
Chapter 6
Linear Viscoelasticity

Abstract In the course-grained approximation, polymer solutions and melts
can be considered as a suspension of interacting Brownian particles, which
allow us to determine a general expression for the stress tensor, following a
method developed in the theory of liquids (Rice and Gray in Statistical me-
chanics of simple liquids (Wiley, New York), 1965; Gray in Physics of simple
liquids, ed by H.N.V Temperley (North Holland, Amsterdam, pp. 507–562),
1968). The general theory is specified to calculate dynamic modulus both for
dilute and concentrated polymer systems. The approach allows one correctly
to describe the linear viscoelastic behaviour of dilute polymer solutions over
a wide range of frequencies, if the effects of excluded volume, hydrodynamic
interaction, and internal viscosity are taken into account. As far as the very
concentrated solutions and melts of polymers – entangled polymers – are con-
cerned, the results for the linear approximation of macromolecular dynamics
are only available now. As one can anticipate, it is not sufficient for complete
description of relaxation processes in strongly entangled systems, though some
relations for terminal characteristics are obtained for these systems. Remark-
ably, the mesoscopic theory appears to be self-consistent for entangled sys-
tems: the relaxation time of the environment is equal to the relaxation time
of the entire system, which is calculated in this chapter. The intermediate
scale introduced in Chapter 5 appears here once more as connected with the
well-known length of a macromolecule between adjacent entanglements Me. It
casts a new light on the old terms and old theories. The pictures given earlier
by different theories appear to be consistent.

6.1 Stresses in the Flow System

6.1.1 The Stress Tensor

As before, we shall consider each macromolecule either in dilute or in concen-
trated solution to be schematically represented by a chain of N + 1 Brownian
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particles, so that a set of the equations for motion for the macromolecule can
be written as a set of coupled stochastic equations

m
d2rα

dt2
= F α + Gα + Kα + φα, α = 0, 1, . . . , N, (6.1)

where m is the mass of a Brownian particle associated with a piece of the
macromolecule of length M/(N + 1), rα are the co-ordinates of the Brown-
ian particles. The dissipative forces F α and Gα acting on the particles were
discussed in Chapter 2 for dilute solutions and in Chapter 3 for entangled
systems.

We consider n to be the number density of macromolecular coils in the
system, so that the system contains n(N + 1) Brownian particles in unit
volume. This number is sufficiently large to introduce macroscopic variables
for the suspension of Brownian particles, namely, the mean density

ρ(x, t) =
∑

a,α

m〈δ(x − raα)〉 = m(N + 1)n(x, t) (6.2)

and the mean density of the momentum

ρvj(x, t) =
∑

a,α

m〈uaα
j δ(x − raα)〉. (6.3)

The angle brackets denote averaging over the ensemble of the realisation of
random forces in the equations of motion of the particles. The sum in (6.2)
and (6.3) is evaluated over all the Brownian particles. The double index aα
consists of the label of a chain a and the label of a particle α in the chain.

The methods developed in the theory of liquids (Rice and Gray 1965,
Gray 1968) was used by Pokrovskii and Volkov (1978a) to determine the
stress tensor for the set of Brownian particles in this case. One can start with
the definition of the momentum density, given by (6.3), which is valid for an
arbitrary set of Brownian particles. Differentiating (6.3) with respect to time,
one finds

∂

∂t
ρvj = − ∂

∂xi

∑

a,α

m〈uaα
i uaα

j δ(x − raα)〉 +
∑

a,α

〈
m

duaα
j

dt
δ(x − raα)

〉
. (6.4)

The right-hand side of equation (6.4) has to be reduced to a divergent form.
To transform the second term, we use the dynamic equation (6.1), which ought
to be multiplied by δ(x − raα). After summing over all the particles of the
macromolecule and averaging, one uses the requirement that there is no mean
volume force, that is,

N∑

α=0

〈(F aα + φaα)δ(x − raα)〉 = 0, a = 1, 2, . . . , n. (6.5)
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So, for each macromolecular coil, one can write

m

N∑

α=0

〈
duaα

dt
δ(x − raα)

〉
=

N∑

α=0

〈(Kaα + Gaα)δ(x − raα)〉 , a = 1, 2, . . . , n.

Next, the formal expansion of the δ-function into a Taylor’s series about
the centre of mass qa of the ath macromolecule can be used, retaining only
the first two terms of the expansion

δ(x − raα) = δ(x − qa) − (raα
k − qa

k)
∂

∂xk
δ(x − qa).

So, the above formula is transformed into

− ∂

∂xk

N∑

α=0

〈(Kaα
j raα

k + Gaα
j raα

k )δ(x − qa)〉, a = 1, 2, . . . , n.

Here, the sum is conducted over all the particles in a given macromolecule.
Assuming that all the macromolecules are identical, and neglecting the statis-
tical dependence of the position of the centres of mass of the macromolecules
on the other co-ordinates, one obtains an expression for the second term on
the right-hand side of equation (6.4) in the divergent form

∑

a,α

〈
m

duaα
j

dt
δ(x − raα)

〉
= − ∂

∂xk
n

N∑

α=0

〈Kaα
j raα

k + Gaα
j raα

k 〉.

The first term on the right-hand side of (6.4) can also be rewritten in a
more convenient form. One uses the definition of the mean velocity vi and,
taking only the first term of the expansion of the δ-function into account, one
finds that

m
∑

a,α

〈uaα
j uaα

i δ(x − qa)〉 = nm

N∑

α=0

〈(uα
j − vj)(uα

i − vi)〉 + ρvivj .

Thus, an equation, which has the sense of a law of conservation of mo-
mentum has been obtained. There is an expression for the momentum flux
ρvivj − σij under the derivation symbol, which allows one to write down the
expression for the stress tensor

σkj = −n

N∑

α=0

[
m〈(uα

j − vj)(uα
k − vk)〉 + 〈Kα

k rα
j + Gα

k rα
j 〉

]
. (6.6)

The assumption that the particle velocities are described by the local-
equilibrium distribution yields
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σkj = −n(N + 1)Tδjk − n

N∑

α=0

〈Kα
j rα

k + Gα
j rα

k 〉. (6.7)

As was demonstrated by Pyshnograi (1994), the last term in (6.7) can be
written in symmetric form, if the continuum of Brownian particles is consid-
ered incompressible. In equation (6.7), the sum is evaluated over the particles
in a given macromolecule. The monomolecular approximation ensures that
the stress tensor of the system is the sum of the contributions of all the
macromolecules. In this form, the expression for the stresses is valid for any
dynamics of the chain. One can consider the system to be a dilute polymer
solution or a concentrated solution and melt of polymers. In any case the
system is considered as a suspension of interacting Brownian particles.

6.1.2 Oscillatory Deformation

Experimentally a variety of quantities are used to characterise linear viscoelas-
ticity (Ferry 1980). There is no need to consider all the characteristics of linear
viscoelastic response of polymers which are measured under different regimes
of deformation: in linear region, they are connected with each other. The study
of the reaction of the system in the simple case, when the velocity gradients
are independent of the co-ordinates and vary in accordance with the law

γik ∼ e−iωt

for different deformation frequencies ω, gives a clear picture of the phenomena
of linear viscoelasticity and yields important information about the relaxation
processes in the system. For this case, the expression for the stress tensor can
be written in the form

σik(t) = −pδik + 2η(ω)γik(t) (6.8)

which defines the complex viscosity coefficient – dynamic viscosity

η(ω) = η′(ω) + iη′ ′(ω).

Since the velocity gradient is related to the displacement gradient by the
expression ν12 = −iωλ12, it follows that, instead of the dynamic viscosity, the
use may be made of another characteristic – the dynamic modulus

G(ω) = G′(ω) − iG′ ′(ω) = −iωη(ω). (6.9)

The components of the above complex quantities are linked by the relation

G′ = ωη′ ′, G′ ′ = ωη′. (6.10)

Dynamic modulus is a convenient characteristic of viscoelasticity. To anal-
yse the results, it is convenient also to consider the asymptotic behaviour of
the dynamic modulus at high and low frequencies. In the latter case
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G(ω) = −iωη + ω2ν. (6.11)

The expansion determines the terminal quantities: the viscosity coefficient η
and the elasticity coefficient ν which, in their turn, determine the terminal
relaxation time and steady-state compliance, correspondingly,

τ =
ν

η
, Je =

ν

η2
. (6.12)

Both the dynamic modulus and the terminal quantities are characteristics of
viscoelasticity of a system and are subject of interest of experimentalists.

Note that the dynamic modulus is the Fourier-transform of the relaxation
modulus G(t)

G(ω) = −iω

∫ ∞

0

G(t)eiωt dt,

which is also often used to characterise viscoelastic behaviour on the system.

6.2 Macromolecules in a Viscous Liquid

The dilute polymer solution can be considered as a collection of non-interacting
macromolecular coils suspended in a viscous liquid, the stress tensor of which
is written as

σ0
ik = −pδik + 2ηsγik. (6.13)

The dynamics of a separate macromolecular coil in the viscous liquid, dis-
cussed in Chapter 2, allows one to determine the problem.

6.2.1 The Stress Tensor

To find the stress tensor, one can use equation (6.7), in which the elastic and
internal viscosity forces, according to equations (2.2) and (2.25), have the form

Kα
i = −2TμAαγrγ

i , Gα
j = −Gαγ(ṙγ

j − ωjlr
γ
l ).

This gives the expression for the stress tensor

σik = −nT (1 + N)δik

+ n

N∑

ν=0

[2μTAαγ 〈rα
i rγ

k 〉 − Tδik + Gαγ(〈ṙγ
krα

i 〉 − ωil〈rα
l rγ

k 〉)] .

