
Chapter 8
Spectral Element Methods

The main feature of nodal polynomial spectral methods that give them their power,
namely the global polynomial approximation with grid points at the nodes of a
Gauss quadrature rule, also limits them to a fairly small class of problems. The
global nature of the approximation makes it difficult for us to apply the methods to
complex geometries or to problems with discontinuities. The fixed node placement
makes it difficult to refine the grid locally as may be needed. The cost to compute
the derivatives gets large in large problems that need high order polynomials to re-
solve all the features in a problem. An example of that is the benchmark problem of
Sect. 7.4.3. Coupled with the small time steps to which explicit methods are limited
or the large condition numbers that adversely affect the solution of the linear sys-
tems that arise from implicit methods, the spectral methods that we have presented
so far can become expensive, although very accurate.

To compute problems in geometries that are more complex than those we have
presented so far, we introduce multidomain methods. In multidomain spectral meth-
ods, we divide the domain of interest into smaller subdomains that we can map in-
dividually onto the square. We can then apply a spectral method like one of those
discussed in Chap. 7 to each of the subdomains. Multidomain spectral methods have
become so useful and so common that the methods that we have derived so far in
this book are now often called “single domain” or “mono-domain” methods.

We can extend any of the nodal spectral methods that we have presented so far to
a multidomain version. We only need to develop methods to couple the subdomains
together. However, in this book we will only discuss a subclass of multidomain
methods that starts from the weak form of the equations, that is, the nodal Galerkin
methods. The Galerkin based nodal methods have natural coupling that follows from
the weak form. We call this subclass “Spectral Element Methods” because of its
similarity to finite element methods. We note, however, that some authors refer to
spectral multidomain methods in general as spectral element methods. For a taxon-
omy of multidomain methods and presentations of other methods that use the strong
form of the equations, see the book by Canuto et al. [8].

Multidomain methods, and spectral element methods in particular, have many
advantages over their single domain counterparts. Let us quickly review situations
where we should or must use a multidomain method. They include:

• Problems in complex geometries. We can use multiple domain decompositions
to solve problems in domains that are difficult to map or cannot be mapped onto
a single square. Figure 8.1 shows a decomposition of such a domain into four
elements. A more convincing geometry might be what we’d need to compute
flow over a three element airfoil like that shown in Fig. 8.2.

D.A. Kopriva, Implementing Spectral Methods for Partial Differential Equations,
Scientific Computation,
© Springer Science + Business Media B.V. 2009

293

294 8 Spectral Element Methods

Fig. 8.1 A decomposition of
an interior domain by four
subdomains

Fig. 8.2 A portion of a
decomposition of the exterior
of a three element airfoil into
multiple subdomains

Fig. 8.3 Single (a) and multidomain (b) decompositions of a disk

• Problems with coordinate singularities. Even if the domain is simple, the coordi-
nate mapping onto the square may have singularities. We can use a single domain
to approximate an equation on the disk using a cylindrical coordinate system, as
seen in Fig. 8.3a. We can eliminate the singularity at the origin by subdividing
the disk as in Fig. 8.3b. We can use subdivision to eliminate pole singularities on
the sphere as well, as in Fig. 8.4.

• Problems with discontinuous coefficients or solutions. Since the convergence rate
of spectral methods depends on the smoothness of the solutions, we would not
expect accurate solutions when the coefficients in an equation or the solutions are
discontinuous. A simple problem on which we should not use a single domain

8 Spectral Element Methods 295

Fig. 8.4 A multidomain
decomposition of the surface
of a sphere

Fig. 8.5 A double glazed
window model as an example
of a problem with
discontinuous media

spectral method is to compute the heat flux through a double glazed window as
we sketch in Fig. 8.5. The temperature satisfies the equation

∂

∂x

(
κ

∂T

∂x

)
= 0. (8.1)

The steady temperature, also shown in the figure, is continuous even though the
diffusion coefficient, κ , is discontinuous at the material boundaries. If we use a
single domain spectral method to solve the problem, the convergence rate of tem-
perature will be slow. On the other hand, if we break the domain into subintervals
whose boundaries are at the material interfaces, we could represent the solution
exactly by piecewise linear polynomials.

Other problems where the presence of material boundaries would lead us to
spectral element methods include electromagnetic wave propagation through dif-
ferent media, electromagnetic scattering off optically coated surfaces, or ultra-
sound detection of tumors where waves must propagate through muscle, fat and
bone.

• Solution and efficiency driven considerations. Finally, even if neither the geome-
try nor the solution dictate that we should use multiple domains, efficiency con-

296 8 Spectral Element Methods

siderations may instead. To find a technical discussion of the issues we suggest
the book by Canuto et al. [8]. We will only give a rough idea here how work and
accuracy are related.

The work required to compute spectral solutions depends strongly on the poly-
nomial order. If fast transforms are not available, the cost to compute the deriv-
atives increases as N2. If we use an explicit time integration method, the time
step is limited by the size of the eigenvalues of the problem. The fact that the
eigenvalues grow as N2 for first order and N4 for second order derivatives means
that the number of time steps, which is inversely proportional to Δt , grows at
these rates. Overall, the work to compute a time dependent solution with explicit
time integration goes as

W ∼
{

N4 Advection dominated,

N6 Diffusion dominated.
(8.2)

On the other hand, if we subdivide into K subdomains, with only N/K order
polynomials in each, then the work grows more slowly as

W ∼
{

K(N
K

)4 Advection dominated,

K(N
K

)6 Diffusion dominated.
(8.3)

For instance for a diffusion dominated problem, splitting a domain into only two
subdomains reduces the work by a significant factor of 2/26 = 1/32.

We need to balance the savings in work with the fact that the error will likely
grow if the total number of points is fixed and the number of subdomains is
increased. Roughly speaking, the error will vary with N and K as

E ∼ e−αN

KN+1
. (8.4)

So for smooth solutions where the error decays exponentially with polynomial
order, the convergence rate is faster if we increase the polynomial order instead
of the number of subdomains. We therefore need to balance accuracy and work
to decide on the optimal strategy.

The solution itself may also direct us to use multidomain methods. When the
solutions have sharp fonts, boundary layers, or other regions where local refine-
ment is needed, along with other regions where the solution has little variation,
we can localize the effort needed to compute the solution. We can use large re-
gions with low order polynomials where the solution varies little, and place small
subdomains with high order where the solution varies significantly.

8.1 Spectral Element Methods in One Space Dimension

To introduce the additional complexity of a multidomain method, we begin with a
presentation of the spectral element method in one space dimension. In one dimen-
sion, we subdivide the interval into multiple non-overlapping subintervals (Fig. 8.6).

8 Spectral Element Methods 297

Fig. 8.6 Subdivision of the interval [0,L] = [x0, xK] into K elements. The nodal Galerkin ap-
proximation is continuous and solutions are defined on Gauss-Lobatto points

Each interval will become an element. We couple an element to its neighbors at a
single point, which we will call the element interface, or end point, in one space di-
mension. We will derive and implement two spectral element approximations. The
first uses the continuous Galerkin approximation. The second uses the discontinuous
version.

8.1.1 The Continuous Galerkin Spectral Element Method

As our first illustration of a spectral element method, we re-visit the approximation
of the diffusion problem

ϕt = ϕxx + f (x), 0 < x < L,

ϕ(0, t) = ϕ(L, t) = 0, t > 0,

ϕ(x,0) = ϕ0(x), 0 ≤ x ≤ L,

(8.5)

that we solved with a single domain method on [−1,1] in Sect. 4.6.
As we did with the single domain approximation, we derive the continuous

Galerkin spectral element method from a weak form of the equation. To get the
weak form, we multiply the equation by a sufficiently smooth test function, φ,
that satisfies the boundary conditions φ(0, t) = φ(L, t) = 0, is continuous, and
has square integrable first and second derivatives. We then integrate over [0,L] to
get

∫ L

0
ϕtφdx =

∫ L

0
ϕxxφdx +

∫ L

0
f φdx. (8.6)

When we integrate the first integral on the right of (8.6) by parts and apply the
boundary conditions,

∫ L

0
ϕtφdx = −

∫ L

0
ϕxφxdx +

∫ L

0
f φdx. (8.7)

298 8 Spectral Element Methods

At this point, we would approximate the solution by a polynomial and replace the
integrals by quadrature to derive a single domain spectral method, as we did in
Sect. 4.6.

To derive the spectral element approximation, we subdivide the interval [0,L]
into K subintervals Ωk = [xk−1, xk] (Fig. 8.6). These subintervals will be our spec-
tral elements, ek . We do not need to place any restrictions on the relative sizes of the
elements.

Once we have subdivided the interval, we can break the integrals into sums of
integrals over the elements

K∑
k=1

∫ xk

xk−1

ϕtφdx = −
K∑

k=1

∫ xk

xk−1

ϕxφxdx +
K∑

k=1

∫ xk

xk−1

f φdx, (8.8)

so that on each element the solution satisfies
∫ xk

xk−1

ϕtφdx = −
∫ xk

xk−1

ϕxφxdx +
∫ xk

xk−1

f φdx. (8.9)

To use a Legendre polynomial approximation on each element, we map each
element onto the reference interval ξ ∈ [−1,1], which will serve as our reference
element, by the affine mapping

x = Xk(ξ) = xk−1 + ξ + 1

2
Δxk, (8.10)

where Δxk = xk − xk−1. Then

dx = Δxk

2
dξ,

∂

∂x
= 2

Δxk

∂

∂ξ
(8.11)

so that on the reference element the weak form of the PDE becomes

Δxk

2

∫ 1

−1
ϕtφdξ = − 2

Δxk

∫ 1

−1
ϕξφξdξ + Δxk

2

∫ 1

−1
f φdξ. (8.12)

To derive the continuous Galerkin spectral element method we approximate the
solution by a piecewise continuous polynomial (Fig. 8.6). On each element, ek , we
write the polynomial in Lagrange form with nodes at the Legendre Gauss-Lobatto
points,

Φk(ξ, t) =
N∑

j=0

Φk
j (t)�j (ξ). (8.13)

To keep the notation as simple as possible, we will keep the polynomial order N

to be the same across all elements, but this is not necessary in practice. With N

constant, the Lagrange interpolating polynomials are the same in each element. For

8 Spectral Element Methods 299

the approximation to be continuous and the first derivatives to be square integrable,
we require that

Φk
0 = Φk−1

N . (8.14)

Similarly, we require that

φk (ξ) =
N∑

j=0

φk
j �j (ξ), φk

0 = φk−1
N . (8.15)

Other than the continuity constraint, the values of φk
j are arbitrary since the weak

form holds for any sufficiently smooth function φ.
We now replace each integral in (8.12) by Legendre Gauss-Lobatto quadrature.

On the left,

Δxk

2

∫ 1

−1
ϕtφdξ ≈ Δxk

2

N∑
j=0

wjΦ̇
k
j φk

j . (8.16)

Since we are assuming that the same polynomial order is used in each element, the
quadrature weights do not change with k. We approximate the last integral on the
right of (8.12) in a similar manner. Finally, we follow the derivation of (4.117) to
write the diffusion term in the compact form

2

Δxk

∫ 1

−1
ϕξφxdξ ≈ 2

Δxk

N∑
j=0

{
N∑

m=0

Φk
mGjm

}
φk

j , (8.17)

where

Gjm = Gmj =
N∑

l=0

wl�
′
m (ξl) �′

j (ξl) (8.18)

is a symmetric matrix. When we gather the terms, we see that the solution satisfies
the single domain approximation (4.118) element by element

N∑
j=0

{
wj

Δxk

2
Φ̇k

j + 2

Δxk

N∑
m=0

Φk
mGjm − wj

Δxk

2
Fk

j

}
φk

j = 0. (8.19)

By (8.8), we get the complete spectral element approximation when we sum over
all of the elements

K∑
k=1

N∑
j=0

{
wj

Δxk

2
Φ̇k

j + 2

Δxk

N∑
m=0

Φk
mGjm − wj

Δxk

2
Fk

j

}
φk

j = 0. (8.20)

We use (8.20) to derive the equations that the approximate values of the solution
satisfy. Since the values of φk

j are independent except at the element boundaries, the

300 8 Spectral Element Methods

equations for interior node solution values depend only on others within their own
element. If we take the test function φk

j to equal one at the single interior node ξj in
element k and zero at all the others, we find that the interior node solutions satisfy

wj

Δxk

2
Φ̇k

j = − 2

Δxk

N∑
m=0

Φk
mGjm + wj

Δxk

2
Fk

j ,

j = 1,2, . . . ,N − 1; k = 1,2, . . . ,K. (8.21)

Elements couple because the solution and the test functions are continuous at the
points shared by two elements. When we choose φk

j to equal one at the point shared
by the kth and k − 1st elements and zero elsewhere, then

wN

Δxk−1

2
Φ̇k−1

N + w0
Δxk

2
Φ̇k

0 = − 2

Δxk−1

N∑
m=0

Φk−1
m GNm + wN

Δxk−1

2
Fk−1

N

− 2

Δxk

N∑
m=0

Φk
mG0m + w0

Δxk

2
Fk

0 . (8.22)

When we impose the continuity constraint (8.14), Φk
0 = Φk−1

N ≡ Φk∗ , we get the
element boundary equations

[
wN

Δxk−1

2
+ w0

Δxk

2

]
Φ̇k∗ = − 2

Δxk−1

N∑
m=0

Φk−1
m GNm + wN

Δxk−1

2
Fk−1

N

− 2

Δxk

N∑
m=0

Φk
mG0m + w0

Δxk

2
Fk

0 (8.23)

for k = 2,3, . . . ,K − 1. Finally, we add the two boundary conditions Φ1
0 = ΦK

N = 0
to complete the system of equations that we integrate in time.

When we compare (8.21) to the single domain approximation (4.122), we see that
we have the same equations to compute the interior and boundary points, except that
now we have not yet divided by the quadrature weights and the element length can
vary. The spectral element approximation differs only because we add the interior
element boundary equations (8.23) that couple the elements. Notice that (8.22) is
simply the sum of two equations (8.21), one from each element that shares the point.
We will use this observation when we implement the approximations.

To integrate (8.21) and (8.23) in time, let us now use the second order implicit
trapezoidal rule. Let’s define

(
GΦk

)
j

≡
N∑

m=0

Φk
mGjm, (8.24)

Dk
j ≡ − 2

Δxk

(
GΦk

)
j
, (8.25)

8 Spectral Element Methods 301

and let Φ
k,n
j denote the solution at point j in element k at time tn. Then at interior

points the solutions satisfy

wj

Δxk

2
Φ

k,n+1
j − Δt

2
D

k,n+1
j = wj

Δxk

2
Φ

k,n
j + Δt

2
D

k,n
j + Δtwj

Δxk

2
Fk

j

≡ RHSk
j . (8.26)

To get the equations for the element interface points, we sum the contributions from
neighboring elements, as we are instructed to do by (8.22) and (8.23).

