

Implementing Spectral Methods
for Partial Differential Equations

Scientific Computation

Editorial Board

J.-J. Chattot, Davis, CA, USA
P. Colella, Berkeley, CA, USA
W. Eist, Princeton, NJ, USA
R. Glowinski, Houston, TX, USA
Y. Hussaini, Tallahassee, FL, USA
P. Joly, Le Chesnay, France
H.B. Keller, Pasadena, CA, USA
J.E. Marsden, Pasadena, CA, USA
D.I. Meiron, Pasadena, CA, USA
O. Pironneau, Paris, France
A. Quarteroni, Lausanne, Switzerland

and Politecnico of Milan, Milan, Italy
J. Rappaz, Lausanne, Switzerland
R. Rosner, Chicago, IL, USA
P. Sagaut, Paris, France
J.H. Seinfeld, Pasadena, CA, USA
A. Szepessy, Stockholm, Sweden
M.F. Wheeler, Austin, TX, USA

For other titles published in this series, go to
www.springer.com/series/718

David A. Kopriva

Implementing Spectral
Methods for Partial
Differential Equations

Algorithms for Scientists and Engineers

Prof. Dr. David A. Kopriva
Dept. of Mathematics
Florida State University
Tallahassee, FL 32306-4510
USA
e-mail: kopriva@math.fsu.edu

ISBN 978-90-481-2260-8

DOI 10.1007/978-90-481-2261-5

e-ISBN 978-90-481-2261-5

Library of Congress Control Number: 2009922124

© Springer Science + Business Media B.V. 2009

No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written
permission from the Publisher, with the exception of any material supplied specifically for the purpose
of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

mailto:kopriva@math.fsu.edu

To my Wife, my Mother, and in memory
of my Dad.

Preface

This book is aimed to be both a textbook for graduate students and a starting point
for applications scientists. It is designed to show how to implement spectral methods
to approximate the solutions of partial differential equations. It presents a system-
atic development of the fundamental algorithms needed to write spectral methods
codes to solve basic problems of mathematical physics, including steady potentials,
transport, and wave propagation. As such, it is meant to supplement, not replace,
more general monographs on spectral methods like the recently updated “Spectral
Methods: Fundamentals in Single Domains” and “Spectral Methods: Evolution to
Complex Geometries and Applications to Fluid Dynamics” by Canuto, Hussaini,
Quarteroni and Zang, which provide detailed surveys of the variety of methods,
their performance and theory.

I was motivated by comments that I have heard over the years that spectral meth-
ods are “too hard to implement.” I hope to dispel this view—or at least to remove the
“too”. Although it is true that a spectral code is harder to hack together than a sim-
ple finite difference code (at least a low order finite difference method on a square
domain), I show that only a few fundamental algorithms for interpolation, differenti-
ation, FFT and quadrature—the subjects of basic numerical methods courses—form
the building blocks of any spectral code, even for problems in complex geometries.
I present the algorithms not only to solve problems in 1D, but 2D as well, to show the
flexibility of spectral methods and to make as straightforward as possible the tran-
sition from simple, exploratory programs that illustrate the behavior of the methods
to application programs.

I assume that the reader has a basic knowledge of numerical algorithms. The most
important topics include interpolation, quadrature and the numerical integration of
ordinary differential equations. An understanding of other methods for the solution
of PDEs, such as finite difference or finite element methods is very helpful.

Although I assume some background in numerical methods, I have tried to make
the presentation and the collection of algorithms self contained. The idea is to make
it as straightforward as possible to implement the methods without the need to
search for auxiliary routines. Of course, some of the routines (like FFTs, for ex-
ample) should be later replaced by well-tested and optimally designed versions in
the programmer’s programming language of choice. Also, since I emphasize the
implementation of spectral methods, I recommend having one of the many more
general books, such as the two mentioned above, available to consult on the theory
of the methods.

I have chosen to present the algorithms in a detailed pseudocode, rather than in
a specific language such as C or Fortran or application such as Matlab, Maple or
Mathematica. The idea is to present the algorithms unencumbered by a language
syntax that the reader might not know, but that can nevertheless be quickly trans-
lated into the programmer’s favorite computer language. I hope that this will make

viii Preface

the methods useful to the widest possible audience and for the widest range of ap-
plications. This is not a programming book, however, and the translation process
of the pseudocode will depend on the particular computer language chosen. For-
tran programmers will most likely replace loops with vector operations. C/C++
programmers will often have to adjust array indices. The object oriented concepts
used for many of the algorithms will be natural to C++ programmers, but a num-
ber of tutorials on the web for Fortran programmers show how to implement object
oriented ideas using modules, at least until F2003 compilers become available.

The book consists of two parts. The first is a quick introduction to spectral ap-
proximation to provide a reference point and to define the notation. It is followed
by the development of the basic algorithms that form the building blocks of spectral
codes. These algorithms include how to use the complex FFT to compute real trans-
forms, how to compute Chebyshev and Legendre polynomials and then how to use
them to approximate integrals and derivatives.

The second part presents algorithms to approximate the solutions of PDEs. It in-
cludes a short survey of spectral approximations that shows how to use the building
blocks in one space dimension. Our main interest, however, is how to solve prob-
lems in complex geometries in two space dimensions, so we put the emphasis on
collocation and nodal versions of Galerkin spectral methods. The development of
the algorithms starts from basic approximation on the square, then moves to more
complex geometries through the introduction of boundary-fitted mappings, and ends
with spectral multidomain methods.

I am grateful for the efforts of my students and colleagues who did so much to
help me prepare this work. I’d like to thank my students Wuming Zhu, James De-
Marco, Matt Willyard and Cesar Acosta who gave suggestions on what they wanted
to see in a book on spectral methods and implemented algorithms. Tom Zang de-
serves many thanks for taking the time to read through an entire draft of the manu-
script and provide detailed comments. Last, but certainly not least, I want to thank
Yousuff Hussaini, who started my research in spectral methods. He has mentored me
and encouraged my career for two and a half decades. Many of the topics covered
here came out of projects that we have worked on together.

Tallahassee, FL David A. Kopriva
October 2008

Contents

Preface . vii

Part I Approximating Functions, Derivatives and Integrals

1 Spectral Approximation . 3
1.1 Preamble: Series Solution of PDEs 3
1.2 The Fourier Basis Functions and Fourier Series 4
1.3 Series Truncation . 6
1.4 Modal vs. Nodal Approximation 11
1.5 Discrete Orthogonality and Quadrature 11
1.6 Fourier Interpolation . 14

1.6.1 Direct Computation of the Fourier Interpolation 17
1.6.2 Error of the Fourier Interpolation 19

1.7 The Derivative of the Fourier Interpolant 21
1.8 Polynomial Basis Functions . 23

1.8.1 The Legendre Polynomials 24
1.8.2 The Chebyshev Polynomials 25

1.9 Polynomial Series . 26
1.10 Polynomial Series Truncation . 28

1.10.1 Derivatives of Truncated Series 30
1.11 Polynomial Quadrature . 31
1.12 Orthogonal Polynomial Interpolation 35

2 Algorithms for Periodic Functions 39
2.1 How to Compute the Discrete Fourier Transform 39

2.1.1 Fourier Transforms of Complex Sequences 40
2.1.2 Fourier Transforms of Real Sequences 43
2.1.3 The Fourier Transform in Two Space Variables 48

2.2 The Real Fourier Transform . 50
2.3 How to Evaluate the Fourier Interpolation Derivative by FFT . . . 53
2.4 How to Compute Derivatives by Matrix Multiplication 54

3 Algorithms for Non-Periodic Functions 59
3.1 How to Compute the Legendre and Chebyshev Polynomials 59
3.2 How to Compute the Gauss Quadrature Nodes and Weights 62

3.2.1 Legendre Gauss Quadrature 62
3.2.2 Legendre Gauss-Lobatto Quadrature 64
3.2.3 Chebyshev Gauss Quadratures 67

3.3 How to Evaluate Chebyshev Interpolants via the FFT 67
3.3.1 The Fast Chebyshev Transform 68

3.4 How to Evaluate Polynomial Interpolants in Lagrange Form 73

ix

x Contents

3.5 How to Evaluate Polynomial Derivatives 78
3.5.1 Direct Evaluation of the Derivative 79
3.5.2 Evaluation of Derivatives by Matrix Multiplication 81
3.5.3 Even-Odd Decomposition 82
3.5.4 Evaluation by Transform Methods 84
3.5.5 Performance of Various Polynomial Derivative Algorithms 84

Part II Approximating Solutions of PDEs

4 Survey of Spectral Approximations 91
4.1 The Fourier Collocation Method 94

4.1.1 How to Implement the Fourier Collocation Method 96
4.1.2 Benchmark Solution . 99

4.2 The Fourier Galerkin Method . 101
4.2.1 How to Implement the Fourier Galerkin Method 103
4.2.2 Benchmark Solution . 106

4.3 Nonlinear and Product Terms . 107
4.3.1 The Galerkin Approximation 107
4.3.2 How to Compute the Convolution Sum 109
4.3.3 The Collocation Approximation 112

4.4 Polynomial Collocation Methods 115
4.4.1 Approximation of the Diffusion Equation 115
4.4.2 How to Implement the Methods 117
4.4.3 Benchmark Solution . 119
4.4.4 Approximation of Scalar Advection 120

4.5 The Legendre Galerkin Method 123
4.5.1 How to Implement the Method 127

4.6 The Nodal Continuous Galerkin Method 129
4.6.1 How to Implement the Method 133
4.6.2 Benchmark Solution . 134

4.7 The Nodal Discontinuous Galerkin Method 134
4.7.1 How to Implement the Method 138
4.7.2 Benchmark Solution . 143

4.8 Summary and Some Broad Generalizations 144

5 Spectral Approximation on the Square 149
5.1 Approximation of Functions in Multiple Space Dimensions 149
5.2 Potential Problems on the Square 151

5.2.1 The Collocation Approximation 152
5.2.2 The Nodal Galerkin Approximation 173

5.3 Approximation of Time Dependent Advection-Diffusion 188
5.3.1 The Collocation Approximation 188
5.3.2 The Nodal Galerkin Approximation 189
5.3.3 Time Integration . 191
5.3.4 How to Implement the Approximations 193
5.3.5 Benchmark Solution: Advection and Diffusion of a Spot

in a Uniform Flow . 200

Contents xi

5.4 Approximation of Wave Propagation Problems 202
5.4.1 The Nodal Discontinuous Galerkin Approximation 204
5.4.2 How to Implement the Nodal Discontinuous Galerkin

Approximation . 212
5.4.3 Benchmark Solution: Plane Wave Propagation 216
5.4.4 Benchmark Solution: Propagation of a Circular Sound Wave 217

6 Transformation Methods from Square to Non-Square Geometries . . 223
6.1 Mappings and Coordinate Transformations 223

6.1.1 Mapping a Straight Sided Quadrilateral 224
6.1.2 How to Approximate Curved Boundaries 225
6.1.3 How to Map the Reference Square to a Curved-Sided

Quadrilateral . 229
6.2 Transformation of Equations under Mappings 231

6.2.1 Two-Dimensional Forms 238
6.3 How to Approximate the Metric Terms 240
6.4 How to Compute the Metric Terms 242

7 Spectral Methods in Non-Square Geometries 247
7.1 Steady Potentials in a Quadrilateral Domain 247

7.1.1 The Collocation Approximation 247
7.1.2 The Nodal Galerkin Approximation 252
7.1.3 Solution of the Linear Systems 254
7.1.4 Benchmark Solution: Potential in Non-Square Domains . . 259
7.1.5 Benchmark Solution: Incompressible Flow over a Circular

Obstacle . 261
7.2 Steady Potentials in an Annulus 264

7.2.1 Benchmark Solution: Potential in an Annulus with a Source 271
7.3 Advection and Diffusion in Quadrilateral Domains 272

7.3.1 Transformation of the Advection-Diffusion Equation 272
7.3.2 The Collocation Approximation 273
7.3.3 The Nodal Galerkin Approximation 274
7.3.4 How to Implement the Approximations 275
7.3.5 Benchmark Solution: Advection and Diffusion

in a Non-Square Geometry 276
7.3.6 Benchmark Solution: Advection and Diffusion

of a Pollutant in a Curved Channel 277
7.4 Conservation Laws in Quadrilateral Domains 279

7.4.1 The Nodal Discontinuous Galerkin Approximation 280
7.4.2 How to Implement the Nodal Discontinuous Galerkin

Approximation . 282
7.4.3 Benchmark Solution: Acoustic Scattering off a Cylinder . . 285

8 Spectral Element Methods . 293
8.1 Spectral Element Methods in One Space Dimension 296

8.1.1 The Continuous Galerkin Spectral Element Method 297

xii Contents

8.1.2 How to Implement the Continuous Galerkin Spectral
Element Method . 301

8.1.3 Benchmark Solution: Cooling of a Temperature Spot 305
8.1.4 The Discontinuous Galerkin Spectral Element Method . . . 308
8.1.5 How to Implement the Discontinuous Galerkin Spectral

Element Method . 310
8.1.6 Benchmark Solution: Wave Propagation and Reflection . . 315

8.2 The Two-Dimensional Mesh and Its Specification 317
8.2.1 How to Construct a Two-Dimensional Mesh 321
8.2.2 Benchmark Solution: A Spectral Element Mesh for a Disk . 326

8.3 The Spectral Element Method in Two Space Dimensions 326
8.3.1 How to Implement the Spectral Element Method 331
8.3.2 Benchmark Solution: Steady Temperatures in a Long

Cylindrical Rod . 340
8.4 The Discontinuous Galerkin Spectral Element Method 341

8.4.1 How to Implement the Discontinuous Galerkin Spectral
Element Method . 343

8.4.2 Benchmark Solution: Propagation of a Circular Wave
in a Circular Domain . 344

8.4.3 Benchmark Solution: Transmission and Reflection from
a Material Interface . 347

A Pseudocode Conventions . 355

B Floating Point Arithmetic . 359

C Basic Linear Algebra Subroutines (BLAS) 361

D Linear Solvers . 363
D.1 Direct Solvers . 363

D.1.1 Tri-Diagonal Solver . 363
D.1.2 LU Factorization . 364

D.2 Iterative Solvers . 368

E Data Structures . 373
E.1 Linked Lists . 373

E.1.1 Example: Elements that Share a Node 376
E.2 Hash Tables . 377

E.2.1 Example: Avoiding Duplicate Edges in a Mesh 381

References . 385

Index of Algorithms . 387

Subject Index . 389

List of Algorithms

1 DiscreteFourierCoefficients: Direct Evaluation of the Discrete Fourier
Coefficients . 17

2 FourierInterpolantFromModes: Direct Evaluation of the Fourier
Interpolant from Its Modes . 18

3 FourierInterpolantFromNodes: Direct Evaluation of the Fourier
Interpolant from Its Nodes . 18

4 LegendreDerivativeCoefficients: Evaluate the Legendre Coefficients
of the Derivative of a Polynomial . 31

5 ChebyshevDerivativeCoefficients: Evaluate the Chebyshev Coefficients
of the Derivative of a Polynomial . 31

6 DFT: Direct (and Slow) Evaluation of the Discrete Fourier Transform . 40
7 InitializeFFT: Initialization Routine for FFT 41
8 Radix2FFT: Temperton’s Radix 2 Self Sorting Complex FFT 42
9 FFFTOfTwoRealVectors: Simultaneous Computation of the DFT

of Two Real Sequences. The Forward Transform 44
10 BFFTForTwoRealVectors: Simultaneous Computation of the DFT

of Two Real Sequences. The Backward Transform 45
11 FFFTEO: The Forward DFT by Even-Odd Decomposition 47
12 BFFTEO: The Backward DFT by Even-Odd Decomposition 48
13 Forward2DFFT: A Two-Dimensional Forward FFT of a Real Array

with an Even Number of Points in Each Direction 50
14 Backward2DFFT: Two-Dimensional Backward FFT of a Real Array

with an Even Number of Points in Each Direction 51
15 ForwardRealFFT: The Forward Real Transform 52
16 BackwardRealFFT: The Backward Real Transform 52
17 FourierDerivativeByFFT: Fast Evaluation of the Fourier Polynomial

Derivative . 54
18 FourierDerivativeMatrix: Computation of the Fourier Derivative

Matrix using the Negative Sum Trick 55
19 MxVDerivative: A Matrix-Vector Multiplication Procedure 56
20 LegendrePolynomial: Evaluate the Legendre Polynomial of Degree k

using Three Term Recursion . 60
21 ChebyshevPolynomial: The Chebyshev Polynomial of Degree k using

Three Term Recursion and Trigonometric Forms. 60
22 LegendrePolynomialAndDerivative: The Legendre Polynomial

of Degree k and Its Derivative using the Three Term Recursion 63
23 LegendreGaussNodesAndWeights: . 64
24 qAndLEvaluation: Combined Algorithm to Compute LN(x),

q(x) = LN+1 − LN−1, and q ′(x) . 65
25 LegendreGaussLobattoNodesAndWeights: 66

xiii

xiv List of Algorithms

26 ChebyshevGaussNodesAndWeights: 67
27 ChebyshevGaussLobattoNodesAndWeights: 68
28 FastCosineTransform: The Cosine Transform Computed with the Real

FFT . 72
29 FastChebyshevTransform: The Fast Chebyshev Transform using

the Fast Cosine Transform . 73
30 BarycentricWeights: Weights for Lagrange Interpolation 75
31 LagrangeInterpolation: Lagrange Interpolant from Barycentric Form . 75
32 PolynomialInterpolationMatrix: Matrix for Interpolation Between Two

Sets of Points . 76
33 InterpolateToNewPoints: Interpolation Between Two Sets of Points

by Matrix Multiplication . 77
34 LagrangeInterpolatingPolynomials: �j (x) 77
35 2DCoarseToFineInterpolation: Interpolation from a Coarse to a Fine

Grid in 2D . 79
36 LagrangeInterpolantDerivative: Direct Computation of the Polynomial

Derivative in Barycentric Form . 80
37 PolynomialDerivativeMatrix: First Derivative Approximation Matrix . . 82
38 mthOrderPolynomialDerivativeMatrix: Derivative Matrix for mth

Order Derivatives . 83
39 EOMatrixDerivative: Computation of First Derivative by Even-Odd

Decomposition . 85
40 FastChebyshevDerivative: Computation of the Derivative by the Fast

Chebyshev Transform . 86
41 FourierCollocationTimeDerivative: The Fourier Collocation Time

Derivative for the Advection-Diffusion Equation 97
42 CollocationStepByRK3: Low-Storage Runge-Kutta Integration

of the Fourier Collocation Approximation 98
43 FourierCollocationDriver: A Driver for the Fourier Collocation

Approximation . 99
44 AdvectionDiffusionTimeDerivative: Advection-Diffusion Time

Derivative for Fourier Galerkin . 103
45 FourierGalerkinStep: Take One Time Step of the Fourier Galerkin

Method . 104
46 EvaluateFourierGalerkinSolution: Direct Synthesis of the Fourier

Galerkin Solution . 104
47 FourierGalerkinDriver: A Driver for the Fourier Galerkin

Approximation . 105
48 DirectConvolutionSum: Direct (Slow) Computation of the Convolution

Sum . 110
49 FastConvolutionSum: Computation of the Convolution Sum

with the FFT . 112
50 CollocationStepByRK3: Low Storage Runge-Kutta Integration

of a Polynomial Collocation Approximation 116
51 LegendreCollocation: Drivers for Legendre Collocation Approximation 118

List of Algorithms xv

52 ModifiedLegendreBasis: The Legendre Basis Modified to Vanish
at Endpoints . 127

53 EvaluateLegendreGalerkinSolution: Synthesis of the Legendre
Galerkin Solution . 127

54 InitTMatrix: Legendre Galerkin Tridiagonal Matrix 128
55 ModifiedCoefsFromLegendreCoefs: Computing the Modified Legendre

Coefficients from Legendre Coefficients 128
56 LegendreGalerkinStep: Take One Time Step by Trapezoidal Rule 130
57 CGDerivativeMatrix: Matrix for Legendre Galerkin Approximation . . 133
58 NodalDiscontinuousGalerkin: A Discontinuous Galerkin Class

Definition . 138
59 NodalDiscontinuousGalerkin:Construct: Constructor

for the Discontinuous Galerkin Class 139
60 NodalDiscontinuousGalerkin:DGDerivative: First Spatial Derivative

via the Galerkin Approximation . 139
61 NodalDiscontinuousGalerkin:DGTimeDerivative: Time Derivative

via the Discontinuous Galerkin Approximation 140
62 DGStepByRK3: Low Storage Runge-Kutta Integration of a Nodal

Discontinuous Galerkin Approximation 141
63 Nodal2DStorage: Storage for a Nodal Spectral Method 155
64 NodalPotentialClass: A Class for the Potential Problem on the Square . 155
65 NodalPotentialClass:Construct: Constructor for the Chebyshev

Collocation Approximation of the Potential Problem 156
66 NodalPotentialClass:LaplacianOnTheSquare: Collocation

Approximation to the Laplace Operator 156
67 MaskSides: Set Boundary Values to Zero According

to a Mask Function . 158
68 NodalPotentialClass:MatrixAction: Collocation Approximation

to the Laplace Operator . 158
69 CollocationRHSComputation: Right Hand Side Construction for Direct

Solution of the Collocation Equations 160
70 LaplaceCollocationMatrix: Matrix Construction for Direct Solution

of the Collocation Approximation for the Poisson Problem 161
71 Residual: Residual for a Polynomial Collocation Approximation

to the Potential Equation on the Square 162
72 FDPreconditioner: A Class for a Finite Difference Preconditioner . . . 166
73 FDPreconditioner:Construct: Constructor for the Finite Difference

Preconditioner on the Square . 166
74 FDPreconditioner:Solve: Solver for the ILU Preconditioner HILUu = R 168
75 BiCGSSTABSolve: BiCGStab Iterative Solver for Nodal Spectral

Methods . 169
76 CollocationPotentialDriver: Driver for a Polynomial Collocation

Approximation to the Potential on the Square 170
77 LaplacianOnTheSquare: Nodal Galerkin Approximation to the Laplace

Operator . 178

xvi List of Algorithms

78 ApproximateFEMStencil: Computing the Approximate Finite Element
Stencil on the Square . 183

79 SSORSweep: SSOR Sweep for the Finite Element Preconditioner . . . 186
80 PreconditionedConjugateGradientSolve: Conjugate Gradient Iterative

Solver for Nodal Spectral Methods . 187
81 NodalAdvDiffClass: A Class for the Advection-Diffusion Problem

on the Square . 195
82 NodalAdvDiffClass:Construct: Constructor for the Chebyshev

Collocation Approximation of the Advection-Diffusion Problem 196
83 NodalAdvDiffClass:Transport: Approximation to q · ∇Φ 196
84 NodalAdvDiffClass:ExplicitRHS: Explicit Part of the BDF

Approximation of the Advection-Diffusion Equation 197
85 NodalAdvDiffClass:MatrixAction: Matrix Action for the BDF

Approximation of the Advection-Diffusion Equation 198
86 NodalAdvDiffClass:Residual: Iteration Residual for the BDF

Approximation of the Advection-Diffusion Equation 198
87 MultistepIntegration: One Step of the Linear Multistep Integration

of the Advection-Diffusion Equation 199
88 RiemannSolver: The Numerical Flux for the Wave Equation 211
89 NodalDG2DStorage: Data Storage for a Nodal Spectral Method 212
90 NodalDG2DClass: A Discontinuous Galerkin Class Definition 213
91 NodalDG2D:Construct: Constructor for the Discontinuous Galerkin

Class . 213
92 SystemDGDerivative: Compute the First Derivative

via the Discontinuous Galerkin Approximation 214
93 NodalDG2D:DG2DTimeDerivative: Time Derivative in 2D

for the Discontinuous Galerkin Approximation 215
94 WaveEquationFluxes: Flux Vectors for the Two Dimensional Wave

Equation . 216
95 QuadMap: Mapping of the Reference Square to a Straight Sided

Quadrilateral . 225
96 CurveInterpolant: A Curve Interpolant Class Definition 226
97 CurveInterpolantProcedures: . 227
98 TransfiniteQuadMap: Mapping of the Reference Square

to a Curve-Bounded Quadrilateral . 230
99 TransfiniteQuadMetrics: Computation of the Metric Terms

on a Curve-Bounded Quadrilateral . 243
100 QuadMapMetrics: Computation of the Metric Terms on a Straight

Sided Quadrilateral . 243
101 MappedGeometryClass: Manage Geometry and Metric Terms

for Quadrilateral Domains . 244
102 MappedGeometry:Construct: Constructor for Geometry and Metric

Terms for Quadrilateral Domains . 245
103 MappedNodalPotentialClass: A Class for the Potential Problem

in a Mapped Domain . 250

List of Algorithms xvii

104 MappedNodalPotentialClass:Construct: Constructor for Collocation
Potential Solution on a Mapped Domain 250

105 MappedNodalPotentialClass:MappedLaplacian: The Collocation
Approximation to the Laplace Operator on a Mapped Domain 251

106 TransposeMatrixMultiply: Matrix Transpose-Vector Multiplication
Algorithm . 254

107 MappedNodalPotentialClass:MappedLaplacian: Nodal Galerkin
Approximation to the Laplace Operator on a Mapped Domain 255

108 MappedCollocationDriver: Driver for the Collocation Approximation
to Steady Potential in a Non-Square Geometry 259

109 PotentialOnAnnulus: Use of the FFT to Compute Potentials with One
Periodic Direction . 270

110 DGSolutionStorage: Storage of Interior and Boundary Solutions 283
111 MappedNodalDG2DClass: A Discontinuous Galerkin Class Definition . 284
112 DG2DProlongToFaces: Interpolate the Solution from Gauss Points

to the Boundaries . 285
113 MappedDG2DBoundaryFluxes: Boundary Fluxes in 2D

for the Discontinuous Galerkin Approximation 286
114 MappedDG2DTimeDerivative: Time Derivative in 2D

for the Discontinuous Galerkin Approximation 287
115 GlobalTimeDerivative: Full Time Derivative in 2D

for the Discontinuous Galerkin Approximation 288
116 SEM1DClass: Data Storage for the One-Dimensional Spectral Element

Method . 302
117 SEMGlobalProcedures1D: Global Operations for the One-Dimensional

Spectral Element Method . 304
118 SEM1DProcedures: Spatial Approximations for the One-Dimensional

Spectral Element Method . 306
119 TrapezoidalRuleIntegration: Integration of the One-Dimensional

Spectral Element Method in Time . 307
120 DGSEM1DClasses: Element and Mesh Definitions

for the One-Dimensional Discontinuous Galerkin Spectral Element
Method . 311

121 LocalDSEMProcedures: Local Procedures for the Discontinuous
Galerkin Spectral Element Method . 312

122 GlobalMeshProcedures: Mesh Global Procedures
for the Discontinuous Galerkin Spectral Element Approximation 314

123 CornerNodeClass: Corner Node for Two-Dimensional Spectral
Element Methods . 322

124 QuadElementClass: Quadrilateral Element Definition
for Two-Dimensional Spectral Element Methods 323

125 EdgeClass: Edge Definition for Two-Dimensional Spectral Element
Methods . 324

126 QuadMesh: Mesh Definition for Two-Dimensional Spectral Element
Methods . 325

xviii List of Algorithms

127 QuadMesh:Construct: Constructor for a Two Dimensional Spectral
Element Mesh . 327

128 SEMPotentialClass: A Class Definition for the Spectral Element
Approximation of the Potential Problem 332

129 SEMPotentialClass:Construct: Constructor for the Spectral Element
Approximation of the Potential Problem 333

130 SEMMask: Mask Edges and Corners for the Spectral Element Method . 334
131 SEMUnMask: UnMask for the Spectral Element Method 336
132 SEMGlobalSum: Sum Edge Contributions for the Two-Dimensional

Spectral Element Method . 337
132 SEMGlobalSum: Sum Edge Contributions for the Two-Dimensional

Spectral Element Method (continued) 338
133 SEMPotentialClass:MatrixAction: Matrix Action for the Spectral

Element Approximation to the Potential Equation 339
134 Residual: Residual Computation for the Spectral Element

Approximation to the Potential Equation 339
135 SetBoundaryValues: Set Dirichlet Boundary Conditions

for the Two-Dimensional Spectral Element Method 340
136 DGSEMClass: A Discontinuous Galerkin Class Definition 343
137 EdgeFluxes: Compute the Riemann Problem Along Mesh Edges 345
138 DGSEMClass:TimeDerivative: Compute the Time Derivative

for the Discontinuous Galerkin Approximation 346
139 AlmostEqual: Testing Equality of Two Floating Point Numbers 359
140 BLAS_Level1: A Selection of Basic Linear Algebra Subroutines 362
141 TriDiagonalSolve: . 364
142 LUFactorization: Factorization and Solve Procedures to Solve Ax = y . 366
143 Record: An Example Linked List Record Definition 374
144 LinkedList: A Linked List Class Definition 374
145 LinkedList:Procedures: . 375
146 SparseMatrix: A Sparse Matrix Class Definition 379
147 SparseMatrix:Procedures: . 380
148 ConstructMeshEdges: Construct Edge Information for a Spectral

Element Mesh . 383

Part I
Approximating Functions, Derivatives

and Integrals

Chapter 1
Spectral Approximation

1.1 Preamble: Series Solution of PDEs

Spectral methods owe their origins to series solutions of partial differential equa-
tions (PDEs). To motivate spectral methods, we think it is instructive to recall how
PDEs are solved by analytical means.

To illustrate the Fourier series solution of a PDE, let’s solve the diffusion(heat)
equation in one space dimension for periodic boundary conditions. The temperature,
ϕ, satisfies the time dependent partial differential equation

⎧
⎪⎨

⎪⎩

ϕt = ϕxx, 0 < x < 2π,

ϕ(x,0) = f (x), 0 ≤ x ≤ 2π,

ϕ(0, t) = ϕ(2π, t).

(1.1)

To solve by separation of variables, we write the temperature in the form of a Fourier
series

ϕ(x, t) =
∞∑

k=−∞
ϕ̂k(t)e

ikx . (1.2)

To compute the solution unknowns, namely the Fourier coefficients ϕ̂k , we sub-
stitute the series into the differential equation and gather factors of the complex
exponential functions

∞∑

k=−∞

(
dϕ̂k(t)

dt
+ k2ϕ̂k

)

eikx = 0. (1.3)

Since the complex exponentials eikx are linearly independent, the coefficient of each
must individually vanish. From each coefficient we build a system of ordinary dif-
ferential equations for the ϕ̂k

dϕ̂k(t)

dt
= −k2ϕ̂k, −∞ < k < ∞. (1.4)

The initial conditions are

ϕ̂k(0) = f̂k, (1.5)

where f̂k are the Fourier coefficients

f̂k = 1

2π

∫ 2π

0
f (x)e−ikxdx. (1.6)

D.A. Kopriva, Implementing Spectral Methods for Partial Differential Equations,
Scientific Computation,
© Springer Science + Business Media B.V. 2009

3

4 1 Spectral Approximation

We then solve the system of equations for the coefficients individually for each value
of k,

ϕ̂k = e−k2t f̂k. (1.7)

The analytic series solution of (1.1) is therefore

ϕ(x, t) =
∞∑

k=−∞
f̂ke

ikx−k2t . (1.8)

The practical matter of the analytical solution (1.8) is that we must truncate the
infinite series to evaluate it. Truncation creates an approximation

N/2∑

k=−N/2

f̂ke
ikx−k2t ≈ ϕ(x, t). (1.9)

How good this approximation is, and how large N needs to be to make the approx-
imation precise, depends on the rate at which the coefficients, f̂ke

−k2t , go to zero.
From a purely theoretical point of view, the convergence rate is not so important.
From a practical one, however, how large N has to be to get a sufficiently accurate
approximation determines how long we have to wait while computing the solution.

When we solve PDEs by separation of variables in other coordinates, such as
cylindrical or spherical polar coordinates, we would use other orthogonal expansion
functions such as Bessel, Legendre or Chebyshev functions instead of the complex
exponentials. We can approximate those infinite series solutions, too, by finite series.

The fundamental idea behind spectral methods is to approximate solutions of
PDEs by finite series of orthogonal functions such as the complex exponentials
(1.9), Chebyshev or Legendre polynomials. The devil, of course, is in the details.
We will see that there are essentially three choices that we have to make to derive
a spectral method: what expansion functions should be used, the form in which the
approximation will be written, and finally the procedure by which the solution un-
knowns are determined. Over the course of the first part of this book, we will survey
the mathematics we need to help make choices between different types of spectral
approximations.

1.2 The Fourier Basis Functions and Fourier Series

The starting point for all spectral methods is to approximate the solution of a differ-
ential equation by a finite sum of orthogonal basis functions. For periodic problems,
we use an expansion in the Fourier basis functions, which are the complex exponen-
tials einx . We write that expansion as

SN (x) =
N/2∑

n=−N/2

ŝne
inx. (1.10)

A spectral method defines the way we will find the ŝn.

1 Spectral Approximation 5

We have just said that the complex exponentials are orthogonal on the interval
[0,2π]. Recall that a set of functions {φn(x)}Nn=0 is orthogonal on an interval [a, b]
with respect to a weight function, w, if

(φn,φm)w ≡
∫ b

a

φn(x)φ∗
m(x)w(x)dx = Cnδn,m. (1.11)

Here, δn,m is the Kronecker delta function, which is defined as

δn,m =
{

1, n = m,

0, n 	= m
(1.12)

and φ∗
n is the complex conjugate of φn. The integral denoted by (φn,φm)w is the

weighted inner product of the two functions φn and φm. The inner product of a
function with itself gives the square of its norm,

‖φn‖2
w = (φn,φn)w =

∫ b

a

|φn(x)|2 w(x)dx = Cn. (1.13)

The complex exponentials are periodic with period 2π and are orthogonal on
that interval with respect to the weight function w = 1. The inner product of two
complex exponentials is

(
einx, eimx

)=
∫ 2π

0
ei(n−m)xdx =

{
2π, n = m,

0 n 	= m.
(1.14)

As we just did in (1.14), we will leave off the weight function from the inner product
and the norm when the weight is equal to one.

Orthogonal function expansions are especially attractive because we can easily
find the coefficients in a series by orthogonal projection. The orthogonal projection
of the function SN onto the basis function eimx is the inner product

(
SN, eimx

)=
⎛

⎝
N/2∑

n=−N/2

ŝne
inx, eimx

⎞

⎠=
N/2∑

n=−N/2

ŝn
(
einx, eimx

)= 2πŝm. (1.15)

Thus, the coefficients in the expansion are simply

ŝm = 1

2π

(
SN, eimx

)
, m = −N/2, . . . ,N/2. (1.16)

In spectral methods, approximations are bettered by increasing the number of
basis functions, N + 1, used in (1.10). For the series to converge as N → ∞, it is
necessary that the infinite set {φn(x)}∞n=0 forms a basis, in this case a basis for the
space of all functions f (x) that satisfy

‖f ‖w =
√
∫ b

a

|f |2 wdx < ∞. (1.17)

6 1 Spectral Approximation

This is the space of functions that are square integrable with respect to a weight w

over the interval [a, b] and is typically denoted by L2
w(a, b).

The complex exponentials do form a basis for L2(0,2π), and we can represent
any square integrable function, f , on the interval [0,2π] as an infinite series

f =
∞∑

k=−∞
f̂ke

ikx . (1.18)

The coefficients, f̂k , of f are the Fourier coefficients and we find them from the
orthogonal projection (f, eikx), which again produces

f̂k = 1

2π

(
f, eikx

)
. (1.19)

Equation (1.19) is nothing but the well-known Fourier Transform, with (1.18) to
represent its inverse. Furthermore, if f is sufficiently smooth, its derivative is the
infinite series

f ′(x) =
∞∑

k=−∞
ikf̂ke

ikx =
∞∑

k=−∞
f̂

(1)
k eikx . (1.20)

1.3 Series Truncation

Spectral methods typically use one of two methods to approximate a square inte-
grable function as a finite expansion in orthogonal basis functions. The first, and
seemingly most natural method, is to truncate the infinite series, as we did in (1.9).
The second, which we will discuss later in Sect. 1.6, is to approximate the function
by interpolation.

To derive the Fourier truncation operator, we split the sum (1.18) into two parts,
one for wavenumbers, k, less than or equal to N/2 and the other for the remainder,

f (x) =
N/2∑

k=−N/2

f̂ke
ikx +

∞∑

|k|=N/2+1

f̂ke
ikx ≡

N/2∑

k=−N/2

f̂ke
ikx + τ. (1.21)

By the sum with the absolute value on |k|, we mean

∞∑

|k|=N/2+1

≡
−(N/2+1)∑

k=−∞
+

∞∑

k=N/2+1

. (1.22)

From (1.21), we define the Fourier truncation operator, PN , to have the action

PNf (x) =
N/2∑

k=−N/2

f̂ke
ikx . (1.23)

1 Spectral Approximation 7

Since PNf is a finite sum of complex exponentials, we will say that PNf is a
Fourier polynomial of degree ≤ N . The remainder, τ , is the truncation error.

We now make a number of observations about Fourier truncation. First, the oper-
ator PN is the orthogonal projection from the infinite dimensional space of square
integrable functions onto the finite dimensional space of Fourier polynomials of
degree ≤ N . If we project a second time, nothing changes

PN (PNf (x)) = PNf (x), (1.24)

i.e. P 2
N = PN , and therefore

(
τ, eikx

)= 0, k = −N/2, . . . ,N/2. (1.25)

Next, we approximate the derivative of a function by the derivative of the finite
expansion, (1.23), which we write as (PNf)′. Since deikx/dx = ikeikx ,

(PNf (x))′ =
N/2∑

k=−N/2

ikf̂ke
ikx = PN

(
f ′(x)

)
(Fourier Truncation). (1.26)

So the order of truncation and differentiation is irrelevant; differentiation and the
Fourier truncation operator commute.

The error that we introduce by the truncation approximation is the truncation
error,

τ = f (x) − PNf (x) =
∞∑

|k|=N/2+1

f̂ke
ikx . (1.27)

Immediately, (1.27) tells us that the size of the error depends on how rapidly the co-

efficients, f̂k , decay to zero, which they must, ultimately, for the series to converge.
We measure the size of this error by its norm, whose square is

‖f (x) − PNf (x)‖2 =
∫ 2π

0

⎛

⎝
∞∑

|k|=N+1

f̂ke
ikx

⎞

⎠

⎛

⎝
∞∑

|l|=N+1

f̂ ∗
l e−ilx

⎞

⎠dx

=
∞∑

|k|=N+1

∞∑

|l|
f̂kf̂

∗
l

∫ 2π

0
eikxe−ilxdx

=
∞∑

|k|=N+1

∞∑

|l|=N+1

f̂kf̂
∗
l

(
eikx, eilx

)

=
∞∑

|k|=N+1

|f̂k|2
∥
∥eikx

∥
∥2

. (1.28)

8 1 Spectral Approximation

The fact that the basis functions are orthogonal and

∥
∥eikx

∥
∥2 = 2π (1.29)

means that the error satisfies

‖f (x) − PNf (x)‖2 = 2π

∞∑

|k|=N/2+1

|f̂k|2. (1.30)

(Note that we get the well-known Parseval’s equality,

‖f ‖2 = 2π

∞∑

k=−∞
|f̂k|2 (1.31)

by the same argument.)
To get a feeling for how the smoothness of the function affects the error of the

truncation approximation, let us study the approximations of three functions

f1 = x,

f2 = x (2π − x) , (1.32)

f3 = 3

5 − 4 cos(x)
,

that we define on the interval [0,2π] and extend periodically to the right and the
left. We show these three functions plotted in Fig. 1.1. Remember, that the Fourier
transform treats a function on [0,2π] as if it is replicated forever both to the right
and to the left, that is, it computes the transform of the periodic extension of the
function. The periodic extension of the first function, f = x has a jump discontinu-
ity. We compute the Fourier coefficients directly from the definition, and they decay
as 1/k. The periodic extension of the second function is continuous, but does not
have continuous first derivatives. Its coefficients decay as 1/k2. The periodic exten-
sion of the final function, f3 is continuous, and all of its derivatives are continuous,
so it is a very smooth function. Its Fourier coefficients decay as e−k ln(2). Figure 1.2
shows the logarithm of the Fourier coefficients as a function of the wavenumber, k.
It shows the slow convergence of the coefficients for the first two functions and the
rapid, exponential convergence of the last.

We can compute the truncation error from the coefficients and (1.30). The first
two functions have Fourier coefficients that decay as 1/kp , where p = 1 or 2. We
bound the sum of the coefficients in (1.30) for functions that decay like this by

∞∑

|k|=N/2+1

1

k2p
<

∫ ∞

N/2+1

1

z2p
dz = 1

(2p − 1) (N/2 + 1)2p−1
. (1.33)

1 Spectral Approximation 9

Fig. 1.1 The three functions
of (1.32) whose periodic
extensions have different
degrees of smoothness

Fig. 1.2 Fourier coefficients
of the three functions plotted
in Fig. 1.1

Thus, if the coefficients decay with polynomial order p, we bound the truncation
error by

‖f (x) − PNf (x)‖ <
C

(N/2 + 1)p−1/2
∼
(

N

2

)1/2−p

, (1.34)

10 1 Spectral Approximation

Fig. 1.3 Error in the truncation approximation for the three functions shown in Fig. 1.1. To show
both exponential and polynomial order convergence, the errors are presented both as semi-log (a)
and log-log (b) plots. The measured asymptotic behavior labelled in (b) is from a least squares fit
to the lines

where C is some generic constant. If the coefficients decay exponentially fast, the
truncation error also decays exponentially fast

‖f (x) − PNf (x)‖ ≤ Ce−α(N/2+1) ∼ Ce−αN/2. (1.35)

We see these two types of behavior with the three example functions of (1.32). Fig-
ure 1.3 shows the logarithm of the truncation error, which we plot both as a function
of N and Log(N) to demonstrate polynomial and exponential convergence. Fig-
ure 1.3a shows that the truncation error of the smooth function, f3 decays exponen-
tially fast as the number of modes is increased, whereas Fig. 1.3b shows that the
non-smooth functions converge with one-half less polynomial order than the order
of the coefficients.

The convergence behavior described by equations (1.34) and (1.35) is known as
spectral accuracy. In both cases the truncation error decays at a rate that depends
on the rate of decay of the Fourier coefficients, which in turn decay at a rate that de-
pends on the smoothness of the function. If the periodic extension of the function is
not smooth, say if p = 1, then the approximation converges very slowly as N−1/2,
which is polynomial order accuracy. On the other hand, if the periodic extension
of the function is infinitely smooth, i.e. p → ∞, then spectral accuracy means that
the error decays at a rate faster than any fixed power in 1/N . In this case, we say
that the approximation has infinite order accuracy. For very smooth (analytic) func-
tions, those for which the coefficients decay exponentially fast, spectral accuracy
means exponential convergence of the truncation error in the number of degrees of
freedom.

1 Spectral Approximation 11

Finally, we show that PNf is the best approximation to f on [0,2π] in the least
squares sense. That is, of all Fourier polynomials of the form

SN(x) =
N/2∑

k=−N/2

ŝke
ikx (1.36)

the one for which ‖f (x) − SN‖ is the smallest is SN = PNf . This is a consequence
of the orthogonality of the basis functions, for

‖f (x) − SN‖2 =
∥
∥
∥
∥
∥
∥

N/2∑

k=−N/2

(
f̂k − ŝk

)
eikx −

∞∑

|k|=N/2+1

f̂ke
ikx

∥
∥
∥
∥
∥
∥

2

= 2π

⎧
⎨

⎩

N/2∑

k=−N/2

|f̂k − ŝk|2 +
∞∑

|k|=N/2+1

|f̂k|2
⎫
⎬

⎭
. (1.37)

Since all terms in the sums are non-negative, the minimum occurs when ŝk = f̂k for
|k| ≤ N/2.

1.4 Modal vs. Nodal Approximation

Equation (1.10) is an example of a modal approximation. It is called modal because
the fundamental unknowns are the coefficients of the orthogonal expansion func-
tions, or modes. An alternative is to represent the solution in terms of grid point
values by way of an interpolant. The interpolation view is akin to that taken in finite
difference approximations where the solution unknowns are the values at specific
points in space. In finite difference approximations, derivatives are approximated at
a grid point by the derivatives of a polynomial that interpolates the solution through
the point and close neighbors. Just as we can represent a power series (a modal form
of a polynomial) as a Lagrange or Newton form interpolant, we can also represent an
orthogonal polynomial approximation as an interpolant through a set of grid point
or node values. Such approximations are called nodal. Nodal approximations are
intimately tied to the introduction of a quadrature rule to retain the orthogonality
properties that we used to find the modal coefficients.

1.5 Discrete Orthogonality and Quadrature

As we have seen, the Fourier truncation operator requires us to evaluate integrals
to compute the orthogonal projections. We know from experience that it is not nec-
essarily an easy task to evaluate integrals analytically. For that reason, integrals are

12 1 Spectral Approximation

often approximated by quadrature. The goal, now, is to find an appropriate quadra-
ture that will retain the essential properties of spectral methods, namely orthogonal-
ity and spectral accuracy. With an appropriate quadrature, we can still compute the
coefficients in an expansion by an orthogonal projection, much like we did in (1.16).

A quadrature rule is a formula to approximate the integral of a function such as

Q[f] =
N∑

j=0

f (xj)wj =
∫ b

a

f (x)dx + E. (1.38)

Here, the set {xj }Nj=0 are known as the nodes, abscissas, or knots, the {wj }Nj=0 are
the quadrature weights, and E is the error.

In this section we seek the quadrature rule under which as many orthogonal ba-
sis functions as possible remain orthogonal. In other words, we seek abscissas and
weights so that for the complex exponentials

N∑

j=0

einxj e−imxj wj =
∫ 2π

0
einxe−imxdx = (

einx, eimx
)= 2πδn,m (1.39)

for the largest range of n and m. The result, as we will show in the following, turns
out to be the well-known composite trapezoidal rule.

To start, let k = n − m to change the problem to one of finding the nodes and
weights so that

N∑

j=0

eikxj wj = 2πδk,0 (1.40)

over the largest range of k. The crucial result that we need is that

N−1∑

j=0

eik(2πj/N) = Nδk,±pN, p = 0,1, (1.41)

Clearly (1.41) is true for k = 0 and for k being any multiple of N . Otherwise, for
k 	= ±pN , let’s call ξ = e2πik/N to convert the sum into a recognizable form

N−1∑

j=0

e2πijk/N =
N−1∑

j=0

ξj = 1 − ξN

1 − ξ
= 1 − e2πik

1 − e2πik/N
= 0. (1.42)

Equation (1.41) suggests that we should choose xj = 2πj/N as the quadrature
nodes. Next, eix0 = eixN , so we can combine the endpoints and remove the j = N

term from the sum. Finally, to match the normalization in (1.39), we choose wj =
2π/N , so that by (1.41)

2π

N

N−1∑

j=0

eikxj = 2πδk,±pN . (1.43)

1 Spectral Approximation 13

This matches the integral when p = 0 so

2π

N

N−1∑

j=0

eikxj =
∫ 2π

0
e−ikxdx = 2πδk,0, |k| = 0,1, . . . ,N − 1. (1.44)

From this exercise let us define the Fourier quadrature rule

QF [f] = 2π

N

N−1∑

j=0

f (xj), xj = 2jπ/N. (1.45)

Equation (1.45) is nothing but the composite trapezoidal rule applied to the special
case of a 2π -periodic integrand.

We use the Fourier quadrature to define a discrete inner product. When we re-
place k = n − m, (1.44) becomes

2π

N

N−1∑

j=0

einxj e−imxj =
∫ 2π

0
einxe−imxdx, |n − m| = 0,1, . . . ,N − 1, (1.46)

so let us define

(u, v)N = 2π

N

N−1∑

j=0

u(xj)v
∗(xj) (1.47)

where xj = 2πj/N . We have shown, therefore, the discrete orthogonality result

(
einx, eimx

)

N
= (

einx, eimx
)= 2πδn,m, |n − m| = 0,1, . . . ,N − 1. (1.48)

Not only that, the discrete norm of the basis functions matches the continuous norm,

∥
∥einx

∥
∥2

N
= (

einx, einx
)

N
= 2π. (1.49)

We now make two general comments. First, (1.44) shows that the compos-
ite trapezoidal rule exactly integrates the complex exponentials eikx for k =
0,±1,±2, . . . ,±(N − 1). Generally speaking, we would expect the composite
trapezoidal rule to be exact only for piecewise linear integrands. However, we see
that the quadrature is also exact when the integrand is a complex exponential of
suitable degree.

Next, it is important to contrast the continuous and discrete orthogonality prop-
erties of the complex exponential basis functions. In the continuous case, the inner
product of two complex exponentials einx and eimx is nonzero only if n = m, i.e.
n − m = 0. The discrete inner product, on the other hand, is nonzero if n − m =
±pN , that is, if they differ by a multiple of N . The extra nonzero discrete inner
products are a manifestation of aliasing errors, an important subject that we will
discuss in the next section on Fourier polynomial interpolation.

14 1 Spectral Approximation

1.6 Fourier Interpolation

The function

INf =
N/2∑

k=−N/2

f̃k

c̄k

eikx (1.50)

where N is even and

c̄k =
{

1, k = −N
2 + 1, . . . , N

2 − 1,

2, k = ±N
2

(1.51)

is the Fourier Interpolant of a real function f if we compute the coefficients f̃k so
that

INf (xn) = f (xn) , n = 0,1, . . . ,N − 1, (1.52)

for xn = 2πn/N . (Since the complex exponentials are periodic with period 2π ,
the last point with j = N is redundant. The interpolant is 2π -periodic because
INf (0) = INf (2π).) Note that we have written the expansion coefficients, which
are called the discrete coefficients, as f̃k to distinguish them from the coefficients of
the truncation approximation, f̂k , that we discussed in Sect. 1.3. Later in this section
we will show how they are related.

In parallel to how we computed the Fourier transform coefficients, we compute
the discrete Fourier coefficients using the discrete inner product

f̃k = 1

N

N−1∑

j=0

fj e
−ikxj = 1

2π

(
f, eikx

)

N
, k = −N/2, . . . ,N/2. (1.53)

To show that f̃k’s in (1.53) are indeed the coefficients of the interpolant, let us
substitute them into (1.50) and swap the order of the summations

INf =
N/2∑

k=−N/2

⎧
⎨

⎩

1

c̄kN

N−1∑

j=0

fj e
−ikxj

⎫
⎬

⎭
eikx

=
N−1∑

j=0

fj

⎧
⎨

⎩

1

N

N/2∑

k=−N/2

1

c̄k

eik(x−xj)

⎫
⎬

⎭
. (1.54)

Let us next define the functions

hj (x) = 1

N

N/2∑

k=−N/2

1

c̄k

eik(x−xj), j = 0,1, . . . ,N − 1. (1.55)

1 Spectral Approximation 15

Then we can write the interpolant (1.50) in the equivalent Lagrange form

INf =
N−1∑

j=0

fjhj (x). (1.56)

To show that INf satisfies (1.52), we evaluate it at xn

INf (xn) =
N−1∑

j=0

fjhj (xn), n = 0,1, . . . ,N − 1. (1.57)

So to finish showing that we have the right discrete Fourier coefficients to define
the Fourier interpolant, we need only to show that

hj (xn) = 1

N

N/2∑

k=−N/2

1

c̄k

e2πi(n−j)k/N = δj,n (1.58)

for |n − j | < N . First we note that

e2πi(n−j)(N
2)/N = eiπ(n−j) = (−1)n−j ,

e2πi(n−j)(− N
2)/N = e−iπ(n−j) = (−1)n−j .

(1.59)

Therefore, we can fold the N/2 mode in with the −N/2 mode

1

N

N/2∑

k=−N/2

1

c̄k

e2πi(n−j)k/N = 1

N

N/2−1∑

k=−N/2

e2πi(n−j)k/N . (1.60)

To get the result we need, we will manipulate the second sum to put it into the form
of (1.41). Let us replace k ← k + N/2

1

N

N/2−1∑

k=−N/2

e2πi(n−j)k/N = 1

N

N−1∑

k=0

e2πi(n−j)(k+N/2)/N

= 1

N

N−1∑

k=0

e2πi(n−j)k/Neiπ(n−j)

= (−1)n−j

N

N−1∑

k=0

e2πi(n−j)k/N . (1.61)

With a change of indices, we recognize the last sum to be (1.41). That is,

N−1∑

k=0

e2πi(n−j)k/N = Nδn−j,±pN , p = 0,1, (1.62)

Since |n − j | < N and (−1)0 = 1, we get (1.58).

16 1 Spectral Approximation

The discrete coefficients have properties not shared with the true Fourier coeffi-
cients. First, the discrete Fourier coefficients are N -periodic, which means that

f̃k±N = 1

N

N−1∑

j=0

fj e
−i(k±N)xj = 1

N

N−1∑

j=0

fj e
−ikxj e∓iN(2πj/N)

= 1

N

N−1∑

j=0

fj e
−ikxj = f̃k. (1.63)

Therefore, f̃−N/2 = f̃N/2. Furthermore, when f is real, the coefficient of the highest
mode is real. The Im(f̃−N/2) = 0, for

f̃−N/2 = 1

N

N−1∑

j=0

fj e
−i N

2 xj = 1

N

N−1∑

j=0

fj e
−iπj = 1

N

N−1∑

j=0

fj (−1)j . (1.64)

We derive two useful results about Fourier interpolants. The first follows imme-
diately from (1.52), namely

(
INf, eikx

)

N
= (

f, eikx
)

N
. (1.65)

The second is that the discrete and continuous inner products of two Fourier inter-
polants are equal. Suppose that U and V are two Fourier interpolants of degree less
than or equal to N

U =
N/2∑

n=−N/2

ãn

c̄n

einx, V =
N/2∑

m=−N/2

b̃n

c̄m

eimx. (1.66)

Now,

U(xj) =
N/2−1∑

n=−N/2

ãn

c̄n

einxj + ãN/2

c̄N/2
eiN/2xj

=
N/2−1∑

n=−N/2

ãn

c̄n

einxj + ã−N/2

c̄−N/2
e−iN/2xj =

N/2−1∑

n=−N/2

ãne
inxj , (1.67)

and similarly for V . Therefore the discrete inner product of the two is

(U,V)N =
N/2−1∑

n=−N/2

N/2−1∑

m=−N/2

anbn

(
einx, eimx

)

N

=
N/2−1∑

n=−N/2

N/2−1∑

m=−N/2

anbn

(
einx, eimx

)= (U,V) . (1.68)

1 Spectral Approximation 17

The equivalence of the discrete and exact inner products of two Fourier polynomials
of degree ≤ N will be useful later to prove stability of Fourier spectral approxima-
tions.

Lastly, when we evaluate the Fourier interpolant at the nodes and use (1.67), we
get the well known Discrete Fourier Transform Pair

DFT

⎧
⎨

⎩

f̃k = 1
N

∑N−1
j=0 f (xj)e

−2πijk/N , k = −N/2, . . . ,N/2 − 1,

f (xj) =∑N/2−1
k=−N/2 f̃ke

2πijk/N , j = 0,1, . . . ,N − 1.
(1.69)

In Chap. 2, we will show how to compute the DFT rapidly using a Fast Fourier
Transform.

1.6.1 Direct Computation of the Fourier Interpolation

We see from equations (1.50) and (1.53) that it is a two step process to compute
the interpolant from the Fourier modes. First, we compute and store the coefficients.
From the coefficients, we construct the interpolant. Our first two algorithms: Algo-
rithms 1 (DiscreteFourierCoefficients) and 2 (FourierInterpolantFromModes) com-
pute these two steps directly. (For an explanation of the pseudocode, please see
Appendix A.) Algorithm 1 computes the discrete Fourier coefficients by a direct
sum. When we count the number of operations in the loops, we see that the direct
sum takes order N2 complex multiplications. In general, we would do this only for
small values of N . For larger values we will use a Fast Fourier Transform, which
we will present in Chap. 2. Algorithm 2 performs the second step; It evaluates the
interpolant from the discrete Fourier coefficients.

We have also shown that we can write the interpolant INf (x) in an equivalent
Lagrange form, (1.56). The Lagrange form is useful for nodal approximations where

Algorithm 1: DiscreteFourierCoefficients: Direct Evaluation of the Discrete
Fourier Coefficients

Procedure DiscreteFourierCoefficients
Input:

{
fj

}N−1
j=0

for k = −N/2 to N/2 do
s ← 0
for j = 0 to N − 1 do

s ← s + fj ∗ e−2πijk/N

end
f̃k = s/N

end

return
{
f̃k

}N/2

k=−N/2
End Procedure DiscreteFourierCoefficients

18 1 Spectral Approximation

Algorithm 2: FourierInterpolantFromModes: Direct Evaluation of the Fourier
Interpolant from Its Modes

Procedure FourierInterpolantFromModes

Input: x,
{
f̃k

}N/2

k=−N/2

s ←
(
f̃−N/2 ∗ e−iNx/2 + f̃N/2 ∗ eiNx/2

)
/2

for k = −N/2 + 1 to N/2 − 1 do
s ← s + f̃k ∗ eikx

end
return Re(s)
End Procedure FourierInterpolantFromModes

Algorithm 3: FourierInterpolantFromNodes: Direct Evaluation of the Fourier
Interpolant from Its Nodes

Procedure FourierInterpolantFromNodes

Input: x,
{
xj

}N−1
j=0 ,

{
fj

}N−1
j=0

Uses Algorithms:
Algorithm 139 (AlmostEqual)

for j = 0 to N − 1 do
if AlmostEqual(x, xj) then return fj

end
s ← 0
for j = 0 to N − 1 do

t ← (x − xj)/2
s ← s + fj ∗ sin(N ∗ t) ∗ cot(t)/N

end
INf (x) ← s

return INf (x)

End Procedure FourierInterpolantFromNodes

the fundamental unknowns are the values of the function at the nodes. It turns out
that the function hj (x) has a closed form

hj (x) = 1

N
sin

[
N

2
(x − xj)

]

cot

[
1

2
(x − xj)

]

(1.70)

when xj = 2πj/N .
Computation of the Lagrange form of the interpolation is a one step procedure.

We have to be careful, however, because hj (xj) is not defined numerically. Algo-
rithm 3 (FourierInterpolantFromNodes) presents a procedure to calculate the Fourier
interpolant in Lagrange form. To avoid the cot(0), it first checks to see if the eval-
uation point is a node. The test uses the function AlmostEqual of Algorithm 139,
which we present in Appendix B. If the evaluation point is not a node, then the
procedure evaluates the interpolant by (1.56).

1 Spectral Approximation 19

1.6.2 Error of the Fourier Interpolation

As there is no free lunch, the easily computed Fourier interpolation is generally not
as accurate as series truncation. In Sect. 1.3, we showed that the truncation operator
PN gives the best Fourier approximation in the least squares sense. It follows, then,
that the interpolation error must be equal or larger.

The interpolation error is larger because the Fourier interpolation coefficients are
not equal to the Fourier coefficients for k = −N/2, . . . ,N/2. To find the errors in
the coefficients, we replace f in (1.53) by its Fourier series

f̃k = 1

N

N−1∑

j=0

[∞∑

m=−∞
f̂meimxj

]

e−ikxj

=
∞∑

m=−∞
f̂m

⎡

⎣
1

N

N−1∑

j=0

ei(m−k)xj

⎤

⎦. (1.71)

Since xj = 2πj/N , (1.43) says that the coefficient of f̂m in the last sum is
δm−k,±pN . Thus, the only nonzero terms in the double sum are those for which
m = k ± pN , and the relation between the discrete and exact coefficients reduces to

f̃k =
∞∑

p=−∞
f̂k+pN = f̂k +

∞∑

p=−∞
p 	=0

f̂k+pN . (1.72)

The difference between the discrete and exact Fourier coefficients is called the alias-
ing error, and is a direct consequence of discrete sampling.

To see the effect of aliasing on a concrete example, let’s interpolate the function
f (x) = eikx with N = 8 points for three values of k. Figure 1.4 shows the interpo-
lations for k = −8,−6, and −4. The first column in the figure shows the magnitude
of the exact Fourier coefficients, f̂k . The second column shows the discrete Fourier
coefficients computed by (1.69). The interpolant can represent values of k only from
−4 to 3, so it cannot represent wavenumbers k = −8 and −6. We see, therefore, that
the DFT shifts the discrete coefficients by N = 8 for those values of k. The column
on the far right of the figure shows the exact function, the interpolant, and the value
of the interpolant evaluated at the points xj , that is, the values computed by the
inverse DFT in (1.69). We see that the interpolant and the exact solution differ sig-
nificantly for k = −8 and −6, although they do match at the nodes as required. In
fact, the interpolant for k = −8 looks like the constant, k = 0 function.

Once the wavenumber can be represented by the interpolant, there is no error.
The bottom row of Fig. 1.4 shows the coefficients and interpolant for k = −4. That
mode is included by the interpolant, so we see that the exact and discrete coefficients
match, as do the function and its interpolant. The same will hold true for all values
of k from −4 to 3. When k increases beyond 4, the function will be aliased again;
for those, we will see the interpolation appear as the k − 8 mode.

20 1 Spectral Approximation

Fig. 1.4 Plot of the exact Fourier coefficients (left column), interpolation coefficients (center col-
umn) and interpolant (right column) for f = exp(ikx) and N = 8. In the right column, the solid
line is the interpolant, the dashed line is the exact function, and the circles are the values of the
interpolant at the grid points. The top row shows how the interpolant for k = −8 appears on the
grid as the k + N = −8 + 8 = 0 mode. The center row shows the aliasing effects for k = −6. The
bottom row shows that k = −N/2 is represented exactly by the interpolant and there is no aliasing
error. It also corresponds to the highest wavenumber in magnitude/shortest wavelength for which
this is true

In summary, when we view a sinusoid with wavenumber k±N at the points xj =
2πj/N , it looks exactly like a sinusoid with wavenumber k. It is the reason why the
wagon wheels sometimes (appear to) go backwards in the old movie westerns even
as the wagon goes forward.

We can compute the number of points per wavelength that we need to interpolate
a sinusoid exactly. The length of the interval is 2π , so if the wavelength of a wave
is λ, the number of wavelengths in the interval is 2π/λ. Since the wavelength of a
wave with wavenumber k is λ = 2π/k, the number of wavelengths on the interval
[0,2π] is k. (Count them on Fig. 1.4.) Since N points are used to interpolate the
interval, the number of points per wavelength is therefore N/k. From the example
shown in Fig. 1.4, the wavenumber with |k| = N/2 is the largest that the grid can
represent exactly. Thus, the minimum number of points per wavelength to represent
a sinusoid exactly by Fourier interpolation is N/(N/2) = 2.

Although interpolation is less accurate than truncation, except when the original
function is made up of modes with wavenumbers less than N/2, the difference is

1 Spectral Approximation 21

Fig. 1.5 Error in the interpolation and truncation approximation for the three functions shown in
Fig. 1.1. To show both exponential and polynomial order convergence, the errors are presented
both as semi-log (a) and log-log (b) plots

often not significant for smooth enough functions. The reason is that the aliasing
error, like the truncation error, depends on the rate of decay of the exact Fourier
coefficients for |k| ≥ N/2. When the coefficients decay rapidly, which occurs when
the function is very smooth, the aliasing error is dominated by the coefficient f̂N/2,
same as the truncation error. In fact, it can be shown that the aliasing error is on
the order of the truncation error, and that the interpolation error is at most twice
the truncation error. This factor of two is insignificant for well-resolved approxima-
tions, that is, when the error is small in relation to the solution. Details can be found
in Sect. 5.1 of [7].

To get a sense of the contribution of aliasing to the interpolation error, let us
return to the three functions we showed in Fig. 1.1. We saw the truncation error for
these three functions as a function of N in Fig. 1.3. In Fig. 1.5 we compare the con-
vergence of the interpolation error to the truncation error in both semi-log (a) and
log-log (b) formats. We see that the interpolation error is larger in each case, but de-
cays at essentially the same rate as the truncation error. Furthermore, the computed
size of the aliasing error is less than or approximately equal to the truncation error.
We’ll cover effects of aliasing errors on the solutions of PDEs later in Sect. 4.1.

1.7 The Derivative of the Fourier Interpolant

We approximate derivatives by analytically differentiating the Fourier interpolant
and evaluating the result at the nodes

f ′(xj) ≈ Dfj = (INf)′ (xj) =
N/2∑

k=−N/2

ikf̃k

c̄k

e2πijk/N . (1.73)

22 1 Spectral Approximation

We will show in the next chapter how to compute this sum, and hence the derivative
approximation, with the Fast Fourier Transform.

Equivalently, we can differentiate the Lagrange form of the interpolant

Dfn = (INf)′ (xn) =
N−1∑

j=0

f (xj)h
′
j (xn) (1.74)

where

h′
j (xn) =

{
1
2 (−1)n+j cot[(j−n)π

N
], j 	= n,

0, j = n.
(1.75)

This means that instead of using the DFT and the modal form of the interpolant,
we can also evaluate the derivative at the nodes by a matrix-vector multiplication,
where the matrix elements at the positions (n, j) are the values h′

j (xn).
The presence of aliasing error means that, unlike truncation and differentiation,

interpolation and differentiation do not commute. If we call the difference between
the truncation and interpolation polynomials INf − PNf = RNf , then derivative
of the interpolant is

(INf)′ = (PNf)′ + (RNf)′ = PN(f ′) + (RNf)′ , (1.76)

whereas the interpolant of the derivative is

(INf ′) = (PNf ′) + (RNf ′). (1.77)

We’ve already shown that differentiation and truncation commute. To show that
interpolation and differentiation do not commute we show that (RNf)′ 	= RN(f ′).
This is easy, because

(RNf)′ =
N/2∑

k=−N/2

∑

p 	=0

ik

c̄k

f̂k+pNeikx

− 1

2

(
iN

2
f̂N/2e

iNx/2 − iN

2
f̂−N/2e

−iNx/2
)

(1.78)

whereas

RN(f ′) =
N/2∑

k=−N/2

∑

p 	=0

i (k + pN)

c̄k

f̂k+pNeikx

− 1

2

(
iN

2
f̂N/2e

iNx/2 − iN

2
f̂−N/2e

−iNx/2
)

(1.79)

so the coefficients of f̂k+pN , differ between the two.

1 Spectral Approximation 23

1.8 Polynomial Basis Functions

We use orthogonal polynomial series to approximate the solutions in nonperiodic
problems. As we pointed out in the preamble, expansions in orthogonal polynomials
such as Legendre or Bessel functions are useful to solve some types of boundary
value problems analytically. Now we study polynomials that we can use to develop
spectral approximations to PDEs.

The starting point for polynomial spectral methods is to construct an orthogonal
basis for square integrable functions, specifically L2

w (a, b), in which to expand the
functions that we want to approximate. One convenient way to generate these bases
is to use the Sturm-Liouville theorem, which concerns the eigenfunctions, u, of the
eigenvalue problem known as the Sturm-Liouville problem. Although it is not ab-
solutely necessary to know the details of the Sturm-Liouville theorem to be able to
use spectral methods, it is nevertheless helpful to know why certain choices of the
expansion functions are more useful than others. For this reason, we describe the
main results that indicate why Chebyshev and Legendre bases are useful to approx-
imate solutions of differential equations.

The Sturm-Liouville problem is a second order boundary-value problem of the
form

− d

dx

(

p(x)
du

dx

)

+ q(x)u = λw(x)u, a < x < b

+ boundary conditions on u. (1.80)

If p(a) = p(b) = 0 the problem is called singular, and regular otherwise. The
Sturm-Liouville theorem tells us that the eigenvalues, λ, are real and that the eigen-
functions corresponding to distinct eigenvalues are orthogonal. With suitable bound-
ary conditions for the Sturm-Liouville problem, the eigenvalues are countably infi-
nite, i.e., they form a set {λn}∞n=0. Most importantly, the theorem tells us that the
set of eigenfunctions associated with these eigenvalues, {un}∞n=0, form a basis for
L2

w (a, b). Thus, we can use these eigenfunctions to represent functions that are
square integrable with respect to the weight w.

To use a truncated series as an approximation to a function, it is important that the
series coefficients decay rapidly. It turns out that they will converge at a rate depen-
dent only on the smoothness of the function being expanded, without the need for
special conditions (e.g. periodicity) on the function at the boundaries, if the Sturm-
Liouville problem is singular. For details, we recommend consulting reference [7].

Finally, we are interested in the Sturm-Liouville problems for which the eigen-
functions are polynomials. If we scale the interval [a, b] to the reference interval
[−1,1], there turns out to be only one Sturm-Liouville problem whose eigenfunc-
tions satisfy these constraints. Those eigenfunctions satisfy

− d

dx

(

(1 − x)1+α (1 + x)1+β du

dx

)

= λ (1 − x)α (1 + x)β u, −1 < x < 1

(1.81)

24 1 Spectral Approximation

where α,β > −1. The eigenfunctions are called the Jacobi polynomials, which are
represented by P

(α,β)
k (x).

The Jacobi polynomials have computationally useful properties. The first is that
they satisfy a three-term recursion relation, making them easy to evaluate.

A second useful property concerns their roots. For k ≥ 1, P
(α,β)
k has k distinct

real roots, all of which lie in the interval (−1,1). This property will be useful later
when we develop high-precision Gauss quadratures to use for discrete inner prod-
ucts. Finally, the derivatives of the polynomials satisfy a three term recursion rela-
tion, which we will use later to compute the coefficients of the derivatives of func-
tions.

The two important special cases of interest to spectral solutions of PDEs are the
Legendre Polynomials, Lk(x) = P

(0,0)
k (x) and the Chebyshev Polynomials, Tk(x) =

P
(−1/2,−1/2)
k (x). The Legendre polynomials are of interest because with α = β = 0,

the weight function w(x) = 1. The unit weight function makes integrals such as
(1.11) and (1.13) easier to evaluate analytically. Chebyshev polynomials have well-
known nice approximation properties and have the practical feature that we can
evaluate Chebyshev series using the Fast Fourier Transform.

1.8.1 The Legendre Polynomials

The Legendre polynomials are the special case of the Jacobi polynomials when
α = β = 0. They satisfy the three term recursion

Lk+1(x) = 2k + 1

k + 1
xLk(x) − k

k + 1
Lk−1(x) (1.82)

with L0(x) = 1 and L1(x) = x. We show a plot of the Legendre polynomials of
degree two through five in Fig. 1.6, which illustrates the fact that Lk(±1) = (±1)k .
The derivatives satisfy

(2k + 1)Lk(x) = L′
k+1(x) − L′

k−1(x). (1.83)

Fig. 1.6 The Legendre
polynomials of degree two
through five

1 Spectral Approximation 25

The Legendre polynomials are normalized so that Lk(1) = 1. Their L2 norms are

‖Lk‖2 = 2

2k + 1
. (1.84)

1.8.2 The Chebyshev Polynomials

Chebyshev polynomials are the special case of Jacobi polynomials that we get when
α = β = −1/2. They are useful because of their approximation properties and be-
cause Chebyshev series can be computed efficiently by way of a Fast Fourier Trans-
form. The relation to the Fourier transform is a consequence of the fact that the
Chebyshev polynomials have an alternative representation, namely

Tk (x) = cos
(
k cos−1(x)

)
. (1.85)

The representation of the Chebyshev polynomials by (1.85) gives us one way to
evaluate them. Alternatively, there is still the three term recursion,

Tk+1(x) = 2xTk(x) − Tk−1(x). (1.86)

To start the sequence, (1.85) shows that T0 = 1 and T1 = x. We show a plot of the
Chebyshev polynomials of degree two through five in Fig. 1.7.

The derivatives also satisfy a three term recursion,

2Tk(x) = T ′
k+1

k + 1
− T ′

k−1

k − 1
. (1.87)

Finally, the L2 norms are

‖Tk‖2
w =

∫ 1

−1

T 2
k dx√

1 − x2
= ck

π

2
(1.88)

where

ck =
{

2, k = 0,

1, k ≥ 1.
(1.89)

It is possible to construct alternative polynomial bases that we could use to repre-
sent polynomials with particular properties. For example, for boundary value prob-
lems with Dirichlet boundary conditions for which the exact solution must vanish
at the boundaries, it often makes sense to approximate the solution with a poly-
nomial that also vanishes at the boundaries. This can be done either by choosing
the coefficients so that the polynomial vanishes, or by choosing basis functions that
vanish at the boundaries. That way any series in those basis functions also vanishes
appropriately.

26 1 Spectral Approximation

Fig. 1.7 The Chebyshev
polynomials of degree two
through five

1.9 Polynomial Series

Since the Jacobi polynomials form a basis for L2
w(−1,1), as promised by the Sturm-

Liouville theorem, we can represent any square integrable function, f , as an infinite
series in them

f (x) =
∞∑

k=0

f̂kP
(α,β)
k (x). (1.90)

Because the basis functions are orthogonal, the coefficients are

f̂k = (f,P
(α,β)
k (x))w

‖P (α,β)
k (x)‖2

w

. (1.91)

The series that represents the derivative of a function expanded in orthogonal
polynomials is more complicated than that of the Fourier series (1.20). The deriv-
ative of the Fourier series is simple because the basis functions are eigenfunctions
of the derivative operator, i.e., deikx/dx = ikeikx . The Legendre, Chebyshev and,
indeed, all of the Jacobi polynomials are not. Instead, we have just seen that the
derivatives of the Legendre and Chebyshev polynomials satisfy a three-term recur-
sion relation that couples the polynomial modes.

To see how polynomial modes are coupled when we take derivatives, suppose f ′
is also square integrable. Then we can write its derivative as a Legendre series

f ′(x) =
∞∑

k=0

f̂
(1)
k Lk(x). (1.92)

To relate the coefficients of the derivative f̂
(1)
k to the coefficients of the function, f̂k ,

we use the recursion formula (1.83) that we rewrite as

Lk(x) = L′
k+1(x)

2k + 1
− L′

k−1(x)

2k + 1
. (1.93)

1 Spectral Approximation 27

When we substitute (1.93) into (1.92),

f ′(x) =
∞∑

k=0

f̂
(1)
k Lk(x) =

∞∑

k=0

f̂
(1)
k

[
L′

k+1(x)

2k + 1
− L′

k−1(x)

2k + 1

]

(1.94)

or

f ′(x) =
∞∑

k=0

f̂
(1)
k

L′
k+1(x)

2k + 1
−

∞∑

k=0

f̂
(1)
k

L′
k−1(x)

2k + 1
. (1.95)

We now shift the indices each by one, note that L′
0 = 0, and set L′−1 ≡ 0. Finally,

we gather terms to get

f ′(x) =
∞∑

k=1

[
f̂

(1)
k−1

2k − 1
− f̂

(1)
k+1

2k + 3

]

L′
k(x) =

∞∑

k=1

f̂kL
′
k(x). (1.96)

Thus,

f̂k = f̂
(1)
k−1

2k − 1
− f̂

(1)
k+1

2k + 3
, k ≥ 1. (1.97)

We use (1.97) to generate a recursion for the coefficients of the derivative:

f̂
(1)
k = (2k + 1)

[

f̂k+1 + f̂
(1)
k+2

2k + 5

]

. (1.98)

We use (1.98) to write (formally) the coefficient of the derivative as yet another
infinite series. The recursion says that

f̂
(1)
k+2

2k + 5
= 2k + 5

2k + 5

[

f̂k+3 + f̂
(1)
k+4

2k + 9

]

(1.99)

so

f̂
(1)
k = (2k + 1)

[

f̂k+1 + f̂k+3 + f̂
(1)
k+4

2k + 9

]

. (1.100)

Continuing the process leads to the infinite sum

f̂
(1)
k = (2k + 1)

[
f̂k+1 + f̂k+3 + f̂k+5 + · · ·

]
= (2k + 1)

∞∑

p=k+1
k+p odd

f̂p. (1.101)

Equation (1.101) shows that the derivatives of the Legendre expansion couple the
polynomial modes, whereas we have already seen that the Fourier modes do not
couple.

28 1 Spectral Approximation

Modes are coupled in the derivatives of the Chebyshev series in much the same
way. For Chebyshev series, the recursion that relates the coefficients of the derivative
to the coefficients of the original function is

ckf̂
(1)
k = f̂

(1)
k+2 + 2 (k + 1) f̂k+1, k ≥ 0. (1.102)

Following an argument similar to that leading to (1.101) leads us to the series

f̂
(1)
k = 2

ck

∞∑

p=k+1
k+p odd

pf̂p. (1.103)

1.10 Polynomial Series Truncation

For non-periodic functions, we split an infinite series in orthogonal polynomials into

f (x) =
N∑

k=0

f̂kφk(x) +
∞∑

k=N+1

f̂kφk(x) =
N∑

k=0

f̂kφk(x) + τ. (1.104)

The action of the orthogonal projection operator, PN , is defined to be

PNf (x) =
N∑

k=0

f̂kφk(x) (Orthogonal Polynomial Truncation). (1.105)

Like the Fourier truncation operator, PN for polynomial truncation is also the or-
thogonal projection operator, but this time with respect to the weighted inner prod-
uct (·, ·)w . It is also the best approximation in the sense that the norm of the error,
‖f − PNf ‖w , is minimized. Furthermore, the norm of the truncation error, τ , is

‖τ‖2
L2

w
=

∞∑

k=N+1

|f̂k|2 ‖φk‖2
L2

w
, (1.106)

so that the rate of convergence of the approximation PNf depends only on the rate
of convergence of the coefficients f̂k .

What makes Jacobi polynomial expansion approximations useful as “spectral
methods” is twofold. First, like the Fourier truncation, the Jacobi polynomial trun-
cation converges spectrally fast as N → ∞. The second is that it has this conver-
gence behavior without specific restrictions (such as periodicity of the function and
its derivatives) on the functions or their derivatives at the boundaries. The latter
is due to the fact that the Sturm-Liouville problem for the Jacobi polynomials is
singular with p(±1) = 0. The former is due to the fact that the rate of decay of
the expansion coefficients depends only on the smoothness of the function being
approximated. The details for showing these facts are quite technical, and can be
found, for example, in the book by Canuto et al. [7].

1 Spectral Approximation 29

Although the approximation theory for polynomial truncation is rather technical,
we get a good sense of the spectral convergence by looking at a couple of exam-
ples as we did with the Fourier approximations in Sect. 1.3. Let’s first note that the
first two example functions in (1.32) are not of much interest here since they are
polynomials and are represented exactly as long as N ≥ 2.

As examples that show the relationship between smoothness and convergence
rate, let us consider Legendre polynomial truncation approximations to three func-
tions defined on [−1,1]

f1(x) =
{

−1, −1 ≤ x ≤ 0,

+1, 0 < x ≤ 1,

f2(x) = |x| ,
f3(x) = sin(2π(x + 0.1)).

(1.107)

The first has a jump discontinuity at the origin. The second has a slope discontinuity
there. The last is infinitely smooth. We compute the coefficients of each by the
orthogonal projection

f̂k = 2k + 1

2

∫ 1

−1
f (x)Lk(x)dx. (1.108)

The coefficients of the three functions are

f̂1,k = (−1)k
(4k + 3)(2k)!

22k+1(k + 1)!k! = O

(
1

k1/2

)

, k odd,

f̂2,k = (−1)k/2+1(2k + 1)
k!

2k+1(k/2!)2(k − 1)(k/2 − 1)
= O

(
1

k3/2

)

, k even,

f̂3,k = 2k + 1

2
Jk+1/2(2π) sin (0.2π + kπ/2) .

(1.109)
The coefficients of the first two functions converge as k1/2−p for p = 1 and p = 2.
Now, since

‖f − PNf ‖2 = ‖τ‖2 =
∞∑

k=N+1

2

2k + 1
|f̂k|2, (1.110)

we expect that the error will be bounded for large N as

√
√
√
√

∞∑

k=N+1

1

k(p−1/2)2+1
<

√∫ ∞

N+1

1

z(p−1/2)2+1
dz ∼ 1

Np−1/2
. (1.111)

Equation (1.111) says that the bound on the truncation error decays as N−1/2 for f1,
which has the jump discontinuity. If only a slope discontinuity is present, as in f2,

30 1 Spectral Approximation

Fig. 1.8 Truncation error of
f3 = sin(2π(x + 0.1))

then the convergence rate is higher, namely N−3/2. Overall, we see that with dis-
continuities present, the truncation approximations converge with a low, polynomial
order.

The truncation approximation of smooth functions, such as f3, converges very
rapidly, including exponentially fast. Figure 1.8 shows the truncation error for f3 as
a function of polynomial order. What we see is typical for the approximation of a
sinusoidal function. Until N reaches a critical value, here about six, the convergence
is slow. After the sine wave is adequately resolved, the approximation converges
exponentially fast.

1.10.1 Derivatives of Truncated Series

We approximate the derivative of a function, f , by the derivative of its truncated
series, PNf

f ′ ≈ (PNf (x))′ =
N∑

k=0

f̄
(1)
k φk. (1.112)

The coefficients f̄
(1)
k are computed with recursions (1.98) and (1.102) for the Legen-

dre and Chebyshev approximations, respectively. However, they are not the same
as f̂

(1)
k . Since the truncation PNf has no coefficients for k > N , and since the

derivative of a polynomial of a degree N is a polynomial of degree N − 1, we start
the recursion with the conditions

f̄
(1)
N = f̄

(1)
N+1 = 0, (1.113)

whereas the true starting values f̂
(1)
N and f̂

(1)
N+1 are given by (1.101) and (1.103)

for the Legendre and Chebyshev series, respectively. Algorithms 4 (LegendreDeriv-
ativeCoefficients) and 5 (ChebyshevDerivativeCoefficients) show how to compute

1 Spectral Approximation 31

Algorithm 4: LegendreDerivativeCoefficients: Evaluate the Legendre Coeffi-
cients of the Derivative of a Polynomial

Procedure LegendreDerivativeCoefficients

Input:
{
f̂k

}N

k=0

f̄
(1)
N ← 0

f̄
(1)
N−1 ← (2N − 1)f̂N

for k = N − 2 to 0 step −1 do

f̄
(1)
k ← (2k + 1)

[

f̂k+1 + f̄ (1)
k+2

2k + 5

]

end

return
{
f̄

(1)
k

}N

k=0
End Procedure LegendreDerivativeCoefficients

Algorithm 5: ChebyshevDerivativeCoefficients: Evaluate the Chebyshev Coef-
ficients of the Derivative of a Polynomial

Procedure ChebyshevDerivativeCoefficients

Input:
{
f̂k

}N

k=0

f̄
(1)
N ← 0

f̄
(1)
N−1 ← (2N)f̂N

for k = N − 2 to 1 step −1 do
f̄

(1)
k ← 2 (k + 1) f̂k+1 + f̄ (1)

k+2

end

f̄
(1)
0 ← f̂1 + f̄

(1)
2 /2

return
{
f̄

(1)
k

}N

k=0
End Procedure ChebyshevDerivativeCoefficients

the coefficients of the derivative of the truncated series for the Legendre and Cheby-
shev approximations.

Since the coefficients f̄ 1
k and f̂ 1

k differ, differentiation and truncation do not com-
mute, i.e.

(PNf (x))′ 	= PNf ′(x) (Polynomial Truncation) , (1.114)

which means that the order in which we perform differentiation and truncation does
matter.

1.11 Polynomial Quadrature

We will again use quadrature to generate discrete inner products with respect to
which the polynomial basis functions remain orthogonal. For approximations with

32 1 Spectral Approximation

orthogonal polynomials, the quadrature rules now should satisfy

N∑

j=0

φk(xj)φl(xj)wj =
∫ 1

−1
φk(x)φl(x)w(x)dx (1.115)

over the widest possible range of k and l. The quadrature rules with maximal pre-
cision, i.e, that are exact for the largest order polynomials are the Gauss rules. The
Gauss rules are intimately tied to orthogonal polynomials and we will derive them
by integrating an Hermite interpolant of a function.

To derive the Gauss quadrature rules, we start with the Hermite interpolant of a
function, f (x), which is the polynomial of degree 2N + 1

H (x) =
N∑

j=0

h̄j (x) f (xj) +
N∑

j=0

ĥj (x)f ′(xj), (1.116)

where

h̄j (x) = [
1 − 2(x − xj)�

′
j (xj)

]
�2
j (x),

ĥj (x) = (x − xj)�
2
j (x).

(1.117)

The �j (x) are the usual Lagrange interpolating polynomials

�j (x) =
N∏

i=0
i 	=j

x − xi

xj − xi

. (1.118)

Since the Lagrange interpolating polynomials satisfy �j (xi) = δi,j , the Hermite in-
terpolant satisfies H(xj) = f (xj) and H ′(xj) = f ′(xj). Therefore, H interpolates
both the function and its derivative. The interpolation is exact for all functions that
are polynomials of degree 2N + 1 or less.

To derive the quadrature rule, we integrate the polynomial approximation, H(x),
and use that integral to approximate the integral of f

∫ b

a

f (x)w(x)dx ≈ Q[f] =
N∑

j=0

f (xj)

∫ b

a

w(x)h̄j (x)dx

+
N∑

j=0

f ′(xj)

∫ b

a

w(x)ĥj (x)dx. (1.119)

For the quadrature rule to match (1.115), that is, to have no dependence on f ′, the
integrals in the second sum of (1.119) must vanish. This is where orthogonality
comes into play. First, note that we can write the Lagrange interpolating polynomi-

1 Spectral Approximation 33

als, �j (x) in the alternate form

�j (x) =
N∏

i=0
i 	=j

x − xi

xj − xi

= ψN+1(x)

(x − xj)ψ
′
N+1(xj)

, (1.120)

where

ψN+1(x) =
N∏

i=0

(x − xi). (1.121)

Then

ĥj (x) = (x − xj)�j (x)�j (x) = ψN+1(x)�j (x)

ψ ′
N+1(xj)

, (1.122)

which means that we can rewrite
∫ b

a

w(x)ĥj (x)dx = 1

ψ ′
N+1(xj)

∫ b

a

w(x)ψN+1(x)�j (x)dx. (1.123)

Now we use orthogonality. The polynomial �j (x) is of degree ≤ N , while ψN+1(x)

is a polynomial of degree N +1. We can ensure that the integral vanishes if ψN+1(x)

is orthogonal to all polynomials of degree N or less with respect to the weight w(x).
Orthogonality is immediate if we choose

ψN+1(x) =
N∏

i=0

(x − xi) = φN+1

γ
, (1.124)

where γ is the coefficient of xN+1 in the N + 1st basis function φN+1. Thus we
choose the abscissas of the quadrature, the xi ’s, to be the roots of φN+1.

Since our interest is in approximations with Jacobi polynomials, we now have
the following Jacobi Gauss Quadrature:

QG[f] =
N∑

j=0

f (xj)wj , (1.125)

where

xj = zeros of φN+1,

wj =
∫ 1

−1
w (x) h̄j (x)dx.

(1.126)

The quadrature (1.125) is exact for all functions, f , that are polynomials of degree
2N + 1 or less. Note that to compute the abscissas and weights we must find the
roots of the N + 1st order polynomial and evaluate the integral for the quadrature
weights.

34 1 Spectral Approximation

The two polynomial basis functions of most interest are the Legendre and Cheby-
shev polynomials. The Legendre Gauss quadrature reduces to

xj = zeros of LN+1(x),

wj = 2

(1 − x2
j)[L′

N+1(xj)]2
.

(1.127)

The Chebyshev Gauss quadrature has a simpler form due to the trigonometric repre-
sentation of the Chebyshev polynomials. Since TN+1 = cos((N + 1) cos−1(x)), we
can easily compute the abscissas and weights with

xj = cos

(
2j + 1

2N + 2
π

)

, j = 0,1, . . . ,N,

wj = π

N + 1
.

(1.128)

As we mentioned in the previous section, one of the properties of the Jacobi
polynomials is that their roots are interior to the interval. This fact is especially clear
for the Chebyshev abscissas, (1.128). To solve boundary value problems, however,
we usually want to include the boundary points in the approximations.

The Gauss quadrature rules that include the endpoints, x = ±1, are known as the
Gauss-Lobatto rules. For problems with Legendre weighted integrals, the abscissas
and weights for the Gauss-Lobatto rule are

xj = +1,−1, zeros of L′
N(x),

wj = 2

N(N + 1)

1

[LN(xj)]2
,

j = 0,1, . . . ,N. (1.129)

For Chebyshev weighted integrals, they are

xj = cos

(
jπ

N

)

, j = 0,1, . . . ,N,

wj =
{

π
2N

, j = 0,N,

π
N

, j = 1,2, . . . ,N − 1.

(1.130)

Requiring the end points to be abscissas reduces the number of degrees of freedom
at which the abscissas can be located by two, so it should not be surprising that the
Gauss-Lobatto rules have lower precision than the (optimal) Gauss rules. In fact, the
Gauss-Lobatto rules are exact for polynomials of degree 2N − 1 or less.

With the quadrature rules, we can now define the discrete inner product for or-
thogonal polynomial approximations

(u, v)N =
N∑

j=0

u(xj)v(xj)wj . (1.131)

1 Spectral Approximation 35

If we replace u and v by the basis functions φn and φm, then

(φn,φm)N =
∫ 1

−1
φnφmwdx = ‖φn‖2

N δn,m, (1.132)

where ‖φn‖2
N = (φn,φn)N , when

n + m ≤ 2N + 1 Gauss Rule,

n + m ≤ 2N − 1 Gauss-Lobatto Rule.
(1.133)

We use the exactness of the quadratures to evaluate the discrete norms. For the
Gauss points, the quadrature is exact for n ≤ N , so

Gauss Points:

‖φn‖2
N =

{
2

2n+1 Legendre Gauss,
π
2 cn Chebyshev Gauss.

(1.134)

The coefficients cn were defined previously. They are c0 = 2 and cn = 1 for n > 0.
The quadrature is exact for n < N if we use the Gauss-Lobatto points, so we can

use the analytical norm for those values of n, too. When n = N , we must compute
the norm specially.

Lobatto Points:

n < N

‖φn‖2
N =

{
2

2n+1 Legendre Gauss-Lobatto,

π
2 cn Chebyshev Gauss-Lobatto.

(1.135)

n = N

‖φN‖2
N =

{
2
N

Legendre Gauss-Lobatto,

π Chebyshev Gauss-Lobatto.
(1.136)

1.12 Orthogonal Polynomial Interpolation

Now that we have derived the discrete inner products, we derive the polynomial
interpolant

INf (x) =
N∑

k=0

f̃kφk(x) (1.137)

that satisfies the interpolation conditions

INf (xj) = f (xj), j = 0,1, . . . ,N. (1.138)

36 1 Spectral Approximation

Note, again, that we have written the discrete coefficients, as f̃k to distinguish
them from the coefficients of the truncation approximations f̂k that we defined in
Sect. 1.10.

To find the interpolant means formally to find the discrete coefficients. Equation
(1.138) produces a linear system of equations to solve (uniquely) for the unknown
coefficients. However, we will once again appeal to the orthogonality of the basis
functions to find the coefficients. Since the interpolation condition (1.138) is defined
at a discrete set of points, xj , the discrete orthogonality discussed in the previous
section is the important property now.

To simplify the computation of the interpolation expansion coefficients, we ap-
peal to the fact that the orthogonal basis functions remain orthogonal under the
discrete inner product created from the Gauss quadrature. For non-periodic func-
tions, we choose the interpolation points xj to be the abscissas of either a Gauss or
Gauss-Lobatto quadrature, then take the discrete inner product

(INf,φn)N =
(

N∑

k=0

f̃kφk,φn

)

N

=
N∑

k=0

f̃k (φk,φn)N , n = 0,1, . . . ,N. (1.139)

Thus, the coefficients of the orthogonal polynomial expansion are

f̃n = (INf,φn)N

‖φn‖2
N

= (f,φn)N

‖φn‖2
N

, n = 0,1, . . . ,N (1.140)

or

f̃n = 1

‖φn‖2
N

N∑

j=0

f (xj)φn(xj)wj . (1.141)

In turn, we compute the nodal values of the interpolant, INf (xj), by a similar sum

f (xj) =
N∑

k=0

f̃kφk(xj). (1.142)

Together, equations (1.141) and (1.142) form the Discrete Polynomial Transform
Pair.

Polynomial interpolation is usually less accurate than series truncation, the dif-
ference again being due to aliasing. To show this, we follow the procedure that we
used for the Fourier approximations, which begins by relating the exact and discrete
coefficients f̂k and f̃k . If we replace f in (1.141) by its series representation, then

f̃k = (
∑∞

m=0 f̂mφm,φk)N

‖φk‖2
N

= f̂k +
∑∞

m=N+1 f̂m(φm,φk)N

‖φk‖2
N

, k = 0,1, . . . ,N.

(1.143)
Since m ≥ N +1 in the last sum, quadrature error that occurs when k +m > 2N −1
for Lobatto interpolation and k + m > 2N + 1 for Gauss interpolation can cause

1 Spectral Approximation 37

the discrete inner product of φk with φm to not vanish as it does for the true inner
product.

We relate the interpolant and the truncated series by replacing the discrete coef-
ficients in (1.137) by (1.143)

INf =
N∑

k=0

f̂kφk +
N∑

k=0

⎧
⎨

⎩

1

‖φk‖2
N

∞∑

m=N+1

f̂m (φm,φk)N

⎫
⎬

⎭
φk

= PNf + RNf. (1.144)

We can now show that the interpolation error cannot be less than the trunca-
tion error for polynomial approximations. The interpolation error is the difference
f − INf , so

f − INf = (f − PNf) − RNf. (1.145)

Now RNf has only terms of order N or less, while (f − PNf) has terms of or-
der N + 1 or larger, so they are orthogonal to each other. Thus, the norm of the
interpolation error satisfies

‖f − INf ‖2 = ‖f − PNf ‖2 + ‖RNf ‖2 . (1.146)

As with Fourier interpolation, the aliasing error that arises in polynomial interpola-
tion is not significant for smooth functions. For details, see [7].

Exercises

1.1 In Fig. 1.3 we showed how the norm of the Fourier truncation error decays
with the number of modes. In this problem, plot PNf for the three functions as a
function of x for N = 4,8,16,32 and observe the behavior of the approximations.
In particular, observe the well-known Gibbs phenomenon in the neighborhood of
the discontinuities in the periodic extensions of the functions.

1.2 To reduce the size of the oscillations seen in the truncated Fourier series for
non-smooth functions, we often smooth/filter it. The filtered approximation is of the
form

P̄Nf =
N/2∑

k=−N/2

σkf̂ke
ikx,

where σk is the filter function. Typically, the filter function is a smooth low pass
filter with σ0 = 1 and σ±N/2 = 0. An example is the raised cosine filter,

σk = 1 + cos (2kπ/N)

2
, k = −N/2, . . . ,N/2.

38 1 Spectral Approximation

To see the effects of filtering, plot the Fourier truncation approximation of the func-
tion

f (x) =
{

1, π
2 < x ≤ 3π

2 ,

0, 0 < x ≤ π
2 and 3π

2 < x ≤ 2π

with and without the raised cosine filter. (The Fourier coefficients for this function
are

f̂k =

⎧
⎪⎨

⎪⎩

π, k = 0,

0, k 	= 0, even,

(−1)(k−1)/2

k
, k 	= 0, odd.)

To learn more about filtering, see [7].

1.3 Equation (1.44) establishes that with enough nodes the composite trapezoidal
rule integrates complex exponentials exactly. Otherwise, it does not. Compute and
plot the logarithm of the error as a function of N for the following two integrals:

I1 =
∫ 2π

0
cos (10x)dx,

I2 =
∫ 2π

0
cos (x) esin(x)dx.

Note the behavior of the error as a function of N and compare to the usual O(Δx2)

behavior for the composite trapezoidal rule.

1.4 Repeat Problem 1.1 for INf .

1.5 Use the equivalence of (1.73) and (1.74) to show that the eigenvalues of the
Fourier derivative matrix of Dij = h′

j (xi) are λk = ik, k = −N/2+1, . . . ,N/2−1.
Knowing the eigenvalues is important to approximate PDEs in time.

1.6 In Fig. 1.8 we showed how the norm of the Legendre truncation error de-
cays with the number of modes. For this problem, plot the Legendre truncation
approximation PNf for the three functions in (1.107) as a function of x for
N = 4,8,16,32, . . . and observe the behavior of the approximations. Again, ob-
serve the well-known Gibbs phenomenon in the neighborhood of the discontinuities
in the functions.

1.7 In the likely event that the domain of interest is not [0,2π] for periodic prob-
lems or [−1,1] for non-periodic problems, it is necessary to map the integrals to the
reference intervals. Usually one uses an affine mapping ξ = a + bx, for some a and
b, to transform the intervals. Rewrite the quadratures (1.45) and (1.125) so that they
can be used on an arbitrary, yet finite interval.

Chapter 2
Algorithms for Periodic Functions

In this chapter we show how to compute the Discrete Fourier Transform using a
Fast Fourier Transform (FFT) algorithm, including not-so special case situations
such as when the data to be transformed are real. In those situations, we speed up
the transforms by about a factor of two by exploiting symmetries in the data and the
coefficients. We end this chapter by showing how to approximate the derivatives of
periodic functions, which are the fundamental approximations that we need to solve
partial differential equations with periodic boundary conditions.

2.1 How to Compute the Discrete Fourier Transform

The sums in the Discrete Fourier Transform pair, (1.69), cost O(N2) operations to
compute: N complex multiplications for each of the N values. For large N , they are
too expensive to compute by the direct sum. However, we can compute the sums in
a significantly more efficient O(N log2(N)) operations if we use the Fast Fourier
Transform. The complex FFT is the core algorithm for the efficient implementation
of Fourier spectral methods for large N .

It is beyond the scope of this book to give a thorough presentation of Fast Fourier
Transform algorithms. FFTs are ubiquitous and are discussed in detail in numerous
books (e.g. [5] and [6], among others), and the basic ideas are found in upper level
numerical analysis books. Implementations exist in numerous programming lan-
guages tuned for virtually any computer. Rather than use an FFT presented in any
book, we recommend libraries provided by one’s computer vendor, a well-developed
and tested FFT algorithm such as FFTW [12] (http://www.fftw.org/) or that can be
found, for example, at netlib (www.netlib.org), or routines sold as part of one of
the many commercial numerical libraries (e.g. NAG or IMSL). For completeness,
however, we include Temperton’s [23] self-sorting in-place complex FFT. Temper-
ton’s paper includes a mixed-radix FFT (N = 2m3q5r), but for reasons of space and
simplicity, we present only the radix 2 (N = 2m) algorithm here.

In spectral method applications, the solutions of the differential equations are
typically real. When the sequences are real, we can exploit symmetries in the coeffi-
cients to save approximately a factor of two in the work to compute the transforms.
We present two algorithms that use these symmetries in this section. One simulta-
neously computes the coefficients of two real sequences with a single complex FFT.
The other splits a single real sequence into two sequences of half the original length
by putting the even indexed elements into the real part of a complex sequence and
the odd indexed elements into the imaginary part.

D.A. Kopriva, Implementing Spectral Methods for Partial Differential Equations,
Scientific Computation,
© Springer Science + Business Media B.V. 2009

39

http://www.fftw.org/
http://www.netlib.org

40 2 Algorithms for Periodic Functions

2.1.1 Fourier Transforms of Complex Sequences

We can recast the Discrete Fourier Transform (DFT) pair (1.69) as

DFT

⎧
⎨

⎩

Gk = 1
N

∑N−1
j=0 gj e

−2πijk/N , k = 0,1, . . . ,N − 1,

gj =∑N−1
k=0 Gke

2πijk/N , j = 0,1, . . . ,N − 1.
(2.1)

The first sum, which represents the decomposition of the sequence of physical space
values into its Fourier components, is the forward transform. It takes an N -periodic
sequence {gj }N−1

j=0 and returns an N -periodic sequence {Gj }N−1
j=0 of Discrete Fourier

coefficients. (An N -periodic sequence is one for which gj±N = gj .) The constant
i = √−1. The second sum, which represents the synthesis of the Fourier modes
back into the physical space, is the backward transform. Properties of the transforms
can be found in numerous books, including [6].

Except for the sign of the exponents, the forward and backward transforms com-
pute the same sum, namely

DFTS: Fk =
N−1∑

j=0

fj e
±2πijk/N , k = 0,1, . . . ,N − 1. (2.2)

We could compute the Discrete Fourier Transform Sum, DFTS of (2.2), directly by
Algorithm 6 (DFT). The sign of the input variable s determines whether the proce-
dure computes the forward or backward sum. To avoid having to remember which
sign corresponds to which transform, let’s define two constants FORWARD = 1 and
BACKWARD = −1 to use as input to the procedure.