Furthermore, it is convenient to switch to normal co-ordinates (1.13). We can
use the expressions for forces (2.26) to rewrite the expression for the stress
tensor in normal co-ordinates
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σik = −n(N + 1)Tδik

+ n

N∑

α=1

[
2μTλα〈ρα

i ρα
k 〉 − Tδik + ζϕα

(
〈ρ̇α

k ρα
i 〉 − ωkl〈ρα

l ρα
i 〉

)]
. (6.14)

Here the linear terms in respect to the coefficient of internal viscosity ϕα have
taken into account only. Averaging with respect to the velocity distribution
has been assumed here. One ought to add the stresses (6.13) of carrier viscous
liquid to stresses (6.14) to determine the stress tensor for the entire system,
that is for the dilute solution of the polymer.

Let us note that the extra stresses arise due to the differences in the rate of
diffusion wα of a Brownian particle and the averaged velocity of the medium
vα at the point where the particle is located. It results in the emergence of
forces

F α = −ζ(vα − wα).

Accordingly, the extra stresses after averaging can be written as

−nζ

N∑

α=0

〈(vα
i − wα

i )rα
k 〉 (6.15)

where the angle brackets denote averaging with respect to the distribution
function for the particle co-ordinates. One ought to determine the diffusion ve-
locity wα to arrive at expression (6.14) for the stress tensor. Expression (6.15)
was the starting point in the calculations of the extra stresses in dilute so-
lutions of polymer in works by Cerf (1958), Kirkwood and Riseman (1948),
Peterlin (1967), and Zimm (1956).

One can use equation (2.37) to obtain the other form of the stress tensor

σik = −nT (N + 1)δik + nζ
N∑

ν=1

1
2

[
1
τ ‖
ν

(
〈ρν

i ρν
k 〉 − 1

2μλν
δik

)
+ 2ϕν 〈ρν

i ρν
j 〉γjk

]

(6.16)
where the times of relaxation τ ⊥

ν and τ ‖
ν = (1 + ϕν)τ ⊥

ν were defined earlier by
expressions (2.30).

Note that the internal viscosity is a residual of internal relaxation pro-
cess in the case, when the slow deformation is considered. In a more general
case, the elastic and internal viscosity forces acting on the chain, according to
equations (2.2) and (2.28), can be written as

Kα
i = −2TμAαγrγ

i , Gα
i = −

∫ ∞

0

Gαγ(s)(uγ
i − ωijr

γ
j )t−sds. (6.17)

Then, equation (6.7) gives, instead of (6.14), the expression for the stress
tensor in normal co-ordinate
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σik(t) = −n(N + 1)Tδik + n

N∑

α=1

{
2μTλα〈ρα

i ρα
k 〉 − Tδik

+ ζ

∫ ∞

0

ϕα(s)
(

〈ρ̇α
i (t − s)ρα

k (t)〉 − ωil(t − s)〈ρα
l (t − s)ρα

k (t)〉
)
ds

}
.

(6.18)

The validity of the theory for the non-linear region is restricted by terms
of the second power with respect to the velocity gradient for non-steady-state
flow and by terms of the third order for steady-state flow, due to approxima-
tions described in Chapter 2, when the relaxation modes of a macromolecule
were being determined.

6.2.2 Dynamic Characteristics

Let us write down first of all the stress tensor for dilute solution (6.16) as a
function of the velocity gradients. We can use expressions (2.41) for moments,
in order to determine the stresses with accuracy within the first-order term
with respect to velocity gradients

σik = −pδik + 2ηsγik

+ 2nT

N∑

ν=1

[
1 − ϕν

1 + ϕν

∫ ∞

0

exp
(

− s

τ ‖
ν

)
γik(t − s)ds + ϕντ ⊥

ν γik

]
. (6.19)

This equation contains two sets of relaxation times, which are defined by
equations (2.30), that is,

τ ‖
α = τ ⊥

α (1 + ϕα), τ ⊥
α = τ1α

−zν , ϕα = ϕ1α
θ, α = 1, 2, . . . � N.

The exponents in the above expressions can be estimated beforehand from
the dependence of the limiting values of the characteristic viscosity at low
and high frequencies on the length of the macromolecule.

In the case of the oscillatory motion, equation (6.19) defines, in accor-
dance with equation (6.8), the complex shear viscosity η(ω) = η′ + iη′ ′ with
components

η′(ω) =ηs + nT

N∑

ν=1

τ ⊥
ν

[
ϕν +

1 − ϕν

1 + (τ ‖
νω)2

]
,

η′ ′(ω) =nT

N∑

ν=1

ω(τ ⊥
ν )2

1 + (τ ‖
νω)2

.

(6.20)

Figure 14 illustrates the dependence of the characteristic viscosity

[η] = lim
n→0

η − ηs

nT
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Figure 14. The components of characteristic viscosity.
The real and imaginary components of characteristic viscosity have been calculated ac-

cording to equations (6.20) for zν = 2, ϕ1 = 0.5, θ = 0.5. The dashed curves depicts the
alternation of the dependencies in the case when an internal relaxation process is taking

into account, whereas equations (6.28) are used at τ/2τ1 = 10−5.

as defined by equations (6.20) on the non-dimensional frequency τ1ω for some
values of the parameters zν, ϕ1 and θ which appeared in the formulae for
relaxation times, introduced previously.

Equations (6.20) are followed by the expression for the characteristic dy-
namic modulus, components of which are

G′ =nT

N∑

ν=1

(τ ⊥
ν ω)2

1 + (τ ‖
νω)2

,

G′ ′ =ηsω + nT

N∑

ν=1

τ ⊥
ν ω

[
ϕν +

(1 − ϕν)
1 + (τ ‖

νω)2

]
.

(6.21)

Figure 15 demonstrates a comparison of the characteristic modulus

[G] = lim
n→0

G − iηsω

nT
,

calculated according to equation (6.21), with the corresponding experimental
values. One can note, that for certain values of the maximum relaxation time
τ1 and certain values of the exponents zν and θ (whereas, in virtue of equa-
tion (6.27), θ = 2ν − 1), the theory satisfactorily reproduces the experimental
relations for polymer solutions at infinite dilution. We may note yet again
that the identifying constants are unambiguously determined by the limiting
values of the characteristic viscosity and can be estimated independently.

The results (6.20) and (6.21), which are valid in the first order with re-
spect to the coefficient of internal viscosity ϕ1, were found by Peterlin (1967).
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Figure 15. The components of characteristic dynamic modulus.
Frequency dependence of characteristic dynamic modulus for polystyrene solutions in
decalin (A) and in toluene (B). Experimental values due to Rossers et al. (1978) (see

also the last lines of Table 2) are shown by filled points (for the real part) and empty
points (for the imaginary part). The theoretical curves have been plotted for zν = 1.788,

θ = 0.788, τ1 = 2.5 × 10−3 s for case A and for zν = 1.5, θ = 0.5, τ1 = 8.35 × 10−4 s for
case B. Adapted from the paper of Pokrovskii and Tonkikh (1988).

A generalisation of the theory for the case of arbitrary values of internal vis-
cosity was done by Pokrovskii and Tonkikh (1988). We may note that the case
when ϕ1 = 0 and zν = 2, corresponds to an ideally flexible freely-draining
macromolecule, and reproduces the relations indicated by Rouse (1953).

Thus, one may conclude that, in the region of comparatively low frequen-
cies, the schematic representation of the macromolecule by a subchain, taking
into account intramolecular friction, the volume effects, and the hydrodynamic
interaction, make it possible to explain the dependence of the viscoelastic be-
haviour of dilute polymer solutions on the molecular weight, temperature,
and frequency. At low frequencies, the description becomes universal. In or-
der to describe the frequency dependence of the dynamic modulus at higher
frequencies, internal relaxation process has to be considered as was shown in
Section 6.2.4.

As an illustration, certain data characterising dilute polymer solutions are
presented in Table 2.

6.2.3 Initial Intrinsic Viscosity

In the study of the linear response, it is convenient to consider quantity inde-
pendent of concentration and viscosity – the characteristic (intrinsic) viscosity

[η] = lim
c→0

η − ηs

cηs
(6.22)
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TABLE 2. Characteristics of dilute polymer solutions

T ρs ηs M · 10−5 [η] τ1 · 104

System ◦C g cm−3 P cm3 g−1 s

Polystyrene in decalin∗ 16 0.8868 0.0295 8.6 76 0.35
Polystyrene in

di-2-ethyl-hexylphthalate∗ 22 0.9827 0.678 8.6 — 7.59
Polystyrene in

α-chloronaphthalene∗ 25 1.195 0.0315 8.6 197 1.26
Polystyrene in arochlor 1232∗ 25 1.269 0.142 8.6 183 3.98

Polystyrene in arochlor 1232∗ 25 1.269 0.142 4.1 111 1.2
1.4-Polybutadiene in

chloronaphthalene∗∗ 25 — 0.0312 2.2 200 0.26
1.4-Polybutadiene in

chloronaphthalene∗∗ 25 — 0.0312 9.1 510 2.75
1.4-Polybutadiene in decalin∗∗ 25 — 0.0245 9.1 510 2.14
Poly-α-methylstyrene in

α-chloronaphthalene∗∗∗ 25 — 0.0315 14.3 252 2.0
Poly-α-methylstyrene in decalin∗∗∗ 25 — 0.0245 14.3 135 0.79

