
The resurgent approach
to topological string theory

Ricardo Couso-Santamaría

Abstract. In these notes I describe practical applications of resurgence to topo-
logical strings, a theory that enjoys connections with matrix models, enumerative
and complex geometry, and strong/weak dualities in Physics. Starting from the
asymptotic series representation of the free energy I outline recent results which
are first steps for arriving at a transseries, which should in principle contain all the
nonperturbative information of the theory.

1 Introduction

The goal of these notes is to present an overview of the work developed
in [7, 8] about the applications of resurgence to topological string theory.
These references are not pieces of mathematics but physics work so they
sit on a lower step in the staircase of rigor that has the work of Écalle at
the top [12]. The objective then is to introduce the ideas and techniques
that have been quite useful in understanding and uncovering nonperturba-
tive effects in physical theories, and to put part of the focus on issues that
could be taken as working problems for the resurgent mathematician. A
nice companion to this article is [21], which assumes no familiarity with
resurgence or topological strings.

The ultimate application of resurgence to Physics would be the use
resurgent techniques to define and compute nonperturbative observables
of a given physical theory. See [11] for an overview of the role of resur-
gence in Physics. By nonperturbative I mean valid for any value of the
interaction couplings, small or large. (In Mathematics we denote this
coupling by x−1 while in Physics we may call it gs .) However, such an
ambitious goal could not completely work in general for physical and
technical reasons. Resurgence can capture nonperturbative information
about a system and store it in the form of a transseries. This is a formal
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object in a variable x built out of exponentials and powers,

ϕ =
∞∑
n=0

σ ne−nAx
∞∑
g=0

x−gϕ(n)
g , σ, A, ϕ(n)

g ∈ C. (1.1)

The notation here is the following: A is called the instanton action in
physical contexts and I will stick to that name; n labels instanton num-
bers, where n = 0 denotes the perturbative sector; σ is called the trans-
series parameter and is not constrained at the formal level. Transseries
can be more general including many instanton actions, Aα, and associ-
ated sectors labeled by vectors n with natural numbers as entries. They
can also allow for other transseries monomials besides exponentials, such
as logarithms, log x . See for example [6, 13].
The computation of the transseries can be quite challenging in prac-

tice. Even if we have surpassed that obstacle we still have to perform
the task of resumming the trans series into a function of x that would
eventually define the physical observable ϕphys. The resummation han-
dles each asymptotic series

∑∞
g=0 x

−gϕ(n)
g for every n to produce a finite

number for a given x . However we still have to determine the value of
the transseries parameter σ . For this we need some physical input, such
as a boundary condition for ϕphys at infinity. This last step is important
because resurgence alone cannot choose between all the possible nonper-
turbative completions. When we lack knowledge about the nonperturba-
tive regime of a physical theory we may not have a way to determine the
right completion.
In sight of such a disheartening picture we could just turn to other tech-

niques sometimes available in Physics such as the strong/weak coupling
duality or integrability, but we would be missing on the information re-
vealable by resurgence and displayed in the transseries. To illustrate what
I mean by the resurgent approach let us have a look at Figure 1.1 where
I show a practical route from an asymptotic series of perturbative nature,
ϕ(0), to a full nonperturbative physical quantity, ϕ. This approach will
not always be successful but it is always worth trying.
The starting point in most physical problems is a finite sequence of

perturbative coefficients, ϕ(0)
g . How one arrives at these quantities and

how many of them can be computed depends very much on the prob-
lem. The asymptotic nature of the resurgent approach focuses strongly
on behaviors at large order g, so the more coefficients we have the more
precise our numerical results will be. For generic quantum field theories
computing ϕ(0)

g for even moderate g requires calculating a large amount
of Feynman diagrams — roughly g! of them. For theories like topologi-
cal strings we rely on the recursive properties of the coefficients — like
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Figure 1.1. The resurgent diagram describes schematically the routes to the
transseries starting from perturbation theory, namely EQ and LO, as well as the
feedback triangle on the right-hand side and the resummation at the bottom.

