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Abstract. We return to the subject of local, identity-tangent diffeomorphisms f
of C and their analytic invariants Aω( f ), under the complementary viewpoints
of effective computation and explicit expansions. The latter rely on two basic
ingredients: the so-called multizetas (transcendental numbers) and multitangents
(transcendental functions), with resurgence monomials and their monics providing
the link between the two. We also stress the difference between the collectors (pre-
invariant but of one piece) and the connectors (invariant but mutually unrelated).
Much attention has been paid to streamlining the nomenclature and notations.

On the analysis side, resurgence theory rules the show. On the algebraic or combi-
natorial side, mould theory brings order and structure into the profusion of objects.
Along the way, the paper introduces quite a few novel notions: new alien operators,
new forms of resurgence, new symmetry types for moulds. It also broaches the
subject of ‘phantom dynamics’ (dealing with formal diffeos that nonetheless pos-
sess invariants Aω( f )) and culminates in the comparison of arithmetical and dy-
namical monics, a distinction that reflects the dual nature of the Aω( f ) as Stokes
constants and holomorphic invariants.
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1 Setting and notations

1.1 Introduction

The holomorphic invariants of identity-tangent diffeomorphisms are a
long-established subject. Awareness of their existence is as old as the
hills. It goes back at least 120 years, to Fatou’s geometric treatment [11].
The sharper-edged resurgent treatment, which yields a wealth of infor-
mation denied to the geometric approach, is not exactly new either: it
was laid out in full in [4] and [5], in the late seventies.
What is sorely lacking, however, is a realisation that these invariants

can be accurately described and explicitely calculated. Indeed, the pre-
vailing (if seldom clearly stated) opinion in the holomorphic dynamics
community appears to be that they cannot. With a view to correcting
this misapprehension, we posted in 2012 a short paper1 that showed oth-
erwise. Though it contained little that was strictly new (in the main,
it restated results already extant in decades-old papers like [3] or [5],
and referred for the computational programs to a recent PhD thesis [1]),

1 Invariants of identity-tangent diffeomorphisms: explicit formulae and effective computation. The
paper with the appended tables can be accessed online on
< http ://www.math.u-psud.fr/∼ecalle/fichiersweb/WEB iden tang 0.pdf >.
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such feedback as we received convinced us that these questions were still
dimly understood, and in need of a more thorough exposition.
So, with something of a sinking heart, we set about re-revisiting the

whole subject. Since we were at it, however, and given that ter repetita
non placent, we felt that we might just as well insert some new material.
These extras include:

(1) a procedure for the ‘uniformisation’ of convolution products and
powers in the Borel plane, leading to optimal bounds;

(2) a new class of alien operators, the medial operators ��
ω and �

��
ω ,

which do not obey the Leibniz rule but make up for it by having a
simpler definition and being easier to evaluate;

(3) the notion of affiliates of a diffeomorphism f , defined via the corre-
sponding substitution operators F and their images γ (F−1) under
an analytic γ ;

(4) a new class of mouldian symmetry types, of proven usefulness, and
the rather intriguing combinatorics that goes with them;

(5) special classes of multizetas and multitangents well-suited for ex-
pressing the invariants Aω( f ) and bringing out their parity proper-
ties;

(6) the distinction between the semi-invariant collectors, which carry the
multitangents, and the exactly invariant connectors, which carry the
multizetas;

(7) the distinction between the full arithmetical constraints on the mul-
tizetas and the weaker dynamical constraints, which are responsible
for making the invariants invariant;

(8) the complications specific to the ramified case (for diffeos f of tan-
gency order p ≥ 2), which call for new monics related to, yet distinct
from, the rational-indexed multizetas;

(9) the subject of phantom dynamics which deals with groups of for-
mal diffeos that nonetheless possess holomorphic invariants and for
which many of the key notions familiar from holomorphic dynamics
(sectorial models, connectors, Fourier analysis, etc) still make sense,
albeit in a new setting, with acceleration operators replacing Laplace
integration.

1.2 Classical results

We shall be concerned here with local 2 identity-tangent diffeomorphisms
of C, or diffeos for short, with the fixed-point located at∞ for technical

2 I.e. analytic germs of –
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convenience:

f : z  → z +
∑
1≤s

fs z
1−s fs ∈ C . (1.1)

Unless f be the identity map, we can always subject it to an analytic
(respectively formal) conjugation f  → f1 = h ◦ f ◦ h−1, followed if
necessary by an elementary ramification

(
f1(z1/p)

)p
, so as to give f the

following prepared (respectively normal) form:

fprep : z  → z + 1− ρz−1 +
∑
2<s0≤s

f[s] z1−s
(
s ∈ 1

p
N∗

)
(1.2)

fnorm : z  → z + 1− ρz−1 (1.3)

where s0 may be chosen as large as one wishes.3

The tangency order p and iteration residue ρ are the only formal in-
variants of identity-tangent diffeos. But our diffeos also possess count-
ably many (independent) scalar analytic invariants, also known as holo-
morphic invariants,4 which are best defined as the Fourier coefficients
of the so-called connectors.5 The connectors are pairs of germs of 1-
periodic analytic mappings π = (πno,π so) defined on the upper/lower
half-planes ±)(z) � 1. There are p such pairs, corresponding to the p-
fold ramification of z in (1.2). Here, no and so stand for north and south,
i.e. the upper and lower half-planes.
We shall throughout prioritise the standard case p = 1 , ρ = 0, i.e.

focus on diffeos of the form:

f := l ◦ g with l : = z  → z + 1 and g : z  → z +
∑
3≤s

gs z
1−s (1.4)

and merely sketch the changes required to cover the general case.
Any standard f possesses two well-defined, mutually inverse so-called

iterators, to wit f ∗± (direct iterator) and ∗f± (reciprocal iterator), defined

3 After ‘preparation’, the diffeo acquires new coefficients denoted f[s] for distinctiveness.
4 Analytic invariants means invariant relative to analytic changes of z-coordinate, whereas holo-
morphic invariant points to the holomorphic dependence of Aω( f ) in f – in contradistinction to
cases like that of diffeos with Liouvillian multipliers λ. Such diffeos do possess non-trivial analytic
invariants, but none with holomorphic dependence on f .

5 In the context of identity-tangent diffeos, the connectors are sometimes referred to as horn maps,
but the former notion is more general: in resurgent analysis (see Section 1.2 infra) the connectors
are the operators that take us from one sectorial model to the next.
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on U-shaped domains6 by the limits:

f ∗± (z) = lim
k→±∞ l−k ◦ f k ; ∗ f±(z) = lim

k→±∞ f −k ◦ lk . (1.5)

The connectors π±1, with their northern and southern components, are
then defined on ±)(z) � 1 by:

π := f ∗+ ◦ ∗ f− ; π−1 := f ∗− ◦ ∗ f+ . (1.6)

For reasons that will soon become apparent, we must also consider the
infinitesimal generators f∗ and π∗ of f and π . These are formal, gener-
ically divergent power respectively Fourier series. Of course, π∗ is not
constructed directly from π , but via its northern and southern compo-
nents. We thus have the three pairs:

π := (πno,π so) ; π−1 := (π−1
no ,π

−1
so ) ; π∗ := (π∗no,π∗so) (1.7)

along with the relations

f (z) = exp
(
f∗(z) ∂z

)
. z

(
f∗ ∂z f ∗ ≡ 1

)
(1.8)

π±1
no (z) = exp

( ± π∗no(z) ∂z
)
. z (1.9)

π±1
so (z) = exp

( ± π∗so(z) ∂z
)
. z . (1.10)

In (1.8) f ∗ and ∗f denote of course the formal iterators, i.e. the power
series solutions of the equations

f ∗ ◦ f = l ◦ f ∗ with f ∗(z) = z + o(1) (1.11)

f ◦ ∗f = ∗f ◦ l with ∗f (z) = z + o(1) (1.12)

normalised by the condition of carrying no constant term. Anticipating
on the sequel, here is how the scalar invariants can be read off the Fourier
expansions of the connectors:

πno(z) = z +
∑
ω∈�−

A+
ω e

−ω z ; π so(z) = z +
∑
ω∈�+

A−
ω e

−ω z (1.13)

π−1
no (z)= z +

∑
ω∈�−

A−
ω e

−ω z ; π−1
so (z) = z +

∑
ω∈�+

A+
ω e

−ω z (1.14)

π∗no(z) =+2π i
∑
ω∈�−

Aω e
−ω z ; π∗so(z) =−2π i

∑
ω∈�+

Aω e
−ω z . (1.15)

6 f ∗+ and ∗f+ are defined on a west-north-south domain, while f ∗− and ∗f− are defined on an east-
north-south domain.
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Pay attention to the altered position of± in 1.13 and 1.14; the reasons for
this apparent incoherence shall become clear in due course. The indices
ω run through � := 2π iZ∗ or �± := ±2π i N∗, and each of the three
systems

{A+
ω , ω ∈ �} , {A−

ω , ω ∈ �} , {Aω , ω ∈ �} (1.16)

constitutes a free and complete system of analytic invariants.7

1.3 Affiliates. Generators and mediators

General affiliates. To each identity-tangent germ f and each power se-
ries γ (t) = t + ∑

γr tr+1 we associate the so-called γ -affiliate f♦ along
with an infinite-order differential operator F♦. The correspondence
( f, F)  → ( f♦, F♦) goes like this:

f  → f♦ := F♦ . z ; F  → F♦ := γ (F − 1) . (1.17)

For a general γ , the operator F♦ has a non-elementary coproduct:
cop(F♦) := F♦ ⊕ 1+ 1⊕ F♦ +

∑
1≤p,q

γ [p,q] (F♦)p ⊕ (F♦)q . (1.18)

As a consequence, the straightforward germ-to-operator correspondence:

f  → F = 1+
∑
1≤n

( f )n
∂n

n! ( f (z) := f (z)− z) (1.19)

assumes a more intricate form for the affiliates:

f♦  → F♦ = f♦ ∂ +
∑
2≤r

∑
1≤ni ,2≤nr

♦n1,...,nr ( f♦)n1
∂n1

n1! . . . ( f♦)
nr
∂nr

nr ! . (1.20)

Special affiliates: generators and mediators. The structure coefficients
γ [p,q] and ♦n1,...,nr shall be investigated in Section 5-1, Section 5-2 and
Section 5-4, but they assume a particularly simple form for three special
types of affiliates:

(i) the infinitesimal generator ( f∗, F∗) with γ (t) = log(1+ t);
(ii) the main mediator ( f�, F�) with γ (t) = 2 (1+t)−1

(1+t)+1 = t
1+ 1

2 t
;

(iii) the second mediator ( f��, F��) with γ (t) = (1+t)2−1
(1+t)2+1 =

t+12 t2
1+t+ 1

2 t
2 .

7 With the minor qualifier that, under a conjugation by a shift h of the form lα(z) := z + α, the
periodic germs π± also undergo conjugation by the same shift, with obvious repercussions for their
Fourier coefficients.
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The generators we have already mentioned. For them, the co-product
and the germ-to-operator correspondence reduce to

cop(F∗) = F∗ ⊗ 1+ 1⊕ F∗ , f  → F∗ = f∗ ∂ . (1.21)

For the mediators, the formulae, while still relatively simple, become
more interesting

cop(F�) = F� ⊗ 1+1⊗ F�

+
∑
1≤n

(
−1
4

)n (
Fn+1
� ⊗ Fn

� + Fn
� ⊗ Fn+1

�

)
(1.22)

cop(F��) = F�� ⊗ 1+1⊗ F��

+
∑
1≤n

(−1)n(Fn+1
�� ⊗ Fn

�� + Fn
�� ⊕ Fn+1

��

)
. (1.23)

Relating F and F�, F��. As operators, the mediators F� and F�� admit
three distinct types of expansions, each with its own merits and draw-
backs:

F� = 2
F − 1
F + 1 = 2 C� D−1

� = 2D−1
[�] C[�] (1.24)

F�� = F − F−1

F + F−1 = C�� D−1
�� = D−1

[��] C[��] . (1.25)

The operators C�,D�, C��,D�� are defined as follows:

C� =
n odd∑
1≤n

2−n f n�
∂n

n! || C� : ϕ(z)  → 1
2

(
ϕ(z+ 1

2 f�(z))−ϕ(z− 1
2 f�(z))

)
D� =1+

n even∑
1≤n

2−n f n�
∂n

n! || C� : ϕ(z)  → 1
2

(
ϕ(z+ 1

2 f�(z))+ϕ(z− 1
2 f�(z))

)
C��=

n odd∑
1≤n

f n�
∂n

n! ||C�� : ϕ(z)  → 1
2

(
ϕ(z+ f��(z))−ϕ(z− f��(z))

)
D��= 1+

n even∑
1≤n

f n��
∂n

n! ||C�� : ϕ(z)  → 1
2

(
ϕ(z+ f��(z))+ϕ(z− f��(z))

)
.

The operators C[�],D[�], C[��],D[��] are defined in exactly the same way,
but relative to inputs f[�], f[��] with f�(z) ∼ f��(z) ∼ f[�](z) ∼ f[��](z) ∼
f (z)−z. As operators acting on formal germs, D−1

� and D−1
�� have to be

expanded in the predictable way, leading to formulae such as:
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f�  →F�= f� ∂ +
1 ≤ r∑

(
n1 odd

n2,..,nr even

)(−1)r−121−
∑
ni f n1�

∂ n1

n1! f
n2
�

∂ n2

n2! . . . f
nr
�

∂ nr

nr ! (1.26)

f��  →F��= f�� ∂ +
1 ≤ r∑

(
n1 odd

n2,..,nr even

)(−1)r−1 f n1��
∂ n1

n1! f n2��
∂ n2

n2! . . . f nr��
∂ nr

nr ! . (1.27)

Let us focus on the second mediator F��, to avoid the nuisance of the

factors (1/2)n . Its first expansion F�� = F−F−1
F+F−1 is wholly unproblem-

atic, with a commuting numerator and denominator, and simply reflects
the definition of F��. The existence of parallel expansions C��D−1

�� and
D−1

[��] C[��] follows, to put it briefly, from the fact that the operators

C�� and C[��] , D�� and D[��] , D−1
�� and D−1

[��] , C��D−1
�� and D−1

[��]C[��]
verify exactly the same types of co-product as, respectively, the operators

sinh(∂) , cosh(∂) , cosh(∂)−1 , tanh(∂)

and from the fact that tanh(∂) has precisely a co-product of type (1.23).
But since numerators and denominators no longer commute, we should
expect the inputs f�� and f[��] to differ, in a way that remains to elucidate.
For the moment, let us observe that, of the latter two expansions, F�� =

C��D−1
�� is the more useful, since it allows us to express the operatorial

mediator F�� directly in terms of the germ f�� := F��.z. But the other
expansion, namely F�� = D−1

[��] C[��], has its merits too, since it relies on
a germ f[��] which, as we shall see in a moment, is ‘closer’ than f�� to
the original f and, unlike f��, converges whenever f does. It is also

more economical than the first expansion F�� = F−F−1
F+F−1 , in the sense of

concentrating all the odd or even terms respectively in the numerator and
denominator.

Relating f�, f�� to f . Equating the first two expansions of the mediators,
we get

(F + 1) C�D�−1 = F − 1 an (F2 + 1) C�D�−1 = F2 − 1 .
Letting these operators act on z, we find the sought-for relations

f�( f (z))+ f�(z) = f (z)− z (1.28)

f��( f (z))+ f��( f
−1(z)) = f (z)− f −1(z) . (1.29)
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Relating f[�], f[��] to f . Inverting the definition-based expansion of the
mediators, we get successively

F−1=(1−(1/2)F�)−1F� and F2−1=2(1−F��)
−1F��

(1−(1/2)F�)(F−1)=F� and (1−F��)(F
2−1)=2F��

(1−D−1
[�] C[�])(F−1)=2D−1

[�] C[�] and (1−D−1
[��]C[��])(F2−1)=2D−1

[��]C[��]
(D[�]−C[�])F=(D[�]+C[�]) and (D[��]−C[��])F2=(D[��]+C[��]).

Finally, letting the operators act on z, we get:

f

(
z − 1

2
f[�]

)
= z + 1

2
f[�] (1.30)

f ◦2(z − f[��]) = z + f[��]. (1.31)

This implies, first, that the germs z  → z − 1
2 f[�] and z  → z − f[��]

are respectively reciprocal to the germs z  → 1
2(z + f (z)) and z  →

1
2(z+ f ◦2(z)) and, second, that f[�] and f[��] are convergent if and only if
f is.

Relating f�, f�� and f[�], f[��]. Post-composing the identies (1.28)-(1.29)
by the germs z − (1/2) f[�](z) or z − f[��](z) and using (1.30)-(1.31) to
eliminate f , we find:

2 f[�](z) = f�

(
z + 1

2
f[�](z)

)
+ f�

(
z − 1

2
f[�](z)

)
(1.32)

2 f[��](z) = f��(z + f[��](z))+ f��
(
z − f[��](z)

)
. (1.33)

After some non-commutative manipulations on differential operators and
their generating series, this yields:

f[�] = f�+
∑
1≤s

∑
1≤mi

(
∑
2mi)!4−

∑
mi

s!(1−s+∑
2mi)! f

1−s+2∑mi
�

∏
1≤i≤s

f (2mi )
� (1.34)

f[��] = f��+
∑
1≤s

∑
1≤mi

(
∑
2mi)!

s!(1−s+∑
2mi)! f

1−s+2∑mi
��

∏
1≤i≤s

f (2mi )
�� (1.35)

1.4 Brief reminder about resurgent functions

We will have to be content here with a very sketchy presentation. The
algebra of resurgent fonctions admits three different realisations or mod-
els:



119 Invariants of identity-tangent diffeomorphisms

(i) the formal model, consisting of formal power series ϕ̃(z) in z−1 or
of more general transseries;8

(ii) the convolutive model, consisting of microfunctions9 at ζ = 0,
whosemajors ϕ̌(ζ ) are defined at the origin only and constraint-free
but whose minors ϕ̂(ζ ) have the property of endless continuation10

and exponential growth;11

(iii) the geometric model(s), consisting of analytic germs ϕθ(z) defined
on sectorial neighbourhoods of ∞ of bisectrix arg(z−1) = θ and
aperture at least π .

The natural algebra product in the z-models (i) and (iii) is of course mul-
tiplication. In the ζ -model (ii) it is convolution, defined first locally12

by

(ϕ̂1 ∗ ϕ̂2)(ζ ) :=
∫ ζ

0
ϕ̂1(ζ1) ϕ̂2(ζ − ζ1) dζ1 (ζ ∼ 0) (1.36)

and then in the large by analytic continuation.
In practice, one starts with elements ϕ̃ of model (i) obtained as formal

solutions of differential or functional equations, and the aim is to resum
them, i.e. to go to model (iii). Generally speaking, this is possible only
over the detour through model (ii), with the formal Borel tranform B

z−σ  → ζ σ−1

�(σ)
; (∂σ )

nz−σ  → (∂σ )
n ζ

σ−1

�(σ)
; etc (1.37)

taking us from (i) to (ii), and the polarised Laplace transform Lθ

ϕθ (z) =
∫
arg(ζ )=θ

ϕ̂(ζ ) e−ζ z dζ (1.38)

taking us from (ii) to (iii).

8 The tilda stands for ‘formal’, but will be omitted in contexts where everything is formal.

9 I.e. minor-major pairs (ϕ̂(ζ ), ϕ̌(ζ )). The majors are defined up to regular germs at the origin, and
the minors are related to them under 2π i ϕ̂(ζ ) ≡ ϕ̌(ζ e−π i )− ϕ̌(ζ e+π i ) for ζ ∼ 0. In the present
paper, we shall almost entirely dispense with majors, since we shall mostly be dealing with so-called
integrable microfunctions, whose minors carry the complete information.

10 Laterally along any finite and finitely punctured broken lines.

11 I.e. at most exponential, along infinite but finitely punctured broken lines, with a suitable unifor-
mity condition.

12 When the minors ϕ̂ are not integrable at the origin, one must modify the definition and draw in
the majors ϕ̌. Convolution is then defined on loop integrals that avoid the origin.
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The most outstanding feature of the resurgence algebras is the exis-
tence on them of a rich array of so-called alien operators �ω and �±

ω ,

with indices ω running through C• := C̃ − {0}. These operators act on
all three models13, but are first defined in the convolutive model, where
they have the effect of measuring the singularities of the (often highly
ramified) minors ϕ̂ at or rather over ω. Here is how they act:

(�̂ωϕ̂)(ζ ) :=
∑

ε1,...,εr

εr

2π i
λε1,...,εr−1 ϕ̂

(
ε1
ω1

,...,
,...,

εr
ωr
)
(ω + ζ ) (1.39)

(�̂±
ω ϕ̂)(ζ ) :=

∑
ε1,...,εr

± εr λ
±
ε1,...,εr−1 ϕ̂

(
ε1
ω1

,...,
,...,

εr
ωr
)
(ω + ζ ) (1.40)

with ωr = ω, with signs ε j ∈ {+,−}, with weights λε , λ+ε , λ−ε defined by

λε1,...,εr−1 := p! q!
r ! with p :=

∑
εi=+

1 , q :=
∑
εi=−

1 (1.41)

λεε1,...,εr−1 := 1 if ε1 = · · · = εr−1 = ε (1.42)

:= 0 otherwise

and with ϕ̂(
ε1
ω1

,...,
,...,

εr
εr
)
(ω+ζ ) denoting the analytic continuation of ϕ̂ from ζ

to ω+ ζ under right (respectively left) circumvention of each intervening
singularity ω j if ε j = + (respectively ε j = −). We start of course with
a point ζ close enough to 0 on the axis arg(ζ ) = arg(ω), and extend the
definition in the large by analytic continuation. The operators �̂ω and
their pull-backs �ω in the formal model are derivations. This means that
in the convolutive or formal models the Leibniz identities hold:

�̂ω(ϕ̂1 ∗ ϕ̂2) = �̂ω(ϕ̂1) ∗ ϕ̂2 + ϕ̂1 ∗ �̂ω(ϕ̂2) (1.43)

�ω(ϕ̃1 . ϕ̃2) = �ω(ϕ̃1) . ϕ̃2 + ϕ̃1 . �ω(ϕ̃2) (1.44)

When working in any one of the multiplicative models (formal or geo-
metric), it is often convenient to phase-shift the alien operators, and to
set:

��ω := e−ωz�ω ( [∂z,��ω] ≡ 0 ) (1.45)

��±
ω := e−ωz�±

ω ( [∂z,��±
ω ] ≡ 0 ) (1.46)

The gain here is that the new operators commute with ∂z . These phase-
shifted operators are also the natural ingredients of the axial operators

13 With the same symbols doing service in all three, since no confusion is possible.
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DD
θ
and DD±

θ
:

DD
θ
=

∑
arg(ω)=θ

��ω (1.47)

DD±
θ
= 1+

∑
arg(ω)=θ

��±
ω = exp

( ± 2π i DD
θ

)
(1.48)

which are the key to the axis-crossing identities :

ϕ
θ−ε = (DD+

θ
ϕ)

θ+ε ; (Φ .DD+
θ
)
θ−ε = (DD+

θ
. Φ )

θ+ε (1.49)

ϕ
θ+ε = (DD−

θ
ϕ)

θ−ε ; (Φ .DD−
θ
)
θ−ε = (DD−

θ
. Φ )

θ+ε (1.50)

that connect two sectorial germs ϕθ−ε and ϕθ+ε relative to Laplace in-
tegration right and left of any given singularity-carrying axis θ in the
ζ -plane.14

1.5 Alien derivations as a tool for uniformisation

Convolution domains. A Riemann surface R is said to be unobstructed
if, for any point ζ on it, the set Sζ of all singular points seen or half-seen
from ζ has a discrete projection Ṡζ on C.
A ramified analytic germ ϕ̂(ζ ) at the origin 0• of C• is said to be end-

lessly continuable if under analytic continuation it extends to an unob-
structed Riemann surface.
Endlessly continuable germs are stable under convolution.
A convolution domain is an unobstructed Riemann surfaceR for which

the space Hol(R) of all holomorphic functions onR is closed under con-
volution.
Any unobstructed Riemann surface R can, in a unique way, through

the adjunction of a suitable set of singular points, be turned into a min-
imally ramified convolution domain R – the so-called convolution com-
pletion, or stabilisation, ofR.
Fine convolution domains. We shall introduce a notion of fine Riemann
surface and fine convolution domain which is hardly restrictive (all resur-
gent functions encountered in practice have Borel transforms that natu-
rally extend to fine surfaces) and has the merit of greatly facilitating the
proofs of all the statements to follow in this section.15

14 In (1.43), (1.44), ϕ denotes any resurgent function and Φ any resurgent operator (such as multi-
plication or postcomposition by a resurgent function etc).

15 Let us stress that fineness is by no means necessary for the statements in question to hold. It
simply makes life easier and costs nothing.
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For any ρ > 0 and θ1 < θ2 in R, let D±
ρ,θ1,θ2

denote the sets of all alien
operators � of the form:

D+
ρ,θ1,θ2

:=
{
�=�+

ωr
...�+

ω1
;
∑

|ωi |≤ρ , θ1≤argωr≤···≤argω1≤θ2
}

D−
ρ,θ1,θ2

:=
{
�=�−

ωr
...�−

ω1
;
∑

|ωi |≤ρ , θ1≤argω1≤···≤argωr≤θ2
}
.

Note that the number r of factors in the decomposition of � is not
bounded.
Let us say that an (unobstructed) Riemann surfaceR is fine if, for any

(ρ, θ1, θ2), the number of operators � in D±
ρ,θ1,θ2

such that �.Hol(R) �=
∅ is finite. This amounts to an extremely weak condition on the distribu-
tion ofR’s ramification points.
Any fine Riemann surface R can, in a unique way, through the ad-

junction of a suitable set of singular points, be turned into a minimally
ramified fine convolution domain R – the completion, or stabilisation,
ofR.

Atomic alien operators. Any ramification point η of a fine convolution
domain R is connected with the origin 0• by a well-defined taut broken
line �η or TT-path, which in turn can be uniquely represented by a se-
quence (ω1, . . . , ωr ) whose elements ωi ∈ C• represent the successive
intervals of �η. Inequalities of the form

0 < π(2 n − 1) < argωi+1 − argωi < π(2 n + 1)
respectively −π(2 n + 1) < argωi+1 − argωi < −π(2 n − 1) < 0

signal that �η makes n positive (respectively negative) turns round its
i th summit. Between any two aligned16 ωi , ωi+1 we must insert a sign
εi ∈ {+,−} to indicate whether �η circumvents the i th ‘summit’ to the
right or to the left.
To each ramification point η of a fine convolution domainR there also

correspond two ‘ramified shifts’ S+η , S−η and an alien operator D̂η.
Each S±η is defined locally, near 0•. In projection on C, it amounts to

an ordinary η̇-shift but it takes 0• to the end-point of �η in such as way as
to map the small intervals issuing from 0• in the direction argω∓π onto
the small interval of same length that ends the broken line �η.
The atomic alien operators D̂η (so-called because they measure the sin-

gularity at the end-point of �η rather than a superposition of singularities,

16 I.e. when argωi = argωi+1.
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as the alien derivations do) are then defined by:

D̂η : Hol(R) → Hol(Rη)

D̂η ϕ̂(ζ ) := ϕ̂(S+η (ζ ))− ϕ̂(S−η (ζ )) (1.51)

first for ζ near 0•, and then continued in the large, on a fine convolution
domainRη that may, and often is, more (never less) ramified thanR.
There is a natural order ≺ on the ramification set R ram of any fine

convolution domain R, along with a natural co-product on its atomic
operators:

D̂η(ϕ̂1 ∗ ϕ̂2) ≡
∑

η1,η2≺η
Hη1,η2

η

(
R P

η1,η2
η D̂η1 ϕ̂1

) ∗ (
R Q

η1,η2
η D̂η2 ϕ̂2

)
(1.52)

(i) with R denoting the one-turn rotation operator round 0•,

(ii) with a sum
∑

η1,η2≺η that is always finite,

(iii) with integers Hη1,η2
η , Pη1,η2

η , Qη1,η2
η that reflect the self-intersection

pattern of the broken line �η.

The structure tensor Hη1,η2
η turns C(R ram) into a commutative algebra

with its own discretised convolution

(h1 ∗ h2)(η) :=
∑

η1,η2≺η
Hη1,η2

η h1(η1) h2(η2)
(
h1, h2 ∈ C(R ram)

)
(1.53)

The convolution algebra C(R ram)may be viewed as the discrete scaffold-
ing of the convolution algebra Hol(R). In fact, C(R ram) is isomorphic to
the quotient17 Holpolar(R)/Holsubpolar(R).

Uniformisation of convolution products or powers. Similar formulae (of
which there exist several variants) hold for ordinary points ζ ofR.
The following variant involves the standard alien derivations and has

the advantage of uniqueness:

ϕ̂(ζ ) ≡
∑
s

K ζ
ζs
ϕ̂(ζs)+

∑
r

∑
ωi

∑
s

(2π i)r K ζ
ζs ,ω

�̂ωr ...�̂ω1 ϕ̂(ζs,ω) (1.54)

17 A function ϕ̂ in Hol(R) is said to be of polar respectively subpolar type if it behaves like
h(η)

2π i (ζ̇−η̇) + o( 1
(ζ̇−η̇) ) respectively o(

1
(ζ̇−η̇) ) in the ramified vicinity of any given η ∈ Rram. The

space Holpolar(R) is clearly closed under convolution, with Holsubpolar(R) as an ideal.
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with a finite number of points ζs (respectively ζs,ω) located over ζ̇ (re-
spectively ζ̇ − ∑

ω̇i ) but lying within the holomorphy star of ϕ̂ (respec-
tively �̂ωr . . . �̂ω1 ϕ̂), and with entire (respectively rational) structure co-
efficients K ζ

ζs
(respectively K ζ

ζs ,ω
).

Here is a second variant that relies on the operators �̂+
ω and �̂

−
ω of

(1.40). It is not unique, but can always be adjusted so as to involve only
entire coefficients H ζ

ζs
and H ζ

ζs ,ω,ε
.

ϕ̂(ζ )≡
∑
s

H ζ
ζs
ϕ̂(ζs)+

∑
r

∑
ωi ,εi

∑
s

H ζ
ζs ,ω,ε

�̂εr
ωr
. . . �̂ε1

ω1
ϕ̂(ζs,ω,ε) (1.55)

Both variants reduce the evaluation of any convolution product or power,
at any given point ζ of R, on any Riemann sheet, however distant from
0•, to a finite number of convolution integrals to be calculated on straight
intervals joining 0• to points ζi or ζi,ω, ζi,ω,ε that lie on the main Riemann
sheet.

For instance, if we apply (1.54) to the evaluation of the convolution
power ϕ̂ ∗n(ζ ), for any ζ ∈ R, any ϕ̂ ∈ Hol(R), and n → ∞, we find
that everything reduces to finitely many terms of the form

�̂ω ϕ̂
∗n(ζs,ω)=

1≤k≤r∑
ω∈sha(ω1,...,ωk)

n!
k!(n−k)!

(
ϕ̂∗(n−k)∗�̂ω1 ϕ̂∗...�̂ωk ϕ̂

)
(ζs,ω) (1.56)

with s and k bounded, so that in the end the asymptotics is dominated
by trite convolution integrals ϕ̂ ∗(n−k)(ζs,ω) evaluated on simple intervals
(0•, ζs,ω] safely located within the main Riemann sheet (or its boundary).
This uniformising virtue of alien derivations (by which we mean their

power to reduce complicated operations on ramified, multivalued func-
tions to simple operations on their, and their alien derivatives’, uniform
restrictions to the holomorphy star) is one of the main justifications
(though not the topmost) of alien calculus.

Remark. Alongside the TT-paths18 that connect any ζ ∈ R to the origin
0•, we must also consider two classes of more convolution-friendly, but
also more complex paths: the wildly contorted SS-paths19 and the even
more intricate ZZ-paths20. The SS-paths are useful for establishing the

18 “Taut broken lines”.

19 “Self-symmetrical and self-symmetrically shrinkable paths”.

20 “Self-symmetrical, self-symmetrically shrinkable, and self-replicating paths”.
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stability under convolution of endless continuability, and the ZZ-paths
for illustrating the formulae (1.52)-(1.56).
Where these paths fail miserably, though, is in providing decent esti-

mates for convolution products or powers on far-flung Riemann sheets.
For the convolution powers21, SS-path considerations lead to asymptoti-
cally correct estimates∣∣ϕ̂∗n(ζ )

∣∣ ≤ c0(ζ )
c1(ζ )n

n!
(
c0(ζ ), c1(ζ ) > 0

)
.

However, for points ζ ∈ R whose TT-path has k summits, the bounds
derivable in this way (especially c0) become hopelessly suboptimal as k
increases. Even for values as small as k = 20, c0 can fall off the mark by
something like a factor 1010.

The convolution domains R := C̃ −� with � a lattice. For any discrete
lattice � = τ1Z or τ1Z + τ2Z (τi ∈ C∗,)(τ1/τ2) �= 0), the surfaceR :=
C̃ −� is an – obviously fine – convolution domain with a particularly
simple structure: its ramified shifts S±η form a group which contains the
one-turn rotation R and is generated by just two elements (whether � is
one- or two-dimensional!). There is even an elementary algorithm for
finding all the ≺-antecedents of any ramification point η ∈ R ram, as well
as all the structure coefficients featuring in (1.52) and (1.54). This applies

in particular for the surface R := ˜C−2π iZ, which is the natural surface
of practically all the resurgent functions to appear in this investigation.

