
Chapter 10
Optical Anisotropy

Abstract Macromolecular coils are deformed in flow, while optically aniso-
tropic parts (and segments) of the macromolecules are oriented by flow, so
that polymers and their solutions become optically anisotropic. This is true
for a macromolecule whether it is in a viscous liquid or is surrounded by other
chains. The optical anisotropy of a system appears to be directly connected
with the mean orientation of segments and, thus, it provides the most direct
observation of the relaxation of the segments, both in dilute and in concen-
trated solutions of polymers. The results of the theory for dilute solutions
provide an instrument for the investigation of the structure and properties of
a macromolecule. In application to very concentrated solutions, the optical
anisotropy provides the important means for the investigation of slow relax-
ation processes. The evidence can be decisive for understanding the mecha-
nism of the relaxation.

10.1 The Relative Permittivity Tensor

In order to examine the optical anisotropy, we begin with the relative permit-
tivity tensor for the system εik, which is defined (see, for example, Born and
Wolf 1970; Landau et al. 1987) by the relation

εikEk = Ei + 4πPi (10.1)

where Ek is the average electric field strength acting in the medium and Pi

is the polarisation per unit volume of the system expressed in terms of the
polarisabilities of the constituent elements of the system.

One can make use of the heuristic model mentioned previously, in Sec-
tion 1.1: each macromolecule consists of z segments and is surrounded by
solvent molecules. It is not essential now to know whether the segments in the
chain are connected or independent; the results of this section are applicable
in both cases.

When considering the system consisting of solvent molecules and segments,
the simple old-fashion (Vleck 1932; Fröhlich 1958) speculations allow us to
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determine the relative permittivity tensor of polymeric system in terms of
the mean orientation of anisotropic segments of the macromolecules. The sol-
vent molecules have an isotropic polarisability α, while the segment has an
anisotropic polarisability αik. In the co-ordinate system connected with the
segment, the anisotropy tensor is assumed to be diagonal. In any other co-
ordinate system, the polarisability tensor of the segment has the form

αik = ciscksαss

where cis is the cosine of the angle between the ith axis of the laboratory
system and the sth axis of the molecule. One can assume that the segment
has axial symmetry, so that α22 = α33, and introduce the unit vector e in
direction of the axis. It allows us to rewrite the expression for the polarisability
tensor of the segment in the form

αik = ᾱδik + (α11 − α22)
(

eiek − 1
3
δik

)
(10.2)

where ᾱ = (α11 + α22 + α33)/3. In case that is more general, we have to
introduce two unit vectors e‖ and e⊥ – along the direction of the axis of the
segment and in perpendicular direction, respectively. In this case

αik = ᾱδik + (α11 − α33)
(

e‖
ie

‖
k − 1

3
δik

)
+ (α22 − α33)

(
e⊥
i e⊥

k − 1
3
δik

)
. (10.3)

The time of relaxation of the mean orientation of the lateral vector e⊥ is
considered to be much less than the time of relaxation of the mean orientation
of the axial vector e‖, so that the last term in (10.3) can be neglected for rather
low frequencies and one can continue with the simpler case (10.2).

The true molecular field F acting both on the segment and on molecules
of solvent differs from the average field E because the scale of the dimensions
of the segments is molecular. Each solvent molecule makes an isotropic con-
tribution to the polarisability vector; the contribution of each segment of the
macromolecule is anisotropic and is expressed by the formula

βs = csickiαiiFk =
[
ᾱδsk + Δα

(
esek − 1

3
δsk

)]
Fk, Δα = α11 − α22.

By taking into account all the molecules and segments and by designating
with nz and ns the densities of the number of segments and of the number of
solvent molecules (n being the density of the number of macromolecules), we
obtain, after averaging with respect to the orientations of the segments,

Pj = (nzᾱδjk + nzΔαsjk + nsαδjk)Fk (10.4)

where a symbol has been introduced for the mean values of the directing
cosines of the segment relative to the laboratory co-ordinate system – the
orientation tensor
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sjk = 〈ejek 〉 − 1
3
δjk.

