
Chapter 5
Spectral Approximation on the Square

It is simplest, though not always of much practical interest, to describe spectral
methods on the square domain (x, y) ∈ [−1,1] × [−1,1]. Once the ideas are un-
derstood for the simplest of geometries, they can be extended to solve PDEs on
more complex geometries by using mappings (Chap. 7), multidomain methods
(Chap. 8), or both. We will illustrate the development of spectral approximations
for three canonical problems in mathematical physics: The solution of steady po-
tentials, transport with and without diffusion, and wave propagation. These physical
processes are modeled by the Poisson equation on the square with Dirichlet bound-
ary conditions, the advection-diffusion equation, the scalar advection equation, and
systems of conservation laws.

5.1 Approximation of Functions in Multiple Space Dimensions

In multiple space dimensions, spectral methods use expansion functions that are
tensor products of the one dimensional functions that we used in preceding chap-
ters. Spectral methods have the same representations used to derive separation of
variables solutions of PDEs.

In two space dimensions, for example, the Fourier truncation approximation is

PNMf =
N/2∑

n=−N/2

M/2∑

m=−M/2

f̂nme−inxe−imy. (5.1)

We find the Fourier coefficients with the inner product

(u, v) =
∫ 2π

0

∫ 2π

0
u (x, y) v∗ (x, y) dxdy. (5.2)

That is,

f̂nm = 1

(2π)2

(
f, ei(nx+my)

)
. (5.3)

We define the Fourier interpolant in two space dimensions similarly,

INMf =
N/2∑

n=−N/2

M/2∑

m=M/2

f̃nm

c̄nc̄m

e−inxe−imy =
N−1∑

j=0

M−1∑

k=0

fj,khj (x)hk (y). (5.4)
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As in one space dimension, we compute the discrete coefficients from the two di-
mensional discrete inner product, which is now

(u, v)NM = (2π)2

NM

N−1∑

j=0

M−1∑

k=0

u
(
xj , yk

)
v∗ (xj , yk

)
, (5.5)

so that

f̃nm = 1

NM

N−1∑

j=0

M−1∑

k=0

f
(
xj , yk

)
e−inxj e−imyk . (5.6)

The tensor product form is convenient for computation, since we can evaluate
the double sum by a series of sums along each direction separately. If we define an
intermediate array

f̄n (yk) = 1

N

N−1∑

j=0

f
(
xj , yk

)
e−inxj , n = −N/2, . . . ,N/2 − 1; k = 0, . . . ,N − 1,

(5.7)
then

f̃nm = 1

M

M−1∑

k=0

f̄n (yk) e−imyk ,

n = −N/2, . . . ,N/2 − 1; m = −M/2, . . . ,M/2 − 1. (5.8)

Likewise, the polynomial truncation approximation is

PNMf (x) =
N∑

n=0

M∑

m=0

f̂nmφn (x)φm (y), (5.9)

where we compute the coefficients using the two dimensional weighted inner prod-
uct

f̂nm = (f,φnφm)w

‖φnφm‖2
w

=
∫ ∫

f (x, y)φn (x)φm (y)w(x)w(y)dxdy∫ ∫
φ2

n
(x)φ2

m
(y)w(x)w(y)dxdy

. (5.10)

We can choose to write the polynomial interpolant in two dimensions either in
terms of the discrete coefficients or the equivalent Lagrange form

INMf (x) =
N∑

n=0

M∑

m=0

f̃nmφn (x)φm (y) =
N∑

j=0

M∑

k=0

fj,k�j (x) �k (y). (5.11)

Like the Fourier coefficients, we compute the discrete polynomial coefficients
from a sequence of one dimensional transforms. For example, if we compute the
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sums in the x direction to get the intermediate values

f̄n (yk) = 1

‖φn‖2
N

N∑

j=0

fj,kφn(xj )wj , n = 0,1, . . . ,N; k = 0,1, . . . ,M,

(5.12)
the two dimensional discrete coefficients are

f̃nm = 1

‖φm‖2
M

M∑

k=0

f̄n (yk)φm (yk)wk, n = 0,1, . . . ,N; m = 0,1, . . . ,M.

(5.13)
The tensor product representation of the solution makes it easy to use different

approximations in different coordinate directions. If the problem is non-periodic in
the x direction and periodic in y, for example, we could write

PNMf (x, y) =
N∑

j=0

M∑

k=0

fj,k�j (x)hk (y). (5.14)

Tensor products also make mixed representations possible. For instance, the fol-
lowing polynomial is modal in the x direction and nodal in the y direction

PNMf (x, y) =
N/2∑

k=−N/2

M∑

j=0

f̂k,j e
ikx�j (y), (5.15)

where f̂k,j is the kth Fourier coefficient at the point yj .
In summary, the tensor product approximation of functions makes spectral meth-

ods efficient at high order because we can evaluate multidimensional approxima-
tions as sequences of one dimensional approximations. The ability to mix represen-
tations and basis functions makes spectral methods flexible.

5.2 Potential Problems on the Square

The first PDE that we will approximate on the square describes potential problems
such as the steady state temperature distribution with a heat source. It is the Poisson
equation with Dirichlet boundary conditions

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∇2ϕ = ϕxx + ϕyy = s(x, y), (x, y) ∈ (−1,1) × (−1,1) ,

ϕ (x,−1) = 0, −1 ≤ x ≤ 1,

ϕ (1, y) = 0, −1 ≤ y ≤ 1,

ϕ (x,1) = 0, −1 ≤ x ≤ 1,

ϕ (−1, y) = 0, −1 ≤ y ≤ 1.

(5.16)
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Although we have specified that the potential, ϕ, vanish along the boundaries, we
can specify any continuous potential distribution with only simple modifications to
the approximations.

5.2.1 The Collocation Approximation

The simplest spectral approximation to derive for the Poisson equation is the col-
location method. In two space dimensions, we lay a grid of points, (xi, yj ), on the
square and approximate the solution by a polynomial interpolant represented by the
solution values, Φi,j , at those points. Since the boundary conditions in (5.16) are
not periodic in either direction, Legendre or Chebyshev polynomial approximations
are appropriate. Since we want the solutions at the boundaries as well as in the
interior, we choose the grid points to be the tensor product of the Gauss-Lobatto
quadrature points (Sect. 1.11). For Chebyshev polynomial approximations, recall
that these points are simply

(
xi, yj

)=
(

− cos
iπ

N
,− cos

jπ

N

)
, i, j = 0,1, . . . ,N. (5.17)

For simplicity of exposition, we will assume that number of grid points is the same
in each direction, but this is not necessary in practice. Note that we have reversed
the order of the points so that the (x, y) values of the nodes increase as the indices
i, j increase. To get a Legendre approximation, we would use Algorithm 25 (Leg-
endreGaussLobattoNodesAndWeights) to compute the grid points.

To derive the collocation approximation, we approximate the potential ϕ(x, y)

and the forcing term s(x, y) by polynomials Φ and S written in the second, i.e.
Lagrange, form interpolant in (5.11),

Φ (x,y) =
N∑

i,j=0

Φi,j �i (x) �j (y),

S (x, y) =
N∑

i,j=0

s
(
xi, yj

)
�i (x) �j (y).

(5.18)

To find the equations for the grid point values Φi,j we require that Φ satisfies the
PDE at the interior points

(
∂2Φ

∂x2
+ ∂2Φ

∂x2
− S

)∣∣∣∣
xi ,yj

= 0, i, j = 1,2, . . . ,N − 1. (5.19)

The second derivative of the polynomial interpolant is

∂2Φ

∂x2
= ∂2

∂x2

N∑

k,l=0

Φk,l�k (x) �l (y) =
N∑

k,l=0

Φk,l�
′′
k (x) �l (y). (5.20)
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By construction (Sect. 1.12), �l(yj ) = δj,l . Therefore, when we evaluate the second
derivative at the grid points,

∂2Φ

∂x2

∣∣∣∣
i,j

=
N∑

k=0

Φk,j �
′′
k(xi) =

N∑

k=0

D
(2),x
i,k Φk,j , (5.21)

where D
(2),x
ik is the second order spectral derivative matrix (Sect. 3.4), which

we compute with Algorithm 38 (mthOrderPolynomialDerivativeMatrix). We de-
rive a similar formula for the second derivative in the y direction. Finally, since
S(xi, yj ) = s(xi, yj ) = si,j , the interior points satisfy the equations

N∑

k=0

D
(2),x
ik Φk,j +

N∑

k=0

D
(2),y
jk Φi,k = si,j , i, j = 1,2, . . . ,N − 1. (5.22)

We will also express (5.22) in shorthand notation,

∇2
NΦij = si,j . (5.23)

The left side of (5.23) is the action of the discrete spectral Laplace operator. The full
equation (5.23) is the spectral collocation approximation of the Poisson equation.

The values of Φi,j along the boundaries are all that remain for us to specify.
In the collocation method, as in a finite difference method, we set the approximate
solution along the boundary to be its boundary value, i.e,

Φi,j = 0,

{
i = 0,N; j = 0,1, . . . ,N,

j = 0,N; i = 0,1, . . . ,N.
(5.24)

Equations (5.22) and (5.24) form a linear system of equations that we must solve
for Φi,j .

We can easily extend the collocation method to variable coefficient equations like

∇ · (ν∇ϕ) = s. (5.25)

For instance, suppose that the diffusivity depends on the potential so that ν = ν(ϕ).
We approximate the components of the flux, f = (f, g) = (νϕx, νϕy) also by poly-
nomials of degree N . For instance

f
(
xi, yj

)= ν (ϕ)ϕx

∣∣
xi ,yj

≈ ν
(
Φi,j

) N∑

k=0

Dx
ikΦk,j = ν

(
Φi,j

)
Φx

(
xi, yj

)= Fi,j .

(5.26)
We compute Dx

ik = �′
k(xi) using Algorithm 37 (PolynomialDerivativeMatrix).

A similar formula holds for g = νϕy . Then the interior approximation for the collo-
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cation method is

F
i,j

= ν
(
Φi,j

) N∑

k=0

Dx
ikΦk,j , i, j = 0,1,2, . . . ,N,

G
i,j

= ν
(
Φi,j

) N∑

k=0

D
y
jkΦi,k, i, j = 0,1,2, . . . ,N,

N∑

k

Dx
ikFk,j

+
N∑

k

D
y
jkGi,k

= si,j , i, j = 1,2, . . . ,N − 1

(5.27)

and we apply the Dirichlet boundary conditions as in (5.24).
We can also apply the collocation method to problems with Neumann bound-

ary conditions. The formulation of (5.27) makes it easy to see how. Suppose we
replace the boundary condition along x = 1 in (5.16) by the Neumann condition
ϕx(1, y) = b(y). Then to compute the flux, F , along the boundary, we simply re-
place the derivative there by the boundary condition. We compute the interior fluxes
as we did for the Dirichlet problem. The system to be solved therefore becomes

F
i,j

= ν
(
Φi,j

) N∑

k=0

Dx
ikΦk,j , i = 0,1, . . . ,N − 1; j = 0,1, . . . ,N,

F
N,j

= ν
(
ΦN,j

)
b(yj ), j = 1, . . . ,N − 1,

G
i,j

= ν
(
Φi,j

) N∑

k=0

D
y
jkΦi,k, i, j = 0,1,2, . . . ,N,

N∑

k=0

Dx
i,kFk,j

_
N∑

k=0

D
y
j,kGi,k

= si,j , i = 1,2, . . . ,N; j = 1, . . . ,N − 1.

(5.28)

To specify the remaining degrees of freedom, namely the values of the solution
along the other boundaries, we set them equal to their boundary values.

5.2.1.1 How to Implement the Collocation Approximation

To implement the collocation approximation, let us first introduce a structure of type
Nodal2DStorage that we will use many times to group data needed by nodal spectral
methods such as collocation. We use the structure to store the x and y locations of
the collocation points, called ξ and η in the class, the quadrature weights, plus the
derivative matrices that we may need. Since none of these quantities change during
the course of a calculation, we only need to compute them once at the start. We
show the structure in Algorithm 63 (Nodal2DStorage). Usually we only allocate
and compute those quantities that we need for a particular approximation.

We encapsulate the collocation approximation of the potential problem in a class,
too. The class stores an array for the solution and the source, plus an instance of the
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Algorithm 63: Nodal2DStorage: Storage for a Nodal Spectral Method

Structure Nodal2DStorage
Data:

N,M

{ξi}Ni=0, {ηj }Mj=0 ; // Gauss(-Lobatto) points

{w(ξ)
i }Ni=0, {w(η)

j }Mj=0 ; // Gauss(-Lobatto) weights
{
D

ξ
i,j

}N
i,j=0,

{
D

η
i,j

}M
i,j=0 ; // First Derivative Matrices

{
D

(2),ξ
i,j

}N
i,j=0,

{
D

(2),η
i,j

}M
i,j=0 ; // Second Derivative Matrices

End Structure Nodal2DStorage

Algorithm 64: NodalPotentialClass: A Class for the Potential Problem on the
Square

Class NodalPotentialClass
Uses Algorithms:

Algorithm 63 (Nodal2DStorage)
Data:

spA ; // Of type Nodal2DStorage
{
Φi,j

}N,M

i,j=0 ; // Solution
{
si,j
}N,M

i,j=0 ; // Source

{maski}4
i=1

Procedures:
Construct(N,M); // Algorithm 65

LaplacianOnTheSquare({Ui,j }N,M
i,j=0); // Algorithm 66

MatrixAction({Ui,j }N,M
i,j=0); // Algorithm 68

End Class NodalPotentialClass

structure Nodal2DStorage to store the necessary spectral approximation data. The
quantities that we need to store are generic to all nodal spectral methods for the po-
tential equation, so we present Algorithm 64 (NodalPotentialClass) as an implemen-
tation. The class includes an array called mask, which we will describe presently, to
manage boundary conditions. We must also define at least two procedures. The first
is to construct the nodes, weights and derivative matrices. The other is to compute
the approximation of the Laplace operator, (5.22). We include in the class a proce-
dure to compute the matrix action, which we will use for the iterative solution of the
system of equations, (5.23).

We specify the choice of polynomial and approximation type in the construc-
tor for the NodalPotentialClass. Algorithm 65 (NodalPotentialClass:Construct), for
instance, shows a constructor for the Chebyshev collocation approximation. It com-
putes the second derivative matrices by way of Algorithm 38 (mthOrderPolyno-
mialDerivativeMatrix) with m = 2 and stores them in the second derivative matrix
storage of the Nodal2DStorage structure. The first derivative matrices are not needed
for the Poisson problem on the square, so they are not computed. We easily change
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Algorithm 65: NodalPotentialClass:Construct: Constructor for the Chebyshev
Collocation Approximation of the Potential Problem

Procedure Construct
Input: N , M

Uses Algorithms:
Algorithm 38 (mthOrderPolynomialDerivativeMatrix)
Algorithm 27 (ChebyshevGaussLobattoNodesAndWeights)

this.spA.N ← N ; this.spA.M ← M{
this.spA. {ξi}Ni=0 , this.spA.

{
w

(ξ)
i

}N
i=0

}← ChebyshevGaussLobattoNodesAndWeights(N)

this.spA.
{
D

(2),ξ
i,j

}N
i,j=0 ← mthOrderPolynomialDerivativeMatrix(2, this.spA.{ξj }Nj=0)

Repeat for η (y) direction. . .
End Procedure Construct

Algorithm 66: NodalPotentialClass:LaplacianOnTheSquare: Collocation Ap-
proximation to the Laplace Operator

Procedure LaplacianOnTheSquare

Input:
{
Ui,j

}N,M

i,j=0
Uses Algorithms:

Algorithm 19 (MxVDerivative)

N ← this.spA.N ; M ← this.spA.M

for j = 0 to M do{
∂2U

∂x2

∣∣∣∣
i,j

}N

i=0

← MxVDerivative
(
this.spA.

{
D

(2),ξ
i,j

}N
i,j=0,

{
Ui,j

}N
i=0

)

end
for i = 0 to N do{

∂2U

∂y2

∣∣∣∣
i,j

}M

j=0

← MxVDerivative
(
this.spA.

{
D

(2),η
i,j

}N
i,j=0,

{
Ui,j

}M
j=0

)

end
for j = 0 to M do

for i = 0 to N do

∇2
NUi,j ← ∂2U

∂x2

∣∣∣∣
i,j

+ ∂2U

∂y2

∣∣∣∣
i,j

end
end

return
{∇2

NUi,j

}N,M

i,j=0

End Procedure LaplacianOnTheSquare

the approximation to a Legendre method if we replace the calls to ChebyshevGaus-
sLobattoNodesAndWeights with calls to Algorithm 25 (LegendreGaussLobattoN-
odesAndWeights).

We implement the action of the discrete Laplace operator (5.22) in Algorithm 66
(NodalPotentialClass:LaplacianOnTheSquare). It computes the matrix-vector mul-
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tiplication by way of Algorithm 19 (MxVDerivative) so that we can use it for either
Chebyshev or Legendre collocation approximations. Otherwise, for Chebyshev col-
location we could use the Fast Chebyshev Transform. Notice that the algorithm
makes the tensor product nature of the approximation explicit by the fact that the
derivatives are computed row-by-row and column-by-column in the grid. Therefore
the procedure computes the derivatives by passing array slices to the matrix-vector
multiply routine. (Remember, we denote the passing of a slice of a two dimensional
array, {Ui,j }N,M

i,j=0, by {Ui,j }Ni=0 for slices along columns and {Ui,j }Mj=0 along rows.
See Appendix A.)

To enforce the boundary conditions, we introduce the concept of an array mask
function that we use selectively to set parts of an array to zero. We use the mask
function to set the residual and solution values to zero along the boundaries for
Dirichlet boundary conditions. We could also use them to set boundary fluxes to
zero for Neumann boundary conditions. Mask functions provide a simple way to
eliminate boundary points in iterative solvers. We will use them many times. To
allow some flexibility, let us number the four sides of the square counter-clockwise
starting with the boundary along y = 0. Let us then define an array {maskk}4

k=1. If
a mask value maskk is true it will signal us to zero the boundary values of an array
along side k. To ensure the mask is always available, we store it as a member array
of the nodal approximation class in Algorithm 64 (NodalPotentialClass). We then
use Algorithm 67 (MaskSides) to mask an input array as desired.

Finally, we introduced a procedure MatrixAction in Algorithm 64 (NodalPoten-
tialClass). This is a function that we will use when we solve the linear system
of equations (5.22) for the solution unknowns with an iterative method. For the
potential problem, the matrix action is the function LaplacianOnTheSquare with
boundary points masked as necessary, as we show in Algorithm 68 (NodalPotential-
Class:MatrixAction).

5.2.1.2 How to Solve the Linear System

Equations (5.22) plus (5.24) form a linear system of equations that we need to solve
for the Φi,j . If the system is small enough, we can solve the system by a direct solver
through a variant of Gauss elimination. Unlike the typical second order finite differ-
ence approximation, however, the system of equations represented by (5.22) is not
pentadiagonal, but full. The system is neither diagonally dominant nor symmetric.
Balancing the practical difficulties these properties create is the rapid convergence
property of a spectral method; for smooth source and boundary conditions, the ap-
proximation error will converge much more quickly than the more easily solved
finite difference approximation.

