
Chapter 8
Relaxation Processes
in the Phenomenological Theory

Abstract This chapter contains an outline of the phenomenological theory of
flow and deformation as a consequence of the conservation laws and the prin-
ciples of non-equilibrium thermodynamics. We exploit the concept of internal
thermodynamic variables that describe the deviation of a state of the system
from equilibrium. This concept has a long history beginning with the pioneer-
ing work of Mandelstam and Leontovich (Zh. Exper. Theor. Fiziki 7:438–449,
1937) and has appeared to be useful in description of a deformable viscoelas-
tic continuum (Coleman and Gurtin in J. Chem. Phys. 47:597–613, 1967;
Pokrovskii in Polym. Mech. 6(5):693–702, 1970; Wood in The thermodynam-
ics of fluid systems (Calendron, Oxford), 1975; Maugin in Thermomechanics
of nonlinear irreversible processes (World Scientific, Singapore), 1999). The
purpose of the chapter is to show how relaxation processes are included in the
phenomenological theory of flow. The principles of the formulation of the phe-
nomenological theory of viscoelasticity for any real materials are clear. In this
sense, one can postulate a general phenomenological theory of viscoelastic-
ity, which includes all known particular cases, among them those constitutive
equations that are formulated on the basis of macromolecular dynamics in
the previous and in the subsequent chapters. Principles of the theory, which
allows classify the various phenomenological constitutive equations proposed
for a viscoelastic medium, are discussed but no attempt is made to review
available constitutive equations.

8.1 The Laws of Conservation of Momentum and
Angular Momentum

The general form of transfer equations for a medium of arbitrary structure,
including melts and solutions of polymers, is established on the basis of con-
servation laws of mass, momentum, angular momentum and energy (Landau
and Lifshitz 1987a, Shliomis 1966).
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A continuous medium is characterised by its mean density, a function of
co-ordinates and time

ρ = ρ(x, t).

The motion of a continuous medium is described by its velocity vector v,
which is a certain mean macroscopic velocity and has three components –
functions of the co-ordinates and time –

vi = vi(x, t), i = 1, 2, 3.

The law of conservation of mass can be written in the form of the continuity
equation

∂ρ

∂t
+ div ρv = 0 (8.1)

where ρv is the flux of mass density. Here and further on, the density of some
quantity means the amount of this quantity in the volume unit of the medium.

The law of conservation of momentum can be written as

∂(ρvi)
∂t

+
∂Π ik

∂xk
= σi

where Πik = ρvivk −σik is the tensor flux of momentum density, which consists
of the convective flux and the stress tensor; σi is the density of the external
forces that act on the fluid.

We can use the above relations to rewrite the law of conservation of mo-
mentum density in the form

ρ

(
∂vi

∂t
+ vj

∂vi

∂xj

)
=

∂σik

∂xk
+ σi. (8.2)

The law of conservation of the angular momentum for the medium can
be written under an assumption that there is an internal angular momentum,
the density of which Sij obeys the law

∂Sij

∂t
+

∂(vlSij)
∂xl

+
∂gijl

∂xl
= Gij (8.3)

where Gij is the density of force torque which acts on the inner elements
of the system, and gijl is the density of the non-convective flux of angular
momentum.

No assumption was stated when equation (8.3) was written down. Without
any assumption we can also formulate the law of conservation of the total
angular momentum

∂

∂t
(Jik + Sik) +

∂Gikl

∂xl
= Nik + xiσk − xkσi (8.4)

where Jik = −ρ(xivk −xkvi) is the density of the external angular momentum,
Gikl is the flux of the total angular momentum, and Nik is the torque density
from the external volume forces.
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The definition of the density of external angular momentum can be used
to express, with the help of equations (8.1) and (8.2), the rate of change of
the external angular momentum through the stress tensor σik

∂Jik

∂t
+

∂

∂xl
(vlJik) = σki − σik − ∂

∂xl
(xiσkl − xkσil) − xiσk + xkσi. (8.5)

After summing equations (8.3) and (8.5), we obtain

∂(Jik + Sik)
∂t

+
∂

∂xl

[
(Jik + Sik)vl + xiσkl − xkσil) + gikl

]

= Gik − σik + σki − xiσk + xkσi.

The last equation can be compared to (8.4), which determined the relations

Gikl = (Jik + Sik)vl + (xiσkl − xkσil) + gikl,

Gik = Nik + σik − σki.

