
Chapter 2
Dynamics of a Macromolecule
in a Viscous Liquid

Abstract In this chapter, the dynamics of the macromolecule moving in the
uniform flow of a viscous liquid will be considered. To be accurate, one ought
to consider a system consisting of a macromolecule and molecules of solvent
(microscopic approach). However, since we are interested in large-scale or
low-frequency dynamics of a macromolecular coil, a bead-spring model of a
macromolecule can be used and molecules of solvent can be considered to con-
stitute a continuum – a viscous liquid. This is a mesoscopic approach to the
dynamics of dilute solutions of polymers. The approach provides the simplest
model that appears to be rather complex, if the effects of excluded volume,
hydrodynamic interaction, and internal viscosity are taken into account. Due
to these effects, all the Brownian particles of the chain ought to be consid-
ered to interact with each other in a non-linear way. There is no intention
to collect all the available results and methods concerning the dynamics of
a macromolecule in viscous liquid in this chapter. We need to consider the
results for dilute solutions mainly as a background and a preliminary step
to the discussion of the dynamics of a macromolecule in very concentrated
solutions and melts of polymers.

2.1 Equation of Macromolecular Dynamics

The theory of relaxation processes for a macromolecular coil is based, mainly,
on the phenomenological approach to the Brownian motion of particles. Each
bead of the chain is likened to a spherical Brownian particle, so that a set
of the equation for motion of the macromolecule can be written as a set of
coupled stochastic equations for coupled Brownian particles

m
d2rα

dt2
= F α + Gα + Kα + φα, α = 0, 1, . . . , N (2.1)

where m is the mass of a Brownian particle associated with a piece of the
macromolecule of length M/(N +1), rα are the co-ordinates of the Brownian
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particles. Every Brownian particle is involved in thermal motion, which, as
usual (Chandrasekhar 1943; Gardiner 1983; Doi and Edwards 1986), can be
described by putting a stochastic force φα (for a particle labelled α) into an
equation of motion of a macromolecule. The essential features of the stochas-
tic force are connected with properties of the dissipative forces F α and Gα

(the fluctuation-dissipation theorem). For the linear case, the relation will be
discussed in Section 2.6.

According to relations (1.10) and (1.28), the elastic forces acting on the
particle are taken in the form

Kα = − ∂F

∂rα
= −2TμAαγrγ − ∂U

∂rα
, (2.2)

whereas the dissipative forces F α and Gα are needed in special discussion.
To say nothing about the different equivalent forms of the theory of the

Brownian motion that has been discussed by many authors (Chandrasekhar
1943; Gardiner 1983), there exist different approaches (Rouse 1953; Zimm
1956; Cerf 1958; Peterlin 1967) to the dynamics of a bead-spring chain in the
flow of viscous liquid.1 In this chapter, we shall try to formulate the theory in
a unified way, embracing all the above-mentioned approaches simultaneously.
Some parameters are used to characterise the motion of the particles and in-
teraction inside the coil. This phenomenological (or, better to say, mesoscopic)
approach permits the formulation of overall results regardless to the extent to
which the mechanism of a particular effect is understood.

2.2 Intramacromolecular Hydrodynamic Interactions

In the study of the dynamics of the macromolecule in the subchains approx-
imation, each particle of the chain is considered, to a first approximation, to
be spherical with a radius a, so that the coefficient of resistance of the particle
in a viscous liquid, according to Stokes, can be written as follows

ζ0 = 6πηsa, (2.3)

where ηs is viscosity coefficient of the liquid.
Each particle, moving at a velocity uγ , is acted upon by the hydrodynamic

drag force, which has the form

F γ = −ζ0(uγ − vγ), (2.4)

where vγ is the velocity of the liquid of the point, at which the given particle is
present, the velocity corresponding to the situation where no account is taken
of the particle. When an assembly of particles is considered, the velocity vγ

1 See Ferry (1990) for a short history of development.
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is, generally speaking, determined by the motion of all the particles. As can
be seen from formulae for forces applied to points (see Appendix C), we have

vγ
j = νjlr

γ
l −

N∑

β=0

Hγβ
jl F β

l , (2.5)

where νjlr
γ
l is velocity of the flow in the point rγ

l in absence of the particles
in the liquid, and νij = ∂vi

∂xj
is a tensor of velocity gradients2 of the uniform

flow.3 The components of the hydrodynamic interaction tensor Hγβ
jl for γ = β

are zero, while, in the case γ �= β, they are determined by the relation

Hγβ
ik =

1
8πηs|rγ − rβ |

(
δik + eγβ

i eγβ
k

)
(2.6)

where eγβ
i = (rγ

i − rβ
i )/|rγ − rβ |.