The range of wavenumbers, k, used in (2.1) is not the range we need to com-
pute the Fourier interpolant (1.69). For that we need the coefficients in the order
Algorithm 6 (DFT), and (2.2) each return a sequence with elements ordered as
k = 0,1, . . . ,N − 1 instead.

Algorithm 6: DFT: Direct (and Slow) Evaluation of the Discrete Fourier Trans-
form

Procedure DFT

Input:
{
fj

}N−1
j=0 , s

for k = 0 to N − 1 do
Fk ← 0
for j = 0 to N − 1 do

Fk ← Fk + fj ∗ e−2sπijk/N

end
end
return {Fk}N−1

k=0

End Procedure DFT

2 Algorithms for Periodic Functions 41

For the DFT to be useful in spectral approximations, we must reinterpret the order
of the sequences. Equation (1.63) shows that the discrete Fourier coefficient f̃k are
N -periodic, that is, f̃k = f̃k±N . Thus, f̃N/2 = f̃−N/2, and therefore the second half
of the sequence returned by the transform with s = −1 corresponds to the negative
values of the index. To use the results of the sum (2.2), i.e. of Algorithm 6 (DFT),
we make the following correspondence:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

F0
F1
...

FN/2−1
FN/2

FN/2+1
...

FN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⇐⇒

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Nf̃0

Nf̃1
...

Nf̃N/2−1

Nf̃−N/2

Nf̃−N/2+1
...

Nf̃−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.3)

To reconstruct the set of values {fj }N−1
j=0 from the set of coefficients {f̃k}N/2−1

k=−N/2,
we simply order them using the correspondence (2.3) before calling the transform
with s = +1. We will show an example in Sect. 2.3 when we compute Fourier
interpolation derivatives by FFTs.

It is highly unlikely that one would want use Algorithm 6 for anything but the
simplest of exercises. That algorithm clearly requires O(N2) complex exponentia-
tions and multiplications. Indeed, the early success of spectral methods was due the
fact that one could use a Fast Fourier Transform (FFT) to compute these sums with
only O(N Log2(N)) operations.

To help understand how to use an FFT routine, we present Temperton’s self-
sorting, in-place complex FFT. Like many FFT algorithms, Temperton’s pre-
computes and stores the complex exponential factors, e−2sπijk/N , since those evalu-
ations are so expensive. To that end, we define the arrays {w±

n }N−1
n=0 whose elements

are e−2sπin/N for s = ±1. Thus, we perform the forward transform when the w’s
are computed with s = 1, and the backward transform when they are computed with
s = −1. The pre-computation of the trigonometric factors is done by Algorithm 7
(InitializeFFT).

Algorithm 7: InitializeFFT: Initialization Routine for FFT

Procedure InitializeFFT
Input: N,s

w ← e−2sπi/N

for j = 0 to N − 1 do
wj ← wj

end

return
{
wj

}N−1
j=0

End Procedure InitializeFFT

42 2 Algorithms for Periodic Functions

Algorithm 8: Radix2FFT: Temperton’s Radix 2 Self Sorting Complex FFT

Procedure Radix2FFT

Input:
{
fj

}N−1
j=0 ,

{
wj

}N−1
j=0

Integers: noPtsAtLevel, a, b, c, d , p, N div 2, m, l, k

N div 2 ← N/2
m ← Log2(N)

for l = 1 to (m + 1)/2 do
noPtsAtLevel ← 2l−1

a ← 0
b ← N div 2/noPtsAtLevel
p ← 0
for k = 0 to b − 1 do

W ← wp

for i = k to N − 1 step N/noPtsAtLevel do
z ← W ∗ (fa+i − fb+i)

fa+i ← fa+i + fb+i

fb+i ← z

end
p ← p + noPtsAtLevel

end
end
for l = (m + 3)/2 to m do

noPtsAtLevel ← 2l−1

a ← 0
b ← N div 2/noPtsAtLevel
c ← noPtsAtLevel
d ← b + noPtsAtLevel
p ← 0
for k = 0 to b − 1 do

W ← wp

for j = k to noPtsAtLevel − 1 step N/noPtsAtLevel do
for i = j to N − 1 step 2 ∗ noPtsAtLevel do

z ← W ∗ (fa+i − fb+i)

fa+i ← fa+i + fb+i

fb+i ← fc+i + fd+i

fd+i ← w ∗ (fc+i − fd+i)

fc+i ← z

end
end
p ← p + noPtsAtLevel

end
end
return {fk}N−1

j=0

End Procedure Radix2FFT

We show the FFT algorithm itself in Algorithm 8 (Radix2FFT). The FFT takes a
sequence of complex numbers {fj }N−1

j=0 and the pre-computed complex trigonomet-

ric factors {wj }N−1
j=0 and returns the sum (2.2) by overwriting the original complex

sequence. Whether it computes the forward or backward transform depends on the

2 Algorithms for Periodic Functions 43

sequence of w’s that it is supplied. For details on the algorithm, see [23]. We show
examples that use the complex FFT in the sections that follow, where we study spe-
cial cases of the transforms.

2.1.2 Fourier Transforms of Real Sequences

The complex FFT is about twice as expensive as is necessary when the data to be
transformed are real. One of two methods is typically used to compute transforms of
real sequences efficiently from the complex transform. The first method solves for
the coefficients of two real sequences simultaneously. This is useful if two or more
real FFTs have to be computed at once, as happens in multidimensional problems.
The second is to use an even-odd decomposition where the transform is computed
on a complex sequence of half the length of the original. In that algorithm, half of
the values of the real sequence are placed in the real part of the complex sequence
and the other half in the imaginary part.

2.1.2.1 Simultaneous Fourier Transformation of Two Real Sequences

We can use the complex FFT to compute the DFT of two real sequences simul-
taneously. Suppose that {xj }N−1

j=0 and {yj }N−1
j=0 are real sequences whose discrete

transform coefficients we need. Then

Xk = 1

N

N−1∑

j=0

xj e
−2πijk/N ,

Yk = 1

N

N−1∑

j=0

yj e
−2πijk/N ,

k = 0,1, . . . ,N − 1. (2.4)

If we combine these into a single complex vector, z = x + iy, the discrete Fourier
coefficients of z are

Zk = 1

N

N−1∑

j=0

zj e
−2πijk/N = 1

N

N−1∑

j=0

xj e
−2πijk/N + i

N

N−1∑

j=0

yj e
−2πijk/N (2.5)

or

Zk = Xk + iYk. (2.6)

Since xj and yj are real,

Z∗
−k

= 1

N

N−1∑

j=0

xj e
−2πijk/N − i

N

N−1∑

j=0

yj e
−2πijk/N (2.7)

44 2 Algorithms for Periodic Functions

so

Z∗−k = Xk − iYk. (2.8)

When we solve for Xk and Yk from (2.6) and (2.8)

Xk = 1

2

(
Zk + Z∗−k

)
,

Yk = −i

2

(
Zk − Z∗−k

)
,

k = 0,1, . . . ,N − 1. (2.9)

The discrete coefficients are N -periodic, so Z−k = ZN−k and Z0 = ZN . Therefore,

Xk = 1

2

(
Zk + Z∗

N−k

)
,

Yk = −i

2

(
Zk − Z∗

N−k

)
,

k = 0,1, . . . ,N − 1. (2.10)

We show how to compute the forward DFT of two real sequences in Algorithm 9
(FFFTOfTwoRealVectors). It takes as input the trigonometric factors pre-computed
with s = FORWARD, the two real sequences, and the length of the sequences. It
returns the scaled discrete Fourier coefficients of the two sequences. Since the com-
plex FFT does not scale the forward transform by the 1/N factor, the procedure does
the scaling when it extracts the coefficients. It is possible to modify the weights w+
computed by Algorithm 7 (InitializeFFT) to include the factor of 1/N to save the
cost of the divisions if multiple transforms are needed. We have added the scaling

Algorithm 9: FFFTOfTwoRealVectors: Simultaneous Computation of the DFT
of Two Real Sequences. The Forward Transform

Procedure FFFTOfTwoRealVectors

Input:
{
xj

}N−1
j=0 ,

{
yj

}N−1
j=0 ,

{
w+

j

}N−1
j=0

Uses Algorithms:
Algorithm 8 (Radix2FFT)

for j = 0 to N − 1 do
Zj ← xj + iyj

end

{Zk}N−1
k=0 ← Radix2FFT

({
Zj

}N−1
j=0 ,

{
w+

j

}N−1
j=0

)

X0 ← Re(z0)/N

Y0 ← Im(z0)/N

for k = 1 to N − 1 do

Xk ← 1

2

(
Zk + Z∗

N−k

)
/N

Yk ← −i

2

(
Zk − Z∗

N−k

)
/N

end
return {Xk}N−1

k=0 , {Yk}N−1
k=0

End Procedure FFFTOfTwoRealVectors

2 Algorithms for Periodic Functions 45

Algorithm 10: BFFTForTwoRealVectors: Simultaneous Computation of the
DFT of Two Real Sequences. The Backward Transform

Procedure BFFTForTwoRealVectors

Input:
{
Xj

}N−1
j=0 ,

{
Yj

}N−1
j=0 ,

{
w−

k

}N−1
k=0

Uses Algorithms:
Algorithm 8 (Radix2FFT)

for j = 0 to N − 1 do
Zj ← Xj + iYj

end

{Zk}N−1
k=0 ← Radix2FFT

({
Zj

}N−1
j=0 ,

{
w−

k

}N−1
k=0

)

for k = 0 to N − 1 do
xk ← Re(Zk)

yk ← Im(Zk)

end
return {xk}N−1

k=0 , {yk}N−1
k=0

End Procedure BFFTForTwoRealVectors

here, since a modification of the trigonometric factors routine might not be possible
if a library FFT is used.

To reverse the operation, we use (2.6) and the inverse FFT. The desired solutions
are simply the real and imaginary parts of the complex sequence returned by the
FFT. We present the procedure to compute the inverse transform in Algorithm 10
(BFFTForTwoRealVectors).

2.1.2.2 Fourier Transformation of a Real Sequence by Even-Odd
Decomposition

We can also evaluate the DFT of a single sequence of real values efficiently with a
complex FFT. The FFT will operate on a new sequence of half the original length
that we create by putting half the original data into the real part and the other half
into the complex part. Let the even and odd elements of a sequence {fj }N−1

j=0 be

ej = f2j ,

oj = f2j+1,
j = 0,1, . . . ,M − 1, (2.11)

where M = N/2. The forward Fourier transforms of these two sequences are

Ek = 1

M

M−1∑

j=0

ej e
−2πijk/M,

Ok = 1

M

M−1∑

j=0

oj e
−2πijk/M,

j = 0,1, . . . ,M − 1. (2.12)

46 2 Algorithms for Periodic Functions

But

Fk = 1

N

N−1∑

j=0

fj e
−2πijk/N

= 1

N

2M−1∑

j=0

fj e
−2πijk/2M

= 1

N

M−1∑

j=0

f2j e
−2πijk/M + 1

N

M−1∑

j=0

f2j+1e
−2πi(2j+1)k/2M

= 1

2M

M−1∑

j=0

f2j e
−2πijk/M + e−2πik/N

2M

M−1∑

j=0

f2j+1e
−2πijk/M

= 1

2

(
Ek + e−2πik/NOk

)
, k = 0,1, . . . ,N/2 − 1. (2.13)

Thus, the complex DFT of the even-odd decomposition of the real sequence pro-
duces the first half of the discrete coefficients of the original sequence. We find
the second half of the sequence of coefficients by recalling that if fk is real and
N -periodic, FN−k = F ∗

k .

We could compute coefficients Ek and Ok simultaneously using Algorithm 9
(FFFTOfTwoRealVectors), but it is probably best to combine the two algorithms.
To combine them, we let zj = ej + ioj and use (2.9) to define

Fk = 1

2N

{(
Zk + Z∗

N/2−k

)− ie−2πijk/N
(
Zk − Z∗

N/2−k

)}
,

k = 0,1, . . . ,N/2 − 1. (2.14)

We find the second half of the Fk array from the symmetry relation, the first value
from

F0 = (Re(Z0) + Im(Z0)) /N (2.15)

and the center from

FN/2 = (Re(Z0) − Im(Z0)) /N. (2.16)

Algorithm 11 (FFFTEO) shows one way to implement the Even-Odd decompo-
sition. It uses the fact that

e±2πij/M = e±2πi(2j)/N (2.17)

so that the factors w+ required by the complex FFT of length M are simply the
even indexed components of the factors computed for the full length transform,
factors that are also required by (2.13). This saves us the re-computation of the
trigonometric factors.

2 Algorithms for Periodic Functions 47

Algorithm 11: FFFTEO: The Forward DFT by Even-Odd Decomposition

Procedure FFFTEO
Input:

{
fj

}N−1
j=0 ,

{
w+

j

}N−1
j=0

Uses Algorithms:
Algorithm 8 (Radix2FFT)

for j = 0 to N/2 − 1 do
Zj ← f2j + if2j+1

wj ← w+
2j

end

{Zk}N/2−1
k=0 ← Radix2FFT

({
Zj

}N/2−1
j=0 ,

{
wj

}N/2−1
j=0

)

F0 ← (Re(Z0) + Im(Z0)) /N

FN/2 ← (Re(Z0) − Im(Z0)) /N

for k = 1 to N/2 − 1 do

Fk ← 1

2N

{(
Zk + Z∗

N/2−k

)− iw+
k

(
Zk − Z∗

N/2−k

)}

end
for k = 1 to N/2 − 1 do

FN−k ← F ∗
k

end
return {Fk}N−1

k=0

End Procedure FFFTEO

We can also evaluate the backward transform using the even-odd decomposition.
Since Fk+N/2 = F ∗

N/2−k , (2.13) implies that

F ∗
N/2−k = 1

2N

[(
Zk + Z∗

M−k

)+ ie−2πik/N
(
Zk − Z∗

N/2−k

)]
. (2.18)

If we add and subtract this and (2.13) we get

Ek = (
Fk + F ∗

N/2−k

)
, k = 0,1, . . . ,N/2 − 1 (2.19)

and

Ok = e2πik/N
(
Fk − F ∗

N/2−k

)
, k = 0,1, . . . ,N/2 − 1. (2.20)

When we combine these into a single complex sequence

Zk = Ek + iOk, k = 0,1, . . . ,N/2 − 1, (2.21)

the backward FFT produces

zj = ej + ioj , k = 0,1, . . . ,N/2 − 1. (2.22)

We extract the full sequence from the real and the imaginary parts,

f2j = Re(zj)

f2j+1 = Im(zj)

}

, j = 0,1, . . . ,N/2 − 1. (2.23)

48 2 Algorithms for Periodic Functions

Algorithm 12: BFFTEO: The Backward DFT by Even-Odd Decomposition

Procedure BFFTEO

Input: {Fk}N−1
k=0 ,

{
w−

k

}N−1
k=0

Uses Algorithms:
Algorithm 8 (Radix2FFT)

M ← N/2
for k = 0 to M − 1 do

E ← (
Fk + F ∗

M−k

)

O ← w−
k

(
Fk − F ∗

M−k

)

Zk ← Ek + iOk

wk ← w−
2k

end
{
Zj

}M−1
j=0 ← Radix2FFT({Zk}M−1

k=0 , {wk}M−1
k=0)

for j ← 0 to M − 1 do
f2j ← Re(Zj)

f2j+1 ← Im(Zj)

end

return
{
fj

}N−1
j=0

End Procedure BFFTEO

We present the procedure for using the even-odd decomposition to compute the
backward transform in Algorithm 12 (BFFTEO). As before, we use the periodicity
of the trigonometric factors to avoid their re-computation.

2.1.3 The Fourier Transform in Two Space Variables

Multidimensional transforms take advantage of the tensor product basis,
φn,m(x, y) = φn(x)φm(y) = e2πinxe2πimy . In two space variables, the DFT of a
two dimensional sequence {fj,k}N−1,M−1

j,k=0 is

Fnm = 1

NM

M−1∑

k=0

N−1∑

j=0

fj,ke
−2πijn/Ne−2πikm/M,

fj,k =
M−1∑

m=0

N−1∑

n=0

Fnme2πijn/Ne2πikm/M. (2.24)

In this section, since it is apropos to most spectral approximations of PDEs, we
assume that f is real. Furthermore, we assume that N and M are even.

We can factor the forward transform into

Fnm = 1

NM

M−1∑

k=0

⎧
⎨

⎩

N−1∑

j=0

fj,ke
−2πijn/N

⎫
⎬

⎭
e−2πikm/M. (2.25)

2 Algorithms for Periodic Functions 49

So let us define an intermediate array

F̄n,k = 1

N

N−1∑

j=0

fj,ke
−2πijn/N ,

n = 0,1, . . . ,N − 1,

k = 0,1, . . . ,M − 1,
(2.26)

so that

Fnm = 1

M

M−1∑

k=0

F̄n,ke
−2πikm/M,

j = 0,1, . . . ,N − 1,

m = 0,1, . . . ,M − 1.
(2.27)

Thus, the tensor product basis reduces the two dimensional transform to a sequence
of one dimensional transforms.

As before, direct application of a complex FFT to compute the two dimensional
transform of the real sequence would amount to doing twice as much work and use
twice as much storage as is necessary. Fortunately, we can combine the ideas of the
previous two sections to develop a more efficient algorithm than that.

Since we assume the initial sequence is real, only half the number of FFTs is
required in the first coordinate direction. To that end, let us define the complex
sequence

zj,l = fj,2l + ifj,2l+1,
j = 0,1, . . . ,N − 1,

l = 0,1, . . . ,M/2 − 1,
(2.28)

whose Fourier transform in the first index is

Z̄n,l = 1

N

N−1∑

j=0

(
fj,2l + ifj,2l+1

)
e−2πijn/N ,

n = 0,1, . . . ,N − 1,

l = 0,1, . . . ,M/2 − 1.
(2.29)

Note that the intermediate array Z̄n l is half the size of the F̄ array. Now, we know
the intermediate transform of the original data, namely,

F̄n,2l = 1

2

(
Z̄n,l + Z̄∗

n,M−l

)
,

F̄n,2l+1 = −i

2

(
Z̄n,l − Z̄∗

n,M−l

)
,

n = 0,1, . . . ,N − 1,

l = 0,1, . . . ,M/2 − 1,
(2.30)

but there is no need to compute it at this stage. Instead, we go back to (2.27) and
split it into even and odd components as in the previous subsection

Fnm = 1

M

M/2−1∑

l=0

{
F̄n,2le

−2πi(2l)m/M + e−2πim/MF̄n,2l+1e
−2πi(2l)m/M

}
. (2.31)

Then the transforms to be computed on the second index are the half-length trans-
forms

Fnm = 1

M

M/2−1∑

l=0

Xn,le
−2πilm/(M/2),

n = 0,1, . . . ,N − 1,

m = 0,1, . . . ,M/2 − 1,
(2.32)

50 2 Algorithms for Periodic Functions

Algorithm 13: Forward2DFFT: A Two-Dimensional Forward FFT of a Real
Array with an Even Number of Points in Each Direction

Procedure Forward2DFFT

Input:
{
fj,k

}N−1,M−1
j,k=0 ,

{
w

+,1
j

}N−1
j=0 ,

{
w

+,2
j

}M−1
j=0

Uses Algorithms:
Algorithm 9 (FFFTOfTwoRealVectors)
Algorithm 8 (Radix2FFT)

for k = 0 to M − 2 step 2 do{{
F̄n,k

}N−1
n=0 ,

{
F̄n,k+1

}N−1
n=0

}
←

FFFTOfTwoRealVectors
({

fj,k

}N−1
j=0 ,

{
fj,k+1

}N−1
j=0 ,

{
w

+,1
j

}N−1
j=0

)

end
for n = 0 to N − 1 do

{
Fn,m

}M−1
m=0 ← Radix2FFT

({
F̄n,k

}M−1
k=0 ,

{
w

+,2
j

}M−1
j=0

)

end
for m = 0 to M − 1 do

for n = 0 to N − 1 do
Fn,m ← Fn,m/M

end
end

return
{
Fn,m

}N−1,M−1
n,m=0

End Procedure Forward2DFFT

where the values to be transformed are

Xn,l = 1

2

(
Z̄n,l + Z̄∗

n,N−l

)− ie−2πim/M

2

(
Z̄n,l − Z̄∗

n,N−l

)
. (2.33)

We compute the second half of the array from the symmetry FN−nM−m = F ∗
n,m.

Overall we see that approximately one half the work of the direct use of the com-
plex FFT is done. Under the assumption that the initial data are real and that N and
M are even, we use Algorithms 9 (FFFTOfTwoRealVectors) and 10 (BFFTForTwo-
RealVectors) to compute the two dimensional transforms efficiently. We show the
procedures in Algorithm 13 (Forward2DFFT) for the forward transform and Algo-
rithm 14 (Backward2DFFT) for the backward transform.

2.2 The Real Fourier Transform

Though we do not directly need it in typical Fourier spectral computations, we de-
rive the real transform for the purposes of the next chapter where we study Cheby-
shev transforms. We can compute the real transform from the complex transform,

2 Algorithms for Periodic Functions 51

Algorithm 14: Backward2DFFT: Two-Dimensional Backward FFT of a Real
Array with an Even Number of Points in Each Direction

Procedure Backward2DFFT

Input:
{
Fn,m

}N−1,M−1
n,m=0 ,

{
w

−,1
j

}N−1
j=0 ,

{
w

−,2
j

}M−1
j=0

Uses Algorithms:
Algorithm 8 (Radix2FFT)
Algorithm 10 (BFFTForTwoRealVectors)

for n = 0 to N − 1 do
{
Fn,k

}M−1
k=0 ← Radix2FFT

({
F̄n,m

}M−1
m=0 ,

{
w

−,2
j

}M−1
j=0

)

end
for k = 0 to M − 2 step 2 do{{

fj,k

}N−1
j=0 ,

{
fj,k+1

}N−1
j=0

}
←

BFFTForTwoRealVectors
({

Fn,k

}N−1
n=0 ,

{
Fn,k+1

}N−1
n=0 ,

{
w

−,1
j

}N−1
j=0

)

end

return
{
fj,k

}N−1,M−1
j,k=0

End Procedure Backward2DFFT

too. If N is even, the real transform takes the form

xj = a0

2
+

N/2−1∑

k=1

{

ak cos

(
2πjk

N

)

+ bk sin

(
2πjk

N

)}

+ (−1)j aN/2

2
. (2.34)

In terms of the complex transform,

xj =
N−1∑

k=0

Xke
2πijk/N =

N/2−1∑

k=0

Xke
2πijk/N +

N/2∑

k=1

XN−ke
2πij(N−k)/N . (2.35)

Since Xk = X∗
N−k ,

xj = X0 + 2
N/2−1∑

k=0

Re
{
Xke

2πijk/N
}

+ (−1)j XN/2. (2.36)

Using the fact that

Re
{
Xke

2πijk/N
}

= Re(Xk) cos

(
2πjk

N

)

− Im(Xk) sin

(
2πjk

N

)

, (2.37)

xj = X0 + 2
N/2−1∑

k=0

{

Re(Xk) cos

(
2πjk

N

)

− Im(Xk) sin

(
2πjk

N

)}

+ (−1)j XN/2. (2.38)

52 2 Algorithms for Periodic Functions

Algorithm 15: ForwardRealFFT: The Forward Real Transform

Procedure ForwardRealFFT

Input:
{
xj

}N−1
j=0 ,

{
w+

j

}N−1
j=0

Uses Algorithms:
Algorithm 11 (FFFTEO)

{Xk}N−1
k=0 ← FFFTEO

({
xj

}N−1
j=0 ,

{
w+

j

}N−1
j=0

)

for k = 0 to N/2 do
ak ← 2 Re(Xk)

bk ← −2 Im(Xk)
end
b0 ← 0
bN/2 ← 0

return {ak}N/2
k=0 , {bk}N/2

k=0

End Procedure ForwardRealFFT

Algorithm 16: BackwardRealFFT: The Backward Real Transform

Procedure BackwardRealFFT

Input: {ak}N/2
k=0 , {bk}N/2

k=0

Uses Algorithms:
Algorithm 12 (BFFTEO)
Algorithm 7 (InitializeFFT)

{
w+

j

}N/2−1
j=0 ← InitializeFFT(N/2,FORWARD)

X0 ← a0/2
XN/2 ← aN/2/2
for k = 1 to N/2 − 1 do

Xk ← (ak + ibk) /2
end
for k = 1 to N/2 − 1 do

XN−k ← X∗
k

end
{
xj

}N−1
j=0 ← BFFTEO({Xk}N−1

k=0 , {w+
k }N−1

k=0)

return
{
xj

}N−1
j=0

End Procedure BackwardRealFFT

When we match terms with (2.34) we get the relation between the coefficients of
the real and complex transforms

ak = 2 Re(Xk),

bk = −2 Im(Xk),
k = 0,1, . . . ,N/2 − 1. (2.39)

Thus, we can compute the forward and backward real transforms from the complex
transform, and we show the procedures in Algorithms 15 (ForwardRealFFT) and 16
(BackwardRealFFT). Note that half of the Xk’s returned by the forward FFT are

2 Algorithms for Periodic Functions 53

not used in Algorithm 15. We can get additional savings if we explicitly incorporate
Algorithm 11 (FFFTEO) minus the final loop that produces that second half of the
coefficients (Problem 2.2).

2.3 How to Evaluate the Fourier Interpolation Derivative
by FFT

For large N , it is efficient to use the FFT to compute the derivative of Fourier inter-
polants written in the form (1.73). Exactly what is that value of N is very imple-
mentation dependent. It depends on the FFT code, the architecture of the machine
and the matrix multiplication code. Crossover points, where the FFT becomes more
efficient than the matrix multiplication method that we discuss in the next section,
have been reported to vary from eight to 128. Before deciding on which method to
incorporate into production codes, it is probably best to program both and test for
the particular computer architecture to be used.

To use the FFT to compute the derivative of the interpolant at the nodes, we
must put the derivative in the form of the DFT. Let’s rewrite the derivative of the
interpolant by separating the N/2 mode

(INf)′
(
xj

)=
N/2∑

k=−N/2

ikf̃k

c̄k

eikxj =
N/2−1∑

k=−N/2

ikf̃k

c̄k

eikxj + i(N
2)f̃N/2

c̄N/2
ei(N

2)xj . (2.40)

Since f̃N/2 = f̃−N/2 and ei(N/2)xj = e−i(N/2)xj , we can rewrite the derivative as

(INf)′
(
xj

) =
N/2−1∑

k=−N/2

ikf̃k

c̄k

eikxj − i(−N
2)f̃−N/2

c̄−N/2
ei(− N

2)xj

=
N/2−1∑

k=−N/2+1

ikf̃ke
ikxj . (2.41)

Therefore, we can use the DFT to evaluate the derivative of the Fourier interpolant
at the nodes by setting f̃−N/2 = 0.

We show how to compute the interpolation derivative using the FFT in Al-
gorithm 17 (FourierDerivativeByFFT). The procedure first computes the discrete
Fourier coefficients by Algorithm 11 (FFFTEO), with the assumption that the expo-
nential factors have been pre-computed and stored. It then uses the correspondence
we made in (2.3) to compute the discrete Fourier coefficients of the derivative. Fi-
nally, it computes the derivative values at the nodes by the backward FFT, Algo-
rithm 12 (BFFTEO). Note that the procedure sets the −N/2 coefficient to zero to
represent (2.41).

Algorithm 17 easily generalizes to higher order derivatives. To modify Algo-
rithm 17 to compute the approximation of the mth derivative, we merely need to

54 2 Algorithms for Periodic Functions

Algorithm 17: FourierDerivativeByFFT: Fast Evaluation of the Fourier Poly-
nomial Derivative

Procedure FourierDerivativeByFFT

Input:
{
fj

}N−1
j=0 ,

{
w+

j

}N−1
j=0 ,

{
w−

j

}N−1
j=0

Uses Algorithms:
Algorithm 11 (FFFTEO)
Algorithm 12 (BFFTEO)

{
Fj

}N−1
j=0 ← FFFTEO

({
Fj

}N−1
j=0 ,

{
w+

j

}N−1
j=0

)

for k = 0 to N/2 − 1 do
Fk ← ik ∗ Fk

end
F−N/2 ← 0
for k = N/2 + 1 to N − 1 do

Fk ← i(k − N) ∗ Fk

end
{
Df j

}N−1
j=0

← BFFTEO
({

Fj

}N−1
j=0 ,

{
w−

j

}N−1
j=0

)

return
{
(Df)j

}N−1
j=0

End Procedure FourierDerivativeByFFT

add m to the input list and replace ik by (ik)m in the first loop and i(k − N) by
(i(k − N))m in the second. However, we do not set f̃−N/2 = 0 for even deriva-
tives. We leave the difference between even and odd derivatives to Problem 2.4. The
difference also implies that computing the first derivative twice is not the same as
computing the second derivative (Problem 2.5).

2.4 How to Compute Derivatives by Matrix Multiplication

For small enough N , we can compute the derivative of the Fourier interpolant at
the interpolation points efficiently by matrix vector multiplication. Differentiation
of the interpolant at the nodes is

(INf)′n =
N−1∑

j=0

Dnjfj . (2.42)

The matrix D, whose elements are Dnj , is called the Fourier derivative matrix.
Formally, the elements are the values of h′

j (xn) presented in (1.75). In practice, we
pre-compute and store this matrix.

The first issue in the use of matrix multiplication to compute the Fourier deriva-
tive approximation is how to construct the derivative matrix itself. The construction
of spectral derivative matrices has been the subject of much discussion since it was
noticed that derivatives computed with the Chebyshev differentiation matrix (which
we discuss in Sect. 3.5) were very sensitive to rounding errors. To reduce the ef-
fects of rounding errors, several modifications to the matrices have been proposed,

2 Algorithms for Periodic Functions 55

Algorithm 18: FourierDerivativeMatrix: Computation of the Fourier Deriva-
tive Matrix Using the Negative Sum Trick

Procedure FourierDerivativeMatrix
Input: N

for i = 0 to N − 1 do
Di,i ← 0
for j = 0 to N − 1 do

if j 	= i then

Di,j ← 1

2
(−1)i+j cot

[
(i − j)π

N

]

Di,i ← Di,i − Di,j

end
end

end

return
{
Di,j

}N−1
i,j=0

End Procedure FourierDerivativeMatrix

including preconditioning, use of the symmetry properties, and the use of what has
come to be called the “Negative Sum Trick” to compute the diagonal entries. Com-
parisons of the numerous approaches have favored the use of the Negative Sum
Trick to evaluate the derivative matrix.

The Negative Sum Trick comes from the observation that the derivative of a
constant must be zero. This means that

∑N−1
j=0 Dnj = 0 for n = 0,1, . . . ,N − 1. To

enforce that condition we compute the diagonal elements to satisfy it explicitly, i.e.
we evaluate the diagonal entries of the matrix to satisfy

Dnn = −
N−1∑

j=0
j 	=n

Dnj . (2.43)

The diagonal elements computed with (2.43) will not be exactly equal to zero, but
overall the effects of rounding errors are minimized.

Algorithm 18 (FourierDerivativeMatrix) shows how to pre-compute the Fourier
derivative matrix using the Negative Sum Trick. For the best roundoff error proper-
ties, however, the diagonal entries should be computed separately, after the rest of
the matrix has been computed, since the order in which the sum (2.43) is computed
is important. The off-diagonal terms should be sorted and summed from smallest in
magnitude to largest. For the sake of simplicity, we present Algorithm 18 without
the ordered sum.

The next issue is to decide how to implement the matrix multiplication. Since
this is also an issue for the polynomial approximations discussed in the next chap-
ter, and is not specifically related to spectral methods per se, we leave the detailed
discussion of matrix multiplication for later. If efficiency is not of the utmost impor-
tance, of course, we would use the standard implementation shown in Algorithm 19
(MxVDerivative), with s = 0 and e = N − 1. That algorithm takes the derivative

56 2 Algorithms for Periodic Functions

Algorithm 19: MxVDerivative: A Matrix-Vector Multiplication Procedure

Procedure MxVDerivative
Input:

{
Di,j

}e

i,j=s
,
{
fj

}e

j=s

for i = s to e do
t = 0
for j = s to e do

t ← t + Di,j ∗ fj

end
(INf)′i ← t

end
return

{
(INf)′i

}e

i=s

End Procedure MxVDerivative

matrix, pre-computed by Algorithm 18 (FourierDerivativeMatrix) and the sequence
of values at the nodes, and returns derivative of the interpolant, evaluated at the
nodes.

Exercises

2.1 Compare the speed of the simple, direct DFT, Algorithm 6 to the FFT, Algo-
rithm 8 for various values of N . Above what value of N is the FFT faster? Are there
any advantages that the direct DFT has over the FFT? Make the same comparisons
to a library FFT.

2.2 Half of the Xk’s returned by the forward FFT are not used in Algorithm 15
(ForwardRealFFT). Modify the procedure to get additional savings by explicitly in-
corporating Algorithm 11 (FFFTEO) minus the final loop that produces that second
half of the coefficients.

2.3 Compute and plot as a function of x the Fourier interpolation derivative of the
functions

f (x) = sin(x/2),

f (x) = esin(x)

on the interval [0,2π] for several values of N . Observe the behavior or the derivative
approximations and explain their differences. Also, plot the maximum error at the
nodes as a function of N and compare.

2.4 Show that

(INf)(m)
(
xj

)=
⎧
⎨

⎩

∑N/2−1
k=−N/2+1 (ik)m f̃ke

ikxj , m odd,

∑N/2−1
k=−N/2 (ik)m f̃ke

ikxj , m even.

2 Algorithms for Periodic Functions 57

Use the result to modify Algorithm 17 (FourierDerivativeByFFT) to compute mth
order derivatives.

2.5 Use the result of Problem 2.4 to show that taking the first derivative twice is
not the same as taking the second derivative. By how much do they differ? How
significant is that difference for smooth functions?

2.6 For what values of N is it faster to compute the Fourier interpolation derivative
of a function by FFT than by matrix multiplication?

Chapter 3
Algorithms for Non-Periodic Functions

For non-periodic boundary value problems, we use expansions in orthogonal poly-
nomials instead of the complex exponentials to approximate solutions, i.e.,

P (x) =
N∑

n=0

p̂nφn (x). (3.1)

The basis functions, φn, are typically chosen to be Jacobi polynomials, of which
the popular Legendre, Ln(x), or Chebyshev polynomials, Tn(x), are special cases.
Polynomial bases are attractive because they are smooth and easy to compute. With
proper choice of the polynomials, approximations converge spectrally fast without
restriction on the boundary conditions to be imposed, unlike Fourier approxima-
tions, which require that the function and all its derivatives to be periodic.

In this chapter, we develop the basic algorithms that we need to compute Cheby-
shev and Legendre spectral approximations to PDEs. We start with how to compute
the Legendre and Chebyshev polynomials themselves. We use those algorithms to
compute the Gauss quadrature nodes and weights (at least for the Legendre polyno-
mials) that we need to compute interpolants and discrete inner products. The chapter
ends with algorithms that we use to approximate the derivatives that appear in PDEs.

3.1 How to Compute the Legendre and Chebyshev Polynomials

The three-term recursions (1.82) and (1.86) make Legendre and Chebyshev polyno-
mials mathematically easy and efficient to compute. As a historical note, the basic
algorithm was presented by Galler in 1960 as the Transactions on Mathematical
Software (TOMS) Algorithm 13. We will compute the Legendre Polynomial of or-
der k at the point x with Algorithm 20 (LegendrePolynomial). For efficiency, we
might want to return special cases for more than just the L0 and L1 values. The
cutoff point will depend on the implementation.

We can compute the Chebyshev polynomials either by recursion (1.86) or by
using the trigonometric form (1.85) directly. The cosine and its inverse are very ex-
pensive to compute, however, so for small enough k, recursion may be significantly
faster than the trigonometric form. Algorithm 21 (ChebyshevPolynomial) computes
the Chebyshev polynomial of degree k either by recursion or by the trigonometric
form of the polynomial. The crossover value of Ks , where it becomes more efficient
to use the trigonometric form, will depend on the implementation. (The Chebyshev
recursion algorithm was also presented in 1960 as TOMS 10.)

Although Algorithms 20 (LegendrePolynomial) and 21 (ChebyshevPolynomial)
are quite simple, practical issues of efficiency and numerical stability arise. First, the

D.A. Kopriva, Implementing Spectral Methods for Partial Differential Equations,
Scientific Computation,
© Springer Science + Business Media B.V. 2009

59

60 3 Algorithms for Non-Periodic Functions

Algorithm 20: LegendrePolynomial: Evaluate the Legendre Polynomial of De-
gree k using Three Term Recursion

Procedure LegendrePolynomial
Input: k, x

if k = 0 then return 1
if k = 1 then return x
Lk−2 ← 1
Lk−1 ← x

for j = 2 to k do

Lk ← 2j − 1

j
xLk−1(x) − j − 1

j
Lk−2

Lk−2 ← Lk−1
Lk−1 ← Lk

end
return Lk

End Procedure LegendrePolynomial

Algorithm 21: ChebyshevPolynomial: The Chebyshev Polynomial of Degree k

using Three Term Recursion and Trigonometric Forms

Procedure ChebyshevPolynomial
Input: k, x

if k = 0 then return 1
if k = 1 then return x
if k ≤ Ks then

Tk−2 ← 1
Tk−1 ← x

for j = 2 to k do
Tk ← 2xTk−1 − Tk−2
Tk−2 ← Tk−1
Tk−1 ← Tk

end
else

Tk ← cos(k cos−1(x))

end
return Tk

End Procedure ChebyshevPolynomial

choice of an efficient algorithm will be strongly dependent on computer architecture
and code. To compute Chebyshev polynomials, for instance, Algorithm 21 uses a
switch from the recursion to the trigonometric form at some value of k = Ks after
which the trigonometric form is more efficient. Figure 3.1 compares the time it takes
to compute Tk(0.667) as a function of k using recursion and using the trigonometric
form. From this simple exercise, we see that the crossover point, Ks , changes from
about six to 70—over an order of magnitude—simply by turning on the optimizer.
We might just as easily expect differences of such magnitudes if we change from
one compiler to another, or from one computer architecture to another. The moral is
that even the simplest algorithms should be tested for efficiency.

3 Algorithms for Non-Periodic Functions 61

Fig. 3.1 Computing time
relative to the trigonometric
form (1.85) to compute
Tk(x). Considered are the
recursion (1.86) with
optimizer on and off

Fig. 3.2 Number of
significant digits for the
recursive computation of
Tk(x) as a function of
polynomial order, k

We must also consider stability when we compute functions by recursion. Let’s
look at the recursion for the Chebyshev polynomials first. For |x| > 1/2 the coeffi-
cient of the leading order polynomial is larger than one. This makes the algorithm
unstable for large k since (rounding) errors in the lower order polynomials are am-
plified. Near roots of the polynomials, which we will need to find later in Sect. 3.2
to compute the Gauss quadrature points and weights, the cancellation between the
two terms can be catastrophic.

To get a sense of the significance of the errors when we compute Chebyshev
polynomials of large degree, let’s compare the number of significant digits in Tk over
the interval [−1,1] for the recursion algorithm in both single and double precision
arithmetic compared to the trigonometric formula. The behavior of Algorithm 20
(LegendrePolynomial) should be similar since as k gets large the coefficients of the
Legendre recursion approach the those of the Chebyshev recursion formula.

We show a graph of the minimum number of significant digits on [−1,1] as a
function of the Chebyshev polynomial order in Fig. 3.2 for k between two and 1000.
We see that even at low orders there is a significant loss of precision for both single

62 3 Algorithms for Non-Periodic Functions

and double precision evaluations. In single precision, recursion is essentially use-
less for N ≥ 100. By N = 1000 the double precision computation approaches single
precision accuracy. Thus, for both accuracy and efficiency, the Chebyshev polyno-
mials should be computed using Algorithm 21 (ChebyshevPolynomial) with Ks no
larger than about 70. The Legendre polynomials do not have a simple alternative
expression, so beware. For a discussion of how to compute Legendre polynomials
for large k, see [26].

3.2 How to Compute the Gauss Quadrature Nodes and Weights

We next develop algorithms to compute the Legendre Gauss and Gauss-Lobatto
points and weights. As we saw in Sect. 1.11, the Chebyshev Gauss and Gauss-
Lobatto quadrature points and weights are easy to compute.

We could use one of several methods to compute the Legendre Gauss quadrature
nodes and weights. A common one that is suitable for small N solves an eigenvalue
problem where the nodes are the eigenvalues and the weights are computed from
the eigenvectors. Methods that are good for very large N (> 1000) are presented in
papers by Yakimiw [26] and Swarztrauber [22].

We will develop algorithms like those of Yakimiw and Swartztrauber that solve
for the nodes as roots of the appropriate Legendre polynomial, but without the
special (and more complicated) forms needed to minimize the effects of round-
ing errors. Even so, our algorithms will compute the nodes to 15 significant digits
for orders up to at least N = 200 when IEEE double precision arithmetic is used,
as verified by 32 digit floating point computations with the same algorithms. The
weights are less precise. (Yakimiw has a detailed explanation why.) We find the
Gauss weights to within 12 significant digits in double precision arithmetic, and the
Gauss-Lobatto weights to within 13 digits, again for N ≤ 200.

3.2.1 Legendre Gauss Quadrature

The most straightforward way to find the Gauss nodes and weights uses the result
derived in Sect. 1.11 that the quadrature points of the N + 1 point Legendre Gauss
quadrature are the zeros of LN+1. We can use a simple rootfinding procedure to find
the roots to sufficient precision. We then find the weights from the derivatives of the
Legendre polynomials at the nodes via (1.127).

To find the quadrature points, we use Newton’s method to solve for the roots of
LN+1. Let xk

j be the kth iterate for the j th root. Newton’s method updates the iterate
by

xk+1
j = xk

j − LN+1(x
k
j)

L′
N+1(x

k
j)

. (3.2)

We compute the Legendre polynomial of degree N + 1 in (3.2) from the recur-
sion relation (1.82) by Algorithm 20 (LegendrePolynomial). The derivatives of

3 Algorithms for Non-Periodic Functions 63

Algorithm 22: LegendrePolynomialAndDerivative: The Legendre Polynomial
of Degree k and Its Derivative using the Three Term Recursion

Procedure LegendrePolynomialAndDerivative
Input: N,x

if N = 0 then
LN ← 1
L′

N ← 0
else if N = 1 then

LN ← x

L′
N ← 1

else
LN−2 ← 1
LN−1 ← x

L′
N−2 ← 0

L′
N−1 ← 1

for k = 2 to N do

LN ← 2k − 1

k
xLN−1(x) − k − 1

k
LN−2

L′
N ← L′

N−2 + (2k − 1)LN−1
LN−2 ← LN−1
LN−1 ← LN

L′
N−2 ← L′

N−1

L′
N−1 ← L′

N

end
end
return LN , L′

N(x)

End Procedure LegendrePolynomialAndDerivative

the Legendre polynomials satisfy the recursion (1.93). For efficiency, we should
compute the Legendre polynomial and its derivative simultaneously. We present
a procedure to compute LN+1 and L′

N+1 at the same time in Algorithm 22
(LegendrePolynomialAndDerivative).

Newton’s method requires an initial guess for the roots. A simple approximation
that works for small N is to use the Chebyshev Gauss points (with a sign change to
make the points vary from left to right)

x0
j = − cos

(
2j + 1

2N + 2
π

)

, j = 0,1, . . . ,N. (3.3)

Better starting values use asymptotic representations for the roots [26].
Algorithm 23 (LegendreGaussNodesAndWeights) computes the nodes and

weights for the Legendre Gauss quadrature. For efficiency, we use the fact that
the roots of the Legendre polynomials are symmetric about the origin so we only
need to compute half of them. If N is even, the origin is one of the nodes. We use
a special case to set that. We use (3.3) for the starting values of the Newton itera-
tion. Even with this rough starting value, the number of iterations, nit, is small. For
N ≤ 200, nit ≤ 4 to get double precision accuracy. We choose the stopping criterion
for the iteration so that the relative error in the root is within a small factor of the

64 3 Algorithms for Non-Periodic Functions

Algorithm 23: LegendreGaussNodesAndWeights:

Procedure LegendreGaussNodesAndWeights
Input: N

Uses Algorithms:
Algorithm 22 (LegendrePolynomialAndDerivative)

if N = 0 then
x0 ← 0
w0 ← 2

else if N = 1 then
x0 ← −√

1/3
w0 ← 1
x1 ← −x0
w1 ← w0

else
for j = 0 to �(N + 1)/2� − 1 do

xj ← − cos

(
2j + 1

2N + 2
π

)

for k = 0 to nit do{
LN+1,L

′
N+1

}← LegendrePolynomialAndDerivative(N + 1, xj)

Δ ← −LN+1/L
′
N+1

xj ← xj + Δ

if |Δ| ≤ TOL ∗ |xj | then Exit
end
{
LN+1,L

′
N+1

}← LegendrePolynomialAndDerivative(N + 1, xj)

xN−j ← −xj

wj ← 2

(1 − x2
j)[L′

N+1]2

wN−j ← wj

end
end
if N mod 2 = 0 then{

LN+1,L
′
N+1

}← LegendrePolynomialAndDerivative(N + 1,0.0)

xN/2 ← 0

wN/2 ← 2

[L′
N+1]2

end

return
{
xj

}N

j=0,
{
wj

}N

j=0
End Procedure LegendreGaussNodesAndWeights

machine epsilon, typically TOL = 4ε. (Appendix B.) We use special cases for N = 0
and N = 1 where it is simply easier to compute the nodes and weights analytically.

3.2.2 Legendre Gauss-Lobatto Quadrature

The Gauss-Lobatto points include the endpoints of the interval, x = ±1. The interior
points (see Sect. 1.11) are the zeros of L′

N . Equivalently, the derivative recursion

3 Algorithms for Non-Periodic Functions 65

formula (1.83) tells us that the interior nodes are the roots of the polynomial

q(x) = LN+1 − LN−1. (3.4)

The weights are found by

wj = 2

N(N + 1)[LN(xj)]2
. (3.5)

To find the roots, we again use Newton’s method,

xk+1
j = xk

j − q(xk
j)

q ′(xk
j)

. (3.6)

For each iteration at an interior point, we need q , its derivative, and LN . These
we compute simultaneously using the recursion relations for the Legendre poly-
nomials and their derivatives, much as we did in Algorithm 22 (LegendrePolyno-
mialAndDerivative). We present an auxiliary procedure to compute these values in
Algorithm 24 (qAndLEvaluation).

Algorithm 24: qAndLEvaluation: Combined Algorithm to Compute LN(x),
q(x) = LN+1 − LN−1, and q ′(x)

Procedure qAndLEvaluation
Input: N,x

k = 2
LN−2 ← 1
LN−1 ← x

L′
N−2 ← 0

L′
N−1 ← 1

for k = 2 to N do

LN ← 2k − 1

k
xLN−1(x) − k − 1

k
LN−2

L′
N ← L′

N−2 + (2k − 1)LN−1
LN−2 ← LN−1
LN−1 ← LN

L′
N−2 ← L′

N−1

L′
N−1 ← L′

N

end
k ← N + 1

LN+1 ← 2k − 1

k
xLN(x) − k − 1

k
LN−1

L′
N+1 ← L′

N−1 + (2k − 1)LN

q ← LN+1 − LN−1
q ′ ← L′

N+1 − L′
N−1

return q(x), q ′(x), LN(x)

End Procedure qAndLEvaluation

66 3 Algorithms for Non-Periodic Functions

As with the Gauss quadrature computation, we need an initial value for each root
to start the Newton iteration. For this, we use an asymptotic relation due to Parter

x0
j = − cos

{
(j + 1/4)π

N
− 3

8Nπ

1

j + 1/4

}

, j = 1,2, . . . ,N − 1. (3.7)

We show the final procedure to find the Gauss-Lobatto nodes and weights in Algo-
rithm 25 (LegendreGaussLobattoNodesAndWeights).

Algorithm 25: LegendreGaussLobattoNodesAndWeights:

Procedure LegendreGaussLobattoNodesAndWeights
Input: N

Uses Algorithms:
Algorithm 24 (qAndLEvaluation)

if N = 1 then
x0 ← −1
w0 ← 1
x1 ← 1
w1 ← w0

end
else

x0 ← −1
w0 ← 2/(N(N + 1))

xN ← 1
wN ← w0
for j = 1 to �(N + 1)/2� − 1 do

xj ← − cos

{
(j + 1/4)π

N
− 3

8Nπ

1

j + 1/4

}

for k = 0 to nit do{
q, q ′,LN

}← qAndLEvaluation(N,xj)

Δ ← −q/q ′
xj ← xj + Δ

if |Δ| ≤ TOL ∗ |xj | then Exit
end
{
q, q ′,LN

}← qAndLEvaluation(N,xj)

xN−j ← −xj

wj ← 2

N(N + 1) [LN]2

wN−j ← wj

end
end
if N mod 2 = 0 then{

q, q ′,LN

}← qAndLEvaluation(N,0.0)

xN/2 ← 0

wN/2 ← 2

N(N + 1) [LN]2

end

return
{
xj

}N

j=0,
{
wj

}N

j=0
End Procedure LegendreGaussLobattoNodesAndWeights

3 Algorithms for Non-Periodic Functions 67

Table 3.1 First four Legendre nodes and weights for N = 6

j Gauss Gauss-Lobatto

xj wj xj wj

0 −0.949107912342759 0.129484966168870 −1.00000000000000 4.761904761904762E−002

1 −0.741531185599395 0.279705391489277 −0.830223896278567 0.276826047361566

2 −0.405845151377397 0.381830050505119 −0.468848793470714 0.431745381209863

3 0.000000000000000 0.417959183673469 0.000000000000000 0.487619047619048

Algorithm 26: ChebyshevGaussNodesAndWeights:

Procedure ChebyshevGaussNodesAndWeights
Input: N

for j = 0 to N do

xj ← − cos

(
2j + 1

2N + 2
π

)

wj ← π

N + 1
end

return
{
xj

}N

j=0 ,
{
wj

}N

j=0
End Procedure ChebyshevGaussNodesAndWeights

3.2.2.1 Benchmark Solution: Legendre Nodes and Weights

For benchmark purposes, we include Table 3.1 to show the double precision com-
puted values of the nodes and weights for both the Legendre Gauss and Legen-
dre Gauss-Lobatto quadrature when N = 6. For further comparisons, see the tables
in [1].

3.2.3 Chebyshev Gauss Quadratures

For completeness, and since we will use them later to compute Chebyshev spec-
tral approximations, we include two algorithms, Algorithms 26 (ChebyshevGauss-
NodesAndWeights) and 27 (ChebyshevGaussLobattoNodesAndWeights) to com-
pute the nodes and weights for the Chebyshev quadratures. Notice that we have
reordered the nodes to increase from left to right with index j . We store the constant
weights in an array to allow us later to swap between Chebyshev and Legendre ap-
proximations. The Chebyshev nodes and weights are clearly much easier to compute
than the Legendre quantities.

3.3 How to Evaluate Chebyshev Interpolants via the FFT

If we were to evaluate the discrete transform pair (1.141) and (1.142) we’d have to
perform O(N2) operations to compute the value of the interpolant at each of the

68 3 Algorithms for Non-Periodic Functions

Algorithm 27: ChebyshevGaussLobattoNodesAndWeights:

Procedure ChebyshevGaussLobattoNodesAndWeights
Input: N

for j = 0 to N do

xj ← − cos

(
j

N
π

)

wj ← π

N
end
w0 ← w0/2
wN ← wN/2
return

{
xj

}N

j=0 ,
{
wj

}N

j=0
End Procedure ChebyshevGaussLobattoNodesAndWeights

nodes. We now show how to use FFT techniques to compute both the coefficients
and the nodal values of the Chebyshev interpolant through the Gauss-Lobatto points.
The trigonometric representation (1.85) makes FFT techniques natural for Cheby-
shev interpolants. Unfortunately, there is no equivalent fast transform for Legendre
approximations.

3.3.1 The Fast Chebyshev Transform

We can evaluate discrete Chebyshev transforms with an FFT because they can be
reduced to Discrete Cosine Transforms (DCT’s). The Chebyshev polynomial inter-
polation of a function, f , in one space dimension is

F (x) =
N∑

k=0

f̃kTk (x). (3.8)

We define the Chebyshev coefficients, f̃k so that F(xj) = f (xj), using (1.141). For
the specific case of Chebyshev polynomials, (1.141) is

f̃k =
∑N

j=0 fjTk(xj)wj
∑N

j=0 T 2
k (xj)wj

, (3.9)

where the {xj }Nj=0 are a set of either Gauss or Gauss-Lobatto quadrature points

and the {wj }Nj=0 are the corresponding weights. This pair of formulas defines the
Discrete Chebyshev Transform.

The most commonly used quadrature points in Chebyshev spectral methods are
the Gauss-Lobatto points. When we evaluate the Chebyshev polynomials at those
points,

Tk(xj) = cos(jkπ/N). (3.10)

3 Algorithms for Non-Periodic Functions 69

When we substitute (3.10) and the values of the weights into (3.8) and (3.9), the
Discrete Chebyshev Transform reduces at the Gauss-Lobatto points to the Discrete
Cosine Transform (DCT)

f̃k = 2

Nc̄k

N∑

j=0

fj

c̄j

cos

(
jkπ

N

)

, k = 0,1, . . . ,N,

fj =
N∑

k=0

f̃k cos

(
jkπ

N

)

, j = 0,1, . . . ,N,

(3.11)

where

c̄j =
{

2, j = 0,N,

1, j = 1,2, . . . ,N − 1.
(3.12)

We compute Discrete Cosine Transforms efficiently with the FFT. To develop an
FFT algorithm for the DCT we first show that if the sequence to be transformed
is even, the coefficients bk in the real Fourier transform (2.34) vanish, leaving the
cosine series. We will then use the algorithm that we developed for the real Fourier
transform to compute the DCT, which we will then use to compute the discrete
Chebyshev transform.

To develop the fast Chebyshev transform, we first show that the Fourier coeffi-
cients of a real, even sequence {f̄j }2N−1

j=0 are real. Recall that

Fk = 1

2N

2N−1∑

j=0

f̄j e
−πijk/N ,

F ∗
k = 1

2N

2N−1∑

j=0

f̄j e
πijk/N .

(3.13)

If the sequence {f̄j }2N−1
j=0 is even, i.e., f̄j = f̄2N−j , then

F ∗
k = 1

2N

2N−1∑

j=0

f̄2N−j e
πijk/N . (3.14)

We now make the change of variable l = 2N − j to see that

F ∗
k = 1

2N

1∑

l=2N

f̄le
πi(2N−l)k/N = 1

2N

2N∑

l=1

f̄le
−πilk/Ne2πi = Fk (3.15)

since periodicity of the coefficients means that F0 = F2N .

70 3 Algorithms for Non-Periodic Functions

Next, we show that the real Fourier transform of an even function is the cosine
transform. From (2.34), the real transform of {f̄j }2N−1

j=0 is

f̄j = a0

2
+

N−1∑

k=1

(

ak cos

(
2πjk

2N

)

+ bk sin

(
2πjk

2N

))

+ (−1)j aN

2
(3.16)

where bk = −2 Im(Fk) = 0. Therefore,

f̄j = a0

2
+

N−1∑

k=1

ak cos

(
πjk

N

)

+ (−1)j aN

2
=

N∑

k=0

ak

c̄k

cos

(
πjk

N

)

, (3.17)

which is the cosine transform.
The fact that the sequence needs to be even is not restrictive. We can create an

even sequence from an arbitrary sequence {fj }Nj=0 by extending it to a sequence of
length 2N as follows:

{
f̄j = fj , j = 0,1, . . . ,N,

f̄2N−j = fj , j = 1,2, . . . ,N − 1.
(3.18)

Doing so, however, computes the unneeded values of bk , so twice as much work as
necessary is being done. We will see how to cut that extra work right after we look
at how to compute the forward transform.

The forward cosine transform is within a factor of 2/N of the backward trans-
form (3.17). Recall that

ak = 2 Re (Fk) , k = 0,1, . . . ,2N − 1 (3.19)

and

Fk = 1

2N

2N−1∑

j=0

f̄j e
−ijkπ/N , (3.20)

so

ak = 2

2N

2N−1∑

j=0

f̄j Re

{

cos

(
jkπ

N

)

− i sin

(
jkπ

N

)}

= 1

N

2N−1∑

j=0

f̄j cos

(
jkπ

N

)

. (3.21)

If we split the latter sum into two,

ak = 1

N

⎧
⎨

⎩
f̄0 +

N−1∑

j=1

f̄j cos

(
jkπ

N

)

+
2N−1∑

j=N+1

f̄j cos

(
jkπ

N

)

+ (−1)k f̄N

⎫
⎬

⎭
.

(3.22)

3 Algorithms for Non-Periodic Functions 71

By construction, f̄j = f̄2N−j = fj so if we again let l = 2N − j ,

2N−1∑

j=N+1

f̄j cos

(
jkπ

N

)

=
1∑

l=N−1

f̄2N−l cos

(
(2N − l) kπ

N

)

=
N−1∑

j=1

fj cos

(
jkπ

N

)

.

(3.23)
Therefore,

ak = 1

N

⎧
⎨

⎩
f0 + 2

N−1∑

j=1

fj cos

(
jkπ

N

)

+ (−1)k fN

⎫
⎬

⎭
, (3.24)

or if we fold the endpoints into the sum,

ak = 2

N

N∑

j=0

fj

c̄j

cos

(
jkπ

N

)

. (3.25)

So we see that we can compute the backward transform (3.17) from the forward
transform (3.25) simply by multiplying the results by N/2.

With a little more work, we can make the cosine transform more efficient by
about a factor of two if we transform the even sequence so that the coefficients bk

that are returned by the real Fourier transform contain useful information. A method
introduced by Dollimore generates the half sized array

ej = 1

2

(
f̄j + f̄N−j

)− (
f̄j − f̄N−j

)
sin

jπ

N
, j = 0,1, . . . ,N − 1. (3.26)

When we substitute for fj using (3.17) and rearrange, we get the real transform

ej = a0

2
+

N−1∑

k=1

(

a2k cos
2πjk

N
+ (a2k+1 − a2k−1) sin

2πjk

N

)

+ (−1)j aN

2

= ā0

2
+

N−1∑

k=1

(

āk cos

(
2πjk

N

)

+ b̄k sin

(
2πjk

N

))

+ (−1)j āN

2
. (3.27)

Thus, we can use Algorithm 15 (ForwardRealFFT) to compute transform coeffi-
cients āk and b̄k of {ej }N−1

j=0 . Then we make the correspondence to the coefficients

of the cosine transform of the original sequence, {fj }Nj=0, through

{
āk = a2k, k = 0,1, . . . ,N/2,

b̄k = a2k+1 − a2k−1, k = 1,2, . . . ,N/2 − 1.
(3.28)

Equation (3.28) says that we can compute the even coefficients of the cosine
transform directly from the results of the forward real FFT. To get the odd coeffi-
cients we use the recursion relation

a2k+1 = a2k−1 + b̄k, k = 1,2, . . . ,N/2 − 1. (3.29)

72 3 Algorithms for Non-Periodic Functions

Algorithm 28: FastCosineTransform: The Cosine Transform Computed with
the Real FFT

Procedure FastCosineTransform

Input:
{
fj

}N

j=0 ,
{
w+

j

}N−1
j=0 ,

{
Cj

}N

j=0 ,
{
Sj

}N

j=0 , s

Uses Algorithms:
Algorithm 15 (ForwardRealFFT)

Comment: Cj = cos(jπ/N), Sj = sin(jπ/N)

for j = 0 to N − 1 do

ej ← 1

2

(
xj + xN−j

)− Sj

(
xj − xN−j

)

end
{
{āk}N/2

k=0 ,
{
b̄k

}N/2
k=0

}
← ForwardRealFFT

({
ej

}N−1
j=0 ,

{
w+

j

}N−1
j=0

)

for k = 0 to N/2 do
a2k ← āk

end
a1 ← f0 − fN

for j = 1 to N − 1 do
a1 ← a1 + 2Cjfj

end
a1 ← a1/N

for k = 1 to N/2 − 1 do
a2k+1 ← b̄k + a2k−1

end
if s = BACKWARD then

for k = 0 to N do
ak ← Nak/2

end
end
return {ak}Nk=0

End Procedure FastCosineTransform

To start the recursion for the odd indexed coefficients, we compute the first one
directly by the real DFT

a1 = f0

N
+ 2

N

N−1∑

j=1

fj cos

(
jπ

N

)

+ (−1)1 fN

N
. (3.30)

We now have all the relations, (3.26)–(3.30), necessary to implement the Fast
Cosine Transform (FCT). We present the result in Algorithm 28 (FastCosineTrans-
form). We could have chosen one of several ways to implement the transforms. If
we need to compute many transforms of the same size, which is common in spec-
tral method applications, then we would pre-compute both the trigonometric factors
for the real transform Algorithm 15 (ForwardRealFFT) and the sine and cosine fac-
tors. We can compute and store them in a single array, using the periodicity of the
trigonometric factors and taking their real and imaginary parts for the sine and co-
sine factors. For clarity, however, Algorithm 28 takes three arrays of the Fourier

3 Algorithms for Non-Periodic Functions 73

Algorithm 29: FastChebyshevTransform: The Fast Chebyshev Transform
using the Fast Cosine Transform

Procedure FastChebyshevTransform

Input:
{
fj

}N

j=0 ,
{
w+

j

}N−1
j=0 ,

{
Cj

}N

j=0 ,
{
Sj

}N

j=0 , s

Uses Algorithms:
Algorithm 28 (FastCosineTransform)

Comment: Cj = cos(jπ/N), Sj = sin(jπ/N)

for j = 0 to N do
gj ← fj

end
if s = BACKWARD then

g0 ← 2g0
gN ← 2gN

end

{ak}Nk=0 ← FastCosineTransform
({

gj

}N

j=0 ,
{
w+

j

}N−1
j=0 ,

{
Cj

}N

j=0 ,
{
Sj

}N

j=0 , s
)

if s = FORWARD then
a0 ← a0/2
aN ← aN/2

end
return {ak}Nk=0

End Procedure FastChebyshevTransform

trigonometric factors plus the arrays of the cosine and sine factors. These would be
computed in a FCT initialization routine that we do not show here. The algorithm
also takes a parameter, s, so a single procedure contains the forward and backward
transforms.

Finally, we use the Fast Cosine Transform to compute the Chebyshev transform.
The only difference between the Chebyshev transform (3.11), the cosine transform
(3.17), and (3.25) is how we have to treat the first and last elements of the sequence.
Therefore we only need to perform a simple preprocessing to use the cosine trans-
form to compute the Chebyshev transform, as we show in Algorithm 29 (FastCheby-
shevTransform).

3.4 How to Evaluate Polynomial Interpolants in Lagrange Form

Spectral polynomial interpolants are often computed in the nodal Lagrange form
rather than the modal orthogonal polynomial expansion (1.137). The Lagrange
form of the polynomial of degree N that interpolates a function at a set of points
{(xj , fj)}Nj=0 is

pN (x) =
N∑

j=0

fj�j (x). (3.31)

74 3 Algorithms for Non-Periodic Functions

The functions �j (x) are again the Lagrange interpolating polynomials

�j (x) =
N∏

i=0
i 	=j

x − xi

xj − xi

. (3.32)

The important property of the interpolating polynomials that we will exploit many
times when we derive nodal spectral methods is that �j (xi) = δi,j .

Two alternate ways to write the Lagrange interpolation have gained attention in
recent years. The first, which is called the “modified Lagrange interpolation”, is

pN (x) = ψ (x)

N∑

j=0

fj

wj

x − xj

(3.33)

where ψ(x) =∏N
i=0(x − xi) and

wj = 1
∏N

i=0
i 	=j

(xj − xi)
. (3.34)

The equality

ψ (x)

N∑

j=0

wj

x − xj

= 1 (3.35)

allows us to write a third version known as the “Barycentric formula”,

pN (x) =
∑N

j=0 fj
wj

x−xj
∑N

j=0
wj

x−xj

. (3.36)

Although (3.33) is theoretically better than (3.36), for the sets of interpolation
nodes used in spectral methods where the spacing decreases towards the endpoints,
the form (3.36) has similar rounding error properties.

From these two formulas, (3.34) and (3.36), we write two algorithms, one to
compute the barycentric weights, wj ’s, and the other to compute the interpolant
at a point, x. Algorithm 30 (BarycentricWeights) implements (3.34) to compute
the weights. Once we have computed and stored the weights, we will be able to
compute the interpolant for any point x and any set of values {fj }Nj=0 using Algo-
rithm 31 (LagrangeInterpolation), which implements (3.36). The advantage of the
barycentric approach should be clear from these two algorithms. Once the weights
are computed using Algorithm 30, the interpolant at any point x will take O(N)

floating point operations to compute using Algorithm 31.
If we want to interpolate repeatedly to a fixed set of nodes, say to a fine grid for

plotting purposes or in multidimensional interpolation, we rewrite the operation as

3 Algorithms for Non-Periodic Functions 75

Algorithm 30: BarycentricWeights: Weights for Lagrange Interpolation

Procedure BarycentricWeights

Input:
{
xj

}N

j=0

for j = 0 to N do
wj ← 1

end
for j = 1 to N do

for k = 0 to j − 1 do
wk ← wk

(
xk − xj

)

wj ← wj

(
xj − xk

)

end
end
for j = 0 to N do

wj ← 1/wj

end

return
{
wj

}N

j=0
End Procedure BarycentricWeights

Algorithm 31: LagrangeInterpolation: Lagrange Interpolant from Barycentric
Form

Procedure LagrangeInterpolation

Input: x,
{
xj

}N

j=0 ,
{
fj

}N

j=0 ,
{
wj

}N

j=0
Uses Algorithms:

Algorithm 139 (AlmostEqual)

numerator ← 0
denominator ← 0
for j = 0 to N do

if AlmostEqual(x, xj) then return fj

t ← wj/(x − xj)

numerator ← numerator + t ∗ fj

denominator ← denominator + t
end
return numerator/denominator
End Procedure LagrangeInterpolation

a matrix multiplication. To map between an original set of points, {xj }Nj=0 to a new

set of points, {ξj }Mj=0, (3.36) becomes

Fk =
∑N

j=0
wj

ξk−xj
fj

∑N
j=0

wj

ξk−xj

=
N∑

j=0

Tkjfj (3.37)

where

Tkj =
wj

ξk−xj
∑N

j=0
wj

ξk−xj

. (3.38)

76 3 Algorithms for Non-Periodic Functions

Algorithm 32: PolynomialInterpolationMatrix: Matrix for Interpolation Be-
tween Two Sets of Points

Procedure PolynomialInterpolationMatrix

Input:
{
xj

}N

j=0 ,
{
wj

}N

j=0 ,
{
ξj

}M

j=0
Uses Algorithms:

Algorithm 139 (AlmostEqual)

for k = 0 to M do
rowHasMatch ← false
for j = 0 to N do

Tk,j ← 0
if AlmostEqual(ξk, xj) then

rowHasMatch ← true
Tk,j ← 1

end
end
if rowHasMatch is false then

s ← 0
for j = 0 to N do

t ← wj/
(
ξk − xj

)

Tk,j ← t

s ← s + t
end
for j = 0 to N do

Tk,j ← Tkj /s

end
end

end

return
{
Ti,j

}M,N

i,j=0
End Procedure PolynomialInterpolationMatrix

We present Algorithm 32 (PolynomialInterpolationMatrix) to compute the interpo-
lation matrix from {xj }Nj=0 to {ξj }Mj=0. To compute the interpolant, we need only
to modify the matrix multiplication algorithm, Algorithm 19 (MxVDerivative) to
handle non-square matrices, giving Algorithm 33 (InterpolateToNewPoints).

Later in Sect. 4.7 we will see that the discontinuous Galerkin approximation
requires the boundary values of the Lagrange interpolating polynomials at the end-
points, �j (±1) using the Gauss points as the nodes. If we compare the two forms of
the interpolant, (3.32) and (3.36), we see that

�j (x) = wj

(x − xj)
∑N

j=0
wj

x−xj

. (3.39)

This relationship means that we can compute the Lagrange interpolating polynomi-
als from the barycentric weights by a modification of Algorithm 31 (LagrangeInter-
polation).

We present Algorithm 34 (LagrangeInterpolatingPolynomials) to show one way
to compute the Lagrange interpolating polynomials. It first checks to see if the eval-

3 Algorithms for Non-Periodic Functions 77

Algorithm 33: InterpolateToNewPoints: Interpolation Between Two Sets of
Points by Matrix Multiplication

Procedure InterpolateToNewPoints

Input:
{
Ti,j

}M,N

i,j=0,
{
fj

}N

j=0

for i = 0 to M do
t ← 0
for j = 0 to N do

t ← t + Ti,j ∗ fj

end
fInterpi ← t

end

return
{
fInterpj

}M

j=0
End Procedure InterpolateToNewPoints

Algorithm 34: LagrangeInterpolatingPolynomials: �j (x)

Procedure LagrangeInterpolatingPolynomials

Input: x,
{
xj

}N

j=0 ,
{
wj

}N

j=0
Uses Algorithms:

Algorithm 139 (AlmostEqual)

xMatchesNode ← false
for j = 0 to N do

�j ← 0.0
if AlmostEqual(x, xj) then

�j ← 1.0
xMatchesNode ← true

end
end

if xMatchesNode then return
{
�j

}N

j=0
s ← 0
for j = 0 to N do

t ← wj/(x − xj)

�j ← t

s ← s + t
end
for j = 0 to N do

�j ← �j /s

end

return
{
�j

}N

j=0
End Procedure LagrangeInterpolatingPolynomials

uation point is a node, xj . If so, then we know that the polynomial is one at xj and
zero at all of the other nodes. If the evaluation point is not a node, then the algorithm
evaluates equation (3.39).

Finally, we show how to compute interpolations of functions of two independent
variables. Formally, we write the interpolant of a function f (x, y) as the tensor

78 3 Algorithms for Non-Periodic Functions

product

pN(x, y) =
N∑

i=0

N∑

j=0

fi,j �i(x)�j (y). (3.40)

We could evaluate this form directly using the Lagrange interpolating polynomials
computed by Algorithm 34 (LagrangeInterpolatingPolynomials). In practice, how-
ever, direct evaluation can be slow.

A common need is to interpolate from one grid to a finer grid for plotting pur-
poses. Plotting programs typically draw curves by assuming linear variations be-
tween points on the grid. Spectral methods are able to compute accurate solutions
on coarse grids. When we plot solutions on these coarse grids, they often look worse
than they really are. For this reason, we will usually interpolate spectral approxima-
tions to a fine grid before plotting.

We interpolate a polynomial pN(x, y) from a coarse Nold × Mold grid to a
fine Nnew × Mnew grid in two stages using Algorithms 32 (PolynomialInterpola-
tionMatrix) and 33 (InterpolateToNewPoints). The first stage is to compute one-
dimensional interpolations from the original grid to a fine grid in one of the two
coordinate directions, e.g. to a Nnew × Mold grid

F̄n,j =
Nold
∑

i=0

T
(x)
ni fi,j , n = 0,1, . . . ,Nnew; j = 0,1, . . . ,Mold. (3.41)

The second stage is to interpolate from the intermediate grid to the final grid

Fn,m =
Mold
∑

j=0

T
(y)
mj F̄n,j , n = 0,1, . . . ,Nnew; m = 0,1, . . . ,Mnew. (3.42)

With the two stage approach, we need to compute an interpolation matrix only once
for each direction, and the grid is interpolated to the new grid by a series of matrix-
vector products. We show the procedure in Algorithm 35 (2DCoarseToFineInterpo-
lation).

3.5 How to Evaluate Polynomial Derivatives

When we approximate a function by an interpolant, we approximate its derivatives
by differentiating the interpolant

f ′(x) ≈ (INf (x))′ =
N∑

j=0

fj�
′
j (x) =

N∑

k=0

f̄
(1)
k φk. (3.43)

If we represent the interpolant of the function in Lagrange form, we use the first
representation of the derivative that is written in terms of the Lagrange interpolating

3 Algorithms for Non-Periodic Functions 79

Algorithm 35: 2DCoarseToFineInterpolation: Interpolation from a Coarse to
a Fine Grid in 2D

Procedure 2DCoarseToFineInterpolation

Input: {xi}Nold

i=0 ,
{
yj

}Mold

j=0 ,
{
fi,j

}Nold,Mold

i,j=0

Input: {ξi}Nnew

i=0 ,
{
ηj

}Mnew

j=0
Uses Algorithms:

Algorithm 32 (PolynomialInterpolationMatrix)
Algorithm 33 (InterpolateToNewPoints)
Algorithm 30 (BarycentricWeights)

{wi}Nold

i=0 ← BarycentricWeights({xi}Nold

i=0)
{
Ti,j

}Nnew,Nold

i=0,j=0 ← PolynomialInterpolationMatrix
({

xj

}Nold

j=0 ,
{
wj

}Nold

j=0 ,
{
ξj

}Nnew

j=0

)

for j = 0 to Mold do
{
F̄n,j

}Nnew

n=0 ← InterpolateToNewPoints
({

Ti,j

}Nnew,Nold

i=0,j=0 ,
{
fi,j

}Nold

i=0

)

end
{
wj

}Mold

j=0 ← BarycentricWeights
({

yj

}Mold

j=0

)

{
Ti,j

}Mnew,Mold

i=0,j=0 ← PolynomialInterpolationMatrix
({

yj

}Mold

j=0 ,
{
wj

}Mold

j=0 ,
{
ηj

}Mnew

j=0

)

for n = 0 to Nnew do
{
Fn,m

}Mnew

m=0 ← InterpolateToNewPoints
({

Ti,j

}Mnew,Mold

i=0,j=0 ,
{
F̄n,m

}Mold

m=0

)

end

return
{
Fn,m

}Nnew,Mnew

n,m=0
End Procedure InterpolateToNewPoints

polynomials. We can evaluate the derivative at a set of mesh points as a matrix-
vector multiplication, which is efficient for sufficiently small N . If N is large, trans-
form methods are faster, if available. To use transform methods we use the second
representation in (3.43), written as an orthogonal polynomial expansion.

3.5.1 Direct Evaluation of the Derivative

On some occasions we will need to compute the derivative of an interpolant at points
other than the nodes. In those situations, it is reasonable to compute them directly.
Fortunately, the barycentric form of the interpolant allows us to compute the deriv-
ative at a point in O(N) operations.

If the evaluation point is not a node, then we can work directly with (3.36) to
compute the derivative of the interpolant pN . After we multiply through by the
denominator of the right hand side of (3.36) and differentiate with respect to x,

p′
N(x)

N∑

j=0

wj

x − xj

− pN(x)

N∑

j=0

wj

(x − xj)2
= −

N∑

j=0

wjfj

(x − xj)2
. (3.44)

80 3 Algorithms for Non-Periodic Functions

If we write (3.44) in terms of the derivative we get a formula that looks similar to
the interpolation formula itself

p′
N(x) =

∑N
j=0

wj

x−xj

pN−fj

x−xj
∑N

j=0
wj

x−xj

. (3.45)

At a node, the derivative simplifies to

p′
N(xi) = − 1

wi

N∑

j=0
j 	=i

wj

fi − fj

xi − xj

. (3.46)

In those situations where we need to compute the derivative directly, we would use
Algorithm 36 (LagrangeInterpolantDerivative), which implements (3.45) and (3.46).

Algorithm 36: LagrangeInterpolantDerivative: Direct Computation of the
Polynomial Derivative in Barycentric Form

Procedure LagrangeInterpolantDerivative

Input: x,
{
xj

}N

j=0 ,
{
fj

}N

j=0 ,
{
wj

}N

j=0
Uses Algorithms:

Algorithm 139 (AlmostEqual)
Algorithm 31 (LagrangeInterpolation)

atNode ← false
numerator ← 0
for j = 0 to N do

if AlmostEqual(x, xj) then
atNode ← true
p ← fj

denominator ← −wj

i ← j

end
end
if atNode then

for j = 0 to N do
if j 	= i then

numerator ← numerator + wj ∗ (p − fj)/(x − xj)

end
end

else
denominator ← 0
p ← LagrangeInterpolation

(
x,N,

{
xj

}N

j=0 ,
{
fj

}N

j=0 ,
{
wj

}N

j=0

)

for j = 0 to N do
t ← wj/(x − xj)

numerator ← numerator + t ∗ (p − fj)/(x − xj)

denominator ← denominator + t
end

end
return p′ ← numerator/denominator
End Procedure LagrangeInterpolantDerivative

3 Algorithms for Non-Periodic Functions 81

3.5.2 Evaluation of Derivatives by Matrix Multiplication

One easy way to derive the values of the derivative of a polynomial interpolant at a
set of nodes is to start with the Lagrange form

f ′(xi) ≈ Dfi ≡ (INf (xi))
′ =

N∑

j=0

fj�
′
j (xi) =

N∑

j=0

Dijfj , i = 0,1, . . . ,N.

(3.47)
We can therefore evaluate the derivative by matrix-vector multiplication, where
Dij = �′

j (xi) is the derivative matrix. In practice, we pre-compute and store the
derivative matrix. The main issue is to mitigate the effects of roundoff error, which
can become significant for high order derivatives and for large N .

The most general way to evaluate the derivative matrix is to form the derivatives
of the Lagrange interpolating polynomials, as implied directly by (3.43). This works
for any set of evaluation points and for any basis polynomials. The more likely
situation, however, is that we will want the derivatives at the nodes, as occurs in
(3.47). If we only need the nodal values of the derivatives, we can conveniently use
the barycentric form, for which the derivative matrix is

Dij = wj

wi

[
1

xi − xj

]

, i 	= j, (3.48)

and the weights, wj are given by (3.34). To compute the diagonal elements, we
again use the negative sum trick, (2.43), to minimize the effects of rounding errors
when we compute the derivative. Remember the remarks about (2.43), however.
For large N we get the best results when the off diagonal terms are sorted and
summed from smallest in magnitude to largest. For the sake of simplicity, however,
we present Algorithm 37 (PolynomialDerivativeMatrix) without the sorting to com-
pute the derivative matrix.

We note that in special situations, explicit forms for the derivative matrices exist.
For example, if the nodes are the Chebyshev Gauss-Lobatto points, we could write
the first derivative matrix as [10]

Dij = −1

2

c̄i

c̄j

(−1)i+j

sin(
(i+j)π

2N
) sin(

(i−j)π
2N

)
, j 	= i,

Dii = −1

2

xi

sin2(πi
N

)
, i 	= 0,N, (3.49)

D00 = DNN = 2N2 + 1

6
,

where c̄j is defined in (3.12). However, the more general Algorithm 37 (Polynomi-
alDerivativeMatrix) is more convenient to use for any set of basis functions.

82 3 Algorithms for Non-Periodic Functions

Algorithm 37: PolynomialDerivativeMatrix: First Derivative Approximation
Matrix

Procedure PolynomialDerivativeMatrix

Input:
{
xj

}N

j=0
Uses Algorithms:

Algorithm 30 (BarycentricWeights)
{
wj

}N

j=0 ← BarycentricWeights
({

xj

}N

j=0

)

for i = 0 to N do
Di,i ← 0
for j = 0 to N do

if j 	= i then

Di,j ← wj

wi

1

xi − xj

Di,i ← Di,i − Di,j

end
end

end

return
{
Di,j

}N

i,j=0
End Procedure PolynomialDerivativeMatrix

We compute derivative matrices for high order derivatives in one of several ways.
The recommended approach computes the matrices recursively

D
(m)
ij = m

xi − xj

(
wj

wi

D
(m−1)
ii − D

(m−1)
ij

)

,

D
(m)
ii = −

N∑

j=0
j 	=i

D
(m)
ij .

(3.50)

Algorithm 38 (mthOrderPolynomialDerivativeMatrix) presents an implementation
to compute the matrix elements of the mth derivative matrix.

Finally, once we have computed and stored the derivative matrix, we compute
the derivative by matrix multiplication, Algorithm 19 (MxVDerivative).

3.5.3 Even-Odd Decomposition

We can speed up the matrix-vector computation of the spectral derivative at the
Gauss and the Gauss-Lobatto by about a factor of two using an even-odd decompo-
sition. The key observation is that

Di,j = −DN−i,N−j , (3.51)

a fact that can be shown directly from the definition (3.48) and the fact that the
Gauss and Gauss-Lobatto points satisfy xi = −xN−i .

3 Algorithms for Non-Periodic Functions 83

Algorithm 38: mthOrderPolynomialDerivativeMatrix: Derivative Matrix for
mth Order Derivatives

Procedure mthOrderPolynomialDerivativeMatrix

Input: m,
{
xj

}N

j=0
Uses Algorithms:

Algorithm 30 (BarycentricWeights)
Algorithm 37 (PolynomialDerivativeMatrix)

{
wj

}N

j=0 ← BarycentricWeights
({

xj

}N

j=0

)

{
D

(m)
i,j

}N

i,j=0
← PolynomialDerivativeMatrix

({
xj

}N

j=0

)

if m = 1 then return
{
D

(m)
i,j

}N

i,j=0

for k = 2 to m do
for i = 0 to N do

D
(m)
i,i ← 0

for j = 0 to N do
if j 	= i then

D
(m)
i,j ← k

xi − xj

(
wj

wi

D
(m)
i,i − D

(m)
i,j

)

D
(m)
i,i ← D

(m)
i,i − D

(m)
i,j

end
end

end
end

return
{
D

(m)
i,j

}N

i,j=0
End Procedure mthOrderPolynomialDerivativeMatrix

To derive the even-odd decomposition, let us assume for the moment that the
number of points, N + 1, is even and define

ej = 1

2

(
fj + fN−j

)
,

oj = 1

2

(
fj − fN−j

)
,

j = 0,1, . . . , �N/2� (3.52)

to be the even and odd vectors, so that fj = ej +oj . From their definitions, it is easy
to see that ej = eN−j and oj = −oN−j . Since matrix-vector multiplication is linear,

Df = D (e + o) = De + Do. (3.53)

The symmetry (3.51) allows us to decompose the matrix multiplication on the even
and odd vectors into two sums of half the length. For instance,

Dei =
N∑

j=0

Dij ej =
�N/2�∑

j=0

(
Di,j ej + Di,N−j eN−j

)=
�N/2�∑

j=0

(
Di,j + Di,N−j

)
ej .

(3.54)

84 3 Algorithms for Non-Periodic Functions

We only need to compute the values of Dei for i = 0,1, . . . , �N/2�, for

DeN−i =
�N/2�∑

j=0

(−Di,j eN−j − Di,j ej

)= −
�N/2�∑

j=0

(
Di,j + Di,N−j

)
ej = −Dei .

(3.55)
Similarly,

Doi =
�N/2�∑

j=0

(
Di,j − Di,N−j

)
oj (3.56)

and

DoN−i = Doi. (3.57)

To reconstruct the full derivative approximation we compute

Dfj = Dej + Doj , j = 0,1, . . . , �N/2�,
DfN−j = −Dej + Doj , j = 0,1, . . . , �N/2�. (3.58)

Algorithm 39 (EOMatrixDerivative) presents a procedure for the even-odd decom-
position, including the modification that adds the middle term when N + 1 is
odd.

3.5.4 Evaluation by Transform Methods

Transform methods are more efficient for large N . We have all of the machinery
necessary to build an algorithm to compute derivatives of Chebyshev approxima-
tions that use the FFT. The starting points are the relations (1.102) and (1.113) be-
tween the coefficients of the interpolant and the coefficients of the derivatives. The
procedure is to compute the Chebyshev coefficients using the FFT, Algorithm 29
(FastChebyshevTransform), compute the coefficients of the derivative, Algorithm 5
(ChebyshevDerivativeCoefficients) and then transform back using Algorithm 29.
We show this procedure in Algorithm 40 (FastChebyshevDerivative). Notice that,
for speed, we assume the transform weights and sine and cosine factors are pre-
computed, stored, and available to the transform.

3.5.5 Performance of Various Polynomial Derivative Algorithms

We have developed four algorithms with which to compute the derivative of a poly-
nomial interpolant at its nodes. The question is which of these is the fastest? We
wish we could say with complete certainty, but the answer depends strongly on

3 Algorithms for Non-Periodic Functions 85

Algorithm 39: EOMatrixDerivative: Computation of First Derivative by Even-
Odd Decomposition

Procedure EOMatrixDerivative

Input:
{
Di,j

}N

i,j=0,
{
fj

}N

j=0

integer M ← �(N + 1)/2�
for j = 0 to M do

ej ← (fj + fN−j)/2
oj ← (fj − fN−j)/2

end
for i = 0 to M − 1 do

Dei ← 0
Doi ← 0
for j = 0 to M − 1 do

Dei ← Dei + (
Di,j + Di,N−j

) ∗ ej

Doi ← Dei + (
Di,j − Di,N−j

) ∗ oj

end
end
if N + 1 is odd then

for i = 0 to M − 1 do
Dei ← Dei + Di,M ∗ eM

end
DeM ← 0
for j = 0 to M − 1 do

DoM ← DoM + (
DM,j − DM,N−j

) ∗ oj

end
end
for j = 0 to M − 1 do

Dfj ← Dej + Doj

DfN−j ← −Dej + Doj

end
if N + 1 is odd then

DfM ← DeM + DoM

end

return
{
Dfj

}N

j=0
End Procedure EOMatrixDerivative

the number of points, the computer architecture, cache sizes, the code, the com-
piler, and the optimizer. For instance, in the past we found that hand-unrolled loops
in the matrix-vector product routines produced significantly faster computations
(cf. [9]). We have not found that to be the case on our current system. For pro-
duction work, we recommend coding and testing several algorithms and implemen-
tations.

Figure 3.3 shows timing comparisons between direct implementations of the
three algorithms 19 (MxVDerivative), 39 (EOMatrixDerivative), and 40 (Fast-
ChebyshevDerivative) without any special efforts to optimize them by hand, but
with two levels of complier optimization. In each case, we computed the deriva-
tives a million times and then divided the total time by that number. We see that for
N < 10 there is little difference between the Even-Odd decomposition and the di-

86 3 Algorithms for Non-Periodic Functions

Algorithm 40: FastChebyshevDerivative: Computation of the Derivative by the
Fast Chebyshev Transform

Procedure FastChebyshevDerivative

Input:
{
fj

}N

j=0
Uses Algorithms:

Algorithm 5 (ChebyshevDerivativeCoefficients)
Algorithm 29 (FastChebyshevTransform)

{
f̃k

}N

k=0
←

FastChebyshevTransform
({

fj

}N

j=0 ,
{
wj

}N−1
j=0 ,

{
Cj

}N

j=0 ,
{
Sj

}N

j=0 ,FORWARD
)

{
f̃

(1)
k

}N

k=0
← ChebyshevDerivativeCoefficients

({
f̃k

}N

k=0

)

{
Dfj

}N

j=0 ←
FastChebyshevTransform

({
f̃

(1)
k

}N

j=0,
{
wj

}N−1
j=0 ,

{
Cj

}N

j=0 ,
{
Sj

}N

j=0 ,BACKWARD
)

return
{
Dfj

}N

j=0
End Procedure FastChebyshevDerivative

Fig. 3.3 A comparison of CPU times between three algorithms to compute a polynomial spectral
derivative with two levels of optimization. Left: −O2. Right: −O3

rect matrix multiply in either graph. However by N = 64 and moderate optimization
the even-odd decomposition is 1.7 times faster, which is consistent with the factor
of two that we would expect by doing the decomposition. With more aggressive
compiler optimization, however, there is virtually no difference between the speeds
of the direct matrix multiply and even-odd decomposition algorithms. For our im-
plementation, Algorithm 40 does not become competitive until N = 64. This could
change significantly if we had used a highly tuned FFT.

3 Algorithms for Non-Periodic Functions 87

Exercises

3.1 Reproduce Fig. 3.3 and compare the performance of the three algorithms,
Algorithms 19 (MxVDerivative), 39 (EOMatrixDerivative), and 40 (FastCheby-
shevDerivative), for computing polynomial derivatives. Be sure to try different com-
piler optimization levels.

3.2 Plot and compare the error of the polynomial approximation of the derivative
of the function f (x) = cos(2x) as a function of N using the three algorithms,
Algorithms 19 (MxVDerivative), 39 (EOMatrixDerivative), and 40 (FastCheby-
shevDerivative). Include in your comparisons the Legendre and Chebyshev approx-
imations. Compare also the errors with and without using the Negative Sum Trick
to represent the derivative matrices.

3.3 Plot the locations of the nodes for both Chebyshev and Legendre Gauss and
Gauss-Lobatto quadratures as a function of N for several values of N .

3.4 Derive the Even-Odd decomposition when N is odd.

3.5 The Chebyshev Gauss quadrature points have an important interpolation prop-
erty that serves as a useful counter argument to the sometimes stated claim that
interpolation at the Gauss points “wastes” points near the boundaries. The interpo-
lation error f (x) − PN(x) is related to the derivatives of f and the nodes xj by

f (x) − PN(x) = f (N+1) (ξ)

(N + 1)!
N∏

j=0

(
x − xj

)
.

The Gauss points are exactly those that minimize the maximum value of the poly-
nomial factor of the interpolation error. (This result can be found in any elementary
numerical analysis book.) Plot the interpolant of the function

f (x) = 1

1 + 25x2
, x ∈ [−1,1]

for N = 5,10,15,20 using the Gauss, Gauss-Lobatto and uniformly spaced points.
Comment on your results. The effect seen when uniformly spaced points are used is
called the Runge Phenomenon.

3.6 Develop and implement an algorithm to use Gauss quadrature to approximate
integrals of the type

I =
∫ 1

−1

∫ 1

−1
f (x, y)dxdy.

Modified versions of this algorithm will be used later in Chaps. 7 and 8.

Part II
Approximating Solutions of PDEs

Chapter 4
Survey of Spectral Approximations

Now that we know how to approximate functions, integrals and derivatives with
high order orthogonal functions, we move to our ultimate goal and develop methods
to approximate the solutions of partial differential equations (PDEs).

In this book, we will concentrate on the spectral approximation of three basic
equations of mathematical physics, namely the potential equation

∇2ϕ = s, (4.1)

the advection-diffusion equation

ϕt + q · ∇ϕ = ν∇2ϕ, (4.2)

where q is some velocity field, and the wave equation

ϕtt − c2∇2ϕ = 0. (4.3)

From the advection-diffusion equation we can immediately reduce to the scalar ad-
vection problem (ν = 0) or the diffusion problem/heat equation (q = 0). The form
of the equations (4.1)–(4.3), the form in which the equations are usually written, is
called the strong form.

The strong form of the equations may require the solutions to be more smooth
than we want. For instance the temperature, ϕ, in a thin insulated rod of length,
L, with variable thermal diffusivity and zero temperature specified at the ends is
described by the initial-boundary value problem

⎧
⎪⎨

⎪⎩

ϕt = νϕxx + νxϕx, x ∈ (0,L) , t > 0,

ϕ(0, t) = ϕ(L, t) = 0,

ϕ(x,0) = ϕ0(x).

(4.4)

Its classical solution is the one that must be at least twice differentiable in space.
The diffusivity, ν > 0, must also be differentiable. We know physically, however,
that at the joint between two materials with different thermal conductivities, ν will
not be differentiable and a slope discontinuity will appear in the solution to make
the heat flux, f = νϕx , continuous. The piecewise smooth solution, which makes
perfect physical sense, is not a classical solution to the heat equation. To include
solutions with weaker smoothness constraints, we need to rewrite the equations.

To allow a larger class of solutions, we rewrite the PDE in a weak form. For
example, if we write the right hand side of the PDE in (4.4) in the form (νϕx)x and

D.A. Kopriva, Implementing Spectral Methods for Partial Differential Equations,
Scientific Computation,
© Springer Science + Business Media B.V. 2009

91

92 4 Survey of Spectral Approximations

multiply by an arbitrary function φ and integrate over the domain, we find that the
temperature also satisfies the equation

∫ L

0
ϕtφdx =

∫ L

0
(νϕx)x φdx. (4.5)

If φ is smooth enough, we can integrate the diffusion term by parts

∫ L

0
ϕtφdx =

∫ L

0
(νϕx)x φdx = νϕφ|L0 −

∫ L

0
νϕxφxdx. (4.6)

When we apply the boundary conditions, we are left with the weak form of the heat
diffusion equation

∫ L

0
ϕtφdx = −

∫ L

0
νϕxφxdx, (4.7)

or using the inner product notation of the previous chapters,

(ϕt , φ) = − (νϕx,φx) . (4.8)

The weak form of the heat equation requires only that the weak solution for
the heat flux, νφx , be square integrable, which is physically reasonable and less
restrictive than requiring that ν be differentiable and ϕ be twice differentiable. It
also implicitly defines the boundary conditions. On the other hand, if the solution
is classical, then it satisfies both equations, for we can work backwards from (4.7),
integrate by parts again, rearrange, and get

∫ L

0

{
ϕt − (νϕx)x

}
φdx = 0, (4.9)

provided that the boundary conditions are satisfied. Since the function φ is arbi-
trary and smooth enough, and the integral always vanishes, the quantity in braces
must always vanish. In other words, the temperature satisfies the strong form of the
equation, too.

We get a bonus from the weak form of the heat equation, for we can show im-
mediately that the energy of the solution does not grow in time. Since φ is arbitrary,
we can choose φ = ϕ. Then (4.7) becomes

∫ L

0
ϕtϕdx = −

∫ L

0
νϕxϕxdx. (4.10)

We can rewrite the left hand side in terms of the energy, ‖ϕ‖, if we pull the time
derivative out of the integral. Furthermore, since ν > 0, the energy satisfies

1

2

d

dt

∫ L

0
ϕ2dx = −

∫ L

0
ν (ϕx)

2 dx ≤ 0. (4.11)

4 Survey of Spectral Approximations 93

Since the time derivative is always less than or equal to zero, it follows that the
energy is always bounded by the initial energy,

‖ϕ‖L2 ≤ ‖ϕ0‖L2 . (4.12)

Spectral methods are high order techniques that we use to solve partial differen-
tial equations either in their strong form like (4.1)–(4.3) or in a weak form like (4.8).
What sets spectral methods apart from others like finite difference methods (which
start from the strong form of the equations) or finite element methods (which start
from the weak form) is that to get a spectral method we approximate the solutions by
high order orthogonal polynomial expansions. Whereas finite difference and finite
element methods may be “high order” at orders two or three, spectral methods are
run at orders up to the thousands. We have seen in Part I that orthogonal polynomial
approximations can have very high convergence rates, which allow us to use fewer
degrees of freedom for a desired level of accuracy.

We generate one of two types of spectral methods from the strong form of the
equations. The most common method, known as collocation, looks much like a very
high order finite difference method. To get a collocation method, we require that the
PDE be satisfied at a set of grid, or more precisely, collocation points. We approx-
imate derivatives at these grid points by the derivative of the nodal polynomial that
interpolates the approximate solutions. Finite difference methods differ in that the
derivative approximations are local to a grid point. Finite difference approximations
to derivatives can be derived by differentiating a local low order polynomial inter-
polant at a point. We set the boundary conditions in a collocation method like we
would in a finite difference method: We simply replace the grid point value at the
boundary by the boundary condition. Another method known as the penalty method
adds a term to the strong form of the equations to enforce the boundary condi-
tions weakly. We will derive examples of collocation methods in Sects. 4.1 and 4.4.
Penalty methods are covered in [14].

We also generate spectral methods from weak forms of the PDEs. The most com-
mon class of methods, known as Galerkin methods, look much like Galerkin finite
element methods. To get a Galerkin method, we choose the functions φ, known as
the test functions, from the same set of basis functions that we use to approximate
the solution itself. The spectral Galerkin methods differ from finite element meth-
ods in that finite element methods use local functions as the test functions. Galerkin
approximations naturally use the modal form to represent the solution. However,
if we use a nodal representation of the solution and replace the integrals by Gauss
quadratures, we can generate nodal Galerkin approximations. We derive examples
of Galerkin spectral methods in Sects. 4.2, 4.5, 4.6, and 4.7. The tau method (so-
called because the original had a parameter τ in it) is a modal method that starts
from the weak form of an equation, but enforces boundary conditions differently
than the Galerkin method. Tau methods are quickly remembered in [7].

In this chapter we will become familiar with spectral methods as we derive six ap-
proximations for the representative examples of the advection-diffusion and scalar
advection equations in one space dimension. At the end of the chapter, after we

94 4 Survey of Spectral Approximations

know what the methods are and how they are derived and implemented, we will re-
group and make some sweeping generalizations about how to choose among them.
In later chapters we will approximate and compute solutions to the three basic equa-
tions of mathematical physics that describe potentials, advection and diffusion, and
the propagation of waves in two space dimensions.

4.1 The Fourier Collocation Method

The first spectral method that we will derive is known as the Fourier spec-
tral collocation approximation. We will illustrate the derivation of the method
by approximating the advection-diffusion equation with periodic boundary condi-
tions,

ϕt + ϕx = νϕxx, 0 < x < 2π, t > 0,

ϕ(x,0) = ϕ0(x), 0 ≤ x ≤ 2π,

ϕ(0, t) = ϕ(2π, t), t ≥ 0.

(4.13)

For now, we will assume that ν > 0 is a constant.
Since the problem is periodic, it is natural that we approximate the solution with a

Fourier polynomial. To derive the collocation method, we approximate the solution
as an interpolant, written in nodal form (1.56)

ϕ(x, t) ≈ Φ(x, t) =
N−1∑

n=0

Φn(t)hn(x), (4.14)

where Φn(t) = Φ(xn, t) and the grid points are xn = 2π/N . To determine the N

unknowns, Φn, we need to find N independent equations.
We derive the collocation method like we derive a finite difference method. We

find the equations necessary to determine the N unknowns by requiring that the
approximate solution satisfy the differential equation at each of the N grid points,

{Φt + Φx − νΦxx}|xj
= 0, j = 0,1, . . . ,N − 1. (4.15)

Let’s substitute for Φ with (4.14) and recall that hn(xj) = δn,j to get an ordinary
differential equation to integrate in time for each of the grid point values Φj

Φ̇j +
N−1∑

n=0

Φn(t)h
′
n(xj) = ν

N−1∑

n=0

Φn(t)h
′′
n(xj), j = 0,1, . . . ,N − 1. (4.16)

We now recognize that the two sums represent matrix-vector multiplications and so
we rewrite this as

Φ̇j + DΦi = νD2Φj , i = 0,1, . . . ,N − 1. (4.17)

4 Survey of Spectral Approximations 95

If we approximate D2 ≈ DD (see Problem 2.5), we get the collocation approxima-
tion

Φ̇j = −D
(
Φj − νDΦj

)
, j = 0,1, . . . ,N − 1. (4.18)

A finite difference approximation would also look like (4.17) if we wrote the
finite differences as a matrix-vector multiplication. The standard second order ap-
proximation has a tri-diagonal matrix for the advection and diffusion terms. The
matrices for the spectral collocation approximation are full.

Alternatively, we can use the modal form to represent the interpolant,

Φ(x, t) =
N/2∑

k=−N/2

Φ̃k

c̄k

eikx, (4.19)

which gives the system of ordinary differential equations in terms of the coefficients

Φ̇j +
N/2∑

k=−N/2

ikΦ̃k

c̄k

eikxj = ν

N/2∑

k=−N/2

(−k2)Φ̃k

c̄k

eikxj , j = 0,1, . . . ,N −1. (4.20)

The two systems, (4.18) and (4.20) are not exactly equivalent, see Problem 2.5.
The approximation (4.14) automatically satisfies the boundary conditions, but we

need an initial condition for each of the Φj to integrate (4.17) in time. The initial
condition is usually taken to be the interpolant of the initial function ϕ0, that is
Φj(0) = ϕ0(xj), which has aliasing errors.

Like a finite difference method, the collocation method is easy to apply to general
variable coefficient problems. Suppose, for instance, that the diffusion coefficient
depends on the solution

ϕt + ϕx = (ν(ϕ)ϕx)x , x ∈ (0,2π), t > 0,

ϕ(x,0) = ϕ0(x), x ∈ (0,2π),

ϕ(0, t) = ϕ(2π, t), t ≥ 0.

(4.21)

In the variable coefficient problem, we approximate the diffusive flux, f ≡ ν(ϕ)ϕx ,
as a polynomial through its values at the collocation points,

Fj = ν(Φj)DΦj . (4.22)

The approximation to the derivative of the diffusive flux is just the derivative of that
interpolant, so the collocation approximation is

Fj = ν(Φj)DΦj ,

Φ̇j + DΦj = DFj , j = 0,1, . . . ,N − 1,

Φj (0) = ϕ0(xj).

