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Asymptotics, ambiguities and resurgence

Inês Aniceto

Abstract. The appearance of resurgent functions in the context of the pertur-
bative study of observables in physics is now well established. Whether these
arise from the related study of non-linear systems or the saddle-point perturbative
analysis, one is left with an asymptotic series and the need of a non-perturbative
completion, or transseries, which includes different non-perturbative phenomena.
The complete understanding of resummation procedures and the resurgence of the
non-perturbative phenomena can then lead to a systematic approach to obtain exact
results such as strong-weak coupling interpolation, cancellation of ambiguities in
the so-called Stokes directions, and more generally the study of analytic properties
of the respective transseries solutions. These notes will give a general overview of
how to set-up resurgence in simple examples, and how to proceed towards exact
analytic results.
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2 Inês Aniceto

1 Introduction and summary

Computing physical observables of a given quantum theory, can often
only be performed via perturbation theory in either the weakly or strongly
coupled regimes. Such perturbative expansions are however often diver-
gent, with zero radius of convergence, and are defined only as asymptotic
series

〈O (g)〉 	
∑
k≥0

Okg
−k . (1.1)

whose coefficients are factorially divergent at large order1

Ok ∼ � (k + β)

Ak+β
, k � 1. (1.2)

It is well known that this divergence is connected to the existence of
non-perturbative phenomena, unaccounted for in the perturbative anal-
ysis. Resurgence is a mathematical theory which allows us to effectively
study this connection, and its consequences. Moreover, it allows us to
construct a full non-perturbative solution from perturbative data. First in-
troduced by Écalle in [1–3], modern day resurgence theory has developed
in the last three decades into an elegant mathematical tool with a diverse
set of applications [4–9]. 2

Resurgent properties have been observed in a wide range of prob-
lems in mathematical physics. They appear for example in solutions
of differential and finite difference equations (see e.g. the well stud-
ied cases of Painlevé I, II and Riccati non-linear differential equations
[20–25]). In the contexts of quantum mechanics [26, 27] and quantum
field theories [28], non-perturbative phenomena such as instantons [29]
and renormalons [30], have long been known to exist beyond pertur-
bation theory. In fact in quantum mechanical problems, it is the ex-
istence of asymptotic multi-instanton sectors which allow for a resur-
gent and unambiguous transseries solution to describe energy eigenval-
ues [31–33]. Since then, the asymptotic behaviour of perturbation the-
ory and the resurgence behind it, was found in many different examples
in physical systems, from quantum mechanics [19, 34–45], to large N
gauge theories [23,24,46–63], quantum field theories [40,44,59,64–76],
and string theory [13, 22–24,48–51,77–87].
The aim of this paper is to present a simple, hands-on approach, on the

use of resurgence in the study of asymptotic expansions with associated

1 A, β are numbers encoding the position and type of singularities of the related Borel transform.

2 For recent reviews on resurgence, transseries and summability, see [8, 10–19].
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non-perturbative phenomena. We will introduce some key ideas behind
resurgence theory in Section 2. Concepts such as transseries, Borel re-
summation, Stokes phenomena and alien calculus will be presented with
the help of simple examples, while the respective formal derivations are
referenced for the interested reader.
In Sections 3 and 4 we show the tools of resurgence at work in two sim-

ple examples: the linear ordinary differential equation (ODE) governing
the Airy function [10, 49], and the non-linear ODE behind the so-called
Müller-Israel-Stuart (MIS) theory [88, 89]. Along the way different nu-
merical methods are introduced, including convergence acceleration and
resummation. This analysis closely follows the work of [19], together
with some results of [42]. The milestones achieved for each example are:

1. Given our asymptotic expansion, we find (or make an educated guess
for) the respective transseries solution, with sectors describing both
perturbative and non-perturbative phenomena. The tools presented in
Section 2 are then used to make predictions of the relations between
those different sectors.

2. These predictions can be checked numerically to high precision. In
cases where the non-perturbative data is not known, these predictions,
together with the assumption that the transseries is resurgent, allow us
to construct a full non-perturbative solution from perturbative data.

3. Finally, from the complete resurgent transseries solution, one can per-
form resummation methods to obtain exact results away from the
asymptotic regime. Resurgence theory plays an essential role in de-
riving these results, such as the cancellation of ambiguities or strong/
weak coupling interpolation.

Such linear and non-linear ODEs are the natural starting points to show
resurgence at work. Resurgent techniques can also be applied to a much
wider range of problems, following the same steps as described above.
We finish in Section 5 with a summary of results and a discussion of
open problems in mathematical physics, where resurgence can play a key
role.

ACKNOWLEDGEMENTS. I would like to thank Romuald Janik and
Michał Spaliński for comments and suggestions during a set of lectures
I presented at Jagiellonian University in Kraków, in January 2016, based
on this work.
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2 General concepts and definitions

As a starting point, take the strong coupling regime of some observable
F (z), with coupling variable z � 1. We will further assume that using
some procedure of perturbation theory (e.g. saddle-point analysis or re-
cursion equation from differential equations) in this regime we obtain an
expansion

F(z) 	
+∞∑
n=0

Fn
zn+1

. (2.1)

which is asymptotic, with zero radius of convergence. Moreover, we
will take the large-order behaviour of the coefficients Fn to be growing
factorially

Fn ∼ n! for n � 1. (2.2)

This is a very common problem appearing in the study of observables of
interacting theories, for example in QFTs, due to the factorial growth of
the number Feynman diagrams at each loop order in perturbation theory
[29]. Furthermore, it is often the case that perturbation theory and the
associated series of the type (2.1), are the only results one can expect from
the study of the observable in question. Given the asymptotic properties
of the series, one may wonder how to make sense of the formal power
series (2.1): this will be the main question we will address at present.
This section follows largely the works [8, 11, 14, 23, 90, 91].
As the preliminary step in our quest, one would like to know how to

associate a value to (2.1) for each value of the coupling z. A well known
process (see e.g. [49]) for asymptotic series is to perform an optimal trun-
cation, which leads to very good approximations. Optimal truncation
is the truncation of the series to the so-called least term: in the regime
z � 1, the terms of (2.1) start by decreasing very rapidly, and only at
some point (the least term) start increasing. In this truncation we want to
keep terms such that

|Fn|
|z|n+1 � |Fn−1|

|z|n , for n � |z| (2.3)

In fact we can keep terms such that |Fn ||Fn−1| � |z| for n ≤ Nop (z), thus

obtaining an optimally truncated series

Fop (z) =
Nop(z)∑
n=0

Fn
zn+1

. (2.4)

Note that the least term Nop (z), will depend on the value of the coupling z
for which the series (2.1) is being evaluated at. In performing the optimal
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truncation, we obtain an extremely accurate approximation of (2.1) and
the error can be seen to be∣∣F (z)− Fop (z)

∣∣ ∼ e−Az, (2.5)

where A is a characteristic number of the problem in question. This is
the first hint of the relation between the asymptotic behaviour of (2.1)
and its non-perturbative origins: the error is non-analytic, e−Az ∼ 0 if
one expands around z ∼ ∞.
One can improve on this error by performing certain resummation pro-

cedures to the divergent tail which was left out from the truncation pro-
cedure. One such framework to address the asymptotic properties and
resummation of the series such as (2.1) is Borel analysis. In this frame-
work we introduce the Borel transform, via the following rule

B
[
1

zα+1

]
(s) ≡ sα

� (α + 1) , (2.6)

where � (α) is the gamma function. Performing this transformation to
every term of the asymptotic series (2.1), we obtain the Borel transform
associated to that series:

B [F] (s) =
+∞∑
k=0

Fk
� (k + 1) s

k . (2.7)

This series is now convergent around the origin in C, with some non-
zero radius of convergence. Note that the rule (2.6) is not well defined
for cases where the power of z−1 is non-positive (i.e. α ≤ −1). In an
asymptotic series for z � 1 these terms are of finite number and must be
excluded from the procedure of Borel analysis. They do not change the
asymptotic properties of the series and can be easily re-inserted once the
resummation procedure has been performed. The rule (2.6) which leads
to the now convergent series (2.7) can be seen more naturally as applying
an inverse Laplace transform to each of the terms in (2.1). Due to the
divergent nature of the series (2.1), this procedure can only be seen as the
inverse Laplace transform of F(z) at a formal level. Nevertheless, given
the convergent properties of (2.7) one can study the analytic properties of
this second series and sum it around the origin in C.
The Borel transform B [F] (s) will naturally have singularities (defin-

ing its radius of convergence). To study the analytic properties of (2.7)
one needs to locate these singularities in the complex s-plane (which we
shall also call the Borel plane). Within the radius of convergence, the
series (2.7) will define an analytic function, which can sometimes be
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guessed, but more often will be approximated numerically (as we shall
see later). In directions arg s = θ where there are no singularities, one
may analytically continue this function along the ray eiθR+ and define an
inverse Borel transform - or Borel resummation of F (z) along θ - by a
Laplace transform

SθF (z) =
∫ eiθ∞

0
ds B [F] (s) e−z s . (2.8)

The function SθF (z) has the same asymptotic expansion as F (z), and
for each z will give a better approximation to the value of the asymp-
totic series (2.1) than the optimal truncation method (even if the function
B [F](s) is only known as a numerical approximation).
But what happens when B[F](s) has singularities (poles and/or branch

cuts) along a direction θ? How can we assign a value for F (z) in this
case? The Laplace transform (2.8) will be ill defined as we have singu-
larities exactly on the direction of the integration contour. We then need
to choose a contour which avoids the singularities. The most natural
contours one can choose give rise to the so-called lateral Borel resumma-
tions:

Sθ±F (z) ≡ Sθ±εF (z) , for ε ∼ 0+. (2.9)

Different integration contours give rise to functions with the same asymp-
totic behaviour but which differ by non-analytic exponentially suppressed
terms. Thus choosing different contours gives rise to a non-perturbative
ambiguity and it is said that F (z) is non-Borel summable along these
singular directions θ .
As a simple example, assume that the first singularity of B [F] (s)

along a certain direction θ is at s = A, and it is a simple pole

B [F] (s)|s	A ∼ 1

s − A
. (2.10)

The difference between the two lateral Borel resummations is

Sθ+F (z)− Sθ−F (z) ∝
∮
s=A

ds
e−z s

s − A
= e−Az. (2.11)

Once again the non-analytic term e−Az appears from the analysis of the
asymptotic behaviour of (2.1), and the characteristic value A shows up as
the leading singularity of the Borel transform (2.7).
The existence of different singular directions arg s = θi on the Borel

plane associated to the original series (2.1) leads to a family of secto-
rial analytic functions {SθF (z)} all with the same asymptotic behaviour,
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and which differ by non-analytic terms. In order to understand how to
“connect” each of these sectors, one needs to understand the behaviour
of the Borel transform around each singularity for all singular directions
θi , so we can learn how to jump across the direction θi and reach a dif-
ferent sector. The singular directions θi are called Stokes lines. Learning
about the behaviour of the Borel transform along Stokes lines will lead
to the construction of an unambiguous result for the resummed function,
even along these singular directions: a procedure that known as ambigu-
ity cancellation. To perform a thorough and systematic analysis of what
happens at Stokes lines we now turn to resurgence, and the realm of sim-
ple resurgent functions.

2.1 Transseries, resurgence and discontinuities

The fact that the resummations in the different sectors {SθF} differ by
non-perturbative terms hints to the fact that the full solution associated
with the observable F(z) should be some non-perturbative completion
of the asymptotic series (2.1), into what is called a transseries. Indeed,
in the calculation of energies in quantum mechanics, the transseries is
an essential step in the cancellation of ambiguities: the non-perturbative
terms are given by instanton sectors, and A is the instanton action related
to the probability of tunneling between (possibly complex) saddles of the
potential (see e.g. [26, 27, 32–36,40, 43, 92]).
A transseries is a formal series expansion both in the original variable

z � 1 and also in the non-analytic terms. We will work with the so-
called log-free height-one transseries, where the expansion is on trans-
monomials zαeS(z) with α ∈ R and S(z) is some particular convergent
series (more intricate examples where S(z) is in itself a transseries, with
compositions of exponentials and logarithms, can be also studied, see
e.g. [12]). In its simplest form, the transseries has the form

F (z, σ ) =
+∞∑
�=0

σ�F (�) (z) ∈ C
[[
z−1, σe−Az

]]
, (2.12)

where F (0)(z) is just the perturbative series (2.1) and

F (�)(z) = e−�Az��(z), � ≥ 1, (2.13)

with ��(z) generally an asymptotic series as well

�� (z) = zβ�
+∞∑
k=0

F (�)
k

zk
. (2.14)
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In most cases of interest, the leading behaviour of the asymptotic series,
given by zβ� is of the form β� = −� β, and we shall assume this form
from now on, unless otherwise stated. The transseries (2.12) is a one-
parameter transseries: it appears when one has non-perturbative sectors
such as instantons, which are exponentially suppressed with the same
associated action A, and where � is the instanton number. Note that from
calculations such as (2.11) we know that the sectorial functions will differ
by exponentially small terms e−Az , but a more careful analysis of these
differences would show that (in the case of simple resurgent functions,
as defined below) for each suppressed contribution there is an asymptotic
expansion associated with it. The parameter σ in (2.12) is the transseries
parameter, which for each particular wedge of the complex plane, selects
distinct non-perturbative completions to the original series (2.1).
There are extensions of the above transseries (2.12) to include more

parameters σi . In fact, if a given observable has different non-analytic
contributions e−Ai z , for Ai �= A (and typically also different from the
multi-instanton contributions already included in the one-parameter case
Ai �= �A), one should expect a new transseries parameter for each non-
analytic term appearing.
An asymptotic expansion F (z) (such as F(z) in (2.1) or any of the

��(z)) is said to be a simple resurgent function if its Borel transform
only has simple poles or logarithmic branch cuts as singularities. Taking
ω as a singularity, the Borel transform around this singularity will be of
the form3

B [F] (s)|s=ω ∼ aω
2π i (s − ω)

+� (s − ω)
log (s − ω)

2π i
+ ζhol (s − ω) ,

(2.16)

where aω ∈ C and �, ζhol are analytic around the origin. Moreover �(s)
will be related to a function G1 (z) by the inverse Borel transform

�(s) = B [G1] (s). (2.17)

3 Many times the Borel transform is not exactly of the shape (2.16), but instead it has square
root branch cuts. Nevertheless we will still be in the realm of simple resurgent functions if the
B
[
zγ F

]
(z) has the behaviour (2.16) where γ is commonly the “degree” of the branch cut. Typi-

cally this is related to a factorial growth of the coefficients Fk in (2.1) which differs from the factorial
growth “removed” by the Borel transform. For example, assume in (2.1) that Fn ∼ �(n + 1 − γ )

for some γ when n � 1. Then B [F] (s) in (2.7) has coefficients which grow as
Fk

� (k + 1) ∼ � (k + 1− γ )

�(k + 1) �= 1 if γ �= 0, k � 1. (2.15)

On the other hand B
[
zγ F

]
(s) =∑k≥γ Fksk−γ /�(k + 1 − γ ) will have the expected behaviour

(2.16). For a detailed analysis on this see [19].
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Normally the function G1 (z) is also known as a series and requires a
resummation procedure as well. A transseries (2.12) will have resurgent
properties if the coefficients of different sectors in (2.13) F (�)

k and F (�′)
r

will be related for � close to �′. This can be seen directly at the level
of the Borel transforms by noticing that the type of relation (2.16) will
relate �� to ��′ in the same way that F and G1 are related by (2.16)
and (2.17). In other words, if we take F = �� for some particular �,
and analyse its behaviour on some particular singularity, we will see that
the function G1 in (2.17) will be ��′ for � close to �′. In fact, the value
of �′ will directly depend on the singularity we are analysing. These
relations can be checked via the so-called large-order relations, which
will be exemplified later on.
To highlight how the behaviour (2.16) is related to the non-perturbative

jump (2.11), assume that the Borel transform (2.7) has only one singular-
ity s = ω1 of the type (2.16), in some direction θ of the complex Borel
plane (see Figure 2.1). The difference between lateral Borel resumma-
tions will be given by the integration over the Hankel contour Cω around
the branch cut starting at ω1, as defined on the right of Figure 2.1:

(Sθ+ − Sθ−) F(z)=
∫
Cω

ds B [F] (s) e−s z

= −aω1e−ω1 z + e−ω1 z
∫
C0

ds

2π i
�(s) log(s) e−s z.

(2.18)

The last integration over C0 (Hankel contour now centred at the origin)
will return the discontinuity across the log cut (−2π i) multiplied by the
Laplace transform of the function � (s). Given that we have the identifi-
cation (2.17), this last part is nothing more than the resummation of the
function G1 (z). We can write4

(Sθ+ − Sθ−) F(z) = − (aω1 + Sθ−G1(z)
)
e−ω1 z + · · · . (2.19)

In the · · · we have included the possibility that the Borel transform of
G1 (z) would also have a singularity along the same direction θ . If G1 (z)
is an analytic function, there are no more contributions and Sθ−G1(z) =
SθG1(z). But if B [G1] (s) has a singularity along the direction θ, say at

4 If G1 (z) is in itself asymptotic with singularities along direction θ , we need to choose a lateral
resummation for G1 (z), which will be directly linked to the choice of the discontinuity for the log
branch cut chosen.
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Figure 2.1. On the left: lateral Borel resummation contours around singularity
s = ω. On the right: Hankel contour around the branch cut starting at s = ω.

s = ω2

B [G1] (s)|s=ω2 ∼
aω2

2π i (s − ω2)

+ B [G2] (s − ω2)
log (s − ω2)

2π i
+ holomorphic,

(2.20)

then one can expect that this singularity will also contribute to the overall
difference between lateral Borel resummations of F (z), and the position
of this singularity will naturally be at s = ω1 + ω2 (thus its contribution
will be exponentially suppressed by e−(ω1+ω2)z in (2.1)). This contribution
can in fact be visible if we analyse the Borel transform B [F] (s) at s =
ω1 + ω2 ≡ ω, and it will be of the same form as B [G1] (s)|s=ω2 up to an
overall constant

B [F] (s)|s=ω≡ω1+ω2 ∼
C2 aω2

2π i (s − ω)

+ C2 B [G2] (s − ω)
log (s − ω)

2π i
+ holomorphic.