1.6 Medial operators

Their definition resembles that of the alien derivations

(�̂�
ωϕ̂)(ζ ) :=

∑
ε1,...,εr

εr

2π i
λ�ε1,...,εr−1 ϕ̂

(
ε1
ω1

,...,
,...,

εr
ωr
)
(ω + ζ ) (1.57)

(�̂��
ω ϕ̂)(ζ ) :=

∑
ε1,...,εr

εr

2π i
λ��ε1,...,εr−1 ϕ̂

(
ε1
ω1

,...,
,...,

εr
ωr
)
(ω + ζ ) (1.58)

with ωr = ω and the usual signs ε j ∈ {+,−} but with simpler weights
λ
�
ε , λ

��
ε , still independent of the intervals ωi :

λ�ε1,...,εr−1 = λ
[p,q]
� := 2−p−q = 21−r (1.59)

λ��ε1,...,εr−1 = λ
[p,q]
�� := #(p − q) 2−int(

p+q+1
2 ) (1.60)

21 Of a function ϕ̂(ζ ) regular at 0•.
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As usual, p and q denote the numbers of+ and− signs in {ε1, . . . , εr−1}.
As for the elementary factor #(p− q) ≡ #(q − p), it assumes only three
values, 0, 1,−1, and displays a remarkable 8-periodicity :
#(k+8)≡#(k) , # :[0,1,2,3,4,5,6,7]  →[1,1,0,−1,−1,−1,0,1] (1.61)
Like the earlier weights λε in (1.41) attached to the standard alien deriva-
tions, the new weights λ�ε , λ

��
ε add up to 1:∑

εi ∈{+,−}
λε1,...,εr−1 =

∑
εi ∈{+,−}

λ�ε1,...,εr−1 =
∑

εi ∈{+,−}
λ��ε1,...,εr−1 = 1 (∀ r)

The simplest way to express the relations between the new operators and
the classical ones is via the generating series:

DD� =
∑

arg(ω)=0
���

ω , DD�� =
∑

arg(ω)=0
����

ω (1.62)

The relations read:

DD� = 1

π
tan(πDD) = 1

π i

DD+ − 1
DD+ + 1 = 1

π i

1−DD−

1+DD− (1.63)

DD�� = 1

2π
tan(2πDD) = 1

2π i

DD+ −DD−

DD+ +DD− (1.64)

As pointed out at the outset, the new operators are neither derivations nor
automorphisms. They possess co-products sui generiswhich, once again,
are best expressed in terms of the generating series:

DD�  → DD� ⊗ 1+ 1⊗DD�

+
∑
1≤n

(π)2n
[
(DD�)n+1 ⊗ (DD�)n+(DD�)n ⊗ (DD�)n+1

]
DD��  → DD�� ⊗ 1+1⊗DD��

+
∑
1≤n

(2π)2n
[
(DD��)n+1 ⊗ (DD��)n+(DD��)n ⊗ (DD��)n+1

]
Short proofs. The quickest way to prove all the above relations at one
go is to start with the axis arg ζ = 0 punctured over N. Denoting σ and
τ the non-commuting “shifts” that take ζ small (with arg ζ = 0) to ζ + 1
after circumventing the point at 1 respectively to the right or to the left
(and then extending the action of σ and τ in the large), we find that

DD+ = (1− τ) (1− σ)−1 , DD− = (1− σ) (1− τ)−1 (1.65)
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Next, proceeding backwards, we define ���
ω,��

��
ω via (1.62) in terms of

DD�,DD��; then DD�,DD�� via (1.63)-(1.64) in terms of DD±; then DD± via
(1.65) in terms of the elementary shits σ, τ . After some rather easy cal-
culations in the non-commutative variables σ, τ , we find the expressions
(1.59), (1.60) for the weights λ�ω, λ

��
ω , though at first only for the case

when {ω1, ω2, ω3 . . . } = {1, 2, 3 . . . }. But we clearly have∑
εi0=±

λ�ε1,...,εr−1 = λ
�

ε1,...,[εi0 ],...,εr−1 ,∑
εi0=±

λ��ε1,...,εr−1 = λ
��

ε1,...,[εi0 ],...,εr−1 (∀i0 < r)

with the notation [εi0] signaling the omission of εi0 . It follows that the
weights λ�•, λ��• retain their expression (1.59),(1.60) for all sequences {ωi }
over N and, in fact, over R+.

1.7 Resurgence of the iterators and generators

The iterator f ∗ and ∗f , characterised by the relations (1.11)-(1.12), and
the (infinitesimal) generator f∗, characterised by the relation (1.8), verify
the following resurgence equations

�ω
∗f (z) = +Aω ∂z ∗f (z) (∀ω ∈ �) (1.66)

�ω f ∗(z) = −Aω e−ω ( f ∗(z)−z) (∀ω ∈ �) (1.67)

�ω f∗(z) = −ω Aω f∗(z) e−ω ( f
∗(z)−z) (1.68)

with the very same scalar coefficients Aω as in (1.15). For all values
of ω not in �, the alien derivatives are ≡ 0. If we now introduce the
differential operators:

Aω := Aω e
−ωz ∂z (∀ω ∈ �) (1.69)

the resurgence equations assume the form of the Bridge equation:22

��ω
∗f (z) = +Aω

∗f (z) (1.70)

��ω f ∗(z) = −(Aω . z) ◦ f ∗(z) . (1.71)

22 So-called because it relates ordinary and alien derivatives of one and the same resurgent function.
The Bridge equation has in fact much wider applications, and extends, in one form or another, to
practically all resonant local objects, of which identity-tangent diffeos are but a special case. An
entire book [6] has been devoted to the subject.
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When expressed in terms of the subsitution operators F∗ and ∗F associ-
ated with ∗f, f ∗, the Bridge equation takes an even more pleasant form[

��ω, F
∗] = − F∗ Aω (F∗ ϕ := ϕ ◦ f ∗) (1.72)[

��ω,
∗F

] = +Aω
∗F ( ∗F ϕ := ϕ ◦∗ f ) . (1.73)

Likewise, with the (operatorial) generator F∗ := f∗ ∂ = F∗.∂.F∗, we
get:

[��ω, F∗] = F∗ [∂,Aω] ∗F . (1.74)

But whichever variant we may care to consider, the commutation identi-
ties

[
��ω1,Aω2

] = 0 make it easy to iterate the above resurgence equa-
tions. Thus from (1.70) we straightaway derive

��ωr . . . ��ω1
∗f (z) = Aω1 . . .Aωr

∗f (z) (order reversion!) .
(1.75)

As a consequence, the effect on ∗f and f ∗ of the alien operators ��±
ω and

of the axial operators DDθ is easy to calculate. It is best written in terms
of the substitution operators ∗F and F∗ associated with ∗f, f ∗, and results
in the so-called axial Bridge equation:

Aθ = DDθ − ∗F DDθ F∗ (1.76)

A+
θ = DD+

θ
∗F DD−

θ F∗ = ∗F DD−
θ F∗ DD+

θ (1.77)

A−
θ = DD−

θ
∗F DD+

θ F∗ = ∗F DD+
θ F∗ DD−

θ . (1.78)

The axial Bridge equation23 involves differential (respectively substitu-
tion) operators Aθ (respectively A±

θ ):

Aθ =
∑

arg(ω)=θ
Aω (1.79)

A±
θ
= 1+

∑
arg(ω)=θ

A±
ω = exp

( ± 2π i Aθ

)
(1.80)

that are simply related to the differential (respectively substitution) oper-
ators�∗ (respectively�±) associated with the connectors of Section 1.1:

�no := A+
− π
2

; �so := A−
+ π
2

(1.81)

�−1
no := A−

− π
2

; �−1
so := A+

+ π
2

(1.82)

�∗no := +2π i A− π
2

; �∗so := −2π i A+ π
2
. (1.83)

23 We say Bridge equation in the singular since (1.77) and (1.78) are merely exponential variants of
(1.76). The commutation of the three automorphismsA±

θ ,DD
±
θ ,

∗F DD∓
θ F∗ is itself a consequence

of the commutation of the three derivations Aθ , DDθ , ∗F DDθ F
∗.
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The first identity (1.81) results from applying the direct axis-crossing for-
mula (1.49) with θ = −π

2 and ϕ = ∗f or Φ = ∗F , since ∗f
θ±ε = ∗f±. The

second identity (1.81) results from applying the inverse axis-crossing for-
mula (1.50) with θ = +π

2 and ϕ = ∗f or Φ = ∗F , since in that case
∗f

θ±ε = ∗f∓ (inversion!). The identities (1.82) and (1.82) immediately
follow.

Direct access to the generators and mediators of π . Consider now the
mediators π�, π�� of the connector π , with their northern/southern com-
ponents and their formal Fourier expansions. They run parallel to those
(see (1.68)) of the infinitesimal generator π∗:

π �,no(z) =+2π i
∑
ω∈�−

A�ω e
−ω z ; π �,so(z) =−2π i

∑
ω∈�+

A�ω e
−ω z (1.84)

π ��,no(z) =+2π i
∑
ω∈�−

A��ω e
−ω z ; π ��,so(z) =−2π i

∑
ω∈�+

A��ω e
−ω z (1.85)

Based on (1.67) and (1.57)-(1.58), we see that we can access the Fourier
coefficients of π∗, π�, π��, or indeed those of the general affiliate π♦, di-
rectly from one and the same resurgent function, namely f ∗:

��ω f ∗ = −Aω e−ω f ∗,

���
ω f ∗ = −A�ω e−ω f ∗,

����
ω f ∗ = −A��ω e−ω f ∗

(1.86)

without bothering about the corresponding affiliates of f , i.e. f∗, f�, f��,
f♦. Though it is true, as we shall aver in the next section, that f�, f��
etc. verify their own interesting resurgence equations with a mixture of
invariant and non-invariant resurgence constants from which, after some
sifting, all the Fourier coefficients A�ω, A

��
ω etc. can be reconstructed,

the fact remains that the f -affiliates have no particular closeness to the
corresponding π-affiliates.

1.8 Resurgence of the mediators

The relations (1.28)-(1.29), which may be viewed as perturbed differ-
ence equations, determine f� and f�� in terms of f . A standard argu-
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ment shows that f�(z) and f��(z) are resurgent in z, with first-order alien
derivatives verifying the homogeneous equation:

(��ω0 f�) ◦ f +��ω0 f� = 0 (∀ω0 ∈ π iZ − 2π iZ) (1.87)

(��ω0 f��) ◦ f ◦2 +��ω0 f�� = 0 (∀ω0 ∈ 12 π iZ − π iZ) (1.88)

whose general solution are of the form

��ω0 f� = Aω0
e−ω0 f

∗
(∀ω0 ∈ π iZ − 2π iZ) (1.89)

��ω0 f�� = A
ω0
e−ω0 f

∗
(
∀ω0 ∈ 12 π iZ − π iZ

)
(1.90)

with resurgent constants Aω0
and A

ω0
unrelated to the invariants Aω( f ).

In fact, Aω0
and A

ω0
are not invariant under analytic changes of z-coordi-

nates and, unlike the invariants Aω( f ), they involve coloured multizetas
as their transcendental ingredients, as we shall see in Section 3.6. But
the mediators’ alien derivatives of second (and higher) order obviously
depend only on the iterator f ∗ and involve no new resurgent constants
other than the invariants Aω:

��ω1 ��ω0 f� = ω0 Aω0
Aω1 e

−(ω0+ω1) f ∗ (∀ω1 ∈ 2π iZ) (1.91)

��ω1 ��ω0 f�� = ω0 A
ω0
Aω1 e

−(ω0+ω1) f ∗ (∀ω1 ∈ 2π iZ) (1.92)

Both systems still hold if we replace f�(z) := F�.z and f��(z) := F��.z by
��(z) := F�.φ(z) and ���(z) := F��.φ(z) for any convergent φ, except
that the first resurgent constants Aω0

and A
ω0
now depend on φ (while

the Aω1 depend on f alone). It would thus be possible to recover the
invariants of f from any such �� or ���, barring the highly exceptional
(but not impossible) case when all initial resurgent constants Aω0

or A
ω0

vanish.
This state of affairs is fairly typical for the general affiliates: whenever

γ is meromorphic with actual poles, the affiliate f♦(z) := γ (F−1) . z of
f verifies resurgent equations that involve, alongside the invariants Aω of
f , non-invariant constants like Aω0

and A
ω0
.
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1.9 Invariants, connectors, collectors

Let us survey in one table some of the main objects introduced so far or
yet to come.

diffeo collectors connectors invariants

g�
3
′
�−→ p�

3
′′
�−→ sp�

3
′′′
�−→ π � = (π � no,π � so)

3
′′′′
�−→ {A�ω}

↑2� ↓4� ↓5� no ↓5� so ↓6�

f = l ◦ g 1
′

−→ p± 1
′′

−→ sp± 1
′′′

−→ π± = (π±
no,π

±
so)

1
′′′′

−→ {A±
ω }

↓2∗ ↑4∗ ↑5∗ no ↑5∗ so ↑6∗

g∗
3
′
∗−→ p∗

3
′′
∗−→ sp∗

3
′′′
∗−→ π∗ = (π∗no,π∗so)

3
′′′′
∗−→ {Aω}

The middle row carries the objects of direct interest to us, while the up-
per and lower rows carry their two main affiliates (the first mediator and
the infinitesimal generator), which are more in the nature of auxiliary
constructs.
The first, third and fourth columns carry objects already familiar to

us. The second column, however, carries novel, highly interesting ob-
jects, the collectors, which are very close in a sense to the connectors,
yet should be, for the sake of conceptual cleanness, clearly held apart.
The collectors may assume four distinct forms:

(i) formal series of multitangents, noted p;
(ii) formal series of monotangents, also noted p;
(iii) formal Laurent series of z−1, noted lp
(iv) the singular part, noted sp, of these Laurent series.

One goes from (i) to (ii) by multitangent reduction as in Section 2.3 ; and
from (ii) to (iv) by the change Tes1  → z−s1 .
In any of these incarnations, the collectors are but a step removed from

the invariants. Yet they are not invariant themselves: they depend on
the z-chart in which the diffeo f is taken. Another difference is that
whereas the collectors π± are convergent Fourier series, the collectors
p± are condemned to remain formal power series in the countably many
coefficients fn of f . But this is perfectly all right, since the function of
the collectors is precisely to carry, in conveniently compact form, all the
information about the f -dependence of the connector π and, ultimately,
of the invariants Aω.
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One last remark is in order here: although we are basically interested
in the objects of the middle row, and more specifically in getting from
f to the invariants {A±

ω }, we shall see that the most advantageous route
is not the straight path through the arrows 1, 1′, 1′′, 1′′′′, but any of the
roundabout paths that start with 2∗ or 2�: these indirect routes are much
more economical in terms of calculations and also more respectful of the
underlying symmetries and parities.

1.10 The reverse problem: canonical synthesis

It can be shown that any convergent pair π = (πno,π so) is the connector
pair of some standard diffeo f = l ◦g. This raises the problem of synthe-
sis : how to reconstitute a germ f with a prescribed set of (admissible)
invariants? And how to select a canonical f among all possible choices?
A semi-canonical synthesis was sketched in [5] and a fully canonical one
was constructed in [9]. The latter depends on a single parameter c whose
real part must be chosen large enough.24 The construction produces a
canonical fc := ∗fc ◦ l ◦ f ∗c from its iterator f ∗c , which in turn is explic-
itly given, in operator form, by the formula

F∗
c := 1+

∑
r

∑
ωi∈�

(−1)r Ueω1,ω2,...,ωrc (z) Aωr . . .Aω2 Aω1 (1.93)

with a careful re-arrangement of the terms25 necessary to ensure conver-
gence. The two ingredients in (1.93) are the invariants Aω taken in oper-
ator form (1.69), and some special resurgence monomials Ueω

c (z) defined
by

Ueω
c (z) := e||ω||z+c

2||ω̄||z−1SPA
∫ ∞

0

e−
∑
(ωi ti+c2ω̄i t−1i )

(tr−tr−1)...(t2−t1)(t1−z)dt1...dtr
(1.94)

where SPA denotes a suitable average of all the 2r−1 possible integration
multipaths that reflect the 2r−1 manners in which the variables t j may
circumvent each other on their way from 0 to∞.

2 Multitangents and multizetas.

The multitangents and multizetas, being the transcendental ingredient in
the analytical expression of the invariants of identity-tangent diffeos26,

24 Synthesis cannot be absolute, i.e. parameter-free.

25 Known as arborification-coarborification.

26 And of much else – they are almost coextensive with the whole field of difference equations.
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deserve a short excursus. But we must begin with a brief reminder about
moulds, which are the proper tool for handling multi-indexed objects of
whatever description.

2.1 Mould operations and mould symmetries

Main mould operations. Moulds are functions of finite sequences ω =
(ω1, ..., ωr ) of any length r ≥ 0, noted as right-upper indices and ren-
dered, as mute variables, by a plain bold dot •. Moulds can be multiplied
and composed :

C• = A• × B• ⇐⇒ Cω =
∑

ω′ω′′=ω

Aω′
Bω′′

(2.1)

C• = A• ◦ B• ⇐⇒ Cω =
∑

ω1...ωs=ω

A|ω1|,...,|ωs| Bωs . . . Bωs (ωi �= ∅)

with all the predictable relations, including

(A• × B•) ◦ C• = (A• ◦ C•)× (B• ◦ C•) .

The units for multiplication or composition are the moulds 1•, Id• respec-
tively defined by:

1∅ := 1 ; 1ω1,...,ωr := 0 if r �= 0 (2.2)

Id ω1 := 1 ; Id ω1,...,ωr := 0 if r �= 1 (2.3)

There exist scores of other mould operations, unary or binary. They are
far too numerous to be assigned distinct symbols. So we resort to short
letter combinations instead – even, retroactively, for mould multiplica-
tion and composition, which for clarity are often noted mu(M•

1 ,M
•
2 ) and

ko(M•
1 ,M

•
2 ) instead of M

•
1 × M•

2 and M
•
1 ◦ M•

2 . The corresponding Lie
brackets are noted lu(M•

1 ,M
•
2 ) and lo(M

•
1 ,M

•
2 ).

The multiplicative inverse of a mould M• is usually noted muM•. It
exists if and only if M∅ �= 0.
The composition inverse of a mould M• is usually noted koM•. It

exists if and only if M∅ = 0 and Mω1 �= 0 ∀ω1.
A mould M• is said to be of constant type if Mω depends only on the

length r := r(ω) of the sequence ω, i.e. if Mω := mr . Such moulds
may conveniently be noted m(Id•) with m(t) := ∑

mr tr . Multiplying or
composing constant-type moulds M• reduces to multiplying or compos-
ing the underlying power series m(t).
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Main mould symmetries. Most moulds tend to fall into one or the other
of four symmetry classes or types:

M•symmetral (respectively alternal) ⇔
⇔

∑
ω∈sha(ω′,ω′′)

Mω = Mω′
Mω′′

(respectively 0)

M•symmetrel (respectively alternel) ⇔
⇔

∑
ω∈she(ω′,ω′′)

Mω = Mω′
Mω′′

(respectively 0) .

Here, sha(ω′,ω′′) (respectively she(ω′,ω′′)) denotes the set of all se-
quences ω deducible from ω′ and ω′′ under plain (respectively contract-
ing27 ) shufflings. The main symmetry-types get exchanged under pre- or
post-composition by special constant-type moulds. Thus

symmetral• = exp(Id•) ◦ alternal• , alternel• = alternal ◦ log(1•+Id•)

symmetrel• − 1• = elternel•=(
exp(Id•)−1•) ◦ alternal• ◦ log(1•+Id•).

Hairsplitting though it may seem, the distinction between symmetrel and
elternel should be maintained throughout: symmetral or symmetrel
moulds are stable under multiplication, whereas alternal and elternel
moulds are stable under composition. Likewise, alternal and alternel
moulds are stable under the Lie bracket lu.
Pre- respectively post-composition of alternalmoulds by c−1tanh(cId•)

respectively c−1 arctanh(c Id•) (chiefly for c = 1, 1/2, i, i/2) generates
new symmetry types, signalled by one or two “o” vowels in their name.
Though second in importance and frequency of occurrence to the four
main symmetry types, these new exotic types are of more than marginal
importance, especially in this investigation. They will repeatedly occur in
connection with the mediators, the medial alien operators, and the multi-
tangents To•,Too•.
Moulds of symmetral, symmetrel, or c-symmetrol 28 type generate three

multiplicative groups and their multiplicative inverses are given by simple

27 I.e. allowing order-compatible, pairwise contactions (ω′i , ω′′j )  → ω′i + ω′′j of elements from the
parent sequences.

28 I.e. moulds of type symmetral• ◦ (
c−1 tanh(c Id•)

)
or symmetrel• ◦ ( Id•

1•− 1
2 Id

•
)
if c = 1

2 .



135 Invariants of identity-tangent diffeomorphisms

involution formulae:

muS• = anti.S• ◦ (−Id•) if S• ∈ symmetral (2.4)

muS• = anti.S• ◦ (− Id•
1•+Id• ) if S• ∈ symmetrel (2.5)

muS• = anti.S• ◦ (−Id•) if S• ∈ c-symmetrol (2.6)

with anti Sω1,...,ωr := Sωr ,...,ω1 .

Main moulds relevant to our investigation.

symmetrel symmetral symmetrol
ze• za• zo• scalar-valued (multizetas)
S̃e

•
(z) S̃a

•
(z) S̃o

•
(z) resurgent-valued (resur.monomials)

Te•(z) Ta•(z) To•(z) meromorphic-va. (multitangents)

elternel alternal olternol
Tee•(z) Taa•(z) Too•(z) meromorphic-va. (multitangents)

Tee•ω Taa•ω Too•ω scalar-valued (multizeta sums)

2.2 Multizetas

In this subsection, all indices si are in N∗ and, to preempt divergence, we
(provisionally) assume s1 �= 1 for multizetas and s1, sr �= 1 for multitan-
gents.
We first consider three multizeta-valued moulds, ze•, za• and zo• :

zes1,...,sr :=
∑

n1>...>nr>0

n−s11 . . . n−srr (2.7)

zas1,...,sr :=
∑

n1≥...≥nr>0
n−s11 . . . n−srr

∏ 1

r j ! (2.8)

zos1,...,sr :=
∑

n1≥...≥nr>0
n−s11 . . . n−srr

∏
21−r j (2.9)

If the monomial
∏
n−sii in (2.8) or (2.9) involves t clusters of r1, ..., rt

identical integers ni (1 ≤ t ≤ r), the multiplicity corrections have to be
defined accordingly, as

∏
1/r j ! or∏ 21−r j . Clearly

za• = ze• ◦ (exp(Id•)− 1•) (2.10)

zo• = ze• ◦
( Id•

1• − 1
2 Id

•
)

= za• ◦
(
2 arctanh(

1

2
Id•

)
(2.11)

The moulds ze• and za• are obviously symmetrel and symmetral, while
zo• falls into a subaltern symmetry type: symmetrol (see Section 5.1).
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Fast computation of the multizetas. Our two guiding concerns here are:
replacing the sluggish rate of convergence of the series (2.7), (2.8), (2.9)
by a geometric rate of convergence and making manifest the multitzetas’
hidden parity properties.
Let trunze•n be the truncated multizetas, defined as in (2.7) but with

summation over n ≥ n1 > . . . nr > 0, and let remze•n be the remainder
multizetas, defined again as in (2.7) but with summation over +∞ ≥
n1 > . . . nr > n. Let trunza•n, trunzo•n and remza•n, remzo•n be simi-
larly defined. The symmetry types are preserved, so too are the relations
(2.10)-(2.11), and we have obvious mould factorisations

ze• = remze•n × trunze•n (2.12)

za• = remza•n × trunza•n (2.13)

zo• = remzo•n × trunzo•n . (2.14)

Using the elementary difference equations (in n) verified by remze•n , we
find for that mould a divergent but Borel resummable (and resurgent)
asymptotic expansion asremze•n , in decreasing powers of n, of the form:

asremzes1,...,sr = e∂

1− e∂
n−sr

e∂

1− e∂
n−sr−1 . . .

e∂

1− e∂
n−s1 (2.15)

= 1

ns1+···+sr−r
∏
1≤i≤r

1

s1 + · · · + si − i
+ o

( 1

ns1+···+sr−r
)
.

Here ∂ := ∂n and each operator e∂

1−e∂ = − ∂−1− 1
2− 1

12 ∂ + . . . in (2.15)
acts on everything standing to its right. The last two asymptotic series
factor into:

asremza•n = asremza•n ×
( 2

1• + eI •n

)
(2.16)

asremzo•n = asremzo•n ×
( I•n
1• − 1

2 I
•
n

)
(2.17)

with elementary right factors involving the moulds I •n and K •
n = 2

(
1• +

eI
•
n
)−1
I s1,...,srn = 0 if r �= 1 and I s1n := n−s1 , I ∅n := 0 (2.18)

Ks1,...,sr
n = κr n

−(s1+···+sr ) with
2

1+ et
=:

∑
κr t

r (2.19)

and with non elementary but essentially (up to an elementary power of n)
even left factors of the form

asremzas1,...,srn and asremzos1,...,srn ∈ nr−(s1+···+sr ) C[[n−2]]. (2.20)
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There is, however, a significant difference between the two factorisations.
Whereas we can see, by post-composing (2.15) by Id•×(1•−Id•)−1, that
asremzo• is given by a simple induction:

asremzos1,...,sr = H(∂) n−sr H(∂) n−sr−1 . . . H(∂) n−s1 (2.21)

with H(∂) := e∂

1−e∂ + 1
2 = − 1

2cotanh(
1
2∂), no such induction holds for

asremza•. That moulds admits only indirect definitions, like:

asremza• = asremzo• ◦
(
2 tanh(

1

2
Id•)

)
(2.22)

or

asremzas1,...,sr =
[
SAd1,...,dr .

∏
1≤i≤r

n−sii

]
ni=n

(2.23)

with

SA• :=
(
SE• × (1• + Id•)

)
◦

(
exp(Id•)− 1•

)
(2.24)

and with the important symmetrel mould SE•:

SEd1,...,dr :=
∏
1≤i≤r

ed1+···+di

1− ed1+···+di (2.25)

The first definition (2.22) results directly from (2.11) restriced to the re-
mainders. The second definition calls for some explanations. Here, each
di denotes the operator ∂ni that acts on ni alone. On the right-hand side
of (2.23), we let the operator SAd act on the product

∏
n−sii and then set

ni := n. To establish (2.23), we observe that (2.15) may be written

asremzes1,...,sr =
[
SEd1,...,dr .

∏
1≤i≤r

n−sii

]
ni=n

(2.26)

and we then use the relation asremza• = asremze• ◦ (exp(Id•)−1•) that
results from restricting (2.10) to the remainders. The interesting point
about (2.23) is that it relates the parity property (2.20) of asremza• to the
following parity property of SE•

neg.SE• =
(
SE• × (1• + Id•)

)
◦

(
− Id•

1• + Id•
)

(2.27)

and to the formula for its multiplicative inverse muSE•:

muSE• = e|•| anti.neg.SE• (2.28)

with

|(s1, ..., sr )|=
∑

si , neg.S
s1,...,sr := S−s1,...,−sr , anti.Ss1,...,sr := Ssr ,...,s1
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Acceleration of the convergence . When we calculate ze• according to
formula (2.12) by taking the exact value of the truncated factor trunze•n
and calculating the remainder factor remze•n from its asymptotic expan-
sion (2.15) cut off at the least term, we get an excellent approximation,
with an error that decreases roughly like exp(−2πn) as the truncation
order n increases. The same applies to za• and zo•: the truncated fac-
tors trunza• and trunzo• may have more summands than trunze•, but this
is more than offset by the parity simplifications in the remainder factors
remza• and especially remzo•.
We may note that this method remains valid, and retains its high effi-

ciency, for general complex values of the weights si , even when the in-
equalities0(s1+. . .+si) > i that guarantee the convergence of (2.7)-(2.9)
no longer hold.

Quadratic constraints. The symmetrelity of ze•, or the strictly equiva-
lent symmetries of za• and zo•, do not exhaust the set of algebraic con-
straints on the multizetas: there exists an another set of constraints, of
‘equal strength’, based on a radically different, essentially discrete29 en-
coding: see Section 6.2.

2.3 Multitangents

The multizetas enter invariant analysis indirectly, as scalars attached to
elementary periodicmeromorphic functions – the so-calledmultitangents.
Here are the main multitangent-valued moulds with their symmetry

types:

Te• 1→ Ta• 2→ To• symmetrel
1→ symmetral

2→ symmetrol
↓3 ↓4 ↓5 ↓3 ↓4 ↓5
Tee• 1→ Taa• 2→ Too• elternel

1→ alternal
2→ olternol

The two upper moulds are defined directly by30

Tes1,...,sr (z) :=
∑

n1>...>nr

(n1 + z)−s1 . . . (nr + z)−sr (2.29)

Tas1,...,sr (z) :=
∑

n1≥...≥nr
(n1 + z)−s1 . . . (nr + z)−sr

∏ 1

ri ! (2.30)

Tos1,...,sr (z) :=
∑

n1≥...≥nr
(n1 + z)−s1 . . . (nr + z)−sr

∏
21−ri (2.31)

29 Unlike the si -encoding, which of course extends to the complex field.

30 With the same r j in (2.30) as in (2.8).
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and the two lower moulds are derived from them through a suitable pre-
composition. Thus:

Te•=see (2.29) Tee•=Te• − 1• (Te-Tee)

Ta•=Te• ◦ (
eId

•−1•) Taa•=log(1•+Id•)◦Ta•◦(
eId

•−1•) (Ta-Taa)

To•=Te• ◦ (
Id•

1•− 1
2 Id

•
)
Too•=(

Id•
1•+ 1

2 Id
•
) ◦ Te• ◦ (

Id•
1•− 1

2 Id
•
)

(To-Too)

In the sequel, we shall also require the inverses of Te•,Ta•,To• for mould
multiplication. In view of (2.4)-(2.6), we get

muTes1,...,sr (z) =
∑

n1≤...≤nr
(−1)r (n1 + z)−s1 . . . (nr+ z)−sr (2.32)

muTas1,...,sr (z) =
∑

n1≤..≤nr
(−1)r (n1 + z)−s1 . . . (nr+ z)−sr

∏ 1

ri ! (2.33)

muTos1,...,sr (z) =
∑

n1≤...≤nr
(−1)r (n1 + z)−s1 . . . (nr+ z)−sr

∏
n1−ri (2.34)

with an order reversal in the summation rule, and large inequalities in
place of the strict inequalities in (2.29)-(2.31).

Parity aspects. All six types of multitangents obviously verify

Ts1,...,sr (−z) ≡ (−1)s1+···+sr Tsr ,...,s1(z) (∀T∈{Te,Ta,To etc.}). (2.35)

In the case of Taa• and Too•, however, due to alternality/olternolity we
have an additional relation

Taasr ,...,s1(z) ≡ (−1)r−1 Taas1,...,sr (z) (2.36)

Toosr ,...,s1(z) ≡ (−1)r−1 Toos1,...,sr (z). (2.37)

Combining (2.35) and (2.36)-(2.37) we get the crucial parity separation
property, which sets Taa•, Too• apart from Te• ≈ Tee•:

Taas1,...,sr (−z) ≡ (−1)1+
∑
di Taas1,...,sr (z) with di := si − 1 (2.38)

Toos1,...,sr (−z) ≡ (−1)1+
∑
di Toos1,...,sr (z) with di := si − 1 (2.39)

Multitangents in terms of monotangents and multizetas. Multitangents
are entirely determined by their polar parts at the entire points z = n.
By calculating, based on the expansion (2.29), the Laurent expansion
of Tes(z) at such points, and then retaining only the polar part, we find
that Tes(z) can be expressed as a finite sum of elementary monotangents
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Tes1(z) = ∑
n1
(n1 + z)−s1 , also known as Eisenstein series. Here is the

formula:31

Tes1,...,sr (z)=
sup(si )∑
σ=2

tezes1,...,srσ Teσ (z)=
r∑
i=1

si∑
σi=2

tezes1,...,sri,σi
Teσi (z) (2.40)

with

tezes1,...,sri,σi
=

=
∑

σk=∑
sk∑

{
σi≤si

s j≤σ j ( j �=i)
} zeσ1,...,σi−1 zeσr ,...,σi+1

i−1∏
j=1
(−1)σ j

j �=i∏
1≤ j≤r

(−1)s j (σ j − 1)!
(σ j − s j )!(s j − 1)!

or more symmetrically

tezes1,...,sri,σi
=

=
∑

σk=∑
sk∑

{
σi≤si

s j≤σ j ( j �=i)
}zeσ1,...,σi−1 (−1)si−σi vizeσi+1,...,σr

j �=i∏
1≤ j≤r

(σ j − 1)!
(σ j − s j )!(s j − 1)!

vizes1,...,sr = (−1)s1+...sr zesr ,...,s1 . (2.41)

The leading monotangent Te1(z) = π
tan(πz) generates all others under dif-

ferentiation, and admits the following northern and southern expansions:

Te1no(z) = −π i − 2π i
∑
0<n

e+2π i n z if )(z) > 0 (2.42)

Te1so(z) = +π i + 2π i
∑
0<n

e−2π i n z if )(z) < 0. (2.43)

Since Tes1(z) = (−1)s1−1
(s1−1)! ∂

s1−1
z Te1(z), this yields

Tes1(z) =
∑
ω∈�∓

Tes1ω e
−ωz on each half -plane ± )(z) > 0 (2.44)

with

Tes1ω = sign()(ω)) 2π i ωs1−1

(s1 − 1)! and �∓ = 2π iZ∓ . (2.45)

31 For a more compact expression, based on generating series, see Section 6.3.
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All the above amounts to a simple procedure for calculating the Fourier
expansions, north and south, of the four classes of multitangents. The
three classes Tee• ≈ Te• , Taa•, Too• shall be of direct concern to us:

Tee•no(z) =
∑
ω∈�−

Tee•ω e−ω z ; Tee•so(z) =
∑
ω∈�+

Tee•ω e−ω z (2.46)

Taa•no(z) =
∑
ω∈�−

Taa•ω e−ω z ; Taa•so(z) =
∑
ω∈�+

Taa•ω e−ω z (2.47)

Too•no(z) =
∑
ω∈�−

Too•ω e−ω z ; Too•so(z) =
∑
ω∈�+

Too•ω e−ω z (2.48)

Localisation constraints. When dealing with a product of multitangents
Tes, we may perform the operations of reduction (of mutitangents into
sums of monotangents) and symmetrel linearisation in either order. If we
then identify the multizeta superpositions in front of each monotangent,
we get to the so-called reduction constraints:

Tes
1
(z).Tes

2
(z)

reduction−→
(∑

τ s
1

s1
Tes1(z)

)
.
(∑

τ s
2

s2
Tes2(z)

)
↓linearisation ↓linearisation∑
ε
s1,s2

s3
Tes

3
(z)

reduction−→ ∑
ε
s1,s2

s3
τ s

3

s3
Tes3(z) = ∑

τ s
1

s1
τ s

2

s2
εs1,s2s3

Tes3(z) .

Here, the εs
i ,s j

sk
are elementary, integer-valued coefficients and the ex-

pressions τ s
i

s j are finite, homogeneous sums of multizetas of total weight

‖si‖−si−1.
If, instead of reduction, we use localisation (replacing each multitan-

gent by its two-sided Laurent expansion at z = 0), we get the so-called
localisation constraints:

Tes
1
(z).Tes

2
(z)

localisation−→ (
∑

θ s
1

n1
zn1).(

∑
θ s

2

n2
zn2)

↓linearisation ↓linearisation∑
ε
s1,s2

s3
Tes

3
(z)

localisation−→ ∑
ε
s1,s2

s3
θ s

3

n3
zn3 = ∑

θ s
1

n1
θ s

2

n2
zn1+n2

with expressions θ s
i

n j that are again finite, homogeneous sums of multize-

tas of total weight ‖si‖ + n j .
Though more numerous, the localisation constraints are actually equiv-

alent to the reduction constraints, but they extend more smoothly to the
ramified case, i.e. to the case of multitangents and multizetas that carry
fractional indices si . In any case, the localisation constraints are not a
consequence of the symmetrelness of Te•.
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The multitangents Taa• and Too• in terms of Tee• ≈ Te•. Applying to
Too• a beautiful formula (see (5.16)-(5.17) in Section 5.4) that holds for
multitangents Te•♦ of any symmetry type and gives their explicit lineari-
sation into sums of symmetrel multitangents Te•, we find:

Toos1,...,sr (z)=
∑
σ∈Sr

∑
2≤t≤r

(I1,...,It )#σ∑
r1+···+rt=r

(−1)q(σ ) 21−r Tesσ,r1 ,...,sσ,rt (z) (2.49)

with sσ, j :=
∑
k∈I j

sσ (k) and q(σ ) := #
{
k k<r, σ−1(k)>σ−1(k+1)}

The summation is over all permutations σ of r elements and, for each σ ,
over all partitions of [1, . . . , r] into intervals Ii of ri elements, whereby
we demand that the partition (I1, . . . , Ir ) be ‘orthogonal’ to σ , i.e. such
that

(i) on any given I j the permutation σ assumes no two consecutive val-
ues;

(ii) σ increases on each interval I j .
In other words, we should have {k, k+1}∈I j⇒{σ(k+1)−σ(k)≥2}. The
orthogonality condition proper is (i). The condition (ii) is there simply to
ensure that any given summand Tesσ,r1 ,...,sσ,rt is counted only once. Lastly,
q(σ ) measures the incompatibility of the natural order < on [1, . . . , r]
with the σ -induced order {i <σ j} ⇔ {σ(i) < σ( j)}. Indeed, if j is
not <σ -maximal and j+ denotes the <σ -successor of j , we have q(σ ) =
#{ j ; j > j+}.
When applied to Taa•, the general formula (5.16)-(5.17) produces a

similar expansion, but with more numerous Te•-summands and, in front
of each of them, rational coefficients whose numerators possess no simple
multiplicative structure.32 They may be calculated, though, by applying
the universal formula (5.17).