Then, equations (8.3) and (8.4) can be written in the form

∂(Jik + Sik)
∂t

+
∂

∂xl

[
(Jik + Sik)vl + xiσkl − xkσil + gikl

]

= Nik − xiσk + xkσi, (8.6)
∂Sik

∂t
+

∂

∂xl
(vlSik + gikl) = Nik + σik − σki. (8.7)

The set of motion equations (8.1), (8.2), (8.6) and (8.7) contains the un-
known quantities σik and gikl, which will be determined later.

Before we come to further determinations of the unknown quantities, we
shall estimate here the effect of the internal angular momentum on the motion
of the liquid. Let a be the characteristic size of internal structural elements,
then Sik ≈ ρav, σik ≈ ηv/a, where η is the viscosity coefficient. An estimate
of the characteristic relaxation time of the balance of the internal and external
rotation follows from equation (8.7)

τ ≈ ρ
a2

η
.

For a polymer solution, η ≈ 10−2 P s, ρ ≈ 1 g/cm3, and the size of macro-
molecular coil is a ≈ 10−5 cm, which allow us to estimate the relaxation time
τ ≈ 10−10 s. Processes with relaxation times so small are not essential when
compared to other relaxation processes in polymer solutions.

For times which are much bigger than the relaxation time, the internal
and external rotation are balanced, so equation (8.7) is followed by

σik − σki = −Nik. (8.8)
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In this case, the stress tensor is non-symmetric, if there is an external force
torque. The law of conservation of angular momentum follows from the law
of conservation of momentum.

So, we shall further assume, that the internal and external rotation are
balanced in polymer solutions and the stress tensor is symmetric, when there
is no external force torque.

8.2 The Law of Conservation of Energy and the Balance
of Entropy

We assume that there are no internal sources of energy in the liquid, so that
the change of the energy density E is connected with fluxes through the surface
of the volume. The law of the conservation of energy can be written in the
form

∂E

∂t
+ div q = 0 (8.9)

where q is the flux of energy density.
The law of the conservation of energy is also known as the first principle of

thermodynamics. To formulate the motion equation of a liquid, it is necessary
to use the second principle of thermodynamics also, which can be written as
the equation for the change of the entropy s for unit mass.

The balance equation for the entropy density has the form

∂(ρs)
∂t

+ div (vρs + H) = Σ

where H is the non-convective flux of entropy density, Σ is the non-negative
quantity of emerging of entropy – entropy production. This equation can be
rewritten in another form

ρ

(
∂s

∂t
+ vi

∂s

∂xi

)
+ div H = Σ . (8.10)

For systems, which are in a state of equilibrium, there is only convective
transfer of entropy. This is the case of an ideal fluid, for which

∂s

∂t
+ vi

∂s

∂xi
= 0. (8.11)

The entropy arises in systems, which can be considered as systems that
are locally in equilibrium. The increase of entropy can be connected with heat
production in units of volume of fluid or, in other words, with the dissipation
of energy Φ.

ρ

(
∂s

∂t
+ vi

∂s

∂xi

)
=

Φ
T

. (8.12)
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Non-equality can be written for the case when we cannot consider the
system as to be locally in equilibrium.

ρ

(
∂s

∂t
+ vi

∂s

∂xi

)
>

Φ
T

.

In this general case, equation (8.10) is valid.
So as there is a thermodynamic relation between entropy and internal

energy, the unknown quantities q, H in equations (8.9) and (8.10) can be
connected with each other and also can be determined production of entropy
Σ through other quantities. The density of total energy E in equation (8.9)
can be represented as a sum of the kinetic energy and the thermodynamic
total energy of the resting volume

E =
1
2
ρv2 + E0. (8.13)

In equilibrium situations, the quantity E0 is internal thermic energy E0 = ρε,
which is directly connected with entropy s per unit of mass by relation

dE0 = ρT ds + w dρ (8.14)

where ε is internal energy per unit of mass, w = ε + p/ρ is the enthalpy for
unit mass. This relation (8.14) is followed directly from known (Landau and
Lifshitz, 1969) thermodynamic relation, which connects change of internal
energy ε for unit mass with specific volume v and entropy s

dε = T ds − pdv. (8.15)

In non-equilibrium situations, local states of the deformed system are de-
scribed by some internal thermodynamic variables ξα, where the label α is
used for the number of a variable and its tensor indices. All the equilibrium
values of the internal variables are functions of two thermodynamic variables:
for example, density and entropy

ξα
e = ξα

e (s, ρ).