(2.21)

To reach this new singularity, coming from B [G1] (s), there are in gen-
eral different ways to analytically continue the paths of resummation to
avoid the previous singularities (in this case only one), passing these sin-
gularities from above or from below. These different paths of analytic
continuation to reach each singular point are encoded in the jump of
F (z) across the Stokes line, through a weighed average of such paths
(see [14,90]).
The difference between lateral Borel resummations along a Stokes line

defines the discontinuity of F (z) across that line:

(Sθ+ − Sθ−) F(z) ≡ −Sθ− ◦ DiscθF(z). (2.22)
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For the example shown above (where each asymptotic expansion F (z)
and Gi (z) will only have one independent singularity each in the Stokes
direction θ), this discontinuity will be given by the sum of the contribu-
tions of all the differences between lateral Borel resummations:

DiscθF (z)=
(
aω1 + G1 (z)

)
e−ω1 z + C2

(
aω2 + G2 (z)

)
e−(ω1+ω2) z + · · ·

=
∑

ωn∈Singθ
Cn
(
aωn + Gn (z)

)
e−
∑n

j=1 ω j z. (2.23)

In the above result, Singθ = {ωi } is the collection of singularities ap-
pearing in all asymptotic expansions in the direction θ . The constants Cn

reflect the weighed average of paths that encode the contribution of the
singularities of other Borel transforms B [Gn] (s) to the discontinuity of
the original asymptotic series F (z), where

B [Gi ] (s)|s=ωi+1∼
aωi+1

2π i (s − ωi+1)

+ B [Gi+1] (s − ωi+1)
log (s − ωi+1)

2π i
+ holomorphic.

(2.24)

We have assumed that the singular behaviour of the Borel transform of
F(z) at ω ≡ ∑n

j=1 ω j (for n > 1), originated solely from the behaviour
of B[Gn−1] at s = ωn (and equivalently for the Gi (z)). More generally,
the Borel transform of the asymptotic expansion F(z)will have a singular
behaviour at ω ≡∑n

j=1 ω j

B [F] (s)|s=ω≡∑n
j=1 ω j

∼ C0,n aωn
2π i(s−ω)

+ C0,n B [Gn] (s−ω) log(s−ω)2π i
+ holomorphic,

(2.25)

where the C0,n can have contributions from the singularities of all the
sectors Gi (z), as well as a contribution not associated to any of these.
In this case, (2.22) and (2.23) still hold true, but the explicit form of the
coefficients Cn ≡ C0,n will be more involved. For the Borel transforms
of Gi(z) we also expect the behaviour

B [Gi ] (s)|s=ω≡∑n
j=i+1 ω j

∼ Ci,n aωn
2π i (s − ω)

+ Ci,n B [Gn] (s − ω)
log (s − ω)

2π i
+ holomorphic,

(2.26)

and an expression similar to (2.23) can be found for their discontinuity.
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In the interest of systematically determining the general explicit formu-
las for the discontinuity across Stokes directions,5 we now turn to alien
calculus. The discontinuous jump across Stokes lines, given by (2.22),
naturally defines another operator called the Stokes automorphism Sθ

Sθ+ = Sθ− ◦ Sθ = Sθ− ◦ (1− Discθ ) . (2.27)

The Stokes automorphism acts on the set of simple resurgent functions
(which forms a subalgebra of C

[[
z−1
]]
), and will induce a differentiation

operation on the same algebra via exponentiation (see e.g. [90]):6

Sθ = exp
{
�θ

}
. (2.28)

The operator�θ is called a directional differentiation, and can be decom-
posed into components which depend only on each of the singularities
existing in the direction θ . The Stokes automorphism in the direction θ
becomes

Sθ = exp

{ ∑
ωi∈Singθ

e−ωi z�ωi

}
. (2.29)

These alien derivatives �ω are a differentiation (obey Leibnitz rule, as
shown below in a simple example) and have the following properties:7

for a resurgent function F (z)

• if ω is not a singular point in the Borel plane, then �ωF = 0;
• if ω is the only (or the first) singular point in the direction θ of Borel
plane, then (2.16) holds true, and �ω is related to the algebraic struc-
ture of the Borel transform at the singular point (shedding the func-
tional structure)

Sθ (�ωF) = −aω − SθG (2.30)

or equivalently �ωF(z) = −aω − G(z);

5 Each term in (2.23) can be directly determined by the analysis of singularities of Borel transforms
for each sector F(z) and Gi (z). Nevertheless, it is extremely valuable to have an approach which
uses the information that these are simple resurgent functions, with a set of singularities in each
singular direction θ , to systematically construct a general formula for the discontinuity.

6 In an equivalent way, the automorphism T : f (x) → f (x + 1) which defines translations also

induces a differentiation via T = exp
(
d
dx

)
, which can be checked by a Taylor expansion of this

exponential.

7 These properties can be checked by expanding the exponential in (2.29) and taking into consid-
eration the different paths of analytic continuation one can take to reach a given singularity, see
e.g. [14].
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• if we have a collection of singular points ω ∈ {ω1, ω1 + ω2, · · ·
· · · , ∑i ωi , · · · } on the Borel plane, then for ω ≡ ∑n

i=1 ωi the alien
derivative �ω will be given by

�ωF=−
n∑
s=1

1

s

∑
0=m0<m1<···<ms=n

s−1∏
r=0

Cmr ,mr+1
(
aωn+Gn

)
, (2.31)

where the Cm,n are defined in (2.25) and (2.26).

The exponential factors appearing in (2.29) are an essential part of the
construction of the jump across the Stokes line, as they will be respon-
sible for the exponential weights appearing in (2.23). Another definition
which will be of importance is the pointed alien derivative

�̇ω = e−ωz�ω. (2.32)

If we expand the exponential in (2.29) we find

SθF(z)

= F(z)+
∑
r≥1

ωni ∈Singθ

1

r !e
−(ωn1+ωn2+···+ωnr )z�ωn1

�ωn2
· · ·�ωnr

F (z) . (2.33)

The jump of F(z) across the Stokes direction θ is then

Sθ+F − Sθ−F
=
∑
r≥1

ωni ∈Singθ

1

r !e
−(ωn1+ωn2+···+ωnr )z Sθ−

(
�ωn1

�ωn2
· · ·�ωnr

F (z)
)
. (2.34)

Take the example given above where F (z) has a singularity in the Borel
plane at s = ω1, each of the higher sectors Gi (z) have also one singular-
ity in the Borel plane at s = ωi+1, with behaviour around the singularities
given by (2.16) and (2.24), respectively. We can directly write the non-
zero alien derivatives acting on these functions:

�ω1F(z) = −aω1 − G1 (z) , �ωi+1Gi (z) = −aωi+1 − Gi+1 (z) . (2.35)

The set of all singularities appearing in the direction θ is Singθ =
{ωi , i ∈ N}. It is not hard to see that the only terms in (2.33) acting
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non-trivially on F (z) are

SθF (z)

= F(z)+
(
e−ω1z�ω1 +

1

2!e
−(ω1+ω2)z�ω2�ω1

+ 1
3!e

−(ω1+ω2+ω3)z�ω3�ω2�ω1 + · · ·
)
F (z)

= F(z)+
∑
n≥1

(−1)n
n! e−

∑n
i=1 ωi z

(
aωn + Gn (z)

)
.

(2.36)

Comparing with (2.23) and taking into consideration (2.27), we find an
agreement with the expression found before for the discontinuity of F (z)
with the identification of the constants Cn = (−1)n

n! .

2.2 Some properties of the alien derivative revisited

There are two major properties of the alien operator �ω extremely use-
ful in the study of the Stokes phenomena occurring across singular di-
rections: �ω is a differentiation, and the pointed alien derivative �̇ω as
defined in (2.32) commutes with the natural derivative

[
�̇ω,

d
dz

] = 0. In
this subsection we follow [14] and analyse these two properties in more
detail.
The alien derivative operator is indeed a differentiation, in the sense

that it obeys Leibnitz rule. Let F (z) and G(z) be simple resurgent func-
tions. Then

�ω (F(z)G(z)) = (�ωF) (z)G(z)+ F(z) (�ωG(z)) . (2.37)

This can be clearly seen at the level of the respective Borel transforms for
simple examples. Start by noting that the product of two simple resurgent
functions will correspond to the convolution of their Borel transforms

B [F G] (s)=B [F] ∗ B [G] (s)=
∫ s

0
dζ B [F] (ζ )B [G] (s − ζ ). (2.38)

For simplicity take the case of the Borel transforms being simple poles at
s = ω for both functions F,G:

B [F] (s) = a

2π i (s − ω)
, B [G] (s) = b

2π i (s − ω)
. (2.39)

The alien derivatives acting on each of these resurgent functions give non-
zero results at s = ω: �ωF(z) = −a, �ωG (z) = −b. One can easily
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see that a resummation (2.8) of each of these Borel transforms will lead
to the relation SθF(z) = a

bSθG(z). The Borel transform of the product
of the two functions will be:

B [F G] (s) = a b

(2π i)2

∫ s

0
dζ

1

ζ − ω

1

s − ζ − ω

= a b

(2π i)2
1

s − 2ω
(∫ s

0
dζ

1

ζ − ω
+
∫ s

0
dζ

1

s − ζ − ω

)
= 2 a b

(2π i)2 (s − 2ω) log
(
1− s

ω

)
, (2.40)

where we assumed |s| < |ω|. Note the appearance of a new pole at
s = 2ω, and a log cut at s = ω. We shall firstly focus on the singular
behaviour at s = ω. From the above result we can now read

B [F G] (s) = � (s − ω)
log (s − ω)

2π i
+ holomorphic. (2.41)

The function

� (s) ≡ B [H ] (s) = 2 a b

(2π i) (s − ω)
(2.42)

corresponds to the Borel transform of a function H (z), such that the
only non-zero alien derivative acting on the product FG is given by
�ω (F G) (z) = −H(z). Given the Borel transforms of F and G, it is
not difficult to note that