the holomorphic anomaly equations, see later — to bypass Feynman dia-
grams altogether.
If our goal is to build a transseries by studying perturbative data alone

we have two routes, which generically complement each other. They are
labeled LO and EQ in Figure 1.1.
Route EQ, if available, is the fastest way to the transseries. We may

take it if we can find an equation of some type that the perturbative
asymptotic series, ϕ(0)(x), satisfies. The easiest way is to find a recursion
relation between the coefficients ϕ(0)

g and build an equation from it. The
next step is to promote this equation to be valid not only perturbatively
but also for a transseries like (1.1). After this, computing coefficients ϕ(n)

g
is basically a mechanical task.
To give a somewhat trivial example consider the list perturbative coef-

ficients
0, 1,−1, 3,−11, 51,−283, . . . (1.2)

that come from solving a Riccati equation in power series. Even if we
did not know that such equation was behind these numbers it would not
be too unlikely to find a (nonlinear) relation for them, namely

ϕ
(0)
0 = 0, ϕ

(0)
1 = 1, ϕ(0)

g = −gϕ(0)
g−1 +

g∑
h=0

ϕ
(0)
h ϕ

(0)
g−1−h, (1.3)

and eventually arrive at the equation

ϕ(0)′(x) = ϕ(0)(x) − ϕ(0)(x)2/x − 1/x . (1.4)

After this we can just drop the perturbative superscript and plug in a
transseries ansatz. This would tell us that the instanton action in (1.1)



236 Ricardo Couso-Santamaría

is A = −1 and that the following coefficients are

one-instanton, ϕ(1)
g : 1, 2, 1,

4

3
, . . . (1.5)

two-instanton, ϕ(2)
g : − 1,−5,−14,−122

3
, . . . (1.6)

and so on.
The route labeled LO (after large order) deals with the perturbative co-

efficients and nothing else. The goal is to determine, with as much detail
as possible, how the coefficients ϕ(0)

g grow with g, because in those de-
tails are hidden the nonperturbative coefficients. This is what the theory
of resurgence tells us that generically happens. So, following with the
example, if we take the Riccati numbers (1.2) and pretend for a moment
to forget their origin, we can analyze numerically their dependence in the
index g. After some numerical computations we would find

ϕ(0)
g ∼ sinh(π)

π

[
g!

(−1)g 1+ (g − 1)!
(−1)g−1 2+ (g − 2)!

(−1)g−2 1+ (g − 3)!
(−1)g−3

4

3
+ . . .

]
+

(
sinh(π)

π

)2 [
g!

(2(−1))g (−1) + (g − 1)!
(2(−1))g−1 (−5)

+ (g − 2)!
(2(−1))g−2 (−14) + (g − 3)!

(2(−1))g−3
(

−122
3

)
+ . . .

]
+ . . .

=
∞∑
n=1

Sn1
2π i

∞∑
h=0

(g − h)!
(nA)g−h

ϕ
(n)
h as g → ∞. (1.7)

Thus we find, in a very neat and organized fashion, all the nonperturbative
information we were looking for. As an extra bit we obtain the Stokes
constant S1, a quantity intrinsic to the problem that dictates how different
resummations are related to each other. See [?] for a rigorous resurgent
treatment of the Riccati equation. Let us stress now two important facts
about the LO route.
The first is that the relation between ϕ(0)

g and ϕ
(n)
h displayed in (1.7) for

the Riccati example is generic. The presence of factorials of decreasing
intensity and the instanton action in the denominator is a general conse-
quence of resurgence and we expect to find relations similar to these for
other problems. That a relation exists between perturbative and nonper-
turbative data is not that surprising given the existence of route EQ. What
may be regarded as unexpected and useful is that the form of (1.7) is valid
for a large class of problems.
The second point is that the route LO is essentially a numeric approach

to the problem of finding the transseries, but one that is always available if
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we can work with enough perturbative coefficients and precision. Prac-
tical concerns in this area include the use of convergence acceleration
techniques like Richardson extrapolation, see [5].
The roads labeled LO and EQ describe the square in Figure 1.1. There