A system of equations for the drag forces follows from equations (2.4)
and (2.5)

Fα
j = −ζ0(uα

j − νjlr
α
l ) − ζ0

∑

γ

Hαγ
jl F γ

l . (2.7)

A solution of equations (2.7) can be written in the form

Fα
j = −ζ0B

αγ
jl (uγ

l − νlir
γ
i ) (2.8)

where the matrix of hydrodynamic resistance Bαγ
jl is introduced as the matrix

inverse to the matrix
δjlδαγ + ζoH

αγ
jl .

For small perturbations, the solution of equations (2.7) assumes the fol-
lowing form, to the first approximation

Fα
j = −ζ0

∑

γ

[(
δαγδjl − ζ0H

αγ
jl

)
(uγ

l − νlir
γ
i )

]
. (2.9)

This equation shows that the resistance-drag force for a certain particle de-
pends on the relative velocities of all the particles of the macromolecule and
also on the relative distance between the particles. This expression determines
an approximate matrix of hydrodynamic resistance

2 Note that henceforth it will be convenient to use the following notation for the symmetric

and antisymmetric tensors of velocity gradients

γij =
1

2
(νij + νji), ωij =

1

2
(νij − νji).

3 The dependence of the velocity gradients on the co-ordinates leads to possible migration
of macromolecules in a flow (Aubert and Tirell 1980; Brunn 1984) – the effect, which is not

discussed in this monograph.
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Bαγ
jl = δαγδjl − ζ0H

αγ
jl . (2.10)

The exact components of the matrix of hydrodynamic resistance for a two-
particle chain are shown in Appendix F.

We note that the values of the hydrodynamic interaction tensor (2.6) av-
eraged beforehand with the aid of some kind of distribution function, are
frequently used to estimate the influence of the hydrodynamic interaction, as
was suggested by Kirkwood and Riseman (1948).4 For example, after aver-
aging with respect to the equilibrium distribution function for the ideal coil
and taking the relation (1.23) into account, the hydrodynamic interaction
tensor (2.6) assumes the following form

〈ζ0H
αγ
ij 〉 = 2h|α − γ| −1/2δij .

The non-dimensional hydrodynamic interaction parameter appears here

h =
ζ0

√
6/π

12πηsb
≈ a

b
(2.11)

where a is the radius of a fictious particle associated with a subchain of length
M/N and b is the mean square distance between neighbouring particles along
the chain.

One can expect that the parameter of hydrodynamic interaction (2.11)
behaves universally for subsequent division of the chain. One can reasonably
guess that the quantity (2.11) does not depend on the length of the macro-
molecule and on the number of subchains. In this case, the hydrodynamic
radius of the particle for the Gaussian chain

a ∼
(

M

N

)1/2

.

The dependence of the friction coefficient of the particle is similar. If the
excluded-volume effect is taken into account, the more general relation (2.19)
is valid.

2.3 Resistance-Drag Coefficient of a Macromolecular
Coil

To calculate the resistance coefficient for the macromolecular coil, we have to
determine, first of all, the velocity of the coil, which is the velocity of the mass
centre of the macromolecular coil

v =
1

1 + N

N∑

α=0

uα

4 A more general approach can be found in paper of Bixon and Zwanzig (1978).
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and the force acting on the coil, which is the sum of forces acting on every
particle of the coil

F =
N∑

α=0

F α

where the force F α is determined by equation (2.9).
We assume that the macromolecular coil moves in a non-flowing liquid and

each particle has the mean velocity of the macromolecular coil as a whole. So,
we can write down Stokes law for the coil

Fj = −ζ0(1 + N)

(
δjl − ζ0

8πηs

1
N + 1

N∑

α=0

N∑

γ=0

δjl + eαγ
j eαγ

l

|rα − rγ |

)
vl. (2.12)

After the preliminary averaging of the right-hand side of relation (2.12)
with respect to the equilibrium distribution function has been done (see rela-
tions (1.23)), we have

F = −ζMv, ζM = ζ0(1 + N)

(
1 − 2h

N + 1

N∑

α=0

N∑

γ=0

1
|α − γ|1/2

)
.