In practice, we will most likely solve the system defined by (5.22) plus (5.24) by
an iterative technique. The topic of iterative solution of linear systems of equations
is, of course, a huge one in the field of numerical linear algebra that we cannot fully
survey here. Instead, we will describe representative algorithms that are appropriate
for spectral collocation approximations and do not require significant amounts of
extra storage.
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Algorithm 67: MaskSides: Set Boundary Values to Zero According to a Mask
Function

Procedure MaskSides

Input:
{
Uij

}N,M

i,j=0, {maski}4
i=1

if mask1 = true then
for i = 0 to N do

Ui,0 ← 0
end

end
if mask2 = true then

for j = 0 to M do
UN,j ← 0

end
end
if mask3 = true then

for i = 0 to N do
Ui,M ← 0

end
end
if mask4 = true then

for j = 0 to M do
U0,j ← 0

end
end

return
{
Uij

}N,M

i,j=0

End Procedure MaskSides

Algorithm 68: NodalPotentialClass:MatrixAction: Collocation Approxima-
tion to the Laplace Operator

Procedure MatrixAction

Input:
{
Uij

}N,M

i,j=0

Uses Algorithms:
Algorithm 64 (NodalPotentialClass)
Algorithm 66 (NodalPotentialClass:LaplacianOnTheSquare)
Algorithm 67 (MaskSides)

N ← this.spA.N ; M ← this.spA.M

{actioni,j }N,M
i,j=0 ← this.LaplacianOnTheSquare({Uij }N,M

i,j=0)

{actioni,j }N,M
i,j=0 ← MaskSides({actioni,j }N,M

i,j=0, this. {maskk}4
k=1)

return {actioni,j }N,M
i,j=0

End Procedure MatrixAction

5.2.1.3 Direct Solution of the Equations

Direct solution of the system of equations represented by (5.22) is probably the
simplest, particularly if one has an efficient direct solver already available. In
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Appendix D.1.2, for example, we derive Algorithm 142 (LUFactorization) that
we can use to solve a linear system by LU factorization. Fortunately, the LA-
PACK project [2] has made efficient and portable routines available for use with
Fortran95/77 and C/C++. A Java binding is also available. There is little reason
to write the direct solver oneself if one uses a programming language for which
LAPACK bindings are available.

The main work on our part is to put the pointwise representation of the system,
(5.22), into the standard matrix system form Ax = y. We will generalize (5.22) at
this point to allow N modes in the x direction and M modes in the y direction. To
re-write the system, we start with the fact that the boundary values (for Dirichlet
boundary conditions) are known. Thus, we shuffle them onto the right hand side of
the equation

N−1∑

k=1

D
(2),x
ik Φk,j +

M−1∑

k=1

D
(2),y
ik Φi,k

= si,j − D
(2),x
i0 Φ0,j − D

(2),x
iN ΦN,j − D

(2),y

j0 Φi,0 − D
(2),y
jM Φi,M

≡ RHSi,j , i = 1,2, . . . ,N − 1; j = 1,2, . . . ,N − 1. (5.29)

We must then arrange the two-dimensional array RHSi,j in the form of a vector
array, {RHSn}Ln=1, where L = (N − 1) × (M − 1).

It is natural to store the matrix A either by rows or columns in the grid, depending
on whether a language like C (rows) or Fortran (columns) is used. In either case,
we make a mapping n = index(i, j) between the location on the grid, i, j and the
location in the array, n, which are

n = index(i, j) ≡
{

i + (j − 1)(N − 1) columnwise/Fortran,

j + (i − 1)(M − 1) rowwise/C.
(5.30)

We form RHS on the grid by Algorithm 69 (CollocationRHSComputation).
The next step is to construct the actual matrix, A, represented by the summations

on the left of (5.29). To get the matrix entries, let us write (5.29) for the nth =
index(i, j) row,

D
(2),x
i1 Φ1,j + D

(2),x
i2 Φ2,j + · · · + D

(2),x
i(N−1)ΦN−1,j

+ D
(2),y

j1 Φi,1 + D
(2),y

j2 Φi,2 + · · · + D
(2),y

j (M−1)
Φi,M−1 = RHSn,

i = 1,2, . . . ,N − 1, j = 1,2, . . . ,M − 1. (5.31)

The entry in the mth column of A is the coefficient of the mth value of Φ , stored
according to the index function. For example, the grid location (1, j) corresponds
to the vector location m = index(1, j). The coefficient of Φ1,j in row i corresponds
to the matrix element Aindex(i,j),index(1,j). When we look at (5.31), we see that two
entries of the unknown solution appear in each row where index(i, k) = index(k, j).
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Algorithm 69: CollocationRHSComputation: Right Hand Side Construction
for Direct Solution of the Collocation Equations

Procedure CollocationRHSComputation
Input: npc // Instance of NodalPotentialClass
Uses Algorithms:
Algorithm 64 (NodalPotentialClass)

N ← npc.spA.N

M ← npc.spA.M

L ← (N − 1) × (M − 1)

for j = 1 to M − 1 do
for i = 1 to N − 1 do

n ← index(i, j)

RHSn ← npc.si,j − npc.spA.D
ξ
i,0 ∗ npc.Φ0,j − npc.spA.D

ξ
i,N ∗ npc.ΦN,j −

npc.spA.D
η
j,0 ∗ npc.Φi,0 − npc.spA.D

η
j,M ∗ npc.Φi,M

end
end
return {RHSn}Ln=0

End Procedure CollocationRHSComputation

The matrix elements for those include both D(2),x and D(2),y values. All other rows
include one or the other of D(2),x and D(2),y . When we match terms, we find the
matrix elements of the global collocation matrix

Aindex(i,j),index(k,j) = D
(2),x
ik , k = 1,2, . . . ,N − 1; k �= i,

Aindex(i,j),index(i,k) = D
(2),y
jk , k = 1,2, . . . ,M − 1; k �= j,

Aindex(i,j),index(i,j) = D
(2),x
ii + D

(2),y
jj .

(5.32)

Algorithm 70 (LaplaceCollocationMatrix) implements these formulas.
Clearly, the construction of the matrix requires the storage of its L = (N − 1) ×

(M −1) components. For large grids, this storage can be impractically large, making
iterative solvers more appropriate. For systems of small size, however, solution by
a direct solver is easy to implement. A performance comparison will wait until we
have described the iterative solution procedure.

5.2.1.4 Iterative Solution of the Equations

Iterative solution is typically preferred for large systems of equations for two rea-
sons. First, storage requirements can be significantly less than for a direct solver
since we do not need to store the entire matrix. Instead, we only need the matrix
A through its matrix-vector action on an iterate. We will not need to construct the
matrix explicitly as we did above. Second, a particular application may not require
the solution to be iterated to machine accuracy, which can reduce the cost. For those
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Algorithm 70: LaplaceCollocationMatrix: Matrix Construction for Direct So-
lution of the Collocation Approximation for the Poisson Problem

Procedure LaplaceCollocationMatrix
Input: npc // Instance of NodalPotentialClass
Uses Algorithms:

Algorithm 64 (NodalPotentialClass)

N ← npc.spA.N ; M ← npc.spA.M

L ← (N − 1) × (M − 1)

for m = 1 to L do
for n = 1 to L do

An,m ← 0
end

end
for j = 1 to M − 1 do

for i = 1 to N − 1 do
n = index(i, j)

for k = 1 to N − 1 do
m ← index(k, j)

An,m ← npc.spA.D
(2),ξ
i,k

end
for k = 1 to M − 1 do

m ← index(i, k)

An,m ← An,m + npc.spA.D
(2),η
j,k

end
end

end

return
{
An,m

}L
n,m=1

End Procedure LaplaceCollocationMatrix

who do not have a background with iterative methods for the solution of linear sys-
tems, we give a quick introduction in Appendix D.2.

Of the many types of iterative solvers, we must choose one that is appropriate
for the system of equations to be solved. The system of equations that the colloca-
tion approximation generates is not symmetric, so many classical iterative methods,
including the Conjugate Gradient method are not appropriate. In this section, we
will use the Bi-CGSTAB algorithm to solve the nonsymmetric system. We list that
algorithm in Appendix D.2.

The goal of the iterative solver is to drive the iteration residual to zero at each
collocation point. For the collocation approximation to the potential problem (5.22),
we make the association Ax ↔ ∇2

NΦ so that the matrix action applied to a set of
grid point values {Ui,j }Ni,j=0 is the left hand side of (5.22)

∇2
NUij ≡

N∑

k=0

D
(2),x
ik Uk,j +

N∑

k=0

D
(2),y
jk Ui,k. (5.33)
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Algorithm 71: Residual: Residual for a Polynomial Collocation Approxima-
tion to the Potential Equation on the Square

Procedure Residual
Input: npc ; // NodalPotentialClass
Uses Algorithms:

Algorithm 64 (NodalPotentialClass)
Algorithm 66 (LaplacianOnTheSquare)
Algorithm 67 (MaskSides)
Algorithm 140 (BLAS_Level1)

N = npc.spA.N ; M = npc.spA.M ; L ← (N + 1) × (M + 1)

{r}N,M
i,j=0 ← npc.LaplacianOnSquare(npc.{Φi,j }N,M

i,j=0)

{ri,j }N,M
i,j=0 ← BLAS_SCAL(L,−1, {ri,j }N,M

i,j=0,1)

{ri,j }N,M
i,j=0 ← BLAS_AXPY(L,1,npc.{si,j }N,M

i,j=0,1, {ri,j }N,M
i,j=0,1)

{ri,j }N,M
i,j=0 ← MaskSides({ri,j }N,M

i,j=0,npc.{maski}4
i=1)

return {ri,j }N,M
i,j=0

End Procedure Residual

The iteration residual for Dirichlet boundary conditions is therefore

rij = sij − ∇2
NUij , i, j = 1,2, . . . ,N − 1 (5.34)

in the interior of the domain. Along the boundaries, Dirichlet conditions ensure that
the residual vanishes. For Neumann conditions, we will want to include boundary
residuals.

To compute the residual for the polynomial collocation approximation, we use
Algorithm 66 (LaplacianOnSquare) and the source term stored in the collocation
approximation class Algorithm 64 (NodalPotentialClass). Algorithm 71 (Residual)
shows how to compute the residual (5.34) for a collocation approximation to the
potential equation. For efficiency, we use BLAS Level 1 procedures to perform the
basic whole array operations instead of directly using loops. We discuss the BLAS
operations in Appendix C. For Dirichlet conditions, all elements of the mask array
will be set to true.

5.2.1.5 A Finite Difference Preconditioner

Before we describe how to implement the Bi-CGSTAB iteration procedure, we note
that a preconditioner, H , that approximates the matrix, A, is almost always used to
accelerate convergence. (See Appendix D.2 a short discussion of preconditioning.)
In many ways it is an art to develop suitable preconditioners, and we could use one
of a variety of approximations. We could work directly with the matrix, say by using
the diagonal of the original, as in a Jacobi method. The present context of a spectral
approximation to a PDE allows a different approach. The preconditioner, H , comes
from an alternative, yet easier to solve approximation to the original differential
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equation. Possibilities include finite difference or finite element approximations to
the original equations. Both have been used as preconditioners for spectral methods.
Finite difference methods are easy to apply on the square, so we will describe the
finite difference approximation first. We will derive a finite element preconditioner
later in Sect. 5.2.2.3 for the nodal Galerkin approximation that we could use here
just as well.

The finite difference preconditioner uses a low order and more easily invertible
approximation to the original equations as an approximation to the spectral approx-
imations. Since the collocation points used by the spectral approximation are not
uniform, we must derive a finite difference approximation that takes this nonunifor-
mity into account.

To derive the standard second order (when on a uniform grid) centered approx-
imation to the second derivative, we take the derivative of a quadratic polynomial
through three points at xj−1, xj , xj+1, that have spacing Δxj = xj −xj−1. We write
the quadratic polynomial that interpolates a solution u at these points in Lagrange
form as

I2u = (x − xj )(x − xj+1)

Δxj (Δxj + Δxj+1)
uj−1 − (x − xj−1)(x − xj+1)

ΔxjΔxj+1
uj

+ (x − xj )(x − xj−1)

Δxj+1(Δxj + Δxj+1)
uj+1. (5.35)

The second derivative approximation is therefore

(I2u)′′ (xj ) = 2

Δxj (Δxj + Δxj+1)
uj−1 − 2

ΔxjΔxj+1
uj

+ 2

Δxj+1(Δxj + Δxj+1)
uj+1. (5.36)

When the spacing is uniform, (I2u)′′(xj ) reduces to the usual second order centered
approximation to the second derivative.

In two space dimensions, we add the second derivative in the y direction to the
finite difference operator to get

(HFDu)i,j = Aijui,j + Bijui−1,j + Cijui,j−1 + Eijui+1,j + Fijui,j+1, (5.37)

where

Aij = −2

(
1

ΔxiΔxi+1
+ 1

ΔyjΔyj+1

)
,

Bij = 2

Δxi(Δxi + Δxi+1)
, Cij = 2

Δyj (Δyj + Δyj+1)
,

Eij = 2

Δxi+1(Δxi + Δxi+1)
, Fij = 2

Δyj+1(Δyj + Δyj+1)
.

(5.38)
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The matrix associated with the finite difference operator (5.37) is pentadiagonal,
which is still more complex to invert than we would like. Rather than solve a pen-
tadiagonal system directly, say by LU factorization (Appendix D.1.2), we approxi-
mate it by an incomplete LU factorization (ILU ) approximation, HILU = L̂Û that
approximates HFD by the product of a lower triangular matrix L̂ and an upper tri-
angular matrix Û . The advantage of this product, as we will see, is that we can solve
the system with minimal storage and simply by a forward followed by a backward
elimination sweep.

We find the matrix entries for the triangular matrices L̂ and Û by matching the
entries of HILU to HFD . The individual actions of the lower and upper triangular
matrices are

(
L̂u
)
i,j

= aijui,j + bijui−1,j + cijui,j−1,

(
Ûu
)
i,j

= ui,j + eij ui+1,j + fijui,j+1.
(5.39)

When multiplied together, the action of the lower and upper triangular matrices is

L̂
(
Ûu
)
i,j

= aij

(
ui,j + eij ui+1,j + fijui,j+1

)

+ bij

(
ui−1,j + ei−1,j uij + fi−1jui−1,j+1

)

+ cij

(
ui,j−1 + ei,j−1ui+1,j−1 + fi,j−1uij

)
. (5.40)

When we gather the coefficients of the ui,j ’s and match them to the coefficients of
HFD (5.37), we get the off-diagonal entries

cij = Cij , bij = Bij ,

eij = Eij /aij , fij = Fij /aij .
(5.41)

The diagonal entry match gives

Aij = aij + bij ei−1,j + cij fi,j−1, (5.42)

which leaves two entries,

bij fi−1,j ui+1,j−1 + cij ei,j−1ui+1,j−1 (5.43)

without matching terms in HFD . To ensure that the approximation has the same
row sum as the original (which often makes a better preconditioner), we add the
additional off-diagonal terms to the diagonal entry

Aij = aij + bij ei−1,j + cij fi,j−1 + bij fi−1,j + cij ei,j−1. (5.44)

Therefore, the diagonal entry in the lower tri-diagonal matrix, L̂ is

aij = Aij − (bij ei−1,j + cij fi,j−1 + bij fi−1,j + cij ei,j−1
)
. (5.45)



5 Spectral Approximation on the Square 165

With the coefficients matched, we write the actions of the lower and upper tridiago-
nal matrices without most of the intermediate variables as

(
L̂u
)
ij

= aijuij + Bijui−1,j + Cijui,j−1,

(
Ûu
)
ij

= uij + Eij

aij

ui+1,j + Fij

aij

ui,j+1.
(5.46)

The diagonal entries, aij , must be computed recursively, for

aij = Aij − BijEi−1,j

ai−1,j

− CijFi,j−1

ai,j−1
− BijFi−1,j

ai−1,j

− CijEi,j−1

ai,j−1
. (5.47)

To get the starting values of aij , we note that the preconditioned problem requires
the solution of a system

(
L̂Ûu

)
i,j

= Ri,j , (5.48)

which we break into two stages—a forward and then a backward elimination. If we
call wi,j = (Ûu)i,j , then

(
L̂w
)
i,j

= Ri,j (5.49)

is the lower triangular problem. Written out, the lower triangular problem is

aijwi,j +Bijwi−1,j +Cijwi,j−1 = Rij , i = 1,2, . . . ,N −1; j = 1,2, . . . ,M −1.

(5.50)
Boundary values of w, namely w0,j and wj,0 that occur when i = 1 and j = 1 are
moved to the right hand side of the equation, so to compute aij we take B1,j = 0
and Ci,1 = 0. Thus,

a11 = A11,

a1j = A1j − C1jF1,j−1

a1,j−1
− C1jE1,j−1

a1,j−1
, j = 2,3, . . . ,M − 1,

ai1 = Ai1 − Bi1Ei−1,1

ai−1,1
− Bi1Fi−1,1

ai−1,1
, i = 2,3, . . . ,N − 1.

(5.51)

For all other points, we use (5.47).
It is convenient to encapsulate the data and procedures for the preconditioner into

a class. At the minimum, this class should store the diagonal coefficients since they
must be computed recursively. We will compromise between storage and execution
speed and compute the off-diagonal coefficients on-the-fly rather than store them
for each point. A prototype class for the preconditioner is shown in Algorithm 72
(FDPreconditioner).

The constructor for the class computes the grid spacing and the diagonal coeffi-
cients, as shown in procedure Construct in Algorithm 73 (FDPreconditioner: Con-
structor). We do not show the procedures to compute the coefficients, A–F , since
they are simply direct applications of (5.38).
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Algorithm 72: FDPreconditioner: A Class for a Finite Difference Precondi-
tioner

Class FDPreconditioner
Data:

N,M ,
{
ai,j

}N,M

i,j=1, {dxi}Ni=1 ,
{
dyj

}M
j=1

Procedures:
Construct(N,M, {xi}Ni=1 , {yj }Mj=1); // Algorithm 73

A(i, j); B(i, j); C(i, j); E(i, j); F(i, j); // Equation (5.38)

Solve({Rij }N,M
i,j=0); // Algorithm 74

End Class FDPreconditioner

Algorithm 73: FDPreconditioner:Construct: Constructor for the Finite Differ-
ence Preconditioner on the Square

Procedure Construct
Input: N , M , {xi}Ni=0 ,

{
yj

}M
j=0

this.N ← N ; this.M ← M

for i = 1 to N do
this.dxi ← xi − xi−1

end
for j = 1 to M do

this.dyj ← yj − yj−1
end
this.a1,1 ← this.A(1,1)

for i = 2 to N − 1 do

this.ai,1 ← this.A(i,1)− this.B(i,1) ∗ this.E(i − 1,1)

this.ai−1,1
− this.B(i,1) ∗ this.F (i − 1,1)

this.ai−1,1
end
for j = 2 to M − 1 do

this.a1,j ←
this.A(1, j) − this.C(1, j) ∗ this.F (1, j − 1)

this.a1,j−1
− this.C(1, j) ∗ this.E(1, j − 1)

this.a1,j−1

for i = 2 to N − 1 do
this.ai,j ←
this.A(i, j) − this.B(i, j) ∗ this.E(i − 1, j)

this.ai−1,j

− this.C(i, j) ∗ this.F (i, j − 1)

this.ai,j−1
−

this.B(i, j) ∗ this.F (i − 1, j)

this.ai−1,j

− this.C(i, j) ∗ this.E(i, j − 1)

this.ai,j−1

end
end
End Procedure Construct

The last main procedure is Solve, which solves the system HILU z = r. For this,
we use a modification of the LU solver, procedure LUSolve, presented in Algo-
rithm 142 (LUFactorization).

