
Chapter 9
Non-Linear Effects of Viscoelasticity

Abstract Now we are in a position to formulate a system of constitutive
equations for polymer systems on the basis of the mesoscopic approach, de-
scribed in the previous chapters, to investigate non-linear behaviour of poly-
meric liquids. In the first section, the known results for dilute polymer so-
lutions are described. The other sections contain derivation of constitutive
equations for entangled systems, while the weakly (2Me < M < M ∗) and
strongly (2Me < M ∗ < M) entangled systems are considered separately. In
the latter case, the reptation motion of macromolecules emerges. Though the
reptation motion practically does not contributes to terminal properties of
linear viscoelasticity of strongly entangled system, it has to be included in
the consideration at higher velocity gradients to obtain the correct depen-
dencies of non-linear effects on the length of the macromolecules. One can
demonstrate how different non-linearities can be explained in terms of macro-
molecular dynamics. Simplifications of the many-modes constitutive equations
will be considered in Sections 3. The simplest form of constitutive equations
appears to be the well-known Vinogradov equation. Despite of essential sim-
plification, the reduced forms of constitutive equation allow one to describe
the non-linear effects for simple flows: shear and elongation.

9.1 Dilute Polymer Solutions

Comparison with experimental data demonstrates that the bead-spring model
allows one to describe correctly linear viscoelastic behaviour of dilute polymer
solutions in wide range of frequencies (see Section 6.2.2), if the effects of
excluded volume, hydrodynamic interaction, and internal viscosity are taken
into account. The validity of the theory for non-linear region is restricted by
the terms of the second power with respect to velocity gradient for non-steady-
state flow and by the terms of the third order for steady-state flow due to
approximations taken in Chapter 2, when relaxation modes of macromolecule
were being determined.
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9.1.1 Constitutive Relations

Many-Mode Approximation

The set of constitutive equations for the dilute polymer solution consists of
the definition of the stress tensor (6.16), which is expressed in terms of the
second-order moments of co-ordinates, and the set of relaxation equations
(2.39) for the moments. The usage of a special notation for the ratio, namely

xν
ik =

〈ρν
i ρν

k 〉
〈ρνρν 〉0

=
2
3
μλν 〈ρα

i ρν
k 〉,

allows us to write down these equations in more compact form

σik = −pδik + 2ηsγik

+ 3nT

N∑

ν=1

[
1

1 + ϕν

(
xν

ik − 1
3
δik

)
+ τ ⊥

ν ϕν(γijx
ν
jk + γkjx

ν
ji)

]
, (9.1)

dxν
ik

dt
− ωijx

ν
jk − ωkjx

ν
ji

= − 1
τ ‖
ν

(
xν

ik − 1
3
δik

)
+ (1 − ϕν)(γijx

ν
jk + γkjx

ν
ji) (9.2)

where τ ‖
ν = (1+ϕν)τ ⊥

ν and τ ⊥
α = τα is an orientational relaxation time of the

mode α of the macromolecular coils.
In some cases, if we consider, for example, the slow motion of a solution of

very long macromolecules, the effect of internal viscosity is negligible, so that
the set of constitutive equations can be simplified and written as

σik = −pδik + 2ηsγik + 3nT

N∑

ν=1

(
xν

ik − 1
3
δik

)
, (9.3)

dxν
ik

dt
= − 1

τν

(
xν

ik − 1
3
δik

)
+ νijx

ν
jk + νkjx

ν
ji. (9.4)

For the steady-state case, both equations (9.1)–(9.2) and (9.3)–(9.4) are
followed by the steady-state form of the stress tensor

σik = −pδik + 2ηsγik + 3nT

N∑

ν=1

τν

(
νijx

ν
jk + νkjx

ν
ji

)
. (9.5)

This equation makes it possible to calculate stresses for low velocity gradients
to within third-order terms in the velocity gradient if one knows the moments
to within second-order terms in the velocity gradients. Due to the approxima-
tions, used earlier in Chapter 2, the results are applicable for small extensions
of the macromolecular coil and hence for low velocity gradients: the results for
the moments are valid to within second-order terms in the velocity gradients.
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Single-Mode Approximation

We can see that a set of constitutive equations for dilute polymer solutions
contains a large number of relaxation equations. It is clear that the relaxation
processes with the largest relaxation times are essential to describe the slowly
changing motion of solutions. In the simplest approximation, we can use the
only relaxation variable, which can be the gyration tensor 〈SiSj 〉, defined by
(4.48), or we can assume the macromolecule to be schematised by a subchain
model with two particles. The last case, which is considered in Appendix F in
more detail, is a particular case of equations (9.3) and (9.4), which is followed
at N = 1, λ1 = 2,

σik = −pδik + 2ηsγik + 3
η − ηs

τ

(
ξik − 1

3
δik

)
, (9.6)

dξik

dt
= − 1

τ

(
ξik − 1

3
δik

)
+ νijξjk + νkjξji. (9.7)

The following notations are used in the equations written above

ξik = x1
ik, η = ηs +

3
2
nζ.

Equations (9.6) and (9.7) make up the simplest set of constitutive equa-
tions for dilute polymer solutions, which, after excluding the internal variables
ξij , can be written in the form of a differential equation that has the form
of the two-constant contra-variant equation investigated by Oldroyd (1950)
(Section 8.6).

Note once again that equations (9.6) and (9.7) determines the stresses for
the completely idealised macromolecules (without internal viscosity, hydro-
dynamic interaction and volume effects) in dilute solutions. To remedy the
unrealistic behaviour of constitutive equations (9.6) and (9.7), some modifi-
cations were proposed (Rallison and Hinch 1988; Hinch 1994).

The expressions for the stress tensor together with the equations for the
moments considered as additional variables, the continuity equation, and the
equation of motion constitute the basis of the dynamics of dilute polymer
solutions. This system of equations may be used to investigate the flow of
dilute solutions in various experimental situations. Certain simple cases were
examined in order to demonstrate applicability of the expressions obtained
to dilute solutions, to indicate the range of their applicability, and to specify
the expressions for quantities ϕν , which were introduced previously as phe-
nomenological constants.

9.1.2 Non-Linear Effects in Simple Shear Flow

We shall consider the case of shear stress when one of the components of the
velocity gradient tensor has been specified and is constant, namely ν12 �= 0.
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In order to achieve such a flow, it is necessary that the stresses applied to
the system should be not only the shear stress σ12, as in the case of a linear
viscous liquid, but also normal stresses, so that the stress tensor is

∥∥∥∥∥∥

σ11 σ12 0
σ21 σ22 0
0 0 σ33

∥∥∥∥∥∥
.

The shear stress σ12 and the differences between the normal stresses σ11–σ22

and σ22–σ33 are usually measured in the experiment.
For the specified in this way motion, equation (9.2) defines, as was shown

in Section 2.7.2, the non-zero components of the second-order moments

xν
11 =

1
3

[
1 + (2 + ϕν)(τνν12)2

]
,

xν
22 =

1
3

[
1 − ϕν(τνν12)2

]
,

xν
33 =

1
3
,

xν
12 =

1
3
τνν12,

(9.8)

where, in accordance with (2.27) and (2.30), for high molecular weights

ϕα = ϕ1α
θ, ϕ1 ∼ M −θ, 0 < θ < 1,

τα = τ1α
−zν , τ1 ∼ Mzν , 1.5 < z < 2.1.

