variance (ANOVA) type from statistics involving
residual sum of squares (RSS).

7.1 RSS Based Statistical Tests

In general, we assume an inverse problem with mathematical model f (t,
→
θ ) and n

observations
→
Y = {Y j }n

j=1. We define an OLS performance criterion

Jn(
→
θ ) = Jn(

→
Y ,

→
θ ) = 1

n

n∑
j=1

[Y j − f (t j ,
→
θ )]2,

where our statistical model again has the form

Y j = f (t j ,
→
θ0) + ε j , j = 1, . . . , n,

with {ε j }n
j=1 independent and identically distributed, E(ε j ) = 0 and constant vari-

ance var (ε j ) = σ 2. As usual
→
θ0 is the “true” value of

→
θ which we assume to exist.

As noted above, we use � to represent the set of all the admissible parameters
→
θ and

assume that � is a compact subset of Euclidean space of R p with
→
θ0 ∈ �.

Let θn(
→
Y ) = θn

O L S(
→
Y ) be the OLS estimator using Jn with corresponding estimate

θ̂n = θn
O L S(

→
y) for a realization

→
y = {y j }. That is,

θn(
→
Y ) = arg min

→
θ ∈�

Jn(
→
Y ,

→
θ ) and θ̂n = arg min

→
θ ∈�

Jn(
→
y,

→
θ ).

Remark 1. In most calculations, one actually uses an approximation f N to f , often a
numerical solution to the ODE or PDE for modeling the dynamical system. Here we
tacitly assume f N will converge to f as the approximation improves. There are also
questions related to approximations of the set � when it is infinite dimensional (e.g.,
in the case of function space parameters such as time or spatially dependent param-
eters) by finite dimensional discretizations �M . For extensive discussions related to
these questions, see [8] as well as [6] where related assumptions on convergences
f N → f and �M → � are given. We shall ignore these issues here, keeping
in mind that these approximations will also be of importance in the methodology
discussed below in most practical uses.
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In many instances, including the motivating example given above, one is inter-

ested in using data to address the question whether or not the “true” parameter
→
θ0 can

be found in a subset �H ⊂ � which we assume for discussions here is defined by

�H = {→
θ ∈ �|H →

θ = c} (75)

where H is an r × p matrix of full rank, and c is a known constant.

In this case we want to test the null hypothesis H0:
→
θ0 ∈ �H . Define then

θn
H (

→
Y ) = arg min

→
θ ∈�H

Jn(
→
Y ,

→
θ ) and θ̂n

H = arg min
→
θ ∈�H

Jn(
→
y,

→
θ )

and observe that Jn(
→
Y , θ̂n

H ) ≥ Jn(
→
Y , θ̂n). We define the related non-negative test

statistics and their realizations, respectively, by

Tn(
→
Y ) = n(Jn(

→
Y , θn

H ) − Jn(
→
Y , θn)) and T̂n = Tn(

→
y) = n(Jn(

→
y, θ̂n

H ) − Jn(
→
y, θ̂n)).

One can establish asymptotic convergence results for the test statistics Tn(
→
Y ), as

given in detail in [6]. These results can, in turn, be used to establish a fundamental
result about much more useful statistics for model comparison. We define these
statistics by

Un(
→
Y ) = Tn(

→
Y )

Jn(
→
Y , θn)

, (76)

with corresponding realizations Ûn = Un(
→
y). We then have the asymptotic result

that is the basis of our ANOVA–type tests.
Under reasonable assumptions (very similar to those required in the asymptotic

sampling distribution theory discussed in previous sections–see [6, 8, 31]) involving
regularity and the manner in which samples are taken, one can prove [6]:

(a) We have the estimator convergence θn −→ →
θ0 as n → ∞ with probability one;

(b) If H0 is true, Un
D−→ U (r ) as n → ∞ where U ∼ χ2(r ), a χ2 distribution with

r degrees of freedom.

An example of the χ2 density is depicted in Fig. 21 where the density for χ2(4)
(χ2 with r = 4 degrees of freedom) is graphed.

Fig. 21 Example of
U ∼ χ2(4) density

p(u)

τ

∞
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Table 8 χ2(1)

α τ Confidence (%)

.25 1.32 75

.1 2.71 90

.05 3.84 95

.01 6.63 99

.001 10.83 99.9

In this figure two parameters (τ, α) of interest are shown. For a given value τ ,
the value α is simply the probability that the random variable U will take on a value
greater than α. That is, Prob{U > τ } = α where in hypothesis testing, α is the
significance level and τ is the threshold.

We wish to use this distribution to test the null hypothesis, H0, where we approx-
imate by Un ∼ χ2(r ). If the test statistic, Ûn > τ , then we reject H0 as false with
confidence level (1−α)100%. Otherwise, we do not reject H0 as true. For cat brain
problem, we use a χ2(1) Table 8, which can be found in any elementary statistics
text or online and is given here for illustrative purposes.

7.1.1 P-Values

The minimum value α∗ of α at which H0 can be rejected is called the p-value. Thus,
the smaller the p-value, the stronger the evidence in the data in support of rejecting
the null hypothesis and including the term in the model, i.e., the more likely the term
should be in the model. We implement this as follows: Once we compute Ûn = τ̄ ,
then p = α∗ is the value that corresponds to τ̄ on a χ2 graph and so, we reject the
null hypothesis at any confidence level, c, such that c < 1 − α∗. For example, if for
a computed τ̄ we find p = α∗ = .0182, then we would reject H0 at confidence level
(1 − α∗)100% = 98.18% or lower. For more information, the reader can consult
ANOVA discussions in any good statistics book.

7.1.2 Alternative Statement

To test the null hypothesis H0, we choose a significance level α and use χ2 tables
to obtain the corresponding threshold τ = τ (α) so that P(χ2(r ) > τ ) = α. We
next compute Ûn = τ and compare it to τ . If Ûn > τ , then we reject H0 as false;
otherwise, we do not reject the null hypothesis H0.

7.2 Revisiting the Cat-Brain Problem

We summarize use of the above model comparison techniques outlined above by
returning to the cat brain example discussed in detail in [7, 8]. There were 3 sets of
experimental data examined, under the null-hypothesis H0 : V = 0.

For the Data Set 1, we found after carrying out the inverse problems over � and
�H , respectively,
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Jn(θ̂n) = 106.15 and Jn(θ̂n
H ) = 180.1,

which gives us that Ûn = 5.579 (noting that n = 8 �= ∞), for which p = α∗ = .0182.
Thus, we reject H0 in this case at any confidence level less than 98.18%. Thus, we
should reject that V = 0, which suggests convection is important in describing this
data set.

For Data Set 2, we found

Jn(θ̂n) = 14.68 and Jn(θ̂n
H ) = 15.35,

and thus, in this case, we have Ûn = .365, which implies we do not reject H0

with high degrees of confidence (p-value very high). This suggests V = 0, which is
completely opposite to the findings for Data Set 1.

For the final set (Data Set 3) we found

Jn(θ̂n) = 7.8 and Jn(θ̂n
H ) = 146.71,

which yields in this case, Ûn = 15.28. This, as in the case of the first data set,
suggests (with p < .001) that V �= 0 is important in modeling the data.

The difference in conclusions between the first and last sets and that of the second
set is interesting and perhaps at first puzzling. However, when discussed with the
doctors who provided the data, it was discovered that the first and last set were
taken from the white matter of the brain, while the other was taken from the grey
matter. This later finding was consistent with observed microscopic tests on the
various matter (micro channels in white matter that promote convective “flow”).
Thus, it can be suggested with a reasonably high degree of confidence, that white
matter exhibits convective transport, while grey matter does not.

8 Epi Model Comparison

We return to the previously introduced epidemiological model as another example
of a way in which the model comparison statistic may be used. Here we apply this
statistic to determine whether a more sophisticated model is appropriate based on
the surveillance data from the Australian NNDS website. Here we introduce the
modified model and describe the test statistic for this example. We then present the
results from the least squares estimation procedure in both the cases of the simplified
and more complex model, and finally, interpret the conclusions indicated by the test
statistic.

So far, in our model of invasive pneumococcal disease dynamics, we have con-
sidered the progression of individuals from a colonized to an infected state by a con-
stant linear per capita rate. However, this is a gross simplification of more complex
physiological processes, many of which occur within the individual and would likely
require more sophisticated mathematical representations. But it is also possible that
at a population level, this linear term may sufficiently capture the dynamics of the
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infections when the model solutions are compared with observed data. One specific
mechanism that we can explicitly consider is “exogenous reinfection”, that is, the
establishment of an infection within a colonized individual through repeated expo-
sure to S. pneumoniae via contacts with other individuals harboring the bacteria.
The inclusion of this mechanism results in the following modified model equations

d S

dt
= λ − β1S

E + EV + I + IV

N
+ αE + γ I − φS + ρSV − μS (77)

d E

dt
= β1S

E + EV + I + IV

N
− αE − lκ(t)E − φE + ρEV − μE

− lβ2 E
E + EV + I + IV

N
(78)

d SV

dt
= φS − εβ1SV

E + EV + I + IV

N
+ αEV + γ IV − ρSV − μSV (79)

d EV

dt
= εβ1SV

E + EV + I + IV

N
− αEV + φE − ρEV − δκ(t)EV

− μEV − δβ2
E + EV + I + IV

N
(80)

d I

dt
= lκ(t)E + lβ2 E

E + EV + I + IV

N
− (γ + η + μ)I (81)

d IV

dt
= δκ(t)EV + δβ2

E + EV + I + IV

N
− (γ + η + μ)IV . (82)

8.1 Surveillance Data

Our interpretation of the case notification data must also be modified to reflect the
additional infection mechanism, so that the number of new cases is now

Y j ∼ f (t j ,
→
θ ) =

∫ t j+1

t j

[lκ E + lβ2 E
E + EV + I + IV

N
+ δκ EV

+ δβ2 EV
E + EV + I + IV

N
]ds,

where j = 1, . . . , 36. We estimate parameters
→
θ = (β1, κ0, κ1, δ, β2)T now from

these 36 monthly cases, and from the corresponding annual reports of which of
these cases were vaccinated or unvaccinated. These data are represented by

Yi ∼ f (ti ,
→
θ ) =

∫ ti+1

ti

[
lκ E + lβ2 E

E + EV + I + IV

N

]
ds,
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and

Yi ∼ f (ti ,
→
θ ) =

∫ ti+1

ti

[
δκ EV + δβ2 EV

E + EV + I + IV

N

]
ds,

for i = 1, 2, 3, and ti = 1, 13, 25, 37 months for i = 1, . . . , 4. Again, we assume

the statistical model Y j = f (t j ,
→
θ0) + ε j where E[ε j ] = 0, var (ε j ) = σ 2

1 for all

j = 1, ..., 36, and Yi = f (ti ,
→
θ0) + εi where E[εi ] = 0, var (εi ) = σ 2

2 for all
i = 1, 2, 3. Thus, we have assumed that the variance is constant longitudinally, but
not equivalent across types of observations. That is, it is likely that there is more
variation in the annually reported observations than those reported on a monthly
basis. The least squares estimation procedure is described in more detail in [32].

8.2 Test Statistic

Here we describe the application of a test statistic to this example to compare the
modified model to the comparably simpler model. The statistic will provide a basis
from which to decide whether the observed data warrants the additional complexity
incorporated in the above model.

From the n = 42 observations Y j approximated by the model quantities f (t j ,
→
θ ),

we seek to estimate parameters
→
θ = (β1, κ0, κ1, δ, β2)T . We obtain these estimates

via a least squares estimation process in which our estimate for
→
θ minimizes an

objective functional Jn(
→
θ ). When f (t j ,

→
θ ) is that for the more sophisticated model

above,

θ̂ = arg min
→
θ ∈�

Jn(
→
θ ),

where � ⊂ R
5
+ is a (compact) feasible parameter set. The constraint operator H :

R
5 → R

1 of (75) for our example is then the 1 × 5 vector H = (0, 0, 0, 0, 1) and
c = 0.
Thus the reduced parameter space (in the case of the reduced model, where β2 =
0), is

�H = {→
θ ∈ � : H

→
θ = 0} = {→

θ ∈ � : β2 = 0}.

The estimate for
→
θ over �H is denoted by θ̂H , and is found by minimizing the

same objective functional over the smaller parameter space �H , i.e.,

θ̂H = arg min
→
θ ∈�H

Jn(
→
θ ).

We use the test statistic
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Un = n
Jn(θ̂H ) − Jn(θ̂ )

Jn(θ̂)

which, under reasonable conditions, converges to a χ2(1) distribution. For a signif-
icance level α, we would find a threshold τ such that Pr{χ2(1) > τ } = α. Then if
Un > τ , we reject our null hypothesis as false, otherwise we do not reject. Our null

hypothesis in this case is H0 : K
→
θ0 = 0, or that the true β2 = 0.

8.3 Inverse Problem Results

In this section we compare the results of the least squares estimation procedure
with and without the “exogenous reinfection” term. The same set of surveillance
data, described in Section 8.1, is used in both cases. The parameter estimates and
corresponding standard errors are shown in Table 9.

Table 9 Parameter estimates without and with “exogenous reinfection”
→
θ θ̂H (β2 = 0) SE(θ̂H ) θ̂ (β2 �= 0) SE(θ̂ )

β 1.52175 0.02 1.52287 0.0029
κ0 1.3656e−3 1.3e−4 1.3604e−3 0.0012
κ1 0.56444 0.04 0.5632 0.52
δ 0.7197 0.06 0.71125 0.38
β2 N/A N/A 2.2209e−14 0.01

The parameter estimates themselves, θ̂H and θ̂ , do not differ significantly.
Although, the standard errors indicate that our ability to estimate β and κ(t) does
change drastically depending on whether or not the two mechanisms of infection
are considered. When the reinfection term is considered, we see that the standard
error for this particular parameter indicates that our data do not provide a significant
amount of information on this process. However, the smaller residual, RSS, when
the objective functional is minimized over a larger parameter space (when β2 �= 0),
might indicate that including the extra term provides a better fit. To resolve these two
seemingly contrasting pieces of information, we turn to the test statistic to determine
if the difference in residuals is enough to justify the inclusion of this extra infection
rate (Fig. 22).