The deviation of the thermodynamic system from the equilibrium state is
described by the differences ξα − ξα

e which are noted as ξα henceforth.
In non-equilibrium situations, the quantity E0 includes also potential of

internal variables (Wood 1975, Maugin 1999, Pokrovskii 2005), so that the
differential of this function has the form

dE0 = ρT ds + w dρ + Ξα dξα (8.16)

where the thermodynamic force has appeared:

Ξα =
(

∂E0

∂ξα

)
s,ρ

= −T

(
∂(ρs)
∂ξα

)
T,ρ

> 0.
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The quantities T, w and Ξα are functions of the variables s, ρ, ξα. At equi-
librium, when there is no external fields, all the ξα = 0, while the quantities
T and w take their equilibrium values. The external field affects the internal
variables, which determine the state of the system.

Now, taking relations (8.13) and (8.16) into account, we are ready to write
down the rate of change of the density of the total energy of the moving fluid

∂E

∂t
= ρvi

∂vi

∂t
+ ρT

∂s

∂t
+

(
w +

v2

2

)
∂ρ

∂t
+ Ξα

∂ξα

∂t
.

We can use equations (8.1), (8.2) and (8.10) to transform the above ex-
pression to the equation which has the form of the law of the conservation of
energy

∂E

∂t
+

∂

∂xk

[
ρvk

(
w +

v2

2

)
− vi(σik + pδik) + THk

]

= TΣ − (σik + pδik)νik + Hi∇iT +
dξα

dt
Ξα (8.17)

where, as before, νik = ∂vi

∂xk
is a tensor of the velocity gradient.

Comparison of equations (8.9) and (8.17) determines

qk = ρvk

(
w +

v2

2

)
− vi(σik + pδik) + THk,

Σ =
1
T

(
(σik + pδik)νik − Hi∇iT − dξα

dt
Ξα

)
.

(8.18)

Internal variables ξα are introduced in relation (8.16) formally. However,
the success of the theory depends on the proper choice of the internal variables
for the considered case. Consideration of models usually helps to recognise
which quantities describe the deviation of the system from its equilibrium
state and which can be used as internal variables. A set of internal variables
were identified in Chapter 2 for dilute polymer solutions and in Chapter 7 for
polymer melts.1

8.3 Thermodynamic Fluxes and Relaxation Processes

The laws of conservation determine the equations of fluid motion which, how-
ever, contain a few unknown quantities discussed below.

1 Note, that a set of internal variables with labels, which take a continuous set of values, can
be considered. Grmela (1985) and Jongschaap (1991) have generalised the above-written

relations for this case. They showed that the values of the distribution function itself W (ρ, t)
in the problem of dynamics of dumbbells (see Appendix F), for example, can be considered
as a set of internal variables, whereas the arguments of the function play the role of the

label α with a continuous set of values ρ.
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Expression for production of entropy (8.18) can be now compared with the
general results of non-equilibrium thermodynamics, which are known for both
non-stationary and stationary cases. It is obvious, that last term in the right-
hand side of relation (8.18) corresponds to a non-stationary case and includes
the equation of change of internal variables that is relaxation equation. The
first two terms in formula (8.18) correspond to a stationary case and should
be considered as the products of thermodynamic fluxes and thermodynamic
forces (it is possible with any multipliers). When the internal variables are
absent, we should write a relation between the fluxes and forces in the form

σij + pδij = fij(νjs, ∇lT ),
−Hi = Hi(νjs, ∇lT ).

At small gradients, the right parts of these relations can be expanded in a
power series. In linear approximation of a parity for the anisotropic environ-
ment one gets

σik + pδik = ηikjsνjs + Likj ∇jT,

−Hi = L̄ijsγjs + Aij ∇jT.

Here one can take advantage of the Onsager principle, that is equate factors
at cross members.

In situations when internal relaxation processes cannot be neglected, it is
necessary to include in consideration relaxation equation for internal variables,
and we write down

σij + pδij = fij(νjs, ∇lT, ξγ),
−Hi = Hi(νjs, ∇lT, ξγ), (8.19)

− dξα

dt
= gα(νjs, ∇lT, ξγ).