Remark. Taa• better than Te• and Too• better than Taa•.
Actually, a systematic comparison would show that, of all types Te•♦
of multitangents that possess the desirable parity property (2.38)-(2.39),
Taa• and especially Too• are the simplest choices, not only where Te•-
linearisation is concerned, but in most other respects.
Taa• and Too• even compare favourably with Te•, which in any case

does not verify the parity property(2.38)-(2.39). Taa• and Too• may lack

32 Although, for r small, they seem to be all equal to 1. This, however, is deceptive.
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a simple direct definition like that of Te•, but after reduction to monotan-
gents, it is Taa• and especially Too•, not Te•, that give rise, by and large,
to the simpler expansions33, as shown by the Tables of Section 9.

2.4 Resurgence monomials

There exists an alternative, resurgent approach to multitangent reduc-
tion. In the convergent (i.e. s1, sr �= 1) and non-ramified (i.e. s j ∈ N∗
rather thanQ∗) case, it hardly improves on the above procedure (see Sec-
tion 2.3) but in the general case, especially when we go over to fractional
indices s j , the resurgent approach becomes the more flexible of the two
methods and even, in a sense, the only practical one. For clarity, though,
we first keep our two simplifying assumptions – no divergence34 and no
ramification35 – to sketch this alternative method.

Multizetaic monomials in the formalmodel. We shall set about construct-
ing three elementary resurgent-valued moulds 36 S̃e

•
(z), S̃a

•
(z), S̃o

•
(z),

beginning with the formal model. We start with the symmetrel monomi-
als S̃e

s
(z). They are defined by:

S̃e
•
(z) = e∂z

(1− e∂z )

(
S̃e

•
(z)× J•(z)

)
(2.50)

with an elementary mould J•(z):

J∅(z) := 0 ; Js1(z) := z−s1 ; Js1,...,sr (z) := 0 (∀ r ≥ 2). (2.51)

Together with the conditions S̃e
∅
(z) = 1 , S̃e

s1,...,sr
(∞) = 0 (∀r ≥ 1) the

induction (2.50) uniquely defines each S̃e
s
(z) as a constant-free, formal

power series in z−1. The companions monomials S̃a
•
(z) , S̃o

•
(z) are then

defined in the usual way, by post-composition:

S̃a
•
(z) := S̃e

•
(z) ◦ (

exp(Id• − 1•)) (2.52)

S̃o
•
(z) := S̃e

•
(z) ◦

(
Id•

1• − 1
2 Id

•

)
. (2.53)

33 Especially after the symmetral linearisation of the multizetas occuring as scalar coefficients in
these expansions.

34 I.e. s1 > 1

35 I.e. si ∈ N∗
36 They must be distinguished from the similar moulds asremze•n , asremza•n , asremzo•n , because the
emphasis here will be on the convolutive model and the associated monics.
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Multizetaic monomials in the convolutive model. In the convolutive mod-
el the induction becomes

Ŝe
s1,...,sr

(ζ )= e−ζ

(1− e−ζ )

∫ ζ

0
Ŝe

s1,...,sr−1
(ζ−ζr ) ζ sr−1r

�(sr )
dζr (2.54)

Multizetaic monomials in the sectorial model. Lastly, in the sectorial or
‘geometric’ models + and − (east and west), corresponding to Laplace
integration along the axes arg(ζ ) = 0 and arg(ζ ) = π , we get

Ses1,...,sr+ (z) =
∑

0<nr<...<n1

(n1 + z)−s1 . . . (nr + z)−sr (2.55)

Ses1,...,sr− (z) =
∑

n1≤..≤nr≤0
(−1)r (n1 + z)−s1 . . . (nr + z)−sr (2.56)

muSes1,...,sr+ (z) =
∑

0<n1≤...≤nr
(−1)r (n1 + z)−s1 . . . (nr + z)−sr (2.57)

muSes1,...,sr− (z) =
∑

nr<..<n1≤0
(n1 + z)−s1 . . . (nr + z)−sr (2.58)

For S• = Sa• or So• and multiplicity corrections χ(ri) = 1/ri ! or 21−ri ,
these expansions become respectively

Ss1,...,sr+ (z)=
∑

0<nr≤...≤n1
(n1 + z)−s1 . . . (nr + z)−srχ(ri) (2.59)

Ss1,...,sr− (z)=
∑

n1≤..≤nr≤0
(−1)r (n1 + z)−s1 . . . (nr + z)−srχ(ri) (2.60)

muSs1,...,sr+ (z)=
∑

0<n1≤...≤nr
(−1)r (n1 + z)−s1 . . . (nr + z)−srχ(ri) (2.61)

muSs1,...,sr− (z)=
∑

nr≤..≤n1≤0
(n1 + z)−s1 . . . (nr + z)−srχ(ri) (2.62)

Multizetaic monics. From the structure of the induction (2.50), one in-
fers directly (without calculation) that our monomials verify resurgence
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equations of the form37

�+
ω Se

•(z) = Tee•ω × Se•(z) (∀ω ∈ �+ = 2π iZ+) (2.63)

�−
ω Se

•(z) = Tee•ω × Se•(z) (∀ω ∈ �− = 2π iZ−) (2.64)

+2π i �ω Sa
•(z) = Taa•ω × Sa•(z) (∀ω ∈ �+ = 2π iZ+) (2.65)

−2π i �ω Sa
•(z) = Taa•ω × Sa•(z) (∀ω ∈ �− = 2π iZ−) (2.66)

+2π i ��
ω So

•(z) = Too•ω × So•(z) (∀ω ∈ �+ = 2π iZ+) (2.67)

−2π i ��
ω So

•(z) = Too•ω × So•(z) (∀ω ∈ �− = 2π iZ−) (2.68)

with scalar-valued moulds Tee•ω, Taa
•
ω , Too

•
ω, whose symmetry types fol-

low from their construction.38 These three moulds, for the moment, need
not bear any relation to their namesakes in Section 2.3, but we shall show
that they actually coincide with them.
Writing down the axis-crossing identity (1.49) with (2.12) and θ = +π

2
and the reverse identity (1.50) with (2.13) and θ = −π

2 , and minding the
fact that

Se•π
2 ±ε = Se•∓ (inversion!) ; Se•− π

2 ±ε = Se•± (no inversion!)

we find respectively

Te•so(z)× Se•−,so(z) = Se•+,so(z) with Te
•
so(z) =

∑
ω∈�+

Te•ω e
−ωz (2.69)

Te•no(z)× Se•−,no(z) = Se•+,no(z) with Te
•
no(z) =

∑
ω∈�−

Te•ω e
−ωz (2.70)

Thus, whether looking “north” or “south”, we arrive at the elementary
identity

Te•(z) = Se•+(z)×muSe•−(z) (2.71)

which of course can also be directly derived from the definitions (2.29)
paired with (2.59)-(2.62). But we get an interesting extra – namely,
that the moulds Tee•ω of (2.63) and (2.64) coincide with those defined
in the preceding subsection. If we now interpret the resurgence equations
(2.63)-(2.68) in the convolutive model, we get an alternative expression

37 We drop the tilde for simplicity.

38 Taa•ω is alternal, while
∑
Tee•ω e−ωz (respectively

∑
Too•ω e−ωz ) is elternel (respectively olter-

nol).
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of Tee•ω, Taa
•
ω, Too

•
ω as finite integrals in the ζ -plane, which translate, af-

ter some work, into fast-convergent power series. This will stand us in
good stead in the divergent and above all in the ramified cases. But we
must first devote a short aside to the question of parity.

Parity aspects. There is something slightly incongruous about the for-
mulae (2.65)-(2.68): they express the monics Taa•ω, Too

•
ω, which separate

parity, in terms of monomials Sa•(z), So•(z), which do not. To remove
this blemish, let us replace them by parity-separating monomials Sa•(z),
So•(z):

S̃a
•
(z) = S̃a

•
(z)× 2 (1• + eJ

•(z))−1 (2.72)

S̃o
•
(z) = S̃o

•
(z)× (1• − 1

2
J •(z)) (2.73)

with Js1(z) := z−s1 and Js1,...,sr (z) := 0 if r �= 1.
In the case of S̃o

•
, we get the bonus of a simple induction

S̃o
•
(z) := H(∂)

(̃
So

•
(z)× J •(z)

)
with (2.74)

H(∂) := e∂

1− e∂
+ 1

2
= 1

2

1+ e∂

1− e∂
= −1

2
cotan

(
∂

2

)
. (2.75)

Since the right factors in (2.72)-(2.73) are convergent, the new monomi-
als verify the same resurgence equations as the old ones, with the same
resurgence constants:

±2π i �ω Sa
•(z) = Taa•ω × Sa•(z) (∀ω ∈ �± = 2π iZ±) (2.76)

±2π i �ω So
•(z) = Taa•ω × So•(z) (∀ω ∈ �± = 2π iZ±). (2.77)

Remark. Our new monomials may separate parity and generate the re-
quired monics, but they no longer belong to the clear-cut symmetry types
symmetral/symmetrol, a fact that is reflected in the unusual form of their
multiplicative inverses:

muS̃a
•
(z) =

(
cosh(J •(z))

)−2 × anti.S̃a•(z) ◦ (−Id•) (2.78)

muS̃o
•
(z) =

(
1• − 1

4
J •(z)× J •(z)

)
× anti.S̃o•(z) ◦ (−Id•) (2.79)

If we now ask for monomials that separate parity and possess the ex-
act symmetries and produce the right monics, we can have that, too, by
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setting:

varS̃e
•
(z):=S̃e•(z)×(

1• + J•(z)
) 1
2

varS̃a
•
(z):=S̃e•(z)×

(
2 tanh

(
1

2
J •(z)

))
= S̃a

•
(z)×cosh( J •(z))−1

varS̃o
•
(z):=S̃e•(z)×

(
J •(z)

1• − 1
2 J

•(z)

)
= S̃o•(z)×

(
1•− 1

2
J •(z)× J •(z)

)1
2

.

These variants still verify the resurgence equations (2.76)-(2.77). More-
over:

varSes1,...,sr+ (−z)≡(−1)s1+···+sr varSesr ,...,s1− (−z) and varSe• symmetrel
varSas1,...,sr+ (−z)≡(−1)s1+···+sr varSasr ,...,s1− (−z) and varSa• symmetral
varSos1,...,sr+ (−z)≡(−1)s1+···+sr varSosr ,...,s1− (−z) and varSo• symmetrol
Polylogarithmic monomials. We recall the inductive definition of the
polylogarithmic monomials Ṽ•(z) (symmetral) and monics V • (alternal),
whose proper province is the study of singular, resurgence-inducing
ODEs:

−(∂z + ω1 + · · · + ωr ) Ṽ ω1,...,ωr (z) = Ṽ ω1,...,ωr−1(z) z−1 (2.80)

�ω0 Ṽ ω1,...,ωr (z) =
∑

ω1+···+ωi=ω0
V ω1,...,ωi Ṽ ωi+1,...,ωr (z) (2.81)

We also require the (apparently) more general monomials V•
H(z), defined

by a similar induction:

−(∂z+‖•‖) Ṽ•
H(z) = Ṽ•

H(z)×H•(z)
(Hω(z) ∈ z−1C{z−1}) (2.82)

relative to any alternalmouldH•(z)with values in the ring of convergent
power series of z−1 (without constant term). Modulo convergent series of
z−1, the mould Ṽ•

H(z) actually reduces to Ṽ•(z), thanks to the formula:

Ṽ•
H(z)=(Ṽ•(z) ◦ L•

H)× L•
H(z) with L

ω
H∈C , Lω

H(z)∈ z−1C{z−1} (2.83)
with an alternal, scalar-valued mould L•

H and a symmetral, convergent-
valued mould L•

H(z). Both L
•
H and L•

H(z) are defined by the joint induc-
tion:

Lω
H =

ω2 �=∅∑
ω1ω2=ω

(L̂ω1

H ∗ Ĥω2)(|ω|)−
ω1,ω2 �=∅∑
ω1ω2=ω

Lω1

H .(1 ∗ L̂ω2

H )(|ω|) (2.84)

−(∂z + ‖•‖)L•
H(z) = L•

H(z)×H•(z)− z−1L•
H × L•

H(z). (2.85)
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The first relation, (2.84), expresses the constant Lω
H in terms of earlier

(shorter) mould components. The second relation,(2.85), when inter-
preted in the convolutive model, says that (ζ − |ω|)L̂ω

H(ζ ) is equal to
an entire function Êω(ζ ) which, due to (2.84), vanishes for ζ = |ω|. So
L̂ω
H(ζ ), too, is an entire function with at most exponential growth, and
that makes Lω

H(z) a convergent power series of z
−1. The resurgence con-

stants V •
H associated with Ṽ•

H(z) also reduce to the polylogarithmic mon-
ics V •, since Ṽω

H(z), owing to (2.83), verifies the following resurgence
equations:

�ω0 Ṽ ω1,...,ωr
H (z) =

∑
ω1+···+ωi=ω0

V ω1,...,ωi
H Ṽ ωi+1,...,ωr

H (z) (2.86)

with V •
H = V • ◦ L•

H

Multizetaic monomials in terms of polylogarithmic monomials. From what
precedes and from the decomposition

e−ζ

1− e−ζ
+ 1

2
= H(−ζ ) =

ω∈2π iZ∑
|ω|≤ρ

1

ζ + ω
+ Hρ(−ζ ) (∀ρ > 0) (2.87)

we can see that, for |ζ |, |ω| < ρ, the monomials Ŝe
s
(ζ ), Ŝa

s
(ζ ), Ŝo

s
(ζ ),

and the monics Teesω,Taa
s
ω,Too

s
ω that go with them, can be expressed as

finite sums of three ingredients:

(i) classical monomials V̂ω(ζ ) and monics V ω(ζ ) indexed by se-
quences ω that are ρ-small, i.e. such that |ω1| ≤ ρ, |ω2| ≤ ρ

for all factorisation ω = ω1.ω2;
(ii) functions of type L̂ω

H(ζ ) which, though not entire, are holomorphic
on the disk |ζ | ≤ ρ;

(iii) the companion monics Lω
H.

Altogether, this results in an effective procedure for calculating the mon-
ics Teesω,Taa

s
ω,Too

s
ω, with a guaranteed geometric rate of convergence

which, moreover, can be arbitrarily improved by taking ρ large (albeit at
the cost of increasing the number of summands).

2.5 The non-standard case (ρ �= 0). Normalisation

If we now drop the condition that ensured convergence, namely s1, sr �=
1, and yet insist on retaining all properties and symmetries of our moulds,
we must do two things to our infinite series: truncate them and correct
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them. Concretely, we must set

Te•(z) := lim
k→∞Te

•
k(z) := lim

k→∞ mucoSe•k × doTe•k(z)× coSe•k
Se•±(z) := lim

k→∞Se
•
k,±(z) := lim

k→∞ mucoSe•k × doSe•k,±(z)
muSe•±(z) := lim

k→∞muSe
•
k,±(z) := lim

k→∞ mudoSe•k,±(z)× coSe•k .

Here, the symmetrel dominant factors Te•, doSe•k,±, mudoSe
•
k,± are de-

fined as in (2.29) and (2.55)-(2.58) but with sums truncated at±k instead
of ±∞. Thus
doTes1,...,srk (z) :=

∑
−k≤nr<...<n1≤k

(nr + z)−sr . . . (n1 + z)−s1 (∀si). (2.88)

As for the symmetrel, z-constant corrective factors coSe•k± and invcoSe
•
k±,

their definition reduces to

coSes1,...,srk := ( c + log k )r
r ! if (s1, ..., sr ) = (1, ..., 1) (2.89)

mucoSes1,...,srk := (−c − log k)r
r ! if (s1, ..., sr ) = (1, ..., 1) (2.90)

coSes1,...,srk =mucoSes1,...,srk := 0 if (s1, ..., sr ) �=(1, ..., 1). (2.91)

In the formal model, the resurgent-valued moulds S̃e
•
andmuS̃e

•
are still

uniquely defined by the induction (2.50) together with the condition

S̃e
s
(z) , muS̃e

s
(z) ∈ Q[[z−1]] ⊗Q[(c+ log z)] .− Q (∀s �= ∅). (2.92)

The normalising condition, in other words, is that S̃e
s
(z) and muS̃e

s
(z),

as formal series in z−1 and polynomials in the bloc (c+log z), should
have no constant term.
In the sectorial models, the c-normalisation implies:

Se

r times︷ ︸︸ ︷
1, ..., 1
± (0) = (γ − c)r

r ! ; muSe

r times︷ ︸︸ ︷
1, ..., 1
± (0) = (c − γ )r

r ! (2.93)

with

γ = lim
k→∞

(
1+ 1

2
+...+ 1

k
− log k

)
=0.577215...=Euler constant. (2.94)

For multitangents, we may still formally apply the procedure (2.40)-
(2.41) of Section 2.3 to reduce them into combinations of monotangents
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and multizetas, but this time we are liable to get formally divergent mul-
tizetas. The c-normalisation then amounts to setting ζ(1) = ze1 := γ − c
and to adopting for all divergent multizetas39 the unique symmetrel ex-
tension compatible with that initial choice.40

There are two natural choices for the normalisation constant c :
(i) Either we set c = 0, in which case we eschew γ in the formal model
but at the cost of introducing it in the convolutive and sectorial models. It
also complicates the definition of the multitangents and multizetas, since
it forces us to set ze1 = γ , which however is not entirely unnatural, in
view of the formula

σ �(σ) = exp

(
−γ σ +

∑
2≤n

(−1)n ζ(n)
n

σ n

)
(2.95)

(ii) Or we set c = γ , which forcibly introduces γ into the formal model
but rids us of it everywhere else, including in the definition of multitan-
gents and multizetas, since it amounts to setting ze1 = 0. This shall be
our preferred choice.

2.6 The ramified case (p > 1) and the localisation constraints

For diffeos f of tangency order p > 1, the prepared form (1.2) becomes
a power series of z−1/p. This inevitably leads to moulds whose indices si
(the weights) are no longer inN∗ but in p−1N∗ or even, in some instances,
in p−1Z∗.
Most results, starting with the symmetry relations, carry over to that

case, but with three significant changes:

(i) The finite reduction of multitangents into monotangents and multi-
zetas breaks down,

(ii) The Fourier coefficients Teesω, Taa
s
ω, Too

s
ω, which are the direct in-

gredients of the invariants Aω( f ), cease to be expressible as finite
sums of multizetas (even ramified ones).

(iii) The formulae (2.40)-(2.41) still make formal sense but lead to ex-
pansions which are not only infinite but also divergent. When prop-
erly re-summed, they yield the correct expressions, but from the
point of view of calculational expediency, this approach is worth-
less. Of course, straightforward Fourier analysis in the upper and

39 I.e. for all multizetas with initial index s1 = 1.

40 Thus ze1,1 := − 1
2 ze

2+ 1
2 (γ − c)2 , ze1,2 := −ze2,1− ze3+ (γ − c) ze2 etc. There exist simple

formulae for calculating the symmetrel extension of all multizetas relative to any given choice of
ze1.
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lower halves of the z-plane would yield the coefficients Teesω, Taa
s
ω,

Toosω, but not in the form of nice convergent series, and again at
great cost.

The resurgence approach of Section 2.4 and Section 2-5, on the other
hand, survives ramification without any modification. When pursued to
the end, this approach even leads to some sort of functional equation for
multizetas, that is to say, to something vaguely resembling the classical
relation between ζ(s) and ζ(1−s).
However, the presence of ramifications makes it advisable to rotate our

multitangents and monomials, so that we may handle functions which (as
far as the index symmetries permit) assume real values on the main real
half-axis. Thus, instead of Te•, S̃e• etc, we shall consider:

Tehs1,...,sr (z) :=
(
1

i

)s1+···+sr
Tes1,...,sr

( z
i

)
(2.96)

S̃eh
s1,...,sr

(z) :=
(
1

i

)s1+···+sr
S̃e

s1,...,sr
( z
i

)
. (2.97)

No finite reduction to monotangents. If we consider the equation (2.63)
for r=1 but with s1 in Q+ and interpret it correctly in the Borel plane,
we see that the familiar formula (2.45) for the Fourier coefficients of
monotangents transposes (taking the π/2-rotation into account) to the
fractional case:

Tehs1(z) =
∑

ω∈2πN

Tehs1ω with Tehs1ω = 2π
ωs1−1

�(s1)
. (2.98)

So the product41 Tehs1Tehs2 ≡ Tehs1,s2 + Tehs2,s1 + Tehs1+s2 has Fourier
coefficients of the form

Tehs1,s2ω + Tehs2,s1ω + Tehs1+s2ω = (2π)s1+s2

�(s1)�(s2)

ω=2πn∑
n1+n2=n

ns1−11 ns2−12 (2.99)

and this makes it obvious that Tehs1,s2 and Tehs2,s1 cannot simultaneously
be finite sums of monotangents Tehs .

41 Since symmetrelity survives ramification.
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SingTeh• still determines Teh• but in a completely new way. For n →
+∞, the right-hand side of (2.99) can be shown to possess a divergent
but n-resurgent and Borel resummable asymptotic expansion of the form
ns1+s2−1

∑
cs n−s (s ∈ Q+).

More generally, by adapting the argument leading to (2.40), one can
easily calculate the ramified Laurent series of any multitangent Tehs:

Tehs(z)= SingTehs(z)+ RegTehs(z) =
−|s|≤ν∑
ν∈N

θ sν z
ν +

−|s|≤ν∑
ν∈Q−N

θ sν z
ν (2.100)

with its multizetaic coefficients θ sν . As in the non-ramified case, Teh
s is

still completely determined by its singular part SingTehs. We may even,
if we so wish, derive from the singular part of (2.100) a formal reduction
of Tehs into monotangents:

Tehs(z)=
−∞<σ≤|s|∑
σ∈Q−N

τ sσ Teh
σ (z) with τ sσ := θ s−σ (2.101)

but the series defined in this way will be, generally speaking, everywhere
divergent, even if we take care to correctly define, as in (2.108) infra, the
monotangents Tehs1(z) with index s1 ∈ (1,−∞). If we now attempt to
calculate the Fourier coefficient of a general multitangent:

Tehs1,...,sr (z) =:
∑

ω∈2πN∗
Tehs1,...,srω e−ω z (2.102)

by identifying the Fourier coefficients on both sides of (2.101) and taking
(2.98) into account:

Tehsω =
−∞<σ≤|s|∑
σ∈Q−N

τ sσ Teh
σ
ω = 2π

−∞<σ≤|s|∑
σ∈Q−N

τ sσ
ωσ−1

�(σ)

= −2
−|s|<ν<+∞∑
−ν∈Q−N

θ sν �(1+ν) sin(πν) ω−ν−1 (2.103)

what we get on the right-hand side is again a divergent expansion, which
is ω-resurgent and Borel resummable. But Borel resummation in the
present instance amounts to calculating the following loop integral:

Tehs1,...,srω = 1

i

∮ −∞+εi

−∞−εi
Tehs1,...,sr(z) eω z dz (2.104)

= 1

i

∮ −∞+εi

−∞−εi
SingTehs1,...,sr(z) eω z dz (2.105)
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with an integration path connecting −∞ − ε i to −∞ + ε i and having
as its middle part a small half-circle{|z| = ε,0z > 0} centered at the
origin 0• and located in the main positive half-plane. This is indeed the
proper procedure for retrieving the Fourier coefficients of Tehs(z) from
the singular part SingTehs(z).

The ramified localisation constraints. Defining the formal multitangent-
to-monotangent reduction as in (2.101), we get the reduction constraints:

Tehs
1
(z).Tehs

2
(z)

reduction−→ (
∑

τ s
1

s1
Tehs1(z)).(

∑
τ s

2

s2
Tehs2(z))

↓linearisation ↓linearisation∑
ε
s1,s2

s3
Tehs

3
(z)

reduction−→ ∑
ε
s1,s2

s3
τ s

3

s3
Tehs3(z) = ∑

τ s
1

s1
τ s

2

s2
εs1,s2s3

Tehs3(z)

with elementary, integer-valued coefficients εs
i ,s j

sk
and coefficients τ s

i

s j that

are finite, homogeneous sums of multizetas of total weight ‖si‖−si−1.
Although the multitangent expansions diverge, by equating (in the right-
lower corner) the coefficients in front of each Tehs3(z) we get a system of
finite relations between multizetas.
Using instead the (locally convergent) expansions at z = 0, we get the

localisation constraints, which are only seemingly more general than the
reduction constraints:

Tehs
1
(z).Tehs

2
(z)

localisation−→ (
∑

θ s
1

ν1
zν1).(

∑
θ s

2

ν2
zν2)

↓linearisation ↓linearisation∑
ε
s1,s2

s3
Tehs

3
(z)

localisation−→ ∑
ε
s1,s2

s3
θ s

3

ν3
zν3 = ∑

θ s
1

ν1
θ s

2

ν2
zν1+ν2

Here, the coefficients θ s
i

n j are finite, homogeneous sums of multizetas of

total weight ‖si‖ + n j .
Lastly, for the Fourier coefficients Teh•ω (these monics, we recall, are

the direct ingredients of the holomorphic invariants Aω( f )) we get the
following system of constraints:

Tehs
1
(z).Tehs

2
(z)

Fourier−→ (
∑
Tehs

1

ω1
e−ω1 z).(

∑
Tehs

2

ω2
e−ω2 z)

↓linearisation ↓linearisation∑
ε
s1,s2

s3
Tehs

3
(z)

Fourier−→∑
ε
s1,s2

s3
Tehs

3

ω3
e−ω3 z= ∑

Tehs
1

ω1
Tehs

2

ω2
e−(ω1+ω2)z.

2.7 Meromorphic s-continuation of Sehs and Tehs etc.

The whole subject of s-continuation, being simply incidental to our in-
vestigation, shall receive only a sketchy treatment.
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Meromorphic s-continuation of the multizetas zes. There exist various
ways of proving the existence of a meromorphic continuation of zes1,...,sr

to the whole of Cr , with a singularity locus confined to the hyperplanes
∪i,n{s1+ · · · + si ∈ i − n} (n ∈ N). One of them relies on the convergent
expansions

zes1,...,si ,...,sr = −
∑
ki≥1

�(ki+si)
(ki+1)!�(si) ze

s1,...,si+ki ,...,sr

+ 1

si−1 ze
s1,...,si+si+1−1,...,sr (2.106)

−
∑
ki≥−1

�(ki+si)
(ki+1)!�(si) ze

s1,...,si−1+si+ki ,...,sr

valid for 1 < i < r , and with slight modifications for i = 1 or i = r as
well. The expansion (2.107) in turn results from plugging the identity

n−sii =
∑
ki≥0

�(ki+si)
ki !�(si) (1+ni)

−si−ki

into the definition of zes1,...,si ,...,sr or rather zes1,...,si−1,...,sr .
Similar expansions hold for zas and zos, of course, but here the parity

properties have the effect of ‘halving’ the number of hyperplanes in the
singularity locus.
The multiresidues at singular points s ∈ Zr are simple combinations

of convergent multizetas with indices s′ ∈ Nr ′ . The more negative com-
ponents si in s, the smaller the depths r ′ of the convergent multizetas
contributing to the multiresidues.

Meromorphic s-continuation of the multitangents Tehs(z). The s-contin-
uation of multitangents proceeds on the same lines as that of multizetas.
The main difference is the persistence, for multitangents, of convergent
‘polar’ expansions that rely on convergence-restoring corrections [. . . ]−sK .
For any integer K we set:[
z ± i n

]−s
K
=

∑
0≤k≤K

(±i)k e∓ 1
2π is

�(k+s)
k!�(s) n−s−k zk (0<n, 0<0z)

[
z
]−s
K

=
∑
0≤k≤K

2 (±i)k cos
(
1

2
π is

)
�(k+s)
k!�(s) ζ(s+k) zk . (2.107)

For s ∈ C − Z−, the monotangents admit ‘polar’ expansions of the form

Tehs(z) =
∑
n∈Z

(
(z + i n)−s − [

z ± i n
]−s
K

)
(0(s)+ K > 2) (2.108)
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There exist exact analogues for the multitangents.

Meromorphic s-continuation of the monomials Sehs(z). In the convolu-
tive model (hence in the other models as well), the s-continuation of the
monomials Sehs(z) presents no difficulty, and provides an alternative ap-
proach to the s-continuation of the multizetas and multitangents, since
the latter can be derived from the monomials Sehs(z).

The closest thing to a reflection equation for multizetas. Let us start for
orientation with depth one, i.e. with ordinary zetas. Calculating the Lau-
rent expansion of Tehs(z) at z = 0, and assuming 0(s) > 1, we find:

Tehs(z) := z−s + 2 ζ(s) cos
(π
2
s
)
+ o(1) . (2.109)

Due to (2.108), this also extends to all regular values of s, with the only
difference that when 0(s) < 0 the term z−s is absorbed by o(1). On the
other hand, starting from the Fourier expansion of Tehs(z) and assuming
0(s) < 0, s �∈ −N, we find

Tehs(z) := 2π
∑
0<n

(2πn)s−1

�(s)
e−2πnz = (2π)s

ζ(1− s)

�(s)
+ o(1). (2.110)

Comparing (2.109) and (2.110) for 0(s) < 0, we recover the classical
reflection equation for the Riemann zeta function:

2 ζ(s) cos
(π
2
s
)
= (2π)s

ζ(1−s)
�(s)

⇐⇒ ζ(s) = 2s π s−1 sin
(π
2
s
)
�(1−s) ζ(1−s).

To find out if something of that reflection equation survives at depth r ≥
2, let us fix a sequence s = (s1, . . . , sr ) with 0(si) < 0 and all partial
sums s1+· · ·+si , si+· · ·+sr not in Z, and let us exploit the commutative
diagram:

Tehs(z)
reduction−→ singTehs(z)
↘ ↓

regTehs(z).

The leading term of the Laurent expansion of Tehs(z) at z = 0 is:

Tehs(z) =
∑

s′ s′′ = s

e
π i
2 (|s′′|−|s′|) zes

′
vizes

′′ + o(1) (2.111)
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with vizes1,...,sr := zesr ,...,s1 . As for the purely singular part
∑
csz−s of that

same Laurent exp[ansion, it yields the formal, infinite, monotangential
expansion

∑
csTeh

s(z) of Tehs(z):

Tehs(z)
formally=

0≤ni∈N∑
si si s

i = s

Tehsi−ni (z) Ze s
i , ni , s

i
. (2.112)

The scalars Ze s
i , ni , s

i
are here finite, homogeneous superposition of mul-

tizetas of total weight ni − |si |− |si | = ni + si − |s|. All monotangents
Tehsi−ni (z) having indices of negative real part, they tend to known con-
stants as z goes to 0:

Tehs(z)
formally=

0≤ni∈N∑
si si s

i = s

(2π)si−ni
ζ(1+ni−si)
�(si−ni) Ze s

i , ni , s
i+ o(1). (2.113)

Finally, formally equating (2.111) and (2.113), we get:∑
s′s′′ = s

e
π i
2 (|s′′|−|s′|)zes

′
vizes

′′≈
0≤ni∈N∑
si si s

i = s

(2π)si−ni
ζ(1+ni−si)
�(si−ni) Ze s

i , ni , s
i
. (2.114)

The finitely many multizetas on the left-hand side all carry indices with
negative real parts, and two of them (zes and vises) are exactly of depth r .
On the right-hand side, all but a finite number of multizetas carry indices
with positive real parts, and all are of depth < r .
This, sadly, is the closest thing we can get, with this approach, to a

reflection identity for multizetas. Note that the expansion on the right-
hand side of (2.114) is divergent, but Borel resummable when viewed as
a series in negative powers of the ‘variable’ t := 2π .
Ultimately, the obstruction to finding a satisfactory reflection formula

is the non-existence of a multivariate, symmetrel Poisson formula. The
fact is that the Fourier transform of the symmetrel Poisson distribution
De•

Dex1,...,xr :=
∑

−∞<n1<···<nr<+∞
δ(x1−n1) . . . δ(xr−nr ) (δ=Dirac) (2.115)

not only differs from De•, but is not even an atomic distribution.

3 Collectors and connectors in terms of f

3.1 Operator relations

We begin with identity-tangent germs f in the standard class (p, ρ) =
(1, 0), i.e. of the form f = l◦g, with the unit shift l(z) = z+1 and a germ
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g(z) = z+g(z) = z+O(z−2)which may be viewed as a perturbation. This
is an invitation to expand everything (collectors, connectors, invariants)
in series with a 1-linear, 2-linear, etc, part in g or, more conveniently, in
the corresponding operator G := G−1.
The iterator f ∗ is characterised by the germ identities f ∗ = l−1 ◦ f ∗ ◦

f ≡ l−1 ◦ f ∗ ◦ l ◦ g which in order-reversing operator notation42 read:
F∗ = G F∗

:1 with F∗
:1 := L F∗L−1. (3.1)

To solve (3.1) while respecting the symmetry between f, g and f −1, g−1,
we take as our basic ‘infinitesimals’ the following operators

G+
:n := Ln.(G − 1).L−n (ni ∈ Z) (3.2)

G−
:n := Ln.(G−1− 1).L−n (ni ∈ Z). (3.3)

With the notations of Section 1.2, this leads straightaway to simple formal
expansions for the iterators

F∗
+ = 1+

∑
1≤r

∑
0≤nr<...<n1

G+
:nr . . .G

+
:n1 (ni ∈ Z) (3.4)

F∗
− = 1+

∑
1≤r

∑
n1<...<nr<0

G−
:nr . . .G

−
:n1 (ni ∈ Z) (3.5)

∗F+ = 1+
∑
1≤r

∑
0≤n1<...<nr

G−
:nr . . .G

−
:n1 (ni ∈ Z) (3.6)

∗F− = 1+
∑
1≤r

∑
nr<...<n1<0

G+
:nr . . .G

+
:n1 (ni ∈ Z). (3.7)

These formulae, in turn, combine to produce new expansions which, de-
pending on how we analyse them (- whether in terms of multitangents
or Fourier series -) shall yield the collectors P or the connectors � in
operator form:

P+ ≈ �+ := ∗F−.F
∗
+=1+

∑
1≤r

∑
nr<...<n1

G+
:nr . . .G

+
:n1 (ni ∈ Z) (3.8)

P− ≈ �− := ∗F+.F
∗
−=1+

∑
1≤r

∑
n1<...<nr

G−
:nr . . .G

−
:n1 (ni ∈ Z). (3.9)

For standard diffeos f , the above expansions for F∗,∗F (respectively
�±1 ) are easily shown to converge when they are made to act on test

42 To diffeos f, g... we associate the operators F,G... of postcomposition by f, g...
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functions that are defined on suitably extended U-shaped domains (re-
spectively on suitably distant half-planes |)(z)| � 1). See Section 7.2.
But at this stage we do not have to worry about convergence: we shall
provisionnaly (up to Section 6 inclusively) regard our connectors and col-
lectors as generating functions that carry, in conveniently compact form,
the various k-linear contributions43. Each k-linear contribution unprob-
lematically converges, and for the moment this is all we require.
The real challenge is to extract from these expansions (- first in the

standard, then in the general case -) theoretically appealing, analytically
transparent, and computationally manageable expressions for (in that or-
der) the collectors, connectors, and invariants.