Polystyrene in decalin∗∗∗∗ 15 0.887 0.0287 180 300 23
Polystyrene in toluene∗∗∗∗ 20 0.867 0.0059 180 3100 69

∗ Johnson et al. (1970); ∗∗ Osaki et al. (1972a); ∗∗∗ Osaki et al. (1972b); ∗∗∗∗ Rossers et

al. (1978).

where ηs is the viscosity of the solvent and c = nMN −1
A is the weight concen-

tration of the polymer (NA = Avogadro number).
The limit of the characteristic viscosity at low frequencies, according

to (6.20), is defined as

[η′]0 =
nT

cηs

N∑

α=1

τ ⊥
α =

nT

cηs
ζ(zν)τ1 (6.23)

where ζ(x) is Riemann’s zeta-function. This quantity makes it possible to
estimate the role of the volume effects and of the hydrodynamic interaction
in the dynamics of the macromolecule, which influence the dependence of
the quantity under discussion on the molecular weight (the length of the
macromolecule)

[η′]0 = KMzν−1. (6.24)

Theoretical estimates of the quantity zν − 1 are in the range from 0.5
(non-draining Gaussian coil), to 1.11 (draining coil with excluded-volume in-
teraction). A compilation of empirical values of K and of the power exponents
for different polymers and different solvents may be found in the literature
(Flory 1969, Tsvetkov et al. 1964). The empirical values of the exponent zν −1
do not exceed 0.9, which indicates significant impermeability of the macro-
molecular coil in a flow. We may note that once a relation of type (6.24)
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has been established for a certain polymer, it can be used to determine the
molecular weight of the polymer from the characteristic viscosity (Flory 1969,
Tsvetkov et al. 1964). If the value of the index zν is known, equation (6.23)
allows us to estimate the value of the largest relaxation time τ1.

For a non-draining coil, the characteristic viscosity defined by equa-
tion (6.23) can be expressed in the form

[η′]0 = Φ
〈S2〉3/2

M
(6.25)

where 〈S2〉 is the average square of the radius of inertia of the coil, while the
experimental value of the constant Φ (called the Flory constant) according to
Flory (1969)

Φ = (2.66 ± 0.1) × 1023 mol−1.

Equation (6.25) makes it possible in this case to interpret a dilute solution
of macromolecules as a suspension of solid non-deformable spheres with a
radius close to the mean square radius of inertia.

The initial characteristic viscosity defined by equation (6.23) is seen to be
independent of the characteristics of intramolecular friction, but this is a con-
sequence of the simplifying assumptions. It has been shown for a dumbbell (Al-
tukhov 1986) that, when account of the internal viscosity and the anisotropy
of the hydrodynamic interaction is taken simultaneously, the characteristics
of these quantities enter into the expression for a viscosity of type (6.23). This
result must be revealed also by the subchain model when account is taken of
the anisotropy of the hydrodynamic interaction.

6.2.4 On the Effect of Internal Viscosity

The characteristic viscosity (6.22) is of special interest in the study of the
influence of intramolecular friction on the dynamics of a macromolecule in a
viscous liquid. At ω → ∞, characteristic viscosity can be written as

[η′]∞ =
nT

cηs

N∑

α=1

τ ⊥
α ϕα =

nT

cηs
ζ(zν − θ)τ1ϕ1 (6.26)

where ζ(x) is Riemann’s zeta-function.
Experimental studies indicate (Cooke and Matheson 1976, Noordermeer

et al. 1975) that the limiting characteristic viscosity for a given polymer-
homologous series is independent of the length of macromolecule and the type
of solvent. Taking into account that τ1 ∼ Mzν , n ∼ M −1 and ϕ1 ∼ M −θ, one
can find the relation

θ − zν + 1 = 0 (6.27)

which follows from equation (6.26) and from the fact that the limiting char-
acteristic viscosity is independent of the length of macromolecule.
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The independence of the limiting characteristic viscosity on the type of
solvent means that ϕ1 is independent of the viscosity of the solvent, that is
the dimensional characteristic of the ‘internal’ friction of the macromolecule
ζϕ1 is proportional to the viscosity of the solvent and the “internal” friction is
not solely internal. The conclusion that the solvent contributes significantly to
the intramolecular viscosity was reported by Schrag (1991), and was dubbed
as the “solvent modification effect”.

The fact that the value of the characteristic viscosity at high frequencies
is not zero indicates the existence of intramolecular (taking into account the
solvent molecules) relaxation processes with relaxation times smaller than
the reciprocal of the frequency of the measurement. The true limiting value
is naturally zero and experiments sometimes reveal a step at a frequency ω
which indicates the occurrence of a relaxation process with a relaxation time
τ ∼ ω−1 which is compatible to the times of the deformation of a system.
This phenomenon may be described by including the relaxing intramolecular
viscosity, as it was done by Volkov and Pokrovskii (1978).

One uses expression (6.18) for the stress tensor in which the memory func-
tion can be chosen in the simplest way

ϕα(s) =
ϕα

τ
exp

(
− s

τ

)
,

where ϕα is a coefficient of the intramolecular viscosity which can be defined
by relation (2.27), for example. Then, we use the results of Chapter 4 for the
correlation functions to write down the stresses for oscillatory deformation
and to find an expression for the coefficient of dynamic viscosity

η(ω) = ηs + nT

N∑

α=1

(
τ ⊥
α − τ −

α

τ+
α − τ −

α

)2 [
τ+
α

τ ⊥
α

τ+
α [1 − iω(τ+

α − τ ⊥
α )]

1 − iωτ+
α

− τ+
α + τ −

α

τ ⊥
α

τ ⊥
α − τ+

α

τ ⊥
α − τ −

α

τ0
α[1 − iω(τ0

α − τ ⊥
α )]

1 − iωτ0
α

+
τ −
α

τ ⊥
α

(
τ ⊥
α − τ+

α

τ ⊥
α − τ −

α

)2
τ −
α [1 − iω(τ −

α − τ ⊥
α )]

1 − iωτ −
α

]
, (6.28)

where the relaxation times are defined by

2τ ±
α = τα ±

(
τ2
α − 2ττ ⊥

α

)1/2

, τ ⊥
α =

τ1

αzν
,

τα =
τ

2
+ τ ⊥

α (1 + ϕα), τ0
α =

2τ −
α τ+

α

τ+
α + τ −

α
.

(6.29)

In the case, when one neglects the relaxation time of the intramolecular
process,

τα → τ ‖
α = τ ⊥

α (1 + ϕα),
τ+
α → τ ‖

α, τ −
α → 0, τ0

α → 0
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and expressions (6.28) reduce to the equation for dynamic viscosity

η(ω) = ηs + nT

N∑

α=1

τ ⊥
α

1 − iω(τ ‖
α − τ ⊥

α )
1 − iωτ ‖

α
(6.30)

which has the components (6.20).
Figure 14 illustrates the dependence of the viscosity on the frequency, while

taking into account the intramolecular relaxation process with a relaxation
time τ according to expression (6.28). It may be hoped that the study of
intramolecular relaxation processes from a phenomenological point of view will
promote the establishment of the detailed mechanism of the rapid relaxation
processes in polymers, although there is no doubt that more detailed models
of the macromolecule studied, for example, by Gotlib et al. (1986), Priss and
Popov (1971), Priss and Gamlitski (1983) must be used at high frequencies.
These models make it possible to describe the small-scale motions of the chain.

6.3 Macromolecules in a Viscoelastic Liquid

One of the first attempts to find a molecular interpretation of viscoelastic be-
haviour of entangled polymers was connected with investigation of the dynam-
ics of a macromolecule in a form of generalised Rouse dynamics (Pokrovskii
and Volkov 1978a; Ronca 1983; Hess 1986). It formally means that, instead of
assumption that the environment of the macromolecule is a viscous medium,
Brownian particles of the chain are considered moving in a viscoelastic liquid
with the stress tensor

σ0
ij = −pδij + 2

∫ ∞

0

ηs(s)γij(t − s)ds. (6.31)

The generalised Rouse dynamics is proved to be not sufficient for consistent
explanation of viscoelastic behaviour of entangled polymers, but appears to
be interesting from methodological point of view.

6.3.1 The Stress Tensor

To obtain the expression for the stress tensor for the set of Brownian particles
suspended in a viscoelastic liquid, we use equation (6.7), in which the elastic
and internal viscosity forces are specified in Section 3.2

Kα
i = −2TμAaγrα

i , Gα
i = 0.

It is convenient to write the stress tensor (6.7) in terms of normal co-
ordinates:

σik(t) = −n(N + 1)Tδik + nT

N∑

α=1

(2μλα〈ρα
i ρα

k 〉 − δik) . (6.32)
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Expression (4.17) for non-equilibrium moments allows us to determine the
stress tensor for a dilute suspension of macromolecular coils in the linear
viscoelastic liquid

σik = −pδik + 2
∫ ∞

0

(
η(s) + nT

N∑

α=1

2μλαμα(s)Mα(s)

)
γik(t − s)ds. (6.33)

Expressions (4.28) and (4.29) allow us to write the functions

μν(t) = T+
ν exp

(
− t

2τ+
ν

)
− T −

ν exp
(

− t

2τ −
ν

)
− R(t),

Mν(t) =
1

2μλν

[
T+

ν exp
(

− t

2τ+
ν

)
− T −

ν exp
(

− t

2τ −
ν

)]
,

where

T ±
ν =

τR
ν (1 + B) − τ ∓

ν

τ+
ν − τ −

ν
.