The internal field Fk is assumed to be the same for the segments and the
solvent molecules.

Next, use is made of the simple hypothesis that all the positions of the
molecules and segments are equally probable, and, following tradition, we
shall formulate an expression for the internal field as a field within a spherical
cavity (Vleck 1932; Fröhlich 1958)

Fi = Ei +
4π

3
Pi. (10.5)

The internal field can be eliminated from relations (10.4) and (10.5), so
that we have a set of equations for the components of the vector of polarisation

(Aδsj + assj)Pj = −(Bδsj + bssj)Ej

where the following notations are introduced

A =
4π

3
(nzᾱ + nsα) − 1, a =

4π

3
nzΔα,

B = nzᾱ + nsα, b = nzΔα.

The written set of equations has a simple solution for the components of the
polarisation vector. We use them to write, in accordance to equation (10.1),
the relative permittivity tensor

εik = δik +
4π

D

[
−A2Bδik + (AaB − A2b)sik +

1
2
a2Bsjlsjlδik

+ (Aab − a2B)silsik +
1
2
a2bsjlsjlsik − a2bsijsjlslk

]
,

D = A3 − 1
2
Aa2siksik + a3|sik |.

In the case when there is no preferred orientation, that is sik = 0, the
considered system is isotropic and is characterised by the relative permittivity
constant

ε0 = 1 + 4π
nzᾱ + nsα

1 − 4π
3 (nzᾱ + nsα)

from which one can find the relations

4π

3
(nzᾱ + nsα) =

ε0 − 1
ε0 + 2

, A = − 3
ε0 + 2

.

The written relations define the relative permittivity tensor for the system,
which is formulated below to within second-order terms in the orientation
tensor
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εik = ε0δik + 4πnzΔα

(
ε0 + 2

3

)2

sik

+
1
2

[
1 − ε0 + 4π

(
ε0 + 2

3

)3
]

(4πnzΔα)2
(

ε0 + 2
3

)2

sjlsljδik

+
1
3
(4πnzΔα)2

(
ε0 + 2

3

)3

silslk. (10.6)

One can see that, to a first approximation, as it is well known (Vleck
1932; Fröhlich 1958), allowance for the internal field by the Lorentz procedure
is equivalent to multiplication by the factor

(
ε0 + 2

3

)2

.

In conformity with the significance of the terms employed by investigators
of anisotropy (Tsvetkov et al. 1964), the effects associated with the first-order
terms in equation (10.6) may be called the effects of intrinsic anisotropy, while
the second-order effects may be referred to as the effects of mutual interaction.
In the second approximation, the principal axes of the relative permittivity
tensor do not coincide, generally speaking, with the principal axes of the
orientation tensor. It is readily seen that interesting situations may arise when
Δα < 0; in this case, the coefficients of the first- and second-order terms have
different signs.

Let us note that the contribution from anisotropy due to the difference
in the isotropic part of the polarisability between segments and solvents
molecules, ᾱ − α0, ought to be added to expression (10.6). This is a first-
order term in the orientational tensor (Tsvetkov et al. 1964). We shall not
consider this contribution to the anisotropy, as it is not so important for the
very concentrated solutions under consideration.

10.2 The Permittivity Tensor for Polymer Systems

Now, we have to return to the subchain model of macromolecule, which was
used to calculate the stresses in the polymeric system, and express the tensor
of the mean orientation of the segments of the macromolecule in terms of the
subchain model.