We need to compute the residual to use Algorithm 80 (PreconditionedConjugate-
GradientSolve) to solve the system of equations at each time step. Let us define the
local element residual at each node, including the endpoints, by

r̃k
j = RHSk

j − wj

Δxk

2
Φk

j + Δt

2
Dk

j , j = 0,1, . . . ,N; k = 1,2, . . . ,K. (8.27)

Since the global residuals at the interior element boundaries are just the sum of the
local residuals at those points, we can compute the global residuals after we compute
all the local residuals by

rk
j =

⎧⎪⎨
⎪⎩

r̃k
j , j = 1,2, . . . ,N; k = 1,2, . . . ,K,

r̃k
N + r̃k+1

0 , j = 0,N; k = 1,2, . . . ,K,

0, k = 0, j = 0; k = K,j = N.

(8.28)

The boundary values on the last line are, of course, for Dirichlet boundary condi-
tions. Algorithm 80 needs to be modified slightly because the limits on k start from
one rather than zero, however we could accommodate this by a change of index in
the data.

8.1.2 How to Implement the Continuous Galerkin Spectral
Element Method

The first decision that we must make to evolve the nodal Galerkin approximation
from a single domain to the spectral element approximation is to choose the data
structures. We can choose between two extremes. One is to store all data locally.
In this scheme, the solution, element size, Δx, etc. are stored by element within a
structure or class. The other structure is “flat”, where data is stored globally. The
advantage of the local scheme is that the operations on the data look like the sin-
gle domain approximations that we have developed in earlier chapters. The global
scheme is useful if we want to use BLAS routines effectively. With the global im-
plementation, we can use the Conjugate Gradient solver, Algorithm 80 (Precondi-
tionedConjugateGradientSolve), at each time step to solve the symmetric system of
equations that (8.26) and the boundary equations generate.

302 8 Spectral Element Methods

8.1.2.1 The Spectral Element Class

We will take a global view of the data with some organization to simplify local com-
putations. In Sect. 8.1.4, where we will use explicit integration in time, we will show
how to use local data structures. Much of the effort here about organization of the
data in one space dimension is overkill, but it will prepare us for multidimensional
problems where the effort is justified.

To use the iterative solver efficiently, we will store the solution of the diffusion
problem in an array. Since we have assumed the same polynomial degree in each
element and since Algorithm 80 has already been designed for two dimensional ar-
rays, we will store the solution for each point on each element in a two dimensional
array, {Φj,k}N;K

j=0;k=1. This array will be a member of a spectral element class, along
with the data that defines the mesh, as we show in Algorithm 116 (SEM1DClass).

The array storage duplicates the solution at the interior element boundaries. It
does, however, enable us to perform operations such as (8.24) locally on an element

Algorithm 116: SEM1DClass: Data Storage for the One-Dimensional Spectral
Element Method

Class SEM1D
Data:

N,K

{ξj }Nj=0; // Node locations

{wj }Nj=0; // Legendre Gauss-Lobatto quadrature weights

{xk}Kk=1 ; // Element boundary locations

{Δxk}Kk=1 ; // Element sizes

{Gij }Ni,j=0 ; // Derivative Matrix

{pk}Kk=1 ; // Shared node pointers

{Φj,k}N;K
j=0;k=1 ; // Solution

{RHSj,k}N;K
j=0;k=1 ; // For implicit integration

Procedures:
Construct(N,K, {xk}Kk=1)

Mask({aj,k}N,K
j=0;k=1) ; // Algorithm 117

UnMask({aj,k}N,K
j=0;k=1) ; // Algorithm 117

GlobalSum({aj,k}N,K
j=0;k=1) ; // Algorithm 117

LaplaceOperator; // Algorithm 118
MatrixAction(s,Δt) ; // Algorithm 118

End Class SEM1D

Structure sharedNodePtrs
eLeft ; // index or pointer of element to the left
eRight ; // index or pointer of element to the right
nodeLeft ; // index of node to the left
nodeRight ; // index of node to the right

End Structure sharedNodePtrs

8 Spectral Element Methods 303

as if we were still doing a single domain computation. The fact that the element
boundary equations are sums of the local element contributions from each side al-
lows us to go back and “clean up” globally afterwards. We will store RHSk

j and the

residual rk
j in the same kind of array as the solution.

We need a data structure to connect the elements. We assumed the simplest re-
lationship between elements in Fig. 8.6, where elements are ordered from left to
right. With that ordering we could assume that the continuity of the shared point
is given by (8.14). In two dimensional problems we cannot assume such a simple
ordering of elements. (See Fig. E.2 in Appendix E for a look ahead.) To allow for
more general relationships, we create a structure that stores the values of k and j for
the elements on the left and on the right that contribute to the solution at an interface
(Algorithm 116, sharedNodePtrs).

We will store the sharedNodePtrs structures in an array, {pk}K−1
k=1 , to mark the

element interface points. When we need to do operations at interface points, we can
access these points indirectly through the elements of this array. For the mesh that
we show in Fig. 8.6, where elements are ordered left to right,

pk.eleft = k,

pk.eRight = k + 1,

pk.nodeLeft = N,

pk.nodeRight = 0.

(8.29)

With flat storage, we store all the data for the spectral element approximation,
including the solutions, element relationships, element sizes, etc., in a single class
or structure as we show in Algorithm 116 (SEM1DClass). We will not present a de-
tailed algorithm for the constructor of this class since it looks much like constructors
that we have presented earlier.

8.1.2.2 Global Operations

Before we can solve the system with the Conjugate Gradient solver, we must ac-
count for the fact that we have duplicated the solution and residuals at the element
boundaries to perform the local computations as if on a single domain. One way to
delete the duplicates is to copy the arrays to a new array that does not include them.
We will use a mask instead. After we compute the residuals, we will simply set one
of the duplicate solutions and the corresponding residuals to zero so that they have
no contribution to the inner products or direction vectors in the Conjugate Gradient
solver. Then to perform the local computations, we remove the mask by setting the
solution value that has been zeroed to its duplicate. The number of masked points,
K − 1, is very small compared to the total number of degrees of freedom, K × N ,
so the extra work to mask, unmask and evaluate masked quantities in the Conju-
gate Gradient algorithm is negligible. What we gain in return is an algorithm that is
straightforward to implement.

We perform the global operations with the utility procedures Mask, UnMask and
GlobalSum. It doesn’t matter which duplicate we mask, so we will arbitrarily choose

304 8 Spectral Element Methods

Algorithm 117: SEMGlobalProcedures1D: Global Operations for the One-
Dimensional Spectral Element Method

Uses Algorithms:
Algorithm 116 (SEM1DClass)

Procedure Mask
Input:

{
aj,k

}N;K
j=0;k=1

for k = 1 to K − 1 do
jR ← this.pk.nodeRight; eR ← this.pk.eRight
ajR,eR ← 0

end

return
{
aj,k

}N;K
j=0;k=1

End Procedure Mask

Procedure UnMask

Input:
{
aj,k

}N;K
j=0;k=1

for k = 1 to K − 1 do
jR ← this.pk.nodeRight; eR ← this.pk.eRight
jL ← this.pk.nodeLeft; eL ← this.pk.eLeft
ajR,eR ← ajL,eL

end

return
{
aj,k

}N;K
j=0;k=1

End Procedure UnMask

Procedure GlobalSum

Input:
{
aj,k

}N;K
j=0;k=1

for k = 1 to K − 1 do
jR ← this.pk.nodeRight; eR ← this.pk.eRight
jL ← this.pk.nodeLeft; eL ← this.pk.eLeft
tmp ← ajR,eR + ajL,eL

ajR,eR ← tmp
ajL,eL ← tmp

end

return
{
aj,k

}N;K
j=0;k=1

End Procedure GlobalSum

the value on the right. We show the global operation procedures in Algorithm 117
(SEMGlobalProcedures1D). Each procedure uses the shared node array to perform
its operation globally on an array of mesh values, which may be the solution or
residual, for example.

8.1.2.3 The Diffusion Approximation

Both the right and left sides of the system (8.26) require us to compute a matrix-
vector multiply to evaluate the contribution from the diffusion term of the equation.

8 Spectral Element Methods 305

We use Algorithm 57 (CGDerivativeMatrix) to compute the matrix G. We show the
implementation of the diffusion term in the procedure LaplaceOperator in Algo-
rithm 118 (SEM1DProcedures).

8.1.2.4 Side Operators and Residual Procedures

When we use the trapezoidal rule to integrate in time, the only difference between
the matrices whose actions are given in (8.26) is the sign in front of the diffusion
operator. For that reason, we will implement only one procedure for the matrix ac-
tion in Algorithm 118 (SEM1DProcedures) and pass a sign variable with values ±1
as we did with Fourier transforms. We set the residual to zero at the physical bound-
aries to implement Dirichlet conditions in the procedure Residual of Algorithm 118.

8.1.2.5 Iterative Solver

We need only make minor modifications to Algorithm 80 (PreconditionedConju-
gateGradientSolve). The first we have already mentioned, namely that the arrays
now have different extents. The second is that the residual computation section will
be replaced by the procedure Residual in Algorithm 118. We could still use a finite
element preconditioner or not precondition at all.

8.1.2.6 The Time Integration Procedure

The trapezoidal rule integrator that we show in Algorithm 119 (TrapezoidalRule-
Integration) is straightforward to implement. At each time step we compute the RHS
array and use Algorithm 80 to compute the new values. Since the solution values are
no longer needed after RHS is evaluated, we need only one time level of storage for
the solution, unlike if we were to use Algorithm 87 (MultistepIntegration). Note
that as in Algorithm 87, we have hidden the boundary condition implementation in
a procedure SetBoundaryConditions that needs to be provided. It will do nothing
more than set the solution values at the boundaries.

8.1.3 Benchmark Solution: Cooling of a Temperature Spot

We present one benchmark example of the solution of (8.5) with the spectral ele-
ment method. We have chosen the initial and boundary conditions so that the exact
solution as a function of time describes a cooling Gaussian spot,

ϕ(x, t) = e−x2/(4t+1)

√
4t + 1

. (8.30)

306 8 Spectral Element Methods

Algorithm 118: SEM1DProcedures: Spatial Approximations for the One-
Dimensional Spectral Element Method

Uses Algorithms:
Algorithm 116 (SEM1DClass)
Algorithm 19 (MxVDerivative)
Algorithm 117 (SEMGlobalProcedures1D)

Procedure LaplaceOperator

Input: {Uj,k}N;K
j=0;k=1

N ← this.N;K ← this.K
for k = 1 to K do{

Dk
j

}N
j=0 ← MxVDerivative(this.{Gi,j }N;N

i=0;j=0, {Uj,k}Nj=0)

for j = 0 to N do
Dk

j ← −2 ∗ Dk
j /Δxk

end
end

return
{
Dk

j

}N;K
j=0;k=1

End Procedure LaplaceOperator

Procedure MatrixAction

Input: s, Δt , {Uj,k}N;K
j=0;k=1

N ← this.N;K ← this.K

{Uj,k}N;K
j=0;k=1 ← this.UnMask({Uj,k}N;K

j=0;k=1)

{AUj,k}N;K
j=0;k=1 ← this.LaplaceOperator({Uj,k}N;K

j=0;k=1)

for k = 1 to K − 1 do
for j = 0 to N do

AUj,k ← this.wj /2 ∗ this.Δxk ∗ Uj,k + s ∗ Δt/2 ∗ AUj,k

end
end

{AUj,k}N;K
j=0;k=1 ← this.GlobalSum({AUj,k}N;K

j=0;k=1)

{Uj,k}N;K
j=0;k=1 ← this.Mask({Uj,k}N;K

j=0;k=1)

return {AUj,k}N;K
j=0;k=1

End Procedure MatrixAction

Procedure Residual
Input: sem ; // Of type SEM1D

{rj,k}N;K
j=0;k=1 ← this.MatrixAction(+1,Δt, sem.{Φj,k}N;K

j=0;k=1)

for k = 1 to K do
for j = 0 to N do

rj,k ← sem.RHSj,k − rj,k
end

end

{rj,k}N;K
j=0;k=1 ← this.Mask({rj,k}N;K

j=0;k=1)

r0,1 ← 0
rN,K ← 0
return {rj,k}N;K

j=0;k=1

End Procedure Residual

8 Spectral Element Methods 307

Algorithm 119: TrapezoidalRuleIntegration: Integration of the One-
Dimensional Spectral Element Method in Time

Procedure TrapezoidalRuleIntegration
Input: NT , Nit , TOL
Input: sem ; // Of type SEM1D class
Uses Algorithms:

Algorithm 116 (SEM1DClass)
Algorithm 117 (SEMGlobalProcedures1D)
Algorithm 118 (SEM1DProcedures)
Algorithm 80 (PreconditionedConjugateGradientSolve) //Modified

for n = 0 to NT − 1 do
t ← n ∗ Δt

sem.{RHSj,k}N;K
j=0;k=1 ← sem.MatrixAction(−1,Δt, sem.{Φj,k}N;K

j=0;k=1)

sem.{Φj,k}N;K
j=0;k=1 ← SetBoundaryConditions(sem, t + Δt)

sem ← PreconditionedConjugateGradientSolve(Nit ,TOL, sem)

end

sem.{Φj,k}N;K
j=0;k=1 ← sem.UnMask(sem.{Φj,k}N;K

j=0;k=1)

t ← t + Δt

return sem
End Procedure TrapezoidalRuleIntegration

Fig. 8.7 Three element
spectral element solution of
the diffusion equation at two
times. Element boundaries
are marked with vertical
dotted lines

We solve the equation on the interval [−8,8] with three elements Ω1 = [−8,−3],
Ω2 = [−3,3], and Ω3 = [3,−8], N = 10, and Δt = 0.05. Figure 8.7 compares
the computed and exact solutions at times t = 1 and t = 4. We could also make
comparisons of multiple element approximations to the results of Sect. 4.6.

308 8 Spectral Element Methods

8.1.4 The Discontinuous Galerkin Spectral Element Method

We will motivate the development and implementation of the discontinuous
Galerkin spectral element method with the approximation of the one-dimensional
conservation law

qt + fx = 0, x ∈ (0,L) . (8.31)

As we discussed in Sect. 5.4, we can write the wave equation and others in conser-
vation form.

Like the continuous spectral element approximation, we get the discontinuous
approximation by dividing the interval into segments or elements (Fig. 8.8). Now,
however, we will choose the nodes to be the Legendre Gauss points inside each
element. More importantly, we will not assume that the solution is continuous at the
element boundaries.