� (s) = a B [G] (s)+ bB [F] (s). (2.43)

Consequently for this simple example we have just shown that the oper-
ator �ω obeys the Leibnitz rule:

�ω (F G) (z) = −a G(z)− b F(z)

= �ωF (z) G(z)+�ωG (z) F(z).
(2.44)

One could worry that the new singularity at s = 2ω for the Borel trans-
form of the product F G would give rise to a new non-zero alien deriva-
tive�2ω. Given that neither Borel transforms of F orG have a singularity
at this point, one expects that �2ω (F G) = 0, as it is a differentiation.
But if one analytically continues (2.40) past the first singularity s = ω we
find that the residue at s = 2ω is non-zero. This is not an inconsistency
however, because the alien derivative can be defined via a combination
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of different analytic continuations of the paths of integration avoiding the
previous singularities (in our case s = ω).8

Another important property of the alien derivative is its commutation
relations with the usual derivative dz ≡ d

dz . Firstly note that dz commutes
with the lateral Borel resummations. Using (2.7)

dzSθ±F(z) =
∫ e±iε∞

0
ds B [F] (s) (−s) e−s z

= −
∫ e±iε∞

0
ds

+∞∑
k=0

Fksk+1

� (k + 1) = Sθ± (dzF) (z),
(2.45)

and we conclude that dzSθ± = Sθ±dz . From this result and (2.27) we
easily obtain

dzSθ+ = dzSθ−◦Sθ = Sθ−◦Sθ dz ⇔ Sθ−dz Sθ = Sθ−Sθ dz, (2.46)

from which we see that dz also commutes with the Stokes automorphism.
Now using the definition of the Stokes automorphism in terms of the

pointed alien derivatives, Sθ = exp
(∑

ωi∈Singθ �̇ωi

)
, we conclude that

the pointed alien derivative commutes with the usual derivative[
�̇ω,

d

dz

]
= 0. (2.47)

With this relation it is now easy to determine the commutation relations
of the usual derivative and the regular alien derivative �ω:[

�ω,
d

dz

]
= −ω�ω. (2.48)

These properties will allow us to find a connection between alien calcu-
lus and usual calculus, thus providing a way to determine the action of
the alien derivative from the knowledge of the relevant transseries: this
comes in the form of a set of equations called bridge equations.

2.3 Bridge equations

In the context of non-linear problems in ordinary differential equations,
the transseries solution F (z, σ ) (we are taking the simplest one-parame-
ter example (2.12)) will obey a particular non-linear ODE in the variable

8 Using (2.31), we can write �2ω(FG) = −C0,2 − 1
2C0,1C1,2, where the constants Ci, j can be

read from the local behaviour of B[FG](s) at s = ω and s = 2ω (C0,1 = 1 and C0,2 = −a b,
respectively), as well as of �(s) at s = ω (C1,2 = 2a b). We then conclude that �2ω(FG) = 0.



17 Asymptotics, ambiguities and resurgence

z. Given that the pointed alien derivative commutes with the usual deriva-
tive,

[
�̇ω, dz

] = 0, and that the transseries depends on two commuting
parameters z and σ , [dz, dσ ] = 0, one finds that �̇ωF and dσ F will obey
the same linearised ODE (in variable z).9 As these are two complete
solutions of the same ODE, it follows that they must be proportional

�̇ωF = Sω (σ )
dF

dσ
, (2.49)

with the proportionality factor only allowed to depend on the parameter
σ via some Taylor expansion:

Sω (σ ) =
+∞∑
k=0

S(k)ω σ k . (2.50)

The equations (2.49) are Écalle’s bridge equations. The coefficients in
the expansion of the proportionality factor (2.50) will depend on the spe-
cific problem one is solving, i.e. the ansatz used for the transseries and
the type of singularities in it.10 The constants S(k)ω appearing in (2.50) are
the well-known Stokes coefficients (or Stokes constants), which encode
the Stokes phenomena across the singular Stokes directions. They natu-
rally appear in the analysis of singularities in the Borel plane, as we will
see in the examples below. Note that if the transseries has more than one-
parameter (more than one singular direction) the bridge equations will
reflect this (see for example Section 4 of [23], and [19]).
We shall now turn to some applications, and detail how to use resur-

gence in different examples of ODEs. In particular we will focus on the
construction of transseries, the resurgent analysis of Borel transforms and
analytic properties of the transseries solutions (such as varying z ∈ C,
performing strong-weak coupling interpolation and how to deal with the
cancellation of ambiguities, see e.g. [42, 55, 60]). The first example we
will discuss is of a linear ODE: the very well known example of the Airy
function.

9 This linearised ODE is directly obtained from the original ODE for the transseries F (z, σ ).

10 Given a particular transseries and using the bridge equations, many of these constants will in fact
be zero.
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3 The simplicity of linear differential equations:
the Airy function

The Airy function example has been thoroughly studied from the point
of view of resurgence and Stokes phenomena, being the quintessential
example of these phenomena. It has been studied from the perspective
of saddle-point analysis and hyperasymptotics (see [49,93–95] and refer-
ences therein), and of resurgence techniques (see e.g. [10,49]). Presently,
we will provide a brief analysis of the known results, together with the
numerical checks and applications which can be performed. This is a
very good setting to introduce many of these numerical checks, which
can then be generalised to cases with more structure, such as the one
studied in the following Section.
The linear ODE describing the Airy function is

Z
′′
(κ)− κ Z(κ) = 0, (3.1)

whose solutions can be written in integral form as

Zγ = 1

2π i

∫
γ

du e−V (u) , V (u) = −κu + u3

3
. (3.2)

The path γ is a contour chosen such that the integral converges. There are
two homologically independent contours γ originating two independent
solutions of (3.1), usually denoted by ZAi and ZBi. A general solution to
(3.1) will be a linear combination of these two, forming a (two-parameter)
transseries.
Given the integral form of the solution (3.2) we will analyse this prob-

lem perturbatively in two ways:

1. Take the solution (3.2) as a zero dimensional path integral and perform
saddle-point analysis;

2. Construct a transseries solution and perform resurgent analysis di-
rectly from (3.1).

3.1 Saddle-point analysis

In order to construct explicit perturbative solutions of (3.2) as asymptotic
expansions, one can perform saddle-point analysis. The saddle-points of
the potential in (3.2) are

V ′(u) = −κ + u2 = 0 ⇔ u�± = ±√
κ, (3.3)

with V
(
u�±
) = ∓ 2

3κ
3/2. The leading contribution from each saddle to

the exponential in the integrand of (3.2) can be found from the expansion
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(V
′′ (
u�±
) = ±2√κ)

V (u) = V
(
u�±
)+ 1

2
V

′′ (
u�±
) (
u − u�±

)2
(3.4)

and will be given by exp
(−V (u�±)). The dominant saddle will naturally

depend on the argument of κ . For each saddle u� one can define the
steepest descent contour, as the contour of integration γ passing through
u� such that:

• Im (V (u)− V (u�)) = 0, u ∈ γ ;
• Re (V (u)) → +∞ when u → ∞.
In the set of images of Figure 3.1 the potential is shown normalised to
V
(
u�−
)
(the saddle u�− is always at the edge of brown areas and blue areas

of the potential). In brown Re
(
V (u)− V

(
u�−
))
> 0 is shown, while the

opposite is in blue, for different values of the argument of κ = eiθ . We
see that in general a single steepest descent contour passes through each
saddle: we can choose a particular saddle contribution and determine its
asymptotic expansion. However, when

Im
(
V
(
u�+
)− V

(
u�−
)) = 0 ⇔ Im κ3/2 = 0 ⇒ arg κ = �

2π

3
, �∈Z,

(3.5)
the contour passes through both saddles. In Figure 3.1 this is seen at
arg κ = 0, 2π3 ,

4π
3 . These lines are Stokes lines. As we shall see in more

detail below, these are the directions where a subleading (exponentially
suppressed) contribution gets picked up and starts contributing to the full
solution.
By increasing θ , the once subleading contributions become of the same

order of magnitude as the original saddle. This happens in the so-called
anti-Stokes lines

Re
(
V
(
u�+
)− V

(
u�−
))=0 ⇔ Re κ3/2 = 0 ⇒ arg κ= π

3
+�

2π

3
, �∈Z.

(3.6)
Both saddles contribute at the same order when arg κ = π

3 , π,
5π
3 , as can

be seen in Figure 3.1, when both saddles are at intersections between
brown and blue areas of the potential. At these points, one will find an
oscillatory pattern in the asymptotic behaviour. This is just the Stokes
phenomena: in the asymptotic regime, different sectors will have dif-
ferent asymptotic formulae, which describe the same analytic function.
These different sectors will be fully captured by the transseries.
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Figure 3.1. Steepest decent contours passing through saddles u�±, for different
values of the argument of κ = eiθ . Dashed lines correspond to the subleading
saddle and solid lines to the leading one. The saddle u�−, which corresponds to
the solution ZAi, is shown as a red circle, while the saddle u�+, corresponding to
ZBi is shown as a black circle. At θ = 0 we keep only the contribution of the
u�− saddle, shown in purple (while in blue is the contour corresponding to ZBi,
whose coefficient is set to zero). After crossing a Stokes line, at θ = 2π

3 , the
second contour gets picked up (also starts contributing): both are then shown in
purple.