is also a triangle between the transseries, the nonperturbative coefficients
ϕ(n)
g (read out from the transseries), and new resurgence relations for ϕ(n)

g
when g is large. The latter are quite similar in form to that in (1.7): the lhs
is ϕ(n)

g and the rhs involves factorials, instanton actions, Stokes constants,

and other coefficients ϕ
(m)
h . Since we have one such resurgence relation

for each instanton number n the complete set of equations imposes quite
a constraint on the coefficients of the transseries. This is a property of
resurgence that we can take advantage of in problems where the roads
LO and EQ do not yield as much information as we wanted (e.g., due
to numerical obstacles) or when that information is incomplete (e.g., we
cannot determine the coefficients completely). That will be the case in
topological string theory.
The bottom part of the diagram deals with the resummation of the

transseries, the determination of the transseries parameter σ , and the re-
lated issue of Stokes phenomena. I will not cover these topics here be-
cause for topological string theory the problem is still under investigation
(see however the recent article [9]). I will just mention that to transform
a formal transseries into an actual function we use Borel resummation
on each of the asymptotic series ϕ(n)(x), see for example the second part
of [20]. This resummation process can lead to an ambiguous answer at
each instanton sector n. The cure to this problem comes from applying
Borel resummation to the complete transseries, that is, Borel–Écalle re-
summation. It can be a nontrivial step to prove that the resummation is
free of the ambiguities.
In the lucky cases in which we have access to alternative descriptions

of our theories we can compare the resummed transseries with these other
predictions. This can be a crucial step in determining the correct element
in the family of transseries parametrized by σ .

2 Basics of topological strings

The first question that comes to mind is why apply the resurgent approach
to topological string theory. The answer is twofold.
First of all, topological string theory is a subject of interest by theoret-

ical physicists and mathematicians alike due to its central role in mirror
symmetry, in understanding questions of the full string theory and M-
theory and their dualities, as well as the connections with random matrix
theory/matrix models. See [17] for details. Topological string theory is
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defined from first principles as a perturbative expansion in a small pa-
rameter, gs , called the string coupling constant. This series turns out
to be asymptotic due to the factorial growth of the coefficients (Gevrey-
1). Although the nonperturbative nature of the theory has been probed
through several avenues, a general nonperturbative definition of topolog-
ical strings is lacking. Nevertheless some proposals have appeared, at
least for large classes of theories, that could fill this void, see for exam-
ple [18] for a recent approach. This problem of finding a nonperturbative
completion for a theory is one for which resurgence can provide valuable
insight.
This leads us to the second part of our answer. The perturbative topo-

logical string coefficients can be computed very efficiently in some cases
and that is the starting point we need for the resurgent approach along the
LO route. Moreover I will show that the EQ road is also available. That
is, there is an equation that generalizes the perturbative recursion — the
holomorphic anomaly equation — and that computes many ingredients
of the transseries.
Perturbative topological string theories are defined on top of topolog-

ical field theories of maps from Riemann surfaces to Calabi–Yau mani-
folds (CY). They come in two kinds, A and B, defined on different CYs
but related by mirror symmetry. This means that the two free energies,
on the A and B side, will agree as formal asymptotic series once we have
figured out the relation between the two geometries, also known as the
mirror map,

F (0),A(gs, t)
mirror←→
map

F (0),B(gs, z), t = t (z) (2.1)

The dependence on the geometries appears through moduli, which are
variables that capture the Kähler structure (parametrized by t) of the A-
model CY, or the complex structure (parametrized by z) on the B-model
CY. This means that these asymptotic series come in families labeled by
t or z, and we have to regard the coefficients F (0)

g as functions, not just
numbers. Moreover, the dependence on the moduli is not holomorphic,
so t and z also appear. Taking z → 0 we obtain a holomorphic limit1 of
the free energies. For the A model this limit has the form

F (0),A
g (gs, t)=

∞∑
g=0

g2g−2s

∞∑
d=1

Ng,d e
−dt , (2.2)