According to the theoretical estimate of the exponent, zν varies from 1.5
(non-draining Gaussian coil) to 2.11 (draining coil with volume interactions).

Then, equation (9.5) defines the non-zero components of the stress tensor,
which makes it possible to formulate expressions for the shear viscosity and
the differences between the normal stresses:

η = nT

N∑

ν=1

τν

[
1 − ϕν(τνν12)2

]
, (9.9)

σ11 − σ22 = nT

N∑

ν=1

(τνν12)2, (9.10)

σ22 − σ33 = 0. (9.11)

It follows from equations (9.9) that the viscosity (or, what amounts to the
same thing, the characteristic viscosity) is independent of the velocity gradient
for flexible chains (ϕ1 = 0). For chains with an internal viscosity, the viscosity
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diminishes with increase in the velocity gradient; the nature of the variation
may be estimated. Using the known dependences of the relaxation times and
coefficient of internal viscosity on molecular weight and mode label, one can
obtain

η − η0 ∼ M3zν−θ−1ν2
12.

From empirical equation (6.27), according to which θ = zν −1, the dependence
of the viscosity on the molecular weight can be estimated as follows

η − η0 ∼ M2zνν2
12. (9.12)

The dependence of the first difference of normal stresses on the molecular
weight follows from equation (9.10)

σ11 − σ22 ∼ M2zν−1. (9.13)

In another way, this expression was obtained by Öttinger (1989b).
Experimental data and analysis of the shear-dependent viscosity for di-

lute solutions of polyethelene oxide in water can be found in work by
Kalashnikov (1994). These data show that the deviations in reduced vis-
cosity (9.12) at constant shear rate from initial (at ν12 → 0) values are
the more, the more is the molecular weight of the polymer. Other empiri-
cal estimates of the exponent zν in equation (9.12) for solutions in which the
coils are nearly unperturbed yield the exponent 2zν ≈ 3 (Lohmander 1964;
Tsvetkov et al. 1964).

We may note that it has been shown for the dumbbell (Altukhov 1986) (see
Appendix F) that the combined allowance for the internal viscosity and the
anisotropy of the hydrodynamic interaction leads to the appearance of a non-
zero second difference between the normal stresses σ22–σ33. Since the internal
viscosity may be estimated, for example, from dynamic measurements, this
effect may serve to estimate the anisotropy of the hydrodynamic interaction
in a molecular coil.

9.1.3 Non-Steady-State Shear Flow

In this section we shall continue to investigate shear motion, while, in contrast
to the previous section, we shall assume that the velocity gradient depends
on the time but, as before, does not depend on the space coordinate. We shall
consider a simple case of ideally flexible chains, for which the stress tensor
and relaxation equations are defined by equations (9.3) and (9.4).

For simple shear, equation (9.4) is followed by the set of equations for the
components of the second-order moment

dx11

dt
= − 1

τ

(
x11 − 1

3

)
+ 2ν12x12,

dx22

dt
= − 1

τ

(
x22 − 1

3

)
,
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dx33

dt
= − 1

τ

(
x33 − 1

3

)
, (9.14)

dx12

dt
= − 1

τ
x12 + ν12x22,

dx13

dt
= − 1

τ
x13 + ν12x23,

dx23

dt
= − 1

τ
x23.

Here and henceforth in this section, the label of mode is omitted for sim-
plicity. Consider the case when the motion with a given constant velocity
gradient ν12 begins at time t = 0. Under the given initial conditions, the set
of equations (9.14) has the solution

x11 =
1
3

[
1 + 2τ2

(
1 − t

τ
exp

(
− t

τ

)
− exp

(
− t

τ

))
ν2
12

]
,

x12 =
1
3
τ

[
1 − exp

(
− t

τ

)]
ν12,

x22 = x33 =
1
3
; x13 = x23 = 0.

Now, we can determine, according to equation (9.3), the non-zero compo-
nents of the stress tensor

σ11(t) = −p + 2nT

N∑

α=1

τ2
α

[
1 − t

τα
exp

(
− t

τα

)
− exp

(
− t

τα

)]
ν2
12,

σ12(t) = η0ν12 + nT

N∑

α=1

τα

[
1 − exp

(
− t

τα

)]
ν12,

σ22(t) = σ33(t) = −p,

σ13(t) = σ23(t) = 0.

(9.15)

These expressions describe the establishment of stresses for given uniform
shear motion.

9.1.4 Non-Linear Effects in Oscillatory Shear Motion

From the methodical point of view, it is very interesting to consider the non-
linear terms of the stresses under oscillatory shear velocity gradients, which
it is convenient to write in the complex form
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ν12 ∼ e−iωt.

Akers and Williams (1969), calculating non-linear terms, noticed that the
stresses are real quantities, which are determined through real quantities.
That is why we ought to remember that formulae always contain the real
parts of complex quantities, so that one has to bear in mind that νik means
1
2 (νik + ν̄ik), where the operation of complex conjugation is denoted by the
bar above the symbol.

Assuming that the flow is described by the set of equations (9.3) and
(9.4), one can use equations (9.14) for arbitrary time dependence of velocity
gradient, to obtain for oscillatory simple shear the solution in the form

x11 =
1
3

[
1 +

τ2|ν12|2
1 + ω2τ2

+
1
2

(
τ2ν2

12

(1 − iωt)(1 − 2iωt)
+

τ2ν̄2
12

(1 + iωt)(1 + 2iωt)

)]
,

x12 =
1
6

(
τν12

1 − iωt
+

τ ν̄12

1 + iωt

)
,

x22 = x33 =
1
3
,

x12 = x23 = 0.

Since all non-oscillatory terms in the solution are now omitted, we shall
determine the non-zero components of the stress tensor according to equation
(9.3)

σ12 = ηs
1
2
(ν12 + ν̄12)

+ nT
∑

α

[
τα

1 + ω2τ2
α

1
2
(ν12 + ν̄12) +

ωτ2
α

1 + ω2τ2
α

i

2
(ν12 − ν̄12)

]
, (9.16)

σ11 = −p + nT
∑

α

[
τ2
α|ν12|2

1 + ω2τ2
α

+
τ2
α(1 − 2ω2τ2

α) 1
2 (ν2

12 + ν̄2
12) + 3ωτ3

α
i
2 (ν2

12 − ν̄2
12)

1 + 5ω2τ2
α + 4ω4τ4

α

]
, (9.17)

σ22 = σ33 = −p.

Expression (9.16) determines the non-linear dynamic viscosity and dynam-
ical modulus. The first difference of the normal stresses σ11–σ22, defined by
expressions (9.17), oscillate with a frequency twice that of velocity gradients
(Akers and Williams 1969).
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9.2 Many-Mode Description of Entangled Systems

9.2.1 Constitutive Relations

Stress Tensor

The expression for the stress tensor (6.7) allows us to investigate the non-linear
with respect to velocity gradient effects. We use the normal co-ordinates (1.13)
to write equation (6.7) in the form

σik = −n(N + 1)Tδik + n
∑

ν

(
2μTλνxν

ik − Tδik − 〈ρν
kT ν

i 〉
)

where T ν
k = QνγGγ

k is the transformed force of the internal viscosity de-
termined by equation (7.4). It is convenient to use the macroscopic mean
quantities

xα
ij =

2
3
μλα〈ρα

i ρα
j 〉, uα

ij = − 1
3T

〈ρα
j Tα

i 〉 (9.18)

to write the stress tensor in the more compact form

σik = −pδik + 3nT
∑

ν

(
xν

ik − 1
3
δik + uν

ik

)
. (9.19)

The pressure p includes both the partial pressure of the gas of Brownian
particles n(N +1)T and the partial pressure of the carrier “monomer” liquid.
We shall assume that the viscosity of the “monomer” liquid can be neglected.
The variables xν

ik in equation (9.19) characterise the mean size and shape
of the macromolecular coils in a deformed system. The other variables uν

ik

are associated mainly with orientation of small rigid parts of macromolecules
(Kuhn segments). As a consequence of the mesoscopic approach, the stress
tensor (9.19) of a system is determined as a sum of the contributions of all the
macromolecules, which in this case can be expressed by simple multiplication
by the number of macromolecules n. The macroscopic internal variables xν

ik

and uν
ik can be found as solutions of relaxation equations which have been

established in Chapter 7. However, there are two distinctive cases, which have
to be considered separately.

