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Abstract The Kirschner–Lipatov result for the DLLA of high-energy qq′ backward
scattering is re-derived without the use of integral equations. It is shown that part
of the inequalities between the variables in the logarithmically divergent integrals is
inconsequential. The light-cone wave-function interpretation under the conditions
of backward scattering is discussed. It is argued that for hadron–hadron scattering
in the valence-quark model the reggeization should manifest itself at full strength
starting from shh = 50 GeV2.
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1 Introduction

Backscattering of high and intermediate energy, weakly radiating1 particles (pro-
tons, X-ray) is known as a clean tool for atomic material structure analysis [1].
The clarity of the analysis owes exactly to the low scattered particle fraction. With
the initial macroscopic luminosity, that poses no problem for detectability, but,
more importantly, the relative background (actually, all the diverse kinds thereof)
is suppressed.

In case when wave nature of the scattered particles is relevant, the backward
scattering can sometimes get enhanced as compared with that at other large angles –
due to some or the other kinematical symmetry (coherent backscattering).
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1 Weakness of the radiation is, rather, a wish than a necessary condition. Backscattering, or large-
angle scattering of electrons, of course, is widely applied, too, but requires proper calculation of
radiative corrections.
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For hadrons, which are objects composed of quarks, one can detect the events
of single quark backscattering by separating (single-) flavor exchange reactions to
high energy. Thereat, most probably, only one pair of quarks (of different flavor)
scatters backwards and then recombines with the forward-moving hadron remnants.
There is no external gluonic radiation in the fully exclusive reaction, because of
color confinement. Besides, there is no necessity to rise the energy to extremely high
values, where some internal radiative effects should eventually become important.

Owing to the hardness present in the process, a plausible approximation for it is
one-gluon exchange. The latter is impact parameter conserving, which is convenient
for the overlap representation of the scattering matrix element in terms of quark
wave functions of hadrons, as was partially discussed elsewhere [2].

But yet, at energies high enough, the energy dependence of flavor-exchange re-
actions departs notably from the one-gluon-exchange prediction σ ∼ s−2, which is
referred to as reggeization phenomenon. It is desirable to get it incorporated in the
theory, within the impulse approximation treatment.

In 1967, Gorshkov, Gribov, Lipatov, and Frolov [3] (see also textbook [4]) had
evaluated double-leading-logarithmic asymptotics (DLLA) of Feynman integrals
corresponding to e−μ− backward scattering in QED, and resumed to all orders.
They had found a power falloff slowdown (basically, t-independent).

Later, Kirschner [5], being generally interested in DLLA of QCD elementary
scattering processes, examined quark-quark backward scattering, and quark-
antiquark forward/backward annihilation, paralleling the framework of [3]. The
negative signature amplitude was thereafter computed by Kirschner and Lipatov
[6].

The amplitude of qq′ backward scattering, which is the kernel of the hadron
binary reaction overlap matrix element, has the asymptotics

Mqq′→q′q
(
sqq′

)
=

1
Nc
δm′lδl′m

√
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8π
lnsqq′
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(√
2αsCF
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(DLLA) (1)

∼ 1
lnsqq′

s

√
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π
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with I1 the modified Bessel function, and

CF =
N2

c −1
2Nc

. (3)

(Account of single logarithms can somewhat change the index in (1), but the effect
of that correction is rather uncertain in view of our poor knowledge of the coupling
constant αs, anyway.)

Letting numerically Nc = 3, αs  0.1÷0.2, and assuming that for reactions such
as np → pn small Feynman-x contribution is moderate (given that constituent quark
models work rather well for nucleon), one obtains an estimate

dσnp→pn

dt
∝

1
s2 |Mdu→ud |2 ∼ s−1.4÷−1.2. (4)
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Fig. 1 Regge trajectory for
np → pn reaction. Data taken
from [7]. The straight line
shown for comparison is the
conventional ρ,A2-trajectory
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This asymptotics is expected to hold when
√

2αsCF
π ln

(
sqq′ =

shh
N1N2

)
� 1, where N1,

N2 are valence quark numbers in the colliding hadrons. That numerically implies

shh � 50÷100 GeV2. (5)

The correspondence of (4) with the experimental behavior is not too bad.
The best experimental representative of flavor exchange reactions is np → pn,

given the detailed data available for dσ/dt and even some data for polarization for
this reaction, and in addition – nucleon form-factors as an independent constraint
for the wave function.