3.2 The direct scheme: from g to p

To break down the expansions (3.8)-(3.9) into sums of multitangents, we
require scalar coefficients �n± that can be collectively defined by the gen-
erating function:[

G±
: c−1r . . .G±

: c−11
.z

]
z=0

=:
∑

�
n1,...,nr± cn11 . . . cnrr (3.10)

with G±
:c−1 =

∑
1≤k

1

k!
(
g±1(z + c−1)− (z + c−1)

)k
∂kz . (3.11)

The collectors then read:

p+(z) = z +
∑
1≤r

∑
ni

�
n1,...,nr+ Ten1,...,nr (z) (3.12)

p−(z) = z +
∑
1≤r

∑
ni

�
nr ,...,n1− Ten1,...,nr (z) (3.13)

with an order reversal between (3.10) and (3.12) that reflects the order
reversal between (3.8) and (3.9).
Let us give an alternative, more analytical expansion. We first set

1

n!
(
g(z)− z

)n=:
∑
2n≤s

g+n,s z
−s+1 ,

1

n!
(
g−1(z)− z

)n=:
∑
2n≤s

g−n,s z
−s+1

Next, to account for the action of the derivation operators ∂z implicit
in the definition of the substitution operators G±

:n , we require integers δ••

43 k-linear, that is, in the ‘perturbation’ g or its coefficients gn
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defined by44∑
∑
(ni−li )=1

δ l1,..., lrn1,...,nr
xl11 . . . x

lr
r ≡ xn21 (x1+x2)n3 . . . (x1+· · · + xr−1)nr (3.14)

Letting the operators on both sides of (3.8) respectively (3.9) act on the
test function z, and collecting all r-linear summands, we find the sought-
after expansions for the collectors p±:

p+(z)=z+
∑
1≤r

ni+li≤si∑
0≤li
1≤ni

(−1)n−1δ l1,..., lrn1,...,nr
Tes1,...,sr (z)

∏
1≤i≤r

(si−1)! g+ni ,si−li+1
(si−li−1)! (3.15)

p−(z)=z+
∑
1≤r

ni+li≤si∑
0≤li
1≤ni

(−1)n−1δ l1,..., lrn1,...,nr
Tesr ,...,s1(z)

∏
1≤i≤r

(si−1)! g−ni ,si−li+1
(si−li−1)! (3.16)

with n := n1 + ...nr .

3.3 The affiliate-based scheme: from g♦ to p♦

We shall now express the general affiliate p♦ of p in terms of the corre-
sponding affiliate g♦ of g – not so much for the sake of p♦, but to prepare
for the specialisations g∗ (generator) and g�, g�� (mediators), and to show
what is so special about these three cases.
The first step is to take our stand on the trivial affiliate - p itself - and

to observe that after re-indexation, (3.8) may be re-written as

�+ =
∑
1≤r

∑
ni∈Z

On1,...,nrG+
:n1 . . .G

+
:nr (3.17)

with �+ := �+ − 1 , G+ := G+ − 1 , G+
:n := Ln G+ L−n and

with an elementary ‘ordering mould’ O•, clearly of symmetrel type:

On1 :=1 , On1,...,nr :=1 if n1<. . .<nr resp. :=0 otherwise. (3.18)
Let us show that for any γ (t) = t + ∑

γr tr+1, an expansion exactly
analogous to (3.17) holds for the corresponding affiliates

�♦ =
∑
1≤r

∑
ni∈Z

O
n1,...,nr
♦ G♦:n1 . . .G♦:nr (3.19)

44 For r = 1, one should of course take δ01 := 1 and δ
l1
n1 := 0 if ( l1n1 ) �= (

0
1 ). The presence of n1, xr

on the left-hand side and their absence on the right-hand side is no oversight. It simply implies that

δ
l1,..., lr
n1,...,nr = 0 when n1 �= 1 or lr �= 0. If one finds (3.14) confusing, one should think of it as∑
δ
l1,l2,..., lr−1, 0
1, n2,...,nr−1,nr x

l1
1 . . . x

lr−1
r−1 ≡ x

n2
1 (x1+x2)n3 . . . (x1+. . . xr−1)nr .
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with
�♦ := γ (�) = γ (� − 1) ,
G♦ := γ (G) = γ (G − 1) ,
G♦:n := Ln.G♦.L−n

and with a suitable variant O•
♦ of the ordering mouldO• :

O•
♦ := γ (Id•) ◦ O• ◦̈ γ−1(Id•)

O•
♦ is derived fromO• by ordidary pre-composition by γ (Id•) and modi-

fied post-composition by γ−1(Id•). See (3.20) below. The order in which
these two operations are performed does not matter. The formula for
◦̈-composition is patterned on the formula (2.1) for ◦-composition:

C• = A• ◦̈ B• ⇐⇒ Cω =
ωi monoindicial∑

ω1...ωs=ω

A
〈
ω1

〉
,...,

〈
ωs

〉
Bω1 . . . Bωs (3.20)

except that the sum on the right-hand side of (3.20) extends only to those
factorisations of ω that involve mono-indicial factor sequences ωi , i.e.
factor sequences consisting each of one index ωi repeated ri times. And〈
ωi

〉 := (ωi) denotes that same factor sequence collapsed to its one index.
Thus we get:

C3,3,3,5 = A3,3,3,5B3B3B3B5 + A3,3,5B3,3B3B5

+ A3,3,5B3B3,3B5 + A3,5B3,3,3B5.

The last missing items are the multitangents Tee•♦ and the corresponding
structure coefficients. The former are defined by:

Tee•♦ = γ (Id•) ◦ Tee• ◦ δ(Id•) (γ ◦ δ = id) (3.21)

The latter are given by the generating series:[
G♦, c−1r . . .G♦, c−11 . z

]
z=0

=:
∑

�
n1,...,nr
♦ cn11 . . . cnrr (3.22)

where G♦, c−1 denotes the translated γ -affiliate of G:

G♦, c−1 :=
∑
1≤r

∑
1≤ni

♦n1,...,nr gn1♦ (z + c−1)
∂n1

n1! . . . g
nr
♦ (z + c−1)

∂nr

nr ! . (3.23)

See Section 1.3 and Section 3.2 and recall that ♦1 = 1 and ♦n1,...,nr = 0
if 1 < r and nr = 1. We are now in a position to expand p♦ in series of
multitangents Tee♦:

p♦(z) = z +
∑
1≤r

∑
ni

�
n1,...,nr
♦ Teen1,...,nr♦ (z) (3.24)
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Short proof: One should compare step by step the derivation of (3.24)
with that of the expansion (3.8) for p+. The key point here is that chang-
ing from operators to multitangents changes ◦̈ to ◦. Indeed, in a sum of
the form∑

ni∈Z

Cn1,...,nr (z + n1)
−σ1 . . . (z + nr )

−σr with C• := A•◦̈B• (3.25)

any contribution to Cn of the form A
〈
n1

〉
,...,

〈
nt

〉
Bn

1
. . . Bn

t
, with monoindi-

cial factor sequences nk consisting of identical indices nk , will contract
to ∏

1≤k≤t

∏
ni∈nk

(z + ni)
−si =

∏
1≤k≤t

(z + nk)
−∑

ni∈nk si (3.26)

3.4 Parity separation and affiliate selection

The relative complexity of g♦ counts for nothing. What matters is

(i) to get Tee•♦ and the corresponding expansions for p as simple as
possible;

(ii) to pick parity-respecting affiliates: (g−1)♦ ≡ −g♦ , (p−1)♦ ≡
−p♦.

We already know three parity-respecting affiliates:

γ0(t) = log(1+ t) (infinitesimal generator), (3.27)

γ1(t) = t
1+ 1

2 t
, (first mediator) (3.28)

γ2(t) = (1+t)2−1
(1+t)2+1 (second mediator) (3.29)

and the general parity-respecting affiliate obviously corresponds to func-
tions of the form γ = hi ◦ γi (0 ≤ i ≤ 2) with hi odd. So the task
now is to select one of those γ so as to optimise Tee•♦ and in particular
to make the formulae for their symmetrel Te•-linearisation as simple as
possible. But we have already suggested in Section 2.3 and we shall show
more conclusiveely in Section 5.4 that there exist no simpler choices than
γ0, γ1, γ2, with γ1 topping the list, and γ0 coming second. So we shall fo-
cus here on these three choices.

3.5 The generator-based scheme: from g∗ to p∗
Here, the structure coefficients �n∗ are given by the series:[
g∗(z + c−1r ) ∂ . . . g∗(z + c−11 ) ∂ . z

]
z=0

=:
∑

�n1,...,nr∗ cn11 . . . cnrr (3.30)
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The corresponding expansion for p∗ reads:

p∗(z) =
∑
1≤r

∑
ni

�n1,...,nr∗ Taan1,...,nr (z) (3.31)

Like with �•±, one may prefer more analytical variants. These rely on
integers δ• and δ•1 much simpler than the δ

•• of Section 3.2∑
li≥0 ,∑ li=r−1

δl1,...,lr xl11 . . . x
lr
r ≡ x1.(x1 + x2) . . . (x1 + · · · + xr−1) (3.32)∑

li≥0 ,∑ li=r
δ
l1,...,lr
1 xl11 . . . x

lr
r ≡ x1.(x1 + x2) . . . (x1 + · · · + xr ) (3.33)

and of course on the coefficients g∗s of g∗ : g∗(z) = ∑
2≤s g∗s z

1−s .
The corresponding expansion for p∗ and p′∗ read:

p∗(z) =
∑
1≤r

(−1)r−1
∑
0≤li<si

δl1,...,lr Taas1,...,sr (z)
∏
1≤i≤r

(si−1)! g∗si−li+1
(si−li−1)! (3.34)

p′∗(z) =
∑
1≤r

(−1)r
∑
0≤li<si

δ
l1,...,lr
1 Taas1,...,sr (z)

∏
1≤i≤r

(si−1)! g∗si−li+1
(si−li−1)! (3.35)

The second expansion is formally more appealing in that its multitan-
gents Taa• have exactly the same total weight

∑
s j as the accompanying

coefficient clusters. We may note that while it would be possible (though
rather pointless) to produce similar expansions for all derivatives p(n)∗ ,
nothing analogous exists for the indefinite integrals ‘p∗,“p∗. . . .

3.6 The mediator-based scheme: from g�, g�� to p�, p��

The relevant structure coefficients �� are defined in the usual way[
G�, c−1r . . .G�, c−11

. z
]
z=0

=:
∑

�
n1,...,nr
� cn11 . . . cnrr (3.36)

using the translates of the mediator in operator form:

G�, c−1 :=2
( ∑
1≤n odd

(g�(z+c−1))n
2n n! ∂n

)( ∑
0≤n even

(g�(z+c−1))n
2n n! ∂n

)−1
. (3.37)

The corresponding expansion for the collector involves Too• and reads:

p�(z) =
∑
1≤r

∑
ni

�
n1,...,nr
� Toon1,...,nr (z) (3.38)
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Appearance of coloured multitangents and multizetas. Although, as
pointed out in Section 1.8, the resurgence properties of the mediators f�
and g� are completely unrelated (both have distinct critical times and dis-
tinct resurgence constants) and have no bearing on the object of interest
to us, namely p�, a few complements about the very specific resurgence
regimen of mediators, quite different from that of infinitesimal generators
but fairly typical for the behaviour of general affiliates, may not be super-
fluous. The actual resurgence equations were obtained in Section 1.8.
Here, we shall focus on the nature of their resurgence constants Aω and
A
ω
.
The definition of the (first) mediator leads formally to an expansion

F� = 2− 4 (1+ L + G L)−1 (3.39)

= 2− 4 (1+L)−1 − 4 (1+L)−1
∑
1≤r

(−1)r (
GL(1+L)−1)r (3.40)

valid in the formal model and, after the proper transpositions, in the con-
volutive model. In the right sectorial model this becomes:

F�,+ = 2− 4
∑
0≤n0

Ln0 − 4
0≤r∑

0≤nr<...<n1<n0
(−1)r+n0 G:nr . . .G:n1 L

n0 . (3.41)

Note that, due to the rightmost factor Ln0 , this expansion is only superfi-
cially similar to the expansion (3.4) of F∗+. However, applying both sides
of (3.41) to z and using

L (1+ L)−1 . z = 1

2
z + 1

4
, G:n1 L (1+ L)−1 . z = 1

2
G:n1 . z

we get for f�,+an expansion much closer in outward shape to that of
f ∗+(z):

f�,+(z) = 1− 2
1≤r∑

0≤nr<...<n1
(−1)r+n1 G:nr . . .G:n1 . z. (3.42)

Mind the change (−1)r+n0 → (−1)r+n1 from (3.41) to (3.42), which is
correct. If we now consider the limit $�(z) := limn→+∞ f�,+(z − n), we
obtain for $�(z) a formal expansion

$�(z) = −2
1≤r∑

−∞≤nr<...<n1<+∞
(−1)r+n1 G:nr . . .G:n1 . z (3.43)

which, like the expansion (3.8) of�+(z) and for much the same reasons,
is going to converge in the half-planes |)z| > y for y large enough, and
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whose Fourier coefficient are going to give the resurgence constants of
f�. (See Section 1.8). That said, the main difference with (3.8) is not so
much the presence of a factor (−1)r in (3.43), but of the factor (−1)n1 ,
which will be responsible for introducing bi-coloured multitangents and
bi-coloured multizetas: see (6.2) and take ε j ∈ 1

2 Z/Z.
The picture for the second mediator f�� would be quite similar, leading

to $��(z) := limn→+∞ f��,+(z − n) and a periodic expansion

$��(z) = −
1≤r∑

−∞≤nr<...<n1<+∞
(−1)r+n1 GG:nr . . .GG:n1 . z (3.44)

with GG:n := Ln . (G.G − 1) . L−n In any case, we see that while$� and
$�� bear some resemblance to �+, they are completely unrelated to p�
and p��.

3.7 From collectors to connectors

The dichotomy collector/connector. The various objects p♦ constructed
so far in this section have to be simultaneously examined under the view-
point of their f - and z-dependence.
They depend on a germ f = l ◦ g that moves freely within the formal

class (p, ρ) = (1, 0). As such, they are to begin with nothing more
than formal power series in the coefficients gs of g or, equivalently, the
coefficients g♦,s of its affiliates g♦:

p♦(z) =
∑
1≤r

si<si+1∑
si ,ni

∏
1≤i≤r

(g♦,si )
ni T

(
n1
s1

,...,
,...,

nr
sr
)

♦ (z). (3.45)

As functions of z, however, our objects may be viewed

(i) either as collectors (and noted p♦), i.e. as global meromorphic func-
tions defined on the whole of C with all their poles on Z and with
well defined expansions as finite sums of multitangents or, after re-
duction, as sums of monotangents with multizeta coefficients;

(ii) or as connectors (and noted π♦), i.e. as pairs of 1-periodic functions
defined in the upper or lower half-plane and possessing their own
distinct Fourier expansions there.

So far, the distinction between collectors and connectorsmay appear ten-
uous, but it acquires all its significance when, ceasing to regard the f -
dependence as formal, we focus on individual, convergent germs f =
l ◦ g and try to associate with them global z-functions (impossible) or
pairs of periodic z-germs (possible).
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To that end, let us consider the s-truncations truncs.p♦(z) obtained by
retaining in (3.45) the sole terms of global weight45

∑
ni si ≤ s. No-

tice that weight-truncation is intrinsical, in the sense that, in any given
z-chart46, it stays the same whether we choose the natural coefficient sys-
tem {gs, s ≥ 3} or any affiliate-based system {g♦,s, s ≥ 3} .

Divergence of the collectors. When s → +∞, truncs.p♦(z) does not
tend to a global function, irrespective of the choice of affiliation ♦. More-
over, even after finite reduction to monotangents, truncs.p♦(z) does not
converge to an infinite sum (even a formal one) of monotangents. This
may seem surprising, because:

(*) reducing truncs.p♦(z) to a series of montangents
∑

0<σ a
♦
s,σ Te

σ (z)
is the same as taking the negative part

∑
0<σ a

♦
s,σ z

−σ of the Laurent
expansion at z = 0 of truncs.p♦(z);

(**) the Borel transform
∑

0<σ a
♦
s,σ ζ

σ−1/(σ −1)! of that negative part,
when evaluated at the points ζ = 2π in, yields precisely the Fourier
coefficients of the truncated connectors truncs.π♦(z) — and these
Fourier coefficients, as we shall see in a moment, do converge when
s → ∞.

We shall have more to say about this apparent paradox and the reasons
behind it in Section 7, but for the moment let us observe that the only
meaning that can be attached to the limit lims→∞ truncs.p♦(z) is the for-
mal series (3.45) with its individual clusters

∏
i g

ni
♦,si T

(
n
s )(z) kept sepa-

rate.

Convergence of the connectors.
(*) From p to π = (πno,π so):
As s goes to∞ and for K± large enough, truncs.π(z)−z tends uniformly
to a 1-periodic limit πno(z)−z (respectively πso(z)−z) on the upper or
‘northern’ half-plane )z > K+ (respectively on the lower or ‘southern’
half-plane )z < −K−) .

(**) From p♦ to π♦ = (π♦,no,π♦,so):
The affiliate π♦(z) of π being of the form γ (�−1).z, the nth Fourier coef-
ficient of its northern or southern component is a polynomial in the first n

45 The ‘weight’ in question is that of the coefficient clusters. But the weight of the accompanying
multitangents (or, after reduction, of the multizeta-monotangent combinations) differs from the first
only by one unit.

46 But the weight truncation is of course dependent on the choice of z-chart.
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Fourier coefficients of πno or πso. So, as s → ∞, the (convergent) Fourier
series truncs.π♦,no and truncs.π♦,so converge (coefficient-wise)47, to two
formal Fourier series π♦,no and π♦,so. These are generally divergent, but
usually (and definitely so in the case of the generators π∗ or mediators π�,
π��) resurgent and Borel-resummable, with respect to some critical time
of the form z′ := exp(±nπ i z). In any case their Fourier coefficients are
well-defined, and this is all that matters to us at the moment.

More on the dichotomy collector/connector. Despite being very close to
the connectors, the collectors differ from them in two fundamental re-
spects: they are not invariant and they are of one piece.
The non-invariance is fairly obvious when p is taken in its natural

multitangent expansion, but even after monotangent reduction (when at
all it exists), p still remains non-invariant. Indeed, even when a formal
limit

∑
s∈N Te

s(z) exists (it sometimes does, though very exceptionally)
as the truncation goes to infinity, the ‘Borel transform’

∑
s∈N ζ

s−1/(s−1)!
assumes invariant values only when restricted to the set 2πZ∗.
As for being of one piece, this is a property not so much of the col-

lectors as of their constituent multitangents or monotangents, which are
meromorphic over the whole of C, in complete contrast to the connec-
tors, whose northern and southern components are usually completely
unrelated: each one may a priori be anything.

3.8 The ramified case (p > 1)

Everything carries over to the general case, when f ranges though a
general formal class (p, ρ). But when p > 1, we must take f to a
prepared form f = fnorm ◦ g (see (1.2)) with a ramified perturbation
g(z) = z + ∑

gsz1−s and with fractional indexation: s ∈ p−1N∗.
The connectors are of course still invariant, but evenmore ‘fragmented’

than usual: there are now 2 p of them – p northern and p southern ones.
Each of these 2 p periodic germs is unrelated to the others and may a
priori be anything.
As for the collectors, as formal objects they are still of one piece,

but things get more tangled when we regard the truncations trunks .p♦(z)
or the individual clusters T(

n
s )(z) in the ramified equivalent of (3.45) as

global functions on ( ˜C − 2π iZ)p (the p-ramified covering ofC−2π iZ).
The thing is that we can no longer go from one upper-plane determina-
tion to the two neighbouring lower-plane determination by simply cross-

47 Recall that s-truncation is independent of ♦.
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ing the real axis between two consecutive singularities n and n + 1: by
so doing, one would get a wrong determination, dependent on n, and not
even periodic.

3.9 Reflexive and unitary diffeomorphisms

In this section, we find it convenient to switch from the s- or weight-
indexation g(z) = z+∑

gs z1−s to the d- or degree-indexation g(z) =
z+∑

g1+d z−d .
In Section 3.4 we observed that in the expansion (3.34) of p∗, coeffi-

cient clusters
∏
g∗1+di of even (respectively odd) total degree

∑
di ac-

company multitangents Taa• that are even functions with real Fourier
coefficients (respectively odd functions with purely imaginary Fourier
coefficients). As a consequence, there is no simple condition on the co-
efficients g∗1+di of g∗ capable of ensuring that p∗ be odd, whereas three
elementary conditions may ensure that it be even, namely:

(i) all coefficients g∗1+di of odd degree di vanish and those of even
degree are real;

(ii) all coefficients g∗1+di of even degree di vanish and those of odd
degree are purely imaginary;

(iii) all coefficients g∗1+di of even degree di are real and those of odd
degree are purely imaginary.

No special significance attaches to case (ii), but the cases (i) and (iii)
present interesting stability properties, with collectors and connectors in-
heriting the nature of f . This is an incentive for singling out the following
three types of diffeos f whose inverses f −1 either coincide with, or are
analytically conjugate to, the image of f under an elementary involution:

reflexive : f̌ = f −1 || weakly reflexive : f̌
an. cj.∼ f −1

unitary : f̄ = f −1 || weakly unitary : f̄
an. cj.∼ f −1

counitary: ˇ̄f = f −1 || weakly counitary: ˇ̄f an. cj.∼ f −1.

Here, f̄ denotes the complex conjugate of f , and f̌ := σ ◦ f ◦ σ with
σ(z) ≡ −z. Conjugation by τ , with τ(z) ≡ i z, clearly exchanges unitary
and counitary, so that weakly unitary is equivalent to weakly counitary.
Though unitariness seems a more natural notion, we shall work here with
counitariness, which is better adapted to the correspondance f  → π and
enables us to take f in standard form f = l ◦ g.
P1: f is reflexive iff the power series f∗ respectively f ∗ are even respec-

tively odd, in which case f∗±(−z) ≡ f∗∓(z) and f ∗±(−z) ≡ − f ∗∓(z).
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Likewise, f is counitary iff the power series f∗ respectively f ∗ are
of the form f∗re ◦ τ respectively τ−1 ◦ f ∗re ◦ τ with real f∗re , f ∗re, in
which case f̄∗±(−z) ≡ f∗∓(z) and f̄ ∗±(−z) ≡ − f ∗∓(z).

P2: If a standard f is reflexive respectively counitary, then its conju-
gate l+ 1

2 ◦ f ◦ l− 1
2 is of the standard form f = l ◦ g with reflexive

respectively counintary factors l and g := l− 1
2 ◦ f ◦ l− 1

2 .

P3: If f is (weakly or strictly) reflexive respectively counitary, then its
connector π is (strictly) reflexive respectively counitary. This is geo-
metrically obvious, from the relations P1 injected into the definition
(1.6), but the remarkable fact is that the analytical procedure (3.34)
also respects this conservation of reflexivity or counitariness at ev-
ery single step. Thus, if we apply it to the decomposition f = l ◦ g
(as in P2) of a reflexive f , we have to do with an even infinitesimal
generator g∗ that carries only coefficients g∗1+d of even degree d,
and (3.34) automatically produces an even p∗. The diffeo g itself is
of mixed parity, but its coefficients of g∗1+d of odd degree are fully
determined by the earlier coefficients of even degree, and can thus
be used in place of the g∗1+d . Either way, for reflexive diffeos the
calculation of the invariants is a much more pleasant affair than for
general diffeos, due to the drastic reduction in the mass of coeffi-
cients and (provided f be real) to the realness of p∗ and π∗.

P4: Conversely, any reflexive respectively counitary π is the invariant
of some reflexive respectively counitary f . This follows from the
canonical synthesis (see Section 1.4) which, for c real and large
enough, automatically produces diffeos fc of the required type.48

P5: (Reinhard Schäfke). The product or quotient of two reflexive (re-
spectively unitary) diffeomorphisms is obviously conjugate to a re-
flexive (respectively unitary) diffeomorphisms, but the converse is
also true: any weakly reflexive (respectively unitary) f can, for any
consecutive integers n j , be represented as a quotient of two strictly
reflexive (respectively unitary) diffeos f j :

f := f1 ◦ f −12 with

f (z) := z + 1+ o(1), f j (z) := z + n j + o(1), n1 − n2 = 1

48 As pointed out to us by Reinhard Schäfke, this can also be deduced from the bifactorisation of
f in P5 below, provided we admit the existence of a pre-image f for any given π , which fact again
follows from the canonical synthesis, but may also be established more directly.
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and that too with explicit factors f j :

f weakly reflexive || f weakly counitary

f j :=(∗f )◦ ln j ◦ σ ◦ ( f ∗)◦ σ || f j :=(∗f )◦ ln j ◦σ ◦( f̄ ∗)◦ σ (3.46)

= f n j ◦ (∗f ) ◦ σ ◦ ( f ∗)◦ σ || = f n j ◦ (∗f )◦ σ ◦( f̄ ∗) ◦ σ (3.47)
= f n j ◦ h−1 ◦ σ ◦ h ◦ σ || = f n j ◦ h−1 ◦ σ ◦ h̄ ◦ σ (3.48)

Indeed, the equivalent definitions (3.46), (3.47), (3.48) make it clear,
respectively:
– that f1, f2 are reflexive (respectively counitary);
– that f = f1 ◦ f −12 ;
– that f1, f2 are analytic.49

P6: Piecing together all the above, we see that the commutative, non-
associative50 operation mixc:

mixc : (π1,π2)  → π := π f1,c◦ f2,c = π f2,c◦ f1,c (3.49)

(where f j,c stands for the c-canonical pre-image of π j ) respects re-
flexivity and counitariness.

4 Scalar invariants in terms of f

4.1 The invariants Aω as entire functions of f

Let π±
ω and π♦,ω be the Fourier coefficients of the connectors, as defined

in Section 3.5 by weight-wise truncation of the collectors and passage to
the limit:

If +)(z)�1:π±1(z) = z +
∑
ω∈�−

π±
ω e

−ωz ; π♦(z) =
∑
ω∈�−

π♦,ω e−ωz (4.1)

If −)(z)�1:π±1(z) = z +
∑
ω∈�+

π±
ω e

−ωz ; π♦(z) =
∑
ω∈�+

π♦,ω e−ωz (4.2)

The Fourier series for π±(z)−z are convergent, whereas those for π♦(z),
π∗, π� etc are (usually) merely formal. But this makes no difference to

49 The analytic h in (3.48) conjugates the weakly reflexive/counitary f with a strictly reflex-
ive/counitary f0, i.e. h ◦ f = f0 ◦ h. By definition, such a pair h, f0 exists. We may note in
passing that the factorisation f = f1 ◦ f −12 would still hold for complex (in the reflexive case) or
real (in the unitary case) values of n j , but in that case the above formulae break down ( f1, f2 are no
longer analytic) and we must take recourse to another, more involved construction.

50 mixc(π1,π2) is doubly germinal: for a given (π1,π2), it is defined for c large enough, and for a
given c , it is defined for (π1,π2) close enough to (id, id).
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the Fourier coefficients, which are always given by convergent series:

π±
ω = z +

∑
1≤r

∑
ni

�
n1,...,nr± Teen1,...,nrω (4.3)

π∗ω =
∑
1≤r

∑
ni

�n1,...,nr∗ Taan1,...,nrω (4.4)

π�ω =
∑
1≤r

∑
ni

�
n1,...,nr
� Toon1,...,nrω (4.5)

with the g-dependendence implicit in the coefficients �±, �∗, �� as de-
fined in (3.10), (3.30), (3.36), or explicit in the definitions (3.14), (3.32).
However, the need to define the alien operators�±

ω and�ω in uniform
manner for all ω clashes with the need to associate within one and the
same pair (πno, πso) respectively (π−1

no , π
−1
so ) northern and southern com-

ponents originating from the same collector p or p−1. This clash leads to
a regrettable but unavoidable disharmony in the correspondance between
the invariants A±

ω and Aω, as defined from the resurgence equations, and
the Fourier coefficients of the connectors, as derived from the collectors.
This correspondance takes the form:

∀ω ∈ �− : A+
ω = π+

ω ; A−
ω = π−

ω ; +2π i Aω = π∗ω

∀ω ∈ �+ : A−
ω = π+

ω ; A+
ω = π−

ω ; −2π i Aω = π∗ω

Remark. Nature of the convergence

(i) The convergence in (4.3) is completely unproblematic – absolute
with respect to the contributions attached to individual clusters∏

i(gsi )
ni

(ii) We also have absolute, cluster-wise convergence in (4.4) and (4.5)
provided we take the precaution of switching from the coefficient
systems {g∗,s} or {g�,s} back to the natural system {gs}.

(iii) But we can also dispense with that change if we take the precaution
of collecting in (4.4) or (4.5) all terms (in finite number) of total
weight s, and then of summing all s-contributions. But summing
separately the contributions attached to the clusters

∏
i(g∗,si )

ni or∏
i(g�,si )

ni would not do.

4.2 The case ρ( f ) �= 0. Normalisation

For diffeos of the form f (z) = z + 1 − ρz−1 + O(z−2) with a non-
vanishing ‘iterative residue’ ρ, the defining relation (1.5) for the right
and left iterators must be changed to

f ∗±(z) = lim
k→±∞ f k(z)− k ± ρ (c + log |k|) (4.6)
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with the normalisation constant c as in Section 2.5. In the formal model,
this leads to

f̃ ∗(z) = z + ρ (c + log z)+ o(z−1). (4.7)

That apart, nothing changes and all the previous results and formulae
still hold, including the explicit expansions (3.12)-(3.13) and (4.3), pro-
vided we set ze1 := γ − c and normalise all multizetas and multitangents
accordingly. As mentioned in Section 2.6, the recommended choice is
c = γ , since it amounts to setting ze1 := 0.

4.3 The case p �= 1. Ramification

Here again, the transition is straightforward. The ‘prepared’ form (1.2)
for the diffeo now carries fractional exponents s ∈ p−1 N∗. As a conse-
quence, the multiplicative z-plane and the convolutive ζ -plane are now
p-ramified, and so is the index set �, which is embedded in the ζ -plane.
We still have one single collector p respectively p∗, p� etc, ramified yet of
one piece, but p distinct pairs of connectors, π = (πno, πso) respectively
π∗ = (π∗no, π∗so) or π� = (π�no, π�so) etc, separately unramified and mu-
tually unrelated. The invariants π±

ω respectively π∗ω, π�ω are still given
by the familiar formulae (4.3), (4.4), (4.5) but with Fourier coefficients
Teesω respectively Taa

s
ω, Too

s
ω etc that are best calculated by resurgent

analysis, as in Section 2.7, and are no longer finite sums of multizetas,
even of ramified ones.
The transition to the most general case, with (ρ, p) any element of

(C,N∗), follows on exactly the same lines, and merely combines the par-
tial adjustments of the present and preceding subsections.

4.4 Growth properties of the invariants

Growth in ω for a given analytic f : For a diffeo f in prepared form
(1.2), any majorisation of its coefficients easily translates into a majori-
sation of its invariants:{ | f[s]| ≤ c0 c

s
1

} 4⇒
{
|A±

ω | ≤ C0 C
|ω|
1

}
. (4.8)

Rough estimates of (C0,C1) in terms of (c0, c1) were given in [5] and
sharper ones in [1]. These results can be derived from a geometric anal-
ysis in the z-plane or from a resurgent analysis in the ζ -plane. Things
change, though, when we go over to the Gevrey case.

Growth in ω for a given f of Gevrey class: Formal diffeos f (in prepared
form) of Gevrey class τ are easily shown to be stable under formal con-
jugations (also in prepared form) of the same Gevrey class. For 0 < τ ,
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the Gevrey class is non-analytic, and Gevrey conjugacy turns out to be
strictly stronger than formal conjugacy if and only if τ < 1. This implies,
for 0 < τ < 1 , the existence of Gevrey conjugation invariants. These,
however, can no longer be defined in the z-plane, since f is purely formal
and has no geometric realisation there. In the ζ -plane, though, the Borel
tranforms of the iterators ∗f and f ∗ still exist (again, assuming τ < 1);

still extend to uniform analytic functions on ˜C − 2π i Z; still verify the fa-
miliar resurgence equations (1.66)-(1.67); and still unambigously define
invariants A±

ω and Aω, which are still given by the explicit expansions
(4.3)-(4.4). The only difference lies in the faster than exponential growth
of f̂ ∗(ζ ) and ∗f̂ (ζ ) as |ζ | → ∞, and in the faster than exponential growth
of A±

ω as |ω| → ∞. More precisly, for 0 < τ < 1, the earlier implication
(4.8) becomes51:

{ | f[s]| ≤ c0 c
s
1 s

τ s } 4⇒ { |A±
ω | ≤ C0 C

|ω|
1 exp(C2 |ω| 1

1−τ )} (4.9)

Growth in f for a given ω. We may now fix ω and ask how A+
ω ( f ),

A−
ω ( f ), Aω( f ) behave as functions of f or, to simplify, as entire func-

tions of any given coefficient f[s] (s ≥ 2) relative to a prepared form
(1.2). Unlike with the ω-growth, there is little difference here between
A±
ω and Aω.

(i) If s > 2, all three entire functions A+
ω ( f[s]), A−

ω ( f[s]), Aω( f[s]) have
at most exponential growth in | f[s]| 1

s−1 .
(ii) If s = 2, the corresponding coefficient coincides up to sign with the

iterative residue (i.e. f[2] = −ρ), and the entire functions A+
ω (ρ),

A−
ω (ρ), Aω(ρ) have at most exponential growth in |ρ log ρ|. The

result appears to be sharp.52

These results are almost “special cases” of the following statement: at

any given point ζ0 on C̃ −�, the Borel transform of the direct iterator
assumes a value f̂ ∗(ζ0) which, as an entire function of f[s], is exactly of
exponential type in | f[s]| 1

s−1 . This applies even for s = 2. The difference
between the cases s �= 2 and s = 2 makes itself felt only when we move
ζ0 to some point ω0 located over �, to investigate the leading singularity
there and infer from it the value of the invariants. When ρ = 0, the
leading singularity in question is a simple pole aω0(ζ − ω0)

−1, but when

51 For details, see [5, page 424]

52 See the argument in [2, Section 8].
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ρ �= 0 it is of the form aω0(ζ−ω0)ρ ω0−1/�(ρ ω0) and can be quite violent
if ρ has an imaginary part.
We shall take up these growth and convergence issues more systemat-

ically in Section 7.

4.5 Alternative computational strategies

Direct Fourier analysis in the multiplicative plane. The methods amounts
to calculating the limit:53

A∓ε(ω)
ω = π±

ω = lim
k→±∞

∫ 1+z0

z0

(
l−k ◦ f 2k ◦ l−k(z)− z

)
eω z dz (4.10)

with ε(ω) := sign()(ω)). Although the parenthesised part of the inte-
grand converges to π±(z)− z for |)(z)| large enough, the above scheme,
even after optimisation in the choice of z0, is computationally costly (in-
tegral instead of series) and inefficient (arithmetical convergence) as well
as theoretically opaque (it sheds no light on the internal structure of the
invariants as functions of f ). But it has the merit of being almost insen-
sitive to the choice of ω, unlike the next method.