1 The holomorphic limit is not unique but attached to the notion of frame which will be ignored for
the sake of clarity and brevity. We use curly F to indicate holomorphic, while roman F to denote
holomorphic and nonholomorphic dependence.
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where Ng,d ∈Q are the famous Gromov–Witten invariants. These count,
in the appropriate sense, holomorphic maps from complex curves of
genus g into the CY with fixed degree or homology class d.
The A-side of things is not kind towards the resurgent approach be-

cause the calculations there are hard. The B-model is far more welcom-
ing thanks to the existence of the holomorphic anomaly equations that
relate free energies of different orders, [3, 4]. They are roughly of the
form

∂z F
(0)
g 	 ∂2z F

(0)
g−1 +

g−1∑
h=1

∂z F
(0)
h ∂z F

(0)
g−h, (2.3)

and they can be solved recursively in g. The expressions for F (0)
g can

be expressed quite compactly if we use an auxiliary (set of) variable(s),
S(z, z), rather than z. In these variables the perturbative free energies
have a dependence that is polynomial in S and rational in z with coeffi-
cients in Q.
About solving the holomorphic anomaly equations I only want to men-

tion that integration produces a constant, or rather a function of z but not
of z. This is called the holomorphic ambiguity. Finding what it is re-
quires nontrivial knowledge aboutF (0)

g at particular values of z called the
large-radius point and the conifold point. For certain CY geometries, or
toric type, this knowledge is believed to be enough to fix the ambiguity
for all orders [1,15]. A particularly simple geometry in this class is called
local P2 (along with its mirror) for which over a hundred perturbative free
energies were computed in [8] and were used for the resurgent analysis.
Recall that our goal is to exploit these perturbative coefficients to un-

cover the underlying transseries. That means finding instanton actions,
Aα (one or several, and their modulus dependence) and higher instanton
coefficients F (n)

g (z, S), for n �= 0. Taking the LO route alone would be
hopeless because it is mainly a numerical enterprise and we have to keep
track of two variables, z and S. Fortunately the path along EQ will be
opened once we extend the validity of the holomorphic anomaly equa-
tions past perturbation theory.

3 Resurgent approach to topological strings

At this point of the discussion we are sitting on the upper left corner of
the diagram in figure 1.1. We need to make progress in making EQ avail-
able while already cranking the numerical machine of LO. We also have
to start making predictions of what we should find. What particular func-
tions of z and S should the instanton actions be? How many of them are
there? What about higher instanton coefficients? The first two questions
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Figure 3.1. Dominant instanton actions obtained from large order growth of
perturbative free energies for different values of the complex modulus ψ =
z−1/3. A1 dominates for small ψ (around conifold point at ψ = 1), and AK
dominates for large ψ (around large-radius point at ψ = ∞). Since the actions
are holomorphic these results can be obtained for any value of the propagator.
In the transition region, around |ψ | 	 25, the two actions have similar weights
in the large-order growth of F (0)

g and the numerics get worse.

can be guessed from previous experience in other theories, particularly
from matrix models. There it was understood that instanton actions, Aα,
are periods of the underlying geometry (the so called spectral curve), that
is, integrals along cycles of the relevant differential form in the theory.
Moreover, the periods are holomorphic and can be computed right after
we know what CY we are working with [10]. We only need to find what
particular linear combination of periods is realized as an instanton action,
since only a small number of cycles are independent. The LO approach
can tell us this numerically.
For local P2 there are three independent periods that are computed

from the so-called Picard–Fuchs equations. A possible basis for the peri-
ods is

(t (z), tc(z), 1) (3.1)

where t is the Kähler modulus and tc is the called the flat coordinate
around the conifold point. They can be written in terms of hypergeomet-
ric functions with respect to z. From a LO analysis of the free energies
we find two instanton actions as shown in Figure 3.1.