The spectral element approximation starts from the weak form of (8.31). After
we multiply by a suitable test function, integrate, and subdivide into elements as we
did in the previous section, the weak form is

K∑
k=1

[∫ xk

xk−1

(qt + fx)φdx

]
= 0. (8.32)

On each element then,

∫ xk

xk−1

(qt + fx)φdx = 0. (8.33)

When we map (8.33) onto the reference element by the affine map (8.10),

Δxk

2

∫ 1

−1
qtφdξ +

∫ 1

−1
fξ φdξ = 0. (8.34)

Fig. 8.8 Subdivision of the
interval [0,L] = [x0, xK] into
K elements. The nodal
discontinuous Galerkin
approximation is not
continuous at element
boundaries and is defined on
Gauss points

8 Spectral Element Methods 309

As usual for a nodal method, we approximate the solution and fluxes by polyno-
mials in Lagrange form

q
(
Xk(ξ)

)≈ Qk(ξ) =
N∑

j=0

Qk
j �j (ξ),

f
(
Xk(ξ)

)≈ Fk(ξ) =
N∑

j=0

f
(
Qk

j

)
�j (ξ).

(8.35)

Since the discontinuous Galerkin approximation does not enforce continuity at the
element boundaries, we can take advantage of the higher precision of the Gauss rules
and place the nodes at the Legendre Gauss points on the reference element. When
we substitute the polynomial approximations into (8.12), the approximate solution
satisfies

Δxk

2

∫ 1

−1
Qtφdξ +

∫ 1

−1
Fξφdξ = 0. (8.36)

We write the test function φ also as a polynomial,

φ =
N∑

j=0

φj�j (ξ). (8.37)

The discontinuous Galerkin approximation does not require the test functions to be
continuous at element boundaries either. Therefore to say that (8.33) holds for any
piecewise continuous function φ is equivalent to saying that the φj ’s are indepen-
dent of each other, without any constraints.

The approximation and test functions are continuous within any element. There-
fore, we can integrate the second integral in (8.36) by parts to get

Δxk

2

∫ 1

−1
Qtφdξ + Fφ|1−1 −

∫ 1

−1
Fφξdξ = 0. (8.38)

We’ve done the next two steps in the derivation of a nodal spectral approximation
several times before. We replace the integrals by Gauss quadrature and use the fact
that the φj ’s are independent. These steps lead us to

Δxk

2
Q̇j + F

�j

wj

∣∣∣∣
1

−1
−

N∑
n=0

Fn

wn�
′
j (ξn)

wj

= 0 (8.39)

or, using the definition (4.139),

Δxk

2
Q̇j +

{
F

�j

wj

∣∣∣∣
1

−1
+

N∑
n=0

FnD̂jn

}
= 0. (8.40)

310 8 Spectral Element Methods

In the final step, we couple the elements. This step is peculiar to the discontinuous
Galerkin approximation. We replace the fluxes at the element boundaries by the
numerical flux F∗ · n̂ as we did in Sect. 5.4.1.1 at physical boundaries. Recall that
the numerical flux is a function of two states, one to the left and one to the right,
where we define the direction according to the normal at the boundary. At element
boundaries, the left and right states are what we get when we evaluate the solution
polynomial from the neighboring elements, as we show in Fig. 8.8. For the element
ordering in Fig. 8.8, the numerical fluxes at the two element boundaries are

F(−1) ← F∗ (Qk−1(1),Qk(−1),−x̂
)

,

F(+1) ← F∗ (Qk(1),Qk+1(−1),+x̂
)

.

(8.41)

At a physical boundary, we use the external state, just as in a single domain approx-
imation.

When we replace the fluxes at the element boundaries by the numerical fluxes, we
get the final version of the discontinuous Galerkin spectral element approximation
for the kth element

Q̇k
j + 2

Δxk

{
F∗ (Qk(1),Qk+1(−1),+x̂

) �j (1)

wj

+ F∗ (Qk−1(1),Qk(−1),−x̂
) �j (−1)

wj

+
N∑

n=0

FnD̂jn

}
= 0. (8.42)

We make two observations about (8.42). First, except for the element size fac-
tor, 2/Δxk , the approximation is identical to the single domain approximation.
Therefore we still compute the derivative approximation with Algorithm 92 (Sys-
temDGDerivative). Second, the only coupling between elements occurs when we
compute the boundary flux values. Therefore, we need only to supply the boundary
values from the immediate neighbor to compute the time derivative of the solution.

8.1.5 How to Implement the Discontinuous Galerkin Spectral
Element Method

The fact that the discontinuous Galerkin spectral element approximation (8.42) is
virtually the same as the single domain approximation except for information to be
set from the nearest neighbor elements suggests that we use a two level view for
the implementation. The lowest level view will be that of an element on which the
local operations such as the spatial derivative approximation are performed. The
higher level view will be that of the mesh, which will keep track of the elements
and perform global operations such as the computation of the numerical fluxes. To
implement the two level view, we create the two classes Element and Mesh shown in

8 Spectral Element Methods 311

Algorithm 120: DGSEM1DClasses: Element and Mesh Definitions for the
One-Dimensional Discontinuous Galerkin Spectral Element Method

Class Element
Uses Algorithms:
Algorithm 58 (NodalDiscontinuousGalerkin);

Data:
Δx,xL, xR ; // Size and left and right boundaries of this element
dG ; // Of type NodalDiscontinuousGalerkin
nEqn ; // # of equations in the physical system

{Qj,n}N;nEqn
j=0;n=1 {Q̇j,n}N;nEqn

j=0;n=1 ; // Solution and time derivative

{Gj,n}N;nEqn
j=0;n=1 ; // For low storage Runge-Kutta{

QL
n

}nEqn
n=1 ,

{
QR

n

}nEqn
n=1 ; // Solution on left/right element boundary{

F
∗,L
n

}nEqn
n=1 ,

{
F

∗,R
n

}nEqn
n=1 ; // Flux on left/right element boundary

Procedures:
Construct(dG,nEqn, xL, xR); // See text.
InterpolateToBoundaries(); // Algorithm 121
LocalTimeDerivative(); // Algorithm 121
AffineMap(ξ); // Equation (8.10)

End Class Element

Class Mesh1D
Data:

K ; // # Elements

{ek}Kk=1 ; // Elements

{pk}Kk=0 ; // sharedNodePointers from Algorithm 116

Procedures:
Construct(K,N, {xk}Kn=0); // Algorithm 122

GlobalTimeDerivative(); // Algorithm 122
End Class Mesh1D

Algorithm 120 (DGSEM1DClasses). Again, the organization that we present here
is overkill for one-dimensional problems, but it is helpful to see it on a simpler
problem before moving to multidimensional problems.

8.1.5.1 The Elements

The element class (Algorithm 120) stores the element’s geometry data and solution.
The geometry data for the one dimensional elements are the left and right boundary
locations and the length. To compute the spatial derivative in (8.42), the element
needs access to the data stored in the NodalDiscontinuousGalerkin class (Algo-
rithm 58). For simplicity, we show the Element class storing an instance of that
class, though to do so clearly wastes storage if N is the same in each element. Even
if N varies, there would likely only be a few unique values. In a large implementa-
tion, we would store the NodalDiscontinuousGalerkin instances in a collection (e.g.

312 8 Spectral Element Methods

a linked list discussed in Appendix E.1) and have the element only store a pointer
to a member of that collection.

Other data includes the numerical fluxes, F ∗,L/R , on the left and the right of
the element and the interpolated values of the solution, QL/R , from which to com-
pute the numerical flux. In practice, once we compute the numerical fluxes, we
no longer need the interpolated values of the solution. The boundary solutions and
fluxes could use the same storage. For clarity, however, we will store them sepa-
rately. We also have the element store the number of equations rather than write a
separate “physics” class. Finally, we store the time derivative with each element. If
we were to modify the time integrator appropriately, we could reuse the storage of
only one array.

The basic methods that the element needs to implement are also shown in Al-
gorithm 120 (SEM1DClasses). We won’t show the constructor explicitly since it
only needs to set the local data. The interpolation and time derivative methods are
implemented in Algorithm 121 (LocalDSEMProcedures). We have seen the use of
the interpolation routines before in Algorithms 61 (InterpolateToBoundary) and 114

Algorithm 121: LocalDSEMProcedures: Local Procedures for the Discontinu-
ous Galerkin Spectral Element Method

Procedure InterpolateToBoundaries
Uses Algorithms:
Algorithm 61 (InterpolateToBoundary);

N ← this.dG.N ; nEqn ← this.nEqn
for n = 1 to nEqn do

this.QL
n ← InterpolateToBoundary(this.{Qj,n}Nj=0, this.dG.{�j (−1)}Nj=0)

this.QR
n ← InterpolateToBoundary(this.{Qj,n}Nj=0, this.dG.{�j (+1)}Nj=0)

end
End Procedure InterpolateToBoundaries

Procedure LocalTimeDerivative
Uses Algorithms:
Algorithm 92 (SystemDGDerivative);

N ← this.N ; nEqn ← this.nEqn
for j = 0 to N do

{Fj,n}nEqn
n=1 ← Flux(this.{Qj,n}nEqn

n=1)

end{
F ′

j,n

}N;nEqn
j=0;n=1 ←

SystemDGDerivative
(
this.

{
F

∗,L
n

}nEqn
n=1 , this.

{
F

∗,R
n

}nEqn
n=1 , {Fj,n}N;nEqn

j=0;n=1, this.dG.{Di,j }Ni,j=0,

this.dG.{�i(−1)}Ni=0, this.dG.{�i(1)}Ni=0, this.dG.{wi}Ni=0

)
for j = 0 to N do

for n = 1 to nEqn do
this.Q̇j,n ← −2F ′

j,n/this.Δx

end
end
End Procedure LocalTimeDerivative

8 Spectral Element Methods 313

(MappedDGSystemTimeDerivative). The local time derivative procedure is of the
form we have already seen in those two algorithms. We do not show an imple-
mentation of the Flux function, but it is similar to what we used in Algorithm 94
(WaveEquationFluxes). Finally, the AffineMap procedure merely implements (8.10)
so we don’t provide an implementation for it, either.

8.1.5.2 The Mesh

We manage global data at the mesh level. The mesh, also described in Algorithm 120
(DGSEM1DClasses), stores the number of elements, the elements themselves, and
the connections between the elements. As in Sect. 8.1.1, the sharedNodePointers
store pointers to the elements on the left and the right of an interface. To simplify
the presentation, we will assume here that xR > xL so that the QL and QR arrays are
on the left and right of the elements. That way we do not have to store information
in the sharedNodePointers to distinguish between which corresponds to the left and
which to the right. When we go to two dimensional problems later, we will have to
be more general.

We use the constructor for the mesh class to create the elements and connections.
The constructor will take the number of elements and the location of the element
boundaries as input. It constructs an instance of the NodalDiscontinuousGalerkin
class and uses that and the element boundary information to construct the elements.
The element connections are constructed next. Since there is essentially no differ-
ence between a physical boundary and an element boundary, the limits on the pk

array include the endpoints. At the physical boundaries we set the neighboring el-
ement to a defined constant NONE. Later, we can test for being on a boundary by
checking to see if one of the elements equals NONE.

The global time derivative procedure in Algorithm 122 (GlobalMeshProcedures)
performs four basic operations. First, it interpolates the solutions to the boundaries
on each of the elements. It then computes the physical boundary values by way of
a procedure ExternalState whose implementation is problem dependent. We pass
a parameter with defined values of LEFT or RIGHT to the procedure so that dif-
ferent boundary conditions can be applied at the left and right boundaries. We also
pass the boundary value of the solution to allow reflection boundary conditions like
(5.168) to be implemented. Then the numerical fluxes are computed for each ele-
ment boundary point and sent to the appropriate element. Again, we have assumed
that the elements are laid out left to right. Finally, each element computes its local
time derivative values.

8.1.5.3 Time Integration

We can easily modify the third order explicit Runge-Kutta algorithm Algorithm 62
(DGStepByRK3) to accommodate the spectral element approximation. We first
change the inputs to the procedure to be an instance of the Mesh class, the time

314 8 Spectral Element Methods

Algorithm 122: GlobalMeshProcedures: Mesh Global Procedures for the Dis-
continuous Galerkin Spectral Element Approximation

Procedure Construct
Input: K,N, {xk}Kn=0
Uses Algorithms:

Algorithm 120 (SEM1DClasses)
Algorithm 58 (NodalDiscontinuousGalerkin)

this.K ← K

dG.Construct(N); // Of type NodalDiscontinuousGalerkin
for k = 1 to this.K do

this.ek.Construct(dG,nEqn, xk−1, xk)

end
for k = 1 to K − 1 do

this.pk.eLeft ← k

this.pk.eRight ← k + 1
end
this.p0.eLeft ← NONE
this.p0.eRight ← 1
this.pK .eLeft ← K

this.pK .eRight ← NONE
End Procedure Construct

Procedure GlobalTimeDerivative
Input: t

Uses Algorithms:
Algorithm 88 (RiemannSolver)

for k = 1 to this.K do
this.ek.InterpolateToBoundaries()

end
k ← this.p0.eRight{
Q

ext,L
n

}nEqn
n=1 ← ExternalState(this.ek.{QL

n }nEqn
n=1 , this.ek.AffineMap(−1),LEFT)

k ← this.pK .eLeft{
Q

ext,R
n

}nEqn
n=1 ← ExternalState(this.ek.{QR

n }nEqn
n=1 , this.ek.AffineMap(+1),RIGHT)

for k = 0 to this.K do
idL ← this.pk.eLeft; idR ← this.pk.eRight
if idL = NONE then

this.eidR.
{
FL

n

}nEqn
n=1 ← RiemannSolver

({
Q

ext,L
n

}nEqn
n=1 , this.eidR.

{
QL

n

}nEqn
n=1 ,−1

)
else if idR = NONE then

this.eidL.
{
FR

n

}nEqn
n=1 ← RiemannSolver

(
this.eidL.

{
QR

n

}nEqn
n=1 ,

{
Q

ext,R
n

}nEqn
n=1 ,+1

)
else {

FL
n

}nEqn
n=1 ← RiemannSolver

(
this.eidL.

{
QR

n

}nEqn
n=1 , this.eidR.

{
QL

n

}nEqn
n=1 ,+1

)
this.eidR.

{
FL

n

}nEqn
n=1 ← −{FL

n

}nEqn
n=1

this.eidL.
{
FR

n

}nEqn
n=1 ← {

FL
n

}nEqn
n=1

end
end
for k = 1 to this.K do

this.ek.LocalTimeDerivative()
end
End Procedure GlobalTimeDerivative

8 Spectral Element Methods 315

and the time step. Next, the time derivative computation is performed by the global
mesh procedure GlobalTimeDerivative in Algorithm 122 (GlobalMeshProcedures).
Finally, we update the solution element by element by replacing

for j = 0 to N do
Gj ← amGj + Φ̇n

j

Φn+1
j ← Φn+1

j + gmΔtGj

end

(8.43)

with

for k = 1 to K do
for j = 0 to N do

for n = 1 to nEqn do
mesh.ek.Gj,n ← am ∗ mesh.ek.Gj,n + mesh.ek.Q̇j,n

mesh.ek.Qj,n ← mesh.ek.Qj,n + gm ∗ Δt ∗ mesh.ek.Gj,n

end
end

end

(8.44)

where mesh is the mesh class instance.