One can note that the diffusion of the internal variables, i.e. the diffusion of
structural elements at non-homogeneous distribution of the values of internal
variables, is neglected here. Otherwise, the quantities ∂2ξα

∂xi∂xl
must be added

to the set of arguments of the right-hand side functions in (8.19). We shall
not discuss this situation henceforth.

It is known, that thermodynamic forces are functions of internal variables
(not speaking about other thermodynamic variables)

Ξα = Ξα(ξγ), (8.20)

so that relations (8.19) can be understood in such a way, that the quantities

1
T

(σik + pδik), − 1
T

Hi, − 1
T

dξα

dt

are functions of the thermodynamics forces

νik, ∇iT, Ξα.
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The application of general thermodynamic theory can be considered, first,
in linear approximation. In practice, it is sufficient for the most part of ap-
plications. We can use our usual notations for symmetric and antisymmetric
tensors of the velocity gradients

γij =
1
2
(νij + νji), ωij =

1
2
(νij + νji)

and divide the stress tensor into symmetric and antisymmetric parts, to write
the fluxes as quasi-linear function of the forces

1
2
(σik + σki + 2pδik) = ηikjsγjs + Kikjsωjs + Likj ∇jT + Mikαξα,

1
2
(σik − σki) = K̄ikjsγjs + Nikjsωjs + C̄ikj ∇jT + D̄ikαξα,

−Hi = L̄ijsγjs + Cijsωjs + Aij ∇jT + Giαξα,

− dξα

dt
= M̄αjsγjs + Dαjsωjs + Ḡαi∇iT + Pαγξγ .

(8.21)

The matrix coefficients in (8.21) depend on the thermodynamic variables,
which, in the case under discussion, are pressure p or density ρ (we can chose
any of them, so as there exist an equation of state, connecting these variables),
temperature T and internal variables ξα. The coefficients can be expanded
into series near equilibrium values of internal variables. Zero-order terms of
expansions of the components of the matrices in a series of powers of the
internal variables are connected due to the Onsager principle (Landau and
Lifshitz 1969) by some relations

K̄0
jsik = K0

ikjs, C̄0
ikj = −C0

jik, L̄0
jik = −L0

ikj .

The bars over letters denote matrices, which are obtained from the original
matrices (without bars) by simple transformation. Note once more that these
relations are valid for equilibrium values. Further on we shall be interested
in non-linear relations, so we consider all matrices to depend on the internal
variables.

In the simple case when all the internal variables are scalar quantities,
the state of the system is isotropic, all the matrix coefficients in (8.21) are
expressed in unit matrices, and the relations (8.21) take the simpler form,
which can be easily written for every given set of internal variables.

In rheological terms, equations (8.20) and (8.21) make up a set of consti-
tutive relations of the system. Together with equations (8.1), (8.2) and (8.10),
they determine the equations of motion of the system.

We should pay special attention to the last relation in (8.20), which is a
relaxation equation for the variable ξα. One can find examples of relaxation
equations in Section 2.7 for dilute solutions of polymers and in Chapter 7
for concentrated solutions and melts of polymers. The presence of internal
variables and equations for their change are specific features of the liquids we
consider in this monograph.
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8.4 The Principle of Relativity for Slow Motions

The form of the above-written relations (8.21) can be specified more by ap-
plying some restrictions which follow from the assumption that the motion
of structural elements of medium does not change very rapidly, so that the
following relation is valid

uρa

η
� 1. (8.22)

Here, a is the characteristic size of the structural element, ρ is the density,
which is approximately equal to 1 g/cm3, η is the effective viscosity coefficient
of the medium which is 10−2–10 P s, and u is the characteristic velocity of
motion of the particle, which is not more than the mean thermal velocity
(T/m)1/2. It is easy to see that, at room temperature and with the above
values of the parameters, condition (8.22) is valid if a � 10−7–10−6 cm.

As is well known, the equations of mechanics are covariant with the Galileo
transform. This can be also said about relations (8.19) and (8.21). In the case,
when the motions of the internal particles are slow (in the sense discussed
above), we can state that a stronger principle is valid. It says that all the
processes run in the same way and, consequently, should be described by
similar equations in all the co-ordinate frames which are connected to each
other by the transform

xi = aikx′
k + ci (8.23)

where an orthogonal tensor aik and a vector ci are arbitrary functions of time.
In contrast to the Galileo principle, the above principle, which is also called
the principle of material objectivity (Coleman and Nolle 1961), is valid for
the cases when the forces of inertia can be neglected.