(4.23)

96 4 Survey of Spectral Approximations

Thus, collocation is an easy method to apply to variable coefficient problems, at the
cost of introducing aliasing errors in the approximation of the diffusive flux and the
initial condition.

We typically integrate the collocation approximation in time by some appropriate
ODE solver. We compute the derivative approximations by one of the two represen-
tations, (1.73) or (1.74), depending on the size of N . If we use matrix multiplication,
we compute the second derivative by applying the D matrix twice to the solution.
If we use the DFT to compute the derivatives, then we compute the discrete coeffi-
cients from the mesh point values of the solution using the first equation of (1.69).
We then form the coefficients of the first and second derivatives by multiplying each
by ik and −k2, respectively. We then evaluate the derivative at each mesh point by
the second of the equations in (1.69).

4.1.1 How to Implement the Fourier Collocation Method

To implement the Fourier collocation approximation, we integrate the system of
equations (4.18) in time with initial conditions Φj(0) = ϕ0(xj). Therefore, the first
procedure that we implement computes the time derivative. We show an example in
Algorithm 41 (FourierCollocationTimeDerivative), which computes the time deriv-
ative in the form

Fj = νDΦj ,

Φ̇j = D (F − Φ)j ,
(4.24)

so it requires only two evaluations of the spatial derivative procedure instead of
three. We can easily extend the procedure to a variable coefficient problem. The al-
gorithm that we present uses matrix multiplication to compute the spatial derivative
approximations. We could write a similar algorithm that uses the FFT, Algorithm 17
(FourierDerivativeByFFT).

Next, we need an algorithm to integrate of equations (4.24) in time. We usu-
ally integrate in time with a standard method for integrating systems of ODEs. The
important consideration—besides accuracy, of course—is that the time integration
method must be stable in time for this system of equations. If we use the Fourier
transform, we see that the eigenvalues of the matrix νD2 −D are λk = −(νk2 + ik)

for k = −N/2 + 1, . . . ,N/2 − 1. (See Problem 1.5.) Thus, we must choose a
method whose region of absolute stability includes a portion of the left half of the
complex plane. If we want to be able to compute pure advection problems where
ν = 0 and the eigenvalues of the system are purely imaginary, then we must choose
an integrator whose region of absolute stability also includes the imaginary axis.
Suitable methods include explicit third and higher order Runge-Kutta and Adams-
Bashforth methods, or A-stable methods such as the backward Euler or trapezoidal
rule (Crank-Nicolson). For thorough discussions of methods to integrate systems of
ODEs, consult books on the subject like [17] or [3].

4 Survey of Spectral Approximations 97

Algorithm 41: FourierCollocationTimeDerivative: The Fourier Collocation
Time Derivative for the Advection-Diffusion Equation

Procedure FourierCollocationTimeDerivative

Input: {Φj }N−1
j=0 , {Di,j }N−1

i,j=0

Uses Algorithms:
Algorithm 19 (MxVDerivative)

{Fj }N−1
j=0 ← MxVDerivative({Di,j }N−1

i,j=0, {Φj }N−1
j=0)

for j = 0 to N − 1 do
Fj = νFj − Φj

end
{Φ̇j }N−1

j=0 ← MxVDerivative({Di,j }N−1
i,j=0, {Fj }N−1

j=0)

return {Φ̇j }N−1
j=0

End Procedure FourierCollocationTimeDerivative

Fig. 4.1 Region of absolute
stability for the third order
Runge-Kutta method

As a concrete example, we will integrate the system (4.24) by Williamson’s [25]
third order low storage Runge-Kutta method. This method has the advantage of
being appropriate for ν small or equal to zero, since its region of absolute stability
includes the imaginary axis (Fig. 4.1). It requires only 2N levels of storage, which
will be important later when we solve large systems of equations that result from
multidimensional PDEs. Finally, the method is easy to implement.

To describe the low storage Runge-Kutta method, let’s show how to integrate a
generic system of ordinary differential equations, u̇ = F(u, t). Let Δt be the time
step and tn = nΔt be the current time. Next, let Un ≈ u(tn). Then we compute the

98 4 Survey of Spectral Approximations

Algorithm 42: CollocationStepByRK3: Low-Storage Runge-Kutta Integration
of the Fourier Collocation Approximation

Procedure CollocationStepByRK3

Input: tn,Δt, {Φj }N−1
j=0 , {Di,j }N−1

i,j=0

Uses Algorithms:
Algorithm 41 (FourierCollocationTimeDerivative)

for m = 1 to 3 do
t ← tn + bmΔt

{Φ̇j }N−1
j=0 ← FourierCollocationTimeDerivative({Φj }N−1

j=0 , {Di,j }N−1
i,j=0)

for j = 0 to N − 1 do
Gj ← amGj + Φ̇j

Φj ← Φj + gmΔtGj

end
end
return {Φj }N−1

j=0

End Procedure CollocationStepByRK3

approximation at time tn+1 by

U ← Un,

G ← F (U, tn) ,

U ← U + 1

3
ΔtG,

G ← −5

9
G + F

(

U, tn + 1

3
Δt

)

,

U ← U + 15

16
ΔtG,

G ← −153

128
G + F

(

U, tn + 3

4
Δt

)

,

Un+1 ← U + 8

15
ΔtG.

(4.25)

In our context, we compute the time derivative, F by Algorithm 41 (FourierCollo-
cationTimeDerivative) and implement the procedure in Algorithm 42 (Collocation-
StepByRK3). The procedure takes the current time, the time step and the solution
at the current time and returns the solution at the next time level. To use the proce-
dure we need to provide the coefficients of the method that we group in Table 4.1,
and we assume that they have been pre-computed and stored. To save storage, we
over-write the solution at time level n by the value at n + 1. The array G is an inter-
mediate storage array. Since the coefficients are not time dependent in this problem,
Algorithm 42 uses neither the current time, tn, nor its updates at each stage of the

4 Survey of Spectral Approximations 99

Table 4.1 Coefficients for
Williamson’s 3rd order
Runge-Kutta

m am bm gm

1 0 0 1/3

2 −5/9 1/3 15/16

3 −153/128 3/4 8/15

Algorithm 43: FourierCollocationDriver: A Driver for the Fourier Collocation
Approximation

Procedure FourierCollocationDriver
Input: N,NT ,T

Uses Algorithms:
Algorithm 18 (FourierDerivativeMatrix)
Algorithm 42 (CollocationStepByRK3)

{Dij }N−1
i,j=0 ← FourierDerivativeMatrix(N)

Δt ← T/NT

tn ← 0
{Φj }N−1

j=0 ← InitialValues(N)

for n = 0 to NT − 1 do
{Φj }N−1

j=0 ← CollocationStepByRK3(tn,Δt, {Φj }N−1
j=0 , {Dij }N−1

i,j=0)

tn ← (n + 1)Δt
end
return {Φj }N−1

j=0

End Procedure FourierCollocationDriver

Runge-Kutta. We include them only to be complete, and so that we can easily mod-
ify the algorithm later to integrate more general systems.

Finally, we need a driver to integrate from the initial condition to the final time,
T in NT steps. We present an outline of such a procedure in Algorithm 43 (Fourier-
CollocationDriver).

4.1.2 Benchmark Solution

To see how the Fourier Collocation method with third order Runge-Kutta integration
in time behaves on the solution of the advection-diffusion equation, let’s solve (4.13)
for the initial condition

ϕ0(x) = 3

5 − 4 cos(x)
. (4.26)

We discussed this function in Sect. 1.3. It has the exact Fourier coefficients

ϕ̂0,k = 2−|k|. (4.27)

These coefficients decay exponentially fast with k, leading us to expect exponential
convergence of the error if Δt is taken small enough. We compute the exact solution

100 4 Survey of Spectral Approximations

Fig. 4.2 Fourier collocation
and exact solutions to the
advection-diffusion equation.
Circles represent the
computed solutions at the
collocation points; Lines
represent the exact solutions

from its Fourier series,

ϕ =
∞∑

k=−∞
ϕ̂0,ke

ik(x−t)−νk2t , (4.28)

so we can compute the error.
We’ll test the collocation method with two approximations for the initial con-

dition (4.26). The first is the normal interpolation approximation: We evaluate the
initial condition as Φj(0) = ϕ0(xj), which as we have seen is the same thing as
representing the polynomial approximation at the initial time by the interpolant,
Φ(x,0) = INϕ0. As we now know, this projection introduces aliasing errors. To see
the effect of these aliasing errors, we also use the initial approximation Φ(x,0) =
PN−1ϕ0, which is free of aliasing errors.

Figure 4.2 compares the computed solutions with N = 16 to the exact solution
at three times. Although the computed solution is plotted only at the collocation
points, remember that we could have evaluated the interpolant representing these so-
lutions at many points in the interval to get a more pleasing looking plot using either
Algorithms 2 (FourierInterpolantFromModes) or 3 (FourierInterpolantFromNodes).
Unlike finite difference approximations, the collocation solution (4.14) is defined
everywhere in the interval.

Since we know the exact solution for this problem, we can compute the error of
the approximation. We will measure the error in the discrete norm,

‖ϕ − Φ‖2
M = 2π

M

M−1∑

j=0

(
ϕ(zj , T) − Φ(zj , T)

)2 (4.29)

with zj = 2jπ/M . The discrete norm is a spectrally accurate approximation to
the true norm, (1.13). To see this, recall that for a square integrable function, f ,
f̃k = (f, eikx)M/2π and f̂k = (f, eikx)/2π . If we set k = 0 then (1.71) says that

2πf̃0 = 2π

M

M−1∑

j=0

f

(
2jπ

M

)

=
∫ 2π

0
f (x)dx + 2π

∞∑

p=−∞
p 	=0

f̂pM. (4.30)

4 Survey of Spectral Approximations 101

Fig. 4.3 Error decay for the
Fourier Collocation
approximation of the
advection-diffusion equation

So the quadrature error depends only on the smoothness of the integrand through
the rate of decay of the Fourier coefficients.

We show the decay of the error for the Fourier collocation approximation of
the advection-diffusion equation in Fig. 4.3. To produce the graph, we chose Δt =
1.25 × 10−3 and computed the error at M = 100 points. For both projections of the
initial conditions—with and without aliasing—the convergence rate is exponential.
A least squares fit of the solution with aliasing shows that the slope is approximately
−0.1506. In this problem the convergence rate is significantly faster if we remove
the initial aliasing errors. This is because the initial truncation error is damped by the
exponential factor e−νk2t (4.28). On the other hand, the aliases of the high frequency
modes (starting with the N/2 mode) are damped as if they are low frequency modes,
i.e., slowly in time. From (4.27) and (1.72) we expect that dominant error to decay
as 2−N/2, or, in other words, with a slope of −Log(2)/2 = −0.1505 on the semi-
log plot. Although it is true that the aliased solution is significantly worse than the
de-aliased one, the convergence rate is still exponential in the number of degrees of
freedom. Doubling the number of degrees of freedom decreases the error by three
orders of magnitude.

4.2 The Fourier Galerkin Method

Our next example is a Fourier Spectral Galerkin method. To allow us to make direct
comparisons to the collocation approximation, we will again approximate the initial
boundary-value problem (4.13) for the advection-diffusion equation.

The derivation of the Galerkin approximation starts from a weak form of the
PDE. If we multiply the PDE in (4.13) by the complex conjugate of any periodic

102 4 Survey of Spectral Approximations

function φ and integrate over [0,2π], we see that the solution also satisfies

∫ 2π

0
{ϕt + ϕx − νϕxx}φ∗dx = 0. (4.31)

When we expand the sum and use inner product notation for the integrals, we get
the weak form

(ϕt , φ) + (ϕx,φ) = (νϕxx,φ) . (4.32)

Let’s look at the integral on the right. If we integrate it by parts,

(νϕxx,φ) = νϕxφ|2π
0 − (νϕx,φx) . (4.33)

Then we can write the weak form of the advection-diffusion equation as

(ϕt , φ) + (ϕx,φ) = νϕxφ|2π
0 − (νϕx,φx) . (4.34)

We now set out to get an approximate solution to (4.34). Since the problem is
periodic, we again choose the Fourier basis with which to approximate the solution
and approximate the solution by a Fourier polynomial of degree N , this time written
in modal form

ϕ(x, t) ≈ Φ(x, t) =
N/2∑

n=−N/2

Φ̂n(t)e
inx. (4.35)

We see that there are N + 1 degrees of freedom (the Φ̂n values) for us to find.
The Galerkin approximation determines the degrees of freedom by requiring that

the approximate solution also satisfies (4.34) for φ being each of the N + 1 basis
functions, eikx , k = −N/2, . . . ,N/2. That is, the Galerkin approximation is the
solution Φ that satisfies

(
Φt, e

ikx
)+ (

Φx, e
ikx
)= νΦxe

ikx
∣
∣2π

0 − (
νΦx,

(
eikx

)

x

)
, k = −N/2, . . . ,N/2.

(4.36)
Since Φ is a Fourier polynomial and its derivative is too, the flux, νΦx is periodic.
Therefore, the boundary terms vanish and the approximate solution satisfies

(
Φt, e

ikx
)+ (

Φx, e
ikx
)= −(νΦx,

(
eikx

)

x

)
, k = −N/2, . . . ,N/2. (4.37)

We now find the coefficients Φ̂n. When we substitute for Φ into (4.37),

N/2∑

n=−N/2

˙̂
Φn

(
einx, eikx

)+
N/2∑

n=−N/2

inΦ̂n

(
einx, eikx

)

= −
N/2∑

n=−N/2

(in) (−ik) Φ̂n

(
einx, eikx

)
, k = −N/2, . . . ,N/2. (4.38)

4 Survey of Spectral Approximations 103

Orthogonality of the basis functions leaves us with

˙̂
Φk = −(ik + k2)Φ̂k, k = −N/2, . . . ,N/2. (4.39)

We see that the equations for the coefficients that the Galerkin approximation gives
us are exactly the equations that we would derive by Fourier series (cf. Sect. 1.1).

As in the collocation approximation, the Galerkin approximation gives us a sys-
tem of ordinary differential equations to integrate in time. The boundary conditions
are satisfied because the basis functions do so individually. To integrate in time, we
only need initial conditions. For that, we use truncation, Φ(x,0) = PNϕ0. There-
fore,

Φ̂k(0) = ϕ̂0,k, k = −N/2, . . . ,N/2. (4.40)

Truncation ensures that there are no aliasing errors in the initial coefficients of the
approximate solution.

Like the collocation approximation and a finite element approximation, the
Fourier Galerkin approximation defines the solution at every point in space. At any
time, we can compute the solution for any point in space using the sum in (4.35).

4.2.1 How to Implement the Fourier Galerkin Method

To implement the method, we need procedures to compute the time derivatives
(4.39), to integrate that system of equations, and to evaluate the solution from
the coefficients using (4.35). The first of these is straightforward; To compute the
time derivatives of the coefficients, we can use Algorithm 44 (AdvectionDiffusion-

TimeDerivative), which takes the array of coefficients and returns the values of ˙̂
Φk

using (4.39).
To start the time integration, we need the exact Fourier coefficients, ϕ̂0,k . Finding

these is the hardest part of the whole procedure since we must compute the integrals
in (1.19). As we saw in Sects. 1.5 and 1.6, we can approximate them as accurately
as we like using the DFT, but for right now, let us assume that we have analytical
expressions for the Fourier coefficients of the initial condition.

Algorithm 44: AdvectionDiffusionTimeDerivative: Advection-Diffusion Time
Derivative for Fourier Galerkin

Procedure AdvectionDiffusionTimeDerivative

Input: {Φ̂k}N/2
k=−N/2

for k = −N/2 to N/2 do
˙̂

Φk ← − (
ik + νk2

)
Φ̂k

end

return { ˙̂
Φk}N/2

k=−N/2

End Procedure AdvectionDiffusionTimeDerivative

104 4 Survey of Spectral Approximations

Algorithm 45: FourierGalerkinStep: Take One Time Step of the Fourier
Galerkin Method

Procedure FourierGalerkinStep

Input: tn,Δt, {Φ̂k}N/2
k=−N/2

Uses Algorithms:
Algorithm 44 (AdvectionDiffusionTimeDerivative)

for m = 1 to 3 do
t ← tn + bmΔt

{ ˙̂
Φk}N/2

k=−N/2 ← AdvectionDiffusionTimeDerivative({Φ̂k}N/2
k=−N/2)

for k = −N/2 to N/2 do

Gk ← amGk + ˙̂
Φk

Φ̂k ← Φ̂k + gmΔtGk

end
end

return {Φ̂k}N/2
k=−N/2

End Procedure FourierGalerkinStep

Algorithm 46: EvaluateFourierGalerkinSolution: Direct Synthesis of the
Fourier Galerkin Solution

Procedure EvaluateFourierGalerkinSolution

Input: x, {Φ̂k}N/2
k=−N/2

Φ ← 0
for k = −N/2 to N/2 do

Φ ← Φ + Φ̂ke
ikx

end
return Φ

End Procedure EvaluateFourierGalerkinSolution

We usually integrate the system of equations (4.39) in time with a stan-
dard method for integrating systems of ODEs. We will again use Williamson’s
third order low storage Runge-Kutta method. Algorithm 45 (FourierGalerkin-
Step) gives a version of the Runge-Kutta method tailored to integrate the Fourier-
Galerkin approximation. As before, the coefficients of the method are given in Ta-
ble 4.1.

Next, we need a way to evaluate the solution as a function of position for plotting
and analysis purposes. In other words, we need an implementation of (4.35). We can
implement the synthesis of the solution efficiently if we use the Fast Fourier Trans-
form. (See Problem 4.3.) Algorithm 46 (EvaluateFourierGalerkinSolution) com-
putes the sum directly. Note that although the coefficients Φ̂k are complex, the syn-
thesized approximation, Φ , is real.

Finally, we need a driver to run it all. Algorithm 47 (FourierGalerkinDriver) pro-
vides an outline for code that we need to integrate the Fourier Galerkin approxima-
tion of the advection-diffusion equation from the initial condition to time T in NT

4 Survey of Spectral Approximations 105

Algorithm 47: FourierGalerkinDriver: A Driver for the Fourier Galerkin Ap-
proximation

Procedure FourierGalerkinDriver
Input: N,NT ,T ,Nout
Uses Algorithms:

Algorithm 45 (FourierGalerkinStep)
Algorithm 46 (EvaluateFourierGalerkinSolution)

Δt ← T/NT

tn ← 0
{Φ̂k}N/2

k=−N/2 ← InitialCoefficients(N)

for n = 0 to M − 1 do
{Φ̂k}N/2

k=−N/2 ← FourierGalerkinStep(tn,Δt, {Φ̂k}N/2
k=−N/2)

tn ← (n + 1)Δt
end
Δx ← 2π/Nout
for j = 0 to Nout do

xj ← jΔx

Φj ← EvaluateFourierGalerkinSolution(xj , {Φ̂k}N/2
k=−N/2)

end

return
{
Φj

}Nout

j=0
End Procedure FourierGalerkinDriver

steps. After it computes the coefficients at the final time, it re-constructs (synthe-
sizes) the solution at a set of Nout points in the interval [0,2π].

Before we present results showing how accurate the Fourier Galerkin method is,
let’s derive the expected error under the assumption that we integrate the system
(4.39) exactly in time. The first thing to notice is that the ODEs for the coefficients
are exactly the ODEs for the exact solution. Thus,

ϕ(x, t) − Φ(x, t) =
∞∑

|k|=N/2+1

ϕ̂k(t)e
ikx

=
∞∑

|k|=N/2+1

ϕ̂0,ke
−(ik+νk2)t eikx (4.41)

so that

‖ϕ − Φ‖2 =
∞∑

|k|=N/2+1

∣
∣ϕ̂0,k

∣
∣2
k
e−2νk2t ≤ ‖ϕ0 − PNϕ0‖2 . (4.42)

Therefore, the Fourier Galerkin method is spectrally accurate, with an error
that depends on how rapidly the coefficients of the initial condition decay with
wavenumber. The last term on the right of (4.42) shows that the error depends
directly on how well the Fourier truncation operator approximates the initial condi-
tion.

106 4 Survey of Spectral Approximations

4.2.2 Benchmark Solution

As our benchmark problem for the Fourier Galerkin approximation to the advection-
diffusion equation, let’s solve (4.13) again for the initial condition (4.26) so that we
know both the exact solution and the Fourier collocation solutions.

Figure 4.4 shows the computed solution plotted at Nout = 50 points at four times
for N = 16, i.e., 17 degrees of freedom, for the diffusion coefficient ν = 0.2. Clearly
visible is the movement of the initial profile to the right with strong effects of diffu-
sion that serve to eliminate the short wavelengths.

We show a plot of the error as a function of N and Δt in Fig. 4.5. In that figure
we see two important characteristics of the error: First, the total error decays very
rapidly (exponentially) then stalls when it is dominated by the time integration er-
ror. That time integration error is O(Δt3) for the third order Runge-Kutta method,

Fig. 4.4 Solution of the
advection-diffusion equation
by Fourier Galerkin at three
times. The computed
solutions, reconstructed at
50 points, are marked by
circles. Lines are used to
mark the exact solutions

Fig. 4.5 Error in the Fourier Galerkin approximation at t = 2 as a function of N and Δt

4 Survey of Spectral Approximations 107

so as Δt is decreased by a factor of two, the error decreases by a factor of eight,
whose logarithm is log(8) = 0.90. We can also compare to the collocation solution
and see that the error for the dealiased collocation solution and the Galerkin ap-
proximation are the same. In fact, we can show that for this linear problem, the two
approximations are equivalent (Problem 4.6).

4.3 Nonlinear and Product Terms

In Sects. 4.1 and 4.2 we derived the collocation and Fourier Galerkin approxima-
tions to the constant coefficient linear advection-diffusion equation. For that prob-
lem, the approximations were equivalent, provided that the collocation method is
started with the Fourier truncation rather than interpolation approximation of the
initial condition. They are not equivalent for variable coefficient or nonlinear prob-
lems because of aliasing.

In this section we examine a model that better represents the advection terms
in equations such as the incompressible Navier-Stokes equations. The model is the
Burgers equation,

ut + uux = νuxx. (4.43)

We approximate the linear second derivative term the same as before with each
of the two methods, collocation and Galerkin. The nonlinear term introduces new
difficulties, so in this section we will discuss the Burgers equation with ν = 0.

4.3.1 The Galerkin Approximation

If we follow the development of Sect. 4.2 to derive the Galerkin approximation to
(4.43) with ν = 0, we approximate the solution u with the polynomial U of the form
(4.35) and compute the projections

(
Ut + UUx, e

imx
)= 0, m = −N/2, . . . ,N/2. (4.44)

The coefficients therefore satisfy the equations

dÛm

dt
+ ̂(UUx)m = 0, m = −N/2, . . . ,N/2, (4.45)

where the

̂(UUx)m = 1

2π

∫ 2π

0
UUxe

−imxdx (4.46)

are Fourier coefficients of the product.
We now relate the Fourier coefficients of the product, ̂(UUx)m, to the Fourier co-

efficients Ûk of the approximate solution, U . In fact, we can derive the relationship
more generally for the Fourier coefficients of the product of two functions. To be

108 4 Survey of Spectral Approximations

more general, then, let’s let V and W be Fourier polynomials of degree less than or
equal to N . The Fourier coefficients of the product V W are related to the Fourier
coefficients V̂ and Ŵ by

̂(V W)m = 1

2π

∫ 2π

0

⎛

⎝
N/2∑

q=−N/2

V̂qeiqx

⎞

⎠

⎛

⎝
N/2∑

p=−N/2

Ŵpeipx

⎞

⎠ e−imxdx

=
∑

p

∑

q

V̂qŴp

[
1

2π

∫ 2π

0
ei(q+p−m)xdx

]

=
∑

p

∑

q

V̂qŴpδp+q,m. (4.47)

For convenience, let us define new padded coefficients

ˆ̂
Vk =

{
V̂k, |k| ≤ N/2,

0, |k| > N/2,
(4.48)

so the coefficients of the product are related to the padded coefficients ˆ̂
V and ˆ̂

W by

̂(V W)m =
N/2∑

p=−N/2

ˆ̂
Wp

ˆ̂
Vm−p. (4.49)

To get the coefficients in (4.45), let U correspond to V and W correspond to Ux .
Then V̂p = Ûp and Ŵp = ipÛp so the system of equations to be integrated for the
coefficients of the approximate solution (4.45) is

dÛm

dt
+

N/2∑

p=−N/2

ipÛpÛm−p = 0, m = −N/2, . . . ,N/2, (4.50)

under the implicit definition that Ûp ≡ 0 for |p| > N/2.
We see in (4.50) that the presence of the nonlinear advective term in (4.43) cou-

ples the coefficients of the solution. (Compare this with the linear equation, (4.39),
where the coefficients are not coupled.) Furthermore, they are not generally equal
to the Fourier coefficients of the exact product. For two square integrable functions
u and v, the exact coefficients of the product are

̂(vw)m = 1

2π

∫ 2π

0

⎛

⎝
∞∑

q=−∞
v̂qeiqx

⎞

⎠

⎛

⎝
∞∑

p=−∞
ŵpeipx

⎞

⎠ e−imxdx

=
∞∑

n=−∞

∞∑

m=−∞
v̂q ŵp

(
1

2π

∫ 2π

0
ei(q+p−m)dx

)

=
∞∑

p=−∞
ŵpv̂m−p, (4.51)

4 Survey of Spectral Approximations 109

so that the coefficients of the exact solution satisfy the system of equations

dûm

dt
+

∞∑

p=−∞
ipûpûm−p = 0, m = −∞, . . . ,∞. (4.52)

The coefficients of the approximate and exact solutions match for wavenumber m ≤
N/2 for the linear problem, (4.39), but don’t for the nonlinear problem (4.44). Even
for the low order coefficients, Ûm 	= ûm.

One important property of the Galerkin approximation is that we can show di-
rectly that it is stable. Stable approximations are those for which we can bound the
energy of the solution by an amount proportional to the initial energy,

‖U‖L2 ≤ Keαt ‖U0‖L2 (4.53)

for some constants K and α independent of t and N . Stability says that the approx-
imate solution cannot blow up over finite time. Equation (4.44), by way of the first
part of Problem 4.7, implies that

(Ut + UUx,U) = 0. (4.54)

If we write the inner products directly as integrals, then we see that periodicity
guarantees that

1

2

d

dt

∫ 2π

0
|U |2 dx = −

∫ 2π

0
UUxUdx = −1

3

∫ 2π

0

(
U3)

x
dx = − U3

3

∣
∣
∣
∣

2π

0
= 0.

(4.55)
Therefore, if we integrate exactly in time the energy of the approximation is

∫ 2π

0
|U |2 dx = const =

∫ 2π

0
|U0|2 dx (4.56)

or

‖U‖L2 = ‖U0‖L2 . (4.57)

4.3.2 How to Compute the Convolution Sum

The sum, (4.49), that we use to compute the coefficients of the Galerkin approxima-
tion of the nonlinear advection term is called the convolution sum. We could com-
pute it directly using Algorithm 48 (DirectConvolutionSum). Since the convolution
sum requires essentially N + 1 multiplications for each of the N + 1 coefficients in
(4.50), the total work is O(N2). For large N , this work can be unacceptably large,
especially since we will show that we can use the FFT instead and reduce the work
to O(N LogN). For this reason, we only use Algorithm 48 when N is small, or for
testing purposes.

110 4 Survey of Spectral Approximations

Algorithm 48: DirectConvolutionSum: Direct (Slow) Computation of the Con-
volution Sum

Procedure DirectConvolutionSum

Input: {V̂k}N/2
k=−N/2, {Ŵk}N/2

k=−N/2

for k = −N/2 to N/2 do
̂(V W)k ← 0
for p = MAX(−N/2, k − N/2) to MIN(N/2,N/2 + k) do

̂(V W)k ← ̂(V W)k + V̂k−p ∗ Ŵp

end
end

return {̂(V W)k}N/2
k=−N/2

End Procedure DirectConvolutionSum

We will use the FFT to reduce the work required to compute the sum (4.49) when
N is large. The basic idea is to represent the product V (x)W(x) by an interpolant
Q(x) = IM(V (x)W(x)) of sufficiently high order, M , that there are no aliasing
errors. We compute the mesh point values of the interpolant and its coefficients
efficiently with the FFT.

To compute the mesh point values of the interpolant of V W , we use the DFT and
the Fourier coefficients of V and W to form a set of mesh point values at M ≥ N

mesh points yj = 2πj/M ,

Vj =
M/2−1∑

k=−M/2

ˆ̂
Vke

ikyj ,

Wj =
M/2−1∑

k=−M/2

ˆ̂
Wke

ikyj ,

j = 0,1, . . . ,M − 1. (4.58)

The padded coefficients are defined in (4.48). From Vj and Wj we compute the
product Qj = VjWj for j = 0,1, . . . ,M − 1. On this grid, the values of Q define
a Fourier polynomial of degree M , whose coefficients are defined by the discrete
Fourier transform

Q̃k = 1

M

M−1∑

j=0

Qje
−ikyj , k = −M/2, . . . ,M/2 − 1. (4.59)

From the aliasing formula, (1.72), and the convolution sum (4.49), the coefficients
of the interpolant and the exact coefficients of the product are related by

Q̃k = ̂(V W)k +
∞∑

q=−∞
q 	=0

̂(V W)k+qM = ̂(V W)k +
∞∑

q=−∞
q 	=0

N/2∑

p=−N/2

ˆ̂
Wp

ˆ̂
Vk+qM−p.

(4.60)

4 Survey of Spectral Approximations 111

With a proper choice of M , we can eliminate the last (aliasing) term in (4.60) so

that Q̃k = ̂(V W)k . Remember that ˆ̂
Vm = 0 for m > N/2. Thus, if M is chosen so

that |k + M − p| > N/2 for |k|, |p| ≤ N/2, then the aliasing term vanishes for all
q 	= 0. The worst case occurs when k = −N/2 and p = N/2, which leads to

−N

2
− N

2
+ M >

N

2

=⇒ M >
3N

2
. (4.61)

So if the product in physical space is computed with at least 3N/2 + 2 points
(M has to be even according to (4.58)), the interpolant Q(x) through the values at
those points matches the product UV exactly, and the Fourier interpolation coeffi-
cients Q̃k match ̂(V W)k . The only difference is that for large N we can evaluate
the coefficients Q̃k using FFTs much faster than we can evaluate ̂(V W)k by direct
summation.

Remember that the application that is giving us the convolution sum is the ap-
proximation of the uux term in the equation and therefore V and W correspond to
U and Ux . Then, again, V̂p = Ûp and Ŵp = ipÛp . As we discussed in Sect. 1.7, the
−N/2 mode of the derivative doesn’t appear in the sum, so we account for that by
setting W−N/2 = 0. For the approximation of nonlinear advection, then, the worst
case above is k = −N/2 + 1, which leads to the more commonly reported result
that M ≥ 3N/2.

If we use the fast convolution sum with M < 3N/2, in particular M = N ,
then (4.60) shows that there will be aliasing errors introduced into the approxi-
mation. Our stability proof doesn’t tell us anything about what happens with alias-
ing present, however experience has shown that the approximation of the Burg-
ers equation aliasing errors is unstable then ν = 0. For more on the approxima-
tion of the Burgers equation and the issues regarding aliasing errors, see Chap. 3
of [7].

To develop the fast convolution sum algorithm, let us assume that we already
have the coefficients V̂k and Ŵk stored in the sequence −N/2, . . . ,N/2, as would
be natural in the Galerkin approximation (cf. 4.50). The coefficients must be padded
and then re-ordered so that the FFT can be used, as we described in Sect. 2.1.1. Then
we use the inverse FFT to compute the sums in (4.58). This is an order M logM op-
eration. Once we have the values of Qj at each grid point (an order M operation), we
use the forward FFT to compute the coefficients of the product (4.59), which is an-
other M logM operation. The procedure is finished when we reorder the coefficients
to −N/2, . . . ,N/2. Overall, we see that the transformation requires order M logM

operations vs. order N2 operations for the direct sum. This is significant since M

needs only to be 50% larger than N . We present the procedure for the fast convo-
lution sum in Algorithm 49 (FastConvolutionSum). Since our FFT (Algorithm 8)
requires M = 2p , we have padded the coefficients to double the size. A more gen-
eral FFT would allow us to decrease the size of M . Also, Algorithm 49 recomputes
the trigonometric factors for the FFT. For highest efficiency, these should be pre-
computed and stored.

112 4 Survey of Spectral Approximations

Algorithm 49: FastConvolutionSum: Computation of the Convolution Sum
with the FFT

Procedure FastConvolutionSum

Input: N , {V̂k}N/2
k=−N/2, {Ŵk}N/2

k=−N/2

Uses Algorithms:
Algorithm 7 (InitializeFFT)
Algorithm 8 (Radix2FFT)

M = 2N

for k = −M/2 to M/2 do
˜̃
Vk ← 0
˜̃

Wk ← 0
end
for k = 0 to N/2 do

˜̃
Vk ← V̂k

˜̃
Wk ← V̂k

end
for k = −1 to −N/2 Step −1 do

˜̃
VM+k ← V̂k

˜̃
WM+k ← V̂k

end
{wk}M−1

k=0 ← InitializeFFT(M,BACKWARD)

{Vj }M−1
j=0 ← Radix2FFT({ ˜̃

Vk}M−1
k=0 , {wk}M−1

k=0)

{Wj }M−1
j=0 ← Radix2FFT({ ˜̃

Wk}M−1
k=0 , {wk}M−1

k=0)

for j = 0 to M − 1 do
Qj ← VjWj

end
{wk}M−1

k=0 ← InitializeFFT(M,FORWARD)

{Q̃k}M−1
k=0 ← Radix2FFT({Qj }M−1

j=0 , {wk}M−1
k=0)

for k = 0 to N/2 do
̂(V W)k ← Q̃k

end
for k = −1 to −N/2 Step −1 do

̂(V W)k ← Q̃M+k

end

return {V̂ Wk}N/2
k=−N/2

End Procedure FastConvolutionSum

4.3.3 The Collocation Approximation

The collocation method approximates the nonlinear term v = uux by a polynomial
interpolant. We get different interpolants, however, depending on how we write the
nonlinear term. For instance, for smooth enough solutions, the following equations

4 Survey of Spectral Approximations 113

are equivalent:

(i) ut + uux = 0,

(ii) ut + fx = 0,

(iii) ut + 2
3fx + 1

3uux = 0,

(4.62)

where f = 1
2u2 is the flux. The collocation approximations, however, differ. The

issues regarding the Fourier collocation approximation of the equations in (4.62)
are the same that we encounter with finite difference approximations.

The most natural approximation would be to evaluate the nonlinear term at each
grid point using form (i). That is, we would compute the value Vj at each grid point
by

Vj = UjDUj . (4.63)

We can write the polynomial that this represents in terms of the interpolation oper-
ator, IN

V = IN

(
UU ′) . (4.64)

The product of the two polynomials of degree N that represent u and its derivative
is a polynomial degree 2N . When we project that polynomial on a grid of N points
by the interpolation projection we introduce an aliasing error.

An alternative is to use form (ii), evaluate Fj = 1
2U2

j and to approximate that
form by

Vj = DFj . (4.65)

Computationally, this means that we square the grid point values of U and dif-
ferentiate the polynomial that results. In terms of the interpolation projection, the
polynomial that passes through the Vj at the grid points for this approximation is

V = 1

2

(
INU2)′. (4.66)

Both forms introduce aliasing errors, but are not equivalent since differentiation and
interpolation do not commute. The second form (4.65), however, is conservative in
the sense that the semi-discrete approximation satisfies

d

dt

∫ 2π

0
Udx = 0, (4.67)

whereas the first one does not.
We approximate the final form, (iii) by the combination of the two previous

approximations,

Vj = 2

3
DFj + 1

3
UjDUj . (4.68)

The situation with collocation approximations is the same as with finite differ-
ence approximations. We get little guidance on how to choose among the various

114 4 Survey of Spectral Approximations

collocation approximations a priori. The third form, especially, takes twice as much
work to compute, so we might wonder why anyone would be interested in it at all.
All three approximations have aliasing errors. We can show stability of the third
form, however.

To show that the approximation with the third form for the nonlinear term

d

dt
Uj + 2

3
DFj + 1

3
UjDUj = 0, j = 0,1, . . . ,N − 1 (4.69)

is stable, we multiply each equation by 2πUj/N and sum over j

2π

N

N−1∑

j=0

Uj

d

dt
Uj + 2

3

2π

N

N−1∑

j=0

UjDFj + 1

3

2π

N

N−1∑

j=0

U2
j DUj = 0. (4.70)

We recognize the sums as the discrete inner products, so another way to write (4.70)
is

(
d

dt
U,U

)

N

+ 2

3
(DF,U)N + 1

3

(
U2,DU

)

N
= 0. (4.71)

Since U is a Fourier polynomial of degree less than or equal to N , the first discrete
inner product is exact so we can write it as

(
d

dt
U,U

)

N

=
(

d

dt
U,U

)

= 1

2

d

dt
‖U‖2 . (4.72)

The second inner product is also exact because DF = (INF)′, so

(DF,U)N =
(

d

dx
IN

U2

2
,U

)

. (4.73)

When we integrate by parts and use the fact that all the functions are periodic,

1

2

(
d

dx
INU2,U

)

= −1

2

(

INU2,
d

dx
U

)

= −1

2

(

U2,
d

dx
U

)

N

. (4.74)

The last inner product in (4.71) is not exact because U2 is not a Fourier polynomial
of degree less than or equal to N . However, when we replace the second term in
(4.71) with (4.74), the second and third terms cancel leaving us with

1

2

d

dt
‖U‖2 = 0. (4.75)

Therefore the approximation is stable, because (4.75) means that

‖U‖ = ‖U0‖ . (4.76)

If we use the FFT to compute the spatial derivatives in the collocation approxi-
mation to the nonlinear Burgers equation then the work is overall N logN , just like

4 Survey of Spectral Approximations 115

the Galerkin approximation with the fast convolution sum. However, to guarantee
that the approximation is stable, we need to compute two FFT derivatives per time
step.

4.4 Polynomial Collocation Methods

When the boundary conditions are not periodic, we switch to orthogonal polynomial
approximations. In this section, we will derive polynomial collocation approxima-
tions to the diffusion and advection equations separately.

4.4.1 Approximation of the Diffusion Equation

We first show how to approximate the solution to the initial-boundary-value problem
to the diffusion equation

⎧
⎪⎨

⎪⎩

ϕt = ϕxx, −1 < x < 1,

ϕ(x,0) = ϕ0(x), −1 ≤ x ≤ 1,

ϕ(−1, t) = ϕ(1, t) = 0

(4.77)

with polynomial collocation.
The development of the polynomial collocation method follows that of the

Fourier Collocation method (Sect. 4.1). We approximate the solution ϕ by the poly-
nomial interpolant

ϕ(x, t) ≈ Φ(x, t) =
N∑

n=0

Φ̃n(t)φn(x) =
N∑

j=0

Φj(t)�j (x), (4.78)

where the interpolation points, xj , are now the nodes of the Gauss-Lobatto quadra-
ture (1.129). The collocation method is nodal, with the fundamental unknowns taken
to be the Φj ’s, so we will use the second, Lagrange, representation for the polyno-
mial.

Next, we substitute the approximate solution, Φ , into the PDE and require that
it satisfy the equation at the nodes. This requirement generates the system of ODEs
for the nodal values of the solution

Φ̇|xj
− Φxx |xj

= 0, j = 1,2, . . . ,N − 1. (4.79)

We use the boundary conditions to set the values at the end points, Φ0 = ΦN = 0.
When we substitute for Φ with its nodal representation,

N∑

i=0

Φ̇i�i(xj) −
N∑

i=0

Φi�
′′
i (xj) = 0. (4.80)

116 4 Survey of Spectral Approximations

Algorithm 50: CollocationStepByRK3: Low Storage Runge-Kutta Integration
of a Polynomial Collocation Approximation

Procedure CollocationStepByRK3

Input: tn,Δt,
{
Φj

}N

j=0 ,
{
Dij

}N

i,j=0

Input: Procedures: TimeDerivative, gL,gR

for m = 1 to 3 do
t = tn + bmΔt

{Φ̇j }Nj=0 = TimeDerivative({Φj }Nj=0, {Dij }Ni,j=0)

for j = 0 to N do
Gj = amGj + Φ̇j

Φj = Φj + gmΔtGj

end
end
Φ0 = gL(t + Δt);ΦN = gR(t + Δt)

return
{
Φj

}N

j=0
End Procedure CollocationStepByRK3

We can simplify the system of ODEs because �i(xj) = δi,j . With the simplification,
the system of equations that we integrate in time becomes

{
Φ̇j =∑N

i=0 Φi�
′′(xj) = D(2)Φj , j = 1,2, . . . ,N − 1,

Φ0 = ΦN = 0,
(4.81)

where D(2) is the second derivative matrix that we defined in Sect. 3.5.
We integrate the system of ODEs (4.81) in time with an ODE integrator. If we

use an implicit time integrator such as the trapezoidal rule to integrate the system
(4.81), the matrices to invert will be full. For one-dimensional problems such as
(4.77), inverting the matrix directly, say by an LU decomposition (Appendix D.1.2),
is not an excessive cost. Nevertheless, the full matrices that arise in the collocation
method do lead to greater cost per time step than a finite difference method.

We will use the explicit third order Runge-Kutta method that we already pre-
sented in Sect. 4.1 to integrate the system (4.81) in time. Algorithm 50 (Colloca-
tionStepByRK3) presents a generic procedure that takes as input the approximate
solution, Φn, at time tn, the derivative matrix D, which in this case is the second
derivative matrix, and two procedures that compute the time derivatives at the inte-
rior and the boundaries. The time step routine returns the array of the approximate
solution at time tn+1.

Our choice of the explicit Runge-Kutta method to integrate the system in time
limits the size of the time step, which depends on the eigenvalues of the second
derivative matrix, which are real and grow with N . We do not have analytical rep-
resentations for the eigenvalues of the polynomial derivative matrices, however. In
general, they must be computed, say by the DGEEV eigenvalue routine in LAPACK.
Figure 4.6 plots the magnitude of the maximum eigenvalue as a function of N for
the Chebyshev and Legendre second derivative approximations for Dirichlet bound-
ary conditions. This means we plot the eigenvalues for the matrix D(2) with the first

4 Survey of Spectral Approximations 117

Fig. 4.6 Growth as N4 of the
maximum eigenvalue of the
polynomial collocation
second derivative matrix

and last rows and columns removed to account for the boundary conditions. We see
from this graph that the maximum eigenvalue grows as N4 for both the Chebyshev
and the Legendre approximations. The maximum eigenvalue for the Legendre ma-
trix, which we see grows approximately as 0.025N4, is approximately one half that
of the Chebyshev matrix, which grows approximately as 0.047N4.

We determine the maximum time step from the largest eigenvalue. The limit on
the time step for the third order Runge-Kutta method along the real axis is approx-
imately λmaxΔt = −2.51. Thus, the maximum time step for the Legendre (4.81)
approximation is approximately twice as large as the time step for the Chebyshev
approximation, but in both cases Δt ∼ N−4.

4.4.2 How to Implement the Methods

We illustrate how to integrate the system from the initial to the final time in
Algorithm 51 (LegendreCollocation), which includes the integrator and the time
derivative procedures. The integrator first computes the Gauss-Lobatto points and
weights, using Algorithm 25 (LegendreGaussLobattoNodesAndWeights). Only the
nodes are needed for the collocation approximation. To change the approximation
to Chebyshev, we would replace Algorithms 25 with 26 (ChebyshevGaussNode-
sAndWeights). The procedure then computes the second order derivative matrix
using Algorithm 38 (mthOrderPolynomialDerivativeMatrix). Initialization is com-
pleted by computing the time step and evaluating the initial condition at the collo-
cation points, which is illustrated by the user-supplied procedure InitialValues. The
procedure then integrates the solution in time using Algorithm 50 (CollocationStep-
ByRK3).

118 4 Survey of Spectral Approximations

Algorithm 51: LegendreCollocation: Drivers for Legendre Collocation Ap-
proximation

Procedure LegendreCollocationIntegrator
Input: N,NT ,Nout, T

Uses Algorithms:
Algorithm 25 (LegendreGaussLobattoNodesAndWeights)
Algorithm 38 (mthOrderPolynomialDerivativeMatrix)
Algorithm 50 (CollocationStepByRK3)
Algorithm 30 (BarycentricWeights)
Algorithm 32 (PolynomialInterpolationMatrix)
Algorithm 33 (InterpolateToNewPoints)
Algorithm 19 (MxVDerivative)

{{xj }Nj=0, {wj }Nj=0

}← LegendreGaussLobattoNodesAndWeights(N)
{
D2

ij

}N

i,j=0 ← mthOrderPolynomialDerivativeMatrix(2, {xj }Nj=0)

Δt ← T/NT

tn = 0
{Φj }Nj=0 = InitialValues({xj }Nj=0)

for n = 0 to NT − 1 do
{Φj }Nj=0 ← CollocationStepByRK3

(
tn,Δt,

{
Φn

j

}N

j=0,
{
D2

ij

}N

i,j=0,TDerivative, gL, gR
)

tn = (n + 1)Δt
end

for j = 0 to Nout do
Xj ← −1 + 2 ∗ j/Nout

end
{wj }Nj=0 ← BarycentricWeights({xj }Nj=0)

{Tij }Nout,N
i=0,j=0 ← PolynomialInterpolationMatrix

({
xj

}N

j=0 ,
{
wj

}N

j=0 ,
{
Xj

}Nout

j=0

)

{
ΦI

j

}Nout

j=0 ← InterpolateToNewPoints
({

Tij

}Nout,N

i=0,j=0 ,
{
Φj

}N

j=0

)

return
{
ΦI

j

}Nout

j=0
End Procedure LegendreCollocationIntegrator

Procedure TDerivative

Input:
{
Φj

}N

j=0 ,
{
Di,j

}N

i,j=0
{
Φ̇j

}N

j=0 ← MxVDerivative
({

Di,j

}N

i,j=0 ,
{
Φj

}N

j=0

)

return
{
Φ̇j

}N

j=0
End Procedure TDerivative

At the conclusion of time integration loop, the calculation is finished, and the
solution at the final time can be returned for plotting or other purposes. However,
to illustrate the use of the interpolation algorithms that we derived in Sect. 3.4, the
procedure returns the solution at the final time interpolated onto a uniformly dis-
tributed set of points, {Xj }Kj=0. To interpolate the solution, the procedure computes
the Barycentric weights for the Legendre Gauss-Lobatto collocation points using
Algorithm 30 (BarycentricWeights). From the collocation points, it computes the
interpolation weights and the new points. Finally, it computes the interpolation ma-
trix, T , using Algorithm 32 (PolynomialInterpolationMatrix). (If these three steps

4 Survey of Spectral Approximations 119

were done before the time integration, we could interpolate intermediate results, and
the use of the interpolation matrix approach would be more cost effective.) Finally,
Algorithm 33 (InterpolateToNewPoints) performs the actual interpolation, and the
interpolated solutions are returned for plotting or printing.

Also included in Algorithm 51 (LegendreCollocation) are three routines to com-
pute the time derivatives at the interior and boundary points. For the diffusion equa-
tion, time derivative is simply D2Φ , according to (4.81). For this reason, we evalu-
ate the time derivative using Algorithm 19 (MxVDerivative). If we were using the
Chebyshev instead of the Legendre approximation, and N was large enough, we
would compute the time derivative by FFT techniques by applying Algorithm 40
(FastChebyshevDerivative). The time derivatives at the boundary are particularly
simple in this example. The vanishing Dirichlet conditions mean that the time deriv-
atives of the solution at the boundaries are zero, and gL(t) = gR(t) = 0.

4.4.3 Benchmark Solution

As a benchmark problem for Algorithm 51 (LegendreCollocation), we present re-
sults for the solution

ϕ(x, t) = sin [π (x + 1)] e−k2π2t , (4.82)

which satisfies the boundary conditions. Figure 4.7 shows the computed solution,
its interpolant and the exact solution for the Legendre collocation approximation at
time t = 0.1 and N = 12. Enough time steps were taken so that the time integration
error was negligibly small. We see that even on the very coarse grid, the nodal values

Fig. 4.7 Computed, exact,
and interpolated solutions for
the Legendre collocation
approximation to the
diffusion equation, (4.77)

120 4 Survey of Spectral Approximations

Fig. 4.8 Convergence of the maximum errors for Chebyshev and Legendre collocation approxi-
mations to the diffusion equation, (4.77)

of the computed solution and the interpolant are accurate to within plotting accuracy.
To be quantitative about the error, we plot the error convergence as a function of N

in Fig. 4.8 for both the Legendre and Chebyshev approximations. We see that for
both polynomial bases, the error decays exponentially fast until rounding error is
reached. For this particular problem, the Legendre approximation is more accurate
than the Chebyshev approximation.

4.4.4 Approximation of Scalar Advection

The collocation approximation is equally easy to apply to the problem of scalar
advection,

⎧
⎪⎨

⎪⎩

ϕt + ϕx = 0, −1 < x < 1,

ϕ(x,0) = ϕ0(x), −1 ≤ x ≤ 1,

ϕ(−1, t) = g(t), t > 0.

(4.83)

For this equation, it is
{

Φ̇j + (D�)j = 0, j = 1,2, . . . ,N,

Φ0 = g(t),
(4.84)

where D is the first derivative matrix that we derived in Sect. 3.5.2 and that is com-
puted with Algorithm 37 (PolynomialDerivativeMatrix). We can still integrate the

4 Survey of Spectral Approximations 121

Fig. 4.9 Distribution of the eigenvalues for the Chebyshev and Legendre collocation first deriva-
tive matrices when N = 32

system of equations in time with Algorithm 51 (LegendreCollocation), with two
simple modifications. We must change the derivative matrix and apply the boundary
condition only to the left boundary in Algorithm 50.

The fact that we do not need to derive special approximations at or near the
boundaries is an often noted advantage of spectral collocation methods over high
order finite difference methods. At the left, only the boundary condition needs to be
specified. At the right, no conditions at all need to be applied, independent of the
order of the approximation. Contrast this with a high order finite difference method
where special biased stencils must be derived near both ends of the interval. When
solving large, complex problems, this advantage should not be underappreciated.

Since we will again use an explicit third order Runge-Kutta method to integrate
in time, there will be a limit on the size of the time step that depends on the size
of the eigenvalues of the derivative matrix. The Fourier transform tells us that the
eigenvalues of the exact first derivative operator are purely imaginary, and we expect
the eigenvalues of the derivative matrix to approximate this fact at the least. Analytic
representations for the eigenvalues of the polynomial derivative matrices are not
known, so we must again find the eigenvalues numerically.

Figure 4.9 shows the computed eigenvalues of the collocation first derivative
matrices for N = 32. The eigenvalues have large imaginary parts and some nega-
tive real parts. The presence of the real parts indicates that the approximations are
dissipative, that is, some energy is lost as the computation proceeds. Dissipation is
important for the stability of variable coefficient and nonlinear problems, so its pres-
ence here is not necessarily a problem. We see also that the structure of the eigen-
values differs between the Chebyshev and Legendre approximations. The largest
eigenvalues of the Legendre approximation are very near the imaginary axis, while
the corresponding eigenvalues of the Chebyshev approximation have significantly
larger real parts.

122 4 Survey of Spectral Approximations

Fig. 4.10 Second order (N2)
growth of the maximum
eigenvalue for the collocation
first derivative matrices

The time step will be limited by the size and location in the complex plane of the
largest eigenvalue. We show the growth of the magnitude of the largest eigenvalue
in Fig. 4.10 for both the Chebyshev and Legendre approximations. We see from the
graph that the largest eigenvalue grows asymptotically as O(N2). The largest eigen-
value is smaller for the Legendre approximation, but the difference is not nearly as
large as in the diffusion example. Overall, we see that λmax ∼ 0.09N2 for the Cheby-
shev approximation and λmax ∼ 0.08N2 for the Legendre.

For the approximation to be stable in time, λmaxΔt must fall within the region
of absolute stability of the time integration method. It is more difficult to find the
exact limit on Δt for the spectral polynomial advection approximations than for
Fourier or centered finite difference approximations because the largest eigenvalue
does not lie exactly on the imaginary axis. At best, we can only find a reasonable
approximation to the largest time step that the approximation can take. Since we
know that the eigenvalues grow as Const × N2, and since we know the constant
approximately from Fig. 4.10, we can estimate the maximum time steps for the
Chebyshev and Legendre approximations by Δt ≈ 1.73C/N2 where we find C so
that the eigenvalues fall within the region of absolute stability. The value 1.73 comes
from the fact that the region of absolute stability of the third order Runge-Kutta
crosses the imaginary axis at 1.73i. Figure 4.11 shows the location of λΔt for Δt

approximated this way with C = 11 ≈ 1/0.09 for the Chebyshev approximation and
C = 10 for the Legendre. We see that with these choices for C, λΔt falls within the
region for all eigenvalues λ when N is between 8 and 32. Figure 4.11 shows that the
choice of C is conservative for the Chebyshev approximation. The time step could
be increased by about 50% for N > 16. The estimate for Δt is just adequate for
the Legendre approximation. We conclude from this exercise that the Chebyshev
approximation can take a slightly larger time step than the Legendre approximation

4 Survey of Spectral Approximations 123

Fig. 4.11 Footprints of the eigenvalues of the Chebyshev and Legendre first derivative matrices
for N = 8,16,32 scaled by const × 1.73/N2, relative to the region of absolute stability of the third
order Runge-Kutta method. Stability requires λΔt to lie within the enclosed region

when used in conjunction with the third order Runge-Kutta method for the time
integration.

We defer a benchmark solution until we have derived a discontinuous Galerkin
approximation to the advection problem. At that point, we will compare three meth-
ods designed to solve the scalar advection equation in one space dimension.

4.5 The Legendre Galerkin Method

We can also derive polynomial Galerkin methods to PDEs. We introduce the Legen-
dre Galerkin method by way of the heat equation,

⎧
⎪⎨

⎪⎩

ϕt = ϕxx, −1 < x < 1,

ϕ(x,0) = ϕ0(x), −1 ≤ x ≤ 1,

ϕ(−1, t) = ϕ(1, t) = 0.

(4.85)

Recall from the introduction to this chapter that the spectral Galerkin approxi-
mation has two basic characteristics. The first is that the solution is approximated
by a polynomial of degree N ,

ϕ ≈ Φ =
∑

Φ̂k(t)φk, (4.86)

where the basis functions φk individually satisfy the boundary conditions. The sec-
ond is that the expansion coefficients, Φ̂k(t), are determined from a weak form of
the equation.

124 4 Survey of Spectral Approximations

Whereas the Fourier basis functions are periodic, which makes them suitable
for problems with periodic boundary conditions, the Legendre polynomials (or the
Chebyshev polynomials, for that matter) do not necessarily satisfy the boundary
conditions for a given problem. In fact, from the recursion of the Legendre polyno-
mials (1.82) we see that Lk(1) = 1 and Lk(−1) = (−1)k , so they are not immedi-
ately suitable for the problem (4.85).

The first task is to find suitable polynomial basis functions that satisfy the bound-
ary conditions. For the trivial boundary conditions in (4.85), several choices are
possible, but for efficient computation, the polynomials

φk(x) = 1√
4k + 6

[
Lk(x) − Lk+2(x)

]
(4.87)

are particularly useful. A simple calculation shows that the φk satisfy the boundary
conditions and that the approximation

Φ =
N−2∑

k=0

Φ̂kφk (4.88)

is a polynomial of degree N .
Next, we must find a set of equations for the coefficients, Φ̂k . Since we are de-

riving a Galerkin approximation, we get them from the weak form of the diffusion
equation

(Φt ,φn) + (
Φx,φ

′
n

)= 0, n = 0,1, . . . ,N − 2. (4.89)

If we now substitute the expansion for Φ ,

N−2∑

k=0

˙̂
Φk (φk,φn) +

N−2∑

k=0

Φ̂k

(
φ′

k, φ
′
n

)= 0. (4.90)

Formally, this is a system of ordinary differential equations for the vector of the
coefficients. That is, if we define two matrices M and S with Mkn = (φk,φn) and
Skn = (φ′

k, φ
′
n), then

M
˙̂
� = −S�̂, (4.91)

where �̂ = [Φ̂0 Φ̂1 . . . Φ̂N−2]T .
By choosing the basis functions (4.87), we make the matrices M and S partic-

ularly simple. The matrix S turns out to be the identity matrix, for the recursion
formula for the derivatives of the Legendre polynomials, (1.83), implies that

L′
k+2 − L′

k = (2k + 3)Lk+1, (4.92)

or

Lk+1 = 1

(2k + 3)

(
L′

k+2 − L′
k

)= − 2√
4k + 6

φ′
k. (4.93)

4 Survey of Spectral Approximations 125

Thus,

(
φ′

k, φ
′
n

)= 4k + 6

4
(Lk+1,Ln+1) = δk,n. (4.94)

Next, by direct calculation of the inner product (φk,φn), we find that the elements
of the matrix, M , are given by

(φk,φn) = αkαn

{
βkδkn + γnδk+2,n + μnδk,n+2

}
(4.95)

where

αn = 1√
4n + 6

, γn = − 2

2n + 1
, μn = − 2

2n + 5
, βn = − (γn + μn) .

(4.96)
Thus, the matrix M is pentadiagonal.

The fact that the j th row of M , as seen in (4.95), has non-zero elements in the
j th, j + 2nd and j − 2nd columns means that the even and odd coefficients are
decoupled. To take advantage of this decoupling, let us define new vectors of the
even and odd indexed coefficients, namely, let

Φ̂e
j = Φ̂2j , j = 0,1, . . . ,

⌊
N − 2

2

⌋

,

Φ̂o
j = Φ̂2j+1, j = 0,1, . . . ,

⌊
N − 2 + 1

2

⌋

− 1.

(4.97)

Now, from (4.95), the decoupling is represented in the fact that

(φ2k, φ2n) = α2kα2n

{
β2kδ2k,2n + γ2nδ2(k+1),n + μnδk,2(n+1)

}
(4.98)

and

(φ2k+1, φ2n) = 0. (4.99)

Thus,

(
Φ̇,φ2j

)= β2jα
2
2j

˙̂
Φe

j + γ2jα2(j−1)
˙̂

Φe
j−1 + μ2jα2(j+1)α2j

˙̂
Φe

j+1. (4.100)

We can get a similar relation for the odd indexed coefficients. After decoupling, the
systems of ODEs that the even and odd coefficients satisfy are

T e ˙̂
Φe = Φ̂e, T o ˙̂

Φo = Φ̂o, (4.101)

where T e,o are now the tridiagonal matrices

T = diag(lj , dj , uj). (4.102)

126 4 Survey of Spectral Approximations

The diagonal, subdiagonal, and superdiagonal vectors of T are

dj = α2
2j+pβ2j+p, j = 0,1, . . . ,

⌊
N − 2 + p

2

⌋

− p,

lj = γ2jα2j α2(j−1), j = 1,2, . . . ,

⌊
N − 2 + p

2

⌋

− p,

uj = μ2jα2jα2(j+1), j = 0,1, . . . ,

⌊
N − 2 + p

2

⌋

− p − 1,

(4.103)

where p = 0 for the even coefficients and p = 1 for the odds.
The matrices T are symmetric. They are also diagonally dominant, which al-

lows us to use the Thomas algorithm (Algorithm 141) without pivoting to solve the
systems (4.101).

We create the initial conditions for the systems given in (4.101) from the exact
Legendre coefficients of the initial condition ϕ0(x). The Galerkin method approxi-
mates the initial coefficients by the orthogonal polynomial truncation of the initial
condition

Φ0 = PNϕ0 =
N∑

k=0

(ϕ̂0)kLk(x). (4.104)

To get the coefficients Φ̂0
k from the Legendre coefficients, we take the orthogonal

projection

N−2∑

k=0

Φ̂0
k (φk,φm) =

N∑

k=0

(ϕ̂0)k (Lk,φm), m = 0,1, . . . ,N − 2. (4.105)

We have already derived the inner products on the left. The results are in (4.95). The
relation between the φk and the Lk (4.87) implies that

(Lk,φm) = −αmγmδkm + μmαmδk,m+2. (4.106)

Thus, the inner products on the left side of (4.105) form a tri-diagonal matrix, and
the inner products on the right form a bi-diagonal matrix. Again, the even and odd
indexed coefficients decouple, so that we can find the initial coefficients also by
solving two tri-diagonal matrix systems.

As before, when we developed the Fourier Galerkin method in Sect. 4.2, the
approximation of nonlinear and non-constant coefficient problems is more com-
plicated because of the need to evaluate the integrals analytically. The polynomial
Galerkin method has the additional difficulty of needing to construct the basis func-
tions so that they satisfy the boundary conditions. Nevertheless, we see that the
Galerkin approximation can be made very efficient with work rivaling a second or-
der finite difference method, yet with exponential convergence of the error. For more
general problems with variable coefficients and more complex boundary conditions,

4 Survey of Spectral Approximations 127

however, it would be useful to replace integrals with quadrature that will retain spec-
tral accuracy for the approximation. Approximation with quadratures is the topic of
the following two sections.

4.5.1 How to Implement the Method

Let us now develop the algorithms that we need to implement the Legendre Galerkin
method. We present procedures to construct the modified Legendre basis in Algo-
rithm 52 (ModifiedLegendreBasis) and to reconstruct the solution in Algorithm 53
(EvaluateLegendreGalerkinSolution).

We use the procedure in Algorithm 54 (InitTMatrix) to compute the matrix T .
We assume in that procedure that functions to evaluate the coefficients α,β and γ

by way of (4.96) are available. The procedure also explicitly uses the fact that the
matrices are symmetric.

We show how to compute the initial coefficients Φ̂k in Algorithm 55 (Modified-
CoefsFromLegendreCoefs). For efficiency, we compute the three vectors for each
of the tri-diagonal matrices once and store them.

Next, we need to integrate the systems of ODEs for the even and odd coefficients
in time. Since the systems are tri-diagonal, it is convenient to use the second order,

Algorithm 52: ModifiedLegendreBasis: The Legendre Basis Modified to Van-
ish at Endpoints

Procedure ModifiedLegendreBasis
Input: k, x

Uses Algorithms:
Algorithm 20 (LegendrePolynomial)

φk ← LegendrePolynomial(k, x) − LegendrePolynomial(k + 2, x); φk ← φk/
√

4k + 6
return φk

End Procedure ModifiedLegendreBasis

Algorithm 53: EvaluateLegendreGalerkinSolution: Synthesis of the Legendre
Galerkin Solution

Procedure EvaluateLegendreGalerkinSolution

Input: N,x,
{
Φ̂k

}N−2
k=0

Uses Algorithms:
Algorithm 52 (ModifiedLegendreBasis)

U ← 0
for k = 0 to N − 2 do

Φ ← Φ + Φ̂k ∗ ModifiedLegendreBasis(k, x)

end
return Φ

End Procedure EvaluateLegendreGalerkinSolution

128 4 Survey of Spectral Approximations

Algorithm 54: InitTMatrix: Legendre Galerkin Tridiagonal Matrix

Procedure initTMatrix
Input: N,p

for j = 0 to N do
dj ← β2j+p ∗ α2

2j+p

end
for j = 1 to N do

lj ← γ2j+p ∗ α2j+p ∗ α2(j−1)+p

uj−1 ← lj
end

return
{
lj
}N

j=2 ,
{
dj

}N

j=1 ,
{
uj

}N−1
j=1

End Procedure initTMatrix

Algorithm 55: ModifiedCoefsFromLegendreCoefs: Computing the Modified
Legendre Coefficients from Legendre Coefficients

Procedure ModifiedCoefsFromLegendreCoefs

Input:
{
ϕ̂k

}N

k=0

Uses Algorithms:
Algorithm 141 (TriDiagonalSolve)
Algorithm 54 (initTMatrix)

/* Even index coefficients */

M ← �(N − 2) /2�{{
lj
}M

j=1 ,
{
dj

}M

j=0 ,
{
uj

}M−1
j=0

}
← initTMatrix(M,0)

for j = 0 to M do
rhsj ← μ2j ∗ α2j ∗ ϕ̂2j+2 − α2j ∗ γ2j ∗ ϕ̂2j

end
{
bj

}M

j=0 ← TriDiagonalSolve(M, {lj }Mj=1, {dj }Mj=0, {uj }M−1
j=0 , {rhsj }Mj=0)

for j = 0 to M do
Φ̂2j ← bj

end

/* Odd index coefficients */

M ← �(N − 2 + 1) /2� − 1{{
lj
}M

j=1 ,
{
dj

}M

j=0 ,
{
uj

}M−1
j=0

}
← initTMatrix(M,1)

for j = 0 to M do
rhsj ← μ2j+1 ∗ α2j+1 ∗ ϕ̂2j+3 − α2j+1 ∗ γ2j+1 ∗ ϕ̂2j+1

end
{
bj

}M

j=0 ← TriDiagonalSolve(M, {lj }Mj=1, {dj }Mj=0, {uj }M−1
j=0 , {rhsj }Mj=0)

for j = 0 to M do
Φ̂2j+1 ← bj

end

return
{
Φ̂k

}N−2
k=0

End Procedure ModifiedCoefsFromLegendreCoefs

4 Survey of Spectral Approximations 129

implicit trapezoidal rule in time,

T
�̂

n+1 − �̂
n

Δt
= − �̂

n+1 + �̂
n

2
, (4.107)

which we rewrite as
(

T + Δt

2
I

)

�̂
n+1 =

(

T − Δt

2
I

)

�̂
n
, (4.108)

for each of the even and odd indexed coefficient vectors. What we see is that we can
take one time step of the Legendre Galerkin method for the constant coefficient heat
equation for the same amount of work as a standard, second order Crank-Nicolson
finite difference scheme.

Algorithm 56 (LegendreGalerkinStep) implements the time-stepping procedure.
It takes the coefficients at time level n and returns the values at the new time level,
n + 1. For the sake of clarity, this algorithm re-computes the tri-diagonal matrices.
For efficiency those coefficients should be pre-computed and stored.

Finally, the computation of the Galerkin approximation requires a driver to in-
tegrate from the initial to the final times. We can easily modify Algorithm 47
(FourierGalerkinDriver) to drive the Legendre Galerkin approximation by substi-
tuting the routines in Algorithms 55 (ModifiedCoefsFromLegendreCoefs), 56 (Leg-
endreGalerkinStep) and 53 (EvaluateLegendreGalerkinSolution) for the procedures
InitialCoefficients, FourierGalerkinStep, and EvaluateFourierGalerkinSolution.

4.6 The Nodal Continuous Galerkin Method

An approximation that is intermediate between the Galerkin method and the colloca-
tion method starts with the Galerkin formulation, but replaces integrals with Gauss
quadratures. The result is a nodal method that is significantly easier to implement
than the Galerkin method. It is also the foundation of the Spectral Element Method
that we discuss in Chap. 8. In the context of our discussions above, we make the
following choices: We will use the Galerkin weak form of the equation and Legen-
dre expansions to keep the weight function constant. We will represent the solution
in nodal form and use a quadrature approximation to approximate the integrals that
arise. It is possible to integrate analytically or to use exact quadrature with a nodal
representation of the solution, but such methods are not commonly used in practice.
For this reason, we will refer to the method presented here as the nodal continuous
Galerkin method.

Our description of the approximation will again be in the context of the diffusion
equation, (4.77), as our model problem

⎧
⎪⎨

⎪⎩

ϕt = ϕxx, −1 < x < 1,

ϕ(x,0) = ϕ0(x), −1 ≤ x ≤ 1,

ϕ(−1, t) = ϕ(1, t) = 0, t > 0.

(4.109)

130 4 Survey of Spectral Approximations

Algorithm 56: LegendreGalerkinStep: Take One Time Step by Trapezoidal
Rule

Procedure LegendreGalerkinStep;

Input: Δt ,
{
Φ̂n

k

}N−2
k=0

Uses Algorithms:;
Algorithm 141 (TriDiagonalSolve);
Algorithm 54 (initTMatrix);

/* Even index coefficients */

M ← �(N − 2) /2�;{{lj }Mj=1, {dj }Mj=0, {uj }M−1
j=0

}← initTMatrix(M,0)

rhs0 ← (d0 − Δt/2) ∗ Φ̂n
0 + u0 ∗ Φ̂n

2 ;
for j = 1 to M − 1 do

rhsj ← lj ∗ Φ̂n
2(j−1) + (dj − Δt/2) ∗ Φ̂n

2j + uj ∗ Φ̂n
2(j+1);

end
rhsM ← (dM − Δt/2) ∗ Φ̂n

2M + lM ∗ Φ̂n
2(M−1);

for j = 0 to M do
dj ← dj + Δt/2;

end
{
Φ̂j

}M

j=0 ← TriDiagonalSolve(M, {lj }Mj=1, {dj }Mj=0, {uj }M−1
j=0 , {rhsj }Mj=0);

for j = 0 to M do
Φ̂n+1

2j ← Φ̂j ;

end

/* Odd index coefficients */

M ← �(N − 2 + 1) /2� − 1;{{lj }Mj=1, {dj }Mj=0, {uj }M−1
j=0

}← initTMatrix(M,1)

rhs0 ← (d0 − Δt/2) ∗ Φ̂n
1 + u0 ∗ Φ̂n

3 ;
for j = 1 to M − 1 do

rhsj ← lj ∗ Φ̂n
2(j−1)+1 + (dj − Δt/2) ∗ Φ̂n

2j+1 + uj ∗ Φ̂n
2(j+1)+1;

end
rhsM ← (dM − Δt/2) ∗ Φ̂n

2M+1 + lM ∗ Φ̂n
2(M−1)+1;

for j = 0 to M do
dj ← dj + Δt/2;

end
{
Φ̂j

}M

j=0 ← TriDiagonalSolve(M, {lj }Mj=1, {dj }Mj=0, {uj }M−1
j=0 , {rhsj }Mj=0);

for j = 0 to M do
Φ̂n+1

2j+1 ← Φ̂j ;

end

return
{
Φ̂n+1

k

}N−2
k=0 ;

Procedure LegendreGalerkinStep;

Since we are deriving a Galerkin approximation, we start with the weak form of the
PDE,

(ϕt , φ) + (ϕx,φx) = 0 (4.110)

for any sufficiently smooth φ that satisfies the boundary conditions.

4 Survey of Spectral Approximations 131

As usual, we approximate the solution by a polynomial of degree N . We will take
advantage of Gauss-Lobatto quadratures to approximate integrals, so it is convenient
to use the nodal Lagrange form with nodes at the Gauss-Lobatto points. Thus, we
approximate

ϕ(x, t) ≈ Φ(x, t) =
N∑

j=0

Φj(t)�j (x). (4.111)

To have the approximation satisfy the boundary conditions, we set Φ0 = ΦN = 0.
So far, we have re-specified the Legendre Galerkin approximation of the previous

section. Now we will take advantage of flexibility given to us by the nodal represen-
tation of a polynomial. Since Φ satisfies (4.110) for any function φ, it must satisfy
the condition for all linear combinations of the basis functions,

φ =
N∑

k=0

bnφn(x) (4.112)

with arbitrary coefficients bn. Since φ is an N th order polynomial we can write it,
too, in the equivalent Lagrange form,

φ =
N∑

j=0

φj�j (x), (4.113)

where the nodal values φj are arbitrary, except that φ0 = φN = 0 to ensure that φ

satisfies the boundary conditions.
To get the nodal Galerkin approximation, we approximate the integrals in (4.110)

rather than evaluate them analytically. We replace them by Legendre Gauss-Lobatto
quadrature (Sect. 1.11), which we write as

(Φt ,φ)N + (Φx,φx)N = 0. (4.114)

It is worth noting that the second discrete inner product in (4.114) is exact. The
original integral is the product of two polynomials of degree N − 1, so the product
is a polynomial of degree 2N − 2. The Gauss Lobatto quadrature is exact for poly-
nomials of degree 2N − 1 or less, so there is no error going from the continuous to
the discrete. The first inner product is not exact, since the integrand is a polynomial
of degree 2N . It does have a spectrally small quadrature error associated with it,
however.

Let us examine the two discrete inner products in (4.114) separately. When we
replace the polynomials by their Lagrange representations, the first discrete inner
product becomes

(Φt ,φ)N =
N∑

j=0

wj

(
N∑

n=0

Φ̇n�n(xj)

N∑

m=0

φm�m(xj)

)

. (4.115)

132 4 Survey of Spectral Approximations

Since �i(xj) = δi,j , the sums reduce all the way to

(Φt ,φ)N =
N∑

j=0

Φ̇jφjwj . (4.116)

The second quadrature expands partially to

(Φx,φx)N =
N∑

j=0

wjΦ
′
j

(
N∑

m=0

φm�′
m(xj)

)

=
N∑

m=0

φm

⎛

⎝
N∑

j=0

wjΦ
′
j �

′
m(xj)

⎞

⎠.

(4.117)
If we rename the indices m ← j and j ← k, add the time derivative term, and
rearrange, (4.114) becomes

N∑

j=0

[

Φ̇jwj +
N∑

k=0

wkΦ
′
k�

′
j (xk)

]

φj = 0. (4.118)

Since the φj are linearly independent, the coefficient of each φj must be zero, so

Φ̇jwj +
N∑

k=0

wkΦ
′
k�

′
j (xk) = 0, j = 1,2, . . . ,N − 1. (4.119)

Notice that the end points, j = 0 and j = N are not included, since φ0 = φN = 0
to satisfy the boundary conditions. We specify the unknowns at those points by the
boundary conditions.

We complete the approximation (4.119) by expanding the derivative Φ ′. The
derivative of the interpolant is

Φ ′
k =

N∑

n=0

Φn�
′
n (xk), (4.120)

so we can write the sum in (4.119) as

N∑

k=0

wkΦ
′
k�

′
j (xk) =

N∑

k=0

wk

N∑

n=0

Φn�
′
n (xk)�

′
j (xk) =

N∑

n=0

Φn

(
N∑

k=0

wk�
′
n (xk)�

′
j (xk)

)

.

(4.121)
But �′

n(xk) = Dkn is the polynomial derivative matrix, so the system of ODEs for
the solution unknowns is

Φ̇j +
N∑

n=0

ĜjnΦn = 0, j = 1,2, . . . ,N − 1,

Φ0 = ΦN = 0,

(4.122)

4 Survey of Spectral Approximations 133

Algorithm 57: CGDerivativeMatrix: Matrix for Legendre Galerkin Approxi-
mation

Procedure CGDerivativeMatrix
Input: N

Uses Algorithms:
Algorithm 25 (LegendreGaussLobattoNodesAndWeights)
Algorithm 37 (PolynomialDerivativeMatrix)

{{
xj

}N

j=0 ,
{
wj

}N

j=0

}
← LegendreGaussLobattoNodesAndWeights(N)

{
Di,j

}N

i,j=0 ← PolynomialDerivativeMatrix(N, {xj }Nj=0)

for j = 0 to N do
for n = 0 to N do

s ← 0
for k = 0 to N do

s ← s + Dk,n ∗ Dl,j ∗ wk

end
Gj,n ← s

end
end

return
{
Gi,j

}N

i,j=0
End Procedure CGDerivativeMatrix

if we define the matrix Ĝ by

Ĝjn = 1

wj

Gjn = 1

wj

N∑

k=0

DknDkjwk. (4.123)

In matrix form, we can represent Ĝ by Ĝ = W−1DT WD, where W is the diagonal
matrix of the Gauss-Lobatto quadrature weights. In finite element parlance, the ma-
trix DT WD is the stiffness matrix and the matrix W is the mass matrix. The matrix
Ĝ, therefore, is the product of the inverse of the mass matrix times the stiffness ma-
trix. One advantage of the discrete orthogonality of the basis functions, we see, is
that the mass matrix is diagonal, and hence trivial to invert. We present a procedure
to compute the matrix G generated in Algorithm 57 (CGDerivativeMatrix).

4.6.1 How to Implement the Method

In practical terms, the nodal Galerkin approximation (4.122) looks the same as the
collocation approximation (4.81), differing only by the matrix D being replaced by
the matrix G. For this reason, we can implement it with Algorithm 51 (LegendreCol-
location) simply by replacing the calls to LegendreGaussLobattoNodesAndWeights
and mthOrderPolynomialDerivativeMatrix with the call to CGDerivativeMatrix in
Algorithm 57. In fact, the resemblance of the two methods goes beyond form. It
can be shown that the elements of the matrix Ĝ for 1 ≤ i, j ≤ N − 1 are identical to

134 4 Survey of Spectral Approximations

those elements of the Legendre collocation method, making the two approximations
for the constant coefficient Dirichlet problems identical [7].

One advantage of the Galerkin formulation, however, comes with the ease with
which we can impose other boundary conditions, such as Neumann conditions. To
specify a Neumann boundary condition, say ϕx(1) = σ , we start with the weak form
of the equation after integration by parts, but before setting the boundary conditions

(ϕt , φ) − ϕxφ|1−1 + (ϕx,φx) = 0.

We replace the solution derivative by σ and then proceed with the approximation to
get

(Φt ,φ)N − σφ(1) + (Φx,φx)N = 0. (4.124)

When we follow the same procedure that leads to (4.122), we get the system of
ordinary differential equations to integrate in time

Φ̇j +
N∑

n=0

ĜjnΦn = 0, j = 1,2, . . . ,N − 1,

Φ̇N +
N∑

n=0

ĜNnΦn − σ

wN

= 0,

Φ0 = 0.

(4.125)

4.6.2 Benchmark Solution

To examine the performance of the nodal continuous Galerkin approximation, we
revisit the example of Sect. 4.1.1, where we solved the heat equation with Cheby-
shev and Legendre collocation for the exact solution

u(x, t) = sin [π (x + 1)] e−k2π2t . (4.126)

Figure 4.12 displays the convergence of the error for the nodal Galerkin method
along with the Chebyshev and Legendre collocation errors shown previously in
Fig. 4.8. For this problem, we see that there is no difference in the maximum error
of the two Legendre approximations, since for this problem the two approximations
are identical.

4.7 The Nodal Discontinuous Galerkin Method

The last spectral approximation that we develop uses the Discontinuous Galerkin
formulation, which is particularly well-suited to solve wave propagation problems.

4 Survey of Spectral Approximations 135

Fig. 4.12 Convergence of
the maximum errors for
Chebyshev and Legendre
collocation approximations to
the diffusion equation, (4.77),
compared with the errors for
the Nodal Galerkin
approximation

We will use the method later in Chaps. 5, 7 and 8 to approximate the solutions of
systems of conservation laws, which include systems that describe gas dynamics,
ocean waves, and electrodynamics.

To motivate the formulation, we approximate the first order initial boundary value
problem for the advection equation (4.83) again. Since we are developing a Galerkin
approximation, we rewrite the PDE in weak form,

(ϕt , φ) + (ϕx,φ) = 0 (4.127)

for any function φ. Unlike the continuous Galerkin approximation of the previous
section, we will not require φ to satisfy the boundary condition on the left. This is
what distinguishes the discontinuous from the continuous formulation.

Since we are developing a nodal method, we approximate the solution by a poly-
nomial of degree N and represent the polynomial in the nodal, Lagrange form

ϕ(x, t) ≈ Φ(x, t) =
N∑

j=0

Φj(t)�j (x). (4.128)

We defer the question of what points to use as the nodes until we have derived the
final weak form of the equation that the approximation will satisfy.

We find the N +1 equations that we need to determine the Φj values by the usual
Galerkin conditions. We require that Φ satisfy the weak form (4.127) for any φ that
is a polynomial of degree N

(Φt ,φ) + (Φx,φ) = 0. (4.129)

136 4 Survey of Spectral Approximations

To get the actual set of N + 1 equations, we write the polynomial φ in nodal La-
grange form

φ =
N∑

j=0

φj�j (x), (4.130)

and understand that when we say “for any”, we mean that the nodal values φj are
arbitrary and linearly independent. When we substitute (4.130) for φ in (4.129) and
rearrange, we see that Φ satisfies

N∑

j=0

{(
Φt, �j

)+ (
Φx, �j

)}
φj = 0.

We get our N + 1 equations because the φj are independent, for each factor must
vanish individually leaving us with

(
Φt, �j

)+ (
Φx, �j

)= 0, j = 0,1, . . . ,N. (4.131)

We still have to enforce the boundary condition. To do that, we first separate
the boundary contributions from the interior contributions by integrating the inner
product that contains the spatial derivatives by parts

(
Φt, �j

)+ Φ�j

∣
∣1−1 − (

Φ,�′
j

)= 0. (4.132)

Unlike when we use the continuous Galerkin method, the boundary terms do not
vanish because �j (±1) does not necessarily vanish. Nor is the approximation, Φ ,
required to satisfy the boundary conditions exactly.

We enforce the boundary condition for the discontinuous Galerkin approximation
of the advection equation weakly. We replace the boundary term in (4.132) at the
left boundary by the boundary condition

(
Φt, �j

)+ {
Φ(1, t)�j (1) − g(t)�j (−1)

}− (
Φ,�′

j

)= 0. (4.133)

Since there is no boundary condition on the right, we do nothing there.
Finally, we find the equations that the Φj satisfy. We insert the representation

(4.128) into the weak form (4.133) to get

N∑

n=0

Φ̇n

(
�n, �j

)+ {
Φ(1, t)�j (1) − g(t)�j (−1)

}−
N∑

n=0

Φn

(
�n, �

′
j

)= 0. (4.134)

Rather than evaluate the integral inner products analytically, we approximate them
by quadrature,

N∑

n=0

Φ̇n

(
�n, �j

)

N
+ {

Φ(1, t)�j (1) − g(t)�j (−1)
}−

N∑

n=0

Φn

(
�n, �

′
j

)

N
= 0.

(4.135)

4 Survey of Spectral Approximations 137

It is at this point that we make the decision on what quadrature to use and where
to place the nodes. The obvious choices for the quadrature are to use either the
Legendre Gauss or the Legendre Gauss-Lobatto approximations. The Gauss quadra-
ture would ensure that the discrete inner product, (�n, �j)N is exact, since the La-
grange interpolating polynomials are of degree N . If we use the Gauss-Lobatto
quadrature, a quadrature error is introduced. Both types of quadratures have been
used in practice.

Each quadrature has its advantages and disadvantages. The advantage of the Lo-
batto points is that the boundary term Φ(1, t) = ΦN(t). If we use the Gauss points,
then we must evaluate the interpolant, (4.128), to get the boundary value. On the
other hand, the Gauss points give us (�n, �j)N = (�n, �j) and

(
�n, �j

)

N
=

N∑

k=0

�n (xk) �j (xk)wk = wjδn,j . (4.136)

Notice that the situation differs from that of the continuous Galerkin approximation
of the previous section. We used the Gauss-Lobatto points there because the approx-
imate solution had to satisfy the boundary conditions. Since the boundary conditions
do not have to be satisfied (exactly) with the discontinuous Galerkin approximation,
we have the opportunity to use the higher precision Gauss quadrature.

We will choose the Legendre Gauss points as the nodes, which are interior to
the interval. With that choice made, we can derive the final approximation. We use
(4.136) to simplify the time derivative term, while

(
�n, �

′
j

)

N
=

N∑

k=0

�n (xk) �′
j (xk)wk = �′

j (xn)wn. (4.137)

The simplifications give us the equations satisfied by the nodal values of the approx-
imate solution,

Φ̇j = −
{

Φ(1, t)
�j (1)

wj

− g(t)
�j (−1)

wj

+
N∑

n=0

D̂jnΦn

}

, j = 0,1, . . . ,N,

(4.138)
where

D̂jn = −Dnjwn

wj

, (4.139)

and Dnj = �′
j (xn) is the transpose of the standard derivative matrix, computed with

Algorithm 37 (PolynomialDerivativeMatrix). We find the boundary value of the so-
lution that we need in (4.138) from the interpolant

Φ(1, t) =
N∑

j=0

Φj�j (1). (4.140)

138 4 Survey of Spectral Approximations

We can compute boundary value simply by a dot product if we compute the coeffi-
cients �j (1) once and store them.

It is possible to integrate (4.133) by parts a second time. Then the equation looks
more like a penalty method

(
Φt, �j

)+ [
Φ(−1, t) − g(t)

]
�j (−1) + (

Φ ′, �j

)= 0, (4.141)

where a correction based on the difference between the value at the left boundary
and the boundary condition is added to the equation to weakly impose the boundary
condition. For linear problems like this and on the square, there is no difference.
For nonlinear equations and equations on curvilinear domains, the quadrature errors
differ between the two, making the approximations slightly different. We will only
develop algorithms for which the equation is integrated by parts once.

4.7.1 How to Implement the Method

We are now ready to construct algorithms to compute the discontinuous Galerkin
first derivative approximation. Since it is most efficient to pre-compute the arrays
�j (±1) and D̂jn and store them, we wrap the discontinuous Galerkin derivative
operator into a class, Algorithm 58 (NodalDiscontinuousGalerkin), that groups both
procedures and data. We use the constructor to compute and store these quantities
as member data. The derivative computation, ComputeDGDerivative, evaluates the
quantities in the braces in (4.138).

Algorithm 59 (NodalDiscontinuousGalerkin:Construct) implements a construc-
tor for the discontinuous Galerkin approximation and is built from algorithms that
we have already developed. It first computes the Legendre Gauss nodes the quadra-
ture weights via Algorithm 23 (LegendreGaussNodesAndWeights). The barycen-
tric weights, which we use to compute the Lagrange interpolating polynomials
(Sect. 3.4), are evaluated next using Algorithm 30 (BarycentricWeights). The two
arrays of Lagrange interpolating polynomials that are evaluated at the endpoints are
then computed with Algorithm 34 (LagrangeInterpolatingPolynomials). Finally, the

Algorithm 58: NodalDiscontinuousGalerkin: A Discontinuous Galerkin Class
Definition

Class NodalDiscontinuousGalerkin
Data:

N,
{
D̂i,j

}N

i,j=0,
{
�j (−1)

}N

j=0 ,
{
�j (1)

}N

j=0 ,
{
wj

}N

j=0
{
Φj

}N

j=0; // Solution array

Procedures:
Construct(N); // Algorithm 59

DGDerivative(ΦL,ΦR, {Φj }Nj=0) ; // Algorithm 60

DGTimeDerivative(t); // Algorithm 61
End Class NodalDiscontinuousGalerkin

4 Survey of Spectral Approximations 139

Algorithm 59: NodalDiscontinuousGalerkin:Construct: Constructor for the
Discontinuous Galerkin Class

Procedure Construct
Input: N

Uses Algorithms:
Algorithm 23 (LegendreGaussNodesAndWeights)
Algorithm 37 (PolynomialDerivativeMatrix)
Algorithm 34 (LagrangeInterpolatingPolynomials)
Algorithm 30 (BarycentricWeights)

this.N ← N{{
xj

}N

j=0 , this.
{
wj

}N

j=0

}
← LegendreGaussNodesAndWeights(N)

{
wB

j

}N

j=0 ← BarycentricWeights({xj }Nj=0)

this.
{
�j (−1)

}N

j=0 ← LagrangeInterpolatingPolynomials
(−1.0,

{
xj

}N

j=0 ,
{
wB

j

}N

j=0

)

this.
{
�j (1)

}N

j=0 ← LagrangeInterpolatingPolynomials
(
1.0,

{
xj

}N

j=0 ,
{
wB

j

}N

j=0

)

{
Dij

}N

i,j=0 ← PolynomialDerivativeMatrix({xj }Nj=0)

for j = 0 to N do
for i = 0 to N do

this.D̂i,j ← −Dj,i ∗ this.wj /this.wi

end
end
End Procedure Construct

Algorithm 60: NodalDiscontinuousGalerkin:DGDerivative: First Spatial
Derivative via the Galerkin Approximation

Procedure ComputeDGDerivative

Input: ΦL,ΦR,
{
Φj

}N

j=0
Uses Algorithms:

Algorithm 19 (MxVDerivative)
{
Φ ′

j

}N

j=0 ← MxVDerivative({this.D̂ij }Ni,j=0, {Φj }Nj=0)

for j = 0 to N do
Φ ′

j ← Φ ′
j + (ΦR ∗ this.�j (1) − ΦL ∗ this.�j (−1))/this.wj

end

return
{
Φ ′

j

}N

j=0
End Procedure ComputeDGDerivative

procedure computes the derivative matrix D̂, defined by (4.139), from the standard
polynomial derivative matrix, D.

We show how to compute the approximation of the first derivative in Algo-
rithm 60 (NodalDiscontinuousGalerkin:DGDerivative). It implements the quantity
in the braces in (4.138). To be more general, the procedure takes the interior state
as input, represented by the array of Φj ’s, and the left and right boundary states
to compute the approximation of the derivative. In this way, we can accommodate

140 4 Survey of Spectral Approximations

Algorithm 61: NodalDiscontinuousGalerkin:DGTimeDerivative: Time Deriv-
ative via the Discontinuous Galerkin Approximation

Procedure DGTimeDerivative
Input: t

Uses Algorithms:
Algorithm 60 (NodalDiscontinuousGalerkin:DGDerivative)

if c > 0 then
ΦL ← g(t)

ΦR ← InterpolateToBoundary({this.Φj }Nj=0, {this.�j (1)}Nj=0)

else
ΦR ← g(t)

ΦL ← InterpolateToBoundary({this.Φj }Nj=0, {this.�j (−1)}Nj=0)

end
{
Φ̇j

}N

j=0 ← −c ∗ this.DGDerivative(ΦL,ΦR, {this.Φj }Nj=0)

return
{
Φ̇j

}N

j=0
End Procedure DGTimeDerivative

Procedure InterpolateToBoundary

Input:
{
Φj

}N

j=0,
{
�j

}N

j=0
interpolatedValue ← 0
for j = 0 to N do

interpolatedValue ← interpolatedValue + �j ∗ Φj

end
return interpolatedValue
End Procedure InterpolateToBoundary

problems with positive or negative wavespeeds. We place the logic to decide which
boundary needs to be specified in the time derivative procedure.

We implement the time derivative algorithm next. It uses the spatial derivative
procedure to implement the right hand side of (4.138). To be more general, we will
write the time derivative to solve the equation

ϕt + cϕx = 0, (4.142)

where the wave speed c might be positive or negative. If c is positive, the boundary
condition is applied at the left, and the solution is interpolated to the right, as was the
situation in (4.138). If c is negative, the boundary condition is applied to the right
and the solution is interpolated to the left. Thus, to compute the time derivative, the
procedure must test the wavespeed and send the appropriate values for ΦL and ΦR

to the spatial derivative routine.
We implement the time derivative in Algorithm 61 (NodalDiscontinuous-

Galerkin:DGTimeDerivative). It first computes the boundary values of the solu-
tion according to the sign of the wavespeed. To compute the boundary condition,
we assume the presence of a user supplied function g(t). To compute the value of
the solution at the other boundary, the procedure evaluates the interpolant using
InterpolateToBoundary. InterpolateToBoundary is nothing but a dot product of the

4 Survey of Spectral Approximations 141

Algorithm 62: DGStepByRK3: Low Storage Runge-Kutta Integration of a
Nodal Discontinuous Galerkin Approximation

Procedure DGStepByRK3
Input: tn,Δt

Input: dg ; // Of type NodalDiscontinuousGalerkin
for m = 1 to 3 do

t ← tn + bmΔt
{
Φ̇j

}N

j=0 ← dg.TimeDerivative(t)

for j = 0 to N do
Gj ← amGj + Φ̇j

dg.Φj ← dg.Φj + gmΔtGj

end
end
return dg
End Procedure DGStepByRK3

vectors represented by the array of solution values and the array of Lagrange in-
terpolating polynomials. For large N we could replace it by a BLAS xDot routine
(Appendix C). Once the boundary values of the solution are determined, the time
derivative procedure passes them and the solution array to ComputeDGDerivative
to compute the space derivative. The final step multiplies the space derivative by the
wavespeed to compute the time derivative.

With the spatial discretization and time derivatives in hand, we turn to the inte-
gration in time. Once again we use a third order Runge-Kutta to integrate in time.
Algorithm 62 (DGStepByRK3) is a modification of the third order method of Al-
gorithm 50 (CollocationStepByRK3). The two differ because in the discontinuous
Galerkin approximation, the boundary conditions are applied weakly as part of the
spatial derivative approximation. This difference makes the discontinuous Galerkin
approximation simpler to implement than collocation methods for systems of equa-
tions. (We will cover systems of equations at length in Sect. 5.4.) We can construct
a driver for the time integration by a straightforward modification of the collocation
driver, Algorithm 51 (LegendreCollocation).

Again, we must look at the distribution and growth of the eigenvalues of the
derivative matrix and see how it fits within the region of absolute stability of the
time integration method. We show an example of the distribution of the eigenvalues
in Fig. 4.13 for N = 32. We notice that the distribution differs from those of the
Chebyshev and Legendre collocation matrices (Fig. 4.9). The maximum eigenvalues
occur near the real axis, which indicates very strong dissipation in those modes.
A plot of the magnitude of the maximum eigenvalue as a function of N , Fig. 4.14,
also shows a difference from what we have seen before. For N ≤ 32, the growth of
the maximum eigenvalue is linear, and only becomes quadratic for larger values of
N . Since the imaginary part of the largest eigenvalue is small, we can use the known
real limit of the region of absolute stability (−2.51 on Fig. 4.1 for the third order
Runge-Kutta method) to determine the maximum time step. From a curve fit for the
growth of the maximum eigenvalue and the stability limit for the Runge-Kutta, we

142 4 Survey of Spectral Approximations

Fig. 4.13 Eigenvalues of the
nodal discontinuous Galerkin
first derivative for N = 32

Fig. 4.14 Growth of the
magnitude of the largest
eigenvalue for the nodal
discontinuous Galerkin first
derivative

can get an approximate upper limit on the time step of

Δt ≤
{ 2.5

N
, N < 32,

38×2.51
N2 , N ≥ 32.

(4.143)

4 Survey of Spectral Approximations 143

4.7.2 Benchmark Solution

As a benchmark, we solve the problem (4.83) with the initial condition ϕ0(x) =
e− ln(2)(x+1)2/σ 2

, with σ = 0.2. We show the computed and exact solutions at three
times in Fig. 4.15. The computed solution there is for N = 36, and we chose
Δt = 1.5 × 10−4 to ensure the temporal errors were small relative to the spatial
errors. The wave propagates with little loss of amplitude or spreading. It moves
with the correct speed so there is no noticeable shift between the exact and com-
puted solutions.

It is natural to compare the performance of the discontinuous Galerkin approx-
imation with the polynomial collocation methods that we developed in Sect. 4.4.4.
We show one such comparison in Table 4.2, which lists the logarithms of the max-
imum errors for the discontinuous Galerkin approximation along with the errors
of the Chebyshev and Legendre collocation approximations. What we see is that

Fig. 4.15 Computed and
exact solutions at three times
for the nodal discontinuous
Galerkin approximation of
the advection equation

Table 4.2 Logarithm of
maximum errors for three
methods

N Chebyshev Legendre Discontinuous Galerkin

16 −2.0 −1.8 −2.0

20 −2.7 −2.4 −3.0

24 −3.8 −3.4 −4.0

28 −4.8 −4.3 −5.2

32 −6.1 −5.4 −6.6

36 −7.3 −6.7 −7.9

40 −8.7 −8.0 −9.0

144 4 Survey of Spectral Approximations

for the advection problem, the Chebyshev collocation method bests the Legendre
collocation, but that the discontinuous Galerkin approximation has the best error
overall.

4.8 Summary and Some Broad Generalizations

Now that we have seen six examples of spectral approximation methods, let’s get
some perspective that will guide our choice of methods throughout the remainder
of this book. The fundamental characteristic across all spectral methods is that they
use orthogonal polynomial approximations with which to approximate the solution
of a PDE. The differences between them come from the flexibility that we have
to decide how to determine the degrees of freedom, written either as the polyno-
mial coefficients or the values at a set of nodes. Flexibility allows us to tailor the
approximation to our needs, but the availability of too many choices can also be a
detriment. We would like some guiding principals to help us make a choice among
all the possibilities. We get those guiding principals from an understanding of the
tradeoffs that we make in each of the approximations. Whether those tradeoffs are
worth making is a matter of one’s goals, and is subject to opinion, which we freely
profess in this section.

The first choice we have to make is what basis functions to use. For periodic
problems, the Fourier basis is the clear choice. For problems in bounded domains,
we will choose between the Legendre and Chebyshev polynomials. How we choose
between the two depends more on practical matters than on which one has better ap-
proximation properties. Each will give exponentially accurate solutions for smooth
enough solutions. The family of orthogonal polynomials is much larger than three,
however, and for some special circumstances, e.g. on infinite intervals, there are al-
ternatives. For most practical applications one of Fourier, Legendre or Chebyshev
will be sufficient. For other choices, see [4].

The next choice is how to determine the degrees of freedom. In this chapter
we concentrated on two commonly used methods: Collocation and Galerkin. We
derive collocation methods from a strong form of the equations. We start Galerkin
approximations from an integral, weak form of the equations.

Collocation methods, like finite difference methods, are derived from a strong
form of the PDE and share many of the same advantages and disadvantages. Fore-
most is that they are easy to derive and to implement for a wide class of problems—
constant coefficient, variable coefficient and nonlinear. Since collocation methods
require the solution to satisfy the PDE at a set of grid points, they are naturally nodal
approximations and will have aliasing errors even for constant coefficient problems.
A main tradeoff is that there is little formal mathematical guidance on how to derive
a stable approximation or how to implement boundary conditions. The latter makes
it difficult to extend collocation methods to complex geometries or to systems of
equations. Like finite difference methods, collocation methods are most easily ap-
plied to geometries that we can map onto a simple square or cube. Within those

4 Survey of Spectral Approximations 145

constraints, however, collocation methods will give spectrally accurate approxima-
tions. For this reason, we will develop implementations of collocation algorithms
for square and mapped geometries in Chaps. 5 and 7. For a collocation method,
we choose between Legendre and Chebyshev approximations mostly on how many
modes we need, since we can use fast transforms to compute the derivatives with
Chebyshev methods.

Galerkin spectral methods, like finite element methods, are derived from a weak
form of the equations. They are less easily derived than collocation methods, but
the formulation naturally leads to stable approximations and gives guidance on how
to implement boundary conditions. Galerkin methods can be either nodal or modal.
Modal approximations can be significantly more accurate than nodal approxima-
tions, depending on the problem. They are much harder to derive and more com-
plex to implement, however, particularly for variable coefficient, nonlinear, or mul-
tidimensional problems. Exceptions include special nonlinearities like we saw for
the Burgers equation, or special geometries like cylindrical coordinates. However,
within those constraints, the modal Galerkin method is the method of choice if ulti-
mate accuracy is required. We will not develop modal Galerkin methods further in
this book. For further study, see [21].

Nodal spectral Galerkin methods are intermediate between collocation and
Galerkin methods. They start from a weak form of the equations, but replace hard to
evaluate integrals by quadrature. Because they start from a weak form of the equa-
tions, Legendre approximations are almost always used today to avoid having to
deal with a variable weight function in the inner products. The Galerkin approach
gives guidance on how to implement boundary conditions. We have seen, however,
that the nodal approximations are just as easy to implement as collocation methods.
In fact, we will see in the following chapters that we can often convert algorithms
from collocation approximations to nodal Galerkin approximations with one line
changes. For some equations, particularly for systems of conservation laws, they are
much easier to implement than collocation, especially in multiple space dimensions.
Like finite element methods, nodal Galerkin formulations are easily extendable to
solve problems in complex geometries, which we will do in Chap. 8. Whereas modal
Galerkin methods are the methods of choice when ultimate accuracy is required, we
choose nodal Galerkin methods to solve problems in complex geometries.

Exercises

4.1 Rewrite Algorithm 41 (FourierCollocationTimeDerivative) to use the FFT
rather than matrix-vector multiplication to compute the spatial derivatives.

4.2 Show how to use quadrature to compute the initial Fourier coefficients to start
the integration of a Fourier Galerkin method.

4.3 Use padding and the FFT to create a faster implementation of Algorithm 46
(EvaluateFourierGalerkinSolution).

146 4 Survey of Spectral Approximations

4.4 Implement Algorithms 44–47 and compute the solution for the initial condition
(4.26) when ν = 0. Show analytically that the energy, ‖u‖L2 should remain constant,
and verify it numerically when Δt is small enough. (To guarantee that the time
differencing scheme does not decrease the energy, we should use a time integration
method like the trapezoidal rule.)

4.5 Verify numerically on several test problems that the discrete norm (4.29) is
spectrally accurate for periodic functions.

4.6 Show algebraically that for the linear, constant coefficient advection-diffusion
equation the Fourier collocation and Fourier Galerkin methods are equivalent.