(ii) Asymptotic coefficient analysis in the formal model. The method
starts with the inductive calculation of the first N coefficients of the di-
rect iterator f ∗(z) from its functional equation (1.11). One then switches
to the Borel transform f̂ ∗(ζ ) and uses the method of coefficient asymp-
totics54 to derive the form of the two singularities55 closest to the origin
(they are located over ±2π i). When applied to a parameter-free diffeo f
with proper optimising precautions, the method is superbly efficient for
computing A±2π i , even for diffeos f that are ‘large’, i.e. distant from the
identity. Thus, with N taken in the region of 200 or 300, one typically
gets A±2π i with 100 exact digits or more, in less than half an hour of
Maple time.
The method works less well, however, for ω0 = 2π in with n > 1.

One must then start with a conformal mapping ζ  → ζ ′ = h(ζ ) of R =
˜C − 2π iZ that keeps 0• fixed and takes the points +ωmain0 and −ωmain0

53 If ρ( f ) �= 0, the shift l−k should of course be replaced by l−k+(c+log k)ρ , with c = γ as
recommended choice for the normalisation constant c. See Section 2.6.

54 For a brief exposition of the method, see for ex. the section Section 2.3 of Power Series with
sum-product Taylor coefficients and their resurgence algebra, J. Ecalle and S. Sharma, Ed. Scuola
Normale Superiore, Pisa, 2011.

55 Or of the 2 p closest singularities when p( f ) �= 0.
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closer to the origin than all other points ±ωmain, with ωmain denoting the
ramification point of R over ω that abuts the main real half-plane. One
can then apply the method of coefficient asymptotics in the ζ ′-plane, with
the Taylor series f̂ ∗(h−1(ζ ′)) in place of the series f̂ ∗(ζ ), to calculate
A+
ω0
and A−

−ω0 .

(iii) Resurgent analysis in the Poincaré plane. That method also is based
on the resurgence equation (1.67) verified by the direct iterator f ∗. But
instead of interpreting that resurgence equation, as usual, in the highly
ramified ζ -plane, one performs a conformal transform ζ → ξ derived
from the classical modular function λ :

ζ = q(ξ) :=− log(1− λ(ξ))=− logλ
(
−1
ξ

)
=16

∑
n odd

qn e
2π iξ (4.11)

qn :=
∑
d|n

1

d
= 1

n

∑
d|n

d (4.12)

That comformal transform does three things:

(*) it maps the Riemann surface R := ˜C − 2π i Z of the ζ variable uni-
formly onto the Poincaré half-plane )(ξ) > 0;
(**) it changes the power series f̂ ∗(ζ ) with finite radius of convergence
into a Fourier series f̂ ∗(q(ξ)) that converges on the entire Poincaré half-
plane.
(***) it turns the alien operators into finite superpositions of post-com-
position operators – more precisely, post-composition by simple homo-
graphies h±ω, j or h

±
ω, j with entire coefficients:

�±
ω ϕ̂(ξ) := ϕ̂ ◦ h±ω,1(ξ)− ϕ̂ ◦ h±ω,2(ξ) (4.13)

�ωϕ̂(ξ) :=
∑
1≤ j≤2r

mω, j ϕ̂ ◦ hω, j (ξ)
(
r := | ω

2π i
|,mω, j ∈ Q

)
(4.14)

The method is efficient enough for small values of ω, but as r := | ω
2π i |

increases, the distances

H±(ω) := max
)(ξ)>0

inf{ )(ξ) , )(h∓ω,1(ξ)) , )(h∓ω,2(ξ))} (4.15)

H(ω) := max
)(ξ)>0

inf{ )(ξ) , )(hω,1(ξ)) , . . . , )(hω,2r (ξ))} (4.16)

rapidly decrease to zero, making it necessary to evaluate our Fourier se-
ries for f̂ ∗(q(ξ)) close to the boundary of their domain of convergence,
i.e. the real axis, which of course is computationally costly.
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(iv) Explicit multizetaic expansions. This method, to which the present
paper is devoted, has the advantage of explicitness and theoretical trans-
parency, expressing as it does the invariants in terms of universal tran-
scendental constants (the multizetas) and of the diffeo’s Taylor coeffi-
cients. It has the further advantage of handling large values of ω almost
as efficiently as small ones. But the method’s chief drawback would seem
to be this: it involves expansions which converge very fast (faster than
geometrically) once they reach ‘cruising speed’, but which often take a
damn long time to reach that speed. This is the case, not so much for ω
large, but for f large, i.e. for diffeos too distant from id.

4.6 Concluding remarks

(i) The invariants as autark functions.
Local, analytic, resonant vector fields X ranging through a fixed formal
conjugacy class, possess holomorphic invariants Aω which are autark
functions of X , that is to say, of any given free56 Taylor coefficient of
X . Autark functions, very informally, are entire functions whose asymp-
totic behaviour in every sector of exponential increase or decrease admits
a complete description, with dominant exponential terms accompanied
by divergent-resurgent power series, which in turn verify a closed system
of resurgence equations. Whether the invariants Aω of diffeos are autark,
too, seems likely but is yet unproved. Be that as it may, one would like
to fully understand the asymptotic behaviour of Aω as f grows, or as any
given coefficient or parameter in f grows, since for very ‘large’ diffeos f
the direct computation of the invariants would in any case be very costly.

(ii) Formal multizetas: dynamical vs arithmetical variants.
There exist several distinct but most probably equivalent notions of arith-
metical formal multizetas, like the multizeta symbols subject to the two
systems of so-called quadratic multizeta relations, or again to the pen-
tagonal, hexagonal and digonal relations. But there also exists a demon-
strably distinct and weaker notion of dynamical formal multizetas (and
multitangents), by which we mean any system S of scalar-valued mul-
tizeta symbols (respectively function-valued multitangent symbols) that,
when inserted into the expansions (4.3) (respectively (3.15)) guarantees,
first, the convergence of these expansions, and, second, the invariance of
the Aω (respectively π) so produced. This immediately suggests a pro-

56 I.e. of each coefficient that may freely vary without causing X to leave its formal conjugacy class.
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gramme: to repeat for the dynamical multizetas what has been success-
fully done for their arithmetical counterparts, in particular to construct
explicit, complete and canonical systems of irreducibles.

(iii) Abstract invariants.
Let { SAω, ω ∈ �} be the system of ‘abstract’ invariants induced by a
system S of dynamical multizetas as above. Since the system of natural
invariants {Aω, ω ∈ �} is complete, there necessarily exist conversion
formulae of the form:

SAω0 =
∑
1≤r

∑
ω1+...ωr=ω0

Hω1,...,ωr
S Aω1 . . . Aωr (4.17)

that respect the basic ω-gradation and carry interesting ‘universal’ struc-
ture constants H •

S . These constants ought to be of particular significance
in the case of the system S0 of ‘rational’ dynamical multizetas which is
analogous, on the dynamical side, to the canonical system of ‘rational’57

multizetas on the arithmetical side.

5 Complement: twisted symmetries and multitangents.

The aim of this section is twofold:

(i) to review in a systematic and orderly fashion the combinatorial lem-
mas relevant to this investigation

(ii) to examine the most general symmetry types and the structure coef-
ficients attached to them— less for their own sake than for showing
how exceptional and deserving of attention the dozen or so special
symmetry types are.

5.1 Twisted alien operators

Let γ (t) = ∑
0≤r γr t

r+1 and consider the alien operator

DD♦ := γ (DD+ − 1) = γ (e2π i DD − 1) (5.1)

The ω-components of DD♦ are of the form:

DD♦ =
∑

arg(ω)=0
��♦

ω =
∑

arg(ω)=0
e−ω.z �♦

ω (5.2)

(�̂♦
ωϕ̂)(ζ ) :=

∑
ε1,...,εr

εr

2π i
λ♦ε1,...,εr−1 ϕ̂

(
ε1
ω1

,...,
,...,

εr
εr
)
(ω + ζ ). (5.3)

57 They become rational, of course, only after a homogeneous rescaling that amounts to setting
π := 1.
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Like with the λ-coefficients of the already familiar operators �ω, �
±
ω ,

��
ω, �

��
ω , the coefficients λ

♦
ε1,...,εr−1 that describe the action of �

♦
ω depend

only on the crossing pattern, i.e. on the number p, q of plus and minus
signs in the sequence {εi }. But in this case they are given by:

λ♦ε1,...,εr−1 = λ
[p,q]
♦ = (−1)q

∑
0≤k≤p

p!
(p−k)! k! γq+k . (5.4)

For γ (t) = t
1+t/2 or γ (t) = (1+t)2−1

(1+t)2+1 , we recover the structure coefficients
λ
[p,q]
� , λ[p,q]�� for the alien operators��

ω and�
��
ω introduced in Section 1.6.

λ
[p,q]
� = 2−p−q , λ

[p,q]
�� = #(p − q) 2−int(

p+q+1
2 )

where # is the even function from Z/8Z to Z verifying #(k+4) = −#(k)
and #(0) = #(±1) = 1. Since #(2) = −#(2+ 4) = −#(−2) = −#(2),
it follows that #(±2) = 0.

Short proof: After checking that the λ-coefficients of DD♦ inherit from
those ofDD+ the crucial property of depending solely on the crossing pat-
tern (p, q), we are left with the simple task of considering the case of
p initial right-crossings followed by q final left crossings. As in Sec-
tion 1.6 we begin with the situation when all singularities are located
over N. Next we define the non-commuting elementary shifts σ , τ as in
Section 1.6, then use the expansion

DD+−1 = (1− τ)(1− σ)−1 − 1 = (σ − τ)(1− σ)−1

=
(
σ − τ)(1+

∑
1≤p

σ p

)

and in each power (DD+−1)r collect the terms that contribute to (σ −
τ)τ qσ p.

5.2 Twisted mould symmetries

Given any two power series without constant term

α(t) =
∑
0≤r

αr t
1+r , β(t) =

∑
0≤r

βr t
1+r (α0 �= 0, β0 �= 0)

we denote by α(Id•), β(Id•), or simply α•, β• the moulds whose length-0
components vanish and whose length-r components are equal to

αω1 ≡ α0 , α
ω1,...,ωr ≡ αr−1 , βω1 ≡ β0 , β

ω1,...,ωr ≡ βr−1
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irrespective of the actual values of ωi . We then define coefficients α p,q

and βp,q by setting∑
α p,q t p1 t

q
2 := α

(
α−1(t1)+ α−1(t2)

)
(5.5)∑

βp,q t
p
1 t

q
2 := β−1(β(t1)+ β(t2)

)
. (5.6)

If M• ∈ α• ◦ alternal•, then for any two sequences ω′,ω′′ �= ∅:
1≤p,1≤q∑

(
ω′1..ω′ p=ω′
ω′′1..ω′′q=ω′′

)α p,q Mω′1
. . .Mω′ p

Mω′′1
. . .Mω′′q ≡

∑
ω∈sha(ω′,ω′′)

Mω. (5.7)

If M• ∈ alternal• ◦ β•, then for any two sequences ω′,ω′′ �= ∅:

0 ≡
1≤p,1≤q∑

ω∈shap,q (ω′,ω′′)
βp,q M

ω. (5.8)

If M• ∈ α• ◦ alternal• ◦ β•, then for any two sequences ω′,ω′′ �= ∅:
1≤p,1≤q∑

(
ω′1..ω′ p=ω′
ω′′1..ω′′q=ω′′

)α p,q Mω′1
. . .Mω′ p

Mω′′1
. . .Mω′′q ≡

1≤p,1≤q∑
ω∈shap,q (ω′,ω′′)

βp,q M
ω.

(5.9)
An important sub-case is when α, β are reciprocal, for it corresponds to
a symmetry type α• ◦ alternal• ◦ β• stable under mould-composition and
leads to identical coefficients α p,q = βp,q on both sides of (5.9).
It is often preferable to take elternel rather than alternal as a standard

of reference. Since

elternel• = (exp(Id•)− 1•) ◦ alternal• ◦ log(1• + Id•) (5.10)

we see at once that moulds respectively of type

elternel• ◦ δ• , γ • ◦ elternel• , γ • ◦ elternel• ◦ δ•

still verify identities of the form (5.7), (5.8), (5.9), but with new coeffi-
cients γ [p,q], δ[p,q], defined by∑

γ [p,q] t p1 t
q
2 := γ

(
γ−1(t1)+ γ−1(t2)+ γ−1(t1) γ−1(t2)

)
(5.11)∑

δ[p,q] t
p
1 t

q
2 := δ−1

(
δ(t1)+ δ(t2)+ δ(t1) δ(t2)

)
(5.12)

in place of αp,q, β p,q . Indeed, in view of (5.10), (5.11)-(5.12) results from
(5.5)-(5.6) under the change α(t) = γ (et − 1) , β(t) = log(1+ δ(t))
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5.3 Twisted co-products

As useful as the statements of Section 5.2 are the dual statements:

(i) If θ♦ = α(θ∗) with cop(θ∗) = 1⊕ θ∗ + θ∗ ⊕ 1, then
cop(θ♦) = 1⊕ θ♦ + θ♦ ⊕ 1+

∑
1≤p,q

α p,q (θ♦)p ⊕ (θ♦)q . (5.13)

(ii) If θ♦ = γ (θ) with cop(θ) = 1⊕ θ + θ ⊕ 1+ θ ⊕ θ , then

cop(θ♦) = 1⊕ θ♦ + θ♦ ⊕ 1+
∑
1≤p,q

γ [p,q] (θ♦)p ⊕ (θ♦)q . (5.14)

5.4 Twisted multitangents

Let γ (t) = ∑
0≤r γr t

r+1 and δ(t) = ∑
0≤r δr t

r+1 as usual58 and let

Te•γ,δ := γ (Id•) ◦ (Te• − 1•) ◦ δ(Id•) = γ (Id•) ◦ Tee• ◦ δ(Id•). (5.15)
Linearisation lemma: The twisted multitangents Te•γ,δ(z) can be u-
niquely expanded into sums of symmetrel multitangents Te•(z)

Ten1,...,nrγ,δ (z) =
∑
1≤s≤r

r1+···+rs=r∑
1≤ri

∑
σ∈Sr1,...,rs

Hr1,...,rs
σ Tenσ,1,...,nσ,s (z) (5.16)

with universal coefficients H r
σ = H r∗

[p,q] defined as follows

Hr1,...,rs (σ ) =H
r∗1 ,...,r∗s∗
[p,q]

=
r−s∗∑
k=0

[
p∑

l=0
γk+q+l

p!
(p−l)! l!

][∇k

k!
(
δr∗1−1...δr∗s∗−1

)]
.

(5.17)

(i) The sum (5.16) ranges over all ordered sequences (r1, . . . , rs) and all
permutations σ inSr1,...,rs , i.e. all σ that increase on each of the intervals
Irk of the partition

Ir1 6 · · · 6 Irs = [1, . . . , r] ∈ Z (card(Iri ) = ri).

(ii) The indices of Te•(z) on the right-hand side of (5.16) are given by

nσ,i =
∑
j∈Iri

nσ( j) ∀ i ∈ [1, s].

58 For the moment, we assume neither γ ◦ δ = id nor γ0 �= 0, δ0 �= 0.
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(iii) Ir∗1 6 · · · 6 Ir∗s∗ denotes the minimal sub-partition of Ir1 6 · · · 6 Irs
such that σ increases without gaps on each Ir∗k , i.e. such that

σ( j)− σ(i) ≡ j − i ∀i, j ∈ Ir∗k , ∀k ∈ [1, s∗].
(iv) There exist two full orders < and <σ on the set {Ir∗1 , . . . , Ir∗s∗ }:

{Ir∗k < Ir∗l } ⇔ i < j ∀(i, j) ∈ (Ir∗k , Ir∗l ) ⇔ k < l

{Ir∗k <σ Ir∗l } ⇔ σ(i) < σ( j) ∀(i, j) ∈ (Ir∗k , Ir∗l ).

For each k ≤ s∗ the immediate <σ -successor of Ir∗k is noted Ir∗k+ (when
it exists, i.e. when Ir∗

k+ is not <σ -maximal). The integer p (respectively
q) so defined

p :=
∑
k<k+

1 , q :=
∑
k>k+

1 (p + q ≡ s∗ − 1)

measures the compatibility (respectively incompatibility) of < and <σ .

(v) ∇ denotes the derivation on Q[δ0, δ1, δ2 . . . ] characterised by

∇δ0 := 0, ∇δ1 := (δ0)
2, ∇δ2 := 2 δ0 δ1, . . . , ∇δr :=

r−1∑
r ′=0

δr ′ δr−1−r ′ .

It readily follows that

∇r

r ! δr ≡ (δ0)
r+1 ,

∇l

l! δr ≡ 0 iff r < l.

Remark 1. When k takes either of its extreme values 0 or r − s∗, the
formula (5.17) gives for H r∗

[p,q] two γ -dependent parts respectively of the
form

(∗) γq + · · · + γp+q
(∗∗) γq+r−s∗ + · · · + γp+q+r−s∗ = γr−1−p + · · · + γr−1

while the δ-dependent parts reduce to

(∗) ∇0

0!
∏
i

δr∗i−1 =
∏
i

δr∗i−1

(∗∗) ∇r−s∗

(r−s∗)!
∏
i

δr∗i−1 =
∏
i

( ∇r∗i −1

(r∗i −1)!
δr∗i−1

)
=

∏
i

(δ0)
r∗i = (δ0)

r
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As a consequece of (∗∗), H r∗
[p,q] always contains the term γr−1 (δ0)r

among its summands.

Remark 2. Exchanging two adjacent intervals Ir∗i and Ir∗i+1 with non-
adjacent images59 σ(Ir∗i ) and σ(Ir∗i+1) leaves the pair (p, q) unchanged.
On the other hand, once (p, q) has been determined in function of σ
and the ordered sequence r∗, the order in r∗ no longer counts for the
determination of H r∗

γ,δ(p, q). For a given depth r , therefore, the max-
imum number of distinct values assumed by H r∗

γ,δ(p, q) cannot exceed∑r
k=1 k p(r, k), with p(r, k) denoting the number of k-multiple partitions

of r .

Example. Let us calculate the coefficients of Ten1,n3+n4,n2+n6+n7 in the
expansion (5.16) of Ten1,...,n6γ,δ . Starting from a partition r = (1, 2, 3) with
s = 3 we arrive at the refined partition r∗ = (1, 2, 1, 2) with s∗ = 4.
Applying (5.17) and the rules for handling ∇, we successively find:

H 1,2,1,2
[2,1] =

2∑
k=0

(γ1+k + 2 γ2+k + γ3+k)
∇k

k! (δ0δ1δ0δ1)

= +(γ1 + 2 γ2 + γ3) (δ
2
0 δ

2
1)

+(γ2 + 2 γ3 + γ4) (2 δ
4
0 δ1)

+(γ3 + 2 γ4 + γ5) (δ
6
0).

We would find exactly the same coefficient for Ten1,n3+n4,n2,n6+n7 and for
Ten1,n3+n4,n6+n7,n2 , in agreement with the observation of Remark 2 above.

Special cases. If we now assume that γ ◦ δ = id, we find few notewor-
thy simplications, apart from the automatic vanishing of the coefficient
Hr

[r−1,0] that stands in front of the lone ‘monotangent’ Te
|n| in the Te•-

expansion (5.16) of Ten. For real simplications, we must turn to the multi-
tangents Te•�c = Te•γc,δc with homographic driving series γc(t) = t

1+c t and
δc(t) = t

1−c t . In that case, a simple calculation shows that in the expan-
sion (5.16) of Tenγc,δc the only surviving terms Te

nσ,1,...,nσ,s are those whose
indices nσ,k carry no sums ni + ni+1 of consecutive terms. This implies
that the only non-zero coefficients H r∗

γc,δc
(p, q) correspond to reduced se-

quences r∗ with all multiplicities r∗i ≡ 1, so that s = r . Moreover, even
these surviving H r∗

[p,q] turn out to be extremely simple:

H 1,...,1
[p,q] = (1− c)p (−c)q . (5.18)

59 This of course is possible only if Ir∗i and Ir∗i+1 do not stem from one and the same Ik .
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When c = 1/2, we recover the formula (2.49) for the Te•-expansion of
the olternol multitangents Too•.
The family

γ (t) := 1

c

(1+ t)2 c − 1
(1+ t)2 c + 1 , δ(t) :=

(
1+ c t

1− c t

) 1
2 c

− 1 (5.19)

does not lead to simple results, except of course in the case c = 1/2,
where it coincides with (5.18), and in the case c = 1, where all coef-
ficients H r∗

γc,δc
(p, q) turn out to be simple products of Catalan numbers

times a negative power of 2 and an appropriate sign in front. Here is the
precise statement:

8-periodicity of H r∗
[p,q]. For γ, δ of the form

γ (t) := t + 1
2 t
2

1+ t + 1
2 t
2

, δ(t) :=
(
1+ t

1− t

) 1
2

− 1 (5.20)

we have

H
r∗1 ,...,r∗s
[p,q] = ρ∗(su−se+2 p) 2int(s/2)

∏
1≤i≤s

κ(r∗i ) (5.21)

= ρ(2 su+ p−q) 2int(s/2)
∏
1≤i≤s

κ(r∗i ) (5.22)

with

su :=
∑
r∗i =1

1, se :=
∑

r∗i even≥2
1, so :=

∑
r∗i odd≥3

1 (1+p+q≡su+so+se)

int(s)=integerpartof s (5.23)

ρ∗(m):Z/8Z→Z, [0,1,2,3,4,5,6,7]  →[−1,2,−1,0,1,−2,1,0] (5.24)
ρ(m): Z/8Z→Z, [0,1,2,3,4,5,6,7]  →[0,−1,2,−1,0,1,−2,1] (5.25)
κ(1):=1/2, κ(2n):= 1

22n
(2n−2)!
n!(n−1)! , κ(2n+1):=0 ∀n>1. (5.26)

Due to (5.26), H r∗
[p,q] vanishes unless none of the indices r

∗
i is odd ≥ 3.

Moreover, when all r∗i are either 1 or even, after division by elementary
factors (- powers of 2 and Catalan numbers -) we get an expression h:

h(p, q, su, se) := H
r∗1 ,...,r∗s
[p,q] 2−int(s/2)

∏
i

(1/κ(r∗i )) (5.27)

= ρ(2 su + p − q) (5.28)

= ρ∗(su − se + 2 p) = ρ∗(3 su + se − 2 q − 2) (5.29)
which turns out, quite unexpectedly, to be 8-periodic in the order-compat-
ibility coefficients p, q and the multiplicities su, se.
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5.5 Affliates : from function to operator

We have the choice between relating an affiliate F♦ to F itself or to its
infinitesimal generator F∗:

F♦ := γ (F − 1) = α(F∗)
(
F∗ := log(F)

)
. (5.30)

This implies handling two distinct systems of coefficients:

α(t)=t+
∑
1≤r

αr t
r+1, γ (t)=t+

∑
1≤r

γr t
r+1,

(
γ (t)=α(log(1+t)). (5.31)

The choice impacts the analytic expression of the correspondence f♦  →
F♦:

F♦  → f♦=F♦.z (5.32)

f♦  →F♦=
∑
1≤r

∑
1≤ni

♦n1,...,nr

(
f n1♦

∂n1z

n1!
)
...

(
f nr♦

∂nrz

nr !
)
(nr>1if r>1). (5.33)

Although F♦ is usually derived from F rather than F∗, the structure coef-
ficients ♦n1,...,nr are simpler to express in terms of the coefficients αn than
in terms of γn: in the former case, the sums involve fewer terms

∏
αm j

due to the homogeneity constraints
∑
ni = ∑

m j . The simplest way to
ensure (5.32) is to set ♦1 = 1 and to impose that all other coefficients
♦n1,...,nr ending with nr = 1 should vanish. This, however, is not enough
to enforce the uniqueness of the expansion (5.33), due to the existence,
for n large enough, of universal identities of the form

0 ≡
∑

n1+···+nr=n
cn1,...,nr

(
f n1♦

∂n1z

n1!
)
. . .

(
f nr♦

∂nrz

nr !
)

(cn1,...,nr ∈Z). (5.34)

The latitude in the choice of the structure coefficients being 2r−2−par(r)
for r > 1 (par = partition number), it is clear that even imposing a
natural condition60 like{
αn = 1

(n + 1)! ∀n
}
4⇒{

♦n1=1 ∀n1 , ♦n1,...,nr = 0 ∀r≥2} (5.35)

is not enough to restore uniqueness. In fact, we know of no simple condi-
tion that does. In any case, here is a natural choice for the first structure

60 Natural indeed, since this choice of α leads to the fonction f♦(z) = f (z)− z and to the operator

F♦ = F − 1 = ∑
1≤n f n♦

∂nz
n! .
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coefficients:

♦1 = 1

♦2 = 2α1

♦3 = −3α2 +6α21
♦1,2 = 3α2 −2α21
♦4 = 4α3 −20α1 α2 +20α31
♦1,3 = −7α3 +20α1 α2 −11α31
♦2,2 = 2α3 +2α1 α2 −2α31
♦1,1,2 = 3α3 −6α1 α2 +3α31
♦5 = −5α4 +30α1 α3 +15α22 −105α21 α2 +70α41
♦1,4 = 21α4 − 366

5 α1 α3 − 171
5 α22 + 789

5 α21 α2 − 342
5 α41

♦2,3 = −28α4 + 348
5 α1 α3 + 168

5 α22 − 552
5 α21 α2 + 196

5 α41

♦3,2 = 9α4 − 114
5 α1 α3 − 99

5 α
2
2 + 321

5 α21 α2 − 138
5 α41

♦1,1,3 = 0

♦1,2,2 = −α4 + 86
5 α1 α3 + 51

5 α
2
2 − 229

5 α21 α2 + 102
5 α41

♦2,1,2 = +4α1 α3 −8α21 α2 +4α41
♦1,1,1,2 = 4α4 − 64

5 α1 α3 − 24
5 α

2
2 + 116

5 α21 α2 − 48
5 α

4
1 .

Remarkably enough, for index sums |n| ≥ 5, a fair number of structure
coefficients ♦n are always= 0, irrespective of α and despite having a last
index nr �= 1. Here are the first unconditionally vanishing coefficients:

|n|=5 : ♦1,1,3

|n|=6 : ♦2,4,♦3,1,2,♦1,1,1,3,♦1,1,1,1,2

|n|=7 : ♦2,5,♦1,3,3,♦1,1,1,4,♦1,1,2,3,♦1,2,1,3,♦2,1,1,3,♦2,1,2,2,♦1,1,1,1,3,
♦1,1,1,2,2,♦1,1,2,1,2,♦1,2,1,1,2,♦2,1,1,1,2,♦1,1,1,1,1,2 .

Here again, the case

α(t) = 1

c
tanh(c t) , γ (t) = 1

c

(1+ t)2 c − 1
(1+ t)2 c + 1 (5.36)

stands out for simplicity. It makes it possible to choose a system of struc-
ture coefficients which are all ≡ 0 except those of the form:

♦2m1−1,2m2,2m3,...,2mr = (−1)r−1 c−2+2
∑
mi (∀ r , ∀mi ≥ 1). (5.37)

When c = 1
2 we recover the earlier formula (1.26) for the mediator.
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5.6 Main and secondary symmetry types

Let us stand back and take stock. Alongside the four ubiquitous symme-
try types:

al ternal• = basi c symmetr y t ype

symmetral• = (exp Id•) ◦ al ternal•
al ternel• = al ternal• ◦ log(1• + Id•)

symmetrel• = (exp Id•) ◦ al ternal• ◦ log(1• + Id•)

we have a number of special symmetry types, of secondary but non-
negligible importance:

ol ternal• = α(Id•) ◦ al ternal•
= γ (Id•) ◦ (symmetral• − 1•)

al ternol• = al ternal• ◦ β(Id•)
= al ternel• ◦ δ(Id•)

ol ternol• = α(Id•) ◦ al ternal• ◦ β(Id•)
= γ (Id•) ◦ (symmetrel• − 1•) ◦ δ(Id•)

symmetrol• = symmetral• ◦ β(Id•)
= symmetrel• ◦ δ(Id•).

Choice 1. The most common choice for the quartet (α, β, γ, δ) is

α(t) := 2 tanh

(
1

2
t

)
, β(t) := 2 arctanh

(
1

2
t

)
(5.38)

γ (t) := t

1+ 1
2 t

, δ(t) := t

1− 1
2 t

. (5.39)

The corresponding structure constants are:

λ[p,q] = 2−p−q

γ [p,q] = (− 1
4

)inf(p,q)
if |p−q|=1 (resp. 0 otherwise)

♦n1,...,nr= (−1)r−121−∑
ni if r,n1odd,n2,...,nr even (resp. 0 otherwise)

H
r∗1 ,...,r∗s
[p,q] = (−1)q ( 14)s−1 if r∗1=...=r∗s =1 (resp. 0 otherwise).
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Choice 2. More rarely we take

α(t) := tanh(t) , β(t) := arctanh(t) (5.40)

γ (t) := t + 1
2 t
2

1+ t + 1
2 t
2
, δ(t) :=

(
1+ t

1− t

) 1
2

− 1. (5.41)

This choice leads to marginally less simple structure coefficients:

λ[p,q] = #(p − q) 2−int(
p+q+1
2 )

γ [p,q] = (−1)inf(p,q) if |p − q| = 1 (resp. 0 otherwise)

♦n1,...,nr = (−1)r−1 if r, n1 odd , n2, ..., nr even (resp. 0 otherwise)

H
r∗1 ,...,r∗s
[p,q] = ρ(2 su+ p−q) 2int(s/2) ∏1≤i≤s κ(r

∗
i ) ( resp. 0 if s0 �= 0 )

with su, so, se, ρ, #, κ as in (5.24)-(5.26). In particular:

ρ : Z/8Z→Z , [0,1,2,3,4,5,6,7]  →[0,−1,2,−1,0,1,−2,1]
# : Z/8Z→Z , [0,1,2,3,4,5,6,7]  →[1,1,0,−1,−1,−1,0,1]

ρ is odd and # even but both change signs under 4-shifts

ρ(k + 4) ≡ −ρ(k) , #(k + 4) ≡ −#(k).

Choice 3. If c �∈ {±1,±i,± 1
2 ,± i

2} the one-parameter family

αc(t) := 1

c
tanh(c t) , βc(t) := 1

c
arctanh(c t) (5.42)

γc(t) := 1

c

(1+ t)2 c − 1
(1+ t)2 c + 1 , δc(t) :=

(
1+ c t

1− c t

)1
2 c

− 1 . (5.43)

makes only γ [p,q] and ♦• simple:

λ[p,q] = no simple multiplicative structure

γ [p,q] = (−c2)inf(p,q) if |p − q| = 1 , (else = 0)

♦n1,...,nr = (−1)r−1 c−1+∑
ni if r, n1 odd , n2, ..., nr even (else = 0)

H
r∗1 ,...,r∗s
[p,q] = no simple multiplicative structure.

Choice 4. The homographic quartet:

α c(t) :=
(et − 1)

1+ c (et − 1) , β
c
(t) := t

1− c t
(5.44)

γ
c
(t) := t

1+ c t
, δ c(t) :=

t

1− c t
(5.45)
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predictably leads to simpler structure coefficients:

λ[p,q] = c q (1− c)p

γ [p,q] = 0 if |p − q| ≥ 2

γ [p,p] = (1− 2 c) c p−1 (c − 1)p−1
γ [p,p+1] = γ

[p+1,p]
c = c p (c − 1)p

♦n1,...,nr = no simple multiplicative structure

H
r∗1 ,...,r∗s
[p,q] = (−c)q (1− c)p if r∗1 = ... = r∗s = 1 (resp. 0 otherwise).

General case. Lasty, for arbitrary but mutually reciprocal (γ, δ), the
formulae read

λ[p,q] = (−1)q ∑
0≤k≤p

p!
(p−k)! k! γq+k

γ [p,q] : generated by γ (
δ(t1)+δ(t2)+δ(t1) δ(t2)

) = ∑
γ [p,q] t p1 t

q
2

♦n1,...,nr : multiple competing expressions.

H
r∗1 ,...,r∗s
[p,q] =

r−s∗∑
k=0

[
p∑

l=0
γk+q+l

p!
(p−l)! l!

][∇k

k!
(
δr∗1−1...δr∗s∗−1

)]
In conclusion, of all secondary symmetry types, the simplest (and most
frequently occuring in practice) is the one at the intersection of the two
one-parameter families: γ = γ 1

2
= γ 1

2
, δ = δ 1

2
= δ 1

2
.

Remark 1. Consider the N-indexed mould har• defined by the induction

|•| har• = har•×Id•×har• (resp. = 0) if r(•) odd (resp. even)

or more explicitely

harn1 = 1

n1
(5.46)

harn1,...,nr := 0 ∀r even (in particularhar∅ :=0 ) (5.47)

harn1,...,nr := 1

n1+···+nr
∑
1<i<r

harn1,...,ni−1harni+1,...,nr (∀r odd≥3) (5.48)

har• is the simplest example of a i-olternal mould. It occurs naturally
in the study of some special trigonometric flexion algebras.61 Its inverse
kohar• under mould composition is even more elementary:

koharn1,...,n2r ≡ 0 , koharn1,...,n2r+1 ≡ (−1)r nr (5.49)

kohar• is the simplest instance of a i-alternol mould.

61 Cf. [10, page 177].
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Remark 2. There is an important operatorH, also acting on a trigonomet-
ric flexion algebra62, that happens to verify a co-symmetrol co-product.63

Remark 3. There seems to exist no simple notion of bracket (anti-
commutative and rational in its two arguments) for mediators and con-
sequently no proper equivalent of the Campbell-Hausdorff formula for
expressing (F.G)� in terms of F� and G�, other than the obvious ex-
pansion that relies on the coefficients γ [•] defined by the series in the
non-commutative variables t1, t2:∑

γ [[p1,q1,...,pr ,qr ]]t p11 tq12 ...t
pr
1 t

qr
2 :=γ

(
γ−1(t1)+γ−1(t2)+γ−1(t1)γ−1(t2)

)
with p1, qr ≥ 0 and all other pi , qi ≥ 1.

6 Complement: arithmetical vs dynamical monics

6.1 Distinguishing Stokes constants from holomorphic invariants

The scalars Aω( f ) may be viewed

(i) as Stokes constants;
(ii) as holomorphic invariants.

In their first capacity, they govern the Stokes transitions and are rigidly
determined. So too are the (presumably transcendental) monics — the
multizetas — which enter their expansions. We speak accordingly of
rigid or arithmetical monics.
There is more latitude, however, when we look upon the saclars Aω( f )

as holomorphic invariants and retain only those multizeta properties
which are directly responsible for their invariance. We speak in that case
of dynamical monics.
Both types of monics verify various types of relations, some infinite,

some finite-algebraic. When viewed as subject only to their various sys-
tems of algebraic relations over Q, our monics (whether rigid-arithme-
tical or dynamical) become formal monics. As such, they possess their
own system of independent generators, the so-called irreducibles. Be-
ing subject to laxer constraints, the dynamical irreducibles should be ex-
pected to be, and in fact are, more ‘numerous’ than the rigid-arithmetical
irreducibles.64

62 Cf. [10, (11.42)-(11-43)].

63 Cf. [10, (11.47)].

64 Though of course any complete system of irreducibles, of either sort, has to be countably infinite.



189 Invariants of identity-tangent diffeomorphisms

6.2 Arithmetical multizetas

The two classical systems of algebraic (quadratic) constraints. Either sys-
tem of constraints is best expressed as a specific multiplication rule rela-
tive to a specific encoding.
In the first or α-encoding, the multizetas are given by polylogarithmic

integrals :

waα1,...,αl∗ := (−1)l0
∫ 1

0

dtl
(αl − tl)

. . .