The Regge trajectory slope for np → pn is small (see Fig. 1). In contrast, for
meson flavor exchange, particularly for π−p → π0n (usually quoted as having an
examplary linear Regge trajectory) the slope seems to be close to Chew–Frautchi
substantial value 0.8 GeV−2. But it is to be minded that in the pion charge exchange
case there are cancelations between ud → du scattering and uū → dd̄ annihilation,
and in itself, pion is a more relativistic system then nucleon, probably, with a larger
contribution from small x. Altogether, this makes the dynamics more intricate, and
we refrain from discussing it here.

In this contribution we shall focus only on reggeization of two-free-quark scatter-
ing. That was the subject of Kirschner and Lipatov, but it is desirable to give it more
dynamical interpretation, which can in future prove useful for scattering treatment
in the spectator quark surroundings.

2 The origin of enhancements

Consider an ultra-relativistic collision of a free d-quark carrying momentum pd with
a free u-quark of momentum pu, resulting in a near-backward elastic scattering to
momenta p′d , p′u:

d(pd)+u(pu) → u(p′u)+d(p′d),

Δ⊥ = pd − p′d = p′u − pu ∼ 1 GeV.
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As long as no other particles are concerned in the initial or final state, we shall
throughout designate inter-quark kinematic invariants without hats or subscripts:

s = (pd + pu)2 � Δ 2
⊥.

Quark bispinors will be denoted as u for initial and u′ for the final u-quark, and d,
d′ – the same for d-quark.

2.1 Loop structure. Collinear vs. infra-red large logarithms

The tree-level amplitude of quark–quark backward scattering is the single-gluon
exchange:

M(1) ≈−4πα
s

(
d̄′γ μd

)(
ū′γ μu

)
tA
l′lt

A
m′m. (6)

It scales with the collision energy
√

s as s0, which corresponds to cross-section de-
creasing as s−2. But in higher orders there can arise loop enhancements of logarith-
mic kind, which are conventionally classified by two categories – soft and collinear
ones. Soft divergences originate when some mass ratio tends to be large, m

λ → ∞.
Collinear ones require the high-energy limit s

m2 →∞; they correspond to an effective
phase space extension with the energy.2

In general, a collinear divergence is encountered when a soft virtual particle con-
nects two high-energy lines, provided the latter are sufficiently close to the mass-
shell. Then, the high-energy line propagators admit eikonal approximation,3 ∼ 1

pk
(p being the momentum of the high-energy line, and k – the momentum of the soft
one), whereas the soft particle propagator decreases as ∼ 1

k2 if it is a boson, or ∼ 
k
k2 if

it is a fermion. When covered with 4d integration, by k-power counting it is seen to
produce logarithmic divergences – in a triangle loop with two eikonal (fermion) and
one soft boson lines (not counting possible hard propagators, which may be regarded
as momentum-independent, and graphically represented as contracted into a point),
and in quadrangular loops with two eikonal (boson) lines and two soft fermion lines.

In the first case, of triangular loops, the collinear divergence is merging with the
soft one (IR). Although those can be given independent meaning, physically they
both are related to emission and reabsorption of bremsstrahlung photons, with the
energy smaller then the mass of the radiating particle (in the IR soft case), or then the

2 An often quoted definition of collinear divergence type is that it is inherent to the massless case,
when the singularity of the integrand is encountered not in a single point (that would characterize
soft divergence), but along an entire line. But from the viewpoint of initially massive, physical
case, one yet needs to specify, in which order the massless limit is achieved. The answer is that
ratios of all the masses stay finite and non-zero, while their ratios to the energy tend to zero – in
contrast to the soft case when some mass ratio turns small. Again, that is equivalent to the growth
of the effective phase space, in mass units. As for the method of identifying soft and collinear
divergences by dω

ω and dθ
θ factors, it is not manifestly Lorentz-invariant.

3 The eikonal condition (pk � k2, p2−m2) is exactly the criterion of the line proximity to the mass
shell.
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collision energy (in the IR collinear case). So, it is natural that they obey the same
cancelation principles. For backward scattering of equal-charge particles, or with
perfect charge (color) exchange, IR cancelations must be working at full strength.

The second case, of quadrangular loop, instead, has no soft counterpart. More-
over, virtual corrections of that kind upon resummation should lead to enhancement
rather then suppression of the cross-section, as we shall discuss in detail below.