8.4 Model Comparison

The test statistic can be calculated as

Un = n
Jn(θ̂H ) − Jn(θ̂)

Jn(θ̂ )
= 42 × 4, 244.5 − 4, 220.8

4, 220.8
= 0.236.
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Note that the residual sum of squares is the value of the objective function, so that
RSS = Jn(θ̂). We compare this to a χ2(1) table (see Table 8) and see that even
at a significance level of only 75% we cannot reject our null hypothesis. That is,
the difference in residuals, and hence the improvement of the model fits to this data
(with n = 42), is not sufficient to warrant including the additional infection mecha-
nism. This does not mean that reinfection does not occur, but it does suggest that to
accurately capture the dynamics of the population, as evidenced by this surveillance
data, it is reasonable to neglect this term. Therefore, we conclude that “reinfection”
is not sufficiently present in this data to argue for inclusion of this term in population
level models of the infection dynamics.

9 Concluding Remarks

As might be expected, mathematical and statistical models cannot fully represent
reality in most scientific situations. The best that one can hope is that models can
approximate reality as presented by data from experiments sufficiently well to be
useful in promoting basic understanding as well as prediction. We have in this
presentation outlined some techniques for evaluation of assumptions regarding sta-
tistical models as well as comparison techniques for mathematical models under
the assumption that the statistical model assumed is correct. The RSS based tech-
niques discussed represent just one (which happens to enjoy a rigorous theoretical
foundation!) of many model comparison/selection techniques available in a large
literature. For example, among a wide class of so-called “model selection” meth-
ods (some of which are heuristic in nature) are those based on Kullbeck-Leibler
information loss. Among the best known of these is the Akaike’s Information
Criterion (AIC) selection procedure and its numerous variations (AICc,TIC, etc.)
[13–17, 28] as well as Bayesian model selection (e.g., BIC) procedures. While
these are important modeling tools, space limitations prohibit their discussion
here.

Finally, we have also limited our discussions to estimation problems based on
OLS and GLS with appropriate corresponding data noise assumptions of constant
variance and nonconstant variance (relative error), respectively. There are many
other important approaches (e.g., regularization, asymptotic embedding, perturba-
tion, equation error, adaptive filtering and identification, and numerous Bayesian
based techniques – see [8, 12, 20, 23, 27, 33, 35] and the references therein) which
again we ignore because of space limitations.
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The Epidemiological Impact of Rotavirus
Vaccination Programs in the United States
and Mexico

Eunha Shim and Carlos Castillo-Chavez

Abstract Rotavirus, the most common cause of gastroenteritis among children
worldwide, is responsible for approximately 600,000 deaths every year worldwide.
Clinical trials of RotaTeq and Rotarix, two commercially generated approved vac-
cines, have shown a high degree of effectiveness in protecting the most vulnerable
individuals against rotavirus infections. RotaTeq and Rotarix are now incorporated
into the portfolio of vaccines recommended for regular use by infants in the US
and Mexico, respectively. The focus here is to evaluate the impact of vaccine-
generated herd immunity, a function of the implementation regimes and coverage
policies, on rotavirus transmission dynamics at the population level. In order to
evaluate the overall impact of vaccine regimes in the US and Mexico, we develop
an age-structured epidemiological model of rotavirus transmission that includes
age-specific vaccination rates. This model is parameterized using available epi-
demiological and vaccine data. Numerical simulations of the parameterized model
support the conclusion that reasonable rotavirus vaccination programs can pre-
vent a significant fraction of primary (severe) rotavirus infections in the US and
Mexico. Vaccination is likely to have stronger positive impact in Mexico than
in the US, because the prevalence of rotavirus infections is higher in Mexico
and demographics are distinct in two countries. It is shown that the age dis-
tribution of rotavirus cases will shift as a result of vaccination. This shift will
be accompanied with decreases in the proportion of primary infections and the
change in the distribution of subsequent infections. Effective vaccination regimes
tend to increase the average age of both primary and subsequent infections. The
observed shifts reduce the average population risk because severity tends to decrease
with age.
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1 Introduction

Rotavirus infections lead to severe diarrhea requiring hospitalization in approxi-
mately one in 50 first-infection cases and results in the death of over 600,000
children annually worldwide. Rotavirus infection accounts for about 5% of all
deaths in children under age five [17]. In fact, by the age of five, nearly every
child will have experienced a rotavirus infection, one in five will have visited
a clinic, and approximately one in 205 will have died from rotavirus induced
diarrhea [6].

The primary mode of rotavirus transmission is fecal-oral, although low titers
of virus have been reported in respiratory tract secretions and other body flu-
ids. The virus is stable in regular environmental conditions. Transmission occurs
through multiple routes including the ingestion of contaminated water or food, or
via contacts with contaminated surfaces. Rotavirus infections are especially severe
in infants and young children. Infected individuals experience fever, abdominal
pain, vomiting, and diarrhea for three to eight days [6]. Treatment of rotavirus
infection involves oral rehydration therapy to prevent dehydration. The immunity
acquired after infection is partial, that is, prior infections while providing some
degree of cross-immunity to rotavirus strains do not provide full protection. How-
ever, cross-immunity does play a role, thus recurrent infections tend to be less
severe than the first infection. As a result, rotavirus infections among adults tend to
be mild.

Previous studies have found that improving hygiene and supplying clean
water do not contribute to significant reductions in rotavirus transmission [6].
Consequently, the development of safe and effective rotavirus vaccines has been
considered the most promising route towards the development of strategies that
reduce rotavirus’ prevalence and morbidity [18, 25]. There are currently two live,
oral, attenuated rotavirus vaccines in the market: RotaTeq, manufactured by Merck
& Co., Inc., and licensed by the US Food and Drug Administration in 2006
and Rotarix, manufactured by GlaxoSmithKline, and licensed by the European
Medicines Agency. RotaTeq has been recommended by the Centers for Disease
Control and Prevention (CDC) for routine use in the US while Rotarix was
approved for the use in Mexico by Mexico’s Board of Health in 2004. The use
of these rotavirus vaccines may dramatically reduce rotavirus transmission and
in the process, it may also reduce rotavirus-induced morbidity and
mortality.

RotaTeq and Rotarix differ in their antigenic coverage and cross-reactivity char-
acteristics [15]. RotaTeq is a pentavalent vaccine based on five human-bovine reas-
sortant viruses. The recommended RotaTeq policy includes three doses (once every
two months), beginning when the infant reaches the age of two months. Rotarix
is a monovalent vaccine derived from the most common human rotavirus strain,
G1P [8], and it is given in two doses before the age of six months with a minimum
interval of four weeks between doses [9]. Recovery from natural rotavirus infec-
tion protects children against the possibility of severe symptoms on re-infection.
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Similarly, Rotarix mimics natural infection by generating immunological responses
that protect against severe infections from homotypic or heterotypic strains [8, 10].
RotaTeq requires one more dose than Rotarix, partially because the bovine virus
grows less well in the human intestine [9]. Regardless of the difference in vaccine
formulation, both have proved to be safe and effective in their extensive clinical
trials. RotaTeq provides 74% protection against rotavirus infection and 98% protec-
tion against severe rotavirus gastroenteritis [15]. Studies have shown that Rotarix
confers 73% protection against all rotavirus infection and 85% protection against
severe rotavirus gastroenteritis [15, 24]. It is expected that Rotarix and RotaTeq will
be given to infants at the same time as the standard childhood vaccination against
diphtheria, pertussis, and tetanus (DTaP) [9].

Vaccines offer the best individual protection against rotavirus but the impact
of a rotavirus vaccination program at the population level has yet to be assessed.
The focus of this study is to evaluate the impact of vaccine-generated levels
of herd immunity, a function of the implementation regimes and coverage lev-
els, on the overall transmission dynamics of rotavirus at the population level.
The objective here is to explore the impact that the implementation of various
rotavirus vaccine regimes may have at the national level (i.e. RotaTeq in the US
and Rotarix in Mexico). The simulations are carried out in context, that is, with
consideration of the US and Mexico’s populations. Age-structured models are
used to evaluate changes in age-specific incidence and average age of primary
(i.e. first) rotavirus infection in populations where a vaccine program has been
implemented.

Rotavirus vaccination regimes provide direct protection to the vaccinated and, in
the process they are expected to provide indirect protection to the unvaccinated.
The country-specific demographic model is developed to evaluate the possibil-
ity of such herd immunity that may be resulted from the implementation of a
large-scale vaccination effort. We aim to examine if reasonable rotavirus vaccine
coverage levels in the US and Mexico are likely to achieve sufficient levels of
herd-immunity. Such levels of coverage will translate into benefits that go beyond
the protection of vaccinated individuals. Simulation results are used to evaluate
the impact of age-specific vaccine-programs on the prevalence of severe cases of
rotavirus infection among young children, the most vulnerable group [2]. How-
ever, vaccine-induced immunity wanes with time, thus vaccinated children may
experience rotavirus infection after the vaccine effect is gone. That is, rotavirus
vaccination can at best delay the timing and lessen the severity of symptoms of
rotavirus infection. It is known that vaccination programs often result in changes
in the age distribution of disease cases, associated with an increase in the aver-
age age of the first infection [11]. In fact, rotavirus vaccine regimes’ impact comes
from their ability to alter the age distribution of primary and subsequent rotavirus
infections. Complications and mortality rates associated with rotavirus infections
are significantly lower among adults than children. Hence, the resulting vaccine-
generated increases in the average age of the first infection are not necessarily
harmful.
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2 Method

2.1 Age-Structured Model for Rotavirus Transmission
and Its Vaccination

A model with seven distinct epidemiological classes that incorporates the age-
specific rotavirus transmission and the aging process via births and deaths is con-
structed to assess the impact of age-specific rotavirus vaccination regimes (Fig. 1).
The model considers primary (severe) and subsequent (mild) rotavirus infections,
and assumes current rotavirus vaccine schedules (completed by the age of six
months) as well as vaccine-induced temporary immunity. The population is clas-
sified according to their immunological status. We consider the following state-
densities of epidemiological classes (a and t denote age and time, respectively):
susceptible (S (t, a)); severely or mildly infected (I (t, a) or Im (t, a)); temporarily
recovered with high or low immunity (R2 (t, a) or R1 (t, a)); and vaccinated having
received a partial or complete vaccine course (V1 (t, a) or V2 (t, a)). The number of
individuals in epidemiological classes can be obtained by integrating state densities
over age group. For instance, the number of individuals in the susceptible class S

with ages in the interval [ai , ai+1] at time t, are given by
ai+1∫
ai

S(a, t)da.

We assume that the population has reached its demographic steady-state age
distribution. The demographics of the model are parameterized using fertility and
mortality data from the US and Mexico. The total population size in the US is

S(a,t) I(a,t)

Im(a,t)

V2(a,t)V1(a,t)

R2(a,t)

R1(a,t)

μ (a) μ (a)

μ (a)

(1–η )λ (a,t )

(1–k)λ (a,t )

λ (a,t )

λ (a,t )

a
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vaccination
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μ (a)

φ (a)

λ (a,t )

τ

γ

γm

τ

μ (a)

μ (a)

Fig. 1 Transfer diagram for the rotavirus model with vaccination
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Table 1 Age groups

Age groups Range

Group 1 Age 0–4 months
Group 2 Age 5–6 months
Group 3 Age 7–12 months
Group 4 Age 12–23 months
Group 5 Age 24–35 months
Group 6 Age 36–47 months
Group 7 Age 48–59 month
Group 8 Age 5–15 years
Group 9 Age 16–25 years
Group 10 Age 26–60 years
Group 11 Age 60 years and over

assumed to be constant but increasing for Mexico at an annual rate of 1.142%.
This framework is used in order to evaluate the impact of rotavirus vaccination at
the population level in the US and Mexico, and to predict how the incidence of
primary and subsequent infections will change in two countries following the mass
vaccination. The overall effectiveness of a vaccination program is dependent on
population structure, vaccine efficacy, its coverage level, and the average duration of
protection. Vaccine efficacy data for both countries are available and these data are
used to test the outcomes of vaccine regimes. Age groupings are chosen based on the
availability of age-dependent rotavirus incidence data (Table 1). In US’ simulations,
age-specific fertility and death rates are modified slightly from those published for
2008 in order to maintain a net growth rate of zero (“International Data Base, Table
028,” 2008). In Mexico’s simulations, age-specific fertility and death rates are used
to match their 2008 reported rates.

All newborns enter the susceptible class, S (t, a), and susceptible individuals
who become infected through effective contacts with infectious individuals enter the
class, I (t, a), as illustrated in the flow diagram (Fig. 1). Infants (passively immune
to rotavirus) are implicitly included in the susceptible class, however, the impact
of maternal antibodies on the reduced susceptibility of infants is captured in age-
specific reductions in the estimated force of infection (Fig. 2).

Susceptible individuals are vaccinated at the per-capita age-specific rate φ(a)
moving either into the vaccinated V1 or V2 classes. Partially vaccinated susceptibles,
that is, susceptible individuals who have received the first two doses of RotaTeq (or
the first dose of Rotarix) enter the V1 class. Vaccinated individuals in the class V1,
receiving the last dose, enter the V2 class. Individuals start immunization at age
a = a1 and complete it at age a = a2, with a1 < a2. The aim here is to follow the
actual dose schedules of the rotavirus vaccine, hence, we set a1 = 4 and a2 = 6
months of age. Individuals in the class V1 who become infected are assumed to
get only a mild form of the disease and, consequently, they are moved to the Im

class where they recover after the average infection period, 1/γm . Completion of
the vaccination scheduled is assumed to reduce the infection incidence rate by the
factor, η (η = 0.74) [6]. Vaccinated individuals will eventually move back to the
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susceptible class or to the mildly infected class since the immunity gained through
vaccination is temporary. Immunity wanes after vaccination but explicit data on the
length of time this takes are not available. Thus, we assume that immunity, whether
from infection or from the vaccine, wanes after three years (1/τ = 3 years) in order
to roughly estimate and incorporate the waning effect of the rotavirus immunity.