4.7 Use (4.37) to show that

(Φt ,V) + (Φx,V) = − (νΦx,Vx)

for any

V =
N/2∑

k=−N/2

bke
ikx.

Use this result to show that the Fourier Galerkin approximation is stable, that is,

‖Φ‖ ≤ ‖Φ0‖

if integrated exactly in time.

4.8 Apply the Fourier Galerkin method to the initial condition

S(x) =
{

1, 0 ≤ x ≤ π/2,

0, π/2 < x < π
(4.144)

and explain the behavior of the numerical solution.

4.9 Verify the conservation result (4.67). Hint:
∫ 2π

0 Udx = (U,1).

4.10 The debate over the importance of aliasing in a spectral calculation goes back
to the early days in the development of spectral methods. In this problem you will
solve the KdV equation

ut + 2π
∂

∂x

(

u + 1

2
u2
)

+ 1

2
λ2

D(2π)3 ∂3u

∂x3
= 0. (4.145)

4 Survey of Spectral Approximations 147

This equation has the exact (traveling wave) solution

u(x, t) = u0 + Δu sech2

[
1

2πλD

√
Δu

6
(x − ct − 4π)

]

,

c = 2π

(

1 + u0 + 1

3
Δu

)

,

u0 = −2λD

√
6Δu tanh

(
1

λD

√
Δu

24

)

(4.146)

on (−∞,∞). The parameters are λD = 0.01 and Δu = 0.2.
Implement the Fourier-Galerkin method to integrate (4.145) to time t = 1 by

modifying Algorithms 44–47 to include the nonlinear term and the third order deriv-
ative term. Although the initial solution is defined on the infinite interval, it is non-
zero to within rounding errors only in a small region, making the periodic extension
sufficiently smooth for all intents and purposes. Use the fast convolution transform,
Algorithm 49, to evaluate the convolution sum. Do the computation with (M = N)

and without (M ≥ 3N/2) aliasing. Examine the spectra (|Ûk| as a function of k)
of the two solutions and comment on the differences between them. Do you see
spectral accuracy as the order, N , increases?

4.11 Verify the discretization, (4.125).

Chapter 5
Spectral Approximation on the Square

It is simplest, though not always of much practical interest, to describe spectral
methods on the square domain (x, y) ∈ [−1,1] × [−1,1]. Once the ideas are un-
derstood for the simplest of geometries, they can be extended to solve PDEs on
more complex geometries by using mappings (Chap. 7), multidomain methods
(Chap. 8), or both. We will illustrate the development of spectral approximations
for three canonical problems in mathematical physics: The solution of steady po-
tentials, transport with and without diffusion, and wave propagation. These physical
processes are modeled by the Poisson equation on the square with Dirichlet bound-
ary conditions, the advection-diffusion equation, the scalar advection equation, and
systems of conservation laws.

5.1 Approximation of Functions in Multiple Space Dimensions

In multiple space dimensions, spectral methods use expansion functions that are
tensor products of the one dimensional functions that we used in preceding chap-
ters. Spectral methods have the same representations used to derive separation of
variables solutions of PDEs.

In two space dimensions, for example, the Fourier truncation approximation is

PNMf =
N/2∑

n=−N/2

M/2∑

m=−M/2

f̂nme−inxe−imy. (5.1)

We find the Fourier coefficients with the inner product

(u, v) =
∫ 2π

0

∫ 2π

0
u (x, y) v∗ (x, y) dxdy. (5.2)

That is,

f̂nm = 1

(2π)2

(
f, ei(nx+my)

)
. (5.3)

We define the Fourier interpolant in two space dimensions similarly,

INMf =
N/2∑

n=−N/2

M/2∑

m=M/2

f̃nm

c̄nc̄m

e−inxe−imy =
N−1∑

j=0

M−1∑

k=0

fj,khj (x)hk (y). (5.4)

D.A. Kopriva, Implementing Spectral Methods for Partial Differential Equations,
Scientific Computation,
© Springer Science + Business Media B.V. 2009

149

150 5 Spectral Approximation on the Square

As in one space dimension, we compute the discrete coefficients from the two di-
mensional discrete inner product, which is now

(u, v)NM = (2π)2

NM

N−1∑

j=0

M−1∑

k=0

u
(
xj , yk

)
v∗ (xj , yk

)
, (5.5)

so that

f̃nm = 1

NM

N−1∑

j=0

M−1∑

k=0

f
(
xj , yk

)
e−inxj e−imyk . (5.6)

The tensor product form is convenient for computation, since we can evaluate
the double sum by a series of sums along each direction separately. If we define an
intermediate array

f̄n (yk) = 1

N

N−1∑

j=0

f
(
xj , yk

)
e−inxj , n = −N/2, . . . ,N/2 − 1; k = 0, . . . ,N − 1,

(5.7)
then

f̃nm = 1

M

M−1∑

k=0

f̄n (yk) e−imyk ,

n = −N/2, . . . ,N/2 − 1; m = −M/2, . . . ,M/2 − 1. (5.8)

Likewise, the polynomial truncation approximation is

PNMf (x) =
N∑

n=0

M∑

m=0

f̂nmφn (x)φm (y), (5.9)

where we compute the coefficients using the two dimensional weighted inner prod-
uct

f̂nm = (f,φnφm)w

‖φnφm‖2
w

=
∫ ∫

f (x, y)φn (x)φm (y)w(x)w(y)dxdy
∫ ∫

φ2
n
(x)φ2

m
(y)w(x)w(y)dxdy

. (5.10)

We can choose to write the polynomial interpolant in two dimensions either in
terms of the discrete coefficients or the equivalent Lagrange form

INMf (x) =
N∑

n=0

M∑

m=0

f̃nmφn (x)φm (y) =
N∑

j=0

M∑

k=0

fj,k�j (x) �k (y). (5.11)

Like the Fourier coefficients, we compute the discrete polynomial coefficients
from a sequence of one dimensional transforms. For example, if we compute the

5 Spectral Approximation on the Square 151

sums in the x direction to get the intermediate values

f̄n (yk) = 1

‖φn‖2
N

N∑

j=0

fj,kφn(xj)wj , n = 0,1, . . . ,N; k = 0,1, . . . ,M,

(5.12)
the two dimensional discrete coefficients are

f̃nm = 1

‖φm‖2
M

M∑

k=0

f̄n (yk)φm (yk)wk, n = 0,1, . . . ,N; m = 0,1, . . . ,M.

(5.13)
The tensor product representation of the solution makes it easy to use different

approximations in different coordinate directions. If the problem is non-periodic in
the x direction and periodic in y, for example, we could write

PNMf (x, y) =
N∑

j=0

M∑

k=0

fj,k�j (x)hk (y). (5.14)

Tensor products also make mixed representations possible. For instance, the fol-
lowing polynomial is modal in the x direction and nodal in the y direction

PNMf (x, y) =
N/2∑

k=−N/2

M∑

j=0

f̂k,j e
ikx�j (y), (5.15)

where f̂k,j is the kth Fourier coefficient at the point yj .
In summary, the tensor product approximation of functions makes spectral meth-

ods efficient at high order because we can evaluate multidimensional approxima-
tions as sequences of one dimensional approximations. The ability to mix represen-
tations and basis functions makes spectral methods flexible.

5.2 Potential Problems on the Square

The first PDE that we will approximate on the square describes potential problems
such as the steady state temperature distribution with a heat source. It is the Poisson
equation with Dirichlet boundary conditions

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∇2ϕ = ϕxx + ϕyy = s(x, y), (x, y) ∈ (−1,1) × (−1,1) ,

ϕ (x,−1) = 0, −1 ≤ x ≤ 1,

ϕ (1, y) = 0, −1 ≤ y ≤ 1,

ϕ (x,1) = 0, −1 ≤ x ≤ 1,

ϕ (−1, y) = 0, −1 ≤ y ≤ 1.

(5.16)

152 5 Spectral Approximation on the Square

Although we have specified that the potential, ϕ, vanish along the boundaries, we
can specify any continuous potential distribution with only simple modifications to
the approximations.

5.2.1 The Collocation Approximation

The simplest spectral approximation to derive for the Poisson equation is the col-
location method. In two space dimensions, we lay a grid of points, (xi, yj), on the
square and approximate the solution by a polynomial interpolant represented by the
solution values, Φi,j , at those points. Since the boundary conditions in (5.16) are
not periodic in either direction, Legendre or Chebyshev polynomial approximations
are appropriate. Since we want the solutions at the boundaries as well as in the
interior, we choose the grid points to be the tensor product of the Gauss-Lobatto
quadrature points (Sect. 1.11). For Chebyshev polynomial approximations, recall
that these points are simply

(
xi, yj

)=
(

− cos
iπ

N
,− cos

jπ

N

)

, i, j = 0,1, . . . ,N. (5.17)

For simplicity of exposition, we will assume that number of grid points is the same
in each direction, but this is not necessary in practice. Note that we have reversed
the order of the points so that the (x, y) values of the nodes increase as the indices
i, j increase. To get a Legendre approximation, we would use Algorithm 25 (Leg-
endreGaussLobattoNodesAndWeights) to compute the grid points.

To derive the collocation approximation, we approximate the potential ϕ(x, y)

and the forcing term s(x, y) by polynomials Φ and S written in the second, i.e.
Lagrange, form interpolant in (5.11),

Φ (x,y) =
N∑

i,j=0

Φi,j �i (x) �j (y),

S (x, y) =
N∑

i,j=0

s
(
xi, yj

)
�i (x) �j (y).

(5.18)

To find the equations for the grid point values Φi,j we require that Φ satisfies the
PDE at the interior points

(
∂2Φ

∂x2
+ ∂2Φ

∂x2
− S

)∣
∣
∣
∣
xi ,yj

= 0, i, j = 1,2, . . . ,N − 1. (5.19)

The second derivative of the polynomial interpolant is

∂2Φ

∂x2
= ∂2

∂x2

N∑

k,l=0

Φk,l�k (x) �l (y) =
N∑

k,l=0

Φk,l�
′′
k (x) �l (y). (5.20)

5 Spectral Approximation on the Square 153

By construction (Sect. 1.12), �l(yj) = δj,l . Therefore, when we evaluate the second
derivative at the grid points,

∂2Φ

∂x2

∣
∣
∣
∣
i,j

=
N∑

k=0

Φk,j �
′′
k(xi) =

N∑

k=0

D
(2),x
i,k Φk,j , (5.21)

where D
(2),x
ik is the second order spectral derivative matrix (Sect. 3.4), which

we compute with Algorithm 38 (mthOrderPolynomialDerivativeMatrix). We de-
rive a similar formula for the second derivative in the y direction. Finally, since
S(xi, yj) = s(xi, yj) = si,j , the interior points satisfy the equations

N∑

k=0

D
(2),x
ik Φk,j +

N∑

k=0

D
(2),y
jk Φi,k = si,j , i, j = 1,2, . . . ,N − 1. (5.22)

We will also express (5.22) in shorthand notation,

∇2
NΦij = si,j . (5.23)

The left side of (5.23) is the action of the discrete spectral Laplace operator. The full
equation (5.23) is the spectral collocation approximation of the Poisson equation.

The values of Φi,j along the boundaries are all that remain for us to specify.
In the collocation method, as in a finite difference method, we set the approximate
solution along the boundary to be its boundary value, i.e,

Φi,j = 0,

{
i = 0,N; j = 0,1, . . . ,N,

j = 0,N; i = 0,1, . . . ,N.
(5.24)

Equations (5.22) and (5.24) form a linear system of equations that we must solve
for Φi,j .

We can easily extend the collocation method to variable coefficient equations like

∇ · (ν∇ϕ) = s. (5.25)

For instance, suppose that the diffusivity depends on the potential so that ν = ν(ϕ).
We approximate the components of the flux, f = (f, g) = (νϕx, νϕy) also by poly-
nomials of degree N . For instance

f
(
xi, yj

)= ν (ϕ)ϕx

∣
∣
xi ,yj

≈ ν
(
Φi,j

)
N∑

k=0

Dx
ikΦk,j = ν

(
Φi,j

)
Φx

(
xi, yj

)= Fi,j .

(5.26)
We compute Dx

ik = �′
k(xi) using Algorithm 37 (PolynomialDerivativeMatrix).

A similar formula holds for g = νϕy . Then the interior approximation for the collo-

154 5 Spectral Approximation on the Square

cation method is

F
i,j

= ν
(
Φi,j

)
N∑

k=0

Dx
ikΦk,j , i, j = 0,1,2, . . . ,N,

G
i,j

= ν
(
Φi,j

)
N∑

k=0

D
y
jkΦi,k, i, j = 0,1,2, . . . ,N,

N∑

k

Dx
ikFk,j

+
N∑

k

D
y
jkGi,k

= si,j , i, j = 1,2, . . . ,N − 1

(5.27)

and we apply the Dirichlet boundary conditions as in (5.24).
We can also apply the collocation method to problems with Neumann bound-

ary conditions. The formulation of (5.27) makes it easy to see how. Suppose we
replace the boundary condition along x = 1 in (5.16) by the Neumann condition
ϕx(1, y) = b(y). Then to compute the flux, F , along the boundary, we simply re-
place the derivative there by the boundary condition. We compute the interior fluxes
as we did for the Dirichlet problem. The system to be solved therefore becomes

F
i,j

= ν
(
Φi,j

)
N∑

k=0

Dx
ikΦk,j , i = 0,1, . . . ,N − 1; j = 0,1, . . . ,N,

F
N,j

= ν
(
ΦN,j

)
b(yj), j = 1, . . . ,N − 1,

G
i,j

= ν
(
Φi,j

)
N∑

k=0

D
y
jkΦi,k, i, j = 0,1,2, . . . ,N,

N∑

k=0

Dx
i,kFk,j

_
N∑

k=0

D
y
j,kGi,k

= si,j , i = 1,2, . . . ,N; j = 1, . . . ,N − 1.

(5.28)

To specify the remaining degrees of freedom, namely the values of the solution
along the other boundaries, we set them equal to their boundary values.

5.2.1.1 How to Implement the Collocation Approximation

To implement the collocation approximation, let us first introduce a structure of type
Nodal2DStorage that we will use many times to group data needed by nodal spectral
methods such as collocation. We use the structure to store the x and y locations of
the collocation points, called ξ and η in the class, the quadrature weights, plus the
derivative matrices that we may need. Since none of these quantities change during
the course of a calculation, we only need to compute them once at the start. We
show the structure in Algorithm 63 (Nodal2DStorage). Usually we only allocate
and compute those quantities that we need for a particular approximation.

We encapsulate the collocation approximation of the potential problem in a class,
too. The class stores an array for the solution and the source, plus an instance of the

5 Spectral Approximation on the Square 155

Algorithm 63: Nodal2DStorage: Storage for a Nodal Spectral Method

Structure Nodal2DStorage
Data:

N,M

{ξi}Ni=0, {ηj }Mj=0 ; // Gauss(-Lobatto) points

{w(ξ)
i }Ni=0, {w(η)

j }Mj=0 ; // Gauss(-Lobatto) weights
{
D

ξ
i,j

}N

i,j=0,
{
D

η
i,j

}M

i,j=0 ; // First Derivative Matrices
{
D

(2),ξ
i,j

}N

i,j=0,
{
D

(2),η
i,j

}M

i,j=0 ; // Second Derivative Matrices

End Structure Nodal2DStorage

Algorithm 64: NodalPotentialClass: A Class for the Potential Problem on the
Square

Class NodalPotentialClass
Uses Algorithms:

Algorithm 63 (Nodal2DStorage)
Data:

spA ; // Of type Nodal2DStorage
{
Φi,j

}N,M

i,j=0 ; // Solution
{
si,j

}N,M

i,j=0 ; // Source

{maski}4
i=1

Procedures:
Construct(N,M); // Algorithm 65

LaplacianOnTheSquare({Ui,j }N,M
i,j=0); // Algorithm 66

MatrixAction({Ui,j }N,M
i,j=0); // Algorithm 68

End Class NodalPotentialClass

structure Nodal2DStorage to store the necessary spectral approximation data. The
quantities that we need to store are generic to all nodal spectral methods for the po-
tential equation, so we present Algorithm 64 (NodalPotentialClass) as an implemen-
tation. The class includes an array called mask, which we will describe presently, to
manage boundary conditions. We must also define at least two procedures. The first
is to construct the nodes, weights and derivative matrices. The other is to compute
the approximation of the Laplace operator, (5.22). We include in the class a proce-
dure to compute the matrix action, which we will use for the iterative solution of the
system of equations, (5.23).

We specify the choice of polynomial and approximation type in the construc-
tor for the NodalPotentialClass. Algorithm 65 (NodalPotentialClass:Construct), for
instance, shows a constructor for the Chebyshev collocation approximation. It com-
putes the second derivative matrices by way of Algorithm 38 (mthOrderPolyno-
mialDerivativeMatrix) with m = 2 and stores them in the second derivative matrix
storage of the Nodal2DStorage structure. The first derivative matrices are not needed
for the Poisson problem on the square, so they are not computed. We easily change

156 5 Spectral Approximation on the Square

Algorithm 65: NodalPotentialClass:Construct: Constructor for the Chebyshev
Collocation Approximation of the Potential Problem

Procedure Construct
Input: N , M

Uses Algorithms:
Algorithm 38 (mthOrderPolynomialDerivativeMatrix)
Algorithm 27 (ChebyshevGaussLobattoNodesAndWeights)

this.spA.N ← N ; this.spA.M ← M
{
this.spA. {ξi}Ni=0 , this.spA.

{
w

(ξ)
i

}N

i=0

}← ChebyshevGaussLobattoNodesAndWeights(N)

this.spA.
{
D

(2),ξ
i,j

}N

i,j=0 ← mthOrderPolynomialDerivativeMatrix(2, this.spA.{ξj }Nj=0)

Repeat for η (y) direction. . .
End Procedure Construct

Algorithm 66: NodalPotentialClass:LaplacianOnTheSquare: Collocation Ap-
proximation to the Laplace Operator

Procedure LaplacianOnTheSquare

Input:
{
Ui,j

}N,M

i,j=0
Uses Algorithms:

Algorithm 19 (MxVDerivative)

N ← this.spA.N ; M ← this.spA.M

for j = 0 to M do
{

∂2U

∂x2

∣
∣
∣
∣
i,j

}N

i=0

← MxVDerivative
(
this.spA.

{
D

(2),ξ
i,j

}N

i,j=0,
{
Ui,j

}N

i=0

)

end
for i = 0 to N do

{
∂2U

∂y2

∣
∣
∣
∣
i,j

}M

j=0

← MxVDerivative
(
this.spA.

{
D

(2),η
i,j

}N

i,j=0,
{
Ui,j

}M

j=0

)

end
for j = 0 to M do

for i = 0 to N do

∇2
NUi,j ← ∂2U

∂x2

∣
∣
∣
∣
i,j

+ ∂2U

∂y2

∣
∣
∣
∣
i,j

end
end

return
{∇2

NUi,j

}N,M

i,j=0

End Procedure LaplacianOnTheSquare

the approximation to a Legendre method if we replace the calls to ChebyshevGaus-
sLobattoNodesAndWeights with calls to Algorithm 25 (LegendreGaussLobattoN-
odesAndWeights).

We implement the action of the discrete Laplace operator (5.22) in Algorithm 66
(NodalPotentialClass:LaplacianOnTheSquare). It computes the matrix-vector mul-

5 Spectral Approximation on the Square 157

tiplication by way of Algorithm 19 (MxVDerivative) so that we can use it for either
Chebyshev or Legendre collocation approximations. Otherwise, for Chebyshev col-
location we could use the Fast Chebyshev Transform. Notice that the algorithm
makes the tensor product nature of the approximation explicit by the fact that the
derivatives are computed row-by-row and column-by-column in the grid. Therefore
the procedure computes the derivatives by passing array slices to the matrix-vector
multiply routine. (Remember, we denote the passing of a slice of a two dimensional
array, {Ui,j }N,M

i,j=0, by {Ui,j }Ni=0 for slices along columns and {Ui,j }Mj=0 along rows.
See Appendix A.)

To enforce the boundary conditions, we introduce the concept of an array mask
function that we use selectively to set parts of an array to zero. We use the mask
function to set the residual and solution values to zero along the boundaries for
Dirichlet boundary conditions. We could also use them to set boundary fluxes to
zero for Neumann boundary conditions. Mask functions provide a simple way to
eliminate boundary points in iterative solvers. We will use them many times. To
allow some flexibility, let us number the four sides of the square counter-clockwise
starting with the boundary along y = 0. Let us then define an array {maskk}4

k=1. If
a mask value maskk is true it will signal us to zero the boundary values of an array
along side k. To ensure the mask is always available, we store it as a member array
of the nodal approximation class in Algorithm 64 (NodalPotentialClass). We then
use Algorithm 67 (MaskSides) to mask an input array as desired.

Finally, we introduced a procedure MatrixAction in Algorithm 64 (NodalPoten-
tialClass). This is a function that we will use when we solve the linear system
of equations (5.22) for the solution unknowns with an iterative method. For the
potential problem, the matrix action is the function LaplacianOnTheSquare with
boundary points masked as necessary, as we show in Algorithm 68 (NodalPotential-
Class:MatrixAction).

5.2.1.2 How to Solve the Linear System

Equations (5.22) plus (5.24) form a linear system of equations that we need to solve
for the Φi,j . If the system is small enough, we can solve the system by a direct solver
through a variant of Gauss elimination. Unlike the typical second order finite differ-
ence approximation, however, the system of equations represented by (5.22) is not
pentadiagonal, but full. The system is neither diagonally dominant nor symmetric.
Balancing the practical difficulties these properties create is the rapid convergence
property of a spectral method; for smooth source and boundary conditions, the ap-
proximation error will converge much more quickly than the more easily solved
finite difference approximation.

In practice, we will most likely solve the system defined by (5.22) plus (5.24) by
an iterative technique. The topic of iterative solution of linear systems of equations
is, of course, a huge one in the field of numerical linear algebra that we cannot fully
survey here. Instead, we will describe representative algorithms that are appropriate
for spectral collocation approximations and do not require significant amounts of
extra storage.

158 5 Spectral Approximation on the Square

Algorithm 67: MaskSides: Set Boundary Values to Zero According to a Mask
Function

Procedure MaskSides

Input:
{
Uij

}N,M

i,j=0, {maski}4
i=1

if mask1 = true then
for i = 0 to N do

Ui,0 ← 0
end

end
if mask2 = true then

for j = 0 to M do
UN,j ← 0

end
end
if mask3 = true then

for i = 0 to N do
Ui,M ← 0

end
end
if mask4 = true then

for j = 0 to M do
U0,j ← 0

end
end

return
{
Uij

}N,M

i,j=0

End Procedure MaskSides

Algorithm 68: NodalPotentialClass:MatrixAction: Collocation Approxima-
tion to the Laplace Operator

Procedure MatrixAction

Input:
{
Uij

}N,M

i,j=0

Uses Algorithms:
Algorithm 64 (NodalPotentialClass)
Algorithm 66 (NodalPotentialClass:LaplacianOnTheSquare)
Algorithm 67 (MaskSides)

N ← this.spA.N ; M ← this.spA.M

{actioni,j }N,M
i,j=0 ← this.LaplacianOnTheSquare({Uij }N,M

i,j=0)

{actioni,j }N,M
i,j=0 ← MaskSides({actioni,j }N,M

i,j=0, this. {maskk}4
k=1)

return {actioni,j }N,M
i,j=0

End Procedure MatrixAction

5.2.1.3 Direct Solution of the Equations

Direct solution of the system of equations represented by (5.22) is probably the
simplest, particularly if one has an efficient direct solver already available. In

5 Spectral Approximation on the Square 159

Appendix D.1.2, for example, we derive Algorithm 142 (LUFactorization) that
we can use to solve a linear system by LU factorization. Fortunately, the LA-
PACK project [2] has made efficient and portable routines available for use with
Fortran95/77 and C/C++. A Java binding is also available. There is little reason
to write the direct solver oneself if one uses a programming language for which
LAPACK bindings are available.

The main work on our part is to put the pointwise representation of the system,
(5.22), into the standard matrix system form Ax = y. We will generalize (5.22) at
this point to allow N modes in the x direction and M modes in the y direction. To
re-write the system, we start with the fact that the boundary values (for Dirichlet
boundary conditions) are known. Thus, we shuffle them onto the right hand side of
the equation

N−1∑

k=1

D
(2),x
ik Φk,j +

M−1∑

k=1

D
(2),y
ik Φi,k

= si,j − D
(2),x
i0 Φ0,j − D

(2),x
iN ΦN,j − D

(2),y

j0 Φi,0 − D
(2),y
jM Φi,M

≡ RHSi,j , i = 1,2, . . . ,N − 1; j = 1,2, . . . ,N − 1. (5.29)

We must then arrange the two-dimensional array RHSi,j in the form of a vector
array, {RHSn}Ln=1, where L = (N − 1) × (M − 1).

It is natural to store the matrix A either by rows or columns in the grid, depending
on whether a language like C (rows) or Fortran (columns) is used. In either case,
we make a mapping n = index(i, j) between the location on the grid, i, j and the
location in the array, n, which are

n = index(i, j) ≡
{

i + (j − 1)(N − 1) columnwise/Fortran,

j + (i − 1)(M − 1) rowwise/C.
(5.30)

We form RHS on the grid by Algorithm 69 (CollocationRHSComputation).
The next step is to construct the actual matrix, A, represented by the summations

on the left of (5.29). To get the matrix entries, let us write (5.29) for the nth =
index(i, j) row,

D
(2),x
i1 Φ1,j + D

(2),x
i2 Φ2,j + · · · + D

(2),x
i(N−1)ΦN−1,j

+ D
(2),y

j1 Φi,1 + D
(2),y

j2 Φi,2 + · · · + D
(2),y

j (M−1)
Φi,M−1 = RHSn,

i = 1,2, . . . ,N − 1, j = 1,2, . . . ,M − 1. (5.31)

The entry in the mth column of A is the coefficient of the mth value of Φ , stored
according to the index function. For example, the grid location (1, j) corresponds
to the vector location m = index(1, j). The coefficient of Φ1,j in row i corresponds
to the matrix element Aindex(i,j),index(1,j). When we look at (5.31), we see that two
entries of the unknown solution appear in each row where index(i, k) = index(k, j).

160 5 Spectral Approximation on the Square

Algorithm 69: CollocationRHSComputation: Right Hand Side Construction
for Direct Solution of the Collocation Equations

Procedure CollocationRHSComputation
Input: npc // Instance of NodalPotentialClass
Uses Algorithms:
Algorithm 64 (NodalPotentialClass)

N ← npc.spA.N

M ← npc.spA.M

L ← (N − 1) × (M − 1)

for j = 1 to M − 1 do
for i = 1 to N − 1 do

n ← index(i, j)

RHSn ← npc.si,j − npc.spA.D
ξ
i,0 ∗ npc.Φ0,j − npc.spA.D

ξ
i,N ∗ npc.ΦN,j −

npc.spA.D
η
j,0 ∗ npc.Φi,0 − npc.spA.D

η
j,M ∗ npc.Φi,M

end
end
return {RHSn}Ln=0

End Procedure CollocationRHSComputation

The matrix elements for those include both D(2),x and D(2),y values. All other rows
include one or the other of D(2),x and D(2),y . When we match terms, we find the
matrix elements of the global collocation matrix

Aindex(i,j),index(k,j) = D
(2),x
ik , k = 1,2, . . . ,N − 1; k 	= i,

Aindex(i,j),index(i,k) = D
(2),y
jk , k = 1,2, . . . ,M − 1; k 	= j,

Aindex(i,j),index(i,j) = D
(2),x
ii + D

(2),y
jj .

(5.32)

Algorithm 70 (LaplaceCollocationMatrix) implements these formulas.
Clearly, the construction of the matrix requires the storage of its L = (N − 1) ×

(M −1) components. For large grids, this storage can be impractically large, making
iterative solvers more appropriate. For systems of small size, however, solution by
a direct solver is easy to implement. A performance comparison will wait until we
have described the iterative solution procedure.

5.2.1.4 Iterative Solution of the Equations

Iterative solution is typically preferred for large systems of equations for two rea-
sons. First, storage requirements can be significantly less than for a direct solver
since we do not need to store the entire matrix. Instead, we only need the matrix
A through its matrix-vector action on an iterate. We will not need to construct the
matrix explicitly as we did above. Second, a particular application may not require
the solution to be iterated to machine accuracy, which can reduce the cost. For those

5 Spectral Approximation on the Square 161

Algorithm 70: LaplaceCollocationMatrix: Matrix Construction for Direct So-
lution of the Collocation Approximation for the Poisson Problem

Procedure LaplaceCollocationMatrix
Input: npc // Instance of NodalPotentialClass
Uses Algorithms:

Algorithm 64 (NodalPotentialClass)

N ← npc.spA.N ; M ← npc.spA.M

L ← (N − 1) × (M − 1)

for m = 1 to L do
for n = 1 to L do

An,m ← 0
end

end
for j = 1 to M − 1 do

for i = 1 to N − 1 do
n = index(i, j)

for k = 1 to N − 1 do
m ← index(k, j)

An,m ← npc.spA.D
(2),ξ
i,k

end
for k = 1 to M − 1 do

m ← index(i, k)

An,m ← An,m + npc.spA.D
(2),η
j,k

end
end

end

return
{
An,m

}L

n,m=1

End Procedure LaplaceCollocationMatrix

who do not have a background with iterative methods for the solution of linear sys-
tems, we give a quick introduction in Appendix D.2.

Of the many types of iterative solvers, we must choose one that is appropriate
for the system of equations to be solved. The system of equations that the colloca-
tion approximation generates is not symmetric, so many classical iterative methods,
including the Conjugate Gradient method are not appropriate. In this section, we
will use the Bi-CGSTAB algorithm to solve the nonsymmetric system. We list that
algorithm in Appendix D.2.

The goal of the iterative solver is to drive the iteration residual to zero at each
collocation point. For the collocation approximation to the potential problem (5.22),
we make the association Ax ↔ ∇2

NΦ so that the matrix action applied to a set of
grid point values {Ui,j }Ni,j=0 is the left hand side of (5.22)

∇2
NUij ≡

N∑

k=0

D
(2),x
ik Uk,j +

N∑

k=0

D
(2),y
jk Ui,k. (5.33)

162 5 Spectral Approximation on the Square

Algorithm 71: Residual: Residual for a Polynomial Collocation Approxima-
tion to the Potential Equation on the Square

Procedure Residual
Input: npc ; // NodalPotentialClass
Uses Algorithms:

Algorithm 64 (NodalPotentialClass)
Algorithm 66 (LaplacianOnTheSquare)
Algorithm 67 (MaskSides)
Algorithm 140 (BLAS_Level1)

N = npc.spA.N ; M = npc.spA.M ; L ← (N + 1) × (M + 1)

{r}N,M
i,j=0 ← npc.LaplacianOnSquare(npc.{Φi,j }N,M

i,j=0)

{ri,j }N,M
i,j=0 ← BLAS_SCAL(L,−1, {ri,j }N,M

i,j=0,1)

{ri,j }N,M
i,j=0 ← BLAS_AXPY(L,1,npc.{si,j }N,M

i,j=0,1, {ri,j }N,M
i,j=0,1)

{ri,j }N,M
i,j=0 ← MaskSides({ri,j }N,M

i,j=0,npc.{maski}4
i=1)

return {ri,j }N,M
i,j=0

End Procedure Residual

The iteration residual for Dirichlet boundary conditions is therefore

rij = sij − ∇2
NUij , i, j = 1,2, . . . ,N − 1 (5.34)

in the interior of the domain. Along the boundaries, Dirichlet conditions ensure that
the residual vanishes. For Neumann conditions, we will want to include boundary
residuals.

To compute the residual for the polynomial collocation approximation, we use
Algorithm 66 (LaplacianOnSquare) and the source term stored in the collocation
approximation class Algorithm 64 (NodalPotentialClass). Algorithm 71 (Residual)
shows how to compute the residual (5.34) for a collocation approximation to the
potential equation. For efficiency, we use BLAS Level 1 procedures to perform the
basic whole array operations instead of directly using loops. We discuss the BLAS
operations in Appendix C. For Dirichlet conditions, all elements of the mask array
will be set to true.

5.2.1.5 A Finite Difference Preconditioner

Before we describe how to implement the Bi-CGSTAB iteration procedure, we note
that a preconditioner, H , that approximates the matrix, A, is almost always used to
accelerate convergence. (See Appendix D.2 a short discussion of preconditioning.)
In many ways it is an art to develop suitable preconditioners, and we could use one
of a variety of approximations. We could work directly with the matrix, say by using
the diagonal of the original, as in a Jacobi method. The present context of a spectral
approximation to a PDE allows a different approach. The preconditioner, H , comes
from an alternative, yet easier to solve approximation to the original differential

5 Spectral Approximation on the Square 163

equation. Possibilities include finite difference or finite element approximations to
the original equations. Both have been used as preconditioners for spectral methods.
Finite difference methods are easy to apply on the square, so we will describe the
finite difference approximation first. We will derive a finite element preconditioner
later in Sect. 5.2.2.3 for the nodal Galerkin approximation that we could use here
just as well.

The finite difference preconditioner uses a low order and more easily invertible
approximation to the original equations as an approximation to the spectral approx-
imations. Since the collocation points used by the spectral approximation are not
uniform, we must derive a finite difference approximation that takes this nonunifor-
mity into account.

To derive the standard second order (when on a uniform grid) centered approx-
imation to the second derivative, we take the derivative of a quadratic polynomial
through three points at xj−1, xj , xj+1, that have spacing Δxj = xj −xj−1. We write
the quadratic polynomial that interpolates a solution u at these points in Lagrange
form as

I2u = (x − xj)(x − xj+1)

Δxj (Δxj + Δxj+1)
uj−1 − (x − xj−1)(x − xj+1)

ΔxjΔxj+1
uj

+ (x − xj)(x − xj−1)

Δxj+1(Δxj + Δxj+1)
uj+1. (5.35)

The second derivative approximation is therefore

(I2u)′′ (xj) = 2

Δxj (Δxj + Δxj+1)
uj−1 − 2

ΔxjΔxj+1
uj

+ 2

Δxj+1(Δxj + Δxj+1)
uj+1. (5.36)

When the spacing is uniform, (I2u)′′(xj) reduces to the usual second order centered
approximation to the second derivative.

In two space dimensions, we add the second derivative in the y direction to the
finite difference operator to get

(HFDu)i,j = Aijui,j + Bijui−1,j + Cijui,j−1 + Eijui+1,j + Fijui,j+1, (5.37)

where

Aij = −2

(
1

ΔxiΔxi+1
+ 1

ΔyjΔyj+1

)

,

Bij = 2

Δxi(Δxi + Δxi+1)
, Cij = 2

Δyj (Δyj + Δyj+1)
,

Eij = 2

Δxi+1(Δxi + Δxi+1)
, Fij = 2

Δyj+1(Δyj + Δyj+1)
.

(5.38)

164 5 Spectral Approximation on the Square

The matrix associated with the finite difference operator (5.37) is pentadiagonal,
which is still more complex to invert than we would like. Rather than solve a pen-
tadiagonal system directly, say by LU factorization (Appendix D.1.2), we approxi-
mate it by an incomplete LU factorization (ILU) approximation, HILU = L̂Û that
approximates HFD by the product of a lower triangular matrix L̂ and an upper tri-
angular matrix Û . The advantage of this product, as we will see, is that we can solve
the system with minimal storage and simply by a forward followed by a backward
elimination sweep.

We find the matrix entries for the triangular matrices L̂ and Û by matching the
entries of HILU to HFD . The individual actions of the lower and upper triangular
matrices are

(
L̂u

)

i,j
= aijui,j + bijui−1,j + cijui,j−1,

(
Ûu

)

i,j
= ui,j + eij ui+1,j + fijui,j+1.

(5.39)

When multiplied together, the action of the lower and upper triangular matrices is

L̂
(
Ûu

)

i,j
= aij

(
ui,j + eij ui+1,j + fijui,j+1

)

+ bij

(
ui−1,j + ei−1,j uij + fi−1j ui−1,j+1

)

+ cij

(
ui,j−1 + ei,j−1ui+1,j−1 + fi,j−1uij

)
. (5.40)

When we gather the coefficients of the ui,j ’s and match them to the coefficients of
HFD (5.37), we get the off-diagonal entries

cij = Cij , bij = Bij ,

eij = Eij /aij , fij = Fij /aij .
(5.41)

The diagonal entry match gives

Aij = aij + bij ei−1,j + cij fi,j−1, (5.42)

which leaves two entries,

bij fi−1,j ui+1,j−1 + cij ei,j−1ui+1,j−1 (5.43)

without matching terms in HFD . To ensure that the approximation has the same
row sum as the original (which often makes a better preconditioner), we add the
additional off-diagonal terms to the diagonal entry

Aij = aij + bij ei−1,j + cij fi,j−1 + bij fi−1,j + cij ei,j−1. (5.44)

Therefore, the diagonal entry in the lower tri-diagonal matrix, L̂ is

aij = Aij − (
bij ei−1,j + cij fi,j−1 + bij fi−1,j + cij ei,j−1

)
. (5.45)

5 Spectral Approximation on the Square 165

With the coefficients matched, we write the actions of the lower and upper tridiago-
nal matrices without most of the intermediate variables as

(
L̂u

)

ij
= aijuij + Bijui−1,j + Cijui,j−1,

(
Ûu

)

ij
= uij + Eij

aij

ui+1,j + Fij

aij

ui,j+1.
(5.46)

The diagonal entries, aij , must be computed recursively, for

aij = Aij − BijEi−1,j

ai−1,j

− CijFi,j−1

ai,j−1
− BijFi−1,j

ai−1,j

− CijEi,j−1

ai,j−1
. (5.47)

To get the starting values of aij , we note that the preconditioned problem requires
the solution of a system

(
L̂Ûu

)

i,j
= Ri,j , (5.48)

which we break into two stages—a forward and then a backward elimination. If we
call wi,j = (Ûu)i,j , then

(
L̂w

)

i,j
= Ri,j (5.49)

is the lower triangular problem. Written out, the lower triangular problem is

aijwi,j +Bijwi−1,j +Cijwi,j−1 = Rij , i = 1,2, . . . ,N −1; j = 1,2, . . . ,M −1.

(5.50)
Boundary values of w, namely w0,j and wj,0 that occur when i = 1 and j = 1 are
moved to the right hand side of the equation, so to compute aij we take B1,j = 0
and Ci,1 = 0. Thus,

a11 = A11,

a1j = A1j − C1jF1,j−1

a1,j−1
− C1jE1,j−1

a1,j−1
, j = 2,3, . . . ,M − 1,

ai1 = Ai1 − Bi1Ei−1,1

ai−1,1
− Bi1Fi−1,1

ai−1,1
, i = 2,3, . . . ,N − 1.

(5.51)

For all other points, we use (5.47).
It is convenient to encapsulate the data and procedures for the preconditioner into

a class. At the minimum, this class should store the diagonal coefficients since they
must be computed recursively. We will compromise between storage and execution
speed and compute the off-diagonal coefficients on-the-fly rather than store them
for each point. A prototype class for the preconditioner is shown in Algorithm 72
(FDPreconditioner).

The constructor for the class computes the grid spacing and the diagonal coeffi-
cients, as shown in procedure Construct in Algorithm 73 (FDPreconditioner: Con-
structor). We do not show the procedures to compute the coefficients, A–F , since
they are simply direct applications of (5.38).

166 5 Spectral Approximation on the Square

Algorithm 72: FDPreconditioner: A Class for a Finite Difference Precondi-
tioner

Class FDPreconditioner
Data:

N,M ,
{
ai,j

}N,M

i,j=1, {dxi}Ni=1 ,
{
dyj

}M

j=1

Procedures:
Construct(N,M, {xi}Ni=1 , {yj }Mj=1); // Algorithm 73

A(i, j); B(i, j); C(i, j); E(i, j); F(i, j); // Equation (5.38)

Solve({Rij }N,M
i,j=0); // Algorithm 74

End Class FDPreconditioner

Algorithm 73: FDPreconditioner:Construct: Constructor for the Finite Differ-
ence Preconditioner on the Square

Procedure Construct
Input: N , M , {xi}Ni=0 ,

{
yj

}M

j=0
this.N ← N ; this.M ← M

for i = 1 to N do
this.dxi ← xi − xi−1

end
for j = 1 to M do

this.dyj ← yj − yj−1
end
this.a1,1 ← this.A(1,1)

for i = 2 to N − 1 do

this.ai,1 ← this.A(i,1)− this.B(i,1) ∗ this.E(i − 1,1)

this.ai−1,1
− this.B(i,1) ∗ this.F (i − 1,1)

this.ai−1,1
end
for j = 2 to M − 1 do

this.a1,j ←
this.A(1, j) − this.C(1, j) ∗ this.F (1, j − 1)

this.a1,j−1
− this.C(1, j) ∗ this.E(1, j − 1)

this.a1,j−1

for i = 2 to N − 1 do
this.ai,j ←
this.A(i, j) − this.B(i, j) ∗ this.E(i − 1, j)

this.ai−1,j

− this.C(i, j) ∗ this.F (i, j − 1)

this.ai,j−1
−

this.B(i, j) ∗ this.F (i − 1, j)

this.ai−1,j

− this.C(i, j) ∗ this.E(i, j − 1)

this.ai,j−1

end
end
End Procedure Construct

The last main procedure is Solve, which solves the system HILU z = r. For this,
we use a modification of the LU solver, procedure LUSolve, presented in Algo-
rithm 142 (LUFactorization).

The first stage of the ILU solver is the forward substitution on the lower triangular
part of the system. We have already written the lower triangular matrix problem in

5 Spectral Approximation on the Square 167

pointwise form in (5.46). With the boundary conditions B1,j = 0 and Ci,1 = 0,

w11 = R11/a11,

wi1 = (
Ri1 − Bi1wi−1,1

)
/ai1,

w1,j = (
Rij − C1jw1,j−1

)
/a1j ,

(5.52)

and the interior point values are computed by

wi,j = (
Ri,j − Bijwi−1,j − Cijwi,j−1

)
/aij . (5.53)

We make similar arguments to develop the backward substitution for the upper tri-
angular part, (Ûu)i,j = wi,j , namely

uN−1,M−1 = wN−1,M−1,

ui,M−1 = wi,M−1 − Ei,M−1

ai,M−1
ui+1,M−1,

uN−1,j = wN−1,j − FN−1,j

aN−1,j

uN−1,j+1,

(5.54)

while the interior point values are

ui,j = wi,j − Eij

aij

ui+1,j − Fij

aij

ui,j+1. (5.55)

Algorithm 74 (FDPreconditioner:Solve) implements (5.52)–(5.55) to solve the pre-
conditioned system, assuming that the coefficients A–F are computed on the fly. It
takes a right hand side array, R, and the coefficients of the diagonal of L̂ com-
puted in Algorithm 73 (FDPreconditioner), and returns the solution to the sys-
tem.

As we will soon see, the effect of preconditioning is significant. Although the
use of preconditioning adds significant complexity to the solution procedure, and
can be avoided for small problems, it should be considered a must to solve large
scale potential problems.

5.2.1.6 How to Construct the Iterative Potential Solver

The purpose of the iterative solver is to find the solution {Φij }N,M
i,j=0 so that the it-

eration residual, (5.34) vanishes, or in practice a norm of the residual is less than
some specified tolerance. As we said earlier, we will use the Bi-CGSTAB solver
that we list in Appendix D.2, since the system of equations is not symmetric. For
our particular implementation, we will write the solver almost completely in terms
of Level 1 BLAS (Appendix C) operations.

168 5 Spectral Approximation on the Square

Algorithm 74: FDPreconditioner:Solve: Solver for the ILU Preconditioner
HILU u = R

Procedure Solve

Input:
{
Rij

}N,M

i,j=0

N = this.N ; M = this.M
w1,1 ← R1,1/this.a1,1
for i = 2 to N − 1 do

wi,1 ← (
Ri,1 − this.B(i,1) ∗ wi−1,1

)
/this.ai,1

end
for j = 2 to M − 1 do

w1,j ← (
R1,j − this.C(1, j) ∗ w1,j−1

)
/this.a1,j

for i = 2 to N − 1 do
wi,j ← (

Ri,j − this.B(i, j) ∗ wi−1,j − this.C(i, j) ∗ wi,j−1
)
/this.ai,j

end
end
uN−1,M−1 ← wN−1,M−1
for i = N − 2 to 1 Step −1 do

ui,M−1 ← wi,M−1 − this.E(i,M − 1)

this.ai,M−1
ui+1,M−1

end
for j = M − 2 to 1 Step −1 do

uN−1,j ← wN−1,j − this.F (N − 1, j)

this.aN−1,j

uN−1,j+1

for i = N − 2 to 1 Step −1 do

ui,j ← wi,j − this.E(i, j)

this.ai,j

ui+1,j − this.F (i, j)

this.ai,j

ui,j+1

end
end

return
{
ui,j

}N,M

i,j=0

End Procedure Solve

We show our implementation of the Bi-CGSTAB method for the polynomial
spectral collocation approximation in Algorithm 75 (Bi-CGSSTABSolve). The in-
put is the maximum number of iterations to be allowed, Nit , and the tolerance TOL
for convergence. It also takes an instance of the spatial approximation, in this case
defined by Algorithm 64 (NodalPotentialClass), and an instance of the precondi-
tioner, e.g. Algorithm 72 (FDPreconditioner).

Finally, we need a driver to solve the potential problem. The driver must perform
tasks like compute the source array, construct the spatial approximation, call the
solver, and set the boundary conditions. We present an example driver for the Cheby-
shev collocation approximation in Algorithm 76 (CollocationPotentialDriver). We
include calls to a source value function and to an external routine that sets the
boundary values for Dirichlet conditions that need to be user supplied. We have
the driver initialize the mask array, here initialized for Dirichlet conditions on all
four sides.

5 Spectral Approximation on the Square 169

Algorithm 75: BiCGSSTABSolve: BiCGStab Iterative Solver for Nodal Spec-
tral Methods

Procedure BiCGSSTABSolve
Input: Nit , TOL
Input: npc ; // NodalPotentialClass instance
Input: H ; // Preconditioner instance, e.g. FDPreconditioner
Uses Algorithms:

Algorithm 64 (NodalPotentialClass)
Algorithm 71 (Residual)
Algorithm 74 (Solve)
Algorithm 140 (BLAS_Level1)

N ← npc.spA.N ; M ← npc.spA.M ; L ← (N + 1) × (M + 1)

ρ ← 1; α ← 1; omega ← 1

{r}N,M
i,j=0 ← Residual(npc)

{r̄ij }N,M
i,j=0 ← BLAS_COPY(L, {rij }N,M

i,j=0,1, {r̄ij }N,M
i,j=0,1)

for k = 1, Nit do
ρ̂ ← ρ

ρ ← BLAS_DOT(L, {r̄ij }N,M
i,j=0,1, {rij }N,M

i,j=0,1)

β ← ρα/(ρ̂ω)

{pij }N,M
i,j=0 ← BLAS_AXPY(L,−ω, {vij }N,M

i,j=0,1, {pij }N,M
i,j=0,1)

{pij }N,M
i,j=0 ← BLAS_SCAL(L,beta, {pij }N,M

i,j=0,1)

{pij }N,M
i,j=0 ← BLAS_AXPY(L,1, {rij }N,M

i,j=0,1, {pij }N,M
i,j=0,1)

{yij }N,M
i,j=0 ← H.Solve({pij }N,M

i,j=0)

{vij }N,M
i,j=0 ← npc.MatrixAction({yij }N,M

i,j=0)

α ← ρ/BLAS_DOT(L, {r̄ij }N,M
i,j=0,1, {vij }N,M

i,j=0,1)

{sij }N,M
i,j=0 ← BLAS_COPY(L, {rij }N,M

i,j=0,1, {sij }N,M
i,j=0,1)

{sij }N,M
i,j=0 ← BLAS_AXPY(L,−α, {vij }N,M

i,j=0,1, {sij }N,M
i,j=0,1)

{zij }N,M
i,j=0 ← H.Solve({sij }N,M

i,j=0)

{tij }N,M
i,j=0 ← npc.MatrixAction({zij }N,M

i,j=0)

ω ←
BLAS_DOT(L, {tij }N,M

i,j=0,1, {sij }N,M
i,j=0,1)/BLAS_DOT(L, {tij }N,M

i,j=0,1, {tij }N,M
i,j=0,1)

npc.{Φij }N,M
i,j=0 ← BLAS_AXPY(L,α, {yij }N,M

i,j=0,1,npc.{Φij }N,M
i,j=0,1)

npc.{Φij }N,M
i,j=0 ← BLAS_AXPY(L,ω, {zij }N,M

i,j=0,1,npc.{Φij }N,M
i,j=0,1)

{rij }N,M
i,j=0 ← BLAS_COPY(L, {sij }N,M

i,j=0,1, {rij }N,M
i,j=0,1)

{rij }N,M
i,j=0 ← BLAS_AXPY(L,−ω, {tij }N,M

i,j=0,1, {rij }N,M
i,j=0,1)

if BLAS_NRM2(L, {rij }N,M
i,j=0,1) < TOL then Exit

end
return npc
End Procedure BiCGSSTABSolve

170 5 Spectral Approximation on the Square

Algorithm 76: CollocationPotentialDriver: Driver for a Polynomial Colloca-
tion Approximation to the Potential on the Square

Procedure Main
Input: N , M , Nit , TOL
Uses Algorithms:

Algorithm 64 (NodalPotentialClass)
Algorithm 65 (NodalPotentialClass:Construct)
Algorithm 72 (FDPreconditioner)
Algorithm 73 (FDPreconditioner:Construct)
Algorithm 75 (BiCGStabSolve)

Derived Types: NodalPotentialClass: npc, FDPreconditioner: H

npc.Construct(N,M)

for j = 0 to M do
for i = 0 to N do

npc.si,j ← SourceValue(npc.spA.ξi ,npc.spA.ηj)

end
end
npc. {maskk}4

k=1 ← {true, true, true, true}
npc.{Φij }N,M

i,j=0 ← SetBoundaryValues(npc.{Φij }N,M
i,j=0)

H.Construct(N,M,npc.spA. {ξi}Ni=0 ,npc.spA.{etaj }Mj=0)

npc ← BiCGStabSolve(Nit ,TOL,npc,H)

Output results, etc.
End Procedure Main

5.2.1.7 Benchmark Solution

We have so far derived two collocation approximations—Chebyshev and Legen-
dre—and two solvers—direct and iterative. Our benchmark solution compares the
performance of the approximations and solvers. We will solve the simple model
boundary value problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∇2ϕ = ϕxx + ϕyy = −8π2 cos(2πx) sin(2πy), (x, y) ∈ (−1,1) × (−1,1) ,

ϕ (x,−1) = 0, −1 ≤ x ≤ 1,

ϕ (1, y) = sin(2πy), −1 ≤ y ≤ 1,

ϕ (x,1) = 0, −1 ≤ x ≤ 1,

ϕ (−1, y) = sin(2πy), −1 ≤ y ≤ 1,

(5.56)

which has the analytical solution ϕ = cos(2πx) sin(2πy). We show the Chebyshev
collocation solution for this problem in Fig. 5.1 for N = M = 64. We are interested
in the accuracy and convergence behavior, especially the differences between the
Chebyshev and Legendre approximations. We also need to see how effective the
solvers are for the solution of the linear systems.

We show the logarithm of the maximum errors for the Chebyshev and Legendre
approximations in Table 5.1. We see that the errors decay exponentially fast. Dou-
bling the number of points in each direction causes the error to drop by a factor

5 Spectral Approximation on the Square 171

Fig. 5.1 Solution and grid
for the Chebyshev collocation
approximation of the steady
potential in a square with a
sinusoidal heat source

Table 5.1 Logarithm of maximum errors for collocation approximations to (5.56)

N 8 12 16 20 24

Chebyshev −1.5375 −3.8044 −6.6535 −9.8774 −13.411

Legendre −1.8658 −4.1584 −7.1440 −10.451 −14.020

of approximately one thousand. Finally, we see that the Legendre approximation is
“slightly” more accurate by about a factor of three.

Next, let’s examine the performance of the direct and iterative solvers. To find the
solutions with the direct solver, we used Algorithms 69 (CollocationRHSComputa-
tion) and 70 (LaplaceCollocationMatrix) to set up the matrix system. We then used
Algorithm 142 (LUFactorization) to solve the system. For comparison, we also used
the LAPACK routine DGETRF to perform the LU decomposition on the matrix and
its companion DGETRS to solve the system. To solve the system iteratively, we used
Algorithm 75 (BiCGSSTABSolve) with the BLAS routines of 140 (BLAS_Level1).

We show the performance of the Bi-CGSTAB iterative solver in Fig. 5.2, which
plots the logarithm of the norm

‖r‖ =

√
√
√
√
√

N,M∑

i,j=0

(rij)2 (5.57)

for the Chebyshev collocation approximation with N = 72 and an initial iterate
Φ = 0. Figure 5.2 clearly shows the need to precondition. The preconditioned iter-

172 5 Spectral Approximation on the Square

Fig. 5.2 Iteration
convergence of the
Bi-CGSTAB iterative solver
for the Chebyshev collocation
approximation to the steady
potential in a square with a
source when N = 72

Table 5.2 Number of
iterations for the Bi-CGSTAB
solver with finite difference
preconditioning

N 8 16 32 64 72

Chebyshev 12 18 24 36 39

Legendre 13 17 24 34 39

Table 5.3 Storage
requirements (MB) for the
direct and iterative solvers

N 8 16 32 64

Direct 0.02 0.41 7.4 126.1

Iterative 0.004 0.014 0.052 0.2

ation converges to near machine precision in only 39 iterations. Since the condition
number of the system increases with the size of the matrix, the number of iterations
increases with the size. Table 5.2 shows the number of iterations as a function of N

for both the Chebyshev and Legendre approximations.
Ultimately, we make the decision to use a direct or an iterative solver on the

memory and CPU time usage of each. Memory considerations give the advantage to
the iterative solvers. Table 5.3 shows the actual number of megabytes needed for the
direct and iterative solvers when we used double precision arithmetic. The memory
needs of the direct solver grow as N4. For the iterative solver, we traded some stor-
age in return for some increased computation time by only storing the diagonal of
the finite difference preconditioner. Even with additional storage for the off-diagonal
terms, the memory requirements for the iterative solver grow only as N2. It is clear
that the storage requirements of the direct solver become prohibitive as the system
gets larger.

5 Spectral Approximation on the Square 173

Table 5.4 CPU time (s) for the direct and BiCGStab solvers

N Algorithm 142 Algorithm 142 LAPACK LAPACK BiCGStab

(Decomposition) (Solve) (Decomposition) (Solve)

16 0.01 0 0 0 0.002

24 0.16 0.0007 0.04 0 0.004

48 30.0 0.05 1.73 0.02 0.026

64 203 0.14 9.83 0.09 0.064

72 421 0.3 20.1 0.15 0.09

CPU comparisons of the direct vs. preconditioned iterative solvers also favor
the iterative solution of the equations. Table 5.4 shows timings for the LU de-
composition and solve for the direct solvers, along with the time to converge the
iterative solver. The first thing that we notice is that we should use the LAPACK
routines to solve the system, not our Algorithm 142 (LUFactorization). The com-
parison is not totally fair, however, since the LAPACK computations used a vendor
supplied optimized version of LAPACK that automatically ran in parallel on eight
CPU cores. But even if we account for a factor of eight, the LAPACK routines are
still significantly better. If we add the decomposition and solve time, the (parallel)
direct solver is more efficient than the iterative solver only for N < 24. However,
if the decomposition needs only to be done once, such as part of a time depen-
dent problem (see, e.g., Sect. 5.3) then we may be able to amortize the cost of the
factorization. At N = 24, for instance, it becomes less expensive to use the direct
solver if the same system is solved more than six times. At N ≥ 48, however, the
direct solver is never more efficient. Our conclusion that the iterative solution is the
better choice is strengthened by the fact that the iterative solver used Algorithm 75
(BiCGSSTABSolve) and the unoptimized BLAS routines based on Algorithm 140
(BLAS_Level1) and Algorithm 19 (MxVDerivative) rather than one of the faster
alternatives.

5.2.2 The Nodal Galerkin Approximation

Recall that the Galerkin approximation uses an alternative set of constraints to find
the degrees of freedom. It starts from a weak form of the equation to determine
the unknowns that define the polynomial, Φ , that approximates the potential, ϕ.
To get the weak form, we multiply the equation by a smooth function φ(x, y) that
satisfies the boundary conditions, multiply by the weight function appropriate to the
polynomial in which we expand the solution, and integrate over the domain

∫ 1

−1

∫ 1

−1

(
s − ∇2ϕ

)
φ (x, y)w(x, y)dxdy = 0. (5.58)

We then apply Green’s identity to re-write (5.58).

174 5 Spectral Approximation on the Square

For smooth enough functions u and v Green’s first identity is

∫ 1

−1

∫ 1

−1
v∇2udxdy =

∫

∂

v∇u · n̂dS −
∫ 1

−1

∫ 1

−1
∇u · ∇vdxdy. (5.59)

Here, ∂ represents the boundary of the square, n̂ represents the outward facing nor-
mal, and dS is the associated surface differential. To simplify the use of Green’s
identity, it is convenient to choose an approximation for which the weight func-
tion w = 1. This implies that we want to use a Legendre approximation. We see
that the presence of the weight function in (5.58) highlights a difference between
the Legendre or the Chebyshev approximation that we don’t see in the collocation
approximation. In the Legendre approximation, the weight function is unity. For
Chebyshev approximations, w(x,y) = 1/

√
(1 − x2)(1 − y2).

If we use the Legendre weight, we get the weak form of the potential equation

∫

∂

φ∇ϕ · n̂dS−
∫ 1

−1

∫ 1

−1
∇φ · ∇ϕdxdy =

∫ 1

−1

∫ 1

−1
sφdxdy (5.60)

when we apply (5.59) to (5.58). Since φ satisfies the boundary conditions, φ = 0
along the boundary, and the boundary integral in (5.60) vanishes, leaving the final
form of the equation

−
∫ 1

−1

∫ 1

−1
∇φ · ∇ϕdxdy =

∫ 1

−1

∫ 1

−1
sφdxdy. (5.61)

As before, to get the Galerkin approximation, we replace ϕ by its polynomial ap-
proximation Φ , the source s by its polynomial approximation, S, and take φ to be
any polynomial of the same degree as Φ that satisfies the boundary conditions. Then
the Galerkin approximation for the potential problem on the square is

−
∫ 1

−1

∫ 1

−1

{
∂φ

∂x

∂Φ

∂x
+ ∂φ

∂y

∂Φ

∂y

}

dxdy =
∫ 1

−1

∫ 1

−1
φSdxdy. (5.62)

The Galerkin approximation is not limited to constant coefficient problems. To
approximate the variable coefficient problem

∇ · (ν∇ϕ) = s (5.63)

that we already considered in (5.25), we simply change the weak form (5.61) to

−
∫ 1

−1

∫ 1

−1
∇φ · (ν∇ϕ)dxdy =

∫ 1

−1

∫ 1

−1
sφdxdy. (5.64)

We complete the approximation when we find the system of equations that the
degrees of freedom satisfy. Since we are deriving the nodal Galerkin approximation,

5 Spectral Approximation on the Square 175

we write Φ in nodal form

Φ (x,y) =
N∑

i,j=0

Φi,j �i(x)�j (y). (5.65)

The boundary conditions tell us that Φi,j = 0 along the boundaries so there are a
total of (N − 1)2 degrees of freedom to determine. To find the equations, we use the
fact that φ is now any polynomial of the same degree as the solution that satisfies
the boundary conditions. Therefore we can write φ also in the nodal form

φ (x, y) =
N∑

i,j=0

φij �i(x)�j (y) (5.66)

for any nodal values φi,j , i, j = 1,2, . . . ,N − 1 with φi,j = 0 on the boundaries.
When we substitute for φ in (5.62) and rearrange,

−
N−1∑

i,j=1

φi,j

{∫ 1

−1

∫ 1

−1

[

�j (y)
∂�i

∂x

∂Φ

∂x
+ �i (x)

∂�j

∂y

∂Φ

∂y

]

dxdy

}

=
N−1∑

i,j=1

φi,j

{∫ 1

−1

∫ 1

−1
�i(x)�j (y)Sdxdy

}

. (5.67)

Since the φi,j are arbitrary and hence linearly independent, the coefficients of each
must match, which gives us the (N − 1)2 equations

−
∫ 1

−1

∫ 1

−1

[

�j (y)
∂�i

∂x

∂Φ

∂x
+ �i (x)

∂�j

∂y

∂Φ

∂y

]

dxdy

=
∫ 1

−1

∫ 1

−1
�i(x)�j (y)Sdxdy, i, j = 1,2, . . . ,N − 1. (5.68)

To get equations for the unknown grid point values, Φi,j , we replace Φ in (5.68)
with (5.65) and change the independent indices

−
∫ 1

−1

∫ 1

−1

⎧
⎨

⎩
�j (y) �′

i (x)

⎛

⎝
N∑

n,m=0

Φn,m�m (y) �′
n (x)

⎞

⎠dxdy

⎫
⎬

⎭

−
∫ 1

−1

∫ 1

−1

⎧
⎨

⎩
�i (x) �′

j (y)

⎛

⎝
N∑

n,m=0

Φn,m�′
m (y) �n (x)

⎞

⎠dxdy

⎫
⎬

⎭

=
∫ 1

−1

∫ 1

−1
�i (x) �j (y)Sdxdy, i, j = 1,2, . . . ,N − 1. (5.69)

176 5 Spectral Approximation on the Square

We then swap the orders of the summations and integrals, and gather the coefficients
of the unknowns

−
N∑

n,m=0

Φn,m

[∫ 1

−1

∫ 1

−1
�′
n(x)�′

i (x)�m(y)�j (y)dxdy

]

−
N∑

n,m=0

Φn,m

[∫ 1

−1

∫ 1

−1
�i(x)�n(x)�′

j (y)�′
m(y)dxdy

]

=
∫ 1

−1

∫ 1

−1
�i (x) �j (y)Sdxdy, i, j = 1,2, . . . ,N − 1. (5.70)

Equation (5.70) plus the boundary values defines a linear system for the interior
values of the Φi,j with coefficients given by the integrals within the square brackets.

Although we could try to evaluate the integrals to derive the coefficients exactly,
we are developing a nodal Galerkin approximation with a quadrature approxima-
tion of the integrals. We will therefore replace the integrals with Gauss-Lobatto
quadratures. Quadrature simplifies the computation of the coefficients, retains spec-
tral accuracy, easily extends to variable coefficient problems like (5.64), and will
be used as the foundation of the spectral element method. With the quadrature ap-
proximation, the discrete orthogonality (Sect. 1.11) of the Lagrange interpolating
polynomials causes the integral over the source term to reduce to

∫ 1

−1

∫ 1

−1
�i (x) �j (y)Sdxdy ≈

N∑

n,m=0

wnwm�i (xn) �j (ym)S(xn, ym)

= wiwjS(xi, yj). (5.71)

We also find the coefficients on the left of (5.70) by replacing the integrals with
quadrature. For the first term on the left, we have the approximation

∫ 1

−1

∫ 1

−1
�′
n(x)�′

i (x)�m(y)�j (y)dxdy

=
(∫ 1

−1
�m(y)�j (y)dy

)(∫ 1

−1
�′
n(x)�′

i (x)dx

)

≈ (
δj,mwm

)
(

N∑

k=0

�′
n(xk)�

′
i (xk)wk

)

. (5.72)

As before (e.g. Sect. 3.5.2), let us call

D
(x)
nk = �′

n (xk) (5.73)

5 Spectral Approximation on the Square 177

and define the symmetric matrix

G
(x)
in = G

(x)
ni =

N∑

k=0

D
(x)
nk D

(x)
ik wk. (5.74)

Therefore, we approximate the first term in (5.70) by

N∑

n,m=0

Φn,m

[∫ 1

−1

∫ 1

−1
�′
n(x)�′

i (x)�m(y)�j (y)dxdy

]

≈
N∑

n=0

Φn,jw
(y)
j G

(x)
in . (5.75)

Similarly, we approximate the second term on the left of (5.70) by

N∑

n,m=0

Φn,m

[∫ 1

−1

∫ 1

−1
�i(x)�n(x)�′

j (y)�′
m(y)dxdy

]

≈
N∑

m=0

Φi,mw
(x)
i G

(y)
jm. (5.76)

When we put the two together, we have the nodal Galerkin approximation

−
{

N∑

k=0

w
(y)
j G

(x)
ik Φk,j + w

(x)
i G

(y)
jk Φi,k

}

= w
(x)
i w

(y)
j Si,j , i, j = 1,2, . . . ,N − 1.

(5.77)
We will represent the quantity on the left by (∇2Φ,�i�j)N .

Equation (5.77) looks much like the collocation approximation, (5.22), with one
important difference. In the collocation approximation the coefficient matrix is not
symmetric, whereas the Galerkin coefficient matrix, G, clearly is. The symmetry al-
lows us to use the popular and efficient Conjugate Gradient method (Appendix D.2)
to solve the system iteratively. To maintain this symmetry, we do not divide the sys-
tem by the coefficients of the mass matrix (which is clearly diagonal) represented
by the product w

(x)
i w

(y)
j , as we did in the approximation of the time dependent one-

dimensional problem in (4.122).

5.2.2.1 How to Implement the Nodal Galerkin Approximation

We have already developed the machinery we need to implement the approximation
to the Laplace operator; we only need to modify existing algorithms. To implement
the nodal Galerkin method, we reuse the nodal approximation class Algorithm 64
(NodalPotentialClass). We have to change the constructor, the Laplace operator ap-
proximation and the driver. The new implementations are:

• Create a nodal Galerkin constructor. To change the constructor, Algorithm 65
(NodalPotentialClass:Construct), we note that the second derivative matrices in
the Nodal2DStorage structure must now store the matrices Gik defined by (5.74)
and computed by Algorithm 57 (CGDerivativeMatrix). The quadrature weights
and nodes must be computed by Algorithm 25 (LegendreGaussLobattoNodes-
AndWeights).

178 5 Spectral Approximation on the Square

Algorithm 77: LaplacianOnTheSquare: Nodal Galerkin Approximation to the
Laplace Operator

Procedure LaplacianOnTheSquare

Input:
{
Uij

}N,M

i,j=0
Uses Algorithms:

Algorithm 19 (MxVDerivative)

N ← this.spA.N ; M ← this.spA.M

for j = 0 to M do
{
Uxxij

}N

i=0 ← MxVDerivative
(
this.spA.

{
D

(2),ξ
ij

}N

i,j=0,
{
Uij

}N

i=0

)

for i = 0 to N do
Uxxij ← this.spA.w

(η)
j ∗ Uxxij

end
end
for i = 0 to N do

{
Uyyij

}M

j=0 ← MxVDerivative
(
this.spA.

{
D

(2),η
ij

}N

i,j=0,
{
Uij

}M

j=0

)

end
for j = 0 to M do

for i = 0 to N do
(∇2U,�i�j

)

N
← −Uxxij − this.spA.w

(ξ)
i ∗ Uyyij

end
end

return
{(∇2U,�i�j

)

N

}N,M

i,j=0

End Procedure LaplacianOnTheSquare

• Replace the algorithm to approximate the Laplacian. We also need to replace Al-
gorithm 66 (LaplacianOnTheSquare), to implement the nodal Galerkin approx-
imation. We show the nodal Galerkin version in Algorithm 77 (NodalGalerkin-
Laplacian). Don’t forget that those second derivative arrays now store the matri-
ces G that we define in (5.74).

• Modify the source term to compute the residual. The residual for the nodal
Galerkin approximation is

rij = sijw
(x)
i w

(y)
j +

N∑

k=0

w
(y)
j G

(x)
ik Φk,j + w

(x)
i G

(y)
jk Φi,k

≡ sijw
(x)
i w

(y)
j − (∇2Φ,�i�j

)

N
. (5.78)

We see, then, that we can reuse Algorithms 71 (Residual) and 68 (NodalPoten-
tialClass:MatrixAction) if we store the quantity sijw

(x)
i w

(y)
j in the space that we

allotted for the source terms in Algorithm 64 (NodalPotentialClass). So to solve
the nodal Galerkin approximation iteratively, we modify the driver Algorithm 76
(CollocationPotentialDriver) to store the modified source term.

5 Spectral Approximation on the Square 179

Thus we see that although the derivation is quite different, the implementation of
the nodal Galerkin approximation is virtually identical to the collocation approxi-
mation. From a programming point of view, then, there is no reason to prefer collo-
cation over this approximation to solve the Poisson equation on the square.

5.2.2.2 Direct Solution of the Equations

Given the practical similarity of the nodal Galerkin method to the collocation ap-
proximation, it should be no surprise that we can solve the system directly with
only simple modifications to Algorithms 69 (CollocationRHSComputation) and 70
(LaplaceCollocationMatrix). To compute the right hand side, we must account for
the weight functions and replace the derivative matrices. Thus, we must replace
(5.29) by

N−1∑

k=1

w
(y)
j G

(x)
ik Φk,j +

M−1∑

k=1

w
(x)
i G

(y)
jk Φi,k

= w
(x)
i w

(y)
j si,j − w

(y)
j G

(x)
i0 Φ0,j − w

(y)
j G

(x)
iN ΦN,j

− w
(x)
i G

(y)

j0 Φi,0 − w
(x)
i G

(y)
jMΦi,M

≡ RHSij , i = 1,2, . . . ,N − 1; j = 1,2, . . . ,M − 1, (5.79)

which we implement by modifying Algorithm 69 (CollocationRHSComputation).
Similarly, we replace the matrix elements in (5.32) by

An(i,j),m(k,j) = w
(y)
j G

(x)
ik , k = 1,2, . . . ,N − 1; k 	= i,

An(i,j),m(i,k) = w
(x)
i G

(y)
jk , k = 1,2, . . . ,M − 1; k 	= j,

An(i,j),m(i,j) = w
(y)
j G

(x)
ii + w

(x)
i G

(y)
jj .

(5.80)

With these equations, we modify Algorithm 70 (LaplaceCollocationMatrix) to rep-
resent the nodal Galerkin approximation.

Nevertheless, our tests of the direct solver for the collocation approximation lead
us to expect that the direct solution of the system will not be competitive with an
iterative solver except for small systems.

5.2.2.3 Iterative Solution of the Equations

The symmetry of the Galerkin approximation enables us to use the popular Con-
jugate Gradient method (Appendix D.2) to solve the system of equations (5.77)
iteratively. As with the collocation approximation, it is usually necessary to precon-
dition the system. We will therefore derive a preconditioner before we implement
the solver.

180 5 Spectral Approximation on the Square

5.2.2.4 A Finite Element Preconditioner

As is typical of spectral approximations, the system of equations represented by
(5.77) needs to be preconditioned for an iterative technique to be most effective. For
the Conjugate Gradient method, the preconditioner must be a symmetric approxima-
tion to the matrix. Because of the non-uniform grid generated by the Gauss-Lobatto
points, the finite difference preconditioner that we developed for the collocation ap-
proximation is not symmetric, and hence we should not use it with the Conjugate
Gradient method.

A finite element preconditioner, starting from the same Galerkin weak form that
we used to derive the spectral approximation, can satisfy the symmetry require-
ments. To derive the finite element approximation, we approximate the solution by
local bi-linear interpolants that we form on quadrilateral elements whose four cor-
ners are grid points, as we show in Fig. 5.3.

To derive the finite element approximation, it is convenient to map the rectangular
element to the unit square by the (affine) transformation

x = xi + Δxiξ,

y = yi + Δyjη,
(5.81)

where Δx = xi+1 − xi and Δy = yj+1 − yj . (A more general discussion of map-
pings and their effect on the approximations is the topic of the next chapter.) In

Fig. 5.3 Linear finite element approximation on a quadrilateral element created from four points
on the grid

5 Spectral Approximation on the Square 181

terms of the mapped coordinates, we approximate a function, U , by the bi-linear
interpolant on the element

U(ξ,η) = Ui,jψ0,0 + Ui+1,jψ1,0 + Ui+1,j+1ψ1,1 + Ui,j+1ψ0,1

=
1∑

k,l=0

Ui+k,j+lψk,l, (5.82)

where Ui,j is the value of the function at the point (i, j) and the basis functions are
the bi-linear functions that vanish at all corners but one:

ψ0,0 = (1 − ξ)(1 − η),

ψ1,0 = ξ(1 − η),

ψ1,1 = ξη,

ψ0,1 = (1 − ξ)η.

(5.83)

We will write these four basis functions in a compact, although cryptic, form

ψk,l(ξ, η) = (
1 − k − (−1)kξ

)(
1 − l − (−1)lη

)
. (5.84)

We make the finite element preconditioner approximate the spectral operator by
having it approximate the same equation, (5.61). Since we will soon make a change
of variables to (ξ, η), let us rename the gradient operator in the original (x, y) vari-
ables to be ∇x . Then the contribution from each element to the stiffness integral on
the left is

∫ yj+1

yj

∫ xi+1

xi

∇xU · ∇xψdxdy = ΔxiΔyj

∫ 1

0

∫ 1

0
∇xU · ∇xψdξdη, (5.85)

or, when we substitute for U from (5.82),

1∑

k,l=0

Ui+k,j+l

{

ΔxiΔyj

∫ 1

0

∫ 1

0
∇xψk,l · ∇xψn,mdξdη

}

, n,m = 0,1. (5.86)

We represent this sum as a local stiffness matrix multiplication of the grid point
values of U

⎡

⎢
⎢
⎢
⎢
⎣

S00
00 S00

10 S00
01 S00

11

S10
00 S10

10 S10
01 S10

11

S01
00 S01

10 S01
01 S01

11

S11
00 S11

10 S11
01 S11

11

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎣

Ui,j

Ui+1,j

Ui,j+1
Ui+1,j+1

⎤

⎥
⎥
⎦ , (5.87)

where

Snm
kl = −ΔxiΔyj

∫ 1

0

∫ 1

0
∇xψk,l · ∇xψn,mdξdη. (5.88)

182 5 Spectral Approximation on the Square

(Note that the matrix is symmetric by virtue of the product in the integrand.) To
be consistent with standard matrix notation, we write the local stiffness matrix with
entries Ŝpq = Snm

kl with p = n + 2m + 1 and q = k + 2l + 1.
The gradients in the integrands transform easily under the affine transformation,

specifically

∇xψk,l = ∂ψk,l

∂ξ

∂ξ

∂x
x̂ + ∂ψk,l

∂η

∂η

∂y
ŷ = 1

Δx

∂ψk,l

∂ξ
x̂ + 1

Δy

∂ψk,l

∂η
ŷ, (5.89)

where

∂ψk,l

∂ξ
= −(−1)k

(
1 − l − (−1)lη

)
,

∂ψk,l

∂η
= −(−1)l

(
1 − k − (−1)kξ

)
.

(5.90)

We show how to compute the components of the gradient in the procedure Psi_Xi
and Psi_Eta in Algorithm 78 (ApproximateFEMStencil).

Rather than evaluate the integrals in (5.88) exactly, Canuto et al. [7] report that a
linear approximation to the integrands yields a better preconditioner for the spectral
Galerkin approximation. Therefore, we will approximate the integrands

gnm
kl (ξ, η) = ∇xψk,l · ∇xψn,m = 1

Δx2

∂ψk,l

∂ξ

∂ψn,m

∂ξ
+ 1

Δy2

∂ψk,l

∂η

∂ψn,m

∂η
(5.91)

with a bilinear function

g(ξ, η) = (1 − ξ)(1 − η)g(0,0) + ξ(1 − η)g(1,0) + ξηg(1,1) + (1 − ξ)ηg(0,1).

(5.92)
We easily evaluate the integral of the bilinear approximation

∫ 1

0

∫ 1

0
gnm

kl (ξ, η)dξdη = 1

4

(
gnm

kl (0,0) + gnm
kl (1,0) + gnm

kl (1,1) + gnm
kl (0,1)

)

(5.93)
and find that it is simply the average of the values at the four corners. Thus, the local
stiffness matrix entries for the approximate finite element preconditioner are

Snm
kl = ΔxiΔyj

4

(
gnm

kl (0,0) + gnm
kl (1,0) + gnm

kl (1,1) + gnm
kl (0,1)

)
. (5.94)

To compute the local stiffness matrix we use the procedure LocalStiffnessMatrix in
Algorithm 78 (ApproximateFEMStencil).

We now have to sum the contributions from each element to compute the global
stiffness matrix. Stiffness summation is a procedure that is standard in finite element
texts, and is applicable to unstructured and structured grids. However, since the grid
here is regular, the approximation is local, and since we have already derived a
useful finite difference solver, we will compute the stiffness summation explicitly to
derive a local stencil, much like the finite difference stencil in (5.37).

5 Spectral Approximation on the Square 183

Algorithm 78: ApproximateFEMStencil: Computing the Approximate Finite
Element Stencil on the Square

Procedure StencilCoefficients

Input: i, j ,
{
xk

}N
k=0,

{
yk

}M
k=0

for m = 0 to 1 do
for n = 0 to 1 do

p ← n + 2m + 1
{
pŜkl

}4

k,l=1
← LocalStiffnessMatrix(xi−n+1 − xi−n, yj−n+1 − yj−n)

end
end
for m = 0 to 1 do

for n = 0 to 1 do
p ← n + 2m + 1
for k = −n to −n + 1 do

for l = −m to −m + 1 do
Ckl ← Ckl + pŜpq

end
end

end
end

return
{
Ckl

}1
k,l=−1

End Procedure StencilCoefficients

Procedure LocalStiffnessMatrix
Input: Δx,Δy

for m = 0 to 1 do
for n = 0 to 1 do

q ← n + 2 ∗ m + 1
for l = 0 to 1 do

for k = 0 to 1 do
p ← k + 2 ∗ l + 1
t ← 0
for s = 0 to 1 do

for r = 0 to 1 do
t ← t + Psi_Xi(k, l, s) ∗ Psi_Xi(n,m, s)/Δx2 + Psi_Eta(k, l, r) ∗

Psi_Eta(n,m, r)/Δy2 // R1
end

end
Ŝp,q ← ΔxΔy ∗ t/4

end
end

end
end

return
{
Skl

}4
k,l=1

End Procedure LocalStiffnessMatrix

Procedure Psi_Xi
Input: k, l, η
∂ψkl

∂ξ
← −(−1)k

(
1 − l − (−1)lη

)

return ∂ψ/∂ξkl (η)

End Procedure Psi_Xi

Procedure Psi_Eta
Input: k, l, ξ
∂ψkl

∂η
← −(−1)l

(
1 − k − (−1)kξ

)

return ∂ψ/∂ξkl (η)

End Procedure Psi_Eta

184 5 Spectral Approximation on the Square

The contribution to a point (i, j) comes from the four finite elements around it,
Ei,j , Ei−1,j , Ei−1,j−1, Ei,j−1 and corresponds to the basis function in each ele-
ment that is non-zero at the point (i, j). To distinguish between the local stiffness
matrices between the four elements, we’ll add a superscript to them. The contribu-
tions to the stencil are

1∑

l=0

1∑

k=0

(i,j)S00
kl Ui+k,j+l +

1∑

l=0

0∑

k=−1

(i−1,j)S10
k+1,lUi+k,j+l

+
0∑

l=−1

0∑

k=−1

(i−1,j−1)S11
k+1,l+1Ui+k,j+l +

0∑

l=−1

1∑

k=0

(i,j−1)S01
k,l+1Ui+k,j+l

=
1∑

l=−1

1∑

k=−1

C
(i,j)
kl Ui+k,j+l . (5.95)

We collapse the four sums on the left of (5.95) to get

1∑

m=0

1∑

n=0

−m+1∑

l=−m

−n+1∑

k=−n

(i−n,j−m)Snm
k+n,l+mUi+k,j+l =

1∑

l=−1

1∑

k=−1

C
(i,j)
kl Ui+k,j+l ,

(5.96)
which defines the stencil coefficients C

(i,j)
kl for the grid point (i, j). For the full lin-

ear finite element approximation, this represents a nine-point stencil. The approxi-
mate finite element method is only a five point stencil, since the coefficients turn out
to be zero at the four corner points.

We compute the stencil coefficients from the four matrices Ŝpq that correspond
to the four values of n and m. We will store those as a four dimensional array of
4 × 4 matrices and denote these arrays by pŜpq where, as before, p = n + 2m + 1,
but because the subscripts have changed, q = (k + n) + 2(l + m) + 1. The proce-
dure StencilCoefficients in Algorithm 78 (ApproximateFEMStencil) implements the
construction of the stencil coefficients.

Finally, we discuss how to solve the preconditioned system. As we describe in
Appendix D.2, the preconditioned Conjugate Gradient method performs a system
solve of the form Hz = r during each iteration. As always, there are tradeoffs to
consider between computational time and storage costs. The solution of the system,
which is pentadiagonal, is standard in finite element texts. In roughly reverse order
of the amount of extra storage required, a direct solution of the system without
taking into account the sparsity of the matrix requires a large amount of memory
and is computationally very expensive. Banded direct solvers are possible. We can
use approximations to these solvers, like the ILU solver that we implemented in
Sect. 5.2.1.4 in the context of the finite difference preconditioner. Finally, we can
use an iterative solver for the preconditioner (with it’s own preconditioner, for the
Cat in the Hat fans.)

5 Spectral Approximation on the Square 185

We can equally apply the ILU solution of the preconditioned system described in
Algorithm 74 (Solve) to the approximate finite element preconditioner on the grid.
We need only make the correspondence between the coefficients A–F in the finite
difference approximation and the coefficients C in the finite element approximation,
A = C00, etc., and make the appropriate changes.

An alternative to the ILU solver for the preconditioner’s pentadiagonal system
that can turn out to be almost as fast, yet requires less coding, is to use a single sweep
of the symmetric successive overrelaxation method (SSOR) as an approximation to
the solution of the preconditioner. Of course, we could use the SSOR to solve the
system exactly by iterating to convergence. This would minimize the number of iter-
ations of the (outer) Conjugate Gradient solver, at the price of substantial increased
CPU time per iteration. Using a single sweep of the SSOR will increase the number
of iterations in the outer solver, but the single sweep is fast. If we do not iterate the
preconditioner to convergence, we must use SSOR rather than the SOR since the
preconditioner must be symmetric overall. We must also carefully choose a value
for the acceleration parameter in the interval [1, 2) that gives fastest convergence—a
definite disadvantage of using SSOR to solve the preconditioner. On the plus side,
the iterative solver is widely applicable, can be used for preconditioners that have
other than pentadiagonal matrices, and is easy to code. The SSOR iteration consists
of two loops, one running forward through the grid, and the other backwards. For
reference, we show the SSOR sweep in Algorithm 79 (SSORSweep). We can ei-
ther compute the stencil coefficients C on the fly or once during the construction of
the iterative solver and save them. Finally, we note that we could just as well have
used the SSOR solver with the finite difference preconditioner for the collocation
equations instead of the ILU solver.

5.2.2.5 Construction of the PCG Solver

Finally, we implement the Conjugate Gradient solver of Appendix D.2 using the
BLAS-1 algorithms of Appendix C to solve the nodal Galerkin approximation. We
show this modification in Algorithm 80 (ConjugateGradientSolve). The algorithm
takes an instance of a NodalPotentialClass, Algorithm 64, constructed as we have
described above to represent a nodal Galerkin approximation. The solver also takes
an instance of a preconditioner, which we model after the finite difference precon-
ditioner of Algorithms 72 (FDPreconditioner)–74 (Solve). We represent the solver
for the preconditioner as the ILU preconditioner of Algorithm 74 (Solve), which
we must modify to compute the approximate finite element method shown in Al-
gorithm 78 (ApproximateFEMStencil). We could swap the preconditioner’s solver
with the SSOR solver of Algorithm 79 (SSORSweep). We make a tradeoff between
storage and computation cost by deciding to store or not to store the stencil co-
efficients when we modify Algorithm 72 (FDPreconditioner). Finally, all our com-
ments in the discussion of the BiCGStab algorithm about boundary conditions apply
equally to Algorithm 80 (ConjugateGradientSolve).

186 5 Spectral Approximation on the Square

Algorithm 79: SSORSweep: SSOR Sweep for the Finite Element Precondi-
tioner

Procedure SSORSweep

Input:
{
ri,j

}N,M

i,j=0, ω

for j = 0 to M do
for i = 0 to N do

zi,j ← 0
end

end
for j = 1 to M − 1 do

for i = 1 to N − 1 do
s = 0
for k = −1 to 1 do

for l = −1 to 1 do
s ← s + C

ij
kl ∗ zi+k,j+l

end
end

zi,j ← zi,j + ω ∗ (ri,j − s)/C
ij

00
end

end
for j = M − 1 to 1 step −1 do

for i = N − 1 to 1 step −1 do
s ← 0
for k = −1 to 1 do

for l = −1 to 1 do
s ← s + C

ij
kl ∗ zi+k,j+l

end
end

zi,j ← zi,j + ω ∗ (ri,j − s)/C
ij

00
end

end

return
{
zi,j

}N,M

i,j=0
End Procedure SSORSweep

5.2.2.6 Benchmark Solution

We reconsider the boundary value problem (5.56) to benchmark the performance of
the nodal Galerkin approximation with a preconditioned Conjugate Gradient solver.
As before, we are interested in the accuracy of the approximation and the effec-
tiveness of the solver and preconditioners. The issues with the direct solver have
not changed, except that we could reduce the storage by half by using a Cholesky
factorization of the matrix. Therefore, we will only discuss the performance of the
iterative solver.

We show the maximum errors of the nodal Galerkin solution as a function of
N = M in Table 5.5. These errors correspond to those of the collocation approxi-
mation shown in Table 5.1. Again, we see that the error decays exponentially fast.
(The differences between successive entries for the logarithm of the error are ap-

5 Spectral Approximation on the Square 187

Algorithm 80: PreconditionedConjugateGradientSolve: Conjugate Gradient
Iterative Solver for Nodal Spectral Methods

Procedure PreconditionedConjugateGradientSolve
Input: Nit , TOL
Input:
npc // NodalPotentialClass instance
H // AFEMPreconditioner instance
Uses Algorithms:

Algorithm 77 (NodalGalerkinLaplacian)
Algorithm 74 (Solve- modified for AFEM)
Algorithm 140 (BLAS_Level1)

N ← npc.spA.N ; M ← npc.spA.M ; L ← (N + 1) × (M + 1)

{ri,j }N,M
i,j=0 ← Residual(npc)

{zi,j }N,M
i,j=0 ← H.Solve({ri,j }N,M

i,j=0)

{vi,j }N,M
i,j=0 ← BLAS_COPY(L, {zi,j }N,M

i,j=0,1, {vi,j }N,M
i,j=0,1)

c ← BLAS_DOT(L, {ri,j }N,M
i,j=0,1, {zi,j }N,M

i,j=0,1)

for k = 1, Nit do
{zi,j }N,M

i,j=0 ← npc.MatrixAction({vi,j }N,M
i,j=0)

ω ← c/BLAS_DOT(L, {vi,j }N,M
i,j=0,1, {zi,j }N,M

i,j=0,1)

npc.{Φi,j }N,M
i,j=0 ← BLAS_AXPY(L,ω, {vi,j }N,M

i,j=0,1,npc.{Φi,j }N,M
i,j=0,1)

{ri,j }N,M
i,j=0 ← BLAS_AXPY(L,−ω, {zi,j }N,M

i,j=0,1, {ri,j }N,M
i,j=0,1)

if BLAS_NRM2(L, {ri,j }N,M
i,j=0,1) ≤ TOL then Exit

{zi,j }N,M
i,j=0 ← H.Solve({ri,j }N,M

i,j=0)

d ← BLAS_DOT(L, {ri,j }N,M
i,j=0,1, {zi,j }N,M

i,j=0,1)

{vi,j }N,M
i,j=0 ← BLAS_SCAL(L,d/c, {vi,j }N,M

i,j=0,1,)

{vi,j }N,M
i,j=0 ← BLAS_AXPY(L,1.0, {zi,j }N,M

i,j=0,1, {vi,j }N,M
i,j=0,1)

c ← d
end
return npc
End Procedure PreconditionedConjugateGradientSolve

Table 5.5 Logarithm of
maximum errors for nodal
Galerkin method to (5.56)

N 8 12 16 20 24

Log10(Error) −1.87 −4.16 −7.14 −10.45 −14.0

proximately equal.) Doubling the number of points decreases the error by about a
factor of one thousand. We see also that the nodal Galerkin approximation has the
same errors as the Legendre collocation approximation, and hence is still slightly
better than the Chebyshev method.

We next examine the performance of the iterative solver. Table 5.6 shows the
number of iterations and the CPU time for the ILU, SSOR solver, and without pre-
conditioning. For the SSOR solver, we experimented with the parameter ω ∈ [1,2)

188 5 Spectral Approximation on the Square

Table 5.6 Performance
comparison for
preconditioned conjugate
gradient solution of the nodal
Galerkin approximation

N ILU SSOR None

Iterations Time Iterations Time Iterations Time

16 30 0.001 34 0.001 57 0.001

24 36 0.002 39 0.003 107 0.005

48 48 0.017 49 0.020 303 0.084

64 55 0.041 59 0.048 465 0.280

72 58 0.057 63 0.068

to get the best performance. One thing we notice is that the Conjugate Gradient
method converges without preconditioning much better than does the BiCGStab
method applied to the collocation approximation. The second is that for small sys-
tems with N ≤ 16 it is possible not to use preconditioning at all. However, for larger
values of N up to N = 72 the preconditioned iteration takes up to a factor of seven
less time than the Conjugate Gradient method alone. We see little difference be-
tween the time to converge using the ILU and SSOR solvers for the preconditioner.

Finally, it is worth comparing the efficiency of the nodal Galerkin method with
collocation. As we have seen, the errors for this test problem are comparable to the
Legendre collocation method. The number of iterations is larger with the Conjugate
Gradient solver, but for larger N , the nodal Galerkin method takes less time.

5.3 Approximation of Time Dependent Advection-Diffusion

The transport of the concentration of a substance such as a pollutant in a river by a
velocity field q = ux̂ + vŷ is described by an advection-diffusion equation

∂ϕ

∂t
+ q · ∇ϕ = ν∇2ϕ, (x, y) ∈ (−1,1) × (−1,1) ,

ϕ (x, y,0) = ϕ0 (x, y) , (x, y) ∈ [−1,1] × [−1,1] .
(5.97)

The addition of appropriate boundary conditions on all four sides of the square
domain completes the description of the problem.

In this section we derive both the collocation and nodal Galerkin approximations
to the advection-diffusion equation. Each is straightforward to apply on the square.
In both cases, our derivations will re-use and build on the work that we completed
in Sects. 5.2.1 and 5.2.2, where we developed the approximations to the diffusion
operator.

5.3.1 The Collocation Approximation

We first derive the collocation approximation. Since we have already approximated
the diffusion term in Sect. 5.2.1, we concentrate on the transport term, q · ∇ϕ, for

5 Spectral Approximation on the Square 189

constant velocity q. We approximate that by differentiating the interpolant of the
approximate solution

q · ∇ϕ ≈ q · ∇Φ = uΦx + vΦy = u

N∑

n,m

Φn,m�′
n(x)�m(y) + v

N∑

n,m

Φn,m�n(x)�′
m(y).

(5.98)
We then evaluate the approximation at the collocation points, where it simplifies to

q · ∇Φi,j = u

N∑

n

Φn,m�′
n(xi) + v

N∑

m

Φn,m�′
m(yj)

= u

N∑

n

D
(x)
in Φn,j + v

N∑

m

D
(y)
jmΦi,m. (5.99)

Therefore, the collocation approximation to the advection-diffusion equation for
Dirichlet boundary conditions is

dΦi,j

dt
= ν∇2

NΦi,j − q · ∇NΦi,j , i, j = 1,2, . . . ,N, (5.100)

where

q · ∇NΦi,j = u

N∑

n=0

D
(x)
in Φn,j + v

N∑

m=0

D
(y)
jmΦi,m (5.101)

and

∇2
NΦi,j =

N∑

k=0

D
(2),x
i,k Φk,j +

N∑

k=0

D
(2),y
j,k Φi,k, (5.102)

which we repeat from (5.22)–(5.23).

5.3.2 The Nodal Galerkin Approximation

We follow the now familiar steps to derive the Galerkin approximation of the trans-
port term. We write a weak form of the advection term

(q · ∇ϕ,φ) =
∫ 1

−1

∫ 1

−1
q · ∇ϕφdxdy, (5.103)

replace the solution ϕ by its approximation Φ , and replace φ by an arbitrary poly-
nomial of the same degree as Φ that vanishes on the boundaries. We then use the

190 5 Spectral Approximation on the Square

fact that the nodal values of φ are arbitrary and linearly dependent to get the approx-
imation of the advection term

(
q · ∇Φ,�i�j

)=
∫ 1

−1

∫ 1

−1
q · ∇Φ�i(x)�j (y)dxdy. (5.104)

When we substitute the Lagrange representation of the approximate solution, (5.98),
and rearrange, we get

(
q · ∇Φ,�i�j

) = u

N∑

n,m=0

Φn,m

[∫ 1

−1

∫ 1

−1
�′
n(x)�m(y)�i(x)�j (y)dxdy

]

+ v

N∑

n,m=0

Φn,m

[∫ 1

−1

∫ 1

−1
�n(x)�′

m(y)�i(x)�j (y)dxdy

]

. (5.105)

Finally, we replace the integrals in (5.105) by Legendre Gauss-Lobatto quadra-
tures. As usual, the equations simplify since

∫ 1

−1
�n(x)�i(x)dx ≈

N∑

k=0

�n(xk)�i(xk)w
(x)
k = δn,iw

(x)
i (5.106)

and so forth. With these substitutions, we have our approximation of the transport
term

∫ 1

−1

∫ 1

−1
q · ∇ϕφdxdy → w

(x)
i w

(y)
j

[

u

N∑

n=0

D
(x)
in Φn,j + v

N∑

m=0

D
(y)
jmΦi,m

]

. (5.107)

We see, therefore, that for the advection-diffusion problem with constant coeffi-
cients, the nodal Galerkin approximation of the transport term with the integrals
replaced by Gauss-Lobatto quadrature is just the collocation approximation multi-
plied by the quadrature weights.

To derive the nodal Galerkin approximation of the advection-diffusion equation,
we must include the time derivative term. When we replace the integrals by Gauss-
Lobatto quadratures, we reduce the time derivative term simply to

∫ 1

−1

∫ 1

−1

dϕ

dt
φdxdy → w

(x)
i w

(y)
j

dΦi,j

dt
. (5.108)

Therefore, we write the nodal Galerkin approximation as

w
(x)
i w

(y)
j

dΦi,j

dt
= ν

(∇2Φ,�i�j

)

N
− (

q · ∇Φ,�i�j

)

N
, (5.109)

where

(
q · ∇Φ,�i�j

)

N
= w

(x)
i w

(y)
j

[

u

N∑

n

D
(x)
in Φn,m + v

N∑

m

D
(y)
jmΦn,m

]

, (5.110)

5 Spectral Approximation on the Square 191

and we repeat the diffusion term (5.77)

(∇2Φ,�i�j

)

N
=

N∑

k=0

w
(y)
j G

(x)
ik Φk,j + w

(x)
i G

(y)
jk Φi,k. (5.111)

Note that we could trivially divide both sides of the Galerkin approximation by
the product of the quadrature weights to get an equation that is identical to the
Legendre collocation approximation. If we want to integrate the equation explicitly,
that is exactly what we would do. If we want to integrate the equation implicitly,
however, we will get a symmetric linear system that we can solve with the Conjugate
Gradient method if we don’t divide by the weights.

To complete the spatial approximation, we need to implement boundary condi-
tions. Dirichlet conditions, which prescribe the concentration, Φ , along the bound-
aries, are appropriate for the advection-diffusion problem. We could apply Neu-
mann conditions instead to specify the flux. We showed how to set both types
of boundary conditions in Sects. 4.4 and 4.6 for one dimensional problems. We
showed how to extend the ideas presented there to two dimensions in Sects. 5.2.1
and 5.2.2.

5.3.3 Time Integration

Let us now address the time integration of the approximations (5.100) and (5.109).
From Chap. 4 we know that the approximation of the diffusion terms is much more
stiff than the transport terms. Specifically, we have seen in Sects. 4.4.1 and 4.4.4
that the eigenvalues of the spatial approximation of the diffusion terms grow as
O(N4) compared to the O(N2) for the advection terms. Unless diffusion is small
compared to advection, it is usually necessary to integrate the equations implicitly.
Often, only the diffusion terms are integrated implicitly; the advection terms are
integrated explicitly. The result is a semi-implicit method.

In this section, we will show how to use a semi-implicit method to integrate the
approximations to the advection-diffusion equation in time. Semi-implicit methods
are commonly used by the incompressible flow community to integrate approxi-
mations of the Navier Stokes equations. They are particularly useful in problems
where diffusion dominates advection. Specifically, we’ll implement a linear multi-
step method that uses an implicit third order backward differentiation (BDF) method
for the diffusion terms and an explicit third order extrapolation method for the ad-
vection. The third order BDF method has an absolute stability region that includes
the entire negative real axis, which makes it unconditionally stable for the diffu-
sion terms, whose eigenvalues are real ([7], Sect. 7.3.1). The extrapolation method
has been derived so that it uses information from the same previous time steps as
the BDF approximation. Overall, the time step is limited by the less stiff advection
terms, rather than the more stiff diffusion terms.

192 5 Spectral Approximation on the Square

The third order semi-implicit time integration approximation applied to the col-
location approximation (5.100) in space is

Φn+1
i,j − 6νΔt

11
∇2

NΦn+1
i,j

= 1

11

(
18Φn

i,j − 9Φn−1
i,j + 2Φn−2

i,j

)

− 6Δt

11

(
3q · ∇NΦn

i,j − 3q · ∇NΦn−1
i,j + q · ∇NΦn−2

i,j

)
. (5.112)

When we apply it to the nodal Galerkin approximation it is

w
(x)
i w

(y)
j Φn+1

i,j − 6νΔt

11

(∇2Φn+1
i,j , �i�j

)

N

= 1

11

(
18Φn

i,j − 9Φn−1
i,j + 2Φn−2

i,j

)

− 6Δt

11

(
3
(
q · ∇Φn

i,j , �i�j

)

N
− 3

(
q · ∇Φn−1

i,j , �i�j

)

N

+ (
q · ∇Φn−2

i,j , �i�j

)

N

)
. (5.113)

In both cases we must solve a linear system of equations that arises from the terms
on the left of the equals sign at every time step. Furthermore, we see that we need
to store the solution and the transport terms at three time values, tn, tn−1 and tn−2.

Iterative solvers like those we implemented in the previous section are now par-
ticularly attractive to solve the systems represented by the left sides of (5.112) and
(5.113) when compared to direct solvers. First, we have the previous time value to
serve as a good initial iterate at each time step, so the number of iterations per solve
is significantly reduced. Also, since there is now time discretization error at every
step, we only have to iterate until the iteration error is smaller than the time integra-
tion error. We do not have to iterate the residual to machine zero, so that reduces the
number of iterations we need per time step even more.

To use the BiCGStab iterative scheme that we implemented in Algorithm 75
(BiCGSSTABSolve), we rewrite the collocation approximation as

(

I − 6νΔt

11
∇2

N

)

Φi,j = RHSi,j , (5.114)

where

RHSi,j = 1

11

(
18Φn

i,j − 9Φn−1
i,j + 2Φn−2

i,j

)

− 6Δt

11

(
3q · ∇NΦn

i,j − 3q · ∇NΦn−1
i,j + q · ∇NΦn−2

i,j

)
. (5.115)

5 Spectral Approximation on the Square 193

We then drive a norm of the residual

ri,j = RHSi,j − Φi,j + 6νΔt

11
∇2

NΦi,j (5.116)

to be less than some tolerance.
We get a similar system to solve when we apply the time discretization to the

nodal Galerkin approximation (5.113). The residual that we must make small at
each time step is now

ri,j = (
RHSi,j − w

(x)
i w

(y)
j Φi,j

)+ 6νΔt

11

(∇2Φ,�i�j

)

N
, (5.117)

where

RHSi,j = w
(x)
i w

(y)
j

11

(
18Φn

i,j − 9Φn−1
i,j + 2Φn−2

i,j

)

− 6Δt

11

{
3
(
q · ∇NΦn, �i�j

)

N
− 3

(
q · ∇NΦn−1, �i�j

)

N

+ (
q · ∇NΦn−2, �i�j

)

N

}
. (5.118)

The multistep method does have the disadvantage that it requires two steps be-
yond the initial condition to be computed before it can be used. Although we could
use one of several approaches to create these two values, the simplest is to integrate
the first two time steps with an explicit Runge-Kutta, such as the (matching) third
order approximation that we have already used in Algorithm 50 (CollocationStep-
ByRK3). Once we complete those steps and store the results, we switch over to the
multistep integration.