The two-parameter transseries solution will be given by a linear combi-
nation of the homologically different contour solutions:

Z (κ, σ1, σ2) = σ1 ZAi(κ)+ σ2 ZBi(κ). (3.7)

The ZAi(κ) and ZBi(κ) can be determined perturbatively for κ � 1 from
an expansion around the respective saddle points u�− and u�+. Both ex-
pansions will be asymptotic in inverse powers of z = κ3/2.
For example, let us assume that at the ray κ ∈ R+ (θ = 0), we start

solely with the exponentially decreasing solution ZAi(κ), which corre-
sponds to the usual Airy function Ai(κ) (in the first plot of Figure 3.1
we keep the contour in purple). This corresponds to taking σ1 = 1 and
σ2 = 0 in the transseries (3.7). Now rotate the argument of κ , and analyse
what happens with the transseries. Analytically continuing the solution,
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we find (see Figure 3.1) that at θ = π
3 both saddles have the same mag-

nitude, but as we started with only one contour of integration (and have
not yet crossed a Stokes line), the second saddle remains invisible. From
π
3 < θ < π the second saddle ZBi is exponentially suppressed as com-
pared to the leading one ZAi we have started with.
Let us analyse the behaviour of the contour of integration passing

through saddle u�− (i.e. the one associated with ZAi) when crossing the
Stokes line θ = 2π

3 : from Figure 3.1 one can see that this contour changes
directions from θ = π

2 to θ = 5π
6 ; moreover at θ = 5π

6 the new contour is
a combination of the contour previously associated with u�− and the con-
tour passing through the second saddle u�+. This is because exactly at the
Stokes line θ = 2π

3 the contour associated with u
�− passes through both

saddles, signalling that from here on one should include both of them,
despite the contribution of the second saddle being highly exponentially
suppressed (in Figure 3.1 we can see that from this point on both con-
tours are purple, and will contribute to the transseries). In the transseries
(3.7) this is seen by a jump in the value of σ2, which becomes non-zero
at θ = 2π

3 . Note that even though σ2 has a discrete jump in its value, the
total solution (3.7) is analytic at the Stokes line θ = 2π

3 , because the sad-
dle contribution just added, ZBi is then highly exponentially suppressed.
Picking the two saddles at the Stokes line, and analytically continuing the
transseries solution to the the anti-Stokes line θ = π (where both contri-
butions are of the same magnitude), we will find the known oscillatory
pattern of the function Ai (κ) when κ ∈ R− .
This analysis can be extended to the whole complex plane. In fact, the

monodromy of the transseries requires a double sheeted Riemann surface,
as one will need to rotate arg κ all the way to 4π to obtain the saddles in
their original positions (notice in Figure 3.1 that the next plot at θ = 2π
would see the two saddles exchange positions as compared to θ = 0).
We will now turn to the resurgent analysis of this problem, where the

transseries can be analysed systematically and the jumps in the transseries
parameters can be explicitly determined.

3.2 Resurgence and Stokes phenomena

We shall now analyse the Airy problem from the perspective of resur-
gence, starting from the ODE (3.1). If we take an ansatz of the form
Z (κ) = e− 1

2 A κ
α

� (κ) where

�(κ) 	 κβ
+∞∑
�=0

a� κ
−α �, (3.8)
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we easily find from (3.1) that there are two values of A allowed

A± = ±A , A = 4

3
. (3.9)

We will also find α = 3/2 and β = −1/4. This information tells us (to-
gether with the fact that we are studying a linear ODE) that we will have
two independent solutions, each related to one of the saddle points of the
previous section.11 The full solution will be a two-parameter transseries
given by (3.7) as expected, where

ZAi(κ) = 1

2
√
πκ1/4

e−
1
2 Aκ

3/2
�− 1

2
(κ) ;

ZBi (κ) = 1

2
√
πκ1/4

e
1
2 Aκ

3/2
� 1

2
(κ) , (3.10)

and

�± 1
2
(κ) 	

+∞∑
n=0

a(±1/2)n κ−
3
2 n, (3.11)

with coefficients

a(±1/2)n ≡ ∓(±1)n an , an = 1

2π
A−n�

(
n + 5

6

)
�
(
n + 1

6

)
n! . (3.12)

These coefficients can be determined in closed form by putting the above
ansatz into the ODE (3.1) and solving the ensuing recursive equations for
the an .
We can read the position of the Stokes and anti-Stokes lines directly

from the exponentials in (3.10). Stokes lines occur at arguments of κ
such that these exponentials are as damped (or enhanced) as possible, i.e.
when Im

(
A
2 κ

3/2
) = 0. The anti-Stokes lines occur when both of these

exponentials are of the same order, i.e. Re
(
A
2 κ

3/2
) = 0. Summarising,

we have

Stokes lines at arg κ = 0,
2π

3
,
4π

3
; (3.13)

anti-Stokes lines at arg κ = π

3
, π,

8π

3
.

11 Because we are dealing with a linear problem, we have found a finite number of “instanton”
sectors, unlike the one-parameter transseries shown in (2.12). The example studied in the next
section will deal with a non-linear problem, where the transseries will indeed be of the type (2.12).
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Note that the natural variable appearing in ZAi, ZBi is z = κ3/2 � 1.
In this new variable it is easy to see that the Stokes lines will fall at
arg z = 0, π . Recall that discontinuities occur at Stokes lines (associ-
ated to a non-trivial action of the Stokes automorphism Sθ ). In the z
variable we have either a discontinuity of the type S0 or of the type Sπ .
Following the analysis of [42] and recalling that the monodromy of the
problem is 4π (discussed again below), we find the following succes-
sion of discontinuities in the κ-plane as shown in Figure 3.2 (reproduced
from [42]). From here on, unless stated otherwise, we will be using the
natural variable z.

Figure 3.2. Different types of discontinuities S0 or Sπ (as defined for the
variable z = κ3/2) when one moves in the arg κ . In solid blue are the 3 Stokes
lines in the κ-plane, and the dashed line is arg κ = π (an anti-Stokes line). The
monodromy is 4π , so we need to go around the complex plane twice to reach
the initial point.

Taking another look at the coefficients an in (3.12), it is not difficult to
check that the series (3.11) are asymptotic. Moreover, the coefficients
an will have a factorial growth at large order n � 1, with a subleading
exponential growth:

an+1
an

= 1

A

(
n + 5

6

) (
n + 1

6

)
n + 1 ∼ n

A
+O (n0) . (3.14)

The next step is to construct the Borel transform of the asymptotic series
�±1/2 (z). Given the simplicity of the example at hand, and the fact that
we know the coefficients an in closed form, we can determine the Borel
transforms exactly from rule (2.6): they are just hypergeometric functions
(up to residual coefficients a0 = 1 which need to be separately added as
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to make use of (2.6) we need to take the expansions (3.11) from n ≥ 1)

B
[
�̌±1/2

]
(s) = − 5

48 2
F1

(
7

6
,
11

6
, 2

∣∣∣∣± s

A

)
. (3.15)

Here, 2F1 (a, b, c|z) is a hypergeometric function with a branch cut in
the complex z-plane in the positive real axis starting at z = 1. The func-
tions �̌±1/2(z) are just the original expansions (3.11) with the residual
coefficient a0 removed,

�̌±1/2(z) = �±1/2 (z)± a0. (3.16)

Consequently B
[
�̌±1/2

]
(s) have a singularity at s = ±A, respectively.

Both Borel transforms have a non-zero radius of convergence at s = 0, as
expected. The behaviour of the Borel transforms around their respective
singularities is:

B
[
�̌1/2

]
(s)
∣∣∣
s=A

= i

2π i (s − A)

+ iB
[
�̌−1/2

]
(s − A)

log (s − A)

2π i
+ holomorphic;

B
[
�̌−1/2

]
(s)
∣∣∣
s=−A

= i

2π i (s + A)

+ iB
[
�̌1/2

]
(s + A)

log (s + A)

2π i
+ holomorphic.

(3.17)

The effects of resurgence are evident from these expansions: in the sin-

gular behaviour of B
[
�̌1/2

]
(s) we can see the resurgence of the �−1/2

sector through its Borel transform evaluated at s = 0, and in the singular

behaviour of B
[
�̌−1/2

]
(s) we see the resurgence of the sector �1/2! It

is in fact this appearance of different sectors in the singular behaviour of
Borel transforms of every sector that describes the theory of resurgence.
The analysis of the resurgent properties of sectors �±1/2 shown below
closely follows [19].
One can now look beyond the functional nature of the singularities and

realise that in (3.17) we have in fact the relations between the asymptotic
series �±1/2, the building blocks of the transseries. From this point of
view, we can define a linear operator �ω, where ω is a point in the com-
plex plane, acting on these building blocks�n and returning the structure
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encoded in (3.17):12

�A�1/2 = −i�−1/2 ; �ω�1/2 = 0 for ω �= A; (3.19)

�−A�−1/2 = −i�1/2 ; �ω�−1/2 = 0 for ω �= −A.
Thus the Borel transform of �1/2 has a singularity at ω = A given by
the Stokes coefficient S1 = −i multiplying �−1/2 (up to the functional
structure of the singularity). In the same way �−1/2 has a singularity at
ω = −A described by the Stokes coefficient S−1 = −i multiplying �1/2.
In non-singular points ω of the Borel transforms, the operator �ω will
return zero. This operator is nothing but the alien derivative introduced in
the previous Section, and (3.19) are just the result of the bridge equations
(2.49). In here we shall not dwell on how to determine (3.19) directly
from the bridge equations, but this can be found in the appendices of [19]
for a transseries with a finite number of sectors �n , and in Section 2
of [23] for a one-parameter transseries of the type (2.12).13

The algebraic structure of the action of �ω on the building blocks of
our transseries (3.7) can be summarised pictorially as shown in [19]

(3.20)

To study the transitions that happen at Stokes lines we have to construct
the Stokes automorphism (2.29). For θ = 0 (in the z variable) there is
only one possible singularity at ω = A, while for θ = π the only possible
singularity is at ω = −A. The Stokes automorphism simplifies to

S0 = exp
{
e−Az�A

} = +∞∑
n=0

(
e−Az�A

)n 1
n! ;

Sπ = exp
{
eAz�−A

} = +∞∑
n=0

(
eAz�−A

)n 1
n! . (3.21)

12 The expression for the series �̌±1/2 includes the pole contribution, e.g.

�A�̌1/2 = −i
(
1+ �̌−1/2

)
. (3.18)

Nevertheless, this can be easily re-written in terms of the original expansions (3.11) as shown here.
Naturally, �ωa0 = 0.