Equation (10.6), formulated in the previous section, defines the relative
permittivity tensor in terms of the mean orientation of certain uniformly
distributed anisotropic elements, which we shall interpret here as the Kuhn
segments of the model of the macromolecule described in Section 1.1. We
shall now discuss the characteristic features of a polymer systems, in which
the segments of the macromolecule are not independently distributed but are
concentrated in macromolecular coils.
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10.2.1 Dilute Solutions

In the equilibrium situation, at a given end-to-end distance R of a macro-
molecule, the tensor of mean orientation of segments of a chain is determined
(Flory 1969) as

〈eiek 〉 − 1
3
δik =

3
5(zl)2

(
RiRk − 1

3
R2δik

)
. (10.7)

As before, we shall consider each macromolecule to be divided into N sub-
chains and assume that every subchain of the macromolecule is in the equilib-
rium. So, using the above formula relating the tensor of the mean orientation
of the segments of the macromolecules 〈ejek 〉 to the distance between the ends
of the subchains, we arrive from relation (10.6), taken in the first approxima-
tion, at Zimm’s (1956) expression for the relative permittivity tensor

εik = ε0δik + nΓ
(

〈rα
i Aαγrγ

k 〉 − 1
3

〈rα
j Aαγrγ

j 〉δik

)
(10.8)

where n is the density of the number of macromolecules in the solution, and
the matrix A has the form specified by formula (1.8), while the coefficient
of the anisotropy of the macromolecular coil Γ , for the macromolecule as a
freely-jointed chain of Kuhn segments, is given by the following expression

Γ = 4πΔα

(
ε0 + 2

3

)2 3N

5zl2

where z is the number of Kuhn segments in the macromolecule, and Δα is
the anisotropy of the polarisability of a Kuhn segment.

The anisotropy of the coil has been calculated for other models of the
macromolecule. Expressions for the anisotropy coefficient are known in the
case where the macromolecule has been represented schematically by a con-
tinuous thread (the persistence length model) (Gotlib 1964; Zgaevskii and
Pokrovskii 1970) and also in the case where the microstructure of the macro-
molecules has been specified. In the latter case, the anisotropy coefficient of
the macromolecule is expressed in terms of the bond polarisabilities and other
microcharacteristics of the macromolecule (Flory 1969).

When account is taken of the excluded volume effects, one has also to
take into account the possible effect of the shielding of the inner segments
of the macromolecular coil, the latter effect being the greater the longer the
macromolecule, so that the expression for the anisotropy coefficient, which has
to be covariant in relation to subdivisions into subchain, assumes the form

Γ = 4πΔα

(
ε0 + 2

3

)2 3N2ν

5〈R2〉 . (10.9)

The dependence of the polarisability coefficient on the length of the macro-
molecule follows from equation (10.9) as
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Γ ∼ M −2ν .

Expression (10.8) for the relative permittivity tensor in terms of the normal
co-ordinates introduced by means of equations (1.13), assumes the form

εik = ε0δik + nΓ
N∑

α=1

λα

(
〈ρα

i ρα
k 〉 − 1

3
〈ρα

j ρα
j 〉δik

)

or in terms of the ratios xν
ik = 〈ρν

i ρν
k 〉/〈ρνρν 〉0

εik = ε0δik +
3nΓ
2μ

N∑
α=1

(
xα

ik − 1
3
xα

jjδik

)
. (10.10)

The last equation can be compared with equations (9.1) and (9.3) for
the stresses in dilute solutions. On can see that, when internal viscosity is
neglected (ϕν = 0), there is a relation between the permittivity tensor and
stress tensor in the form

εij − ε0δij = 2n̄C (σij + pδij − 2ηsγij),

C =
Γ

4n̄μT
=

2π

45n̄T
(ε0 + 2)2Δα (10.11)

where n̄ is an isotropic value of the refractive index (n̄2 = ε0) and C is the
stress-optical coefficient, which is universally expressed through the segment
anisotropy Δα. The stress-optical law (10.11) reflects the fact that both the
stresses and the optical anisotropy of a polymer solution under motion are
determined by the mean orientation of segments of the chains.