The first stage of the ILU solver is the forward substitution on the lower triangular
part of the system. We have already written the lower triangular matrix problem in
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pointwise form in (5.46). With the boundary conditions B1,j = 0 and Ci,1 = 0,

w11 = R11/a11,

wi1 = (Ri1 − Bi1wi−1,1
)
/ai1,

w1,j = (Rij − C1jw1,j−1
)
/a1j ,

(5.52)

and the interior point values are computed by

wi,j = (Ri,j − Bijwi−1,j − Cijwi,j−1
)
/aij . (5.53)

We make similar arguments to develop the backward substitution for the upper tri-
angular part, (Ûu)i,j = wi,j , namely

uN−1,M−1 = wN−1,M−1,

ui,M−1 = wi,M−1 − Ei,M−1

ai,M−1
ui+1,M−1,

uN−1,j = wN−1,j − FN−1,j

aN−1,j

uN−1,j+1,

(5.54)

while the interior point values are

ui,j = wi,j − Eij

aij

ui+1,j − Fij

aij

ui,j+1. (5.55)

Algorithm 74 (FDPreconditioner:Solve) implements (5.52)–(5.55) to solve the pre-
conditioned system, assuming that the coefficients A–F are computed on the fly. It
takes a right hand side array, R, and the coefficients of the diagonal of L̂ com-
puted in Algorithm 73 (FDPreconditioner), and returns the solution to the sys-
tem.

As we will soon see, the effect of preconditioning is significant. Although the
use of preconditioning adds significant complexity to the solution procedure, and
can be avoided for small problems, it should be considered a must to solve large
scale potential problems.

5.2.1.6 How to Construct the Iterative Potential Solver

The purpose of the iterative solver is to find the solution {Φij }N,M
i,j=0 so that the it-

eration residual, (5.34) vanishes, or in practice a norm of the residual is less than
some specified tolerance. As we said earlier, we will use the Bi-CGSTAB solver
that we list in Appendix D.2, since the system of equations is not symmetric. For
our particular implementation, we will write the solver almost completely in terms
of Level 1 BLAS (Appendix C) operations.
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Algorithm 74: FDPreconditioner:Solve: Solver for the ILU Preconditioner
HILU u = R

Procedure Solve

Input:
{
Rij

}N,M

i,j=0

N = this.N ; M = this.M
w1,1 ← R1,1/this.a1,1
for i = 2 to N − 1 do

wi,1 ← (
Ri,1 − this.B(i,1) ∗ wi−1,1

)
/this.ai,1

end
for j = 2 to M − 1 do

w1,j ← (
R1,j − this.C(1, j) ∗ w1,j−1

)
/this.a1,j

for i = 2 to N − 1 do
wi,j ← (

Ri,j − this.B(i, j) ∗ wi−1,j − this.C(i, j) ∗ wi,j−1
)
/this.ai,j

end
end
uN−1,M−1 ← wN−1,M−1
for i = N − 2 to 1 Step −1 do

ui,M−1 ← wi,M−1 − this.E(i,M − 1)

this.ai,M−1
ui+1,M−1

end
for j = M − 2 to 1 Step −1 do

uN−1,j ← wN−1,j − this.F (N − 1, j)

this.aN−1,j

uN−1,j+1

for i = N − 2 to 1 Step −1 do

ui,j ← wi,j − this.E(i, j)

this.ai,j

ui+1,j − this.F (i, j)

this.ai,j

ui,j+1

end
end

return
{
ui,j

}N,M

i,j=0

End Procedure Solve

We show our implementation of the Bi-CGSTAB method for the polynomial
spectral collocation approximation in Algorithm 75 (Bi-CGSSTABSolve). The in-
put is the maximum number of iterations to be allowed, Nit , and the tolerance TOL
for convergence. It also takes an instance of the spatial approximation, in this case
defined by Algorithm 64 (NodalPotentialClass), and an instance of the precondi-
tioner, e.g. Algorithm 72 (FDPreconditioner).

Finally, we need a driver to solve the potential problem. The driver must perform
tasks like compute the source array, construct the spatial approximation, call the
solver, and set the boundary conditions. We present an example driver for the Cheby-
shev collocation approximation in Algorithm 76 (CollocationPotentialDriver). We
include calls to a source value function and to an external routine that sets the
boundary values for Dirichlet conditions that need to be user supplied. We have
the driver initialize the mask array, here initialized for Dirichlet conditions on all
four sides.
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Algorithm 75: BiCGSSTABSolve: BiCGStab Iterative Solver for Nodal Spec-
tral Methods

Procedure BiCGSSTABSolve
Input: Nit , TOL
Input: npc ; // NodalPotentialClass instance
Input: H ; // Preconditioner instance, e.g. FDPreconditioner
Uses Algorithms:

Algorithm 64 (NodalPotentialClass)
Algorithm 71 (Residual)
Algorithm 74 (Solve)
Algorithm 140 (BLAS_Level1)

N ← npc.spA.N ; M ← npc.spA.M ; L ← (N + 1) × (M + 1)

ρ ← 1; α ← 1; omega ← 1

{r}N,M
i,j=0 ← Residual(npc)

{r̄ij }N,M
i,j=0 ← BLAS_COPY(L, {rij }N,M

i,j=0,1, {r̄ij }N,M
i,j=0,1)

for k = 1, Nit do
ρ̂ ← ρ

ρ ← BLAS_DOT(L, {r̄ij }N,M
i,j=0,1, {rij }N,M

i,j=0,1)

β ← ρα/(ρ̂ω)

{pij }N,M
i,j=0 ← BLAS_AXPY(L,−ω, {vij }N,M

i,j=0,1, {pij }N,M
i,j=0,1)

{pij }N,M
i,j=0 ← BLAS_SCAL(L,beta, {pij }N,M

i,j=0,1)

{pij }N,M
i,j=0 ← BLAS_AXPY(L,1, {rij }N,M

i,j=0,1, {pij }N,M
i,j=0,1)

{yij }N,M
i,j=0 ← H.Solve({pij }N,M

i,j=0)

{vij }N,M
i,j=0 ← npc.MatrixAction({yij }N,M

i,j=0)

α ← ρ/BLAS_DOT(L, {r̄ij }N,M
i,j=0,1, {vij }N,M

i,j=0,1)

{sij }N,M
i,j=0 ← BLAS_COPY(L, {rij }N,M

i,j=0,1, {sij }N,M
i,j=0,1)

{sij }N,M
i,j=0 ← BLAS_AXPY(L,−α, {vij }N,M

i,j=0,1, {sij }N,M
i,j=0,1)

{zij }N,M
i,j=0 ← H.Solve({sij }N,M

i,j=0)

{tij }N,M
i,j=0 ← npc.MatrixAction({zij }N,M

i,j=0)

ω ←
BLAS_DOT(L, {tij }N,M

i,j=0,1, {sij }N,M
i,j=0,1)/BLAS_DOT(L, {tij }N,M

i,j=0,1, {tij }N,M
i,j=0,1)

npc.{Φij }N,M
i,j=0 ← BLAS_AXPY(L,α, {yij }N,M

i,j=0,1,npc.{Φij }N,M
i,j=0,1)

npc.{Φij }N,M
i,j=0 ← BLAS_AXPY(L,ω, {zij }N,M

i,j=0,1,npc.{Φij }N,M
i,j=0,1)

{rij }N,M
i,j=0 ← BLAS_COPY(L, {sij }N,M

i,j=0,1, {rij }N,M
i,j=0,1)

{rij }N,M
i,j=0 ← BLAS_AXPY(L,−ω, {tij }N,M

i,j=0,1, {rij }N,M
i,j=0,1)

if BLAS_NRM2(L, {rij }N,M
i,j=0,1) < TOL then Exit

end
return npc
End Procedure BiCGSSTABSolve



170 5 Spectral Approximation on the Square

Algorithm 76: CollocationPotentialDriver: Driver for a Polynomial Colloca-
tion Approximation to the Potential on the Square

Procedure Main
Input: N , M , Nit , TOL
Uses Algorithms:

Algorithm 64 (NodalPotentialClass)
Algorithm 65 (NodalPotentialClass:Construct)
Algorithm 72 (FDPreconditioner)
Algorithm 73 (FDPreconditioner:Construct)
Algorithm 75 (BiCGStabSolve)

Derived Types: NodalPotentialClass: npc, FDPreconditioner: H

npc.Construct(N,M)

for j = 0 to M do
for i = 0 to N do

npc.si,j ← SourceValue(npc.spA.ξi ,npc.spA.ηj )

end
end
npc. {maskk}4

k=1 ← {true, true, true, true}
npc.{Φij }N,M

i,j=0 ← SetBoundaryValues(npc.{Φij }N,M
i,j=0)

H.Construct(N,M,npc.spA. {ξi}Ni=0 ,npc.spA.{etaj }Mj=0)

npc ← BiCGStabSolve(Nit ,TOL,npc,H)

Output results, etc.
End Procedure Main

5.2.1.7 Benchmark Solution

We have so far derived two collocation approximations—Chebyshev and Legen-
dre—and two solvers—direct and iterative. Our benchmark solution compares the
performance of the approximations and solvers. We will solve the simple model
boundary value problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∇2ϕ = ϕxx + ϕyy = −8π2 cos(2πx) sin(2πy), (x, y) ∈ (−1,1) × (−1,1) ,

ϕ (x,−1) = 0, −1 ≤ x ≤ 1,

ϕ (1, y) = sin(2πy), −1 ≤ y ≤ 1,

ϕ (x,1) = 0, −1 ≤ x ≤ 1,

ϕ (−1, y) = sin(2πy), −1 ≤ y ≤ 1,

(5.56)

which has the analytical solution ϕ = cos(2πx) sin(2πy). We show the Chebyshev
collocation solution for this problem in Fig. 5.1 for N = M = 64. We are interested
in the accuracy and convergence behavior, especially the differences between the
Chebyshev and Legendre approximations. We also need to see how effective the
solvers are for the solution of the linear systems.

We show the logarithm of the maximum errors for the Chebyshev and Legendre
approximations in Table 5.1. We see that the errors decay exponentially fast. Dou-
bling the number of points in each direction causes the error to drop by a factor
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Fig. 5.1 Solution and grid
for the Chebyshev collocation
approximation of the steady
potential in a square with a
sinusoidal heat source

Table 5.1 Logarithm of maximum errors for collocation approximations to (5.56)

N 8 12 16 20 24

Chebyshev −1.5375 −3.8044 −6.6535 −9.8774 −13.411

Legendre −1.8658 −4.1584 −7.1440 −10.451 −14.020

of approximately one thousand. Finally, we see that the Legendre approximation is
“slightly” more accurate by about a factor of three.

Next, let’s examine the performance of the direct and iterative solvers. To find the
solutions with the direct solver, we used Algorithms 69 (CollocationRHSComputa-
tion) and 70 (LaplaceCollocationMatrix) to set up the matrix system. We then used
Algorithm 142 (LUFactorization) to solve the system. For comparison, we also used
the LAPACK routine DGETRF to perform the LU decomposition on the matrix and
its companion DGETRS to solve the system. To solve the system iteratively, we used
Algorithm 75 (BiCGSSTABSolve) with the BLAS routines of 140 (BLAS_Level1).

We show the performance of the Bi-CGSTAB iterative solver in Fig. 5.2, which
plots the logarithm of the norm

‖r‖ =

√√√√√
N,M∑

i,j=0

(rij )2 (5.57)

for the Chebyshev collocation approximation with N = 72 and an initial iterate
Φ = 0. Figure 5.2 clearly shows the need to precondition. The preconditioned iter-
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Fig. 5.2 Iteration
convergence of the
Bi-CGSTAB iterative solver
for the Chebyshev collocation
approximation to the steady
potential in a square with a
source when N = 72

Table 5.2 Number of
iterations for the Bi-CGSTAB
solver with finite difference
preconditioning

N 8 16 32 64 72

Chebyshev 12 18 24 36 39

Legendre 13 17 24 34 39

Table 5.3 Storage
requirements (MB) for the
direct and iterative solvers

N 8 16 32 64

Direct 0.02 0.41 7.4 126.1

Iterative 0.004 0.014 0.052 0.2

ation converges to near machine precision in only 39 iterations. Since the condition
number of the system increases with the size of the matrix, the number of iterations
increases with the size. Table 5.2 shows the number of iterations as a function of N

for both the Chebyshev and Legendre approximations.
Ultimately, we make the decision to use a direct or an iterative solver on the

memory and CPU time usage of each. Memory considerations give the advantage to
the iterative solvers. Table 5.3 shows the actual number of megabytes needed for the
direct and iterative solvers when we used double precision arithmetic. The memory
needs of the direct solver grow as N4. For the iterative solver, we traded some stor-
age in return for some increased computation time by only storing the diagonal of
the finite difference preconditioner. Even with additional storage for the off-diagonal
terms, the memory requirements for the iterative solver grow only as N2. It is clear
that the storage requirements of the direct solver become prohibitive as the system
gets larger.
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Table 5.4 CPU time (s) for the direct and BiCGStab solvers

N Algorithm 142 Algorithm 142 LAPACK LAPACK BiCGStab

(Decomposition) (Solve) (Decomposition) (Solve)

16 0.01 0 0 0 0.002

24 0.16 0.0007 0.04 0 0.004

48 30.0 0.05 1.73 0.02 0.026

64 203 0.14 9.83 0.09 0.064

72 421 0.3 20.1 0.15 0.09

CPU comparisons of the direct vs. preconditioned iterative solvers also favor
the iterative solution of the equations. Table 5.4 shows timings for the LU de-
composition and solve for the direct solvers, along with the time to converge the
iterative solver. The first thing that we notice is that we should use the LAPACK
routines to solve the system, not our Algorithm 142 (LUFactorization). The com-
parison is not totally fair, however, since the LAPACK computations used a vendor
supplied optimized version of LAPACK that automatically ran in parallel on eight
CPU cores. But even if we account for a factor of eight, the LAPACK routines are
still significantly better. If we add the decomposition and solve time, the (parallel)
direct solver is more efficient than the iterative solver only for N < 24. However,
if the decomposition needs only to be done once, such as part of a time depen-
dent problem (see, e.g., Sect. 5.3) then we may be able to amortize the cost of the
factorization. At N = 24, for instance, it becomes less expensive to use the direct
solver if the same system is solved more than six times. At N ≥ 48, however, the
direct solver is never more efficient. Our conclusion that the iterative solution is the
better choice is strengthened by the fact that the iterative solver used Algorithm 75
(BiCGSSTABSolve) and the unoptimized BLAS routines based on Algorithm 140
(BLAS_Level1) and Algorithm 19 (MxVDerivative) rather than one of the faster
alternatives.

5.2.2 The Nodal Galerkin Approximation

Recall that the Galerkin approximation uses an alternative set of constraints to find
the degrees of freedom. It starts from a weak form of the equation to determine
the unknowns that define the polynomial, Φ , that approximates the potential, ϕ.
To get the weak form, we multiply the equation by a smooth function φ(x, y) that
satisfies the boundary conditions, multiply by the weight function appropriate to the
polynomial in which we expand the solution, and integrate over the domain

∫ 1

−1

∫ 1

−1

(
s − ∇2ϕ

)
φ (x, y)w(x, y)dxdy = 0. (5.58)

We then apply Green’s identity to re-write (5.58).
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For smooth enough functions u and v Green’s first identity is

∫ 1

−1

∫ 1

−1
v∇2udxdy =

∫

∂

v∇u · n̂dS −
∫ 1

−1

∫ 1

−1
∇u · ∇vdxdy. (5.59)

Here, ∂ represents the boundary of the square, n̂ represents the outward facing nor-
mal, and dS is the associated surface differential. To simplify the use of Green’s
identity, it is convenient to choose an approximation for which the weight func-
tion w = 1. This implies that we want to use a Legendre approximation. We see
that the presence of the weight function in (5.58) highlights a difference between
the Legendre or the Chebyshev approximation that we don’t see in the collocation
approximation. In the Legendre approximation, the weight function is unity. For
Chebyshev approximations, w(x,y) = 1/

√
(1 − x2)(1 − y2).

If we use the Legendre weight, we get the weak form of the potential equation

∫

∂

φ∇ϕ · n̂dS−
∫ 1

−1

∫ 1

−1
∇φ · ∇ϕdxdy =

∫ 1

−1

∫ 1

−1
sφdxdy (5.60)

when we apply (5.59) to (5.58). Since φ satisfies the boundary conditions, φ = 0
along the boundary, and the boundary integral in (5.60) vanishes, leaving the final
form of the equation

−
∫ 1

−1

∫ 1

−1
∇φ · ∇ϕdxdy =

∫ 1

−1

∫ 1

−1
sφdxdy. (5.61)

As before, to get the Galerkin approximation, we replace ϕ by its polynomial ap-
proximation Φ , the source s by its polynomial approximation, S, and take φ to be
any polynomial of the same degree as Φ that satisfies the boundary conditions. Then
the Galerkin approximation for the potential problem on the square is

−
∫ 1

−1

∫ 1

−1

{
∂φ

∂x

∂Φ

∂x
+ ∂φ

∂y

∂Φ

∂y

}
dxdy =

∫ 1

−1

∫ 1

−1
φSdxdy. (5.62)

The Galerkin approximation is not limited to constant coefficient problems. To
approximate the variable coefficient problem

∇ · (ν∇ϕ) = s (5.63)

that we already considered in (5.25), we simply change the weak form (5.61) to

−
∫ 1

−1

∫ 1

−1
∇φ · (ν∇ϕ)dxdy =

∫ 1

−1

∫ 1

−1
sφdxdy. (5.64)

We complete the approximation when we find the system of equations that the
degrees of freedom satisfy. Since we are deriving the nodal Galerkin approximation,
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we write Φ in nodal form

Φ (x,y) =
N∑

i,j=0

Φi,j �i(x)�j (y). (5.65)

The boundary conditions tell us that Φi,j = 0 along the boundaries so there are a
total of (N − 1)2 degrees of freedom to determine. To find the equations, we use the
fact that φ is now any polynomial of the same degree as the solution that satisfies
the boundary conditions. Therefore we can write φ also in the nodal form

φ (x, y) =
N∑

i,j=0

φij �i(x)�j (y) (5.66)

for any nodal values φi,j , i, j = 1,2, . . . ,N − 1 with φi,j = 0 on the boundaries.
When we substitute for φ in (5.62) and rearrange,

−
N−1∑

i,j=1

φi,j

{∫ 1

−1

∫ 1

−1

[
�j (y)

∂�i

∂x

∂Φ

∂x
+ �i (x)

∂�j

∂y

∂Φ

∂y

]
dxdy

}

=
N−1∑

i,j=1

φi,j

{∫ 1

−1

∫ 1

−1
�i(x)�j (y)Sdxdy

}
. (5.67)

Since the φi,j are arbitrary and hence linearly independent, the coefficients of each
must match, which gives us the (N − 1)2 equations

−
∫ 1

−1

∫ 1

−1

[
�j (y)

∂�i

∂x

∂Φ

∂x
+ �i (x)

∂�j

∂y

∂Φ

∂y

]
dxdy

=
∫ 1

−1

∫ 1

−1
�i(x)�j (y)Sdxdy, i, j = 1,2, . . . ,N − 1. (5.68)

To get equations for the unknown grid point values, Φi,j , we replace Φ in (5.68)
with (5.65) and change the independent indices

−
∫ 1

−1

∫ 1

−1

⎧
⎨

⎩�j (y) �′
i (x)

⎛

⎝
N∑

n,m=0

Φn,m�m (y) �′
n (x)

⎞

⎠dxdy

⎫
⎬

⎭

−
∫ 1

−1

∫ 1

−1

⎧
⎨

⎩�i (x) �′
j (y)

⎛

⎝
N∑

n,m=0

Φn,m�′
m (y) �n (x)

⎞

⎠dxdy

⎫
⎬

⎭

=
∫ 1

−1

∫ 1

−1
�i (x) �j (y)Sdxdy, i, j = 1,2, . . . ,N − 1. (5.69)
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We then swap the orders of the summations and integrals, and gather the coefficients
of the unknowns

−
N∑

n,m=0

Φn,m

[∫ 1

−1

∫ 1

−1
�′
n(x)�′

i (x)�m(y)�j (y)dxdy

]

−
N∑

n,m=0

Φn,m

[∫ 1

−1

∫ 1

−1
�i(x)�n(x)�′

j (y)�′
m(y)dxdy

]

=
∫ 1

−1

∫ 1

−1
�i (x) �j (y)Sdxdy, i, j = 1,2, . . . ,N − 1. (5.70)

Equation (5.70) plus the boundary values defines a linear system for the interior
values of the Φi,j with coefficients given by the integrals within the square brackets.