13 This last case will in fact be reviewed in the next Section.
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From (3.19) we find that (�A)
2�1/2 = (�−A)2�−1/2 = 0,14 so one

easily reaches the result:

S0�1/2 = �1/2 − i e−Az�−1/2 ; Sπ�1/2 = �1/2;
Sπ�−1/2 = �−1/2 − i eAz�1/2 ; S0�−1/2 = �−1/2. (3.22)

Recall from (2.27) that the Stokes automorphism acting trivially,Sθ�n=
�n , corresponds to �n having no discontinuity along the direction θ .
At the level of the functions ZAi and ZBi we have

Sπ ZAi = ZAi + S−1ZBi ; S0ZBi = ZBi + S1ZAi; (3.23)

with the other two relevant actions being trivial. These two transforma-
tions encode all Stokes phenomena across all Stokes lines: the Stokes line
in the original variable κ will not lie at θ = 0, π but they will be of the
type S0 or Sπ , as shown in [42] and reproduced in Figure 3.2. Finally,
at the level of the transseries, the Stokes transitions are

S0Z (z, σ1, σ2) = Z (z, σ1 + S1, σ2) ;
Sπ Z (z, σ1, σ2) = Z (z, σ1, σ2 + S−1σ1) . (3.24)

As an exercise, we shall now analyse what happens to the resummed
transseries solution when we go from the positive real axis in original
variable κ ∈ R+ to the negative real axis κ ∈ R− (this analysis closely
follows [42]). The general resummed transseries solution at arg κ = 0+
(just above the Stokes line at θ = 0) is

S0+Z (κ, σ1, σ2) = σ1S0+ZAi(κ)+ σ2S0+ZBi(κ). (3.25)

We will further assume that at arg κ = 0+ we are starting with the solu-
tion ZAi, i.e. σ2 = 0. Then our initial solution is given by

S0+Z initial (κ) = S0+Z (κ, 1, 0) = S0+ZAi(κ). (3.26)

We now want to analytically continue this solution across the complex
κ-plane, keeping |κ| fixed, and moving arg κ towards the negative real
axis. When θκ ≡ arg κ = 2π

3 we reach a Stokes line, which we need to
cross. Just before the Stokes line we still have, by analytic continuation,

Sθ−κ Z initial (κ) = Sθ−κ Z (κ, 1, 0) = Sθ−κ ZAi (κ) . (3.27)

14 Combinations such as�A�−A are not considered as they mix singularities from different singu-
lar directions. The Stokes automorphism in each singular direction will only include the singularities
in that direction.
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This Stokes line at θκ = 2π
3 is of the type Sπ in (3.24), and we have

Sθ+κ Z (κ, σ1, σ2) = Sθ−κ Z (κ, σ1, σ2 + S−1σ1). Consequently,

Sθ−κ Z (κ, 1, 0) = Sθ+κ Z (κ, 1,−S−1) , (3.28)

and we can write

Sθ+κ Z initial (κ)=Sθ+κ Z (κ, 1,−S−1)=Sθ+κ ZAi (κ)−S−1Sθ+κ ZBi (κ) . (3.29)

Continuing the analytic continuation all the way to κ ∈ R−, we reach
the anti-Stokes line at arg κ = π , where our solution is now of the form
(recall S−1 = −i)

Sπ Z initial (κ) = Sπ Z
(|k| eiπ , 1, i)

= Sπ ZAi
(|k| eiπ)+ iSπ ZBi (|k| eiπ) . (3.30)

This result should reflect the known Airy function Ai (κ) in the nega-
tive real axis. While in the positive real axis this funtion was approxi-
mated solely by the asymptotic series ZAi(κ), in the negative real axis
the correct oscillatory behaviour of Ai(κ) will in fact be the above com-
bination of the two asymptotic series ZAi(κ) and ZBi(κ). This will be
more concretely shown in the figures of the next Subsection, where we
will compare results coming from just the perturbative series ZAi(κ),
the full transseries Z initial(κ) and the exact results for the Airy function
Ai(κ) for different resummation procedures, keeping |κ| fixed and vary-
ing arg κ ∈ ]0, π].
Summarising the results up to this point:

1. Resurgence techniques provided a direct calculation of the Stokes
transitions at every Stokes line (3.24), with the prediction for the dis-
crete jumps the transseries parameters undergo at these lines;

2. Taking into account all Stokes phenomena of the problem, one will ar-
rive at the expected asymptotic oscillatory behaviour at the anti-Stokes
line θ = π , given by (3.30).

In conclusion, resurgence gives a systematic approach to connect all dif-
ferent asymptotic sectors through the Stokes automorphism (2.27). A
non-trivial Stokes automorphism reflects the existence of discontinuities
at the level of the asymptotic series�n , the building blocks of the transse-
ries. Nevertheless, the full transseries solution is analytic and will not
have discontinuities (or ambiguities, as we shall see in the next Section)
even at Stokes lines.
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3.3 Large-order behaviour and Écalle-Borel-Padé resummation

At this point, there are two relevant issues which have not been addressed:
checking resurgence from approximate Borel transforms and the resum-
mation procedure for the pursuit of exact results. The example of the
Airy function (or other linear ODE) is quite simple: we can directly see
resurgence at work from the Borel transforms which are known exactly.
But in most situations one cannot obtain the Borel transforms exactly, so
what are the (numerical) checks one can do which evidence the resurgent
properties of the observables? This is the core of the first issue. The sec-
ond issue focuses on the goal of obtaining exact results and the analytic
properties of the transseries away from the asymptotic regime.
The answer to the first question is in the so-called large-oder behaviour.

For the second question one needs to understand the so-called Écalle-
Borel-Padé resummation method.
Given a function F (z) with a discontinuity along some directions {θk}

in the complex plane, we can use Cauchy’s theorem to write

F (z) = 1

2π i

∮
w=x

dw
F(w)

w − z

= −
∑
{θk }

1

2π i

∫ eiθk∞

0
dw

Discθk F (w)

w − z
+ contributions at z=∞.

(3.31)

To recover the second line above one deforms the contour as shown in
Figure 3.3. (In this figure it is assumed that there is only one discontin-
uous direction; in general one needs to deform the contour to avoid all
discontinuous directions θk .) In most cases of interest, scaling arguments
can be used to indicate that there is no contribution around∞ [27, 96].
The relation (3.31) can be applied to any of the asymptotic series �n(z).
Let us do so for �1/2: using variable x = 1/z � 1 we obtain

�1/2 (x) = − 1

2π i

∫ +∞

0
dw

Disc0�1/2(w)

w − x
. (3.32)

Figure 3.3. Deformation of the contour to circle the discontinuities of a function
F (z).
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From (2.27) we can write

Disc0�1/2(x) = −S1 e−A/x�−1/2(x) = i e−A/x�−1/2. (3.33)

Also taking into account that for x � 1, 1
w−x = 1

w

∑+∞
�=0
(
x
w

)�
and using

the asymptotic expansions (3.11), we can re-write (3.32) as
+∞∑
n=0

a(1/2)n xn 	 + S1
2π i

+∞∑
�=0

x�
∫ +∞

0
dw e−A/w

+∞∑
h=0

a(−1/2)h wh−�−1. (3.34)

Comparing equal powers of x , one writes

a(1/2)n 	 + S1
2π i

+∞∑
h=0

a(−1/2)h

∫ +∞

0
dw e−A/wwh−n−1, n � 1. (3.35)

The integral appearing above only converges when h < n, and we are
taking a sum over all h ≥ 0. This relation will thus be valid only for
large values of order n, making it a large-order relation. Performing the
formal integration we find

a(1/2)n 	 + S1
2π i

+∞∑
h=0

a(−1/2)h

� (n − h)

An−h

	 + S1
2π i

� (n)

An

+∞∑
h=0

a(−1/2)h Ah
(

h∏
r=1

1

n − r

)
, n � 1. (3.36)

We have derived the large-order expressions relating the large-order co-
efficients a(1/2)n of the asymptotic sector�1/2 to the low order ones of the
sector �−1/2. These expressions also evidentiate the factorial growth of
such coefficients, as well as the subleading exponential growth. One can
expand this result for large n, and the resulting expansion is once again
asymptotic in the variable n. In the example of the Airy function, we have
only two asymptotic sectors: one can perform the same analysis starting
from the other sector�−1/2, obtaining very similar relations. In particular
we will see a closure between the two sectors. In the example of the next
Section we shall see that the large-order relations for each sector (of an
infinite number) will relate its coefficients to the coefficients of all other
sectors, with some being more exponentially suppressed than others.
These large-order relations show once again the resurgence of one sec-

tor in the asymptotic behaviour of another.15 This derivation offers a pre-
diction (from resurgence) for the large-order behaviour of the coefficients

15 It is not suprising that it appears as large-order relations, as the asymptotic properties of the series
�±1/2 are governed by the higher terms (if we removed a finite number of terms from start of the
series, we would not change its asymptotic behaviour).
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of asymptotic sectors �±1/2 (3.36). Naturally, one now asks how can the
accuracy of this prediction be checked. It can be done by studying the
convergence of a(1/2)n in (3.36) at large n towards different coefficients on
the right-hand side, as we shall see next.