The force of infection λ(t, a), the age-specific rotavirus transmission rate among
susceptible individuals of age a at time t , is estimated from age-specific incidence
data under some assumptions. Individuals acquire rotavirus infections at the rate
λ(t, a) from contacts with infectious individuals. A reduced rate of transmissibility
for the mild diseases relative to severe ones is assumed, and the factor, ρm , that
accounts for this reduction in transmissibility, is taken to be 0.5. This value is con-
sistent with epidemiological data [22]. We also assume mean infectious period of
1/γ = 5 days and 1/γm = 3 days for primary and subsequent infections, respec-
tively. Following recovery from infection, individuals enter the recovery class with
highest immunity, R2. The process of waning protection is incorporated via the
movement of individuals from R2 to the R1 class at a fixed per capita rate, α = 1/3
year−1. The level of immunity in the class R1 is lower than in R2. In fact, it is
assumed that the infection rate of mild diseases among individuals in class R2 is
assumed to be reduced by κ compared to the ones in R1, which is set to be 0.38 [23].
Individuals that have acquired a subsequent infection are first moved to the class
Im(a, t) and sent back to the R2 class after recovery. The age-specific per capita
mortality rate is μ(a).

The rotavirus infection model is given by the following system of partial differ-
ential equations:
(

∂

∂t
+ ∂

∂a

)
S(t, a) = τ V1(t, a) − {λ(t, a) + φ(a) + μ(a)}S(t, a),

(
∂

∂t
+ ∂

∂a

)
I (t, a) = λ(t, a)S(t, a) − {γ + μ(a)}I (t, a),

(
∂

∂t
+ ∂

∂a

)
Im(t, a) = λ(t, a){R1(t, a) + (1 − κ)R2(t, a) + V1(t, a)

+ (1 − η)V2(t, a)} − {γm + μ(a)}Im(t, a),(
∂

∂t
+ ∂

∂a

)
R1(t, a) = αR2(t, a) − {λ(t, a) + φ(a) + μ(a)}R1(t, a), (1)

(
∂

∂t
+ ∂

∂a

)
R2(t, a) = γ I (t, a) + γm Im(t, a) + φ(a)R1(t, a)

− {α + (1 − κ)λ(t, a) + μ(a)}R2(t, a),(
∂

∂t
+ ∂

∂a

)
V1(t, a) = τ V2(t, a) + φ(a)S(t, a)

− {τ + λ(t, a) + φ(a) + μ(a)}V1(t, a),(
∂

∂t
+ ∂

∂a

)
V2(t, a) = φ(a)V1(t, a) − {τ + (1 − η)λ(t, a) + μ(a)}V2(t, a)
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where

λ(t, a) =

∞∫
0

ω(a, a′)[I (t, a′) + ρm Im(t, a′)]da′

∞∫
0

N (t, a)da

and f (a) is the age specific fertility rate.

The boundary conditions at age 0 are given by S(t, 0) =
∞∫
0

f (a)N (t, a)da and

I (t, 0) = Im(t, 0) = R1(t, 0) = R2(t, 0) = V1(t, 0) = V2(t, 0) = 0.
The age specific population density is N (t, a) where N (t, a) = S (t, a) + I (t, a) +

Im (t, a) + R (t, a) + V (t, a). We define w (a, a’) as the effective contact rate between
the susceptible individuals of age a and infective individuals of age a’ [11]. We
assume that age-specific contacts are proportional to the age-specific activity levels
(a relative measure of the number of age-specific contacts per unit of time) and to
the sizes of the age groups [11]. Adding the equations in System (1) leads to the
following equations for N (t, a):

(
∂

∂t
+ ∂

∂a

)
N (t, a) = −μ(a)N (t, a), (2)

N (t, 0) =
∞∫

0

f (a)N (t, a)da, (3)

where f (a) denotes the per capita age specific fertility rate.
Implementing our vaccination schedule using the above system of partial dif-

ferential equations is somewhat constraining given data availability and the uncer-
tainties associated with the estimation of the parameters for all ages. As a result,
we introduce a rigorously derived model that is tailored to the constraints put by
data availability. The age-structured differential equations of this new model include
11 variable age intervals, [ak−1, ak] (k = 1 . . . 11) where 0 = a0 < a1 < a2 <

. . . < a10 < a11 (Table 1). These intervals correspond to the age-specific rotavirus
incidence data from which this model is parameterized [7, 16]. The age-specific
force of infection is estimated from available data on the distributions of rotavirus
cases in the above age groups [11]. In the simulations, we use narrow age classes
for younger age groups to capture age-specific severe rotavirus infections because
they are more likely to occur among children than adults. The process of aging
is modeled via movement from one age grouping to the next, at the age-specific
per capita rate di (per year), given by di = A(ai )/Pi where A(ai ) and Pi denote
the population density at age ai and the size of the ith age group, respectively. We
divide our discretized model by the size of the age groups, Pi , in order to normalize
our model. We also assume that the population has reached its stable age-distribution
(i.e. N (t, a) = eqt A(a)) so that we can incorporate relevant demographic effects. By
using the approach in [11], we arrive at the system of ordinary differential equations
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(Appendix). This system is used to obtain our simulated results. The simulations
start from the known pre-vaccination age-specific epidemiological steady state, and
the simulations are run over a 100 years of time horizon.

In this study, we do not consider strain-specific vaccine efficacy, thus we do not
focus or track strain-specific infections. We assume that both multivalent and mono-
valent rotavirus vaccines generate about the same levels of immunity against severe
clinical infections regardless of the circulating human rotavirus strains. Starting
from this rather simple symptomatic immunological perspective, it is assumed that
all primary infections generate “equivalent” immunological responses regardless of
the strains, that is, they all reduce the severity of subsequent rotavirus infections.
These assumptions are based on observations and data that have concluded that an
overwhelming proportion of subsequent infections are mild regardless of the strain.
In summary, the vaccine is assumed to provide equivalent temporary protection
against all circulating strains.

2.2 Parameterization

2.2.1 Force of Infection

The force of infection in the ith age group is the total effective contact rate between
the ith age susceptible group and infective individuals of all ages. We use age-
specific rotavirus case reports and age-specific serological profiles to parameterize
the pre-vaccination force of infection [7, 16]. Similar approaches as our seroposi-
tivity data-based estimation procedure of the force of infection have been used to
estimate the age-specific force of infection for diseases like measles and pertussis
[11–13].

We assume that all individuals have experienced a rotavirus infection during
their lifetime, and that the overall incidence, across all age groups, equals the
cumulative incidence experienced by a cohort over its lifetime. This indicates that
available horizontal information, that is, case reports over a short period of time,
is representative of observed longitudinal trends [1]. It is also assumed that all
individuals have experienced a rotavirus infection at least once over their life-
times – an acceptable assumption given the high morbidity of rotavirus infections.
Finally, this force of infection (λi ) estimation approach assumes that the popu-
lation is unvaccinated and that the disease has reached an equilibrium (endemic)
state.

We let pi denote the proportion of individuals of age ai who have experienced
the infection by age ai or equivalently we let (1 − pi ) denote the proportion still
susceptible at age ai . The ratio given by the accumulated sum of cases from age
0 to ai divided by the total number of reported cases over all age classes is used
to approximate the proportion of individuals of age ai , who have experienced a
rotavirus infection at least once in their ai years of life, that is, pi . Only in the
unrealistic situation of “equally likely age-specific reporting” of infected individu-
als, such methods provide a precise approximation. We know, of course, that this
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is not the case because rotavirus infections are more likely to be reported when
experienced by the young. Nevertheless, we chose to use this crude estimate given
by equation below since it suffices for our purposes. The fact that rotavirus induced
mortality and severity of symptoms are higher among young children than among
adults makes our choice less arbitrary.

Under all the above limitations and assumptions, it follows that the pre-
vaccination per capita force of infection linked to the age interval ai to ai+1 can

be estimated by λi = − ln
(

1−pi+1

1−pi

)
[1] (Fig. 2). This estimated force of infec-

tions and the steady state age distribution are used to estimate the age-specific
rate at which susceptible individuals in each specific age grouping become infected
through contacts with infectious individuals from different age groupings. That is,
these estimates are used to construct the age-specific matrix “who acquires the infec-
tion from whom” (WAIFW). The entries of the WAIFW matrix implicitly involve
the effective contact rates between individuals of age a, and individuals of age a’,
that is, ω (a, a’). The approach used here also assumes that the number of contacts
between members of two age groupings is proportional to their corresponding activ-
ity levels as well as to the sizes of the two age groupings involved. In conclusion,
the force of infection λ (a, t) at age a and time t is taken as the sum over all ages a’
of the contact rate ω (a, a’) times the number of infectious individuals, divided by
the total population size at time t (Fig. 2).

2.2.2 Vaccination Coverage and Efficacy

The first or second dose of RotaTeq are incorporated in the model through the move-
ment of the vaccinated fraction of susceptible individuals in class (S) of age zero
to four months, into the vaccinated class (V1) with ages in the five to six month
range, in the aggregated version of our model (Appendix), that transfers vaccinated
individuals while keeping track of the aging process. Similar transfers of individuals
getting the first dose of Rotarix are made from the susceptible class (S), ages from
zero to four months, into the vaccinated class (V1), ages from five to six months.
Partially vaccinated individuals in the V1 class are moved to the V2 class at seven
months of age if they receive the last dose of RotaTeq or Rotarix.

We evaluate the impact of putting in place a mature vaccine program on disease
burden using expected national vaccine coverage in place for the US and Mexico.
The rotavirus vaccine will be administered simultaneously with the DTaP immu-
nizations. Hence, we approximate rotavirus vaccine coverage from existing DTaP
vaccination coverage data for the US and Mexico. DTaP coverage at seven months
of age is in the range of 56.4 to 80.7% with a US national average of 69.5%. These
estimates are based on data from the 2006–2007 US National Vaccination Survey
[3]. We assume a rotavirus vaccination national coverage level similar to those
achieved with DTaP. Hence, we set φ2 = 70%, the coverage on completed DTaP
immunization in our RotaTeq and Rotarix vaccine program simulations (Fig. 3). We
assume that partial vaccination (individuals who do not take all the required doses)
gives temporary protection but only against severe infection (no protection against
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mild ones). We make this conservative assumption because efficacy data in the pres-
ence of incomplete vaccination are not available for RotaTeq and Rotarix. We use
the value of 90% as our baseline coverage estimate of the proportion (among the
appropriate age groups) that have taken the first dose of Rotarix or the first/second
doses of RotaTeq. This value, φ1 = 90%, is base on the fact that coverage levels with
at least one dose of DTaP by the age of three months of age have been estimated to
be around 89.2% [3].

Coverage is assumed to increase from zero to its highest value after some period
of time from the start of a vaccination campaign. Thus, we assume that rotavirus
vaccine coverage will increase over time until it reaches the baseline levels (Fig. 3).
We also assume that coverage decreases as the number of doses increase (Fig. 3).
As of May 2007, vaccination coverage for one-dose rotavirus among US infants
aged three months was in the range of 40.1–65.4% (mean: 49.1%). These rotavirus
vaccination coverage estimates are relatively low when compared with the coverage
estimates that have been reported for other infant vaccines (“Rotavirus vaccination
coverage and adherence to the Advisory Committee on Immunization Practices
(ACIP)-recommended vaccination schedule – United States, February 2006–May
2007,” 2008). For instance, the reported coverage levels for pneumococcal conju-
gate vaccine (PCV7) 1-dose at age three months range from 69.3 to 90.4% (mean:
84.1%) and for the diphtheria, tetanus, and a cellular pertussis (DTaP) they range
from 69.5 to 92.3% (mean: 85.7%).
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Furthermore, the rotavirus vaccine is assumed to have the efficacy given by
the ratio of the prevalence among vaccinated infants and unvaccinated. In gen-
eral, rotavirus vaccine efficacy increases with disease severity [19]. In the phase
three Rotavirus Efficacy and Safety Trial (REST), RotaTeq exhibited an efficacy of
74% (95% CI 67–80%) against G1-G4 rotavirus gastroenteritis of any severity and
98% (95% CI 88–100%) against severe G1–G4 rotavirus gastroenteritis [4]. Rotarix
confers 73% protection against any and 85% protection against severe rotavirus
gastroenteritis [24]. We use reported data to set the baseline parameters in our simu-
lations, thus we set a vaccine efficacy against primary infections at 74 and 73% (i.e.
η = 0.74 or 0.73) for RotaTeq and Rotarix, respectively.

3 Results

We collect the results of the numerical simulation of the age-structured model of
rotavirus transmission and vaccination in the context of the US and Mexico. The
simulation results are used to compare the consequences of adopting rotavirus vac-
cine specific regimes in the US and Mexico over a 100 year time period. We assume
the use of the pentavalent vaccine, RotaTeq, in the US in a population at its stable
age distribution with zero net population growth. We assume the use of the mono-
valent vaccine, Rotarix, in Mexico in a population at its stable age distribution that
increases its size at 1.142% per year. All the simulations are carried out under the
assumption that vaccination starts immediately, that is, in year zero.

As vaccination coverage increases the total incidence of each country decreases.
The simulation model is run until a pre-vaccination steady-state epidemiological
age distribution is reached using the baseline parameters. A typical individual in
each US cohort experiences an average of 0.012 and 0.034 cases of primary and
subsequent rotavirus infections per year, respectively (Figs. 4 and 5). The total inci-
dence in Mexico is higher than in the US, thus, a typical individual in this population
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experiences an average of 0.018 and 0.045 cases of primary and subsequent infec-
tions per year, respectively (Figs 4 and 5). We see that after 50 years, the incidences
of primary infections in the US and Mexico become 0.002 and 0.001 per person,
respectively. The observed reduction in the incidence of severe cases after vacci-
nation is greater in Mexico than in the US. This may be so, because the relative
incidence among adults in the US was initially higher than in Mexico. The impact
of vaccination on severe infections among adults may have been therefore reduced.

Figure 6 shows the distribution of primary rotavirus infections among all age
groups in the US and Mexico before a program of mass immunization against
rotavirus infections was put in place. We observe that among children under the
age of five, the incidence is higher in Mexico than in the US. For instance, among
infants under age one, the incidence in Mexico is more than three times higher than
that in the US. However, among individuals, 6–25 years of age, the incidence in
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is implemented in the US (a) and Mexico (b)
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Fig. 7 Age distributions for incidence of primary rotavirus infections after vaccination program is
implemented in the US (a) and Mexico (b)

the US is relatively higher than in Mexico, during the pre-vaccination era. Simu-
lation results suggest that the largest decrease in age-specific incidence following
the implementation of a vaccination program occurs among children less than five
years of age (that is, among children who have completed rotavirus immuniza-
tion schedule), because these groups are directly protected by vaccination (Fig. 7).
The incidence in the youngest age group is also reduced even though the vac-
cine has not been administered at this age. These results highlight the impact of
herd immunity generated by mass vaccination. On the other hand, the incidences
among individuals five years of age or older do not change much, because vaccine-
induced immunity wanes for many vaccinated individuals before they enter these
age groups.