In higher orders of perturbation theory, in order to obtain the leading logarithmic
contribution, there must be an eikonal condition for each gluon line. Denoting by
qi – d-quark momenta on its course from pd to p′d (see Fig. 2 below),

−(qi−1 −qi)2 ≈ 2qi−1qi � q2
i−1,q

2
i . (7)

Fulfilment of these conditions is possible if the intermediate quark (and gluon) mo-
menta approximately belong to the plane formed by initial and final momenta. For
backward scattering this plane approximately coincides with that of collision, and
it may unequivocally be called longitudinal. It is profitable to define in it light-cone
coordinates, and expand any vector aμ = aμ‖ +aμ⊥, aμ‖ = (a0,a3), aμ⊥ = (a1,a2)

a± =
a0 ±a3
√

2
,

a ·b = a+b− +a−b+ +a⊥ ·b⊥.

Then, Eq. (7) requires4

p+
d � q+

1 � q+
2 . . . � q+

n−1 � p′+d , (8)

p−d � q−1 � q−2 . . . � q−n−1 � p′−d , (9)

q2
i⊥ � q+

i−1q−i , q+
i q−i+1. (10)

In fact, Eq. (10) will be satisfied automatically if

q2
i⊥ < 2q+

i q−i = q2
i‖, q2

i > 0. (11)

Fig. 2 The diagram giving
leading logarithmic contribu-
tion in 2n-th order: a – the
temporal ordering representa-
tion; b – the spatial projection

4 Presuming that there are no fine cancelations between ‖ and ⊥ components in momentum
squares, which would reduce the integration volume.
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This is nothing but the usual multi-peripheral kinematics – the same as for the
reggeization at forward scattering. That is quite natural, since the denominator struc-
ture for those cases is the same (for instance, in a scalar theory, with no propagator
numerators, and all the particles identical, there would be no difference between
forward and backward scattering).

2.2 The Feynman diagram topology

The ordering in rapidity guarantees uniqueness of the Feynman diagram, and the
temporal order of boson emission from one fermion should be reverse to that of their
absorption by the other fermion. Thereby, the concept of near-neighbor interaction
in the phase space finds support.

The amplitude corresponding to the n-rung diagram (see Fig. 2) is

M(n) = i(−4πiαs)nC(n)
∫ d4q1

(2π)4 . . .
d4qn−1

(2π)4
N (n)

D (n) (12)

with
C(n) =

(
tAn . . . tA1

)
l′l

(
tA1 . . .tAn

)
m′m , (13)

N (n) ≈
[
d̄′γ μn 
 qn−1 . . .γ μ2 
 q1γ μ1 d

][
ū′γ μ1 
 q1γ μ2 . . . 
 qn−1γ μn u

]
, (14)

D (n) ≈ (−2pdq1 + i0)(−2q1q2 + i0)(−2qn−1 p′d + i0)q2
1(q1 −Δ)2 . . .q2

n(qn −Δ)2.
(15)

At this stage, certain insight can already be gained from the topology of Feynman
diagrams. Drawing Feynman diagrams in accord with the process spatial projection,
when the initial particle momentum directions are opposite, an arbitrary order dia-
gram is depicted as a ladder, each cell of which is dissectible by two lines in the
t-channel (for backward scattering, |t| � s ≈ |u|). On the other hand, drawing Feyn-
man diagrams according to the event temporal ordering, either the two fermion lines,
or all the boson lines must cross. In any way, the diagram cannot be cut by two lines
in the s-channel (which might be utilized for evaluation by unitarity). This is in
contrast with the IR boson attachment order, where triangle loops (though not nec-
essarily the entire diagram) can always be cut by two lines in the s-channel, and the
concept of correspondence with the emitted real bosons through unitarity is useful.

2.3 Classical interpretation

In classical terms, the mechanism of enhancement may be thought of, roughly, as
follows. In a high-energy collision, charged particles can shed their proper fields
with the impart to them of the bulk of their energy, and slow down. In the slow state,
they are turned around on a larger mutual distance, which results in the increase of
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the scattering differential cross-section. Upon the reflection, the charged particles
can again pick up each the comoving proper field from the other particle, and thus
restore the high relative energy up to the initial value.

3 Numerators

Let us, in the first place, analyze matrix numerators, determining all the speciality
of quark–quark scattering.

3.1 Spin factors

As long as fermion masses are neglected, their helicity must be conserved. But, in
addition, we shall acquire strict correlation of helicities of colliding particles.