Although we could try to evaluate the integrals to derive the coefficients exactly,
we are developing a nodal Galerkin approximation with a quadrature approxima-
tion of the integrals. We will therefore replace the integrals with Gauss-Lobatto
quadratures. Quadrature simplifies the computation of the coefficients, retains spec-
tral accuracy, easily extends to variable coefficient problems like (5.64), and will
be used as the foundation of the spectral element method. With the quadrature ap-
proximation, the discrete orthogonality (Sect. 1.11) of the Lagrange interpolating
polynomials causes the integral over the source term to reduce to

∫ 1

−1

∫ 1

−1
�i (x) �j (y)Sdxdy ≈

N∑

n,m=0

wnwm�i (xn) �j (ym)S(xn, ym)

= wiwjS(xi, yj ). (5.71)

We also find the coefficients on the left of (5.70) by replacing the integrals with
quadrature. For the first term on the left, we have the approximation

∫ 1

−1

∫ 1

−1
�′
n(x)�′

i (x)�m(y)�j (y)dxdy

=
(∫ 1

−1
�m(y)�j (y)dy

)(∫ 1

−1
�′
n(x)�′

i (x)dx

)

≈ (δj,mwm

)
(

N∑

k=0

�′
n(xk)�

′
i (xk)wk

)
. (5.72)

As before (e.g. Sect. 3.5.2), let us call

D
(x)
nk = �′

n (xk) (5.73)
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and define the symmetric matrix

G
(x)
in = G

(x)
ni =

N∑

k=0

D
(x)
nk D

(x)
ik wk. (5.74)

Therefore, we approximate the first term in (5.70) by

N∑

n,m=0

Φn,m

[∫ 1

−1

∫ 1

−1
�′
n(x)�′

i (x)�m(y)�j (y)dxdy

]
≈

N∑

n=0

Φn,jw
(y)
j G

(x)
in . (5.75)

Similarly, we approximate the second term on the left of (5.70) by

N∑

n,m=0

Φn,m

[∫ 1

−1

∫ 1

−1
�i(x)�n(x)�′

j (y)�′
m(y)dxdy

]
≈

N∑

m=0

Φi,mw
(x)
i G

(y)
jm. (5.76)

When we put the two together, we have the nodal Galerkin approximation

−
{

N∑

k=0

w
(y)
j G

(x)
ik Φk,j + w

(x)
i G

(y)
jk Φi,k

}
= w

(x)
i w

(y)
j Si,j , i, j = 1,2, . . . ,N − 1.

(5.77)
We will represent the quantity on the left by (∇2Φ,�i�j )N .

Equation (5.77) looks much like the collocation approximation, (5.22), with one
important difference. In the collocation approximation the coefficient matrix is not
symmetric, whereas the Galerkin coefficient matrix, G, clearly is. The symmetry al-
lows us to use the popular and efficient Conjugate Gradient method (Appendix D.2)
to solve the system iteratively. To maintain this symmetry, we do not divide the sys-
tem by the coefficients of the mass matrix (which is clearly diagonal) represented
by the product w

(x)
i w

(y)
j , as we did in the approximation of the time dependent one-

dimensional problem in (4.122).

5.2.2.1 How to Implement the Nodal Galerkin Approximation

We have already developed the machinery we need to implement the approximation
to the Laplace operator; we only need to modify existing algorithms. To implement
the nodal Galerkin method, we reuse the nodal approximation class Algorithm 64
(NodalPotentialClass). We have to change the constructor, the Laplace operator ap-
proximation and the driver. The new implementations are:

• Create a nodal Galerkin constructor. To change the constructor, Algorithm 65
(NodalPotentialClass:Construct), we note that the second derivative matrices in
the Nodal2DStorage structure must now store the matrices Gik defined by (5.74)
and computed by Algorithm 57 (CGDerivativeMatrix). The quadrature weights
and nodes must be computed by Algorithm 25 (LegendreGaussLobattoNodes-
AndWeights).
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Algorithm 77: LaplacianOnTheSquare: Nodal Galerkin Approximation to the
Laplace Operator

Procedure LaplacianOnTheSquare

Input:
{
Uij

}N,M

i,j=0
Uses Algorithms:

Algorithm 19 (MxVDerivative)

N ← this.spA.N ; M ← this.spA.M

for j = 0 to M do{
Uxxij

}N
i=0 ← MxVDerivative

(
this.spA.

{
D

(2),ξ
ij

}N
i,j=0,

{
Uij

}N
i=0

)

for i = 0 to N do
Uxxij ← this.spA.w

(η)
j ∗ Uxxij

end
end
for i = 0 to N do{

Uyyij

}M
j=0 ← MxVDerivative

(
this.spA.

{
D

(2),η
ij

}N
i,j=0,

{
Uij

}M
j=0

)

end
for j = 0 to M do

for i = 0 to N do(∇2U,�i�j

)
N

← −Uxxij − this.spA.w
(ξ)
i ∗ Uyyij

end
end

return
{(∇2U,�i�j

)
N

}N,M

i,j=0

End Procedure LaplacianOnTheSquare

• Replace the algorithm to approximate the Laplacian. We also need to replace Al-
gorithm 66 (LaplacianOnTheSquare), to implement the nodal Galerkin approx-
imation. We show the nodal Galerkin version in Algorithm 77 (NodalGalerkin-
Laplacian). Don’t forget that those second derivative arrays now store the matri-
ces G that we define in (5.74).

• Modify the source term to compute the residual. The residual for the nodal
Galerkin approximation is

rij = sijw
(x)
i w

(y)
j +

N∑

k=0

w
(y)
j G

(x)
ik Φk,j + w

(x)
i G

(y)
jk Φi,k

≡ sijw
(x)
i w

(y)
j − (∇2Φ,�i�j

)
N

. (5.78)

We see, then, that we can reuse Algorithms 71 (Residual) and 68 (NodalPoten-
tialClass:MatrixAction) if we store the quantity sijw

(x)
i w

(y)
j in the space that we

allotted for the source terms in Algorithm 64 (NodalPotentialClass). So to solve
the nodal Galerkin approximation iteratively, we modify the driver Algorithm 76
(CollocationPotentialDriver) to store the modified source term.
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Thus we see that although the derivation is quite different, the implementation of
the nodal Galerkin approximation is virtually identical to the collocation approxi-
mation. From a programming point of view, then, there is no reason to prefer collo-
cation over this approximation to solve the Poisson equation on the square.

5.2.2.2 Direct Solution of the Equations

Given the practical similarity of the nodal Galerkin method to the collocation ap-
proximation, it should be no surprise that we can solve the system directly with
only simple modifications to Algorithms 69 (CollocationRHSComputation) and 70
(LaplaceCollocationMatrix). To compute the right hand side, we must account for
the weight functions and replace the derivative matrices. Thus, we must replace
(5.29) by

N−1∑

k=1

w
(y)
j G

(x)
ik Φk,j +

M−1∑

k=1

w
(x)
i G

(y)
jk Φi,k

= w
(x)
i w

(y)
j si,j − w

(y)
j G

(x)
i0 Φ0,j − w

(y)
j G

(x)
iN ΦN,j

− w
(x)
i G

(y)

j0 Φi,0 − w
(x)
i G

(y)
jMΦi,M

≡ RHSij , i = 1,2, . . . ,N − 1; j = 1,2, . . . ,M − 1, (5.79)

which we implement by modifying Algorithm 69 (CollocationRHSComputation).
Similarly, we replace the matrix elements in (5.32) by

An(i,j),m(k,j) = w
(y)
j G

(x)
ik , k = 1,2, . . . ,N − 1; k �= i,

An(i,j),m(i,k) = w
(x)
i G

(y)
jk , k = 1,2, . . . ,M − 1; k �= j,

An(i,j),m(i,j) = w
(y)
j G

(x)
ii + w

(x)
i G

(y)
jj .

(5.80)

With these equations, we modify Algorithm 70 (LaplaceCollocationMatrix) to rep-
resent the nodal Galerkin approximation.

Nevertheless, our tests of the direct solver for the collocation approximation lead
us to expect that the direct solution of the system will not be competitive with an
iterative solver except for small systems.

5.2.2.3 Iterative Solution of the Equations

The symmetry of the Galerkin approximation enables us to use the popular Con-
jugate Gradient method (Appendix D.2) to solve the system of equations (5.77)
iteratively. As with the collocation approximation, it is usually necessary to precon-
dition the system. We will therefore derive a preconditioner before we implement
the solver.
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5.2.2.4 A Finite Element Preconditioner

As is typical of spectral approximations, the system of equations represented by
(5.77) needs to be preconditioned for an iterative technique to be most effective. For
the Conjugate Gradient method, the preconditioner must be a symmetric approxima-
tion to the matrix. Because of the non-uniform grid generated by the Gauss-Lobatto
points, the finite difference preconditioner that we developed for the collocation ap-
proximation is not symmetric, and hence we should not use it with the Conjugate
Gradient method.

A finite element preconditioner, starting from the same Galerkin weak form that
we used to derive the spectral approximation, can satisfy the symmetry require-
ments. To derive the finite element approximation, we approximate the solution by
local bi-linear interpolants that we form on quadrilateral elements whose four cor-
ners are grid points, as we show in Fig. 5.3.

To derive the finite element approximation, it is convenient to map the rectangular
element to the unit square by the (affine) transformation

x = xi + Δxiξ,

y = yi + Δyjη,
(5.81)

where Δx = xi+1 − xi and Δy = yj+1 − yj . (A more general discussion of map-
pings and their effect on the approximations is the topic of the next chapter.) In

Fig. 5.3 Linear finite element approximation on a quadrilateral element created from four points
on the grid



5 Spectral Approximation on the Square 181

terms of the mapped coordinates, we approximate a function, U , by the bi-linear
interpolant on the element

U(ξ,η) = Ui,jψ0,0 + Ui+1,jψ1,0 + Ui+1,j+1ψ1,1 + Ui,j+1ψ0,1

=
1∑

k,l=0

Ui+k,j+lψk,l, (5.82)

where Ui,j is the value of the function at the point (i, j) and the basis functions are
the bi-linear functions that vanish at all corners but one:

ψ0,0 = (1 − ξ)(1 − η),

ψ1,0 = ξ(1 − η),

ψ1,1 = ξη,

ψ0,1 = (1 − ξ)η.

(5.83)

We will write these four basis functions in a compact, although cryptic, form

ψk,l(ξ, η) = (1 − k − (−1)kξ
)(

1 − l − (−1)lη
)
. (5.84)

We make the finite element preconditioner approximate the spectral operator by
having it approximate the same equation, (5.61). Since we will soon make a change
of variables to (ξ, η), let us rename the gradient operator in the original (x, y) vari-
ables to be ∇x . Then the contribution from each element to the stiffness integral on
the left is

∫ yj+1

yj

∫ xi+1

xi

∇xU · ∇xψdxdy = ΔxiΔyj

∫ 1

0

∫ 1

0
∇xU · ∇xψdξdη, (5.85)

or, when we substitute for U from (5.82),

1∑

k,l=0

Ui+k,j+l

{
ΔxiΔyj

∫ 1

0

∫ 1

0
∇xψk,l · ∇xψn,mdξdη

}
, n,m = 0,1. (5.86)

We represent this sum as a local stiffness matrix multiplication of the grid point
values of U

⎡

⎢⎢⎢⎢⎣

S00
00 S00

10 S00
01 S00

11

S10
00 S10

10 S10
01 S10

11

S01
00 S01

10 S01
01 S01

11

S11
00 S11

10 S11
01 S11

11

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎣

Ui,j

Ui+1,j

Ui,j+1
Ui+1,j+1

⎤

⎥⎥⎦ , (5.87)

where

Snm
kl = −ΔxiΔyj

∫ 1

0

∫ 1

0
∇xψk,l · ∇xψn,mdξdη. (5.88)
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(Note that the matrix is symmetric by virtue of the product in the integrand.) To
be consistent with standard matrix notation, we write the local stiffness matrix with
entries Ŝpq = Snm

kl with p = n + 2m + 1 and q = k + 2l + 1.
The gradients in the integrands transform easily under the affine transformation,

specifically

∇xψk,l = ∂ψk,l

∂ξ

∂ξ

∂x
x̂ + ∂ψk,l

∂η

∂η

∂y
ŷ = 1

Δx

∂ψk,l

∂ξ
x̂ + 1

Δy

∂ψk,l

∂η
ŷ, (5.89)

where

∂ψk,l

∂ξ
= −(−1)k

(
1 − l − (−1)lη

)
,

∂ψk,l

∂η
= −(−1)l

(
1 − k − (−1)kξ

)
.

(5.90)

We show how to compute the components of the gradient in the procedure Psi_Xi
and Psi_Eta in Algorithm 78 (ApproximateFEMStencil).

Rather than evaluate the integrals in (5.88) exactly, Canuto et al. [7] report that a
linear approximation to the integrands yields a better preconditioner for the spectral
Galerkin approximation. Therefore, we will approximate the integrands

gnm
kl (ξ, η) = ∇xψk,l · ∇xψn,m = 1

Δx2

∂ψk,l

∂ξ

∂ψn,m

∂ξ
+ 1

Δy2

∂ψk,l

∂η

∂ψn,m

∂η
(5.91)

with a bilinear function

g(ξ, η) = (1 − ξ)(1 − η)g(0,0) + ξ(1 − η)g(1,0) + ξηg(1,1) + (1 − ξ)ηg(0,1).

(5.92)
We easily evaluate the integral of the bilinear approximation

∫ 1

0

∫ 1

0
gnm

kl (ξ, η)dξdη = 1

4

(
gnm

kl (0,0) + gnm
kl (1,0) + gnm

kl (1,1) + gnm
kl (0,1)

)

(5.93)
and find that it is simply the average of the values at the four corners. Thus, the local
stiffness matrix entries for the approximate finite element preconditioner are

Snm
kl = ΔxiΔyj

4

(
gnm

kl (0,0) + gnm
kl (1,0) + gnm

kl (1,1) + gnm
kl (0,1)

)
. (5.94)

To compute the local stiffness matrix we use the procedure LocalStiffnessMatrix in
Algorithm 78 (ApproximateFEMStencil).

We now have to sum the contributions from each element to compute the global
stiffness matrix. Stiffness summation is a procedure that is standard in finite element
texts, and is applicable to unstructured and structured grids. However, since the grid
here is regular, the approximation is local, and since we have already derived a
useful finite difference solver, we will compute the stiffness summation explicitly to
derive a local stencil, much like the finite difference stencil in (5.37).
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Algorithm 78: ApproximateFEMStencil: Computing the Approximate Finite
Element Stencil on the Square

Procedure StencilCoefficients

Input: i, j ,
{
xk

}N
k=0,

{
yk

}M
k=0

for m = 0 to 1 do
for n = 0 to 1 do

p ← n + 2m + 1{
pŜkl

}4

k,l=1
← LocalStiffnessMatrix(xi−n+1 − xi−n, yj−n+1 − yj−n)

end
end
for m = 0 to 1 do

for n = 0 to 1 do
p ← n + 2m + 1
for k = −n to −n + 1 do

for l = −m to −m + 1 do
Ckl ← Ckl + pŜpq

end
end

end
end

return
{
Ckl

}1
k,l=−1

End Procedure StencilCoefficients

Procedure LocalStiffnessMatrix
Input: Δx,Δy

for m = 0 to 1 do
for n = 0 to 1 do

q ← n + 2 ∗ m + 1
for l = 0 to 1 do

for k = 0 to 1 do
p ← k + 2 ∗ l + 1
t ← 0
for s = 0 to 1 do

for r = 0 to 1 do
t ← t + Psi_Xi(k, l, s) ∗ Psi_Xi(n,m, s)/Δx2 + Psi_Eta(k, l, r) ∗

Psi_Eta(n,m, r)/Δy2 // R1
end

end
Ŝp,q ← ΔxΔy ∗ t/4

end
end

end
end

return
{
Skl

}4
k,l=1

End Procedure LocalStiffnessMatrix

Procedure Psi_Xi
Input: k, l, η
∂ψkl

∂ξ
← −(−1)k

(
1 − l − (−1)lη

)

return ∂ψ/∂ξkl (η)

End Procedure Psi_Xi

Procedure Psi_Eta
Input: k, l, ξ
∂ψkl

∂η
← −(−1)l

(
1 − k − (−1)kξ

)

return ∂ψ/∂ξkl (η)

End Procedure Psi_Eta
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The contribution to a point (i, j) comes from the four finite elements around it,
Ei,j , Ei−1,j , Ei−1,j−1, Ei,j−1 and corresponds to the basis function in each ele-
ment that is non-zero at the point (i, j). To distinguish between the local stiffness
matrices between the four elements, we’ll add a superscript to them. The contribu-
tions to the stencil are

1∑

l=0

1∑

k=0

(i,j)S00
kl Ui+k,j+l +

1∑

l=0

0∑

k=−1

(i−1,j)S10
k+1,lUi+k,j+l

+
0∑

l=−1

0∑

k=−1

(i−1,j−1)S11
k+1,l+1Ui+k,j+l +

0∑

l=−1

1∑

k=0

(i,j−1)S01
k,l+1Ui+k,j+l

=
1∑

l=−1

1∑

k=−1

C
(i,j)
kl Ui+k,j+l . (5.95)

We collapse the four sums on the left of (5.95) to get

1∑

m=0

1∑

n=0

−m+1∑

l=−m

−n+1∑

k=−n

(i−n,j−m)Snm
k+n,l+mUi+k,j+l =

1∑

l=−1

1∑

k=−1

C
(i,j)
kl Ui+k,j+l ,

(5.96)
which defines the stencil coefficients C

(i,j)
kl for the grid point (i, j). For the full lin-

ear finite element approximation, this represents a nine-point stencil. The approxi-
mate finite element method is only a five point stencil, since the coefficients turn out
to be zero at the four corner points.

We compute the stencil coefficients from the four matrices Ŝpq that correspond
to the four values of n and m. We will store those as a four dimensional array of
4 × 4 matrices and denote these arrays by pŜpq where, as before, p = n + 2m + 1,
but because the subscripts have changed, q = (k + n) + 2(l + m) + 1. The proce-
dure StencilCoefficients in Algorithm 78 (ApproximateFEMStencil) implements the
construction of the stencil coefficients.