Expression (10.10) for the relative permittivity tensor is valid only to a
first approximation as regards the orientation of the segments and describes
the anisotropy of the system associated with the intrinsic anisotropy of the
segments. Apart from it, it was assumed that distribution of orientation of
the segments inside every subchain are considered to be in equilibrium though
under deformation. However, this expression has appeared to be very well ap-
plicable to dilute polymer solutions at low frequencies and small velocity gradi-
ent (Tsvetkov et al. 1964; Janeschitz-Kriegl 1983). In more general situations,
one has to take into account that the mean orientation of segments under de-
formation of the macromolecular coil deviates from equilibrium value (10.7).
One can believe that the stress-optical law (10.11) is valid in this case, so
that an expression for the permittivity tensor can be found as combination
of equations (9.1) and (10.11), whereby the internal viscosity is taking into
account. However, an independent calculation of the tensor of orientation and
the permittivity tensor in non-equilibrium situations is much desirable.

10.2.2 Entangled Systems

The situation is different for very concentrated polymer solutions. Though
equation (10.6) is applicable for this case, formula (10.7) is not valid neither
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for the entire macromolecule nor for a separate subchain. The subchain of a
macromolecule in the deformed entangled system is not in equilibrium even
in the first approximation, and the problem about distribution of orientation
of the interacting, connected in chains, segments apparently is not solved yet.

In this situation, which is also discussed in Section 7.5, we refer to exper-
imental evidence according to which components of the relative permittivity
tensor are strongly related to components of the stress tensor. It is usually
stated (Doi and Edwards 1986) that the stress-optical law, that is propor-
tionality between the tensor of relative permittivity and the stress tensor, is
valid for an entangled polymer system, though one can see (for example, in
some plots of the paper by Kannon and Kornfield (1994)) deviations from
the stress-optical law in the region of very low frequencies for some samples.
In linear approximation for the region of low frequencies, one can write the
following relation

εij − ε0δij = 2n̄C (σij + pδij) (10.12)

where n̄ is a value of the refractive index (n̄2 = ε0) and C is the stress-optical
coefficient, which is assumed to be universally expressed through the segment
anisotropy Δα by formula (10.11). Relation (10.12) reflects the fact that both
the stresses and the optical anisotropy of a polymeric liquid under motion are
determined by the mean orientation of the interacting segments. One can use
expression (9.19) for the stress tensor to write

εij = ε0δij + 6nT n̄C

N∑
α=1

{
xα

ij − 1
3
δij + uα

ij

}
. (10.13)

One admits that the relative permittivity tensor of the system is deter-
mined by the mean orientation of the segments, so that we consider expres-
sion (10.13) to be equivalent to the first-order terms of relation (10.6) and,
at comparison, obtain the expression for the mean orientation of segments of
macromolecules in an entangled system

〈eiek 〉 − 1
3
δik =

3
5z

N∑
α=1

{
xα

ij − 1
3
δij + uα

ij

}
(10.14)

where z is number of segments in a macromolecules. The set of the variables
xα

ij = 〈ρα
i ρα

k 〉
〈ρα

i ρα
k 〉0

represents the conformation of the macromolecular coil, while
the variables uα

ij are mainly connected with the mean orientation of the seg-
ments sij . The variables xα

ij and uα
ij appear to be independent from each other

and can be found as a solutions of the relaxation equations (7.25) and (7.38)
for weakly entangled systems and equations (7.29) and (7.40) for strongly
entangled systems.

Relaxation equations for the mean orientation can be restored (see also
Section 7.5). In the case of strongly entangled system, in linear approximation,
assuming that E/B � B, we have
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d〈eiek 〉
dt

= − 1
τ

(
〈eiek 〉 − 1

3
δik

)
+

π2

15
1
z
B

τ ∗

τ
γik. (10.15)

One can see that, in this approximation, disturbed conformation of macro-
molecules does not affect the mean orientation of segments in the steady state,
that can be found from equation (10.15) as

〈eiek 〉 =
1
3
δik +

π2

15
1
z
τ ∗Bγik. (10.16)

In contrast to the case of dilute polymer solutions (relation (10.7)), mean
orientation of segments does not depend (to the first approximation) on the
large-scale conformation of the macromolecule. However, an independent cal-
culation of the tensor of orientation in non-equilibrium situations is much
desirable.