3.3.1 Numerical checks of large-order relations Expanding the right-
hand side of (3.36) for large n we find

a(1/2)n 	 + S1
2π i

� (n)

An

{
a(−1/2)0 + a(−1/2)1

A

n

+ A

n2

(
a(−1/2)1 + A a(−1/2)2

)
+ · · ·

}
(3.37)

≡ + S1
2π i

�(n )

An

+∞∑
k=0

ck
nk
.

This defines the coefficients ck , e.g. c0 = a(−1/2)0 = 1, c1 = a(−1/2)1 A and
c2 = A a(−1/2)1 + A2 a(−1/2)2 . We can now plot

−2π A
n

� (n)
a(1/2)n 	 iS1c0 +O (n−1) (3.38)

and check the large n convergence to iS1c0 = iS1a
(−1/2)
0 . The best means

to perform this check is by using an acceleration method for the conver-
gence, such as Richardson transforms (RT). The method of Richardson
extrapolation (see e.g. [22, 48]) assumes the existence of a sequence for
large n:

S (n) 	 s0 + s1
n
+ s2
n2

+ · · · . (3.39)

Label the N -Richardson transform for the sequence S converging to its
element s� as RTS(�, n, N ). For � = 0 (convergence to s0) the Richardson
transform is defined recursively as⎧⎪⎪⎨⎪⎪⎩
RTS (0, n, 0) = S (n) ;
RTS (0, n, N ) = RTS (0, n + 1, N − 1)

+ n

N
(RTS (0, n+1, N−1)−RTS (0, n, N−1)) , N≥1.

(3.40)

It is not hard to see that the N -Richardson transform is effectively can-
celling the subleading terms in S (n) up to order n−N , thus resulting in an
improved convergence to s0. To check any of the higher coefficients s�,
define

S� (n) ≡
(
S (n)−

�−1∑
r=0

sr
nr

)
n� 	 s� + s�+1

n
+ s�+2

n2
+ · · · , (3.41)
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together with the related RT⎧⎪⎪⎨⎪⎪⎩
RTS (�, n, 0) = S� (n) ;
RTS (�, n, N ) = RTS (�, n + 1, N − 1)

+ n

N

(
RTS(�, n+1, N−1)− RTS(�, n, N−1)) , N≥1.

(3.42)

Applying the method of RT to the series (3.38) we obtain the convergence
shown in Figure 3.4, to the value iS1 = 1. In this figure, the convergence
of the original series and of the 5-RT are shown, with estimated error of
10−13

RTS (0, 90, 5)− iS1
iS1

∼ 10−13. (3.43)

Figure 3.4. Convergence of left-hand side of the large-order relation (3.38) to
the leading coefficient iS1 = 1. In blue the values of left-hand side of (3.37) are
plotted, and in red the corresponding 5-RT is shown.

One can check these large-order relations numerically even without
knowing the value of the Stokes coefficient (which in the majority of the
situations needs to be determined numerically from large-order relations
such as just discussed). To do so, we analyse instead the convergence of

a(1/2)n+1
a(1/2)n

A

n
	
∑∞

k=0
ck

(n+1)k∑∞
k=0

ck
nk

	 1− c1
c0

1

n2
+ c21 + c0c1 − 2c0c2

c20n
3

+O (n−4)
≡

∞∑
k=0

dk
nk
.

(3.44)

The coefficients ck were determined directly from the expansion (3.37),
so (3.44) defines the coefficients dk , e.g. d0 = 1, d1 = 0 d2 = − c1

c0
and
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d3 = c21+c0c1−2c0c2
c20

. We can apply the method of Richardson transforms to

this expansion and show the convergence to any of the coefficients dk . In

Figure 3.5 we show the convergence of the series
a(1/2)n+1
a(1/2)n

A n − d0n2 to the

coefficient d2 = 5
36 , with estimated error of 10

−9 (for the 5-RT).

Figure 3.5. Convergence of left-hand side of the large-order relation (3.44) to

the coefficient d2. In blue the values of
a(1/2)n+1
a(1/2)n

A n − d0n2 are plotted, and in red

the corresponding 5-RT is shown.

Note that for this example, numerical tests such as the ones above are in
fact not necessary. The simplicity of this example is reflected in the fact
that the resurgent relations between sectors �±1/2 close, as pictorially
shown in (3.20). Thus using the definitions (3.12) for the large-order
relation (3.36) returns the following relation

2π

iS1
	 � (n + 1) (−1)n
� (n + 5/6) � (n + 1/6)

+∞∑
h=0

× � (n − h) � (h + 5/6) � (h + 1/6)
� (h + 1) −→

n→∞ 2π,

(3.45)

where the following property was used:

�(n + 1)(−1)n�(n − h)�(h + 5/6)� (h + 1/6)
� (n + 5/6) � (n + 1/6) � (h + 1) −→

n→∞ δh,0 2π. (3.46)

Now that we have checked the resurgent properties of the transseries
(3.7), the following step is to analyse how to calculate resummations and
obtain exact results.

3.3.2 Écalle-Borel-Padé resummation and exact results from asymptotic
series We have already seen how to perform (very accurate) numer-
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ical checks of the resurgent properties of our transseries. The subse-
quent question one poses is how to retrieve exact analytic results from
the asymptotic building blocks of that transseries. We will not focus here
on the so-called cancellation of ambiguities (as one of the exact ana-
lytic outcomes of resurgence) and leave this discussion for the example
in the next Section. Instead, we will now focus on how to obtain ana-
lytic transseries results for the Airy function in the complex κ-plane, and
how to perform interpolation between the asymptotic regime κ � 1 and
κ small. The simplicity of the example at hand, together with the well
known and thoroughly studied function Ai (κ) allows us to easily com-
pare the results we will obtain from the resummation of the transseries to
known exact results.
The two regimes to be studied are:

1. Keep |κ| fixed and change arg κ from 0 to π . In doing so, we cross a
Stokes line: we start at arg κ = 0+ with just the asymptotic series ZAi
(as done before, by taking σ1 = 1 and σ2 = 0 in the transseries (3.7)),
then after the Stokes line at θ = 2π/3 both asymptotic solutions in
the transseries will contribute (σ1 = 1 still remains, and σ2 jumps in
value by −S1).

2. Once we reach the line arg κ = π , where we will have the typical
oscillatory behaviour of an anti-Stokes line, we keep the arg κ fixed at
this value and take |κ| from large values to small ones (strong/weak
coupling interpolation).

In both regimes, one needs to analyse the resummation of the two asymp-
totic solutions Sθ ZAi and Sθ ZBi in the transseries (3.7).
At arg κ = 0+ there will only be the asymptotic solution ZAi. As a first

approximation, we can perform optimal truncation (2.4):

ZAi−op(κ) = 1

2
√
πκ1/4

e−
1
2 A κ

3/2
Nop∑
n=0

a(−1/2)n κ−3n/2. (3.47)

Nop is the highest value of n such that
∣∣∣ an+1an

∣∣∣ < |κ|3/2, so

Nop (κ) =
⌊
4

3
|κ|3/2

⌋
, (3.48)

where �· · · � denotes the integer part. Taking for example the value |k| =
1.7171, we find Nop = 3. Changing arg κ ∈ ]0, π] and comparing with
known exact results for the Airy function, we find that the optimal trun-
cation of the perturbative series diverges from the expected results after
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the Stokes line arg κ = 2π
3 . This can be seen on the first plot of Fig-

ure 3.6, where the truncated perturbative series (in blue) follows rather
closely the exact result (in yellow) up to the Stokes line, after which the
two lines diverge.
The next approximation one can do is an optimal truncation at the level

of the transseries. The value of Nop remains the same, but now

Zop(κ) = ZAi−op (κ)− S1�

(
arg κ − 2π

3

)
ZBi−op (κ) , (3.49)

where ZBi−op(κ) is defined in the same way as ZAi−op(κ) above, but with
the starting point being the asymptotic solution ZBi. The function �(x)
is the usual Heaviside function (with value 1 when x > 0 and 0 when
x < 0), and the truncation of the transseries detailed above is valid for
arg κ ∈ ]0, π].16 With the same choice for the value of |κ|, the com-
parison of the optimal truncation of the transseries to the exact results
is shown on the second plot of Figure 3.6. We now find that the opti-
mal truncation follows the exact result more closely, even after crossing
the Stokes line. As a last note, the third plot of Figure 3.6 shows the
truncation of the transseries where we kept twice the number of terms as
required by optimal truncation (6 instead of 3 for the chosen value of κ):
we easily see a poorer approximation to the exact results.
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Figure 3.6. Comparison of optimal truncations for the original perturbative se-
ries ZAi(κ) (first plot, in blue), and full transseries solution Zinitial (κ) (second
plot, in blue) to the exact results of the Airy function Ai (κ) (in yellow), for
κ = 1.7171eiθ , θ ∈ ]0, π]. On the third plot, a non-optimal truncation (adding
6 terms instead of the optimal 3) of the transseries solution is shown (in blue)
in contrast with the exact solution (in yellow). The red dots correspond to the
Stokes lines θ = 0, 2π3 , while the green dots are the anti-Stokes lines θ = π

3 , π .