Finally, we discuss how to solve the preconditioned system. As we describe in
Appendix D.2, the preconditioned Conjugate Gradient method performs a system
solve of the form Hz = r during each iteration. As always, there are tradeoffs to
consider between computational time and storage costs. The solution of the system,
which is pentadiagonal, is standard in finite element texts. In roughly reverse order
of the amount of extra storage required, a direct solution of the system without
taking into account the sparsity of the matrix requires a large amount of memory
and is computationally very expensive. Banded direct solvers are possible. We can
use approximations to these solvers, like the ILU solver that we implemented in
Sect. 5.2.1.4 in the context of the finite difference preconditioner. Finally, we can
use an iterative solver for the preconditioner (with it’s own preconditioner, for the
Cat in the Hat fans.)
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We can equally apply the ILU solution of the preconditioned system described in
Algorithm 74 (Solve) to the approximate finite element preconditioner on the grid.
We need only make the correspondence between the coefficients A–F in the finite
difference approximation and the coefficients C in the finite element approximation,
A = C00, etc., and make the appropriate changes.

An alternative to the ILU solver for the preconditioner’s pentadiagonal system
that can turn out to be almost as fast, yet requires less coding, is to use a single sweep
of the symmetric successive overrelaxation method (SSOR) as an approximation to
the solution of the preconditioner. Of course, we could use the SSOR to solve the
system exactly by iterating to convergence. This would minimize the number of iter-
ations of the (outer) Conjugate Gradient solver, at the price of substantial increased
CPU time per iteration. Using a single sweep of the SSOR will increase the number
of iterations in the outer solver, but the single sweep is fast. If we do not iterate the
preconditioner to convergence, we must use SSOR rather than the SOR since the
preconditioner must be symmetric overall. We must also carefully choose a value
for the acceleration parameter in the interval [1, 2) that gives fastest convergence—a
definite disadvantage of using SSOR to solve the preconditioner. On the plus side,
the iterative solver is widely applicable, can be used for preconditioners that have
other than pentadiagonal matrices, and is easy to code. The SSOR iteration consists
of two loops, one running forward through the grid, and the other backwards. For
reference, we show the SSOR sweep in Algorithm 79 (SSORSweep). We can ei-
ther compute the stencil coefficients C on the fly or once during the construction of
the iterative solver and save them. Finally, we note that we could just as well have
used the SSOR solver with the finite difference preconditioner for the collocation
equations instead of the ILU solver.

5.2.2.5 Construction of the PCG Solver

Finally, we implement the Conjugate Gradient solver of Appendix D.2 using the
BLAS-1 algorithms of Appendix C to solve the nodal Galerkin approximation. We
show this modification in Algorithm 80 (ConjugateGradientSolve). The algorithm
takes an instance of a NodalPotentialClass, Algorithm 64, constructed as we have
described above to represent a nodal Galerkin approximation. The solver also takes
an instance of a preconditioner, which we model after the finite difference precon-
ditioner of Algorithms 72 (FDPreconditioner)–74 (Solve). We represent the solver
for the preconditioner as the ILU preconditioner of Algorithm 74 (Solve), which
we must modify to compute the approximate finite element method shown in Al-
gorithm 78 (ApproximateFEMStencil). We could swap the preconditioner’s solver
with the SSOR solver of Algorithm 79 (SSORSweep). We make a tradeoff between
storage and computation cost by deciding to store or not to store the stencil co-
efficients when we modify Algorithm 72 (FDPreconditioner). Finally, all our com-
ments in the discussion of the BiCGStab algorithm about boundary conditions apply
equally to Algorithm 80 (ConjugateGradientSolve).
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Algorithm 79: SSORSweep: SSOR Sweep for the Finite Element Precondi-
tioner

Procedure SSORSweep

Input:
{
ri,j
}N,M

i,j=0, ω

for j = 0 to M do
for i = 0 to N do

zi,j ← 0
end

end
for j = 1 to M − 1 do

for i = 1 to N − 1 do
s = 0
for k = −1 to 1 do

for l = −1 to 1 do
s ← s + C

ij
kl ∗ zi+k,j+l

end
end

zi,j ← zi,j + ω ∗ (ri,j − s)/C
ij

00
end

end
for j = M − 1 to 1 step −1 do

for i = N − 1 to 1 step −1 do
s ← 0
for k = −1 to 1 do

for l = −1 to 1 do
s ← s + C

ij
kl ∗ zi+k,j+l

end
end

zi,j ← zi,j + ω ∗ (ri,j − s)/C
ij

00
end

end

return
{
zi,j

}N,M

i,j=0
End Procedure SSORSweep

5.2.2.6 Benchmark Solution

We reconsider the boundary value problem (5.56) to benchmark the performance of
the nodal Galerkin approximation with a preconditioned Conjugate Gradient solver.
As before, we are interested in the accuracy of the approximation and the effec-
tiveness of the solver and preconditioners. The issues with the direct solver have
not changed, except that we could reduce the storage by half by using a Cholesky
factorization of the matrix. Therefore, we will only discuss the performance of the
iterative solver.

We show the maximum errors of the nodal Galerkin solution as a function of
N = M in Table 5.5. These errors correspond to those of the collocation approxi-
mation shown in Table 5.1. Again, we see that the error decays exponentially fast.
(The differences between successive entries for the logarithm of the error are ap-
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Algorithm 80: PreconditionedConjugateGradientSolve: Conjugate Gradient
Iterative Solver for Nodal Spectral Methods

Procedure PreconditionedConjugateGradientSolve
Input: Nit , TOL
Input:
npc // NodalPotentialClass instance
H // AFEMPreconditioner instance
Uses Algorithms:

Algorithm 77 (NodalGalerkinLaplacian)
Algorithm 74 (Solve- modified for AFEM)
Algorithm 140 (BLAS_Level1)

N ← npc.spA.N ; M ← npc.spA.M ; L ← (N + 1) × (M + 1)

{ri,j }N,M
i,j=0 ← Residual(npc)

{zi,j }N,M
i,j=0 ← H.Solve({ri,j }N,M

i,j=0)

{vi,j }N,M
i,j=0 ← BLAS_COPY(L, {zi,j }N,M

i,j=0,1, {vi,j }N,M
i,j=0,1)

c ← BLAS_DOT(L, {ri,j }N,M
i,j=0,1, {zi,j }N,M

i,j=0,1)

for k = 1, Nit do
{zi,j }N,M

i,j=0 ← npc.MatrixAction({vi,j }N,M
i,j=0)

ω ← c/BLAS_DOT(L, {vi,j }N,M
i,j=0,1, {zi,j }N,M

i,j=0,1)

npc.{Φi,j }N,M
i,j=0 ← BLAS_AXPY(L,ω, {vi,j }N,M

i,j=0,1,npc.{Φi,j }N,M
i,j=0,1)

{ri,j }N,M
i,j=0 ← BLAS_AXPY(L,−ω, {zi,j }N,M

i,j=0,1, {ri,j }N,M
i,j=0,1)

if BLAS_NRM2(L, {ri,j }N,M
i,j=0,1) ≤ TOL then Exit

{zi,j }N,M
i,j=0 ← H.Solve({ri,j }N,M

i,j=0)

d ← BLAS_DOT(L, {ri,j }N,M
i,j=0,1, {zi,j }N,M

i,j=0,1)

{vi,j }N,M
i,j=0 ← BLAS_SCAL(L,d/c, {vi,j }N,M

i,j=0,1, )

{vi,j }N,M
i,j=0 ← BLAS_AXPY(L,1.0, {zi,j }N,M

i,j=0,1, {vi,j }N,M
i,j=0,1)

c ← d
end
return npc
End Procedure PreconditionedConjugateGradientSolve

Table 5.5 Logarithm of
maximum errors for nodal
Galerkin method to (5.56)

N 8 12 16 20 24

Log10(Error) −1.87 −4.16 −7.14 −10.45 −14.0

proximately equal.) Doubling the number of points decreases the error by about a
factor of one thousand. We see also that the nodal Galerkin approximation has the
same errors as the Legendre collocation approximation, and hence is still slightly
better than the Chebyshev method.

We next examine the performance of the iterative solver. Table 5.6 shows the
number of iterations and the CPU time for the ILU, SSOR solver, and without pre-
conditioning. For the SSOR solver, we experimented with the parameter ω ∈ [1,2)
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Table 5.6 Performance
comparison for
preconditioned conjugate
gradient solution of the nodal
Galerkin approximation

N ILU SSOR None

Iterations Time Iterations Time Iterations Time

16 30 0.001 34 0.001 57 0.001

24 36 0.002 39 0.003 107 0.005

48 48 0.017 49 0.020 303 0.084

64 55 0.041 59 0.048 465 0.280

72 58 0.057 63 0.068

to get the best performance. One thing we notice is that the Conjugate Gradient
method converges without preconditioning much better than does the BiCGStab
method applied to the collocation approximation. The second is that for small sys-
tems with N ≤ 16 it is possible not to use preconditioning at all. However, for larger
values of N up to N = 72 the preconditioned iteration takes up to a factor of seven
less time than the Conjugate Gradient method alone. We see little difference be-
tween the time to converge using the ILU and SSOR solvers for the preconditioner.

Finally, it is worth comparing the efficiency of the nodal Galerkin method with
collocation. As we have seen, the errors for this test problem are comparable to the
Legendre collocation method. The number of iterations is larger with the Conjugate
Gradient solver, but for larger N , the nodal Galerkin method takes less time.

5.3 Approximation of Time Dependent Advection-Diffusion

The transport of the concentration of a substance such as a pollutant in a river by a
velocity field q = ux̂ + vŷ is described by an advection-diffusion equation

∂ϕ

∂t
+ q · ∇ϕ = ν∇2ϕ, (x, y) ∈ (−1,1) × (−1,1) ,

ϕ (x, y,0) = ϕ0 (x, y) , (x, y) ∈ [−1,1] × [−1,1] .
(5.97)

The addition of appropriate boundary conditions on all four sides of the square
domain completes the description of the problem.

In this section we derive both the collocation and nodal Galerkin approximations
to the advection-diffusion equation. Each is straightforward to apply on the square.
In both cases, our derivations will re-use and build on the work that we completed
in Sects. 5.2.1 and 5.2.2, where we developed the approximations to the diffusion
operator.

5.3.1 The Collocation Approximation

We first derive the collocation approximation. Since we have already approximated
the diffusion term in Sect. 5.2.1, we concentrate on the transport term, q · ∇ϕ, for
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constant velocity q. We approximate that by differentiating the interpolant of the
approximate solution

q · ∇ϕ ≈ q · ∇Φ = uΦx + vΦy = u

N∑

n,m

Φn,m�′
n(x)�m(y) + v

N∑

n,m

Φn,m�n(x)�′
m(y).

(5.98)
We then evaluate the approximation at the collocation points, where it simplifies to

q · ∇Φi,j = u

N∑

n

Φn,m�′
n(xi) + v

N∑

m

Φn,m�′
m(yj )

= u

N∑

n

D
(x)
in Φn,j + v

N∑

m

D
(y)
jmΦi,m. (5.99)

Therefore, the collocation approximation to the advection-diffusion equation for
Dirichlet boundary conditions is

dΦi,j

dt
= ν∇2

NΦi,j − q · ∇NΦi,j , i, j = 1,2, . . . ,N, (5.100)

where

q · ∇NΦi,j = u

N∑

n=0

D
(x)
in Φn,j + v

N∑

m=0

D
(y)
jmΦi,m (5.101)

and

∇2
NΦi,j =

N∑

k=0

D
(2),x
i,k Φk,j +

N∑

k=0

D
(2),y
j,k Φi,k, (5.102)

which we repeat from (5.22)–(5.23).

5.3.2 The Nodal Galerkin Approximation

We follow the now familiar steps to derive the Galerkin approximation of the trans-
port term. We write a weak form of the advection term

(q · ∇ϕ,φ) =
∫ 1

−1

∫ 1

−1
q · ∇ϕφdxdy, (5.103)

replace the solution ϕ by its approximation Φ , and replace φ by an arbitrary poly-
nomial of the same degree as Φ that vanishes on the boundaries. We then use the
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fact that the nodal values of φ are arbitrary and linearly dependent to get the approx-
imation of the advection term

(
q · ∇Φ,�i�j

)=
∫ 1

−1

∫ 1

−1
q · ∇Φ�i(x)�j (y)dxdy. (5.104)

When we substitute the Lagrange representation of the approximate solution, (5.98),
and rearrange, we get

(
q · ∇Φ,�i�j

) = u

N∑

n,m=0

Φn,m

[∫ 1

−1

∫ 1

−1
�′
n(x)�m(y)�i(x)�j (y)dxdy

]

+ v

N∑

n,m=0

Φn,m

[∫ 1

−1

∫ 1

−1
�n(x)�′

m(y)�i(x)�j (y)dxdy

]
. (5.105)

Finally, we replace the integrals in (5.105) by Legendre Gauss-Lobatto quadra-
tures. As usual, the equations simplify since

∫ 1

−1
�n(x)�i(x)dx ≈

N∑

k=0

�n(xk)�i(xk)w
(x)
k = δn,iw

(x)
i (5.106)

and so forth. With these substitutions, we have our approximation of the transport
term

∫ 1

−1

∫ 1

−1
q · ∇ϕφdxdy → w

(x)
i w

(y)
j

[
u

N∑

n=0

D
(x)
in Φn,j + v

N∑

m=0

D
(y)
jmΦi,m

]
. (5.107)

We see, therefore, that for the advection-diffusion problem with constant coeffi-
cients, the nodal Galerkin approximation of the transport term with the integrals
replaced by Gauss-Lobatto quadrature is just the collocation approximation multi-
plied by the quadrature weights.

To derive the nodal Galerkin approximation of the advection-diffusion equation,
we must include the time derivative term. When we replace the integrals by Gauss-
Lobatto quadratures, we reduce the time derivative term simply to

∫ 1

−1

∫ 1

−1

dϕ

dt
φdxdy → w

(x)
i w

(y)
j

dΦi,j

dt
. (5.108)

Therefore, we write the nodal Galerkin approximation as

w
(x)
i w

(y)
j

dΦi,j

dt
= ν
(∇2Φ,�i�j

)
N

− (q · ∇Φ,�i�j

)
N

, (5.109)

where

(
q · ∇Φ,�i�j

)
N

= w
(x)
i w

(y)
j

[
u

N∑

n

D
(x)
in Φn,m + v

N∑

m

D
(y)
jmΦn,m

]
, (5.110)
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and we repeat the diffusion term (5.77)

(∇2Φ,�i�j

)
N

=
N∑

k=0

w
(y)
j G

(x)
ik Φk,j + w

(x)
i G

(y)
jk Φi,k. (5.111)

Note that we could trivially divide both sides of the Galerkin approximation by
the product of the quadrature weights to get an equation that is identical to the
Legendre collocation approximation. If we want to integrate the equation explicitly,
that is exactly what we would do. If we want to integrate the equation implicitly,
however, we will get a symmetric linear system that we can solve with the Conjugate
Gradient method if we don’t divide by the weights.

To complete the spatial approximation, we need to implement boundary condi-
tions. Dirichlet conditions, which prescribe the concentration, Φ , along the bound-
aries, are appropriate for the advection-diffusion problem. We could apply Neu-
mann conditions instead to specify the flux. We showed how to set both types
of boundary conditions in Sects. 4.4 and 4.6 for one dimensional problems. We
showed how to extend the ideas presented there to two dimensions in Sects. 5.2.1
and 5.2.2.

5.3.3 Time Integration

Let us now address the time integration of the approximations (5.100) and (5.109).
From Chap. 4 we know that the approximation of the diffusion terms is much more
stiff than the transport terms. Specifically, we have seen in Sects. 4.4.1 and 4.4.4
that the eigenvalues of the spatial approximation of the diffusion terms grow as
O(N4) compared to the O(N2) for the advection terms. Unless diffusion is small
compared to advection, it is usually necessary to integrate the equations implicitly.
Often, only the diffusion terms are integrated implicitly; the advection terms are
integrated explicitly. The result is a semi-implicit method.

In this section, we will show how to use a semi-implicit method to integrate the
approximations to the advection-diffusion equation in time. Semi-implicit methods
are commonly used by the incompressible flow community to integrate approxi-
mations of the Navier Stokes equations. They are particularly useful in problems
where diffusion dominates advection. Specifically, we’ll implement a linear multi-
step method that uses an implicit third order backward differentiation (BDF) method
for the diffusion terms and an explicit third order extrapolation method for the ad-
vection. The third order BDF method has an absolute stability region that includes
the entire negative real axis, which makes it unconditionally stable for the diffu-
sion terms, whose eigenvalues are real ([7], Sect. 7.3.1). The extrapolation method
has been derived so that it uses information from the same previous time steps as
the BDF approximation. Overall, the time step is limited by the less stiff advection
terms, rather than the more stiff diffusion terms.
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The third order semi-implicit time integration approximation applied to the col-
location approximation (5.100) in space is

Φn+1
i,j − 6νΔt

11
∇2

NΦn+1
i,j

= 1

11

(
18Φn

i,j − 9Φn−1
i,j + 2Φn−2

i,j

)

− 6Δt

11

(
3q · ∇NΦn

i,j − 3q · ∇NΦn−1
i,j + q · ∇NΦn−2

i,j

)
. (5.112)

When we apply it to the nodal Galerkin approximation it is

w
(x)
i w

(y)
j Φn+1

i,j − 6νΔt

11

(∇2Φn+1
i,j , �i�j

)
N

= 1

11

(
18Φn

i,j − 9Φn−1
i,j + 2Φn−2

i,j

)

− 6Δt

11

(
3
(
q · ∇Φn

i,j , �i�j

)
N

− 3
(
q · ∇Φn−1

i,j , �i�j

)
N

+ (q · ∇Φn−2
i,j , �i�j

)
N

)
. (5.113)

In both cases we must solve a linear system of equations that arises from the terms
on the left of the equals sign at every time step. Furthermore, we see that we need
to store the solution and the transport terms at three time values, tn, tn−1 and tn−2.

Iterative solvers like those we implemented in the previous section are now par-
ticularly attractive to solve the systems represented by the left sides of (5.112) and
(5.113) when compared to direct solvers. First, we have the previous time value to
serve as a good initial iterate at each time step, so the number of iterations per solve
is significantly reduced. Also, since there is now time discretization error at every
step, we only have to iterate until the iteration error is smaller than the time integra-
tion error. We do not have to iterate the residual to machine zero, so that reduces the
number of iterations we need per time step even more.

To use the BiCGStab iterative scheme that we implemented in Algorithm 75
(BiCGSSTABSolve), we rewrite the collocation approximation as

(
I − 6νΔt

11
∇2

N

)
Φi,j = RHSi,j , (5.114)

where

RHSi,j = 1

11

(
18Φn

i,j − 9Φn−1
i,j + 2Φn−2

i,j

)

− 6Δt

11

(
3q · ∇NΦn

i,j − 3q · ∇NΦn−1
i,j + q · ∇NΦn−2

i,j

)
. (5.115)
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We then drive a norm of the residual

ri,j = RHSi,j − Φi,j + 6νΔt

11
∇2

NΦi,j (5.116)

to be less than some tolerance.
We get a similar system to solve when we apply the time discretization to the

nodal Galerkin approximation (5.113). The residual that we must make small at
each time step is now

ri,j = (RHSi,j − w
(x)
i w

(y)
j Φi,j

)+ 6νΔt

11

(∇2Φ,�i�j

)
N

, (5.117)

where

RHSi,j = w
(x)
i w

(y)
j

11

(
18Φn

i,j − 9Φn−1
i,j + 2Φn−2

i,j

)

− 6Δt

11

{
3
(
q · ∇NΦn, �i�j

)
N

− 3
(
q · ∇NΦn−1, �i�j

)
N

+ (q · ∇NΦn−2, �i�j

)
N

}
. (5.118)

The multistep method does have the disadvantage that it requires two steps be-
yond the initial condition to be computed before it can be used. Although we could
use one of several approaches to create these two values, the simplest is to integrate
the first two time steps with an explicit Runge-Kutta, such as the (matching) third
order approximation that we have already used in Algorithm 50 (CollocationStep-
ByRK3). Once we complete those steps and store the results, we switch over to the
multistep integration.