5.3.4 How to Implement the Approximations

To implement the polynomial collocation and nodal Galerkin approximations,
(5.112) and (5.113), we need storage for three time levels of the solution and the
transport terms. We also need procedures to construct the linear systems to be solved
at each time step, which are represented by (5.114) and its equivalent for the nodal
Galerkin method.

5.3.4.1 Multilevel Time Storage

We need to store the solution and transport terms at the current and two previous
time levels to compute the right hand sides, (5.115) or (5.118). It appears that three
time levels of the transport and four of the solution need to be saved. However, once
the quantities in (5.115) or (5.118) have been computed, the solution and transport

194 5 Spectral Approximation on the Square

term q · ∇Φ at time level n − 2 are no longer needed. We reuse that storage space
for the solution at the new time level.

We use indirect addressing to minimize both storage and the need to copy arrays
from time step to time step. One way to implement indirect addressing is to create
pointers to the arrays. Those pointers are swapped to point to the desired array at
each time step. Another way is to create an array of integers that store an array index
for a larger storage array. Since the former is trivial to implement, we will discuss
how to do the latter.

To illustrate the use of an index array, suppose that we store the potential in a
three-dimensional array {Φk

i,j }N,N;0
i,j=0;k=−2, which stores the solution values at Φn+k

i,j .
We create an integer pointer array to express that organization of the storage:
{pk}0

k=−2 with p−2 = −2, p−1 = −1, and p0 = 0. We would then access the so-

lution array for time level n + k indirectly by Φ
(pk)
i,j . At the end of a time step, what

was time level n − 1 becomes n − 2 and what was time level n becomes n − 1. We
store the current level n where the no longer needed n − 2 values were stored by
setting

tmp ← p−2,

p−2 ← p−1,

p−1 ← p0,

p0 ← tmp.

(5.119)

5.3.4.2 The Advection-Diffusion Class

To address the needs that we have just outlined, we expand Algorithm 64 (NodalPo-
tentialClass) to organize the storage and procedures to integrate the advection-
diffusion equation on the square. We present that new class in Algorithm 81 (Nodal-
AdvDiffClass). We have added storage for the solution and transport terms at the
three time steps, the indirect addressing pointer, and, of course, the physical para-
meters that describe the problem. New procedures in the class compute the trans-
port terms, the right hand side and the residual. We reuse Algorithms 66 (Lapla-
cianOnTheSquare) and 77 (LaplacianOnTheSquare) to compute the diffusion term,
depending on which approximation we choose.

As with the potential approximation, we specify the choice of polynomial in
the constructor. Algorithm 65 (NodalAdvDiffClass:Construct), for instance, shows
a constructor for the Chebyshev collocation approximation. It computes the second
derivative matrices by way of Algorithm 38 (mthOrderPolynomialDerivativeMa-
trix) with m = 2 and stores them in the second derivative matrix storage of the
Nodal2DStorage structure. We now need the first derivative matrices and compute
them using Algorithm 37 (PolynomialDerivativeMatrix). We easily change the ap-
proximation to a Legendre method if we replace the calls to ChebyshevGaussLo-
battoNodesAndWeights with calls to Algorithm 25 (LegendreGaussLobattoNodes-
AndWeights). To change to the nodal Galerkin approximation, we again note that

5 Spectral Approximation on the Square 195

Algorithm 81: NodalAdvDiffClass: A Class for the Advection-Diffusion Prob-
lem on the Square

Class NodalAdvDiffClass
Uses Algorithms:

Algorithm 63 (Nodal2DStorage)
Data:

u,v, ν ; // advection speeds and diffusion coefficient
spA ; // Of type Nodal2DStorage
{
Φk

i,j

}N,M;0
i,j=1;k=−2

; // Solution at three time steps
{
transportki,j

}N,M;0
i,j=0;k=−2 ; // Advection terms at three time steps

{
RHSi,j

}N,M

i,j=0 ; // Right hand side for implicit solve

{maski}4
i=1 ; // Boundary condition mask

{pk}0
k=−2 ; // Time step pointer

Procedures:
Construct(N,M,u, v, ν); // Algorithm 82

LaplacianOnTheSquare({Uij }N,M
i,j=0); // Algorithms 66 or 77

Transport(k); // Algorithm 83
ExplicitRHS(Δt); // Algorithm 84

MatrixAction({Uij }N,M
i,j=0,Δt); // Algorithm 85

Residual(Δt); // Algorithm 86
End Class NodalAdvDiffClass

the second derivative matrices in the Nodal2DStorage structure store the matrices
Gik , which are computed by Algorithm 57 (CGDerivativeMatrix). The quadrature
weights and nodes are the Legendre values, which we compute by Algorithm 25.

5.3.4.3 The Transport Terms

The next procedure we implement computes the transport terms. The implementa-
tion of the transport approximation is similar to that of the diffusion terms, as seen
in Algorithm 83 (NodalAdvDiffClass:Transport). Notice that Algorithm 83 is the
same whether we use Chebyshev or Legendre collocation. To change it to compute
the nodal Galerkin approximation, the transport term needs only to be modified ac-
cording to (5.110), that is, we only need to multiply by the local quadrature weight
values.

5.3.4.4 The Iterative Solver

To solve the systems (5.114) or (5.117) by the BiCGStab (Algorithm 75) or Con-
jugate Gradient (Algorithm 80) iterative methods, we need to implement the resid-
ual computation and the MatrixAction procedures. Notice that a slight modification

196 5 Spectral Approximation on the Square

Algorithm 82: NodalAdvDiffClass:Construct: Constructor for the Chebyshev
Collocation Approximation of the Advection-Diffusion Problem

Procedure Construct
Input: N , M , u, v, ν

Uses Algorithms:
Algorithm 38 (mthOrderPolynomialDerivativeMatrix)
Algorithm 27 (ChebyshevGaussLobattoNodesAndWeights)
Algorithm 37 (PolynomialDerivativeMatrix)

this.spA.N ← N ; this.spA.M ← M

this.u ← u; this.v ← v; this.ν ← ν
{{this.spA.ξi}Ni=0 ,

{
this.spA.w

(ξ)
i

}N

i=0

}← ChebyshevGaussLobattoNodesAndWeights(N)
{{

this.spA.ηj

}N

j=0 ,
{
this.spA.w

(η)
j

}N

j=0

}← ChebyshevGaussLobattoNodesAndWeights(M)

this.spA.
{
D

(2),ξ
ij

}N

i,j=0 ← mthOrderPolynomialDerivativeMatrix(N,2, this.spA. {ξi}Ni=0)

this.spA.
{
D

(2),η
ij

}M

i,j=0 ← mthOrderPolynomialDerivativeMatrix(M,2, this.spA.{ηj }Mj=0)

this.spA.
{
D

ξ
ij

}N

i,j=0 ← PolynomialDerivativeMatrix(N, this.spA. {ξi}Ni=0)

this.spA.
{
D

η
ij

}M

i,j=0 ← PolynomialDerivativeMatrix(M, this.spA.{ηj }Mj=0)

this. {pk}0
k=−2 ← {−2,−1,0}

End Procedure Construct

Algorithm 83: NodalAdvDiffClass:Transport: Approximation to q · ∇Φ

Procedure Transport
Input: k

Uses Algorithms:
Algorithm 19 (MxVDerivative)
Algorithm 67 (MaskSides)

N ← this.spA.N ; M ← this.spA.M

for j = 0 to M do
{
Φxi,j

}N

i=0 ← MxVDerivative
(
this.spA.

{
D

ξ
i,j

}N,N

i,j=0, this.
{
Φk

i,j

}N

i=0

)

end
for i = 0 to N do

{
Φyi,j

}M

j=0 ← MxVDerivative
(
this.spA.

{
D

η
i,j

}M,M

i,j=0, this.
{
Φk

i,j

}M

j=0

)

end
for j = 0 to M do

for i = 0 to N do
this.transportki,j ← this.u ∗ Φxi,j + this.v ∗ Φyi,j

[For nodal Galerkin add:
this.transportki,j ← this.spA.w

(ξ)
i ∗ this.spA.w

(η)
j ∗ this.transportki,j]

end
end

this.
{
transportki,j

}N,M

i,j=0 ← MaskSides
(
this.

{
transportki,j

}N,M

i,j=0, this. {maskn}4
n=1

)

End Procedure Transport

5 Spectral Approximation on the Square 197

Algorithm 84: NodalAdvDiffClass:ExplicitRHS: Explicit Part of the BDF Ap-
proximation of the Advection-Diffusion Equation

Procedure AdvDiffExplicitRHS
Input: Δt

Uses Algorithms:
Algorithm 67 (MaskSides)

n ← this.p0; nm1 ← this.p−1; nm2 ← this.p−2
for j = 0 to M do

for i = 0 to N do

this.RHSi,j ← 1

11

(
18 ∗ this.Φn

i,j − 9 ∗ this.Φnm1
i,j + 2 ∗ this.Φnm2

i,j

)

[For nodal Galerkin, add:
this.RHSi,j ← this.spA.w

(ξ)
i ∗ this.spA.w

(η)
j ∗ this.RHSi,j]

this.RHSi,j ← this.RHSi,j −
6Δt

11

(
3 ∗ this.transportni,j − 3 ∗ this.transportnm1

i,j + this.transportnm2
i,j

)

end
end

this.{RHSi,j }N,M
i,j=0 ← MaskSides(this.{RHSi,j }N,M

i,j=0, this. {maskk}4
k=1)

End Procedure AdvDiffExplicitRHS

needs to be made to the two solvers to allow the time step, Δt to be passed to the
Residual and MatrixAction procedures.

To compute the residual, (5.116) or (5.117), we need to have the RHS array
from the current and previous time step levels available. Algorithm 84 (NodalAd-
vDiffClass:AdvDiffExplicitRHS), for instance, computes the right hand side of the
collocation approximation (5.115). To convert the procedure to the nodal Galerkin
approximation, the solution terms need to be multiplied by the quadrature weights,
according to (5.118), as shown. The matrix action is computed in Algorithm 85
(NodalAdvDiffClass:MatrixAction). Finally, we compute the residual from the RHS
and the matrix action in Algorithm 86 (NodalAdvDiffClass:Residual) for the collo-
cation approximation. Note that we could use BLAS level 1 routines to replace many
of the loops.

For best performance, preconditioning should be applied to the system (5.114).
Fortunately, it is easy to modify the preconditioners that we have already been de-
rived for the Laplace operator. For instance, the finite difference preconditioner,
(5.37), when applied to (5.114) becomes

(HFDu)ij = Âij uij + B̂ij ui−1,j + Ĉij ui,j−1 + Êij ui+1,j + F̂ij ui,j+1, (5.120)

where

Âij = 1 − 6νΔt

11
Aij (5.121)

and

B̂ij = −6νΔt

11
Bij , etc. (5.122)

198 5 Spectral Approximation on the Square

Algorithm 85: NodalAdvDiffClass:MatrixAction: Matrix Action for the BDF
Approximation of the Advection-Diffusion Equation

Procedure MatrixAction

Input: Δt ,
{
Ui,j

}N,M

i,j=0
Uses Algorithms:

Algorithm 66 or 77 (LaplacianOnTheSquare)
Algorithm 67 (MaskSides)

{∇2
NUij

}N,M

i,j=0 ← this.LaplacianOnSquare({Uij }N,M
i,j=0)

for j = 0 to M do
for i = 0 to N do

actioni,j = Ui,j − 6νΔt

11
∇2

NUi,j

[For nodal Galerkin, use:

actioni,j = this.spA.w
(ξ)
i ∗ this.spA.w

(η)
j ∗ Ui,j − 6νΔt

11
∇2

NUi,j]

end
end

{actioni,j }N,M
i,j=0 ← MaskSides({actioni,j }N,M

i,j=0, this. {maskk}4
k=1)

return {actioni,j }N,M
i,j=0

End Procedure MatrixAction

Algorithm 86: NodalAdvDiffClass:Residual: Iteration Residual for the BDF
Approximation of the Advection-Diffusion Equation

Procedure Residual

Input: Δt ,
{
Ui,j

}N,M

i,j=0
Uses Algorithms:

Algorithm 85 (NodalAdvDiffClass:MatrixAction)
Algorithm 67 (MaskSides)

{actioni,j }N,M
i,j=0 ← this.MatrixAction({Uij }N,M

i,j=0,Δt)

for j = 0 to M do
for i = 0 to N do

ri,j = this.RHSi,j − actioni,j

end
end

{ri,j }N,M
i,j=0 ← MaskSides({ri,j }N,M

i,j=0, this. {maskk}4
k=1)

return {ri,j }N,M
i,j=0

End Procedure Residual

Similar modifications change the finite element preconditioner for use with the Con-
jugate Gradient iteration.

The need to precondition (5.114) is not as critical, however, as it is for the so-
lution of the potential problem. As we said, a good initial guess is available, so the
residual starts small. More importantly, the presence of the Δt factor means that the
system is not as stiff. Clearly, for small Δt the matrix on the left approaches the

5 Spectral Approximation on the Square 199

identity matrix, which has a condition number of one. Only for very large Δt does
the system become badly ill-conditioned. Very large values won’t occur in practice
since the overall time step is limited by the advection time step, and so Δt ∼ 1/N2.
The condition number of the system to be solved will therefore grow only as O(N2)

instead of O(N4). Since relatively few iterations are needed for the less stiff sys-
tem, the benefits of preconditioning will be diminished. Nevertheless, for large N

and tight iteration tolerances, preconditioning can reduce the number of iterations
per time step significantly enough to make it worthwhile to code.

5.3.4.5 Multistep Time Integration

Lastly, we need to implement an algorithm to evaluate the time stepping procedure
(5.112). The procedure must first compute the right hand side via Algorithm 84
(ExplicitRHS) and then update the pointers via (5.119) to shift the arrays and to
make the storage that is no longer needed available to the new solution and transport
terms. The boundary conditions on the solution are then set for the new time, which
will be used when the system is solved. Once that is done, the transport terms are
computed via Algorithm 83 (Transport).

One time step of the multistep method (5.112) is implemented in Algorithm 87
(MultistepIntegration). The steps taken within that algorithm are identical if the
nodal Galerkin approximation is used, except that we would use the Conjugate
Gradient solver Algorithm 80 (PreconditionedConjugateGradientSolve). A bound-

Algorithm 87: MultistepIntegration: One Step of the Linear Multistep Integra-
tion of the Advection-Diffusion Equation

Procedure MultistepIntegration
Input:
advDiff // NodalAdvDiffClass instance
H // Preconditioner instance
Δt

Uses Algorithms:
Algorithm 84 (NodalAdvDiffClass:ExplicitRHS)
Algorithm 83 (NodalAdvDiffClass:Transport)
Algorithm 75 (BiCGSSTABSolve)

advDiff .
{
RHSi,j

}N,M

i,j=0 ← advDiff .ExplicitRHS(Δt)

tmp ← advDiff .p−2
advDiff .p−2 ← advDiff .p−1
advDiff .p−1 ← advDiff .p0
advDiff .p0 ← tmp

advDiff .
{
Φ

p0
i,j

}N,M

i,j=0 ← SetBoundaryConditions(t + Δt,advDiff)
advDiff ← BiCGSSTABSolve(Nit ,TOL,advDiff ,H)

advDiff .
{
transportp0

i,j

}N,M

i,j=0 ← advDiff .Transport(p0)

return advDiff
End Procedure MultistepIntegration

200 5 Spectral Approximation on the Square

ary condition routine must be supplied to compute the values of the solution along
Dirichlet boundaries.

Since the semi-implicit scheme (5.112) is not self starting, we must integrate the
first two steps with an explicit method. Two additional procedures are needed. We
must

• Modify the explicit time integration Algorithm 50 (CollocationStepByRK3). Algo-
rithm 50, which implements the third order Runge-Kutta method for collocation
with Dirichlet boundary conditions, is appropriate to compute the first two time
steps. It has the same order of accuracy in time as the multistep method, although
matching the order precisely is not critical. After all, the two steps to be com-
puted will have to be taken using the explicit diffusion limited time step whose
size is O(N−4), which is much smaller that the advective time step (O(N−2) that
limits the explicit part of the multistep method. Algorithm 50 was presented for
one dimensional problems, so it needs to be extended to act on doubly, rather than
singly, dimensioned arrays.

• Implement a time derivative procedure for fully explicit integration. Algo-
rithm 50 embeds the spatial approximations in the algorithm that implements
the TimeDerivative function. The time derivative function will now evaluate ei-
ther equation (5.100) or (5.109), depending on which spatial approximation we
choose. The time derivative function merely has to call the procedures to compute
the transport and diffusion terms, i.e. Algorithms 83 (Transport) and 66 (Lapla-
cianOnTheSquare), so we will not write it explicitly here. As we have mentioned
before, the weight functions are divided out of (5.109) when we use the explicit
time integrator.

5.3.5 Benchmark Solution: Advection and Diffusion of a Spot
in a Uniform Flow

To benchmark the advection-diffusion solver, we compute the approximate solu-
tion to the advection-diffusion equation, (5.97), with initial and Dirichlet boundary
conditions chosen so that the exact solution is

ϕ(x, y, t) = 1

4t + 1
e
− ((x−ut−x0)2+(y−vt−y0)2)

ν(4t+1) . (5.123)

This solution describes a circular patch that is advected at a constant speed ux̂ + vŷ

while it diffuses. Specific parameters for the benchmark solutions will be u = v =
0.8, ν = 0.01, and x0 = y0 = −0.5.

We present contours of the exact and Legendre collocation solutions in Fig. 5.4
for two times t = 0.5 and t = 1.5. We computed these solutions with N = M = 28
and Δt = 3.9 × 10−4, then interpolated them to 70 points in each direction us-
ing Algorithm 35 (2DCoarseToFineInterpolation). In Fig. 5.5, we plot the values of
the exact solutions and the computed solutions interpolated to 70 uniformly spaced
points along the line y = x.

5 Spectral Approximation on the Square 201

Fig. 5.4 Advection and diffusion of a Gaussian spot by Legendre collocation with N = 28. Exact
contours drawn with dashed lines are indistinguishable from the solid contours of the computed
solutions

Fig. 5.5 Comparison of
computed and exact solutions
at three times for the
advection and diffusion of a
Gaussian spot by Legendre
collocation with
N = M = 28, interpolated to
70 points along the line y = x

As a point of comparison, at time t = 1.25, the maximum error of the Legen-
dre collocation approximation is approximately 2 × 10−4. Contrast this with
the well-known second order Lax-Wendroff finite difference method, that with
26,000 degrees of freedom (thirty times the number of degrees of freedom in this
spectral approximation) the maximum error is still one hundred times larger at
2 × 10−2.

202 5 Spectral Approximation on the Square

5.4 Approximation of Wave Propagation Problems

The basic model for wave propagation is, of course, the wave equation. In its most
recognizable form, the wave equation is

∂2p

∂t2
− c2 (pxx + pyy

)= 0. (5.124)

In this context, the variable p might represent the acoustic pressure in an otherwise
quiescent gas and c would be the sound speed. In other applications, it might repre-
sent the electric field with c corresponding to the speed of light, or it could represent
the height of water in a shallow tank, where c is the gravity wave speed.

Rather than solve the second order wave equation directly, we will re-write it as
a system of three first order equations. (In actuality, the wave equation is the derived
form. The system of first order equations is closer to the original description of the
phenomena.) We can then use the first order system of equations as a model for
more complex systems such as Maxwell’s equations used in electromagnetics, the
Euler gas dynamics equations, which describe inviscid fluid flow, or the shallow
water equations, which are used in meteorology and oceanography simulations.

To convert the wave equation to a system of first order equations, let

ut = −px,

vt = −py.
(5.125)

(As one might suspect from the notation, u and v correspond to the components of
the velocity in a fluid flow.) If we assume that the order of mixed partial derivatives
does not matter, then

∂2p

∂t2
+ c2 ((ux)t + (vy)t

)= 0. (5.126)

With the proper initial conditions,

pt + c2 (ux + vy

)= 0. (5.127)

We find the system of equations by grouping the equations for the pressure and two
velocity components

⎡

⎣
p

u

v

⎤

⎦

t

+
⎡

⎣
0 c2 0
1 0 0
0 0 0

⎤

⎦

⎡

⎣
p

u

v

⎤

⎦

x

+
⎡

⎣
0 0 c2

0 0 0
1 0 0

⎤

⎦

⎡

⎣
p

u

v

⎤

⎦

y

= 0 (5.128)

or

qt + Bqx + Cqy = 0. (5.129)

Finally, since B and C are constant, we bring them inside the derivatives to create

qt + fx + gy = 0, (5.130)

5 Spectral Approximation on the Square 203

where f = Bq and g = Cq. This is known as the divergence or conservation law
form since it is nothing but

qt + ∇ · F = 0 (5.131)

for the vector flux F = fx̂ + gŷ. The term conservation law follows from the fact
that the differential equation is what we get when we apply the divergence theorem
to the integral conservation law,

d

dt

∫

V

qdV = −
∫

S

F · n̂dS, (5.132)

which states that the change in the total amount of q in an arbitrary volume V is
equal to the total amount passing through the surface of that volume per unit time.

The defining feature of the wave equation is that it has plane wave type solutions.
It will be crucial to understand this fact later to develop boundary conditions. These
plane wave solutions have the form

q(x, t) = af

(
k · x
|k| − γ t

)

(5.133)

for any function f . The vector k = kxx̂ + kyŷ is the wavevector, its magnitude
k = |k| is the wavenumber, γ is the wave speed, and the vector a gives the ampli-
tudes of the three components of the solution, p,u, v. To find the dispersion relation,
which is the relationship between k and γ for the plane wave to be a solution of the
differential equation, we substitute (5.133) into the differential equation, (5.128),
and assume f is smooth to get the algebraic relation

(

−γ a + kx

k
Ba + ky

k
Ca

)

f ′
(

k · x
k

+ γ t

)

= 0. (5.134)

Since this holds for any f , the parameters γ , k and a must satisfy
(

kx

k
B + ky

k
C

)

a = γ a. (5.135)

In other words, to have a plane wave solution of the form (5.133), γ must be an
eigenvalue of the matrix

A = kx

k
B + ky

k
C (5.136)

and a is the eigenvector associated with the eigenvalue γ .
To find the wave speeds associated with the system (5.130), we must therefore

find the eigenvalues of

A = αB + βC =
⎡

⎣
0 αc2 βc2

α 0 0
β 0 0

⎤

⎦ , (5.137)

204 5 Spectral Approximation on the Square

where the constants α ≡ kx/k and β ≡ ky/k satisfy α2 +β2 = 1. The characteristic
equation for the eigenvalues of A is

−γ 3 + α2c2γ + β2c2γ = 0 (5.138)

so γ = 0 and γ = ±√α2 + β2c = ±c. Thus, the system admits two waves that
move with speed ±c along any wavevector in the plane and another that is station-
ary. (In gas dynamics, the waves that move with speed ±c are called acoustic or
sound waves. The wave that doesn’t move is the vorticity wave. It is stationary only
because there is no mean flow in this example, otherwise the vorticity wave moves
with the fluid. Similar analogies can be made with other systems of equations.)

The eigenvectors, a, associated with the eigenvalues γ = 0,±c give the relation-
ship between the components of the plane waves. Those three right eigenvectors
are

a0 =
⎡

⎣
0
β

−α

⎤

⎦ , a±c =
⎡

⎢
⎣

1
2

± α
2c

± β
2c

⎤

⎥
⎦ . (5.139)

(To continue the fluid dynamics analogy, note that the acoustic waves have pressure
and velocity components, but the vorticity waves, for which vorticity is defined as
the curl of the velocity, has no pressure component.)

5.4.1 The Nodal Discontinuous Galerkin Approximation

Although spectral collocation methods have been developed and used to solve sys-
tems of conservation laws, it is by far more convenient to implement boundary con-
ditions for the discontinuous Galerkin formulation. So in what follows, we will de-
scribe only that method and refer to the book by Canuto et al. [7] for a discussion of
other approximations.

To be somewhat general, we will derive the approximation of the wave equa-
tion in the form of the conservation law, (5.131), on the reference square [−1,1] ×
[−1,1] with outward normal n̂ and boundary Γ made up of four segments Γi, i =
1,2,3,4 as we sketch in Fig. 5.6.

Once again, we approximate the solution and fluxes by polynomials

q ≈ Q =
N∑

n=0

N∑

m=0

Qn,m�n(x)�m(y),

F ≈ F =
N∑

n=0

N∑

m=0

(
Fn,mx̂ + Gn,m

)
�n(x)�m(y),

(5.140)

where Fn,mx̂ + Gn,mŷ = BQn,mx̂ + CQn,mŷ. When we substitute the approxima-
tions into the weak form of the differential equation, and project onto the basis

5 Spectral Approximation on the Square 205

Fig. 5.6 The reference
square with normals and
boundary curves

functions φij = �i(x)�j (y) (cf. Sect. 4.7)

(
Qt , φij

)+ (∇ · F, φij

)= 0. (5.141)

The next step is to apply Green’s identity to the second integral

(∇ · F, φij

)=
∫ 1

−1
φij∇ · Fdxdy =

∫

Γ

φij F · n̂dΓ −
∫ 1

−1
F · ∇φij dxdy. (5.142)

In the discontinuous Galerkin method, the boundary conditions are weakly enforced
when we apply them to the boundary integral. For the moment, we will denote
the fact that we apply the boundary conditions as part of the flux in the boundary
integrals by F∗ · n̂ replacing F · n̂. We’ll determine exactly what that replacement is
after we finish the spatial approximation. When we make that replacement for the
boundary flux, the approximation satisfies

(
Qt , φij

)+
∫

Γ

φij F∗ · n̂dΓ −
∫ 1

−1
F · ∇φij dxdy = 0. (5.143)

The final stages of the approximation procedure are to choose the locations of
the nodes, approximate the integrals by quadrature, and simplify the results. For the
reasons argued in Sect. 4.7, we choose Legendre Gauss quadrature to approximate
the integrals and use the tensor product of the Legendre Gauss quadrature points
as the nodes. Those nodes we represent as circles in Fig. 5.7. To approximate the
boundary integrals we again choose the nodes to be the Legendre Gauss quadra-
ture points along the boundaries (marked by squares in Fig. 5.7) and use Gauss
quadrature to approximate the integrals. This choice will make the computation of
the boundary fluxes efficient. To derive the approximation, we will examine each
integral in (5.143) separately.

The first integral in (5.143),
(
Qt , φij

)
, simplifies to a single point value when

we apply Gauss quadrature. With Gauss quadrature and nodes taken as the Gauss

206 5 Spectral Approximation on the Square

Fig. 5.7 Location of nodes
for the discontinuous
Galerkin approximation of
the wave equation. Circles
represent nodes where the
solution is approximated and
are located at the two
dimensional Legendre Gauss
quadrature points. Squares
represent nodes where the
boundary fluxes are
approximated, and are located
at the Legendre Gauss
quadrature points along the
boundary curves

points,

(
Qt , φij

) =
∫ 1

−1

dQ(x, y)

dt
�i(x)�j (y)dxdy

=
N∑

k=0

N∑

l=0

dQ(xk, yl)

dt
�i(xk)�j (yl)w

(x)
k w

(y)
l . (5.144)

Because the product in the integrand is a polynomial of degree 2N in each direction,
the quadrature is exact. The fact that �j (xk) = δk,j , etc., simplifies the double sum
to

(
Qt , φij

)= dQi,j

dt
w

(x)
i w

(y)
j . (5.145)

We’ll skip over the boundary integral in (5.143) for the moment and approximate
the last integral next. After we substitute φij = �i(x)�j (y) and expand the vector
dot product,

∫ 1

−1
F · ∇φij dxdy =

∫ 1

−1

{
F(x, y)�′

i (x)�j (y) + G(x, y)�i(x)�′
j (y)

}
dxdy.

(5.146)
We then replace the integrals each by Gauss quadrature, which again is exact be-
cause F and G are linear functions of Q and the integrands are polynomials of
degree at most N in each direction. The Kronecker delta property of the Lagrange
interpolating polynomials once again simplifies the summations. With quadrature
and simplifications,

∫ 1

−1
F · ∇φij dxdy =

N∑

k=0

Fk,j �
′
i (xk)w

(x)
k w

(y)
j +

N∑

k=0

Gi,k�
′
j (yk)w

(x)
i w

(y)
k . (5.147)

Notice again that the tensor product approximation decouples the derivatives in the
two space directions. When we use our definition for the polynomial derivative ma-

5 Spectral Approximation on the Square 207

trix, we write the last integral in (5.143) as

∫ 1

−1
F · ∇φij dxdy =

N∑

k=0

Fk,jD
(x)
ki w

(x)
k w

(y)
j +

N∑

k=0

Gi,kD
(y)
jk w

(x)
i w

(y)
k . (5.148)

Finally, we approximate the boundary integral in (5.143). We break it into four
pieces, along the four sides of the square, as

∫

Γ

φi,j F∗ · n̂dΓ =
∫ 1

−1
�i(x)�j (−1)F∗ · (−ŷ

)
dx +

∫ 1

−1
�i(1)�j (y)F∗ · x̂dy

+
∫ 1

−1
�i(x)�j (1)F∗ · ŷdx +

∫ 1

−1
�i(−1)�j (y)F∗ · (−x̂

)
dy.

(5.149)

Then we approximate the integrals by Gauss quadrature, which are exact, too. For
example,

∫ 1

−1
�i(x)�j (−1)F∗ · ŷdx =

N∑

k=0

�i(xk)�j (−1)F∗(xk,−1) · ŷw
(x)
k

= F∗(xi,−1) · ŷ�j (−1)w
(x)
i . (5.150)

(Compare this with the boundary terms in (4.138).) After we apply quadrature to
each of the segments in the boundary integral, that integral becomes
∫

Γ

φi,j F∗ · n̂dΓ = F∗(xi,−1) · (−ŷ
)
�j (−1)w

(x)
i + F∗(1, yj) · x̂�i(1)w

(y)
j

+ F∗(xi,1) · ŷ�j (1)w
(x)
i + F∗(−1, yj) · (−x̂

)
�i(−1)w

(y)
j .

(5.151)

We find the final semi-discrete approximation to (5.143) after we divide by w
(x)
i w

(y)
j

and rearrange

dQi,j

dt
+
{[

F∗(−1, yj) · (−x̂
) �i(−1)

w
(x)
i

+ F∗(1, yj) · x̂ �i(1)

w
(x)
i

]

+
N∑

k=0

Fk,j D̂
(x)
ik

}

+
⎧
⎨

⎩

⎡

⎣F∗(xi,−1) · (−ŷ
) �j (−1)

w
(y)
j

+ F∗(xi,1) · ŷ �j (1)

w
(y)
j

⎤

⎦+
N∑

k=0

Gi,kD̂
(y)
jk

⎫
⎬

⎭

= 0, i, j = 0,1, . . . ,N, (5.152)

where, again

D̂jn = −Dnjwn

wj

, (5.153)

208 5 Spectral Approximation on the Square

and Dnj = �′
j (xn) is the transpose of the standard derivative matrix, computed with

Algorithm 37 (PolynomialDerivativeMatrix).
Notice that the two terms in the braces are nothing more than the one-dimensional

discontinuous Galerkin derivative that already appears in the braces in (4.138). Its
implementation is Algorithm 60 (NodalDiscontinuousGalerkin:DGDerivative) for
the scalar problem. Therefore, the computation of the time derivative for the system
in two dimensions will proceed just like the computation for the scalar, one dimen-
sional problem. The only thing we have left is to determine how to compute the
boundary fluxes, F∗ · n̂.

5.4.1.1 The Boundary Flux

In the one dimensional problem of Sect. 4.7, we set the boundary condition on the
upwind side. Which is the upwind side is determined by the sign of the wave speed.
Positive wavespeeds (with respect to the x direction) mean that the boundary con-
dition is set on the left. Negative wavespeeds require the solution to be set on the
right. At the downwind side, we evaluated the solution from the interpolant.

By extension, the two dimensional problem requires that we compute a value of
the flux,

F · n̂ = fnx + gny = (
Bnx + Cny

)
q = Aq (5.154)

at the boundary so that boundary values are set on the upwind side and computed
from the interior on the downwind side. Unfortunately, the system that describes the
wave equation couples three wavespeeds, positive, negative and zero, with respect
to the direction vector αx̂ + βŷ = nxx̂ + nyŷ, so it is not immediately clear what
the upwind value is. To determine the upwind directions, we must decouple the
wave components that make up the solution vector. In terms of our discussion at
the beginning of this section, we decouple using the eigenvectors of the coefficient
matrix, A.

Since the matrix A has a full set of eigenvectors, it can be diagonalized. If we
create a matrix,

S =
⎡

⎢
⎣

1
2

1
2 0

α
2c

− α
2c

β

β
2c

− β
2c

−α

⎤

⎥
⎦ , (5.155)

whose columns are right eigenvectors of A, then

AS = S

⎡

⎣
+c 0 0
0 −c 0
0 0 0

⎤

⎦= SΛ. (5.156)

When we premultiply by S−1, we see that S−1AS = Λ, or equivalently, A =
SΛS−1. The matrix S−1 is nothing more than the matrix whose rows are left eigen-

5 Spectral Approximation on the Square 209

vectors of the matrix A,

S−1 =
⎡

⎣
1 αc βc

1 −αc −βc

0 β −α

⎤

⎦ , (5.157)

since the left and right eigenvectors of the matrix are orthogonal.
The ability to diagonalize A = SΛS−1 allows us to separate the system into left

going, right going and stationary wave components. Let

Λ =
⎡

⎣
+c 0 0
0 −c 0
0 0 0

⎤

⎦=
⎡

⎣
+c 0 0
0 0 0
0 0 0

⎤

⎦+
⎡

⎣
0 0 0
0 −c 0
0 0 0

⎤

⎦+
⎡

⎣
0 0 0
0 0 0
0 0 0

⎤

⎦

= Λ+ + Λ− + Λ0 (5.158)

be the splitting of the three wave components. Then

A = SΛ+S−1 + SΛ−S−1 + SΛ0S−1 = A+ + A− + A0 (5.159)

splits the matrix A into components that have right going, left going and station-
ary waves with respect to the direction αx̂ + βŷ. We see, therefore, that we can
decompose the normal flux into its wave components using (5.154)

F · n̂ = A+q + A−q + A0q. (5.160)

We are finally in the position to decide how to apply a boundary condition that
is upwind in each of its three components. Suppose that we have two states qext

and Qint that describe the solution external to the domain and internal to the do-
main (Fig. 5.8). We specify the external state as a boundary condition. We compute
the internal state from the polynomial approximation of the solution via (5.140).
The boundary flux will be a function of these two states evaluated at the boundary,
F∗(QL,QR; n̂), that separates the waves into those that originate from outside and
those that originate from the interior.

From (5.160), we see that we should compute the boundary flux from the internal
and external states (with the designation determined relative to the normal at the
boundary) as

F∗(QL,QR; n̂)= A+QL + A−QR. (5.161)

In this way, outgoing waves are approximated with interior solution values (up-
wind) and incoming waves are specified from the external state (also upwind). The
derivation of the boundary flux, (5.161), also known in some contexts as the nu-
merical flux, is an example of the construction of the solution of what is known as
the Riemann problem, and the algorithm used to solve it the Riemann solver. The
construction of Riemann solvers for different physical systems has been important
in computational mathematics, particularly in fluid mechanics [24].

210 5 Spectral Approximation on the Square

Fig. 5.8 Interior and exterior
states at a boundary viewed
along the normal direction

To write an algorithm for the Riemann solver, let us explicitly do the algebra
that leads to the numerical flux. Let’s look first at the quantities A±Q = SΛ±S−1Q.
First,

S−1q =
⎡

⎣
1 αc βc

1 −αc −βc

0 β −α

⎤

⎦

⎡

⎣
p

u

v

⎤

⎦=
⎡

⎣
p + c (αu + βv)

p − c (αu + βv)

βu − αv

⎤

⎦≡
⎡

⎣
w+
w−
w0

⎤

⎦ . (5.162)

The w’s are the wave quantities associated with the three eigenvalues since

Λ+S−1q =
⎡

⎣
+c 0 0
0 0 0
0 0 0

⎤

⎦

⎡

⎣
w+
w−
w0

⎤

⎦= c

⎡

⎣
w+
0
0

⎤

⎦ ,

Λ−S−1q =
⎡

⎣
0 0 0
0 −c 0
0 0 0

⎤

⎦

⎡

⎣
w+
w−
w0

⎤

⎦= −c

⎡

⎣
0

w−
0

⎤

⎦ .

(5.163)

Notice that when we take the direction vector αx̂ + βŷ to be the boundary normal
vector, the quantity αu + βv corresponds to the normal velocity of the wave. Under
the same condition, the last component, w0 is the tangential velocity. Finally, we
see that to compute the numerical boundary flux, w+ must be computed from the
left state, QL, since it represents waves coming from the left and moving to the
right relative to the outward normal. Similarly w− must be computed from the right
state, QR .

When we multiply from the left by the matrix S, we get an explicit representation
of the numerical flux

F∗(QL,QR; n̂)=
⎡

⎢
⎣

c
2 (w+,L − w−,R)

nx

2 (w+,L + w−,R)
ny

2 (w+,L + w−,R)

⎤

⎥
⎦ , (5.164)

5 Spectral Approximation on the Square 211

Algorithm 88: RiemannSolver: The Numerical Flux for the Wave Equation

Procedure RiemannSolver

Input:
{
QL

n

}nEqn
n=1 ,

{
QR

n

}nEqn
n=1 , n̂

pL ← QL
1 ;uL ← QL

2 ;vL ← QL
3

pR ← QR
1 ;uR ← QR

2 ;vR ← QR
3

w+,L ← pL + c ∗ (nx ∗ uL + ny ∗ vL)

w−,R ← pR − c ∗ (nx ∗ uR + ny ∗ vR)

F ∗
1 ← c ∗ (w+,L − w−,R)/2

F ∗
2 ← nx ∗ (w+,L + w−,R)/2

F ∗
3 ← ny ∗ (w+,L + w−,R)/2

return
{
F ∗

n

}nEqn
n=1

End Procedure RiemannSolver

where we have used the fact that we want to take the vector αx̂ + βŷ to be the nor-
mal, nxx̂ + nyŷ, at the boundary. For a consistency check, verify that F∗(q,q; n̂) =
F(q) · n̂. If the states on both sides of the boundary are identical, then the numerical
flux must equal the flux for that state.

We show a procedure to compute the numerical flux in Algorithm 88 (Riemann-
Solver). It takes two states, one on the left and one on the right, plus the normal, and
computes the two wave components w± defined in (5.162) from their proper side.
It then reconstructs the flux from those components using (5.164).

To incorporate boundary conditions into the discontinuous Galerkin approxima-
tion, (5.152), we need only to provide the left and right state vectors and the nor-
mal to the Riemann solver. If we know an analytical representation of the external
state, qext(x, t), we use its value as the second argument in (5.164). For instance,
the semi-discrete approximation (5.152) requires the numerical flux F∗(1, yj) · x̂

along the right boundary. We compute it with the Riemann solver as F∗(1, yj) · x̂ =
F∗(Q(1, yj),qext(1, yj); x̂).

We represent wall (reflection) boundaries when we choose the external state to
be the mirror image of the internal state. Reflection means that the w− wave is
created by reflecting the w+ wave at the boundary, i.e. w− = w+. The reflection
condition implies that the normal velocity is zero (which makes physical sense as a
representation of a solid wall boundary), for

p + c (αu + βv) = p − c (αu + βv) , (5.165)

where αx̂ + βŷ = nxx̂ + nyŷ implies

nxu + nyv = 0 (reflection boundary) . (5.166)

We enforce the reflection condition if we set the external state to have a normal
velocity that is equal in magnitude and opposite in direction to the normal velocity in
the interior. We simply reflect the quantities p and the tangential velocity component
across the boundary, so pext = pint and βuext − αvext = βuint − αvint. We have two

212 5 Spectral Approximation on the Square

equations, then, that define the external values uext and vext

αuext + βvext = − (
αuint + βvint) ,

βuext − αvext = βuint − αvint,
(5.167)

which we solve to find the external state for a wall/reflection boundary

qext
refl =

⎡

⎢
⎣

pint

(β2 − α2)uint − 2αβvint

−2αβuint + (α2 − β2)vint

⎤

⎥
⎦ . (5.168)

To approximate a wall boundary, we supply this external state, along with the inter-
nal state, to the Riemann solver to compute the boundary flux.

5.4.2 How to Implement the Nodal Discontinuous Galerkin
Approximation

We now develop the algorithms that we will use to compute the nodal discontinuous
Galerkin approximation to the wave equation in two space dimensions, or for that
matter, any other system of conservation laws for which we have a flux function and
have derived a Riemann solver. As in Sect. 4.7, where we developed the approxima-
tion of a scalar equation in one space dimension, we need algorithms to evaluate the
spatial derivatives and the time derivative. The algorithm to integrate in time and a
driver to manage the integration will just be modifications of Algorithms 51 (Leg-
endreCollocation) and 62 (DGStepByRK3) that we developed in Sects. 4.4 and 4.7
for one dimensional problems, so we will not discuss them further.

We define classes to store the arrays associated with the spatial approximation. To
start, we extend the Nodal2DStorage structure (Algorithm 63) to include the vectors
that the procedure uses to interpolate the solutions to the boundaries, which creates
Algorithm 89 (NodalDG2DStorage). We then define a class, NodalDG2DClass, that
has the new nodal storage class and the solution array as members. We present the
new class in Algorithm 90 (NodalDG2DClass) and its constructor in Algorithm 91
(NodalDG2D:Construct).

Algorithm 89: NodalDG2DStorage: Data Storage for a Nodal Spectral Method

Structure NodalDG2DStorage Extends Nodal2DStorage
Uses Algorithms:

Algorithm 63 (Nodal2DStorage)
Data:{

�
(ξ)
i (−1)

}N

i=0
,
{
�
(ξ)
i (1)

}N

i=0
,
{
�
(η)
j (−1)

}M

j=0
,
{
�
(η)
j (1)

}M

j=0
End Structure NodalDG2DStorage

5 Spectral Approximation on the Square 213

Algorithm 90: NodalDG2DClass: A Discontinuous Galerkin Class Definition

Class NodalDG2DClass
Uses Algorithms:

Algorithm 89 (NodalDG2DStorage)
Data:

nEqn
spA ; // Of type NodalDG2DStorage
{
Qi,j,n

}N;M;nEqn
i=0;j=0;n=1

Procedures:
Construct(nEqn,N,M) ; // Algorithm 91
DG2DTimeDerivative(t); // Algorithm 92

End Class NodalDG2DClass

Algorithm 91: NodalDG2D:Construct: Constructor for the Discontinuous
Galerkin Class

Procedure Construct
Input: nEqn,N,M

Uses Algorithms:
Algorithm 23 (LegendreGaussNodesAndWeights)
Algorithm 37 (PolynomialDerivativeMatrix)
Algorithm 34 (LagrangeInterpolatingPolynomials)
Algorithm 30 (BarycentricWeights)

this.nEqn ← nEqn
this.spA.N ← N{

this.spA. {ξi}Ni=0 , this.spA.
{
w

(ξ)
i

}N

i=0

}

← LegendreGaussNodesAndWeights(N)

{
wB

i

}N

i=0 ← BarycentricWeights(N, this.spA. {ξi}Ni=0)

this.spA.
{
�
(ξ)
i (−1)

}N

i=0
←

LagrangeInterpolatingPolynomials
(−1.0,N, this.spA. {ξi}Ni=0 ,

{
wB

i

}N

i=0

)

this.spA.
{
�
(ξ)
i (1)

}N

i=0
←

LagrangeInterpolatingPolynomials
(
1.0,N, this.spA. {ξi}Ni=0 ,

{
wB

i

}N

i=0

)

{
Dij

}N

i,j=0 ← PolynomialDerivativeMatrix
(
N, this.spA.

{
ξj

}N

i=0

)

for j = 0 to N do
for i = 0 to N do

this.spA.D
(ξ)
i,j ← −Dj,i ∗ this.spA.w

(ξ)
j /this.spA.w

(ξ)
i

end
end
Repeat for η direction. . .
End Procedure Construct

We already know how to use Algorithm 60 (NodalDiscontinuousGalerkin:
DGDerivative) compute the spatial derivative approximation given the interior point
and two boundary solutions. We modify that algorithm now to compute the terms in

214 5 Spectral Approximation on the Square

Algorithm 92: SystemDGDerivative: Compute the First Derivative via the Dis-
continuous Galerkin Approximation

Procedure SystemDGDerivative

Input:
{
FL

n

}nEqn
n=1 ,

{
FR

n

}nEqn
n=1 ,

{
Fj,n

}N;nEqn
j=0;n=1

Input:
{
Di,j

}N

i,j=0 , {�i(−1)}Ni=0 , {�i(1)}Ni=0 , {wi}Ni=0
Uses Algorithms:

Algorithm 19 (MxVDerivative)

for n = 1 to nEqn do
{
F ′

j,n

}N

j=0
← MxVDerivative

({
Di,j

}N

i,j=0 ,
{
Fj,n

}N

j=0

)

end
for j = 0 to N do

for n = 1 to nEqn do
F ′

j,n ← F ′
j,n + (FR

n ∗ �j (1) + FL
n ∗ �j (−1))/wj

end
end

return
{
F ′

j,n

}N;nEqn

j=0;n=1
End Procedure SystemDGDerivative

braces in (5.152), which are now vector quantities and require the outward nor-
mals at the boundaries. We implement this modification in Algorithm 92 (Sys-
temDGDerivative).

We show how to implement the time derivatives, defined in (5.152), in Algo-
rithm 93 (DGSystemTimeDerivative). The computation of the time derivatives con-
sists of two parts, courtesy of the tensor product approximation of the solution. The
first part computes the derivatives for the flux, F, in the x direction for each value
of y. Each component of the solution is interpolated to the left and right bound-
aries by the procedure InterpolateToBoundary in Algorithm 61 (DGTimeDeriva-
tive). Next, Algorithm 93 computes the external state at those same points using an
external procedure that we will have to supply for that purpose. To be able to set a
known exterior state, we pass the position and the time to the external state proce-
dure. To allow reflection conditions of the type (5.168), we also pass the interpolated
value of the internal state. From the external and internal states, the Riemann solver
(Algorithm 88) is called to compute the boundary flux for both the left and right
boundaries. Since the spatial derivatives in (5.152) are taken on the flux, the proce-
dure computes the horizontal flux at the internal grid points from the approximate
solution at those points using the procedure xFlux in Algorithm 94 (WaveEquation-
Fluxes). The second stage follows the same steps to compute the derivatives of the
vertical flux, G.

Algorithms 92 (SystemDGDerivative) and 93 (DGSystemTimeDerivative) form
the core of the discontinuous Galerkin approximation of a system of conservation
laws. To change the system of equations, we only need to change the flux functions
and the Riemann solver. To change the boundary conditions, we only need to change
the external state procedure.

5 Spectral Approximation on the Square 215

Algorithm 93: NodalDG2D:DG2DTimeDerivative: Time Derivative in 2D for
the Discontinuous Galerkin Approximation

Procedure DG2DTimeDerivative
Input: t

Uses Algorithms:
Algorithm 92 (SystemDGDerivative), Algorithm 61 (InterpolateToBoundary)
Algorithm 88 (RiemannSolver), Algorithm 94 (WaveEquationFluxes)

N ← this.spA.N ; M ← this.spA.M ; nEqn ← this.nEqn
for j = 0 to M do

y ← this.spA.ηj

for n = 1 to nEqn do

Q
L,int
n ← InterpolateToBoundary

(
this.

{
Qi,j,n

}N
i=0 , this.spA.

{
�
(ξ)
i

(−1)
}N
i=0

)

Q
R,int
n ← InterpolateToBoundary

(
this.

{
Qi,j,n

}N
i=0 , this.spA.

{
�
(ξ)
i

(1)
}N
i=0

)

end
{
Q

L,ext
n

}nEqn
n=1 ← ExternalState

({
Q

L,int
n

}nEqn
n=1 − 1, y, t,LEFT

)

{
Q

R,ext
n

}nEqn
n=1 ← ExternalState

({
Q

R,int
n

}nEqn
n=1 1, y, t,RIGHT

)

{
F

∗,L
n

}nEqn
n=1 ← RiemannSolver

({
Q

L,int
n

}nEqn
n=1 ,

{
Q

L,ext
n

}nEqn
n=1 ,−x̂

)

{
F

∗,R
n

}nEqn
n=1 ← RiemannSolver

({
Q

R,int
n

}nEqn
n=1 ,

{
Q

R,ext
n

}nEqn
n=1 , x̂

)

for i = 0 to N do
{
Fi,n

}nEqn
n=1 ← xFlux

(
this.

{
Qi,j,n

}nEqn
n=1

)

end
{
F ′

i,n

}N;nEqn
i=0;n=1 ← SystemDGDerivative

({
F

∗,L
n

}nEqn
n=1 ,

{
F

∗,R
n

}nEqn
n=1 ,

{
Fi,n

}N;nEqn
i=0;m=1 ,

this.spA.
{
Dξ }N

i,j ,
{
�
(ξ)
i

(−1)
}N
i=0,

{
�
(ξ)
i

(1)
}N
i=0,

{
w

(ξ)
i

}N
i=0

)

for i = 0 to N do
for n = 1 to nEqn do

Q̇i,j,n ← −F ′
i,n

end
end

end
for i = 0 to N do

x ← this.spA.ξi
for n = 1 to nEqn do

Q
L,int
n ← InterpolateToBoundary

(
this.

{
Qi,j,n

}M
j=0 , this.spA.

{
�
(η)
j

(−1)
}M
j=0

)

Q
R,int
n ← InterpolateToBoundary

(
this.

{
Qi,j,n

}M
j=0 , this.spA.

{
�
(η)
j

(1)
}M
j=0

)

end
{
Q

L,ext
n

}nEqn
n=1 ← ExternalState

({
Q

L,int
n

}nEqn
n=1 , x,−1, t,BOTTOM

)

{
Q

R,ext
n

}nEqn
n=1 ← ExternalState

({
Q

R,int
n

}nEqn
n=1 , x,1, t,TOP

)

{
G

∗,L
n

}nEqn
n=1 ← RiemannSolver

({
Q

L,int
n

}nEqn
n=1 ,

{
Q

L,ext
n

}nEqn
n=1 ,−ŷ

)

{
G

∗,R
n

}nEqn
n=1 ← RiemannSolver

({
Q

R,int
n

}nEqn
n=1 ,

{
Q

R,ext
n

}nEqn
n=1 , ŷ

)

for j = 0 to M do
{
Gj,n

}nEqn
n=1 ← yFlux

(
this.

{
Qi,j,n

}nEqn
n=1

)

end
{
G′

j,n

}M;nEqn
j=0;n=1 ← SystemDGDerivative

({
G

∗,L
n

}nEqn
n=1 ,

{
G

∗,R
n

}nEqn
n=1 ,

{
Gi,n

}N;nEqn
i=0;m=1 ,

this.spA.
{
Dη}N

i,j ,
{
�
(η)
i

(−1)
}N
i=0,

{
�
(η)
i

(1)
}N
i=0,

{
w

(η)
i

}N
i=0

)

for j = 0 to M do
for n = 1 to nEqn do

Q̇i,j,n ← Q̇i,j,n − G′
j,n

end
end

end

return
{
Q̇i,j,n

}N,M,nEqn
i=0;j=0;n=1

End Procedure DGSystemTimeDerivative

216 5 Spectral Approximation on the Square

Algorithm 94: WaveEquationFluxes: Flux Vectors for the Two Dimensional
Wave Equation

Procedure xFlux
Input: {Qn}nEqn

n=1
F1 ← c2Q2; F2 ← Q1; F3 ← 0
return {Fn}nEqn

n=1
End Procedure xFlux

Procedure yFlux
Input: {Qn}nEqn

n=1
G1 ← c2Q3; G2 ← 0; G3 ← Q1

return {Gn}nEqn
n=1

End Procedure yFlux

5.4.3 Benchmark Solution: Plane Wave Propagation

We present two simple examples to benchmark the ability of the nodal discontinu-
ous Galerkin method to propagate and reflect plane waves. The first example is the
propagation of a single plane Gaussian wave through the grid. The second adds a
reflecting wall boundary.

To propagate a plane wave across the domain we only need to create a procedure
that defines the wave in space and time. We use that procedure to generate the initial
condition and the external state. For the first benchmark solution, we define the
plane wave by

⎡

⎣
p

u

v

⎤

⎦=

⎡

⎢
⎢
⎢
⎢
⎣

1
kx

c

ky

c

⎤

⎥
⎥
⎥
⎥
⎦

e
− (kx (x−x0)+ky (y−y0)−ct)2

d2 (5.169)

with the wavevector k normalized to satisfy k2
x + k2

y = 1. This is a wave with
Gaussian shape where we compute the parameter d from the full width at half max-
imum, w = 0.2, by d = w/2

√
ln 2. The other parameters are c = 1 and x0 = y0 =

−0.8.
We show contour plots of the pressure at three times in Fig. 5.9. For that cal-

culation, we chose the wavevector to be k = (
√

2/2,
√

2/2), N = M = 40 and
Δt = 2.6 × 10−3. To get smooth contours, we interpolated the computed solution
with Algorithm 35 (2DCoarseToFineInterpolation) to a fine grid before plotting.
Next, we compare the computed solutions to the exact along the straight line be-
tween (−1,−1) and (1,1) at time t = 2 for N = 20 and N = 30 in Fig. 5.10. Note
that the N = 20 solution shows significant dispersion errors. When we increase the
number of points by only 50% in each direction, those errors are no longer visible.

To illustrate the use of reflection boundary conditions, (5.168), we present
Fig. 5.11, which shows the reflection of the same plane wave off a reflecting wall

5 Spectral Approximation on the Square 217

Fig. 5.9 Propagation of a plane Gaussian wave using the nodal discontinuous Galerkin approx-
imation with N = 40 for kx = ky = √

2/2 shown at times t = 0.0 (left), t = 1.0 (center), and
t = 2.0 (right). Contour levels are 0.2, 0.4, 0.6, 0.8

Fig. 5.10 Computed and exact values of the pressure interpolated at 100 points along the line
y = x for the plane wave shown in Fig. 5.9 at time t = 2

boundary on the right. We used the external state to be the exact solution (derived
with the method of images) except along the right boundary. At the right boundary
we used the external state specified by (5.168).

5.4.4 Benchmark Solution: Propagation of a Circular Sound Wave

A more challenging problem in two space dimensions for many numerical approx-
imations to the wave equation is to propagate a circular sound wave. Anisotropy
in the numerical wave speeds usually distorts the wave badly as it propagates. The
circular wave problem is an excellent one with which to see the effects of anisotropy.

218 5 Spectral Approximation on the Square

Fig. 5.11 Reflection of a plane Gaussian wave off the right wall boundary using the nodal discon-
tinuous Galerkin approximation with N = 40 and kx = ky = √

2/2. Contours are shown at times
t = 0.5 (left), t = 1.5 (center), and t = 2.0 (right). Contour levels are 0.2, 0.4, 0.6, 0.8

The benchmark solution that we present now is to solve the wave equation with
the initial condition

p(x, y,0) = exp

[

− ln 2

(
x2 + y2

0.062

)]

,

u(x, y,0) = v(x, y,0) = 0.

(5.170)

The exact solution to the wave equation with this initial condition is found in polar
coordinates by separation of variables. The pressure as a function of distance from
the origin, r =√

x2 + y2, and time is

p(x, y, t) = −
∫ ∞

0

e−ω2/4b

2b
ωJ0 (rω) cos(ωt)dω, (5.171)

where J0 is the Bessel function of the first kind of order zero, and b = ln 2/w2 with
w = 0.06.

We present solutions for the propagating circular wave at time t = 0.7 in
Figs. 5.12 and 5.13. The solutions were computed with 70 points in each direc-
tion and a time step of Δt = 8.75 × 10−4. With this number of points, the initial
Gaussian for the pressure is resolved by about eight points in each direction. We in-
terpolated the solutions to 100 points in each direction for the plots by Algorithm 35
(2DCoarseToFineInterpolation). Figure 5.12 shows contours of the pressure, which
illustrates that the circular shape of the wave is retained. Figure 5.13 allows the
comparison of the exact and computed solutions along the line y = x.

Exercises

5.1 Derive a collocation approximation for

ϕxx + ϕxy + ϕyy = f.

5 Spectral Approximation on the Square 219

Fig. 5.12 Computed pressure contours at time t = 0.7 for a propagating circular wave for
N = M = 70 and Δt = 8.75 × 10−4 interpolated to 100 uniformly spaced points in each direc-
tion

Cross derivatives appear when considering problems in curvilinear coordinates.

5.2 Repeat Problem 5.1 for the nodal Galerkin approximation.

5.3 The steady solution of the advection-diffusion equation can be computed by
letting time go to infinity for the time dependent equation or by solving the steady-
state equation

q · ∇ϕ − ∇2ϕ = f

directly. Derive the collocation approximation to the steady-state advection-
diffusion equation for Dirichlet boundary conditions. What iterative method should
be used to solve the system of equations? (Unfortunately, preconditioning for the
advective term is problematic. See [7].)

5.4 Repeat Problem 5.3 for the nodal Galerkin approximation.

220 5 Spectral Approximation on the Square

Fig. 5.13 Comparison of the
computed circular wave
pressure interpolated to 100
points with the exact solution
along the line y = x at t = 0.7

5.5 Modify Algorithms 63 (Nodal2DStorage) and 65 (Construct) to compute the
Chebyshev collocation approximation using Algorithm 40 (FastChebyshevDeriva-
tive) instead of matrix multiplication to compute the spatial derivatives.

5.6 Extend the NodalPotentialClass to solve variable diffusion coefficient prob-
lems, approximated by (5.27), for ν = ν(x, y,ϕ).

5.7 Show that the coefficient matrix for the Laplace operator, (5.32), is not sym-
metric.

5.8 A thin, rectangular plate shown in Fig. 5.14 is kept at a fixed temperature along
its edges and is allowed to radiate through its surface. When suitably scaled, the
steady temperature distribution satisfies the equation

∇2ϕ = γ 2 (ϕ − ϕ0) ,

where γ 2 is a constant that is inversely proportional to the thermal resistance of the
material.

1. Derive the collocation approximation for the problem.
2. Compute the solution of the collocation approximation, plot its contours, and

compare to the exact solution

ϕ = 2

a

∞∑

n=1

sin(nπx
a

) sinh[(b − y)(γ 2 + n2π2

a2)1/2]
sinh[b(γ 2 + n2π2

a2)1/2]
∫ a

0
f (x) sin

(nπx

a

)
dx

for f (x) = e−(x−a/2)2
.

5 Spectral Approximation on the Square 221

Fig. 5.14 Geometry and
boundary conditions for
steady temperatures on a thin
plate with radiation

3. Compare the contours for several values of γ 2 and to those of a fully insulated
plate.

5.9 Redo Problem 5.8 with the nodal Galerkin method.

5.10 For wave reflection at a straight boundary, the angle of incidence is equal to
the angle of reflection. This appears to be true in Fig. 5.11. Compute the benchmark
problem of Sect. 5.4.3 for various angles of incidence and find the range of angles
over which the angle of reflection is accurate.

5.11 Typical rules of thumb for the number of points per wavelength needed to
propagate sinusoidal waves accurately with finite difference approximations are 32
points per wavelength for second order methods and eight points per wavelength for
fourth order methods. Multiply the exponential factor in (5.169) by a sinusoidal fac-
tor sin(ω(kx(x − x0) + ky(y − y0) − ct)) and choose the frequency ω so that there
is at least one wavelength fully represented across the Gaussian envelope. Exper-
iment with the discontinuous Galerkin method to find the number of points per
wavelength needed to propagate the pulse accurately. In practice, polynomial spec-
tral methods need only an average of 4–5 average points per wavelength.

5.12 If a wall boundary is placed along one of the boundaries in the benchmark
problem of Sect. 5.4.4, the method of images can be used to create the exact solution
from (5.171). Compute the solution with a single wall to study how well a circular
wave is reflected from a straight wall.

Chapter 6
Transformation Methods from Square
to Non-Square Geometries

The first step to extend spectral methods to complex geometries is to derive methods
for quadrilateral domains with curved sides. The approach most commonly used is
to create a transformation from the domain on which we want the solution to the
square. In common terminology, the original domain is called the physical domain.
The square is the computational domain. After we map the domain and transform
the equations to incorporate that mapping, we apply techniques that we developed
in the previous chapter to the equations on the square.

6.1 Mappings and Coordinate Transformations

To use the spectral methods that we developed in the previous chapter, we create an
algebraic map x = (x, y) = X(ξ, η) between the physical space coordinates (x, y)

and computational space coordinates (ξ, η). In practice, the mapping will take a
point in the reference square [−1,1] × [−1,1] and transform it to a point in the
physical domain, as we sketch in Fig. 6.1.

Except in special cases, we will not have an explicit formula for what seems to be
the most natural transformation, namely, from the physical domain to the reference
square. An example where we do is the orthogonal mapping between the reference
square and the quarter of the annulus (r, θ) ∈ [1,3] × [0,π/2]

[
x

y

]

= X (ξ, η) =
[
(2 + ξ) cos (π (η + 1) /4)

(2 + ξ) sin (π (η + 1) /4)

]

. (6.1)

Orthogonal analytic mappings are known for some other special geometries, e.g.
giving cylindrical or elliptical coordinate systems. In other situations, we could de-
rive conformal mappings. But in general, for simply connected domains like quadri-
lateral domains without holes, we derive an algebraic transformation that at least
guarantees that the boundaries of the reference square are mapped onto the bound-
aries of the physical domain.

Algebraic techniques are commonly used with spectral methods to transform
from a square to a general quadrilateral domain. The techniques assume that the
boundaries of the quadrilateral domain are smooth, except at the four corners. It is
possible to generate smooth mappings when the boundaries are not smooth through
the solution of an elliptic system of partial differential equations, but we will not
cover those methods here. The topic of mapping domains is an important one in grid
generation. For further study, the books [15] and [11] can provide starting points.

D.A. Kopriva, Implementing Spectral Methods for Partial Differential Equations,
Scientific Computation,
© Springer Science + Business Media B.V. 2009

223

224 6 Transformation Methods from Square to Non-Square Geometries

Fig. 6.1 Mapping of a
general quadrilateral to the
reference square

6.1.1 Mapping a Straight Sided Quadrilateral

To motivate the algebraic approach to mapping, we map a square to a straight-sided
quadrilateral whose four corners are {xj }4

j=1 numbered counter clockwise as shown
in Fig. 6.1. Although such a simple physical domain does not seem to be a particu-
larly big extension from a square domain, it will prove useful for spectral element
approximations that we derive in Chap. 8, since most mesh generation programs
will generate straight sided elements.

The creation of the mapping from the unit square to a straight sided quadrilateral
is nothing but an interpolation problem. The problem is to find a function that is
linear in ξ and η and takes on the values of the corners of the physical domain at
the corners of the reference square. In fact, this is exactly the bilinear interpolation
problem that we used in Sect. 5.2.2.3, to develop a bilinear finite element precondi-
tioner. This time, instead of interpolating the solution that takes on particular values
at the corners, we interpolate the location bilinearly between the four corners of the
quadrilateral. Since the mapping we used previously started from the unit square,
we will start here with a mapping from the unit square with coordinate (ξ̃ , η̃), and
transform the result afterwards to the reference square with coordinates (ξ, η).

Using the notation of Sect. 5.2.2.3, the bi-linear interpolation between the unit
square and the quadrilateral is

X
(
ξ̃ , η̃

)= x1ψ0,0 + x2ψ1,0 + x3ψ1,1 + x4ψ0,1. (6.2)

If we write the basis functions explicitly,

X
(
ξ̃ , η̃

)= x1(1 − ξ̃)(1 − η̃) + x2ξ̃ (1 − η̃) + x3ξ̃ η̃ + x4(1 − ξ̃)η̃. (6.3)

Clearly, this mapping takes on the four corner values of the physical domain at the
four corners of the unit square, that is, X(0,0) = x1, etc., and is linear in each of the
coordinate directions.

We write the transform from the reference square to the quadrilateral through
another transformation. To map from the reference square to the unit square, we

6 Transformation Methods from Square to Non-Square Geometries 225

Algorithm 95: QuadMap: Mapping of the Reference Square to a Straight Sided
Quadrilateral

Procedure QuadMap

Input: {(xj , yj)}4
j=1, ξ, η

x ← 1

4
{x1 (1 − ξ) (1 − η) + x2 (ξ + 1) (1 − η) + x3 (ξ + 1) (1 + η) + x4 (1 − ξ) (η + 1)}

y ← 1

4
{y1 (1 − ξ) (1 − η) + y2 (ξ + 1) (1 − η) + y3 (ξ + 1) (1 + η) + y4 (1 − ξ) (η + 1)}

return (x, y)

End Procedure QuadMap

introduce the affine map

ξ̃ = ξ + 1

2
, η̃ = η + 1

2
. (6.4)

When we substitute this transformation, we get the map from the reference square
to the quadrilateral

X (ξ, η) = 1

4
{x1 (1 − ξ) (1 − η) + x2 (ξ + 1) (1 − η)

+ x3 (ξ + 1) (1 + η) + x4 (1 − ξ) (η + 1)} . (6.5)

Implementation of the mapping from the unit square to a straight sided quadrilateral
is straightforward. Algorithm 95 (QuadMap) takes the four corner points and returns
the location (x, y) in physical space for any point (ξ, η) in the reference square.

6.1.2 How to Approximate Curved Boundaries

The more general situation occurs when the physical domain is bounded by four
curves, �j , j = 1,2,3,4 as shown in Fig. 6.1. These curves might be represented
by an analytical formula or by an interpolation. As a general rule, we will represent
the curves as a polynomial interpolant of the same order as the spectral solution
approximations,

INΓ (s) =
N∑

k=0

Γ (sk) �k(s) (6.6)

known as an isoparametric approximation. A polynomial representation is conve-
nient since we will need derivatives of the boundary curves after we transform the
equations later in Sect. 6.2. The polynomial approximation of the boundaries en-
ables a general representation of the transformation of the equations; The isopara-
metric representation means that the boundary is approximated to the same polyno-
mial order as the solution is.

226 6 Transformation Methods from Square to Non-Square Geometries

Algorithm 96: CurveInterpolant: A Curve Interpolant Class Definition

Class CurveInterpolant
Data:

N ,
{
nodesj

}N

j=0,
{
(xj , yj)

}N

j=0,
{
wj

}N

j=0

Procedures:
Construct

(
N,

{
nodesj ,

}N

j=0 ,
{
(xj , yj)

}N

j=0

)
; // Algorithm 97

EvaluateAt(s) ; // Algorithm 97
DerivativeAt(s) ; // Algorithm 97

End Class CurveInterpolant

From the implementation point of view, it is useful to represent a curve as an
instance of a class that represents an interpolant, such as we show Algorithm 96
(CurveInterpolant). The minimum data that we need for such a class are the nodes
and the values at those nodes. The methods in this class are the constructor and a
function that returns the location of the curve for a given value of the parameter.
Later we will want the derivative of the curve with respect to the parameter, so we
include it now in the class definition. The array w stores the barycentric weights that
we defined in Sect. 3.4.

We show the methods to be implemented by the class in Algorithm 97 (CurveIn-
terpolantProcedures). For convenience, we have the constructor for the CurveInter-
polant make a copy of the input data. It then computes the barycentric weights for
use later to evaluate the interpolant and its derivatives. The methods EvaluateAt and
DerivativeAt use the Lagrange interpolation methods that we developed in Sects. 3.4
and 3.5.1.

An issue is how to parametrize the boundary curves. As a general rule, it is best
to parametrize them according to arc length, or a reasonable approximation thereto,
along the curve. We illustrate the difference the choice of parametrization can make
in Fig. 6.2, which shows how well equally spaced points in the parameter map along
a circular arc. Clearly the parametrization in x does not adequately represent the arc,
while the parametrization in angle (proportional to arc length in this case) does.

Parametrization according to arc length has been a subject of research in the
Computer Aided Design (CAD) field for many years, where it is important to draw
accurate representations of curves quickly. Here we will outline a procedure that is
not optimized for speed, and hence is best used as part of a pre-processing stage of
a computation.

To explain how to (re-)parametrize a curve, let’s assume that it is originally de-
fined by some function of a parameter, x(t). The goal is to find the relationship
between the parameter t and a new parameter s that varies linearly with the arc
length. Since we assume that the boundaries will be parametrized by an argument
that varies between negative one and one, we will take s to be the arc length divided
by the total arc length, L, mapped to [−1,1]. Once we have the relationship between
s and t , we can compute the interpolant through values x(t (s)) for points along the
curve, typically the Chebyshev Gauss-Lobatto points, (1.130).

6 Transformation Methods from Square to Non-Square Geometries 227

Algorithm 97: CurveInterpolantProcedures:

Procedure Construct
Input: N,

{
nodesj ,

}N

j=0 ,
{
(xj , yj)

}N

j=0,
Uses Algorithms:

Algorithm 30 (BarycentricWeights)

this.N ← N

for j = 0 to N do
this.nodesj ← nodesj

this.xj ← xj

this.yj ← yj

end
{
this.wj

}N

j=0 ← BarycentricWeights
({

nodesj

}N

j=0

)

End Procedure Construct

Procedure EvaluateAt
Input: s

Uses Algorithms:
Algorithm 31 (LagrangeInterpolation)

x ← LagrangeInterpolation
(
s, this.

{
nodesj

}N

j=0 , this.
{
xj

}N

j=0 , this.
{
wj

}N

j=0

)

y ← LagrangeInterpolation
(
s, this.

{
nodesj

}N

j=0 , this.
{
yj

}N

j=0 , this.
{
wj

}N

j=0

)

return (x, y)

End Procedure EvaluateAt

Procedure DerivativeAt
Input: s

Uses Algorithms:
Algorithm 36 (LagrangeInterpolantDerivative)

x′ ← LagrangeInterpolantDerivative
(
s, this.

{
nodesj

}N

j=0 , this.
{
xj

}N

j=0 , this.
{
wj

}N

j=0

)

y′ ← LagrangeInterpolantDerivative
(
s, this.

{
nodesj

}N

j=0 , this.
{
yj

}N

j=0 , this.
{
wj

}N

j=0

)

return (x′, y′)
End Procedure DerivativeAt

Given the parametric representation of a curve, the arc length from a location t0
to a location t is

s − s0 =
∫ t

t0

√

(x′(z))2 + (y′(z))2dz. (6.7)

If the analytical derivatives of the curve are not easily found, we could use a finite
difference approximation of them. The total arc length of the curve is just

L =
∫ tf

t0

√

(x′(z))2 + (y′(z))2dz. (6.8)

We could compute the total arc length with a standard Newton-Cotes composite
quadrature rule, such as the Trapezoidal or Simpson Rules.

228 6 Transformation Methods from Square to Non-Square Geometries

Fig. 6.2 Two parameterizations of a circle. On the left is uniform parametrization in x. On the
right is uniform parametrization in arc length. Circles are interpolation nodes. The solid line is the
fifth order interpolation through the nodes and the dotted line is the exact circle

The problem of finding the relationship between the arc length then reduces to
one of finding t such that

s = 1

L

∫ t

t0

√

(x′(z))2 + (y′(z))2dz. (6.9)

Specifically, given a set of interpolation nodes sj , j = 0,1, . . . ,N , with s0 = −1
and sN = 1, we seek tj such that

sj = 1

L

∫ tj

t0

√

(x′(z))2 + (y′(z))2dz − 1. (6.10)

Since we know t0 for s0 as the starting point of the curve, we can re-write the prob-
lem as a rootfinding problem

sj − sj−1 − 1

L

∫ tj

tj−1

√

(x′(z))2 + (y′(z))2dz = 0 (6.11)

for tj , j = 1,2, . . . ,N −1. Therefore, we can compute the arclength parametrization
by computing the integral by a quadrature rule, with the derivatives approximated
by finite differences if the exact values are not available, and Newton’s method to
solve the rootfinding problem.

6 Transformation Methods from Square to Non-Square Geometries 229

6.1.3 How to Map the Reference Square to a Curved-Sided
Quadrilateral

The commonly used method to create a transformation between the quadrilateral
bounded by the four curves and the reference square is called transfinite interpola-
tion. Specifically, transfinite interpolation with linear blending is most often used
with spectral methods. We create this transformation by the linear interpolation be-
tween the four curves that represent the physical boundary. We will again develop
the map from the unit square to the physical domain first, and then incorporate the
affine transformation (6.4) to the reference square.

To derive the mapping, we first create a linear interpolation between two oppos-
ing curves, say Γ2 and Γ4 in Fig. 6.1

X42
(
ξ̃ , η̃

)= (
1 − ξ̃

)
Γ4 (η̃) + ξ̃Γ2 (η̃) . (6.12)

This interpolation matches the two entire boundaries �4 and �2 for ξ̃ = 0 and
ξ̃ = 1. If the other two sides of the domain are straight, we’re done. If not, we
need to incorporate those. The linear interpolation between the other two sides
is,

X13
(
ξ̃ , η̃

)= (1 − η̃)�1
(
ξ̃
)+ η̃�3

(
ξ̃
)
. (6.13)

The final result will be a combination of the two interpolations, starting with the
sum

�
(
ξ̃ , η̃

)= (
1 − ξ̃

)
�4 (η̃) + ξ̃�2 (η̃) + (1 − η̃)�1

(
ξ̃
)+ η̃�3

(
ξ̃
)
. (6.14)

The combination no longer matches the boundaries, in general. For instance,

�(0, η̃) = �4(η̃) + {(1 − η̃)�1(0) + η̃�3(0)} ,

�(1, η̃) = �2(η̃) + {(1 − η̃)�1(1) + η̃�3(1)} .
(6.15)

To match the boundaries, we need to subtract the linear interpolant of the additional
terms that appear in the braces of (6.15),

(
1 − ξ̃

) {(1 − η̃)�1(0) + η̃�3(0)} + ξ̃ {(1 − η̃)�1(1) + η̃�3(1)} . (6.16)

Subtraction of the correction term gives the transfinite map between the unit square
and the physical domain

X
(
ξ̃ , η̃

) = (
1 − ξ̃

)
Γ4(η̃) + ξ̃Γ2(η̃) + (1 − η̃)Γ1

(
ξ̃
)+ η̃Γ3

(
ξ̃
)

− (
1 − ξ̃

) {(1 − η̃)Γ1(0) + η̃Γ3(0)}
− ξ̃ {(1 − η̃)Γ1(1) + η̃Γ3(1)} . (6.17)

230 6 Transformation Methods from Square to Non-Square Geometries

Algorithm 98: TransfiniteQuadMap: Mapping of the Reference Square to a
Curve-Bounded Quadrilateral

Procedure TransfiniteQuadMap
Input: ξ, η

Input:
{
�j

}4
j=1 ; // Of type CurveInterpolant

Uses Algorithms:
Algorithm 96 (CurveInterpolant)
Algorithm 97 (CurveInterpolantProcedures)

(x1, y1) ← Γ1.EvaluateAt(−1)

(x2, y2) ← Γ1.EvaluateAt(1)

(x3, y3) ← Γ3.EvaluateAt(1)

(x4, y4) ← Γ3.EvaluateAt(−1)

(X1, Y1) ← Γ1.EvaluateAt(ξ)

(X2, Y2) ← Γ2.EvaluateAt(η)

(X3, Y3) ← Γ3.EvaluateAt(ξ)

(X4, Y4) ← Γ4.EvaluateAt(η)

x = 1

2

[
(1 − ξ)X4 + (1 + ξ)X2 + (1 − η)X1 + (1 + η)X3

]

− 1

4

[
(1 − ξ) {(1 − η)x1 + (1 + η)x4} + (1 + ξ) {(1 − η)x2 + (1 + η)x3}

]

y = 1

2

[
(1 − ξ)Y4 + (1 + ξ)Y2 + (1 − η)Y1 + (1 + η)Y3

]

− 1

4

[
(1 − ξ) {(1 − η)y1 + (1 + η)y4} + (1 + ξ) {(1 − η)y2 + (1 + η)y3}

]

return (x, y)

End Procedure TransfiniteQuadMap

We get the final mapping function when we apply the affine transformation from
the unit to reference square (6.4)

X (ξ, η) = 1

2

[
(1 − ξ)Γ4(η) + (1 + ξ)Γ2(η) + (1 − η)Γ1 (ξ) + (1 + η)Γ3 (ξ)

]

− 1

4

[
(1 − ξ) {(1 − η)Γ1(−1) + (1 + η)Γ3(−1)}

+ (1 + ξ) {(1 − η)Γ1(1) + (1 + η)Γ3(1)}] . (6.18)

We easily construct the transfinite mapping with the CurveInterpolants that we
introduced in the previous section. Algorithm 98 (TransfiniteQuadMap) takes the
four curves as input and the location in computational space. It returns the corre-
sponding location in physical space. The algorithm takes into account the fact that
the transfinite map (6.18) needs the four curves to be evaluated at the four corners
and at four locations along the curves.

The transformations from the reference square to the physical domain can be
orthogonal or non-orthogonal. To illustrate, we show in Fig. 6.3 the results of two

6 Transformation Methods from Square to Non-Square Geometries 231

Fig. 6.3 Two mappings from
the reference square

transformations, M1 and M2 given by

M1

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�1 (ξ) = (2 + ξ) x̂,

�2 (η) = 3 cos (π (η + 1) /4) x̂ + 3 sin (π (η + 1) /4) ŷ,

�3 (ξ) = (2 + ξ) ŷ,

�4 (η) = cos (π (η + 1) /4) x̂ + sin (π (η + 1) /4) ŷ

(6.19)

and

M2

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�1 (ξ) = (2 + ξ) x̂,

�2 (η) = 3(1 − η)/2x̂ + 3(1 + η)/2ŷ,

�3 (ξ) = (2 + ξ) ŷ,

�4 (η) = cos (π (η + 1) /4) x̂ + sin (π (η + 1) /4) ŷ.

(6.20)

We see that M1 produces an orthogonal grid on the mapped domain, but that M2

does not.

6.2 Transformation of Equations under Mappings

We introduced a mapping from the square computational space to physical space
because we can already use spectral methods on the square. Under mappings the
equations themselves are transformed, essentially by result of the chain rule. In this
section, we describe a general approach to transform equations under mappings.

232 6 Transformation Methods from Square to Non-Square Geometries

Formally, we find the effect of a mapping by use of the chain rule. For instance,
given a map x = X(ξ, η), derivatives of a function u(x, y) transform as

∂u

∂x
= ∂u

∂ξ

∂ξ

∂x
+ ∂u

∂η

∂η

∂x
,

∂u

∂y
= ∂u

∂ξ

∂ξ

∂y
+ ∂u

∂η

∂η

∂y
.

(6.21)

Unfortunately, we typically know the transformation from the reference square to
physical space, x = X(ξ, η), like those we derived in the previous section. The deriv-
atives ξx , ξy , etc. require the inverse of the transformation, which we don’t know in
general, nor is it often practical to find it by inverting the original mapping function.
We usually compute the values by recognizing that we can write the transformation
of the derivatives in matrix-vector form,

⎡

⎢
⎢
⎣

∂u

∂x

∂u

∂y

⎤

⎥
⎥
⎦=

⎡

⎢
⎢
⎣

∂ξ

∂x

∂η

∂x

∂ξ

∂y

∂η

∂y

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

∂u

∂ξ

∂u

∂η

⎤

⎥
⎥
⎦ . (6.22)

Similarly, the chain rule says

⎡

⎢
⎢
⎣

∂u

∂ξ

∂u

∂η

⎤

⎥
⎥
⎦=

⎡

⎢
⎢
⎣

∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

∂u

∂x

∂u

∂y

⎤

⎥
⎥
⎦ . (6.23)

It follows that
⎡

⎢
⎢
⎣

∂ξ

∂x

∂η

∂x

∂ξ

∂y

∂η

∂y

⎤

⎥
⎥
⎦=

⎡

⎢
⎢
⎣

∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η

⎤

⎥
⎥
⎦

−1

. (6.24)

So we can compute the matrix, which is nothing but the Jacobian of the transforma-
tion, indirectly from the mapping by way of the matrix inverse.

Although the tack of using the Jacobian matrices is familiar, we will take a dif-
ferential geometry approach to find how equations transform under mappings that
extends well to three dimensions. In fact, it is most easily derived in three dimen-
sions and then later simplified to two. The differential geometry approach will also
make concepts like normals along curved boundaries straightforward to understand.

To begin the general study of the transformation of derivatives under a mapping,
we introduce the spatial coordinates in physical space x = (x, y, z) = (x1, x2, x3)

and in computational space ξ = (ξ, η, ζ) = (ξ1, ξ2, ξ3). Both define curvilinear co-
ordinate systems. Which is physical and which is computational is simply a matter
of convention. We will assume, however, that we have a mapping x = X(ξ, η, ζ)

that transforms the computational space to the physical space.

6 Transformation Methods from Square to Non-Square Geometries 233

Fig. 6.4 Covariant and
contravariant coordinate
vectors in relation to the
coordinate lines

We next introduce two (useful) types of basis vectors to represent directions in
physical space. The first is the covariant basis ai , for i = 1,2,3, which varies along
a coordinate line. The second is the contravariant basis, ai , which points normally to
a coordinate line. We compare these two bases in two space dimensions in Fig. 6.4.

The covariant basis is defined to be tangent to a coordinate line, so it is the limit
(see Fig. 6.4)

ai = lim
Δξi→0

Δx
Δξi

= ∂x
∂ξ i

, i = 1,2,3. (6.25)

The covariant basis vectors are the vectors that we can actually compute from the
mapping function.

The contravariant basis vectors are normal to the coordinate lines and are defined
by the gradients

ai = ∇ξ i, i = 1,2,3. (6.26)

Formally, it appears that we need the inverse of the transformation, ξ = X−1(x) to
compute the contravariant basis vectors.

The first step before we transform equations is to write how derivative operators
transform under a mapping. First, we see that we can write a differential element in
terms of the covariant basis vectors

dx = ∂x
∂ξ

dξ + ∂x
∂η

dη + ∂x
∂ζ

dζ =
3∑

i=1

aidξ i . (6.27)

The arc length differential element is the magnitude of this vector

(ds)2 = |dx|2 =
3∑

i=1

3∑

j=1

ai · aj dξ idξj =
3∑

i=1

3∑

j=1

gij dξ idξj , (6.28)

where we have used the definition of the covariant metric tensor gij ≡ ai · aj = gji

to simplify the sums.

234 6 Transformation Methods from Square to Non-Square Geometries

Fig. 6.5 Surface element
vector computed from
covariant basis vectors

Next, we define the surface area element, which we compute from the cross prod-
uct (Fig. 6.5)

dSi = aj dξj × akdξk = (aj × ak)dξj dξk. (6.29)

Here, i, j, k are considered to be cyclic, that is, the ordering for (i, j, k) is (1,2,3),
(2,3,1), etc. For instance, a surface element in Cartesian space with size Δx in the
x̂ direction and Δy in the ŷ direction has the surface area element dS(z) = ΔxΔyẑ

according to this relation.
Finally, the volume element extends the surface element in the normal direction

dV = ai · (aj × ak)dξ idξj dξk. (6.30)

In terms of the covariant metric tensor, a bit of vector algebra shows that the coeffi-
cient is

ai · (aj × ak) =√
det(g) = J, (6.31)

giving the well-known result from calculus

dV = Jdξ idξj dξk. (6.32)

We can now derive how different derivative operators transform under a mapping.
First, recall that the divergence of a flux, F, is defined as

∇ · F = lim
ΔV →0

1

ΔV

∫

∂ΔV

F · dS. (6.33)

If we take the volume to be a differential pillbox, Fig. 6.6, the surface integrals are
((i, j, k) are always cyclic)

3∑

i=1

{
F · (aj × ak)ΔξjΔξk

∣
∣+ − F · (aj × ak)ΔξjΔξk

∣
∣−
}
. (6.34)

With ΔV = JΔξiΔξjΔξk ,

1

ΔV

∫

∂V

F · dS = 1

J

3∑

i=1

{
F · (aj × ak)ΔξjΔξk|+ − F · (aj × ak)ΔξjΔξk|−

Δξi

}

.

(6.35)

6 Transformation Methods from Square to Non-Square Geometries 235

Fig. 6.6 Differential volume
element for divergence

The limit as ΔV → 0 gives the divergence,

∇ · F = 1

J

3∑

i=1

∂

∂ξ i

(
F · (aj × ak)

)
. (6.36)

Equation (6.36) is known as the conservative form of the divergence because of its
relation to the differential form of a conservation law.

We derive and alternative, called nonconservative, form by noting that the di-
vergence is invariant under the transformation. Suppose that the flux is an arbitrary
constant, F = c, then

∇ · F = 1

J

3∑

i=1

∂

∂ξ i

(
c · (aj × ak)

)= 0. (6.37)

Since the vector c is arbitrary, each coordinate contribution must individually satisfy
the relations

3∑

i=1

∂

∂ξ i
(aj × ak) = 0 (6.38)

known as metric identities. Notice that (6.38) says that the divergence in computa-
tional space of specific products of the covariant bases must vanish.

With the help of the metric identities, we rewrite the divergence in the noncon-
servative form

∇ · F = 1

J

3∑

i=1

(aj × ak)
∂F
∂ξ i

. (6.39)

We derive the representation of the gradient operator in computational space from
the divergence operator. If we write out the terms in the nonconservative form of the
divergence,

∂F1

∂x
+ ∂F2

∂y
+ ∂F3

∂z
= ∇ · F = 1

J

3∑

i=1

(aj × ak) ·
(

∂F1

∂ξ i
x̂ + ∂F2

∂ξ i
ŷ + ∂F3

∂ξ i
ẑ

)

,

(6.40)

236 6 Transformation Methods from Square to Non-Square Geometries

we can match the terms on either side of the equation to get the nonconservative
form of the gradient of a scalar, f ,

∇f = 1

J

3∑

i=1

(aj × ak)
∂f

∂ξ i
. (6.41)

We use the metric identities, (6.38) again to derive the conservative form

∇f = 1

J

3∑

i=1

∂

∂ξ i

[
(aj × ak)f

]
. (6.42)

Note that all of the transformations of the differential operators are in terms of quan-
tities that we can compute directly from the mapping, namely the covariant basis
vectors, ai .

We use the gradient relations to find the contravariant basis vectors. To relate the
contravariant and covariant basis vectors, we set f = ξ i . Then the gradient of ξ i is

∇ξ i = 1

J

3∑

l=1

(aj × ak)
∂ξ i

∂ξ l
, (6.43)

with (l, j, k) cyclic. Since ∂ξ i/∂ξ l = δi,l ,

∇ξ i = ai = 1

J
(aj × ak), (6.44)

or

Jai = aj × ak. (6.45)

Because we construct the transformations from the computational to the physical
domains so that physical boundaries correspond to either a ξ = const or η = const
line, we can compute boundary normals from the contravariant basis vectors. We
need boundary normals to set Neumann or normal flux boundary conditions. Since
the contravariant basis vectors are normal to a coordinate line, a normal in the pos-
itive direction of the ith coordinate variable is in the direction of ai . Therefore we
use (6.43) to derive the normal in the direction of increasing ξ i as

n̂i = |J |
J

aj × ak

‖aj × ak‖ , (6.46)

where ‖ · ‖ denotes the Euclidean norm of the vector.
The relationship between the covariant and contravariant basis vectors allows us

to rewrite the conservative forms of the differential operators that we have derived
so far. For instance, we can write the divergence in the more compact form

∇ · F = 1

J

3∑

i=1

∂

∂ξ i

(
Jai · F

)
. (6.47)

6 Transformation Methods from Square to Non-Square Geometries 237

Similarly, the gradient becomes

∇f = 1

J

3∑

i=1

Jai ∂f

∂ξ i
. (6.48)

Finally, the metric identities are equivalent to

3∑

i=1

∂Jai

∂ξ i
= 0. (6.49)

We derive the curl, div-grad and Laplace operators using the same sorts of argu-
ments that we have used to derive the gradient operator, so we merely list them here.
They are

∇ × F = 1

J

3∑

i=1

∂

∂ξ i

[
Jai × F

]= ai × ∂F
∂ξ i

, (6.50)

∇ · (ν∇f) = 1

J

3∑

i=1

∂

∂ξ i

⎛

⎝νai ·
3∑

j=1

Jaj ∂f

∂ξj

⎞

⎠, (6.51)

∇2f = 1

J

3∑

i=1

∂

∂ξ i

⎛

⎝ai ·
3∑

j=1

Jaj ∂f

∂ξj

⎞

⎠. (6.52)

Both the covariant and contravariant vectors form bases for three dimensional
space, so we can express vectors as expansions in either basis. The covariant com-
ponents of a vector, F, are the projections onto the covariant basis,

Fi = ai · F, (6.53)

while the contravariant components of the vector are the projections onto the con-
travariant basis vectors

F i = ai · F. (6.54)

We can then express the vector as an expansion in either basis

F =
3∑

i=1

Fiai =
3∑

i=1

F iai . (6.55)

We conclude this section with the definition of the contravariant metric tensor
gij = ai · aj = gji . Since (6.45) implies that ai · aj = δi,j , the contravariant and
covariant metric tensors are inverses of each other, i.e., gij = (gij)

−1. We can write
operators like the Laplacian compactly in terms of the contravariant metric tensor,

238 6 Transformation Methods from Square to Non-Square Geometries

for

∇2f = 1

J

3∑

i=1

∂

∂ξ i

⎛

⎝ai ·
3∑

j=1

Jaj ∂f

∂ξj

⎞

⎠

= 1

J

3∑

i=1

∂

∂ξ i

⎛

⎝
3∑

j=1

Jai · aj ∂f

∂ξj

⎞

⎠= 1

J

3∑

i=1

∂

∂ξ i

⎛

⎝
3∑

j=1

Jgij ∂f

∂ξj

⎞

⎠. (6.56)

6.2.1 Two-Dimensional Forms

Since we are only really considering two-dimensional problems here, we should
specialize the common differential operators to two dimensions. In two dimensions,
the covariant basis vectors for a mapping x = X(ξ, η) = Xx̂ + Y ŷ are

a1 = ∂X
∂ξ

= Xξ x̂ + Yξ ŷ,

a2 = ∂X
∂η

= Xηx̂ + Yηŷ,

a3 = ẑ.

(6.57)

We derive the contravariant bases from these by the relation (6.45) for i = 1,2 and
the Jacobian

J = a1 · (a2 × a3) = XξYη − YξXη. (6.58)

When we evaluate the cross product directly we get

Ja1 = a2 × a3 = Yηx̂ − Xηŷ,

Ja2 = a3 × a1 = −Yξ x̂ + Xξ ŷ.
(6.59)

We then compute boundary normals from (6.46)

n̂1 = |J |
J

Yηx̂ − Xηŷ
√

Y 2
η + X2

η

,

n̂2 = |J |
J

−Yξ x̂ + Xξ ŷ
√

Y 2
ξ + X2

ξ

.

(6.60)

We write the conservative and nonconservative forms of the divergence using the
contravariant basis vectors. The conservative form is

∇ · F = 1

J

{
∂

∂ξ

(
F 1)+ ∂

∂η

(
F 2)

}

(6.61)

6 Transformation Methods from Square to Non-Square Geometries 239

where

F 1 = YηF1 − XηF2,

F 2 = −YξF1 + XξF2.
(6.62)

The nonconservative form is

∇ · F = 1

J

{
Yη (F1)ξ − Xη (F2)ξ + Xξ (F2)η − Yξ (F1)η

}
. (6.63)

The gradient reduces to

∇f = 1

J

{
(
Yηx̂ − Xηŷ

) ∂f

∂ξ
+ (−Yξ x̂ + Xξ ŷ

) ∂f

∂η

}

= 1

J

{(

Yη

∂f

∂ξ
− Yξ

∂f

∂η

)

x̂ +
(

−Xη

∂f

∂ξ
+ Xξ

∂f

∂η

)

ŷ

}

(6.64)

in two space dimensions.
We rewrite ∇ · (ν∇f) using (6.61) and (6.64). From (6.64),

F1 = 1

J

(

Yη

∂f

∂ξ
− Yξ

∂f

∂η

)

,

F2 = 1

J

(

−Xη

∂f

∂ξ
+ Xξ

∂f

∂η

)

.

(6.65)

The contravariant fluxes are therefore

F 1 = νYη

J

(

Yη

∂f

∂ξ
− Yξ

∂f

∂η

)

− νXη

J

(

−Xη

∂f

∂ξ
+ Xξ

∂f

∂η

)

,

F 2 = −νYξ

J

(

Yη

∂f

∂ξ
− Yξ

∂f

∂η

)

+ νXξ

J

(

−Xη

∂f

∂ξ
+ Xξ

∂f

∂η

)

.

(6.66)

or, when we gather together the derivatives of f ,

F 1 = ν
Y 2

η + X2
η

J
fξ − ν

YξYη + XξXη

J
fη,

F 2 = −ν
YξYη + XξXη

J
fξ + ν

Y 2
ξ + X2

ξ

J
fη.

(6.67)

We get the Laplacian when ν = 1.
As an example of mapping an equation in two space dimensions, let us write the

Laplace operator in cylindrical coordinates. We know the transformation between
(x, y) and (r, θ) ≡ (ξ, η) exactly as

[
x

y

]

= X =
[
ξ cos(η)

ξ sin(η)

]

. (6.68)

240 6 Transformation Methods from Square to Non-Square Geometries

The metric (transformation) derivatives of this mapping are

Xξ = cos(η), Xη = −ξ sin(η),

Yξ = sin(η), Yη = ξ cos(η),
(6.69)

so the Jacobian of the transformation is

J = XξYη − XηYξ = ξ. (6.70)

When we make the substitutions for the metric derivatives, we find that the cross
derivative terms in (6.67) exactly cancel

−Yη

J
Yξ

∂f

∂η
− Xη

J
Xξ

∂f

∂η
= 0,

−Yξ

J
Yη

∂f

∂ξ
− Xξ

J
Xη

∂f

∂ξ
= 0,

(6.71)

as we should expect since both coordinate systems are orthogonal. When we com-
bine the remaining terms we get the recognizable formula

∇2f = 1

ξ

∂

∂ξ

(

ξ
∂f

∂ξ

)

+ 1

ξ2

∂2f

∂η2
. (6.72)

6.3 How to Approximate the Metric Terms

To approximate the metric terms, ∂Xi/∂ξj , i, j = 1,2, let us assume that X(ξ, η)

is defined by the transfinite mapping shown in (6.18) and evaluated using the proce-
dure in Algorithm 98 (TransfiniteQuadMap). The derivatives of the mapping are

∂X
∂ξ

= 1

2

{
�2(η) − �4(η) + (1 − η)�′

1(ξ) + (1 + η)�′
3(ξ)

}

− 1

4
{(1 − η) [�1(1) − �1(−1)] + (1 + η) [�3(1) − �3(−1)]} ,

∂X
∂η

= 1

2

{
(1 − ξ)�′

4(η) + (1 + ξ)�′
2(η) + �3(ξ) − �1(ξ)

}

− 1

4
{(1 − ξ) [�3(−1) − �1(−1)] + (1 + ξ) [�3(1) − �1(1)]} .

(6.73)

Since we know how to compute the derivative of the boundary curves exactly us-
ing the procedure DerivativeAt in Algorithm 97 (CurveInterpolantProcedures), the
computation of the metric terms is straightforward.

No matter how the metric terms are computed, it is important to verify that the
metric identities, (6.38), which are satisfied by the exact metric terms, are also sat-
isfied by their approximations. Satisfaction of the metric identities can be viewed as

6 Transformation Methods from Square to Non-Square Geometries 241

a consistency condition. It is especially important for the integration of wave propa-
gation problems in curvilinear coordinates when using the conservative form of the
equations. If the metric identities are not satisfied, spurious waves can be generated
solely by the grid.

To help appreciate how important it is to satisfy the metric identities, let’s ap-
proximate the one-way wave equation

ϕt + ϕx + ϕy = ϕt + ∇ · F = 0,

F = ϕx̂ + ϕŷ (6.74)

by a collocation approximation on a mapped domain. Under the transformation,
(6.61) gives the conservative form of the equation

ϕt + 1

J

{
∂

∂ξ

[(
Yη − Xη

)
ϕ
]+ ∂

∂η

[(−Yξ + Xξ

)
ϕ
]
}

= 0. (6.75)

In the original equation (6.74), it is clear that a constant solution remains constant
for all time. The same must be true analytically for the equation in the computational
coordinates. If ϕ is a constant in space, then

ϕt = −ϕ

J

{
∂

∂ξ

[
Yη − Xη

]+ ∂

∂η

[−Yξ + Xξ

]
}

= 0, (6.76)

provided that the transformation is smooth and the cross derivatives are equal, which
allows the spatial derivative terms to cancel. Thus, ϕt = 0 for all points in space.

If we approximate (6.76) by polynomial collocation, the solution will not nec-
essarily remain constant unless certain conditions are met. To get the collocation
method, we approximate the solution by a polynomial

ϕ (x (ξ, η) , y (ξ, η)) ≈ Φ (ξ,η) =
N∑

i,j=0

Φi,j �i (ξ) �j (η). (6.77)

We also approximate the fluxes by a polynomial

(
Yη − Xη

)
ϕ ≈ IN

[(
Yη − Xη

)
Φ
]=

N∑

i,j=0

{(
Yη

)

i,j
− (

Xη

)

i,j

}
Φi,j �i (ξ) �j (η),

(−Yξ +Xξ

)
ϕ ≈ IN

[(−Yξ +Xξ

)
Φ
]=

N∑

i,j=0

{(−Yξ

)

i,j
+ (

Xξ

)

i,j

}
Φi,j �i (ξ) �j (η).

(6.78)
The collocation approximation enforces the equation at the collocation points, so

Φ̇i,j = 1

J

{
∂

∂ξ
IN

[(
Yη − Xη

)
Φ
]+ ∂

∂η
IN

[(−Yξ + Xξ

)
Φ
]
}

i,j

. (6.79)

242 6 Transformation Methods from Square to Non-Square Geometries

We’ll complete the approximation later when we will substitute for Φ from (6.77)
and write the result in terms of the derivative matrix, D. At this point however,
it suffices to see that the right hand side of (6.79) vanishes when Φ = const if
∂
∂ξ

INYη = ∂
∂η

IN(Yξ) and ∂
∂ξ

INXη = ∂
∂η

INXξ . Unfortunately, in general they are
not, for recall that differentiation and interpolation do not always commute. Since
the right hand side of (6.79) does not necessarily vanish even when Φ is constant,
the solution can change in time, causing unphysical waves to be generated and to
propagate through the grid.

To ensure the metric identities are satisfied for the collocation approximation, we
see that a sufficient condition is

∂

∂ξ
INYη = ∂

∂η
INYξ ,

∂

∂ξ
INXη = ∂

∂η
INXξ ,

(6.80)

which means that differentiation and interpolation need to commute. Since the inter-
polation and differentiation commute only if there are no errors, the metric identities
are satisfied if we represent the mapping X as a polynomial of degree N or less.

To require that the mapping X(ξ, η) be a polynomial of degree N or less is per-
haps a surprising result. It means that we should not use an analytical mapping such
as (6.1) and differentiate it analytically to get the metric derivatives. Using the exact
derivatives can generate errors. Instead, it is better to approximate the mapping by
a polynomial (most likely by interpolation, although trucation is of course possible)
and then compute the metric terms.

Armed with the principle that the mapping should be represented by a polyno-
mial of degree N or less, we see that the isoparametric transfinite interpolation of
(6.18) and Algorithm 98 (TransfiniteQuadMap), i.e, where the boundaries are ap-
proximated by polynomials of degree N , nicely fits the bill. This also means that
the metric terms computed via (6.73) will satisfy the metric identities.

6.4 How to Compute the Metric Terms

We implement the computation of (6.73) in Algorithm 99 (TransfiniteQuadMetrics),
which takes the four curves, each represented by a polynomial interpolant, plus the
desired location in the computational domain, and returns the metric coefficients at
that location. The boundary curves may not necessarily be represented at the same
points as are needed by the spatial approximation. For instance, it is possible to rep-
resent the boundaries by Chebyshev interpolants, while the spatial approximation
is Legendre. To be flexible, we compute the boundary derivatives using the general
form of the barycentric interpolant derivative, (3.45) and (3.46). If we evaluate and
store the metric coefficients at the beginning of a computation, how we compute
them is not the most significant cost factor. To be complete, we also include a pro-
cedure to compute the metric terms when the sides of the domain are straight lines
in Algorithm 100 (QuadMapMetrics).