10.3 Optical Birefringence

The value of the refractive index n of light in the anisotropic medium depends
on the direction of propagation s and on the direction of the polarisation of
the light. For the given relative permittivity tensor εjl, the refractive index
can be determined from the relation (Born and Wolf 1970; Landau et al. 1987)

εjlEl = n2[Ej − sj(s · E)]. (10.17)

It follows from (10.17) that the refractive index for an isotropic medium
is determined by the permittivity constant only

n2 = ε0.

In the case of an anisotropic system, it is convenient to consider particular
cases. Further on, expressions for characteristics of optical birefringence in
two typical cases will be shown.

Methods for the experimental estimation of birefringence can be found
in the monograph by Tsvetkov et al. (1964), Janeschitz-Kriegl (1983) and in
papers by Lodge and Schrag (1984), Inoue et al. (1991), and Kannon and
Kornfield (1994).

10.3.1 Simple Elongation

In the simplest cases, the optical anisotropy of polymer systems is studied
under the conditions of simple elongation, when the elongation velocity gra-
dient ν11 is given. The system investigated then becomes, generally speaking,
a “triaxial dielectric crystal” with components of the relative permittivity
tensor
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∥∥∥∥∥∥∥
ε11 0 0
0 ε22 0
0 0 ε33

∥∥∥∥∥∥∥
.

For a system under elongational deformation along direction 1, for a beam
of light propagating in direction 3, according to (10.17) one obtains different
refractive indices for different polarisation of the beam, so that, for polarisa-
tion in directions 1 and 2, one has a difference of refractive indices

Δn =
1
2n̄

(ε11 − ε22) (10.18)

where n̄ is the average refractive index. This relation is written on the assump-
tion that the difference between refractive indices is small, so that non-linear
terms are omitted.

10.3.2 Simple Shear

For a system undergoing simple shear, when the velocity gradient ν12 �= 0,
the relative permittivity tensor is non-diagonal

∥∥∥∥∥∥∥
ε11 ε12 0
ε12 ε22 0
0 0 ε33

∥∥∥∥∥∥∥
.

However, the tensor can be turned to diagonal form by rotating the co-
ordinate frame round axis 3 by an angle χ (the extinction angle), defined by
the formula

tan 2χ =
2ε12

ε11 − ε22
. (10.19)

The differences between the refractive indices (the extent of double re-
fraction) in the different principal directions can be determined from equa-
tion (10.17). For a beam propagated in direction 3, we find that

Δn =
1
2n̄

√
(ε11 − ε22)2 + 4ε2

12. (10.20)

This relation as well as relation (10.18) is valid in linear approximation
and can be therefore rewritten as

Δn =
1
n̄

ε12, (10.21)

while the extinction angle χ = π/4.
A little bit more complicated situation appears, if one considers a beam

propagating across the flow in direction characterised by the unit vector

s1 = sin θ, s2 = cos θ, s3 = 0.
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This experimental situation is described, for example, in the work of Brown et
al. (1995). It is convenient to choose the electric vector of the beam in plane
(1–2) or in direction 3, whereas the differences between the refractive indices
can be easily found from equation (10.17)

Δn =
1
2n̄

(
ε11ε22 − ε2

12 − ε22ε33(1 − sin2 θ) − ε11ε33(1 − cos2 θ)
ε22(1 − sin2 θ) − ε11(1 − cos2 θ) − 2ε12 sin θ cos θ

− 2ε12ε33 sin θ cos θ

ε22(1 − sin2 θ) − ε11(1 − cos2 θ) − 2ε12 sin θ cos θ

)
.

For θ = 0, this formula reduces to

Δn =
1
2n̄

(
ε11 − ε33 − ε2

12

ε22

)
.

10.3.3 Oscillatory Deformation

One frequently deals with the linear effects of anisotropy which are induced
by oscillatory velocity gradients or by oscillatory strains

uik(t) = −iωγik(t) ∼ e−iωt.