Let us consider the restriction imposed on the form of the transfer equa-
tions by the discussed principle. It is easy to see that, when transformation
(8.23) is applied to the co-ordinates, the tensor of velocity gradients trans-
forms as

νik = ailakjν
′
lj + ȧilakl.

The superscript point denotes differentiation with respect to time.
The symmetrical tensor of velocity gradient transforms as a tensor, which

does not depend on time
γik = ailakjγ

′
lj . (8.24)

The antisymmetrical tensor transforms in the following way

ωik = ailakjω
′
lj + ȧilakl. (8.25)

Let us now turn to the internal variables. We can consider that one of
the internal variables is a tensor of arbitrary rank and transforms as the co-
ordinates do, that is, contravariantly

ξik···l = aijaks · · · alnξ′
js···n.
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Differentiating the tensor with respect to time, we find that

dξik···l
dt

= ȧijapjξpk···l + ȧkjapjξip···l + · · · + ȧljapjξik···p + aijaks · · · aln

dξ′
js···n
dt

.

We can define the expression ȧilakl from (8.25) to rewrite the last expression
in the form

dξik···l
dt

− ωipξpk···l − ωkmξim···l − · · · − ωlnξik···n

= aijaks · · · aln

(
dξ′

is···n
dt

− ω′
jqξ

′
qs···n − ω′

sqξ
′
jq···n − · · · − ω′

nqξ
′
js···q

)
.

We can see that the combination

Dξik···l
Dt

=
dξik···l

dt
− ωipξpk···l − ωkmξim···l − · · · − ωlnξik···n (8.26)

transforms as a tensor, which is independent of time. Expression (8.26) is
called the Jaumann derivative of tensor ξik···l with respect to time.

There are plenty of covariant derivatives of the tensor ξik···l among which
the Jaumann derivative has the simplest form. Indeed, expressions (8.24) and
(8.25) are followed by the relation

ȧilakl = ωik + κγik − aisakj(ω′
sj + κγ′

sj)

where κ is the arbitrary constant. We can use this relation to introduce deriva-
tives, which are generalisations of (8.26).

Covariant tensors can be considered in a similar way.

8.5 Constitutive Relations for Non-Linear Viscoelastic
Fluids

One can now return to the set of transfer equations (8.20) and (8.21), to
which the discussed principle of covariance can be applied. The new form of
the equations which is covariant under transformation (8.23) is written as
follows

1
2
(σik + σki + 2pδik) = ηikjsγjs + Likj ∇jT + Mikαξα,

1
2
(σik − σki) = D̄ikαξα,

−Hi = L̄ijsγjs + Aij ∇jT + Giαξα,

Dξα

Dt
= M̄αjsγjs + Ḡαi∇iT + Pαγξγ ,

(8.27)
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where the Jaumann derivative is noted as

Dξα

Dt
=

dξα

dt
+ Dαjsωjs.

For every given tensor ξα, this expression can be compared to (8.26) which de-
termines the matrix Dαjs and, consequently, in linear approximation, matrix
D̄ikα in relations (8.27).

The set of relations (8.27) determines the fluxes as quasi-linear functions
of forces. The coefficients in (8.27) are unknown functions of the thermody-
namic variables and internal variables. We should pay special attention to the
fourth relation in (8.27) which is a relaxation equation for variable ξα. The
viscoelastic behaviour of the system is determined essentially by the relaxation
processes. If the relaxation processes are absent (all the ξα = 0), equations
(8.27) turn into constitutive equations for a viscous fluid.

One can see that the equations of motion for a viscoelastic fluid can always
be written, when a set of internal relaxation variables is given, however, a set
of internal variables cannot be determined in the frame of phenomenologi-
cal theory and equations (8.27) cannot be specified any more without extra
assumptions.

As an example, we shall consider a simpler case of the isothermal motion of
a liquid without the external volume forces and without the external volume
force torque, so that equations (8.27) acquire the form

σik + pδik = ηikjsγjs + Mikαξα,

− Dξα

Dt
= M̄αjsγjs + Pαγξγ .

(8.28)

The set of internal variables ξγ is usually determined when considering
a particular system in more detail. For concentrated solutions and melts of
polymers, for example, a set of relaxation equation for internal variables were
determined in the previous chapter. One can see that all the internal variables
for the entangled systems are tensors of the second rank, while, to describe
viscoelasticity of weakly entangled systems, one needs in a set of conforma-
tional variables xα

ik which characterise the deviations of the form and size of
macromolecular coils from the equilibrium values. To describe behaviour of
strongly entangled systems, one needs both in the set of conformational vari-
ables and in the other set of orientational variables uα

ik which are connected
with the mean orientation of the segments of the macromolecules.