One can easily estimate the asymptotic behaviour of the sum as

1
N + 1

N∑

α=0

N∑

γ=0

1
|α − γ|1/2

≈ 2.47 N1/2,

so that the above equations are followed the asymptotic expression for the
friction coefficient

ζM = ζ0N
(
1 − 4.94 hN1/2

)
. (2.13)

This expression, with accuracy up to the first-order terms in the power of
h, practically coincides with expression derived by Kirkwood and Riseman
(1948); they have the numerical coefficient 5.33 instead of 4.94, though their
way of calculation was more accurate.

It is understandable that the resistance coefficient decreases as the hydro-
dynamic interaction increases. However, if one uses the bead-spring model of
a macromolecule, the resistance coefficient of the whole macromolecule cannot
depend on the arbitrary number of subchains N .5 To ensure this, one has to
consider that the product hN1/2 does not depend on N which implies that
the coefficient of hydrodynamic interaction changes with N as h ∼ N −1/2

which means, in this situation, that coefficient of resistance of a particle al-
ways remains to be proportional to the length of the subchain. All this is valid,

5 Kirkwood and Riseman (1948) did not encounter this problem, because they used the
bead-rod or, in other words, pearl-necklace model of macromolecule (Kramers 1946), in
which N is a number of Kuhn’s stiff segments, so that N present the length of the macro-

molecule.
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when the hydrodynamic interaction is weak and we consider the first-order
corrections to the resistance coefficient.6

In the general case of arbitrary values of h, simple speculations appeared
to be useful to determine the dependence of the resistance coefficient on the
length of the macromolecule (Gennes 1979). The excluded-volume effects (see
Section 1.5) can also be taken into account and one considers the resistance
coefficient to be a function of two non-dimensional parameters h and v/b3.
For a macromolecule, consisting of N smaller subchains, the friction coefficient
can be written as

ζM = ζ Z
(
N,

v

b3
, h

)
,

where ζ is the friction coefficient of a particle of the chain. To obtain the
dependence of the resistance coefficient on the length of the macromolecule,
we compare the resistance coefficients for the two different presentations of
a macromolecule. One can assume, as was done in Section 1.5 for a similar
consideration, that, at N → ∞, the quantities v/b3 and h do not depend on
the number of divisions of the macromolecule into subchains. The requirement
of the universality of the representation of the resistance coefficient is followed
by the asymptotic (long macromolecules) expression for the dependence of the
resistance coefficient on the length of the macromolecule.

ζM ∼ M (z−2)ν , 0 < (z − 2)ν ≤ 1. (2.14)

Here ν is the index introduced in relation (1.31), whereas z is a new index,
so-called dynamic index. To calculate the index in the power function, it is
necessary to use special methods (Al-Naomi et al. 1978; Baldwin and Helfand
1990; Öttinger 1989b, 1990), which gives values from 3 to 4 for the parameter
z.

2.4 Effective Resistance-Drag Coefficient of a Particle

One may note that, in linear approximation with respect to the velocity of a
particle (see, for example, equations (2.4) and (2.9)), the expression for forces
are determined by small velocities of the particles and of the flow. The force,
acting on a particle in the flow, does not depend on the specific choice of
hydrodynamic interaction and can be written in the following general form

Fα
j = −ζ0B

αγ
ji (uγ

i − νilr
γ
l ). (2.15)

The resistance matrix depends on co-ordinates of all particles, in non-
linear manner. The situation is illustrated in Appendix F for the case of two
particles. To avoid the non-linear problem, one uses the preliminary averaging
of the hydrodynamic resistance matrix (Kirkwood and Riseman 1948; Zimm