Figures 8 and 9 portray the distribution of subsequent rotavirus incidences in age
groups before and after the introduction of mass vaccination in the US and Mexico.
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Fig. 9 Age distributions for incidence of mild rotavirus infections after vaccination program is
implemented in the US (a) and Mexico (b)

Simulation results show that mass vaccination can reduce the levels of subsequent
infections in the US and Mexico. The largest decrease is observed among Mexican
children, 12–23 months of age or among US adolescents, 5–15 years of age. This
outcome arises from the fact that incidences in the pre-vaccination era were already
relatively high in these age groups. The incidence among the elderly in the US also
experiences reductions after vaccination.

The average ages for primary (severe) infections as well as for subsequent (mild)
infections are examined (Fig. 10). The average age of primary infections of all age
groups in the US increased from four years of age before vaccination to 13 years
of age after the introduction of a vaccination program. This result arises from larger
decreases in primary infections among young individuals than among older people
due to vaccination. The average age of primary infections of all age groups shifted,
albeit less dramatically in Mexico than in the US. In Mexico the average age of
primary infections among all age groups increased from about two years of age
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before vaccination to four years of age after vaccination (Fig. 10). This increase is a
direct result of the impact of temporary protection of the vaccine at early ages. The
population levels of temporary protection among the young translate into significant
decreases in the number of primary cases among all age groups while the inci-
dence among unvaccinated infants remain relatively unchanged. It is worth noticing
that even slight increases in the average age of full-disease infection in developing
countries’ scenarios must be considered measures of success since infections among
youngsters are linked to severe symptoms in areas where treatment is often unavail-
able. In Mexico and the US, the average ages of primary infections for individuals
under the age of five years increased but only slightly (from about the age of two
to the age of three). The average age of mild disease infections in the recovered
classes increased significantly, especially among US population. In fact, it increased
from 14 years of age to 22 years of age in the US. Or in other words, the planned
rotavirus vaccination program is capable of delaying subsequent infections as well
as primary ones.

4 Conclusions

Rotavirus, the leading cause of severe acute gastroenteritis among young children,
is responsible for high levels of childhood morbidity and mortality worldwide. The
withdrawal of Rotashield, an earlier rotavirus vaccine, from the US market in 1998
raised significant concerns regarding the feasibility of developing and implement-
ing effective rotavirus control strategies. It was argued that, for children in some
developing nations, the benefits of Rotashield might outweigh its risks, namely,
the 1 in 10,000 possible risk of intussusception. The advent of not of one but
two safe rotavirus vaccines has brought considerable hope that rotavirus morbidity
and mortality in young infants will be reduced. The vaccines RotaTeq and Rotarix
have been recommended for routine use among infants in the US and Mexico,
respectively. There is uncertainty surrounding the long-term epidemiological impact
of massive rotavirus vaccination programs on the populations of developing and
developed countries. Mathematical modeling can be used to evaluate and/or predict
the potential impact of rotavirus vaccination strategies over various organizational
and temporal scales. Here, we evaluate and compare the impact of rotavirus vac-
cinations at the population level without taking into account potential evolutionary
consequences.

A rotavirus transmission model was parameterized with demographic data (i.e.,
age structure, fertility, and mortality of the population) for the US and Mexico in
order to simulate the epidemic-level impact of RotaTeq and Rotarix. We param-
eterized our model using reported efficacy levels of RotaTeq and Rotarix as well
as known rotavirus prevalence levels in the US and Mexico. We used the force
of infection and pre-immunization prevalence levels to estimate the entries of the
age-specific contact matrix.

The rotavirus incidence generally has been higher in Mexico than in the US
and mild and severe cases are most commonly reported among children, prior to
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initiation of immunization in both countries. In fact, in the pre-vaccination era,
nearly all children experienced a rotavirus infection by the age five. The simu-
lations of our age-specific rotavirus transmission model with baseline parameters
are used to approximate and explore the effects of rotavirus vaccination programs
in the context of the US and Mexico. Yearly rotavirus incidences are simulated
before and after implementing a vaccination program. Simulations show rotavirus
incidence decreases primarily on those directly protected from infection by the
rotavirus vaccine, that is, in children. Decreases in the incidence of unvaccinated
susceptible children are also detected, indicating the positive effect of herd immu-
nity. We show that vaccinations reduce mild and severe cases over all age groups
but that the impact is greater in Mexico than in the US. We simulate the average
age of primary and subsequent infections over time, in order to test the waning
effects of vaccine-induced immunity and the overall impact of a rotavirus vaccina-
tion program in the long run. We find that vaccination delays the first encounter
with the virus, thus increasing the average age of infections in both the US and
Mexico.

Epidemiological US data reports significant reduction in the incidence of pri-
mary infections among children from vaccination (“Delayed onset and diminished
magnitude of rotavirus activity – United States, November 2007–May 2008,” 2008)
and our simulations support this. Based on the data collected by the National Respi-
ratory and Enteric Virus Surveillance System (NREVSS), the number of individuals
who tested positive for rotavirus antigen was substantially lower during the 2007–
2008 rotavirus season than during any of the pre-vaccine years. The 2008 data was
compared with the total number of positive tests for the seven preceding rotavirus
seasons, during the same weeks. The total number of rotavirus positive tests took
place during January–May (2008) and had a median 78.5% lower than before.
For instance, the percentage of fecal specimens testing positive for rotavirus was
reported to be 51% in 2006, 54% in 2007, and 6% in 2008 (“Delayed onset and
diminished magnitude of rotavirus activity – United States, November 2007–May
2008,” 2008).

The evaluation of the impact of rotavirus vaccination in countries, other than
Mexico and the US, should not be extrapolated directly from our results, if noth-
ing else, because the effectiveness of vaccine differs from country to country. In
addition, there are further concerns. The bovine virus that is involved in RotaTeq
grows less well in the human intestine and therefore whether or not such vaccine
will work equally well among children in the developing world where the profiles of
maternal antibodies, breast-feeding practice, nutrition status are different from those
in developed nations has been raised [9]. Previous studies have shown, for example,
that the immune responses of children after the administration of live oral vaccines
such as polio or cholera vary in from country to country [20]. In addition, although
both vaccines have reported satisfactory levels of efficacy against the full range of
serotypes in circulation in the trial population, Rotarix seems to be less efficacious
against the G2 strains. Therefore, it remains to be seen how well Rotarix will per-
form in countries where serotypes, not incorporated into the vaccine, are relatively
prevalent.
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Our study supports the view that rotavirus vaccination provides the best oppor-
tunity to reduce the burden of diarrheal disease in the US and Mexico. Our model
can be expanded to include competing/coexisting serotypes of rotavirus and cross-
immunity, or to predict vaccine demand in the US or in other countries, where strain
diversity is prominent and vaccine effectiveness is in question. The methodologies
used here are certainly applicable in the study of the dynamics and control of other
infectious diseases.

Two additional points are worth noticing. The first involves the modeling of
rotavirus as disease transmitted via age-specific contacts. The fact that rotavirus is so
prevalent (in fact, it may be argued that practically everybody is a carrier) means that
this disease agent may be best thought of as an environmentally transmitted disease.
Hence, whether or not it is relevant or necessary to estimate who had contacts with
whom, is quite relevant. Fortunately, indirectly estimated age-specific matrix “who
acquires the infection from whom” (WAIFW) can be interpreted as weights that
consider the influence of different age classes in the risk of transmission or acquiring
an infection. The second point involves the potential evolutionary consequences of
massive vaccine use. Such use may alter the competitive landscape where numerous
rotavirus strains co-exist. Will dramatic reductions in rotavirus prevalence facilitate
the emergence of new strain of rotavirus or other pathogens that can occupy the
same niche? Our model only addresses the dynamics of transmission and control
over time scales that do not incorporate potential evolutionary changes. The use
of mathematical models to address the impact of human interventions on disease
evolution poses tough challenges and offers great opportunities.
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Appendix

The fractions of the ith group in the epidemiologic classes are used in the simu-
lations in order to present a comprehensive picture of disease progression and aging.
The fractions are obtained by dividing the number of individuals in age-specific epi-
demiological classes by age group size. The differential equations for these fractions
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are derived from our model and presented below where subscripts indicate age
classes.

ds1(t)/dt =
n∑

j=1

f j Pj/P1+τv1,1(t) − (λ1(t) + c1 + μ1 + q)s1(t),

ds2(t)/dt = τv1,2(t) + (1 − φ1)(c1 P1/P2)s1(t) − (λ2(t) + c2 + μ2 + q)s2(t),

ds3(t)/dt = τv1,3(t) + (1 − φ1)(c2 P2/P3)s2(t) − (λ3(t) + c3 + μ3 + q)s3(t),

dsk(t)/dt = τv1,k(t) + (ck−1 Pk−1/Pk)sk−1(t) − (λk(t) + ck + μk + q)sk(t),

k = 4, · · · , 11

di1(t)/dt = λ1(t)s1(t) − (γ + c1 + μ1 + q)i1(t),

dik(t)/dt = λk(t)sk(t) + (ck−1 Pk−1/Pk)ik−1(t) − (γ + ck + μk + q)ik(t),

k = 2, · · · , 11

dim,1(t)/dt = λ1(t){r1,1(t) + (1 − κ)r2,1(t) + v1,1(t) + (1 − η)v2,1(t)}
− (γm + c1 + μ1 + q)im,1(t),

dim,k(t)/dt = λk(t){r1,k(t) + (1 − κ)r2,k(t) + v1,k(t) + (1 − η)v2,k(t)}
+ (ck−1 Pk−1/Pk)im,k−1(t)

− (γm + ck + μk + q)im,k(t), k = 2, · · · , 11

dr1,1(t)/dt = αr2,1(t) − λ1(t)r1,1(t) − (c1 + μ1 + q)r1,1(t),

dr1,2(t)/dt = αr2,2(t) − λ2(t)r1,2(t) + (1 − φ1)(c1 P1/P2)r1,1(t)

− (c2 + μ2 + q)r1,2(t),

dr1,3(t)/dt = αr2,3(t) − λ3(t)r1,3(t) + (1 − φ1)(c2 P2/P3)r1,2(t)

− (c3 + μ3 + q)r1,3(t),

dr1,k(t)/dt = αr2,k(t) − λk(t)r1,k(t) + (ck−1 Pk−1/Pk)r1,k−1(t)

− (ck + μk + q)r1,k(t), k = 4, · · · , 11

dr2,1(t)/dt = γ i1(t) + γmim,1(t) − {α + (1 − κ)λ1(t)}r2,1(t)

− (c1 + μ1 + q)r2,1(t),

dr2,2(t)/dt = γ i2(t) + γmim,2(t) − {α + (1 − κ)λ2(t)}r2,2(t)

+ (1 − φ1)(c1 P1/P2)r2,1(t) − (c2 + μ2 + q)r2,2(t),

dr2,3(t)/dt = γ i3(t) + γmim,3(t) − {α + (1 − κ)λ3(t)}r2,3(t)

+ (1 − φ1)(c2 P2/P3)r2,2(t) − (c3 + μ3 + q)r2,3(t),
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dr2,k(t)/dt = γ ik(t) + γmim,k(t) − {α + (1 − κ)λk(t)}r2,k(t)

+ (ck−1 Pk−1/Pk)r2,k(t) − (ck + μk + q)r2,k(t), k = 4, · · · , 11

dv1,1(t)/dt = τv2,1(t) − {τ + λ1(t) + c1 + μ1 + q}v1,1(t),

dv1,2(t)/dt = τv2,2(t) + φ1(c1 P1/P2){s1(t) + r1,1(t) + r2,1(t)} + (c1 P1/P2)v1,1(t)

− {τ + λ2(t) + c2 + μ2 + q}v1,2(t),

dv1,3(t)/dt = τv2,3(t) + φ1(c2 P2/P3){s2(t) + r1,2(t) + r2,2(t)}
+ (1 − φ2)(c2 P2/P3)v1,2(t) − {τ + λ3(t) + c3 + μ3 + q}v1,3(t),

dv1,k(t)/dt = τv2,k(t) + (ck−1 Pk−1/Pk)v1,k−1(t)

− {τ + λk(t) + ck + μk + q]v1,k(t), k = 4, · · · , 11.

dv2,1(t)/dt = −{τ + (1 − η)λ1(t) + c1 + μ1 + q}v2,1(t),

dv2,2(t)/dt = (c1 P1/P2)v2,1(t) − {τ + (1 − η)λ2(t) + c2 + μ2 + q}v2,2(t),

dv2,3(t)/dt = (c2 P2/P3)v2,2(t) + φ2(c2 P2/P3)v1,2(t) − {τ + (1 − η)λ3(t)

+ c3 + μ3 + q}v2,3(t),

dv2,k(t)/dt = (ck−1 Pk−1/Pk)v2,k−1(t) − {τ + (1 − η)λk(t) + ck + μk + q]v2,k(t),

k = 4, · · · , 11.
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Abstract Detailed studies on the spatial and temporal patterns of rubella trans-
mission are scarce particularly in developing countries but could prove useful in
improving epidemiological surveillance and intervention strategies such as vaccina-
tion. We use highly refined spatial, temporal and age-specific incidence data of Peru,
a geographically diverse country, to quantify spatial-temporal patterns of incidence
and transmissibility for rubella during the period 1997–2006. We estimate the basic
reproduction number (R0) based on the mean age at infection and the per capita
birth rate of the population as well as the reproduction number (accounting for the
fraction of the population effectively protected to infection) using the initial intrinsic
growth rate of individual outbreaks and estimates of epidemiological parameters for
rubella. A wavelet time series analysis is conducted to explore the periodicity of the
rubella weekly time series, and the results of our analyses are compared to those
carried out for time series of other childhood infectious diseases. We also identify
the presence of a critical community size and quantify spatial heterogeneity across
geographic regions through the use of Lorenz curves and their corresponding Gini
indices. The underlying distributions of rubella outbreak attack rates and epidemic
durations across Peru are characterized.