In accordance with definitions (4.26) the relaxation times are defined as

2τ ±
ν = τν ±

√
τ2
ν − 2ττR

ν , τν =
τ

2
+ τR

ν (1 + B), τR
ν =

τ ∗

α2
.

In equation (6.33), the stresses in the moving viscoelastic liquid (6.31)
are added to the stresses in the continuum of Brownian particles. When the
equations of motion are formulated, we have to take into account the presence
of the two interacting and interpenetrating continuous media formed by the
viscoelastic liquid carrier and the interacting Brownian particles that model
the macromolecules. However, the contribution of the carrier in the case of a
concentrated solution is slight, and we shall ignore it henceforth.

6.3.2 Dynamic Characteristics

We are studying the simple case, when the viscoelastic carrier liquid is char-
acterised by the dynamic viscosity

ηs(ω) = ηs +
ηsB

1 − iωτ
(6.34)

where ηs and τ are the coefficient of viscosity and the relaxation time of
the carrier liquid. The equation of dynamics of a single macromolecule in a
viscoelastic liquid has the form (3.11) in which, for this case, the memory
functions are determined by the transforms

β[ω] = ζ +
ζB

1 − iωτ
, ϕ[ω] = 0.

In this case, expression (6.33) for an oscillatory shear gradient gives the
dynamic modulus of the system
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G(ω) = Gs(ω) − nT

N∑

ν=1

iωL {μ2
ν(s)}

where L {μ2
ν(s)} is the Laplace transform of the functions μ2

ν(s).
When calculating the Laplace transform, one finds an enhancement of the

dynamic modulus due to the macromolecular coils in the viscoelastic liquid

G(ω) = nT

N∑

α=1

[
(T+

α )2
−iωτ+

α

1 − iωτ+
α

− 2T+
α T −

α

−iωτ0
α

1 − iωτ0
α

+ (T −
α )2

−iωτ −
α

1 − iωτ −
α

]
.

(6.35)
The dynamic modulus of the suspension of non-interacting macromolecular
coils is determined by three sets of relaxation times

τ+
α , τ −

α , τ0
α =

2τ+
α τ −

α

τ+
α + τ −

α
≈ 2τ −

α . (6.36)

Further on we shall consider the case of large values of parameter B,
when the first terms in the expansion of the relaxation times in powers of the
quantity 1/B are

τ+
α ≈ τR

αB(1 + χα2)
[
1 − 2χα2

B(1 + χα2)2

]
, (6.37)

τ −
α ≈ 2τ ∗χ

1 + χα2
, χ =

τ

2τ ∗B
. (6.38)

At large values of B, the whole set of relaxation times can be divided into
two sets: large relaxation times τ+

α and small relaxation times τ −
α and τ0

α,
while the times τ+

α are B times the largest times from the set τ −
α and τ0

α.
One can see that the frequency dependence of the dynamic modulus is

determined by two parameters B and χ

G(ω) = nTf(ωτ ∗, B, χ).

Before we discuss the frequency dependencies of the dynamic modulus, which
are shown in Fig. 16 for typical values of parameters, we shall find expressions
for the characteristic quantities at B 	 1. The latter assumption allows us to
use expressions (6.36)–(6.38) and to define

T+
ν ≈ τR

ν B

τ+
ν − τ −

ν
, T+

ν ≈ τR
ν Bχα2

τ+
ν − τ −

ν
.

Expressions for viscosity η, elasticity ν and the real value of the dynamic
modulus on the intermediate plateau, when τ+

α 	 1
ω 	 τ −

α , follow from
formula (6.35)
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Figure 16. Macromolecules in a viscoelastic liquid.
The real and the imaginary components of dynamical modulus of a dilute suspension of
macromolecules in a viscoelastic liquid are calculated at values of B shown at the curves

and at χ = 1. Adapted from the paper of Pokrovskii and Volkov (1978a).

η = nTτ ∗B

N∑

α=1

1
α2(1 + χα2)

,

ν = nT (τ ∗B)2
N∑

α=1

1
α4

,

Ge = nT

N∑

α=1

1
(1 + χα2)2

.

The replacement of the sums by integrals allows us to estimate the char-
acteristic quantities at N → ∞. One can find that the elasticity does not
depend on the parameter χ

ν =
π4

90
nT (τ ∗B)2. (6.39)

The viscosity and dynamic modulus value for the plateau can be estimated
at large and small values of χ
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η ≈ π4

90
nTτ ∗Bχ−1, Ge ≈ π4

90
nTχ−2, χ 	 1,

η ≈
(

π2

6
− π

2
χ1/2

)
nTτ ∗B, Ge ≈ π

4
nTχ−1/2, χ � 1.

(6.40)

Now, we can try to relate the above results to the experimental data on
the viscoelasticity of concentrated solutions of polymers. For the systems of
long macromolecules, the estimated values of parameter χ are small. Having
used expressions (6.40) for this case, one can evaluate the terminal relaxation
time of the system

τ̄ =
ν

η
=

π2

15
τ ∗B, (6.41)

which, due to the requirement of assumed self-consistency, ought to coin-
cide with the given relaxation time τ . This requirement, in virtue of defini-
tion (6.38), determines the self-consistent value of the parameter

χ =
τ

2τ ∗B
=

π2

30
≈ 0.33. (6.42)

In the alternative case of large values of χ one can use the upper line of
equation (6.40) to calculate the terminal relaxation time of the system, which
coincides with the given relaxation time in order of magnitude

τ̄ =
ν

η
=

τ

2
.

The suspension of dilute macromolecular coils in a viscoelastic liquid is
suitable for the interpretation of results on the viscoelasticity of concentrated
systems with macromolecules, which are not long (M ≈ Me). This case was
carefully investigated by Leonov (1994). He has confirmed the possibility of a
self-consistent description for a system of very short macromolecules.

6.4 Entangled Macromolecules

Investigation of viscoelastic behaviour of linear polymer solutions and melts
shows that there are universal laws for dependencies of the terminal char-
acteristics on the length of macromolecules, which allows to interpret these
phenomena on the base of behaviour of a single macromolecule in the system
of entangled macromolecules (Ferry 1980, Doi and Edwards 1986). The va-
lidity of the mesoscopic approach itself rests essentially on the fundamental
experimental fact that quantities that characterise the behaviour of a poly-
mer system have a well-defined unambiguous dependence on the length of the
macromolecule.

The dependence of the characteristics on molecular weight was used for
the classification of the systems (Ferry 1980; Graessley 1974; Watanabe 1999).
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The law for coefficient of viscosity, which was unambiguously established by
Fox and Flory (1948) for polystyrene and polyisibutilene and confirmed for
many polymer system investigated later (Berry and Fox 1968, Ferry 1980),
determines the first critical point Mc ≈ 2Me separating entangled and non-
entangled systems of linear polymers

η ∼
{

M, non-entangled systems, M < Mc,

M3.4, entangled systems, M > Mc.
(6.43)

While the law with index 3.4 for viscosity is valid in the whole region above
Mc, the dependence of terminal relaxation time is different for weakly and
strongly entangled systems (Ferry 1980) and determines the second critical
point M ∗

τ ∼
{

M4.4, weakly entangled systems, M < M ∗,

M3.4, strongly entangled systems, M > M ∗.
(6.44)

The data for melts of different polymers collected by Ferry (1980, p. 379,
Table 13-III) allows us to estimate the second critical point1 M ∗. Assuming
that Mc = 2Me, one has

M ∗ ≈ (4.6–12.0)Me.

The critical value of molecular weight can be identified with the transition
point between weakly and strongly entangled systems, the position of which
was estimated in Sections 4.2.3 and 5.1.2 as

M ∗ ≈ 10Me.

The difference in the molecular-weight dependence of the terminal relaxation
time can be attributed to the change of the mechanisms (diffusive and repta-
tion, correspondingly) of conformational relaxation in these systems. Further
on in this section, we shall calculate dynamic modulus and discuss character-
istic quantities both for weakly and strongly entangled systems.

6.4.1 The Stress Tensor

To calculate the characteristics of viscoelasticity in the framework of meso-
scopic approach, one can start with the system of entangled macromolecules,
considered as a dilute suspension of chains with internal viscoelasticity moving
in viscoelastic medium, while the elastic and internal viscosity forces, accord-
ing to equations (3.4)–(3.6) and (3.8), have the form

Kα
i = −2TμAaγrα

i , Gα
i = −Gαγ

∫ ∞

0

ϕ(s)(uγ
i − ωijr

γ
j )t−sds.

1 To avoid many subscripts, instead of Ferry’s symbol M ′
c for the second critical point,

I use the symbol M ∗.
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For calculation, it is convenient to write the stress tensor (6.7) in terms of
normal co-ordinates in the following form:

σik(t) = −n(N + 1)Tδik + nT

N∑

α=1

{
2μλα〈ρα

i ρα
k 〉 − δik

+
1
T

∫ ∞

0

ϕ(s)
(

〈ρ̇α
i (t − s)ρα

k (t)〉 − ωil(t − s)〈ρα
l (t − s)ρα

k (t)〉
)
ds

}
.

(6.45)

The contribution of the carrier segment liquid in the case of a concen-
trated solution is slight, and we shall ignore it henceforth. The contri-
bution of separate macromolecules, which is presented by the terms un-
der the sum in the above equation, can be divided into two parts. The
first terms describe external frictions due to connectivity of the particles,
while the integral terms present stresses due to intramolecular resistance
of the coils. The last can be interpreted, remembering the speculation in
Section 3.3.3, as stresses emerging at orientation of separate Kuhn seg-
ments in dense medium among the other segments. Let us note that expres-
sion (6.45) can be considered as a generalisation of the known (Cerf 1958,
Peterlin 1967) expressions for stress in dilute solutions of polymers with in-
ternal viscosity. Indeed, if ϕ(s) ∼ δ(s), expression (6.45) for the stress tensor
reduces to (6.14).