In this case, it is convenient to characterise the behaviour of the system
by the dynamo-optical coefficient

S(ω) = S′(ω) + iS′ ′(ω)

due to Lodge and Schrag (1984), or by the strain-optical coefficient

O(ω) = O′(ω) − iO′ ′(ω)

due to Inoue et al. (1991). These quantities are introduced by relations

εik = ε0δik + 4n̄S(ω)γik,

εik = ε0δik + 4n̄O(ω)uik.
(10.22)

It is easy to find, from the above-written formulae, that the components
of dynamic characteristics are connected by relations

O′(ω) = ωS′ ′(ω), O′ ′(ω) = ωS′(ω). (10.23)

Relations (10.22) are quite similar to the definitions of dynamic visco-
sity η(ω) and dynamic modulus G(ω), so that relations (10.23) are similar
to the relations between the components of dynamic modulus and dynamic
viscosity (equations (6.10)).

Dynamo-optical and strain-optical coefficients can be estimated from mea-
surements of birefringence Δn under elongational flow or shear flow, corre-
spondingly
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Δn = 3S(ω)ν11 = 3O(ω)u11, (10.24)
Δn = 2S(ω)ν12 = 2O(ω)u12. (10.25)

Note that a frequency-dependent stress-optical coefficient C(ω) can be
introduced by comparing the stress tensor and the relative permittivity tensor

εij − ε0δij = 2n̄C(ω)(σij + pδij)

where

C(ω) =
S(ω)
η(ω)

=
O(ω)
G(ω)

.

10.4 Anisotropy in a Simple Steady-State Shear Flow

Let us consider the anisotropy of polymer system undergoing simple steady-
state shear. This situation can be realised experimentally in a simple way
(Tsvetkov et al. 1964). The quantity measured in experiment are the birefrin-
gence Δn and the extinction angle χ which are defined by formulae (10.19) and
(10.20), correspondingly, through components of the relative permittivity ten-
sor.

10.4.1 Dilute Solutions

One can turn to equation (10.10) to find the components of the relative per-
mittivity tensor. Using expressions for the moments (2.42), one determines the
gradient dependence of the quantities for dilute polymer solutions to within
second-order terms

Δn =2CnT

N∑
ν=1

τ ⊥
ν ν12,

tan 2χ =
1

2Aν12
, χ =

π

4
− Aν12

(10.26)

where two non-dimensional quantities, the stress-optical coefficient C and the
characteristic angle A, have been introduced as

C =
Γ

4n̄μT
=

2π

45n̄T
(ε0 + 2)2Δα, (10.27)

A =
1
2

N∑
ν=1

(1 + ϕν)(τ ⊥
ν )2 ·

(
N∑

ν=1

τ ⊥
ν

)−1

. (10.28)

We can see from equation (10.27) that the stress-optical coefficient depends
neither on the molecular weight of the polymer nor on the number of subchains
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and is proportional to the polarisability of the Kuhn segment Δα. The stress-
optical coefficient can be estimated by investigation of the shear motion of
a very dilute polymer solution, as the ratio of the characteristic extent of
double refraction [Δn] to the initial characteristic (intrinsic) viscosity defined
by equation (6.23)

2C =
[Δn]
[η]0

, [Δn] = lim
c→0

ν12→0

n1 − n2

cηsν12
. (10.29)

As far as the characteristic angle (10.28) is concerned, taking into account
the dependence of the relaxation time and of the internal viscosity on the
number of the mode (formulae (2.27) and (2.31)), one can write, with the aid
of the zeta-function ζ(x),

A =
1
2

τ1

ζ(zν)
[ζ(2zν) + ϕ1ζ(2zν − θ)] .

The first term of the expression is proportional to the solvent viscosity ηs

and the second to the internal viscosity (kinetic rigidity) of the macromolecule,
so that measurement of the anisotropy of solutions in different solvents makes
it possible to estimate the quantity

τ1ϕ1 ∼ Mzν−θ.