Relaxation Equations for Weakly Entangled Systems

In the cases, when concentration of solution is not very high or melt consists
of short macromolecules, the values of parameter χ ascend above the critical
one χ∗ ≈ 0.1. It is also implies the small values of the parameter ψ, that is

χ∗ < χ < 0.3, ψ � 1.

The internal variables are governed by relaxation equations (7.25) and (7.38)
which are valid for the small mode numbers α2 � 1/χ and can be rewritten
in the form
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dxα
ik

dt
− νijx

α
jk − νkjx

α
ji

= − 1
2τα

((
xα

ij − 1
3
δij

)
bjk +

(
xα

kj − 1
3
δkj

)
bji

)
, (9.20)

duα
ik

dt
− ωiju

α
jk − ωkju

α
ji

= −
(

1
τ

δij +
1

2τα
bij

)
uα

jk − 1
τ

E

B

[(
xα

ij − 1
3
δij

)
djk − 2BτR

αxα
ilγljfjk

]

+ γilu
α
lk (9.21)

where the set of relaxation times is defined as

τ, τα = B τR
α , τR

α =
τ ∗

α2
, α = 1, 2, . . . �

(
1
χ

)1/2

. (9.22)

In this case, the auxiliary quantities bik, dik and fik are defined, in limits of
applicability of the equations (α2 � 1/χ, ψ � 1), in terms of the anisotropy
tensors βjl and εkl as

bik = β−1
ik , dik = β−1

ij εkj , fik = εik. (9.23)

Relaxation Equations for Strongly Entangled Systems

This is a case, when the parameter χ has values less than a certain critical
value χ∗, while additionally one requires that values of the parameter ψ are
big, that is

χ < χ∗ < 0.3, ψ > 1.

The internal variables for this case are governed by relaxation equations (7.29)
and (7.40) which are valid for the small mode numbers α2 � ψ/χ. This is a
case of very concentrated solutions and melts of polymers. Keeping only the
zero-order terms with respect to the ratio B/E, the set of relaxation equations
for the internal variables can be written in the simpler form

dxα
ik

dt
− νijx

α
jk − νkjx

α
ji

= − 1
2τ rep

α

((
xα

ij − 1
3
δij

)
bjk +

(
xα

kj − 1
3
δkj

)
bji

)
, (9.24)

duα
ik

dt
− ωiju

α
jk − ωkju

α
ji

= − 1
τ

uα
ik − 1

τ

(
xα

ik − 1
3
δik − 2BτR

αxα
ilγljfjk

)
+

B

E
eijγjlu

α
lk, (9.25)

where the set of relaxation times is defined as
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τ, τ rep
α =

π2

χ
τR
α , τR

α =
τ ∗

α2
, α = 1, 2, . . . �

(
ψ

χ

)1/2

. (9.26)

The auxiliary quantities bik, eik and fik are introduced in Chapter 7 to take
into account the effect of the induced anisotropy of medium on the dynamics
of a single macromolecule in the system. In limits of applicability of the above
equations (α2 � ψ/χ, ψ 	 1), the quantities are defined in terms of the
anisotropy tensors βjl and εkl as

bik = ε−1
ik , eik = ε−1

ij βjk, fik = ε−1
ij βjlεkl. (9.27)

Let us remind that equation (9.24), describing the relaxation of macro-
molecular conformation, can be considered only as an assumed results of accu-
rate derivation of the relaxation equation from the macromolecular dynamics.

Tensor of Anisotropy

Thus, two sets of constitutive relations are formulated. The systems of equa-
tions both (9.19)–(9.22), applicable to the weakly entangled systems, and
(9.19) and (9.24)–(9.26), applicable to the strongly entangled systems, in-
clude, through equations (9.23) and (9.27), the tensors of global anisotropy

βik = (δjk + κallδjk + 3βa′
jk)−1, εik = (δjk + νallδjk + 3εa′

jk)−1,

aij =
∑

ν

(
xν

ij − 1
3
δij + uν

ij

)
, a′

ij = aij − 1
3
allδij .

The set of equations both for weakly and strongly entangled systems con-
tains only two relaxation branches and describe viscoelastic behaviour in the
region of small frequencies (One can look at Fig. 17 to be convinced that
essential contributions to the modulus are given by the first and the second
branches in the region of small frequencies). These sets of equations are the
basic constitutive relations which allow us to develop a reliable theory of
non-linear effects in viscoelasticity of non-dilute polymer systems following
the works by Pokrovskii and Pyshnograi (1990, 1991) and Pyshnograi (1994,
1996).

9.2.2 Linear Approximation

To calculate characteristics of linear viscoelasticity, one can consider linear
approximation of constitutive relations derived in the previous section. The
expression (9.19) for stress tensor has linear form in internal variables xν

ik

and uν
ik, so that one has to separate linear terms in relaxation equations for

the internal variables. This has to be considered separately for weakly and
strongly entangled system.
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Weakly Entangled Systems

In the cases, when
χ∗ < χ < 0.3, ψ < 1,

the relaxation equations (9.20) and (9.21) reduce to the simpler form

dxα
ik

dt
= − 1

τα

(
xα

ik − 1
3
δik

)
+

2
3
γik,

duα
ik

dt
= − 1

τ ∗
α

uα
ik − 1

τ
ψ

(
xα

ik − 1
3
δik − 2

3
BτR

αγik

) (9.28)

where the set of relaxation times is defined as

τ, τ ∗
α =

2ττα

τ + 2τα
, τα = B τR

α , τR
α =

τ ∗

α2
, α = 1, 2, . . . �

(
1
χ

)1/2

.

Equations (9.28) have the following solutions for oscillatory motion

xα
ik =

1
3
δik +

2
3

τα

1 − iωτα
γik,

uα
ik =

2
3

1
τ

ψ

(
B τR

α − τα

1 − iωτα

)
τ ∗
α

1 − iωτ ∗
α

γik.

Then, one can make use of the expression (9.19) for the stress tensor to
obtain the coefficient of dynamic modulus

G(ω) = nT

1/
√

χ∑

α

[
iωτα

1 − iωτα
+

1
τ

ψ

(
B τR

α − iωτα

1 − iωτα

)
τ ∗
α

1 − iωτ ∗
α

]
.