6 The development of the theory of translational mobility of a macromolecule can be found

in papers of Dünweg et al. (2002) and Liu and Dünweg (2003).
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1956). If one averages with respect to the equilibrium distribution function,
the matrix takes the form

Bαγ
ji = Bαγδji (2.16)

where matrix Bαγ does not depend on the co-ordinates and assumes, under the
conditions of weak hydrodynamic interaction, the following form, according
to equations (2.10) and (2.11),

Bαγ = δαγ − 2h|α − γ| −1/2. (2.17)

This is the first term of expansion in powers of the parameter of hydrodynamic
interaction.

When normal co-ordinates, defined by equations (1.13), are employed, it
is possible to make use of the arbitrariness of the transform matrix to define
matrix Q in such a way that matrix B in the right-hand side of equation (2.16)
assumes a diagonal form after transformation. The problem of the simultane-
ous adjustment of the symmetrical matrices A and B to a diagonal form does
have a solution. Since matrix A is defined non-negatively and B is defined pos-
itively, it is possible to find a transformation such that B is transformed into
a unit matrix (with accuracy to constant multiplier), and A into a diagonal
matrix. Therefore, one can write simultaneously the equations

QαλAαγQγν = λνδλν ,

ζ0QαλBαγQγν = ζδλν .
(2.18)

One ought to introduce the effective coefficient of friction of the particle ζ
into relation (2.18) to ensure the physical dimensionality of the friction coef-
ficient. Eigenvalues λμ are now defined not by equations (1.16), but by more
general expression that will be discussed in Section 2.6.

The dependence of the effective friction coefficient on the length of the
macromolecule is of special interest. In a case when the hydrodynamic inter-
action of the particles of the macromolecule may be neglected, i.e. when the
coil is, as it were, free-draining, the coefficient of resistance of the latter is
proportional to the length of the macromolecule and the coefficient of friction
of the particle associated with length M/N is proportional to this length

ζ ∼ M

N
.

The mutual influence of the particles leads to their shielding within the
coil and the overall coefficient of the resistance of the coil proves to be smaller
than that for a free-draining coil. The requirement of covariance in relation
to successive subdivisions of the macromolecule into subchains gives rise, ac-
cording to formula (2.14), to the following power dependence for large values
of N

ζ ∼
(

M

N

)(z−2)ν

. (2.19)
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In order to calculate the power exponents, a calculation based on specific
representations, similar the case, when volume-effects are taken into account,
is necessary. One notes that these results are valid for infinitely long chains.

2.5 Intramolecular Friction

On the deformation of the macromolecule, i.e. when the particles constituting
the chain are involved in relative motion, an additional dissipation of energy
takes place and intramolecular friction forces appear. In the simplest case of a
chain with two particles (a dumbbell), the force associated with the internal
viscosity depends on the relative velocity of the ends of the dumbbell u1 − u0

and is proportional, according to Kuhn and Kuhn (1945) to

−(u1
j − u0

j )ejei (2.20)

where e is a unit vector in the direction of the vector connecting the particles
of the dumbbell and κ is the phenomenological internal friction coefficient.

When a multi-particle model of the macromolecule (Slonimskii–Kargin–
Rouse model) is considered, one must assume that the force acting on each
particle is determined by the difference between the velocities of all the par-
ticles uγ − uβ . These quantities must be introduced in such a way that dis-
sipative forces do not appear on the rotation of the macromolecular coil as a
whole, whereupon uα

j = Ω jlr
α
l . Thus, in terms of a linear approximation with

respect to velocities, the internal friction force must be formulated as follows

Gα
i = −

∑

β �=α

Cαβ(uα
j − uβ

j )eαβ
j eαβ

i , (2.21)

where eαβ
j = (rα

j − rβ
j )/|rα − rβ |. Matrix Cαβ is symmetrical, the components

of the matrix are non-negative and may depend on the distance between the
particles. The diagonal components of the matrix are equal to zero.