To simplify the situation, one can keep only one internal variables with
the smallest number from each set, that is x1

ik and u1
ik. It allows one to spec-

ify equations (8.28) for this case and to write a set of constitutive equations
for two internal variables – the symmetric tensors of second rank. The par-
ticular case of general equations are equations (9.24)–(9.27) – constitutive
equations for strongly entangled system of linear polymer. For a weakly entan-
gled system, one can keep a single internal variable to obtain an approximate
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description of viscoelastic behaviour of the system. To consider this case in
more details, we specify equations (8.28) for a single internal variable – the
symmetric tensor of the second rank and rewrite relations (8.28) as follows

σik + pδik = ηikjsγjs + Mikjsξjs,

− Dξij

Dt
= M̄ijlsγls + Pijlsξls.

(8.29)

In a more general case, we do not know the dependencies of the matrices
in (8.29) on the internal variable, so one can rewrite relations (8.29) in the
form

σik + pδik = ηikjsγjs + σ̄ik(ξpq),

− Dξij

Dt
= M̄ijls(ξpq)γls + φij(ξpq).

(8.30)

The tensor functions in (8.30) can be written in a general form, according
to the rules described, for example, for the arbitrary tensor function in the
book by Green and Adkins (1960)

σ̄ik = σ0δik + σ1ξik + σ2ξilξlj ,

φik = φ0δik + φ1ξik + φ2ξilξlk

(8.31)

where the coefficients σi and φi (i = 0, 1, 2) are functions of the three invari-
ants of the tensor ξil

I1 =
3∑

i=1

ξii, I2 =
1
2

∑
i,j

(ξijξji − ξiiξjj), I3 = |ξij |.

The relations (8.30) and (8.31) make up a general form for a non-linear
single-mode constitutive relation. To specify the constitutive equation for a
given system, one ought to determine the unknown function in (8.31) relying
on experimental evidence. A particular form of relation (8.30) and (8.31),
called canonical form (Leonov 1992), embraces many empirical constitutive
equations (Kwon and Leonov 1995). One can obtain the canonical form of
constitutive relation (Leonov 1992), if one neglects the viscosity term in the
stress tensor (8.30), which is quite reasonable for polymer melts, and put an
additional assumption on matrix M̄

M̄ijls = − 1
2
κ(ξilδjs + ξjsδil + ξisδjl + ξjlδis)

where κ is a numerical parameter, usually taken as ±1 or 0. One can look at
equations (9.48) and (9.49) in the next chapter as particular case of system
(8.30) and (8.31) as well.

Let us note that, according to Godunov and Romenskii (1972) and Leonov
(1976), the internal variable ξij can be considered to be a second-rank tensor
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of the recoverable strain. This statement changes neither definition (8.16) of
the thermodynamic force Ξls, nor the form of equations (8.30), but it does
specify the form of the unknown functions and matrices in (8.30). In this case,
a form of matrix Mikjs can be determined, taking the relation between the
stress tensor and the strain tensor (given by formula (B.7) of Appendix B)
into account. Some simplification can be also achieved, because one has for
an incompressible continuum an extra condition

|ξij | = 1.

In this case, one has only two invariants of the internal tensor, which makes the
general relations for the tensor functions simpler. However, it does not mean
that the final relations will be simpler. We can see later (see Section 9.3.5)
that there is a relation between the recoverable strain and the deformation
of macromolecular coil (see formula (9.75)), so a transfer from one formalism
to the other can be performed and the results of the two approaches can be
compared.

8.6 Different Forms of Constitutive Relation

All the constitutive relation that we have discussed in this chapter include
some relaxation equations for the internal tensor variables which ought to
be considered to be independent variables in the system of equations for the
dynamics of a viscoelastic liquid.

However, in the earlier times, the constitutive relation for a viscoelastic
liquid were formulated when the equations for relaxation processes could not
be written down in an explicit form. In these cases the constitutive relation was
formulated as relation between the stress tensor and the kinetic characteristics
of the deformation of the medium (Astarita and Marrucci 1974).