8.1.6 Benchmark Solution: Wave Propagation and Reflection

We now solve the one-dimensional wave equation in system form

[
u

v

]
t

+
[

0 1
1 0

][
u

v

]
x

=
[
u

v

]
t

+
[
v

u

]
x

= 0, x ∈ [0,L] (8.45)

with a reflection boundary at x = 0 and a nonreflecting boundary at x = L as the
benchmark problem to illustrate the use of the discontinuous Galerkin spectral ele-
ment approximation on a conservation law. We can use the transformation matrix

S = 1

2

[
1 1
1 −1

]
(8.46)

and its inverse to convert the system to the decoupled equation

[
w+
w−
]

t

+
[

1 0
0 −1

][
w+
w−
]

x

= 0 (8.47)

to see that the system has a leftgoing and a rightgoing wave, each of which moves
with unit speed. The wave components are

w+ = u + v,

w− = u − v.
(8.48)

316 8 Spectral Element Methods

In terms of the wave variables, the reflection boundary condition at the left is
w+ = w− and the non-reflection boundary condition at the right is w− = 0.

To implement the discontinuous Galerkin spectral element method, we need to
provide the numerical flux, which for this problem is

F ∗(QL,QR; n̂)= 1

2

[
uL − uR + vL + vR

uL + uR + vL − vR

]
n̂. (8.49)

We implement the boundary condition on the left by specifying an external state
with uL = uR and vL = −vR . We use the exact solution as the external state on the
right.

The initial condition to the benchmark problem is

u = 2−(x−1)2/b2
,

v = 0
(8.50)

with b = 0.15. We derive the exact solution using the methods of characteristics and
images.

Figure 8.9 shows the computed and exact solutions for five elements of equal
size on the interval [0,5]. For benchmark purposes, the other parameters for the
computation were N = 14 and Δt = 4 × 10−2.

Fig. 8.9 Discontinuous Galerkin spectral element solution of the wave equation showing propa-
gation and reflection of a wave with a five element approximation. A Gaussian spot with initial
maximum at x = 1 splits into a leftgoing and rightgoing wave. The leftgoing wave reflects at the
left boundary and then propagates to the right

8 Spectral Element Methods 317

8.2 The Two-Dimensional Mesh and Its Specification

In two space dimensions, we divide the physical domain into non-overlapping
quadrilaterals like we have sketched in Fig. 8.10. These quadrilaterals will be our el-
ements and the collection of elements is the mesh. The elements can have straight or
curved sides, just like a single domain. Within each element we will place an N ×N

set of nodes—Gauss-Lobatto or Gauss, depending on the spatial approximation—at
which we will approximate the solution. To avoid confusion, we explicitly refer to
the set of nodes within an element as a grid and to the set of elements as the mesh.

The elements do not have to be tiled in any regular pattern or numbered in any
particular order. In other words, the mesh can be unstructured. The only absolute
restriction that we must place on the elements is that they each must have a shape
that we can map onto the reference square like we did in Chap. 6. There are, how-
ever, other issues of mesh quality that affect the accuracy of solutions. Mesh quality
measures are not as developed yet for spectral methods as they are for low order
finite element methods. For a discussion of mesh quality, we defer to more technical
books like [20]. As a rule of thumb, we try to keep the angles in the mesh to be as
close to 90 degrees as possible.

To make the methods easier to implement, we will make one restriction on how
the elements tile a domain. We will require that neighboring elements share either
an entire side or a corner point. Such a mesh is called geometrically conforming.
Figures 8.2, 8.3b, and 8.4 show examples of geometrically conforming meshes. We
contrast a conforming mesh to nonconforming meshes in Fig. 8.11. The geometri-
cally nonconforming mesh of Fig. 8.11b has elements that share a partial side. The
mesh of Fig. 8.11c is geometrically conforming, but has different order polynomials
on each side so that the nodes do not match across the element boundaries. Such
meshes are functionally nonconforming. Of course, a mesh could be both geometri-
cally and functionally nonconforming. Nonconforming meshes are sometimes eas-
ier to generate, particularly if we want to refine the mesh locally, but they will lead

Fig. 8.10 Subdivision of a domain into quadrilateral elements, which are mapped individually
from the reference square

318 8 Spectral Element Methods

Fig. 8.11 A comparison of a conforming mesh (a) to a geometrically nonconforming mesh (b)
and a functionally nonconforming mesh (c). Within each element of the meshes, we show grids of
Gauss-Lobatto nodes at which a spectral element approximation might be approximated

Fig. 8.12 Location of boundary curves and corner nodes that define an element shown in physical
space and on the reference square

to more complex spatial approximations. Spectral approximations can be derived
for both geometrically and functionally nonconforming meshes. For a discussion of
how, see [8].

Let us start our specification of the mesh with the local definition of an element.
An element in two dimensions is nothing but a quadrilateral domain that we used in
Chap. 7. Therefore, we need four bounding curves to specify the geometry of an ele-
ment. If a side is straight, then it is sufficient to specify only the two endpoints of the
curve, which will be two corner nodes of the element. In finite element applications,
the boundary curves are called edges and the corner nodes are called nodes. Since
we will also have nodes associated with the Gauss or Gauss-Lobatto grids within
each element, we make a distinction here between the two types. To fully define an
element, we will now specify the four boundary curves and the four corner nodes,
numbered counter clockwise, as shown in Fig. 8.12. We will use the corner nodes
to determine how the elements are coupled.

8 Spectral Element Methods 319

Fig. 8.13 A three element mesh that shows the local element structure constructed from seven
globally numbered corner nodes (circles). Element sides and grid orientation are located as in
Fig. 8.12

We need to know how elements are coupled if the mesh has more than one.
Since we have restricted ourselves to conforming meshes, an element is coupled to
a neighbor either along a boundary curve or at a corner node. What we need, then,
is a list of which elements share a common side and a list of which elements share
a common corner node. We can generate both of these lists (see the examples in
Appendix E) if we are given a globally numbered list of corner nodes and a list of
which corner nodes are used to construct each element. The list of nodes and the list
of element connectivity, as the latter is known, are standard output of finite element
mesh generators.

To see how to build a mesh, let us practice with the three elements shown in
Fig. 8.13. The mesh has seven globally numbered corner nodes from which we con-
struct the three elements. (If the sides were not straight, we would also have to in-
clude boundary curve information.) The elements are defined by four corners num-
bered counterclockwise. The choice of the first node is arbitrary, but once we choose
it, we have specified the element topology (Fig. 8.12). For the mesh in Fig. 8.13, we
have chosen the element connectivity as shown in Table 8.1.

The elements couple through their corner nodes and their sides. At the corners,
we will need to know the elements that contribute and the location in the local nodal
grid within these elements. This information is the equivalent to what was stored
in the SharedNodePointer that we introduced in the previous section. We will use
the information similarly to mask, unmask and do global sums on the solution. The

320 8 Spectral Element Methods

Table 8.1 Element
definitions for Fig. 8.13 Element Node 1 Node 2 Node 3 Node 4

1 6 1 5 4

2 1 2 3 5

3 5 3 7 4

Table 8.2 Corner node
connectivity and local grid
index

Node Element i j

1 2 0 0

1 N 0

2 2 N 0

3 2 N N

3 N 0

4 1 0 N

3 0 N

5 1 N N

2 0 N

3 0 0

6 1 0 0

7 3 N N

corner connectivity is expressed by Table 8.2. Note each corner node can have a
different number of adjacent elements.

The elements are also connected along their sides. We index the sides by an
ordered pair of two corner nodes, which we will call an edge, even if the sides
are not straight. When we look at Fig. 8.13, we see what information we should
extract to be able to perform mask, unmask and global sum operations. First, we
should find which elements border a side. If only one does, then we conclude that
edge is along a boundary. Next, we need to know which sides of the neighboring
elements are adjacent so that we know which part of the local element grids are
connected. The last piece of information concerns the direction in which the local
grid index varies along the side. For instance, along the edge indexed by Nodes 4
and 5, Side 3 of Element 1 and Side 4 of Element 3 are the neighbors. The order
in which we list the two neighbors is arbitrary, but we have to choose something.
Let us say that Element 1/Side 3 is the first (primary) and Element 3/Side 4 is the
second (secondary). Then the nodes of Element 1 that lay along the edge are those
with index (i,N) for i = 1,2, . . . ,N − 1 in order. We don’t include the i = 0,N

nodes because they are corner nodes of the element. The nodes of Element 3 are
those with index (N, j) with j running in reverse order, j = N − 1,N − 2 . . . ,1.
We need to flag this situation. The approach that we will take here is to set the
sign of the secondary element side to be negative if the index runs in the direction
opposite of the primary side. If we remember the starting index (N − 1 or 1) and

8 Spectral Element Methods 321

Table 8.3 Edge information for the mesh in Fig. 8.13

Edge Node 1 Node 2 Element 1 Side 1 Element 2 Side 2 Start Inc.

1 6 1 1 1

2 1 5 1 2 2 4 1 1

3 5 4 1 3 3 −4 N − 1 −1

4 4 6 1 4

5 1 2 2 1

6 2 3 2 2

7 3 5 2 3 3 1 1 1

8 3 7 3 2

9 7 4 3 3

the increment (±1), we can simplify the logic when we perform computations along
element edges. The edge data of the mesh in Fig. 8.13 is shown in Table 8.3. Note
that the ordering of the edges is arbitrary.

8.2.1 How to Construct a Two-Dimensional Mesh

Although we can construct the node, edge, and element information by hand for
a simple three element mesh just as we’ve done for the mesh in Fig. 8.13, it gets
tedious and error prone very fast as the number of elements grows. It is better to
automate the process as much as possible. How much we have to automate depends
on what mesh generators we have available. For the purposes of this book, we have
decided to choose the lowest common denominator so that simple mesh files can be
created by hand. The minimum information needed is a list of corner node locations
and a list of elements, with each element defined by its four corner nodes. To allow
sides to be curves, we will include boundary curves that are constructed using Algo-
rithm 96 (CurveInterpolant). We would normally read node, element, and boundary
curve information from a file.

8.2.1.1 Nodes

The first data structure that we need to define is a corner node. At a minimum,
a corner node stores its (x, y) values. To define the element connectivity so that
we can perform mask, unmask and sum operations at nodes, we also need a list
of what elements share the node. Since different numbers of elements can share a
common node in an unstructured mesh, it is better to store this information in a
linked list than in an array of fixed size. (See Appendix E.) Most mesh generators
will try to keep this number, called the valence, low, typically less than or equal to
six. So we could reasonably choose to store the adjacent element information in a

322 8 Spectral Element Methods

Algorithm 123: CornerNodeClass: Corner Node for Two-Dimensional Spec-
tral Element Methods

Class CornerNode
Uses Algorithms:

Algorithm 144 (LinkedList)
Data:

type ; // Kind of node—INTERIOR or BOUNDARY
x, y ; // location
nodeConnectivity ; // Linked list of type CornerConnectivity

Procedures:
Construct(x, y)

End Class CornerNode

Procedure Construct
Input: x, y

this.x ← x; this.y ← y

this.type ← INTERIOR
nodeConnectivity.Construct()
End Procedure Construct

Structure CornerConnectivity
id, i, j

End Structure CornerConnectivity

fixed array of length six instead of a linked list. However, since we will not have
to search for a particular element in this list, we will use the linked list. Finally,
for convenience, we will also store the type of node, either boundary or interior,
to help when we set boundary conditions. We show a corner node definition in
Algorithm 123 (CornerNode).

A mesh file will typically contain a sequence of (x, y) locations that correspond
to corner nodes. As each is read, we construct the node with the procedure Construct
in Algorithm 123, which simply stores the location of the node and a default value of
the type of node. We number the nodes with a node number/identifier, id, according
to their order in the file, and will access them by their location in an array of nodes
stored by the mesh. We will construct the list of adjacent elements, which is the data
we collected for Table 8.2, after we construct the elements and edges.

8.2.1.2 Elements

An element is usually defined in a mesh file by an array of the id’s of its four
corner nodes, ordered counter-clockwise. This is the data that we gathered in Ta-
ble 8.1 for our three element example. For straight sided elements, the location of
the four corner nodes is enough information to compute the element’s geometry
using Algorithm 95 (QuadMap) and metric terms using Algorithm 100 (QuadMap-
Metrics). For curved sides, we need additional information to define the curves.

8 Spectral Element Methods 323

Algorithm 124: QuadElementClass: Quadrilateral Element Definition for
Two-Dimensional Spectral Element Methods

Class QuadElement
Uses Algorithms:

Algorithm 101 (MappedGeometry)
Algorithm 63 (Nodal2DStorage)

Data:{
nodeIdsj

}4
j=1 ; // Corner node id’s in node array.

geom ; // MappedGeometry to store metrics, etc.

Procedures:
Construct(spA, {nodeIdsj }4

j=1, {�j }4
j=1)

End Class QuadElement

Procedure Construct

Input:
{
nodeIdsj

}4
j=1

Input:
{
�j

}4
j=1 ; // CurveInterpolant

Input: spA ; // Nodal2DStorage

this.
{
nodeIdsj

}4
j=1 ← {

nodeIdsj

}4
j=1

this.geom.Construct(spA, {�j }4
j=1)

End Procedure Construct

This is information not typically provided by finite element mesh generators. We
usually specify Chebyshev polynomial interpolants only for those sides that are
curved. From the four curves, we will store the grid and metric arrays in our stan-
dard MappedGeometry structure of Algorithm 101 (MappedGeometryClass). We
show the storage that we need to define an element in Algorithm 124 (QuadEle-
mentClass). The constructor takes the array that lists the four corner nodes and,
as we did to define a quadrilateral single domain, an array of the four boundary
curves.

8.2.1.3 Edges

We will use an edge class to store the information along a row in Table 8.3. Our
implementation of an edge is Algorithm 125 (EdgeClass). The constructor is simple.
It takes the id’s of two nodes, an element of which the edge is a side, and the number
of the side. We will find the identity of any additional elements that may share that
side later as we construct the mesh.