The internal friction force can also be written in the form

Gα
i = −Gαγ

ij uγ
j , (2.22)

where the matrix

Gαβ
ij = δαβ

∑

γ �=α

Cαγeαγ
i eαγ

j − Cαβeαβ
i eαβ

j (2.23)

has been introduced.
The written matrix is symmetrical with respect to the upper and lower

indices. Expression (2.23) defines the general form of a matrix of internal
friction, which allows the force to remain unchanged on the rotation of the
macromolecular coil as a whole. In contrast to matrix Cαβ , matrix (2.23) has
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non-zero diagonal components, which are depicted by the first term in (2.23).
Since the components of matrix Cαβ are non-negative, the diagonal compo-
nents of matrix Gαβ exceed the non-diagonal ones and can be considered to
be approximately diagonal to the indices α and β.

Expression (2.22) for an internal friction force is non-linear with respect to
the co-ordinates. To avoid the non-linearity, some simpler forms for internal
friction force were used (Cerf 1958). One can introduce a preliminary-averaged
matrix of internal viscosity

〈Gαγ
ik 〉 = Gαγδik,

where Gαγ is now a symmetrical numerical matrix which retains the main
features of matrix (2.23), so that, instead of equation (2.22), we obtain the
following expression for the force

Gα
i = −Gαγuγ

i .

The equation clearly does not satisfy the requirement that the internal viscos-
ity force disappears when the coil is rotated as a whole. By ensuring linearisa-
tion of the internal friction force according to Cerf’s procedure, equation (2.22)
may be modified and written thus

Gα
j = −Gαγ(uγ

i − Ωilr
γ
l ). (2.24)

The speed of rotation of the macromolecular coil in a flow Ωjl is determined
by the velocity gradients

Ωjl = ωjl + Ajlskγsk.

When linear effects are considered, matrix Ajlsk can be determined by con-
sidering the average rotation of the coil subjected to equilibrium averaging.
Since the coil is spherical at equilibrium, it follows from symmetry conditions
that

Ωjl = ωjl

to within first-order terms, so that the internal friction force can be written
as

Gα
j = −Gαγ(uγ

j − ωjlr
γ
l ). (2.25)

In terms of the normal co-ordinates introduced by equation (1.13), the
matrix of the internal friction can be written as follows

QαλGαγQγμ = −ζϕαδλμ

and for the internal friction force, we have

Gα
j = −ζϕα(ρ̇α

j − ωjlρ
α
l ) (2.26)

where ζ is the effective coefficient of friction, ϕα is an internal viscosity co-
efficient of mode α. It is noteworthy that the representation of the force in
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the form of equation (2.26) is possible only for weak intramolecular friction,
ϕα 
 1.

The characteristics ϕα = ϕα(M, α) of the intramolecular friction forces in
equations (2.26), introduced here as phenomenological quantities, should not
depend on the method of subdivision of the macromolecule into subchains
and, by virtue of the nature of the transformation, should be a function of the
ratio α/M. One may expect that ϕα is a monotonically increasing function of
the number of the mode α. This dependence can be fitted by

ϕα = ϕ1α
θ ∼

( α

M

)θ

, ϕ1 ∼ M −θ, (2.27)

where θ is a positive number and ϕ1 is a measure of the internal viscosity.7

For the considered subchain model, the internal rigidity cannot reach infinity,
so it is better to use the following approximation

ϕα =
ϕ1ϕ∞αθ

ϕ∞ + ϕ1αθ
.

The internal viscosity force is defined phenomenologically by equations
(2.26) formulated above. Various internal-friction mechanisms, discussed in
a number of studies (Adelman and Freed 1977; Dasbach et al. 1992; Gennes
1977; Kuhn and Kuhn 1945; MacInnes 1977a, 1977b; Peterlin 1972; Rabin
and Öttinger 1990) are possible. Investigation of various models should lead
to the determination of matrices Cαβ and Gαβ and the dependence of the
internal friction coefficients on the chain length and on the parameters of the
macromolecule.

The significance and importance of the internal viscosity can be elucidated
by comparing the consequences of the theory with experimental data, which
will be discussed further on. However, here one should note that the phe-
nomenological characteristics of the intramolecular friction prove to depend
not only on the characteristics of the macromolecule, as might have been ex-
pected, but also on the properties of the liquid in which the macromolecule is
present (Schrag 1991).