The expression (6.45) for the stress tensor can be applied to both weakly
and strongly entangled systems, but, let us note, that the macromolecular dy-
namics is different in these cases. We use the expression (6.45) to calculate the
stress tensor for entangled systems in linear approximation of macromolecular
dynamics. Using expressions for moments (4.17), (4.20) and (4.21) one obtains

σik(t) = −pδik + 2nT

N∑

α=1

{∫ ∞

0

2μλαμα(s)Mα(s)γik(t − s)ds

+
1

2T

∫ ∞

0

ϕ(s)
∫ ∞

0

[
μα(u + s)Ṁα(u)

+ μ̇α(u)Mα(u + s)
]
γik(t − s − u)du ds

}
. (6.46)

The mesoscopic analysis, similar to truly phenomenological analysis, in-
cludes some mesoscopic parameters in final expressions for the stress tensor
and for viscoelastic characteristics and assumes the necessity of investigation
on the base of more specified models of the system. Some theories were based
on the image of the structure of polymer systems as a network with tem-
porary knots (entanglements) (Ferry et al. 1955; Lodge 1956; Chompff and
Duiser 1966; Chompff and Prins 1968). Those attempts helped us to under-
stand some features of polymer dynamics. A recent work by Schieber et al.
(2003) gives us an example of a very detailed picture of flowing entangled
polymer system.
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6.4.2 Dynamic Modulus and Relaxation Branches

There are plenty of measurements of dynamic modulus of nearly monodisperse
polymers starting with pioneering works of Onogi et al. (1970) and Vinogradov
et al. (1972a). The more recent examples of the similar dependencies can be
found in papers by Baumgaertel et al. (1990, 1992) for polybutadiene and for
polystyrene and in paper by Pakula et al. (1996) for polyisoprene.

To calculate the dynamic modulus, we turn to the expression for the
stress tensor (6.46) and refer to the definition of equilibrium moments in
Section 4.1.2, while memory functions are specified by their transforms as

β[ω] = ζ +
ζB

1 − iωτ
, ϕ[ω] =

ζE

1 − iωτ
. (6.47)

It means, according to the speculations in Chapter 3 that the environment
of the chosen macromolecule is considered a viscoelastic medium, and, in
addition, the internal resistance or the internal viscosity is taken into account.
The latter was not considered in the previous section.

We are calculating dynamic modulus and characteristic quantities for en-
tangled systems, when the linear approximation of dynamic equation is used.

The Case of Low Frequencies

To begin with, let us consider the simple case, when ζ can be neglected in
comparison to ζB in equations (6.47), which can be done, if one considers low-
frequency properties of the systems with long macromolecules – the strongly
entangled systems. In this case, according to (4.32) and (4.33), we have

μα(s) =
BτR

α

τα
exp

(
− s

2τα

)
− BτR

α

τα
R(s),

Mα(s) =
1

2μλα

[
(B + E)τR

α

τα
exp

(
− s

2τα

)
+

τ

2τα
R(s)

]
,

μ̇α(s) = − BτR
α

τα

1
2τα

exp
(

− s

2τα

)
+

2BτR
α

τα
δ(s),

Ṁα(s) = − 1
2μλα

[
(B + E)τR

α

τα

1
2τα

exp
(

− s

2τα

)
+

τ

τα
δ(s)

]

where τR
α = τ ∗/α2 are the Rouse relaxation times and

τα =
τ

2
+ τR

α (B + E).

Under oscillatory motion, the stress tensor (6.46) gives us an expression
for the dynamic modulus
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G(ω) = nT
∑

α

(τR
α )2B(B + E)

τα

×
[

−iω

1 − iωτα
+

−iω2EτR
α

2τα + τ − 2iωττα
− −iω2EτR

α

(2τα + τ − 2iωττα)(1 − iωτα)

]
.

We can introduce a new set of relaxation times

τ ∗
α =

2ττα

2τα + τ
(6.48)

and, after some rearrangement, write an expression for the dynamic modulus
in the standard form

G(ω) = nT
∑

α

(
τR
α

τα

)2

B

(
B

−iωτα

1 − iωτα
+ E

τα

τ

−iωτ ∗
α

1 − iωτ ∗
α

)
, (6.49)

where for small α and large B, we have

τα 	 τ ∗
α, τ ∗

α ≈ τ.

One can, thus, see that, at low frequencies, the viscoelastic behaviour of
the system is determined by two sets of relaxation times, or, we can say
also, by two relaxation branches. The first term in (6.49) is determined by
relaxation of conformation of the macromolecule. The second term in (6.49),
as will be shown in the next chapter, is connected with orientational relaxation
processes.

Note that the first and the second terms in (6.49) at ω → ∞ have the orders
of magnitudes nTψ−2 and nTχ−1, respectively. The ratio of the quantities is
very small for systems of long macromolecules, so that the contribution of the
first, conformation branch to the linear viscoelasticity is negligibly small at
χ � χ∗. Note also that, for strongly entangled systems, at χ � χ∗ or M 	
M ∗, as it was shown in Section 4.2.3, conformational relaxation cannot be
occurred via the diffusive mechanism (considered here), but via the reptation
mechanism, so that the first term in equation (6.49) ought to be replaced by
other term, for example, in the form

nT

π/χ∑

α=1

−iω pατ rep
α

1 − iωτ rep
α

, τ rep
α =

π2

χ

τ ∗

α0.5
.

Though the reptation relaxation times are defined by equation (4.37), the
weights pα of the contributions of separate relaxation processes remain un-
known, and in fact, the replacement is forbidden, so that we prefer, as an
initial approximation, to consider evaluation of dynamic modulus without
any modification.
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The Case of Higher Frequencies

To extend the theory for higher frequencies, we have to consider the general
case, when the micro-viscoelasticity is given by (6.47). Using equations (4.28)
and (4.29), after some rearrangement, one can find the dynamic modulus

G(ω) = nT (−iω)
5∑

a=1

∑

α

p
(a)
α τ

(a)
α

1 − iωτ
(a)
α

(6.50)

where the times of relaxation and the corresponding weights are given by the
following expressions

τ (1)
α = τ+

α =
1
2

(
τα +

(
τ2
α − 2ττR

α

)1/2
)

,

τ (2)
α =

2ττ+
α

τ + 2τ+
α

, τ (3)
α =

2τ+
α τ −

α

τ+
α + τ −

α
, τ (4)

α =
2ττ −

α

τ + 2τ −
α

,

τ (5)
α = τ −

α =
1
2

(
τα −

(
τ2
α − 2ττR

α

)1/2
)

,

p(1)
α = T+

α S+
α

(
1 − 2EτR

α

2τ+
α − τ

)
,

p(2)
α = S+

α

EτR
α

τ
+ T+

α S+
α

2EτR
α

2τ+
α − τ

− (T+
α S−

α + T −
α S+

α )
2EτR

α

2τ −
α − τ

,

p(3)
α = (T+

α S−
α + T −

α S+
α )

(
EτR

α

2τ+
α − τ

+
EτR

α

2τ −
α − τ

− 1
)

,

p(4)
α = −S−

α

EτR
α

τ
+ T −

α S−
α

2EτR
α

2τ −
α − τ

− (T+
α S−

α + T −
α S+

α )
EτR

α

2τ+
α − τ

,

p(5)
α = T −

α S−
α

(
1 − 2EτR

α

2τ −
α − τ

)
.

Expression (6.50) for the dynamic modulus includes now five relaxation
branches and generalises formula (6.49) for higher frequencies.

The situation is illustrated in Fig. 17, which contains experimental values
of dynamic shear modulus for polystyrenes with different molecular weights
and theoretical dependences calculated according to equation (6.50) and pre-
sented by the solid lines. This comparison illustrates insufficiency of linear
approximation for macromolecule dynamics to describe the effects of linear
viscoelasticity of entangled systems. For polymers with the length M > 10Me

– strongly entangled systems, the most essential contribution is given by the
second relaxation branch, that is the orientation relaxation branch with relax-
ation times close to τ , which determines terminal characteristics (see the next
section). The largest conformational relaxation times, contribution of which
are shown by the dashed lines, have appeared to be unrealistically large for
strongly entangled systems in linear approximation of macromolecular dy-
namics. It was shown (see Section 4.2.2) that introduction of local anisotropy
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Figure 17. Dynamic modulus of typical polymers.
The experimental points (taken from the review by Watanabe 1999) are due to the

measurements of Schausberger et al. (1985) for polystyrenes. The numbers indicate the
lengths of macromolecules 10−3 · M . The reference temperature is T = 180◦ C, G′

e =

2 × 105 Pa. The length between entanglement is Me = 16000, so that the theoretical
dependences, shown by the solid lines, are calculated for the numbers of entanglements

per macromolecule Z = 2.125, 3.813, 7.813, 18.25, 47.31, 158.75, which induce, according
to relations (3.17), (3.25) and (3.29), the corresponding values of parameters χ, B, and

E. The separate contributions from the conformational relaxation branches are shown by
dashed lines.

of mobility helps one to improve the situation: the largest relaxation times de-
crease when the coefficient of local anisotropy increases. However, one can see
that the contribution of the conformation reptation branch into dynamic mod-
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ulus appears to be negligible for the high-molecular-weight polymers in the
region of low frequencies, so that, whichever mechanism of conformational re-
laxation is realised, the second branch gives a good approximation of terminal
quantities for the strongly-entangled systems. The remaining branches merge
and form a group of slow relaxation times. The absence of non-linear terms
in the macromolecular dynamics affects also the behaviour in the transition
region about M ≈ 10Me. The difference between theoretical and empirical
results for polymers with length M < 10Me – weakly entangled systems, can
be also connected, in particular, by polydispersity of polymers, which is larger
for low-molecular weight samples, than for high-molecular weight ones.