8.2.1.4 The Mesh

Lastly, we need to define our Mesh data structure. The mesh will store the nodes,
the elements and the edges. Since we are going to assume that the mesh is con-
forming, we will also assume that the polynomial order in all elements will be

324 8 Spectral Element Methods

Algorithm 125: EdgeClass: Edge Definition for Two-Dimensional Spectral El-
ement Methods

Class Edge
Data:

type ; // Kind of edge—interior or boundary

{nodesk}2
k=1 ; // start and end node id’s

{elementIDsk}2
k=1 ; // Elements that share this edge

{elementSidesk}2
k=1 ; // Sides of Elements that share this edge

start, inc ; // Loop start and increment for the secondary side

Procedures:
Construct({nodesk}2

k=1 , elementID, side)

End Class Edge

Procedure Construct

Input: {nodesk}2
k=1 , elementID, side

this.
{
nodeIdsj

}2
j=1 ← {

nodeIdsj

}2
j=1

this.type ← INTERIOR
this.elementIDs1 ← elementID
this.elementIDs2 ← NONE
this.elementSides1 ← side
this.elementSides2 ← NONE
End Procedure Construct

the same. Therefore, we need to store only one instance of a Nodal2DStorage
object to hold the quadrature nodes, weights, and the derivative matrices in the
mesh structure. Since the number of elements and the number of corner nodes
are usually listed in, or can be determined from, the mesh file, we store an ar-
ray of CornerNodes and an array of Elements in the mesh structure. Finally we
will store three convenience arrays that we will describe below to help navigate
local data structures. We show the structure for the Mesh class in Algorithm 126
(QuadMesh).

We do not know the number of edges beforehand. We must construct the edges
from the elements and the nodes, so we will not know how many there are to start.
To be completely general, we should store the edges in some dynamic data structure
like a Linked List, which can have an arbitrary length. We could use Algorithm 144
(LinkedList) in Appendix E to store and manipulate the edge list. However, we can
simplify our presentation here significantly if we store the edges in an array, with
the edge id denoted by the location in the array.

To use a fixed size array to store the edges, we need to find a reasonable up-
per bound on the number of edges that the mesh can have. A result from algebraic
topology tells us that the number of edges, Nedge, the number of elements, K , and
the number of nodes, Nnode, are related to the Euler characteristic, χ , by the rela-
tion

χ = Nnode + K − Nedge. (8.51)

8 Spectral Element Methods 325

Algorithm 126: QuadMesh: Mesh Definition for Two-Dimensional Spectral
Element Methods

Class QuadMesh
Uses Algorithms:

Algorithm 63 (Nodal2DStorage)
Data:

K,Nnode,Nedge ; // # Elements, corner nodes, and edges

{elementsk}Kk=1 ; // Array of Elements

{nodesk}Nnode
k=1 ; // Array of CornerNodes{

edgesk

}edgeDim
k=1 ; // Array of Edges{

cornerMapi,j

}2,4
i=1,j=1

; // Convenience array{
sideMapi

}4
i=1 ; // Convenience array{

edgeMapi,j

}2,4
i,j=1

; // Convenience array

Procedures:
Construct(spA,meshFile); // Algorithm 127

End Class QuadMesh

In turn, the Euler characteristic is related to the number of holes, Nh, in the mesh
by

χ = 1 − Nh. (8.52)

(Try it on the decompositions shown in Figs. 8.1 and 8.3b.) Of course, we don’t
know the number of holes in the mesh simply by looking at the nodes and element
definitions, so we will only try to find a reasonable upper bound. For a “reasonable”
mesh without pinched holes, we can take Nh ≤ Nnode/3. In that case, we expect
that

Nedge ≤ K + 4

3
Nnode − 1 ≡ edgeDim. (8.53)

The number of holes that we’ve assumed is large compared to the number of nodes.
Typically there will be only a few holes in a mesh. The penalty, though, is only 30%
of the number of nodes in the mesh. Note, however, that we can come up with patho-
logical and unlikely meshes that will have more edges. If we expect a large number
of such cases, we should switch to a linked list or other dynamic data structure to
store the edges.

We will also store three convenience arrays with the mesh. The first is the
sideMap. We will use it to tell us what the fixed index value is along a given side. For
instance, by our definition shown in Fig. 8.12, Side 1 corresponds to j = 0 and vary-
ing i, Side 2 corresponds to i = N and varying j , etc. Therefore the four values of
the sideMap will be {0,N,N,0}. The second convenience array is the cornerMap
that will tell us the values of the local grid indices for the four corners. Looking
back again at Fig. 8.12, we see that Corner 1 corresponds to i = j = 0 and Cor-
ner 2 is i = N,j = 0, etc. The cornerMap array is {{0,0}, {N,0}, {N,N}, {0,N}}.
Finally, we define the edgeMap array to make the correspondence between an ele-

326 8 Spectral Element Methods

ment side and the two CornerNodes that start and terminate the side. For instance,
in Fig. 8.12 we see that Side 1 is constructed from CornerNodes 1 and 2, whereas
we construct Side 2 from CornerNodes 2 and 3. The elements of the edgeMap are
{{1,2}, {2,3}, {4,3}, {1,4}}.

We show the procedure to construct the mesh in Algorithm 127 (QuadMesh:
Construct). As input, it takes an already constructed Nodal2DStorage object and
a mesh file to read. After it constructs the convenience arrays, it reads and con-
structs the nodes and elements from the mesh file. Once the array of elements is
constructed, the procedure sets the node connectivity. The data variable d that is
added to the linked list is of type CornerConnectivity that we defined in Algo-
rithm 123 (CornerNodeClass). The procedure constructs the array of edges by Algo-
rithm 148 (ConstructMeshEdges). Once the edges have been created, the procedure
goes through each edge and sets boundary types for those edges that only have one
neighboring element. If two elements share a edge, the direction variables of the
second element are then set.

8.2.2 Benchmark Solution: A Spectral Element Mesh for a Disk

In the following sections we will solve problems on a disk by a spectral element
method to avoid the coordinate singularity at the origin. We can construct a simple
mesh file for the disk by hand using the topology shown in Fig. 8.14, which has five
elements and eight corner nodes. The outer boundary needs to be approximated by
a polynomial of degree N at the Gauss-Lobatto nodes to be represented accurately.
The mesh generated by Algorithm 127 (QuadMesh:Construct) appears in Fig. 8.15
for N = 8.

8.3 The Spectral Element Method in Two Space Dimensions

The spectral element method is a continuous nodal spectral Galerkin approximation.
We have used the continuous Galerkin approximation before to approximate poten-
tial and advection-diffusion problems. As a Galerkin method, we start the derivation
from a weak form of the equation that we wish to solve.

We will introduce the spectral element method for two-dimensional geometries
by approximating the potential equation with Dirichlet boundary conditions,

∇2ϕ = s, x ∈ Ω,

ϕ = ϕb, x ∈ ∂Ω.
(8.54)

To convert the equation to the time dependent heat equation, we let s = ∂ϕ/∂t . To
approximate the advection-diffusion equation we will add an advection term as we
did in Sect. 5.3 so that s = ∂ϕ/∂t + q · ∇ϕ.

8 Spectral Element Methods 327

Algorithm 127: QuadMesh:Construct: Constructor for a Two Dimensional
Spectral Element Mesh

Procedure Construct
Input: Mesh File
Input: spA ; // Nodal2DStorage
Uses Algorithms:

Algorithm 63 (Nodal2DStorage)
Algorithm 148 (ConstructMeshEdges)

N ← this.spA.N

this.
{
sideMapk

}4
k=1 ← {0,N,N,0}

this.
{
cornerMap1,k

}4
k=1 ← {0,N,N,0}

this.
{
cornerMap2,k

}4
k=1 ← {0,0,N,N}

this.
{
edgeMap1,k

}4
k=1 ← {1,2,4,1}

this.
{
edgeMap2,k

}4
k=1 ← {2,3,3,4}

Read from Mesh File: this.Nnode, this.K
Allocate memory for nodes, elements and for edge array using (8.53)
this.Nedge ← 0
for k = 1 to this.Nnode do

Read from Mesh File: x, y

this.nodesk.Construct(x, y)

end
for k = 1 to this.K do

Read from Mesh File: {cornerNodesk}4
k=1

Read from Mesh File and Construct: {�j }4
j=1

this.elementsk.Construct(spA, {cornerNodesk}4
k=1, {�j }4

j=1)

end
for eId = 1 to this.K do

for k = 1 to 4 do
d.id ← eId; d.i ← this.cornerMap1,k ; d.j ← this.cornerMap2,k

n ← this.elementseId.nodesk

this.nodesn.NodeConnectivity.Add(d)

end
end
this ← ConstructMeshEdges(this)
for k = 1 to this.Nedge do

if this.edgesk.elementID2 = NONE then
this.edgesk.type ← BOUNDARY
n1 ← this.edgesk.nodes1
n2 ← this.edgesk.nodes2
this.nodesn1.type ← BOUNDARY
this.nodesn2.type ← BOUNDARY

else
if this.edgesk.elementSides2 > 0 then

this.edgesk.start = 1; this.edgesk.inc = 1
else

this.edgesk.start = N − 1; this.edgesk.inc = −1
end

end
end
End Procedure Construct

328 8 Spectral Element Methods

Fig. 8.14 A decomposition of a disk into five elements

Fig. 8.15 Spectral element mesh for discretization of the disk

To get the weak form of the potential equation, we multiply it by an arbitrary,
sufficiently smooth test function φ and integrate over the entire domain

∫∫
Ω

∇2ϕφdxdy =
∫∫

Ω

sφdxdy. (8.55)

8 Spectral Element Methods 329

We then apply Green’s identity to the integral with the Laplacian to rewrite it
as ∫∫

Ω

∇2ϕφdxdy =
∫

∂Ω

φ
∂ϕ

∂n
dL −

∫∫
Ω

∇ϕ · ∇φdxdy, (8.56)

where dL is the differential along the boundary curve and ∂ϕ/∂n = ∇ϕ · n̂ is the
normal derivative. As usual, for Dirichlet conditions we require that φ = 0 along the
boundary. Therefore the boundary integral vanishes to leave us with

−
∫∫

Ω

∇ϕ · ∇φdxdy =
∫∫

Ω

sφdxdy. (8.57)

To get the spectral element method, we subdivide the domain Ω into K nonover-
lapping quadrilateral elements, ek , as we described in the introduction to this chap-
ter. By breaking the domain into elements, we can break the integrals over the do-
main into the sum of integrals over the elements

K∑
k=1

{
−
∫∫

ek

∇ϕ · ∇φdxdy

}
=

K∑
k=1

{∫∫
ek

sφdxdy

}
. (8.58)

Therefore, each element contributes

−
∫∫

ek

∇ϕ · ∇φdxdy =
∫∫

ek

sφdxdy (8.59)

to the total integral. For convenience, let us call

I k
1 = −

∫∫
ek

∇ϕ · ∇φdxdy,

I k
2 =

∫∫
ek

sφdxdy.

(8.60)

The local element contributions (8.59) are exactly what we approximated in
Sect. 5.2.2 on a single domain, so we already know how to approximate them. To re-
cap, we first map the element ek onto the reference square by a mapping x = X(ξ, η).
On the reference square, I k

2 transforms to

I k
2 =

∫ 1

−1

∫ 1

−1
J ksφdξdη. (8.61)

To transform I k
1 , we write the gradient in the mapped coordinate as

∇ϕ = 1

J

{(
Yηϕξ − Yξϕη

)
x̂ + (Xξϕη − Xηϕξ

)
ŷ
}

(8.62)

330 8 Spectral Element Methods

so that, with a little algebra, we get the integrand

∇ϕ · ∇φ = 1

J

{[
Y 2

η + X2
η

J
ϕξ − YξYη + XξXη

J
ϕη

]
φξ

+
[

Y 2
ξ + X2

ξ

J
ϕη − YξYη + XξXη

J
ϕξ

]
φη

}
. (8.63)

Ultimately, we write (8.63) in the familiar form

∇ϕ · ∇φ = 1

J

{
f φξ + gφη

}
. (8.64)

When we replace the integrand in (8.59) with (8.64), we write the element contribu-
tion as

−
∫ 1

−1

∫ 1

−1

(
f φξ + gφη

)
dξdη =

∫ 1

−1

∫ 1

−1
sJ kφdξdη. (8.65)

Therefore, we’ve already seen (8.59) on a mapped domain; the contribution of ele-
ment k written on the reference square is just (7.17).

To approximate (8.65), we replace s by a piecewise polynomial approximation
S and replace ϕ by a piecewise continuous polynomial approximation Φ . As an
extension to what we did in one space dimension, (8.15), the test functions are going
to be the continuous, piecewise polynomials

φk =
N∑

i,j=0

φk
ij �i (ξ) �j (η). (8.66)

We enforce continuity of the test functions by requiring that the nodal values φk
ij be

the same along each edge and at each element corner in the mesh. The same goes
for the solution and source term polynomials.

When we substitute (8.66) for φ in (8.65),

I k
1 ≈

∑
i,j

φk
i,j

[
−
∫ 1

−1

∫ 1

−1

(
F�′

i�j + G�i�
′
j

)
dξdη

]
(8.67)

and

I k
2 ≈

∑
i,j

φk
i,j

[∫ 1

−1

∫ 1

−1
S�i�j dξdη

]
. (8.68)

The integrals in the square brackets are the same as in the single domain problem,
and we already have their nodal Galerkin approximations worked out in (7.18)–
(7.21). Therefore, the nodal Galerkin approximation of (8.65) is

∑
i,j

φk
i,j

[(∇2Φ,�i�j

)
N

− Sk
i,j J

k
i,jwiwj

]= 0, (8.69)

8 Spectral Element Methods 331

where (∇2Φ,�i�j)N is given by (7.21). The global sum over all the elements gives
us our final approximation

K∑
k=1

⎧⎨
⎩
∑
i,j

φk
i,j

[(∇2Φ,�i�j

)
N

− Sk
i,j J

k
i,jwiwj

]
⎫⎬
⎭= 0. (8.70)

We get the spectral element approximations to the time dependent diffusion and
advection-diffusion equations from (8.70) if we replace Sk

i,j by the appropriate ap-
proximations. For instance, the approximation to the time dependent diffusion equa-
tion is

K∑
k=1

⎧⎨
⎩
∑
i,j

φk
i,j

[(∇2Φ,�i�j

)
N

− Φ̇k
i,j J

k
i,jwiwj

]
⎫⎬
⎭= 0, (8.71)

whereas the approximation to the advection-diffusion equation is

K∑
k=1

⎧⎨
⎩
∑
i,j

φk
i,j

[(∇2Φ,�i�j

)
N

− Φ̇k
i,j J

k
i,jwiwj − (q · ∇Φ,�i�j

)
N

]
⎫⎬
⎭= 0 (8.72)

with the advection term given by (7.77).
The last thing for us to do is to use the fact that the φk

i,j are independent except
along element edges and at element corners to get the pointwise equations that the
solution unknowns must satisfy. Let’s focus on finding those equations for (8.70).
The equations for (8.71) and (8.72) will follow directly.