This expression can be written in standard form

G(ω) = nT ×
1/

√
χ∑

α

[(
1 + ψ

τατ ∗
α

τ(τ ∗
α − τα)

)
−iωτα

1 − iωτα

+
1
τ

ψ

(
B τR

α − τατ ∗
α

τ ∗
α − τα

)
−iωτ ∗

α

1 − iωτ ∗
α

]
. (9.29)

The terms of the first and the second orders give the coefficients of viscosity
and elasticity

η = nT

1/
√

χ∑

α

(
τα − ψ

τατ ∗
α

τ

)
≈ π2

6
nTτ ∗B, (9.30)

ν = nT

1/
√

χ∑

α

(
τ2
α − ψ

τατ ∗
α

τ
(τ ∗

α + τα)
)

≈ π4

90
nT (τ ∗B)2. (9.31)
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Value of the dynamic modulus on the plateau can be found as Ge =
limω→∞ G(ω) which gives

Ge = nT

1/
√

χ∑

α

1 ≈ nTχ− 1
2 . (9.32)

It is natural that estimates (9.30)–(9.32) practically coincide with estimates
(6.39) and (6.40), at χ � 1, for corresponding quantities for a system of
macromolecules in viscoelastic liquid.

Strongly Entangled Systems

In the cases, when
χ < χ∗ ≈ 0.1, ψ > 1,

the internal variables are governed by relaxation equations (9.24) and (9.25)
which are valid for the small mode numbers α2 � ψ/χ. Keeping only the zero-
order terms with respect to velocity gradient, the set of relaxation equations
for the internal variables can be written in the simpler form

dxα
ik

dt
= − 1

τ rep
α

(
xα

ik − 1
3
δik

)
+

2
3
γik,

duα
ik

dt
= − 1

τ
uα

ik − 1
τ

(
xα

ik − 1
3
δik − 2

3
BτR

αγik

) (9.33)

where the set of relaxation times is defined as

τ, τ rep
α =

π2

χ
τR
α , τR

α =
τ ∗

α2
, α = 1, 2, . . . �

(
ψ

χ

)1/2

.

Equations (9.33) have the following solutions for oscillatory motion

xα
ik =

1
3
δik +

2
3

τ rep
α

1 − iωτ rep
α

γik,

uα
ik =

2
3

(
B τR

α − τ rep
α

1 − iωτ rep
α

)
1

1 − iωτ
γik.

Then, one can make use of the expression (9.19) for the stress tensor to
obtain the dynamic modulus

G(ω) = nT

π/χ∑

α=1

[
−iωτ rep

α

1 − iωτ rep
α

+
(

B τR
α − τ rep

α

1 − iωτ rep
α

)
−iω

1 − iωτ

]
. (9.34)

This expression, after some transformations, can be written in the standard
form
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G(ω) = nT

π/χ∑

α=1

[(
1 +

τ rep
α

τ − τ rep
α

)
−iωτ rep

α

1 − iωτ rep
α

+
(

B τR
α

τ
− τ rep

α

τ − τ rep
α

)
−iωτ

1 − iωτ

]
.

(9.35)
This equation, also as equation (6.49) gives description of the frequency de-
pendency of dynamic modulus at low frequencies (the terminal zone). Both in
equation (6.49) and (9.35), the second terms present the contribution from the
orientational relaxation branch, while the first ones present the contribution
from the conformational relaxation due to the different mechanisms: diffusive
and reptational.

The terms of the first and the second orders in expansion of expression
(9.34) or (9.35) in powers of −iω determine the coefficients of viscosity and
elasticity

η = nT

π/χ∑

α=1

B τR
α =

π2

6
nTτ ∗B,

ν = nT

π/χ∑

α=1

(B ττR
α − ττ rep

α ) = nT

(
π2

3
(Bτ ∗)2χ − π4

3
B(τ ∗)2

)
.

(9.36)

One can see that the last terms in the last relations can be omitted in com-
parison with the other, so that this equations reduce to equations (6.52), that
is

η =
π2

6
nTτ ∗B, ν =

π2

3
nT (Bτ ∗)2χ. (9.37)

Value of the dynamic modulus on the plateau can be found as
Ge = limω→∞ G(ω) which gives

Ge = nT

π/χ∑

α=1

(
1 +

B τR
α

τ

)
≈ nT

(
π

χ
+

π2

12
1
χ

)
. (9.38)

The contribution from the first term (reptation branch) has the same order of
magnitude as the contribution from the second term at very high frequencies.
However, one has to take into account that, due to distribution of relaxation
times, the limit value of the first term is reached at higher frequencies than
the limit value of the second term. At lower frequencies the plateau value of
the dynamic modulus is determined by the second term and coincides with
expression (6.52).

One can see that introduction of the reptation mechanism of conforma-
tional relaxation, instead of diffusive mechanism, does not affect the values
of the terminal quantities, but, one can expect, improves the situation in the
region of the minima of the loss modulus G′ ′: reptation branch fill the gap be-
tween the orientational and the second conformational branches of relaxation
times. Thus, the description with help of two relaxation branches is valid in
the terminal zone and for higher frequencies close to it.
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9.2.3 Steady-State Simple Shear Flow

To demonstrate the consistency of constitutive relations with experimental
evidence for entangled systems, some particular cases, when the velocity gra-
dients are known and can be assumed to be independent of time, have been
investigated (Pyshnograi and Pokrovskii, 1988; Pyshnograi, 1994, 1996; Al-
tukhov and Pyshnograi, 1995, 1996). We shall consider here steady-state shear
flow of both weakly entangled system and strongly entangled system. The
stress tensor is given by equation (9.19), that is

σik = −pδik + 3nT
∑

ν

(
xν

ik − 1
3
δik + uν

ik

)
.

For the case of small velocity gradients, the variables xα
ik and uα

jk can be found
in the form of an expansion in powers of velocity gradients. The first terms
are defined by equations (7.28) and (7.39) for the case of weakly entangled
systems (χ > χ∗ ≈ 0.1) and by equations (7.32) and (7.43) for the case of
strongly entangled systems (χ < χ∗ ≈ 0.1).

Further on, we shall consider the case of shear stress when one of the
components of the velocity gradient tensor has been specified and is constant,
namely ν12 �= 0. This situation occurs in experimental studies of polymer
solutions (Ferry 1980). In order to achieve such a flow, it is necessary that the
stresses applied to the system should be not only the shear stress σ12, as in
the case of a linear viscous liquid, but also normal stresses, so that the stress
tensor is ∥∥∥∥∥∥

σ11 σ12 0
σ21 σ22 0
0 0 σ33

∥∥∥∥∥∥
.

The shear stress σ12 and the differences between the normal stresses σ11 − σ22

and σ22 − σ33 are usually measured in the experiment (Meissner et al. 1989).
The results of calculation of the stresses up to the third-order terms with
respect to the velocity gradient will be demonstrated further on. For simplicity,
we shall neglect the effect of anisotropy of the environment when the case of
strongly entangled systems will be considered.

Shear Viscosity

In steady-state shear, when the only component of the velocity gradient tensor
differs from zero is ν12, equation (9.19) is followed by

σ0
12 = η0ν12, η0 =

π2

6
nTBτ ∗, χ < 0.5. (9.39)

The third-order terms in shear stress give us the expression for the effective
shear viscosity
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η = η0 ×

⎧
⎨

⎩
1 −

(
2π4

315 ψ + 2π2

15 χ + 52π4

4725 β + 4π4

945 κ
)
(Bτ ∗ν12)

2
, χ > χ∗,

1 −
(
4χ2 − π2

15
χ
B − 2π6

315
1

(χB)2

)
(Bτ ∗ν12)

2
, χ < χ∗.