5.3.4 How to Implement the Approximations

To implement the polynomial collocation and nodal Galerkin approximations,
(5.112) and (5.113), we need storage for three time levels of the solution and the
transport terms. We also need procedures to construct the linear systems to be solved
at each time step, which are represented by (5.114) and its equivalent for the nodal
Galerkin method.

5.3.4.1 Multilevel Time Storage

We need to store the solution and transport terms at the current and two previous
time levels to compute the right hand sides, (5.115) or (5.118). It appears that three
time levels of the transport and four of the solution need to be saved. However, once
the quantities in (5.115) or (5.118) have been computed, the solution and transport
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term q · ∇Φ at time level n − 2 are no longer needed. We reuse that storage space
for the solution at the new time level.

We use indirect addressing to minimize both storage and the need to copy arrays
from time step to time step. One way to implement indirect addressing is to create
pointers to the arrays. Those pointers are swapped to point to the desired array at
each time step. Another way is to create an array of integers that store an array index
for a larger storage array. Since the former is trivial to implement, we will discuss
how to do the latter.

To illustrate the use of an index array, suppose that we store the potential in a
three-dimensional array {Φk

i,j }N,N;0
i,j=0;k=−2, which stores the solution values at Φn+k

i,j .
We create an integer pointer array to express that organization of the storage:
{pk}0

k=−2 with p−2 = −2, p−1 = −1, and p0 = 0. We would then access the so-

lution array for time level n + k indirectly by Φ
(pk)
i,j . At the end of a time step, what

was time level n − 1 becomes n − 2 and what was time level n becomes n − 1. We
store the current level n where the no longer needed n − 2 values were stored by
setting

tmp ← p−2,

p−2 ← p−1,

p−1 ← p0,

p0 ← tmp.

(5.119)

5.3.4.2 The Advection-Diffusion Class

To address the needs that we have just outlined, we expand Algorithm 64 (NodalPo-
tentialClass) to organize the storage and procedures to integrate the advection-
diffusion equation on the square. We present that new class in Algorithm 81 (Nodal-
AdvDiffClass). We have added storage for the solution and transport terms at the
three time steps, the indirect addressing pointer, and, of course, the physical para-
meters that describe the problem. New procedures in the class compute the trans-
port terms, the right hand side and the residual. We reuse Algorithms 66 (Lapla-
cianOnTheSquare) and 77 (LaplacianOnTheSquare) to compute the diffusion term,
depending on which approximation we choose.

As with the potential approximation, we specify the choice of polynomial in
the constructor. Algorithm 65 (NodalAdvDiffClass:Construct), for instance, shows
a constructor for the Chebyshev collocation approximation. It computes the second
derivative matrices by way of Algorithm 38 (mthOrderPolynomialDerivativeMa-
trix) with m = 2 and stores them in the second derivative matrix storage of the
Nodal2DStorage structure. We now need the first derivative matrices and compute
them using Algorithm 37 (PolynomialDerivativeMatrix). We easily change the ap-
proximation to a Legendre method if we replace the calls to ChebyshevGaussLo-
battoNodesAndWeights with calls to Algorithm 25 (LegendreGaussLobattoNodes-
AndWeights). To change to the nodal Galerkin approximation, we again note that
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Algorithm 81: NodalAdvDiffClass: A Class for the Advection-Diffusion Prob-
lem on the Square

Class NodalAdvDiffClass
Uses Algorithms:

Algorithm 63 (Nodal2DStorage)
Data:

u,v, ν ; // advection speeds and diffusion coefficient
spA ; // Of type Nodal2DStorage
{
Φk

i,j

}N,M;0
i,j=1;k=−2

; // Solution at three time steps
{
transportki,j

}N,M;0
i,j=0;k=−2 ; // Advection terms at three time steps

{
RHSi,j

}N,M

i,j=0 ; // Right hand side for implicit solve

{maski}4
i=1 ; // Boundary condition mask

{pk}0
k=−2 ; // Time step pointer

Procedures:
Construct(N,M,u, v, ν); // Algorithm 82

LaplacianOnTheSquare({Uij }N,M
i,j=0); // Algorithms 66 or 77

Transport(k); // Algorithm 83
ExplicitRHS(Δt); // Algorithm 84

MatrixAction({Uij }N,M
i,j=0,Δt); // Algorithm 85

Residual(Δt); // Algorithm 86
End Class NodalAdvDiffClass

the second derivative matrices in the Nodal2DStorage structure store the matrices
Gik , which are computed by Algorithm 57 (CGDerivativeMatrix). The quadrature
weights and nodes are the Legendre values, which we compute by Algorithm 25.

5.3.4.3 The Transport Terms

The next procedure we implement computes the transport terms. The implementa-
tion of the transport approximation is similar to that of the diffusion terms, as seen
in Algorithm 83 (NodalAdvDiffClass:Transport). Notice that Algorithm 83 is the
same whether we use Chebyshev or Legendre collocation. To change it to compute
the nodal Galerkin approximation, the transport term needs only to be modified ac-
cording to (5.110), that is, we only need to multiply by the local quadrature weight
values.

5.3.4.4 The Iterative Solver

To solve the systems (5.114) or (5.117) by the BiCGStab (Algorithm 75) or Con-
jugate Gradient (Algorithm 80) iterative methods, we need to implement the resid-
ual computation and the MatrixAction procedures. Notice that a slight modification
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Algorithm 82: NodalAdvDiffClass:Construct: Constructor for the Chebyshev
Collocation Approximation of the Advection-Diffusion Problem

Procedure Construct
Input: N , M , u, v, ν

Uses Algorithms:
Algorithm 38 (mthOrderPolynomialDerivativeMatrix)
Algorithm 27 (ChebyshevGaussLobattoNodesAndWeights)
Algorithm 37 (PolynomialDerivativeMatrix)

this.spA.N ← N ; this.spA.M ← M

this.u ← u; this.v ← v; this.ν ← ν{{this.spA.ξi}Ni=0 ,
{
this.spA.w

(ξ)
i

}N
i=0

}← ChebyshevGaussLobattoNodesAndWeights(N)
{{

this.spA.ηj

}N
j=0 ,

{
this.spA.w

(η)
j

}N
j=0

}← ChebyshevGaussLobattoNodesAndWeights(M)

this.spA.
{
D

(2),ξ
ij

}N
i,j=0 ← mthOrderPolynomialDerivativeMatrix(N,2, this.spA. {ξi}Ni=0)

this.spA.
{
D

(2),η
ij

}M
i,j=0 ← mthOrderPolynomialDerivativeMatrix(M,2, this.spA.{ηj }Mj=0)

this.spA.
{
D

ξ
ij

}N
i,j=0 ← PolynomialDerivativeMatrix(N, this.spA. {ξi}Ni=0)

this.spA.
{
D

η
ij

}M
i,j=0 ← PolynomialDerivativeMatrix(M, this.spA.{ηj }Mj=0)

this. {pk}0
k=−2 ← {−2,−1,0}

End Procedure Construct

Algorithm 83: NodalAdvDiffClass:Transport: Approximation to q · ∇Φ

Procedure Transport
Input: k

Uses Algorithms:
Algorithm 19 (MxVDerivative)
Algorithm 67 (MaskSides)

N ← this.spA.N ; M ← this.spA.M

for j = 0 to M do{
Φxi,j

}N
i=0 ← MxVDerivative

(
this.spA.

{
D

ξ
i,j

}N,N

i,j=0, this.
{
Φk

i,j

}N
i=0

)

end
for i = 0 to N do{

Φyi,j

}M
j=0 ← MxVDerivative

(
this.spA.

{
D

η
i,j

}M,M

i,j=0, this.
{
Φk

i,j

}M
j=0

)

end
for j = 0 to M do

for i = 0 to N do
this.transportki,j ← this.u ∗ Φxi,j + this.v ∗ Φyi,j

[For nodal Galerkin add:
this.transportki,j ← this.spA.w

(ξ)
i ∗ this.spA.w

(η)
j ∗ this.transportki,j ]

end
end

this.
{
transportki,j

}N,M

i,j=0 ← MaskSides
(
this.

{
transportki,j

}N,M

i,j=0, this. {maskn}4
n=1

)

End Procedure Transport
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Algorithm 84: NodalAdvDiffClass:ExplicitRHS: Explicit Part of the BDF Ap-
proximation of the Advection-Diffusion Equation

Procedure AdvDiffExplicitRHS
Input: Δt

Uses Algorithms:
Algorithm 67 (MaskSides)

n ← this.p0; nm1 ← this.p−1; nm2 ← this.p−2
for j = 0 to M do

for i = 0 to N do

this.RHSi,j ← 1

11

(
18 ∗ this.Φn

i,j − 9 ∗ this.Φnm1
i,j + 2 ∗ this.Φnm2

i,j

)

[For nodal Galerkin, add:
this.RHSi,j ← this.spA.w

(ξ)
i ∗ this.spA.w

(η)
j ∗ this.RHSi,j ]

this.RHSi,j ← this.RHSi,j −
6Δt

11

(
3 ∗ this.transportni,j − 3 ∗ this.transportnm1

i,j + this.transportnm2
i,j

)

end
end

this.{RHSi,j }N,M
i,j=0 ← MaskSides(this.{RHSi,j }N,M

i,j=0, this. {maskk}4
k=1)

End Procedure AdvDiffExplicitRHS

needs to be made to the two solvers to allow the time step, Δt to be passed to the
Residual and MatrixAction procedures.

To compute the residual, (5.116) or (5.117), we need to have the RHS array
from the current and previous time step levels available. Algorithm 84 (NodalAd-
vDiffClass:AdvDiffExplicitRHS), for instance, computes the right hand side of the
collocation approximation (5.115). To convert the procedure to the nodal Galerkin
approximation, the solution terms need to be multiplied by the quadrature weights,
according to (5.118), as shown. The matrix action is computed in Algorithm 85
(NodalAdvDiffClass:MatrixAction). Finally, we compute the residual from the RHS
and the matrix action in Algorithm 86 (NodalAdvDiffClass:Residual) for the collo-
cation approximation. Note that we could use BLAS level 1 routines to replace many
of the loops.

For best performance, preconditioning should be applied to the system (5.114).
Fortunately, it is easy to modify the preconditioners that we have already been de-
rived for the Laplace operator. For instance, the finite difference preconditioner,
(5.37), when applied to (5.114) becomes

(HFDu)ij = Âij uij + B̂ij ui−1,j + Ĉij ui,j−1 + Êij ui+1,j + F̂ij ui,j+1, (5.120)

where

Âij = 1 − 6νΔt

11
Aij (5.121)

and

B̂ij = −6νΔt

11
Bij , etc. (5.122)
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Algorithm 85: NodalAdvDiffClass:MatrixAction: Matrix Action for the BDF
Approximation of the Advection-Diffusion Equation

Procedure MatrixAction

Input: Δt ,
{
Ui,j

}N,M

i,j=0
Uses Algorithms:

Algorithm 66 or 77 (LaplacianOnTheSquare)
Algorithm 67 (MaskSides)

{∇2
NUij

}N,M

i,j=0 ← this.LaplacianOnSquare({Uij }N,M
i,j=0)

for j = 0 to M do
for i = 0 to N do

actioni,j = Ui,j − 6νΔt

11
∇2

NUi,j

[For nodal Galerkin, use:

actioni,j = this.spA.w
(ξ)
i ∗ this.spA.w

(η)
j ∗ Ui,j − 6νΔt

11
∇2

NUi,j ]

end
end

{actioni,j }N,M
i,j=0 ← MaskSides({actioni,j }N,M

i,j=0, this. {maskk}4
k=1)

return {actioni,j }N,M
i,j=0

End Procedure MatrixAction

Algorithm 86: NodalAdvDiffClass:Residual: Iteration Residual for the BDF
Approximation of the Advection-Diffusion Equation

Procedure Residual

Input: Δt ,
{
Ui,j

}N,M

i,j=0
Uses Algorithms:

Algorithm 85 (NodalAdvDiffClass:MatrixAction)
Algorithm 67 (MaskSides)

{actioni,j }N,M
i,j=0 ← this.MatrixAction({Uij }N,M

i,j=0,Δt)

for j = 0 to M do
for i = 0 to N do

ri,j = this.RHSi,j − actioni,j

end
end

{ri,j }N,M
i,j=0 ← MaskSides({ri,j }N,M

i,j=0, this. {maskk}4
k=1)

return {ri,j }N,M
i,j=0

End Procedure Residual

Similar modifications change the finite element preconditioner for use with the Con-
jugate Gradient iteration.

The need to precondition (5.114) is not as critical, however, as it is for the so-
lution of the potential problem. As we said, a good initial guess is available, so the
residual starts small. More importantly, the presence of the Δt factor means that the
system is not as stiff. Clearly, for small Δt the matrix on the left approaches the
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identity matrix, which has a condition number of one. Only for very large Δt does
the system become badly ill-conditioned. Very large values won’t occur in practice
since the overall time step is limited by the advection time step, and so Δt ∼ 1/N2.
The condition number of the system to be solved will therefore grow only as O(N2)

instead of O(N4). Since relatively few iterations are needed for the less stiff sys-
tem, the benefits of preconditioning will be diminished. Nevertheless, for large N

and tight iteration tolerances, preconditioning can reduce the number of iterations
per time step significantly enough to make it worthwhile to code.

5.3.4.5 Multistep Time Integration

Lastly, we need to implement an algorithm to evaluate the time stepping procedure
(5.112). The procedure must first compute the right hand side via Algorithm 84
(ExplicitRHS) and then update the pointers via (5.119) to shift the arrays and to
make the storage that is no longer needed available to the new solution and transport
terms. The boundary conditions on the solution are then set for the new time, which
will be used when the system is solved. Once that is done, the transport terms are
computed via Algorithm 83 (Transport).

One time step of the multistep method (5.112) is implemented in Algorithm 87
(MultistepIntegration). The steps taken within that algorithm are identical if the
nodal Galerkin approximation is used, except that we would use the Conjugate
Gradient solver Algorithm 80 (PreconditionedConjugateGradientSolve). A bound-

Algorithm 87: MultistepIntegration: One Step of the Linear Multistep Integra-
tion of the Advection-Diffusion Equation

Procedure MultistepIntegration
Input:
advDiff // NodalAdvDiffClass instance
H // Preconditioner instance
Δt

Uses Algorithms:
Algorithm 84 (NodalAdvDiffClass:ExplicitRHS)
Algorithm 83 (NodalAdvDiffClass:Transport)
Algorithm 75 (BiCGSSTABSolve)

advDiff .
{
RHSi,j

}N,M

i,j=0 ← advDiff .ExplicitRHS(Δt)

tmp ← advDiff .p−2
advDiff .p−2 ← advDiff .p−1
advDiff .p−1 ← advDiff .p0
advDiff .p0 ← tmp

advDiff .
{
Φ

p0
i,j

}N,M

i,j=0 ← SetBoundaryConditions(t + Δt,advDiff )
advDiff ← BiCGSSTABSolve(Nit ,TOL,advDiff ,H)

advDiff .
{
transportp0

i,j

}N,M

i,j=0 ← advDiff .Transport(p0)

return advDiff
End Procedure MultistepIntegration
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ary condition routine must be supplied to compute the values of the solution along
Dirichlet boundaries.

Since the semi-implicit scheme (5.112) is not self starting, we must integrate the
first two steps with an explicit method. Two additional procedures are needed. We
must

• Modify the explicit time integration Algorithm 50 (CollocationStepByRK3). Algo-
rithm 50, which implements the third order Runge-Kutta method for collocation
with Dirichlet boundary conditions, is appropriate to compute the first two time
steps. It has the same order of accuracy in time as the multistep method, although
matching the order precisely is not critical. After all, the two steps to be com-
puted will have to be taken using the explicit diffusion limited time step whose
size is O(N−4), which is much smaller that the advective time step (O(N−2) that
limits the explicit part of the multistep method. Algorithm 50 was presented for
one dimensional problems, so it needs to be extended to act on doubly, rather than
singly, dimensioned arrays.

• Implement a time derivative procedure for fully explicit integration. Algo-
rithm 50 embeds the spatial approximations in the algorithm that implements
the TimeDerivative function. The time derivative function will now evaluate ei-
ther equation (5.100) or (5.109), depending on which spatial approximation we
choose. The time derivative function merely has to call the procedures to compute
the transport and diffusion terms, i.e. Algorithms 83 (Transport) and 66 (Lapla-
cianOnTheSquare), so we will not write it explicitly here. As we have mentioned
before, the weight functions are divided out of (5.109) when we use the explicit
time integrator.

5.3.5 Benchmark Solution: Advection and Diffusion of a Spot
in a Uniform Flow

To benchmark the advection-diffusion solver, we compute the approximate solu-
tion to the advection-diffusion equation, (5.97), with initial and Dirichlet boundary
conditions chosen so that the exact solution is

ϕ(x, y, t) = 1

4t + 1
e
− ((x−ut−x0)2+(y−vt−y0)2)

ν(4t+1) . (5.123)

This solution describes a circular patch that is advected at a constant speed ux̂ + vŷ

while it diffuses. Specific parameters for the benchmark solutions will be u = v =
0.8, ν = 0.01, and x0 = y0 = −0.5.

We present contours of the exact and Legendre collocation solutions in Fig. 5.4
for two times t = 0.5 and t = 1.5. We computed these solutions with N = M = 28
and Δt = 3.9 × 10−4, then interpolated them to 70 points in each direction us-
ing Algorithm 35 (2DCoarseToFineInterpolation). In Fig. 5.5, we plot the values of
the exact solutions and the computed solutions interpolated to 70 uniformly spaced
points along the line y = x.
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Fig. 5.4 Advection and diffusion of a Gaussian spot by Legendre collocation with N = 28. Exact
contours drawn with dashed lines are indistinguishable from the solid contours of the computed
solutions

Fig. 5.5 Comparison of
computed and exact solutions
at three times for the
advection and diffusion of a
Gaussian spot by Legendre
collocation with
N = M = 28, interpolated to
70 points along the line y = x

As a point of comparison, at time t = 1.25, the maximum error of the Legen-
dre collocation approximation is approximately 2 × 10−4. Contrast this with
the well-known second order Lax-Wendroff finite difference method, that with
26,000 degrees of freedom (thirty times the number of degrees of freedom in this
spectral approximation) the maximum error is still one hundred times larger at
2 × 10−2.
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5.4 Approximation of Wave Propagation Problems

The basic model for wave propagation is, of course, the wave equation. In its most
recognizable form, the wave equation is

∂2p

∂t2
− c2 (pxx + pyy

)= 0. (5.124)

In this context, the variable p might represent the acoustic pressure in an otherwise
quiescent gas and c would be the sound speed. In other applications, it might repre-
sent the electric field with c corresponding to the speed of light, or it could represent
the height of water in a shallow tank, where c is the gravity wave speed.