The experimental results (Tsvetkov et al. 1964) for macromolecules of different
lengths shows that

τ1ϕ1 ∼ M1→1.2

and one can write an approximate empirical relation

θ − zν + 1 = 0. (10.30)

An independent empirical confirmation of this relation was discussed in Sec-
tion 6.2.4. The relation was mention in Section 2.5 and used at the choice
of specific values of the parameters for calculation of dynamic properties of
dilute solutions in Section 6.2.2.

Of course, all the derived relations are valid for velocity gradients which
are not too large. Otherwise, second-order terms of equation (10.6) should be
taken into account, when equation (10.10) is being written, which complicates
the situation. We may note that very interesting phenomena may occur, for
example, at high velocity gradients. If Γ < 0, the so-called anomalous de-
pendencies (discovered in Tsvetkov’s laboratory and discussed, in particular,
by Gotlib and Svetlov 1964a, 1964b) of the extent of double refraction and
of the extinction angle on the velocity gradient are observed in experiments,
indicating that the principal axes of the tensor of the average orientation of
optical anisotropy do not coincide. In order to interpret these phenomena,
one has to turn firstly to equations of type (10.6) for the relative permittivity
tensor that are non-linear as regards orientation.
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10.4.2 Entangled Systems

Now we refer to formula (10.13) for the relative permittivity tensor to de-
termine the characteristic quantities in this case of strongly entangled linear
polymers. We use expansions (7.32) and (7.43) for the internal variables to
obtain the expression for the components of the tensor through velocity gra-
dients

ε12 =
π2

3
nT n̄C τ ∗B ν12,

ε22 − ε11 =
2π2

3
nT n̄C ττ ∗B ν2

12.

Then we can write the characteristic quantities

Δn =
π2

3
nT C τ ∗B ν12, tan χ =

1
τν12

. (10.31)

Of course, these relations are trivial consequences of the stress-optical law
(equation (10.12)). However, it is important that these relations would be
tested to confirm whether or not there is any deviations in the low-frequency
region for a polymer system with different lengths of macromolecules and to
estimate the dependence of the largest relaxation time on the length of the
macromolecule. In fact, this is the most important thing to understand the
details of the slow relaxation behaviour of macromolecules in concentrated
solutions and melts.

10.5 Oscillatory Birefringence

10.5.1 Dilute Solutions

One can turn to discussion of the dynamo-optical coefficient, defined by
equation (10.22). The expression for the relative permittivity tensor (10.10)
and equation (2.41) for the moments allow one to write

S(ω) = nTC
N∑

α=1

τ ⊥
α

1 − iωτ ‖
α

.

The stress-optical coefficient C is defined by equation (10.27) and the relax-
ation times τ ⊥

α and τ ‖
α are defined by relations (2.30). One can see that the

dynamo-optical coefficient of dilute polymer solutions depends on the non-
dimensional frequency τ1ω, the measure of internal viscosity ϕ1 and indices
zν and θ

S(ω) = nTCτ1f(τ1ω, ϕ1, zν, θ).

For the components of dynamo-optical coefficient, one can find the equa-
tions, established by Thurston and Peterlin (1967),
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S′(ω) = nTC

N∑
α=1

τ ⊥
α

1 + (τ ‖
αω)2

,

S′ ′(ω) = nTC

N∑
α=1

(1 + ϕα)
(τ ⊥

α )2ω
1 + (τ ‖

αω)2
.

(10.32)

One can see that, in the case when the intramolecular viscosity is neglected
(ϕ1 = 0), the frequency dependence of the components of the dynamo-optical
coefficient (10.32) agrees with the analogous dependence of the shear viscosity
(see equation (6.20) and Fig. 14). The stress-optical law can be written in the
form

S′(ω)
η′(ω) − ηs

= C,
S′ ′(ω)
η′ ′(ω)

= C. (10.33)

Pokrovskii and Kokorin (1987) extended the results to the more general
case where the internal viscosity parameter assume arbitrary values and the
excluded-volume effects are taken into account.