(9.40)

One can see that two factors lead to non-linear effects in shear, namely, the
relaxation response of the surrounding (χ and ψ) and the effects associated
with the change in dimensions and the shape of the macromolecular coils (β
and κ). Though comparative influence of these effects does not investigated
enough, one can suggest that the influence of χ and ψ is small as compared
with the influence of the other parameters at χ > χ∗, while at χ < χ∗ the
change of the environment (β and κ) can be neglected. The first term in the
parentheses in (9.40) at χ < χ∗ dominates for the long macromolecules. The
above relation, in agreement with the experimental evidence (Schreiber et al.
1963; Ito and Shishido 1972), shows that the deviation of the behaviour of
the system from Newtonian starts at the shear stress which is the lesser, the
larger the length of the macromolecule is. For very long macromolecules the
deviation does not depend on the length of the macromolecules.

Normal Stresses

Calculation of terms of the second order reveals that normal stresses are

σ11 + p =

⎧
⎨

⎩
nT

(
π4

45 + π2

6 χ − π4

90 β
)
(Bτ ∗ν12)2, χ > χ∗,

nT
(

π6

90
1

Bχ + π2

6 χB
E + π2

3 χ
)
(Bτ ∗ν12)2, χ < χ∗,

σ22 + p =

⎧
⎨

⎩
−nT

(
π2

6 χ + π4

90 β
)
(Bτ ∗ν12)2, χ > χ∗,

nT
(

π6

90
1

Bχ + π2

6 χB
E − π2

3 χ
)
(Bτ ∗ν12)2, χ < χ∗,

σ33 + p = 0.

(9.41)

Specific characteristics of viscoelastic medium are differences of the normal
stresses

σ11 − σ22 =

{
nT

(
π4

45 + π2

3 χ
)
(Bτ ∗ν12)2, χ > χ∗,

nT 2π2

3 χ (Bτ ∗ν12)2, χ < χ∗,

σ22 − σ33 =

⎧
⎨

⎩
−nT

(
π2

6 χ + π4

90 β
)
(Bτ ∗ν12)2, χ > χ∗,

nT
(

π6

90
1

Bχ + π2

6 χB
E − π2

3 χ
)
(Bτ ∗ν12)2, χ < χ∗.

(9.42)

The ratio of the first difference of the normal stresses σ11 −σ22 to the square
of the shear stress is an important characteristic quantity. The expressions for
the steady-state modulus in the region of low velocity gradients are defined
as
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2σ2
12

σ11 − σ22
=

{ 5
2nT

(
1 − 15

π2 χ
)
, χ > χ∗,

π2

12 nTχ−1, χ < χ∗.
(9.43)

For the weakly entangled system, the steady-state modulus depends on the
molecular weight of polymer as M −1, while for strongly entangled system, the
steady-state modulus does not depend on the molecular weight of polymer,
which is consistent with typical experimental data for concentrated polymer
systems (Graessley 1974). The expression for the modulus is exactly the same
as for the plateau value of the dynamic modulus (equations (6.52) and (6.58))

Expressions (9.42) lead to the following relation for the ratio of the normal
stresses differences

σ22 − σ33

σ11 − σ22
=

{ − 15
2π2 χ − 1

2β, χ > χ∗,

π4

60
1

χ2B + B
4E − 1

2 , χ < χ∗.
(9.44)

This ratio depends on the molecular weight of polymer M and predicted to be
negative for typical values of parameters. For the strongly entangled systems,
according to equations (3.30), B ∼ M δ, χ ∼ M −1, so that the ratio (9.44)
approaches −1/2 for very long macromolecules. According to experimental
evidence, the second difference of the normal stresses σ22 − σ33 is negative
and less than the first. The ratio has generally been reported to be in the
range of −0.15 to −0.3 (Brown et al. 1995), though Faitelson (1995) found
the values of the quantity for polybutadiene with narrow molecular-weight
distribution to lie in the range from −0.3 to −0.45. It would be desirable to
measure the ratio of differences of the normal stresses for well-characterised
systems to test the validity of relation (9.44).

9.3 Single-Mode Description of Entangled System

Notwithstanding the simplifying assumptions in the dynamics of macro-
molecules, the sets of constitutive relations derived in Section 9.2.1 for polymer
systems, are rather cumbersome. Now, it is expedient to employ additional
assumptions to obtain reasonable approximations to many-mode constitutive
relations. It can be seen that the constitutive equations are valid for the small
mode numbers α, in fact, the first few modes determines main contribution
to viscoelasticity. The very form of dependence of the dynamical modulus in
Fig. 17 in Chapter 6 suggests to try to use the first modes to describe low-
frequency viscoelastic behaviour. So, one can reduce the number of modes to
minimum, while two cases have to be considered separately.

It is clear that at transition from many modes to a single mode, weight
coefficients for mode contributions into the stress tensor have to be introduced.
One has to require correspondence of some specified quantities to the same
ones calculated within the many-mode theory. The procedure eliminates the
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arbitrariness to the choice of the weights. One can see that the following form
of the stress tensor

σik = −pδik +
π2

2
nT

(
x1

ik − 1
3
δik + u1

ik

)
(9.45)

provides the correct form for initial coefficient of viscosity both for the weakly
and strongly entangled systems.

9.3.1 Weakly Entangled Systems

Constitutive Relations

First, we refer to constitutive relations (9.19)–(9.22) which describe the be-
haviour of the system with moderate concentration of polymer and/or the
systems with shorter macromolecules, when the characteristic parameters of
the system are satisfied to conditions

χ∗ < χ < 0.5, ψ < 1.

Every mode contains two relaxation processes, described by the relaxation
equations (9.20) and (9.21). One can retain one relaxation equation from
each relaxation branch only, so that the two relaxation equations have to be
considered

dx1
ik

dt
− νijx

1
jk − νkjx

1
ji

= − 1
2τ1

[(
x1

ij − 1
3
δij

)
bjk +

(
x1

kj − 1
3
δkj

)
bji

]
, (9.46)

du1
ik

dt
− ωiju

1
jk − ωkju

1
ji

= −
(

1
τ

δij +
1

2τ1
bij

)
u1

jk − 1
τ

ψ

[(
x1

ij − 1
3
δij

)
djk − 2BτR

1 x1
ilγljfjk

]

+ γilu
1
lk, (9.47)

where the relaxation time τ1 = τ ∗B and the auxiliary quantities are

bik = β−1
ik , dik = β−1

ij εkj , fik = εik,

βik = [(1 − κ + (κ − β)all)δik + 3βaik]−1,

εik = [(1 − ν + (ν − ε)all)δik + 3εaik]−1, aik = x1
ik − 1

3
δij + u1

ij .

The relaxation equations (9.46) and (9.47) describe the joint non-linear re-
laxation of the two variables which appear to be weakly connected with each
other through the term with the small quantity ψ in equation (9.47).
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It is convenient to introduce new variables, so that expression (9.45) for
the stress tensor can be written in the form

σik = −pδik + 3
η0

τ0

(
ξik − 1

3
δik

)
, ξik = x1

ik + u1
ij , (9.48)

where one retains the previous definitions of the shear viscosity η0 and define
the relaxation time τ0 as

η0 =
π2

6
nTτ ∗B, τ0 = τ ∗B.