To get the pointwise equations for the approximation (8.70), the first thing to
notice is that the terms within the square brackets are simply the single domain
approximation applied to the element ek . At points interior to the elements, the
φk

i,j are independent, which means that the approximation in an element is just the
single domain approximation applied to it. Along edges, the approximation is the
sum of the single domain values from the two contributing elements, just as we saw
in the one dimensional spectral element method. Finally, at corners, all elements
that share the point contribute to the sum. It is not as easy to write the summations
explicitly as it was in one space dimension, but we will see that it is relatively easy
to implement.

8.3.1 How to Implement the Spectral Element Method

The approximations (8.70)–(8.72) show that the spectral element method has local
operations, gathered in the brackets, and global operations, gathered in the braces,
so we will organize the algorithms as we did in one space dimension as local and
global. The local operations are the single domain approximations that we have

332 8 Spectral Element Methods

already developed for quadrilateral domains. The global operations tie the local ap-
proximations together. The two-level form of the approximations shows that we can
form a global framework that is essentially independent of the equations that we
want to solve; We can compute the spectral approximation of the potential equation,
the diffusion equation and the advection-diffusion equation with the same frame-
work. Likewise, we have already developed the local operations for potentials, dif-
fusion and advection-diffusion.

We will describe how to implement the approximation for the Dirichlet problem
for the potential equation, (8.54) in detail. The implementation of Neumann bound-
ary conditions and the time dependent problems are just extensions that we will pose
as exercises.

8.3.1.1 The Potential Class

We organize the solution of the potential equation in a class, which we show in
Algorithm 128 (SEMPotentialClass). Notice that the class is just an extension of
the single domain class that we developed in Sect. 7.1.2. Since we now require
that the polynomial order be the same in each element and in each direction within
an element to guarantee most easily that the approximation is conforming, we still
only need one instance of Nodal2DStorage, which we denote by the variable spA.
However, now that there are multiple domains, the mesh will now store the geometry
and mapping information with its elements. The mesh also stores the connectivity.
Finally, we will use a global scheme for the solution and source terms to make it
easy to use the Conjugate Gradient solver.

Algorithm 128: SEMPotentialClass: A Class Definition for the Spectral Ele-
ment Approximation of the Potential Problem

Class SEMPotentialClass
Uses Algorithms:

Algorithm 63 (Nodal2DStorage)
Algorithm 101 (MappedGeometryClass)
Algorithm 107 (MappedLaplacian); Algorithm 126 (QuadMesh)

Data:
spA ; // Of type Nodal2DStorage
mesh ; // Of type QuadMesh

{Φi,j,k}N,N;K
i,j=0;k=1 ; // Solution

{si,j,k}N,N;K
i,j=0;k=1 ; // Source

Procedures:
Construct(N,meshFile); // Algorithm 129

MappedLaplacian({Ui,j,k}Ni,j=0,geom); // Algorithm 107

MatrixAction({Uij }Ni,j=0); // Algorithm 133

End Class SEMPotentialClass

8 Spectral Element Methods 333

Algorithm 129: SEMPotentialClass:Construct: Constructor for the Spectral
Element Approximation of the Potential Problem

Procedure Construct
Input: N , meshFile
Uses Algorithms:

Algorithm 25 (LegendreGaussLobattoNodesAndWeights)
Algorithm 37 (PolynomialDerivativeMatrix)
Algorithm 127 (QuadMesh:Construct)

this.spA.N ← N ; this.spA.M ← N{
this.spA.{ξi}Ni=0, this.spA.

{
w

(ξ)
i

}N
i=0

}← LegendreGaussLobattoNodesAndWeights(N)

this.spA.
{
D

ξ
ij

}N
i,j=0 ← PolynomialDerivativeMatrix(this.spA.{ξi}Ni=0)

Copy arrays to η direction. . .
mesh.Construct(spA,meshFile)
End Procedure Construct

We must implement three procedures to compute the potential approximation.
The constructor, Algorithm 129 (SEMPotentialClass:Construct), computes the spa-
tial approximation array. One simplification here is that the node, weight and deriv-
ative matrix arrays are the same in both directions, so they need to be computed
only once. The other action the constructor must take is to construct the mesh from
a mesh file using Algorithm 127 (QuadMesh:Construct). We have already imple-
mented the second procedure, MappedLaplacian in Algorithm 107 (MappedNodal-
GalerkinLaplacian). This is the local operation that computes the Laplacian term
in the brackets in (8.70). The procedure works only on the section of the solu-
tion array for a given element, ek . The geometry object that we pass with the ar-
ray will be the geometry for the element. The final procedure computes the matrix
action to be used with an iterative solver. The matrix action includes global op-
erations, so we will wait to show what it does until after we develop the global
procedures.

8.3.1.2 Global Procedures

As in one space dimension, we implement three global operations: Mask, UnMask
and GlobalSum. The Mask operation will set duplicate node values in an array to
zero so that they will have no contribution to the iterative solver. The UnMask oper-
ation will distribute the values back to the duplicate nodes. The global sum will add
the contributions together at duplicate nodes, performing the operation in braces in
(8.70). The procedures for all three operations have a similar structure. They first do
their operations for each element side, then for each corner node.

We use the global Mask operation to set array values on duplicate nodes and
boundary nodes to zero. We show an implementation in Algorithm 130 (SEMMask).
The first section of the procedure loops over the array of edges and distinguishes
between boundary an internal edges. Dirichlet conditions require the values to be

334 8 Spectral Element Methods

Algorithm 130: SEMMask: Mask Edges and Corners for the Spectral Element
Method

Procedure Mask
Input: mesh, {ai,j,k}N;K

i,j=0;k=1

Uses Algorithms:
Algorithm 126 (QuadMesh)

for j = 1 to mesh.Nedge do
if mesh.edgesj .type = BOUNDARY then

e ← mesh.edgesj .elementIDs1
s ← mesh.edgesj .elementSides1

else
e ← mesh.edgesj .elementIDs2
s ← |mesh.edgesj .elementSides2|

end

{ai,j,k}N;K
i,j=0;k=1 ← MaskSide(e, s,mesh, {ai,j,k}N;K

i,j=0;k=1)

end
for n = 1 to mesh.Nnode do

pElements ⇒ mesh.nodesn.nodeConnectivity
pElements.current ⇒ pElements.head
if mesh.nodesn.type
= BOUNDARY then pElements.MoveToNext()
while pElements.current
⇒ NULL do

d ← pElements.GetCurrentData()

i ← d.i; j ← d.j ; id ← d.id
ai,j,id ← 0
pElements.MoveToNext()

end
end

return {ai,j,k}N;K
i,j=0;k=1

End Procedure Mask

Procedure MaskSide
Input: id, side,mesh, {ai,j,k}N;K

i,j=0;k=1

if side = 2 or side = 4 then
i ← mesh.sideMapside
for j = 1 to mesh.spA.N − 1 do

ai,j,id ← 0
end

else
j ← mesh.sideMapside
for i = 1 to mesh.spA.N − 1 do

ai,j,id ← 0
end

end

return {ai,j,k}N;K
i,j=0;k=1

End Procedure MaskSide

masked along boundary edges. So if the edge is a boundary edge, we mask the
primary (and only), index 1, side. Otherwise, if the edge is on the interior, we mask
the secondary (index 2) element side. We use the sideMap array to select the correct

8 Spectral Element Methods 335

local index when masking the secondary side in the MaskSide procedure. We apply
the same philosophy to the corner nodes. For each corner node, we select the first
contributing element to be the primary. If the corner node is on a physical boundary,
we mask it to implement the Dirichlet condition. Otherwise, we mask the array entry
for the nodes from each of the remaining elements that share the corner node.

The global UnMask operation, which we implement in Algorithm 131 (SEMUn-
mask), undoes the action of the Mask operation. It copies the data from the primary
node to the secondary nodes. Again, the structure of the procedure is the same as
SEMMask. However, we must account for the fact that the indices along the con-
tributing sides do not have to increase in the same direction. In the implementation
that we show here, we copy the values from the primary side into a temporary array
to make the operations as clear as possible. We then use the edge’s start and inc
values to copy the edge values to the correct location for the secondary side in the
global array.

The final global operation is the global summation, which we implement in Algo-
rithm 132 (SEMGlobalSum). The global summation takes values from all contribut-
ing nodes, adds them together, and then distributes them back. Like the SEMUnmask
procedure, the global summation must account for the fact that the element edges
do not have to have indices that vary in the same direction. To be clear, we create
two temporary arrays that store the summed values in the orders needed by the two
sides. Then we simply copy those two arrays to their contributing sides.

8.3.1.3 Procedures for the Iterative Solver

Now that we have implemented the global operations, we implement the Matrix-
Action and Residual procedures that we need to use the Conjugate Gradient algo-
rithm, Algorithm 80 (PreconditionedConjugateGradientSolve), to solve the system
of equations. Algorithm 133 (SEMPotentialClass:MatrixAction) shows the matrix
action. It first unmasks the solution values so that the Laplace approximations can
be computed locally in a loop over each of the elements. Once the local actions are
computed they are summed globally and then masked. To ensure that the procedure
produces no side effects, it re-masks the input array. The procedure Residual that
we show in Algorithm 134 is similar to the MatrixAction procedure and computes
the global residual.

Since we use the Conjugate Gradient method to solve the linear system for the
potentials, we should mention preconditioners for the spectral element method. The
similarity of the spectral element method to the finite element method allows us
to generalize the finite element preconditioner that we have already implemented
to multiple domains. We showed in Sect. 7.1.3 how to modify the finite element
preconditioner to work on a transformed domain that now forms one of our el-
ements. If we use an iterative solver for the preconditioner, like the SSORSweep
procedure that we presented in Algorithm 79, then we can generalize the finite ele-
ment approximation to the multidomain discretization in the same way that we did
the spectral method. That is, we compute the local preconditioners, and perform the

336 8 Spectral Element Methods

Algorithm 131: SEMUnMask: UnMask for the Spectral Element Method

Procedure UnMask
Input: mesh, {ai,j,k}N;K

i,j=0;k=1
Uses Algorithms:

Algorithm 126 (QuadMesh)
for j = 1 to mesh.Nedge do

if mesh.edgesj .type
= BOUNDARY then

{ai,j,k}N;K
i,j=0;k=1 ← UnMaskSide(mesh.edgesj ,mesh, {ai,j,k}N;K

i,j=0;k=1)

end
end
for n = 1 to mesh.Nnodes do

if mesh.nodesn.type
= BOUNDARY then
pElements ⇒ mesh.nodesn.nodeConnectivity
pElements.current ⇒ pElements.head
d ← pElements.GetCurrentData()

i1 ← d.i; j1 ← d.j ; id1 ← d.id
pElements.MoveToNext()
while pElements.current
⇒ NULL do

d ← pElements.GetCurrentData()

i ← d.i; j ← d.j ; id ← d.id
ai,j,id ← ai1,j1,id1

pElements.MoveToNext()
end

end
end

return {ai,j,k}N;K
i,j=0;k=1

End Procedure UnMask

Procedure UnMaskSide
Input: edge,mesh, {ai,j,k}N;K

i,j=0;k=1
id ← edge.elementIDs1; side ← edge.elementSides1

if side = 2 or side = 4 then
i ← mesh.sideMapside
for j = 1 to mesh.spA.N − 1 do

tmpj ← ai,j,id

end
else

j ← mesh.sideMapside
for i = 1 to mesh.spA.N − 1 do

tmpi ← ai,j,id

end
end
id ← edge.elementIDs2; side ← |edge.elementSides2|
if side = 2 or side = 4 then

i ← mesh.sideMapside ; j ← edge.start
for n = 1 to mesh.spA.N − 1 do

ai,j,id ← tmpn

j ← j + edge.inc
end

else
j ← mesh.sideMapside ; i ← edge.start
for n = 1 to mesh.spA.N − 1 do

ai,j,id ← tmpn

i ← i + edge.inc
end

end

return {ai,j,k}N;K
i,j=0;k=1

End Procedure UnMaskSide

8 Spectral Element Methods 337

Algorithm 132: SEMGlobalSum: Sum Edge Contributions for the Two-
Dimensional Spectral Element Method

Procedure GlobalSum
Input: mesh, {ai,j,k}N;K

i,j=0;k=1
Uses Algorithms:

Algorithm 126 (QuadMesh)

for j = 1 to mesh.Nedge do
if mesh.edgesj .type
= BOUNDARY then

{ai,j,k}N;K
i,j=0;k=1 ← SumSide(mesh.edgesj ,mesh, {ai,j,k}N;K

i,j=0;k=1)

end
end
for n = 1 to mesh.Nnode do

if mesh.nodesn.type
= BOUNDARY then
pElements ⇒ mesh.nodesn.nodeConnectivity
pElements.current ⇒ pElements.head
sum = 0
while pElements.current
⇒ NULL do

d ← pElements.GetCurrentData()

i ← d.i; j ← d.j ; id ← d.id
sum ← sum + ai,j,id
pElements.MoveToNext()

end
pElements.current ⇒ pElements.head
while pElements.current
⇒ NULL do

d ← pElements.GetCurrentData()

i ← d.i; j ← d.j ; id ← d.id
ai,j,id ← sum
pElements.MoveToNext()

end
end

end

return {ai,j,k}N;K
i,j=0;k=1

End Procedure GlobalSum

masks and global sums on those to get the global action and residuals. This is not
the way we would implement a finite element method from scratch, but it fits eas-
ily into the framework that we have developed so far. One problem with the finite
element preconditioner is that as the meshes get large its convergence rate slows
down, too. More sophisticated and complex spectral element preconditioners have
been developed over the years. For those we point to Chap. 6 of the book [8], which
describes several strategies including alternating Schwartz and Schur complement
techniques.

8.3.1.4 The Driver

The driver to solve the potential problem with the spectral element method has
the same structure as the driver on the square, Algorithm 76 (CollocationPoten-

338 8 Spectral Element Methods

Algorithm 132: SEMGlobalSum: Sum Edge Contributions for the Two-
Dimensional Spectral Element Method (continued)

Procedure SumSide
Input: edge,mesh, {ai,j,k}N;K

i,j=0;k=1

for k = 1 to 2 do
id ← edge.elementIDsk ; side ← |edge.elementSidesk |
if side = 2 or side = 4 then

i ← mesh.sideMapside

for j = 1 to mesh.spA.N − 1 do
tmpj,k ← ai,j,id

end
else

j ← mesh.sideMapside

for i = 1 to mesh.spA.N − 1 do
tmpi,k ← ai,j,id

end
end

end
n ← edge.start
for j = 1 to mesh.spA.N − 1 do

sum ← tmpj,1 + tmpj,2
tmpj,1 ← sum; tmpn,2 ← sum
n ← n + edge.inc

end
for k = 1 to 2 do

id ← edge.elementIDsk ; side ← |edge.elementSidesk |
if side = 2 or side = 4 then

i ← mesh.sideMapside
for j = 1 to mesh.spA.N − 1 do

ai,j,id ← tmpj,k

end
else

j ← mesh.sideMapside
for i = 1 to mesh.spA.N − 1 do

ai,j,id ← tmpi,k

end
end

end

return {ai,j,k}N;K
i,j=0;k=1

End Procedure SumSide

tialDriver) and the quadrilateral, Algorithm 108 (MappedCollocationDriver). As
before, a SourceValue function must be provided to compute the source, s. The
boundary mask array is not needed because we have assumed only Dirichlet bound-
ary conditions and have incorporated them into the global mask and unmask func-
tions themselves. We do need a routine to set the boundary values. For that, we
present an implementation in Algorithm 135 (SetBoundaryValues). It assumes that
the actual function that provides the solution value as a function of x, y (and t for
time dependent problems) is provided as input.