In addition to the light-cone decomposition, it is convenient to introduce chiral
vector basis in the transverse plane:

aR = −a1 + ia2
√

2
, aL =

a1 − ia2
√

2
, a⊥ ·b⊥ = aRbL +aLbR. (16)

Using in capacity of basic γ-matrices

γ± =
γ 0 ± γ 3
√

2
, γ R = −γ

1 + iγ 2
√

2
, γ L =

γ 1 − iγ 2
√

2
(17)

makes the covariant anticommutation relation {γ μ ,γ ν} = 2gμν look like
{
γ+,γ−

}
= 2,

{
γ R,γ L}= 2, (18)

with all other anticommutators zero:
(
γ+)2 =

(
γ−

)2 =
(
γ R)2 =

(
γ L)2 = 0, (19)

{
γ±,γ R,L}= 0. (20)

Important for the future practice are cubic relations

γ Rγ Lγ R = 2γ R, γ Lγ Rγ L = 2γ L, (21)

and Dirac conjugation properties

¯γ± = γ±, γ̄ R = −γ L, γ̄ L = −γ R. (22)
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For in- and out-quark bispinors, which satisfy (massless) Dirac equations

γ−d = 0, ū′γ− = 0, d̄′γ+ = 0, γ+u = 0, (23)

further, define polarization states as those of definite helicity (left and right):

γLdR =
√

2dL, γRdL =
√

2dR, (24)

ū′RγR = −γLu′R = −
√

2ū′L, ū′LγL = −
√

2ū′R, (25)

γRuR = −
√

2uL, γLuL = −
√

2uR, (26)

ū′RγL =
√

2d̄′
L, d̄′

LγR =
√

2d̄′
R, (27)

and the normalization should be

d̄′
LdR = d̄′

RdL = ū′LuR = ū′RuL =
√

s. (28)

The important consequence of Eqs. (25–28) and (19) is

γRdR = 0, γLdL = 0. (29)

ū′RγL = 0, ū′γR = 0. (30)

(The factor
√

2 in (25–28) comes from the relation
{
γR,γL

}
= 2, and the sign at it

is the matter of bispinor normalization convention.)
We shall nowhere need the use of matrix γ5, for which the chirality bispinors

are eigenvectors. Thanks that all the momenta are contained in one hyper-plane,
one can manage with matrices γR, γL alone, playing the role of (nilpotent) angular
momentum raising and lowering operators.

Now, the smallest block in the matrix element

γμdRū′Rγμ = −2dLū′L, (31)
γμdRū′Lγμ = 0. (32)

Eq. (31) implies that fermion angular momentum projection onto the collision axis
must flip after the vector boson exchange, and the spins of the opposing fermions
must exactly correlate. Physically, that is natural, since a vector boson emitted by
a Mz = + 1

2 fermion has Mz = +1, so after the vector boson emission the fermion
acquires Mz =− 1

2 , and the opposite fermion must initially have Mz =− 1
2 to be able

to absorb the Mz = +1 boson.
Hence,

N
(1)

RR,RR = N
(1)

LL,LL = −2s, (33)

whereas all the other helicity amplitudes equal zero.
The next larger block

γν 
 q1γμdRū′Rγμ 
 q1γν = −2γν 
 q1dLū′L 
 q1γν = 4 
 q1dRū′R 
 q1. (34)
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The non-zero part of r. h. s. of (34)


 q1dRū′R 
 q1 =
(
q−1 γ

+ +qR
1 γL)dRū′R

(
q−1 γ

+ +qL
1γR) . (35)

Now, matrix-vectors 
 qi sandwiching this expression have components q+
i at γ−,

which are negligible as compared to then qi⊥. Then, it is possible to (anti-)commute
the matrices γ+ in (36) outwards to a position next to on-mass-shell bispinors d̄′

and u, action on which, by virtue of (23), gives zero. So, block (34) equals


 q1dRū′R 
 q1 = qR
1 qL

1γLdRū′RγR = q2
⊥dLū′L, (36)

which is proportional to (31).
Ultimately, it is understood that in the arbitrary order

N
(n)

RR,RR = N
(n)

LL,LL = (−2)nsq2
1⊥ . . .q2

n−1⊥. (37)

Note that the 2q2
⊥ factors emerge here without the appeal to the azimuthal av-

eraging, or reasoning that q‖ components cancel the logarithmic singularities in
the integral (cf. [3]). As is known, vector interaction at hard momentum transfers
(compared to the mass) is predominantly magnetic – similarly to the conventional
separation of electric and magnetic form-factors:

Jμf i = ū f

[
Fe
(
Q2)γμ‖ +Fm

(
Q2)γμ⊥

]
ui. (38)

Since in our case polarizations of all the virtual particles are completely fixed by
that of initial ones, the problem is equivalent to some scalar field theory. The vector
character of the bosons does not entail any momentum-dependent numerators, and
merely secures helicity conservation.