The set of relaxation equations in the single-mode approach (9.46) and
(9.47) can be written in different approximations. One can see, that in zero
approximation (ψ = 0), the relaxation equations (9.46) and (9.47) appear
to be independent. The expansion of the quantity u1

ik in powers of velocity
gradient begins with terms of the second order (see equation (7.39)), so that,
according to equation (9.47), the variable u1

ik is not perturbed in the first and
second approximations at all and, consequently, can be omitted at ψ = 0. In
virtue of ψ � 1, the second variable has to considered to be small in any case
and can be neglected with comparison to the first variable, so that the system
of equations can be written in a simpler way. In the simplest case, relaxation
equation (9.46) in terms of the new variables ξjk can be rewritten as

dξik

dt
− νijξjk − νkjξji = − 1

τ0
[1 + (κ − β)(ξss − 1)]

(
ξik − 1

3
δik

)

− 1
τ0

3β

(
ξij − 1

3
δij

) (
ξjk − 1

3
δjk

)
. (9.49)

One may note that the system of constitutive relations (9.48)–(9.49), which
were derived and investigated by Pyshnograi et al. (1994), Pyshnograi (1996),
Altukhov and Pyshnograi (1996), is a particular case of a set of the phe-
nomenological constitutive equations (8.30)–(8.31).

Steady-State Simple Shear Flow

The expressions for stresses in simple shear flow are followed constitutive
relations (9.48)–(9.49). With accuracy up to the third-order terms with respect
to velocity gradient ν12 one has

σ12 = ην12,
η

η0
= 1 − 1

3
(2κ + 7β)(τ0ν12)2,

σ11 − σ22 = 2η0τ0ν
2
12 = 2

τ0

η0
σ2

12,

σ22 − σ33 = −βη0τ0ν
2
12 = −β

τ0

η0
σ2

12.

(9.50)
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In the region of the higher velocity gradient, the viscosity coefficient η and the
coefficients of normal stresses as functions of velocity gradients were calculated
(Golovicheva et al. 2000) for different values of the parameters β and κ. The
relations for simple shear flows are typical for polymer solutions of moderate
concentration.

Constitutive relations (9.48)–(9.49) determine certain amendments to
known expressions for flow of viscous liquid through the long channels. The
results are available (Erenburg and Pokrovskii 1981; Altukhov and Pyshnograi
1996) for flow between parallel planes with the gap h and for flow through a
round tube with the radius R, correspondingly

Q =
A

12η0
h3

(
1 +

1
20

(
Ahτ0

η0

)2

(2κ + 7β)

)
,

Q =
πA

8η0
R4

(
1 +

1
6

(
ARτ0

η0

)2

(2κ + β)

)
.

In these expressions, Q is the volume rate and A = p/L is gradient of pressure
along the channels.

One can concluded that the constitutive relations (9.48)–(9.49) do indeed
approximate the behaviour of systems containing long macromolecules.

9.3.2 Strongly Entangled Systems

Constitutive Relations

In this case, when
χ < χ∗ < 1, ψ > 1,

the expression (9.45) for the stress tensor can be used in the previous form

σik = −pδik +
π2

2
nT

(
x1

ik − 1
3
δik + u1

ik

)
. (9.51)

Now, one can refer to constitutive relations (9.19) and (9.24)–(9.26) and, as
in previous case, one can keep one relaxation equation from each relaxation
branch only, so that one has two relaxation equations in the following form
to be considered

dx1
ik

dt
− νijx

1
jk − νkjx

1
ji

= − 1
2τ rep

1

[(
x1

ij − 1
3
δij

)
bjk +

(
x1

kj − 1
3
δkj

)
bji

]
, (9.52)

du1
ik

dt
− ωiju

1
jk − ωkju

1
ji

= − 1
τ

u1
ik − 1

τ

(
x1

ik − 1
3
δik − 2Bτ ∗x1

ilγljfjk

)
+

B

E
eijγjlu

1
lk (9.53)
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where the auxiliary quantities are

bik = ε−1
ik , eik = ε−1

ij βjk, fik = ε−1
ij βjlεlk,

βik = [(1 − κ + (κ − β)all)δik + 3βaik]−1,

εik = [(1 − ν + (ν − ε)all)δik + 3εaik]−1, aik = x1
ik − 1

3
δij + u1

ij .

In linear case, the dependence of the tensors βik and εik on the anisotropy
tensor can be neglected, and all the above quantities become the unit matrixes.

Equations (9.52) and (9.53) describe the non-linear relaxation processes,
which are featured, in particular, by the anisotropy of relaxation which means
that in a deformed system, different components of the tensors x1

ik and u1
ik

relax at different rates. The change of the second variables depends on the
first one, so that the two variables of each mode are closely connected with
each other.

One considers the anisotropy of environment to give a small contribution
to the terms of the second order and higher with respect to velocity gradient,
so that it can be neglected for the beginning, and relaxation equations (9.52)
and (9.53) take simpler forms

dx1
ik

dt
− νijx

1
jk − νkjx

1
ji = − 1

τ rep
1

(
x1

ij − 1
3
δij

)
, (9.54)

du1
ik

dt
− ωiju

1
jk − ωkju

1
ji

= − 1
τ

u1
ik − 1

τ

(
x1

ik − 1
3
δik − 2Bτ ∗x1

ilγlk

)
+

B

E
γilu

1
lk. (9.55)

The set of equations (9.51)–(9.53) or (9.51) and (9.54)–(9.55) makes up the
set of constitutive equations of strongly entangled system in the single-mode
approximation.

Linear Viscoelasticity

In linear case, one can rewrite the relaxation equations (9.54)–(9.55) in the
form

dx1
ik

dt
= − 1

τ rep
1

(
x1

ik − 1
3
δik

)
+

2
3
γik,

du1
ik

dt
= − 1

τ
u1

ik − 1
τ

(
x1

ik − 1
3
δik − 2

3
τ ∗Bγik

)
.

(9.56)

These equations have the following solutions for oscillatory motion
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x1
ik =

1
3
δik +

2
3

τ rep
1

1 − iωτ rep
1

γik,

u1
ik =

2
3

(
τ ∗B − τ rep

1

1 − iωτ rep
1

)
1

1 − iωτ
γik.

Then, one can make use of the expression for the stress tensor from (9.51),
to obtain the coefficient of dynamic viscosity

η(ω) =
π2

6
nT

[
τ rep
1

1 − iωτ rep
1

+
(

τ ∗B − τ rep
1

1 − iωτ rep
1

)
1

1 − iωτ

]
. (9.57)

At ω = 0, this expression reduces to the steady-state viscosity coefficient

η =
π2

6
nTτ ∗B.

Expression (9.57) leads to an expression for the dynamic modulus G(ω) =
−iωη(ω), from which the value on the plateau can be found

Ge = lim
ω→∞

G(ω) =
π2

6
nT

(
τ ∗B

τ
+ 1

)
≈ π2

12
nTχ−1.

Thus, one can see that the single-mode approximation allows us to describe
linear viscoelastic behaviour, while the characteristic quantities are the same
quantities that were derived in Chapter 6. To consider non-linear effects, one
must refer to equations (9.52) and (9.53) and retain the dependence of the
relaxation equations on the anisotropy tensor.

9.3.3 Vinogradov Constitutive Relation

It is important to have a simple but reliable constitutive relations to inves-
tigate flows of polymer liquids in different appliances of complex geometrical
forms. Now we can take one more step to simplify the set of constitutive equa-
tions (9.48)–(9.49), which approximate the behaviour of polymer liquid in the
region of the applicability of the relation: χ∗ < χ < 0.5, ψ < 1. Let us note
that these conditions define the systems, which can easily flow in the devices.