The internal viscosity of the macromolecule is a consequence of the in-
tramolecular relaxation processes occurring on the deformation of the macro-
molecule at a finite rate. The very introduction of the internal viscosity is
possible only insofar as the deformation times are large, compared with the
relaxation times of the intramolecular processes. If the deformation frequen-
cies are of the same order of magnitude as the reciprocal of the relaxation
time, these relaxation processes must be taken explicitly into account and the
internal viscosity force have to be written, instead of (2.26) as

Gα
j = −ζ

∫ ∞

0

ϕα(s)(ρ̇α
j − ωjlρ

α
l )t−s ds. (2.28)

7 To satisfy empirical relations in viscoelasticity and optical anisotropy of dilute solutions

of polymers (see Sections 6.2.3 and 10.4.1), one has to assume that θ = zν − 1.
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This relation, at ϕα(s)∼δ(s), is equivalent to relation (2.26).

2.6 The Cerf-Zimm-Rouse Modes

Now one can return to the equation (2.1) for the dynamics of the macro-
molecule in the flow of a viscous liquid. The dissipative forces acting on the
particles of the chain have generally non-linear forms, but the assumptions,
when these force can be written in linear approximation, were discussed in
the previous sections, so that we are able to write, in terms of the normal
co-ordinates introduced previously and by taking into account all the consid-
erations described above, the dynamic equation

QγαQγμm
d2ρμ

i

dt2
= −ζ(ρ̇α

i − νijρ
α
j ) − ζϕα(ρ̇α

i − ωijρ
α
j ) − 2μTλαρα

i + ξα
i ,

ξα
i = Qγαφγ

i , α = 0, 1, 2, . . . , N (2.29)

The transformation matrix Qαν is not, generally speaking, orthogonal and
the left-hand side of the equation formulated therefore includes the derivatives
of all the co-ordinates, but we shall not dwell on this factor, bearing in mind,
that in the limit m → 0 in which we are interested, the left-hand side of the
equation vanishes.

At the above limit, equation (2.29) at α = 0 is the equation of motion
for the centre of the mass of the macromolecule – a diffusion mode. At α =
1, 2, . . . 
 N , equation (2.29) defines the independent relaxation modes of the
macromolecule.

It is convenient here to introduce two sets of relaxation times

τ ⊥
α =

ζ

4Tμλα
, τ ‖

α = (1 + ϕα)τ ⊥
α , α = 1, 2, . . . , 
 N (2.30)

as relaxation times of the mean dimensions of the macromolecular coil (see
Section 2.7.2), whereas every mode is characterised by two relaxation times:
orientational and deformational. These terms are justified, when one con-
siders the dynamics of dumbbells with arbitrary big internal viscosity (see
Appendix F).

The behaviour of modes with small numbers should be independent on
the arbitrary number of subdivisions N. This means that the relaxation
times should not depend on N. Since the dependence of quantities μ and
ζ on the number of subdivisions was elucidated previously (equations (1.32)
and (2.19)), the above requirement immediately leads to the expression

λα ∼
( α

N

)zν

, α = 1, 2, . . . , 
 N,

so that for the relaxation times one has
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τ ⊥
α ∼

( α

M

)−zν

.

The situation of a freely-draining macromolecule without excluded-volume
effects and internal viscosity, when zν = 2, and the above eigenvalues reduce
to (1.17), is especially simple. In this case, equation (2.29) describes Rouse
modes, and it is convenient to use the largest orientation relaxation time

τ1 =
ζN 〈R2〉
6π2T

=
ζN2

4π2μT
∼ M2, (2.31)

where 〈R2〉 is the end-to-end distance, as a characteristic (Rouse) relaxation
time of a macromolecule.

The random force ξγ
i in the dynamic equations (2.29) is determined by its

average moments and is specified from the condition that the equilibrium
moments of the co-ordinates and velocities are known beforehand (Chan-
drasekhar 1943). In the linearised version, with ϕα 
 1, this requirement
determines the relation

〈ξα
i (t)ξγ

j (t′)〉 = 2Tζ(1 + ϕα)δαγδijδ(t − t′) (2.32)

which is valid to within first-order terms in the velocity gradients. Here and
henceforth the angular brackets indicate averaging with respect to the assem-
bly of realisations of the random force.