3.2 Color matrix factor

As had been discussed in [3], [5, 6], in the perfect charge (color) exchange situa-
tion the infra-red vector boson exchange contributions mutually cancel. Here, let us
neglect them altogether, and consider only the hard ladder.

Embarking on the Fierz-type identity for color generators

tA
l′lt

A
m′m =

1
2
δl′mδm′l −

1
2Nc

δl′lδm′m, (39)

by induction one proves5

5 Here, CF and − 1
2Nc

are just the values of Kirschner’s matrix τ2 (defined in a basis of convenience
for him [5]), and δm′lδl′m together with tA

m′lt
A
l′m − 1

2Nc
δm′lδl′m are its eigenvectors.
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C(n) =
(
tAn . . . tA1

)
l′l

(
tA1 . . . tAn

)
m′m

= Cn
F

1
Nc
δm′lδl′m +2

(
− 1

2Nc

)n [
tA
m′lt

A
l′m − 1

2Nc
δm′lδl′m

]
, (40)

with CF given by Eq. (3). Obviously, CF > − 1
2Nc

, both by sign, and in magnitude.
At n ≥ 2, i.e., in any loop, it suffices to keep only the first term in the r.h.s. of (40).
As the Kronecker symbols indicate, the leading term requires exchange of color.6

The underlying reason for the law that the color exchange is assured at the given
ordering of gluon emission and re-absorption, and when Nc →∞, is also transparent.
For each quark, the first ladder gluon emitted by it carries away its color, and in
addition has arbitrary (except at the tree level) anticolor. The final quark moving in
the same direction will absorb this gluon last of all, and must annihilate its anticolor
whatever it is (by color conservation), and accept its color. Thereby, the color of the
final quark will coincide with that of the comoving initial one.

Summarizing this section, re-absorption of gauge bosons in the inverse order
stipulates transfer of all the quantum numbers between the scattered quarks. The
large-Nc limit here is sufficiently robust, and within it the picture is equivalent to
that of QED, the coupling constant correspondence being αQED → αsCF .

4 Loop integrals in DLLA

Using the numerator kinematical factors, we are in a position to treat the loop inte-
grals.

4.1 One-loop integral reduction. Wave-function interpretation

By far the simplest approach for of high-energy asymptotics derivation and under-
standing is infinite momentum frame quantum field theory. One might anticipate
its applicability for the backward scattering, as well, inasmuch as the denominator
structure in Feynman integrals is the same as for forward scattering. But, because of
the occurrence of factors q2

⊥ in the numerator (see section 3.1), application of LCPT
is obstructed by the divergence of the eikonal integral, over d2q⊥. To keep the treat-
ment consistent, one may, first, straightforwardly carry out the q− integration in
Feynman integrals. In one loop,

M(2)/C(2) ≈ −2is(4πα)2
∫ d4q

(2π)4
2q2

⊥
(2p′dq− i0)(2pdq− i0)q2(q−Δ)2

≈ (4πα)2
∫ dq−

2πi(q−− i0)
dq+

2πq+
d2q⊥
(2π)2

2q2
⊥

q2
⊥(Δ⊥−q⊥)2 .

6 The second term of (40), in fact, is not yet related to a self-consistent scattering amplitude since
it is devoid of infra-red DL corrections.
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Upon the integration (in the exact expression) over q−, reducing, essentially, to tak-
ing residue in a single pole q− ≈ 0, we derive a restriction on q+: p−d ≤ q+ ≤ p+

d .
Then, one can pass to the eikonal approximation. At that, the condition

−(p′d −q)2 ≈ 2p′dq ≈ 2p′−d q+ � q2, q2
⊥

yields ordering of q2
⊥ and q+, which secures convergence of the integral over q2

⊥ at
large q2

⊥. Within the (double-) logarithmic accuracy,

M(2)/C(2) ≈ (4πα)2

(2π)2

∫ p+
d

p′+d

dq+

q+

∫ p′−d q+

1

dq2
⊥

q2
⊥

(41)

=
(4πα)2

8π2 ln2 s =
α
4π

ln2 s ·M(1)/C(1).