∫ t3

0

dt2
(α2 − t2)

∫ t2

0

dt1
(α1 − t1)

(6.1)

with indices α j that are either 0 or unit roots, and l0 := ∑
αi=0 1.

In the second or ( ε

s )-encoding, the multizetas are expressed as “har-
monic sums”:

ze∗
(
ε1
s1

,...,
,...,

εr
sr
) :=

∑
n1>···>nr>0

n−s11 . . . n−srr e−n11 . . . e−nrr (6.2)

with s j ∈ N∗ and unit roots e j := exp(2π iε j ) of ‘logarithms’ ε j ∈ Q/Z.
The stars ∗ means that the integrals or sums are provisionally assumed

to be convergent or semi-convergent : for waα∗ this means that α1 �= 0 and

αl �= 1, and for ze
(

ε
s )∗ this means that ( ε1s1 ) �= (

0
1) i.e. (

e1
s1
) �= (

1
1).

The corresponding moulds wa•∗ and ze•∗ turn out to be respectively sym-
metral and symmetrel :65

waα
1

∗ waα
2

∗ =
∑

α ∈ sha(α1,α2)
waα∗ ∀α1,∀α2 (6.3)

ze

(
ε1

s1

)
∗ ze

(
ε2

s2

)
∗ =

∑(
ε
s

)
∈ she

((
ε1

s1

)
,

(
ε2

s2

)) ze
(

ε
s

)
∗ ∀(

ε1

s1

)
,∀(

ε2

s2

)
. (6.4)

These are the so-called quadratic relations, which express multizeta di-
morphy. As for the conversion rule, it reads :66

wa∗e1,0
[s1−1],...,er ,0[sr−1] := ze∗

(
εr
sr

,
,
εr−1:r
sr−1

,...,
,...,

ε1:2
s1

)
(6.5)

ze∗
(
ε1
s1

,
,
ε2
s2

,...,
,...,

εr
sr

)
=: wa∗e1...er ,0[sr−1],...,e1e2,0[s2−1],e1,0[s1−1] (6.6)

with 0[k] denoting a subsequence of k zeros.

65 As usual, sha(ω′, ω′′) denotes the set of all simple shufflings of the sequences ω′, ω′′, whereas
in she(ω′, ω′′) we allow (any number of) order-compatible contractions ω′i + ω′′j .
66 With the usual shorthand for differences : εi : j := εi − ε j .
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There happen to be unique extensions wa•∗ → wa• and ze•∗ → ze• that
cover the divergent cases and keep our moulds symmetral or symmetrel
while conforming to the ‘initial conditions’ wa0 = wa1 = 0 and ze(

0
1 ) =

0. As we shall see in a moment, however, the divergent case calls for a
slight modification of the conversion rules (6.5)-(6.6).

Arithmetical multizeta irreducibles. The Q-ring ZE of formal multize-
tas, i.e. the Q-ring generated by the symbols waα and ze(

ε
s ) subject only

to the conversion rule (6.5)-(6.6) and the quadratic relations67 (6.3)-(6.4),
is known to be a polynomial ring, freely generated by a countable number
of so-called irreducibles.

Generating series. As borne out by past experience, it is advisable, for
most intents and purposes, to switch from the scalar multizetas wa• and
ze• to the generating series Zag• and Zig•:

Zag
(
u1
ε1

,...,
,...,

ur
εr

)
:=

∑
1≤s j

wae1,0
[s1−1],...,er ,0[sr−1] us1−11 us2−11,2 . . . usr−11...r (6.7)

Zig
(
ε1
v1

,...,
,...,

εr
vr

)
:=

∑
1≤s j

ze
(
ε1
s1

,...,
,...,

εr
sr

)
v
s1−1
1 . . . vsr−1r (6.8)

The bimould68 Zag• is symmetral, just as wa• was, while the bimould
Zig• has its own symmetry type: symmetril. The symmetrility relations
are patterned on the symmetrelity relations, but with the additive contrac-
tions wi + w j replaced by ‘polar’ contractions ŵi , w j , according to the
rules :

S

(
...,
...,

ûi
vi

,
,
u j
v j

,...
,...

)
= S

(
...,
...,

ui+u j
vi

,...
,...

)
P(vi−v j )

+ S

(
...,
...,

ui+u j
v j

,...
,...

)
P(v j−vi).

(6.9)

67 Though yet unproven, it is generally assumed (and backed by massive numerical evidence) that
the two systems of quadratic relations imply all other (known or yet to be discovered) algebraic
relations between multizetas.

68 What turns Zag•, Zig• into bimoulds is not so much their two-tier indexation wi = (
ui
vi
) but

rather the fact that the ui ’s and vi ’s interact in a very special way, through so-called flexions, which
allow only the addition of (several consecutive) ui ’s and the subtraction of (two not necessarily
consecutive) vi ’s with conservation of

∑
uivi .
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Here P(t) := 1/t . In (6.9) the dots may themselves contain any number
of additional contractions ŵk, wl . Thus:

S

(
...,
...,

ûi
vi

,
,
u j
v j

,...
,...

...,

...,
ûk
vk

,
,
ul
vl

,...
,...

)
=+S

(
...,
...,

ui+u j
vi

,...
,...

...,

...,
uk+ul
vk

,...
,...

)
P(vi−v j ) P(vk−vl)

+S
(
...,
...,

ui+u j
v j

,...
,...

...,

...,
uk+ul
vk

,...
,...

)
P(v j−vi) P(vk−vl)

+S
(
...,
...,

ui+u j
vi

,...
,...

...,

...,
uk+ul
vl

,...
,...

)
P(vi−v j ) P(vl−vk)

+S
(
...,
...,

ui+u j
v j

,...
,...

...,

...,
uk+ul
vl

,...
,...

)
P(v j−vi) P(vl−vk)

A typical symmetrility relation reads:

Sw1,w2 Sw3,w4 = +Sw1,w2,w3,w4+Sw1,w3,w2,w4+Sw3,w1,w2,w4+Sw1,w3,w4,w2
+Sw3,w1,w4,w2+Sw3,w4,w1,w2+Sŵ1,w3,w2,w4+Sŵ1,w3,w4,w2
+Sw1,ŵ2,w3,w4+Sw3,ŵ1,w4,w2+Sw1,w3,ŵ2,w4+Sw1,w3,ŵ2,w4
+Sŵ1,w3,ŵ2,w4 .

Summing up, not only do we have an exact equivalence between the old
and new symmetries:

{wa• symmetral} ⇐⇒ {Zag• symmetral} (6.10)

{ze• symmetrel} ⇐⇒ {Zig• symmetril} (6.11)

but the old conversion rule for scalar multizetas 69 becomes:

Zig• = Mini• × swap(Zag)• (6.12)( ⇐⇒ swap(Zig•) = Zag• × Mana•
)
. (6.13)

Here, swap is the basic involution of the flexion structure:

(swap.S)
(
u1
v1

,...,
,...,

ur
vr

)
:= S

(
v′r
u′r

,...,
,...,

v′1
u′1

)
(6.14)

with u′i := u1+· · ·+ui and v′i := vi−vi+1 if i < r respectively v′r := vr .
As for Mana• and Mini• := swap.Mana•, they are elementary bi-

moulds whose only non-vanishing components are those carrying only
zeros in the lower (respectively upper) index row:

Mana
(
u1
0

,...,
,...,

ur
0

)
≡ Mini

(
0
v1

,...,
,...,

0
vr

)
≡ monor . (6.15)

69 Namely the rules (6.5)-(6.6) suitably modified to cover the divergent case.
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They can be expressed in terms of monozetas:

1+
∑
r≥2

monor t
r := exp

(∑
s≥2

(−1)s−1ζ(s) t
s

s

)
(6.16)

Even-odd separation. The natural environment of Zag• is the groupGARI,
central to flexion theory. Its complicated product gari is highly non-linear
in its second factor. Nonetheless Zag• admits remarkable factorisations
in GARI:

Zag• := gari(Zag•
I
,Zag•

II
,Zag•

III

) = gari
(
Zag

ev
,Zag

odd

)
(6.17)

Zag•
ev

:= gari(Zag
I
,Zag•

II

)
(6.18)

Zag•
odd

:= Zag•
III

(6.19)

where the various factors, like Zag• itself, possess a double symmetry:
Zag•ev, Zag

•
odd etc are symmetral, while the swappees Zig

•
ev, Zig

•
odd etc are

symmetril. The ‘even’ and ‘odd’ factors Zag•ev and Zag
•
odd are character-

ized by their behaviour under the involutions neg, pari:

(negS)
(
u1
v1

,...,
,...,

ur
vr

)
:=S

(−u1−v1
,...,
,...,

−ur−vr
)
;(pariS)

(
u1
v1

,...,
,...,

ur
vr

)
:=(−1)r S

(
u1
v1

,...,
,...,

ur
vr

)
(6.20)

and under invgari, i.e. the taking of the gari-inverse:

neg.pari.Zag•
ev
= Zag•

ev
(6.21)

neg.pari.Zag•
odd

= invgari.Zag•
odd

(6.22)

gari(Zag•
odd
,Zag•

odd
) = gari(neg.pari.invgari.Zag•,Zag•). (6.23)

Since all elements of GARI have one well-defined square-root,70 the last
identity (6.23) readily yields Zag•

odd
. Separating the last factor from the

first two is thus an easy matter (assuming the flexion machinery). Sep-
arating Zag•

I
from Zag•

II
is easy too, unless we insist on doing this in a

‘canonical’ way.
Here is the significance of these Zag•-factors in terms of multizeta ir-

reducibles.71 For simplicity, we consider only the case of ordinary or
‘colourless’ multizetas:

(i) The factor Zag•
I
carries only powers of the special irreducibe ζ(2) =

π2/6, of weight 2.

70 Apply expari. 12 .logari.

71 Recall that the weight s, length (or depth) r , and degree d are related by s = r+d.
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(ii) The factor Zag•
II
carries only irreducibles of even weight s ≥ 4 and

even depth, along with their products.
(iii) The factor Zag•

III
carries only irreducibles of odd weight s ≥ 3 and

odd depth, along with their products.

The even-multizeta / odd-multizeta irreducibles. The even/odd factorisa-
tion (6.17) of Zag• leads to a canonical decomposition ZE = ZEev ⊕
ZEodd of theQ-ring of multizetas into a direct sum of two sub-rings, each
with its own irreducibles. These even-irreducibles and odd-irreducibles
will lead in Section 9 to simpler expansions for the holomorphic invari-
ants Aω( f ). Mark in passing the importance of the hyphenation: a system
of, say, odd-irreducibles is not simply a system of irreducibles with odd
weight and odd depth; it must also consist of elements in ZEodd, i.e. of
elements generated by the scalar coefficients of Zag•odd.

The even-multitangents Te•ev(z). For any multitangent Tes(z) of monotan-
gential expansion Tes(z)=∑

zesσ Te
σ (z)we set Tesev(z)=

∑
ev(zesσ )Te

σ (z),
with ev the natural projection of ZE onto ZEev. Since the multiplication
of monotangents involves only rational powers of π2, i.e. elements of
ZEev, the even-multitangents Tesev(z) are stable under multiplication, and
their multiplication stays commutative.

6.3 Dynamical multizetas

If we review those multizeta properties on which our expansions of the
invariants Aω( f ) effectively relied, we find three systems of ‘dynamical
constraints’:

(i) the symmetrelness constraints: zes
′
zes

′′=∑
s∈she(s′,s′′) ze

s, which are
none other than the second quadratic relations (6.4).

(ii) the localisation constraints (see Section 2.3) which take into ac-
count the commutation of two operations on multitangents – multi-
plication and localisation72 – and derive from this fact finite multi-
zetas relations much weaker than the first quadratic relations.

(iii) the shift constraints (non-algebraic, see Section 2.7) which, for any
i ≤ r , expand zes1,...,si ,...,sr as a convergent series of:

(*) all si -translates zes1,...,si+ki ,...,sr of depth r and shift ki ≥ 1;
(**) some multizetas of depth < r .

72 I.e. taking the Laurent expansion of a multitangent at z = 0.
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Although the shift constraints (iii) are the ones most directly responsible
for the invariance of the Aω( f ), they are not finite. So we shall concen-
trate on the algebraic constraints (i)-(ii).

Algebraic dynamical constraints. We begin by introducing the coloured
symmetrel multitangent mould Te•(z) and the bimould Tig•(z) formed
from the generating series of multitangents. The definitions are trans-
parently patterned on those of ze• and Zig•:

Te(
ε1
s1

,...,
,...,

εr
sr
)
(z) :=

∑
+∞>n1>...>nr>−∞

i=r∏
i=1

(
e−nii (ni+z)−s1

)
(6.24)

Tig(
ε1
v1

,...,
,...,

εr
vr
)
(z) :=

∑
si≥1

Te
(
ε1
s1

,...,
,...,

εr
sr

)
(z) vs1−11 . . . vsr−1r . (6.25)

Clearly {Tig• symmetril} ⇔ {Te• symmetrel} ⇒ {ze• symmetrel}.
To see now how the localisation constraints compare with the first

quadratic relations (6.3), we must express the multitangents in terms of
multizetas, in two distinct ways that reflect (at the level of the generating
series Tig•(z) and Zig•) the two paths in the corresponding commutative
diagram of Section 2.3. We find:

Tigw(z)=
∑

w=w+w−
Zigw+

(z) viZigw−
(z)−

∑
w=w+w0w−

Zigw+
(z)Piw0(z) viZigw−

(z)

Tigw(z)= Rigw −
∑

w=w+w0w−
Zigw+� Qii7w08(z) viZig�w−

. (6.26)

The ingredient Pi,Qii,Rig• in the above formulae are defined as follows:

Pi(
ε1
v1
) := 1

v1
, Qii

(
ε1
v1

)
:=

∑
n1∈Z

e−2π in1ε1

n1+v1 ∀ε1 (6.27)

Pi
(
ε1
v1

...

...
εr
vr

)
:= 0 , Qii

(
ε1
v1

...

...
εr
vr

)
:= 0 ∀r �= 1 (6.28)

Rigw1,...,wr := 0 for r = 0 or r odd (6.29)

Rigw1,...,wr := (π i)r

r ! δ(ε1) . . . δ(εr ) for r even > 0 (6.30)

with δ denotingasusual thediscretedirac73andvi Zig•:=neg.pari.anti.Zig•.
Lastly, the bimoulds Pi•(z), Qii•(z), Zig•(z), vi Zig•(z) are derived from
Pi•, Qii•, Zig•, vi Zig• by changing vi into vi − z (∀i).

73 δ(0) := 1 and δ(t) := 0 for t �= 0.
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Dynamical multizeta irreducibles. Finding a system of irreducibles rela-
tive to the sole symmetrelness contraints on multizetas (‘second quadratic
relations’) is very easy.74 So let us examine instead the full (algebraic)
dynamical constraints (i.e symmetrelness plus ‘localisation’) and show
that we can derive from them a simple algorithm for expressing every
(colourless) multizeta of odd degree and depth ≥ 2 as a finite sum, with
rational coefficients, of multizetas of even degree.75 By equating our un-
inflected and inflected expressions of Tigw(z) and then setting z = 0, we
get the remarkable identity:∑

w=w+w−
Zigw+

viZigw−−
∑

w=w+w0w−
Zigw+

Piw0 viZigw−

= Rigw −
∑

w=w+w0w−
Zigw+� Qii7w08 viZig�w−

(∀w) (6.31)

with factor sequences w± that can be ∅, and with the usual flexion con-
ventions.76 As a consequence, (6.31) is of the form:

Zigw1,...,wr + (−1)r Zig−wr ,...,−w1 = “shorter terms”. (6.32)

But Zig• is symmetril and therefore mantir-invariant77, which again
yields an identity of the form:

Zig−w1,...,−wr + (−1)r Zig−wr ,...,−w1 = “shorter terms”. (6.33)

If we now take ‘colourless’ indices wi , i.e. indices wi := (
0
vi
), then sub-

tract (6.32) from (6.33), and calculate therein the coefficient of
∏
v
si−1
i ,

we find:

(1− (−1)d) ze
(
0
s1

,...,
,...,

0
sr

)
= “shorter terms”

(
d := −r +

∑
si

)
(6.34)

with quite explicit ‘shorter terms’.

74 For the uncoloured multizetas, it amounts to constructing a basis (the Lyndon basis will do, or
any other) on the Lie algebra freely generated by the symbols es with s ∈ N∗.
75 Recall that the degree d := s − r of a multizeta is defined as its total weight s minus its length
(or depth) r .

76 One goes from w0 to 7w08 by changing the upper index ε0 to | ε+| + ε0 + |ε−|, and from w+
(respectively w−) to w+� (respectively �w−) by changing the lower indices vi to vi − v0.

77 Mantir is a non-linear involution on bimoulds, whose definition is given in [10, pages 67-69]. But
all we need to know here is that mantir.S• = −pari.anti.S• + shorter terms.
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The dynamical constraints on multizetas thus provide us with a very
effective algorithm for the reduction (to simpler multizetas) of all un-
coloured multizetas ζ(s1, . . . , sr ) of depth r ≥ 2 and odd degree d :=∑

i(si − 1). We may note that, at depth r = 1, the monozetas of odd
degree are precisely the ζ(s) of even weight s. These are of course com-
mensurate with π s = (6ζ(2))s/2, but this is a consequence of the rigid-
arithmetical constraints, not of the dynamical ones!

6.4 The ramified case (tangency order p > 1)

Another striking difference between the (algebraic) dynamical con-
straints and the (algebraic) arithmetical ones makes itself felt when we
go over to the ramified situation, for diffeos f of tangency order p ≥ 2
and multizetas with indices si ∈ p−1N∗.
The dynamical constraints on the multizetas78 carry over almost un-

changed: the symmetrelness of ze• survives, of course, and so do the
finite localisation constraints (although the finite reduction of multitan-
gents into monotangents breaks down), as shown in Section 2.3.
On the other hand, it is not only the symmetralness of wa• — the first

leg of the arithmetical constraints — that cannot survive ramification:
the very definition of the mould wa• and the conversion rules (6.5)-(6.6)
cease to make sense, since these rules would equate the entire lengths of
0-sequences in α with the fractional weights si in s.

7 Complement: convergence issues and phantom dynamics

7.1 The scalar invariants

Although convergence issues are by no means central to this investigation
— the analytical expressions of the invariants Aω( f ) in terms of f is —
there seems to be a lot of muddled thinking about these questions, with
some authors insisting on seeing difficulties where there are none. So
a short section entirely devoted to the subject may not be superfluous,
even if it entails some repetitions and leads us, now and then, to state the
obvious.

Scalar invariant attached to convergent diffeos f . There are two ways of
establishing the existence of the scalar invariants as entire functions of

78 Recall, though, that in the ramified case the monics Tesω take the place of the multizetas as direct
transcendental ingredient of the invariants Aω( f ), and these Tesω are no longer finite superpositions
of multizetas.
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f (i.e. of { fn}) when f ranges through a formal class Gp,ρ of identity-
tangent diffeomorphisms. Briefly restated in the terminology of this pa-
per, they are:

(i) The quite old and very elementary geometric approach. It con-
structs the iterators f ∗± and ∗ f± in the z-plane; derives from them
the connectors π±; then subjects the 1-periodic germs π±(z)− z to
Fourier analysis; and arrives directly at the invariants A±

ω ( f ).

(ii) The more informative resurgent approach, less ancient but already
four decades old. It focuses on the formal iterator f̃ ∗(z); forms
its Borel transform f̂ ∗(ζ ); readily finds its resurgence locus 2π iZ;
then, based solely on the functional equation f ∗ ◦ f = 1+ f ∗, it
immediately infers the form of the resurgence equations. Lastly,
depending on which alien operators it applies to f̂ ∗(ζ ), it directly
reaches all systems of invariants, whether {A±

ω ( f )} or {Aω( f )} or{A�ω( f )} etc, plus a wealth of information about them.

Having once establish the existence of the invariants Aω( f ) as entire
functions of f , the only task left is to find their Taylor expansion in the
countably many coefficients fn – or rather gn if f = l ◦ g:

Aω( f ) =
∑
r

∑
ni ,si

H

(
n1
s1

,...,
,...,

nr
sr

)
ω

∏
i

(gsi )
ni (7.1)

Series like (4.3) do just that, since their mode of derivation exactly mim-
ics the parallel constructions of the invariants according to the geometric
and resurgent methods. And the shape of the expansion (7.1) once found,
its convergence is guaranteed beforehand by the mere fact of Aω( f ) be-
ing an entire function of f . We do not have to bother about majorising

the coefficients H
(
n
s )

ω to prove the convergence of (7.1). It is exactly the
other way round: it is by directly establishing bounds on the growth of
Aω( f ) as a function of f or {gn} (as in the next subsection) that we can
most easily derive bounds on the coefficients H (

n
s ).

f -growth of the scalar invariants. This is yet another context where the
d-indexation (degree-based) is preferable to the s-indexation (weight-
based), for reasons spelled out in Remark 3 at the end of this paragraph.
So let us consider a diffeo f = l ◦ g in the standard class (p, ρ) = (1, 0),
with g(z) := g(z) − z = ∑

2≤d g1+d z
−d . The iterator f̃ ∗, or rather its
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essential part f̃ (z) := f̃ (z)− z, is given in the formal model by

f̃
∗
(z)=

∑
1≤r

[
e∂

1−e∂ .
∑
1≤kr

(g(z))kr
∂kr

kr !

]
...

[
e∂

1−e∂ .
∑
1≤kr

(g(z))k1
∂k1

k1!

]
.z (7.2)

=g(z)+
∑
2≤r

[
e∂

1−e∂ .
∑
1≤kr

(g(z))kr
∂kr

kr !

]
...

[
e∂

1−e∂ .
∑
1≤kr

(g(z))k2
∂k2

k2!

]
.g(z).

In the convolution model, this translates to an everywhere79 convergent
series

f̂ ∗(ζ ) = ĝ(ζ ) +
∑
1≤n

Ŵ n ĝ(ζ ) (7.3)

with the mixed (multiplication-convolution) operators K̂ acting thus:

(
Ŵ ϕ̂

)
(ζ ) := e−ζ

1− e−ζ
.
∑
1≤k

[
( ĝ ) ∗k(ζ )

]
∗ζ

[
(−ζ )k
k! ϕ̂(ζ )

]
. (7.4)

A product of two consecutive operators Ŵ involves a series of middle
terms of the form

Ŵ .Ŵ =
(
. . .

)
.

(∑
1≤k

(−ζ )k
k!

e−ζ

1− e−ζ

)
.
(
. . .

)
(7.5)

with bounds∣∣∣(−ζ )k
k!

e−ζ

1− e−ζ
∣∣∣ ≤ cε

|ζ |k−1
(k − 1)! (1+|ζ |) (∀ζ ∈ Kε , c

±
ε > 0) (7.6)

uniformly valid on the Kε

Kε := {ζ ∈ C, dist(ζ, 2π iZ∗) ≥ ε}. (7.7)

Kε := {ζ ∈ R, dist(ζ,Rram − 0•) ≥ ε} with R = ˜C − 2π iZ. (7.8)
Note that Kε (respectively Kε) contains a neighbourhood of the origin
0 (resp 0•). Using the expansion (7.4)-(7.5), the bounds (7.6), and the
estimates

|(̂g)∗ k(ζ )| < γ0 exp(γ1|ζ |) |ζ |2k−1/(2k−1)! (7.9)

79 I.e. at all points ζ not located over the singularity locus 2π iZ.
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tedious but elementary calculations80 lead to optimal81 estimates of type:

| f̂ (ζ )|
< c0,d(ζ ) exp

(
cd(ζ ) |g1+d | 1d

)
(2 ≤ d) (7.10)

< c0,D(ζ ) exp

(∑
d∈D

cd,D(ζ ) |g1+d | 1d
)

(D finite ⊂ {2, 3, . . . }) (7.11)

< c0,∞(ζ ) exp
(
c∞(ζ ) sup

d
|g1+d | 1d

)
(7.12)

for any ζ on the convolution domain R := ˜C−2π iZ. The main point to
observe is that all the terms Ŵ n ĝ(ζ ) in (7.3) can be calculated inductively
as convolution integrals of the form

e−ζ

1− e−ζ

∫ ζ

0•
(̂g)∗ k(ζ − ζ1) ϕ̂n,k(ζ1) dζ1 (7.13)

with a first convolution factor (̂g)∗ k(ζ − ζ1) that is uniform on C with
the bounds (7.9) and a second factor that is uniform on R and easily
bounded (by induction) on anyKε . To continue the induction, it is enough
to calculate the integral on a ζ1-path confined within the largest Kε that
contains ζ , without worrying about ζ−ζ1.
To derive from the estimates (7.10)-(7.12) analogous estimates for

the invariants A+
ω , we write the resurgence equations �±

ω f̂
∗
(z) =

−A±
ω exp(−ω f̂

∗
(z)). In the Borel plane this becomes82

f̂
∗
(ζ ′±)− f̂

∗
(ζ ′′±) = A+

ω . f̂
∗
ω
(ζ ) with

f̃
∗
ω
(z) = e−ω f̃ (z) − 1 ∼ −ω gs0 .z1−s0

(7.14)

with ζ close to 0• on the main Riemann sheet and ζ ′±, ζ ′′± both over ζ̇+ω
but on two consecutive Riemann sheets. Since f̂

∗
ω
(ζ )∼−ωgs0ζ s0−2/(s0−

2)! for ζ close to 0•, there exists for each value of the variable coef-
ficient g1+d at least one point ζ = ζ(g1+d) on the circle |ζ | = 1 where

80 Even if one were to retain only the part of the operators Ŵ that correspond to k = 1, the (much
simpler) calculations would already show that the estimates (7.10)-(7.12) cannot be improved upon.
Taking all k-parts into account does not alter the shape of the estimates, due to the bounds (7.9).

81 Optimal as long as we consider the absolute values |g1+d |1/d . But one might improve on (7.10)
by finding the indicatrix of exponential growth in |g1+d |1/d .
82 Since the first term “1” in exp(−ω f̂

∗
(z)) = 1+ . . . contributes nothing to the minors.
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| f̂ ∗
ω
(ζ )| = |ω gs0/(s0−1)!|. Considering the identity (7.14) for this partic-

ular ζ and its images ζ ′± and ζ ′′± and using (7.10), we get (7.15) for A+
ω , as

well as (7.16) and (7.17) by a similar argument. The analogous estimates
for Aω, A�ω, A

��
ω etc. follow in view of the bipolynomial correspondance

between any two systems of invariants.

|A±
ω |, |Aω|, |A�ω|, |A��ω | etc.

< c0,d(ω) exp
(
cd(ω) |g1+d | 1d

)
(∀ω, d ≥ 2) (7.15)

<c0,D(ω) exp
(∑
d∈D

cd,D(ω) |g1+d | 1d
)
(D finite) (7.16)

<c0,∞(ω) exp
(
c∞(ω) sup

d
|g1+d | 1d

)
(7.17)

Remark 1. The case of the iteration residue ρ. If we now let f = l ◦ g
range through all classes (1, ρ) by taking g(z) = −ρz−1 +O(z−1), and
ask about the asymptotics in ρ, we would get the wrong result by simply
setting g2 = −ρ in the estimate (7.15). The correct estimate is rather:
|A±

ω |, |Aω|, |A�ω|, |A��ω | etc.<c0,1(ω) exp (c1(ω)|ρ log |ρ||) (∀ω). (7.18)
The reason is not the change from (7.9) to the weaker estimates:

| ĝ ∗ k(ζ )| < γ0 exp(γ1|ζ |) |ζ |k−1/(k−1)! (7.19)

The real reason is that we now have f̂
∗
(z) = ρ log z + f̂

∗
(z) and

f̃
∗
ω
(z) = z−ω ρ exp(−ω f̃ ∗(z)) = z−ω ρ f̃

∗
ω
(z) (7.20)

so that (7.14) presently becomes83

f̂
∗
(ζ ′)− f̂

∗
(ζ ′′) = A+

ω .
ζ ωρ−1

�(ωρ)
∗ζ f̂

∗
ω
(ζ ) (7.21)

Remark 2. ‘Uniformisation’. Due to the ‘uniformisation’ formula (1.54)
or (1.55), we see that for any ζ ∈ R (but not above the imaginary axis),
f̂
∗
(ζ ) reduces to a finite sum

f̂
∗
(ζ ) = a0 f̂

∗
(ζ̇ )+

∑
ω∈2π iZ∗

aω f̂
∗
ω
(ζ̇ − ω) (7.22)

83 At least when −ωρ �∈ N. When −ωρ ∈ N, the positive z-powers in z−ω ρ f̃
∗
ω
(z) should be

neglected, as contributing nothing to the minors in the Borel plane.
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(i) with f̂
∗
ω
as in (7.20)

(ii) with coefficients a0, aω polynomial in the Aω
(iii) with ζ̇ the projection of ζ ∈ R onto the main Riemann sheet.

Remark 3. Weight-based vs degree-based indexation. While the s-
indexation f (z) = z + ∑

fs z1−s is well-adapted to germ composition,
the d-indexation

∑
f{d} z−d is better suited to germ conjugation and, con-

sequently, to studying the asymptotics of Aω( f ). Indeed, take a diffeo f
in the standard class and fix 2 ≤ d ≤ d ′. There clearly exists a unique
diffeo h of the form h(z) := z + ∑

d−1≤n≤d ′−1 h{n} z
−n that conjugates f

to varf so as to remove the coefficient f{d} while keeping all other coeffi-
cients between d and d ′ unchanged:

f (z) := z + 1+
∑
2≤d

f{n} z−n → varf (z) := (h ◦ f ◦ h−1)(z)

= z + 1+
∑
2≤d

varf{n} z−n

On top of the defining condition (i), the h-conjugation verifies (ii)-(iii):

(i) varf{d} = 0 if n ≤ d ′, and varf{n} = f{n} with n �= d;
(ii) if d ′ < n, varf{n} is a polynomial in f{2}, f{3}, . . . , f{n} involving only

‘subhomogeneous’ monomials of form
∏

i( f{ni })
mi with n1m1 +

· · · + nrmr ≤ n;
(iii) if d|n and d ′ < n, the monomial ( f{d})n/d is effectively present,

with a nonzero rational coefficient, in the expression of varf{n}.

Since Aω( f ) = Aω(varf ), we see that the additional properties (ii)-(iii)
are perfectly coherent with the asymptotic estimates (7.10)-(7.15).

ω-growth of the scalar invariants. Fixing f = l ◦ g and ε0 < π , using
the relations (7.3), and calculating the successive integrals in (7.4) on
ζ1-paths contained in Kε0 , one easily arrives at exponential estimates

|A±
ω | < γ±

0 exp(γ±
1 |ω|) (∀ω ∈ 2πZ∗ , γ±

0 , γ
±
1 > 0) (7.23)

with constants γ±
0 , γ

±
1 that depend only on the growth of ĝ(ζ ) in the ver-

tical stripes |0(ζ )| < ε. This, however, does not apply to the other sys-
tems of invariants, like Aω, A�ω, A

��
ω etc, which, being the coefficients of

generically divergent but resummable Fourier series (see below), generi-
cally possess exponential growth in |ω|. log |ω| rather than |ω|.
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7.2 The connectors

For f = l ◦ g fixed and convergent, only the connectors π±(z) with
Fourier coefficients A±

ω have guaranteed convergence is some bi-domain|)(z)| > y. But as shown in Section 1.7, and 1.8, most other connec-
tors π♦(z) are merely resurgent and Borel resummable, each with a def-
inite critical time z0 := exp(∓2π i z), where n0 is the index of the first
non-vanishing invariant. This is definitely the case with the connectors
π∗(z), π�(z), π��(z).

7.3 The collectors

As already pointed out, collectors can be classified unter two viewpoints:

(i) type : there is p(z) itself and its various affiliates p♦(z)— genera-
tors, mediators etc,

(ii) nature : we can consider their natural multitangent expansions; or
their reduced monotangent expansions; or their local Laurent ex-
pansions at z = 0.

Now, as long as the collectors are viewed as generating series in the co-
efficients gn , as in Section 3, the question of their convergence does not
arise — the coefficients of each bloc is always convergent, and this is
all that matters from the perspective of this paper. But we may also ask,
gratuitously so to speak: given a fixed convergent germ f , which imper-
sonations of the collectors do converge, and in what sense?
From what we already know about the connectors, the question makes

sense only for p(z) itself, not for its affiliates. And p(z), as we shall see,
convergences only in its natural multitangent presentation.84

Convergence of the multitangential collectors p(z). The convergence of
the connectors π as scalar germs can be established in any number of
ways (e.g. from the estimates (7.23)) and it implies the convergence of
the associated substitution operators �. However, in order to ease the
transition to the collectors p and P, we need to look more closely at
these operators� and their constituent parts.
Set� := �+,G := G+,G :n := Ln .G . L−n consider the (for the mo-

ment, formal) operator� as given by (3.8) and replace its bifactorisation
� = ∗F− . F∗+ by the trifactorisation

� = �L ,n .�M,n .�R,n . (n large) (7.24)

84 Natural means that we take the Te•-expansions as they naturally result from the series (3.12) in
Section 3 and resort, at most, to symmetrel linearisation.
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with L, M, R standing for left, middle, right and with the truncated expan-
sions

�R,n := 1+
∑
1≤r

∑
n≤nr<...<n1

G+
:nr . . .G

+
:n1 = Ln . F∗

+ . L
−n (7.25)

�M,n := 1+
∑
1≤2 n

∑
−n≤nr<...<n1<n

G+
:nr . . .G

+
:n1 = G :(−n) . . .G :(n−1) (7.26)

�L ,n := 1+
∑
1≤r

∑
nr<...<n1<−n

G+
:nr . . .G

+
:n1 = L−n . ∗F− . Ln. (7.27)

For any two open setsD1,D2 of C, bounded or not, connected or not, but
with D2 ⊂ D1, and any operator H , we set

‖H‖D1,D2 := sup
‖ϕ‖D1≤1

‖H ϕ‖D2 and ‖H‖D := ‖H‖D,D∗ (7.28)

where D∗ denotes the set of all points in D whose distance from the
boundary of D is more than 1.
For any ε we can find n ∈ N and y ∈ R+ large enough to ensure

‖�R,n − 1‖DR ≤ ε ∀DR ⊂ {z,0z ≥ −6} (7.29)

‖�M,n − 1‖DM ≤ ε ∀DM ⊂ {z, |)z| ≥ y} (7.30)

‖�L ,n − 1‖DL ≤ ε ∀DL ⊂ {z,0z ≤ +6} (7.31)

and therefore

‖�− 1‖D ≤ 4 ε ∀D ⊂ {z, |0z| ≤ 3, |)z| ≥ y + 3}. (7.32)

Moreover, one can show that the statement would still hold (for a slightly
larger choice of n, y) if, instead of considering the norm ‖�−1‖D, we
were to consider the larger norms:

‖�−1‖SD=
∑

‖H
(
n
s

)
‖D

∏∣∣gsi ∣∣ni with �−1=
∑

H
(
n
s

) ∏
(gsi )

ni

relative to any natural expansion S of �−1 as a series of monomials∏
(gsi )

ni . But expanding� in this way is tantamount to viewing it as the
collectorPwith its natural multitangent expansion (relative to the system
Te•). Of course, the multitangential P and p converge separately on the
two half-planes |)(z)| > y, but in that sense, qua convergent objects,
already cease to be of one piece.
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Divergence of the monotangential collectors p(z). Bymultiplying the Lau-
rent expansions of Tes1(z) and Tes2(z) at z = 0 and then retaining only
the z-negative powers in the product, we get the multiplication rule for
(integer-indexed) monotangents:

Tes1(z)Tes1(z)=Tes1+s2(z)+
∑

2≤s3<max(s1,s2)
tes1,s2s3

Tes3(z) (s1, s2∈N ∗) (7.33)

with

tes1,s2s3
= [

1+ (−1)s1+s2−s3] ζ(s1 + s2 − s3)

×
[
(−1)s1−s3+ (s1 + s2−s3)!
(s1 − s3)!(s2 − 1)! + (−1)s2−s3+ (s1 + s2−s3)!