One can assume that the anisotropy of the relaxation process can be ne-
glected. This means that, in relaxation equation (9.49), we equate to zero
the parameter β, but retain the parameter κ, so that the set of constitutive
equations can be rewritten as follows

σij = −pδij + 3
η

τ

(
ξij − 1

3
δij

)
,

dξij

dt
− νilξlj − νjlξli = − 1

τ

(
ξij − 1

3
δij

)
, τ =

τ0

1 + κ(ξss − 1)
.

(9.58)
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The relaxation time τ can be considered to be a function of the first
invariant of the tensor of additional stresses

D = 3(ξss − 1) =
τ0

η0
(σss + 3p). (9.59)

The quantity η in set (9.58) represents the shear viscosity coefficient and
depends on the invariant of the anisotropy tensor in the same way as the
relaxation time

η

η0
=

τ

τ0
=

(
1 +

1
3
κD

)−1

= φ(D). (9.60)

The suffix zero signifies the initial values of the relevant quantities (at D → 0).
One can see that the set of constitutive equations (9.58)–(9.60) contains

two rheological parameters: the initial shear viscosity η0 and the initial relax-
ation time τ0, as well as a single non-dimensional parameter κ.

In this and in the next sections, we shall demonstrate the consequences of
the simplified description for shear and extension motions in order to under-
stand the applicability of the approach. We shall deal with uniform steady-
state motions for which we have, from (9.58), the expression for the stress
tensor

σij + pδij = 3η(νilξlj + νjlξli). (9.61)

For the simple shear flow, the only one component of the velocity gradient
tensor differs from zero, namely, ν12 �= 0. The shear stress and the differences
of the normal stresses are defined by equation (9.61) as

σ12 = ην12,

σ11 − σ22 = 2ητν2
12, (9.62)

σ22 − σ33 = 0.

The first equation of the set (9.62) confirms that η is the coefficient of
shear viscosity, which can be estimated according to the rule

η =
σ12

ν12
. (9.63)

We may note that the function φ(D), which is introduced by relation (9.60),
can be excluded from expressions (9.62) which leads to a relation between
normal and shear stresses

σ11 − σ22 = 2
τ0

η0
σ2

12. (9.64)

This relation can be used to estimate the value of the shear modulus η0/τ0.
Measurement of the first difference of normal stresses allows us to evaluate
the relaxation time

τ =
σ11 − σ22

2σ12ν12
. (9.65)
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TABLE 3. Characteristics of the sample systems

System T c η0
τ0

· 10−4 η0 τ0 No. on
oC % dyn cm−2 P s Fig. 19

Polyisobutylene 22 100 4.8 1.7 · 107 354 1
M = 7 · 104 ∗ 40 100 4.6 3.46 · 106 77.8 2

Blend of 62% low
density polyethylene

and 38% high
density polyethylene∗∗ 170 100 3.1 1.41 · 106 45 3

Low density

polyethylene∗∗ 170 100 5.6 4.2 · 105 7.5 4

Solution of poly-

acrylamide in the
mixture glycerine–

water (1:1)∗∗∗ 25 1.5 0.038 1.8 · 104 47 5

Solution of poly
(ethylene oxide) in

the mixture
glycerine–water (1:2) +

11% isopropanol∗∗∗ 25 3.0 0.02 1 · 104 50 6

∗ Fikhman et al. (1970); ∗∗ Weinberger and Goddard (1974)
∗∗∗ Pokrovskii et al. (1973)

Equations (9.63)–(9.65) were used, in fact, to evaluate the shear viscosity
coefficient and the relaxation times which reveal the nature of dependence on
the velocity gradient ν12 or shear stress σ12 (Isayev 1973). It is convenient to
consider the shear viscosity coefficient and the relaxation time as a generalised
function of the first invariant of the tensor of additional stresses

D =
τ0

η0
(σss + 3p) = 2

(
τ0

η0
σ12

)2

= 2Γ 2. (9.66)

It is remarkable that the dependencies of the non-dimensional quantities η/η0

and τ/τ0 on the non-dimensional argument τ0ν12 or (τ0/η0)σ12 are universal.
The dependencies are not essentially effected by the temperature, the molecu-
lar weight, and the concentration and chemical nature of the polymers (Isayev
1973).

Despite the apparent deficiency of description (9.58) when applied to a real
system, we may note that the set of constitutive equations (9.58)–(9.60) repre-
sent qualitatively the behaviour of concentrated polymer solutions and melts
under shear. The set of equations include two material constants which are the
individual characteristics of the system, namely, the initial shear viscosity and
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the initial relaxation time, which depend on the temperature, the molecular
weight of polymer, and its concentration in the system. As an illustration, the
estimation of the material constants for some systems are shown in Table 3.
The returning to the fuller approximation (equations (9.48)–(9.49)) improves
the description, as has been shown by Pyshnograi et al. (1994).

The constitutive equations (9.58)–(9.60) were derived as a consequent sim-
plification of general equations, discussed in Section 9.2.1, so that one can
conclude which assumptions have to be introduced to obtain the equations.
We may note that, before this consequent derivation, the considered con-
stitutive equations (9.58)–(9.60) were formulated (Vinogradov et al. 1972b;
Phan-Thien and Tanner 1977) and used for the investigation of simple
(Pokrovskii and Kruchinin 1980) and complex (Altukhov et al. 1986; Erenburg
and Pokrovskii 1981) flows of polymeric liquids. The constitution equations
named in honour of one of the pioneer investigator of polymer rheology G.V.
Vinogradov.

It is important to note that the constitutive equation (9.58)–(9.60) belong
to the class of the rare equations which are Hadamard and dissipative stable
(Kwon and Leonov 1995).

9.3.4 Relation between Shear and Elongational Viscosities

Consider the case of applying the system (9.58)–(9.60) to description of uni-
axial deformation with the constant elongational velocity gradient ν11. The
elongational viscosity coefficient λ is determined as the ratio of the extensional
stress σ to the elongational velocity gradient. We shall calculate, according to
Pokrovskii and Kruchinin (1980), the ratio between the coefficients of elonga-
tional and shear viscosity, namely, the quantity λ/η for a polymer liquid.1

For uniform uniaxial elongational deformation along axis 1, the tensor of
the velocity gradients, taking into account the condition of incompressibility,
can be written in the form

νik =

∥∥∥∥∥∥∥∥

ν11 0 0

0 − 1
2ν11 0

0 0 − 1
2ν11

∥∥∥∥∥∥∥∥
.

If we exclude the pressure from the relation for the stresses (9.58) un-
der the considered uniaxial deformation, we can obtain an expression for the
extensional stress

σ = 3
η

τ
(ξ11 − ξ22) = 3η(2ξ11 − ξ22)ν11 (9.67)

where, in a steady-state case,

1 The earlier history of the investigation of elongational flow can be found in the monograph
by Petrie (1979).
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Figure 19. The ratio of elongational to shear viscosities

.

The theoretical dependence of the ratio of elongational to shear viscosity coefficients on

the invariant of the additional stress tensor is calculated according to equation (9.71) and
depicted by the dashed curve. The solid curves represent experimental data for systems

listed in Table 3. Adapted from the paper of Pokrovskii and Kruchinin (1980).