In the final representation (41) valuable is the separation of hard and soft physics,
which does not in fact depend on our choice of prior integration over q−, or q+. The
longitudinal hard gluons pertain to hard physics, whereas the braking fermions – to
the soft. Soft physics is most conveniently interpreted in terms of wave functions and
their overlaps. If one invokes the analogy with the non-relativistic (or old-fashioned)
perturbation theory, Eq. (41) may be compared with the expression for the second-
order transition matrix element

〈2|V |1〉 =∑
n

〈2|V |n〉〈n|V |1〉
E0 −En

. (42)

The role of the perturbation operator V in our case is played by the coupling con-
stant 4πα . The energy denominator finds an analog in the factor 1

q+ , which, how-
ever, is positive, not negative, i.e., the intermediate states reside under the mass-
shell. As for the intermediate state wave functions |n〉, their counterparts are the
factors

√
2

q1±iq2 . Finally, the phase space volume element is dq+d2q⊥
(2π)3 . It should be

noted that the phase space available for q2
⊥ is restricted by the value of the “en-

ergy” q+. That reflects the circumstance that soft and hard physics are not separated
absolutely, but only within the logarithmic accuracy. A similar situation (not en-
countered at forward scattering) is often met at description of exclusive hadronic
processes with a large momentum transfer (see, e.g., [9]).

In conclusion, let us remark that in [3] the extraction of DLLA contributions
is conducted by prior integration over d2q⊥, in analogy with the Sudakov’s vertex
asymptotic treatment [10]. That renders the framework more symmetric appearance,
but the wave-function interpretation gets obscured.

4.2 All-order treatment

Integrals for higher orders of perturbation theory may also be calculated via first
q−-integration, but it requires more detailed considerations (cf. [8]). Instead of the
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variables q−i , q2
i⊥, in the present case it is convenient to introduce

q−i , κi =
q2

i⊥
2q−i

, (43)

and only then carry out the q−i integration. Then, a strong ordering condition ensues

κi � κi+1 (44)

(corresponding to the multiperipheral condition q−i � q−i+1 for q−i , which have been
integrated over), and

κi < q+
i (45)

(corresponding to the eikonal condition q2
i⊥ < 2q+

i q−i ). The integral of the 2n-th
order of perturbation theory, in DLLA assumes the form

M(n)/C(n) =
(

M(1)/C(1)
)( α

2π

)n−1 ∫ p+
d

p′+d

dq+
1

q+
1

∫ q+
1

p′+d

dκ1

κ1
...

...
∫ q+

n−3

p′+d

dq+
n−2

q+
n−2

∫ min(q+
n−2,κn−3)

p′+d

dκn−2

κn−2

∫ q+
n−2

p′+d

dq+
n−1

q+
n−1

∫ min(q+
n−1,κn−2)

p′+d

dκn−1

κn−1
. (46)

For evaluation of this integral, it is convenient to recast the i-th pair of integrations

∫ q+
i+1

p′+d

dq+
i

q+
i

∫ min(q+
i ,κi+1)

p′+d

dκi

κi
... =

∫ q+
i+1

p′+d

dq+
i

q+
i

∫ κi+1

p′+d

dκi

κi
...−

∫ κi+1

p′+d

dq+
i

q+
i

∫ κi+1

q+
i

dκi

κi
...

≡
∫ q+

i+1

p′+d

dq+
i

q+
i

∫ κi+1

p′+d

dκi

κi
...−

∫ κi+1

p′+d

dκi

κi

∫ κi

p′+d

dq+
i

q+
i

...