One can see that the approximation of the theory, based on the linear
dynamics of a macromolecule, is not adequate for strongly entangled systems.
One has to introduce local anisotropy in the model of the modified Cerf-Rouse
modes or use the model of reptating macromolecule (Doi and Edwards 1986)
to get the necessary corrections (as we do in Chapters 4 and 5, considering
relaxation and diffusion of macromolecules in entangled systems). The more
consequent theory can be formulated on the base of non-linear dynamic equa-
tions (3.31), (3.34) and (3.35).

6.4.3 Self-Consistency of the Mesoscopic Approach

One can notice that the dissipative terms in the dynamic equation (3.11)
(taken for the case of zero velocity gradients, νij = 0) have the form of the
resistance force (D.3) for a particle moving in a viscoelastic liquid, while the
memory functions are (with approximation to the numerical factor) fading
memory functions of the viscoelastic liquid. The macromolecule can be con-
sidered as moving in a viscoelastic continuum. In the case of choice of memory
functions (3.15), the medium has a single relaxation time and is characterised
by the dynamic modulus

Gs(ω) =
−iωηs

1 − iωτ
, Ge = lim

ω→∞
G(ω) =

ηs

τ

where τ is the correlation time introduced in (3.15), and ηs is a constant.
One can say that the written dynamic modulus characterises the micro-
viscoelasticity.

On the other hand, the properties of the system as a whole can be cal-
culated and the macroscopic dynamic modulus can be determined. Here the
question of the relation between the postulated micro-viscoelasticity and the
resulting macro-viscoelasticity appears. The answer requires a properly for-
mulated self-consistency condition. Simple speculations show that equality
of the micro- and macro-viscoelasticity cannot be obtained. Nevertheless, it
is natural to require the equality of relaxation times of micro- and macro-
viscoelasticities. It will be shown in this section that this condition can be
satisfied.
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First, we shall consider in detail the characteristic quantities: the viscos-
ity coefficient η and the elasticity coefficient ν, defined by expansion (6.11),
and the value of the dynamic modulus on the plateau Ge. The latter can be
calculated as the limiting value of the modulus at frequencies satisfying the
relation

τ −
α < ω−1 < τ +̂

α ≈ τ.

The estimation of the main terms of expansion of dynamic modulus (6.49)
determine the expressions for the terminal quantities

Ge = nT

N∑

α=1

2χα2 + ψ(χα2 + 1 + ψ)
2χα2(χα2 + 1 + ψ)2

,

η = nTτ ∗B

N∑

α=1

(
1

α2(χα2 + 1 + ψ)
+

ψ

α2(2χα2 + 1 + ψ)

)
,

ν = nT (τ ∗B)2
N∑

α=1

2χψ(χα2 + 1 + ψ)
α2(2χα2 + 1 + ψ)

.

A preliminary estimate of χ which, according to (5.8), can be interpreted
as the ratio of the square of the tube diameter (2ξ)2 to the mean square end-
to-end distance 〈R2〉0, shows that χ � 1 for strongly entangled systems. For
large N, this enables us to replace summation by integration and, according to
the rules of Appendix G, to obtain expressions for the characteristic quantities

Ge = nT

[
π2

12
ψ

χ(1 + ψ)
+

π

8
2 − ψ

(1 + ψ)3/2
χ−1/2

]
,

η = nTτ ∗B

[
π2

6
− π

2

(
χ

1 + ψ

)1/2
]

, (6.51)

ν = nT (τ ∗B)2
[

π2

3
χψ

1 + ψ
− π

2

(
2χ

1 + ψ

)3/2

2ψ

]
.

These expressions are valid for arbitrary ψ and small χ. We can then
distinguish between two cases, namely: for systems consisting of very long
molecules in the almost complete absence of the solvent (strongly entangled
systems) we have ψ 	 1, whereas ψ � 1 for a concentrated system consisting
of not very long macromolecules (weakly entangled systems). In the latter
case expressions (6.51) at ψ = 0 are identical to expressions (6.39) and (6.40).
Here, we shall consider the former case, when ψ 	 1 and find from (6.51) the
zeroth-order terms in power of ψ−1.

Ge =
π2

12
nTχ−1, η =

π2

6
nTτ ∗B, ν =

π2

3
nT (τ ∗B)2χ. (6.52)

One can note that the relaxation times of the second branch are very close
to each other, so that the frequency dependence of the modulus could be
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approximated by a expression with the single relaxation time determined by
the relation

τ̄ =
η

Ge
= 2τ ∗Bχ = τ.

The relaxation time that we have determined may be referred to as the
terminal viscoelastic relaxation time; it is equal to the relaxation time which
was introduced to characterise the medium surrounding the chosen macro-
molecule. Thus, for ψ → ∞, the theory is self-consistent and this confirms
the statement of Section 3.1.1 that chains of Brownian particles are moving
independently in a liquid made of interacting Kuhn segments.

The condition of self-consistency, as a requirement of the identity of the
times of relaxation of macro- and micro-viscoelasticity, gives the following
relation for the first-order terms in power of ψ−1 of expansion of (6.51)

ψ =
4π2

9
1
χ

. (6.53)

This relation is practically identical to relation (5.17).
Equation (6.52) and the experimental data allow us to estimate the pa-

rameters of the theory χ and τ ∗B which can be also estimated directly by
other methods discussed in Chapter 5. So, the consistency of the theory can
be tested.

6.4.4 Modulus of Elasticity and the Intermediate Length

Initially, the elasticity of concentrated polymer systems was ascribed to the
existence of a network in the system formed by long macromolecules with
junction sites (Ferry 1980). The sites were assumed to exist for an appreciable
time, so that, for observable times which are less than the lifetime of the site,
the entangled system appears to be elastic. Equation (1.44) was used to esti-
mate the number density of sites in the system. The number of entanglements
for a single macromolecule Z = M/Me can be calculated according to the
modified formula

Ge = nT
M

Me
(6.54)

where n is the density of the number of macromolecules and T is temperature
in energy unit.

The length of a macromolecule between adjacent entanglements Me is used
as an individual characteristic of a polymer system. Table 1 contains values
of Me for certain polymer systems. The more complete list of estimates of the
quantity Me can be found in work by Aharoni (1983, 1986). One can compare
expressions (6.52) and (6.54) for the value of the modulus on the plateau to
see that the length of a macromolecule between adjacent entanglements Me

is closely connected with one of the parameters of the theory

χ =
π2

12
Me

M
. (6.55)
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We should note, recalling the interpretation of χ as the ratio of the doubled
intermediate length to the size of the coil discussed previously (formula (5.8)),
that the length Me, determined in the usual way, is actually related to the
intermediate length ξ. Expression (6.52) can be rewritten in a form which is
identical to the relation by Doi and Edwards (1986)

Ge =
2
3
nT

〈R2〉
(2ξ)2

.

Note that the squared diameter of the Doi-Edwards tube relates to our inter-
mediate length as follows

d2 =
6
5
(2ξ)2. (6.56)

The intermediate length (tube diameter) 2ξ can be estimated from the mod-
ulus with the aid of the above equations. Comparison of values of the in-
termediate length found from dynamic modulus and from neutron-scattering
experiments was presented by Ewen and Richter (1995). They found the val-
ues to be close to each other, though there is a difference in the temperature
dependence of the values of intermediate length found by different methods.

Although a network is not present in a concentrated solution, there exists
a characteristic length, which had earlier been assumed the distance between
neighbouring network sites. The characteristic length is a dynamic one. There
are no temporary knots in a polymer system, though there is a character-
istic time, which is the lifetime of the frozen large-scale conformation of a
macromolecule in the system. So, the conceptions of intermediate length and
characteristic time are based on deeper ideas and are reflected in the theory.

6.4.5 Concentration and Macromolecular Length Dependencies

Thus in the mesoscopic approximation or, in other words, in the mean-field
approximation, the dynamic shear modulus of the melt or the concentrated
solution of the polymer (strongly entangled systems) is represented by a func-
tion of a small number of parameters

G(ω) = nTf(τ ∗ω, B, χ). (6.57)

In this case, one assumes that B 	 1, and, hence, it follows that τ > τ ∗,
which fact imposes certain restrictions on χ, so that 1/B < χ � 1. For these
values of B and χ, the theory is found to be self-consistent for ψ 	 1, so
that once again, as was shown in Section 6.4.3, the formulae for the dynamic
modulus lead to expressions for the characteristic quantities

η =
π2

6
nTτ ∗B, τ = 2τ ∗Bχ,

ν =
π2

3
nT (τ ∗B)2χ, Ge =

π2

12
nTχ−1.

(6.58)
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Experiments reveal that the dynamic modulus and the characteristic quan-
tities (6.58) depend on the polymer concentration c and length M of the
macromolecule (Ferry 1980), and these dependencies are implied through the
parameters of the theory.