Keywords Rubella · Peru · Epidemic · Periodicity · Reproduction number · Age at
infection

1 Introduction

Rubella is a virus that is transmitted via airbone droplets shed from the respiratory
secretions of infected persons [1, 2]. In 1814, George Maton characterized rubella as
a separate disease from measles and scarlet fever. In 1881, rubella was admitted as
an official disease by the international congress of Medicine in London [3]. Rubella
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is most prevalent in children and young adults. The clinical case definition involves
three identifiable stages: (i) acute onset of a rash; (ii) temperature higher than 99◦ F;
and (iii) arthralgia or arthritis, lymphadenopathy, or conjunctivitis [4]. Rubella has
mean latent and infectious periods of about 10 and 12 days. Recovery from a rubella
infection confers life long immunity to the host [5].

Although rubella is a mild disease, the effects of infection during the early stages
of pregnancy may cause Congenital Rubella Syndrome (CRS), a disease stage with
dangerous birth defects on newborns [4] including deafness and defects in the eyes,
heart and brain. More than 100,000 cases of CRS are reported each year world-
wide since surveillance began in 1998 [6]. Rubella control via vaccination has been
achieved in many countries. Nevertheless, a few developing countries including
Peru, are just in the process of eradicating rubella via vaccination.

Soon after the introduction of the first rubella vaccine in 1969 a number of math-
ematical models have been used to evaluate its impact in the reduction of rubella
morbidity and CRS (e.g., [5, 7–13]). The studies are diverse and often specific. For
instance, a recent study assessed the impact of the “one child per family” policy
on the long term impact of rubella burden in China [5]. Nevertheless, detailed
ecological studies on the dynamics of childhood infectious diseases are almost
nonexistent for developing countries (e.g., [14–18]). In this paper, we explore the
spatial-temporal patterns of incidence and transmissibility for rubella during the
period 1997–2006 in the geographically diverse country of Peru using a unique
age-specific weekly series of rubella cases stratified by province. The analyses use
data stratified by geographic region (e.g., coast, mountain and jungle). The basic
reproduction number (R0) is estimated using estimates of the mean age at infection
and the per capita birth rate of the population, respectively, whereas the reproduction
number, accounting for the effective fraction of the population effectively protected
to rubella, is estimated using the initial intrinsic growth rate of individual outbreaks
and rubella epidemiology. A wavelet time series analysis is conducted to test for
periodicity of the rubella weekly time series. The results of our analyses are com-
pared to those carried out on childhood infectious diseases. We identify the presence
of a critical community size and quantify spatial heterogeneity across geographic
regions using the Lorenz curves and corresponding Gini indices. The underlying
distributions of rubella outbreak attack rates and epidemic duration across Peru are
characterized from these analyses.

2 Materials and Methods

2.1 Demographic and Geographic Data

Peru is a South American country located on the Pacific coast between the lati-
tudes −3 degrees S to −18 degrees S. Peru shares borders with Bolivia, Brazil,
Chile, Colombia, and Ecuador (Fig. 1). Peru’s estimated total population is 29 mil-
lion which is heterogeneously distributed throughout a surface area of 1,285,220 km2.
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Fig. 1 Map of Peru
highlighting boundaries of
195 provinces and 25 regions.
The geography of Peru covers
a range of features, from a
western coastal plain
(yellow), the Andes
Mountains in the center
(brown), and the eastern
jungle of the Amazon
(green). The total population
of Peru is about 29 million
heterogeneously distributed
in an area of 1,285,220 km2

The geography of Peru includes a western coastal plain, the Andes Mountains in the
center, and the eastern jungle of the Amazon. Peru is divided in 25 administra-
tive regions further subdivided into 195 provinces. Each province is classified as a
member of the coastal, mountain or jungle regions (Fig. 1). Estimates of population
size per province (for 1997–2006) are found in the National Institute of Statistics
and Informatics of Peru database [19]. Population density (people/km2) estimates
per province are also available. The regional estimates ranged from a mean of 22.3
people/km2 in the mountain range, 12.38 in the jungle areas, and 172 in the coastal
areas [20].

2.2 Rubella Epidemic Data

Rubella data were obtained form the Health Ministry’s Department of Epidemi-
ology (1997–2006). The age, gender, classification (probable/confirmed), location
(province) and week of onset of symptoms for each rubella case are recorded.
Rubella cases are classified following standard WHO guidelines into probable (clin-
ical case) and confirmed (via antibody tests). The identification of probable rubella
cases relies on three observations: acute onset of a rash, temperature higher than 99◦

F and arthralgia or arthritis, lymphadenopathy, or conjunctivitis [4]. The weekly
number of cases at onset of symptoms, stratified by province, as recorded by the
Health Ministry’s Department of Epidemiology are used in this study. We define a
local rubella outbreak as the occurrence of five or more recorded rubella cases within
at least three consecutive weeks given that the recorded window of time is bounded
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above and below by the absence of reported rubella cases for at least two consecutive
weeks. This approach is selected to minimize the confusion that may result from the
diagnosis of imported cases (e.g., symptomatic cases occurring while visiting other
provinces). In Peru, a limited vaccination effort that targeted children of one year
of age and females of ages 15–19 was carried out in 2003–2005. This effort led to
an approximate vaccination coverage of less than 4%. It was not until 2006 (the last
year comprising our time series data) that a mass vaccination program resulted in an
estimated vaccination coverage of about 68% (Peru’s Ministry of Health, Depart-
ment of Epidemiology). Our statistical analyses confirm that the time series data
from 1997 to 2006 are not significantly impacted by the vaccination campaigns.

2.3 Wavelet Time Series Analysis

Wavelet time series analysis [21–23] has been increasingly used to disentangle the
spatial and temporal dynamics (time series with non-stationary properties) gener-
ated by infectious disease and ecological systems [16, 24]. Here we use the wavelet
power spectrum (using the Morlet wavelet) to investigate variations in the dominant
periodic cycles across the time series using freely available software [25]. For the
Morlet wavelet, the scale is almost equal to the period and consists of a sinusoidal
fraction that is damped by a Gaussian function [22]. We logged transformed the
time series to manage the variability in the amplitude of the time series.

2.4 Estimation of the Basic Reproduction Number, R0

The basic reproduction number R0 is the expected number of secondary cases gen-
erated by a typical infectious individual during its period of infectiousness when
introduced into a completely susceptible population at a demographic equilibrium
[26, 27]. Here we generate rough estimates of the basic reproduction number (R0)
of rubella in Peru using the simple relationships between the mean age at infection
and the per capita birth rate of the population [26]. This formula has been used for
the estimation of the basic reproduction number for measles and pertussis in rural
Senegal where it was then used to assess the impact of vaccination campaigns [28].
Specifically, the mean basic reproduction number, R0, is estimated by the formula
R0 ≈ G/A, with the assumption of type I mortality [26]. Here, G is the reciprocal
of the per capita birth rate and A is the mean age at infection [26, 28]. This approach
requires the availability of age-structured epidemic data.

2.5 Estimation of the Reproduction Number, R

The reproduction number, R, is estimated using the mean initial intrinsic growth
rate (“r”) and estimates of the latent and infectious periods of rubella [26, 29].
This approach implicitly captures the effective fraction of the population (p) that
is protected to infection prior to an epidemic. In a well-mixed population with a
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constant force of infection, the reproduction number R ∼= (1-p) R0. The homoge-
nous mixing assumption is not always a good assumption. However, the use of
homogeneous-mixing models has been successful in assessing the seasonal change
in transmissibility for childhood infectious diseases [30, 31]. Bjornstad et al. (2002)
[30] used epidemic data from 60 cities in England and Wales during the prevaccina-
tion era and concluded that the homogeneous mixing model could not be rejected,
which is in agreement with a seasonal well-mixed school population [30]. Here, we
generate a lower bound for the reproduction number using the SEIR (susceptible-
exposed-infectious-removed) epidemic model with exponentially-distributed latent
and infectious periods [32] and an upper bound using a fixed generation interval
[29]. From the exponential growth phase of rubella outbreaks, we estimate the
intrinsic growth rate, “r”. We fit a straight line (with slope “r” and intercept b) to the
data on the early reports of weekly cases plotted in a logarithmic scale. The longest
epidemic period that is consistent with exponential growth is determined via the
goodness-of-fit test statistic [33]. The formula to estimate the reproduction number
using the intrinsic growth rate “r” under the assumption of exponential waiting times
for the latent and infectious periods of rubella is given by R = (1+ r

k )(1+ r
γ

) where
1/k and 1/γ are the mean latent (10 days) and infectious periods (12 days) for
rubella, respectively. The mean generation interval between two successive cases is
given by Tc = 1/k +1/γ . An upper bound for the reproduction number is estimated
as R = erTc when the generation interval of rubella (mean of 22 days) is assumed
to be fixed [29]. The reproduction number is estimated for outbreaks with an initial
epidemic phase of at least 5 consecutive weeks.

2.6 Critical Community Size

Various studies dealing with endemic infectious diseases, such as measles, have
analyzed disease persistence as a function of community size in isolated and non-
isolated communities ([26, 34, 35]). These persistence patterns depend not only on
the transmission potential of the infectious agent but also on the characteristics of
the host population including migration rates and/or birth that guarantee the replen-
ishing susceptible population [36] and the host mobility patterns that are directly
linked to a disease’s reintroduction [30]. Here we use the proportion of weeks with
no rubella reports for each of the provinces in the time series (1997–2006) to identify
possible relationships between community size and rubella persistence in the three
geographic regions.

2.7 Scaling Laws in the Distributions of Attack Rates
and Duration of Epidemics

Power law distributions, for the final epidemics size and epidemic durations, have
been fitted previously to multi-annual measles epidemic data generated from out-
breaks in island populations [37, 38]. Here we show that the distribution of attack



330 D. Rios-Doria et al.

rates and epidemic durations during 1997–2006 are well characterized by power law
(Pareto) distributions, that is, a distribution of the form X−b where b is a positive
constant.

2.8 Spatial Heterogeneity of Epidemics

Variations in attack rates across Peru are evaluated using the Lorenz curve and its
associated summary Gini index, an approach borrowed from econometrics to quan-
tify the spatial heterogeneity of infectious diseases ([39–42]). The Lorenz curve
provides a graphical representation of the cumulative distribution function of a prob-
ability distribution. It plots the proportion of cases associated with the bottom y%
of the population per region. Equal attack rates (no heterogeneity) result in a first
diagonal Lorenz curve. For example, perfectly unbalanced distributions give rise to
a vertical line Lorenz curve. Maximum heterogeneity results correspond to the sit-
uation when all locations except one had 0 rubella cases. Most empirical attack rate
distributions lie somewhere in-between. The Gini index (ranging between 0 and 1)
summarizes the statistics generated by the Lorenz curve. A large Gini index close
to 1 indicates highly heterogeneous attack rates, that is, when the higher attack rates
are concentrated in a small proportion of the population. A Gini index of zero indi-
cates spatial homogeneity, that is, the situation when attack rates are proportional to
population size.

3 Results

During the period 1997–2006, one hundred and seventy one provinces reported
rubella cases (Fig. 2). Thirty eight percent of the probable rubella cases were con-
firmed via anti-rubella IgM antibody tests with the support of regional laboratories
and the National Reference Laboratory at the National Institute of Health from the
Ministry of Health in Peru. Our outbreak definition leads to the identification of 222
rubella outbreaks in 1997–2006. The total number of outbreaks identified decrease
to a total of 201 if a threshold of 6 cases is used and to a total of 184 outbreaks
using a threshold of 7 cases. In regards to seasonality, we identified seasonal trends
in rubella incidence rates that strongly suggest a decay in rubella transmission rates
during the winter school holiday (July 15 to August 1), which is consistent with the
pattern observed for measles in England and Wales ([43, 44]). We also found the
final epidemic size to be strongly correlated with the timing of the epidemic peak
(Spearman ρ = 0.64 and P < 0.0001) and peak size (Spearman ρ = 0.88 and
P<0.0001).

Our wavelet time series analysis at the national level reveals a dominant annual
pattern. In addition a biennial pattern also shows strong power during years 2000–
2004 (Fig. 2). When the data is stratified by geographic region, the annual pattern
is strong across all years in coastal and mountain regions while it only shows
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Fig. 2 The total weekly number of probable and confirmed rubella cases as reported by the Min-
istry of Health of Peru during 1997–2006 (top panel) and the wavelet power spectrum for the
rubella time series (bottom panel), indicating a strong annual pattern across all years. In addition a
biennial pattern also shows strong power during years 2000–2004

strong power during 1998–2002 in jungle regions. Biennial cycles show strong
power in coastal (1999–2004) and jungle (2000–2003) regions but not in mountain
regions (Fig. 3).

3.1 Estimates of the Basic Reproduction Number, R0

We estimated the overall mean age at infection across provinces and time in Peru
to be 8.9 y and the mean per capita birth rate to be 0.0247 (Peru’s Health Ministry,
Department of Epidemiology). This gives R0 ≈ G/A = 40.52/8.96 = 4.52. To
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Fig. 3 The top panel shows the weekly number of rubella cases stratified by geographic region
in Peru during 1997–2006. The bottom panels show the wavelet power spectrum for each of the
geographic regions, which indicate a strong annual pattern across all years in coastal and mountain
regions with only strong power during 1998–2002 in jungle regions. Biennial cycles show strong
power in coastal (1999–2004) and jungle (2000–2003) regions but not in mountain regions

explore variations in the basic reproduction number across geographic regions in
Peru, we also estimated the mean basic reproduction number by geographic region
to be 47.40/8.49 = 5.58, 36.67/8.77 = 4.18 and 37.74/11.10 = 3.40 in coastal,
mountain, and jungle regions, respectively. However, province level estimates of
the reproduction number by geographic region were not found to be statistically
significantly different (ANOVA, P = 0.14). By contrast, the estimates of the mean
age at infection were found to be significantly different across geographic areas
(ANOVA, P = 0.01) (Fig. 5). Specifically, the mean age at infection in jungle
regions (11.1 y) was found to be significantly higher than that in coastal (8.49 y) or
mountain (8.77 y) regions. Furthermore, as we expected, no significant differences
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in the basic reproduction number were detected when comparing R0 estimates or
the mean age at infection from the initial period 1997–2002 with those estimates in
the later period (2003–2006) when the initial vaccination efforts started (ANOVA,
P > 0.11).