AK = 4π2i t (z), A1 = 2π i√
3
tc(z). (3.2)

Due to their geometric origin as periods they are labeled Kähler and coni-
fold. But we should not be too confident that our job finding actions is
over because some, with a larger absolute value, could be lurking behind
the dominant ones. To understand this remark notice that when we have
several instanton actions and their corresponding sectors the large-order
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growth of F (0)
g will include all of them. However, the order in which they

appear will depend on the relative size of the actions because Aα enters
the resurgence relation as A−g

α , so the smallest it is in absolute value the
more it contributes as g → ∞. Some actions might always be larger than
the dominant ones so they will only be seen as exponentially suppressed
contributions in g.
Let us now deal with the one-instanton sectors associated to the ac-

tions we have found. Now we have no external insight as to what they
should be so it is time to explore EQ. The logic to use here is the same
as that in the Riccati example: take your perturbative recursion and make
it into a single equation for F (0)(gs, z, Szz); then drop the perturbative
superscript, plug in your transseries ansatz and solve for the coefficients.
What worked like a charm for Riccati is going to fall short for topolog-

ical strings and the holomorphic anomaly equations. First of all we are
going to inherit the holomorphic ambiguity problem at every instanton
level n and order g. For Riccati the only ambiguity lied in the first coef-
ficient ϕ(1)

0 but it was conventionally set to 1, transferring the ambiguity
to the transseries parameter σ . The difference between both examples
has to do with the nature of the equations. While Riccati is a differential
equation in x , the resurgent variable, the extended holomorphic anomaly
equations are only algebraic in gs (and differential in z and S). This also
means that the number of transseries parameters is not determined by the
equations.
We find that the EQ route is not as powerful as we would have wanted

and leaves several parts of the transseries undetermined:

- Number of transseries parameters: several transseries ansätze can
solve the equations, with or without logarithmic transmonomials.

- Holomorphic ambiguities: recursive integration produces ambiguities
that need to be fixed.

- Instanton actions: equations only impose that they are holomorphic,
what at least is in agreement with their interpretation as periods.

To arrive at the box ‘Transseries F’ in the resurgent diagram we need to
complement EQ with the LO path and some amount of guess work on
numerical results. Also, as we start making progress with this strategy
we can activate the feedback triangle

F (n)
g −→ Resurgence Relations −→ Transseries F −→ F (n)

g . (3.3)

This loop will act both as a source of information and as a consistency
check because transseries coefficients appear multiple times in resur-
gence relations, as we mentioned in the introduction.
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There is a big caveat here, though, one that we have not talked about
yet. We do not know what the resurgence relations look like exactly for
topological string theory. It is not an option here to derive a bridge equa-
tion that links alien and ordinary derivatives, as is done many examples
such as Riccati, due to the nature of the holomorphic anomaly equations
in relation to gs . So we work on the assumption that the relations will be
similar to those derived from a bridge equation because the bridge equa-
tion does appear in closely related theories like Painlevé equations and
matrix models. See [19] for a review on the relation between topolog-
ical strings and matrix models, and [2, 14] for a resurgent treatment of
Painlevé I equation and the quartic matrix model.

3.1 Main results

Here are the main results we find for the CY geometry of local P2. They
start to paint the picture of what the transseries for the free energy looks
like. Any attempt to obtain a nonperturbative value of the free energy
from resurgence will have to use the results described below. In par-
ticular it will be crucial to know which actions and their corresponding
transseries sector can contribute to a Borel-Écalle resummation of the
transseries.

Holomorphic ambiguities. We can solve the extended holomorphic a-
nomaly equations up to the holomorphic ambiguity and understand the
dependence of the solutions on z and S, although the resulting expres-
sions are not very illuminating.
To fix the ambiguities we look at what happens in the holomorphic

limit near the large-radius and conifold points. More precisely we take
the holomorphic limit of a resurgent relation linking perturbative and
nonperturbative free energies.

F (0)
g ∼ �(2g − 1)

A2g−1
S1
2π i

F (1)
0 ⇒ S1

2π i
F (1)
0 = lim

g→∞
A2g−1

�(2g − 1)
F (0)
g . (3.4)

Since we know how holomorphic perturbative free energies behave at
these special points we can extract results for the nonperturbative free
energies using large-order limits. This can sometimes be done analyti-
cally and others numerically, but it is enough to fix ambiguities. We will
comment on the fact that the Stokes constant cannot be disentangled from
the ambiguity later.