In accordance with equations (1.33) and (4.25) we can write

n ∼ c

M
, τ ∗ ∼ ζ0M

2C∞
T

(6.59)

where ζ0 is the monomer friction coefficient and C∞ is a quantity connected
with the temperature dependence of the size of a macromolecular coil (see
Section 1.1). The values of parameter C∞, which reflects the thermodynamic
rigidity of the macromolecule, are given for different polymers in tables of the
monographs by Flory (1969) and by Tsvetkov et al. (1964).

The mesoscopic parameters χ and B, as was shown earlier in Section 3.3.4,
can be written as functions of a single argument, which can now be rewritten
as

n〈R2〉3/2 ∼ C3/2
∞ cM1/2. (6.60)

This allows one to write the dependencies of the characteristic quantities on
the concentration of polymer and on the thermodynamic rigidity, if the de-
pendence on molecular weight of the macromolecule, for example, is known.
With help of the result of Section 3.3.4 (see formulae (3.30)), one can obtain
for the strongly entangled systems

η ∼ ζ0C
3δ+1

∞ c2δ+1Mδ+1, ν ∼ ζ2
0C3δ−1

∞ c4δ−1M2δ+2,

Ge ∼ TC3
∞c3M0, τ ∼ 1

T
ζ0C

3δ−2
∞ c2δ−2Mδ+1.

(6.61)

These equations allow one to establish various relations between the char-
acteristic quantities, while the only index δ ought to be evaluated empirically.
The data obtained for almost monodisperse samples of polymer melts of dif-
ferent molecular weight allows one to evaluate for high molecular weights
δ = 2.4 (Berry and Fox 1968, Ferry 1980). Empirical estimate corresponds to
the coarse theoretical estimation in Section 3.3.2, according to which δ = 2
or δ = 3. The molecular-weight dependencies of other quantities in (6.61) are
typical for high-molecular-weight polymers: Ge ∼ M0, the dependence of η
and of τ on the length of a macromolecule is the same (Ferry 1980).2.

2 The reptation-tube model, being used for interpretation of viscoelastic behaviour of the

system, has allowed to obtain (Doi and Edwards 1986) the relation for terminal character-
istics

η ∼ M3, τ ∼ M0
0 M3.

The small deviation of the derived value of the index 3 from the empirical value 3.4 (see
equations (6.43) and (6.44)) gave rise to the hopes that some improvements of the model

could bring the correct results, at least, for strongly entangled systems. However, it ap-
peared that the results delivered by the model far from empirical results (6.43) and (6.44)

more, than one could earlier imagine (Altukhov et al. 2004). To appreciate these results
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At the comparison of concentration dependencies of the characteristic
quantities (6.61) with experimental determinations, one has to remember that
effect of excluded volume was not taken into account in equations (6.61),
which allow us to say only about qualitative correspondence. The behaviour
of the initial viscosity is the most widely studied (Poh and Ong 1984,
Takahashi et al. 1985). The concentration dependence of the viscosity co-
efficient in the “melt-like” region can be represented by a power law (Phillies
1995). The index can be found to be approximately 2δ + 1, in accordance
with (6.61). There are some differences in the behaviour of polymer solutions,
which are connected with different behaviour of macromolecular coils at dilu-
tion.

One should note once again that the above discussion and expressions are
valid only for very long macromolecules and in the limit of very high concen-
trations. For semi-dilute solutions, the analysis should also include another
non-dimensional parameter (see Sections 1.5 and 1.6), but then the results
would become more complicated.

6.4.6 Frequency–Temperature Superposition

The dependence of the characteristic quantities (6.58) on temperature is
mainly determined by the monomer friction coefficient ζ0, which depends on
temperature, concentration, and (for small M) of molecule length (Berry and
Fox 1968). The dependencies were recently discussed by Tsenoglou (2001).
The monomer friction coefficient ζ0 is a material characteristic of the system,
its value is strongly determined by chemical structure of macromolecule as
was shown for polybutadiene by Allal et al. (2002).

The value of the coefficient of friction is connected with relative motion
of small portions of the macromolecule, so that its temperature dependence
is similar to that found for low-molecular-weight liquids, and can be written
in the following form at temperatures much higher than the glass transition
point

ζ0 ∼ exp
U

T
(6.62)

where U is the activation energy that depends on the molecular weight (for
small M), on the concentration, and also on the temperature, if the tem-
perature range in which the viscosity is considered is large. Near the glass
transition point Tg, we have

properly, one has to consider the terminal relaxation time, distinguishing the probe macro-

molecule (with molecular weight or length M) and the neighbouring macromolecules (with
the length M0), even if all of them are equal. The reptation relaxation time, derived by

Doi and Edwards, does not depend on the length of neighbouring macromolecules, which
strongly contradicts to empirical evidence (see Section 6.5.3, equation (6.78)). The numer-

ous attempts to improve the situation were controversial, so that there is a strong conviction
that the Doi-Edwards model does not provide the first or even zero approximation to the
theory of viscoelasticity of entangled system, though the reptation motion itself exists and

influences effects of viscoelasticity as will be discussed later in this chapter and in Chapter 9.
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ζ0 ∼ exp
[

A

fg − α(T − Tg)

]
(6.63)

where A is an individual parameter, fg is the volume fraction of free volume,
and α is the expansion coefficient of the liquid. Quantities A and fg are prac-
tically independent of the concentration and molecular weight, so that the
dependence of ζ0 on c and M is determined by the dependence of Tg on these
quantities.

We note that, since the parameters B and χ are practically independent
of temperature, the shape of the curves showing G/nT as a function of the
non-dimensional frequency τ ∗ω does not change as the temperature increases,
so that we can make a superposition using a reduction coefficient obtained
from the temperature dependence of the viscosity.

To determine the procedure for the reduction, we shall write down the
dynamic modulus at two different temperatures, one of which is a reference
temperature Tref and the other is an arbitrary temperature T ,

G(ω, Tref) = nT0f(τ ∗
Tref

ω, B, χ),
G(ω, T ) = nTf(τ ∗

T ω, B, χ).

One can consider the parameters B and χ to be independent of the tem-
perature and change the argument in the first line in such a way as to exclude
the non-dimensional function. Then we write down the rule for reduction as

G(aTω, Tref) =
ρTref Tref

ρT T
G(ω, T ), (6.64)

where the shift coefficient is given by

aT =
τ ∗

T

τ ∗
Tref

=
Tref (C3δ

∞ ρ2δ+1)Tref

T (C3δ
∞ ρ2δ+1)T

ηT

ηTref

. (6.65)

The above expressions confirm the known (Ferry 1980) method of reduc-
ing the dynamic modulus measured at different temperatures to an arbitrarily
chosen standard temperature Tref , while offering a relatively insignificant im-
provement on the usual shift coefficient

aT =
Tref ρTref ηT

T ρT ηTref

.

6.5 Dilute Blends of Linear Polymers

The change in the stress produced by the small amount of macromolecules of
another kind is, clearly, determined by the dynamics of the non-interacting
impurity macromolecules among the macromolecules of another length, so
that this case is of particular interest from the standpoint of the theory of the
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viscoelasticity of linear polymers. By studying a mixture of two polymers, one
of which is present in much smaller amounts, – a dilute blend, one has a unique
opportunity to obtain direct information about the dynamics of a chosen
single macromolecule among the neighbouring macromolecules (Pokrovskii
and Kokorin 1984).

6.5.1 Relaxation of Probe Macromolecule

Consider a system consisting of linear polymer with molecular weight M0 and
a small additive of a similar polymer with another molecular weight M . We
shall assume that the amount of the additive is so small that its molecules do
not interact with each other. The matrix is characterised by two characteris-
tic length: Me – the length of macromolecule between adjacent entanglements
and M ∗ ≈ 10Me – the critical length dividing weakly (macromolecules of the
matrix do not reptate) and strongly (macromolecules of the matrix do reptate)
entangled systems. To uncover which mechanism of diffusion and relaxation
of a probe macromolecules of the additive is realised, one can consider, fol-
lowing the speculations in Sections 4.2.3 and 5.1.2, the competition between
the diffusive and reptation mechanisms of motion of a macromolecule of the
additive to obtain the condition for realisation of reptation mechanism

2χ(Z)B(Z0) > π2, (6.66)

where Z0 and Z are the lengths of macromolecules of the matrix and the
additive, respectively, in units of Me. The function χ(Z0, Z) and B(Z0) are
given by equations (3.17) and (3.25). Taking these equation into account, one
can find from equation (6.66) that the lengths of the macromolecules of the
matrix and the macromolecule of the additive in the point, where the mech-
anism of relaxation of macromolecules of the additive changes, are connected
by relation

M

Me
=

1
3 · 21+δ

(
M0

Me

)δ

. (6.67)

If δ = 2.5, this relation reduces to equation

M

Me
= 0.03

(
M0

Me

)2.5

, (6.68)

which is identity at M = M0 ≈ 10Me, in accordance with the results of
Section 5.1.2.

Equation (6.68) determines a critical length M ∗, above which macro-
molecules of the additive do not reptate. The dependence of M ∗/Me on
M0/Me, according to the above equation at δ = 2.5, is depicted in Fig. 18
by solid line. For the matrix of short macromolecules, when M0 < 10Me,
the transition point is situated in the short-length region, so that the macro-
molecules of the additive, which are shorter than M0 but longer than M ∗,
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Figure 18. Alternative modes of motion of a macromolecule.
The realisation of a certain mode of motion of a macromolecule among other macro-
molecules depends on the lengths of both diffusing macromolecule and macromolecules

of the environment. The solid line M ∗ divides the dilute blends into those, in which
macromolecules of the additive can reptate, and those, where no reptation occurs. The

dashed line marks the systems with macromolecules of equal lengths.

do not reptate. However, if the matrix consists of macromolecules, for which
M0 > 10Me, there is a region between 10Me and M ∗ in which a probe macro-
molecules of the additive reptate. However, the macromolecules of additive
longer that M ∗ do not reptate in the matrix of shorter macromolecules with
M0 > 10Me. One has to discuss two cases: non-reptating and reptating macro-
molecules.