3.2 Estimates of the Reproduction Number, R, for Individual
Rubella Outbreaks

We obtained 37 estimates of reproduction number, R, for rubella outbreaks with an
initial epidemic phase of at least 5 epidemic weeks (the mean generation interval
for rubella of 22 days) (Fig. 4). The assumption of an exponential distribution for
the rubella generation time gives an estimate for the mean reproduction number
(R) of 2.2 (95% CI: 1.9, 2.5) and the assumption of a fixed generation interval
gives R = 3.0 (95% CI: 2.0, 4.0). In general, the estimated values of R range
from R = 6.14 (the highest in 2000, the year of the largest rubella outbreak to
date), to R = 1.3 (for the years 2001–2005). The estimates of the reproduction
number were not correlated with population size or density, latitude or longitude
coordinates. Estimates of R were not significantly different in the three geographic
regions (one-way ANOVA, P = 0.7). R estimates were not found to be correlated
with latitude or longitude coordinates or to vary across geographic regions.

3.3 Critical Community Size

Rubella was most persistent in coastal regions where 86.4% of the weeks of
the study period (1997–2006) had rubella reports, followed by mountain (79.8%)
and jungle regions (30.2%). The proportions of weeks with no rubella reports
during the entire period (1997–2006) is negatively correlated with population size
in coastal areas (Spearman ρ= −0.64, P<0.0001), mountain range areas (Spear-
man ρ= −0.77, P<0.0001), and jungle areas (Spearman ρ= −0.56, P<0.0001).

Fig. 4 Estimates of the
reproduction number
obtained using the initial
growth rate (method 1).
Lower Bound (assuming
exponentially distributed
latent and infectious periods)
and upper bound (assuming a
fixed generation interval)
estimates of the reproduction
number of individual
outbreaks during the period
1997–2006
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Fig. 5 Boxplots of the mean age at infection for the three geographical regions for 1997–2006. The
estimates of the mean age at infection were found to be significantly different across geographic
areas (ANOVA, P = 0.01). Specifically, the mean age at infection in jungle regions (11.1 y) was
found to be significantly higher than that in coastal (8.49 y) or mountain (8.77 y) regions

In coastal regions, less than 40% of the weekly records report zero rubella cases
whenever the population is around 1,000,000 or more (Fig. 6).

3.4 Scaling Laws in the Distribution of Attack Rates
and Duration of Epidemics

The distribution of attack rates and epidemic durations during 1997–2006 is well
characterized by power law (Pareto) distributions. In fact, the distribution of rubella
attack rates and epidemic durations (weeks) both follow power-law distributions
(coefficient of determination >92%, P<0.0001). Both distributions follow approx-
imately the same power law exponent of −1.8 for epidemics during 1997–2006
(Fig. 7).

3.5 Spatial Heterogeneity

The heterogeneity of rubella incidence, as measured by the Gini index, decreased
slightly from the jungle (0.34), to the coastal (0.33) and to the mountain range areas
(0.26) (Fig. 8).
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Fig. 6 The proportion of weeks with no rubella reports as a function of population size of the
Peruvian provinces classified in coastal, mountain, and jungle areas. The proportion of weeks with
no rubella reports during the entire study period were negatively correlated with population size
in coastal areas (Spearman ρ= −0.64, P<0.0001), mountain range areas (Spearman ρ= −0.77,
P<0.0001), and jungle areas (Spearman ρ= −0.56, P<0.0001). Less than 40% of the weekly
records had zero rubella cases in heavily populated areas such as the coastal region, a characteristic
not shared by mountain or jungle regions

4 Discussion

To the best of our knowledge this is the first study to evaluate the spatial and tem-
poral dynamics of rubella in a developing country using highly refined temporal,
spatial (provinces stratified in three different geographic regions) and age-structured
data from Peru. We carried out comprehensive analyses of the transmission dynam-
ics of rubella in Peru, one of the last countries in the world adopting vaccination
as a policy. Our analyses include the estimation of the reproduction number using
two different approaches and the assessment of periodicity, spatial heterogene-
ity, and persistence as a function of population size across geographic regions
of Peru.

Our results highlight the importance of incorporating the space dimension (e.g.,
geography) in appropriately disentangling and interpreting the relevant patterns of
seasonality and persistence of infectious diseases. That is, data aggregation may
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tribution with remarkably similar mean scaling exponents of about 1.7. The dashed lines are the
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Fig. 8 The Lorenz curves of
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geographic regions in Peru.
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complicate our understanding of the dynamics of rubella in Peru. This compli-
cation may be the result of dominant periodic patterns that differ across spatially
heterogeneous areas. The results are quite distinct at different scales. At the national
level, our wavelet time series analysis identifies strong annual patterns in jun-
gle, coast and mountain regions. By contrast, the wavelet power spectrum showed
different patterns by geographic regions with a single strong annual pattern in moun-
tain regions; a dominant annual pattern in coastal regions together with a strong
biennial pattern during 2002–2004; and strong annual pattern in jungle regions
during 1999–2001 in addition to a strong biennial pattern during approximately
2000–2003. In rural Senegal, both measles and pertusis have a dominant annual
pattern before vaccination efforts started (1983–1986) [28] whereas England and
Wales experienced a transition from measles biennial cycles until the late 1960s
before vaccination to annual cycles after vaccination and then to more irregular
patterns [16].

Our estimation approach of the basic reproduction number (R0) uses values of
the mean age at infection and the per capita birth rates of the population [26, 28].
Hence, non-constant reporting rates across age groups can affect our estimates of
the mean age at infection. Underreporting of rubella cases cannot be discarded due
to the inability for infectious individuals to access medical stations in isolated jungle
regions. This hinders the ability to estimate accurate incidence rates and the basic
reproduction number in those regions. We observed significantly higher estimates of
the mean age at infection in jungle areas compared to coastal and mountain areas.
However, we were not able to detect significant differences in R0 estimates across
geographic areas.

We also estimated the reproduction number based on the initial intrinsic growth
rates of individual outbreaks across provinces in Peru and the mean generation inter-
val. Consequently, the accuracy of our estimates depends upon generating reliable
estimates of these two quantities. The initial growth rate may be affected by under-
reporting of cases unless reporting remains approximately constant during the initial
phase of the outbreaks. Also, R estimates obtained from this method are sensitive
to estimates of the mean generation interval. For example, increasing the infectious
period from 12 to 16 days (the generation interval increases from 22 to 26 days)
increases our mean R estimates from 2.2 to 2.4 (based on exponentially distributed
latent and infectious periods [32]) and from 3.0 to 3.9 (based on a fixed generation
interval [29]).

Our findings are in agreement with those of Bjornstad et al (2002) [30] and
Chowell et al. (2008) [45] who observed an invariant relationship between the
reproduction number and population size for measles during the prevaccination era
(1944–1966) and the influenza pandemic of 1918–1919, respectively, in England
and Wales. This result supports frequency dependent transmission rather than den-
sity dependent transmission [46–48]. Moreover, we did not find significant differ-
ences in the reproduction number estimates across coastal, mountain and jungle
regions of Peru. This suggests a similar effective contact rate for contemporary
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rubella transmission across geographic regions in Peru. Moreover, as we expected
we did not detect significant effects of recent vaccination efforts in Peru as mea-
sured by effects on the reproduction number after 2003. Mass vaccination efforts in
Peru started in 2006 (the last year considered in our analysis). Properly conducted
vaccination efforts against rubella in Peru should lead to eradication of the rubella
virus relatively soon. The projected effects of current vaccination campaigns against
rubella in Peru are not the focus of our study.

The basic reproduction number for rubella for earlier years has been reported
to range between 6–7 in England and Wales and West Germany in 1970, in the
range 8–9 in Czechoslovakia in 1970–1977, in the range 11–12 in Poland in 1970–
1977 and in the range 15–16 in Gambia in 1976 [26]. For comparison purposes, the
basic reproduction number for measles has been reported to range 16–18 in England
and Wales during 1950–1968 prior to the introduction of vaccination [26] while
lower estimates of 4.6 and 4.5 for measles and pertusis, respectively, have been
estimated in rural Senegal before vaccination (1983–1986) [28]. The later study
estimated the basic reproduction number using the mean age at infection and the
per capita birth rate, the approach that we follow in this study. Our R0 estimates for
rubella in Peru are in good agreement with those of measles and pertussis in rural
Senegal [28].

Another research area in the transmission dynamics of infectious diseases is the
relation between disease extinction and population size [26, 30, 35, 36]. A popula-
tion threshold for extinction is the critical community size below which infections
like rubella do not persist. The relationship between disease persistence and com-
munity size can be explored through the pattern of weeks without reported cases.
Our findings suggest that a critical community size of nearly 1,000,000 individuals
is needed for sustained epidemics in coastal areas while no clear threshold pat-
tern of population size and rubella persistence could be disentangled in jungle and
mountain regions albeit these two quantities were significantly correlated in these
geographic regions (P < 0.05).

Our analysis reveals the presence of power law scaling relations which can be
used for estimating the likelihood of epidemic duration and rubella attack rate
[37, 38]. We found that most rubella outbreaks are associated with a small attack
rate, although a small number of epidemics are associated with high attack rates.
Furthermore, our study suggests that the distribution of rubella attack rates and
epidemic durations at the level of provinces in Peru follow power law (Pareto) dis-
tributions with similar mean power-law exponents. Power law scaling in duration
and size of dengue epidemics have also been reported for Peru during the period
1994–2006 [49].

Our findings indicate that regions with higher population size present higher
rubella persistence than regions with lower population size (P < 0.05). In all geo-
graphical regions, we find low levels of spatial heterogeneity as measured by the
Gini index. For comparison, a recent spatial study of dengue in Peru found much
higher heterogeneity in coastal areas (Gini ∼ 0.59) than the heterogeneity of rubella
reported here (Gini ∼ 0.34). Higher heterogeneity levels have been reported for var-
ious sexually transmitted diseases in King County, Wisconsin (> 0.60), especially
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for syphilis (= 0.90) [41]. For the study of the 1918–1919 influenza pandemic in
England and Wales the heterogeneity was higher in rural areas (Gini ∼ 0.23–0.27)
than in urban areas with quite low heterogeneity (Gini ∼ 0) [45].

The median age at infection in the coastal regions where the rubella incidence
rates are highest is low compared to jungle regions where incidence rates have been
consistently the lowest during the study period. This is consistent with standard
markers that indicate higher population density leading to higher number of out-
breaks (more persistence). This also raises the question of whether low incidence
rates in jungle areas could be attributed to underreporting issues due to limited
health care access. In fact, only one rubella case was reported in the jungle in
2003. Increasing trends in the age at infection during 2004–2006 in jungle areas
supports reporting problems. However, protective effects associated to rurality (iso-
lated areas with limited number disease introductions) in jungle areas could be
playing an important role [45]. Moreover, it has been observed that with inade-
quate interventions for eradication, i.e. – introducing vaccination campaigns, may
result in an increase of the proportion of pregnant women susceptible to rubella and
other childhood infectious diseases [50]. We suggest that the use of age at infection
statistics from high resolution spatial data is potentially of great value for real time
surveillance of rubella. Steady increases in age at infection could represent the most
reliable indicator for CRS risk.
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Abstract Relapse, the recurrence of a disorder following a symptomatic remission,
is a frequent outcome in substance abuse disorders. Some of our prior results sug-
gested that relapse, in the context of abusive drinking, is likely an “unbeatable”
force as long as recovered individuals continue to interact in the environments that
lead to and/or reinforce the persistence of abusive drinking behaviors. Our earlier
results were obtained via a deterministic model that ignored differences between
individuals, that is, in a rather simple “social” setting. In this paper, we address the
role of relapse on drinking dynamics but use models that incorporate the role of
“chance”, or a high degree of “social” heterogeneity, or both. Our focus is primarily
on situations where relapse rates are high. We first use a Markov chain model to
simulate the effect of relapse on drinking dynamics. These simulations reinforce the
conclusions obtained before, with the usual caveats that arise when the outcomes of
deterministic and stochastic models are compared. However, the simulation results
generated from stochastic realizations of an “equivalent” drinking process in pop-
ulations “living” in small world networks, parameterized via a disorder parameter
p, show that there is no social structure within this family capable of reducing the
impact of high relapse rates on drinking prevalence, even if we drastically limit the
interactions between individuals (p ≈ 0). Social structure does not matter when
it comes to reducing abusive drinking if treatment and education efforts are inef-
fective. These results support earlier mathematical work on the dynamics of eating
disorders and on the spread of the use of illicit drugs. We conclude that the sys-
tematic removal of individuals from high risk environments, or the development of
programs that limit access or reduce the residence times in such environments (or
both approaches combined) may reduce the levels of alcohol abuse.
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1 Introduction

The mechanisms responsible for observed drinking patterns within and
between populations are complex ([25, 42, 56]; and references therein). The devel-
opment of compartmental and mathematical frameworks geared towards the iden-
tification of key “transition” mechanisms that increase the percentage of abusive
drinkers must factor in the impact of individuals’ socioeconomic characteristics,
their propensity to drink (heavy drinking tends to run in families), changes in
local environments (going to college), treatment failure, ineffectiveness of edu-
cational efforts, cultural norms and community values ([42]; and references
therein).

The term drinking (population) dynamics refers to the study and identification
of “average” mechanisms, at the individual level, responsible for observed drinking
patterns within the organizational and temporal scales of interest. We model drink-
ing dynamics at the population level as the result of individuals’ social contacts
in pre-specified environments (“drinking contagion”). This modeling approach has
proved useful in the identification of the mechanisms behind social patterns that
are thought to be, in part, an outcome of intense interactions between individuals
in shared social environments. This modeling approach has been applied to the
study of the spread of scientific ideas and innovations [5]; in studies that focus on
the mechanisms behind the observed increases in prevalence of eating disorders
[27]; in studies that address the impact of relapse on the distribution of drinkers
[51, 52]; in studies that envision violence as an epidemic [48]; as explanation for the
observed growth or decline of crime in cities [26]; and in studies that highlight the
explosive increases in the use of illicit drugs, such as ecstasy [37, 53]. Researchers
are interested in studying the impact of individual drinking habits and preferences’
variability at multiple levels of social organization: from small “isolated” to highly
connected communities; and over short or long time horizons. Models have been
used to explore the capacity of drinking environments to support communities of
drinkers as well as the impact of individuals’ movements between drinking venues
on the overall distribution of drinking types [42].