8 Spectral Element Methods 339

Algorithm 133: SEMPotentialClass:MatrixAction: Matrix Action for the Spec-
tral Element Approximation to the Potential Equation

Procedure MatrixAction
Uses Algorithms:

Algorithm 126 (QuadMesh)
Algorithm 107 (MappedLaplacian)

Input:
{
Φi,j,k

}N;K
i,j=0;k=1{

Φi,j,k

}N;K
i,j=0;k=1 ← UnMask

(
this.mesh,

{
Φi,j,k

}N;K
i,j=0;k=1

)
for k = 1 to this.mesh.K do{

actioni,j,k

}N,M

i,j=0 ← MappedLaplacian
(
this.mesh.elementsk.geom,

{
Φi,j,k

}N,M

i,j=0

)
end{
actioni,j,k

}N;K
i,j=0;k=1 ← GlobalSum

(
this.mesh,

{
actioni,j,k

}N;K
i,j=0;k=1

)
{
actioni,j,k

}N;K
i,j=0;k=1 ← Mask

(
this.mesh,

{
actioni,j,k

}N;K
i,j=0;k=1

)
{
Φi,j,k

}N;K
i,j=0;k=1 ← Mask

(
this.mesh,

{
Φi,j,k

}N;K
i,j=0;k=1

)
return

{
actioni,j,k

}N;K
i,j=0;k=1

End Procedure MatrixAction

Algorithm 134: Residual: Residual Computation for the Spectral Element Ap-
proximation to the Potential Equation

Procedure Residual
Input: pA ; // Of type SEMPotentialClass
Uses Algorithms:

Algorithm 128 (SEMPotentialClass)
Algorithm 107 (MappedLaplacian)

pA.
{
Φi,j,k

}N;K
i,j=0;k=1 ← UnMask

(
pA.mesh,pA.

{
Φi,j,k

}N;K
i,j=0;k=1

)
for k = 1 to mesh.K do{

ri,j,k
}N,M

i,j=0 ← MappedLaplacian
(
pA.mesh.elementsk.geom,pA.

{
Φi,j,k

}N,M

i,j=0

)
for j = 0 to pA.spA.N do

for i = 0 to pA.spA.M do
ri,j,k ← pA.spA.w

(ξ)
i ∗ pA.spA.w

(η)
j ∗ pA.sourcei,j,k ∗

pA.mesh.elementsk.geom.Ji,j − ri,j,k
end

end
end{
ri,j,k

}N;K
i,j=0;k=1 ← GlobalSum

(
pA.mesh,

{
ri,j,k

}N;K
i,j=0;k=1

)
{
ri,j,k

}N;K
i,j=0;k=1 ← Mask

(
pA.mesh,

{
ri,j,k

}N;K
i,j=0;k=1

)
pA.

{
Φi,j,k

}N;K
i,j=0;k=1 ← Mask

(
pA.mesh,pA.

{
Φi,j,k

}N;K
i,j=0;k=1

)
return

{
ri,j,k

}N;K
i,j=0;k=1

End Procedure Residual

340 8 Spectral Element Methods

Algorithm 135: SetBoundaryValues: Set Dirichlet Boundary Conditions for the
Two-Dimensional Spectral Element Method

Procedure SEMSetDirichletBoundaries
Input: mesh,

{
Φi,j,k

}N;K
i,j=0;k=1 , t,BCFunction

Uses Algorithms:
Algorithm 126 (QuadMesh)

for k = 1 to mesh.Nedge do
if mesh.edgesj .type = BOUNDARY then

id ← mesh.edgesk.elementIDs1; side ← mesh.edgesk.elementSides1
if side = 2 or side = 4 then

i ← mesh.sideMapside
for j = 1 to mesh.spA.N − 1 do

x ← mesh.elementsid.geom.xi,j

y ← mesh.elementsid.geom.yi,j

Φi,j,id ← BCFunction(x, y, t)

end
else

j ← mesh.sideMapside
for i = 1 to mesh.spA.N − 1 do

x ← mesh.elementsid.geom.xi,j

y ← mesh.elementsid.geom.yi,j

Φi,j,id ← BCFunction(x, y, t)

end
end

end
end
for n = 1 to mesh.Nnode do

if mesh.nodesn.type = BOUNDARY then
pElements ⇒ mesh.nodesn.nodeConnectivity
x ← mesh.nodesn.x; y ← mesh.nodesn.y

Φb ← BCFunction(x, y, t)

pElements.current ⇒ pElements.head
while pElements.current
⇒ NULL do

d ← pElements.GetCurrentData()

i ← d.i; j ← d.j ; id ← d.id
Φi,j,id ← Φb

pElements.MoveToNext()
end

end
end

return
{
Φi,j,k

}N;K
i,j=0;k=1

End Procedure SEMSetDirichletBoundaries

8.3.2 Benchmark Solution: Steady Temperatures
in a Long Cylindrical Rod

The benchmark problem for the spectral element method is to compute the steady
temperature in a long cylindrical rod that is heated uniformly along its length. The
simple physical model reduces to the solution of the potential equation on a circular

8 Spectral Element Methods 341

Fig. 8.16 Spectral element solution of temperatures on a disk

domain with a prescribed temperature around its perimeter. The model problem
has an exact solution known as the Poisson Integral against which we can compare
the spectral element solution. The steady temperature as a function of the polar
coordinates (r, θ) on a disk of radius R that is kept at a temperature ϕ(R, θ) = F(θ)

along the outer boundary is

ϕ(r, θ) = R2 − r2

2π

∫ π

−π

F (s)

R2 − 2rR cos(s − θ) + r2
ds. (8.73)

We solve for the temperature in the disk on the mesh shown in Fig. 8.15 with
N = 8 that is heated and cooled along the outer edge according to

F(θ) = e−4(θ−π/2)2 − e−4(θ+π/2)2
.

We show a contour plot of the computed solution in Fig. 8.16. We make a direct
comparison to the analytical solution in Fig. 8.17, which shows the computed and
exact solutions along the line x = 0.

8.4 The Discontinuous Galerkin Spectral Element Method

Finally, we derive the discontinuous Galerkin spectral element approximation of the
system of conservation laws in two dimensions. We will see that the discontinuous
approximation will give us simpler algorithms to implement than what we had in

342 8 Spectral Element Methods

Fig. 8.17 Spectral element solution of temperatures on a disk. Cut along x = 0

the previous section, and that we have already developed all the machinery that we
need to implement the method.

Our starting point is the two dimension conservation law (7.89), which we repro-
duce here,

qt + fx + gy = 0, (8.74)

and which we convert to the weak form
∫∫

Ω

φ
(
qt + fx + gy

)
dxdy = 0. (8.75)

We get the equation that the solution satisfies on an element when we break the
integral into the sum of subintegrals over the elements

K∑
k=1

∫∫
ek

φ
(
qt + fx + gy

)
dxdy = 0 (8.76)

and examine each subintegral individually

∫∫
ek

φ
(
qt + fx + gy

)
dxdy = 0. (8.77)

Since the element ek is a quadrilateral, we have already derived the nodal discontin-
uous Galerkin approximation for (8.77) in Sect. 7.4, specifically, (7.99).

8 Spectral Element Methods 343

In the discontinuous Galerkin approximation, we couple the approximation to the
boundary and, in the spectral element version, to neighboring elements through the
boundary fluxes using the Riemann solver. If the boundary of the element is not on a
physical boundary, then the external state is simply the solution on the neighboring
element.

8.4.1 How to Implement the Discontinuous Galerkin Spectral
Element Method

We see that the discontinuous Galerkin spectral element approximation is just the
single domain mapped quadrilateral approximation applied to each element individ-
ually, plus coupling of the fluxes at the boundaries. This suggests that to implement
the approximation we can reuse the algorithms of Sect. 7.4.2 for the element local
operations. To compute the fluxes at the element boundaries, we will use the infor-
mation stored in the mesh data structure to tell us which common nodes we need to
use to compute the element boundary fluxes. As a spectral element method, we can
arrange the data as we did in Sect. 8.3.1.

Our basic data structure will be the DGSEMClass that we present in Algo-
rithm 136. It extends the single domain MappedNodalDG2DClass (Algorithm 111)
to manage multiple domains. We assume a conforming mesh, as we did with the
spectral element approximation, so there is still only one instance of the structure
that stores the Gauss quadrature nodes, weights and the derivative matrices. Instead
of a single mapping, each element has its own, so we replace the geometry ob-
ject in the MappedNodalDG2DClass with the mesh object. Finally, we must now
have an array of DGSolutionStorage structures to store the solution on each ele-
ment. The structure of the new class is basically the same as the SEMPotentialClass
of Algorithm 128, so the constructor for the class is the same as Algorithm 129
except for one change. We use the Gauss, not the Gauss-Lobatto, points for the

Algorithm 136: DGSEMClass: A Discontinuous Galerkin Class Definition

Class DGSEMClass
Uses Algorithms:

Algorithm 89 (NodalDG2DStorage)
Algorithm 110 (DGSolutionStorage)
Algorithm 126 (QuadMesh)

Data:
spA ; // Of type NodalDG2DStorage
mesh ; // Of type QuadMesh

{dGS}Kk=1 ; // Of type DGSolutionStorage

Procedures:
Construct(N,meshFile); // Algorithm 129, modified. See text.
TimeDerivative(t); // Algorithm 138

End Class DGSEMClass

344 8 Spectral Element Methods

nodes in the discontinuous Galerkin approximation. Therefore, the constructor must
use Algorithm 23 (LegendreGaussNodesAndWeights) to compute the nodes and
weights.

The time derivative procedure for the spectral element approximation will follow
Algorithm 115 (DG2DTimeDerivative) except that it must do its work on all of the
elements. Since the boundary solutions need to be available before the boundary
fluxes are computed, we interpolate all of the solutions to the faces first. We then
compute the boundary fluxes for each of the edges. Finally, the local time derivatives
need to be computed.

Before we present the time derivative procedure, however, we must develop a
procedure to compute the boundary fluxes. Fortunately, all the information that we
need is available in the QuadMesh structure. Recall that an edge stores the id’s of
two neighboring elements and their associated sides. (See Algorithm 125 (Edge-
Class).) The first one we call the primary element and the other the secondary. The
edge also stores how the index of the secondary side varies with the index of the
primary. Therefore, to compute the element boundary fluxes, we can loop through
each of the edges, and for each, get the solutions and normal to feed to the Rie-
mann solver to compute the flux. Once we compute the normal flux, we compute
the contravariant flux, e.g., by (7.102). Algorithm 137 (EdgeFluxes) implements this
procedure. Note that the outward normals for the two elements point in opposite di-
rections. Therefore the edge flux must be negated to get the contravariant flux for
the secondary side. If the edge is on a physical boundary, then the flux is computed
just as it was for the single domain approximation.

Now that we have the edge flux procedure, we can implement the global time
derivative procedure shown in Algorithm 138 (SEMGlobalTimeDerivative).

Unlike the continuous Galerkin spectral element method, we do not have to per-
form any operations on the corner nodes with the discontinuous version. Recall that
our use of the Gauss, rather than Gauss-Lobatto points places the solution unknowns
entirely within an element. (Cf. Fig. 5.7.) The boundary flux values are then located
at the Gauss points along an edge. The corner nodes are not part of the approxi-
mation, thereby simplifying the implementation. It is for this simplification and for
the increased quadrature precision that we have chosen the Gauss over the Gauss-
Lobatto points for the location of the nodes.

To integrate in time, we will still use an explicit time integrator. The only differ-
ence from the single domain implementation is the need to loop over each element.
See Sect. 8.1.4.

8.4.2 Benchmark Solution: Propagation of a Circular Wave
in a Circular Domain

In Sect. 5.4.4 we computed the solution of the wave equation in a square domain
with initial conditions that create an outward propagating circular sound wave. In
this section, we will re-do the problem with the mesh shown in Fig. 8.15. For this
mesh, we present solutions with w = 0.15.

8 Spectral Element Methods 345

Algorithm 137: EdgeFluxes: Compute the Riemann Problem Along Mesh
Edges

Procedure EdgeFluxes
Input: t

Input: edge ; // Of type Edge

Input: {elements}Kk=1 ; // Of type QuadElement

Input: {dGS}Kk=1; // Of type DGSolutionStorage
Uses Algorithms:

Algorithm 125 (EdgeClass)
Algorithm 110 (DGSolutionStorage)
Algorithm 124 (QuadElementClass)

if edge.type = INTERIOR then
k ← edge.start − edge.inc
for j = 0 to N do

e1 ← edge.elementIDs1
s1 ← edge.elementSides1
e2 ← edge.elementIDs2
s2 ← |edge.elementSides2|
{Fn}nEqn

n=1 ←
RiemannSolver(dGSe1.{Qbj,n,s1}nEqn

n=1 ,dGSe2.{Qbk,n,s2}nEqn
n=1 , elementse1.geom.n̂s1

j)

for n = 1 to nEqn do
dGSe1.F

∗
j,n,s1 ← Fn ∗ elementse1.geom.scals1

j

dGSe2.F
∗
k,n,s2 ← −Fn ∗ elementse2.geom.scals2

k

end
k ← k + edge.inc

end
else

e1 ← edge.elementIDs1
s1 ← edge.elementSides1
for j = 0 to N do{

Qext
n

}nEqn
n=1 ←

ExternalState(dGSe1.{Qbj,n,s1}nEqn
n=1 , elementse1.geom.xs1

j , elementse1.geom.ys1
j , t)

dGSe1.
{
F ∗

j,n,s1

}nEqn
n=1 ← elementse1.geom.scals1

j ∗
RiemannSolver

(
dGSe1.{Qbj,n,s1}nEqn

n=1 ,
{
Qext

n

}nEqn
n=1 , elementse1.geom.n̂s1

j

)
end

end
return {dGS}Kk=1
End Procedure EdgeFluxes

We present solutions for the propagating circular wave at time t = 1.25 in
Figs. 8.18 and 8.19. The solutions were computed with N = 20 and a time step of
Δt = 1 × 10−3. To present the solutions in Fig. 8.18, we interpolated the solution in
each element to 30 points in each direction using Algorithm 35 (2DCoarseToFineIn-
terpolation). Figure 8.18 shows contours of the pressure, which illustrates that the
circular shape of the wave is retained. Figure 8.19 shows the comparison of the exact
and computed solutions along the line y = 0.