(s2 − s3)!(s1 − 1)!

]
(7.34)

and (−1)s+ := (−1)s if s > 0 respectively (−1)s+ := 0 if s ≤ 0. Now,
if the monotangential expansions for p+ and p− always existed, since
p+ ◦ p− = id, going from the one to the other would involve mutiplying
many infinite sums of the form( ∑

s1 even

as1 Te
s1(z)

)( ∑
s2 even

bs2 Te
s2(z)

)
 →

( ∑
s3 even

cs3 Te
s3(z)

)
(7.35)

with series
∑
as1 z

−s1 and
∑
bs2 z

−s2 whose convergence radii might be
small, since the convergence radius of the underlying series g(z) may be
anything. But the coefficient cs3 on the right-hand side of (7.35) are given
by

cs3 =
∑

s3=s1+s2
as1 bs2 +

∑
s3<max(s1,s2)

as1 bs2 te
s1,s2
s3

(7.36)

with a second sum that diverges if, for instance, all as1 and bs2 are positive

with lim |as1 |
1
s1 = a > 0, lim |bss |

1
s2 = b > 0 and 2 a b > 1. In that case,

the coefficients cs3 are not even defined.
So it would be more accurate to say that the monotangential collectors,

rather than diverging, generally do not even exist : they cannot be defined,
not even as formal series. What exists but fails to converge as s → +∞
is the weight-truncated, monotangential collectors85 truncs0 p±(z) (see
Section 3.7).

85 They exist unproblematically as finite sums, whether in multi- or monotangential form.
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7.4 Groups of invariant-carrying formal diffeos

One of the many advantages of the resurgent approach to the study of
holomorphic invariants is that it extends effortlessly to many subgroups
Gχ of the group G of all formal identity-tangent diffeos. Typically, these
groups Gχ are defined by a growth condition on the coefficients fs of
their elements that is

(i) stable under composition and reciprocation86;
(ii) stringent enough to ensure that formal conjugacy (in G) does not

imply actual conjugacy (in Gχ ).

This implies the existence on these groups Gχ of non-formal invariants,
and immediately raises the question of their description/calculation.
If we put aside a few pathological instances87, all such groupsGχ con-

sist of elements f̃ whose Borel transforms f̃ (ζ ) extend to well-defined
entire functions (albeit with supra-exponential growth), with iterators
f̃ ∗, ∗ f̃ that verify the familiar resurgence equations and produce com-
plete systems of holomorphic invariants Aω( f̃ ), exactly as on the analytic
group G0.
Before taking a closer look at some examples of ‘invariant-carrying’

groups Gχ , let us state a few useful lemmas.
Given a system {an, n ∈ C} with a geometric or slightly faster-than-

geometric rate of growth, and a numberω0∈C∗, we set bm :=∑
n
|ω0 m|n
n! an .

Using the rough estimates log+ |bm| ∼ supn log
+ | |ω0 m|n

n! an|, we easily in-
fer the growth rate of log |bm| from that of log |am| in these four important
cases: {

log+|an|=O(n)}4⇒ {
log+|bm|=O(m)} (7.37){

log+|an|=O(nlogkn)
}4⇒ {

log+|bm|=O(m logk−1m)
}

(7.38){
log+|an|=O

(
n
logn

logkn

)}
4⇒

{
log+|bm|=O

(
m exp

(
logm

logkm

))}
(7.39)

{
limsup

log+|an|
nlogn

≤τ<1
}
4⇒

{
limsup

log+|bm|
m1/(1−τ)

≤1
}
. (7.40)

Here, log+ x := log x if 1 < x (respectively := 0 if 0 ≤ x ≤ 1). As we
can see, the actual value of ω0 is immaterial.

86 I.e. the taking of the composition inverse.

87 Corresponding to wildly irregular (‘oscillating’ in some sense) growth conditions χ .



206 Olivier Bouillot and Jean Ecalle

Moreover, if we set

b(w) = w +
∑

bm e
−mω0w (7.41)

c(z) = z +
∑

cmz
1−m = exp

(
−ω0 b

(
1

ω0

)
log

(
1

z

))
(7.42)

the Taylor coefficients cm are, in all four instances (7.37)-(7.40), subject
to exactly the same growth constraints as the Fourier coefficients bm .
Lastly, it is an easy matter to check that each of the growth conditions

listed in (7.37)-(7.40) is stable under composition and reciprocation, and
thus defines a group Gχ .

The analytic subgroup G0. There is no need to return to the group G0

and its invariants, except to emphasise a remarkable feature: any germ
f �= id in G0 has 2p connectors which, after a rescaling of type (7.42),
produce 2p new germs f(i1) still in G0. Each one of these f(i1) produces
2pi1 new germs f(i1,i2), each of which in turn produces 2pi1,i2 germs
f(i1,i2,i3), and so on indefinitely

88, without ever leaving the group G0.
This infinite self-replication property of G0 is more than a curiosity: it
has practical implications.89 It also raises the question: is self-replication
an exclusive feature of G0, or does it extend to other invariant-carrying
groups Gχ? It does, as we shall see, provided the growth condition χ is
extremely close to geometric growth (which ensures analyticity).

The near-analytic, self-replicating subgroupG0+ . The implication (7.38)
being optimal, on the group G[k] consisting of all f (let us drop the
clumsy tilda) whose coefficients verify

lim
n→+∞

log+ | fn|
n logk n

= 0 (7.43)

the mapping90 f  → resc.π is from G[k] to G[k−1] ⊂ G[k]. So it is only
the limit or intersection

G0+ := lim
k

G[k] =
⋂
k

G[k] (7.44)

88 For the process to stop, at a certain stage all f(i1,...,ir ) would have to be id, which of course
almost never happens.

89 E.g., in fractal analysis (see [12]) and in resummation theory: it played a part in the original
proof of Dulac’s conjecture about the non-accumulation of limit-cycles, prior to the introduction of
well-behaved convolution averages (see [7]).

90 resc.π is the connector π rescaled so as to become an element of G.
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that possess the property of self-replication. To realise how close G0+
is to G0, we may note that verifying (7.43) for any k is a far more se-
vere condition than verifying the Denjoy quasi-analyticity conditions.
Expressed in terms of Taylor coefficients, these read:

|gn| 1n ≤ O(log1 n log2 n . . . logk−1 n) (7.45)

for some given k. That merely implies

log+ | fn| ≤ n
(
log2 n + · · · + logk n + o(logk n)

)
(7.46)

which is much weaker than (7.43), let alone (7.44). This is not to say,
of course, that G0+ consists only of quasi-analytic germs, since a smooth
function f must verify a Denjoy condition on a whole interval to qualify
as quasi-analytic.91

The maximal subgroup G0++ . Consider the Gevrey subgroups of G de-
fined by the growth conditions

G[[τ ]] :=
{
f ; lim sup

n→+∞
log+ | fn|
n log n

≤ τ

}
. (7.47)

For all elements f in G[[τ ]] of tangency order p = 1 to have everywhere
convergent Borel transforms, τ has to be < 1, in which case these f
possess invariants whose growth pattern is bounded by the bm-estimates
of (7.40). Elements f of tangency order p > 1, however, must first be
brought to a prepared form ( f (z1/p)p, which belongs to G[[pτ ]], or rather
to the ramified equivalent ofG[[pτ ]]. So the largest group whose elements
all possess holomorphic invariants is the intersection G0++ of all these
Gevrey goups:

G0++ :=
{
f ; lim

n→+∞
log+ | fn|
n log n

= 0

}
(7.48)

Elements of G0++ have connectors which are usually not in G0++ . since
their coefficients are subject only to the very weak growth constraints

log+ log+ |cr | = o(r log r) (7.49)

91 Growth conditions at one point never suffice to ensure the existence of a quasi-analytic ‘contin-
uation’ on a neighbourhood of that point. In fact, when the coefficients are all > 0 and with faster
than geometric growth, the ‘continuation’ never exists.
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This results from the optimal implication (7.39) or rather from its – still
valid – extension to the case where logk is replaced on both sides by any
regular92 germ L with ultra-slow growth.
7.5 A glimpse of phantom holomorphic dynamics

Let us for definiteness consider the “near-analytic” group G0+ . It has
much more in common with its analytic prototype G0 than the existence
of non-trivial (i.e. non-formal) conjugacy classes characterisable by holo-
morphic invariants Aω( f ). The notion of polarised sectorial model too
has its equivalent, but with acceleration operators taking the place of
Laplace integration. Indeed, for any slow acceleration z → z† with

z†
z

→ +∞ but
log z†
log z

→ 1 e.g. z = F(z†) := z†
log z†

(7.50)

the acceleration integrals ζ → ζ†

f̂ ∗†,±(ζ†) =
∫ (1±ε) i∞

0
CF(ζ†, ζ ) f̂

∗(ζ ) (7.51)

∗ f̂†,±(ζ†) =
∫ (1±ε) i∞

0
CF(ζ†, ζ )

∗ f̂ (ζ ) (7.52)

turns the non-polarised iterators f̂ ∗, ∗ f̂ into polarised iterators f̂ ∗†,±,
∗ f̂†,±

defined and regular in sectors S†,± of the ζ†-plane. Moreover, on the in-
tersection S†,+∩S†,−, which contains a southern half-plane {) ζ† < −y},
these polarised iterators can be subjected to the operation ◦̂ (which trans-
poses the ordinary composition ◦ to the Borel planes93) to produce an
object π̂†,so(ζ†) that will be the exact counterpart of a connector’s south-
ern component πso(z) for an ordinary analytic germs f in G0.
One may even perform Fourier analysis on π̂†,so(ζ†) and π̂†,no(ζ†) in

the ζ†-plane94 to calculate the invariants Aω( f ). This procedure (ineffi-
cient but perfectly workable) would essentially differ from the (efficient)
resurgent analysis in the ζ -plane. It would exactly mirror the (moder-
ately efficient – see Section 4.5) Fourier analysis performed on ordinary
connectors πso(z), πno(z) in the multiplicative z-plane.

92 “Regular” in the sense of verifying the universal asymptotics of slow-growing germs. See e.g.
[7, 8]. For instance, we may take L to be any transfinite exponential of log, again in the sense
of [7, 8].

93 (ϕ̂ ◦̂ f̂ )(ζ ) := ϕ̂(ζ )+ ∑
1≤k 1

k! ( f̂ )∗k(ζ ) ∗ζ
(
(−ζ )k ϕ̂(ζ )

)
with f (z) = f (z)− z.

94 There is no contradiction here: the exponentials e±ωz have no image in the ζ -plane, but they
have one in the ζ†-plane, since e

±ωz = e±ωF(z†) is strictly sub-exponential in z†.
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For any f in G0+ , the mapping ϕ̂  → ϕ̂ ◦̂ f̂ is an algebra isomorphism
(relative to the convolution product), just as the substitution operators are
(relative to ordinary multiplication). Another aspect of “phantom holo-
morphic dynamics” (in non-polarised and polarised Borel planes) is the
notion of invariant subspaces or fuzzy orbits, which in a sense fill the role
of orbits in the (here non-existent) multiplicative plane. But the subject
is still in its infancy, and we had better stop here.

8 Conclusion

8.1 Some historical background

(i) Identity-tangent diffeos in holomorphic dynamics.
The iteration of one-dimensional analytic mappings – whether local or
global; identity-tangent or not – has a long history going back a century
or more. Fatou, for one, knew about the analytic classes of identity-
tangent diffeos and had formed a clear, geometry-based idea of their in-
variants. The subject then when into something of a hibernation until
the advent of high-power computation, which brought about an explo-
sive revival of holomorphic dynamics, one- and many-dimensional. For
the specific subject of analytic invariants, however, the main impetus for
renewal came from an unexpected quarter: resurgent analysis.
(ii) Identity-tangent diffeos and resurgent analysis.
The fact is that identity-tangent diffeos possess generically divergent but
always resurgent iterators and fractional iterates, with an interesting, non-
linear pattern of resurgence or self-reproduction at the singular points in
the Borel plane, and it was in the process of sorting out these phenomena
that resurgence theory was born, and later applied to general local objects
and much else. In a sense, this involved a retreat from dynamics proper,
since it meant focusing on the Borel plane, where the key dynamic no-
tions of trajectory, fixed point etc admit no simple interpretation. For the
invariants Aω, however, the shift in focus brought a definite advantage,
since in the Borel plane these invariants are automatically localised and
isolated (they appear as coefficients of the leading singularities over the
point ω) whereas in the multiplicative plane they are diffuse and inter-
twined (they make themselves felt only collectively and indirectly, via
Stokes phenomena and the like, and the only way to isolate them is by
Fourier analysis of type (4.10), which is but a half-hearted way of do-
ing what Borel analysis does neatly and efficiently). This applies not
just to identity-tangent diffeos, but to a huge range of local objects and
equations. It also works in both directions: in that of “analysis”, i.e.
calculating and investigating the invariants of a given object; and in that
of “synthesis”, i.e. prescribing an admissible system of ‘invariants’ and
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then constructing an object of which they are the actual invariants. And
it has to be said that in both directions resurgence theory performs rather
better than geometry. It leads in particular to a privileged or “canonical”
synthesis, a notion which eludes geometry.

8.2 Multitangents and multizetas

(iii) Identity-tangent diffeos and the resuscitation of multizetas.
Multizetas (of depth 2, to be precise) were first considered by Euler as
an isolated curiosity, and later fell into a protracted oblivion for want
of applications. They resurfaced only in the late 1970s and early 1980s
in [3–5], precisely in the context of holomorphic dynamics and identity-
tangent diffeos, as the transcendental ingredient in the make-up of their
invariants. Ten years later, the multizetas started cropping up in half
a dozen, largely unconnected contexts: braid groups and knot theory;
Feynman diagrams; Galois theory; mixed Tate motives; arithmetical di-
morphy; ARI/GARI and the flexion structure, etc. At the moment, all
these strands are in the process of merging or at least cross-fertilising,
and constitute a vibrant field of research.
(iv) Identity-tangent diffeos and the actual computation of their in-
variants.
The sections of [5] devoted to the invariants of identity-tangent diffeos
were written with no computational applications in mind, and no at-
tempt was made to optimise the calculational procedures. On the con-
trary, the PhD thesis [1], which revisits the subject 30 years on, lays its
main emphasis on these neglected aspects and provides effective Maple
programmes for the computations of the invariants; it also offers copious
asides on the algebraic aspects of multitangents, which largely, but not
exactly, mirror those of multizetas.

8.3 Remark about the general composition equation

The equations verified by the iterators and iteration roots of identity-
tangent diffeos are extremely special cases of the general composition
equation:

f ◦mr ◦ gr ◦ . . . f ◦m2 ◦ g2 ◦ f ◦m1 ◦ g1 = id (8.1)

with f unknown, mi ∈ Z and gi(z) = z + τi + O(z−1). The gen-
eral solution95 of (8.1) is also generally divergent but always resurgent

95 It is unique under the genericity assumption
∑
mi �= 0.
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and resummable.96 The subject is investigated in Section 11 and 12 of a
preprint accessible on the author’s homepage.97

The critical set � (containing the indices ω of all active alien deriva-
tions �ω) is often huge: it usually consists of all finite combinations
−λ j0 +

∑
n jλi (n j > 0) spanned by the (countably many) roots of

some exponential polynomial constructed from the data mi and τi . We
may adjust these data mi , τi so as to ensure � = 2π iZ, for example by
considering composition equations of the form

f ◦ gr ◦ . . . f ◦ g2 ◦ f ◦ g1 = id (8.2)

with g1(z)= z+1+O(z−2), gi(z)= z+O(z−2) (i ≥ 2). But even then the
complete formal solution remains extremely complex, and still depends
non-linearly on a countable infinity of parameters u j :

f̃ (z, u)= f̃ (z)+
∑

un eω z f̃n(z)
(
un=

∏
u
n j
j

)
. (8.3)

The bridge equation reads ��ω f̃ (z, u) = Aω f̃ (z, u) with operators Aω

that are hardly less complex:

Aω =
∑

〈n , j〉− j=k
u
n jr
j1
. . . u

n jr
j1

A j
ω,n ∂u j

(
ω̇ = 2π i k, k ∈ Z−r Z

)
. (8.4)

However, a drastic simplification occurs in the case r = 2:

Aω = 2π i Aω
∑
k∈Z∗

( j+k) u j+k ∂u j
(
ω̇ = 2π i k, k ∈ Z−2Z

)
. (8.5)

Instead of depending on a huge set of unrelated resurgence constants
A j
ω,n, with ω ∈ 2π iZ∗ but an index n running through all finite parts

of Z, the operators Aω now depend on an incomparably smaller set of
resurgence constants Aω, with ω ∈ 2π iZ∗.
The reason is of course that in the case r = 2, the composition equation

reduces to an iteration equation - to the taking of a ‘square root’:

f ◦ g2 ◦ f ◦ g1 = id ⇐⇒ ( f ◦ g2) ◦ ( f ◦ g2) = g−11 ◦ g2. (8.6)

This huge complexity gap between the case r ≥ 3 and r = 2 is remi-
niscent of the equally dramatic simplification that takes place with first
order singular ODE’s of ‘Euler type’ :

∂zY = Y +
∑

−1≤n≤n0
bn(z)Y

1+n (
bn(z) ∈ z−1C{z−1}). (8.7)

96 The critical time too is unique under the same genericity assumption
∑
mi �= 0.

97 The Natural Growth Scale.
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In the general case (2 ≤ n0 ≤ ∞), we get a resurgent formal solu-
tion f̃ (z, u) in C[[z−1, u zτ ez]], a critical set � = {−1} ∪ N∗, and an
infinite series of independent invariants An = Aω un+1∂u with indices
n ∈ {−1, 1, 2, 3 . . . }, whereas in the case n0 = 1, the equation (8.7) be-
comes an ODE of Riccati type; the critical set � reduces to {−1, 1}; and
we are left with just two independent invariants A−1,A1.

9 Tables

9.1 Multitangents: symmetrel, alternal, olternol

We express Taa• and Too• in terms of Te• ≈ Tee• according to the lin-
earisation lemma of Section 5.4, using throughout the shorthand ni, j,...
for ni+n j+. . . .
Table 1 : Comparing Te• ∼ Tee•, Taa•, Too•.

Taan1 = Toon1 = Ten1 , Taan1,n2 = Toon1,n2 = 1

2
Ten1,n2 − 1

2
Ten2,n1

6 Taan1,n2,n3 = 2Ten1,n2,n3−Ten1,n3,n2−Ten2,n1,n3−Ten2,n3,n1−Ten3,n1,n2

+2Ten3,n2,n1−Ten1+n3,n2+ 1
2
Ten1,n2,3+ 1

2
Ten1,2,n3+ 1

2
Ten3,n1,2

+ 1
2
Ten2,3,n1−Ten2,n1,3

4 Toon1,n2,n3 = Ten1,n2,n3−Ten1,n3,n2−Ten2,n1,n3−Ten2,n3,n1−Ten3,n1,n2
+Ten3,n2,n1 − Ten1,3,n2 − Ten2,n1,3

12 Taan1,n2,n3,n4 =
3Ten1,n2,n3,n4−Ten1,n2,n4,n3−Ten1,n3,n2,n4−Ten1,n3,n4,n2−Ten1,n4,n2,n3
+Ten1,n4,n3,n2−Ten2,n1,n3,n4+Ten2,n1,n4,n3−Ten2,n3,n1,n4−Ten2,n3,n4,n1
+Ten2,n4,n1,n3+Ten2,n4,n3,n1−Ten3,n1,n2,n4−Ten3,n1,n4,n2+Ten3,n2,n1,n4
+Ten3,n2,n4,n1−Ten4,n1,n2,n3+Ten4,n1,n3,n2+Ten4,n2,n1,n3+Ten4,n2,n3,n1
+Ten4,n3,n1,n2−3Ten4,n3,n2,n1 + Ten1,n2,n3,4 − Ten1,n3,n2,4 − Ten2,n3,n1,4
+Ten2,n4,n1,3 − Ten3,n1,n2,4 + Ten3,n2,n1,4 + Ten4,n2,n1,3 − Ten4,n3,n1,2
+Ten1,n2,3,n4 − Ten1,n2,4,n3 − Ten2,n1,3,n4 + Ten2,n1,4,n3 − Ten3,n1,4,n2
+Ten3,n2,4,n1 + Ten4,n1,3,n2 − Ten4,n2,3,n1 + Ten1,2,n3,n4 − Ten1,3,n2,n4
−Ten1,3,n4,n2 + Ten2,4,n1,n3 + Ten2,4,n3,n1 − Ten1,4,n2,n3 + Ten1,4,n3,n2
−Ten3,4,n2,n1 + 1

2
Ten1,2,n3,4 − Ten1,3,n2,4 + Ten2,4,n1,3 − 1

2
Ten3,4,n1,2
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8 Toon1,n2,n3,n4 =
+Ten1,n2,n3,n4−Ten1,n2,n4,n3−Ten1,n3,n2,n4−Ten1,n3,n4,n2−Ten1,n4,n2,n3
+Ten1,n4,n3,n2−Ten2,n1,n3,n4+Ten2,n1,n4,n3−Ten2,n3,n1,n4−Ten2,n3,n4,n1
+Ten2,n4,n1,n3+Ten2,n4,n3,n1−Ten3,n1,n2,n4−Ten3,n1,n4,n2+Ten3,n2,n1,n4
+Ten3,n2,n4,n1−Ten3,n4,n1,n2+Ten3,n4,n2,n1−Ten4,n1,n2,n3+Ten4,n1,n3,n2
+Ten4,n2,n1,n3+Ten4,n2,n3,n1+Ten4,n3,n1,n2−Ten4,n3,n2,n1 − Ten1,3,n2,n4
−Ten1,3,n4,n2 − Ten2,n1,3,n4 + Ten4,n1,3,n2 + Ten2,n4,n1,3 + Ten4,n2,n1,3
+Ten2,4,n1,n3 + Ten2,4,n3,n1 − Ten1,n2,4,n3 + Ten3,n2,4,n1 − Ten1,n3,n2,4
−Ten3,n1,n2,4 − Ten1,4,n2,n3 + Ten1,4,n3,n2 + Ten2,n1,4,n3 − Ten3,n1,4,n2
−Ten2,n3,n1,4 + Ten3,n2,n1,4 + Ten2,4,n1,3 − Ten1,3,n2,4

Taan1,...,n5 = 540 Te•-summands , Toon1,...,n5 = 308 Te•-summands
Taan1,...,n6 = 3 688 Te•-summands , Toon1,...,n6 = 2 612 Te•-summands
Taan1,...,n7 = 47 292 Te•-summands , Toon1,...,n7 = 25 988 Te•-summands
9.2 Parity properties of alternal and olternol multitangents

We begin by comparing the number of summands in the monotangent re-
ductions red1(Te•) and red1(Taa•) (respectively red2(Te•) and red2(Taa•))
of Te• and Taa• before (respectively after) symmetrel linearisation of the
resulting multizetas. N.B. A further reduction red3(Te•) and red3(Taa•),
corresponding to a complete decomposition of the multizeta into arith-
metical irreducibles, would yield even fewer summands.
The triplets [N1, N2, N3] of Table 2 are defined as follows. N1 is the

number of summands after reduction into a sum of monotangents Teni

and symmetrel multizeta coefficients ze•. N2 and N3 represent the num-
ber of summands left after taking multizeta dimorphy into account and
expressing everything in terms of multizeta irreducibles – either plain
irreducibles from Zig• or even-odd irreducibles from Zig•ev,Zig

•
odd. See

Section 6.2, Section 6.3. Note that N2 is about the same as N1, but that
N3 is much smaller.98

98 Of course, unlike N1, which has absolute significance, N2 and N3 depend on the particular
system of irreducibles chosen for the reduction. There exist privileged systems, but we cannot go
into that here. But whatever system we choose, the average values N3 will always be much smaller
than that N2.
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Table 2.

(n1, . . . , nr ) || #(Te•) | #(Taa•) | #(Too•)

(2, 7, 4) || 47, 45, 17 | 28, 26, 8 | 15, 15, 5
(5, 2, 2, 4) || 40, 39, 21 | 37, 37, 13 | 30, 30, 11

(5, 3, 3, 4, 2) || 210, 209, 69 | 294, 289, 38 | 212, 207, 32
(3, 1, 2, 3, 4, 2) || 455, 455, 33 | 491, 488, 30 | 382, 382, 26

(2, 1, 2, 1, 2, 2, 3) || 220, 203, 15 | 659, 578, 15 | 631, 567, 12

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 bis : Here are the even-irreducibles and odd-irreducibles to ap-
pear in the sequel, with their expression in terms of ordinary irreducibles.

ζ ev6,2 = ζ6,2−3ζ5ζ3
ζ ev8,2 = ζ8,2−4ζ7ζ3−2ζ 25
ζ ev10,2 = ζ10,2−5ζ3ζ9−5ζ7ζ5
ζ odd8,1,2 = ζ8,1,2+ζ6,2ζ3−3ζ5ζ 23 −

27

2
ζ9ζ2− 1310 ζ7ζ

2
2 −

44

105
ζ 32 ζ5+

72

175
ζ3ζ

4
2

ζ odd9,3,1 = ζ9,3,1+82ζ11ζ2+ 19310 ζ9ζ
2
2 +

8

55
ζ3ζ

5
2 +

226

35
ζ7ζ

3
2 +

288

175
ζ5ζ

4
2

ζ odd10,2,1 = ζ10,2,1−28ζ11ζ2− 415 ζ9ζ
2
2 −

36

25
ζ5ζ

4
2 −

124

35
ζ7ζ

3
2 −

208

385
ζ3ζ

5
2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The following twelve examples of multitangent reduction (of type red2)
are meant to cover all situations. They illustrate the phenomenon of par-
ity separation in Taa• and Too•, and its absence in Te• ≈ Tee•. The last
examples involve irreducibles of depth 2 and 3.
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Table 3 : Te2,7,3(z) has no definite parity in z.

Te2,7,3(z) =
∑
2≤m≤7

teze2,7,3m Tem(z)

teze2,7,31 = 10ze5,6+10ze6,5+35ze8,3+56ze3,8−10ze11−21ze4,7
−27ze7,4−28ze9,2=0

teze2,7,32 = 35ze3,7+36ze7,3+48ze5,5−6ze10−21ze8,2−28ze2,8

−45ze4,6−45ze6,4= 7
2
ζ ev8,2+56ζ7ζ3+35ζ 25 −

2296

275
ζ 52

teze2,7,33 = 15ze3,6+15ze6,3−6ze9−6ze4,5−6ze5,4−14ze2,7

−15ze7,2= 35
2
ζ9+ 10435 ζ3ζ

3
2 −21ζ7ζ2−4ζ5ζ 22

teze2,7,34 = 16ze3,5+16ze5,3−3ze8−10ze2,6−10ze6,2−18ze4,4

= 16ζ5ζ3− 652175 ζ
4
2

teze2,7,35 = 3ze3,4+3ze4,3−3ze7−6ze2,5−6ze5,2= 6
5
ζ3ζ

2
2 −6ζ5ζ2

teze2,7,36 = 4ze3,3−ze6−3ze2,4−3ze4,2=2ζ 23 −
6

5
ζ 32

teze2,7,37 = −ze5−ze2,3−ze3,2=−ζ3ζ2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4 : Taa2,7,3(z) is even in z since 2+7+3-3 is odd.

Taa2,7,3(z) =
∑

2≤m even≤10
taaze2,7,3m Tem(z)

taaze2,7,32 = 35ze3,7+36ze7,3+48ze5,5+ 373
6
ze10− 28

3
ze2,8− 7

3
ze8,2

−15ze4,6−15ze6,4=35ζ 25 +56ζ7ζ3+
7

2
ζ ev8,2−

392

275
ζ 52

taaze2,7,34 = 16ze3,5+16ze5,3+ 29
3
ze8− 10

3
ze2,6−6ze4,4− 10

3
ze6,2

= 16ζ5ζ3− 652525 ζ
4
2

taaze2,7,36 = 4ze3,3+ 1
6
ze6−ze2,4−ze4,2=2ζ 23 −

62

105
ζ 32

taaze2,7,38 = 0
taaze2,7,310 = 1

6
ze2= 1

6
ζ2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Table 5 : Too2,7,3(z) is even in z since 2+7+3-3 is odd.

Too2,7,3(z) =
∑

2≤m even≤6
tooze2,7,3m Tem(z)

tooze2,7,32 = 7ze8,2+35ze3,7+36ze7,3+48ze5,5+105ze10

= 35ζ 25 +56ζ7ζ3+7/2ζ ev8,2+
152

55
ζ 52

tooze2,7,34 = 16ze3,5+16ze5,3+ 39
2
ze8=+16ζ5ζ3]+ 1225 ζ

4
2

tooze2,7,36 = 2ze6+4ze3,3=2ζ 23
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 6 : Te2,7,4(z) has no definite parity in z.

Te2,7,4(z) =
∑
2≤m≤7

teze2,7,4m Tem(z)

teze2,7,41 = 30ze12+84ze4,8+84ze10,2+100ze6,6+112ze8,4−104ze7,5
−112ze5,7−112ze9,3−168ze3,9=0

teze2,7,43 = 14ze10+28ze2,8+35ze8,2+35ze4,6+35ze6,4−32ze5,5

−40ze7,3−42ze3,7= 992
175

ζ 52 −8ζ 25 −28ζ7ζ3
teze2,7,44 = 8ze9+8ze4,5+8ze5,4+20ze7,2+21ze2,7−20ze3,6−20ze6,3

= 14ζ7ζ2+ 85 ζ5ζ
2
2 +

35

2
ζ9− 17635 ζ3ζ

3
2

teze2,7,45 = 5ze8+6ze4,4+10ze2,6+10ze6,2−8ze3,5−8ze5,3

= 484

175
ζ 42 −8ζ5ζ3

teze2,7,46 = 2ze7+4ze2,5+4ze5,2−2ze3,4−2ze4,3=4ζ5ζ2− 45 ζ3ζ
2
2

teze2,7,47 = ze6+ze2,4+ze4,2= 2
5
ζ 32

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Table 7 : Taa2,7,4(z) is odd in z since 2+7+4-3 is even.

Taa2,7,4(z) =
∑

2≤modd≤11
taaze2,7,4m Tem(z)

taaze2,7,41 = 28ze4,8+36ze12+56ze8,4+84ze10,2+ 100
3
ze6,6−104ze7,5

−112ze5,7−112ze9,3−168ze3,9=0
taaze2,7,43 = 11ze10+ 28

3
ze2,8+ 35

3
ze4,6+ 35

3
ze6,4+ 49

3
ze8,2−32ze5,5

−40ze7,3−42ze3,7= 24352
5775

ζ 52 −8ζ 25 −28ζ7ζ3

taaze2,7,45 = 2ze4,4+ 10
3
ze2,6+ 10

3
ze6,2+ 17

3
ze8−8ze3,5−8ze5,3

= 1156

525
ζ 42 −8ζ5ζ3

taaze2,7,47 = 1

3
ze2,4+ 1

3
ze4,2+ 17

6
ze6= 74

105
ζ 32

taaze2,7,49 = 2

3
ze4= 4

15
ζ 22

taaze2,7,411 = 1

6
ze2= 1

6
ζ2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 8 : Too2,7,4(z) is odd in z since 2+7+4-3 is even.

Too2,7,4(z) =
∑

3≤modd≤5
tooze2,7,4m Tem(z)

tooze2,7,41 = 39ze12+28ze8,4+84ze10,2−104ze7,5−112ze5,7−112ze9,3
−168ze3,9=0

tooze2,7,43 = 7ze8,2− 23
2
ze10−32ze5,5−40ze7,3−42ze3,7

= 96

55
ζ 52 −8ζ 25 −28ζ7ζ3

tooze2,7,45 = −8ze3,5−8ze5,3− 9
2
ze8= 12

25
ζ 42 −8ζ5ζ3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Table 9 : Te5,3,3,4(z) has no definite parity in z.

Te5,3,3,4(z)=
∑
2≤m≤5

teze5,3,3,4m Tem(z)

teze5,3,3,41 = 6ze10,4+12ze5,9+15ze7,7+12ze5,5,4+15ze7,4,3+15ze4,7,3
+30ze6,5,3+30ze5,6,3+30ze5,4,5+30ze4,5,5+30ze7,3,4
+60ze4,6,4+60ze5,3,6+45ze4,4,6+90ze6,4,4−15ze6,8

= −6ze4,10=0
teze5,3,3,42 = 2ze4,9+10ze4,6,3+12ze4,5,4+15ze4,4,5+15ze4,3,6+30ze5,3,5

+30ze5,5,3+35ze7,3,3+36ze5,4,4+40ze6,3,4+45ze6,4,3−3ze5,8
−5ze6,7−6ze9,4= 240

7
ζ7ζ

3
2 −72ζ9ζ 22 −175ζ ev6,2ζ5−775ζ 25 ζ3

−600ζ7ζ 23 −200ζ odd9,3,1−700ζ odd10,2,1−
71900

3
ζ13− 319835 ζ5ζ

4
2

teze5,3,3,43 = ze5,7+5ze6,3,3+5ze4,3,5+6ze4,5,3+9ze5,4,3+10ze5,3,4
+9ze4,4,4−ze4,8=14ζ ev6,2ζ 22 +14ζ5ζ3ζ 22 +15ζ ev10,2+45ζ9ζ3
+55ζ7ζ5+ 10576684875875

ζ 62 −50ζ 25 ζ2

teze5,3,3,44 = 3ze4,3,4+3ze4,4,3+5ze5,3,3= 35
2
ζ5ζ

2
3 +

35

4
ζ odd8,1,2+

72

5
ζ7ζ

2
2

+29893
96

ζ11−45ζ9ζ2− 807 ζ5ζ
3
2

teze5,3,3,45 = ze4,3,3=10ζ5ζ3ζ2+7ζ7ζ3+ 129321925
ζ 52 +

7

2
ζ ev8,2+10ζ ev6,2ζ2−

45

2
ζ 25

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Table 10 : Taa5,3,3,4(z) is even in z since 5+3+3+4-4 is odd.