The National Institute on Alcohol Abuse and Alcoholism estimates that 18 mil-
lion Americans suffer from alcohol abuse or dependence. Alcohol-related problems
cost the United States (U.S.) nearly $185 billion annually [43] while alcohol abuse
was responsible for nearly 80,000 fatalities per year during 2001–05, and it is now
the third leading cause of death in the U.S. [17]. Prevention and control efforts that
include treatment and education programs that target specific populations including
children [35] or adolescents [24] are in need of improvement. Among the many
problems confronting these programs are the very high rates of relapse after treat-
ment that are observed. Up to 70% of treated alcohol abusers relapse after treatment
(reviewed in [52]). Mathematical studies can be particularly effective as guides to
the evaluation, testing and implementation of single or multiple intervention strate-
gies over short or long time scales. This is particularly true in the study of chronic
relapsing diseases such as alcohol addiction.
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1.1 Social Dynamics, Disease Transmission,
and Social Structure

Several aspects linked to disease transmission depend strongly on a population’s
social dynamics. Disease dynamics can often be driven by factors that include het-
erogeneity in behavior, frequency of use of mass transportation, travel patterns, and
cultural norms and practices. Examples where the use of mathematical models have
generated useful insights include studies on the role of behavior on the transmission
dynamics of sexually transmitted diseases like gonorrhea or HIV ([3, 16, 29, 30];
and references therein) and studies on the intensity and frequency of travel on the
spread of communicable diseases such as SARS [20, 53] and influenza [22, 34].
The most significant study of the role of heterogenous mixing on the transmis-
sion dynamics of gonorrhea was carried out by Hethcote and Yorke [29]. These
researchers through their introduction of the concept of core group (outliers in the
distribution of sexually-active individuals) showed that most secondary cases of
gonorrhea infections could be traced to the core (most connected nodes in a network
of sexually-active individuals). Furthermore, they showed that focusing surveillance
and treatment on core subpopulations resulted in significant reductions in gonorrhea
prevalence. The public health policy at that time wrongly focused on the “random”
testing of women, a policy derived from data that showed that a large percent-
age of gonorrhea infected women are indeed asymptomatic ([29]; and references
therein).

The systematic study of the role of heterogenous social landscapes on disease
dynamics began in direct response to efforts to stop the HIV epidemics. Efforts
to compute explicit mixing matrices (who had interactions with whom) and to
study the impact of sexual preference in the context of HIV transmission intensified
([3, 6–8, 12–15, 30–33]; and references therein).

Most recently, efforts to explore disease dynamics in the context of heteroge-
nous (fixed) social network structures have proved quite fruitful. The study of
epidemics on networks has increased our understanding of the role of “social”
heterogeneity on disease dynamics ([45]; and references therein), but the impact
of the efforts of the mathematical “network” community goes beyond the study
of epidemics on networks, as is evident from the wealth of applications found
in the literature (see [4, 45, 46, 55]; and references therein). There is a body of
research that contributes to the characterization and validation of some classes
of network structures with data [39]; structures whose statistical properties are
most often captured via power law distributions [46]. The class of best known
or more popular models of this type include small-world [55] and scale-free [4]
networks.

Social network analysis is the result (to a great degree) of major contributions by
social scientists ([54]; and references therein). Recent mathematical contributions
([45] and references therein; [46, 55]) have increased interactions between social
and mathematical scientists. Applications that make use of specialized network
structures include studies of the structure of scientific co-authorship networks [45],
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the organizational structure of committees in the U.S. House of representatives [49],
the structure of internet networks [47], the properties of contact tracing networks
for SARS [39], and the nature of sexual partnership networks [36]. Efforts to study
stochastic epidemic and social processes on networks have also been carried out in
the context of homeland security ([21] and references therein) and drinking [11].
Our goal here is “theoretical”, that is, we focus on the study of drinking on some
networks characterized by scaling laws ([45]; and references therein). Specifically,
the primary objective is to explore the role of network structure on the distribution
of drinkers in communities (small world type) where relapse rates are high.

This manuscript is organized as follows. Section 2 revisits the results in [51, 52]
on the role of relapse on the distribution of drinking types. Section 3 introduces the
stochastic analog of the deterministic model to highlight the role of variability in the
distribution of drinking types of Section 2. Section 4 simulates one version of the
stochastic drinking dynamics in a small-world network. Finally, Section 5 discusses
the role of relapse in these settings.

2 A Deterministic Contagion Model in Well-Mixed
Drinking Communities

In the drinking model formulation proposed in [52], the population is divided in
three classes: S(t), moderate and occasional drinkers [18], D(t), problem or heavy
drinkers [19, 44], and temporarily recovered, R(t). Table 1 presents the definitions
used in [52] where it is assumed that the population is composed of “average”
individuals that interact at random with each other. The proportion of contacts of
S-individuals with D-individuals per unit of time is therefore proportional to D/N
where N = S + D + R, denotes the total size of the community. The progression
rate from S to D and the relapse rate from R to D depend on frequency-dependent
(random) interactions.

Table 1 State variables and parameters of the contagion model in Sánchez et al. [52]

State variable Description
S(t) Number of occasional and moderate drinkers at time t
D(t) Number of problem drinkers at time t
R(t) Number of recovered individuals at time t

Parameter Description

β Effective transmission rate (average number of effective interactions
per occasional and problem drinker per unit of time)

ρ Community-driven relapse rate (average number of effective interactions
per problem drinker and recovered individual per unit of time)

φ Per-person treatment rate
μ Per-person departure rate from the drinking environment
N Community size (permanent population size)
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In [52] the model is given by the following set of nonlinear differential equations:

d S

dt
= μN − βS(t)

D(t)

N
− μS(t), (1)

d D

dt
= βS(t)

D(t)

N
+ ρR(t)

D(t)

N
− (μ + φ)D(t), (2)

d R

dt
= φD(t) − ρR(t)

D(t)

N
− μR(t), (3)

N = S(t) + D(t) + R(t), (4)

where β denotes the per-capita effective contact rate (transmission rate), that is,
βSD/N denotes the rate of transitions from S to D, the result of the frequency-
dependent interactions between individuals in the classes S and D; μ denotes the
per-capita departure rate from the system; ρ denotes the per-capita effective relapse
rate, that is, ρRD/N denotes the rate of transitions from R to D, the result of
the frequency-dependent interactions between R and D; φ denotes the per-capita
recovery (treatment or education) rate; and μN denotes the total recruitment rate
into this homogeneous social mixing community. It is assumed that all “recruits”
are S-individuals. Hence, we set the S-recruitment rate equal to μN as it guaran-
tees constant population size. The validity of the analysis is therefore tied to a time
horizon where changes in total population size are minimal.

The reproductive number under a treatment/education regime φ is given by

Rφ ≡ R(φ) = β

μ + φ
. (5)

Rφ is a dimensionless quantity (ratio or number) that can be interpreted as the num-
ber of D-individuals “generated” in a population of primarily S-individuals sharing
a common environment. That is, if we start with S ≈ N individuals and introduce
a “typical” D-individual then we expect Rφ secondary cases generated from the S
population per D-individual, but only at the start of the “outbreak”. Hence, Rφ > 1
results in an exponentially growing D-community if N is large enough. We also
expect that when Rφ < 1, the introduction of D-individuals in a population where
S ≈ N (N large) will not result in the growth and (eventual) establishment of a
problem-drinking community (D-individuals). The above observations are on target
when the rate of relapse is linear, that is, ρR rather than ρRD/N . However, when
the relapse rate is nonlinear, namely, ρRD/N , the outcome is not as “expected”.
The outcome depends on the ratios

Rρ = ρ

β
[1 − R(φ)] (6)

Rc = ρ

β

[
1

1 + 1
R0

− 2

√
1

R0
− μ

ρ

]
, (7)

where R(φ) is defined in Equation (5); R0 ≡ R(0) = β/μ.
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Rρ can be interpreted as the number of problem drinkers (D-individuals) generated
from the R-class as a result of the frequency-dependent interactions between the
R- and D-classes (R-individuals remain in the same environment). We observe
that Rρ > 0 if and only if R(φ) < 1. On the other hand Rc > 0 but only as
long as

β

μ + β
> 2

√
1

R0
− μ

ρ
> 0.

We have not been able to interpret the meaning of Rc in social terms. However, the
value of Rc, under some conditions, provides a sharp D-extinction threshold, that
is, a threshold that if crossed, would lead to the eventual elimination of the D-class,
independent of initial conditions (D(0)).
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Fig. 1 Numerical simulations of drinking model in a homogeneous drinking community. Panel (a)
shows a bifurcation diagram that involves the number of problem drinkers at equilibrium versus
the reproductive number Rφ , when φ < ρ. Panel (b) displays a bifurcation diagram illustrating the
special case when the recovery rate equals the relapse rate (φ = ρ = 0.50). Here, Rφ < 1 provides
a sufficient condition that guarantees the eventual extinction of the population of problem drinkers.
Panels (c) and (d) display D(t) versus t under different initial conditions. In Panel (c) the initial
conditions are S(0) = 0.98N , D(0) = 0.02N and R(0) = 0; in Panel (d) they are S(0) = 0.95N ,
D(0) = 0.05N and R(0) = 0. The parameter values used are: N = 10000, μ = 0.50, φ = 0.50 and
ρ = 7.00, 0.20 ≤ β ≤ 1.50 ( Panel (a)); N = 10000, μ = 0.50, φ = ρ = 0.50, 0.20 ≤ β ≤ 1.50
(Panel (b)); N = 10000, μ = 0.50, φ = 0.50 and ρ = 7.00, β = 0.90 (Panels (c) and (d))
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The distribution of drinking types, in the nonlinear relapse rate case, depends not
only on the thresholds Rφ , Rρ , and R0 but also on the size of the initial population
of problem drinkers, D(0). In [52] the following results were obtained:

1. If R(φ) > 1 then the D-class becomes established.
2. Whenever Rc < R(φ) < 1 and Rρ < 1 or whenever R(φ) < Rc < 1 the

D-class becomes (eventually) extinct.
3. Whenever Rc < R(φ) < 1 and Rρ > 1 whether or not the D-class becomes

established is a function of the initial size of the class of D-individuals, D(0)
(see Fig. 1c, d).

A per-capita relapse rate greater than the per-capita recovery rate, ρ > φ, leads
to explosive growth in the D-class as long as D(0) (the initial population of prob-
lem drinkers) is “large enough” (see Fig. 1a). The qualitative behavior displayed in
Fig. 1a is commonly called a “backward” bifurcation [52]. We further observe that
once the population of problem drinkers becomes established (Rc < R(φ) < 1)
their extinction can only be carried out if φ increases to the point where R(φ) < Rc

or if ρ decreases to the point where Rρ < 1. Figure 1c, d, display D(t) versus t to
illustrate, with a time series, the effects of initial conditions, D(0). We observe bista-
bility. The size of the initial number of problem drinkers determines whether or not a
D-community becomes established even under unfavorable conditions (R(φ) < 1).
When the per-capita relapse rate equals the recovery rate, ρ = φ, we observe
(Fig. 1b) that the D-class grows (gradually) with R(φ); multiple endemic (non-
negative) stable D-equilibria will not co-exist in this case. When ρ = φ, R(φ) < 1
guarantees the eventual extinction of the problem drinking class.

3 A Stochastic Contagion Model

The stochastic model of this section is built from the deterministic model given by
equations (1), (2), (3), (4) and is used to quantify the role of variability on drinking
dynamics.

The derivation of the stochastic model (continuous-time Markov chain) is stan-
dard (details are provided in an Appendix)—see for instance [1, 2, 50]). We carry
out simulations that highlight the differences between stochastic and deterministic
outcomes. Simulation outcomes (distributions) are later used to contrast the results
of stochastic simulations of the same drinking process in small-world networks.

The average behavior of the stochastic model is described in Table 2. The sim-
ulations of this deterministic version and stochastic analog are computed using
identical epidemiological and social parameter values. It is not surprising to see
overall agreement between the dynamics of the deterministic model (black curve)
and the mean (over 50 realizations) dynamics of the stochastic model (grey curves)
when Rφ > 1 (Fig. 2). The mean results are computed under the condition of non-
extinction of the D-class before the preselected time horizon. Setting Rφ < Rc < 1
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Table 2 Collects the transition rates and infinitestimal probabilities of occurrence of the events
linked to a single drinking model outbreak. The dependence on t is omitted, writing S, D, and R,
instead of S(t), D(t), and R(t), respectively

Rate at which Probability of transition
Event Transition event occurs in time interval [t, t + dt]

Recruitment S → S + 1 μN μNdt
Moderate drinker removal S → S − 1 μS μSdt
Problem drinker removal D → D − 1 μD μDdt
Sober removal R → R − 1 μR μRdt
Drinking contagion S → S − 1, D → D + 1 βS D

N βS D
N dt

Recovery D → D − 1, R → R + 1 φD φDdt
Relapse D → D + 1, R → R − 1 ρR D

N ρR D
N dt
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Fig. 2 Results from numerical simulations. 50 stochastic realizations (grey curves) and numerical
solutions of the deterministic (black curve) problem drinker class D(t) versus time t . For these
simulations the following values of parameters were used: N = 1000, β = 1.20, ρ = 7.00,
φ = 0.50 and μ = 0.50 with Rφ = 1.20 and the initial number of problem drinkers D(0) = 5

leads invariably to the eventual extinction of the D-class in the deterministic
formulation but not always (as expected) in the stochastic formulation [1, 2].

In well-established drinking communities (including college students) estimates
clearly show that Rφ > 1. Thus, one may ask whether the existence of backward
bifurcations (bi-stability) is just of theoretical value? If the goal is to prevent the
formation of a drinking community then the above question “makes” sense. How-
ever, most often the goal is to reduce or eliminate the D-class and the existence of a
backward bifurcation makes this much harder.
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Fig. 3 Histograms of D(T ), number of problem drinkers at stoppage time T = 50000, resulting
from 50 stochastic realizations with Rφ > 1 (Panel (a)) and Rφ < 1 (Panel (b))

Relapse rates among problem drinkers are high [25, 40]. Hence, the existence of
a relapse driven backward bifurcation suggests that efforts to “eliminate” problem
drinkers or reduce problem drinking may be futile as long as “R-individuals” remain
in the same social environment. Substantial reductions in the relapse parameter—
with the ultimate goal of having Rφ < 1—may be extremely difficult to achieve.
Furthermore, treatment and prevention measures even if effective are likely to
be insufficient if the goal is to eliminate the D-class (see bifurcation diagram in
Fig. 1a).