6 Transformation Methods from Square to Non-Square Geometries 243

Algorithm 99: TransfiniteQuadMetrics: Computation of the Metric Terms on
a Curve-Bounded Quadrilateral

Procedure TransfiniteQuadMetrics
Input: ξ, η

Input:
{
�j

}4
j=1 ; // Of type CurveInterpolant

Uses Algorithms:
Algorithm 96 (CurveInterpolant)
Algorithm 97 (CurveInterpolantProcedures)

(x1, y1) ← Γ1.EvaluateAt(−1)

(x2, y2) ← Γ1.EvaluateAt(1)

(x3, y3) ← Γ3.EvaluateAt(1)

(x4, y4) ← Γ3.EvaluateAt(−1)

(X1, Y1) ← Γ1.EvaluateAt(ξ)

(X2, Y2) ← Γ2.EvaluateAt(η)

(X3, Y3) ← Γ3.EvaluateAt(ξ)

(X4, Y4) ← Γ4.EvaluateAt(η)

(X′
1, Y

′
1) ← Γ1.DerivativeAt(ξ)

(X′
2, Y

′
2) ← Γ2.DerivativeAt(η)

(X′
3, Y

′
3) ← Γ3.DerivativeAt(ξ)

(X′
4, Y

′
4) ← Γ4.DerivativeAt(η)

Xξ ← 1

2

{
X2 − X4 + (1 − η)X′

1 + (1 + η)X′
3

}− 1

4
{(1 − η) (x2 − x1) + (1 + η) (x3 − x4)}

Yξ ← 1

2

{
Y2 − Y4 + (1 − η)Y ′

1 + (1 + η)Y ′
3

}− 1

4
{(1 − η) (y2 − y1) + (1 + η) (y3 − y4)}

Xη ← 1

2

{
(1 − ξ)X′

4 + (1 + ξ)X′
2 + X3 − X1

}− 1

4
{(1 − ξ) (x4 − x1) + (1 + ξ) (x3 − x2)}

Yη ← 1

2

{
(1 − ξ)Y ′

4 + (1 + ξ)Y ′
2 + Y3 − Y1

}− 1

4
{(1 − ξ) (y4 − y1) + (1 + ξ) (y3 − y2)}

return
(
Xξ ,Xη,Yξ , Yη

)

End Procedure TransfiniteQuadMetrics

Algorithm 100: QuadMapMetrics: Computation of the Metric Terms on a
Straight Sided Quadrilateral

Procedure QuadMapMetrics

Input:
{
(xj , yj)

}4
j=1 , ξ, η

Xξ ← 1

4
{(1 − η)(x2 − x1) + (1 + η)(x3 − x4)}

Yξ ← 1

4
{(1 − η)(y2 − y1) + (1 + η)(y3 − y4)}

Xη ← 1

4
{(1 − ξ)(x4 − x1) + (1 + ξ)(x3 − x2)}

Yη ← 1

4
{(1 − ξ)(y4 − y1) + (1 + ξ)(y3 − y2)}

return
(
Xξ ,Xη,Yξ , Yη

)

End Procedure QuadMapMetrics

244 6 Transformation Methods from Square to Non-Square Geometries

Algorithm 101: MappedGeometryClass: Manage Geometry and Metric Terms
for Quadrilateral Domains

Uses Algorithms:
Algorithm 96 (CurveInterpolant)
Algorithm 63 (Nodal2DStorage)

Class MappedGeometry
Data:

N,M

{xi,j }N,M
i,j=0, {yi,j }N,M

i,j=0 ; // Node locations

{xs
i }max(N,M);4

i=0;s=1 , {ys
i }max(N,M);4

i=0;s=1 ; // Boundary Node locations

{∂X/∂ξi,j }N,M
i,j=0, {∂X/∂ηi,j }N,M

i,j=0 ; // Metric Terms

{∂Y/∂ξi,j }N,M
i,j=0, {∂Y/∂ηi,j }N,M

i,j=0 ; // Metric Terms

{Ji,j }N,M
i,j=0 ; // Jacobian

{n̂s
i }max(N,M);4

i=0;s=1 ; // Boundary normals for each side

{scalsi }max(N,M);4
i=0;s=1 ; // Scaling factor for each side

Procedures:
Construct(spA, {�j }4

j=1) ; // Algorithm 102
End Class MappedGeometry

Finally, let us wrap the storage and the computation of the metric and geometry
terms into a class that we can use later in our approximations of PDEs on gen-
eral quadrilateral domains. This class, which we define in Algorithm 101 (Mapped-
GeometryClass), stores the physical space locations of the nodes both on the grid
and along the boundaries. For some approximations, like collocation, the boundary
points coincide with grid points. For others like the nodal discontinuous Galerkin
approximation, they don’t, so we will store them separately. We have the class store
the metric terms, which will be used by all nodal approximations. We store the
boundary normals to be able to approximate Neumann boundary conditions and to
use the discontinuous Galerkin approximation. Finally, we store the normalization
of the normal vectors, |Jai |, along the boundaries as the variable scal, which will
be useful later when we implement the discontinuous Galerkin approximation. To
construct an instance of this class, we need the parameters of the spatial approxi-
mation, which are stored in an instance of the Nodal2DStorage class, and the four
bounding curves. With these we use Algorithm 102 (MappedGeometry:Construct)
to construct the geometry.

Exercises

6.1 Derive (6.39).

6.2 Derive equations (6.47)–(6.49).

6 Transformation Methods from Square to Non-Square Geometries 245

Algorithm 102: MappedGeometry:Construct: Constructor for Geometry and
Metric Terms for Quadrilateral Domains

Procedure Construct
Input {�j }4

j=1 ; // CurveInterpolant

Input spA ; // Nodal2DStorage

Uses Algorithms:
Algorithm 99 (TransfiniteQuadMetrics)
Algorithm 98 (TransfiniteQuadMap)
Algorithm 63 (Nodal2DStorage)

this.N ← spA.N ; this.M ← spA.M

for j = 0 to this.M do
for i = 0 to this.N do

{this.xi,j , this.yi,j } ← TransfiniteQuadMap({�j }4
j=1, spA.ξi , spA.ηj)

{this.Xξ , this.Xη, this.Yξ , this.Yη}i,j ←
TransfiniteQuadMetrics({�j }4

j=1, spA.ξi , spA.ηj)

this.Ji,j ← (this.Xξ ∗ this.Yη − this.Xη ∗ this.Yξ)i,j
end

end
for j = 0 to this.M do

{this.x2
j , this.y2

j } ← TransfiniteQuadMap({�j }4
j=1,1, spA.ηj)

{Xξ ,Xη,Yξ , Yη} ← TransfiniteQuadMetrics({�j }4
j=1,1, spA.ηj)

J ← Xξ ∗ Yη − Xη ∗ Yξ

this.scal2j ←
√

Y 2
η + X2

η

this.n̂2
j ← SIGN(J) ∗ (Yηx̂ − Xηŷ)/this.scal2j

{this.x4
j , this.y4

j } ← TransfiniteQuadMap({�j }4
j=1,−1, this.ηj)

{Xξ ,Xη,Yξ , Yη} ← TransfiniteQuadMetrics({�j }4
j=1,−1, spA.ηj)

J ← Xξ ∗ Yη − Xη ∗ Yξ

this.scal4j ←
√

Y 2
η + X2

η

this.n̂4
j ← −SIGN(J) ∗ (Yηx̂ − Xηŷ)/this.scal4j ; // outward normal

end
for i = 0 to this.N do

{this.x1
i , this.y1

i } ← TransfiniteQuadMap({�j }4
j=1, spA.ξi ,−1)

{Xξ ,Xη,Yξ , Yη} ← TransfiniteQuadMetrics({�j }4
j=1, spA.ξi ,−1)

J ← Xξ ∗ Yη − Xη ∗ Yξ

this.scal1i ←
√

Y 2
ξ + X2

ξ

this.n̂1
i ← −SIGN(J) ∗ (−Yξ x̂ + Xξ ŷ)/this.scal1i ; // outward normal

{this.x3
i , this.y3

i } ← TransfiniteQuadMap({�j }4
j=1, spA.ξi ,1)

{Xξ ,Xη,Yξ , Yη} ← TransfiniteQuadMetrics({�j }4
j=1, spA.ξi ,1)

J ← Xξ ∗ Yη − Xη ∗ Yξ

this.scal3i ←
√

Y 2
ξ + X2

ξ

this.n̂3
i ← SIGN(J) ∗ (−Yξ x̂ + Xξ ŷ)/this.scal3i

end
End Procedure Construct

246 6 Transformation Methods from Square to Non-Square Geometries

6.3 Generate the two meshes shown in Fig. 6.3 using an isoparametric mapping
with the uniform spacing on the reference square shown there, and with the Cheby-
shev Gauss-Lobatto points that would be used by a spectral collocation method.

6.4 For the first mapping M1 defined in (6.19) and shown in Fig. 6.3, compute and
plot the maximum error of the boundary normals for each of the four sides as a
function of N using the Chebyshev Gauss-Lobatto points. Discuss your results.

6.5 Map the equation for non-isotropic diffusion,

∂

∂x

(

ν(x) ∂ϕ

∂x

)

+ ∂

∂y

(

ν(y) ∂ϕ

∂y

)

.

(Non-isotropic diffusion will be the subject of an example in Chap. 7.)

6.6 Develop and implement an algorithm to use Gauss quadrature to approximate
integrals of the type

I =
∫∫

Ω

f (x, y)dxdy,

where Ω is a quadrilateral domain. Use your implementation to compute the area of
the isoparametric Chebyshev Gauss-Lobatto mapping of the domain M1 of (6.19).
Plot the logarithm of the error as a function of N and comment on your results.
(Your procedures will also be used later in Chaps. 7 and 8.)

6.7 Suppose that a mapping is made from cylindrical coordinates to Cartesian and
that the metric terms are computed analytically. Show that the conservative form of
∇f does not vanish when f is a constant.

Chapter 7
Spectral Methods in Non-Square Geometries

With the ability to map the reference square to non-square domains and to modify
the equations to reflect those mappings, we can use spectral methods to compute
solutions to PDEs in geometries more complex than the square. In this chapter, we
retrace our steps in Chap. 5 to develop spectral methods for non-square geometries.

7.1 Steady Potentials in a Quadrilateral Domain

The most generally applicable approximations for the solution of potential prob-
lems on a quadrilateral domain are the collocation or nodal Galerkin methods. The
potential equation for a quadrilateral domain will generally have non-constant co-
efficients. The variable coefficients will limit the exact Galerkin approximation to
special cases, such as cylindrical coordinates, where the integrals can be evaluated
analytically. The two nodal approximations have the advantage of being generally
applicable, at the expense of some spectrally small aliasing and quadrature errors.

7.1.1 The Collocation Approximation

To derive a collocation approximation of the potential equation

∇2ϕ = s (7.1)

we follow the derivation of the approximation of the variable coefficient equa-
tion (5.25). This is necessary because we showed in Sect. 6.2.1 that under the map-
ping from the reference square to the physical, quadrilateral domain, the potential
equation is transformed to the variable coefficient problem

∇2ϕ = ∇ · F = 1

J

{
∂

∂ξ

(
F 1)+ ∂

∂η

(
F 2)

}

(7.2)

where the contravariant fluxes are

F 1 = Yη

J

(

Yη

∂ϕ

∂ξ
− Yξ

∂ϕ

∂η

)

− Xη

J

(

−Xη

∂ϕ

∂ξ
+ Xξ

∂ϕ

∂η

)

,

F 2 = −Yξ

J

(

Yη

∂ϕ

∂ξ
− Yξ

∂ϕ

∂η

)

+ Xξ

J

(

−Xη

∂ϕ

∂ξ
+ Xξ

∂ϕ

∂η

)

.

(7.3)

D.A. Kopriva, Implementing Spectral Methods for Partial Differential Equations,
Scientific Computation,
© Springer Science + Business Media B.V. 2009

247

248 7 Spectral Methods in Non-Square Geometries

We approximate the solution of the potential equation (7.2) on the reference
square by the polynomial

ϕ (x) ≈ Φ (ξ,η) =
N,M∑

i,j=0

Φi,j �i (ξ) �j (η). (7.4)

We also approximate the contravariant fluxes (7.3) by their own polynomials. If
we call f ≡ F 1 and g ≡ F 2, approximate them by polynomials F and G, and ap-
proximate their derivatives in the usual collocation manner, i.e., by the analytical
derivative of the interpolant, the nodal values of the fluxes are

Fi,j =
{

Y 2
η + X2

η

J

}

i,j

N∑

k=0

D
(ξ)
ik Φk,j −

{
YηYξ + XηXξ

J

}

i,j

M∑

k=0

D
(η)
jk Φi,k,

Gi,j =
{

Y 2
ξ + X2

ξ

J

}

i,j

M∑

k=0

D
(η)
jk Φi,k −

{
YηYξ + XηXξ

J

}

i,j

N∑

k=0

D
(ξ)
ik Φk,j .

(7.5)

The final stage of the discretization is to compute the divergence of the fluxes us-
ing (7.2)

1

Ji,j

(
N∑

k=0

D
(ξ)
ik Fk,j +

M∑

k=0

D
(η)
jk Gi,k

)

= Si,j ,
i = 1,2, . . . ,N − 1;
j = 1,2, . . . ,M − 1,

(7.6)

which defines the linear system that we must solve for the nodal values of the solu-
tion, Φi,j .

Since the transformation that maps the physical domain onto the reference square
maps boundaries onto boundaries, boundary conditions are still easy to apply.
We apply Dirichlet conditions just as on the square. We apply Neumann condi-
tions, which specify the normal derivative of the solution, through the contravariant
fluxes.

To illustrate how to impose Dirichlet conditions along a boundary, let us sup-
pose that ϕ(x, y, t) = b1(x, t) along boundary �1(ξ). That boundary corresponds to
points mapped by (x, y) = x = X(ξ,0). Therefore, the approximate solution is set
to the boundary values by

Φi,0 = b1 (X (ξi,0) , t) , i = 0,1, . . . ,N. (7.7)

Other Dirichlet boundary conditions are set similarly.
To generate collocation approximations to Neumann boundary conditions,

∂ϕ

∂n
= ∇ϕ · n̂ = b′ (x, y, t) , (7.8)

where n̂ is the outward normal to the boundary, we first use results from Sect. 6.2.1
to show that the contravariant fluxes F and G are proportional to the normal fluxes.

7 Spectral Methods in Non-Square Geometries 249

The gradient in the computational domain is (6.64)

∇ϕ = 1

J

{
(
Yηx̂ − Xηŷ

) ∂ϕ

∂ξ
+ (−Yξ x̂ + Xξ ŷ

) ∂ϕ

∂η

}

. (7.9)

When we take the dot product of the gradient with the unit vector n̂1 (6.60), which
corresponds to the outward normal along �2,

∇ϕ · n̂1 = 1

|J |
√

Y 2
η + X2

η

{
(
Y 2

η + X2
η

)∂ϕ

∂ξ
− (

YηYξ + XηXξ

) ∂ϕ

∂η

}

. (7.10)

We then match terms with F 1 in (7.3) to see that

∇ϕ · n̂1 = |J |
J

√

Y 2
η + X2

ηF
1. (7.11)

We can make a similar correspondence between the normal derivative in the n̂2 di-
rection and the flux g = F 2. Therefore, to set the Neumann boundary condition (7.8)
along boundary �2, we need only to set the approximate value of the contravariant
flux along the boundary to be

FN,j =
(|J |

J

√

Y 2
η + X2

η

)

N,j

b′ (X(1, ηj), t
)
, i = 0,1, . . . ,N (7.12)

and update the solution values ΦN,j by solving (7.6) for i = 1,2, . . . ,N . The other
boundaries are treated similarly. The coefficient of b′ in (7.12) is computed and
stored as scal2j by Algorithm 101 (MappedGeometryClass).

7.1.1.1 How to Implement the Collocation Approximation

The implementation of the collocation approximation of the potential problem on a
mapped domain is a straightforward extension of the implementation for the square.
To be explicit, we create a new class in Algorithm 103 (MappedNodalPotential-
Class) that simply extends Algorithm 64 (NodalPotentialClass). We see that we only
need to add the geometry information using the MappedGeometryClass of Algo-
rithm 101 and replace the computation of the Laplace operator approximation and
MatrixAction routines.

The changes the we need to make to the constructor, which we show in Al-
gorithm 104 (MappedNodalPotentialClass:Construct), are minimal. We must now
supply the boundary curve information, of course, and use the constructor for the
MappedGeometry class to compute the physical space locations of the nodes and
the metric terms. Since the Laplacian in the mapped domain (7.6) uses a succession
of first derivative evaluations, we store first derivative instead of second derivative
matrices. Of course, to change to a Legendre approximation, we only need to change
the procedure used to compute the nodes and weights; we would use Algorithm 25

250 7 Spectral Methods in Non-Square Geometries

Algorithm 103: MappedNodalPotentialClass: A Class for the Potential Prob-
lem in a Mapped Domain

Class MappedNodalPotentialClass Extends NodalPotentialClass
Uses Algorithms:

Algorithm 63 (Nodal2DStorage)
Algorithm 64 (NodalPotentialClass)
Algorithm 101 (MappedGeometryClass)

Data:
geom ; // Of type MappedGeometry

Procedures:
Construct(N,M, {Γk}4

k=1) ; // Algorithm 104

MappedLaplacian({Uij }Mi,j=0,geom) ; // Algorithm 105

MatrixAction({Uij }Mi,j=0) ; // Algorithm 68, Modified
End Class MappedNodalPotentialClass

Algorithm 104: MappedNodalPotentialClass:Construct: Constructor for Col-
location Potential Solution on a Mapped Domain

Procedure Construct
Input: N , M

Input:
{
�j

}4
j=1 ; // Of type CurveInterpolant

Uses Algorithms:
Algorithm 27 (ChebyshevGaussLobattoNodesAndWeights)
Algorithm 102 (MappedGeometry:Construct)

this.spA.N ← N ; this.spA.M ← M
{
this.spA. {ξi}Ni=0 , this.spA.

{
w

(ξ)
i

}N

i=0

}← ChebyshevGaussLobattoNodesAndWeights(N)
{
this.spA.

{
ηj

}M

j=0 , this.spA.
{
w

(η)
j

}M

j=0

}← ChebyshevGaussLobattoNodesAndWeights(M)

[For Legendre collocation or nodal Galerkin, use LegendreGaussLobattoNodesAndWeights,
Algorithm 25]
this.geom.Construct(N,M, {�j }4

j=1, this.spA)

this.spA.
{
D

(ξ)
ij

}N

i,j=0 ← PolynomialDerivativeMatrix(N, this.spA. {ξi}Ni=0)

this.spA.
{
D

(η)
ij

}M

i,j=0 ← PolynomialDerivativeMatrix(M, this.spA.{ηj }Mj=0)

End Procedure Construct

(LegendreGaussLobattoNodesAndWeights) instead of Algorithm 27 (Chebyshev-
GaussLobattoNodesAndWeights).

The approximation to the Laplace operator for the mapped domain, (7.6), dif-
fers from that on the square, so we must replace the procedure that computes the
Laplacian. We show the new procedure in Algorithm 105 (MappedNodalPotential-
Class:MappedLaplacian). The algorithm makes it clear that the approximation of
the Laplace operator for the mapped quadrilateral is at least twice as expensive to
evaluate as on the square.

7 Spectral Methods in Non-Square Geometries 251

Algorithm 105: MappedNodalPotentialClass:MappedLaplacian: The Collo-
cation Approximation to the Laplace Operator on a Mapped Domain

Procedure MappedLaplacian
Input: {Ui,j }N,M

i,j=1

Input: geom ; // Of type MappedGeometry
Uses Algorithms:

Algorithm 19 (MxVDerivative)

N ← this.spA.N ; M ← this.spA.M

for j = 0 to M do
{

∂U

∂ξ

∣
∣
∣
∣
i,j

}N

i=0
← MxVDerivative

(
this.spA.

{
D

(ξ)
n,m

}N

n,m=0,
{
Ui,j

}N

i=0

)

end
for i = 0 to N do

{
∂U

∂η

∣
∣
∣
∣
i,j

}M

j=0
← MxVDerivative

(
this.spA.

{
D

(η)
n,m

}M

n,m=0,
{
Ui,j

}M

j=0

)

end
for j = 0 to M do

for i = 0 to N do

A ←
[

(geom.Yη)
2 + (geom.Xη)

2

geom.J

]

i,j

B ←
[

geom.Yη ∗ geom.Yξ + geom.Xη ∗ geom.Xξ

geom.J

]

i,j

C ←
[

(geom.Yξ)
2 + (geom.Xξ)

2

geom.J

]

i,j

Fi,j = A ∗ ∂U

∂ξ

∣
∣
∣
∣
i,j

− B ∗ ∂U

∂η

∣
∣
∣
∣
i,j

Gi,j = C ∗ ∂U

∂η

∣
∣
∣
∣
i,j

− B ∗ ∂U

∂ξ

∣
∣
∣
∣
i,j

end
end
for j = 0 to M do

{
∂F

∂ξ

∣
∣
∣
∣
i,j

}N

i=0
← MxVDerivative

(
this.spA.

{
D

(ξ)
n,m

}N

n,m=0,
{
Fi,j

}N

i=0

)

end
for i = 0 to N do

{
∂G

∂η

∣
∣
∣
∣
i,j

}M

j=0
← MxVDerivative

(
this.spA.

{
D

(η)
n,m

}M

n,m=0,
{
Gi,j

}M

j=0

)

end
for j = 0 to M do

for i = 0 to N do

∇2
NUi,j ←

(
∂F

∂ξ

∣
∣
∣
∣
i,j

+ ∂G

∂η

∣
∣
∣
∣
i,j

)

/geom.Ji,j

end
end

return
{∇2

NUi,j

}N,M

i,j=0
End Procedure MappedLaplacian

252 7 Spectral Methods in Non-Square Geometries

7.1.2 The Nodal Galerkin Approximation

To derive the Galerkin approximation, we convert the strong form of the equation,
(7.1) on the physical domain to a weak form on the reference square. To start, we
multiply (7.1) by a smooth function φ that satisfies the Dirichlet boundary condi-
tions and integrate over the physical domain

∫

φ∇2ϕdxdy =
∫

φsdxdy. (7.13)

We convert to integrals over the reference square by using the transformation of the
Laplacian

∇2ϕ = 1

J

{
∂F 1

∂ξ
+ ∂F 2

∂η

}

, (7.14)

and the volume element, dxdy = Jdξdη. Then on the reference square

∫ 1

−1

∫ 1

−1

{
∂F 1

∂ξ
+ ∂F 2

∂η

}

φ (ξ, η) dξdη =
∫ 1

−1

∫ 1

−1
sJφ (ξ, η) dξdη. (7.15)

Next, we integrate the integral of the Laplace operator by parts

∫ 1

−1

[
F 1φ

]∣∣
∣
1

ξ=−1
dη +

∫ 1

−1

[
F 2φ

]∣∣
∣
1

η=−1
dξ −

∫ 1

−1

∫ 1

−1

{
F 1φξ + F 2φη

}
dξdη

=
∫ 1

−1

∫ 1

−1
sJφdξdη. (7.16)

As before, φ vanishes along the boundary for Dirichlet boundary conditions, so the
boundary integrals vanish to leave

−
∫ 1

−1

∫ 1

−1

{
F 1φξ + F 2φη

}
dξdη =

∫ 1

−1

∫ 1

−1
sJφdξdη. (7.17)

Now that we have the weak form of the equation, we approximate the solution ϕ by
a polynomial Φ and the contravariant fluxes F 1 and F 2 by the polynomials F and
G as shown in (7.5). The derivation of the approximation then follows the steps that
we took in Sect. 5.2.2 to generate the approximation on the square. We take φ to be
the polynomial (5.66) and replace the integrals by quadrature. The independence of
the nodal values φi,j leads to the equations

−
N,M∑

n,m=0

{
Fn,m�′

i (ξn) �j (ηm) + Gn,m�i (ξn) �′
j (ηm)

}
wnwm

=
N,M∑

n,m=0

sn,mJn,m�i (ξn) �i (ηm)wnwm, i = 1,2, . . . ,N; j = 1,2, . . . ,M.

(7.18)

7 Spectral Methods in Non-Square Geometries 253

Again, most of the terms vanish leaving

−
N∑

n=0

Fn,j �
′
i (ξn)wnwj +

M∑

m=0

Gi,m�′
j (ηm)wiwm = si,j Ji,jwiwj . (7.19)

Next, we recognize that �′
i (ξn) = D

(ξ)T
in , to give us the final approximation

(∇2Φ,�i�j

)

N
= si,j Ji,jwiwj (7.20)

where

(∇2Φ,�i�j

)

N
= −

{
N∑

n=0

D
(ξ)T
in Fn,jwnwj +

M∑

m=0

D
(η)T
im Gi,mwiwm

}

. (7.21)

To impose Neumann boundary conditions, we retain the boundary integrals in
(7.16). When we substitute the approximating polynomials and replace the integrals
by quadrature,

[
F
(
1, ηj

)
φ
(
1, ηj

)− F
(−1, ηj

)
φ
(−1, ηj

)]
wj

+ [G(ξi,1)φ (ξi,1) − G(ξi,−1)φ (ξi,−1)]wi (7.22)

approximates the boundary terms. For Dirichlet boundaries, the appropriate value
of φ is set to zero; if all are Dirichlet, all the terms vanish as above. Along Neu-
mann boundaries there is a flux contribution to add to (7.21). For instance, if
boundary �2 is a Neumann boundary and the others are Dirichlet, then (7.21) be-
comes

(∇2Φ,�i�j

) = F
(
1, ηj

)
�i(1)wj

−
{

N∑

n=0

D
(ξ)T
in Fn,jwnwj +

M∑

m=0

D
(ξ)T
im Gi,mwiwm

}

. (7.23)

We specify the boundary value of the contravariant flux as we did for the collocation
approximation in the previous section with (7.12). Note that �i(1) = δiN vanishes
at all the interior grid points. Therefore we only need to add the flux term to the
equation along the Neumann boundaries and solve for Φi,j along the boundary as
well as the interior. Cf. (4.125).

7.1.2.1 How to Implement the Nodal Galerkin Method

Once again, we see that although the derivation of the nodal Galerkin method dif-
fers significantly from the collocation method, we end with an approximation of a
similar form. We can therefore reuse most of what we have already developed. In

254 7 Spectral Methods in Non-Square Geometries

Algorithm 106: TransposeMatrixMultiply: Matrix Transpose-Vector Multipli-
cation Algorithm

Procedure TransposeMatrixMultiply
Input:

{
Di,j

}e

i,j=s
,
{
fj

}e

j=s

for i = s to e do
t = 0
for j = s to e do

t ← t + Dj,i ∗ fj

end
(INf)′i ← t

end
return

{
(INf)′i

}e

i=s
End Procedure TransposeMatrixMultiply

particular, we do not have to change the data of the MappedNodalPotentialClass,
Algorithm 103, and the constructor is identical to the constructor for Legendre col-
location.

The only significant change that we must make is to the approximation of the
Laplacian operator. Unlike the collocation approximation, the Galerkin approxima-
tion (7.21) requires the matrix vector multiplication of the transpose of the derivative
matrix D times the slice of the flux vector multiplied by the appropriate quadrature
weights. To compute that, we create a modification of the matrix-vector multipli-
cation algorithm, Algorithm 19 (MxVDerivative), that swaps the subscripts i and j

in the inner loop that computes the intermediate variable, t , rather than transpose
and store the derivative matrix. With the modified matrix-vector product, which we
show in Algorithm 106 (TransposeMatrixMultiply), we can replace the flux deriv-
ative evaluations in Algorithm 105 (MappedLaplacian) to get the nodal Galerkin
version, Algorithm 107 (MappedLaplacian).

7.1.3 Solution of the Linear Systems

Both the collocation and nodal Galerkin approximations require a full matrix linear
system to be solved, just as on the square. It is still possible to use a direct solver
as we discussed in Sect. 5.2.1.3, particularly for small N . For larger systems, it-
erative methods such as the BiCGStab for collocation and Conjugate Gradient for
Galerkin, are still more efficient. As before, preconditioning of the systems remains
critical.

The iterative solution of the linear system drives a norm of the iteration resid-
ual to within a specified tolerance of zero. The iteration residual for the colloca-
tion approximation remains that given in (5.34). The iteration residual for the nodal
Galerkin approximation (5.78) needs to be modified to account for the presence of
the Jacobian of the transformation. When the physical domain is mapped, we now

7 Spectral Methods in Non-Square Geometries 255

Algorithm 107: MappedNodalPotentialClass:MappedLaplacian: Nodal
Galerkin Approximation to the Laplace Operator on a Mapped Domain

Procedure MappedLaplacian

Input:
{
Ui,j

}N,M

i,j=1

Input: geom ; // Of type MappedGeometry
Uses Algorithms:

Algorithm 19 (MxVDerivative)
Algorithm 106 (TransposeMatrixMultiply)

N ← this.spA.N ; M ← this.spA.M

for j = 0 to M do
{

∂U

∂ξ

∣
∣
∣
∣
i,j

}N

i=0
← MxVDerivative

(
this.spA.

{
D

(ξ)
n,m

}N

n,m=0,
{
Ui,j

}N

i=0

)

end
for i = 0 to N do

{
∂U

∂η

∣
∣
∣
∣
i,j

}M

j=0
← MxVDerivative

(
this.spA.

{
D

(η)
n,m

}M

n,m=0,
{
Ui,j

}M

j=0

)

end
for j = 0 to M do

for i = 0 to N do

A ←
[

(geom.Yη)
2 + (geom.Xη)

2

geom.J

]

i,j

B ←
[

geom.Yη ∗ geom.Yξ + geom.Xη ∗ geom.Xξ

geom.J

]

i,j

C ←
[

(geom.Yξ)
2 + (geom.Xξ)

2

geom.J

]

i,j

Fi,j = this.spA.w
(ξ)
i ∗

[

A ∗ ∂U

∂ξ

∣
∣
∣
∣
i,j

− B ∗ ∂U

∂η

∣
∣
∣
∣
i,j

]

Gi,j = this.spA.w
(η)
j ∗

[

C ∗ ∂U

∂η

∣
∣
∣
∣
i,j

− B ∗ ∂U

∂ξ

∣
∣
∣
∣
i,j

]

end
end
for j = 0 to M do

{D(ξ)T F |i,j }Ni=0 ← TransposeMatrixMultiply
(
this.spA.

{
D

(ξ)
n,m

}N

n,m=0,
{
Fi,j

}N

i=0

)

end
for i = 0 to N do

{D(η)T G|i,j }Mj=0 ← TransposeMatrixMultiply
(
this.spA.

{
D

(η)
n,m

}M

n,m=0,
{
Gi,j

}M

j=0

)

end
for j = 1 to M − 1 do

for i = 1 to N − 1 do
(∇2U,�i�j

)← −(this.spA.w
(η)
j ∗ D(ξ)T F

∣
∣
i,j

+ this.spA.w
(ξ)
i ∗ D(η)T G

∣
∣
i,j

)

end
end

return
{(∇2U,�i�j

)}N,M

i,j=0
End Procedure MappedLaplacian

256 7 Spectral Methods in Non-Square Geometries

have

ri,j = Si,j Ji,jw
(ξ)
i w

(η)
j +

{
N∑

n=0

D
(ξ)T
in Fn,jw

(ξ)
n w

(η)
j +

M∑

m=0

D
(ξ)T
jm Gi,mw

(ξ)
i w(η)

m

}

(7.24)
for the residual of the nodal Galerkin approximation.

With the introduction of variable coefficients via the mapping, it is worth con-
sidering the diagonal preconditioner. The diagonal preconditioner is very easy to
derive and to implement, so it takes relatively little effort to increase the efficiency
of the iterative methods when it does work. To derive a diagonal preconditioner, we
must identify the coefficient of the solution at a given location (i, j) in the grid.
We will derive the diagonal for the collocation approximation first, followed by the
Galerkin.

To find the matrix diagonal entry for the collocation approximation to the Laplace
operator we replace the fluxes in (7.6) by their explicit representation (7.5). For
convenience, we replace the metric derivatives by the notationally more compact
forms provided by the contravariant metric tensor. The full approximation is

∇2Φ
∣
∣
i,j

= 1

Ji,j

{
N∑

n=0

D
(ξ)
in

[
(
Jg11)

n,j

N∑

k=0

D
(ξ)
nk Φk,j + (

Jg12)

n,j

M∑

k=0

D
(η)
jk Φn,k

]

+
M∑

m=0

D
(η)
jm

[
(
Jg22)

i,m

M∑

k=0

D
(η)
mkΦi,k + (

Jg21)

i,m

N∑

k=0

D
(ξ)
ik Φk,m

]}

.

(7.25)

If we look at the first term,

N∑

n=0

D
(ξ)
in

[
(
Jg11)

n,j

N∑

k=0

D
(ξ)
nk Φk,j

]

=
∑

n

∑

k

D
(ξ)
in D

(ξ)
nk

(
Jg11)

n,j
Φk,j (7.26)

we see that the coefficient of Φi,j has k = i. Therefore, the contribution to the diag-
onal from the first term is

N∑

n=0

D
(ξ)
in D

(ξ)
ni

(
Jg11)

n,j
. (7.27)

If we continue in the same manner with the other terms in (7.26), we find that the
diagonal of the system for the collocation approximation of the Laplace operator is

di,j = 1

Ji,j

{
N∑

n=0

D
(ξ)
in D

(ξ)
ni

(
Jg11)

n,j
+ 2D

(ξ)
ii D

(η)
jj

(
Jg12)

i,j

+
N∑

m=0

D
(η)
jmD

(η)
mj

(
Jg22)

i,m

}

. (7.28)

7 Spectral Methods in Non-Square Geometries 257

A similar set of steps leads to the diagonal coefficient of the nodal Galerkin
approximation

di,j = − 1

Ji,j

{

w
(η)
j

N∑

n=0

D
(ξ)T
in w(ξ)

n D
(ξ)
ni

(
Jg11)

n,j
+ 2w

(ξ)
i w

(η)
j D

(ξ)
ii D

(η)
jj

(
Jg12)

i,j

+ w
(ξ)
i

N∑

m=0

D
(η)T
jm w(η)

m D
(η)
mj

(
Jg22)

i,m

}

. (7.29)

For either the collocation or the nodal Galerkin methods, the implementation of the
diagonal preconditioner z = H−1r simply divides the residual by the diagonal entry,

zi,j = ri,j /di,j ,

{
i = 1,2, . . . ,N − 1,

j = 1,2, . . . ,M − 1.
(7.30)

With the variable coefficients that arise from the mapping, the finite differ-
ence and finite element preconditioners become more complicated. However, we
can easily extend the approximate finite element preconditioner that we derived in
Sect. 5.2.2.3 to non-orthogonal grids, with virtually no extra effort in the derivation
or implementation. It also allows us to reuse algorithms that we have already de-
veloped. We can use it to precondition both the collocation and the nodal Galerkin
approximations. One difference to recognize between the approximate finite ele-
ment preconditioner on the square, where the coefficients are constant, and its ex-
tension to general geometries is that the stencil will increase from five points on the
square to nine in general. Therefore, the ILU solver of Algorithm 74 (FDPrecondi-
tioner:Solve) would have to be extended. Rather than do that, we will just use the
SSOR iterative solver, Algorithm 79 (SSORSweep), which is equally applicable to
a five or nine point stencil. Our experience with the potential equation on the square
shows that the SSOR solver is almost as effective as the ILU solver as long we make
a reasonable selection for the overrelaxation parameter.

The starting point to derive the approximate finite element preconditioner for
non-orthogonal grids is to recognize that the problem to approximate has changed
from the inner product (∇Φ,∇φp) to the inner product (1

J
F,∇φp) where F = F ξ̂ +

Gη̂. Thus, all we need to do in the computational space is to change the function
gnm

kl defined in equation (5.91) to account for the new integrand and the fact that
in the computational space (x, y) has been replaced by (ξ, η). If we now define the
affine mapping between an element in the computational space and the unit square
in terms of a new pair of variables, (v,w), we get the new integrand

gnm
kl (v,w) =

{

A
(
ξi + vΔξi, ηj + wΔηj

) ∂ϕkl

∂v

∂ϕnm

∂v

+ B
(
ξi + vΔξi, ηj + wΔηj

)
[
∂ϕkl

∂w

∂ϕnm

∂v
+ ∂ϕkl

∂v

∂ϕnm

∂w

]

+ C
(
ξi + vΔξi, ηj + wΔηj

) ∂ϕkl

∂w

∂ϕnm

∂w

}

, (7.31)

258 7 Spectral Methods in Non-Square Geometries

where

A = X2
η + Y 2

η

JΔξ2
i

, B = −YηYξ + XξXη

JΔξiΔηj

, C = X2
ξ + Y 2

ξ

JΔη2
j

. (7.32)

Implementation of the approximate finite element preconditioner to the mapped
problem requires only simple modifications to the procedure LocalStiffnessMatrix
in Algorithm 78 (ApproximateFEMStencil) to account for the variable coefficients
that come from the mapping. The input Δx and Δy will now correspond to the
computational space variables Δξ and Δη. The metric terms and the Jacobian for
the four corners of the element and the position (i, j) in the grid must be added
as input variables. Finally, we replace the line that defines the intermediate vari-
able t ,

t ← t + PhiXi(k, l, s) ∗ PhiXi(n,m, s)/Δx2

+ PhiEta(k, l, r) ∗ PhiEta(n,m, r)/Δy2, (7.33)

which is marked by the comment R1 in the procedure LocalStiffnessMatrix, with
the quantities defined in (7.31) to become

A ← (geom.Xη)
2
i+r,j+s + (geom.Yη)

2
i+r,j+s

geom.Ji+r,j+sΔξ2
i

B ← − (geom.Yη)i+r,j+s (geom.Yξ)i+r,j+s + (geom.Xξ)i+r,j+s (Xη)i+r,j+s

geom.Ji+r,j+sΔξiΔηj

C ← (geom.Xξ)
2
i+r,j+s + (geom.Yξ)

2
i+r,j+s

geom.Ji+r,j+sΔη2
j

t ← t + A ∗ Psi_Xi(k, l, s) ∗ Psi_Xi(n,m, s)

+B ∗ [Psi_Eta(k, l, r) ∗ Psi_Xi(n,m, s) + Psi_Eta(n,m, r) ∗ Psi_Xi(k, l, s)]

+C ∗ Psi_Eta(k, l, r) ∗ Psi_Eta(n,m, r)

To solve potential problems on mapped domains, we need to extend the driver in
Algorithm 76 (ChebyshevCollocationDriver) to create the four boundary curves and
the mapping to the interior before it constructs and solves the spatial approximation.
As an example, we’ll show how to construct a driver for the Chebyshev collocation
approximation. The equivalent driver for the nodal Galerkin approximation is simi-
lar.

Algorithm 108 (MappedCollocationDriver) shows how to compute the solutions
to the potential equation on a mapped domain. The procedure constructs the four
curve interpolants for the prescribed boundary, here provided by a curve func-
tion to be supplied. These curves are then used to construct an instance of the
MappedNodalPotentialClass. After the approximate finite element preconditioner
has been constructed (using procedures modified for curved boundaries, as dis-
cussed in this section), the solver is used to compute the solution.

7 Spectral Methods in Non-Square Geometries 259

Algorithm 108: MappedCollocationDriver: Driver for the Collocation Ap-
proximation to Steady Potential in a Non-Square Geometry

Procedure Main
Input: N , M , Nit , TOL
Uses Algorithms:

Algorithm 27 (ChebyshevGaussLobattoNodesAndWeights)
Algorithm 96 (CurveInterpolant)
Algorithm 97 (CurveInterpolantProcedures)
Algorithm 103 (MappedNodalPotentialClass)
Algorithm 104 (MappedNodalPotentialClass:Construct)
Algorithm 72 (Class: FDPreconditioner—Modified)
Algorithm 73 (FDPreconditioner:Construct—Modified)
Algorithm 75 (BiCGStabSolve)

Derived Types: CurveInterpolant:
{
�j

}4
j=1, MappedNodalPotentialClass: mnpc ,

AFEMPreconditioner: H
{{

sj
}N

j=0 ,
{
wj

}N

j=0

}
← ChebyshevGaussLobattoNodesAndWeights(N)

{
(xj , yj)

}N

j=0 ← EvaluateCurve1
(
N,

{
sj ,

}N

j=0

)
; // To be supplied

�1.Construct
(
N,

{
sj ,

}N

j=0 ,
{
(xj , yj)

}N

j=0

)

.

.

.

mnpc.Construct
(
N,M,

{
�j

}4
j=1

)

for j = 0 to M do
for i = 0 to N do

mnpc.si,j ← SourceValue(mnpc.spA.ξi ,mnpc.spA.ηj)

end
end

mnpc.
{
maskij

}4
k=1 ← {true, true, true, true}

mnpc.
{
Φij

}N,M

i,j=0 ← SetBoundaryValues
(
mnpc.

{
Φij

}N,M

i,j=0

)

H.Construct(mnpc)
mnpc ← BiCGStabSolve(Nit ,TOL,mnpc,H)

End Procedure Main

7.1.4 Benchmark Solution: Potential in Non-Square Domains

To understand how to choose between the two approximations and the various solver
options, let’s compare the performance of the collocation and nodal Galerkin meth-
ods on the Dirichlet problem for

∇2ϕ = −16 ln (r)

r2
sin (4θ) , (7.34)

where r =√
x2 + y2 and θ = tan−1(y/x). This problem has the exact solution

ϕ = ln(r) sin(4θ). (7.35)

We will solve the problem on the two domains drawn in Fig. 7.1. The domains
are shown with their grids generated by the transfinite mapping for N = M = 10.

260 7 Spectral Methods in Non-Square Geometries

Fig. 7.1 Two examples of mapped quadrilateral domains. (a) Orthogonal grid. (b) Non-
Orthogonal grid

The domain on the left is a quarter of an annulus, whose boundaries are defined
by polynomial interpolants of the boundary curves of mapping (6.19). The transfi-
nite mapping for the geometry in Fig. 7.1a is orthogonal, i.e. g12 = g21 = 0. The
boundary curves for the domain in Fig. 7.1b are given by the mapping (6.20). The
transfinite mapping for this domain generates a non-orthogonal grid, g12 = g21 	= 0.

We have already seen from Algorithms 105 (MappedCollocationLaplacian)
and 107 (MappedNodalGalerkinLaplacian) that the two spatial approximations are
virtually the same to implement. We also know from Algorithms 75 (BiCGSSTAB-
Solve) and 80 (PreconditionedConjugateGradientSolve) that the effort needed to
implement the iterative schemes appropriate for the two spatial approximations (but
not the computational work per iteration) is virtually the same. Of course, we have
already compared the performance of the methods on the square in Sect. 5.2.1.

On each domain, we find that the Chebyshev collocation and nodal Galerkin
methods have similar accuracy. Table 7.1 shows that both are spectrally accurate,
but that the Galerkin approximation is more accurate than collocation, the amount
depending on the grid.

Since the difference in accuracy is not significant, and the implementations are
similar, the speed which we can compute the solutions becomes important. Table 7.2
presents the number of iterations and CPU seconds to converge the residual to 10−14

for N = M = 72 for the Chebyshev collocation approximation. Table 7.3 presents
the same results for the nodal Galerkin approximation.

We make three conclusions from Tables 7.2 and 7.3. First, there is a significant
difference in the performance of the iterative schemes when the grid is orthogonal
or not. Second, the diagonal preconditioner performs better with the BiCGStab al-
gorithm than with the preconditioned Conjugate Gradient solver. Finally, we get the
best overall performance with the Galerkin approximation plus the approximate fi-
nite element preconditioner plus the SSOR solver. This combination was up to ten
times faster than the collocation runs.

7 Spectral Methods in Non-Square Geometries 261

Table 7.1 Maximum errors
for steady potentials on two
domains

N Orthogonal Non-orthogonal

Collocation Galerkin Collocation Galerkin

8 1.0E−4 9.0E−6 2.1E−3 1.5E−3

12 3.0E−8 1.2E−9 4.75E−5 3.5E−5

16 1.0E−11 1.2E−12 8.9E−7 7.3E−7

20 3.4E−14 3.6E−14 1.8E−8 1.2E−8

24 5.0E−10 1.7E−11

28 2.5E−11 1.7E−11

32 1.2E−12 7.9E−13

36 5.0E−14 6.9E−14

Table 7.2 Efficiency of
solvers for the Chebyshev
collocation approximation
solution for N = 72 on two
grids

Preconditioner Orthogonal Non-orthogonal

Iterations CPU (s) Iterations CPU (s)

None 443 1.77 473 1.88

AFEM ILU 271 1.03 – –

AFEM SSOR 435 1.76 523 2.12

Diagonal 267 0.96 348 1.25

Table 7.3 Efficiency of
solvers for the nodal Galerkin
approximation solution for
N = 72 on two grids

Preconditioner Orthogonal Non-orthogonal

Iterations CPU (s) Iterations CPU (s)

None 938 1.71 1148 2.1

AFEM ILU 87 0.17 – –

AFEM SSOR 81 0.17 135 0.28

Diagonal 755 1.42 669 1.26

7.1.5 Benchmark Solution: Incompressible Flow over a Circular
Obstacle

A more interesting example is to compute the inviscid, incompressible fluid flow
over a cylindrical obstacle on the ground, such as we sketch in Fig. 7.2. The flow
has an exact solution with which we will test the spectral convergence of the ap-
proximation.

The steady incompressible, irrotational flow over an obstacle is governed by the
potential equation. If the flow speed of a gas is low enough and the density is ap-
proximately constant, the fluid can be considered to be incompressible. If the flow
upstream of the obstacle is uniform, then its curl is zero, i.e., it is irrotational. That
flow will stay irrotational throughout the domain if there is no viscosity.

262 7 Spectral Methods in Non-Square Geometries

Fig. 7.2 Flow over an obstacle

We derive the equation to solve starting from the law of conservation of mass,
which is the conservation law (see Sect. 5.4)

ρt + ∇ · (ρq) = 0. (7.36)

Here, ρ is the density, q is the fluid velocity and ρq is the mass flux. For steady
flow,

∇ · (ρq) = 0. (7.37)

If we assume that the density is constant, i.e., the flow is incompressible, then the
velocity field is divergence free

∇ · q = 0. (7.38)

Furthermore, if the flow is irrotational i.e. ∇ × q = 0, then we can write the velocity
as the gradient of a potential, q = ∇ϕ. Therefore, the potential satisfies the equation

∇ · ∇ϕ = ∇2ϕ = 0. (7.39)

We must set boundary conditions along the obstacle, the ground, and far away
in the free stream. Along the obstacle and along the ground, the normal velocity
must vanish. Far from the obstacle in the free stream, the effect of the obstacle must
vanish and it is natural to specify a uniform, horizontal velocity. Since the velocity is
the gradient of the potential, these conditions imply that the gradient of the potential
is a constant in the free stream. Therefore the potential is linear in x and y. At the
body and along the ground, ∇ϕ · n̂ = 0. Therefore, the boundary conditions we need
to specify are mixed Dirichlet/Neumann

ϕ = V∞x, x2 + y2 → ∞,

∂ϕ

∂n
= ∇ϕ · n̂ = 0, ground + obstacle,

(7.40)

where V∞ = |q∞|.

7 Spectral Methods in Non-Square Geometries 263

Fig. 7.3 Mapping the exterior of a cylindrical obstacle onto the reference square

Finally, conservation of energy leads to Bernoulli’s law, from which we can com-
pute the pressure of the gas in the flow. Bernoulli’s law is

p + 1

2
ρ |q|2 = p + 1

2
ρ |∇ϕ|2 = K, (7.41)

where p is the pressure and K is a constant. Clearly as the fluid speed increases,
the pressure decreases. Stagnation points, where the fluid speed goes to zero, are the
points with highest pressure. Once we compute the potential, we can compute the
velocity and pressure fields from its gradient.

The problem of irrotational, inviscid, irrotational flow around an obstacle has an
exact solution that can be derived using conformal mapping. If the obstacle is a
cylinder, for example, the exact potential is

ϕ = V∞
(
r + r0

r

)
cos (θ) . (7.42)

Here, r is the radial distance from the center of the cylinder, r0 is the cylinder’s
radius, and θ is the usual polar angle measured from the aft (downstream) side.

To compute the flow over a cylindrical obstacle, we map the cylindrical region
shown in Fig. 7.3 to the reference square by the transfinite mapping

M

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�1 (ξ) = r0 cos (π (ξ + 1) /2) x̂ + r0 sin (π (ξ + 1) /2) ŷ,

�2 (η) = r0 + (r∞ − r0)(η + 1)/2x̂ + 0ŷ,

�3 (ξ) = r∞ cos (π (ξ + 1) /2) x̂ + r∞ sin (π (ξ + 1) /2) ŷ,

�4 (η) = −r0 − (r∞ − r0)(η + 1)/2x̂ + 0ŷ,

(7.43)

where r0 = 0.5 and r∞ = 10 corresponds to a distance far from the obstacle. The
mapping produces the grid shown in Fig. 7.4 when N = M = 30.

There are three Neumann boundaries on the reference square, which we show
shaded on Fig. 7.3, and one Dirichlet boundary, which is not shaded. We can easily
set the Neumann conditions for the Galerkin approximation. We only need to set
the mask variable to be false for the Neumann boundaries. To impose the Neumann
conditions for the collocation approximation, we need to set the normal fluxes to
be zero. One way to implement this is to create two more mask arrays, one each

264 7 Spectral Methods in Non-Square Geometries

Fig. 7.4 Chebyshev collocation grid around a cylindrical obstacle

for the fluxes F and G. For Neumann boundaries the new mask will be true. Then
we add two calls to the MaskSides function of Algorithm 67, with the appropriate
mask arrays, to Algorithm 105 (MappedLaplacian) immediately after the fluxes are
computed, one for F and one for G.

To illustrate the flow solution, we show the pressure and streamlines computed
using the Chebyshev collocation approximation and N = M = 30 in Fig. 7.5 for
V∞ = 0.5, ρ∞ = 1 and p∞ = 1. To make the plots, we computed the velocity from
the Chebyshev approximation of the gradient of the potential, q = ∇ϕ using (7.9),
and interpolated the solutions to 100 points in each direction using Algorithm 35
(2DCoarseToFineInterpolation) to draw the contours smoothly. We see that the flow
stagnates at the leading (upstream) corner of the cylinder and the ground. It is here
and at the trailing (aft) corner that the largest pressures appear. The flow accelerates
as it goes over the obstacle and so the pressure decreases to a minimum at the top
of the cylinder.

Convergence of the Chebyshev collocation approximation is exponential. Fig-
ure 7.6 shows the logarithm of the maximum error in the potential as a function of
N = M . Note that doubling the polynomial order in each direction decreases the
error by more than a factor of one hundred.

7.2 Steady Potentials in an Annulus

Potential problems with at least one periodic direction, such as annular regions,
are perfect for mixed basis approximations that use Fourier basis functions in the
periodic direction(s). We will see that the use of the Fourier basis easily enables the
efficient solution of the linear systems by way of the FFT.

In this section, we will derive algorithms to solve for the potential in an annulus
shown in Fig. 7.7. We can view this geometry, for instance, as a section of a long,

7 Spectral Methods in Non-Square Geometries 265

Fig. 7.5 Computed pressure (top) and streamlines (bottom) for the Chebyshev collocation approx-
imation of steady, inviscid incompressible near a cylindrical obstacle

cylindrical capacitor or thermal insulation. A simple mathematical model for the
potential in this annular region is

∇2ϕ = 1

r

∂

∂r

(

r
∂ϕ

∂r

)

+ 1

r2

∂2ϕ

∂θ2
= s (7.44)

with boundary conditions that represent an applied voltage or temperature

ϕ (rI , θ) = ϕI (θ) ,

ϕ (rO, θ) = ϕO (θ) .
(7.45)

To keep things general, we will leave the source term, s, in the equation.

266 7 Spectral Methods in Non-Square Geometries

Fig. 7.6 Convergence of the
maximum error in the
velocity potential for the
Chebyshev collocation
approximation

Fig. 7.7 Geometry and
boundary conditions for
steady potential in an annulus

The first stage to approximate the potential is to map the annular region to the
reference domain [−1,1] × [0,2π]. Since the coordinate system is orthogonal, the
mapping is straightforward, namely

r = rI + ξ + 1

2
(rO − rI) ,

θ = η.

(7.46)

Under this transformation, the PDE becomes

4

r (ξ) (rO − rI)
2

∂

∂ξ

(

r (ξ)
∂ϕ

∂ξ

)

+ 1

r (ξ)2

∂2ϕ

∂η2
= s. (7.47)

In what follows, we will describe the collocation approximation to (7.47). The
nodal Galerkin approximation will lead to a similar system of equations to solve.

7 Spectral Methods in Non-Square Geometries 267

We approximate the potential in the annulus by a mixed basis polynomial

Φ (ξ,η) =
N∑

l=0

M−1∑

j=0

Φl,j �l (ξ)hj (η) =
N∑

l=0

M/2∑

k=−M/2

Φ̃lk

c̄k

�l (ξ) eiη, (7.48)

where the collocation grid corresponds to the Gauss-Lobatto points (either Cheby-
shev or Legendre) in the ξ direction and the uniformly spaced points ηj = 2π/M in
the azimuthal direction.

We now derive the collocation approximation. After we substitute the polynomial
approximation into the differential equation, require the residual to vanish at the
collocation points, and simplify using the facts that �n(ξl) = δn,l and hm(ηj) = δm,j ,
we get the system of equations that must be solved for the potential at the collocation
points

4

rl (rO − rI)
2

N∑

n=0

Φn,m

∂

∂ξ

(
r�′

n

)∣
∣
ξl

+ 1

r2
l

M−1∑

m=0

Φl,mh′′
m(ηj)

= Sl,j ,
l = 1,2, . . . ,N − 1,

j = 0,1, . . . ,M − 1,
(7.49)

where rl = r(ξl). To complete the approximation, we need to approximate the prod-
uct term by a polynomial of degree N , which in Lagrange form is

r (ξ) �′
n (ξ) ≈

N∑

μ=0

r
(
ξμ

)
�′
n

(
ξμ

)
�μ (ξ). (7.50)

So we approximate

∂

∂ξ

(
r (η) �′

n (ξ)
)∣
∣
ξl

≈
N∑

μ=0

r
(
ξμ

)
�′
n

(
ξμ

)
�′
μ (ξl) =

N∑

μ=0

r
(
ξμ

)
DμnDlμ. (7.51)

Therefore, in terms of the collocation derivative matrices,

N∑

n=0

BlnΦn,j + 1

r2
l

M−1∑

m=0

Φl,mh′′
m(ηj) = Sl,j ,

l = 1,2, . . . ,N − 1,

j = 0,1, . . . ,M − 1,
(7.52)

where

Bln = 4

rl (rO − rI)
2

N∑

μ=0

r
(
ξμ

)
DμnDlμ. (7.53)

We have left the derivative of the Fourier Lagrange interpolating polynomial, h′′
m,

alone for the moment because the solution procedure that we will introduce next
eliminates the need for it.

268 7 Spectral Methods in Non-Square Geometries

We now turn to the solution of the linear system (7.52). We could solve it directly
or by one of the iterative solvers that we have used in previous sections. However,
the Fourier basis gives us the opportunity to develop a fast solver that uses the FFT.
What we will describe next is an example of a matrix diagonalization technique,
in this case made simple by the FFT, which will diagonalize the matrix h′′

m(ηj) to
simplify the solution of the system.

To (partially) diagonalize the system (7.52) we take the discrete Fourier trans-
form of both sides in the η direction. The first term on the left, which has only ξ

dependence in its coefficients, becomes

4

rl (rO − rI)
2

N∑

n=0

BlnΦ̃nk. (7.54)

The Fourier transform of the second term diagonalizes the matrix h′′
m(ηj). First,

1

M

M−1∑

j=0

[
M−1∑

m=0

Φimh′′(ηj)

]

e−2πijk/M

= 1

M

M−1∑

m=0

Φim

⎡

⎣
M−1∑

j=0

h′′(ηj)e
−2πijk/M

⎤

⎦, k = −M/2, . . . ,M/2. (7.55)

We then use the exactness of the quadrature that allows us to replace summation by
integration

1

M

M−1∑

j=0

h′′(ηj)e
−2πijk/M = 1

2π

∫ 2π

0
h′′ (η) e−ikηdη. (7.56)

We next integrate the right side by parts twice. The fact that the integrand is periodic
leads to

1

M

M−1∑

j=0

h′′(ηj)e
−2πijk/M = −k2e−2πijk/M. (7.57)

The idea to convert a summation to an integral and back when the quadrature is
exact is powerful and commonly used in spectral methods.

We now replace the factor in square brackets on the right hand side of (7.55)

1

M

M−1∑

j=0

[
M−1∑

m=0

Φl,mh′′(ηj)

]

e−2πijk/N = − k2

M

M−1∑

m=0

Φl,me−2πijk/N = −k2Φ̃lm.

(7.58)
This leads to the system of equations

N∑

n=0

(

Bln − k2

r2
l

δl,n

)

Φ̃nk = S̃lk,
l = 1,2, . . . ,N − 1,

k = −M/2, . . .M/2 − 1.
(7.59)

7 Spectral Methods in Non-Square Geometries 269

Since Φ̃n,M/2 = Φ̃n,−M/2, we don’t have to compute the last mode. We know the
boundary values from the Fourier transform of the boundary conditions. If we put
those on the right hand side, we have

N−1∑

n=1

(

Bln − k2

r2
l

δl,n

)

Φ̃nk

= S̃lk −
(
Bl0Φ̃0k + BlNΦ̃Nk

)
,

l = 1,2, . . . ,N − 1,

k = −M/2, . . .M/2 − 1.
(7.60)

Equation (7.60) represents M independent N × N systems of equations for the
Fourier coefficients. Let A(k) be the matrix whose elements are

A
(k)
ln =

(

Bln − k2

r2
l

δl,n

)

, (7.61)

RHS(k)
l = S̃lk −

(
Bl0Φ̃0k + BlNΦ̃Nk

)
. (7.62)

Then there are M systems to be solved of the form

A(k)v(k) = RHS(k). (7.63)

We are now able to develop an algorithm to compute the collocation approxima-
tion to the problem of steady potentials in an annulus. To compute the right hand
side vectors, we need the discrete Fourier coefficients of the boundary functions and
the source term, if one is present. We can compute these transforms efficiently using
the FFT. Next, for each wavenumber, k, we form the matrices A(k) and the right hand
side vectors. We solve the systems as we form them. There is no need to store all of
them at once. The matrices are relatively small—the Fourier transform changes the
original (N −1)M × (N −1)M system to M systems of size (N −1)× (N −1)—so
direct solution of the systems is fast and does not require a large amount of storage.
In a parallel computing environment, we could solve the completely independent M

systems simultaneously. Finally, the matrices are real, and the solutions are com-
plex. This means we can solve for the real and imaginary parts independently. More
importantly, we can solve for them with the same LU decomposition.

We use Algorithm 109 (PotentialOnAnnulus) to solve for the potential on an an-
nulus. The procedure first computes the collocation points and the derivative matrix
for the radial direction. It then sets up the matrix B , which is independent of the
wavenumber. Then the boundary and source terms are computed from externally
supplied functions. These boundary and source arrays are transformed by the FFT.
Since the input arrays are real, we use the FFT that implements the even-odd de-
composition. Once the boundary and source arrays are transformed, the M systems
are solved in the k′ loop. Recall that the FFT orders the wavenumbers differently
from the way we need to use them, so the transformation from k′ to k is made to
account for that. After the matrix A is computed for the current k and factorized,
the right hand side of the system is constructed. To take advantage of the LUSolve

270 7 Spectral Methods in Non-Square Geometries

Algorithm 109: PotentialOnAnnulus: Use of the FFT to Compute Potentials
with One Periodic Direction

Procedure PotentialOnAnnulus
Input: N , M , rI , rO , Source, ΦI (θ), ΦO(θ)

Uses Algorithms:
Algorithm 37 (PolynomialDerivativeMatrix)
Algorithm 27 (ChebyshevGaussLobattoNodesAndWeights)
Algorithm 7 (InitializeFFT)
Algorithm 11 (FFTEO), Algorithm 12 (BFFTEO), Algorithm 142 (LUFactorization)

{{ξl }Nl=0, {wl}Nl=0} ← ChebyshevGaussLobattoNodesAndWeights(N)

{Dlj }Nl,j=0 ← PolynomialDerivativeMatrix(N, {ξl }Nl=0)

for l = 0 to N do
rl ← rI + (ξl + 1) ∗ (rO − rI)

for n = 0 to N do
s = 0
for m = 0 to N do

s ← s + rm ∗ Dnm ∗ Dml

end
Bln ← 4 ∗ s/(rl (rO − rI)2)

end
end

Δθ ← 2π/M

for j = 0 to M − 1 do
θ ← jΔθ ; ΦI

j ← ΦI (θ); ΦO
j ← ΦO(θ)

for l = 0 to N do
Slj ← Source(rl , theta)

end
end

{w+
j }M−1

j=0 = InitializeFFT(M,FORWARD)

{Φ̃I
k }M−1

k=0 ← FFTEO(M, {ΦI
j }M−1

j=0 , {w+
j }M−1

j=0); {Φ̃O
k }M−1

k=0 ← FFTEO(M, {ΦO
j }M−1

j=0 , {w+
j }M−1

j=0)

for l = 1 to N − 1 do
{S̃lk}M−1

k=0 ← FFTEO(M, {Slj }M−1
j=0 , {w+

j }M−1
j=0)

end
for k′ = 0 to M − 1 do

if k′ < M/2 then k ← k′ else k ← k′ − M

for l = 1 to N − 1 do
for n = 1 to N − 1 do

Aln ← Bln

end
All ← All − (k/rl)

2

end
{{Ai,j }Ni,j=1, {pj }Nj=1} ← Factorize({Ai,j }Ni,j=1)

for l = 1 to N − 1 do
RHSl1 ← Re(S̃lk − (Bl0 Re(Φ̃I

k) + BlN Re(Φ̃O
k)); RHSl2 ← Im(S̃lk − (Bl0 Im(Φ̃I

k) + BlN Im(Φ̃O
k))

end

{RHSnm}N−1,2
n=1,m=1 ← LUSolve({An,m}N−1

n,m=1, {pj }Nj=1, {RHSn,m}N−1,2
n=1,m=1)

for l = 1 to N − 1 do
Φ̃lk ← RHSl1 + i ∗ RHSl2

end
end
for j = 0 to M − 1 do

Φ0j ← ΦI
j ; ΦNj ← ΦO

j

end

{w−
j }M−1

j=0 = InitializeFFT(M,BACKWARD)

for l = 1 to N − 1 do
{Φlj }M−1

j=0 ← BFFTEO(M,
{
Φ̃ik

}M−1
k=0 ,

{
w−

k

}M−1
k=0)

end

return {Φl,j }N,M−1
l,=0,j=0

End Procedure PotentialOnAnnulus

7 Spectral Methods in Non-Square Geometries 271

routine, which allows multiple right hand sides to be solved together, we create an
(N − 1)× 2 array for the right hand sides from the real and imaginary parts. We use
Algorithm 142 (LUFactorization) to solve the system, which returns the result in
the original right hand side. We then construct the complex potential from the two
parts. Once the discrete Fourier coefficients of the solution are computed for each k,
they are used to synthesize the collocation point values of the solution through calls
to the backward FFT.

The use of the FFT for the diagonalization procedure represents a very power-
ful and efficient solver for problems with constant coefficients. It is also possible
to apply such diagonalization procedures for polynomial approximations, with the
added complexity of computing the eigenfunctions for the matrix operators. See [7]
for examples.

7.2.1 Benchmark Solution: Potential in an Annulus with a Source

As a benchmark problem, we solve the potential equation (7.44) with a source term

s (r, θ) =
[(

1 − 1

r

)

+ 4

r2

(
sin2 (2θ) − cos (2θ)

)
]

e−re− cos(2θ)

and boundary conditions so that the exact solution is

ϕ = e−recos(2θ).

Figure 7.8 shows the computed and exact contours for rI = 1, rO = 4, and N =
M = 16. To draw the plots, we interpolated the solution to a uniform 40 × 80 mesh.
With these parameters, the maximum error on the mesh is 2.6×10−4 so the approx-
imate solution is indistinguishable from the exact.

Fig. 7.8 Computed (solid)
and exact (dashed) contours
for the mixed
Chebysehev-Fourier
collocation approximation of
the potential in an annulus.
The contours are uniformly
spaced with spacing 0.1

272 7 Spectral Methods in Non-Square Geometries

7.3 Advection and Diffusion in Quadrilateral Domains

In Sect. 5.3 we developed both collocation and nodal Galerkin approximations to
the advection-diffusion equation on the square

∂ϕ

∂t
+ q · ∇ϕ = η∇2ϕ, (x, y) ∈ (−1,1) × (−1,1) ,

ϕ (x, y,0) = ϕ0 (x, y) , (x, y) ∈ [−1,1] × [−1,1] .
(7.64)

We integrated the systems of ODEs that we generated from the spatial approxima-
tions with a semi-implicit method. We integrated the advection terms explicitly and
the diffusion terms implicitly. The implicit approximation of the diffusion terms led
to a system of equations that we solved at each time step by an iterative method that
we developed in Sects. 5.2.1.4 or 5.2.2.3.

The derivations of approximations to the advection-diffusion equation for non-
square geometries mirror those on the square, as do the algorithms. As before, we
will present both collocation and nodal Galerkin approximations. We will integrate
the discrete systems with the same semi-implicit BDF/extrapolation method that we
used on the square. At each time step we solve the algebraic system of equations
with the techniques of Sect. 7.1 that we developed for the potential equation in non-
square geometries.

7.3.1 Transformation of the Advection-Diffusion Equation

Under the mapping from the physical to the computational domain, the advection-
diffusion equation, (7.64), will no longer be constant coefficient. For that reason,
and to be able to use the transformation relations that we derived in Sect. 6.2.1, we
re-write the advection-diffusion equation as

ϕt + q · ∇ϕ = ∇ · F , (7.65)

where

F = ν∇ϕ. (7.66)

We can then apply the transformations for the gradient, (6.64), and the divergence,
(6.61), to map the advection and diffusion terms.

From (6.64), the gradient on the reference square is

∇ϕ = 1

J

{
(
Yηx̂ − Xηŷ

) ∂ϕ

∂ξ
+ (−Yξ x̂ + Xξ ŷ

) ∂ϕ

∂η

}

. (7.67)

Also, using results from Sect. 6.2.1, we transform the diffusion term to

∇ · F = 1

J

{
∂f

∂ξ
+ ∂g

∂η

}

, (7.68)

7 Spectral Methods in Non-Square Geometries 273

where

f = ν

{
Y 2

η + X2
η

J

∂ϕ

∂ξ
− YηYξ + XηXξ

J

∂ϕ

∂η

}

,

g = ν

{

−YηYξ + XηXξ

J

∂ϕ

∂ξ
+ Y 2

ξ + X2
ξ

J

∂ϕ

∂η

}

.

(7.69)

Therefore, the advection-diffusion equation is

ϕt + 1

J

{
(
uYη − vXη

) ∂ϕ

∂ξ
+ (−uYξ + vXξ

) ∂ϕ

∂η

}

= 1

J

{
∂f

∂ξ
+ ∂g

∂η

}

(7.70)

on the reference square.

7.3.2 The Collocation Approximation

The collocation approximation to (7.70) is derived as usual. We approximate the
solution and fluxes by polynomials in Lagrange form, and evaluate the derivatives
of those polynomials at the collocation points. When we follow the usual procedure,
we get the semi-discrete collocation approximation

dΦi,j

dt
= ∇ · Fi,j − q · ∇Φi,j , i, j = 1,2, . . . ,N − 1. (7.71)

The approximation of the advection term is

q · ∇Φi,j = 1

Ji,j

{
(
uYη − vXη

)

i,j

N∑

n

D
(ξ)
in Φn,j

+ (−uYξ + vXξ

)

i,j

N∑

m

D
(η)
jmΦi,m

}

. (7.72)

We showed how to derive the approximation of the diffusion term in Sect. 7.1.1. It is

∇ · Fi,j = 1

Ji,j

(
N∑

k=0

D
(ξ)
ik Fk,j +

M∑

k=0

D
(η)
jk Gi,k

)

, (7.73)

where

Fi,j = ν

⎧
⎨

⎩

[
Y 2

η + X2
η

J

]

i,j

N∑

k=0

D
(ξ)
ik Φk,j −

[
YηYξ + XηXξ

J

]

i,j

M∑

k=0

D
(η)
jk Φi,k

⎫
⎬

⎭
,

Gi,j = ν

⎧
⎨

⎩

[
Y 2

ξ + X2
ξ

J

]

i,j

M∑

k=0

D
(η)
jk Φi,k −

[
YηYξ + XηXξ

J

]

i,j

N∑

k=0

D
(ξ)
ik Φk,j

⎫
⎬

⎭
.

(7.74)

274 7 Spectral Methods in Non-Square Geometries

7.3.3 The Nodal Galerkin Approximation

We follow the procedure of Sect. 5.3 to derive the nodal Galerkin approximation.
Again, we approximate the solution by a polynomial written in Lagrange form and
substitute that approximation into (7.70). After we use Gauss-Lobatto quadratures
to approximate the integrals of the weak form of the equations, the time derivative
term for a mapped domain becomes

∫ 1

−1

∫ 1

−1

dΦ

dt
φij Jdξdη ≈ w

(ξ)
i w

(η)
j Ji,j

dΦi,j

dt
. (7.75)

To approximate the advection terms, we replace the integrand dΦ/dt in (7.75) with
q · ∇Φ . It follows that the nodal Galerkin approximation of the advection term
is (7.72) multiplied by w

(ξ)
i w

(η)
j Ji,j . Finally, we have already derived the nodal

Galerkin approximation of the diffusion terms written as (7.68) in Sect. 7.1.2 . The
only difference now is that the fluxes, (7.69), include the metric terms as in (7.72).

When we collect the approximations for the nodal Galerkin approximation, we
have the system of ordinary differential equations

w
(ξ)
i w

(η)
j Ji,j

dΦi,j

dt
= (∇ · F, φij

)

N
− (

q · ∇Φ,φij

)

N
(7.76)

to integrate in time where

(
q · ∇Φ,φij

)

N
= w

(ξ)
i w

(η)
j

{
(
uYη − vXη

)

i,j

N∑

n

D
(ξ)
in Φn,j

+ (−uYξ + vXξ

)

i,j

N∑

m

D
(η)
jmΦi,m

}

. (7.77)

We take the diffusion term from (7.21)

(∇ · F, φi,j

)

N
= −

{
N∑

n=0

D
(ξ)T
in Fn,jwnwj +

M∑

m=0

D
(η)T
im Gi,mwiwm

}

, (7.78)

where the fluxes are computed by (7.74).
Since the transformation that maps to the physical domain from the reference

square maps boundaries onto boundaries, boundary conditions are still easy to ap-
ply. We apply Dirichlet conditions for either the collocation or nodal Galerkin ap-
proximations just as on the square. We set Neumann conditions, which specify the
normal derivative of the solution, through the contravariant fluxes as we described
in Sect. 5.2.2.

We have the same issues with the time integration of the collocation system
(7.71)–(7.74) and the nodal Galerkin system (7.76)–(7.78) as we did on the square
in Sect. 5.3. The approximations to the diffusion terms are stiff compared to the ap-
proximations of the advection terms. For that reason, it is still convenient to use the
implicit/explicit integration that we presented there.

7 Spectral Methods in Non-Square Geometries 275

7.3.4 How to Implement the Approximations

Few modifications need to be made to the implementations that we presented in
Sect. 5.3 to implement either the collocation or nodal Galerkin approximations in
non-square geometries. We can quickly convert the implementation presented there
to handle more general geometries. The additions and changes that we need to make
are:

• Add mapping and metric terms. We must add mapping and metric term in-
formation in the form of a MappedGeometry instance to the NodalAdvDiff-
Class, Algorithm 81. We saw how to add the mapping in Sect. 7.1.1 for
the MappedNodalPotentialClass, Algorithm 103 and its constructor, Algo-
rithm 104 (MappedNodalPotentialClass:Construct). The constructor no longer
needs to compute the second derivative matrix, so we can remove the calls to
mthOrderPolynomialDerivativeMatrix.

• Modify the transport computation, Algorithm 83 (Transport). To evaluate the
transport term for a quadrilateral domain, we need to modify Algorithm 83 by
replacing the line

this.transportki,j ← this.u ∗ Φxij + this.v ∗ Φyij (7.79)

with

this.transportki,j ← 1

this.geom.Ji,j

{(
this.u ∗ (this.geom.Yη)i,j

− this.v ∗ (this.geom.Xη)i,j
)
Φxi,j

+ (−this.u(this.geom.Yξ)i,j

+ this.v(this.geom.Xξ)i,j
)
Φyi,j

}
. (7.80)

To make the procedure compute the nodal Galerkin approximation, (7.77), we
follow this with the line

this.transportki,j ← this.geom.Ji,j ∗ this.spA.w
(ξ)
i

∗ this.spA.w
(η)
j ∗ this.transportki,j . (7.81)

• Use the mapped version of the Laplacian approximation in Algorithm 85 (Adv-
DiffImplicitResidual). We now need to use the mapped approximation of the
action of the Laplace operator, Algorithm 105 (MappedLaplacian), for colloca-
tion approximations, or the equivalent Algorithm 107 for the nodal Galerkin ap-
proximation in place of the procedure LaplacianOnTheSquare of Algorithms 66
and 77.

Otherwise, the Algorithms 84 (ExplicitRHS)–87 (MultistepIntegration) will re-
main the same. Just be sure to use the appropriate solvers and preconditioners for
the implicit systems. We described the changes needed in Sect. 7.1.

276 7 Spectral Methods in Non-Square Geometries

7.3.5 Benchmark Solution: Advection and Diffusion
in a Non-Square Geometry

The first benchmark problem is to compute the constant coefficient advection-
diffusion problem with boundary and initial conditions to match the exact solution
(5.123) in a non square domain. The domain we choose is bounded by the four
curves

M

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�1 (ξ) = 3ξ
2 x̂ − (0.3 + 0.35 (tanh (2ξ) + 1)) ŷ,

�2 (η) = 3
2 x̂ + (1

2 + 0.35(tanh(3) + 1))ηŷ,

�3 (ξ) = 3ξ
2 x̂ + (0.3 + 0.35 (tanh (2ξ) + 1)) ξ ŷ,

�4 (η) = − 3
2 x̂ + (0.3 + 0.35 (tanh (3) + 1)) ηŷ.

(7.82)

When we apply the transfinite interpolation, we generate a grid like that shown in
Fig. 7.9.

Fig. 7.9 Solutions and grid for the constant coefficient advection-diffusion equation. Exact solu-
tions are contoured by dashed lines, computed by solid lines. Solutions are interpolated from the
original 24 × 24 grid to a 50 × 50 grid to plot

7 Spectral Methods in Non-Square Geometries 277

Fig. 7.10 Exact (line) and computed (symbol) solutions along y = 0 for the constant coefficient
advection-diffusion equation

We show contour plots of the exact and computed solutions for three times in
Fig. 7.9. The parameters for the solutions were u = 0.8, v = 0, x0 = −1.25, y0 = 0,
and ν = 0.2. We used a 24 × 24 node grid and Δt = 5 × 10−3 to compute the solu-
tions. In Fig. 7.10 we show the exact and computed solutions along the centerline,
y = 0 at three times.

7.3.6 Benchmark Solution: Advection and Diffusion of a Pollutant
in a Curved Channel

A more complex problem is to compute the transport and non-isotropic diffusion of
a pollutant in a curved channel. That problem is modeled by the equation

ϕt + q(x, t) · ∇ϕ = ∂

∂x

(

ν(x) ∂ϕ

∂x

)

+ ∂

∂y

(

ν(y) ∂ϕ

∂y

)

. (7.83)

If we choose the model parameters to be the variable coefficients

u = u0x, v = −u0y,

ν(x) = ν0u
2
0x

2, ν(y) = ν0u
2
0y

2,
(7.84)

there is an analytical solution

ϕ(x, y, t) = 1

2πν0u
2
0(t + δ)

√
xyx0y0

×
{(

xy0

x0y

) 1
2u0ν0

exp

(−ρ2
1 − 2(1 + ν2

0u2
0)(t + δ)2

4ν0(t + δ)

)

−
(

xy1

x1y

) 1
2u0ν0

exp

(−ρ2
2 − 2(1 + ν2

0u2
0)(t + δ)2

4ν0(t + δ)

)}

. (7.85)

278 7 Spectral Methods in Non-Square Geometries

Fig. 7.11 Grid for nonisotropic advection-diffusion in a curved channel

The point (x0, y0) corresponds to the initial location of pollutant, a2 is a parameter
that defines the streamline along which the concentration vanishes,

ρ1 = 1

u0

√

ln2
(

x

x0

)

+ ln2
(

y

y0

)

,

ρ2 = 1

u0

√

ln2
(

x

x1

)

+ ln2
(

y

y1

)
(7.86)

and

x1 = a2

y0
, y1 = a2

x0
. (7.87)

The streamlines for the flow are the lines xy = const so if we choose two of the
boundaries to correspond to these streamlines, we can simulate the flow in a curved
channel. For this benchmark, we choose the four boundaries to be

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�1 (ξ) = (8 + 7.75 cos (π + ξπ/2)) x̂ + (8 + 7.75 cos (π + ξπ/2))−1 ŷ,

�2 (η) = 8x̂ + (0.125 + 1.125η) ŷ,

�3 (ξ) = (8 + 5.5 cos (π + ξπ/2)) x̂ + 10 (8 + 7.75 cos (π + ξπ/2))−1 ŷ,

�4 (η) = (0.25 + 2.25η) x̂ + 4ŷ.

(7.88)
The lower boundary �1 is the streamline for which a2 = 1. The linear transfi-
nite map of the four curves produces the geometry and grid for N = 20 shown
in Fig. 7.11.

We only need to make two changes to the algorithms we developed earlier to
solve the channel problem. First, we must modify the diffusive fluxes (7.74) to in-
corporate the variable and non-isotropic diffusion. How to do that is the subject

7 Spectral Methods in Non-Square Geometries 279

Fig. 7.12 Exact and computed solutions of nonisotropic advection-diffusion in a curved channel.
Exact contours are shown as dashed lines, computed as solid lines. At time t = 0 the streamlines
are plotted

Fig. 7.13 Exact (line) and
computed (symbol) solutions
of nonisotropic
advection-diffusion in a
curved channel along the
center grid line

of Problem 7.8. Second, the transport terms, (7.72) and (5.110) must evaluate the
velocities u and v at the nodes.

We show benchmark solutions for N = M = 20 at three times in Figs. 7.12
and 7.13.

7.4 Conservation Laws in Quadrilateral Domains

In Sect. 5.4 we showed how to approximate a system of conservation laws

qt + fx + gy = 0 (7.89)

280 7 Spectral Methods in Non-Square Geometries

on the square by a nodal discontinuous Galerkin method. In this section, we go
beyond the square and we show how to use the transformations that we developed
in Chap. 6 to use the method to solve conservation laws in quadrilateral domains.

7.4.1 The Nodal Discontinuous Galerkin Approximation

Under a mapping from the physical domain to the reference square, we use (6.61)
to transform the conservation law (7.89) to

qt + 1

J

{
∂ f̃
∂ξ

+ ∂ g̃
∂η

}

= 0, (7.90)

where f̃ and g̃ are the contravariant fluxes

f̃ = Yηf − Xηg,

g̃ = −Yξ f + Xξ g.
(7.91)

To approximate the solution of (7.90), we need only to extend the derivation of
Sect. 5.4. As usual, we approximate the solution and the contravariant fluxes by

polynomials, Q ≈ q, F̃ ≈ f̃ and G̃ ≈ g̃ where now

F̃i,j = (
Yη

)

i,j
f
(
Qi,j

)− (
Xη

)

i,j
g
(
Qi,j

)
,

G̃i,j = − (
Yξ

)

i,j
f
(
Qi,j

)+ (
Xξ

)

i,j
g
(
Qi,j

)
.

(7.92)

The nodal values of the solution are found by way of the Galerkin projection on the
reference square

(
Qt , φij

)+
(

1

J

{
∂F̃
∂ξ

+ ∂G̃
∂η

}

, φij

)

= 0. (7.93)

The inner products are the integrals over the reference square. Therefore

(
Qt , φij

)=
∫ 1

−1

∫ 1

−1
Qtφij J dξdη. (7.94)

When we choose the Lagrange basis that interpolates the Legendre Gauss points,
replace the integrals by Legendre Gauss quadrature, the inner product of the time
derivative with the basis functions leads to the approximation

(
Qt , φij

)≈
(

Qt , �
(ξ)
i �

(η)
j

)

N
= Q̇i,j Ji,jw

(ξ)
i w

(η)
j . (7.95)

7 Spectral Methods in Non-Square Geometries 281

Before we approximate the second inner product in (7.93) we integrate by parts,
which moves the derivative onto the basis functions and generates boundary inte-
grals. That is, we convert

(
1

J

{
∂F̃
∂ξ

+ ∂G̃
∂η

}

, φij

)

=
∫ 1

−1

∫ 1

−1

1

J

{
∂F̃
∂ξ

+ ∂G̃
∂η

}

φij Jdξdη

=
∫ 1

−1

∫ 1

−1

{
∂F̃
∂ξ

+ ∂G̃
∂η

}

φij dξdη (7.96)

to
(

1

J

{
∂F̃
∂ξ

+ ∂G̃
∂η

}

, φij

)

=
∫ 1

−1

{

φij F̃
∣
∣
∣
1

ξ=−1
−
∫ 1

−1
F̃

∂φij

∂ξ
dξ

}

dη

+
∫ 1

−1

{

φij G̃
∣
∣
∣
1

η=−1
−
∫ 1

−1
G̃

∂φij

∂η
dη

}

dξ. (7.97)

When we gather terms, we have

(
1

J

{
∂F̃
∂ξ

+ ∂G̃
∂η

}

, φij

)

=
∫ 1

−1
φij F̃

∣
∣
∣
1

ξ=−1
dη +

∫ 1

−1
φij G̃

∣
∣
∣
1

η=−1
dξ

−
∫ 1

−1

∫ 1

−1

{

F̃
∂φij

∂ξ
+ G̃

∂φij

∂η

}

dξdη, (7.98)

which should be carefully compared to (5.142).
Now that we have integrated by parts, we approximate the integrals by Legen-

dre Gauss quadrature and use the Lagrange basis that interpolates the associated
quadrature points. When we follow the arguments that lead to (5.147), (5.151) and
(5.152) we get the nodal approximation for the conservation law on a quadrilateral
domain

dQi,j

dt
+ 1

Ji,j

{[

F̃∗(1, ηj)
�i(1)

w
(ξ)
i

− F̃∗(−1, ηj)
�i(−1)

w
(ξ)
i

]

+
N∑

k=0

F̃k,j D̂
(ξ)
ik

}

+ 1

Ji,j

⎧
⎨

⎩

⎡

⎣G̃∗(ξi,1)
�j (1)

w
(η)
j

− G̃∗(ξi,−1)
�j (−1)

w
(η)
j

⎤

⎦+
N∑

k=0

G̃i,kD̂
(η)
jk

⎫
⎬

⎭
= 0.

(7.99)

282 7 Spectral Methods in Non-Square Geometries

When we compare (7.99) to its equivalent on the square, (5.152), we see that
they differ only in the fact that the approximation on a general quadrilateral do-
main uses the contravariant rather than the covariant fluxes. Along the bound-
aries, we must use the Riemann solver to compute the contravariant fluxes rather
than the normal fluxes. Fortunately, there is a simple relationship between the
two.

To understand how to use the Riemann solver to find the boundary contravari-
ant fluxes, we go back to the argument that led to the relation (7.12) between the
boundary and normal fluxes for the Neumann problem for the advection-diffusion
equation. The polynomial approximation of the contravariant flux in the ξ̂ direction
is

F̃ = YηF − XηG = (
Fx̂ + Gŷ

) · Ja1. (7.100)

But boundary normals are proportional to the vectors Ja1 and Ja2 (cf. (6.60)),
precisely, n̂1 = Ja1/|Ja1| and n̂2 = Ja2/|Ja2|. Therefore,

F̃ = ∣
∣Ja1

∣
∣
(
Fx̂ + Gŷ

) · n̂1. (7.101)

To compute the boundary fluxes with the Riemann solver, then, we need only to
compute the normal Riemann flux and then scale by |Ja1|. For example along the
boundary �2, we compute the boundary flux F̃∗(1, ηj) by

F̃∗(1, ηj) = ∣
∣Ja1

∣
∣F∗ (Q

(
1, ηj

)
,Qext; n̂)

=
|J |
√

Y 2
η + X2

η

J
F∗ (Q

(
1, ηj

)
,Qext; n̂) (7.102)

using (6.60).

7.4.2 How to Implement the Nodal Discontinuous Galerkin
Approximation

From the discussion above, we see that we can implement the nodal discontinuous
Galerkin approximation by additions to and modifications of the algorithms for the
square developed in Sect. 5.4.

7.4.2.1 Data Storage

For general quadrilateral domains, we need to add metric and boundary information,
as we did to extend the NodalPotentialClass to get the MappedNodalPotentialClass,
Algorithm 103. To implement the time derivative for the mapped equations, we
could simply modify the algorithm (and code) for the time derivative on the square.
Physical space locations that are needed by the external boundary functions are now

7 Spectral Methods in Non-Square Geometries 283

Algorithm 110: DGSolutionStorage: Storage of Interior and Boundary Solu-
tions

Structure DGSolutionStorage
Data:

nEqn
{
Qi,j,n

}N;M;nEqn
i=0;j=0;n=1 ; // interior point solution values

{
Q̇i,j,n

}N;M;nEqn
i=0;j=0;n=1 ; // interior point solution time derivative

{
Qbi,n,k

}Max(N,M);nEqn;4
i=0;n=1;k=1 ; // boundary solution values

{
Fb∗

i,n,k

}Max(N,M);nEqn;4
i=0;n=1;k=1 ; // boundary flux fluxes

End Structure DGSolutionStorage

located in the x and y arrays of the MappedGeometry structure. The normals at
the boundaries are no longer the ±x̂ and ±ŷ directions, but are computed from
the mapping function and are also stored in the MappedGeometry structure. The
physical flux routines xFlux and yFlux remain the same. However, we now have to
compute the divergence of the contravariant flux rather than the covariant flux.

We will not make the straightforward extension of the discontinuous Galerkin
algorithms on the square to the mapped domain. Instead, we will refactor the data
storage and the procedures in anticipation of reusing them in a spectral element
framework later in Chap. 8. The new organization will create a new class in which
to store the data, and new procedures that will break the operation of computing the
time derivative into its component parts.

To refactor the data, we will create the new solution storage structure shown
in Algorithm 110 (DGSolutionStorage). The nodal discontinuous Galerkin method
requires the solution in the interior of the domain plus boundary values that are
interpolated from the interior. We will now store the boundary values along the four
sides in an array so that they can be used outside of the procedure in which they
are computed. Since the size of the arrays can differ in the two directions, a simple
array is not the best storage model (an array of arrays would be better), but it will
suit our purpose here. We will store the numerical boundary fluxes in the same kind
of array. The flux arrays are not absolutely necessary, since it turns out that we can
reuse the storage used by the boundary solutions. However, having the flux arrays
make the algorithms more clear. For convenience and clarity, we also store the time
derivative of the solution.

7.4.2.2 The MappedNodalDGClass

Now that we have the data model for the solution, we compose the data model for the
nodal discontinuous Galerkin method from the usual nodal storage model, the geom-
etry model and the solution model. We show this storage model in Algorithm 111
(MappedNodalDG2DClass). In that class we also show two new procedures. The

284 7 Spectral Methods in Non-Square Geometries

Algorithm 111: MappedNodalDG2DClass: A Discontinuous Galerkin Class
Definition

Class MappedNodalDG2DClass
Uses Algorithms:

Algorithm 89 (NodalDG2DStorage)
Algorithm 110 (DGSolutionStorage)
Algorithm 101 (MappedGeometryClass)

Data:
spA ; // Of type NodalDG2DStorage
dGS ; // Of type DGSolutionStorage
geom ; // Of type MappedGeometry

Procedures:
Construct(nEqn,N,M, {Γk}4

k=1); // Algorithm 91, extended
GlobalTimeDerivative(t); // Algorithm 115

End Class MappedNodalDG2DClass

constructor has changed from the one we used on the square. We have changed the
constructor from

Construct(nEqn,N,M)

to

Construct
(
nEqn,N,M, {Γk}4

k=1

)
,

where the Γk are curve interpolants defined in Algorithm 96 (CurveInterpolant). To
the constructor we then add

this.geom.Construct
(
N,M, {�j }4

j=1, this.spA
)

to create the metric terms, normals, etc. that are needed by the approximation.

7.4.2.3 The Time Derivative

The second new procedure that we need to write computes the time derivative. If
we look back at Algorithm 93 (DG2DTimeDerivative), we see that it performs three
fundamental operations. It interpolates the solutions to the boundaries and computes
the numerical fluxes from the interpolated values and the external state using the
Riemann solver. Finally it computes the time derivative from the spatial derivatives
of the fluxes. When we refactor the algorithm into these three parts, we get Algo-
rithms 112 (DG2DProlongToFaces), 113 (MappedDG2DBoundaryFluxes), and 114
(MappedDG2DTimeDerivative). Put them together as we do in Algorithm 115
(DG2DTimeDerivative), and we have extended and replaced the equivalent time
derivative routine for the square.

7 Spectral Methods in Non-Square Geometries 285

Algorithm 112: DG2DProlongToFaces: Interpolate the Solution from Gauss
Points to the Boundaries

Procedure DG2DProlongToFaces
Input: spA ; // Of type NodalDG2DStorage
Input: geom ; // Of type MappedGeometryClass
Input: dGS ; // Of type DGSolutionStorage
Uses Algorithms:

Algorithm 89 (NodalDG2DStorage)
Algorithm 110 (DGSolutionStorage)
Algorithm 101 (MappedGeometryClass)

nEqn ← dGS.nEqn; N ← spA.N ; M ← spA.M

for j = 0 to M do
for n = 1 to nEqn do

dGS.Qbj,n,4 ← InterpolateToBoundary
(
dGS.

{
Qi,j,n

}N

i=0 , spA.
{
�
(ξ)
i (−1)

}N

i=0

)

dGS.Qbj,n,2 ← InterpolateToBoundary
(
dGS.

{
Qi,j,n

}N

i=0 , spA.
{
�
(ξ)
i (1)

}N

i=0

)

end
end
for i = 0 to N do

for n = 1 to nEqn do
dGS.Qbi,n,1 ← InterpolateToBoundary

(
dGS.

{
Qi,j,n

}M

j=0 , spA.
{
�
(η)
j (−1)

}M

j=0

)

dGS.Qbi,n,3 ← InterpolateToBoundary
(
dGS.

{
Qi,j,n

}M

j=0 , spA.
{
�
(η)
j (1)

}M

j=0

)

end
end
return dGS
End Procedure DG2DProlongToFaces

7.4.3 Benchmark Solution: Acoustic Scattering off a Cylinder

The noise inside an aircraft due to a propeller or other engine noise source comes
from the acoustic pressure loading on the surface of the fuselage. To model such
loading, we can represent the aircraft by a circular cylinder and the engine by a
source placed nearby, as sketched in Fig. 7.14. We have seen in Fig. 5.4.3 how well
the spectral discontinuous Galerkin approximation approximates reflection from a
straight boundary. With this model we can test how well it approximates scattering
off a curved boundary.

The model problem and the mapping to the reference square is shown in
Fig. 7.14. The initial velocities are u = v = 0. The sound source will be an initial
pressure perturbation

p(x, y,0) = e
− ln(2)(

(x−xs)2+y2

w2)
, (7.103)

where xs is the location of the initial disturbance along the x axis. Since the cylin-
der and the source are symmetric about the line y = 0, we only need to solve in
the upper half plane. Since the solution reflects across the symmetry boundary, we
implement it as a wall, i.e. reflection boundary. Therefore, we set wall reflection

286 7 Spectral Methods in Non-Square Geometries

Algorithm 113: MappedDG2DBoundaryFluxes: Boundary Fluxes in 2D for
the Discontinuous Galerkin Approximation

Procedure MappedDG2DBoundaryFluxes
Input: t

Input: spA ; // Of type DGNodal2DStorage
Input: geom ; // Of type MappedGeometryClass
Input: dGS ; // Of type DGSolutionStorage
Uses Algorithms:

Algorithm 88 (RiemannSolver)

nEqn ← dGS.nEqn; N ← spA.N ; M ← spA.M

for j = 0 to M do
{
Q

L,ext
n

}nEqn
n=1 ←

ExternalState
(
dGS.

{
Qbj,n,4

}nEqn
n=1 ,geom.n̂4

j ,geom.x4
j ,geom.y4

j , t,LEFT
)

dGS.
{
F ∗

j,n,4

}nEqn
n=1 ←

geom.scal4j ∗ RiemannSolver
(
dGS.

{
Qbj,n,4

}nEqn
n=1 ,

{
Q

L,ext
n

}nEqn
n=1 ,geom.n̂4

j

)

{
Q

R,ext
n

}nEqn
n=1 ←

ExternalState
(
dGS.

{
Qbj,n,2

}nEqn
n=1 ,geom.n̂2

j ,geom.x2
j ,geom.y2

j , t,RIGHT
)

dGS.
{
F ∗

j,n,2

}nEqn
n=1 ←

geom.scal2j ∗ RiemannSolver
(
dGS.

{
Qbj,n,2

}nEqn
n=1 ,

{
Q

R,ext
n

}nEqn
n=1 ,geom.n̂2

j

)

end
for i = 0 to N do

{
Q

B,ext
n

}nEqn
n=1 ←

ExternalState
(
dGS.

{
Qbi,n,1

}nEqn
n=1 ,geom.n̂1

i ,geom.x1
i ,geom.y1

i , t,BOTTOM
)

dGS.
{
F ∗

i,n,1

}nEqn
n=1 ←

geom.scal1i ∗ RiemannSolver
(
dGS.

{
Qbi,n,1

}nEqn
n=1 ,

{
Q

B,ext
n

}nEqn
n=1 ,geom.n̂1

i

)

{
Q

T,ext
n

}nEqn
n=1 ←

ExternalState
(
dGS.

{
Qbi,n,3

}nEqn
n=1 ,geom.n̂3

i ,geom.x3
i ,geom.y3

i , t,TOP
)

dGS.
{
F ∗

i,n,3

}nEqn
n=1 ←

geom.scal3i ∗ RiemannSolver
(
dGS.

{
Qbi,n,3

}nEqn
n=1 ,

{
Q

T,ext
n

}nEqn
n=1 ,geom.n̂3

i

)

end
return dGS
End Procedure MappedDG2DBoundaryFluxes

conditions along boundaries Γ1 and Γ3. The surface of the cylinder, which is Γ4,
is also a wall boundary. The outer boundary, Γ2 should be a transparent or radia-
tion boundary. We will approximate the radiation boundary by setting the external
state to be zero everywhere. Since the physical model implied by this approximation
is that there are no incoming plane waves, and since the expanding waves will be
circular, there will be an artificial reflection when waves hit the outer boundary. In
our benchmark solution we choose the outer boundary far enough away so that the
sound waves have not yet reached it at the final time. A better approach would be to
use Perfectly Matched Layer (PML) approximations at the radiation boundary, an

7 Spectral Methods in Non-Square Geometries 287

Algorithm 114: MappedDG2DTimeDerivative: Time derivative in 2D for the
Discontinuous Galerkin Approximation

Procedure MappedDG2DTimeDerivative
Input: spA ; // Of type DGNodal2DStorage
Input: geom ; // Of type MappedGeometryClass
Input: dGS ; // Of type DGSolutionStorage
Uses Algorithms:

Algorithm 92 (SystemDGDerivative)
Algorithm 94 (WaveEquationFluxes)

nEqn ← dGS.nEqn; N ← spA.N ; M ← spA.M

for j = 0 to M do
for i = 0 to N do

{
Fi,n

}nEqn
n=1 ←

(geom.Yη)i,j ∗ xFlux
(
this.

{
Qi,j,n

}nEqn
n=1

)− (geom.Xη)i,j ∗ yFlux
(
this.

{
Qi,j,n

}nEqn
n=1

)

end
{
F ′

i,n

}N;nEqn
i=0;n=1 ←

SystemDGDerivative
(
dGS.

{
F ∗

j,n,4

}nEqn
n=1 ,dGS.

{
F ∗

j,n,2

}nEqn
n=1 ,

{
Fi,n

}N;nEqn
i=0;n=1,spA.

{
Dξ
}N

i,j=0,

spA.
{
�
(ξ)
i (−1)

}N

i=0, spA.
{
�
(ξ)
i (1)

}N

i=0, spA.
{
w

(ξ)
i

}N

i=0

)

for i = 0 to N do
for n = 1 to nEqn do

dGS.Q̇i,j,n ← −F ′
i,n

end
end

end
for i = 0 to N do

for j = 0 to M do
{
Gj,n

}nEqn
n=1 ← −(geom.Yξ)i,j ∗ xFlux

(
this.

{
Qi,j,n

}nEqn
n=1

)+ (geom.Xξ)i,j ∗
yFlux

(
this.

{
Qi,j,n

}nEqn
n=1

)

end
{
G′

j,n

}M;nEqn
j=0;n=1 ←

SystemDGDerivative
(
dGS.

{
F ∗

i,n,1

}nEqn
n=1 ,dGS.

{
F ∗

i,n,3

}nEqn
n=1 ,

{
Gj,n

}N;nEqn
j=0;n=1,spA.

{
Dη

}M

i,j=0,

spA.
{
�
(η)
i (−1)

}M

i=0, spA.
{
�
(η)
i (1)

}M

i=0, spA.
{
w

(η)
i

}M

i=0

)

for j = 0 to M do
for n = 1 to nEqn do

dGS.Q̇i,j,n ← (dGS.Q̇i,j,n − G′
j,n)/geom.Ji,j

end
end

end
return dGS
End Procedure MappedDG2DTimeDerivative

advanced method applicable to many types of approximations that we will not cover
here.

We present benchmark solutions for the scattering problem when the half width
is w = 0.125, the cylinder radius is r0 = 0.5 and xs = 1.5 for time up to t = 3. We

288 7 Spectral Methods in Non-Square Geometries

Algorithm 115: GlobalTimeDerivative: Full Time Derivative in 2D for the Dis-
continuous Galerkin Approximation

Procedure GlobalTimeDerivative
Input: t

Uses Algorithms:
Algorithm 112 (DG2DProlongToFaces); Algorithm 113 (MappedDG2DBoundaryFluxes);
Algorithm 114 (MappedDGSystemTimeDerivative);

this.dGS ← DG2DProlongToFaces(this.spA, this.geom, this.dGS)

this.dGS ← MappedDG2DBoundaryFluxes(t, this.spA, this.geom, this.dGS)

this.dGS ← MappedDG2DTimeDerivative(this.spA, this.geom, this.dGS)

End Procedure DG2DTimeDerivative

Fig. 7.14 Model for scattering of a sound wave off a circular cylinder

choose the benchmark domain to be the half circle with inner radius r0 and outer
radius r∞ = 5, which is mapped onto the reference square by the transfinite mapping
of the boundary curves

M

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�1 (ξ) = r0 + (r∞ − r0)(ξ + 1)/2x̂ + 0ŷ,

�2 (η) = r∞ cos (π (η + 1) /2) x̂ + r∞ sin (π (η + 1) /2) ŷ,

�3 (ξ) = −r0 − (r∞ − r0)(ξ + 1)/2x̂ + 0ŷ,

�4 (η) = r0 cos (π (η + 1) /2) x̂ + r0 sin (π (η + 1) /2) ŷ.

(7.104)

Under this mapping, the grid looks similar to that shown in Fig. 7.4, which we
used to compute the incompressible flow over a circular obstacle. We compute the
solutions with N = M = 74 and Δt = 5 × 10−5.

We show the computed pressure contours for t = 3 in Fig. 7.15. The front farthest
from the cylinder has its center at x = 1.5 and was created by the initial pressure
disturbance. The next closest front to the cylinder has its center at x = 0 and is the
wave reflected by the cylinder. Also visible is a weak sound wave created when the
incident wave front merges to the left of the cylinder. To produce the contour plot,
we used Algorithm 35 (2DCoarseToFineInterpolation) to interpolate the solution
and grid onto 100 uniformly spaced points in each direction.