Let us notice that the eigenvalues λα in equation (2.29) are considered con-
stant here and henceforth. The same applies to ϕα. However, the introduced
dissipative matrices are, generally speaking, functions of invariants ραρα or of
mean values 〈ραρα〉. The latter are functions of the velocity gradients, the ex-
pansion of which begins with a second-order term. It will be necessary to take
this into account when discussing the non-linear results of the calculations.

2.7 The Moments of Linear Modes

In this section we refer to the stochastic equation (2.29) to calculate the
mode moments, that is, the averaged values of the products of the normal
co-ordinates and their velocities. It is convenient in this section to omit the
label of mode and to rewrite the dynamic equation for the relaxation mode
in the form of two linear equations

dρi

dt
= ψi,

m
dψi

dt
= −ζ(ψi − νijρj) − ζϕ(ψi − ωijρj) − 2Tμλρi + ξi.

(2.33)
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2.7.1 Equations for the Moments of Co-ordinates

To calculate second-order moments of co-ordinates and velocities, one can
start with the rates of change of quantities that can be written as follows

d〈ρiρk 〉
dt

=
〈

ρi
dρk

dt

〉
+

〈
ρk

dρi

dt

〉
,

d〈ψiψk 〉
dt

=
〈

ψi
dψk

dt

〉
+

〈
ψk

dψi

dt

〉
,

d〈ρiψk 〉
dt

=
〈

ρi
dψk

dt

〉
+

〈
ψk

dρi

dt

〉
,

while it is assumed that the equilibrium values of the moments are given by

〈ρiρk 〉0 =
1

2μλ
δik, 〈ψiψk 〉0 =

T

m
δik, 〈ρiψk 〉0 = 0.

Then, one can use equations (2.33) to obtain equations for the moments.
After one has determined the averaged values of the products of the variables
and the random force, the equations for the moments take the form

d〈ρiρk 〉
dt

= 〈ρiψk 〉 + 〈ρkψi〉, (2.34)

d〈ψiψk 〉
dt

=
2Tμλ

m
(〈ρiψk 〉 + 〈ρkψi〉)

+
ζ

m

[
2

T

m
δik − 2〈ψiψk 〉 + νij 〈ρjψk 〉 + νkj 〈ρjψk 〉

+ ϕ

(
2

T

m
δik − 2〈ψiψk 〉 + ωij 〈ρjψk 〉 + ωkj 〈ρjψi〉

)]
, (2.35)

d〈ρiψk 〉
dt

= 〈ψiψk 〉 − 2Tμλ

m
〈ρiρk 〉

− ζ

m
[〈ρiψk 〉 − νkj 〈ρjρi〉 + ϕ(〈ρiψk 〉 − ωkj 〈ρjρi〉)] . (2.36)

It is easy to see that, at zeroth velocity gradients, the right-hand sides of
the above equations are identically equal to zero.

2.7.2 The Slowest Relaxation Processes

The set of equations (2.34)–(2.36) for the second-order moments of co-
ordinates and velocities can be simplified, if we consider the situation when the
distribution of velocities corresponds to equilibrium, that is, we put m → 0.
In this case, equation (2.35) is followed by relation

〈ρiψk 〉 = − 1
2τ ‖

(
〈ρiρk 〉 − 1

2μλ
δik

)
+ νkj 〈ρjρi〉 − ϕγkj 〈ρjρi〉 (2.37)
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where the relaxation times are given by relations (also by formulae (2.30))

τ ‖ = (1 + ϕ)τ ⊥, τ ⊥ =
ζ

4Tμλ
. (2.38)

Now, one can use equations (2.34) to obtain relaxation equations for the
moments of co-ordinates

d〈ρiρk 〉
dt

− νij 〈ρjρk 〉 − νkj 〈ρjρi〉

= − 1
τ ‖

(
〈ρiρk 〉 − 1

2μλ
δik

)
− ϕ(γij 〈ρjρk 〉 + γkj 〈ρjρi〉). (2.39)

The relaxation time τ ‖ refers to the deformation processes. Indeed, by
carrying out a direct summation of equation (2.39) with identical indices, one
finds

d〈ρ2〉
dt

= − 1
τ ‖

(
〈ρ2〉 − 3

2μλ

)
+ 2(1 − ϕ)γij 〈ρjρi〉. (2.40)

This equation describes only the deformation of the macromolecular coil and
therefore τ ‖ is a relaxation time of the deformation process. It can be shown
(see Appendix F) that the orientation relaxation process is characterised by
the relaxation time τ ⊥.