Rather than solve the second order wave equation directly, we will re-write it as
a system of three first order equations. (In actuality, the wave equation is the derived
form. The system of first order equations is closer to the original description of the
phenomena.) We can then use the first order system of equations as a model for
more complex systems such as Maxwell’s equations used in electromagnetics, the
Euler gas dynamics equations, which describe inviscid fluid flow, or the shallow
water equations, which are used in meteorology and oceanography simulations.

To convert the wave equation to a system of first order equations, let

ut = −px,

vt = −py.
(5.125)

(As one might suspect from the notation, u and v correspond to the components of
the velocity in a fluid flow.) If we assume that the order of mixed partial derivatives
does not matter, then

∂2p

∂t2
+ c2 ((ux)t + (vy)t

)= 0. (5.126)

With the proper initial conditions,

pt + c2 (ux + vy

)= 0. (5.127)

We find the system of equations by grouping the equations for the pressure and two
velocity components

⎡

⎣
p

u

v

⎤

⎦

t

+
⎡

⎣
0 c2 0
1 0 0
0 0 0

⎤

⎦

⎡

⎣
p

u

v

⎤

⎦

x

+
⎡

⎣
0 0 c2

0 0 0
1 0 0

⎤

⎦

⎡

⎣
p

u

v

⎤

⎦

y

= 0 (5.128)

or

qt + Bqx + Cqy = 0. (5.129)

Finally, since B and C are constant, we bring them inside the derivatives to create

qt + fx + gy = 0, (5.130)
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where f = Bq and g = Cq. This is known as the divergence or conservation law
form since it is nothing but

qt + ∇ · F = 0 (5.131)

for the vector flux F = fx̂ + gŷ. The term conservation law follows from the fact
that the differential equation is what we get when we apply the divergence theorem
to the integral conservation law,

d

dt

∫

V

qdV = −
∫

S

F · n̂dS, (5.132)

which states that the change in the total amount of q in an arbitrary volume V is
equal to the total amount passing through the surface of that volume per unit time.

The defining feature of the wave equation is that it has plane wave type solutions.
It will be crucial to understand this fact later to develop boundary conditions. These
plane wave solutions have the form

q(x, t) = af

(
k · x
|k| − γ t

)
(5.133)

for any function f . The vector k = kxx̂ + kyŷ is the wavevector, its magnitude
k = |k| is the wavenumber, γ is the wave speed, and the vector a gives the ampli-
tudes of the three components of the solution, p,u, v. To find the dispersion relation,
which is the relationship between k and γ for the plane wave to be a solution of the
differential equation, we substitute (5.133) into the differential equation, (5.128),
and assume f is smooth to get the algebraic relation

(
−γ a + kx

k
Ba + ky

k
Ca
)

f ′
(

k · x
k

+ γ t

)
= 0. (5.134)

Since this holds for any f , the parameters γ , k and a must satisfy
(

kx

k
B + ky

k
C

)
a = γ a. (5.135)

In other words, to have a plane wave solution of the form (5.133), γ must be an
eigenvalue of the matrix

A = kx

k
B + ky

k
C (5.136)

and a is the eigenvector associated with the eigenvalue γ .
To find the wave speeds associated with the system (5.130), we must therefore

find the eigenvalues of

A = αB + βC =
⎡

⎣
0 αc2 βc2

α 0 0
β 0 0

⎤

⎦ , (5.137)
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where the constants α ≡ kx/k and β ≡ ky/k satisfy α2 +β2 = 1. The characteristic
equation for the eigenvalues of A is

−γ 3 + α2c2γ + β2c2γ = 0 (5.138)

so γ = 0 and γ = ±√α2 + β2c = ±c. Thus, the system admits two waves that
move with speed ±c along any wavevector in the plane and another that is station-
ary. (In gas dynamics, the waves that move with speed ±c are called acoustic or
sound waves. The wave that doesn’t move is the vorticity wave. It is stationary only
because there is no mean flow in this example, otherwise the vorticity wave moves
with the fluid. Similar analogies can be made with other systems of equations.)

The eigenvectors, a, associated with the eigenvalues γ = 0,±c give the relation-
ship between the components of the plane waves. Those three right eigenvectors
are

a0 =
⎡

⎣
0
β

−α

⎤

⎦ , a±c =
⎡

⎢⎣

1
2

± α
2c

± β
2c

⎤

⎥⎦ . (5.139)

(To continue the fluid dynamics analogy, note that the acoustic waves have pressure
and velocity components, but the vorticity waves, for which vorticity is defined as
the curl of the velocity, has no pressure component.)

5.4.1 The Nodal Discontinuous Galerkin Approximation

Although spectral collocation methods have been developed and used to solve sys-
tems of conservation laws, it is by far more convenient to implement boundary con-
ditions for the discontinuous Galerkin formulation. So in what follows, we will de-
scribe only that method and refer to the book by Canuto et al. [7] for a discussion of
other approximations.

To be somewhat general, we will derive the approximation of the wave equa-
tion in the form of the conservation law, (5.131), on the reference square [−1,1] ×
[−1,1] with outward normal n̂ and boundary Γ made up of four segments Γi, i =
1,2,3,4 as we sketch in Fig. 5.6.

Once again, we approximate the solution and fluxes by polynomials

q ≈ Q =
N∑

n=0

N∑

m=0

Qn,m�n(x)�m(y),

F ≈ F =
N∑

n=0

N∑

m=0

(
Fn,mx̂ + Gn,m

)
�n(x)�m(y),

(5.140)

where Fn,mx̂ + Gn,mŷ = BQn,mx̂ + CQn,mŷ. When we substitute the approxima-
tions into the weak form of the differential equation, and project onto the basis
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Fig. 5.6 The reference
square with normals and
boundary curves

functions φij = �i(x)�j (y) (cf. Sect. 4.7)

(
Qt , φij

)+ (∇ · F, φij

)= 0. (5.141)

The next step is to apply Green’s identity to the second integral

(∇ · F, φij

)=
∫ 1

−1
φij∇ · Fdxdy =

∫

Γ

φij F · n̂dΓ −
∫ 1

−1
F · ∇φij dxdy. (5.142)

In the discontinuous Galerkin method, the boundary conditions are weakly enforced
when we apply them to the boundary integral. For the moment, we will denote
the fact that we apply the boundary conditions as part of the flux in the boundary
integrals by F∗ · n̂ replacing F · n̂. We’ll determine exactly what that replacement is
after we finish the spatial approximation. When we make that replacement for the
boundary flux, the approximation satisfies

(
Qt , φij

)+
∫

Γ

φij F∗ · n̂dΓ −
∫ 1

−1
F · ∇φij dxdy = 0. (5.143)

The final stages of the approximation procedure are to choose the locations of
the nodes, approximate the integrals by quadrature, and simplify the results. For the
reasons argued in Sect. 4.7, we choose Legendre Gauss quadrature to approximate
the integrals and use the tensor product of the Legendre Gauss quadrature points
as the nodes. Those nodes we represent as circles in Fig. 5.7. To approximate the
boundary integrals we again choose the nodes to be the Legendre Gauss quadra-
ture points along the boundaries (marked by squares in Fig. 5.7) and use Gauss
quadrature to approximate the integrals. This choice will make the computation of
the boundary fluxes efficient. To derive the approximation, we will examine each
integral in (5.143) separately.

The first integral in (5.143),
(
Qt , φij

)
, simplifies to a single point value when

we apply Gauss quadrature. With Gauss quadrature and nodes taken as the Gauss
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Fig. 5.7 Location of nodes
for the discontinuous
Galerkin approximation of
the wave equation. Circles
represent nodes where the
solution is approximated and
are located at the two
dimensional Legendre Gauss
quadrature points. Squares
represent nodes where the
boundary fluxes are
approximated, and are located
at the Legendre Gauss
quadrature points along the
boundary curves

points,

(
Qt , φij

) =
∫ 1

−1

dQ(x, y)

dt
�i(x)�j (y)dxdy

=
N∑

k=0

N∑

l=0

dQ(xk, yl)

dt
�i(xk)�j (yl)w

(x)
k w

(y)
l . (5.144)

Because the product in the integrand is a polynomial of degree 2N in each direction,
the quadrature is exact. The fact that �j (xk) = δk,j , etc., simplifies the double sum
to

(
Qt , φij

)= dQi,j

dt
w

(x)
i w

(y)
j . (5.145)

We’ll skip over the boundary integral in (5.143) for the moment and approximate
the last integral next. After we substitute φij = �i(x)�j (y) and expand the vector
dot product,

∫ 1

−1
F · ∇φij dxdy =

∫ 1

−1

{
F(x, y)�′

i (x)�j (y) + G(x, y)�i(x)�′
j (y)

}
dxdy.

(5.146)
We then replace the integrals each by Gauss quadrature, which again is exact be-
cause F and G are linear functions of Q and the integrands are polynomials of
degree at most N in each direction. The Kronecker delta property of the Lagrange
interpolating polynomials once again simplifies the summations. With quadrature
and simplifications,

∫ 1

−1
F · ∇φij dxdy =

N∑

k=0

Fk,j �
′
i (xk)w

(x)
k w

(y)
j +

N∑

k=0

Gi,k�
′
j (yk)w

(x)
i w

(y)
k . (5.147)

Notice again that the tensor product approximation decouples the derivatives in the
two space directions. When we use our definition for the polynomial derivative ma-
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trix, we write the last integral in (5.143) as

∫ 1

−1
F · ∇φij dxdy =

N∑

k=0

Fk,jD
(x)
ki w

(x)
k w

(y)
j +

N∑

k=0

Gi,kD
(y)
jk w

(x)
i w

(y)
k . (5.148)

Finally, we approximate the boundary integral in (5.143). We break it into four
pieces, along the four sides of the square, as

∫

Γ

φi,j F∗ · n̂dΓ =
∫ 1

−1
�i(x)�j (−1)F∗ · (−ŷ

)
dx +

∫ 1

−1
�i(1)�j (y)F∗ · x̂dy

+
∫ 1

−1
�i(x)�j (1)F∗ · ŷdx +

∫ 1

−1
�i(−1)�j (y)F∗ · (−x̂

)
dy.

(5.149)

Then we approximate the integrals by Gauss quadrature, which are exact, too. For
example,

∫ 1

−1
�i(x)�j (−1)F∗ · ŷdx =

N∑

k=0

�i(xk)�j (−1)F∗(xk,−1) · ŷw
(x)
k

= F∗(xi,−1) · ŷ�j (−1)w
(x)
i . (5.150)

(Compare this with the boundary terms in (4.138).) After we apply quadrature to
each of the segments in the boundary integral, that integral becomes
∫

Γ

φi,j F∗ · n̂dΓ = F∗(xi,−1) · (−ŷ
)
�j (−1)w

(x)
i + F∗(1, yj ) · x̂�i(1)w

(y)
j

+ F∗(xi,1) · ŷ�j (1)w
(x)
i + F∗(−1, yj ) · (−x̂

)
�i(−1)w

(y)
j .

(5.151)

We find the final semi-discrete approximation to (5.143) after we divide by w
(x)
i w

(y)
j

and rearrange

dQi,j

dt
+
{[

F∗(−1, yj ) · (−x̂
) �i(−1)

w
(x)
i

+ F∗(1, yj ) · x̂ �i(1)

w
(x)
i

]
+

N∑

k=0

Fk,j D̂
(x)
ik

}

+
⎧
⎨

⎩

⎡

⎣F∗(xi,−1) · (−ŷ
) �j (−1)

w
(y)
j

+ F∗(xi,1) · ŷ �j (1)

w
(y)
j

⎤

⎦+
N∑

k=0

Gi,kD̂
(y)
jk

⎫
⎬

⎭

= 0, i, j = 0,1, . . . ,N, (5.152)

where, again

D̂jn = −Dnjwn

wj

, (5.153)
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and Dnj = �′
j (xn) is the transpose of the standard derivative matrix, computed with

Algorithm 37 (PolynomialDerivativeMatrix).
Notice that the two terms in the braces are nothing more than the one-dimensional

discontinuous Galerkin derivative that already appears in the braces in (4.138). Its
implementation is Algorithm 60 (NodalDiscontinuousGalerkin:DGDerivative) for
the scalar problem. Therefore, the computation of the time derivative for the system
in two dimensions will proceed just like the computation for the scalar, one dimen-
sional problem. The only thing we have left is to determine how to compute the
boundary fluxes, F∗ · n̂.

5.4.1.1 The Boundary Flux

In the one dimensional problem of Sect. 4.7, we set the boundary condition on the
upwind side. Which is the upwind side is determined by the sign of the wave speed.
Positive wavespeeds (with respect to the x direction) mean that the boundary con-
dition is set on the left. Negative wavespeeds require the solution to be set on the
right. At the downwind side, we evaluated the solution from the interpolant.

By extension, the two dimensional problem requires that we compute a value of
the flux,

F · n̂ = fnx + gny = (Bnx + Cny

)
q = Aq (5.154)

at the boundary so that boundary values are set on the upwind side and computed
from the interior on the downwind side. Unfortunately, the system that describes the
wave equation couples three wavespeeds, positive, negative and zero, with respect
to the direction vector αx̂ + βŷ = nxx̂ + nyŷ, so it is not immediately clear what
the upwind value is. To determine the upwind directions, we must decouple the
wave components that make up the solution vector. In terms of our discussion at
the beginning of this section, we decouple using the eigenvectors of the coefficient
matrix, A.

Since the matrix A has a full set of eigenvectors, it can be diagonalized. If we
create a matrix,

S =
⎡

⎢⎣

1
2

1
2 0

α
2c

− α
2c

β

β
2c

− β
2c

−α

⎤

⎥⎦ , (5.155)

whose columns are right eigenvectors of A, then

AS = S

⎡

⎣
+c 0 0
0 −c 0
0 0 0

⎤

⎦= SΛ. (5.156)

When we premultiply by S−1, we see that S−1AS = Λ, or equivalently, A =
SΛS−1. The matrix S−1 is nothing more than the matrix whose rows are left eigen-
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vectors of the matrix A,

S−1 =
⎡

⎣
1 αc βc

1 −αc −βc

0 β −α

⎤

⎦ , (5.157)

since the left and right eigenvectors of the matrix are orthogonal.
The ability to diagonalize A = SΛS−1 allows us to separate the system into left

going, right going and stationary wave components. Let

Λ =
⎡

⎣
+c 0 0
0 −c 0
0 0 0

⎤

⎦=
⎡

⎣
+c 0 0
0 0 0
0 0 0

⎤

⎦+
⎡

⎣
0 0 0
0 −c 0
0 0 0

⎤

⎦+
⎡

⎣
0 0 0
0 0 0
0 0 0

⎤

⎦

= Λ+ + Λ− + Λ0 (5.158)

be the splitting of the three wave components. Then

A = SΛ+S−1 + SΛ−S−1 + SΛ0S−1 = A+ + A− + A0 (5.159)

splits the matrix A into components that have right going, left going and station-
ary waves with respect to the direction αx̂ + βŷ. We see, therefore, that we can
decompose the normal flux into its wave components using (5.154)

F · n̂ = A+q + A−q + A0q. (5.160)

We are finally in the position to decide how to apply a boundary condition that
is upwind in each of its three components. Suppose that we have two states qext

and Qint that describe the solution external to the domain and internal to the do-
main (Fig. 5.8). We specify the external state as a boundary condition. We compute
the internal state from the polynomial approximation of the solution via (5.140).
The boundary flux will be a function of these two states evaluated at the boundary,
F∗(QL,QR; n̂), that separates the waves into those that originate from outside and
those that originate from the interior.

From (5.160), we see that we should compute the boundary flux from the internal
and external states (with the designation determined relative to the normal at the
boundary) as

F∗(QL,QR; n̂)= A+QL + A−QR. (5.161)

In this way, outgoing waves are approximated with interior solution values (up-
wind) and incoming waves are specified from the external state (also upwind). The
derivation of the boundary flux, (5.161), also known in some contexts as the nu-
merical flux, is an example of the construction of the solution of what is known as
the Riemann problem, and the algorithm used to solve it the Riemann solver. The
construction of Riemann solvers for different physical systems has been important
in computational mathematics, particularly in fluid mechanics [24].
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Fig. 5.8 Interior and exterior
states at a boundary viewed
along the normal direction

To write an algorithm for the Riemann solver, let us explicitly do the algebra
that leads to the numerical flux. Let’s look first at the quantities A±Q = SΛ±S−1Q.
First,

S−1q =
⎡

⎣
1 αc βc

1 −αc −βc

0 β −α

⎤

⎦

⎡

⎣
p

u

v

⎤

⎦=
⎡

⎣
p + c (αu + βv)

p − c (αu + βv)

βu − αv

⎤

⎦≡
⎡

⎣
w+
w−
w0

⎤

⎦ . (5.162)

The w’s are the wave quantities associated with the three eigenvalues since

Λ+S−1q =
⎡

⎣
+c 0 0
0 0 0
0 0 0

⎤

⎦

⎡

⎣
w+
w−
w0

⎤

⎦= c

⎡

⎣
w+
0
0

⎤

⎦ ,

Λ−S−1q =
⎡

⎣
0 0 0
0 −c 0
0 0 0

⎤

⎦

⎡

⎣
w+
w−
w0

⎤

⎦= −c

⎡

⎣
0

w−
0

⎤

⎦ .

(5.163)

Notice that when we take the direction vector αx̂ + βŷ to be the boundary normal
vector, the quantity αu + βv corresponds to the normal velocity of the wave. Under
the same condition, the last component, w0 is the tangential velocity. Finally, we
see that to compute the numerical boundary flux, w+ must be computed from the
left state, QL, since it represents waves coming from the left and moving to the
right relative to the outward normal. Similarly w− must be computed from the right
state, QR .

When we multiply from the left by the matrix S, we get an explicit representation
of the numerical flux

F∗(QL,QR; n̂)=
⎡

⎢⎣

c
2 (w+,L − w−,R)

nx

2 (w+,L + w−,R)
ny

2 (w+,L + w−,R)

⎤

⎥⎦ , (5.164)
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Algorithm 88: RiemannSolver: The Numerical Flux for the Wave Equation

Procedure RiemannSolver

Input:
{
QL

n

}nEqn
n=1 ,

{
QR

n

}nEqn
n=1 , n̂

pL ← QL
1 ;uL ← QL

2 ;vL ← QL
3

pR ← QR
1 ;uR ← QR

2 ;vR ← QR
3

w+,L ← pL + c ∗ (nx ∗ uL + ny ∗ vL)

w−,R ← pR − c ∗ (nx ∗ uR + ny ∗ vR)

F ∗
1 ← c ∗ (w+,L − w−,R)/2

F ∗
2 ← nx ∗ (w+,L + w−,R)/2

F ∗
3 ← ny ∗ (w+,L + w−,R)/2

return
{
F ∗

n

}nEqn
n=1

End Procedure RiemannSolver

where we have used the fact that we want to take the vector αx̂ + βŷ to be the nor-
mal, nxx̂ + nyŷ, at the boundary. For a consistency check, verify that F∗(q,q; n̂) =
F(q) · n̂. If the states on both sides of the boundary are identical, then the numerical
flux must equal the flux for that state.

We show a procedure to compute the numerical flux in Algorithm 88 (Riemann-
Solver). It takes two states, one on the left and one on the right, plus the normal, and
computes the two wave components w± defined in (5.162) from their proper side.
It then reconstructs the flux from those components using (5.164).