346 8 Spectral Element Methods

Algorithm 138: DGSEMClass:TimeDerivative: Compute the Time Derivative
for the Discontinuous Galerkin Approximation

Procedure TimeDerivative
Input: t

Uses Algorithms:
Algorithm 112 (DG2DProlongToFaces)
Algorithm 137 (EdgeFluxes)
Algorithm 114 (MappedDGSystemTimeDerivative)

for k = 1 to this.mesh.K do
this.dGSk ← DG2DProlongToFaces(this.spA, this.elementsk.geom, this.dGSk)

end
for i = 1 to this.mesh.Nedge do

this. {dGS}Kk=1 ←
EdgeFluxes(t, this.mesh.edgesi , this.mesh. {elements}Kk=1 , this. {dGS}Kk=1)

end
for k = 1 to this.mesh.K do

this.dGSk ←
MappedDG2DTimeDerivative(this.spA, this.elementsk.geom, this.dGSk)

end
End Procedure TimeDerivative

Fig. 8.18 Computed pressure contours at time t = 1.25 for a propagating circular wave when
N = 20 and Δt = 1 × 10−3. The solutions were interpolated to 30 uniformly spaced points in each
direction on each element. Heavy lines show the element boundaries

8 Spectral Element Methods 347

Fig. 8.19 Comparison of the computed circular wave pressure with the exact solution along the
line y = 0 at t = 1.25

8.4.3 Benchmark Solution: Transmission and Reflection
from a Material Interface

In the introduction to this chapter, we listed four reasons why we might want or
need to use a spectral element approximation instead of a single domain method.
In the previous benchmark, the reason was to avoid the coordinate singularity that
a cylindrical coordinate mesh would produce. In this benchmark, we have two rea-
sons for using a spectral element method. The first is that we can use the method
when there are singularities in the coefficients. The second is to increase effi-
ciency by using smaller elements of lower order. With this benchmark solution we
explore a unique feature of the discontinuous Galerkin spectral element method,
namely its ability to approximate discontinuous solutions at element interfaces ac-
curately.

When a wave propagates across an interface where the wave speed abruptly
changes, part of the wave is transmitted and part of it is reflected. The phenomenon
is familiar in daily life. In electrodynamics, we study the reflection and transmis-
sion of electromagnetic waves at dielectric interfaces. In ultrasound tests, ultrasonic
waves reflect as they propagate through different tissues.

To extend the wave propagation model that we have used so far to include prop-
agation through multiple materials, we now allow the density of the material, ρ,
and the wave speed, c, to vary as a function of location. With these changes, the

348 8 Spectral Element Methods

Fig. 8.20 Model for plane
wave reflection at a material
interface

conservation law form of the wave equation is

⎡
⎢⎣

p

u

v

⎤
⎥⎦

t

+
⎡
⎢⎣

ρc2u

p/ρ

0

⎤
⎥⎦

x

+
⎡
⎢⎣

ρc2v

0

p/ρ

⎤
⎥⎦

y

= 0. (8.78)

As our benchmark problem, we solve for the transmission and reflection of a
plane wave at a plane interface between two materials that have uniform properties
within each, as we show in Fig. 8.20.

The problem has an analytic solution against which we can compare our com-
puted solutions. It is the kind of problem that is solved in electrodynamics texts
for scattering at an interface between two dielectrics. Let ψ(ξ) be a waveform with
maximum value of one, and a be an amplitude. Then each of the incident, reflected
and transmitted plane waves is of the form

q = aψ (k · x − ω (t − t0))

⎡
⎢⎢⎣

1
kx

ρc

ky

ρc

⎤
⎥⎥⎦ . (8.79)

To define a particular wave, we simply replace k by the appropriate wavevector and
a by the appropriate amplitude. The wavevectors and amplitudes of the reflected and
transmitted waves depend on the incident wave and must satisfy the correct jump
and phase matching conditions at the interface. Let us define the incident wavevector
to be

ki = ω

cL

(
ki
x x̂ + ki

y ŷ
)
, (8.80)

8 Spectral Element Methods 349

where (ki
x)

2 + (ki
y)

2 = 1. Then the reflected and transmitted wavevectors are

kr = ω

cL

(−ki
x x̂ + ki

y ŷ
)
,

kT = ω

cR

⎡
⎣
√

1 −
(

cR

cL

)2 (
ki
y

)2
x̂ + cR

cL

ki
y ŷ

⎤
⎦ .

(8.81)

The corresponding amplitudes are

ar

ai
= 1

J

(
ρRcRkT

x /kT − ρLcLki
x/ki

)
,

aT

ai
= 1

J

(
ρLcLkr

x/kr − ρRcLki
x/ki

)
,

(8.82)

where

J = −ρRcRkT
x /kT + ρLcLkr

x/kr . (8.83)

To use the discontinuous Galerkin approximation, we must define the flux func-
tions and derive a Riemann solver. We get the flux functions from (8.78). To derive
the Riemann solver, remember that it computes the numerical flux F∗(qL,qR; n̂)

given two possibly different states, qL and qR , where left and right are defined ac-
cording to the normal direction n̂ = αx̂ + βŷ. To start, we construct the coefficient
matrix for the system

A =
⎡
⎣ 0 αρc2 βρc2

α/ρ 0 0
β/ρ 0 0

⎤
⎦ . (8.84)

The eigenvalues of this system remain the same as before, λ = ±c,0. What makes
the problem interesting now is that the characteristic variables have a jump discon-
tinuity when the wave speeds and the density jump across an interface. Instead of
requiring the characteristic variables to be continuous at an interface, we apply the
Rankine-Hugoniot condition, which says that the normal flux must be continuous.
For the wave equation, this means

ALqL − ARqR = 0, (8.85)

since A depends on both the density and the wave speed. Nevertheless, waves that
propagate to the right are evaluated from qL and waves that propagate to the left are
evaluated from qR , just as before. Under those constraints, a fair amount of algebra
shows that

F∗ (qL,qR; n̂)=

⎡
⎢⎢⎣

zR[c(p + ρc(nu + nyv))]L − zL[c(p − ρc(nxu + nyv))]R
nx{ zL

ρL
[p + ρc(nxu + nyv)]L + zR

ρR
[p − ρc(nxu + nyv)]R}

ny{ zL

ρL
[p + ρc(nxu + nyv)]L + zR

ρR
[p − ρc(nxu + nyv)]R}

⎤
⎥⎥⎦ ,

(8.86)

350 8 Spectral Element Methods

where

zL = ρLcL

ρLcL + ρRcR

, zR = ρRcR

ρLcL + ρRcR

. (8.87)

Note that when the densities and the wave speeds are the same on both sides, (8.86)
reduces to (5.164). If, in addition, the solution is the same on both sides, it reduces
to the normal flux Aq.

Since the discontinuous Galerkin spectral element approximation allows discon-
tinuities in the solution at element boundaries, it is a natural choice for problems
with material discontinuities, as long as we place element boundaries along mate-
rial boundaries. The only modifications that we need to add beyond the new flux
functions to replace the procedures in Algorithm 94 (WaveEquationFluxes) and the
new Riemann solver to replace Algorithm 88 (RiemannSolver), is to have the el-
ement class store the element’s material properties, ρ and c. When the Riemann
solver is called in Algorithm 137 (EdgeFluxes), it will be passed the material values
from the left and the right elements.

For the benchmark solution, we compute the reflection and transmission of a
plane wave through a vertical material interface, as pictured in Fig. 8.20. We take the
domain to be the square [−5,5] × [−5,5] with the material interface along x = 0.
We subdivide the domain into a structured mesh of 20 elements in each direction so
that each element has a length and width equal to 0.5. We present solutions for N =
10 in each element. For plotting they are interpolated to 12 uniformly spaced points
in each direction in each element. We integrate to t = 3.0 in time with Δt = 0.05.

We model the incident wave as an approximation of a typical ultrasound pulse,

ψ(t) = sin (ωt) e−t2/(ωσ)2
, (8.88)

where ω = 2πf and f is the frequency. For the envelope, σ 2 = −(MT)2/

(4 ln(10−4)) where M is the number of modes in the significant part of the enve-
lope and T = 1/f is the period. We present the specific parameters in Table 8.4.
With these parameters and the mesh, we resolve the sine waves with an average of
about seven points per wavelength. The external state and the initial condition are
set using the exact solution.

We show contours of the computed and exact values of p in Fig. 8.21. Clearly
visible are the incident wave, above on the left, the reflected wave below on the
left, and transmitted wave on the right. Notice that p itself is discontinuous at the
interface between the two materials as is allowed by the discontinuous Galerkin
method. We show p as a function of y in Figs. 8.22 and 8.23. We chose the locations
to be at the nearest Gauss points to x = −1 and x = 0.5.

Table 8.4 Parameters for
plane wave reflection problem Parameter M f ki

x ki
y ρL ρR cL cR t0

Value 4 2.5 0.5
√

3/2 1 0.4 1 0 3

8 Spectral Element Methods 351

Fig. 8.21 Comparison of computed (left) and exact (right) pressure contours at t = 3 for plane
wave reflection at a material interface. Dashed lines are negative contours. The contour levels
range from −0.8 to 0.8 with a step of 0.2. Note the discontinuity in the pressure at the material
discontinuity along x = 0. The overlay of squares shows the locations of the element boundaries

Fig. 8.22 Comparison of the computed and exact pressures along a vertical line to the left of the
material interface

Exercises

8.1 Show that if N and Δx are constants, then the time derivative, (8.22), is the
simple average of the approximations from either side.

352 8 Spectral Element Methods

Fig. 8.23 Comparison of the computed and exact pressures along a vertical line to the right of the
material interface

8.2 Derive the one dimensional spectral element method for the variable coefficient
problem,

ϕt = (ν(x)ϕx)x .

8.3 Derive the spectral element approximation to the advection-diffusion equation.

ϕt + aϕx = νϕxx.

If ν = 0 and N and Δx are constant, show that the time derivative at an element
interface point is the simple average of the spatial derivatives from either side.
Compare the approximation of the advection term to the discontinuous Galerkin
approximation for the same equation.

8.4 Derive the spectral element approximation to the equation

ϕxx = s

with Dirichlet boundary conditions. Develop the algorithms that you need to solve
the equations iteratively.

8.5 Derive the numerical flux, (8.49).

8.6 In general one would want to impose different boundary conditions along dif-
ferent boundaries of a physical problem. In Sect. 5.2.1, we did this by defining an

8 Spectral Element Methods 353

array that specified whether or not to mask a particular boundary. Apply the mask
idea to the spectral element approximation by assigning to each edge in the mesh a
mask variable that is set from information in the mesh file. Show how to modify Al-
gorithms 130–134 to incorporate both Dirichlet boundary conditions and radiation
conditions of the form ∇ϕ · n̂ = γ ϕ.

8.7 Design algorithms to integrate the spectral element approximation to the diffu-
sion equation, (8.71) using the trapezoidal rule for the time integrator. Implement
and test your algorithms and solve the problem with solution

ϕ(x, y, t) = 1

4t + 1
e− ((x−x0)2+(y−y0)2)

4t+1

on the disk.

8.8 The steady incompressible viscous flow in a circular pipe is known as Poiseuille
flow and is a special case of the flows computed in Problem 7.12. If the pipe has
radius R, then the axial velocity of the Poiseuille flow is given by

u(r) = −γ

4

(
R2 − r2).

1. Use the spectral element method to compute the Poiseuille flow and compare the
computed solutions to the exact for γ = −1.

2. Compute to spectral accuracy the volume flow rate Q defined by

Q =
∫

disk
udA

and compare to the exact analytical value

Qpipe = −πR4

8
γ.

8.9 Do Problem 7.13 with a spectral element mesh.

8.10 Develop and implement the algorithms for the spectral element approximation
to the advection-diffusion equation, (8.72) with the semi-implicit time integration of
Sect. 5.3.3. Solve the benchmark problem of Sect. 7.3.6 and compare the computa-
tion time between single and multidomain approximations for a given accuracy.

8.11 Modify Algorithm 137 (EdgeFluxes) to allow it to apply different boundary
conditions to different edges. (Cf. Problem 8.6.)

8.12 In Sect. 5.4.3 we saw that single domain wave propagation requires large order
polynomials to resolve the two main spatial scales, namely the size of the domain

354 8 Spectral Element Methods

Fig. 8.24 A Mesh topology
for scattering of an acoustic
wave off a circular cylinder

and the length scale of the propagating wave. A spectral element approximation
enables us to resolve both scales by subdividing the square into a mesh of smaller
square elements and keep the cost down by using lower order polynomials on the
elements. Redo the solution of the wave equation for both the planewave and cylin-
drical wave problems of Sect. 5.4.3 with multiple square elements. Compare the
cost to compute the solutions to a desired accuracy for several subdivisions of the
square.

8.13 In Sect. 7.4.3 we computed the scattering of an acoustic wave off a cylinder.
As we discussed in Problem 8.12, the differences in scales required us to compute
the solution with very high order polynomials, and with correspondingly small time
steps required by the explicit time differencing. A more efficient approach is to
use a spectral element approximation. Compute the scattering problem with a mesh
topology like that shown in Fig. 8.24 and compare the cost to the single domain
computation.

	Spectral Element Methods
	Spectral Element Methods in One Space Dimension
	The Continuous Galerkin Spectral Element Method
	How to Implement the Continuous Galerkin Spectral Element Method
	The Spectral Element Class
	Global Operations
	The Diffusion Approximation
	Side Operators and Residual Procedures
	Iterative Solver
	The Time Integration Procedure

	Benchmark Solution: Cooling of a Temperature Spot
	The Discontinuous Galerkin Spectral Element Method
	How to Implement the Discontinuous Galerkin Spectral Element Method
	The Elements
	The Mesh
	Time Integration

	Benchmark Solution: Wave Propagation and Reflection

	The Two-Dimensional Mesh and Its Specification
	How to Construct a Two-Dimensional Mesh
	Nodes
	Elements
	Edges
	The Mesh

	Benchmark Solution: A Spectral Element Mesh for a Disk

	The Spectral Element Method in Two Space Dimensions
	How to Implement the Spectral Element Method
	The Potential Class
	Global Procedures
	Procedures for the Iterative Solver
	The Driver

	Benchmark Solution: Steady Temperatures in a Long Cylindrical Rod

	The Discontinuous Galerkin Spectral Element Method
	How to Implement the Discontinuous Galerkin Spectral Element Method
	Benchmark Solution: Propagation of a Circular Wave in a Circular Domain
	Benchmark Solution: Transmission and Reflection from a Material Interface

	Exercises

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