In this section, we shall show that the constitutive relation with internal
variables is followed by two types of constitutive relations which do not include
internal variables. For the sake of simplicity, we shall consider the simplest set
of equations

σik + pδik = 3
η

τ

(
ξik − 1

3
δik

)
, (8.32)

dξik

dt
− νijξjk − νkjξji = − 1

τ

(
ξik − 1

3
δik

)
(8.33)

where the coefficient of viscosity η and the time of relaxation τ are functions
of the invariants of the internal tensor variable ξik.

Indeed, we can obtain a relation between the stress tensor and the velocity
gradient tensor if we exclude tensor ξij from the set of equations (8.32)–(8.33).
This can be done in two different ways.
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Firstly, from equation (8.32), we can define the tensor ξij which can be
inserted into the second equation of (8.33). As a result, we obtain a differential
equation for the extra stresses

dτik

dt
− νijτjk − νkjτji = − 1

τ
(τik − 2ηγik), τik = σik + pδik. (8.34)

The quantities τ and η in equation (8.34) depend on the invariants of
the tensor τik in accordance with equation (8.32). We ought to note that the
behaviour of a non-linear viscoelastic liquid in a non-steady state would be
different, if a dependence of the material parameters τ and η on the tensor
velocity gradients or on the stress tensor is assumed. This is a point which is
sometimes ignored. In any case, if τ and η are constant, equation (8.34) belongs
to the class of equations introduced and investigated by Oldroyd (1950).

The linear case of relation (8.34) is the Maxwell equation (see, Landau
and Lifshitz 1987b, p. 36).

d(σik + pδik)
dt

+
1
τ

(σik + pδik) = 2
η

τ
γik (8.35)

where, as before, τ is the relaxation time, and η is the coefficient of shear
viscosity. There are different generalisations of equations (8.34) and (8.35)
(Astarita and Marrucci 1974).

On the other hand, we can imagine that a solution of equation (8.33) can
be found. Below, the solution is written for uniform flow with accuracy up to
the second-order terms with respect to the velocity gradient

ξik =
1
3
δik +

∫ ∞

0

exp
(

− s

τ

)
γij(t − s)ds

+
∫ ∞

0

exp
(

− s

τ

) ∫ ∞

0

exp
(

− u

τ

)

× [νij(t − s)γjk(t − s − u) − νkj(t − s)γji(t − s − u)] du ds.

Then, the solutions should be inserted into equation (8.32), which deter-
mines the stress tensor as a function of the tensor of the velocity gradient in
the previous moments of time. The linear term has the form

σij = −pδij + 2
η

τ

∫ ∞

0

exp
(

− s

τ

)
γik(t − s)ds. (8.36)

A generalisation of (8.36) for the case of many relaxation processes can
easily be found. In the simplest case of uniform motion one has

σik = −pδik + 2
∫ ∞

0

η(s)γik(t − s)ds. (8.37)

The memory function η(s) can be calculated if a set of internal variables are
given.
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In general case, the stress tensor ought to be written as

σik + pδik = Y ∞
s=0[νjk(t − s), γlm(t)]. (8.38)

Instead of velocity gradients, displacement gradients can be used in rela-
tion (8.38). In this form, relations of the kind (8.38) are established on the
basis of the phenomenological theory of so-called simple materials (Coleman
and Nolle 1961). To put the theory into practice, function (8.38) should be,
for example, represented by an expansion into a series of repeated integrals, so
that, in the simplest case, one has the first-order constitutive relation (8.37).
Let us note that the first person who used functional relations of form (8.38)
for the description of the behaviour of viscoelastic materials was Boltzmann
(see Ferry 1980).

Another form of the relation for slow motions can be obtained from equa-
tion (8.38). We can expand the velocity gradients in (8.38) into series in powers
of time near the moment t. The zeroth terms of the expansion determine a vis-
cous liquid. The next terms take viscoelasticity into account. This description
is local in time.

One can see that there are several forms for the representation of the
constitutive relation of a viscoelastic liquid. Of course, we ought to say that
all the types of constitutive relation we discussed in this section are equivalent.
We can use any of them to describe the flow of viscoelastic liquids. However,
the description of the flow of a liquid in terms of the internal variables allows
one to use additional information, if it is available, about microstructure of
the material, and, in fact, appears to be the simplest one for derivation and
calculation. We believe that the form, which includes the internal variables,
reflects a deeper penetration into the mechanisms of the viscoelastic behaviour
of materials. From this point of view, all the representations of deformed
material can be unified and classified.
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