7 Spectral Methods in Non-Square Geometries 289

Fig. 7.15 Pressure contours at t = 3 for the model acoustic scattering of an initial pressure distur-
bance off a circular cylinder

Fig. 7.16 Incident and scattered pressure values at t = 3 at two angles from the origin

We present profiles of the pressure at two angles about the cylinder, interpolated
to the fine grid, in Fig. 7.16. At angle θ = 0◦, along y = 0 to the right of the cylinder,
the incident and reflected waves are well separated. The waves are still interacting
along the line x = 0, which corresponds to θ = 90◦.

Exercises

7.1 Derive equations (7.5) and (7.6).

290 7 Spectral Methods in Non-Square Geometries

7.2 Newton’s law of cooling says that the normal heat flux at a boundary is propor-
tional to the difference between the surface and ambient temperatures,

∇ϕ · n̂ = −γ (ϕ − ϕ0) .

Write this boundary condition for a curved boundary of a quadrilateral domain.

7.3 Derive the nodal Galerkin approximation to approximate the potential in the
annulus of Fig. 7.7 with potentials specified along the boundaries.

7.4 Derive the nodal Galerkin and collocation approximations to approximate the
steady temperature in the annulus of Fig. 7.7 for a specified temperature distribution
along the inner cylinder and an insulated outer cylinder, i.e. ∇ϕ · n̂ = 0.

7.5 Derive the collocation approximation (7.71)–(7.74) to the advection-diffusion
equation.

7.6 Explain why the nodal Galerkin approximation of the diffusion terms of the
advection-diffusion equation and (7.95) are only approximate on a mapped domain
after quadrature, in contrast to the approximation on the square.

7.7 Derive equations (7.76)–(7.78) for the nodal Galerkin approximation to the
advection-diffusion equation.

7.8 Derive the collocation and nodal Galerkin approximations to the non-isotropic
advection-diffusion equation (7.83) and show how to modify the algorithms to im-
plement the methods.

7.9 The conservation form of the advection term is ∇ · (qϕ). Show how to approx-
imate this in a mapped coordinate system.

7.10 Implement the spectral collocation method to compute the inviscid, incom-
pressible flow over a cylinder. Use the computed potential to compute and plot
spectrally accurate approximations to the velocity.

7.11 Implement the nodal Galerkin method to compute the inviscid, incompressible
over a cylinder. Compare the accuracy to that of the Chebyshev collocation method.

7.12 Fluid flow in a concentric pipe. An important class of viscous fluid flows for
which exact solutions exist are those in pipes of arbitrary yet constant shape. To
force fluid down the pipe, an inlet pressure higher than the outlet pressure is applied.
In the steady state, far away from the inlet and outlet, we can assume that there is no
variation of the velocity in the axial, ẑ, direction and that the pressure varies linearly
from the inlet to the outlet. The fact that the pipe has a constant cross section means
that we can assume that the radial and azimuthal velocity components are zero. The
viscosity in the flow forces the axial velocity to vanish at the pipe walls. Therefore,

7 Spectral Methods in Non-Square Geometries 291

the only unknown is the axial velocity, u(x, y). Under these conditions, conservation
of momentum requires that the axial velocity satisfies

∇2u(x, y) =
(

∂2u

∂x2
+ ∂2u

∂x2

)

= 1

ν

∂p

∂z
= γ = const < 0.

Since the pipe has constant cross section, the axial velocity is really only a function
of the radial distance.

The flow in the concentric cylinder shown in Fig. 7.7 has an exact solution, with
the axial velocity given by

u(r) = −γ

4

{

r2
O − r2 + (

r2
O − r2

I

) ln(rO/r)

ln(rI /rO)

}

.

1. Use a mixed basis spectral collocation method to compute the flow in the con-
centric cylinder and compare the computed solutions to the exact for velocities
scaled so that γ = −1.

2. Compute to spectral accuracy the volume flow rate Q defined by

Q =
∫

disk
udA

and compare to the exact analytical value

Q = −γπ

8

{

r2
O − r2

I + (r2
O − r2

I)2

ln(rI /rO)

}

7.13 Fluid flow in an eccentric pipe. Referring to the flow in a concentric pipe de-
scribed in Problem 7.12, derive and implement a spectral collocation approximation
to solve for the flow rate in the eccentric annular pipe shown in Fig. 7.17. Explain

Fig. 7.17 A pipe described
by an eccentric annulus

292 7 Spectral Methods in Non-Square Geometries

your choice of solver. Compute the flow rate to spectral accuracy and calculate how
it varies with relative eccentricity

ε = c

a − b
.

Finally, compare your results with the analytical solution

Q = −γπ

8

{

a4 − b4 − 4c2M2

β − α
− 8c2M2

∞∑

n=1

ne−n(α+β)

sinh (nβ − nα)

}

,

where

M =
√

F 2 − a2, F = a2 − b2 + c2

2c
,

α = 1

2
ln

F + M

F − M
, β = 1

2
ln

F − c + M

F − c − M
.

7.14 In Sect. 6.3, we noted that if we are not careful when computing the metric
terms for a mapped domain that spurious waves can be generated. With the geom-
etry of the benchmark problem of Sect. 7.4.3, and the initial condition p = const,
u = v = 0, compute the nodal discontinuous Galerkin approximation to the wave
equation when the boundaries are represented by polynomials of degree N + 5 for
several low values of N , where N is the polynomial order of the approximation of
the solution. Plot the pressure at various times and observe. Compare the results to
what you get when the boundaries are approximated by polynomials of order N .

Chapter 8
Spectral Element Methods

The main feature of nodal polynomial spectral methods that give them their power,
namely the global polynomial approximation with grid points at the nodes of a
Gauss quadrature rule, also limits them to a fairly small class of problems. The
global nature of the approximation makes it difficult for us to apply the methods to
complex geometries or to problems with discontinuities. The fixed node placement
makes it difficult to refine the grid locally as may be needed. The cost to compute
the derivatives gets large in large problems that need high order polynomials to re-
solve all the features in a problem. An example of that is the benchmark problem of
Sect. 7.4.3. Coupled with the small time steps to which explicit methods are limited
or the large condition numbers that adversely affect the solution of the linear sys-
tems that arise from implicit methods, the spectral methods that we have presented
so far can become expensive, although very accurate.

To compute problems in geometries that are more complex than those we have
presented so far, we introduce multidomain methods. In multidomain spectral meth-
ods, we divide the domain of interest into smaller subdomains that we can map in-
dividually onto the square. We can then apply a spectral method like one of those
discussed in Chap. 7 to each of the subdomains. Multidomain spectral methods have
become so useful and so common that the methods that we have derived so far in
this book are now often called “single domain” or “mono-domain” methods.

We can extend any of the nodal spectral methods that we have presented so far to
a multidomain version. We only need to develop methods to couple the subdomains
together. However, in this book we will only discuss a subclass of multidomain
methods that starts from the weak form of the equations, that is, the nodal Galerkin
methods. The Galerkin based nodal methods have natural coupling that follows from
the weak form. We call this subclass “Spectral Element Methods” because of its
similarity to finite element methods. We note, however, that some authors refer to
spectral multidomain methods in general as spectral element methods. For a taxon-
omy of multidomain methods and presentations of other methods that use the strong
form of the equations, see the book by Canuto et al. [8].

Multidomain methods, and spectral element methods in particular, have many
advantages over their single domain counterparts. Let us quickly review situations
where we should or must use a multidomain method. They include:

• Problems in complex geometries. We can use multiple domain decompositions
to solve problems in domains that are difficult to map or cannot be mapped onto
a single square. Figure 8.1 shows a decomposition of such a domain into four
elements. A more convincing geometry might be what we’d need to compute
flow over a three element airfoil like that shown in Fig. 8.2.

D.A. Kopriva, Implementing Spectral Methods for Partial Differential Equations,
Scientific Computation,
© Springer Science + Business Media B.V. 2009

293

294 8 Spectral Element Methods

Fig. 8.1 A decomposition of
an interior domain by four
subdomains

Fig. 8.2 A portion of a
decomposition of the exterior
of a three element airfoil into
multiple subdomains

Fig. 8.3 Single (a) and multidomain (b) decompositions of a disk

• Problems with coordinate singularities. Even if the domain is simple, the coordi-
nate mapping onto the square may have singularities. We can use a single domain
to approximate an equation on the disk using a cylindrical coordinate system, as
seen in Fig. 8.3a. We can eliminate the singularity at the origin by subdividing
the disk as in Fig. 8.3b. We can use subdivision to eliminate pole singularities on
the sphere as well, as in Fig. 8.4.

• Problems with discontinuous coefficients or solutions. Since the convergence rate
of spectral methods depends on the smoothness of the solutions, we would not
expect accurate solutions when the coefficients in an equation or the solutions are
discontinuous. A simple problem on which we should not use a single domain

8 Spectral Element Methods 295

Fig. 8.4 A multidomain
decomposition of the surface
of a sphere

Fig. 8.5 A double glazed
window model as an example
of a problem with
discontinuous media

spectral method is to compute the heat flux through a double glazed window as
we sketch in Fig. 8.5. The temperature satisfies the equation

∂

∂x

(

κ
∂T

∂x

)

= 0. (8.1)

The steady temperature, also shown in the figure, is continuous even though the
diffusion coefficient, κ , is discontinuous at the material boundaries. If we use a
single domain spectral method to solve the problem, the convergence rate of tem-
perature will be slow. On the other hand, if we break the domain into subintervals
whose boundaries are at the material interfaces, we could represent the solution
exactly by piecewise linear polynomials.

Other problems where the presence of material boundaries would lead us to
spectral element methods include electromagnetic wave propagation through dif-
ferent media, electromagnetic scattering off optically coated surfaces, or ultra-
sound detection of tumors where waves must propagate through muscle, fat and
bone.

• Solution and efficiency driven considerations. Finally, even if neither the geome-
try nor the solution dictate that we should use multiple domains, efficiency con-

296 8 Spectral Element Methods

siderations may instead. To find a technical discussion of the issues we suggest
the book by Canuto et al. [8]. We will only give a rough idea here how work and
accuracy are related.

The work required to compute spectral solutions depends strongly on the poly-
nomial order. If fast transforms are not available, the cost to compute the deriv-
atives increases as N2. If we use an explicit time integration method, the time
step is limited by the size of the eigenvalues of the problem. The fact that the
eigenvalues grow as N2 for first order and N4 for second order derivatives means
that the number of time steps, which is inversely proportional to Δt , grows at
these rates. Overall, the work to compute a time dependent solution with explicit
time integration goes as

W ∼
{

N4 Advection dominated,

N6 Diffusion dominated.
(8.2)

On the other hand, if we subdivide into K subdomains, with only N/K order
polynomials in each, then the work grows more slowly as

W ∼
{

K(N
K

)4 Advection dominated,

K(N
K

)6 Diffusion dominated.
(8.3)

For instance for a diffusion dominated problem, splitting a domain into only two
subdomains reduces the work by a significant factor of 2/26 = 1/32.

We need to balance the savings in work with the fact that the error will likely
grow if the total number of points is fixed and the number of subdomains is
increased. Roughly speaking, the error will vary with N and K as

E ∼ e−αN

KN+1
. (8.4)

So for smooth solutions where the error decays exponentially with polynomial
order, the convergence rate is faster if we increase the polynomial order instead
of the number of subdomains. We therefore need to balance accuracy and work
to decide on the optimal strategy.

The solution itself may also direct us to use multidomain methods. When the
solutions have sharp fonts, boundary layers, or other regions where local refine-
ment is needed, along with other regions where the solution has little variation,
we can localize the effort needed to compute the solution. We can use large re-
gions with low order polynomials where the solution varies little, and place small
subdomains with high order where the solution varies significantly.

8.1 Spectral Element Methods in One Space Dimension

To introduce the additional complexity of a multidomain method, we begin with a
presentation of the spectral element method in one space dimension. In one dimen-
sion, we subdivide the interval into multiple non-overlapping subintervals (Fig. 8.6).

8 Spectral Element Methods 297

Fig. 8.6 Subdivision of the interval [0,L] = [x0, xK] into K elements. The nodal Galerkin ap-
proximation is continuous and solutions are defined on Gauss-Lobatto points

Each interval will become an element. We couple an element to its neighbors at a
single point, which we will call the element interface, or end point, in one space di-
mension. We will derive and implement two spectral element approximations. The
first uses the continuous Galerkin approximation. The second uses the discontinuous
version.

8.1.1 The Continuous Galerkin Spectral Element Method

As our first illustration of a spectral element method, we re-visit the approximation
of the diffusion problem

ϕt = ϕxx + f (x), 0 < x < L,

ϕ(0, t) = ϕ(L, t) = 0, t > 0,

ϕ(x,0) = ϕ0(x), 0 ≤ x ≤ L,

(8.5)

that we solved with a single domain method on [−1,1] in Sect. 4.6.
As we did with the single domain approximation, we derive the continuous

Galerkin spectral element method from a weak form of the equation. To get the
weak form, we multiply the equation by a sufficiently smooth test function, φ,
that satisfies the boundary conditions φ(0, t) = φ(L, t) = 0, is continuous, and
has square integrable first and second derivatives. We then integrate over [0,L] to
get

∫ L

0
ϕtφdx =

∫ L

0
ϕxxφdx +

∫ L

0
f φdx. (8.6)

When we integrate the first integral on the right of (8.6) by parts and apply the
boundary conditions,

∫ L

0
ϕtφdx = −

∫ L

0
ϕxφxdx +

∫ L

0
f φdx. (8.7)

298 8 Spectral Element Methods

At this point, we would approximate the solution by a polynomial and replace the
integrals by quadrature to derive a single domain spectral method, as we did in
Sect. 4.6.

To derive the spectral element approximation, we subdivide the interval [0,L]
into K subintervals Ωk = [xk−1, xk] (Fig. 8.6). These subintervals will be our spec-
tral elements, ek . We do not need to place any restrictions on the relative sizes of the
elements.

Once we have subdivided the interval, we can break the integrals into sums of
integrals over the elements

K∑

k=1

∫ xk

xk−1

ϕtφdx = −
K∑

k=1

∫ xk

xk−1

ϕxφxdx +
K∑

k=1

∫ xk

xk−1

f φdx, (8.8)

so that on each element the solution satisfies
∫ xk

xk−1

ϕtφdx = −
∫ xk

xk−1

ϕxφxdx +
∫ xk

xk−1

f φdx. (8.9)

To use a Legendre polynomial approximation on each element, we map each
element onto the reference interval ξ ∈ [−1,1], which will serve as our reference
element, by the affine mapping

x = Xk(ξ) = xk−1 + ξ + 1

2
Δxk, (8.10)

where Δxk = xk − xk−1. Then

dx = Δxk

2
dξ,

∂

∂x
= 2

Δxk

∂

∂ξ
(8.11)

so that on the reference element the weak form of the PDE becomes

Δxk

2

∫ 1

−1
ϕtφdξ = − 2

Δxk

∫ 1

−1
ϕξφξdξ + Δxk

2

∫ 1

−1
f φdξ. (8.12)

To derive the continuous Galerkin spectral element method we approximate the
solution by a piecewise continuous polynomial (Fig. 8.6). On each element, ek , we
write the polynomial in Lagrange form with nodes at the Legendre Gauss-Lobatto
points,

Φk(ξ, t) =
N∑

j=0

Φk
j (t)�j (ξ). (8.13)

To keep the notation as simple as possible, we will keep the polynomial order N

to be the same across all elements, but this is not necessary in practice. With N

constant, the Lagrange interpolating polynomials are the same in each element. For

8 Spectral Element Methods 299

the approximation to be continuous and the first derivatives to be square integrable,
we require that

Φk
0 = Φk−1

N . (8.14)

Similarly, we require that

φk (ξ) =
N∑

j=0

φk
j �j (ξ), φk

0 = φk−1
N . (8.15)

Other than the continuity constraint, the values of φk
j are arbitrary since the weak

form holds for any sufficiently smooth function φ.
We now replace each integral in (8.12) by Legendre Gauss-Lobatto quadrature.

On the left,

Δxk

2

∫ 1

−1
ϕtφdξ ≈ Δxk

2

N∑

j=0

wjΦ̇
k
j φk

j . (8.16)

Since we are assuming that the same polynomial order is used in each element, the
quadrature weights do not change with k. We approximate the last integral on the
right of (8.12) in a similar manner. Finally, we follow the derivation of (4.117) to
write the diffusion term in the compact form

2

Δxk

∫ 1

−1
ϕξφxdξ ≈ 2

Δxk

N∑

j=0

{
N∑

m=0

Φk
mGjm

}

φk
j , (8.17)

where

Gjm = Gmj =
N∑

l=0

wl�
′
m (ξl) �′

j (ξl) (8.18)

is a symmetric matrix. When we gather the terms, we see that the solution satisfies
the single domain approximation (4.118) element by element

N∑

j=0

{

wj

Δxk

2
Φ̇k

j + 2

Δxk

N∑

m=0

Φk
mGjm − wj

Δxk

2
Fk

j

}

φk
j = 0. (8.19)

By (8.8), we get the complete spectral element approximation when we sum over
all of the elements

K∑

k=1

N∑

j=0

{

wj

Δxk

2
Φ̇k

j + 2

Δxk

N∑

m=0

Φk
mGjm − wj

Δxk

2
Fk

j

}

φk
j = 0. (8.20)

We use (8.20) to derive the equations that the approximate values of the solution
satisfy. Since the values of φk

j are independent except at the element boundaries, the

300 8 Spectral Element Methods

equations for interior node solution values depend only on others within their own
element. If we take the test function φk

j to equal one at the single interior node ξj in
element k and zero at all the others, we find that the interior node solutions satisfy

wj

Δxk

2
Φ̇k

j = − 2

Δxk

N∑

m=0

Φk
mGjm + wj

Δxk

2
Fk

j ,

j = 1,2, . . . ,N − 1; k = 1,2, . . . ,K. (8.21)

Elements couple because the solution and the test functions are continuous at the
points shared by two elements. When we choose φk

j to equal one at the point shared
by the kth and k − 1st elements and zero elsewhere, then

wN

Δxk−1

2
Φ̇k−1

N + w0
Δxk

2
Φ̇k

0 = − 2

Δxk−1

N∑

m=0

Φk−1
m GNm + wN

Δxk−1

2
Fk−1

N

− 2

Δxk

N∑

m=0

Φk
mG0m + w0

Δxk

2
Fk

0 . (8.22)

When we impose the continuity constraint (8.14), Φk
0 = Φk−1

N ≡ Φk∗ , we get the
element boundary equations

[

wN

Δxk−1

2
+ w0

Δxk

2

]

Φ̇k∗ = − 2

Δxk−1

N∑

m=0

Φk−1
m GNm + wN

Δxk−1

2
Fk−1

N

− 2

Δxk

N∑

m=0

Φk
mG0m + w0

Δxk

2
Fk

0 (8.23)

for k = 2,3, . . . ,K − 1. Finally, we add the two boundary conditions Φ1
0 = ΦK

N = 0
to complete the system of equations that we integrate in time.

When we compare (8.21) to the single domain approximation (4.122), we see that
we have the same equations to compute the interior and boundary points, except that
now we have not yet divided by the quadrature weights and the element length can
vary. The spectral element approximation differs only because we add the interior
element boundary equations (8.23) that couple the elements. Notice that (8.22) is
simply the sum of two equations (8.21), one from each element that shares the point.
We will use this observation when we implement the approximations.

To integrate (8.21) and (8.23) in time, let us now use the second order implicit
trapezoidal rule. Let’s define

(
GΦk

)

j
≡

N∑

m=0

Φk
mGjm, (8.24)

Dk
j ≡ − 2

Δxk

(
GΦk

)

j
, (8.25)

8 Spectral Element Methods 301

and let Φ
k,n
j denote the solution at point j in element k at time tn. Then at interior

points the solutions satisfy

wj

Δxk

2
Φ

k,n+1
j − Δt

2
D

k,n+1
j = wj

Δxk

2
Φ

k,n
j + Δt

2
D

k,n
j + Δtwj

Δxk

2
Fk

j

≡ RHSk
j . (8.26)

To get the equations for the element interface points, we sum the contributions from
neighboring elements, as we are instructed to do by (8.22) and (8.23).

We need to compute the residual to use Algorithm 80 (PreconditionedConjugate-
GradientSolve) to solve the system of equations at each time step. Let us define the
local element residual at each node, including the endpoints, by

r̃k
j = RHSk

j − wj

Δxk

2
Φk

j + Δt

2
Dk

j , j = 0,1, . . . ,N; k = 1,2, . . . ,K. (8.27)

Since the global residuals at the interior element boundaries are just the sum of the
local residuals at those points, we can compute the global residuals after we compute
all the local residuals by

rk
j =

⎧
⎪⎨

⎪⎩

r̃k
j , j = 1,2, . . . ,N; k = 1,2, . . . ,K,

r̃k
N + r̃k+1

0 , j = 0,N; k = 1,2, . . . ,K,

0, k = 0, j = 0; k = K,j = N.

(8.28)

The boundary values on the last line are, of course, for Dirichlet boundary condi-
tions. Algorithm 80 needs to be modified slightly because the limits on k start from
one rather than zero, however we could accommodate this by a change of index in
the data.

8.1.2 How to Implement the Continuous Galerkin Spectral
Element Method

The first decision that we must make to evolve the nodal Galerkin approximation
from a single domain to the spectral element approximation is to choose the data
structures. We can choose between two extremes. One is to store all data locally.
In this scheme, the solution, element size, Δx, etc. are stored by element within a
structure or class. The other structure is “flat”, where data is stored globally. The
advantage of the local scheme is that the operations on the data look like the sin-
gle domain approximations that we have developed in earlier chapters. The global
scheme is useful if we want to use BLAS routines effectively. With the global im-
plementation, we can use the Conjugate Gradient solver, Algorithm 80 (Precondi-
tionedConjugateGradientSolve), at each time step to solve the symmetric system of
equations that (8.26) and the boundary equations generate.

302 8 Spectral Element Methods

8.1.2.1 The Spectral Element Class

We will take a global view of the data with some organization to simplify local com-
putations. In Sect. 8.1.4, where we will use explicit integration in time, we will show
how to use local data structures. Much of the effort here about organization of the
data in one space dimension is overkill, but it will prepare us for multidimensional
problems where the effort is justified.

To use the iterative solver efficiently, we will store the solution of the diffusion
problem in an array. Since we have assumed the same polynomial degree in each
element and since Algorithm 80 has already been designed for two dimensional ar-
rays, we will store the solution for each point on each element in a two dimensional
array, {Φj,k}N;K

j=0;k=1. This array will be a member of a spectral element class, along
with the data that defines the mesh, as we show in Algorithm 116 (SEM1DClass).

The array storage duplicates the solution at the interior element boundaries. It
does, however, enable us to perform operations such as (8.24) locally on an element

Algorithm 116: SEM1DClass: Data Storage for the One-Dimensional Spectral
Element Method

Class SEM1D
Data:

N,K

{ξj }Nj=0; // Node locations

{wj }Nj=0; // Legendre Gauss-Lobatto quadrature weights

{xk}Kk=1 ; // Element boundary locations

{Δxk}Kk=1 ; // Element sizes

{Gij }Ni,j=0 ; // Derivative Matrix

{pk}Kk=1 ; // Shared node pointers

{Φj,k}N;K
j=0;k=1 ; // Solution

{RHSj,k}N;K
j=0;k=1 ; // For implicit integration

Procedures:
Construct(N,K, {xk}Kk=1)

Mask({aj,k}N,K
j=0;k=1) ; // Algorithm 117

UnMask({aj,k}N,K
j=0;k=1) ; // Algorithm 117

GlobalSum({aj,k}N,K
j=0;k=1) ; // Algorithm 117

LaplaceOperator; // Algorithm 118
MatrixAction(s,Δt) ; // Algorithm 118

End Class SEM1D

Structure sharedNodePtrs
eLeft ; // index or pointer of element to the left
eRight ; // index or pointer of element to the right
nodeLeft ; // index of node to the left
nodeRight ; // index of node to the right

End Structure sharedNodePtrs

8 Spectral Element Methods 303

as if we were still doing a single domain computation. The fact that the element
boundary equations are sums of the local element contributions from each side al-
lows us to go back and “clean up” globally afterwards. We will store RHSk

j and the

residual rk
j in the same kind of array as the solution.

We need a data structure to connect the elements. We assumed the simplest re-
lationship between elements in Fig. 8.6, where elements are ordered from left to
right. With that ordering we could assume that the continuity of the shared point
is given by (8.14). In two dimensional problems we cannot assume such a simple
ordering of elements. (See Fig. E.2 in Appendix E for a look ahead.) To allow for
more general relationships, we create a structure that stores the values of k and j for
the elements on the left and on the right that contribute to the solution at an interface
(Algorithm 116, sharedNodePtrs).

We will store the sharedNodePtrs structures in an array, {pk}K−1
k=1 , to mark the

element interface points. When we need to do operations at interface points, we can
access these points indirectly through the elements of this array. For the mesh that
we show in Fig. 8.6, where elements are ordered left to right,

pk.eleft = k,

pk.eRight = k + 1,

pk.nodeLeft = N,

pk.nodeRight = 0.

(8.29)

With flat storage, we store all the data for the spectral element approximation,
including the solutions, element relationships, element sizes, etc., in a single class
or structure as we show in Algorithm 116 (SEM1DClass). We will not present a de-
tailed algorithm for the constructor of this class since it looks much like constructors
that we have presented earlier.

8.1.2.2 Global Operations

Before we can solve the system with the Conjugate Gradient solver, we must ac-
count for the fact that we have duplicated the solution and residuals at the element
boundaries to perform the local computations as if on a single domain. One way to
delete the duplicates is to copy the arrays to a new array that does not include them.
We will use a mask instead. After we compute the residuals, we will simply set one
of the duplicate solutions and the corresponding residuals to zero so that they have
no contribution to the inner products or direction vectors in the Conjugate Gradient
solver. Then to perform the local computations, we remove the mask by setting the
solution value that has been zeroed to its duplicate. The number of masked points,
K − 1, is very small compared to the total number of degrees of freedom, K × N ,
so the extra work to mask, unmask and evaluate masked quantities in the Conju-
gate Gradient algorithm is negligible. What we gain in return is an algorithm that is
straightforward to implement.

We perform the global operations with the utility procedures Mask, UnMask and
GlobalSum. It doesn’t matter which duplicate we mask, so we will arbitrarily choose

304 8 Spectral Element Methods

Algorithm 117: SEMGlobalProcedures1D: Global Operations for the One-
Dimensional Spectral Element Method

Uses Algorithms:
Algorithm 116 (SEM1DClass)

Procedure Mask
Input:

{
aj,k

}N;K
j=0;k=1

for k = 1 to K − 1 do
jR ← this.pk.nodeRight; eR ← this.pk.eRight
ajR,eR ← 0

end

return
{
aj,k

}N;K
j=0;k=1

End Procedure Mask

Procedure UnMask

Input:
{
aj,k

}N;K
j=0;k=1

for k = 1 to K − 1 do
jR ← this.pk.nodeRight; eR ← this.pk.eRight
jL ← this.pk.nodeLeft; eL ← this.pk.eLeft
ajR,eR ← ajL,eL

end

return
{
aj,k

}N;K
j=0;k=1

End Procedure UnMask

Procedure GlobalSum

Input:
{
aj,k

}N;K
j=0;k=1

for k = 1 to K − 1 do
jR ← this.pk.nodeRight; eR ← this.pk.eRight
jL ← this.pk.nodeLeft; eL ← this.pk.eLeft
tmp ← ajR,eR + ajL,eL

ajR,eR ← tmp
ajL,eL ← tmp

end

return
{
aj,k

}N;K
j=0;k=1

End Procedure GlobalSum

the value on the right. We show the global operation procedures in Algorithm 117
(SEMGlobalProcedures1D). Each procedure uses the shared node array to perform
its operation globally on an array of mesh values, which may be the solution or
residual, for example.

8.1.2.3 The Diffusion Approximation

Both the right and left sides of the system (8.26) require us to compute a matrix-
vector multiply to evaluate the contribution from the diffusion term of the equation.

8 Spectral Element Methods 305

We use Algorithm 57 (CGDerivativeMatrix) to compute the matrix G. We show the
implementation of the diffusion term in the procedure LaplaceOperator in Algo-
rithm 118 (SEM1DProcedures).

8.1.2.4 Side Operators and Residual Procedures

When we use the trapezoidal rule to integrate in time, the only difference between
the matrices whose actions are given in (8.26) is the sign in front of the diffusion
operator. For that reason, we will implement only one procedure for the matrix ac-
tion in Algorithm 118 (SEM1DProcedures) and pass a sign variable with values ±1
as we did with Fourier transforms. We set the residual to zero at the physical bound-
aries to implement Dirichlet conditions in the procedure Residual of Algorithm 118.

8.1.2.5 Iterative Solver

We need only make minor modifications to Algorithm 80 (PreconditionedConju-
gateGradientSolve). The first we have already mentioned, namely that the arrays
now have different extents. The second is that the residual computation section will
be replaced by the procedure Residual in Algorithm 118. We could still use a finite
element preconditioner or not precondition at all.

8.1.2.6 The Time Integration Procedure

The trapezoidal rule integrator that we show in Algorithm 119 (TrapezoidalRule-
Integration) is straightforward to implement. At each time step we compute the RHS
array and use Algorithm 80 to compute the new values. Since the solution values are
no longer needed after RHS is evaluated, we need only one time level of storage for
the solution, unlike if we were to use Algorithm 87 (MultistepIntegration). Note
that as in Algorithm 87, we have hidden the boundary condition implementation in
a procedure SetBoundaryConditions that needs to be provided. It will do nothing
more than set the solution values at the boundaries.

8.1.3 Benchmark Solution: Cooling of a Temperature Spot

We present one benchmark example of the solution of (8.5) with the spectral ele-
ment method. We have chosen the initial and boundary conditions so that the exact
solution as a function of time describes a cooling Gaussian spot,

ϕ(x, t) = e−x2/(4t+1)

√
4t + 1

. (8.30)

306 8 Spectral Element Methods

Algorithm 118: SEM1DProcedures: Spatial Approximations for the One-
Dimensional Spectral Element Method

Uses Algorithms:
Algorithm 116 (SEM1DClass)
Algorithm 19 (MxVDerivative)
Algorithm 117 (SEMGlobalProcedures1D)

Procedure LaplaceOperator

Input: {Uj,k}N;K
j=0;k=1

N ← this.N;K ← this.K
for k = 1 to K do

{
Dk

j

}N

j=0 ← MxVDerivative(this.{Gi,j }N;N
i=0;j=0, {Uj,k}Nj=0)

for j = 0 to N do
Dk

j ← −2 ∗ Dk
j /Δxk

end
end

return
{
Dk

j

}N;K
j=0;k=1

End Procedure LaplaceOperator

Procedure MatrixAction

Input: s, Δt , {Uj,k}N;K
j=0;k=1

N ← this.N;K ← this.K

{Uj,k}N;K
j=0;k=1 ← this.UnMask({Uj,k}N;K

j=0;k=1)

{AUj,k}N;K
j=0;k=1 ← this.LaplaceOperator({Uj,k}N;K

j=0;k=1)

for k = 1 to K − 1 do
for j = 0 to N do

AUj,k ← this.wj /2 ∗ this.Δxk ∗ Uj,k + s ∗ Δt/2 ∗ AUj,k

end
end

{AUj,k}N;K
j=0;k=1 ← this.GlobalSum({AUj,k}N;K

j=0;k=1)

{Uj,k}N;K
j=0;k=1 ← this.Mask({Uj,k}N;K

j=0;k=1)

return {AUj,k}N;K
j=0;k=1

End Procedure MatrixAction

Procedure Residual
Input: sem ; // Of type SEM1D

{rj,k}N;K
j=0;k=1 ← this.MatrixAction(+1,Δt, sem.{Φj,k}N;K

j=0;k=1)

for k = 1 to K do
for j = 0 to N do

rj,k ← sem.RHSj,k − rj,k
end

end

{rj,k}N;K
j=0;k=1 ← this.Mask({rj,k}N;K

j=0;k=1)

r0,1 ← 0
rN,K ← 0
return {rj,k}N;K

j=0;k=1

End Procedure Residual

8 Spectral Element Methods 307

Algorithm 119: TrapezoidalRuleIntegration: Integration of the One-
Dimensional Spectral Element Method in Time

Procedure TrapezoidalRuleIntegration
Input: NT , Nit , TOL
Input: sem ; // Of type SEM1D class
Uses Algorithms:

Algorithm 116 (SEM1DClass)
Algorithm 117 (SEMGlobalProcedures1D)
Algorithm 118 (SEM1DProcedures)
Algorithm 80 (PreconditionedConjugateGradientSolve) //Modified

for n = 0 to NT − 1 do
t ← n ∗ Δt

sem.{RHSj,k}N;K
j=0;k=1 ← sem.MatrixAction(−1,Δt, sem.{Φj,k}N;K

j=0;k=1)

sem.{Φj,k}N;K
j=0;k=1 ← SetBoundaryConditions(sem, t + Δt)

sem ← PreconditionedConjugateGradientSolve(Nit ,TOL, sem)

end

sem.{Φj,k}N;K
j=0;k=1 ← sem.UnMask(sem.{Φj,k}N;K

j=0;k=1)

t ← t + Δt

return sem
End Procedure TrapezoidalRuleIntegration

Fig. 8.7 Three element
spectral element solution of
the diffusion equation at two
times. Element boundaries
are marked with vertical
dotted lines

We solve the equation on the interval [−8,8] with three elements Ω1 = [−8,−3],
Ω2 = [−3,3], and Ω3 = [3,−8], N = 10, and Δt = 0.05. Figure 8.7 compares
the computed and exact solutions at times t = 1 and t = 4. We could also make
comparisons of multiple element approximations to the results of Sect. 4.6.

308 8 Spectral Element Methods

8.1.4 The Discontinuous Galerkin Spectral Element Method

We will motivate the development and implementation of the discontinuous
Galerkin spectral element method with the approximation of the one-dimensional
conservation law

qt + fx = 0, x ∈ (0,L) . (8.31)

As we discussed in Sect. 5.4, we can write the wave equation and others in conser-
vation form.

Like the continuous spectral element approximation, we get the discontinuous
approximation by dividing the interval into segments or elements (Fig. 8.8). Now,
however, we will choose the nodes to be the Legendre Gauss points inside each
element. More importantly, we will not assume that the solution is continuous at the
element boundaries.

The spectral element approximation starts from the weak form of (8.31). After
we multiply by a suitable test function, integrate, and subdivide into elements as we
did in the previous section, the weak form is

K∑

k=1

[∫ xk

xk−1

(qt + fx)φdx

]

= 0. (8.32)

On each element then,

∫ xk

xk−1

(qt + fx)φdx = 0. (8.33)

When we map (8.33) onto the reference element by the affine map (8.10),

Δxk

2

∫ 1

−1
qtφdξ +

∫ 1

−1
fξ φdξ = 0. (8.34)

Fig. 8.8 Subdivision of the
interval [0,L] = [x0, xK] into
K elements. The nodal
discontinuous Galerkin
approximation is not
continuous at element
boundaries and is defined on
Gauss points

8 Spectral Element Methods 309

As usual for a nodal method, we approximate the solution and fluxes by polyno-
mials in Lagrange form

q
(
Xk(ξ)

)≈ Qk(ξ) =
N∑

j=0

Qk
j �j (ξ),

f
(
Xk(ξ)

)≈ Fk(ξ) =
N∑

j=0

f
(
Qk

j

)
�j (ξ).

(8.35)

Since the discontinuous Galerkin approximation does not enforce continuity at the
element boundaries, we can take advantage of the higher precision of the Gauss rules
and place the nodes at the Legendre Gauss points on the reference element. When
we substitute the polynomial approximations into (8.12), the approximate solution
satisfies

Δxk

2

∫ 1

−1
Qtφdξ +

∫ 1

−1
Fξφdξ = 0. (8.36)

We write the test function φ also as a polynomial,

φ =
N∑

j=0

φj�j (ξ). (8.37)

The discontinuous Galerkin approximation does not require the test functions to be
continuous at element boundaries either. Therefore to say that (8.33) holds for any
piecewise continuous function φ is equivalent to saying that the φj ’s are indepen-
dent of each other, without any constraints.

The approximation and test functions are continuous within any element. There-
fore, we can integrate the second integral in (8.36) by parts to get

Δxk

2

∫ 1

−1
Qtφdξ + Fφ|1−1 −

∫ 1

−1
Fφξdξ = 0. (8.38)

We’ve done the next two steps in the derivation of a nodal spectral approximation
several times before. We replace the integrals by Gauss quadrature and use the fact
that the φj ’s are independent. These steps lead us to

Δxk

2
Q̇j + F

�j

wj

∣
∣
∣
∣

1

−1
−

N∑

n=0

Fn

wn�
′
j (ξn)

wj

= 0 (8.39)

or, using the definition (4.139),

Δxk

2
Q̇j +

{

F
�j

wj

∣
∣
∣
∣

1

−1
+

N∑

n=0

FnD̂jn

}

= 0. (8.40)

310 8 Spectral Element Methods

In the final step, we couple the elements. This step is peculiar to the discontinuous
Galerkin approximation. We replace the fluxes at the element boundaries by the
numerical flux F∗ · n̂ as we did in Sect. 5.4.1.1 at physical boundaries. Recall that
the numerical flux is a function of two states, one to the left and one to the right,
where we define the direction according to the normal at the boundary. At element
boundaries, the left and right states are what we get when we evaluate the solution
polynomial from the neighboring elements, as we show in Fig. 8.8. For the element
ordering in Fig. 8.8, the numerical fluxes at the two element boundaries are

F(−1) ← F∗ (Qk−1(1),Qk(−1),−x̂
)

,

F(+1) ← F∗ (Qk(1),Qk+1(−1),+x̂
)

.

(8.41)

At a physical boundary, we use the external state, just as in a single domain approx-
imation.

When we replace the fluxes at the element boundaries by the numerical fluxes, we
get the final version of the discontinuous Galerkin spectral element approximation
for the kth element

Q̇k
j + 2

Δxk

{

F∗ (Qk(1),Qk+1(−1),+x̂
) �j (1)

wj

+ F∗ (Qk−1(1),Qk(−1),−x̂
) �j (−1)

wj

+
N∑

n=0

FnD̂jn

}

= 0. (8.42)

We make two observations about (8.42). First, except for the element size fac-
tor, 2/Δxk , the approximation is identical to the single domain approximation.
Therefore we still compute the derivative approximation with Algorithm 92 (Sys-
temDGDerivative). Second, the only coupling between elements occurs when we
compute the boundary flux values. Therefore, we need only to supply the boundary
values from the immediate neighbor to compute the time derivative of the solution.

8.1.5 How to Implement the Discontinuous Galerkin Spectral
Element Method

The fact that the discontinuous Galerkin spectral element approximation (8.42) is
virtually the same as the single domain approximation except for information to be
set from the nearest neighbor elements suggests that we use a two level view for
the implementation. The lowest level view will be that of an element on which the
local operations such as the spatial derivative approximation are performed. The
higher level view will be that of the mesh, which will keep track of the elements
and perform global operations such as the computation of the numerical fluxes. To
implement the two level view, we create the two classes Element and Mesh shown in

8 Spectral Element Methods 311

Algorithm 120: DGSEM1DClasses: Element and Mesh Definitions for the
One-Dimensional Discontinuous Galerkin Spectral Element Method

Class Element
Uses Algorithms:
Algorithm 58 (NodalDiscontinuousGalerkin);

Data:
Δx,xL, xR ; // Size and left and right boundaries of this element
dG ; // Of type NodalDiscontinuousGalerkin
nEqn ; // # of equations in the physical system

{Qj,n}N;nEqn
j=0;n=1 {Q̇j,n}N;nEqn

j=0;n=1 ; // Solution and time derivative

{Gj,n}N;nEqn
j=0;n=1 ; // For low storage Runge-Kutta

{
QL

n

}nEqn
n=1 ,

{
QR

n

}nEqn
n=1 ; // Solution on left/right element boundary

{
F

∗,L
n

}nEqn
n=1 ,

{
F

∗,R
n

}nEqn
n=1 ; // Flux on left/right element boundary

Procedures:
Construct(dG,nEqn, xL, xR); // See text.
InterpolateToBoundaries(); // Algorithm 121
LocalTimeDerivative(); // Algorithm 121
AffineMap(ξ); // Equation (8.10)

End Class Element

Class Mesh1D
Data:

K ; // # Elements

{ek}Kk=1 ; // Elements

{pk}Kk=0 ; // sharedNodePointers from Algorithm 116

Procedures:
Construct(K,N, {xk}Kn=0); // Algorithm 122

GlobalTimeDerivative(); // Algorithm 122
End Class Mesh1D

Algorithm 120 (DGSEM1DClasses). Again, the organization that we present here
is overkill for one-dimensional problems, but it is helpful to see it on a simpler
problem before moving to multidimensional problems.

8.1.5.1 The Elements

The element class (Algorithm 120) stores the element’s geometry data and solution.
The geometry data for the one dimensional elements are the left and right boundary
locations and the length. To compute the spatial derivative in (8.42), the element
needs access to the data stored in the NodalDiscontinuousGalerkin class (Algo-
rithm 58). For simplicity, we show the Element class storing an instance of that
class, though to do so clearly wastes storage if N is the same in each element. Even
if N varies, there would likely only be a few unique values. In a large implementa-
tion, we would store the NodalDiscontinuousGalerkin instances in a collection (e.g.

312 8 Spectral Element Methods

a linked list discussed in Appendix E.1) and have the element only store a pointer
to a member of that collection.

Other data includes the numerical fluxes, F ∗,L/R , on the left and the right of
the element and the interpolated values of the solution, QL/R , from which to com-
pute the numerical flux. In practice, once we compute the numerical fluxes, we
no longer need the interpolated values of the solution. The boundary solutions and
fluxes could use the same storage. For clarity, however, we will store them sepa-
rately. We also have the element store the number of equations rather than write a
separate “physics” class. Finally, we store the time derivative with each element. If
we were to modify the time integrator appropriately, we could reuse the storage of
only one array.

The basic methods that the element needs to implement are also shown in Al-
gorithm 120 (SEM1DClasses). We won’t show the constructor explicitly since it
only needs to set the local data. The interpolation and time derivative methods are
implemented in Algorithm 121 (LocalDSEMProcedures). We have seen the use of
the interpolation routines before in Algorithms 61 (InterpolateToBoundary) and 114

Algorithm 121: LocalDSEMProcedures: Local Procedures for the Discontinu-
ous Galerkin Spectral Element Method

Procedure InterpolateToBoundaries
Uses Algorithms:
Algorithm 61 (InterpolateToBoundary);

N ← this.dG.N ; nEqn ← this.nEqn
for n = 1 to nEqn do

this.QL
n ← InterpolateToBoundary(this.{Qj,n}Nj=0, this.dG.{�j (−1)}Nj=0)

this.QR
n ← InterpolateToBoundary(this.{Qj,n}Nj=0, this.dG.{�j (+1)}Nj=0)

end
End Procedure InterpolateToBoundaries

Procedure LocalTimeDerivative
Uses Algorithms:
Algorithm 92 (SystemDGDerivative);

N ← this.N ; nEqn ← this.nEqn
for j = 0 to N do

{Fj,n}nEqn
n=1 ← Flux(this.{Qj,n}nEqn

n=1)

end
{
F ′

j,n

}N;nEqn
j=0;n=1 ←

SystemDGDerivative
(
this.

{
F

∗,L
n

}nEqn
n=1 , this.

{
F

∗,R
n

}nEqn
n=1 , {Fj,n}N;nEqn

j=0;n=1, this.dG.{Di,j }Ni,j=0,

this.dG.{�i(−1)}Ni=0, this.dG.{�i(1)}Ni=0, this.dG.{wi}Ni=0

)

for j = 0 to N do
for n = 1 to nEqn do

this.Q̇j,n ← −2F ′
j,n/this.Δx

end
end
End Procedure LocalTimeDerivative

8 Spectral Element Methods 313

(MappedDGSystemTimeDerivative). The local time derivative procedure is of the
form we have already seen in those two algorithms. We do not show an imple-
mentation of the Flux function, but it is similar to what we used in Algorithm 94
(WaveEquationFluxes). Finally, the AffineMap procedure merely implements (8.10)
so we don’t provide an implementation for it, either.

8.1.5.2 The Mesh

We manage global data at the mesh level. The mesh, also described in Algorithm 120
(DGSEM1DClasses), stores the number of elements, the elements themselves, and
the connections between the elements. As in Sect. 8.1.1, the sharedNodePointers
store pointers to the elements on the left and the right of an interface. To simplify
the presentation, we will assume here that xR > xL so that the QL and QR arrays are
on the left and right of the elements. That way we do not have to store information
in the sharedNodePointers to distinguish between which corresponds to the left and
which to the right. When we go to two dimensional problems later, we will have to
be more general.

We use the constructor for the mesh class to create the elements and connections.
The constructor will take the number of elements and the location of the element
boundaries as input. It constructs an instance of the NodalDiscontinuousGalerkin
class and uses that and the element boundary information to construct the elements.
The element connections are constructed next. Since there is essentially no differ-
ence between a physical boundary and an element boundary, the limits on the pk

array include the endpoints. At the physical boundaries we set the neighboring el-
ement to a defined constant NONE. Later, we can test for being on a boundary by
checking to see if one of the elements equals NONE.

The global time derivative procedure in Algorithm 122 (GlobalMeshProcedures)
performs four basic operations. First, it interpolates the solutions to the boundaries
on each of the elements. It then computes the physical boundary values by way of
a procedure ExternalState whose implementation is problem dependent. We pass
a parameter with defined values of LEFT or RIGHT to the procedure so that dif-
ferent boundary conditions can be applied at the left and right boundaries. We also
pass the boundary value of the solution to allow reflection boundary conditions like
(5.168) to be implemented. Then the numerical fluxes are computed for each ele-
ment boundary point and sent to the appropriate element. Again, we have assumed
that the elements are laid out left to right. Finally, each element computes its local
time derivative values.

8.1.5.3 Time Integration

We can easily modify the third order explicit Runge-Kutta algorithm Algorithm 62
(DGStepByRK3) to accommodate the spectral element approximation. We first
change the inputs to the procedure to be an instance of the Mesh class, the time

314 8 Spectral Element Methods

Algorithm 122: GlobalMeshProcedures: Mesh Global Procedures for the Dis-
continuous Galerkin Spectral Element Approximation

Procedure Construct
Input: K,N, {xk}Kn=0
Uses Algorithms:

Algorithm 120 (SEM1DClasses)
Algorithm 58 (NodalDiscontinuousGalerkin)

this.K ← K

dG.Construct(N); // Of type NodalDiscontinuousGalerkin
for k = 1 to this.K do

this.ek.Construct(dG,nEqn, xk−1, xk)

end
for k = 1 to K − 1 do

this.pk.eLeft ← k

this.pk.eRight ← k + 1
end
this.p0.eLeft ← NONE
this.p0.eRight ← 1
this.pK .eLeft ← K

this.pK .eRight ← NONE
End Procedure Construct

Procedure GlobalTimeDerivative
Input: t

Uses Algorithms:
Algorithm 88 (RiemannSolver)

for k = 1 to this.K do
this.ek.InterpolateToBoundaries()

end
k ← this.p0.eRight
{
Q

ext,L
n

}nEqn
n=1 ← ExternalState(this.ek.{QL

n }nEqn
n=1 , this.ek.AffineMap(−1),LEFT)

k ← this.pK .eLeft
{
Q

ext,R
n

}nEqn
n=1 ← ExternalState(this.ek.{QR

n }nEqn
n=1 , this.ek.AffineMap(+1),RIGHT)

for k = 0 to this.K do
idL ← this.pk.eLeft; idR ← this.pk.eRight
if idL = NONE then

this.eidR.
{
FL

n

}nEqn
n=1 ← RiemannSolver

({
Q

ext,L
n

}nEqn
n=1 , this.eidR.

{
QL

n

}nEqn
n=1 ,−1

)

else if idR = NONE then
this.eidL.

{
FR

n

}nEqn
n=1 ← RiemannSolver

(
this.eidL.

{
QR

n

}nEqn
n=1 ,

{
Q

ext,R
n

}nEqn
n=1 ,+1

)

else
{
FL

n

}nEqn
n=1 ← RiemannSolver

(
this.eidL.

{
QR

n

}nEqn
n=1 , this.eidR.

{
QL

n

}nEqn
n=1 ,+1

)

this.eidR.
{
FL

n

}nEqn
n=1 ← −{FL

n

}nEqn
n=1

this.eidL.
{
FR

n

}nEqn
n=1 ← {

FL
n

}nEqn
n=1

end
end
for k = 1 to this.K do

this.ek.LocalTimeDerivative()
end
End Procedure GlobalTimeDerivative

8 Spectral Element Methods 315

and the time step. Next, the time derivative computation is performed by the global
mesh procedure GlobalTimeDerivative in Algorithm 122 (GlobalMeshProcedures).
Finally, we update the solution element by element by replacing

for j = 0 to N do
Gj ← amGj + Φ̇n

j

Φn+1
j ← Φn+1

j + gmΔtGj

end

(8.43)

with

for k = 1 to K do
for j = 0 to N do

for n = 1 to nEqn do
mesh.ek.Gj,n ← am ∗ mesh.ek.Gj,n + mesh.ek.Q̇j,n

mesh.ek.Qj,n ← mesh.ek.Qj,n + gm ∗ Δt ∗ mesh.ek.Gj,n

end
end

end

(8.44)

where mesh is the mesh class instance.

8.1.6 Benchmark Solution: Wave Propagation and Reflection

We now solve the one-dimensional wave equation in system form

[
u

v

]

t

+
[

0 1
1 0

][
u

v

]

x

=
[
u

v

]

t

+
[
v

u

]

x

= 0, x ∈ [0,L] (8.45)

with a reflection boundary at x = 0 and a nonreflecting boundary at x = L as the
benchmark problem to illustrate the use of the discontinuous Galerkin spectral ele-
ment approximation on a conservation law. We can use the transformation matrix

S = 1

2

[
1 1
1 −1

]

(8.46)

and its inverse to convert the system to the decoupled equation

[
w+
w−

]

t

+
[

1 0
0 −1

][
w+
w−

]

x

= 0 (8.47)

to see that the system has a leftgoing and a rightgoing wave, each of which moves
with unit speed. The wave components are

w+ = u + v,

w− = u − v.
(8.48)

316 8 Spectral Element Methods

In terms of the wave variables, the reflection boundary condition at the left is
w+ = w− and the non-reflection boundary condition at the right is w− = 0.

To implement the discontinuous Galerkin spectral element method, we need to
provide the numerical flux, which for this problem is

F ∗(QL,QR; n̂)= 1

2

[
uL − uR + vL + vR

uL + uR + vL − vR

]

n̂. (8.49)

We implement the boundary condition on the left by specifying an external state
with uL = uR and vL = −vR . We use the exact solution as the external state on the
right.

The initial condition to the benchmark problem is

u = 2−(x−1)2/b2
,

v = 0
(8.50)

with b = 0.15. We derive the exact solution using the methods of characteristics and
images.

Figure 8.9 shows the computed and exact solutions for five elements of equal
size on the interval [0,5]. For benchmark purposes, the other parameters for the
computation were N = 14 and Δt = 4 × 10−2.

Fig. 8.9 Discontinuous Galerkin spectral element solution of the wave equation showing propa-
gation and reflection of a wave with a five element approximation. A Gaussian spot with initial
maximum at x = 1 splits into a leftgoing and rightgoing wave. The leftgoing wave reflects at the
left boundary and then propagates to the right

8 Spectral Element Methods 317

8.2 The Two-Dimensional Mesh and Its Specification

In two space dimensions, we divide the physical domain into non-overlapping
quadrilaterals like we have sketched in Fig. 8.10. These quadrilaterals will be our el-
ements and the collection of elements is the mesh. The elements can have straight or
curved sides, just like a single domain. Within each element we will place an N ×N

set of nodes—Gauss-Lobatto or Gauss, depending on the spatial approximation—at
which we will approximate the solution. To avoid confusion, we explicitly refer to
the set of nodes within an element as a grid and to the set of elements as the mesh.

The elements do not have to be tiled in any regular pattern or numbered in any
particular order. In other words, the mesh can be unstructured. The only absolute
restriction that we must place on the elements is that they each must have a shape
that we can map onto the reference square like we did in Chap. 6. There are, how-
ever, other issues of mesh quality that affect the accuracy of solutions. Mesh quality
measures are not as developed yet for spectral methods as they are for low order
finite element methods. For a discussion of mesh quality, we defer to more technical
books like [20]. As a rule of thumb, we try to keep the angles in the mesh to be as
close to 90 degrees as possible.

To make the methods easier to implement, we will make one restriction on how
the elements tile a domain. We will require that neighboring elements share either
an entire side or a corner point. Such a mesh is called geometrically conforming.
Figures 8.2, 8.3b, and 8.4 show examples of geometrically conforming meshes. We
contrast a conforming mesh to nonconforming meshes in Fig. 8.11. The geometri-
cally nonconforming mesh of Fig. 8.11b has elements that share a partial side. The
mesh of Fig. 8.11c is geometrically conforming, but has different order polynomials
on each side so that the nodes do not match across the element boundaries. Such
meshes are functionally nonconforming. Of course, a mesh could be both geometri-
cally and functionally nonconforming. Nonconforming meshes are sometimes eas-
ier to generate, particularly if we want to refine the mesh locally, but they will lead

Fig. 8.10 Subdivision of a domain into quadrilateral elements, which are mapped individually
from the reference square

318 8 Spectral Element Methods

Fig. 8.11 A comparison of a conforming mesh (a) to a geometrically nonconforming mesh (b)
and a functionally nonconforming mesh (c). Within each element of the meshes, we show grids of
Gauss-Lobatto nodes at which a spectral element approximation might be approximated

Fig. 8.12 Location of boundary curves and corner nodes that define an element shown in physical
space and on the reference square

to more complex spatial approximations. Spectral approximations can be derived
for both geometrically and functionally nonconforming meshes. For a discussion of
how, see [8].

Let us start our specification of the mesh with the local definition of an element.
An element in two dimensions is nothing but a quadrilateral domain that we used in
Chap. 7. Therefore, we need four bounding curves to specify the geometry of an ele-
ment. If a side is straight, then it is sufficient to specify only the two endpoints of the
curve, which will be two corner nodes of the element. In finite element applications,
the boundary curves are called edges and the corner nodes are called nodes. Since
we will also have nodes associated with the Gauss or Gauss-Lobatto grids within
each element, we make a distinction here between the two types. To fully define an
element, we will now specify the four boundary curves and the four corner nodes,
numbered counter clockwise, as shown in Fig. 8.12. We will use the corner nodes
to determine how the elements are coupled.

8 Spectral Element Methods 319

Fig. 8.13 A three element mesh that shows the local element structure constructed from seven
globally numbered corner nodes (circles). Element sides and grid orientation are located as in
Fig. 8.12

We need to know how elements are coupled if the mesh has more than one.
Since we have restricted ourselves to conforming meshes, an element is coupled to
a neighbor either along a boundary curve or at a corner node. What we need, then,
is a list of which elements share a common side and a list of which elements share
a common corner node. We can generate both of these lists (see the examples in
Appendix E) if we are given a globally numbered list of corner nodes and a list of
which corner nodes are used to construct each element. The list of nodes and the list
of element connectivity, as the latter is known, are standard output of finite element
mesh generators.

To see how to build a mesh, let us practice with the three elements shown in
Fig. 8.13. The mesh has seven globally numbered corner nodes from which we con-
struct the three elements. (If the sides were not straight, we would also have to in-
clude boundary curve information.) The elements are defined by four corners num-
bered counterclockwise. The choice of the first node is arbitrary, but once we choose
it, we have specified the element topology (Fig. 8.12). For the mesh in Fig. 8.13, we
have chosen the element connectivity as shown in Table 8.1.

The elements couple through their corner nodes and their sides. At the corners,
we will need to know the elements that contribute and the location in the local nodal
grid within these elements. This information is the equivalent to what was stored
in the SharedNodePointer that we introduced in the previous section. We will use
the information similarly to mask, unmask and do global sums on the solution. The

320 8 Spectral Element Methods

Table 8.1 Element
definitions for Fig. 8.13 Element Node 1 Node 2 Node 3 Node 4

1 6 1 5 4

2 1 2 3 5

3 5 3 7 4

Table 8.2 Corner node
connectivity and local grid
index

Node Element i j

1 2 0 0

1 N 0

2 2 N 0

3 2 N N

3 N 0

4 1 0 N

3 0 N

5 1 N N

2 0 N

3 0 0

6 1 0 0

7 3 N N

corner connectivity is expressed by Table 8.2. Note each corner node can have a
different number of adjacent elements.

The elements are also connected along their sides. We index the sides by an
ordered pair of two corner nodes, which we will call an edge, even if the sides
are not straight. When we look at Fig. 8.13, we see what information we should
extract to be able to perform mask, unmask and global sum operations. First, we
should find which elements border a side. If only one does, then we conclude that
edge is along a boundary. Next, we need to know which sides of the neighboring
elements are adjacent so that we know which part of the local element grids are
connected. The last piece of information concerns the direction in which the local
grid index varies along the side. For instance, along the edge indexed by Nodes 4
and 5, Side 3 of Element 1 and Side 4 of Element 3 are the neighbors. The order
in which we list the two neighbors is arbitrary, but we have to choose something.
Let us say that Element 1/Side 3 is the first (primary) and Element 3/Side 4 is the
second (secondary). Then the nodes of Element 1 that lay along the edge are those
with index (i,N) for i = 1,2, . . . ,N − 1 in order. We don’t include the i = 0,N

nodes because they are corner nodes of the element. The nodes of Element 3 are
those with index (N, j) with j running in reverse order, j = N − 1,N − 2 . . . ,1.
We need to flag this situation. The approach that we will take here is to set the
sign of the secondary element side to be negative if the index runs in the direction
opposite of the primary side. If we remember the starting index (N − 1 or 1) and

8 Spectral Element Methods 321

Table 8.3 Edge information for the mesh in Fig. 8.13

Edge Node 1 Node 2 Element 1 Side 1 Element 2 Side 2 Start Inc.

1 6 1 1 1

2 1 5 1 2 2 4 1 1

3 5 4 1 3 3 −4 N − 1 −1

4 4 6 1 4

5 1 2 2 1

6 2 3 2 2

7 3 5 2 3 3 1 1 1

8 3 7 3 2

9 7 4 3 3

the increment (±1), we can simplify the logic when we perform computations along
element edges. The edge data of the mesh in Fig. 8.13 is shown in Table 8.3. Note
that the ordering of the edges is arbitrary.

8.2.1 How to Construct a Two-Dimensional Mesh

Although we can construct the node, edge, and element information by hand for
a simple three element mesh just as we’ve done for the mesh in Fig. 8.13, it gets
tedious and error prone very fast as the number of elements grows. It is better to
automate the process as much as possible. How much we have to automate depends
on what mesh generators we have available. For the purposes of this book, we have
decided to choose the lowest common denominator so that simple mesh files can be
created by hand. The minimum information needed is a list of corner node locations
and a list of elements, with each element defined by its four corner nodes. To allow
sides to be curves, we will include boundary curves that are constructed using Algo-
rithm 96 (CurveInterpolant). We would normally read node, element, and boundary
curve information from a file.

8.2.1.1 Nodes

The first data structure that we need to define is a corner node. At a minimum,
a corner node stores its (x, y) values. To define the element connectivity so that
we can perform mask, unmask and sum operations at nodes, we also need a list
of what elements share the node. Since different numbers of elements can share a
common node in an unstructured mesh, it is better to store this information in a
linked list than in an array of fixed size. (See Appendix E.) Most mesh generators
will try to keep this number, called the valence, low, typically less than or equal to
six. So we could reasonably choose to store the adjacent element information in a

322 8 Spectral Element Methods

Algorithm 123: CornerNodeClass: Corner Node for Two-Dimensional Spec-
tral Element Methods

Class CornerNode
Uses Algorithms:

Algorithm 144 (LinkedList)
Data:

type ; // Kind of node—INTERIOR or BOUNDARY
x, y ; // location
nodeConnectivity ; // Linked list of type CornerConnectivity

Procedures:
Construct(x, y)

End Class CornerNode

Procedure Construct
Input: x, y

this.x ← x; this.y ← y

this.type ← INTERIOR
nodeConnectivity.Construct()
End Procedure Construct

Structure CornerConnectivity
id, i, j

End Structure CornerConnectivity

fixed array of length six instead of a linked list. However, since we will not have
to search for a particular element in this list, we will use the linked list. Finally,
for convenience, we will also store the type of node, either boundary or interior,
to help when we set boundary conditions. We show a corner node definition in
Algorithm 123 (CornerNode).

A mesh file will typically contain a sequence of (x, y) locations that correspond
to corner nodes. As each is read, we construct the node with the procedure Construct
in Algorithm 123, which simply stores the location of the node and a default value of
the type of node. We number the nodes with a node number/identifier, id, according
to their order in the file, and will access them by their location in an array of nodes
stored by the mesh. We will construct the list of adjacent elements, which is the data
we collected for Table 8.2, after we construct the elements and edges.

8.2.1.2 Elements

An element is usually defined in a mesh file by an array of the id’s of its four
corner nodes, ordered counter-clockwise. This is the data that we gathered in Ta-
ble 8.1 for our three element example. For straight sided elements, the location of
the four corner nodes is enough information to compute the element’s geometry
using Algorithm 95 (QuadMap) and metric terms using Algorithm 100 (QuadMap-
Metrics). For curved sides, we need additional information to define the curves.

8 Spectral Element Methods 323

Algorithm 124: QuadElementClass: Quadrilateral Element Definition for
Two-Dimensional Spectral Element Methods

Class QuadElement
Uses Algorithms:

Algorithm 101 (MappedGeometry)
Algorithm 63 (Nodal2DStorage)

Data:{
nodeIdsj

}4
j=1 ; // Corner node id’s in node array.

geom ; // MappedGeometry to store metrics, etc.

Procedures:
Construct(spA, {nodeIdsj }4

j=1, {�j }4
j=1)

End Class QuadElement

Procedure Construct

Input:
{
nodeIdsj

}4
j=1

Input:
{
�j

}4
j=1 ; // CurveInterpolant

Input: spA ; // Nodal2DStorage

this.
{
nodeIdsj

}4
j=1 ← {

nodeIdsj

}4
j=1

this.geom.Construct(spA, {�j }4
j=1)

End Procedure Construct

This is information not typically provided by finite element mesh generators. We
usually specify Chebyshev polynomial interpolants only for those sides that are
curved. From the four curves, we will store the grid and metric arrays in our stan-
dard MappedGeometry structure of Algorithm 101 (MappedGeometryClass). We
show the storage that we need to define an element in Algorithm 124 (QuadEle-
mentClass). The constructor takes the array that lists the four corner nodes and,
as we did to define a quadrilateral single domain, an array of the four boundary
curves.

8.2.1.3 Edges

We will use an edge class to store the information along a row in Table 8.3. Our
implementation of an edge is Algorithm 125 (EdgeClass). The constructor is simple.
It takes the id’s of two nodes, an element of which the edge is a side, and the number
of the side. We will find the identity of any additional elements that may share that
side later as we construct the mesh.

8.2.1.4 The Mesh

Lastly, we need to define our Mesh data structure. The mesh will store the nodes,
the elements and the edges. Since we are going to assume that the mesh is con-
forming, we will also assume that the polynomial order in all elements will be

324 8 Spectral Element Methods

Algorithm 125: EdgeClass: Edge Definition for Two-Dimensional Spectral El-
ement Methods

Class Edge
Data:

type ; // Kind of edge—interior or boundary

{nodesk}2
k=1 ; // start and end node id’s

{elementIDsk}2
k=1 ; // Elements that share this edge

{elementSidesk}2
k=1 ; // Sides of Elements that share this edge

start, inc ; // Loop start and increment for the secondary side

Procedures:
Construct({nodesk}2

k=1 , elementID, side)

End Class Edge

Procedure Construct

Input: {nodesk}2
k=1 , elementID, side

this.
{
nodeIdsj

}2
j=1 ← {

nodeIdsj

}2
j=1

this.type ← INTERIOR
this.elementIDs1 ← elementID
this.elementIDs2 ← NONE
this.elementSides1 ← side
this.elementSides2 ← NONE
End Procedure Construct

the same. Therefore, we need to store only one instance of a Nodal2DStorage
object to hold the quadrature nodes, weights, and the derivative matrices in the
mesh structure. Since the number of elements and the number of corner nodes
are usually listed in, or can be determined from, the mesh file, we store an ar-
ray of CornerNodes and an array of Elements in the mesh structure. Finally we
will store three convenience arrays that we will describe below to help navigate
local data structures. We show the structure for the Mesh class in Algorithm 126
(QuadMesh).

We do not know the number of edges beforehand. We must construct the edges
from the elements and the nodes, so we will not know how many there are to start.
To be completely general, we should store the edges in some dynamic data structure
like a Linked List, which can have an arbitrary length. We could use Algorithm 144
(LinkedList) in Appendix E to store and manipulate the edge list. However, we can
simplify our presentation here significantly if we store the edges in an array, with
the edge id denoted by the location in the array.

To use a fixed size array to store the edges, we need to find a reasonable up-
per bound on the number of edges that the mesh can have. A result from algebraic
topology tells us that the number of edges, Nedge, the number of elements, K , and
the number of nodes, Nnode, are related to the Euler characteristic, χ , by the rela-
tion

χ = Nnode + K − Nedge. (8.51)

8 Spectral Element Methods 325

Algorithm 126: QuadMesh: Mesh Definition for Two-Dimensional Spectral
Element Methods

Class QuadMesh
Uses Algorithms:

Algorithm 63 (Nodal2DStorage)
Data:

K,Nnode,Nedge ; // # Elements, corner nodes, and edges

{elementsk}Kk=1 ; // Array of Elements

{nodesk}Nnode
k=1 ; // Array of CornerNodes

{
edgesk

}edgeDim
k=1 ; // Array of Edges

{
cornerMapi,j

}2,4
i=1,j=1

; // Convenience array
{
sideMapi

}4
i=1 ; // Convenience array

{
edgeMapi,j

}2,4
i,j=1

; // Convenience array

Procedures:
Construct(spA,meshFile); // Algorithm 127

End Class QuadMesh

In turn, the Euler characteristic is related to the number of holes, Nh, in the mesh
by

χ = 1 − Nh. (8.52)

(Try it on the decompositions shown in Figs. 8.1 and 8.3b.) Of course, we don’t
know the number of holes in the mesh simply by looking at the nodes and element
definitions, so we will only try to find a reasonable upper bound. For a “reasonable”
mesh without pinched holes, we can take Nh ≤ Nnode/3. In that case, we expect
that

Nedge ≤ K + 4

3
Nnode − 1 ≡ edgeDim. (8.53)

The number of holes that we’ve assumed is large compared to the number of nodes.
Typically there will be only a few holes in a mesh. The penalty, though, is only 30%
of the number of nodes in the mesh. Note, however, that we can come up with patho-
logical and unlikely meshes that will have more edges. If we expect a large number
of such cases, we should switch to a linked list or other dynamic data structure to
store the edges.

We will also store three convenience arrays with the mesh. The first is the
sideMap. We will use it to tell us what the fixed index value is along a given side. For
instance, by our definition shown in Fig. 8.12, Side 1 corresponds to j = 0 and vary-
ing i, Side 2 corresponds to i = N and varying j , etc. Therefore the four values of
the sideMap will be {0,N,N,0}. The second convenience array is the cornerMap
that will tell us the values of the local grid indices for the four corners. Looking
back again at Fig. 8.12, we see that Corner 1 corresponds to i = j = 0 and Cor-
ner 2 is i = N,j = 0, etc. The cornerMap array is {{0,0}, {N,0}, {N,N}, {0,N}}.
Finally, we define the edgeMap array to make the correspondence between an ele-

326 8 Spectral Element Methods

ment side and the two CornerNodes that start and terminate the side. For instance,
in Fig. 8.12 we see that Side 1 is constructed from CornerNodes 1 and 2, whereas
we construct Side 2 from CornerNodes 2 and 3. The elements of the edgeMap are
{{1,2}, {2,3}, {4,3}, {1,4}}.

We show the procedure to construct the mesh in Algorithm 127 (QuadMesh:
Construct). As input, it takes an already constructed Nodal2DStorage object and
a mesh file to read. After it constructs the convenience arrays, it reads and con-
structs the nodes and elements from the mesh file. Once the array of elements is
constructed, the procedure sets the node connectivity. The data variable d that is
added to the linked list is of type CornerConnectivity that we defined in Algo-
rithm 123 (CornerNodeClass). The procedure constructs the array of edges by Algo-
rithm 148 (ConstructMeshEdges). Once the edges have been created, the procedure
goes through each edge and sets boundary types for those edges that only have one
neighboring element. If two elements share a edge, the direction variables of the
second element are then set.

8.2.2 Benchmark Solution: A Spectral Element Mesh for a Disk

In the following sections we will solve problems on a disk by a spectral element
method to avoid the coordinate singularity at the origin. We can construct a simple
mesh file for the disk by hand using the topology shown in Fig. 8.14, which has five
elements and eight corner nodes. The outer boundary needs to be approximated by
a polynomial of degree N at the Gauss-Lobatto nodes to be represented accurately.
The mesh generated by Algorithm 127 (QuadMesh:Construct) appears in Fig. 8.15
for N = 8.

8.3 The Spectral Element Method in Two Space Dimensions

The spectral element method is a continuous nodal spectral Galerkin approximation.
We have used the continuous Galerkin approximation before to approximate poten-
tial and advection-diffusion problems. As a Galerkin method, we start the derivation
from a weak form of the equation that we wish to solve.

We will introduce the spectral element method for two-dimensional geometries
by approximating the potential equation with Dirichlet boundary conditions,

∇2ϕ = s, x ∈ Ω,

ϕ = ϕb, x ∈ ∂Ω.
(8.54)

To convert the equation to the time dependent heat equation, we let s = ∂ϕ/∂t . To
approximate the advection-diffusion equation we will add an advection term as we
did in Sect. 5.3 so that s = ∂ϕ/∂t + q · ∇ϕ.

8 Spectral Element Methods 327

Algorithm 127: QuadMesh:Construct: Constructor for a Two Dimensional
Spectral Element Mesh

Procedure Construct
Input: Mesh File
Input: spA ; // Nodal2DStorage
Uses Algorithms:

Algorithm 63 (Nodal2DStorage)
Algorithm 148 (ConstructMeshEdges)

N ← this.spA.N

this.
{
sideMapk

}4
k=1 ← {0,N,N,0}

this.
{
cornerMap1,k

}4
k=1 ← {0,N,N,0}

this.
{
cornerMap2,k

}4
k=1 ← {0,0,N,N}

this.
{
edgeMap1,k

}4
k=1 ← {1,2,4,1}

this.
{
edgeMap2,k

}4
k=1 ← {2,3,3,4}

Read from Mesh File: this.Nnode, this.K
Allocate memory for nodes, elements and for edge array using (8.53)
this.Nedge ← 0
for k = 1 to this.Nnode do

Read from Mesh File: x, y

this.nodesk.Construct(x, y)

end
for k = 1 to this.K do

Read from Mesh File: {cornerNodesk}4
k=1

Read from Mesh File and Construct: {�j }4
j=1

this.elementsk.Construct(spA, {cornerNodesk}4
k=1, {�j }4

j=1)

end
for eId = 1 to this.K do

for k = 1 to 4 do
d.id ← eId; d.i ← this.cornerMap1,k ; d.j ← this.cornerMap2,k

n ← this.elementseId.nodesk

this.nodesn.NodeConnectivity.Add(d)

end
end
this ← ConstructMeshEdges(this)
for k = 1 to this.Nedge do

if this.edgesk.elementID2 = NONE then
this.edgesk.type ← BOUNDARY
n1 ← this.edgesk.nodes1
n2 ← this.edgesk.nodes2
this.nodesn1.type ← BOUNDARY
this.nodesn2.type ← BOUNDARY

else
if this.edgesk.elementSides2 > 0 then

this.edgesk.start = 1; this.edgesk.inc = 1
else

this.edgesk.start = N − 1; this.edgesk.inc = −1
end

end
end
End Procedure Construct

328 8 Spectral Element Methods

Fig. 8.14 A decomposition of a disk into five elements

Fig. 8.15 Spectral element mesh for discretization of the disk

To get the weak form of the potential equation, we multiply it by an arbitrary,
sufficiently smooth test function φ and integrate over the entire domain

∫∫

Ω

∇2ϕφdxdy =
∫∫

Ω

sφdxdy. (8.55)

8 Spectral Element Methods 329

We then apply Green’s identity to the integral with the Laplacian to rewrite it
as

∫∫

Ω

∇2ϕφdxdy =
∫

∂Ω

φ
∂ϕ

∂n
dL −

∫∫

Ω

∇ϕ · ∇φdxdy, (8.56)

where dL is the differential along the boundary curve and ∂ϕ/∂n = ∇ϕ · n̂ is the
normal derivative. As usual, for Dirichlet conditions we require that φ = 0 along the
boundary. Therefore the boundary integral vanishes to leave us with

−
∫∫

Ω

∇ϕ · ∇φdxdy =
∫∫

Ω

sφdxdy. (8.57)

To get the spectral element method, we subdivide the domain Ω into K nonover-
lapping quadrilateral elements, ek , as we described in the introduction to this chap-
ter. By breaking the domain into elements, we can break the integrals over the do-
main into the sum of integrals over the elements

K∑

k=1

{

−
∫∫

ek

∇ϕ · ∇φdxdy

}

=
K∑

k=1

{∫∫

ek

sφdxdy

}

. (8.58)

Therefore, each element contributes

−
∫∫

ek

∇ϕ · ∇φdxdy =
∫∫

ek

sφdxdy (8.59)

to the total integral. For convenience, let us call

I k
1 = −

∫∫

ek

∇ϕ · ∇φdxdy,

I k
2 =

∫∫

ek

sφdxdy.

(8.60)

The local element contributions (8.59) are exactly what we approximated in
Sect. 5.2.2 on a single domain, so we already know how to approximate them. To re-
cap, we first map the element ek onto the reference square by a mapping x = X(ξ, η).
On the reference square, I k

2 transforms to

I k
2 =

∫ 1

−1

∫ 1

−1
J ksφdξdη. (8.61)

To transform I k
1 , we write the gradient in the mapped coordinate as

∇ϕ = 1

J

{(
Yηϕξ − Yξϕη

)
x̂ + (

Xξϕη − Xηϕξ

)
ŷ
}

(8.62)

330 8 Spectral Element Methods

so that, with a little algebra, we get the integrand

∇ϕ · ∇φ = 1

J

{[
Y 2

η + X2
η

J
ϕξ − YξYη + XξXη

J
ϕη

]

φξ

+
[

Y 2
ξ + X2

ξ

J
ϕη − YξYη + XξXη

J
ϕξ

]

φη

}

. (8.63)

Ultimately, we write (8.63) in the familiar form

∇ϕ · ∇φ = 1

J

{
f φξ + gφη

}
. (8.64)

When we replace the integrand in (8.59) with (8.64), we write the element contribu-
tion as

−
∫ 1

−1

∫ 1

−1

(
f φξ + gφη

)
dξdη =

∫ 1

−1

∫ 1

−1
sJ kφdξdη. (8.65)

Therefore, we’ve already seen (8.59) on a mapped domain; the contribution of ele-
ment k written on the reference square is just (7.17).

To approximate (8.65), we replace s by a piecewise polynomial approximation
S and replace ϕ by a piecewise continuous polynomial approximation Φ . As an
extension to what we did in one space dimension, (8.15), the test functions are going
to be the continuous, piecewise polynomials

φk =
N∑

i,j=0

φk
ij �i (ξ) �j (η). (8.66)

We enforce continuity of the test functions by requiring that the nodal values φk
ij be

the same along each edge and at each element corner in the mesh. The same goes
for the solution and source term polynomials.

When we substitute (8.66) for φ in (8.65),

I k
1 ≈

∑

i,j

φk
i,j

[

−
∫ 1

−1

∫ 1

−1

(
F�′

i�j + G�i�
′
j

)
dξdη

]

(8.67)

and

I k
2 ≈

∑

i,j

φk
i,j

[∫ 1

−1

∫ 1

−1
S�i�j dξdη

]

. (8.68)

The integrals in the square brackets are the same as in the single domain problem,
and we already have their nodal Galerkin approximations worked out in (7.18)–
(7.21). Therefore, the nodal Galerkin approximation of (8.65) is

∑

i,j

φk
i,j

[(∇2Φ,�i�j

)

N
− Sk

i,j J
k
i,jwiwj

]= 0, (8.69)

8 Spectral Element Methods 331

where (∇2Φ,�i�j)N is given by (7.21). The global sum over all the elements gives
us our final approximation

K∑

k=1

⎧
⎨

⎩

∑

i,j

φk
i,j

[(∇2Φ,�i�j

)

N
− Sk

i,j J
k
i,jwiwj

]

⎫
⎬

⎭
= 0. (8.70)

We get the spectral element approximations to the time dependent diffusion and
advection-diffusion equations from (8.70) if we replace Sk

i,j by the appropriate ap-
proximations. For instance, the approximation to the time dependent diffusion equa-
tion is

K∑

k=1

⎧
⎨

⎩

∑

i,j

φk
i,j

[(∇2Φ,�i�j

)

N
− Φ̇k

i,j J
k
i,jwiwj

]

⎫
⎬

⎭
= 0, (8.71)

whereas the approximation to the advection-diffusion equation is

K∑

k=1

⎧
⎨

⎩

∑

i,j

φk
i,j

[(∇2Φ,�i�j

)

N
− Φ̇k

i,j J
k
i,jwiwj − (

q · ∇Φ,�i�j

)

N

]

⎫
⎬

⎭
= 0 (8.72)

with the advection term given by (7.77).
The last thing for us to do is to use the fact that the φk

i,j are independent except
along element edges and at element corners to get the pointwise equations that the
solution unknowns must satisfy. Let’s focus on finding those equations for (8.70).
The equations for (8.71) and (8.72) will follow directly.

To get the pointwise equations for the approximation (8.70), the first thing to
notice is that the terms within the square brackets are simply the single domain
approximation applied to the element ek . At points interior to the elements, the
φk

i,j are independent, which means that the approximation in an element is just the
single domain approximation applied to it. Along edges, the approximation is the
sum of the single domain values from the two contributing elements, just as we saw
in the one dimensional spectral element method. Finally, at corners, all elements
that share the point contribute to the sum. It is not as easy to write the summations
explicitly as it was in one space dimension, but we will see that it is relatively easy
to implement.

8.3.1 How to Implement the Spectral Element Method

The approximations (8.70)–(8.72) show that the spectral element method has local
operations, gathered in the brackets, and global operations, gathered in the braces,
so we will organize the algorithms as we did in one space dimension as local and
global. The local operations are the single domain approximations that we have

332 8 Spectral Element Methods

already developed for quadrilateral domains. The global operations tie the local ap-
proximations together. The two-level form of the approximations shows that we can
form a global framework that is essentially independent of the equations that we
want to solve; We can compute the spectral approximation of the potential equation,
the diffusion equation and the advection-diffusion equation with the same frame-
work. Likewise, we have already developed the local operations for potentials, dif-
fusion and advection-diffusion.

We will describe how to implement the approximation for the Dirichlet problem
for the potential equation, (8.54) in detail. The implementation of Neumann bound-
ary conditions and the time dependent problems are just extensions that we will pose
as exercises.

8.3.1.1 The Potential Class

We organize the solution of the potential equation in a class, which we show in
Algorithm 128 (SEMPotentialClass). Notice that the class is just an extension of
the single domain class that we developed in Sect. 7.1.2. Since we now require
that the polynomial order be the same in each element and in each direction within
an element to guarantee most easily that the approximation is conforming, we still
only need one instance of Nodal2DStorage, which we denote by the variable spA.
However, now that there are multiple domains, the mesh will now store the geometry
and mapping information with its elements. The mesh also stores the connectivity.
Finally, we will use a global scheme for the solution and source terms to make it
easy to use the Conjugate Gradient solver.

Algorithm 128: SEMPotentialClass: A Class Definition for the Spectral Ele-
ment Approximation of the Potential Problem

Class SEMPotentialClass
Uses Algorithms:

Algorithm 63 (Nodal2DStorage)
Algorithm 101 (MappedGeometryClass)
Algorithm 107 (MappedLaplacian); Algorithm 126 (QuadMesh)

Data:
spA ; // Of type Nodal2DStorage
mesh ; // Of type QuadMesh

{Φi,j,k}N,N;K
i,j=0;k=1 ; // Solution

{si,j,k}N,N;K
i,j=0;k=1 ; // Source

Procedures:
Construct(N,meshFile); // Algorithm 129

MappedLaplacian({Ui,j,k}Ni,j=0,geom); // Algorithm 107

MatrixAction({Uij }Ni,j=0); // Algorithm 133

End Class SEMPotentialClass

8 Spectral Element Methods 333

Algorithm 129: SEMPotentialClass:Construct: Constructor for the Spectral
Element Approximation of the Potential Problem

Procedure Construct
Input: N , meshFile
Uses Algorithms:

Algorithm 25 (LegendreGaussLobattoNodesAndWeights)
Algorithm 37 (PolynomialDerivativeMatrix)
Algorithm 127 (QuadMesh:Construct)

this.spA.N ← N ; this.spA.M ← N
{
this.spA.{ξi}Ni=0, this.spA.

{
w

(ξ)
i

}N

i=0

}← LegendreGaussLobattoNodesAndWeights(N)

this.spA.
{
D

ξ
ij

}N

i,j=0 ← PolynomialDerivativeMatrix(this.spA.{ξi}Ni=0)

Copy arrays to η direction. . .
mesh.Construct(spA,meshFile)
End Procedure Construct

We must implement three procedures to compute the potential approximation.
The constructor, Algorithm 129 (SEMPotentialClass:Construct), computes the spa-
tial approximation array. One simplification here is that the node, weight and deriv-
ative matrix arrays are the same in both directions, so they need to be computed
only once. The other action the constructor must take is to construct the mesh from
a mesh file using Algorithm 127 (QuadMesh:Construct). We have already imple-
mented the second procedure, MappedLaplacian in Algorithm 107 (MappedNodal-
GalerkinLaplacian). This is the local operation that computes the Laplacian term
in the brackets in (8.70). The procedure works only on the section of the solu-
tion array for a given element, ek . The geometry object that we pass with the ar-
ray will be the geometry for the element. The final procedure computes the matrix
action to be used with an iterative solver. The matrix action includes global op-
erations, so we will wait to show what it does until after we develop the global
procedures.

8.3.1.2 Global Procedures

As in one space dimension, we implement three global operations: Mask, UnMask
and GlobalSum. The Mask operation will set duplicate node values in an array to
zero so that they will have no contribution to the iterative solver. The UnMask oper-
ation will distribute the values back to the duplicate nodes. The global sum will add
the contributions together at duplicate nodes, performing the operation in braces in
(8.70). The procedures for all three operations have a similar structure. They first do
their operations for each element side, then for each corner node.

We use the global Mask operation to set array values on duplicate nodes and
boundary nodes to zero. We show an implementation in Algorithm 130 (SEMMask).
The first section of the procedure loops over the array of edges and distinguishes
between boundary an internal edges. Dirichlet conditions require the values to be

334 8 Spectral Element Methods

Algorithm 130: SEMMask: Mask Edges and Corners for the Spectral Element
Method

Procedure Mask
Input: mesh, {ai,j,k}N;K

i,j=0;k=1

Uses Algorithms:
Algorithm 126 (QuadMesh)

for j = 1 to mesh.Nedge do
if mesh.edgesj .type = BOUNDARY then

e ← mesh.edgesj .elementIDs1
s ← mesh.edgesj .elementSides1

else
e ← mesh.edgesj .elementIDs2
s ← |mesh.edgesj .elementSides2|

end

{ai,j,k}N;K
i,j=0;k=1 ← MaskSide(e, s,mesh, {ai,j,k}N;K

i,j=0;k=1)

end
for n = 1 to mesh.Nnode do

pElements ⇒ mesh.nodesn.nodeConnectivity
pElements.current ⇒ pElements.head
if mesh.nodesn.type 	= BOUNDARY then pElements.MoveToNext()
while pElements.current 	⇒ NULL do

d ← pElements.GetCurrentData()

i ← d.i; j ← d.j ; id ← d.id
ai,j,id ← 0
pElements.MoveToNext()

end
end

return {ai,j,k}N;K
i,j=0;k=1

End Procedure Mask

Procedure MaskSide
Input: id, side,mesh, {ai,j,k}N;K

i,j=0;k=1

if side = 2 or side = 4 then
i ← mesh.sideMapside
for j = 1 to mesh.spA.N − 1 do

ai,j,id ← 0
end

else
j ← mesh.sideMapside
for i = 1 to mesh.spA.N − 1 do

ai,j,id ← 0
end

end

return {ai,j,k}N;K
i,j=0;k=1

End Procedure MaskSide

masked along boundary edges. So if the edge is a boundary edge, we mask the
primary (and only), index 1, side. Otherwise, if the edge is on the interior, we mask
the secondary (index 2) element side. We use the sideMap array to select the correct

8 Spectral Element Methods 335

local index when masking the secondary side in the MaskSide procedure. We apply
the same philosophy to the corner nodes. For each corner node, we select the first
contributing element to be the primary. If the corner node is on a physical boundary,
we mask it to implement the Dirichlet condition. Otherwise, we mask the array entry
for the nodes from each of the remaining elements that share the corner node.

The global UnMask operation, which we implement in Algorithm 131 (SEMUn-
mask), undoes the action of the Mask operation. It copies the data from the primary
node to the secondary nodes. Again, the structure of the procedure is the same as
SEMMask. However, we must account for the fact that the indices along the con-
tributing sides do not have to increase in the same direction. In the implementation
that we show here, we copy the values from the primary side into a temporary array
to make the operations as clear as possible. We then use the edge’s start and inc
values to copy the edge values to the correct location for the secondary side in the
global array.

The final global operation is the global summation, which we implement in Algo-
rithm 132 (SEMGlobalSum). The global summation takes values from all contribut-
ing nodes, adds them together, and then distributes them back. Like the SEMUnmask
procedure, the global summation must account for the fact that the element edges
do not have to have indices that vary in the same direction. To be clear, we create
two temporary arrays that store the summed values in the orders needed by the two
sides. Then we simply copy those two arrays to their contributing sides.

8.3.1.3 Procedures for the Iterative Solver

Now that we have implemented the global operations, we implement the Matrix-
Action and Residual procedures that we need to use the Conjugate Gradient algo-
rithm, Algorithm 80 (PreconditionedConjugateGradientSolve), to solve the system
of equations. Algorithm 133 (SEMPotentialClass:MatrixAction) shows the matrix
action. It first unmasks the solution values so that the Laplace approximations can
be computed locally in a loop over each of the elements. Once the local actions are
computed they are summed globally and then masked. To ensure that the procedure
produces no side effects, it re-masks the input array. The procedure Residual that
we show in Algorithm 134 is similar to the MatrixAction procedure and computes
the global residual.

Since we use the Conjugate Gradient method to solve the linear system for the
potentials, we should mention preconditioners for the spectral element method. The
similarity of the spectral element method to the finite element method allows us
to generalize the finite element preconditioner that we have already implemented
to multiple domains. We showed in Sect. 7.1.3 how to modify the finite element
preconditioner to work on a transformed domain that now forms one of our el-
ements. If we use an iterative solver for the preconditioner, like the SSORSweep
procedure that we presented in Algorithm 79, then we can generalize the finite ele-
ment approximation to the multidomain discretization in the same way that we did
the spectral method. That is, we compute the local preconditioners, and perform the

336 8 Spectral Element Methods

Algorithm 131: SEMUnMask: UnMask for the Spectral Element Method

Procedure UnMask
Input: mesh, {ai,j,k}N;K

i,j=0;k=1
Uses Algorithms:

Algorithm 126 (QuadMesh)
for j = 1 to mesh.Nedge do

if mesh.edgesj .type 	= BOUNDARY then

{ai,j,k}N;K
i,j=0;k=1 ← UnMaskSide(mesh.edgesj ,mesh, {ai,j,k}N;K

i,j=0;k=1)

end
end
for n = 1 to mesh.Nnodes do

if mesh.nodesn.type 	= BOUNDARY then
pElements ⇒ mesh.nodesn.nodeConnectivity
pElements.current ⇒ pElements.head
d ← pElements.GetCurrentData()

i1 ← d.i; j1 ← d.j ; id1 ← d.id
pElements.MoveToNext()
while pElements.current 	⇒ NULL do

d ← pElements.GetCurrentData()

i ← d.i; j ← d.j ; id ← d.id
ai,j,id ← ai1,j1,id1

pElements.MoveToNext()
end

end
end

return {ai,j,k}N;K
i,j=0;k=1

End Procedure UnMask

Procedure UnMaskSide
Input: edge,mesh, {ai,j,k}N;K

i,j=0;k=1
id ← edge.elementIDs1; side ← edge.elementSides1

if side = 2 or side = 4 then
i ← mesh.sideMapside
for j = 1 to mesh.spA.N − 1 do

tmpj ← ai,j,id

end
else

j ← mesh.sideMapside
for i = 1 to mesh.spA.N − 1 do

tmpi ← ai,j,id

end
end
id ← edge.elementIDs2; side ← |edge.elementSides2|
if side = 2 or side = 4 then

i ← mesh.sideMapside ; j ← edge.start
for n = 1 to mesh.spA.N − 1 do

ai,j,id ← tmpn

j ← j + edge.inc
end

else
j ← mesh.sideMapside ; i ← edge.start
for n = 1 to mesh.spA.N − 1 do

ai,j,id ← tmpn

i ← i + edge.inc
end

end

return {ai,j,k}N;K
i,j=0;k=1

End Procedure UnMaskSide

8 Spectral Element Methods 337

Algorithm 132: SEMGlobalSum: Sum Edge Contributions for the Two-
Dimensional Spectral Element Method

Procedure GlobalSum
Input: mesh, {ai,j,k}N;K

i,j=0;k=1
Uses Algorithms:

Algorithm 126 (QuadMesh)

for j = 1 to mesh.Nedge do
if mesh.edgesj .type 	= BOUNDARY then

{ai,j,k}N;K
i,j=0;k=1 ← SumSide(mesh.edgesj ,mesh, {ai,j,k}N;K

i,j=0;k=1)

end
end
for n = 1 to mesh.Nnode do

if mesh.nodesn.type 	= BOUNDARY then
pElements ⇒ mesh.nodesn.nodeConnectivity
pElements.current ⇒ pElements.head
sum = 0
while pElements.current 	⇒ NULL do

d ← pElements.GetCurrentData()

i ← d.i; j ← d.j ; id ← d.id
sum ← sum + ai,j,id
pElements.MoveToNext()

end
pElements.current ⇒ pElements.head
while pElements.current 	⇒ NULL do

d ← pElements.GetCurrentData()

i ← d.i; j ← d.j ; id ← d.id
ai,j,id ← sum
pElements.MoveToNext()

end
end

end

return {ai,j,k}N;K
i,j=0;k=1

End Procedure GlobalSum

masks and global sums on those to get the global action and residuals. This is not
the way we would implement a finite element method from scratch, but it fits eas-
ily into the framework that we have developed so far. One problem with the finite
element preconditioner is that as the meshes get large its convergence rate slows
down, too. More sophisticated and complex spectral element preconditioners have
been developed over the years. For those we point to Chap. 6 of the book [8], which
describes several strategies including alternating Schwartz and Schur complement
techniques.

8.3.1.4 The Driver

The driver to solve the potential problem with the spectral element method has
the same structure as the driver on the square, Algorithm 76 (CollocationPoten-

338 8 Spectral Element Methods

Algorithm 132: SEMGlobalSum: Sum Edge Contributions for the Two-
Dimensional Spectral Element Method (continued)

Procedure SumSide
Input: edge,mesh, {ai,j,k}N;K

i,j=0;k=1

for k = 1 to 2 do
id ← edge.elementIDsk ; side ← |edge.elementSidesk |
if side = 2 or side = 4 then

i ← mesh.sideMapside

for j = 1 to mesh.spA.N − 1 do
tmpj,k ← ai,j,id

end
else

j ← mesh.sideMapside

for i = 1 to mesh.spA.N − 1 do
tmpi,k ← ai,j,id

end
end

end
n ← edge.start
for j = 1 to mesh.spA.N − 1 do

sum ← tmpj,1 + tmpj,2
tmpj,1 ← sum; tmpn,2 ← sum
n ← n + edge.inc

end
for k = 1 to 2 do

id ← edge.elementIDsk ; side ← |edge.elementSidesk |
if side = 2 or side = 4 then

i ← mesh.sideMapside
for j = 1 to mesh.spA.N − 1 do

ai,j,id ← tmpj,k

end
else

j ← mesh.sideMapside
for i = 1 to mesh.spA.N − 1 do

ai,j,id ← tmpi,k

end
end

end

return {ai,j,k}N;K
i,j=0;k=1

End Procedure SumSide

tialDriver) and the quadrilateral, Algorithm 108 (MappedCollocationDriver). As
before, a SourceValue function must be provided to compute the source, s. The
boundary mask array is not needed because we have assumed only Dirichlet bound-
ary conditions and have incorporated them into the global mask and unmask func-
tions themselves. We do need a routine to set the boundary values. For that, we
present an implementation in Algorithm 135 (SetBoundaryValues). It assumes that
the actual function that provides the solution value as a function of x, y (and t for
time dependent problems) is provided as input.

8 Spectral Element Methods 339

Algorithm 133: SEMPotentialClass:MatrixAction: Matrix Action for the Spec-
tral Element Approximation to the Potential Equation

Procedure MatrixAction
Uses Algorithms:

Algorithm 126 (QuadMesh)
Algorithm 107 (MappedLaplacian)

Input:
{
Φi,j,k

}N;K
i,j=0;k=1

{
Φi,j,k

}N;K
i,j=0;k=1 ← UnMask

(
this.mesh,

{
Φi,j,k

}N;K
i,j=0;k=1

)

for k = 1 to this.mesh.K do
{
actioni,j,k

}N,M

i,j=0 ← MappedLaplacian
(
this.mesh.elementsk.geom,

{
Φi,j,k

}N,M

i,j=0

)

end
{
actioni,j,k

}N;K
i,j=0;k=1 ← GlobalSum

(
this.mesh,

{
actioni,j,k

}N;K
i,j=0;k=1

)

{
actioni,j,k

}N;K
i,j=0;k=1 ← Mask

(
this.mesh,

{
actioni,j,k

}N;K
i,j=0;k=1

)

{
Φi,j,k

}N;K
i,j=0;k=1 ← Mask

(
this.mesh,

{
Φi,j,k

}N;K
i,j=0;k=1

)

return
{
actioni,j,k

}N;K
i,j=0;k=1

End Procedure MatrixAction

Algorithm 134: Residual: Residual Computation for the Spectral Element Ap-
proximation to the Potential Equation

Procedure Residual
Input: pA ; // Of type SEMPotentialClass
Uses Algorithms:

Algorithm 128 (SEMPotentialClass)
Algorithm 107 (MappedLaplacian)

pA.
{
Φi,j,k

}N;K
i,j=0;k=1 ← UnMask

(
pA.mesh,pA.

{
Φi,j,k

}N;K
i,j=0;k=1

)

for k = 1 to mesh.K do
{
ri,j,k

}N,M

i,j=0 ← MappedLaplacian
(
pA.mesh.elementsk.geom,pA.

{
Φi,j,k

}N,M

i,j=0

)

for j = 0 to pA.spA.N do
for i = 0 to pA.spA.M do

ri,j,k ← pA.spA.w
(ξ)
i ∗ pA.spA.w

(η)
j ∗ pA.sourcei,j,k ∗

pA.mesh.elementsk.geom.Ji,j − ri,j,k
end

end
end
{
ri,j,k

}N;K
i,j=0;k=1 ← GlobalSum

(
pA.mesh,

{
ri,j,k

}N;K
i,j=0;k=1

)

{
ri,j,k

}N;K
i,j=0;k=1 ← Mask

(
pA.mesh,

{
ri,j,k

}N;K
i,j=0;k=1

)

pA.
{
Φi,j,k

}N;K
i,j=0;k=1 ← Mask

(
pA.mesh,pA.

{
Φi,j,k

}N;K
i,j=0;k=1

)

return
{
ri,j,k

}N;K
i,j=0;k=1

End Procedure Residual

340 8 Spectral Element Methods

Algorithm 135: SetBoundaryValues: Set Dirichlet Boundary Conditions for the
Two-Dimensional Spectral Element Method

Procedure SEMSetDirichletBoundaries
Input: mesh,

{
Φi,j,k

}N;K
i,j=0;k=1 , t,BCFunction

Uses Algorithms:
Algorithm 126 (QuadMesh)

for k = 1 to mesh.Nedge do
if mesh.edgesj .type = BOUNDARY then

id ← mesh.edgesk.elementIDs1; side ← mesh.edgesk.elementSides1
if side = 2 or side = 4 then

i ← mesh.sideMapside
for j = 1 to mesh.spA.N − 1 do

x ← mesh.elementsid.geom.xi,j

y ← mesh.elementsid.geom.yi,j

Φi,j,id ← BCFunction(x, y, t)

end
else

j ← mesh.sideMapside
for i = 1 to mesh.spA.N − 1 do

x ← mesh.elementsid.geom.xi,j

y ← mesh.elementsid.geom.yi,j

Φi,j,id ← BCFunction(x, y, t)

end
end

end
end
for n = 1 to mesh.Nnode do

if mesh.nodesn.type = BOUNDARY then
pElements ⇒ mesh.nodesn.nodeConnectivity
x ← mesh.nodesn.x; y ← mesh.nodesn.y

Φb ← BCFunction(x, y, t)

pElements.current ⇒ pElements.head
while pElements.current 	⇒ NULL do

d ← pElements.GetCurrentData()

i ← d.i; j ← d.j ; id ← d.id
Φi,j,id ← Φb

pElements.MoveToNext()
end

end
end

return
{
Φi,j,k

}N;K
i,j=0;k=1

End Procedure SEMSetDirichletBoundaries

8.3.2 Benchmark Solution: Steady Temperatures
in a Long Cylindrical Rod

The benchmark problem for the spectral element method is to compute the steady
temperature in a long cylindrical rod that is heated uniformly along its length. The
simple physical model reduces to the solution of the potential equation on a circular

8 Spectral Element Methods 341

Fig. 8.16 Spectral element solution of temperatures on a disk

domain with a prescribed temperature around its perimeter. The model problem
has an exact solution known as the Poisson Integral against which we can compare
the spectral element solution. The steady temperature as a function of the polar
coordinates (r, θ) on a disk of radius R that is kept at a temperature ϕ(R, θ) = F(θ)

along the outer boundary is

ϕ(r, θ) = R2 − r2

2π

∫ π

−π

F (s)

R2 − 2rR cos(s − θ) + r2
ds. (8.73)

We solve for the temperature in the disk on the mesh shown in Fig. 8.15 with
N = 8 that is heated and cooled along the outer edge according to

F(θ) = e−4(θ−π/2)2 − e−4(θ+π/2)2
.

We show a contour plot of the computed solution in Fig. 8.16. We make a direct
comparison to the analytical solution in Fig. 8.17, which shows the computed and
exact solutions along the line x = 0.

8.4 The Discontinuous Galerkin Spectral Element Method

Finally, we derive the discontinuous Galerkin spectral element approximation of the
system of conservation laws in two dimensions. We will see that the discontinuous
approximation will give us simpler algorithms to implement than what we had in

342 8 Spectral Element Methods

Fig. 8.17 Spectral element solution of temperatures on a disk. Cut along x = 0

the previous section, and that we have already developed all the machinery that we
need to implement the method.

Our starting point is the two dimension conservation law (7.89), which we repro-
duce here,

qt + fx + gy = 0, (8.74)

and which we convert to the weak form
∫∫

Ω

φ
(
qt + fx + gy

)
dxdy = 0. (8.75)

We get the equation that the solution satisfies on an element when we break the
integral into the sum of subintegrals over the elements

K∑

k=1

∫∫

ek

φ
(
qt + fx + gy

)
dxdy = 0 (8.76)

and examine each subintegral individually

∫∫

ek

φ
(
qt + fx + gy

)
dxdy = 0. (8.77)

Since the element ek is a quadrilateral, we have already derived the nodal discontin-
uous Galerkin approximation for (8.77) in Sect. 7.4, specifically, (7.99).