Histograms (based on 50 stochastic realizations) of the number of problem
drinkers at a stoppage time T , denoted by D(T ), are examined when Rφ > 1
(Fig. 3a) and when Rφ < 1 (Fig. 3b). Figure 3a shows that when Rφ > 1 most
samples of D(T ) lie in [350, 550), while for Rφ < 1 Fig. 3b shows that the problem
drinker class may not go extinct. When Rφ < 1 more than half of the D(T ) samples
have values between 150 and 350. These results are consistent with those of [52],
that is, when the relapse rate is larger than the treatment rate (ρ > φ). In other
words, it is possible for a population of problem drinkers to become established
even if Rφ < 1 in a stochastic setting.

4 Drinking Dynamics in Small-World Communities
with High Relapse Rates

A network (graph) is a set of nodes with connections (edges) between them. Graphs
provide visual representations of the contact structure of individuals in a popula-
tion [45]. The fact that all social processes (including drinking) depend on contacts
between distinct individuals has, in part, motivated the study of epidemics on
networks [28, 38, 39, 47].

Watts and Strogatz [55] introduced a one-parameter, p, family of networks. As
the disorder parameter p is varied in [0,1], the graph moves from a regular lattice
to a random graph. The model can be formulated algorithmically as follows: the
initial network is initialized via a one-dimensional periodic ring lattice of N nodes,
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each connected to its closest 〈k〉 neighbors (two nodes are neighbors if there is
an edge connecting them). The network is updated by re-wiring each edge with
probability p (the disorder parameter) to a randomly selected node until it reaches
“fixed” statistical properties. When p → 0 the algorithm recovers the initial lat-
tice but when p → 1, most edges are rewired, the resulting network is a random
graph [9]. Watts and Strogratz showed that the use of just a few random long-range
connections (p small) drastically reduced the average distance between any pair of
nodes [55]—the kind of property that enhances “transmission”, the “small-world
effect”. The effect was postulated based on the result of a series of letter-forwarding
experiments carried out by Milgram [41]. The statistical properties of small-world
and “similar” networks have been studied ([46, 55]; and references therein).

Here we model community structure as a small-world network. The terms net-
work and community are used interchangeably, with nodes representing individuals
and edges denoting the social connections or interactions, the kind of “social mix-
ing” that may lead to node “transition” (from the moderate drinker into the problem
drinker state). Nodes can be in one of three distinct states: moderate drinker, prob-
lem drinker, and recovered drinker. The stochastic transitions between nodes’ states
are modeled as functions of time and the number of “neighbors” in particular states
(transition rates). If one starts with a community with N nodes where Node i
(1 ≤ i ≤ N ) has δ(i, t) neighbors who, at time t , are in the state “problem
drinker”, then the probabilities that Node i changes its state given that it alters its
state, at each time step are: from moderate to problem drinker, 1 − exp(−βδ(i, t));
from problem to recovered, 1 − exp(−φ); and from recovered to problem drinker,
1 − exp(−ρτ (t)δ(i, t)). This formulation (see Table 3) defines a stochastic process

Table 3 State variables, parameters, events, and transition probabilities of the drinking dynamics
model in small-world communities

State variable Description
δ(i, t) Number of problem drinker neighbors of node i at time t
Sp(t) Total number of moderate drinkers at time t in a small-world community

parameterized by p
Dp(t) Total number of problem drinkers at time t in a small-world community

parameterized by p
Rp(t) Total number of recovered individuals at time t in a small-world community

parameterized by p

Parameter Description
β Transmission rate
φ Per-person treatment rate
ρτ (t) Time-dependent relapse rate

Event Probability of transition

Node i changes from moderate into problem drinker 1 − e−βδ(i,t)

Node i switches from problem drinker into recovered 1 − e−φ

Node i changes from recovered into problem drinker 1 − e−ρτ (t)δ(i,t)
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Table 4 Parameter values utilized in simulations of drinking dynamics in small-world
communities

Parameter Description Baseline value

〈k〉 Average connectivity per node 6
N Community size 1000
β Transmission rate 0.12
φ Per-person treatment rate 0.7
ρτ (t) Time-dependent relapse rate ρτ (t) = 0.90 whenever t < τ

ρτ (t) = 0.12 if t ≥ τ

T Stoppage time 4000
Dp(0) Initial number of problem drinkers chosen

uniformly at random in every community 5
Number of stochastic realizations 20

on the random variables Sp(t), Dp(t), and Rp(t). These random variables can also
be thought of as parameterized by the disorder parameter p ∈ [0, 1].

Drinking as a “contagious” process is simulated as follows: the stochastic gener-
ation of a small-world network [55] is followed by multiple stochastic realizations
of the drinking process defined in Table 3 on the selected small-world network. The
parameter baseline values are summarized in Table 4. Histograms of Dp(T ) and
Rp(T ), where T denotes the stoppage time in the simulations (see Table 4), are
computed for each value of p (see Fig. 4). Figures 5 and 6 highlight the mean and
variance (over 20 realizations) of Dp(T ) and Rp(T ) as a function of p [21, 23].
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Fig. 4 Histograms of the total number of problem drinkers and recovered individuals, Dp(T ) and
Rp(T ), respectively, at a stoppage time T . Samples obtained from 20 stochastic realizations in
simulated communities with p = 3.02 × 10−4 in community size 1000 (nodes)
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Fig. 5 Average and variance of Dp(T ) and Rp(T ) as functions of the simulated community archi-
tecture parameterized by p (logarithmic scale). The mean (circles) and mean plus and minus one
standard deviation (dash curves) are computed from 20 stochastic realizations for each fixed value
of p. Panels (a) and (b) display results of simulated contagion in small-world communities in the
absence of relapse, ρ ≡ 0

A drinking wave is detected even as the size of the problem drinking class goes
to zero for the case ρ = 0 (no relapse) with Rφ > 1. This feature agrees with
deterministic [10] and stochastic “theories” [1] on single-outbreak SIR models.
Figure 5a shows that variations on the network structure (modeled by p) have no
effect on the mean size of the problem drinker class Dp(T ) . However, the mean
size of the recovered class Rp(T ) exhibits a phase transition as p → 10−1 (Fig. 5b).
Hence, in the absence of vital dynamics (births and deaths) and relapse, we conclude
that community structure does affect the average size of the problem drinking class
during the drinking wave. Small values of “p” lead to a phase transition [45], a
“small world” effect.

Figure 6 illustrates a worst case scenario in which the average relapse probability
is near one for the majority of the time. To see the impact of high, nearly stationary
relapse rates, we let 〈k〉 denote the average number of connections per node in a
one-dimensional lattice when p = 0 and carry out simulations on this network
with the average relapse probability (1 − e−ρτ (t)〈k〉) ≈ 1. The relapse rate ρτ (t)
(defined in Table 4) is modeled as a stepwise constant function that drops its value
at precisely t = τ . The worst case scenario here corresponds to the case where
τ = ∞. In general, when relapse rates are high for too long, small-world structures
(any value of p) have no effect on the mean sizes of the problem and recovered
drinking classes. In fact, the size of the problem drinking community is above 60%
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Fig. 6 Dependence of the average and variance of Dp(T ) and Rp(T ) as a function of commu-
nity structure p (logarithmic scale). Average (circles) and one standard deviation added to and
subtracted from the average (dash curves) are calculated from 20 stochastic realizations for each
fixed value of p. The results shown in Panels (a) and (b) assess a “worst case scenario” of hav-
ing on average every recovered node going into relapse with probability nearly one, in symbols
1 − e−ρτ (t)〈k〉 ≈ 1
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Fig. 7 Average Dp(T ) and Rp(T ) as functions of the community structure, p. Panels (a) and (b)
display the results obtained from using a time-dependent relapse rate ρτ (t). The relapse rate jumps
from 0.90 to 0.12 at time t = τ , that is, every node diminishes its probability of transition from
the recovered into the problem drinker state by half (probabilities go from 1 − e−0.90〈k〉 ≈ 1 to
1 − e−0.12〈k〉 ≈ 0.5) Panels (a) and (b) show the changes in averages as a function of the timing in
the jump (τ ). The relapse reduction at times, τ = 3 (upward triangles), τ = 5 (diamonds), τ = 7
(right triangles), τ = 10 (circles) are highlighted. The averages displayed in Fig. 6 are for the case
τ = ∞ (squares)
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regardless of the value of p (other parameters kept fixed). Furthermore, we see that
on average Dp(T )+ Rp(T ) = N when relapse rates are high. That is, every member
of this closed population becomes a problem drinker at least once regardless of the
value of p.

Reducing the relapse rate from 0.90 to 0.12 at precisely the time τ reduces the
average relapse probability from 1 − e−0.90〈k〉 ≈ 1.00 to 1 − e−0.12〈k〉 ≈ 0.50 at time
τ . Figure 7 shows the impact of increasing the values of τ = 3, 5, 7, 10. We do not
observe a lot of differences in the average values of Dp(T ) and Rp(T ) as a function
of τ . However, these averages “improve” in the “right” direction as τ reduces its
value from τ = ∞ towards τ = 0.

5 Discussion

Relapse has a significant impact on the dynamics of addictive behavior ([27, 52, 53];
and references therein). The use of a simple system of differential equations [52]
shows that for socially-intense processes like drinking, the reproductive number,
Rφ is not always the key. Frequency dependent relapse rates play a significant role.
Frequency dependent relapse rates do increase the possibility of severe outbreaks
within “well-behaved” communities, but more importantly they also increase the
likelihood of failure of programs aimed at eliminating drinking. Sánchez et al. [52]
clearly delineated the possibilities from their mathematical analysis of a simple
model where all the mixing takes place in the same drinking environment. Mubayi
et al. [42] recently explore the impact of individuals’ movement between hetero-
geneous drinking environments. They showed that frequent movement between
distinct environments can have a significant (negative) effect on the distribution
of drinking types. Here, we only focused on exploring the predictions of [52] in
two stochastic settings. The stochastic analog (continuous time Markov chain) of
Sánchez et al.’s deterministic model was used to highlight the role of variability.
The results were consistent with those of Sanchez et al. with the usual caveats [1].
A small-world network was used to highlight the very strong role played by relapse.

In fact, our study of drinking in a small-world network parameterized by the
disorder parameter p leads to the following results: When there is no relapse (ρ =
0), we recovered the well understood phase transition effect previously identified
from SIR simulations on small-world networks [45], as p crosses a critical value;
the introduction of high relapse rates “eliminates” the role of “p”. In other words, the
form of social connections (who interacts with whom) in populations experiencing
strong patterns of relapse has no impact on the prevalence of addictive behaviors.
Hence, if relapse rates are high then emphasis on programs that generate substantial
and sustained reductions in “mixing” will not be effective. Reducing residence times
in risky environments which promote relapse, reducing recruitment into drinking
communities, and reducing movement between drinking venues are more likely to
be effective [42].
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Appendix

Transitions between drinking classes involve discrete events which change the num-
ber of individuals in every class, one at a time. For example, when a drinking
“contagion” event occurs, the number of moderate drinkers is decreased by one,
while the number of problem drinkers increases by one. The probability that an
event takes place during an infinitesimal time interval [t, t + dt] is calculated from
the average rates in the deterministic model. In this example, the “conversion” event
occurs at the rate of βS(t)D(t)/N and the probability that it happens in [t, t +dt] is
approximately (βS(t)D(t)/N ) dt . All the events, their rates of occurrence, and the
probabilities at which they take place are listed in Table 2.

It is assumed that the events are described by independent Poisson processes [1].
The term

E = μN + μS + μD + μR + βSD/N + φD + ρRD/N ,

denotes the rate at which an event occurs at time t . The time between events is
exponentially distributed with mean 1/E . The time at which the next event happens
is found, for each realization, by sampling from an exponential distribution with
mean 1/E .

To decide which event takes place (once it is known that an event occurs),
we divide up the interval (0, E) into subintervals that correspond to the relative
occurrence probabilities of the various events. For example, given that an event
has occurred, the probability that it is a recruitment is μN/E , the probability of
the removal of a moderate drinker is μS/E , the probability of the removal of a
problem drinker is μD/E , etc. A number U is selected randomly from the uniform
distribution on (0, 1) and an event is selected if this value falls within the appropriate
subinterval. For instance, the event is a recruitment if U satisfies 0 < U < μN/E ,
a moderate drinker removal if U lies between μN/E and (μN + μS)/E , a prob-
lem drinker removal if U lies between (μN + μS)/E and (μN + μS + μD)/E ,
and so on.

Acknowledgments A.C.-A. was supported in part by the Statistical and Applied Mathematical
Sciences Institute which is funded by the National Science Foundation under Agreement No.
DMS-0112069. Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of the National Science
Foundations. A.C.-A. was also supported in part by Grant Number R01AI071915-07 from the
National Institute of Allergy and Infectious Diseases. The content is solely the responsibility of
the authors and does not necessarily represent the official views of the NIAID or the NIH. X.W.
and C.C.-C. were supported by NIAAA grant on “Ecosystem Models of Alcohol-Related Behav-
ior”, Contract No. HHSN2S1200410012C, ADM Contract No. No1AA410012 through Prevention
Research Center, PIRE, Berkeley, the National Science Foundation (DMS-0502349), the National
Security Agency (DOD-H982300710096), the Sloan Foundation, and Arizona State University.
P.J.G. was supported by Grant Number R01 AA06282 from the National Institute on Alcohol
Abuse and Alcoholism.



358 A. Cintrón-Arias et al.

References

1. Allen, L. J. S. (2003) An Introduction to Stochastic Processes with Applications to Biology.
Pearson, Upper Saddle River.

2. Allen, L. J. S., van den Driessche, P. (2006) Stochastic epidemic models with a backward
bifurcation. Math. Biosci. Eng. 3:445–458.

3. Anderson,R., May, R. (1991) Infectious Diseases of Humans: Dynamics and Control. Oxford
University Press, Oxford.

4. Barabasi, A. L., Albert, R. (1999) Emergence of scaling in random networks. Science
286(5439): 509–512.

5. Bettencourt, L. M. A., Cintrón-Arias, A., Kaiser, D. I., Castillo-Chávez, C. (2006) The power
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