Further instanton actions. We find two other instanton actions, A2 and
A3, besides AK and A1. See Figure 3.2. They are also related to the
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Figure 3.2. Instanton actions A2, A3, associated to conifold points, lie almost
always behind A1 and can only be seen as subleading contributions to F

(0)
g when

g is large. In these figures we fix |ψ | = 2 and vary arg(ψ). We also check that
a 2-instanton sector contributes as well with action 2A1.

Figure 3.3. Representation of the real (red, dashed) and imaginary (orange,
pointed) parts of F (1)

g (ψ, Szz) (wrt action A1 and g = 1, 3) for ψ = 2 and free
S. The blue and green plots show the numerical checks from large-order lying
on top of the analytic expressions computed from the extended holomorphic
anomaly equations. The dependence in the propagator is exponential (hence the
oscillations) times polynomial (hence the changes in amplitude).

conifold point which, using the right coordinate ψ = z−1/3, becomes
three conifold points, one for each instanton action.
Since there can only be three independent cycles for this geometry

there is a relation between all actions. It is A1 + A2 + A3 + AK = 0.
This suggests that the transseries is resonant, provided that all actions
here mentioned give rise to transseries sectors of their own.

Numerical checks. Inasmuch as we can carry out LO we find that all
free energies F (n)

g we come across can be computed, up to ambiguity,
from EQ. See an example of the numerical checks in Figure 3.3. This
gives credit to the extended holomorphic anomaly equations we obtained
out of the perturbative regime alone.

3.2 Open issues

Along the resurgent path we encountered several problems, some techni-
cal and some genuinely interesting from the resurgent viewpoint. I think
they are both worth describing.
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Numerical constraints. The numerical approach has an expiration date
from the start. A finite amount of data can only give a finite number
results of approximate precision. Taking large-order limits imposes a toll
on precision that can only be kept at bay if we identify in closed form the
numerical approximations we obtain for Aα, F

(n)
h , h = 0, 1, 2, . . .

On the other hand we also want to compute nonperturbative energies
from the extended holomorphic anomaly equations and analyze their own
resurgent properties (c.f., triangle in the resurgent diagram), but this turns
out to be computationally more demanding than perturbation theory was.
Eventually one is forced to perform a numerical integration of the equa-
tions around particular values of z.

Unfamiliar resurgence relation. Let us think about Riccati again for a
moment, and in particular about the asymptotics of the perturbative and
one-instanton sectors. They have the form, suppressing Stokes constants,

ϕ(0)
g ∼

∞∑
h=0

�(g + 1− h)

Ag+1−h
ϕ

(1)
h +

∞∑
h=0

�(g − h)

(2A)g−h
ϕ

(2)
h + · · · (3.5)

ϕ(1)
g ∼

∞∑
h=0

�(g + 1− h)

Ag+1−h
ϕ

(2)
h + · · · (3.6)

Note how ϕ
(2)
0 appears on both equations. This is a consequence of the

bridge equation and quite a natural one because no other ingredients are
available to play with. For topological strings and local P2 in particular,
we find2

F (0)
g ∼

∞∑
h=0

�(2g−1−h)
A2g−1−h1

F (1e1)
h +

∞∑
h=0

�(2g−1−h)
(2A1)2g−1−h

F̃ (2e1)
h + · · · (3.7)

F (1e1)
g ∼

∞∑
h=0

{
�(g + 1− h)

(+A1)g+1−h
F̂ (2e1)
h + �(g + 1− h)

(−A1)g+1−h
F̂

(e1,1)
h

}
+ · · · (3.8)

The two 2-instanton coefficients in the analogous slots are in fact dis-
tinct. Their being different comes from the way their ambiguities are
fixed, either imposing that the holomorphic limit is zero (for F̃) or that
it is a particular and natural quantity that generalizes the 1-instanton case
(for F̂). Both equations can be checked numerically. The question is

2 Notation: (1e1) = (1, 0, 0, . . .), (2e1) = (2, 0, 0, . . .), (e1,1) = (1, 1, 0, . . .), where the first entry
corresponds to A1 and the second to −A1.
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then, why are there two types of 2-instanton free energy and how can we
interpret them? Do both of them appear in the transseries?
With respect to this last question we can suspect that the bottom part

of the resurgent diagram could be useful to provide some insight. If we
manage to resum the transseries we may find that one or both of these
sectors are needed to reproduce the full physical observable.