8 Spectral Element Methods 343

In the discontinuous Galerkin approximation, we couple the approximation to the
boundary and, in the spectral element version, to neighboring elements through the
boundary fluxes using the Riemann solver. If the boundary of the element is not on a
physical boundary, then the external state is simply the solution on the neighboring
element.

8.4.1 How to Implement the Discontinuous Galerkin Spectral
Element Method

We see that the discontinuous Galerkin spectral element approximation is just the
single domain mapped quadrilateral approximation applied to each element individ-
ually, plus coupling of the fluxes at the boundaries. This suggests that to implement
the approximation we can reuse the algorithms of Sect. 7.4.2 for the element local
operations. To compute the fluxes at the element boundaries, we will use the infor-
mation stored in the mesh data structure to tell us which common nodes we need to
use to compute the element boundary fluxes. As a spectral element method, we can
arrange the data as we did in Sect. 8.3.1.

Our basic data structure will be the DGSEMClass that we present in Algo-
rithm 136. It extends the single domain MappedNodalDG2DClass (Algorithm 111)
to manage multiple domains. We assume a conforming mesh, as we did with the
spectral element approximation, so there is still only one instance of the structure
that stores the Gauss quadrature nodes, weights and the derivative matrices. Instead
of a single mapping, each element has its own, so we replace the geometry ob-
ject in the MappedNodalDG2DClass with the mesh object. Finally, we must now
have an array of DGSolutionStorage structures to store the solution on each ele-
ment. The structure of the new class is basically the same as the SEMPotentialClass
of Algorithm 128, so the constructor for the class is the same as Algorithm 129
except for one change. We use the Gauss, not the Gauss-Lobatto, points for the

Algorithm 136: DGSEMClass: A Discontinuous Galerkin Class Definition

Class DGSEMClass
Uses Algorithms:

Algorithm 89 (NodalDG2DStorage)
Algorithm 110 (DGSolutionStorage)
Algorithm 126 (QuadMesh)

Data:
spA ; // Of type NodalDG2DStorage
mesh ; // Of type QuadMesh

{dGS}Kk=1 ; // Of type DGSolutionStorage

Procedures:
Construct(N,meshFile); // Algorithm 129, modified. See text.
TimeDerivative(t); // Algorithm 138

End Class DGSEMClass

344 8 Spectral Element Methods

nodes in the discontinuous Galerkin approximation. Therefore, the constructor must
use Algorithm 23 (LegendreGaussNodesAndWeights) to compute the nodes and
weights.

The time derivative procedure for the spectral element approximation will follow
Algorithm 115 (DG2DTimeDerivative) except that it must do its work on all of the
elements. Since the boundary solutions need to be available before the boundary
fluxes are computed, we interpolate all of the solutions to the faces first. We then
compute the boundary fluxes for each of the edges. Finally, the local time derivatives
need to be computed.

Before we present the time derivative procedure, however, we must develop a
procedure to compute the boundary fluxes. Fortunately, all the information that we
need is available in the QuadMesh structure. Recall that an edge stores the id’s of
two neighboring elements and their associated sides. (See Algorithm 125 (Edge-
Class).) The first one we call the primary element and the other the secondary. The
edge also stores how the index of the secondary side varies with the index of the
primary. Therefore, to compute the element boundary fluxes, we can loop through
each of the edges, and for each, get the solutions and normal to feed to the Rie-
mann solver to compute the flux. Once we compute the normal flux, we compute
the contravariant flux, e.g., by (7.102). Algorithm 137 (EdgeFluxes) implements this
procedure. Note that the outward normals for the two elements point in opposite di-
rections. Therefore the edge flux must be negated to get the contravariant flux for
the secondary side. If the edge is on a physical boundary, then the flux is computed
just as it was for the single domain approximation.

Now that we have the edge flux procedure, we can implement the global time
derivative procedure shown in Algorithm 138 (SEMGlobalTimeDerivative).

Unlike the continuous Galerkin spectral element method, we do not have to per-
form any operations on the corner nodes with the discontinuous version. Recall that
our use of the Gauss, rather than Gauss-Lobatto points places the solution unknowns
entirely within an element. (Cf. Fig. 5.7.) The boundary flux values are then located
at the Gauss points along an edge. The corner nodes are not part of the approxi-
mation, thereby simplifying the implementation. It is for this simplification and for
the increased quadrature precision that we have chosen the Gauss over the Gauss-
Lobatto points for the location of the nodes.

To integrate in time, we will still use an explicit time integrator. The only differ-
ence from the single domain implementation is the need to loop over each element.
See Sect. 8.1.4.

8.4.2 Benchmark Solution: Propagation of a Circular Wave
in a Circular Domain

In Sect. 5.4.4 we computed the solution of the wave equation in a square domain
with initial conditions that create an outward propagating circular sound wave. In
this section, we will re-do the problem with the mesh shown in Fig. 8.15. For this
mesh, we present solutions with w = 0.15.

8 Spectral Element Methods 345

Algorithm 137: EdgeFluxes: Compute the Riemann Problem Along Mesh
Edges

Procedure EdgeFluxes
Input: t

Input: edge ; // Of type Edge

Input: {elements}Kk=1 ; // Of type QuadElement

Input: {dGS}Kk=1; // Of type DGSolutionStorage
Uses Algorithms:

Algorithm 125 (EdgeClass)
Algorithm 110 (DGSolutionStorage)
Algorithm 124 (QuadElementClass)

if edge.type = INTERIOR then
k ← edge.start − edge.inc
for j = 0 to N do

e1 ← edge.elementIDs1
s1 ← edge.elementSides1
e2 ← edge.elementIDs2
s2 ← |edge.elementSides2|
{Fn}nEqn

n=1 ←
RiemannSolver(dGSe1.{Qbj,n,s1}nEqn

n=1 ,dGSe2.{Qbk,n,s2}nEqn
n=1 , elementse1.geom.n̂s1

j)

for n = 1 to nEqn do
dGSe1.F

∗
j,n,s1 ← Fn ∗ elementse1.geom.scals1

j

dGSe2.F
∗
k,n,s2 ← −Fn ∗ elementse2.geom.scals2

k

end
k ← k + edge.inc

end
else

e1 ← edge.elementIDs1
s1 ← edge.elementSides1
for j = 0 to N do

{
Qext

n

}nEqn
n=1 ←

ExternalState(dGSe1.{Qbj,n,s1}nEqn
n=1 , elementse1.geom.xs1

j , elementse1.geom.ys1
j , t)

dGSe1.
{
F ∗

j,n,s1

}nEqn
n=1 ← elementse1.geom.scals1

j ∗
RiemannSolver

(
dGSe1.{Qbj,n,s1}nEqn

n=1 ,
{
Qext

n

}nEqn
n=1 , elementse1.geom.n̂s1

j

)

end
end
return {dGS}Kk=1
End Procedure EdgeFluxes

We present solutions for the propagating circular wave at time t = 1.25 in
Figs. 8.18 and 8.19. The solutions were computed with N = 20 and a time step of
Δt = 1 × 10−3. To present the solutions in Fig. 8.18, we interpolated the solution in
each element to 30 points in each direction using Algorithm 35 (2DCoarseToFineIn-
terpolation). Figure 8.18 shows contours of the pressure, which illustrates that the
circular shape of the wave is retained. Figure 8.19 shows the comparison of the exact
and computed solutions along the line y = 0.

346 8 Spectral Element Methods

Algorithm 138: DGSEMClass:TimeDerivative: Compute the Time Derivative
for the Discontinuous Galerkin Approximation

Procedure TimeDerivative
Input: t

Uses Algorithms:
Algorithm 112 (DG2DProlongToFaces)
Algorithm 137 (EdgeFluxes)
Algorithm 114 (MappedDGSystemTimeDerivative)

for k = 1 to this.mesh.K do
this.dGSk ← DG2DProlongToFaces(this.spA, this.elementsk.geom, this.dGSk)

end
for i = 1 to this.mesh.Nedge do

this. {dGS}Kk=1 ←
EdgeFluxes(t, this.mesh.edgesi , this.mesh. {elements}Kk=1 , this. {dGS}Kk=1)

end
for k = 1 to this.mesh.K do

this.dGSk ←
MappedDG2DTimeDerivative(this.spA, this.elementsk.geom, this.dGSk)

end
End Procedure TimeDerivative

Fig. 8.18 Computed pressure contours at time t = 1.25 for a propagating circular wave when
N = 20 and Δt = 1 × 10−3. The solutions were interpolated to 30 uniformly spaced points in each
direction on each element. Heavy lines show the element boundaries

8 Spectral Element Methods 347

Fig. 8.19 Comparison of the computed circular wave pressure with the exact solution along the
line y = 0 at t = 1.25

8.4.3 Benchmark Solution: Transmission and Reflection
from a Material Interface

In the introduction to this chapter, we listed four reasons why we might want or
need to use a spectral element approximation instead of a single domain method.
In the previous benchmark, the reason was to avoid the coordinate singularity that
a cylindrical coordinate mesh would produce. In this benchmark, we have two rea-
sons for using a spectral element method. The first is that we can use the method
when there are singularities in the coefficients. The second is to increase effi-
ciency by using smaller elements of lower order. With this benchmark solution we
explore a unique feature of the discontinuous Galerkin spectral element method,
namely its ability to approximate discontinuous solutions at element interfaces ac-
curately.

When a wave propagates across an interface where the wave speed abruptly
changes, part of the wave is transmitted and part of it is reflected. The phenomenon
is familiar in daily life. In electrodynamics, we study the reflection and transmis-
sion of electromagnetic waves at dielectric interfaces. In ultrasound tests, ultrasonic
waves reflect as they propagate through different tissues.

To extend the wave propagation model that we have used so far to include prop-
agation through multiple materials, we now allow the density of the material, ρ,
and the wave speed, c, to vary as a function of location. With these changes, the

348 8 Spectral Element Methods

Fig. 8.20 Model for plane
wave reflection at a material
interface

conservation law form of the wave equation is

⎡

⎢
⎣

p

u

v

⎤

⎥
⎦

t

+
⎡

⎢
⎣

ρc2u

p/ρ

0

⎤

⎥
⎦

x

+
⎡

⎢
⎣

ρc2v

0

p/ρ

⎤

⎥
⎦

y

= 0. (8.78)

As our benchmark problem, we solve for the transmission and reflection of a
plane wave at a plane interface between two materials that have uniform properties
within each, as we show in Fig. 8.20.

The problem has an analytic solution against which we can compare our com-
puted solutions. It is the kind of problem that is solved in electrodynamics texts
for scattering at an interface between two dielectrics. Let ψ(ξ) be a waveform with
maximum value of one, and a be an amplitude. Then each of the incident, reflected
and transmitted plane waves is of the form

q = aψ (k · x − ω (t − t0))

⎡

⎢
⎢
⎣

1
kx

ρc

ky

ρc

⎤

⎥
⎥
⎦ . (8.79)

To define a particular wave, we simply replace k by the appropriate wavevector and
a by the appropriate amplitude. The wavevectors and amplitudes of the reflected and
transmitted waves depend on the incident wave and must satisfy the correct jump
and phase matching conditions at the interface. Let us define the incident wavevector
to be

ki = ω

cL

(
ki
x x̂ + ki

y ŷ
)
, (8.80)

8 Spectral Element Methods 349

where (ki
x)

2 + (ki
y)

2 = 1. Then the reflected and transmitted wavevectors are

kr = ω

cL

(−ki
x x̂ + ki

y ŷ
)
,

kT = ω

cR

⎡

⎣

√

1 −
(

cR

cL

)2 (
ki
y

)2
x̂ + cR

cL

ki
y ŷ

⎤

⎦ .

(8.81)

The corresponding amplitudes are

ar

ai
= 1

J

(
ρRcRkT

x /kT − ρLcLki
x/ki

)
,

aT

ai
= 1

J

(
ρLcLkr

x/kr − ρRcLki
x/ki

)
,

(8.82)

where

J = −ρRcRkT
x /kT + ρLcLkr

x/kr . (8.83)

To use the discontinuous Galerkin approximation, we must define the flux func-
tions and derive a Riemann solver. We get the flux functions from (8.78). To derive
the Riemann solver, remember that it computes the numerical flux F∗(qL,qR; n̂)

given two possibly different states, qL and qR , where left and right are defined ac-
cording to the normal direction n̂ = αx̂ + βŷ. To start, we construct the coefficient
matrix for the system

A =
⎡

⎣
0 αρc2 βρc2

α/ρ 0 0
β/ρ 0 0

⎤

⎦ . (8.84)

The eigenvalues of this system remain the same as before, λ = ±c,0. What makes
the problem interesting now is that the characteristic variables have a jump discon-
tinuity when the wave speeds and the density jump across an interface. Instead of
requiring the characteristic variables to be continuous at an interface, we apply the
Rankine-Hugoniot condition, which says that the normal flux must be continuous.
For the wave equation, this means

ALqL − ARqR = 0, (8.85)

since A depends on both the density and the wave speed. Nevertheless, waves that
propagate to the right are evaluated from qL and waves that propagate to the left are
evaluated from qR , just as before. Under those constraints, a fair amount of algebra
shows that

F∗ (qL,qR; n̂)=

⎡

⎢
⎢
⎣

zR[c(p + ρc(nu + nyv))]L − zL[c(p − ρc(nxu + nyv))]R
nx{ zL

ρL
[p + ρc(nxu + nyv)]L + zR

ρR
[p − ρc(nxu + nyv)]R}

ny{ zL

ρL
[p + ρc(nxu + nyv)]L + zR

ρR
[p − ρc(nxu + nyv)]R}

⎤

⎥
⎥
⎦ ,

(8.86)

350 8 Spectral Element Methods

where

zL = ρLcL

ρLcL + ρRcR

, zR = ρRcR

ρLcL + ρRcR

. (8.87)

Note that when the densities and the wave speeds are the same on both sides, (8.86)
reduces to (5.164). If, in addition, the solution is the same on both sides, it reduces
to the normal flux Aq.

Since the discontinuous Galerkin spectral element approximation allows discon-
tinuities in the solution at element boundaries, it is a natural choice for problems
with material discontinuities, as long as we place element boundaries along mate-
rial boundaries. The only modifications that we need to add beyond the new flux
functions to replace the procedures in Algorithm 94 (WaveEquationFluxes) and the
new Riemann solver to replace Algorithm 88 (RiemannSolver), is to have the el-
ement class store the element’s material properties, ρ and c. When the Riemann
solver is called in Algorithm 137 (EdgeFluxes), it will be passed the material values
from the left and the right elements.

For the benchmark solution, we compute the reflection and transmission of a
plane wave through a vertical material interface, as pictured in Fig. 8.20. We take the
domain to be the square [−5,5] × [−5,5] with the material interface along x = 0.
We subdivide the domain into a structured mesh of 20 elements in each direction so
that each element has a length and width equal to 0.5. We present solutions for N =
10 in each element. For plotting they are interpolated to 12 uniformly spaced points
in each direction in each element. We integrate to t = 3.0 in time with Δt = 0.05.

We model the incident wave as an approximation of a typical ultrasound pulse,

ψ(t) = sin (ωt) e−t2/(ωσ)2
, (8.88)

where ω = 2πf and f is the frequency. For the envelope, σ 2 = −(MT)2/

(4 ln(10−4)) where M is the number of modes in the significant part of the enve-
lope and T = 1/f is the period. We present the specific parameters in Table 8.4.
With these parameters and the mesh, we resolve the sine waves with an average of
about seven points per wavelength. The external state and the initial condition are
set using the exact solution.

We show contours of the computed and exact values of p in Fig. 8.21. Clearly
visible are the incident wave, above on the left, the reflected wave below on the
left, and transmitted wave on the right. Notice that p itself is discontinuous at the
interface between the two materials as is allowed by the discontinuous Galerkin
method. We show p as a function of y in Figs. 8.22 and 8.23. We chose the locations
to be at the nearest Gauss points to x = −1 and x = 0.5.

Table 8.4 Parameters for
plane wave reflection problem Parameter M f ki

x ki
y ρL ρR cL cR t0

Value 4 2.5 0.5
√

3/2 1 0.4 1 0 3

8 Spectral Element Methods 351

Fig. 8.21 Comparison of computed (left) and exact (right) pressure contours at t = 3 for plane
wave reflection at a material interface. Dashed lines are negative contours. The contour levels
range from −0.8 to 0.8 with a step of 0.2. Note the discontinuity in the pressure at the material
discontinuity along x = 0. The overlay of squares shows the locations of the element boundaries

Fig. 8.22 Comparison of the computed and exact pressures along a vertical line to the left of the
material interface

Exercises

8.1 Show that if N and Δx are constants, then the time derivative, (8.22), is the
simple average of the approximations from either side.

352 8 Spectral Element Methods

Fig. 8.23 Comparison of the computed and exact pressures along a vertical line to the right of the
material interface

8.2 Derive the one dimensional spectral element method for the variable coefficient
problem,

ϕt = (ν(x)ϕx)x .

8.3 Derive the spectral element approximation to the advection-diffusion equation.

ϕt + aϕx = νϕxx.

If ν = 0 and N and Δx are constant, show that the time derivative at an element
interface point is the simple average of the spatial derivatives from either side.
Compare the approximation of the advection term to the discontinuous Galerkin
approximation for the same equation.

8.4 Derive the spectral element approximation to the equation

ϕxx = s

with Dirichlet boundary conditions. Develop the algorithms that you need to solve
the equations iteratively.

8.5 Derive the numerical flux, (8.49).

8.6 In general one would want to impose different boundary conditions along dif-
ferent boundaries of a physical problem. In Sect. 5.2.1, we did this by defining an

8 Spectral Element Methods 353

array that specified whether or not to mask a particular boundary. Apply the mask
idea to the spectral element approximation by assigning to each edge in the mesh a
mask variable that is set from information in the mesh file. Show how to modify Al-
gorithms 130–134 to incorporate both Dirichlet boundary conditions and radiation
conditions of the form ∇ϕ · n̂ = γ ϕ.

8.7 Design algorithms to integrate the spectral element approximation to the diffu-
sion equation, (8.71) using the trapezoidal rule for the time integrator. Implement
and test your algorithms and solve the problem with solution

ϕ(x, y, t) = 1

4t + 1
e− ((x−x0)2+(y−y0)2)

4t+1

on the disk.

8.8 The steady incompressible viscous flow in a circular pipe is known as Poiseuille
flow and is a special case of the flows computed in Problem 7.12. If the pipe has
radius R, then the axial velocity of the Poiseuille flow is given by

u(r) = −γ

4

(
R2 − r2).

1. Use the spectral element method to compute the Poiseuille flow and compare the
computed solutions to the exact for γ = −1.

2. Compute to spectral accuracy the volume flow rate Q defined by

Q =
∫

disk
udA

and compare to the exact analytical value

Qpipe = −πR4

8
γ.

8.9 Do Problem 7.13 with a spectral element mesh.

8.10 Develop and implement the algorithms for the spectral element approximation
to the advection-diffusion equation, (8.72) with the semi-implicit time integration of
Sect. 5.3.3. Solve the benchmark problem of Sect. 7.3.6 and compare the computa-
tion time between single and multidomain approximations for a given accuracy.

8.11 Modify Algorithm 137 (EdgeFluxes) to allow it to apply different boundary
conditions to different edges. (Cf. Problem 8.6.)

8.12 In Sect. 5.4.3 we saw that single domain wave propagation requires large order
polynomials to resolve the two main spatial scales, namely the size of the domain

354 8 Spectral Element Methods

Fig. 8.24 A Mesh topology
for scattering of an acoustic
wave off a circular cylinder

and the length scale of the propagating wave. A spectral element approximation
enables us to resolve both scales by subdividing the square into a mesh of smaller
square elements and keep the cost down by using lower order polynomials on the
elements. Redo the solution of the wave equation for both the planewave and cylin-
drical wave problems of Sect. 5.4.3 with multiple square elements. Compare the
cost to compute the solutions to a desired accuracy for several subdivisions of the
square.

8.13 In Sect. 7.4.3 we computed the scattering of an acoustic wave off a cylinder.
As we discussed in Problem 8.12, the differences in scales required us to compute
the solution with very high order polynomials, and with correspondingly small time
steps required by the explicit time differencing. A more efficient approach is to
use a spectral element approximation. Compute the scattering problem with a mesh
topology like that shown in Fig. 8.24 and compare the cost to the single domain
computation.

Appendix A
Pseudocode Conventions

“How to play the flute. (picking up a flute) Well here we are.
You blow there and you move your fingers up and down here.”
in “How to do it”, Monty Python’s Flying Circus, Episode 28.

We use a pseudocode in this book to show how to implement spectral methods.
Pseudocode is a commonly used device to present algorithms. It represents an infor-
mal high level description of what one would program with a computer language.
Pseudocodes omit details like variable declarations, memory allocations, and com-
puter language specific syntax. Too high a level, however, and we risk missing im-
portant details. The goal of pseudocode is to give enough cues to allow the reader to
write a working computer program, no matter what programming language will be
ultimately used to implement it.

We use the LaTex macro “Algorithm2e” written by Christophe Fiorio to typeset
our pseudocode. The macro provides commonly used keywords and ways to rep-
resent flow control such as conditional statements and loops. Comments, however,
look like C/C++ statements. Since comments are typeset with a different font, it
should be pretty clear what is a comment and what is not. Beyond these basic and
common statements, we need to decide how to express both high level and low level
concepts.

To help to read the almost 150 algorithms that we present, we outline some of
the conventions that we use. On the lower level, these conventions include how
we represent variables, arithmetic operations, and arrays. On the higher level, they
include an object oriented philosophy to organize data and procedures.

Variables and Arithmetic Operations We use pseudocode to provide a bridge be-
tween the mathematics and a computer program. To make that bridge, we try to
make the statements look as closely as possible to the equations that they are trying
to implement. Therefore, if we compute something that has a well-known mathe-
matical notation, such as the Chebyshev polynomial of degree n, we write it that
way in the pseudocode, Tn. If the quantity does not have a common name, we make
up a variable name for it. We denote constants by all uppercase names, e.g. NONE,
with underscores to separate words.

As much as possible we write equations in the pseudocode just as we write
them mathematically in the text. Sometimes, however, we represent multiplication
by “ * ” when leaving it out can cause confusion.

Arrays The most common data structure that we use in the spectral methods algo-
rithms is the array. Mathematical vectors and grid values in one space dimension can
be stored as singly dimensioned arrays. Full matrices and grid values in two space
dimensions can be stored as doubly dimensioned arrays. In this book, we represent

D.A. Kopriva, Implementing Spectral Methods for Partial Differential Equations,
Scientific Computation,
© Springer Science + Business Media B.V. 2009

355

356 A Pseudocode Conventions

single arrays by {uj }ej=s and double arrays by {ui,j }ei,j=s , where s and e represent
the start and end indices. When the indices may mean something different, say if we
want to think of an array of two dimensional arrays, we will separate indices with a
semicolon. In any case, since different computer languages have different levels of
support for arrays, we do not imply a particular data model by our arrays except in
one circumstance. That circumstance is when we use iterative methods to solve lin-
ear systems, where we assume that arrays are contiguous in memory and therefore
all representations are equivalent to a singly dimensioned array of the appropriate
length.

Functions and Other Procedures With most computer languages it is difficult to
tell which variables are input, which are output, and which are both. To make these
clear, we write procedure calls like

result ← function(input1, input2).

If an argument is both an input and output variable, it appears both as a result and
as an input

result ← function(input1, input2, result).

Since we work with tensor product spectral approximations in this book, most of
the operations in two dimensions that work on doubly dimensioned arrays reduce
to performing multiple operations on singly dimensioned arrays. We denote a one
dimensional slice of a two dimensional array, say, {Ui,j }N,M

i,j=0, by {Ui,j }Ni=0 for slices

along columns and {Ui,j }Mj=0 along rows. In general, we assume that if an array with
particular extents is passed into a procedure, then those extents are too.

Pointers We express setting a pointer to point to a record or another pointer by the
notation “⇒”. For simplicity, we assume that dereferencing a pointer, i.e., getting
the record to which a pointer points, is automatic. That is, if a pointer p points
to a record in memory that contains a structure data, then we reference that data
by p.data. This is how pointers work in Fortran (with % in place of “.”) and how
references work in C++, but not how pointers work in C/C++, where one would
use p → data.

Object Oriented Algorithms We take an object oriented view of data and procedure
organization. This doesn’t mean that one has to use an object oriented language
to implement these algorithms. As with arrays, different computer languages have
different levels of support for automatically programming this way, so we use object
orientation here to allow us to group variables, simplify procedure arguments, and
reuse procedures that we have already developed. The fundamental construct is the
class, which gathers data in the form of an abstract data type (or structure) and
procedures that work on that data. Member variables and procedures are accessed
in the common, though not universal, dot notation. Therefore if obj is an instance
of a given class, a is a member variable, and f (x) is a member procedure, then

A Pseudocode Conventions 357

we access a by obj.a and invoke f by obj.f (x). For procedure calls, the implicit
assumption is that the object is passed as an argument to the procedure, whether this
is done automatically within the computer language, or explicitly in the argument
list as necessary. Thus, obj.f (x) by itself means

obj ← f (obj, x).

Within the procedure, the object is named this, again common but not universal.
We use the keyword Extends if we want to add data to, or replace procedures in, a
class. In a sense, this represents subclassing that is present in fully object oriented
languages.

Appendix B
Floating Point Arithmetic

Computers use floating point numbers, which behave differently than real numbers.
Discussions of floating point arithmetic in general [16] and the IEEE implemen-
tation [18] used on most computers today can be found in the references. We are
most interested in one number: ε, which represents the relative error due to round-
ing. Several computer languages now have this number as an available parameter.
For instance, in Fortran, it is given by the function EPSILON(). In C/C++ it is
defined in the float.h header file as FLT_EPSILON, with a similar definition for
doubles.

It is well-known that we should never do direct comparisons of equality for float-
ing point numbers ([16], Vol. II, Chap. 4). On the other hand, it is not that obvious
how to write a robust algorithm to test when two floating point numbers are “close
enough” to be considered to be equal. The basic (strong) test for two floating point
numbers, a and b, to be “essentially equal to” each other is that

|b − a| ≤ ε |a| and |b − a| ≤ ε |b| . (B.1)

It is possible, however, for the products on the right to overflow or underflow. We can
avoid those situations by scaling the numbers, or explicitly handling the overflow
situations.

To test the equality of two floating point numbers in the algorithms developed for
this book, such as is necessary for instance in Algorithm 31 (LagrangeInterpolation),

Algorithm 139: AlmostEqual: Testing Equality of Two Floating Point Numbers

Procedure AlmostEqual
Input: a, b

if a = 0 or b = 0 then
if |a − b| ≤ 2ε then

AlmostEqual ← TRUE
else

AlmostEqual ← FALSE
end

else
if |a − b| ≤ ε|a| and |a − b| ≤ ε|b| then

AlmostEqual ← TRUE
else

AlmostEqual ← FALSE
end

end
return AlmostEqual
End Procedure AlmostEqual

D.A. Kopriva, Implementing Spectral Methods for Partial Differential Equations,
Scientific Computation,
© Springer Science + Business Media B.V. 2009

359

360 B Floating Point Arithmetic

we propose Algorithm 139 (AlmostEqual). Note that we do not have to worry about
all exceptional cases here, particularly since the numbers that we work with are in
[−1,1] or [0,2π]. Thus, the only exceptional cases we need to deal with are near
the origin.

Appendix C
Basic Linear Algebra Subroutines (BLAS)

The BLAS provide standard building blocks to perform basic vector and matrix
operations. There are three levels of BLAS, with each level performing more and
more complex operations. The first level, BLAS Level 1, is a collection of routines
that compute common operations such as the Euclidean norm, the dot product, and
vector operations such as y = αx + y, known as AXPY. A PDF reference of the
available routines, blasqr.pdf, can be found at http://www.netlib.org/blas/.

BLAS libraries are freely available on the web, for example at www.netlib.org,
and specifically optimized versions are often included with commercial compilers.
Furthermore, the ATLAS (Automatically Tuned Linear Algebra Software) library
found at http://math-atlas.sourceforge.net can be compiled to create a portably effi-
cient BLAS library.

The BLAS routines are named with the format xNAME, where “x” denotes
the precision of the arithmetic, either “D” for double precision or “S” for single.
(For many routines, complex or complex*16 versions are available with the prefixes
“C” and “Z”, respectively.) For example, the single precision dot product is named
SDOT.

BLAS routines that are of use in this book include DOT, for the Euclidean inner
product, NRM2, for the Euclidean norm, AXPY, for scalar times vector plus vector,
COPY and SCAL. The standard calling arguments are

_DOT(N,X,INCX,Y,INCY)
_NRM2(N,X,INCX)
_AXPY(N,ALPHA,X,INCX,Y,INCY)
_COPY(N,X,INCX,Y,INCY)
_SCAL(N,ALPHA,X,INCX)

In each case, N corresponds to the total number of elements. The arguments X

and Y correspond to the input/output arrays. The integers INCX and INCY indi-
cate the stride of the data, and enable the computation of subarray operations. The
argument ALPHA corresponds to the scalar parameter.

All arrays used in BLAS routines are constrained to be contiguous, a constraint
that should be observed when using languages that define arrays as arrays of point-
ers. As such, the BLAS routines, now called the dense versions, don’t distinguish
between inputs that represent one or two-dimensional arrays.

For completeness, and by way of example, we present prototype algorithms to
compute the dot product, the Euclidean norm, y = αx + y, copy, and scale by a
parameter. In practice, one should use optimized library versions. Consistent with
the dense BLAS philosophy, we constrain the input arrays to be contiguous, so it
does not matter whether arguments represent single or multidimensional arrays.

D.A. Kopriva, Implementing Spectral Methods for Partial Differential Equations,
Scientific Computation,
© Springer Science + Business Media B.V. 2009

361

http://www.netlib.org/blas/
http://www.netlib.org
http://math-atlas.sourceforge.net

362 C Basic Linear Algebra Subroutines (BLAS)

Algorithm 140: BLAS_Level1:A Selection of Basic Linear Algebra Subroutines

Procedure BLAS_NRM2
Input: N , {xj }N∗INCX

j=1 , INCX

z ← 0; i ← 1
for j = 1 to N do

z ← z + x2
i

i ← i + INCX
end
return

√
z

Procedure BLAS_NRM2

Procedure BLAS_DOT
Input: N , {xj }N∗INCX

j=1 , INCX, {yj }N∗INCY
j=1 , INCY

z ← 0; i ← 1; j ← 1
for k = 1 to N do

z ← z + xi ∗ yj

i ← i + INCX
j ← j + INCY

end
return z
Procedure BLAS_DOT

Procedure BLAS_AXPY
Input: N , α, {xj }N∗INCX

j=1 , INCX, {yj }N∗INCY
j=1 , INCY

i ← 1; j ← 1
for k = 1 to N do

yj ← yj + α ∗ xi

i ← i + INCX
j ← j + INCY

end
return {yj }Nj=1
End Procedure BLAS_AXPY

Procedure BLAS_COPY
Input: N , {xj }N∗INCX

j=1 , INCX, {yj }N∗INCY
j=1 , INCY

i ← 1; j ← 1
for k = 1 to N do

yj ← xi

i ← i + INCX
j ← j + INCY

end
return {yj }Nj=1
End Procedure BLAS_COPY

Procedure BLAS_SCAL
Input: N , α, {xj }N∗INCX

j=1 , INCX

i ← 1
for k = 1 to N do

xi ← αxi

i ← i + INCX
end
return {xi}Ni=1
End Procedure BLAS_SCAL

Appendix D
Linear Solvers

Approximations of potential problems and implicit discretizations of time depen-
dent partial differential equations lead to linear systems of equations to solve. We
solve the systems either directly, typically by some variant of Gauss elimination,
or iteratively. In this appendix, we motivate the algorithms that we use to solve the
systems that appear in this book. In no way can a short appendix like this survey
the entire field of numerical linear algebra and all the issues related to efficiency,
parallelism, etc. For further study, we suggest the books [13] or [19].

D.1 Direct Solvers

For small enough systems, or in special cases, direct linear system solvers are ef-
ficient. In this section, we discuss two, namely the Thomas algorithm to solve
tri-diagonal systems, and LU factorization to solve full, general systems. In both
cases, well-tested and portable code with multiple language bindings is available
in the LAPACK [2] library. Some compiler vendors supply precompiled versions
of LAPACK, which should be used if possible. Otherwise, it is possible to down-
load the source code from www.netlib.org (see, in particular, http://www.netlib.org/
lapack/index.html) and compile it oneself.

D.1.1 Tri-Diagonal Solver

Tri-diagonal matrix problems are ubiquitous in numerical analysis, and appear, for
example in Sect. 4.5 with the Legendre Galerkin approximation. For completeness,
therefore, we include the Thomas algorithm for the solution of tri-diagonal systems.
We represent the elements of the matrix by the three vectors �, d and u, for the
subdiagonal, diagonal and superdiagonal elements, numbered as

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d0 u0 0 . . . 0

�1 d1 u1
. . .

...

0 �2 d2
. . . 0

...
. . .

. . . uN−1
0 . . . 0 �N dN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x0
x1
...

xN−1
xN

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

y0
y1
...

yN−1
yN

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (D.1)

D.A. Kopriva, Implementing Spectral Methods for Partial Differential Equations,
Scientific Computation,
© Springer Science + Business Media B.V. 2009

363

http://www.netlib.org
http://www.netlib.org/lapack/index.html
http://www.netlib.org/lapack/index.html

364 D Linear Solvers

Algorithm 141: TriDiagonalSolve:

Procedure TriDiagonalSolve

Input:
{
�j

}N

j=1 ,
{
dj

}N

j=0 ,
{
uj

}N−1
j=0 ,

{
yj

}N

j=0

for j = 0 to N do
d̂j = dj

end
// Forward Elimination
for j = 1 to N do

d̂j = d̂j − �j /d̂j−1 ∗ uj−1

yj = yj − �j /d̂j−1 ∗ yj−1

end
// Backward Substitution

xN = yN/d̂N

for j = N − 1 to 0 step −1 do
xj = (yj − uj ∗ xj+1)/d̂j

end

return
{
xj

}N

j=0
End Procedure TriDiagonalSolve

The Thomas algorithm is a variant of Gauss elimination, and a description of
it can be found in any elementary numerical analysis book. It has two phases, the
forward elimination and the backward substitution.

The first phase of the algorithm is the forward elimination, where we remove the
subdiagonal entries. In the second row, �1 is eliminated when we multiply the first
row by −�1/d0 and add the result to the second. The diagonal entry on the second
element of the modified row and the right hand side become

d̂1 = d1 − u0�1/d0,

ŷ1 = y1 − y0�1/d0.
(D.2)

We eliminate the �2 entry in the third row and all succeeding values of �j by repeat-
ing the procedure for j = 2, . . . ,N . When complete, the matrix is upper bi-diagonal,
so that xN = ŷN/d̂N and for j < N ,

xj = (
ŷj − ujxj+1

)
/d̂j . (D.3)

Since the right hand side vector is rarely needed again in practice, it is usually safe
just to overwrite the original array y with ŷ. Algorithm 141 (TriDiagonalSolve)
shows the whole procedure.

D.1.2 LU Factorization

An LU factorization with partial row pivoting computes a lower triangular, L, upper
triangular, U , and permutation, P , matrix to rewrite a square matrix A in the form

D Linear Solvers 365

A = PLU . The permutation matrix is there to swap rows to ensure that the diagonal
contains the largest element in a column. The attraction of the algorithm is that once
we compute and store the factorization, we solve the system Ax = y efficiently
for multiple right hand sides, y, by a triangular forward substitution followed by a
triangular backward substitution.

To motivate the algorithm, let’s assume that row swapping (pivoting) is not
needed. Then A = LU and we write the matrix multiplication component-wise as

aij =
N∑

n=1

�inunj =
min(i,j)∑

n=1

�inunj , (D.4)

since L is lower triangular and U is upper triangular. If we choose �kk = 1 (giving
us what is known as the Doolittle Method), we can write

akj =
k−1∑

n=1

�knunj + ukj , j = k, . . . ,N,

aik =
k−1∑

n=1

�inunk + �ikukk, i = k + 1, . . . ,N.

(D.5)

We rearrange these to solve for the unknowns

ukj = akj −
k−1∑

n=1

�knunj , j = k, . . . ,N,

�ik = 1

ukk

(

aik −
k−1∑

n=1

�inunk

)

, i = k + 1, . . . ,N.

(D.6)

Typically, one destroys the original matrix by writing U to the upper triangular part
of the A, and L to the lower. Since we chose the diagonal of L to be one, it doesn’t
need to be stored, which allows the diagonal part of U to be stored there instead.

In general, we must swap rows to move the largest element in a row to the di-
agonal. The information can be stored in a single pivot vector, {pj }Nj=1, that simply
tells which row must be swapped with the current row. The procedure Factorize in
Algorithm 142 (LUFactorization) prototypes how to decompose a matrix into its
A = PLU factorization for columnwise storage of the matrix A. Note that this pro-
cedure, like most library factorization procedures, destroys the original matrix to
save storage. An easy mistake to make is to forget and try to use the matrix again
after it has been factorized.

We break the solve operation into two steps. Since A = PLU ,

PLUx = y (D.7)

or

LUx = P y (D.8)

366 D Linear Solvers

Algorithm 142: LUFactorization: Factorization and Solve Procedures to Solve
Ax = y

Procedure Factorize
Input: {Ai,j }N

i,j=1

for k = 1 to N do
p(k) ← k

for i = k + 1 to N do
if |Ai,k | > |Apk,k | then pk ← i

end
if pk 	= k then

for j = 1 to N do
t ← Ak,j ; Ak,j ← Apk,j ; Apk,j ← t

end
end

end
for j = k to N do

s ← 0
for n = 1 to N do

s ← s + Ak,n ∗ An,j

end
Ak,j ← Ak,j − s

end
for i = k + 1 to N do

s ← 0
for n = 1 to k − 1 do

s ← s + Ai,n ∗ An,k
end
Ai,k ← (Ai,k − s)/Ak,k

end
return {Ai,j }N

i,j=1, {pj }N
j=1

End Procedure Factorize

Procedure LUSolve
Input: {Ai,j }N

i,j=1, {pj }N
j=1, {yj,m}N,NRHS

j,m=1

for i = 1 to N do
if pi 	= i then

for m = 1 to NRHS do
t ← yi,m ; yi,m ← ypi ,m

; ypi ,m
← t

end
end

end
for m = 1 to NRHS do

w1 ← y1,m

for i = 2 to N do
s = 0
for j = 1 to i − 1 do

s ← s + Ai,j ∗ wj

end
wi ← yi,m − s

end
yN,m ← wN /AN,N
for i = N − 1 to 1 step −1 do

s = 0
for j = i + 1 to N do

s ← s + Ai,j ∗ yj,m

end
yi,m ← (wi − s)/Ai,j

end
end

return {yj,m}N,NRHS
j,m=1

End Procedure LUSolve

D Linear Solvers 367

since swapping a row then swapping again returns rows to their original state and
implies P −1 = P . If we define w = Ux, we can solve two triangular systems in
succession

Lw = P y,

Ux = w.
(D.9)

The first is simply forward substitution. Since

i∑

j=1

Lijwj = (Py)i , (D.10)

we solve w1 = (Py)1/L11 = (Py)1 and

wi = (Py)i −
i−1∑

j=1

Lijwj , i = 2,3, . . . ,N. (D.11)

We derive a similar back substitution formula to solve Ux = w. The combination
of these two form the LUSolve procedure in Algorithm 142 (LUFactorization). The
input to the procedure is the factorized matrix, i.e. the output of Factorize. To ac-
commodate multiple right hand sides, we assume that a two dimensional array with
NRHS columns is supplied, as is done with the LAPACK routines. The output is then
an array whose columns are the solution vector for each right hand side.

Rather than use these prototype procedures in production, which we present here
to understand how the algorithm works, it is better to use optimized library routines
such as those provided by LAPACK [2]. The LAPACK routines can take advan-
tage of optimized BLAS routines and run efficiently on parallel systems. The two
routines useful for general matrices are

xGETRF(M, N, A, LDA, IPIV, INFO)
xGETRS(TRANS, N, NRHS, A, LDA, IPIV, B, LDB, INFO)

where “x” denotes the data type of the variables, “D” for double, “S” for single, for
instance. The procedures perform the factorization (F) and Solve (S) phases sepa-
rately. The arguments are the number of rows and columns, M and N, the matrix A,
the leading dimension of A, LDA, the pivot vector, IPIV and an error flag. The solve
routine takes a character variable, TRANS, that specifies if the transpose of A is to
be used. The argument N is the order of the matrix A and NRHS is NRHS. The
next three arguments are the same as for xGETRF, but A is the factorized matrix.
Finally, B corresponds to {yj,m}N,NRHS

j,m=1 where LDB is the leading dimension of the
array B.

368 D Linear Solvers

D.2 Iterative Solvers

We construct the solution of a system of equations Ax = y iteratively by adding a
correction to a current iterate, xk ,

xk+1 = xk + ωkvk. (D.12)

The vector vk is the search direction and ω is a parameter that says how far to step
in that direction. The simplest choice of direction is the direction of the iteration
residual

vk = rk ≡ y − Axk (D.13)

giving what is known as the Richardson Iteration method,

xk+1 = xk + ωkrk. (D.14)

For a point of reference, we can write the well-known Jacobi method in this form
with vk = D−1rk , where D is the diagonal part of the matrix A.

We should choose the step parameter ωk so that the iterate, xk+1, is in some sense
closer to the solution than the previous iterate. One choice, for example, is to find
ωk so that the Euclidean norm of the residual at the next step, ‖rk+1‖ is minimized
along the search direction. We relate the residual at the next iteration to that of the
current residual by

rk+1 = y − Axk+1 = y − Axk − ωkArk = rk − ωkArk. (D.15)

The Euclidean norm of the new residual,

∥
∥rk+1

∥
∥=

√〈
rk+1, rk+1

〉=
√
√
√
√

N∑

i=1

(
rk+1
i

)2 (D.16)

is therefore related to the old residual and ωk by the relation

∥
∥rk+1

∥
∥2

2 = 〈
rk+1, rk+1〉

= 〈
rk, rk

〉− 2ωk
〈
rk,Ark

〉+ (
ωk
)2〈

Ark,Ark
〉
, (D.17)

which is quadratic in ωk . We find the minimum as a function of ωk where the deriv-
ative is zero,

d‖rk+1‖2
2

dωk
= 0 = −2

〈
rk,Ark

〉+ 2ωk
〈
Ark,Ark

〉
, (D.18)

giving

ωk = 〈rk,Ark〉
〈Ark,Ark〉 . (D.19)

D Linear Solvers 369

Alternatively, we could choose to minimize some functional other than the next
residual along the search direction. For example, we could minimize

Ψ (x) = 1

2
〈x,Ax〉 − 〈x,y〉, (D.20)

which gives

ωk = 〈rk, rk〉
〈rk,Ark〉 . (D.21)

The functional Ψ has as its minimum the solution of the linear system, and this
choice of ωk gives the method of steepest descent.

The convergence rate is determined by the condition number of the matrix A,
κ(A) = ‖A‖‖A−1‖. The larger the condition number, the slower the convergence.
Spectral collocation matrices have condition numbers that grow rapidly with N . It
is therefore important to mitigate this growth.

We accelerate convergence by introducing a matrix factor to the search direction
in addition to the parameter, ωk , to lower the condition number of the system. We
change the iteration (D.12) to

xk+1 = xk + ωH−1vk, (D.22)

where H is the preconditioning matrix or preconditioner. To see the effect of the
preconditioning matrix, consider the Richardson method for which vk = rk . The
(exact) solution to the system is the fixed point of the iteration that satisfies

x = x + ωkH−1(y − Ax), (D.23)

so x also satisfies the modified (preconditioned) system of equations

H−1Ax = H−1y. (D.24)

We require the matrix H to have two properties: It should be easy to invert, and
it should approximate the original matrix A in such a way that the condition number
κ(H−1A) of the modified system is lower than κ(A). The choice H = A is optimal
from the point of view of conditioning since κ(I) = 1. On the other hand, if A was
that easy to invert in the first place, this whole exercise would be pointless. Instead,
we settle, and choose H to be some easily invertible approximation of A. In fact,
the Jacobi method noted above can be viewed as the preconditioned Richardson
method with the preconditioner H = D, the diagonal part of A, which is clearly
easy to invert.

If we re-trace the steps that we used to determine ωk and gather the relations, we
get the preconditioned minimum residual Richardson method

370 D Linear Solvers

Compute r = y − Ax0

for k = 1 to Nit do
Solve Hz = r for z

ω ← 〈r,Az〉
〈Az,Az〉

x ← x + ωz
r ← r − ωAz

end

We convert the procedure to the method of steepest descent by changing the defini-
tion of ω to (D.21).

Even with preconditioning, the relaxations of the Richardson and steepest de-
scent methods can be slow. The main culprit is that the residual does not necessarily
have to point in the direction of the solution. Instead, there may be a large amount
of backtracking. The problem is easy to imagine in the context of the steepest de-
scent algorithm and two variables. If the functional is shaped more like a long thin
valley instead of a round basin, the downhill direction does not point directly to the
bottom.

For symmetric systems, the popular Conjugate Gradient method eliminates the
backtracking that slows down the convergence of the steepest descent method. In-
stead of choosing the residual as the search direction, it chooses a direction that is
conjugate to all of the previous directions. This guarantees that each search direction
does not contain components in the previous directions already searched.

Descriptions of the Conjugate Gradient method can be found in many sources.
For those not familiar with it, we recommend [13] or [19] for background. In form,
it looks similar to the methods we just discussed,

Compute r = y − Ax0

Solve Hz = r for z
v ← z
c ← 〈r, z〉
for k = 1 to Nit do

z ← Av
ω ← c

〈v,z〉
x ← x + ωv
r ← r − ωz
Solve Hz = r for z
d ← 〈r, z〉
v ← z + d

c
v

c ← d
end

The Conjugate Gradient algorithm is guaranteed to work, however, only for ma-
trices that are symmetric. For non-symmetric systems, it can fail to converge. If
the matrix is nonsymmetric we could solve the problem AT Ax = AT y so that the
coefficient matrix is symmetric. Unfortunately, squaring the matrix increases the
condition number, which slows down the convergence rate. For non-symmetric sys-
tems, we should use methods specifically derived for them, such as the BiCGStab
or the GMRES method. The BiCGStab, for instance is

D Linear Solvers 371

Compute r = y − Ax0

r̄ ← r
v ← 0; p ← 0
ρ ← 1; α ← 1; ω ← 1
for k = 1 to Nit do

ρ̂ ← ρ

ρ = 〈r̄ , r〉
β = ρα/(ρ̂ω)

p = r + β(p − ωv)

Solve Hy = p for y
v ← Ay
α = ρ/ 〈r̄,v〉
s = r − αv
Solve Hz = s for z
t ← Az
ω = 〈t, s〉/ 〈t, t〉
x ← x + αy + ωz
r ← s − ωt
if ‖r‖2 < Tol then Exit

end

The GMRES method requires significantly more storage and we will not describe
it here. We recommend the book [19] for a description of the GMRES method,
should it be needed.

Appendix E
Data Structures

Arrays have both advantages and disadvantages as structures in which to store data.
Their main advantage, beyond their simplicity, is that operations on arrays can be
computed very efficiently. Standardization of such operations has led to the basic
linear algebra subroutines (BLAS) that we discussed in Appendix C. Also, access
to a particular element of an array is fast. The main disadvantage, which goes hand
in hand with simplicity and efficiency, is that arrays are not very flexible. For best
efficiency, we typically must fix the size of an array. If we don’t know the size
beforehand, the addition of new elements or the deletion of existing elements can
require costly allocation and deallocation of blocks of memory, plus the time to
copy data from old to new versions of the array. To enable flexible data storage and
retrieval, we need more sophisticated data structures.

In this appendix we describe two useful data structures. The first is the linked
list. In contrast to arrays, linked lists do not have a specified ordering of the data.
They have the advantage that we can easily add and delete elements of the list, so we
don’t have to know the size of a list in advance. On the negative side, because there
is no structured ordering of the data, it is expensive to find a particular element of
a list. The second data structure is the hash table. Hash tables are flexible structures
that are efficient to search.

Our discussion of data structures will be necessarily brief, and we will discuss
only aspects that we need to implement the spectral element algorithms in this book.
In particular, our discussion of hash tables is limited to an example of a sparse
matrix. Further discussion of the subject of data structures can be found in many
books, such as that of Knuth [16]. Note that it is particularly easy to find detailed
discussions of linked lists, since they are often used in programming language books
for examples of how to use pointers.

E.1 Linked Lists

A linked list is a data structure that consists of a collection of records. In a singly
linked list, the record consists of two parts, namely the data that it holds and a pointer
to the next record. (Variations that we do not need to consider here include doubly
linked lists where a record also has a pointer to the previous record, and circularly
linked lists whose last record points to the first record of the list.) We show a diagram
of a singly linked list in Fig. E.1.

The records linked in a singly linked list data structure contain data and a pointer
(or pointers) to other records. The data stored in the record can be something as
simple as an integer value, or as complicated as a structure that contains a variety

D.A. Kopriva, Implementing Spectral Methods for Partial Differential Equations,
Scientific Computation,
© Springer Science + Business Media B.V. 2009

373

374 E Data Structures

Fig. E.1 Schematics of a singly linked list. Records, represented by boxes, are linked by a pointer
to the next record in the list. A list can be accessed by its head, tail or current pointer

Algorithm 143: Record: An Example Linked List Record Definition

Structure Record
listData // Primitive data type, structure or pointer
next // Pointer to a Record data type

End Structure Record

Algorithm 144: LinkedList: A Linked List Class Definition

Class LinkedList
Data:

head, tail, current // Pointers to Record type

Procedures:
Construct(); // Algorithm 145
Add(data); // Algorithm 145
GetCurrentData(); // Algorithm 145
MoveToNext(); // Algorithm 145
Destruct(); // Algorithm 145
Print(); // Algorithm 145

End Class LinkedList

of other data structures, including arrays and linked lists. To allow for some ab-
straction, let us assume that the data is stored in a structure, such as is provided
as a struct in C/C++ or a TYPE in Fortran. Otherwise, any data that we want to
include is appropriate. We can implement the record itself as a structure as well, or
as a class. We show an example of a Record implemented as a structure in Algo-
rithm 143 (Record). It contains another structure, listData that organizes the actual
data. It also contains a pointer to a Record, which is typically called next.

A list itself is referenced by its head and tail pointers. For convenience, we add
a current pointer that marks a particular record in the list. These pointers comprise
the only data that we need for the list itself shown in Algorithm 144 (LinkedList).

Typical operations to define for a linked list include those that add and delete
records and that traverse the list. Other procedures of importance to more general
problems might sort the records according to some relation in the stored data, pro-
vide copy or merge functions, and the like. For the applications in this book, we need
only to add records to the list, traverse the list, and destroy the list. With these needs
in mind, we define the LinkedList class in Algorithm 144 (LinkedList). It has a con-

E Data Structures 375

Algorithm 145: LinkedList:Procedures:

Procedure Construct

this.head ⇒ NULL
this.tail ⇒ NULL
this.current ⇒ NULL
End Procedure Construct

Procedure Add
Input: data // is either a primitive, a structure, or a pointer

Allocate newRecord
if this.tail ⇒ NULL then

this.head ⇒ newRecord
this.tail ⇒ newRecord

else
this.tail.next ⇒ newRecord
this.tail ⇒ newRecord

end
this.current ⇒ this.tail
this.current.next ⇒ NULL
this.current.listData ← data
End Procedure Add

Procedure GetCurrentData
return this.current.listData
End Procedure GetCurrentData

Procedure MoveToNext
this.current ⇒ this.current.next
End Procedure MoveToNext

Procedure Destruct
this.current ⇒ this.head
while this.current 	⇒ NULL do

pNext ⇒ this.current.next
Deallocate memory pointed to by this.current
this.current ⇒ pNext

end
End Procedure Destruct

Procedure Print
this.current ⇒ this.head
while this.current 	⇒ NULL do

Print this.current.data
this.MoveToNext()

end
End Procedure Print

structor, destructor, a procedure to add new data, a procedure to get the data in the
current record, and a procedure that moves the current pointer to the next element
of the list. The implementations of those procedures are shown in Algorithm 145
(LinkList:Procedures).

376 E Data Structures

The constructor for the linked list in Algorithm 145 (LinkList:Procedures) has
little to do. It simply sets the pointers to point to NULL, which denotes that the
pointer does not yet point to any record.

The Add procedure takes data as input, creates (allocates) a pointer to a new
record and adds the new record to the end of the list, if the list is not empty. If
the list is empty, then the new record becomes the start of the list and all the list’s
pointers point to it.

The MoveToNext and Destruct procedures illustrate how to navigate the list. To
move one step from any position in the list, the current pointer is pointed to it’s
next pointer. The Destruct procedure shows how to navigate through the entire list.
There, we set a pointer to the head and another to its next pointer (to keep the next
record accessible). A while loop then steps through the entire list until the end, which
is detected by the current pointer pointing to NULL. At each step, the memory to
which the current record points is destroyed, and the current pointer is set to point
to what was the next record in the list.

We could construct new procedures to perform whole list actions, such as
printing the list or searching for a record whose data matches a given criterion,
by modifying the Destruct procedure. The Print procedure in Algorithm 145
(LinkList:Procedures), for instance, loops through the list and prints the data as-
sociated with the record pointed to by the current pointer. To search for a record
with particular data, we would replace the print line in the Print procedure with a
test on the data.

The Add and Delete procedures illustrate the flexibility of a linked list to store
data when we do not know the number of records ahead of time. The Destruct and
Print procedures show the weakness of a linked list. To access a particular record,
we must start at the beginning and search for it sequentially. There is no mechanism
for random access to the records, say, to access the fifth element directly, as can be
done with an array. Neither can the list find a particular record with a given data
value without stepping through the list from the beginning.

E.1.1 Example: Elements that Share a Node

One example of where a linked list is useful is to collect the id’s of all the spectral
elements in a mesh that share a common corner node. In a structured mesh, a node
might be shared by one, two or four elements. In an unstructured mesh a node may
in principle be shared by any number of elements (Fig. E.2). Operations on each list
are typically of a “ForAll” type, so the entire list must be traversed, but the order in
which elements are accessed is not often important. For these needs, a linked list is
appropriate to store the shared elementID’s for each node.

Let us assume that we have an array of nodes stored by their nodeID, and an
array of elements stored by their elementID. We create such arrays by reading the
information from a data file created by a mesh generator. Each node will store (in ad-
dition to its other data, such as location) a linked list whose data is just an elementID
(Fig. E.2). We will not need to modify this shared element data after it is created,

E Data Structures 377

Fig. E.2 Linked lists associated with nodes that store neighboring element id’s

so a singly linked list is sufficient to store the data. Each element will have an array
that contains the nodeIDs of the four nodes that define the corners of the element.
Each element knows the nodeID’s of its corners, since that information is provided
by the mesh file. The nodes, however, do not know which elements share them.

To construct the lists of shared elements, we would loop through each element
and for each node in the element, add the element’s elementID to the list associated
with the node with that nodeID. Specifically, given an array of elements {ej }Ne

j=1,

which stores the nodeIDs of its nodes in the array {nodeIDj }4
j=1, and array of nodes

{nodei}Nnode
i=1 , which stores a linked list of elementIDs, the logic to create a list of

shared elements is
for elementID = 1 to Ne do

for k = 1 to 4 do
n = ej .nodeIDk

noden.elementList.Add(elementID)
end

end

The shared elements for each node can then be accessed and printed by a simple
loop

for i = 1 to Nnode do
nodei .elementList.Print()

end

E.2 Hash Tables

Hash tables are data structures designed to enable storage and fast retrieval of key-
value pairs. An example of a key-value pair is a variable name (“gamma”) and its

378 E Data Structures

associated value (“1.4”). The table itself is typically an array. The location of the
value in a hash table associated with a key, k, is specified by way of a hash func-
tion, H(k). In the case of a variable name and value, the hash function converts
the name into an integer that tells it where to find the associated value in the ta-
ble.

A very simple example of a hash table is, in fact, a singly dimensioned array. The
key is the array index and the value is what is stored at that index. Multiple keys can
be used to identify data; a two dimensional array provides an example where two
keys are used to access memory and retrieve the value at that location. If we view
a singly dimensioned array as a special case of a hash table, its hash function is
just the array index, H(j) = j . A doubly dimensioned array could be (and often is)
stored columnwise as a singly dimensioned array by creating a hash function that
maps the two indices to a single location in the array, e.g., H(i, j) = i + j ∗ N ,
where N is the range of the first index, i.

Although arrays provide fast access to their data, they allocate storage for all
possible keys, and only set the value for a key if the data associated with a particular
key is present. A matrix, for instance, can be stored as a two-dimensional array.
The value of the (i, j)th element of the matrix is stored at a location in memory
associated with the two keys, (i, j). A sparse matrix can require much more memory
than necessary when stored this way, since most of the elements are zero and don’t
need to be stored at all. It is for sparse data structures like this that hash tables are
useful.

To create a hash table, we need a storage model and a hash function. Each has
practical issues. Often it is convenient and efficient to store the data in an array
of fixed size. The hash function will then map the keys to an element of that array.
However, when we are done, we want that array to be fully populated so that there is
no wasted space. Therefore, we don’t want to allocate an array that can hold all pos-
sible values for all possible keys (as in the matrix storage problem above), only ones
that can hold the values for keys that occur. It is not generally desirable to create a
“perfect” hash function that generates a unique index for a given set of keys. In-
stead, collisions will be allowed where different keys can give the same hash value,
i.e., point to the same location in the array. For instance, it is unrealistic to create a
dictionary (word + definition) by allocating storage for every possible combination
of letters. Instead we might define a finite array and create a hash function to map to
that array. We could create the hash function by assigning a value to each letter, like
its position in the alphabet, and adding the values in the word. Thus the word “dad”
would be hashed to index 4 + 1 + 4 = 9. But so would “fab”.

Of the many ways to resolve collisions, chaining is common. To use chaining,
each entry in the array stores a pointer to a linked list, instead of storing values in
the hash table array itself. As collisions occur, the new entry is added to the linked
list. Then, when it is time to retrieve the value associated with a key, the key is
hashed and the linked list at the location given by the hash value is then searched
(sequentially) for the actual key. Yes, we have already said that it is slow to search a
linked list. But if the table is of a reasonable size, and the hash function is reasonable,
then the number of collisions, and hence the number of entries in the linked list, will
be small and quickly searched.

E Data Structures 379

Fig. E.3 Example of sparse matrix representation by a hash table

Algorithm 146: SparseMatrix: A Sparse Matrix Class Definition

Class SparseMatrix
Data:

{tablei} // Array of pointers to LinkedList

Procedures:
Construct(N) ; // Algorithm 147
AddDataForKeys(data, i, j); // Algorithm 147
DataForKeys(i, j); // Algorithm 147
ContainsKeys(i, j); // Algorithm 147
Destruct(); // Algorithm 147

End Class SparseMatrix

Structure TableData
key // an integer
data // a primitive type, structure, or pointer

End Structure TableData

Since matrices are easy to understand, we show how to use a simple hash table
with chaining to store and retrieve values from a sparse matrix. The algorithm will be
useful to delete duplicate edges in a mesh. We show a diagram of the data structure
in Fig. E.3. To start, note that if the matrix is invertible, then it cannot have a row that
is all zeros, that is, every row must have at least one entry. Therefore, the table itself
should be an array of length N , where N is the order of the matrix. Each location in
the table will correspond to a row in the matrix and the hash function for a matrix
element (i, j) is simply H(i, j) = i. Clearly there will be collisions, since each row
hashes to the same table entry. For this reason, we will use chaining so that each
item of the table array will be a pointer to a linked list. A record in the linked list
will store two pieces of data, namely the column j and the value of the matrix entry
in the ith column and j th row.

We show a sparse matrix class and data definition that describe these require-
ments in Algorithm 146 (SparseMatrix). Note that we allocate the storage for the
array of pointers in the constructor to allow variable size arrays to be created, see
Algorithm 147 (SparseMatrix:Procedures). The destructor, Destruct tells each of the
linked lists to destruct themselves and then deallocates the memory for the array.

380 E Data Structures

Algorithm 147: SparseMatrix:Procedures:

Procedure Construct
Input: N // Order of the matrix

Allocate memory for this. {tablei}Ni=1
for i = 1 to N do

this.tablei ⇒ NULL
end
End Procedure Construct

Procedure AddDataForKeys
Input: inData, i, j

if this.tablei ⇒ NULL then this.tablei .Construct()
if this.ContainsKeys(i, j) = FALSE then

d.key ← j ;d.data ← inData // d is of type TableData
this.tablei .Add(d)

end
End Procedure AddDataForKeys

Procedure ContainsKeys
Input: i, j

if this.tablei ⇒ NULL then return FALSE
this.tablei .current ⇒ this.tablei .head
while this.tablei .current 	⇒ NULL do

d ← this.tablei .GetCurrentData()

if d.key = j then return TRUE
this.tablei .MoveToNext()

end
return FALSE
End Procedure ContainsKeys

Procedure GetDataForKeys
Input: i, j

if this.tablei ⇒ NULL then setError
this.tablei .current ⇒ this.tablei .head
while this.tablei .current 	⇒ NULL do

d ← this.tablei .GetCurrentData()

if d.key = j then return d.data
this.tablei .MoveToNext()

end
setError
End Procedure GetDataForKeys

Procedure Destruct
for i = 1 to N do

this.tablei .Destruct()
this.tablei ⇒ NULL

end
Deallocate memory for this. {tablei}Ni=1
End Procedure Destruct

E Data Structures 381

We need three basic procedures for the SparseMatrix class. We present imple-
mentations of them also in Algorithm 147. The first procedure is the AddDataFor-
Keys procedure, which adds the matrix entry for the pair (i, j). It first checks to see
if the ith row has been created and constructs a linked list to which it will point. It
then checks (just to be safe) to see if the current entry has already been added. If not,
the column, j , and value are added to the linked list for row i. The ContainsKeys
function does a linear search from the head of the list for the ith row and checks
to see if the key matches the column number. If so, the (i, j)th component is in
the table. Finally, the DataForKeys procedure returns the data that is stored for the
matrix entry, if the entry exists. For safety, it first checks to see if the ith column
has been created. If not, an error condition must be set, which we represent generi-
cally by a call to some setError procedure. (Setting an error could include setting an
output “flag” variable, creating and returning an “error handler” structure, or throw-
ing an exception, depending on the computer language being used.) If the ith row
is present, the DataForKeys procedure then searches through the list for a record
whose key matches the desired column. On the chance that the current position in
the list already corresponds to the desired column, the value there is returned. Oth-
erwise, it searches from the beginning by using the ContainsKeys procedure.

We could add other procedures to the sparse matrix class, but we don’t need
them here. For instance, if we wanted to write a sparse matrix-vector multiplication
procedure, we would add a GetNextData procedure that steps to the next record in
the list for the ith row and returns the row (to access the vector element) and the
value for the factor.

E.2.1 Example: Avoiding Duplicate Edges in a Mesh

As an example that uses the sparse matrix algorithm, we create an array of unique
edges in a mesh. (See Sect. 8.2.) Two nodeID’s define an edge, one for the start
and one for the end, and hence, an edge is uniquely specified by two keys. If the
only information in a mesh file are the nodes and the element connectivity that
specifies which nodes are used to create the element, we can generate a collec-
tion of edges by looping through each element and creating the four edges from
the corner nodes. Defined counter-clockwise on an element, the four edges corre-
spond to the local index of the four corner nodes (1,2), (2,3), (3,4) and (4,1)

(Fig. E.4). To simplify the edge generation procedure, we can create a local map-
ping array (which, itself, can be viewed as a simple hash table), {pi,k}2,4

i=1,k=1, where
(p1,1,p2,1) = (1,2), (p1,2,p2,2) = (2,3), etc. Suppose an element has an array,
{nodesk}4

k=1 that stores the global id’s of its corner nodes. Then the global id’s of
the start and end nodes for side one of the element are nodesp1,1 and nodesp2,1 . We
can construct a linked list of edges, edgeList from an array of elements elArray by
the algorithm

382 E Data Structures

Fig. E.4 Organization of
element nodes (circles) and
edges (squares)

for j = 1 to Ne do
for k = 1 to 4 do

edge.startNode ← elArrayj .nodesp1,k

edge.endNode ← elArrayj .nodesp2,k

edgeList.Add(edge)
end

end

Unfortunately, this procedure will create duplicate edges since it counts shared
edges twice. To avoid duplicates, we need to test if an edge that is to be about
created already exists in the list of edges, i.e., has the same two end nodes. Rather
than search the entire list every time, we will create a parallel data structure, in the
form of a sparse matrix that we implement as a hash table, so that a search for a
given edge is fast. If the edge already exists in the table, we will not add it to the list.
At the same time, we will find for free the neighbor to the element across that edge.

Since an edge is uniquely determined by its two end nodes, it is natural to use
two keys and two hash functions. A simple choice for the two hash functions is
key1 = Hash1(i, j) = min(i, j) and key2 = Hash2(i, j) = max(i, j) where i and j

are the starting and ending node number. The data held by the table will be simply
the edge number of the edge that has the two keys.

The hash table is an efficient way to store the edges so that they can be accessed
quickly according to their endpoints. The first key will range from one to the number
of nodes, so this will be the size of the array that we construct. Since most mesh
generators keep the valence of a node low, ≤ 6, the number of edges with the same
first key, which is equal to the valence, is small. Therefore the number of collisions
in the table will be small relative to the size of the table.

We modify the procedure above that we wrote to create the list of edges to use the
hash table to fill the edge array of the mesh structure of Algorithm 126 (QuadMesh).
The result is Algorithm 148 (ConstructMeshEdges). As each edge is found, we first
consult the table to see if that edge already exists in the edge array. If it doesn’t,
we add the edge to the array and the position of the edge in the edge array to the
table. If the edge does already exist, then we do not create a new edge. At that

E Data Structures 383

Algorithm 148: ConstructMeshEdges: Construct Edge Information for a Spec-
tral Element Mesh

Procedure ConstructMeshEdges
Input: mesh // A QuadMesh
Uses Algorithms:

Algorithm 126 (QuadMesh)
Algorithm 144 (LinkedList)
Algorithm 146 (SparseMatrix)

edgeTable.Construct(mesh.Nnode) // A SparseMatrix
for eID = 1 to mesh.K do

for k = 1 to 4 do
l1 ← mesh.edgeMap1,k

l2 ← mesh.edgeMap2,k

startId ← mesh.elementseID.nodeIdsl1
endId ← mesh.elementseID.nodeIdsl2
key1 ← Hash1(startId, endId)

key2 ← Hash2(startId, endId)

if edgeTable.ContainsKeys(key1, key2) then
edgeId ← edgeTable.GetDataForKeys(key1, key2)

e1 ← mesh.edgesedgeId.elementIds1
s1 ← mesh.edgesedgeId.elementSides1
l1 ← mesh.edgeMap1,s1
n1 ← mesh.elementse1.nodeIDsl1
mesh.edgesedgeId.elementId2 ← eID
if startId = n1 then

mesh.edgesedgeId.elementSide2 ← k

else
mesh.edgesedgeId.elementSide2 ← −k

end
else

mesh.Nedge ← mesh.Nedge + 1
edgeId ← mesh.Nedge

{nodesn}2
n=1 ← {startId, endId}

mesh.edgesedgeId.Construct({nodesn}2
n=1 , eID, k)

edgeTable.AddDataForKeys(edgeId, key1, key2)

end
end

end
edgeTable.Destruct()
return mesh
End Procedure ConstructMeshEdges

point in the algorithm, however, we know the current element and side that would
have created the duplicate edge. From the array of edges we know the element and
side that originally created the edge. Therefore we get the information about the two
elements that contribute to an edge for free at the time the duplicate edge is rejected.
This information is the element id, the element side, and whether or not the direction
of the edge is swapped. When we finish creating the array of edges, we destroy it
since we no longer need it.

References

1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions: with Formulas, Graphs,
and Mathematical Tables. Dover, New York (1965)

2. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Croz, J.D., Green-
baum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide, 3rd edn.
SIAM, Philadelphia (1999)

3. Ascher, U.M., Petzold, L.R.: Computer Methods for Ordinary Differential Equations and
Differential-Algebraic Equations. SIAM, Philadelphia (1998)

4. Boyd, J.P.: Chebyshev and Fourier Spectral Methods, 2nd revised edn. Dover, New York
(2001)

5. Bracewell, R.: The Fourier Transform and Its Applications. McGraw-Hill, New York (1999)
6. Brigham, E.: Fast Fourier Transform and Its Applications. Prentice Hall, New York (1988)
7. Canuto, C., Hussaini, M., Quarteroni, A., Zang, T.: Spectral Methods: Fundamentals in Single

Domains. Springer, Berlin (2006)
8. Canuto, C., Hussaini, M., Quarteroni, A., Zang, T.: Spectral Methods: Evolution to Complex

Geometries and Applications to Fluid Dynamics. Springer, Berlin (2007)
9. Deville, M., Fischer, P., Mund, E.: High Order Methods for Incompressible Fluid Flow. Cam-

bridge University Press, Cambridge (2002)
10. Don, W.S., Solomonoff, A.: Accuracy and speed in computing the Chebyshev collocation

derivative. SIAM J. Sci. Comput. 16, 1253–1268 (1995)
11. Farrashkhalvat, M., Miles, J.P.: Basic Structured Grid Generation: With an Introduction to

Unstructured Grid Generation. Butterworth-Heinemann, Stoneham (2003)
12. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proc. IEEE 93(2), 216–

231 (2005)
13. Golub, G.H., Loan, C.F.V.: Matrix Computations. Johns Hopkins University Press, Baltimore

(1996)
14. Hesthaven, J.S., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-Dependent Problems.

Cambridge University Press, Cambridge (2007)
15. Knupp, P.M., Steinberg, S.: Fundamentals of Grid Generation. CRC Press, Boca Raton (1993)
16. Knuth, D.E.: The Art of Computer Programming. Addison-Wesley, Reading (1998)
17. Lambert, J.D.: Numerical Methods for Ordinary Differential Systems: The Initial Value Prob-

lem. Wiley, New York (1991)
18. Overton, M.L.: Numerical Computing with IEEE Floating Point Arithmetic. SIAM, Philadel-

phia (2001)
19. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)
20. Schwab, C.: p- and hp-Finite Element Methods: Theory and Applications in Solid and Fluid

Mechanics. Oxford University Press, London (1988)
21. Shen, J., Tang, T.: Spectral and High-Order Methods with Applications. Science Press, Beijing

(2006)
22. Swarztrauber, P.: On computing the points and weights for Gauss-Legendre quadrature. SIAM

J. Sci. Comput. 24(3), 945–954 (2002)
23. Temperton, C.: Self-sorting in-place fast Fourier transforms. SIAM J. Sci. Stat. Comput. 12(4),

808–823 (1991)
24. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, Berlin

(1999)
25. Williamson, J.: Low storage Runge-Kutta schemes. J. Comput. Phys. 35, 48–56 (1980)
26. Yakimiw, E.: Accurate computation of weights in classical Gauss-Christoffel quadrature rules.

J. Comput. Phys. 129, 406–430 (1996)

D.A. Kopriva, Implementing Spectral Methods for Partial Differential Equations,
Scientific Computation,
© Springer Science + Business Media B.V. 2009

385

Index of Algorithms

2DCoarseToFineInterpolation, 79

A
AdvectionDiffusionTimeDerivative, 103
AlmostEqual, 359
ApproximateFEMStencil, 183

B
Backward2DFFT, 51
BackwardRealFFT, 52
BarycentricWeights, 75
BFFTEO, 48
BFFTForTwoRealVectors, 45
BiCGSSTABSolve, 169
BLAS_Level1, 362

C
CGDerivativeMatrix, 133
ChebyshevDerivativeCoefficients, 31
ChebyshevGaussLobattoNodesAndWeights,

68
ChebyshevGaussNodesAndWeights, 67
ChebyshevPolynomial, 60
CollocationPotentialDriver, 170
CollocationRHSComputation, 160
CollocationStepByRK3, 98, 116
ConstructMeshEdges, 383
CornerNodeClass, 322
CurveInterpolant, 226
CurveInterpolantProcedures, 227

D
DFT, 40
DG2DProlongToFaces, 285
DGSEM1DClasses, 311
DGSEMClass, 343
DGSEMClass:TimeDerivative, 346
DGSolutionStorage, 283
DGStepByRK3, 141
DirectConvolutionSum, 110
DiscreteFourierCoefficients, 17

E
EdgeClass, 324

EdgeFluxes, 345
EOMatrixDerivative, 85
EvaluateFourierGalerkinSolution, 104
EvaluateLegendreGalerkinSolution, 127

F
FastChebyshevDerivative, 86
FastChebyshevTransform, 73
FastConvolutionSum, 112
FastCosineTransform, 72
FDPreconditioner, 166
FDPreconditioner:Construct, 166
FDPreconditioner:Solve, 168
FFFTEO, 47
FFFTOfTwoRealVectors, 44
Forward2DFFT, 50
ForwardRealFFT, 52
FourierCollocationDriver, 99
FourierCollocationTimeDerivative, 97
FourierDerivativeByFFT, 54
FourierDerivativeMatrix, 55
FourierGalerkinDriver, 105
FourierGalerkinStep, 104
FourierInterpolantFromModes, 18
FourierInterpolantFromNodes, 18

G
GlobalMeshProcedures, 314
GlobalTimeDerivative, 288

I
InitializeFFT, 41
InitTMatrix, 128
InterpolateToNewPoints, 77

L
LagrangeInterpolantDerivative, 80
LagrangeInterpolatingPolynomials, 77
LagrangeInterpolation, 75
LaplaceCollocationMatrix, 161
LaplacianOnTheSquare, 178
LegendreCollocation, 118
LegendreDerivativeCoefficients, 31

D.A. Kopriva, Implementing Spectral Methods for Partial Differential Equations,
Scientific Computation,
© Springer Science + Business Media B.V. 2009

387

388 Index of Algorithms

LegendreGalerkinStep, 130
LegendreGaussLobattoNodesAndWeights,

66
LegendreGaussNodesAndWeights, 64
LegendrePolynomial, 60
LegendrePolynomialAndDerivative, 63
LinkedList, 374
LinkedList:Procedures, 375
LocalDSEMProcedures, 312
LUFactorization, 366

M
MappedCollocationDriver, 259
MappedDG2DBoundaryFluxes, 286
MappedDG2DTimeDerivative, 287
MappedGeometry:Construct, 245
MappedGeometryClass, 244
MappedNodalDG2DClass, 284
MappedNodalPotentialClass, 250
MappedNodalPotentialClass:Construct, 250
MappedNodalPotentialClass:

MappedLaplacian, 251, 255
MaskSides, 158
ModifiedCoefsFromLegendreCoefs, 128
ModifiedLegendreBasis, 127
mthOrderPolynomialDerivativeMatrix, 83
MultistepIntegration, 199
MxVDerivative, 56

N
Nodal2DStorage, 155
NodalAdvDiffClass, 195
NodalAdvDiffClass:Construct, 196
NodalAdvDiffClass:ExplicitRHS, 197
NodalAdvDiffClass:MatrixAction, 198
NodalAdvDiffClass:Residual, 198
NodalAdvDiffClass:Transport, 196
NodalDG2D:Construct, 213
NodalDG2D:DG2DTimeDerivative, 215
NodalDG2DClass, 213
NodalDG2DStorage, 212
NodalDiscontinuousGalerkin, 138
NodalDiscontinuousGalerkin:Construct,

139
NodalDiscontinuousGalerkin:DGDerivative,

139
NodalDiscontinuousGalerkin:

DGTimeDerivative, 140
NodalPotentialClass, 155
NodalPotentialClass:Construct, 156

NodalPotentialClass:
LaplacianOnTheSquare, 156

NodalPotentialClass:MatrixAction, 158

P
PolynomialDerivativeMatrix, 82
PolynomialInterpolationMatrix, 76
PotentialOnAnnulus, 270
PreconditionedConjugateGradientSolve,

187

Q
qAndLEvaluation, 65
QuadElementClass, 323
QuadMap, 225
QuadMapMetrics, 243
QuadMesh, 325
QuadMesh:Construct, 327

R
Radix2FFT, 42
Record, 374
Residual, 162, 339
RiemannSolver, 211

S
SEM1DClass, 302
SEMGlobalProcedures1D, 304
SEMGlobalSum, 337, 338
SEMMask, 334
SEMPotentialClass, 332
SEMPotentialClass:Construct, 333
SEMPotentialClass:MatrixAction, 339
SEMProcedures1D, 306
SEMUnMask, 336
SetBoundaryValues, 340
SparseMatrix, 379
SparseMatrix:Procedures, 380
SSORSweep, 186
SystemDGDerivative, 214

T
TransfiniteQuadMap, 230
TransfiniteQuadMetrics, 243
TransposeMatrixMultiply, 254
TrapezoidalRuleIntegration, 307
TriDiagonalSolve, 364

W
WaveEquationFluxes, 216

Subject Index

A
Accuracy

exponential order, 10, 296
floating point, 359
infinite order, 10
multidomain, 296
polynomial order, 10, 296
spectral, 10, 100

Action, 153
Advection-diffusion equation, 91, 94, 102,

188, 272, 273, 277
Affine transformation, 38, 180, 225, 298
Algorithm2e, 355
Aliasing error, 13, 19–21, 144, 146, 147

convolution sum, 110
Fourier, 100, 101
polynomial, 36

Annulus, 264
Arc length, 226–228, 233
Arrays, 355

mapping, 325, 381
mask, 157
pointer, 194, 303
slices, 157, 356

B
Backward transform, 40, 47, 48, 50, 52, 71
Barycentric interpolation, 74

derivative matrix, 81
derivatives, 79
weights, 74

Basis
Chebyshev, 24
choice of, 144
contravariant, 233, 238
covariant, 233, 238
Fourier, 4
Legendre, 24
mixed polynomial, 267
modified, 124
orthogonal polynomial, 23
tensor product, 48

Benchmark solution
acoustic scattering off a cylinder, 285
advection-diffusion in a curved channel,

277
advection-diffusion in a non-square

geometry, 276
advection-diffusion on the square, 200
circular sound wave, 217
circular sound wave in a circular domain,

344
cooling of a temperature spot, 305
cylindrical rod, 340
Fourier collocation, 99
Fourier Galerkin, 106
incompressible flow over an obstacle, 261
Legendre nodes and weights, 67
nodal continuous Galerkin, 134
nodal discontinuous Galerkin, 143
nodal Galerkin on the square, 186
one dimensional wave propagation and

reflection, 315
plane wave propagation, 216
polynomial collocation, 119
polynomial collocation on the square,

170
potential in an annulus, 271
potential in non-square domain, 259
spectral element mesh for a disk, 326
transmission and reflection from a mater-

ial interface, 347
Best approximation, 11, 28
BLAS basic linear algebra subroutines, 361
Boundary conditions

collocation approximation, 93, 115, 121
Dirichlet, 248, 253
far field, 286
Neumann, 134, 248, 253
nodal continuous Galerkin approxima-

tion, 132
nodal discontinuous Galerkin approxima-

tion, 135
periodic, 3, 94
reflection, 211, 212

D.A. Kopriva, Implementing Spectral Methods for Partial Differential Equations,
Scientific Computation,
© Springer Science + Business Media B.V. 2009

389

390 Subject Index

upwind, 136, 208
weak imposition, 136

Burgers equation, 107
collocation approximation, 112
equivalent forms, 113
Galerkin approximation, 107

C
Chebyshev polynomials, 24, 25

derivative recursion, 25
evaluation, 59
norm, 25
rounding error, 61
three term recursion, 25
trigonometric form, 25

Class, 356
Classical solution, 91
Coefficients

discrete, 14
discrete Fourier, 40
discrete polynomial, 36
Fourier, 6
polynomial, 26
rate of decay, 8

Collocation approximation, 93, 144
advection-diffusion equation, 94, 95,

188, 273
diffusion equation, 115
eigenvalues, 96
Fourier, 94
in annulus, 267
Laplacian approximation, 152, 153, 161
multidimensional, 152
nonlinear Burgers equation, 112
polynomial, 115
potential equation, 247, 249, 264
scalar advection, 120
variable coefficients, 95, 96

Complex conjugate, 5
Computational domain, 223
Condition number, 369
Contravariant

metric tensor, 237
vector, 237

Convolution sum, 108, 109, 111
Coordinate transformations, 223

advection-diffusion equation, 272
conservation laws, 280
curl, 237

curved quadrilaterals, 229
divergence, 234, 235, 238
gradient, 236, 239
Jacobian, 234, 238
Laplacian, 237
metric identities, 235, 240
metric terms, 240
normal vectors, 236, 238
straight sided quadrilateral, 224
two dimensional forms, 238

Coordinates
computational space, 223, 232
physical space, 223, 232

Covariant
metric tensor, 233
vector, 237

Cyclic, 234

D
Data structures, 373

arrays, 355
hash tables, 377
linked list, 373
mesh, 323
record, 374

Derivative matrix, 54, 81, 82, 132, 137, 208
Derivatives

Chebyshev series, 28
collocation, 93
commuting with interpolation, 22
decay of coefficients, 8
direct evaluation from interpolant, 79
even odd decomposition, 82
Fast Fourier Transform, 53
finite difference, 163
Fourier interpolant, 21
Fourier matrix, 54
Fourier series, 6
Fourier truncation, 7
higher order Fourier, 53
Lagrange form, 22
Legendre polynomial, 63
Legendre series, 26, 27
matrix-vector multiplication, 54, 81
metric terms, 240
nodal continuous Galerkin, 132
nodal discontinuous Galerkin, 137, 208
performance comparison, 84
polynomial interpolant, 78
three term recursion, 24, 25

Subject Index 391

transform methods, 84
truncated series, 30

DFT, 40
Differential elements, 233

arc length, 233
surface area, 234
volume, 234

Diffusion equation, 3, 91, 92
collocation approximation, 115
Legendre Galerkin approximation, 123
nodal Galerkin approximation, 129
spectral element approximation, 331

Direct solvers, 158, 179, 363
Discontinuous coefficients, 294
Discrete Fourier transform, 17

E
Eigenvalues

and plane wave propagation, 203
discontinuous Galerkin, 141
Fourier collocation, 96
Fourier derivative matrix, 38
polynomial collocation first derivative,

121
polynomial collocation second deriva-

tive, 116
stability, 122

Energy, 92
Equation

advection-diffusion, 91, 94, 102, 188,
272, 273, 277

Burgers, 107
classical solution, 91
conservation law, 203, 280
diffusion, 115, 123, 129, 297
nonlinear, 107
Poisson, 326
potential, 91, 170, 174, 247, 262, 265,

326
scalar advection, 120, 135, 140
strong form, 91
wave, 91, 202, 348
weak form, 91
weak solution, 92

Error
floating point, 61
interpolation, 19
truncation, 7

Euclidean norm, 368
Extends keyword, 357

F
Fast Fourier Transform, 39, 41

even-odd decomposition, 45
interpolant derivatives, 53
real sequences, 43
real transform, 50
simultaneous with two real sequences, 43
two space variables, 48

FFTW, 39
Filtering, 37
Finite difference preconditioner, 162
Finite element preconditioner, 180
Flux

contravariant, 239, 247
heat, 91
normal, 282
numerical, 209
upwind, 208
vector, 203

Forward transform, 40
Fourier

coefficients, 3, 6
derivative matrix, 54
interpolation, 14
polynomial, 7
series, 3
series derivative, 6
transform, 6
truncation operator, 6

G
Galerkin approximation, 93, 107, 145

advection-diffusion equation, 101
Burgers equation, 107
diffusion equation, 123
Fourier, 101
Legendre, 123

Green’s identity, 205, 329

I
Incompressible flow, 261
Inner product

discrete, 13
discrete polynomial, 34
unweighted, 5
weighted, 5

Interpolation
arc length parametrization, 226
barycentric form, 74

392 Subject Index

curved boundaries, 225
derivatives, 78, 81
Fourier, 14, 149
isoparametric, 225
Lagrange form, 17, 73
Lagrange interpolating polynomials, 76
mixed basis, 151
multidimensional, 77, 78
orthogonal polynomial, 35, 150
transfinite, 229

Isoparametric approximation, 225
Iteration residual, 162, 178, 193, 197, 256,

301, 368
norm, 171

Iterative solvers, 368
BICGStab, 370
conjugate gradient, 185, 370
preconditioned minimum residual

Richardson, 369
Richardson method, 368
SSOR, 185
steepest descent, 369

J
Jacobi polynomials, 24

K
Kronecker delta function, 5

L
Lagrange interpolating polynomials, 32, 33,

76
Lagrange interpolation, 15, 17, 32, 73
LAPACK, 159, 363
Laplacian

collocation approximation, 152, 153,
161, 248

collocation matrix, 160
curvilinear coordinates, 237
cylindrical coordinates, 240
finite difference preconditioner, 163
finite element preconditioner, 181
nodal Galerkin approximation, 173, 177,

252, 253, 256
nodal Galerkin matrix, 179
spectral element approximation, 331

Legendre polynomials, 24
derivative, 63
derivative recursion, 24
evaluation, 59

norm, 25
three term recursion, 24
weight function, 24

M
Mapping array, 381
Mask, 157
Mass matrix, 133
Matrix

-vector multiplication, 22, 54, 55
action, 157
condition number, 369
diagonalization, 268
eigenvalues, 121, 141
Fourier derivative, 38, 54
higher order derivatives, 82
interpolation, 75
local stiffness, 181
mass, 133
nodal discontinuous Galerkin, 137
nodal Galerkin, 133
polynomial derivative, 81
preconditioner, 162, 369
sparse, 379
stiffness, 133
tri-diagonal, 363

Mesh, 313
conforming, 317
construction, 319
data structure, 323
edges, 318, 323
elements, 322
global procedures, 333
holes, 324
nodes, 318, 321
two dimensional, 317
unstructured, 317

Metric identities, 235, 240
Metric terms, 240
Modal approximation, 11

N
N -periodic, 16
Negative sum trick, 55, 81
Nodal approximation, 11
Nodal Galerkin approximation, 93, 145

advection-diffusion equation, 189, 274
conservation law, 280
continuous, 129

Subject Index 393

diagonal preconditioner, 257
diffusion equation, 129
discontinuous, 134
discontinuous spectral element method,

308, 341
Laplacian, 173, 177, 253, 256
potential equation, 252
scalar advection equation, 135
spectral element method, 297

Node, 11
Nonlinear equations, 107
Norm, 5

Chebyshev polynomial, 25
discrete, 35, 100
Euclidean, 368
Legendre polynomial, 25
residual, 171

O
Object oriented algorithms, 356
Orthogonal projection, 5–7, 28, 126
Orthogonality, 5

discrete, 13

P
Parseval’s equality, 8
Penalty method, 93
Physical domain, 223
Plane wave solutions, 203, 348
Pointers, 356

array, 194, 303
Polynomial

Chebyshev, 24, 25
Fourier, 7
Jacobi, 24
Legendre, 24

Potential equation, 91, 151, 170, 174, 247,
262, 265

Preconditioner
diagonal, 256, 257
finite difference, 162, 197
finite element, 180, 257
spectral element, 335
variable coefficients, 257

Pseudocode, 355

Q
Quadrature, 12, 31

Chebysev Gauss-Lobatto, 34

Chebyshev, 67
Chebyshev Gauss, 34
error, 101, 131
Fourier, 13
Gauss, 32
Gauss-Lobatto, 34
Jacobi Gauss, 33
Legendre Gauss, 34, 62
Legendre Gauss-Lobatto, 64

R
Rankine-Hugoniot condition, 349
Reference square, 204, 223
Residual

iteration, 162, 178, 193, 197, 256, 301,
368

Riemann problem, 209
Riemann solver, 209, 349

contravariant flux, 282
discontinuous material properties, 349
wave equation, 211

Runge phenomenon, 87

S
Series

derivative, 26, 30
polynomial, 26
polynomial coefficients, 26
truncation, 28

Series truncation, 6
Solvers

conjugate gradient, 185
direct, 158, 179, 363
ILU, 164
iterative, 160, 368
matrix diagonalization, 268
SSOR, 185

Spectral element approximation
advection-diffusion, 331
diffusion, 331
Laplacian, 331

Spectral element methods
continuous Galerkin, 297
discontinuous Galerkin, 308
global operations, 303
one space dimension, 296
two space dimensions, 326

Spectral methods, 93
choice of, 4, 144
collocation, 93, 112, 144

394 Subject Index

Fourier collocation, 94
Fourier Galerkin, 101
Galerkin, 93, 107, 145
Legendre Galerkin, 123
multidomain, 293
nodal continuous Galerkin, 129, 173
nodal discontinuous Galerkin, 134, 204
nodal Galerkin, 93, 145
penalty, 93
single domain, 293
spectral element, 293
tau, 93

Stability, 109, 114
Structure, 374
Sturm-Liouville, 23

T
Tau method, 93
Tensor product, 149
Test functions, 93
Thomas algorithm, 363
Time integration, 96, 191, 313

backward differentiation method, 191
linear multistep method, 191
multilevel storage, 193
Runge-Kutta, 97, 313
semi-implicit, 191
trapezoidal rule, 129

Transfinite interpolation, 229
Transform

backward, 40, 47, 48, 50, 52, 71
discrete Chebyshev, 68

discrete cosine, 69
discrete Fourier, 17
discrete polynomial, 36
fast Chebyshev, 68
fast convolution sum, 111
fast cosine, 72
forward, 40
Fourier, 6
polynomial derivatives, 84

Transformation of equations under map-
pings, 231

Truncation
multidimensional, 149
multidimensional polynomial, 150
series, 6

Truncation error, 7

U
Upwind

direction, 140, 208
flux, 209

V
Vector

contravariant, 237
covariant, 237

W
Wave equation, 91, 202, 348
Wavenumber, 6, 203
Weak solution, 92
Work, 39, 109, 114, 296

Erratum

1 Chapter 3

1. Algorithm 22:

LN ← 2k − 1

k
xLN−1(x) − k − 1

k
LN−2

should read

LN ← 2k − 1

k
xLN−1 − k − 1

k
LN−2.

(Thanks to Travis Johnson)

2 Chapter 4

1. Equation (4.6) should be ϕx in the boundary term. Should be

∫ L

0
ϕtφdx =

∫ L

0
(νϕx)xφdx = νϕxφ|L0 −

∫ L

0
νϕxφxdx.

2. After (4.14) xn = 2πn/N . The n is missing on the right in the text.
3. Equation (4.39) is missing the ν. Should be

˙̂
Φk = −(ik + νk2)Φ̂k, k = −N/2, . . . ,N/2.

4. After (4.141), the statement about integrate by parts once or twice is incor-
rect. New results show they are actually identical for either quadrature. See
D.A. Kopriva and G. Gassner “On the Quadrature and Weak Form Choices in
Collocation Type Discontinuous Galerkin Spectral Element Methods”, J. Sci.
Comput. (doi:10.1007/s10915-010-9372-3).

5. Equation (4.82) should be

ϕ(x, t) = sin[π(x + 1)]e−π2t .

(Thanks to Travis Johnson)
6. In Algorithm 60, p. 139, the procedure should be called “DGDerivative”, not

“ComputeDGDerivative”.
7. Page 127, Algorithm 53 should have Φ ← 0 instead of U ← 0. (Thanks to Travis

Johnson)
8. Page 133, Algorithm 57’s summand in the inner loop should be Dk,nDk,jwk to

be consistent with (4.123). (Thanks to Travis Johnson)

D.A. Kopriva, Implementing Spectral Methods for Partial Differential Equations,
Scientific Computation,
© Springer Science + Business Media B.V. 2010

395

http://dx.doi.org/10.1007/s10915-010-9372-3

396 Erratum

3 Chapter 5

1. Algorithm 87 needs t , Nit , TOL as an input.
2. Benchmark 5.3.5 Δt = 5.0 × 10−3.
3. Figure 5.8: w is missing the “−” superscript on the right of the boundary. It

should be as shown in Fig. 1 below.

Fig. 1 Interior and exterior
states at a boundary viewed
along the normal direction

4 Chapter 6

1. In (6.79), the spatial derivative has been moved to the right hand side. Needs a
minus sign. Should be

Φ̇i,j = − 1

J

{
∂

∂ξ
IN [(Yη − Xη)Φ] + ∂

∂η
IN [(−Yξ + Xξ)Φ]

}

i,j

.

5 Chapter 8

1. In Algorithm 129, the next to the last line should read mesh.Construct(this.spA,

meshFile)

6 Appendix E

1. In Algorithm 147, Procedure “GetDataForKeys” should be “DataForKeys”.

	Preface
	Contents
	List of Algorithms
	Approximating Functions, Derivatives and Integrals
	Spectral Approximation
	Preamble: Series Solution of PDEs
	The Fourier Basis Functions and Fourier Series
	Series Truncation
	Modal vs. Nodal Approximation
	Discrete Orthogonality and Quadrature
	Fourier Interpolation
	Direct Computation of the Fourier Interpolation
	Error of the Fourier Interpolation

	The Derivative of the Fourier Interpolant
	Polynomial Basis Functions
	The Legendre Polynomials
	The Chebyshev Polynomials

	Polynomial Series
	Polynomial Series Truncation
	Derivatives of Truncated Series

	Polynomial Quadrature
	Gauss Points:
	Lobatto Points:

	Orthogonal Polynomial Interpolation
	Exercises

	Algorithms for Periodic Functions
	How to Compute the Discrete Fourier Transform
	Fourier Transforms of Complex Sequences
	Fourier Transforms of Real Sequences
	Simultaneous Fourier Transformation of Two Real Sequences
	Fourier Transformation of a Real Sequence by Even-Odd Decomposition

	The Fourier Transform in Two Space Variables

	The Real Fourier Transform
	How to Evaluate the Fourier Interpolation Derivative by FFT
	How to Compute Derivatives by Matrix Multiplication
	Exercises

	Algorithms for Non-Periodic Functions
	How to Compute the Legendre and Chebyshev Polynomials
	How to Compute the Gauss Quadrature Nodes and Weights
	Legendre Gauss Quadrature
	Legendre Gauss-Lobatto Quadrature
	Benchmark Solution: Legendre Nodes and Weights

	Chebyshev Gauss Quadratures

	How to Evaluate Chebyshev Interpolants via the FFT
	The Fast Chebyshev Transform

	How to Evaluate Polynomial Interpolants in Lagrange Form
	How to Evaluate Polynomial Derivatives
	Direct Evaluation of the Derivative
	Evaluation of Derivatives by Matrix Multiplication
	Even-Odd Decomposition
	Evaluation by Transform Methods
	Performance of Various Polynomial Derivative Algorithms

	Exercises

	Approximating Solutions of PDEs
	Survey of Spectral Approximations
	The Fourier Collocation Method
	How to Implement the Fourier Collocation Method
	Benchmark Solution

	The Fourier Galerkin Method
	How to Implement the Fourier Galerkin Method
	Benchmark Solution

	Nonlinear and Product Terms
	The Galerkin Approximation
	How to Compute the Convolution Sum
	The Collocation Approximation

	Polynomial Collocation Methods
	Approximation of the Diffusion Equation
	How to Implement the Methods
	Benchmark Solution
	Approximation of Scalar Advection

	The Legendre Galerkin Method
	How to Implement the Method

	The Nodal Continuous Galerkin Method
	How to Implement the Method
	Benchmark Solution

	The Nodal Discontinuous Galerkin Method
	How to Implement the Method
	Benchmark Solution

	Summary and Some Broad Generalizations
	Exercises

	Spectral Approximation on the Square
	Approximation of Functions in Multiple Space Dimensions
	Potential Problems on the Square
	The Collocation Approximation
	How to Implement the Collocation Approximation
	How to Solve the Linear System
	Direct Solution of the Equations
	Iterative Solution of the Equations
	A Finite Difference Preconditioner
	How to Construct the Iterative Potential Solver
	Benchmark Solution

	The Nodal Galerkin Approximation
	How to Implement the Nodal Galerkin Approximation
	Direct Solution of the Equations
	Iterative Solution of the Equations
	A Finite Element Preconditioner
	Construction of the PCG Solver
	Benchmark Solution

	Approximation of Time Dependent Advection-Diffusion
	The Collocation Approximation
	The Nodal Galerkin Approximation
	Time Integration
	How to Implement the Approximations
	Multilevel Time Storage
	The Advection-Diffusion Class
	The Transport Terms
	The Iterative Solver
	Multistep Time Integration

	Benchmark Solution: Advection and Diffusion of a Spot in a Uniform Flow

	Approximation of Wave Propagation Problems
	The Nodal Discontinuous Galerkin Approximation
	The Boundary Flux

	How to Implement the Nodal Discontinuous Galerkin Approximation
	Benchmark Solution: Plane Wave Propagation
	Benchmark Solution: Propagation of a Circular Sound Wave

	Exercises

	Transformation Methods from Square to Non-Square Geometries
	Mappings and Coordinate Transformations
	Mapping a Straight Sided Quadrilateral
	How to Approximate Curved Boundaries
	How to Map the Reference Square to a Curved-Sided Quadrilateral

	Transformation of Equations under Mappings
	Two-Dimensional Forms

	How to Approximate the Metric Terms
	How to Compute the Metric Terms
	Exercises

	Spectral Methods in Non-Square Geometries
	Steady Potentials in a Quadrilateral Domain
	The Collocation Approximation
	How to Implement the Collocation Approximation

	The Nodal Galerkin Approximation
	How to Implement the Nodal Galerkin Method

	Solution of the Linear Systems
	Benchmark Solution: Potential in Non-Square Domains
	Benchmark Solution: Incompressible Flow over a Circular Obstacle

	Steady Potentials in an Annulus
	Benchmark Solution: Potential in an Annulus with a Source

	Advection and Diffusion in Quadrilateral Domains
	Transformation of the Advection-Diffusion Equation
	The Collocation Approximation
	The Nodal Galerkin Approximation
	How to Implement the Approximations
	Benchmark Solution: Advection and Diffusion in a Non-Square Geometry
	Benchmark Solution: Advection and Diffusion of a Pollutant in a Curved Channel

	Conservation Laws in Quadrilateral Domains
	The Nodal Discontinuous Galerkin Approximation
	How to Implement the Nodal Discontinuous Galerkin Approximation
	Data Storage
	The MappedNodalDGClass
	The Time Derivative

	Benchmark Solution: Acoustic Scattering off a Cylinder

	Exercises

	Spectral Element Methods
	Spectral Element Methods in One Space Dimension
	The Continuous Galerkin Spectral Element Method
	How to Implement the Continuous Galerkin Spectral Element Method
	The Spectral Element Class
	Global Operations
	The Diffusion Approximation
	Side Operators and Residual Procedures
	Iterative Solver
	The Time Integration Procedure

	Benchmark Solution: Cooling of a Temperature Spot
	The Discontinuous Galerkin Spectral Element Method
	How to Implement the Discontinuous Galerkin Spectral Element Method
	The Elements
	The Mesh
	Time Integration

	Benchmark Solution: Wave Propagation and Reflection

	The Two-Dimensional Mesh and Its Specification
	How to Construct a Two-Dimensional Mesh
	Nodes
	Elements
	Edges
	The Mesh

	Benchmark Solution: A Spectral Element Mesh for a Disk

	The Spectral Element Method in Two Space Dimensions
	How to Implement the Spectral Element Method
	The Potential Class
	Global Procedures
	Procedures for the Iterative Solver
	The Driver

	Benchmark Solution: Steady Temperatures in a Long Cylindrical Rod

	The Discontinuous Galerkin Spectral Element Method
	How to Implement the Discontinuous Galerkin Spectral Element Method
	Benchmark Solution: Propagation of a Circular Wave in a Circular Domain
	Benchmark Solution: Transmission and Reflection from a Material Interface

	Exercises

	Appendix A Pseudocode Conventions
	Variables and Arithmetic Operations
	Arrays
	Functions and Other Procedures
	Pointers
	Object Oriented Algorithms

	Appendix B Floating Point Arithmetic
	Appendix C Basic Linear Algebra Subroutines (BLAS)
	Appendix D Linear Solvers
	Direct Solvers
	Tri-Diagonal Solver
	LU Factorization

	Iterative Solvers

	Appendix E Data Structures
	Linked Lists
	Example: Elements that Share a Node

	Hash Tables
	Example: Avoiding Duplicate Edges in a Mesh

	References
	Index of Algorithms
	Subject Index
	Erratum
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 8
	Appendix E

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