Taa5,3,3,4(z) =
∑

2≤m even≤8
taaze5,3,3,4m Tem(z)

taaze5,3,3,42 = 5ze4,3,6+22ze5,8+30ze5,5,3+30ze5,3,5+35ze7,3,3+ 25
3
ze6,4,3

+40
3
ze6,3,4+ 184

3
ze9,4+ 295

3
ze6,7+ 260

3
ze7,6+ 323

3
ze4,9

+291
2
ze13−16ze5,4,4−24ze4,5,4−5ze4,4,5−40ze8,5

−35
3
ze10,3− 80

3
ze4,6,3=−175ζ ev6,2ζ5−200ζ odd9,3,1−700ζ odd10,2,1

−600ζ7ζ 23 −775ζ 25 ζ3−
3102

35
ζ5ζ

4
2 −

71614

3
ζ13

taaze5,3,3,44 = ze4,3,4+35ze4,7+ 41
2
ze7,4+ 55

6
ze5,6+ 155

6
ze11− 29

3
ze8,3

+5ze5,3,3−ze4,4,3= 35
4
ζ odd8,1,2+

35

2
ζ5ζ

2
3 +

8967

32
ζ11− 12421 ζ5ζ

3
2

taaze5,3,3,46 = 8

3
ze5,4+ 25

6
ze4,5+ 13

6
ze9− 5

2
ze6,3= 14

3
ζ5ζ

2
2 −

21

2
ζ9

taaze5,3,3,48 = −1
6
ze4,3− 1

12
ze7= 5

3
ζ2ζ5− 3512 ζ7

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 11 : Too5,3,3,4(z) is even in z since 5+3+3+4-4 is odd.

Too5,3,3,4(z) =
∑

2≤meven≤6
tooze5,3,3,4m Tem(z)

tooze5,3,3,42 = 5ze10,3+30ze5,3,5+30ze5,5,3+35ze7,3,3+60ze8,5+138ze4,9

+147ze9,4+170ze6,7+ 123
2
ze5,8+ 385

2
ze7,6+ 861

2
ze13

−42ze5,4,4−42ze4,5,4−15ze4,4,5−10ze6,4,3−45ze4,6,3
= −775ζ3ζ 25 −200ζ odd9,3,1−700ζ odd10,2,1−175ζ ev6,2ζ5−

306

5
ζ5ζ

4
2

−600ζ7ζ 23 −
285455

12
ζ13

tooze5,3,3,44 = ze8,3+25ze6,5+51ze4,7+ 55
2
ze5,6+ 105

2
ze7,4+ 315

4
ze11

+5ze5,3,3−3ze4,4,3= 35
4
ζ odd8,1,2+

29629

96
ζ11+ 352 ζ5ζ

2
3

tooze5,3,3,46 = 15

2
ze5,4+ 15

2
ze4,5+ 15

2
ze9=3ζ5ζ 22

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Table 12 : Te5,2,3,4(z) has no definite parity in z.

Te5,2,3,4(z) =
∑
2≤m≤5

teze5,2,3,4m Tem(z)

teze5,2,3,41 = ze5,8+2ze4,9+3ze10,3+5ze11,2+15ze7,6−10ze6,7−5ze4,6,3
−15ze4,4,5−35ze8,3,2−35ze8,2,3−42ze5,4,4−18ze4,5,4
−30ze7,2,4−40ze5,3,5−45ze7,4,2−50ze6,3,4−50ze5,6,2
−50ze6,2,5−60ze6,4,3−70ze7,3,3−70ze6,5,2−76ze5,5,3=0

teze5,2,3,42 = 2ze5,7+10ze6,2,4+10ze5,2,5+15ze7,2,3−ze4,8−ze10,2−5ze6,6
−3ze9,3−5ze4,3,5−8ze5,3,4−9ze4,4,4−10ze6,3,3−15ze4,5,3
−15ze4,6,2−16ze5,5,2−20ze7,3,2−24ze5,4,3−35ze6,4,2

= 16ζ ev6,2ζ 22 +35ζ7ζ5+100ζ 25 ζ2+105ζ9ζ3−35ζ ev10,2−16ζ 23 ζ 32
−12462448
525525

ζ 62

teze5,2,3,43 = ze5,6+ze9,2−2ze5,2,4−3ze4,3,4−5ze6,2,3−5ze4,5,2−6ze4,4,3
−10ze6,3,2−10ze5,3,3−11ze5,4,2=8ζ5ζ 32 +60ζ ev6,2ζ3
+4136
175

ζ3ζ
4
2 −30ζ5ζ 23 −40ζ odd8,1,2−

112

5
ζ7ζ

2
2 −

3040

3
ζ11

teze5,2,3,44 = ze5,2,3−2ze4,3,3−3ze4,4,2−4ze5,3,2=10ζ ev6,2ζ2+
21

2
ζ7ζ3

+105
4
ζ 25 −4ζ 23 ζ 22 −

63

4
ζ ev8,2−

1696

275
ζ 52

teze5,2,3,45 = −Ze4,3,2=7ζ5ζ 22 +
53

36
ζ9+ 64

105
ζ3ζ

3
2 −14ζ7ζ2−

2

3
ζ 33

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Table 13 : Taa5,2,3,4(z) is odd in z since 5+2+3+4-4 is even.

Taa5,2,3,4(z) =
∑

3≤modd≤9
taaze5,2,3,4m Tem(z)

taaze5,2,3,41 = 5ze4,4,5+10ze4,3,6+18ze5,4,4+22ze4,5,4+30ze7,2,4
+15ze7,4,2+20ze2,5,6+30ze2,7,4+30ze4,7,2+40ze5,2,6
+70
3
ze2,8,3+ 100

3
ze2,6,5+ 145

3
ze4,6,3+ 8

3
ze10,3+ 80

3
ze7,6

+176
3
ze4,9+ 238

3
ze9,4−10ze5,6,2− 5

3
ze11,2− 5

3
ze2,11

−11
6
ze13− 20

3
ze6,4,3− 20

3
ze6,3,4−40ze5,3,5−70ze7,3,3

−76ze5,5,3− 35
3
ze8,3,2− 35

3
ze8,2,3− 50

3
ze6,5,2− 50

3
ze6,2,5

−70
3
ze6,7− 115

3
ze8,5− 200

3
ze5,8=0

taaze5,2,3,43 = Ze4,3,4+2ze4,4,3+4ze2,5,4+ 43
3
ze8,3+ 1

3
ze4,5,2+ 10

3
ze2,6,3

+22
3
ze5,2,4+ 7

6
ze7,4−26ze2,9−10ze5,3,3− 5

3
ze5,4,2− 5

3
ze6,2,3

−10
3
ze6,3,2− 10

3
ze2,3,6− 28

3
ze9,2− 37

3
ze4,7− 44

3
ze5,6

−65
6
ze6,5− 169

6
ze11

= 60ζ ev6,2ζ3+
15112

525
ζ3ζ

4
2 −

16

3
ζ5ζ

3
2 −40ζ odd8,1,2−30ζ5ζ 23 −1105ζ11

taaze5,2,3,45 = 5ze6,3−6ze4,5−12ze2,7− 1
3
ze4,3,2− 2

3
ze2,3,4− 13

3
ze7,2

−14
3
ze5,4− 32

3
ze9= 152

35
ζ3ζ

3
2 −

1

3
ζ5ζ

2
2 −

2

3
ζ 33 −

1447

36
ζ9

taaze5,2,3,47 = 5

6
ze4,3− 10

3
ze2,5− 11

6
ze7− 7

6
ze5,2= 26

15
ζ3ζ

2
2 −

5

6
ζ5ζ2− 496 ζ7

taaze5,2,3,49 = −1
6
ze5− 1

3
ze2,3= 2

3
ζ3ζ2− 53 ζ5

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Table 14 : Too5,2,3,4(z) is odd in z since 5+ 2+ 3+ 4− 4 is even.
Too5,2,3,4(z) =

∑
3≤m odd≤9

tooze5,2,3,4m Tem(z)

tooze5,2,3,41 = 10ze6,5,2+10ze5,6,2+15ze4,4,5+15ze4,3,6+15ze6,3,4
+20ze6,4,3+30ze2,5,6+35ze2,8,3+42ze4,5,4+45ze4,7,2
+45ze7,4,2+45ze2,7,4+48ze5,4,4+50ze2,6,5+60ze7,2,4
+60ze5,2,6+75ze4,6,3+30ze8,5+40ze6,7+87ze4,9+95ze7,6
+126ze9,4+47

2
ze10,3−5

2
ze5,8−5ze11,2−5

2
ze2,11−17

2
ze13

−40ze5,3,5−70ze7,3,3−76ze5,5,3=0
tooze5,2,3,43 = 3ze7,4+18ze8,3+3ze4,3,4+3ze5,4,2+3ze4,5,2+5ze2,6,3

+6ze2,5,4+6ze4,4,3+12ze5,2,4−5ze2,3,6−10ze5,3,3−5ze5,6
−15ze4,7−25ze9,2−39ze2,9−175

4
ze11

= 60ζ ev6,2ζ3+
712

25
ζ3ζ

4
2−30ζ5ζ 23−40ζ odd8,1,2−

104

7
ζ5ζ

3
2−

12985

12
ζ11

tooze5,2,3,45 = 15

2
ze6,3−ze2,3,4−5ze5,4−18ze2,7−10ze7,2−15

2
ze4,5−65

4
ze9

= 484/105ζ3ζ
3
2−8ζ5ζ 22−

2

3
ζ 33−

268

9
ζ9

tooze5,2,3,47 = 3

2
ze4,3−2ze5,2−5ze2,5−11

4
ze7=−5ζ5ζ2−214 ζ7+

12

5
ζ3ζ

2
2

tooze5,2,3,49 = −1
4
ze5−1

2
ze2,3=ζ3ζ2−52 ζ5

9.3 The invariants as entire functions of f : the general case

We write down, up to weight 10 inclusively, the expansions of the collec-
tors p, p∗, p� in terms of the g, g∗, g�. We assume p( f ) = 1 but impose
no restriction on ρ( f ) ≡ −g2. In these and all further examples, we
order the terms according to their total weight and, within a given total
weight, we start with the lowest monotangents.
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Table 15: p = id + ∑
Ps up to weight 10 with f = l ◦ g , g(z) =

z + ∑
2≤s gs z

1−s .

P2 = Te1g2,P3=Te2g3,P4=Te3g4,P5=Te4g5,
P6 = Te2

[
3ζ3g

3
2+6ζ3g4g2−6ζ3g23

]+Te3[2ζ2g4g2−2ζ2g23]+Te5g6,
P7 = Te3

[
6ζ3g

2
2g3+6ζ3g5g2−6ζ3g4g3

]+Te4[3ζ2g5g2−3ζ2g4g3]+Te6g7,
P8 = Te2

[
10ζ5g

4
2+10ζ5g6g2+30ζ5g24−40ζ5g5g3+50ζ5g4g22−50ζ5g2g23

[
+Te3[4

5
ζ 22 g6g2+

12

5
ζ 22 g

2
4+
16

5
ζ 22 g4g

2
2−
2

5
ζ 22 g

4
2−
16

5
ζ 22 g2g

2
3

−16
5
ζ 22 g5g3

]+Te4[ζ3g2g23+3ζ3g24+7ζ3g6g2+8ζ3g4g22−10ζ3g5g3]
+Te5[4ζ2g6g2−4ζ2g5g3]+Te7g8,

P9 = Te2
[16
7
ζ 32 g5g

2
2+
32

7
ζ 32 g

3
3−
48

7
ζ 32 g4g3g2+18ζ 23 g5g22+36ζ 23 g33

−54ζ 23 g4,g3g2
]+Te3[10ζ5g2g7+20ζ5g32g3+20ζ5g5g4+35ζ5g5g22

−5ζ5g4g3g2−30ζ5g33−30ζ5g6g3+12ζ3ζ2g5g22+24ζ3ζ2g33
−36ζ3ζ2g4g2g3

]+Te4[6
5
ζ 22 g2g7+

12

5
ζ 22 g5g4+

21

5
ζ 22 g

3
3+
69

10
ζ 22 g5g

2
2

−6
5
ζ 22 g3g

3
2−
18

5
ζ 22 g6g3−

111

10
ζ 22 g4g3g2

]+Te5[2ζ3g4g3g2+4ζ3g5g4
+8ζ3g7g2+10ζ3g5g22−12ζ3g6g3

]+Te6[5ζ(2)g2g7−5ζ(2)g6g3]
+Te8g9,

P10 = Te2
[
14ζ7g2g8+772 ζ7g

5
2+147ζ7g6g22+210ζ7g6g4+322ζ7g4g32

+441ζ7g24g2−84ζ7g3g7−140ζ7g25−322ζ7g23g22−588ζ7g5g3g2
]

+Te3[9ζ 23 g52+21ζ 23 g6g22+33ζ 23 g4g32+36ζ 23 g4g23−9ζ 23 g24g2−33ζ 23 g23g22
−48ζ 23 g5g3g2+

16

35
ζ 32 g8g2+

32

7
ζ 32 g4g

2
3+
48

7
ζ 32 g6g4+

32

105
ζ 32 g4g

3
2

+248
35

ζ 32 g
2
4g2+

568

105
ζ 32 g6g

2
2−
32

7
ζ 32 g

2
5−

32

105
ζ 32 g

2
3g
2
2−
244

105
ζ 32 g

5
2

−256
15

ζ 32 g5g3g2−
96

35
ζ 32 g3g7

]+Te4[ζ5g52+12 ζ5g23g22+11ζ5g8g2
+45ζ5g6g4+592 ζ5g4g

3
2+
81

2
ζ5g6g

2
2+
123

2
ζ5g

2
4g2−20ζ5g25−36ζ5g7g3

−45ζ5g4g23−57ζ5g5g3g2+15ζ3ζ2g4g32+21ζ3ζ2g6g22+36ζ3ζ2g4g23
−9ζ3ζ2g24g2−15ζ3ζ2g23g22−48ζ3ζ2g5g3g2

]+Te5[8
5
ζ 22 g8g2+

24

5
ζ 22 g6g4

+42
5
ζ 22 g4g

2
3+
58

5
ζ 22 g6g

2
2−
6

5
ζ 22 g4g

3
2−
6

5
ζ 22 g

2
3g
2
2−
6

5
ζ 22 g

2
4g2−

8

5
ζ 22 g

2
5

−24
5
ζ 22 g7g3−

94

5
ζ 22 g5g3g2

]+Te6[ζ3g24g2+2ζ3g5g3g2+5ζ3g6g4
+9ζ3g8g2+12ζ3g6g22−14ζ3g7g3

]+Te7[6ζ2g8g2−6ζ2g7g3]+Te9g10



224 Olivier Bouillot and Jean Ecalle

Table 16: p∗ = ∑
P∗s up to weight 10 with f = l ◦ g , g∗(z) =∑

2≤s g∗s z
1−s .

P∗2 = Te1g∗2,P∗3=Te2g∗3,P∗4=Te3g∗4,P∗5=Te4g∗5,
P∗6 = Te2

[
6ζ3g∗2g∗4−6ζ3g2∗3

]+Te5[g∗6]
P∗7 = Te3

[
6ζ3g∗2g∗5−6ζ3g∗3g∗4

]+Te6[g∗7]
P∗8 = Te2

[
30ζ5g

2∗4−
5

2
ζ5g

4∗2+10ζ5g∗2g∗6−40ζ5g∗3g∗5
]

Te3
[4
3
ζ 22 g∗2g2∗3−

4

3
ζ 22 g

2∗2g∗4
]+Te4[3ζ3g2∗4+14 ζ3g4∗2−10ζ3g∗3g∗5

+7ζ3g∗2g∗6
]+Te5[−2

3
ζ2g∗2g2∗3+

2

3
ζ2g

2∗2g∗4
]+Te7[g∗8]

P∗9 = Te2
[
36ζ(3)2g3∗3−

32

5
ζ 32 g

3
∗3+18ζ 23 g∗5g2∗2+

48

5
ζ 32 g∗2g∗3g∗4

−54ζ 23 g∗2g∗3g∗4−
16

5
ζ 32 g∗5g

2∗2
]+Te3[20ζ5g∗4g∗5+10ζ5g∗2g∗7

−30ζ5g∗3g∗6−5ζ5g3∗2g∗3
]+Te4[−1

5
ζ 22 g

3
∗3−

21

10
ζ 22 g

2∗2g∗5

+23
10
ζ 22 g∗2g∗3g∗4

]+Te5[8ζ3g∗2g∗7−12ζ3g∗3g∗6+4ζ3g∗4g∗5
+ζ3g3∗2g∗3

]+Te6[3
2
ζ2g

2∗2g∗5−
1

3
ζ2g

3
∗3−

7

6
ζ2g∗2g∗3g∗4

]+Te8[g∗9]
P∗10 = Te2

[
210ζ7g∗4g∗6−140ζ7g2∗5−84ζ7g∗3g∗7+14ζ7g∗2g∗8

]
−133
3
ζ7g

3
∗2g∗4+

133

3
ζ7g

2∗2g2∗3
]+Te3[36ζ 23 g2∗3g∗4−9ζ 23 g∗2g2∗4

+21ζ 23 g2∗2g∗6+
3

4
ζ 23 g

5
∗2−

32

5
ζ 32 g

2∗3g∗4−
64

15
ζ 32 g

2∗2g∗6

+32
3
ζ 32 g∗2g∗3g∗5−48ζ 23 g∗2g∗3g∗5

]+Te4[45ζ5g∗4g∗6−20ζ5g2∗5
−36ζ5g∗3g∗7+11ζ5g∗2g∗8−103 ζ5g

3
∗2g∗4−

25

6
ζ5g

2∗2g2∗3
]

+Te5[10
3
ζ 22 g∗2g∗3g∗5−

2

5
ζ 22 g

2∗3g∗4−
44

15
ζ 22 g

2∗2g∗6
]+Te6[9ζ3g∗2g∗8

−14ζ3g∗3g∗7+5ζ3g∗4g∗6+12 ζ(3)g
2∗2g2∗3+2ζ3g3∗2g∗4

]
+Te7[8

3
ζ2g

2∗2g∗6−
5

3
ζ2g∗2g∗3g∗5−ζ2g2∗3g∗4

]+Te9[g∗10]
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Table 17: p�=∑
P�s up to weight 10 with

f = l ◦ g, g�(z)=∑
2≤s g�s z

1−s .

P�2 = Te1g�2,P�3=Te2g�3,P�4=Te3g�4,P�5=Te4g�5,
P�6 = Te2

[
Te5g�6+6ζ3g�4g�2−6ζ3g2�3

]+Te3ζ2g3�2
P�7 = Te3

[
6ζ3g�5g�2−6ζ3g�4g�3

]+Te4ζ2 32 g�3g2�2+Te6g�7
P�8 = Te2

[
10ζ5g�6g�2+30ζ5g2�4−40ζ5g�5g�3

]
+Te3[8

5
ζ 22 g

2
�3g�2−

8

5
ζ 22 g�4g

2
�2

]
+Te4[3ζ3g2�4+2ζ3g4�2−10ζ3g�5g�3+7ζ3g�6g�2]
+Te5[5ζ2g�4g2�2−2ζ2g2�3g�2]+Te7g�8

P�9 = Te2
[
18ζ 23 g�5g

2
�2+36ζ 23 g3�3−54ζ 23 g�4g�3g�2+

624

35
ζ 32 g�4g�3g�2

−208
35

ζ 32 g�5g
2
�2−

416

35
ζ 32 g

3
�3

]+Te3[10ζ5g�7g�2+20ζ5g�5g�4
−30ζ5g�6g�3

]+Te4[87
10
ζ 22 g�4g�3g�2−

9

2
ζ 22 g�5g

2
�2−

21

5
ζ 22 g

3
�3

]
+Te5[8ζ3g�3g3�2+8ζ3g�7g�2+4ζ3g�5g�4−12ζ3g�6g�3]
+Te6[17

2
ζ2g�5g

2
�2−

1

2
ζ2g�4g�3g�2−3ζ2g3�3

]+Te8g�9
P�10 = Te2

[
14ζ7g�8g�2+35ζ7g3�2g�4+210ζ7g�6g�4−84ζ7g�7g�3

−35ζ7g2�3g2�2−140ζ7g2�5
]+Te3[224

15
ζ 32 g�5g�3g�2+

128

35
ζ 32 g

2
�4g�2

−704
105

ζ 32 g�6g
2
�2−

416

35
ζ 32 g�4g

2
�3−

176

105
ζ 32 g

5
�2+6ζ 23 g5�2+21ζ 23 g�6g2�2

+36ζ 23 g�4g2�3−9ζ 23 g2�4g�2−48ζ 23 g�5g�3g�2
]+Te4[11ζ5g�8g�2

+29ζ5g�4g3�2+45ζ5g�6g�4−36ζ5g�7g�[3]−29ζ5g2�3g2�2−20ζ5g2�5
+9ζ2ζ3g�4g3�2−9ζ2ζ3g2�3g2�2

]+Te5[9
4
ζ 22 g

5
�2+

42

5
ζ 22 g�5g�3g�2

+33
5
ζ 22 g

2
�4g�2−

33

5
ζ 22 g�6g

2
�2−

42

5
ζ 22 g�4g

2
�3

]+Te6[+5ζ3g�6g�4
+7ζ3g2�3g2�2+9ζ3g�8g�2+13ζ3g�4g3�2−14ζ3g�7g�3

]
+Te7[13ζ2g�6g2�2+92 ζ2g2�4g�2−12 ζ2g5�2−9ζ2g�4g2�3−ζ2g�5g�3g�2]
+Te9g�10
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9.4 The invariants as entire functions of f : the reflexive case

As in Table 16, we write down the expansion of the collector p∗ in terms
of g∗, but this time for a reflexive f . Recall that a standard f is reflexive
iff f (− f (−z)) ≡ z, in which case its conjugate l1/2 ◦ f ◦ f −1/2 is of the
form l◦g with g also reflexive. See Section 3.9. Reflexivity automatically
implies ρ( f ) ≡ −g∗2 ≡ 0. There being fewer coefficients g∗s , we reach
weight 13.

Example 18: p∗ up to weight 13 for f = l ◦ g with
g∗(z) = ∑

1≤d g∗1+2d z
−2d .

P∗3 = Te2g∗3,P∗5=Te4g∗5,P∗6=Te2
[−6ζ3g2∗3],P∗7=Te6g∗7,

P∗8 = Te2
[−40ζ5g∗5g∗3]+Te4[−10ζ3g∗5g∗3],

P∗9 = Te2
[
36ζ 23 g

3
∗3−

32

5
ζ 32 g

3
∗3

]+Te4[−1
5
ζ 22 g

3
∗3

]+Te6[−1
3
ζ2g

3
∗3

]
+Te8[g∗9],

P∗10 = Te2
[−84ζ7g∗7g∗3−140ζ7g2∗5]+Te4[−36ζ5g∗7g∗3−20ζ5g2∗5]

+Te6[−14ζ3g∗7g∗3]
P∗11 = Te2

[
560ζ5ζ3g∗5g2∗3−

15648

175
ζ 42 g∗5g2∗3−80ζ ev6,2g∗5g2∗3

]
+Te4[80ζ 23 g∗5g2∗3−27221 ζ 32 g∗5g2∗3]+Te6[−3415 ζ 22 g∗5g2∗3]
+Te8[−5

3
ζ2g∗5g2∗3

]+Te10g∗11],
P∗12 =Te2[576

5
ζ3ζ

3
2 g

4∗3−216ζ 33 g4∗3−144ζ9g∗9g∗3−210ζ9g4∗3−1008ζ9g∗7g∗5
]

+Te4[18
5
ζ3ζ

2
2 g

4∗3+14ζ7g4∗3−210ζ7g∗7g∗5−78ζ7g∗3g∗9
]

+Te6[6ζ3ζ2g4∗3−103 ζ5g4∗3−28ζ5g∗7g∗5−44ζ5g∗9g∗3]
+Te8[−18ζ3g∗9g∗3],

P∗13 = Te2
[
720ζ 25 g∗7g2∗3+1200ζ 25 g2∗5g∗3+1344ζ7ζ3g∗7g2∗3

+2240ζ7ζ3g2∗5g∗3−168ζ ev8,2g∗7g2∗3−280ζ ev8,2g2∗5g∗3−
125056

385
ζ 52 g

2∗5g∗3

−375168
1925

ζ 52 g∗7g
2∗3

]+Te4[100ζ ev6,2g2∗5g∗3+500ζ5ζ3g2∗5g∗3
+540ζ5ζ3g∗7g2∗3+

6544

525
ζ 42 g

2∗5g∗3−
23824

175
ζ 42 g∗7g2∗3−180ζ ev6,2g∗7g2∗3

]
+Te6[140ζ 23 g∗7g2∗3+8821ζ 32 g2∗5g∗3−3064105

ζ 32 g∗7g
2∗3

]+Te8[ 8
15
ζ 22 g

2∗5g∗3

−39
5
ζ 22 g∗7g2∗3

]+Te10[−4ζ2g∗7g2∗3−23 ζ2g2∗5g∗3]+Te12g∗13
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9.5 The invariants as entire functions of f : one-parameter cases

Table 19: p∗ up to weight 12 for f = l ◦ g with g(z) = z + g2 z−1.

P2 = g2Te2 ,P4=0,P6=g32Te2
[
3ζ3

]
,

P8 = g42

(
Te2[10ζ5]+Te3

[
−2
5
ζ 22

])
,

P10 = g52

(
Te2

[
77

2
ζ7

]
+Te3

[
9ζ 23−

244

105
ζ 32

]
+Te4ζ5

)
,

P12 = g62

(
Te2[151ζ9]+Te3

[
3ζ ev6,2+63ζ3ζ5−

878

105
ζ 42

]
+Te4

[
10ζ7+3ζ2ζ5−185 ζ

2
2 ζ3

]
+Te5

[
− 8

35
ζ 32

])
,

P14 = g72

(
Te2

[
16

7
ζ 32 ζ5+18ζ 23 ζ5+9ζ odd8,1,2+

19343

24
ζ11

]
+Te3

[
15ζ ev8,2+6ζ ev6,2ζ2+261ζ7ζ3−

5972

231
ζ 52+

235

2
ζ 25+6ζ5ζ3ζ2

]
+Te4

[
+27ζ 33+

5027

72
ζ9+30ζ7ζ2−5110 ζ

2
2 ζ5−

732

35
ζ3ζ

3
2

]
+Te5

[
11ζ3ζ5−ζ ev6,2−

508

175
ζ 42

]+Te6[ζ7])

Table 20: p∗ up to weight 12 for f = l◦g with g(z) = z
[
1+2 g∗2 z−2

] 1
2
.

P∗2 = g∗2Te1 ,P∗4=0,P∗6=0,
P∗8 = g4∗2

(
Te2

[
−5
2
ζ5

]
+Te4

[
1

4
ζ3

])
P∗10 = g5∗2Te

3
[
3

4
∗ζ 23

]
P∗12 = g6∗2

(
Te2

[
3

2
ζ 33+

47

6
ζ [9]−4

5
ζ3ζ

3
2

]
+Te4

[
−21
40
ζ3ζ

2
2−

63

64
ζ7

]
+Te6

[
3

8
ζ3ζ2+ 1

16
ζ5

]
+Te8

[
− 1

16
ζ3

])
P∗14 = g7∗2

(
Te3

[
105

16
ζ 25−ζ 23 ζ 22−

189

32
ζ7ζ3

]
+Te5

[
1

2
ζ 23 ζ2−2ζ5ζ3

]
+Te7

[
1

8
ζ 23

])



228 Olivier Bouillot and Jean Ecalle

Table 21: p∗ up to weight 15 for f = l◦g with g(z) = z
[
1+3 g∗3 z−3

] 1
3
.

P∗3 = g∗3Te
P∗6 = g2∗3

(
Te2[−6ζ3]

)
P∗9 = g3∗3

(
Te2

[
36ζ 23−

32

5
ζ 32

]
+Te4

[
−1
5
ζ 22

]
+Te6

[
−1
3
ζ2

])
P∗12 = g4∗3

(
Te2

[
576

5
ζ3ζ

3
2−216ζ 33−210ζ9

]
+Te4

[
18

5
ζ3ζ

2
2+14ζ7

]
+Te6

[
6ζ3ζ2−103 ζ5

])
P∗15 = g5∗3

(
Te2

[
1296ζ 43+3780ζ9ζ3−140ζ7ζ5−

23054144

125125
ζ 62−

6912

5
ζ 23 ζ

3
2

−420ζ ev10,2
]+Te4[1332224

28875
ζ 52−

216

5
ζ 23 ζ

2
2+60ζ 25−238ζ7ζ3+49ζ ev8,2

]
+Te6

[
1007

1575
ζ 42−72ζ 23 ζ2+

190

3
ζ5ζ3−503 ζ

ev
6,2

]
+Te8

[
193

75
ζ 32

]
+Te10

[
16

15
ζ 22

]+Te12[ 7
45
ζ2

])
10 Synopsis

10.1 Diffeos, collectors, connectors, invariants

Given a general local identity-tangent mapping f of C,∞  → C,∞,
whether of tangency order 1 (i.e. f (z)− z ∼ Cst) or of order p > 1
(i.e. f (z) − z ∼ Cst z1−p), what can be said of its analytic invariants?
What are the most natural, complete systems {Aω, ω ∈ �} of invariants?
What methods are there for computing these Aω, singly or collectively?
How do these methods compare as to efficiency? Above all, on the more
theoretical side: which are the most explicit and/or economical formulae
for expanding the Aω into convergent series of f -dependent inputs (such
as the Taylor coefficients of f ) and f -independent, universal constants?
Practically all natural, complete systems {Aω, ω ∈ �} of invariants

consist of the Fourier coefficients of the so-called connectors π(z) – i.e.
trigonometric Fourier series which connect the various sectorial normal-
isations of f with their immediate neighbours. Although these invariant
connectors are totally independent and mutually unrelated, they all de-
rive from a more basic object, the collector p(z), which is unique and “of
one piece”, but unfortunately not invariant. The collector, with its natu-
ral expansions into series of multitangents or monotangents, is a natural
intermediary between f and the invariant-carrying connectors.



229 Invariants of identity-tangent diffeomorphisms

10.2 Affiliates, generators, mediators

The analytic invariants Aω( f ) are also holomorphic in f as long as f
ranges through a fixed formal conjugacy classG(p,ρ) ofG, where p ∈ N∗
is the tangency order and ρ ∈ C the iteration residue. Thus, for elements
of the prototypal class G(1,0), which may be written as f = l ◦ g with
l(z) = z + 1 and g(z) = z + O(z−2), the invariants Aω( f ) as well
as the connector π(z) and collector p(z) that carry them, must be entire
functions of g, hence of each of g’s coefficients gn .
Now, given any analytic function γ (t) := ∑

0≤r γr t
r , we can asso-

ciate with f, g, π, p the so-called affiliates f♦, g♦, π♦, p♦ defined via the
corresponding substitution operators F,G,�,P.99

Three types of affiliates are of special relevance:

(i) the infinitesimal generators f∗, g∗, π∗, p∗, with γ (t) = log(1+ t).

(ii) the first or main mediators f�, g�, π�, p�, with γ (t) = t
1+ 1

2 t
.

(iii) the second mediators f��, g��, π��, p��, with γ (t) = (1+t)2−1
(1+t)2+1 .

Each of the three series f∗, f�, f�� is resurgent and verifies resurgence
equations ruled by (and yielding) the invariants Aω( f ). Here, f∗ is by far
the best choice.
The three series g∗, g�, g�� are resurgent, too, but with resurgence coef-

ficients Aω(g) totally unrelated to the Aω( f ). The usefulness of g∗,g�,g��,
however, lies elsewhere – namely in their providing a bridge, first to the
collectors p∗, p�, p�� and then to the connectors π∗, π�, π��. Here, the best
choice is not g∗, but g�, with g�� the second best choice.
As for the three connectors π∗, π�, π��, each is as good as the other,

since their Fourier coefficients stand in bi-polynomial correspondence
with one another.

10.3 Main alien operators

To each type of affiliate f♦ there naturally corresponds a specific system
of alien operators {�♦

ω , ω ∈ C•}.
The alien counterpart of the infinitesimal generators f∗ is the system

{�ω , ω ∈ C•} of (standard) alien derivations .
The alien counterparts of the mediators f� and f�� are the systems of

so-called medial alien operators100 {��
ω , ω ∈ C•} and {���

ω , ω ∈ C•}.
Although these medial operators are not exact derivations (they possess

99 Thus f♦(z) := F♦.z with F♦ := γ (F − 1).
100 These medial operators bear no relation to the so-called median convolution average.
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more complex co-products), they are in a sense more basic than the alien
derivations �ω, and simpler too, at least in many respects, such as nu-
merical computations. They occur naturally in several unrelated contexts
and deserve to have their own niche within alien calculus.

10.4 Main moulds

To each type of affiliate f♦ there also correspond specific mouldian sym-
metry types which extend the familiar four-type landscape of alternal/
symmetral and alternel/symmetrel. In the present instance, they also bring
order and structure into the plethora of auxiliary moulds required for ex-
panding the invariants Aω( f ). Here are the main moulds:101

(i) The scalar multizetas ze•, za•, zo•. They are the mainstay of this in-
vestigation, being the transcendental ingredient of the Aω( f ).
(ii) The multitangents Tee•(z),Taa•(z),Too•(z). They are meromorphic,
1-periodic functions of z. It is through their Fourier coefficients that the
multizetas smuggle their way into invariant analysis.
(iii) The multizetaic resurgence monomials S̃e

•
(z), S̃a

•
(z), S̃o

•
(z), which

are related – in several ways – to both the scalar multizetas and the mul-
titangents.
These very basic moulds give rise to interesting combinatorial devel-

opments, such as the conversion formulae from Taa• and Too• to Tee•.
We may note that, here again, the multitangents Too•, i.e. precisely the
ones associated with an ‘exotic’ symmetry type, turn out to be the most
useful.

10.5 Main results

Half the results presented in this paper deal with somewhat tangential
issues – the mould machinery, the alien operators, the attendant com-
binatorics, etc. Regarding the core concern of the investigation – the
expansion-description of the holomorphic invariants – we may point to
the following:
We derive explicit and optimal102 expansions for the collectors and

connectors of f = l ◦ g in their three main variants: first directly from g
to π, p, next from g∗ to π∗, p∗, lastly from g� to π�, p�. We even examine
the general, affiliate-based scheme, from g♦ to π♦, p♦, the better to bring
out the ‘specialness’ of the three main schemes.

101 The vowels ‘e’ and ‘a’ connote, as usual, alternelity/symmetrelity or alternality/symmetrality,
whereas the vowel ‘o’ points to less common symmetry types, related to the mediators.

102 Optimal in the sense of incapable of further simplification.
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We also detain ourselves over the ramified case (p > 1) and the far-
going changes it brings: the finite reduction of multitangents to monotan-
gents breaks down; the procedure for recovering the multitangents from
their singular parts completely changes; the Fourier coefficients of the
multitangents are no longer expressible as finite sums of multizetas, not
even Q-indexed ones.
We describe the growth properties of each invariant Aω( f ) as an entire

function of exponential type in the Taylor coefficients of f .
We review various natural groups of formal germs, strictly larger than

the group G0 of analytic germs, yet close enough to G0 to possess non-
trivial analytic classes and holomorphic invariants Aω( f ). We charac-
terize G0++ , the largest of all such groups; and G0+ , the largest of all
self-replicating groups, whose elements produce connectors which, after
rescaling, still belong to the group, and in turn produce their own connec-
tors, ad infinitum. These developments may be taken as an introduction
to the subject of phantom holomorphic dynamics.
We also stress the distinction between the arithmetical and dynamical

monics. They are the same objects, but viewed differently:
(i) the former as ingredients of the Stokes constants, in which capacity
they are rigidly determined.
(ii) the latter as ingredients of the holomorphic invariants, the sole de-
mand on them being that of making the invariants invariant.
We show how the systems of (finite or infinite) relations that constrain

the monics change depending on which perspective we adopt. Most no-
ticeably, the finite, algebraic constraints on the dynamical monics turn
out to be significantly weaker than those on their arithmetical counter-
part.
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