(47)

(the integral over a trapezium represented as an integral over the rectangle minus
the integral over the triangle). But, as is easy to demonstrate by changing the order
of variables,

∫ κi+1

p′+d

dκi

κi

∫ κi

p′+d

dq+
i

q+
i

{∫ q+
i

p′+d

dq+
i−1

q+
i−1

∫ κi

p′+d

dκi

κi−1
−
∫ κi

p′+d

dκi−1

κi−1

∫ κi−1

p′+d

dq+
i−1

q+
i−1

}

... ≡ 0,

(48)
so, we can drop the terms −

∫ κi+1
p′+d

dκi
κi

∫ κi
p′+d

dq+
i

q+
i

at all the dq+
i dκi integrations but the

(n−1)-th.7 The (n−1)-th double integration gives

∫ q+
n−2

p′+d

dq+
n−1

q+
n−1

∫ κn−2

p′+d

dκn−1

κn−1
−
∫ κn−2

p′+d

dκn−1

κn−1

∫ κn−1

p′+d

dq+
n−1

q+
n−1

=

7 This means that inequalities (45) are inconsequential, except for the first and the last one.
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= ln
q+

n−2

p′+d
ln
κn−2

p′+d
− 1

2
ln2 κn−2

p′+d
. (49)

Passing to the self-suggestive variables

ηi = ln
q+

i
p′d

, ξi = ln
κi

p′d
, (50)

the DLLA amplitude of 2n-th order is calculated quite trivially:

M(n)/C(n) =
(

M(1)/C(1)
)( α

2π

)n−1

×
∫ lns

0
dη1...

∫ ηn−3

0
dηn−2

∫ lns

0
dξ1...

∫ ξn−3

0
dξn−2

{
ηn−2ξn−2 −

1
2
ξ 2

n−2

}

=
(

M(1)/C(1)
)( α

2π
ln2 s

)n−1
{

1
[(n−1)!]2

− 1
(n−2)!n!

}

=
(

M(1)/C(1)
)( α

2π
ln2 s

)n−1 1
(n−1)!n!

. (51)

Invoking the series expansion for the modified Bessel function of first order,

I1(z) =
∞

∑
n=1

( z
2

)2n−1

(n−1)!n!
, (52)

we arrive at the result of [3], which we have thus re-derived by straightforward
resummation, without the recourse to the formalism of integral equations.

Post factum, it is important to check the self-consistency of the adopted multi-

peripheral approximation (8–10). When z =
√

2αCF
π lns � 1, the largest terms in

sum (52) have numbers
n̄ ∼ z

2
. (53)

Equally, and independently of the overall energy, one can say that each gluon
typically shifts the quark rapidity by

Δy =
Y = lns

n̄
∼
√

2π
αCF

 5÷7. (54)

This implies that for the given problem the multi-peripheral approximation is very
safe.

The transverse motion of quarks in the ladder rails is usually regarded as ran-
dom walk. At that, the rung gluons propagate nearly forward (since, in the eikonal
approximation, their propagators do not depend on transverse momenta), and so, im-
pact parameters of the final u-quark must coincide with that of the initial d-quark,
and impact parameter of the final d-quark – with that of the initial u-quark. Thereby,
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the walk is not completely random. Yet, the walk step is small as compared to typical
hadronic radius (recall that large q2

⊥ dominate), so the initial quark impact parame-
ters must be close to one another, anyway.

5 Discussion and summary

The mechanistic picture of reggeization is observed to fall into certain contrast with
the analyticity and duality expectations. In particular, transversal hardness excludes
exact analogy with meson exchange in the t-channel, and yet suggests that the quark-
exchange reggeization phenomenon, and the relevant intercept, may be universal,
or there can be a few universal reggeons (much less numerous then the host of
mesons). The similarity of the Regge ladder diagram with that of the Bethe-Salpeter
equation must not be deluding, given the dominance in the present case of large q⊥
(let alone the excessive hardness of the ladder u-channel gluons). In their own turn,
mesons, being strongly bound relativistic states, for which the interaction radius is
not small compared to the average inter-constituent distance must not necessarily
obey a Bethe–Salpeter-like equation at all.

In what concerns the hadron wave function overlap representation, the hardness
of the Regge ladder implies that one can rather safely exploit the notion of coinci-
dence of colliding quark impact parameters – unless the energy becomes super-high,
giving the short-step transverse random walk eventually a spread comparable to the
hadron size. Another feature important at hadron wave function overlap computa-
tions is that the reggeized kernel (1) is not scale-invariant, and does not factorize in
terms of Feynman-x of the active quarks:

Mqq′→q′q
(
sqq′ = shhxqxq′

)

= f1 (shh) f2 (xq) f3

(
xq′
)
, (55)

and it is only in far asymptotics (2), where some noninteger-power scaling law and
factorization set in. Finally, note that amplitude (1) is neither even, nor odd function
of s, in contrast to the kernel in Born approximation. The latter property matters at
calculations of meson flavor exchange amplitudes.
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