To incorporate boundary conditions into the discontinuous Galerkin approxima-
tion, (5.152), we need only to provide the left and right state vectors and the nor-
mal to the Riemann solver. If we know an analytical representation of the external
state, qext(x, t), we use its value as the second argument in (5.164). For instance,
the semi-discrete approximation (5.152) requires the numerical flux F∗(1, yj ) · x̂

along the right boundary. We compute it with the Riemann solver as F∗(1, yj ) · x̂ =
F∗(Q(1, yj ),qext(1, yj ); x̂).

We represent wall (reflection) boundaries when we choose the external state to
be the mirror image of the internal state. Reflection means that the w− wave is
created by reflecting the w+ wave at the boundary, i.e. w− = w+. The reflection
condition implies that the normal velocity is zero (which makes physical sense as a
representation of a solid wall boundary), for

p + c (αu + βv) = p − c (αu + βv) , (5.165)

where αx̂ + βŷ = nxx̂ + nyŷ implies

nxu + nyv = 0 (reflection boundary) . (5.166)

We enforce the reflection condition if we set the external state to have a normal
velocity that is equal in magnitude and opposite in direction to the normal velocity in
the interior. We simply reflect the quantities p and the tangential velocity component
across the boundary, so pext = pint and βuext − αvext = βuint − αvint. We have two
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equations, then, that define the external values uext and vext

αuext + βvext = − (αuint + βvint) ,

βuext − αvext = βuint − αvint,
(5.167)

which we solve to find the external state for a wall/reflection boundary

qext
refl =

⎡

⎢⎣
pint

(β2 − α2)uint − 2αβvint

−2αβuint + (α2 − β2)vint

⎤

⎥⎦ . (5.168)

To approximate a wall boundary, we supply this external state, along with the inter-
nal state, to the Riemann solver to compute the boundary flux.

5.4.2 How to Implement the Nodal Discontinuous Galerkin
Approximation

We now develop the algorithms that we will use to compute the nodal discontinuous
Galerkin approximation to the wave equation in two space dimensions, or for that
matter, any other system of conservation laws for which we have a flux function and
have derived a Riemann solver. As in Sect. 4.7, where we developed the approxima-
tion of a scalar equation in one space dimension, we need algorithms to evaluate the
spatial derivatives and the time derivative. The algorithm to integrate in time and a
driver to manage the integration will just be modifications of Algorithms 51 (Leg-
endreCollocation) and 62 (DGStepByRK3) that we developed in Sects. 4.4 and 4.7
for one dimensional problems, so we will not discuss them further.

We define classes to store the arrays associated with the spatial approximation. To
start, we extend the Nodal2DStorage structure (Algorithm 63) to include the vectors
that the procedure uses to interpolate the solutions to the boundaries, which creates
Algorithm 89 (NodalDG2DStorage). We then define a class, NodalDG2DClass, that
has the new nodal storage class and the solution array as members. We present the
new class in Algorithm 90 (NodalDG2DClass) and its constructor in Algorithm 91
(NodalDG2D:Construct).

Algorithm 89: NodalDG2DStorage: Data Storage for a Nodal Spectral Method

Structure NodalDG2DStorage Extends Nodal2DStorage
Uses Algorithms:

Algorithm 63 (Nodal2DStorage)
Data:{

�
(ξ)
i (−1)

}N

i=0
,
{
�
(ξ)
i (1)

}N

i=0
,
{
�
(η)
j (−1)

}M

j=0
,
{
�
(η)
j (1)

}M

j=0
End Structure NodalDG2DStorage
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Algorithm 90: NodalDG2DClass: A Discontinuous Galerkin Class Definition

Class NodalDG2DClass
Uses Algorithms:

Algorithm 89 (NodalDG2DStorage)
Data:

nEqn
spA ; // Of type NodalDG2DStorage
{
Qi,j,n

}N;M;nEqn
i=0;j=0;n=1

Procedures:
Construct(nEqn,N,M) ; // Algorithm 91
DG2DTimeDerivative(t); // Algorithm 92

End Class NodalDG2DClass

Algorithm 91: NodalDG2D:Construct: Constructor for the Discontinuous
Galerkin Class

Procedure Construct
Input: nEqn,N,M

Uses Algorithms:
Algorithm 23 (LegendreGaussNodesAndWeights)
Algorithm 37 (PolynomialDerivativeMatrix)
Algorithm 34 (LagrangeInterpolatingPolynomials)
Algorithm 30 (BarycentricWeights)

this.nEqn ← nEqn
this.spA.N ← N{

this.spA. {ξi}Ni=0 , this.spA.
{
w

(ξ)
i

}N

i=0

}
← LegendreGaussNodesAndWeights(N)

{
wB

i

}N
i=0 ← BarycentricWeights(N, this.spA. {ξi}Ni=0)

this.spA.
{
�
(ξ)
i (−1)

}N

i=0
←

LagrangeInterpolatingPolynomials
(−1.0,N, this.spA. {ξi}Ni=0 ,

{
wB

i

}N
i=0

)

this.spA.
{
�
(ξ)
i (1)

}N

i=0
←

LagrangeInterpolatingPolynomials
(
1.0,N, this.spA. {ξi}Ni=0 ,

{
wB

i

}N
i=0

)
{
Dij

}N
i,j=0 ← PolynomialDerivativeMatrix

(
N, this.spA.

{
ξj

}N
i=0

)

for j = 0 to N do
for i = 0 to N do

this.spA.D
(ξ)
i,j ← −Dj,i ∗ this.spA.w

(ξ)
j /this.spA.w

(ξ)
i

end
end
Repeat for η direction. . .
End Procedure Construct

We already know how to use Algorithm 60 (NodalDiscontinuousGalerkin:
DGDerivative) compute the spatial derivative approximation given the interior point
and two boundary solutions. We modify that algorithm now to compute the terms in
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Algorithm 92: SystemDGDerivative: Compute the First Derivative via the Dis-
continuous Galerkin Approximation

Procedure SystemDGDerivative

Input:
{
FL

n

}nEqn
n=1 ,

{
FR

n

}nEqn
n=1 ,

{
Fj,n

}N;nEqn
j=0;n=1

Input:
{
Di,j

}N
i,j=0 , {�i(−1)}Ni=0 , {�i(1)}Ni=0 , {wi}Ni=0

Uses Algorithms:
Algorithm 19 (MxVDerivative)

for n = 1 to nEqn do{
F ′

j,n

}N

j=0
← MxVDerivative

({
Di,j

}N
i,j=0 ,

{
Fj,n

}N
j=0

)

end
for j = 0 to N do

for n = 1 to nEqn do
F ′

j,n ← F ′
j,n + (FR

n ∗ �j (1) + FL
n ∗ �j (−1))/wj

end
end

return
{
F ′

j,n

}N;nEqn

j=0;n=1
End Procedure SystemDGDerivative

braces in (5.152), which are now vector quantities and require the outward nor-
mals at the boundaries. We implement this modification in Algorithm 92 (Sys-
temDGDerivative).

We show how to implement the time derivatives, defined in (5.152), in Algo-
rithm 93 (DGSystemTimeDerivative). The computation of the time derivatives con-
sists of two parts, courtesy of the tensor product approximation of the solution. The
first part computes the derivatives for the flux, F, in the x direction for each value
of y. Each component of the solution is interpolated to the left and right bound-
aries by the procedure InterpolateToBoundary in Algorithm 61 (DGTimeDeriva-
tive). Next, Algorithm 93 computes the external state at those same points using an
external procedure that we will have to supply for that purpose. To be able to set a
known exterior state, we pass the position and the time to the external state proce-
dure. To allow reflection conditions of the type (5.168), we also pass the interpolated
value of the internal state. From the external and internal states, the Riemann solver
(Algorithm 88) is called to compute the boundary flux for both the left and right
boundaries. Since the spatial derivatives in (5.152) are taken on the flux, the proce-
dure computes the horizontal flux at the internal grid points from the approximate
solution at those points using the procedure xFlux in Algorithm 94 (WaveEquation-
Fluxes). The second stage follows the same steps to compute the derivatives of the
vertical flux, G.

Algorithms 92 (SystemDGDerivative) and 93 (DGSystemTimeDerivative) form
the core of the discontinuous Galerkin approximation of a system of conservation
laws. To change the system of equations, we only need to change the flux functions
and the Riemann solver. To change the boundary conditions, we only need to change
the external state procedure.
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Algorithm 93: NodalDG2D:DG2DTimeDerivative: Time Derivative in 2D for
the Discontinuous Galerkin Approximation

Procedure DG2DTimeDerivative
Input: t

Uses Algorithms:
Algorithm 92 (SystemDGDerivative), Algorithm 61 (InterpolateToBoundary)
Algorithm 88 (RiemannSolver), Algorithm 94 (WaveEquationFluxes)

N ← this.spA.N ; M ← this.spA.M ; nEqn ← this.nEqn
for j = 0 to M do

y ← this.spA.ηj

for n = 1 to nEqn do

Q
L,int
n ← InterpolateToBoundary

(
this.

{
Qi,j,n

}N
i=0 , this.spA.

{
�
(ξ)
i

(−1)
}N
i=0
)

Q
R,int
n ← InterpolateToBoundary

(
this.

{
Qi,j,n

}N
i=0 , this.spA.

{
�
(ξ)
i

(1)
}N
i=0
)

end
{
Q

L,ext
n

}nEqn
n=1 ← ExternalState

({
Q

L,int
n

}nEqn
n=1 − 1, y, t,LEFT

)
{
Q

R,ext
n

}nEqn
n=1 ← ExternalState
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Q

R,int
n

}nEqn
n=1 1, y, t,RIGHT

)
{
F

∗,L
n

}nEqn
n=1 ← RiemannSolver
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Q
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n=1 ,

{
Q
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n

}nEqn
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)
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n=1 ← RiemannSolver

({
Q
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n
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n=1 ,

{
Q

R,ext
n
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n=1 , x̂

)

for i = 0 to N do{
Fi,n

}nEqn
n=1 ← xFlux

(
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{
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}nEqn
n=1

)

end
{
F ′

i,n
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i=0;n=1 ← SystemDGDerivative
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F
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}nEqn
n=1 ,

{
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{
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}N;nEqn
i=0;m=1 ,

this.spA.
{
Dξ }N

i,j ,
{
�
(ξ)
i

(−1)
}N
i=0,

{
�
(ξ)
i

(1)
}N
i=0,

{
w

(ξ)
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for i = 0 to N do
for n = 1 to nEqn do

Q̇i,j,n ← −F ′
i,n

end
end

end
for i = 0 to N do

x ← this.spA.ξi
for n = 1 to nEqn do
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n ← InterpolateToBoundary
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n=1 ← ExternalState
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for j = 0 to M do{
Gj,n

}nEqn
n=1 ← yFlux

(
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{
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)

end
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for j = 0 to M do
for n = 1 to nEqn do

Q̇i,j,n ← Q̇i,j,n − G′
j,n

end
end

end

return
{
Q̇i,j,n
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End Procedure DGSystemTimeDerivative
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Algorithm 94: WaveEquationFluxes: Flux Vectors for the Two Dimensional
Wave Equation

Procedure xFlux
Input: {Qn}nEqn

n=1
F1 ← c2Q2; F2 ← Q1; F3 ← 0
return {Fn}nEqn

n=1
End Procedure xFlux

Procedure yFlux
Input: {Qn}nEqn

n=1
G1 ← c2Q3; G2 ← 0; G3 ← Q1

return {Gn}nEqn
n=1

End Procedure yFlux

5.4.3 Benchmark Solution: Plane Wave Propagation

We present two simple examples to benchmark the ability of the nodal discontinu-
ous Galerkin method to propagate and reflect plane waves. The first example is the
propagation of a single plane Gaussian wave through the grid. The second adds a
reflecting wall boundary.

To propagate a plane wave across the domain we only need to create a procedure
that defines the wave in space and time. We use that procedure to generate the initial
condition and the external state. For the first benchmark solution, we define the
plane wave by

⎡

⎣
p

u

v

⎤

⎦=

⎡

⎢⎢⎢⎢⎣

1
kx

c

ky

c

⎤

⎥⎥⎥⎥⎦
e
− (kx (x−x0)+ky (y−y0)−ct)2

d2 (5.169)

with the wavevector k normalized to satisfy k2
x + k2

y = 1. This is a wave with
Gaussian shape where we compute the parameter d from the full width at half max-
imum, w = 0.2, by d = w/2

√
ln 2. The other parameters are c = 1 and x0 = y0 =

−0.8.
We show contour plots of the pressure at three times in Fig. 5.9. For that cal-

culation, we chose the wavevector to be k = (
√

2/2,
√

2/2), N = M = 40 and
Δt = 2.6 × 10−3. To get smooth contours, we interpolated the computed solution
with Algorithm 35 (2DCoarseToFineInterpolation) to a fine grid before plotting.
Next, we compare the computed solutions to the exact along the straight line be-
tween (−1,−1) and (1,1) at time t = 2 for N = 20 and N = 30 in Fig. 5.10. Note
that the N = 20 solution shows significant dispersion errors. When we increase the
number of points by only 50% in each direction, those errors are no longer visible.

To illustrate the use of reflection boundary conditions, (5.168), we present
Fig. 5.11, which shows the reflection of the same plane wave off a reflecting wall
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Fig. 5.9 Propagation of a plane Gaussian wave using the nodal discontinuous Galerkin approx-
imation with N = 40 for kx = ky = √

2/2 shown at times t = 0.0 (left), t = 1.0 (center), and
t = 2.0 (right). Contour levels are 0.2, 0.4, 0.6, 0.8

Fig. 5.10 Computed and exact values of the pressure interpolated at 100 points along the line
y = x for the plane wave shown in Fig. 5.9 at time t = 2

boundary on the right. We used the external state to be the exact solution (derived
with the method of images) except along the right boundary. At the right boundary
we used the external state specified by (5.168).

5.4.4 Benchmark Solution: Propagation of a Circular Sound Wave

A more challenging problem in two space dimensions for many numerical approx-
imations to the wave equation is to propagate a circular sound wave. Anisotropy
in the numerical wave speeds usually distorts the wave badly as it propagates. The
circular wave problem is an excellent one with which to see the effects of anisotropy.
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Fig. 5.11 Reflection of a plane Gaussian wave off the right wall boundary using the nodal discon-
tinuous Galerkin approximation with N = 40 and kx = ky = √

2/2. Contours are shown at times
t = 0.5 (left), t = 1.5 (center), and t = 2.0 (right). Contour levels are 0.2, 0.4, 0.6, 0.8

The benchmark solution that we present now is to solve the wave equation with
the initial condition

p(x, y,0) = exp

[
− ln 2

(
x2 + y2

0.062

)]
,

u(x, y,0) = v(x, y,0) = 0.

(5.170)

The exact solution to the wave equation with this initial condition is found in polar
coordinates by separation of variables. The pressure as a function of distance from
the origin, r =√x2 + y2, and time is

p(x, y, t) = −
∫ ∞

0

e−ω2/4b

2b
ωJ0 (rω) cos(ωt)dω, (5.171)

where J0 is the Bessel function of the first kind of order zero, and b = ln 2/w2 with
w = 0.06.

We present solutions for the propagating circular wave at time t = 0.7 in
Figs. 5.12 and 5.13. The solutions were computed with 70 points in each direc-
tion and a time step of Δt = 8.75 × 10−4. With this number of points, the initial
Gaussian for the pressure is resolved by about eight points in each direction. We in-
terpolated the solutions to 100 points in each direction for the plots by Algorithm 35
(2DCoarseToFineInterpolation). Figure 5.12 shows contours of the pressure, which
illustrates that the circular shape of the wave is retained. Figure 5.13 allows the
comparison of the exact and computed solutions along the line y = x.

Exercises

5.1 Derive a collocation approximation for

ϕxx + ϕxy + ϕyy = f.
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Fig. 5.12 Computed pressure contours at time t = 0.7 for a propagating circular wave for
N = M = 70 and Δt = 8.75 × 10−4 interpolated to 100 uniformly spaced points in each direc-
tion

Cross derivatives appear when considering problems in curvilinear coordinates.

5.2 Repeat Problem 5.1 for the nodal Galerkin approximation.

5.3 The steady solution of the advection-diffusion equation can be computed by
letting time go to infinity for the time dependent equation or by solving the steady-
state equation

q · ∇ϕ − ∇2ϕ = f

directly. Derive the collocation approximation to the steady-state advection-
diffusion equation for Dirichlet boundary conditions. What iterative method should
be used to solve the system of equations? (Unfortunately, preconditioning for the
advective term is problematic. See [7].)

5.4 Repeat Problem 5.3 for the nodal Galerkin approximation.
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Fig. 5.13 Comparison of the
computed circular wave
pressure interpolated to 100
points with the exact solution
along the line y = x at t = 0.7

5.5 Modify Algorithms 63 (Nodal2DStorage) and 65 (Construct) to compute the
Chebyshev collocation approximation using Algorithm 40 (FastChebyshevDeriva-
tive) instead of matrix multiplication to compute the spatial derivatives.

5.6 Extend the NodalPotentialClass to solve variable diffusion coefficient prob-
lems, approximated by (5.27), for ν = ν(x, y,ϕ).

5.7 Show that the coefficient matrix for the Laplace operator, (5.32), is not sym-
metric.

5.8 A thin, rectangular plate shown in Fig. 5.14 is kept at a fixed temperature along
its edges and is allowed to radiate through its surface. When suitably scaled, the
steady temperature distribution satisfies the equation

∇2ϕ = γ 2 (ϕ − ϕ0) ,

where γ 2 is a constant that is inversely proportional to the thermal resistance of the
material.

1. Derive the collocation approximation for the problem.
2. Compute the solution of the collocation approximation, plot its contours, and

compare to the exact solution

ϕ = 2

a

∞∑

n=1

sin( nπx
a

) sinh[(b − y)(γ 2 + n2π2

a2 )1/2]
sinh[b(γ 2 + n2π2

a2 )1/2]
∫ a

0
f (x) sin

(nπx

a

)
dx

for f (x) = e−(x−a/2)2
.
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Fig. 5.14 Geometry and
boundary conditions for
steady temperatures on a thin
plate with radiation

3. Compare the contours for several values of γ 2 and to those of a fully insulated
plate.

5.9 Redo Problem 5.8 with the nodal Galerkin method.

5.10 For wave reflection at a straight boundary, the angle of incidence is equal to
the angle of reflection. This appears to be true in Fig. 5.11. Compute the benchmark
problem of Sect. 5.4.3 for various angles of incidence and find the range of angles
over which the angle of reflection is accurate.

5.11 Typical rules of thumb for the number of points per wavelength needed to
propagate sinusoidal waves accurately with finite difference approximations are 32
points per wavelength for second order methods and eight points per wavelength for
fourth order methods. Multiply the exponential factor in (5.169) by a sinusoidal fac-
tor sin(ω(kx(x − x0) + ky(y − y0) − ct)) and choose the frequency ω so that there
is at least one wavelength fully represented across the Gaussian envelope. Exper-
iment with the discontinuous Galerkin method to find the number of points per
wavelength needed to propagate the pulse accurately. In practice, polynomial spec-
tral methods need only an average of 4–5 average points per wavelength.

5.12 If a wall boundary is placed along one of the boundaries in the benchmark
problem of Sect. 5.4.4, the method of images can be used to create the exact solution
from (5.171). Compute the solution with a single wall to study how well a circular
wave is reflected from a straight wall.
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