ξii =
1
3

(
1 +

2τνii

1 − 2τν11

)
, i = 1, 2, 3. (9.68)

The above formulae determine the elongational viscosity coefficient

λ =
3η

1 − τν11 − 2(τν11)2
. (9.69)

The viscosity coefficients η and λ are functions of the first invariant of the
tensor of additional stresses

D =
τ0

η0
(σii + 3p).

When relations (9.67) and (9.68) are used, the invariant can be expressed in
terms of the elongational velocity gradient or extensional stress

D = 2
λ

η
(τν11)2 = 2

η

λ

(
τ0

η0
σ

)2

. (9.70)

By eliminating the velocity gradient from relations (9.69) and (9.70) we
can obtain an expression for the ratio of the coefficients of elongational and
shear viscosity

λ

η
= 3 +

5
4
D +

(
3
2
D +

9
16

D2

)1/2

. (9.71)
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The ratio of the coefficients is a function of the invariant D which, for shear
motion, has the form

D = 2
(

τ0

η0
σ12

)2

. (9.72)

The expression for D in the case of uniaxial deformation is easily obtained
from equations (9.70) and (9.71)

D = − 3
2

− 1
2

τ0

η0
σ +

1
2

(
9 + 6

τ0

η0
σ + 9

(
τ0

η0
σ

)2
)1/2

. (9.73)

It should be noted that, when deriving this expression, we assumed that η
and λ are functions of the invariant D, but we did not use a specific form of
this function.

The applicability of relation (9.71) to a real polymer system was discussed
in works by Pokrovskii et al. (1973); Pokrovskii and Kruchinin (1980); Pyshno-
grai et al. (1994). Figure 19 represents the experimental values of the ratio λ/η
depending on the invariant D for the polymer systems, listed in Table 3, in
comparison with the universal theoretical curve calculated according to equa-
tion (9.71). The experimental results can be seen to have a definite scatter
relative to the theoretical curve; this can be ascribed to both natural exper-
imental errors and the necessity of improving the theoretical calculation by
appealing to the fuller set of constitutive relations (9.48)–(9.49). In the former
case a variation of β in (9.49) leads to a set of λ/η vs D curves (Pyshnograi
et al. 1994).

However, the observed consistency of the experimental and theoretical
appraisals can be considered as surprisingly satisfactory. Both these results
and the results of the previous section point to the possibility of employing the
Vinogradov constitutive equations (9.58)–(9.60) for qualitative investigations
of non-uniform flows of polymer liquids.

9.3.5 Recoverable Strain

One of the prominent features of polymeric liquids is the property to recover
partially the pre-deformation state. Such behaviour is analogous to a rubber
band snapping back when released after stretching. This is a consequence of
the relaxation of macromolecular coils in the system: every deformed macro-
molecular coil tends to recover its pre-deformed equilibrium form. In the con-
sidered theory, the form and dimensions of the deformed macromolecular coil
are connected with the internal variables xα

ij which have to be considered
when the tensor of recoverable strain is to be calculated. Further on, we shall
consider the simplest case, when the form and dimensions of macromolecular
coils are determined by the only internal tensor ξij . In this case, the behaviour
of the polymer liquid is considered to describe by one of the constitutive equa-
tions (9.48)–(9.49) or (9.58).
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To determine the tensor of recoverable strains, we have to equate the
stress tensor for a deformed polymer network (given in the simplest case by
equation (1.43)) with the elastic part of the stress tensor for a polymer liquid,
given in the general case by equation (9.19) or, in the simplified case by
equation (9.48). The latter case leads to the relation

Gλijλkj = 3
η0

τ0
ξik −

(
η0

τ0
− G

)
δik (9.74)

where G is the shear modulus and λij is the tensor of recoverable displace-
ment, such that Λik = λijλkj is the tensor of recoverable strains. The latter
quantities are discussed in Appendix B.

To determine the shear modulus and the tensor of recoverable strains,
we calculate the determinants of the left-hand and right-hand sides of equa-
tion (9.74). Taking into account the incompressibility of the polymer liquid,
i.e. relation |λijλkj | = 1, we obtain

G3 = 27
(

η0

τ0

)3
[
Ξ3 − 1

3

(
1 − Gτ0

η0

)
Ξ2 +

1
9

(
1 − Gτ0

η0

)2

Ξ1

]

where the invariants of the tensor ξij are introduced as follows

Ξ1 =
3∑

i=1

ξii, Ξ2 =
1
2

∑

i,j

(ξijξji − ξiiξjj), Ξ3 = |ξij |.

We consider these invariants independent of each other, so that we can de-
termine the shear modulus and the tensor of recoverable strains

G = 3|ξls|1/3 η0

τ0
, λijλkj = δik + |ξls| −1/3

(
ξik − 1

3
δik

)
. (9.75)

As the expansion of the invariants into series with respect to the velocity gra-
dients do not contain terms of even order, one can directly see the correctness
of the above expressions with accuracy at least up to third-order terms with
respect to the velocity gradient.

As an example, we shall consider simple shear when ν12 �= 0, and
find components of the tensor of the recoverable displacement gradients
λ12, λ11, λ22, λ33; the components of the tensor ξil are calculated from the
relaxation equations (9.49) or (9.58). In this case the matrix of the deforma-
tion tensor is determined as follows

Λ =

∥∥∥∥∥∥∥∥

λ2
11 + λ2

12 λ22λ12 0

λ22λ12 λ2
22 0

0 0 λ2
33

∥∥∥∥∥∥∥∥
. (9.76)

Further on we shall consider the simple case when the relaxation equation
is given by equation (9.58) and we shall assume the shear motion to be a
steady-state one. So, we have the expressions
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ξ11 =
1
3
(1 + 2Γ 2), ξ12 =

1
3
Γ , ξ22 = ξ33 =

1
3
,

ξ13 = ξ23 = 0
(9.77)

where Γ = τν12 = τ0
η0

σ12.

Now, equations (9.75) allow us to calculate the shear modulus and the
deformation tensor. With approximation up to the third-order terms with
respect to the velocity gradient, we obtain

G =
η0

τ0

(
1 +

1
3
Γ 2

)
, (9.78)

Λ =

∥∥∥∥∥∥∥∥∥∥

1 + 5
3Γ 2 Γ

(
1 − 1

3Γ 2
)

0

Γ
(
1 − 1

3Γ 2
)

1 − 1
3Γ 2 0

0 0 1 − 1
3Γ 2

∥∥∥∥∥∥∥∥∥∥

. (9.79)

After comparing expressions (9.76) and (9.79), we obtain the components
of the recoverable displacement tensor

λ11 = 1 +
1
3
Γ 2, λ22 = λ33 = 1 − 1

6
Γ 2, λ12 = Γ

(
1 − 1

6
Γ 2

)
. (9.80)

In accordance with the experimental data (Ferry 1980), the shear mod-
ulus increases as the velocity gradient increases and the recoverable shear
deformation λ12 deviates from proportionality to the velocity gradient.

We may note here that the sets of constitutive equations (9.48)–(9.49)
or (9.58) can be reformulated, taking into account the established connec-
tion between the internal variable ξij and the recoverable deformation tensor
(equation (9.75)), so that the constitutive equations would include the ten-
sor of recoverable deformation as an internal variable. In fact, such constitu-
tive equations were obtained independently (Godunov and Romenskii 1972;
Leonov 1976; Prokunin 1989). Therefore, two interpretations of the internal
variables and two formalisms are equivalent, but, nevertheless, one of them
appears to be simpler.
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