Dissappearance of AK in the Borel plane. Instanton actions depend on
the complex structure z and so their strength (measured in absolute value)
varies as we move in the z-plane (or the ψ-plane). This means that in
one place AK can be dominant over (less strong than) A1 or the other
way around. The dominant one controls the large-order growth of F (0)

g
as g → ∞. Since we have analytic expressions for the actions we can
predict which one will be dominant in which areas. For small ψ or large
z, it should be AK the dominant action but we find numerically that F (0)

g
is controlled by A1. How can this be? We look at the Borel plane of
F (0), that is, we plot the singularities of the Borel transform of F (0) with
respect to gs (numerically using Padé approximants). Singularities are
related to instanton actions. There we can see how, as we vary ψ , the
singularities move. The closer to the origin the more dominant they are.
We find that the singularity for AK disappears when we dial ψ towards 0
even before it has the chance to become dominant. See Figure 3.4.3 That
is why we do not find it in the numerical analysis. However, we do not
yet understand the mechanism controlling the disappearance, though it
may be related to higher order Stokes phenomenon [16].

Stokes constants. A natural problem in resurgence is the computation of
Stokes constants. For the Riccati equation one can guess the value for S1
from the numerics or formally prove what this value is. In the approach
to topological strings we have to rely on numerics alone. However, we
have already used the information contained in the large-order numerics
to fix the holomorphic ambiguity and there is none left to find S1 and
other Stokes constants. Equivalently, we can only have expressions for
the product of the ambiguity and the Stokes constants but not for the two
separately. What we can show using LO and EQ is that S1 does not carry
dependence on z or S.

3 The perturbative free energy is an asymptotic series in g2s , while higher instanton sectors depend
on gs . This implies that the instanton actions come in pairs of opposite signs.
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Figure 3.4. Above: the analytic expressions for A1 and AK, in absolute value,
showing the would be transsition in dominance if AK did not dissappear as a
Borel singularity. Below: a sequence of frames showing the dissappearance of
the singularity as ψ decreases. We show AK as a purple diamond, A1 as a red
circle, and A3 as a green square, as well as their opposite values.

4 Conclusions

In the pages above I have described the basics of what resurgence can tell
us about topological string theory in the nonperturbative regime. Many
details have been simplified or skipped altogether. They can be found
in [7, 8]. The main goal has been to discuss the ideas summarized in the
resurgent approach diagram in Figure 1.1, as they are applied to topolog-
ical strings.
If we had to assign just one label for this work it would probably be

‘experimental mathematics’, because although our target theory is topo-
logical strings and the mathematical framework is resurgence, the tech-
niques we use can be aimed at other targets and the results obtained are
suggestive rather than rigorous. Formal theorems and proofs should fol-
low to set on firm grounds the evidence here exposed and shed light on
the issues yet to be understood. And while in other parts of Physics not
everything can be made rigorous the case of topological strings is singular
because it sits comfortably on the boundary of Physics and Mathematics.
In this way it should be shown if the free energy is resurgent and of

which kind. The resurgent relations between different coefficients should
be completely understood and the Stokes constants identified. We should
also aspire to understand the physical interpretation or realization of the
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nonperturbative data in the transseries. Avenues to explore, some of them
under development, include the eventual resummation of the transseries,
the relation with other nonperturbative approach to topological strings,
and the possible consequences of resurgence in enumerative geometry.
The applications of resurgence in Physics have increased considerably

in the past decade, but this trend will only finally take off when physicists
see clear and accessible examples of the usefulness of resurgence. The
exchange of ideas that took place at the conference ‘Resurgence, Physics
and Numbers’ is a big step towards this goal.
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