6.5.2 Characteristic Quantities

The considered system contains n0 macromolecules of the matrix and n macro-
molecules of the additive per unit volume and can be characterised by dynamic
modulus G(ω). The medium, in which the macromolecules of the additive
move, is a system consisting of a linear polymer of molecular weight M0,
which is characterised by the modulus G0(ω) = −iωη0(ω). The change of dy-
namic modulus, taking into account the fact that some of the macromolecules
of the matrix have been replaced by impurity macromolecules, can be written
as

G(ω) − G0(ω) = n

(
g(ω) − M

M0
g0(ω)

)
(6.69)

where g(ω) and g0(ω) are the contributions to the dynamic modulus, respec-
tively, from a single macromolecule of the impurity and the matrix, which can
be easily found from the derived expressions. We shall consider the case of
low frequencies, for which the dynamic modulus can be written in the form
of the expansion given by (6.11), and introduce the characteristic quantities
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[η] = lim
c→0

η − η0

cη0
, [ν] = lim

c→0

ν − ν0

cν0
, (6.70)

which are apparently functions of the length (or molecular weight) of the
macromolecules of the matrix and the additive. The index 0 refers to the
matrix and c is the impurity concentration.

To calculate the characteristic quantities both for the matrix and for the
additive, we use equation (6.39), if ψ � 1, or (6.52), if ψ 	 1. We shall
assume that the macromolecules of the matrix are long enough, so that one
can write, taking also relations (6.69) into account, for coefficients of viscosity
and elasticity

η0 =
π2

6
n0Tτ ∗

0 B, ν0 =

⎧
⎨

⎩

π4

90 n0T (τ ∗
0 B)2, M0 < 10Me,

π2

3 n0T (τ ∗
0 B)2χ0, M0 > 10Me.

(6.71)

To choose a formulae for calculation the contributions of macromolecules of
the additive, one have to estimate value of ψ, which, according to equa-
tion (3.29) depends on both macromolecules of the matrix and macromolecules
of the additive. One can consider that the conditions of reptation correspond
also to the big values of ψ, which is realised at M < M ∗, and the case
M > M ∗ corresponds to the small values of ψ, so that one can write expres-
sions for coefficients of viscosity and elasticity of the system of independent
macromolecules of the additive suspended in the matrix as

η =
π2

6
nTτ ∗B, ν =

⎧
⎨

⎩

π4

90 nT (τ ∗B)2, M > M ∗,

π2

3 nT (τ ∗B)2χ, M < M ∗.
(6.72)

In equations (6.71) and (6.72), the quantities B and τ ∗
0 are considered as

functions of M0, and the characteristic relaxation time of the macromolecules
of the additive τ ∗ as a function of M .

Taking all this into account, one can find increments of viscosity and elas-
ticity in the form

η − η0 =
π2

6
nTτ ∗B

(
1 − M0

M

)
,

νb − ν0 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

π4

90 nT (τ ∗B)2
(
1 − M3

0
M3

)
, M0 < 10Me, M > M0,

π2

3 nT (τ ∗B)2 Me
M

(
1 − M2

0
M2

)
, M0 > 10Me, M < M ∗,

π4

90 nT (τ ∗B)2
(
1 − 30

π2
MeM2

0
M3

)
, M0 > 10Me, M > M ∗.

(6.73)

Using the above relations and equations (6.58), one finds that for M 	 M0

[η] ∼ M −1
0 M, [ν] ∼

⎧
⎪⎪⎨

⎪⎪⎩

M −3
0 M3, M0 < 10Me,

M −2
0 M2, M0 > 10Me, M < M ∗,

M −2
0 M3, M0 > 10Me, M > M ∗.

(6.74)
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On the other hand, when M � M0 (this condition excludes the case M0 <
10Me) the characteristic quantities are negative and are independent of the
length of the matrix and of the impurity macromolecules

[η] ∼ M0
0 M0, [ν] ∼

{
M0

0 M0, M0 < 10Me,

M −1
0 M0, M0 > 10Me.

(6.75)

Results (6.74) and (6.75) do not depend upon any choice of the dependence
of B on the length (molecular weight) of the macromolecule.

The viscoelastic behaviour of dilute blends of polymers of different length
and narrow molecular weight distributions was investigated experimentally for
polybutadiene by Yanovski et al. (1982) and by Jackson and Winter (1995)
and for polystyrene by Watanabe and Kotaka (1984) and Watanabe et al.
(1985) (the results can be found in the work by Jackson and Winter (1995)).
The results for polybutadiene were approximated by Pokrovskii and Kokorin
(1984) by the dependencies

[η] ∼ M −0.8
0 M0.5, [ν] ∼ M

−(1.8→2.2)
0 M1.3→3.0. (6.76)

The comparison of the theoretical formulas (6.74) with the experimental
ones (6.76) shows the consistency of the results, though the absolute values of
indexes in formula for characteristic viscosity has appeared to be less that the-
oretical value 1. Unfortunately, the accuracy of original empirical data (in fact,
the required linear dependence of quantities on concentration had never been
reached in the work by Yanovski et al. 1982) does not allow one to say whether
there are any certain deviations from relations (6.74) or not. If relations (6.76)
are confirmed, it could mean that there are some unaccounted issues (intra-
chain hydrodynamic interaction, for example), which would decrease in values
of the index. Apparently, one needs in extra experimental data for different
polymer systems in both weakly and strongly entangled states to analyse the
situation in more details. Nevertheless, the above results confirm that the
contribution of the orientational relaxation branch of a macromolecule in an
entangled system dominates over the contribution of the reptation relaxation
branch in phenomena of linear viscoelasticity. Otherwise, by considering the
competing mechanism of relaxation – the reptation of the macromolecules,
one would apparently have, following Daoud and Gennes (1979), instead of
relation (6.74), the other expression for characteristic viscosity of blends for
M 	 M0

[η] ∼ M −3
0 M3 (6.77)

which deviates from empirical evidence (6.76) more than relations (6.74).

6.5.3 Terminal Relaxation Time

It was assumed that the quantity B is a function of M0, but, luckily, one does
not need in expression for explicit dependence to obtain the final results (6.74)
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and (6.75) for characteristic quantities for dilute blends of linear polymers.
However, the dependence of the quantity B on M0 can be recovered due
to empirical data. To estimate this dependence, one can consider terminal
relaxation time

τ =
ν − ν0

η − η0

and use equations (6.73) to obtain for M > M ∗

τ ∼
{

B(M0)M2, M0 < 10Me,

B(M0)M2, M0 > 10Me.
(6.78)

The first line is valid for the case when matrix is a weakly entangled matrix,
the second line – a strongly entangled matrix.

Watanabe (1999, p. 1354) has deducted that, according to experimental
data for polystyrene/polystyrene blends, when the matrix is a weakly entan-
gled system, terminal time of relaxation depends on the lengths of macro-
molecules as

τ ∼ M3
0 M2, (6.79)

while also for polystyrene/polystyrene blends, Montfort et al. (1984) found
different values of indexes (2.3 instead of 3 and 1.9 instead of 2); the difference
is discussed by Watanabe (1999, p. 1356). No empirical relation, similar to
relation (6.79), is available for strongly entangled matrices, but, as it can be
seen in plots of the paper (Watanabe 1999), that the value of the first index
are less that 3 in this case. It is possible that situation is different for weakly
and strongly entangled matrices, so that values of the index in formula (6.79)
could be different for these two types of systems.

The comparing formulae (6.78) and (6.79) allows one to estimate the de-
pendence of coefficient of enhancement on the lengths of macromolecules as

B ∼ M3
0 , (6.80)

that is δ = 3, in contrast with previous estimate of index as 2.4. The last value
of the index, as discussed in the end of the previous subsection, is followed
the suggestion that hydrodynamic interaction inside macromolecular coils is
ignored. One cannot exclude that this index could be greater, but, in this
case, value of the second index in equation (6.79) must be less.

The empirical result (6.80) does not correspond to the reliable results
for monodisperse (M0 = M) system well. Indeed, taking result (6.80) into
account, the terminal relaxation time (6.58) can be written as

τ ∼
{

M5, M < 10Me,

M4, M > 10Me.
(6.81)

To provide the validity of empirical dependencies of viscosity and terminal
relaxation time on the molecular length (relations (6.43) and (6.44)), the sum
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of the two indexes in equations (6.81) must have value 4.4 in the case, when
the matrix is a weakly entangled system, and value 3.4, when the matrix is a
strongly entangled system with macromolecular length M between 10Me and
M ∗.

6.5.4 A Final Remark

The investigation of viscoelasticity of dilute blends confirms that the reptation
dynamics does not determine correctly the terminal quantities characterising
viscoelasticity of linear polymers. The reason for this, as has already been
noted, that the reptation effect is an effect due to terms of order higher than
the first in the equation of motion of the macromolecule, and it is actually
the first-order terms that dominate the relaxation phenomena. Attempts to
describe viscoelasticity without the leading linear terms lead to a distorted
picture, so that one begins to understand the lack of success of the reptation
model in the description of the viscoelasticity of polymers. Reptation is im-
portant and have to be included when one considers the non-linear effects in
viscoelasticity.
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