Explicit expressions for the moments will be necessary later to calculate the
physical quantities. In the non-steady-state case, the second-order moments
of co-ordinates are calculated as solutions of equations (2.39). To find the
solutions, we multiply equation (2.39) by exp( t

τ ‖ ) and integrate over time
from t to ∞. After some transformation, we obtain

〈ρiρk 〉 =
1

2μλ
δik +

∫ ∞

0

exp
(

− s

τ ‖

)

× [νij 〈ρjρk 〉 + νkj 〈ρjρi〉 − ϕ(γij 〈ρjρk 〉 + γkj 〈ρjρi〉)]t−s ds.

The moments and velocity gradients in the integrand are taken at the point
of time t − s.

Now we can use the equilibrium moments to find the first terms of the
expansion of the moments as a series of repeated integrals

〈ρiρk 〉 =
1

2μλ

{
δik + 2(1 − ϕ)

∫ ∞

0

exp
(

− s

τ ‖

)
γik(t − s)ds

}
. (2.41)

The iteration procedure can be continued.
In the steady-state case, the expansion assumes the form

〈ρiρk 〉 =
1

2μλ
{δik + 2τ ⊥γik

+ 2(τ ⊥)2 [2γijγjk + (1 + ϕ)(ωijγjk + ωkjγji)]
}

. (2.42)

We may note that, in the approximation of the preliminary averaging,
which was used, the expressions for the moments are valid only to within
second-order terms with respect to the velocity gradients.
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2.7.3 Fourier-Transforms of Moments

One can calculate the mode moments in different way. One can pass from equa-
tions (2.34)–(2.36) to the set of algebraic equations, introducing the Fourier-
transforms of the unknown functions

〈ρiρk 〉 =
∫ ∞

− ∞
Rik(ω)e−iωt dω

2π
,

〈ρiψk 〉 =
∫ ∞

− ∞
Yik(ω)e−iωt dω

2π
,

〈ψiψk 〉 =
∫ ∞

− ∞
Zik(ω)e−iωt dω

2π
.

The solution of the resulting set of equations can be written accurately,
within the first order terms with respect to the velocity gradients, as

Rik(ω) =
1

2μλ
[δikδ(ω) + 2Cτ ⊥γik(ω)] ,

Yik(ω) =
1

2μλ
[−ωik(ω) − iωCτ ⊥γik(ω)] ,

Zik(ω) =
T

m

[
δikδ(ω) +

2iωτmC

2(1 + ϕ) − iωτm
τ ⊥γik(ω)

]
,

C =
2(1 + ϕ − iωτm)

[1 − iωτ ⊥(1 + ϕ) − τmτ ⊥ω2][2(1 + ϕ) − iωτm] − iωτm
.

(2.43)

The solution contains two characteristic relaxation times

τ ⊥ =
ζ

4Tμλ
, τm =

m

ζ
.

The first relaxation time is much bigger than the second one within the limits
of applicability of the subchain model. So, the terms multiplied by the quantity
ωτm in relations (2.43) can be neglected, and expressions can be written down
in the simpler form

Rik(ω) =
1

2μλ

[
δikδ(ω) +

2τ ⊥

1 − iωτ ‖
γik(ω)

]
,

Yik(ω) =
1

2μλ

[
−ωik(ω) +

−iωτ ⊥

1 − iωτ ‖
γik(ω)

]
,

(2.44)

Zik(ω) =
T

m
δikδ(ω). (2.45)

It can easily be seen that the first expression from equations (2.44) corresponds
to expressions (2.41) and (2.42).
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