Of course, equations (10.32) and (10.33) are valid in linear approxima-
tion for velocity gradients which are not too large and for low frequencies. Is
the stress-optical law valid, at the higher frequencies, when the intramolecu-
lar relaxation processes have to be taken into account? Deviations from the
stress-optical law can emerge, if one assumes the equilibrium distribution of
segment orientation, when the expression for the relative permittivity tensor
was written, whereas the internal viscosity in dynamic viscosity is included
in proper way. At correct consideration, the deviations from the stress-optical
law do not appear in the theory. At very high frequencies, the real part of
the dynamo-optical coefficient is zero, while the real part of dynamic viscos-
ity remains finite. By investigating optical anisotropy and stresses at high
frequencies, one can estimate from the experimental data the importance of
intramolecular relaxation processes in the dynamics of the macromolecule.

The work by Lodge et al. (1982) contains the experimental data on the
frequency dependencies of the dynamo-optical coefficient for infinitely dilute
solutions of polymer, which are represented as frequency dependence of the
magnitude and the phase angle, respectively

Sm =
(
(S′)2 + (S′ ′)2

)1/2

, tan θs =
S′ ′

S′ .

10.5.2 Entangled Systems

The strain-optical coefficient O(ω), defined by equation (10.22), can be cor-
responded to dynamic modulus calculated in Section 6.4.2. Taking all the
previous speculations into account, an expression for the strain-optical coeffi-
cient can be written in general way as

O(ω) = nT

6∑
a=1

N∑
α=1

(−iω)
Ca p

(a)
α τ

(a)
α

1 − iωτ
(a)
α

(10.34)
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where the times of relaxation τ
(1)
α , τ

(2)
α , τ

(3)
α , τ

(4)
α , τ

(5)
α , τ

(6)
α and the corre-

sponding weights p
(1)
α , p

(2)
α , p

(3)
α , p

(4)
α , p

(5)
α , p

(6)
α are the same as calculated

for dynamic modulus in Sections 6.4.2, while the stress-optical coefficients
C1, C2, C3, C4, C5, C6 are assume can be different for different relaxation
branches. It is possible that the different relaxation branches are connected
with different types of motion and are characterised with different values of
the stress-optical coefficient. The stress-optical coefficients are proportional
to the polarisability of the structural units of the macromolecule, which can be
different for different types of motion of the chain (Gao and Weiner 1994). The
strain-optical coefficient of entangled system depends on the non-dimensional
frequency τ ∗ω and on the non-dimensional parameters

O(ω) = nT f(C1, C2, C3, C4, C5, B, χ, τ ∗ω).

The contributions into dynamic modulus and, consequently, into strain-optical
coefficient from the high-frequency branches are discussed in Section 6.4.2. In
the case, when the all stress-optical coefficients are equal, a graphs for the
components the strain-optical coefficient have the same form as the graph for
the components of the dynamic modulus, which, for example, are shown in
Fig. 17. In general case, expression (10.34) allows us to describe different types
of the frequency dependence of the strain-optical coefficient and this can gives
an explanation to the “curious behaviour” of the strain-optical coefficient of
polymer solutions and melts. In fact, considering strain-optical coefficient in
a great range of frequencies, scholars have to admit that the stress-optical
coefficient C depends either on frequency or is different for different relax-
ation branches, to explain experimental data (Inoue et al. 1991; Okamoto et
al. 1995). We cannot discuss comparison between the experimental and theo-
retical curves any more, because it is an illustration of a phenomenon which
ought to be investigated carefully.

In application to very concentrated solutions, the optical anisotropy pro-
vides the important means for the investigation of slow relaxation processes.
It is important to confirm whether or not there is any deviations from the
stress-optical law in the low-frequency region for a polymer melt with dif-
ferent lengths of macromolecules. In fact, this is the most important thing
to understand the details of the slow relaxation behaviour of macromolecules
in concentrated solutions and melts. The evidence can be decisive for under-
standing the mechanism of the relaxation.
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