16 This is the case because up to arg κ = π we only cross one Stokes line. Once we cross ex-
tra Stokes lines, other transseries parameters jump in value, and the expression for the truncated
transseries will change.
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Finally, one may be interested in going beyond the optimal truncation,
in particular how to include the asymptotic information encoded in the
higher terms of the series after Nop. This can be done by performing a
resummation (inverse Borel transform) for the Borel transforms of every
sector of the transseries, in this example B [�±1/2

]
(s). For the simple

case at hand these are known as analytic functions (3.15). However, such
is not the general situation: the Borel transforms of the asymptotic sec-
tors of a transseries, B [�n] (s), are usually known as convergent series,
and often we only know a finite number of terms in those series. In these
cases, before performing the resummation, one needs to approximate the
finite number of terms of the Borel transform to an analytic function. One
of the preferred methods to do so is themethod of Padé approximants: the
Padé approximant of the first N elements of a convergent series such as
B [�n] (s) gives the approximated function as a ratio of two polynomials
(for the diagonal approximant case, which is commonly used, these two
polynomials are of the same order N/2). As the method is being applied
to Borel transforms, one calls the resulting object Borel-Padé approxi-
mant. For the case of diagonal Padé approximants, we have the form

BPN [�n] (s) = PN/2 [�n] (s)

QN/2 [�n] (s)
, (3.50)

with PN/2, QN/2 being two polynomials of order N/2. A major advan-
tage of this method of approximation is that the zeros of the polynomial
in the denominator, QN/2 [�n], reflect the singularities of the Borel trans-
form: the poles will condense in certain directions indicating branch cuts
in the Borel plane.
Looking back at our example, let us expand the Borel transforms

B [�±1/2
]
(s) in (3.15) around s = 0, and keep terms up to power sN

with N = 60. We then determine the respective diagonal Borel-Padé
approximants BP60

[
�±1/2

]
(s), and analyse the position of the poles for

each case. This can be found in Figure 3.7. Analysing this figure we find
(as expected) that B [�−1/2

]
(s) has a condensation of poles starting at

s = −A, indicating a branch cut starting at that point, while B [�1/2
]
(s)

has poles condensing into a cut starting at s = A.
Once we have the approximate function for the Borel transforms

BPN [�n] (s), we can perform the resummation procedure, – the inverse
Borel transform (2.8) – thus retrieving an approximate value for the re-
summation of these sectors:

S(N )
θ �n (z) =

∫ eiθ∞

0
ds BPN [�n] (s) e

−z s . (3.51)
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Figure 3.7. Poles of the Borel-Padé approximants BP60
[
�−1/2

]
(left) and

BP60
[
�1/2

]
(right). In red are shown the singularities in the Borel plane, at

s = ±A.

When the direction θ is singular, i.e. a Stokes line, instead of the regular
resummation we need to perform the lateral Borel resummations (2.9).
The result S (N )

θ �n (z) is called the Écalle-Borel-Padé resummation for
the asymptotic series�n (z). In principle we need to perform this resum-
mation to all sectors of the transseries, but in effect one needs only to
do so for the first (least exponentially suppressed) sectors to obtain very
accurate results in all the complex plane z. The more resummed sectors
we add at every value z, the more accurate the result will be. We shall see
this at the level of cancellation of ambiguities in the example of the next
Section.
For our current example, we will keep only N = 10 terms of the ex-

pansions of the Borel transforms B[�±1/2](s) in (3.15) around s = 0.
We then determine the corresponding diagonal Borel-Padé approximants
BP10[�±1/2](s), and finally calculate the resummed values S(10)

θ �±1/2 (κ)
where κ = z−2/3 = |κ| eiθ as before. The resummed transseries for
arg κ = θ ∈ ]0, π] can again be written with the help of the Heaviside
function as

S(10)
θ Z(κ) = S(10)

θ ZAi (κ)− S1�

(
arg κ − 2π

3

)
S(10)
θ ZBi (κ) , (3.52)

with

S(10)
θ ZAi (κ) = 1

2
√
πκ1/4

e−
1
2 Aκ

3/2 S(10)
θ �− 1

2
(κ) (3.53)

and equivalently for S(10)
θ ZBi (κ) using (3.10).

We first assume |κ| = 1.7171 and take θ to vary in the interval ]0, π],
in increments of π

100 . This gives rise to the the first plot in Figure 3.8:
the blue line shows the expected exact results; the yellow line shows
the optimal truncation of the perturbative series; the optimally truncated
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transseries is shown in dashed purple; the red dots exactly following the
blue line are the numerical resummations S(10)

θ �±1/2 (κ) for the different
values of arg κ . We can see that with just 10 terms in the expansion of the
Borel transforms, the numerical resummations result is a better approx-
imation than the optimal truncation. The resummation of the transseries
can be taken all around the complex κ-plane, and the analytic proper-
ties of the full solution can then be analysed at any κ . In particular, if
we keep arg κ = π fixed, we can analyse the oscillatory behaviour of
the resummed solution along this anti-Stokes line by changing |κ| from
the large asymptotic regime to small values. This analysis is shown in
the second plot of Figure 3.8: the resummed transseries (in red) follows
the expected exact results (in blue) all the way to very small coupling
|κ|, while the optimally truncated transseries (dashed purple) diverges
for small values of |κ| and the optimal truncation of ZAi(κ) (in yellow)
does not follow the exact results for any |κ| as expected.
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Figure 3.8. Comparison between different approximations to the value of the
function Ai (κ). The exact results are shown in blue; in yellow is the opti-
mal truncation of ZAi(κ); in dashed purple is shown the optimal truncation of
the transseries (3.49); the red dots show the Écalle-Borel-Padé resummation of
the transseries (3.52). The first plot corresponds to keeping |κ| = 1.7171 and
changing arg κ ∈ ]0, π]. The second plot keeps arg κ = π fixed and changes |k|.

With this we finish the analysis of the transseries solution to the Airy
differential equation (3.1). The asymptotic solutions found for this ODE
at κ � 1 allowed us to build a full transseries solution, with resurgent
properties which can be systematically used to analyse the Stokes phe-
nomena associated with this example. From resurgence and alien calcu-
lus we learned how to cross singular directions (Stokes lines) and reach
any value of the complex coupling κ . This procedure, together with the
numerical resummation of results presented, enables the study of the full
transseries solution in the whole complex plane. Hence, results beyond
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the asymptotic regime such as analytic properties of the transseries and
strong/weak coupling interpolation can be easily achieved.
In the next Section we turn to a more complex example, where we

will have an infinite number of asymptotic sectors in the transseries. The
employment of resurgent techniques in that case will be much more im-
portant as it gives a fast and systematic approach to obtain resummed
results from the asymptotics.

4 Non-linear ODEs and the resurgence of the one-parameter
transseries

As an example of a first-order non-linear ODE, we will now turn to the
differential equation controlling the hydrodynamic series of the Müller-
Israel-Stuart (MIS) theory [88,89]. This model has recently been studied
in the light of resurgence [56,62,63], and we review here some of the key
aspects, in particular the subject of ambiguity cancellations. The respec-
tive differential equation is a first-order non-linear ODE for a function
f (w) (encoding the dependence of temperature with respect to proper
time, see e.g. [63] for more details and derivation), given by17

Cτ� f f
′ + 4Cτ� f

2 +
(
w − 16Cτ�

3

)
f − 4Cη

9
+ 16Cτ�

9
− 2w

3
= 0.

(4.1)
The coefficients Cτ�,Cη appearing in this equation are dimensionless
constants which are known from the so-called fluid-gravity duality to be18

Cτ� = 2− log 2
2π

, Cη = 1

4π
. (4.2)

The asymptotic regime we intend to study via resurgence is the case of
w � 1. If we take an ansatz of the type�0 =∑+∞

m=0 a
(0)
m w−m and plug it

into (4.1), we can easily find a recursion relation for the a(0)m :

a(0)0 = 2/3;
a(0)1 = 4

Cη

9
; (4.3)

a(0)k+1 = Cτ�

(
16

3
a(0)k −

k∑
n=0

(4− n)a(0)k−na
(0)
n

)
, k > 1.

17 Here one uses the notation f ′, f ′′, etc to denote first, second and higher derivatives, respectively.
18 In MIS theory another coefficient appears Cλ1 , which was currently set to zero, see [63].
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From these relations we can determine the first few coefficients a(0)k and
see that these grow factorially, with a subleading exponential growth

a(0)k ∼ � (k)

Ak
, k � 1, where A ≈

3

2Cτ�

. (4.4)

In the same manner as in [63], we can find reproduced in Figure 4.1 the
plot of the weighted coefficients a(0)k

2π Ak+β
�(k+β) , together with the respective

Richardson transforms 2-RT and 5-RT.19 We can indeed confirm the ex-
pected growth for the coefficients a(0)m , from the convergence in this figure
to a constant (the identification of this constant with a Stokes coefficient
will be discussed at a later stage). This hints to the existence of exponen-
tially suppressed “instanton” sectors with action A = 3

2Cτ�
. Assume an

ansatz of the form

F (�) (w) = e−�Aw�� (w) , �� (w) = wβ�

+∞∑
k=0

a(�)k w−�. (4.5)

Plugging this into (4.1) we find

A = 3

2Cτ�

; β� ≡ −�β = −� Cη

Cτ�

. (4.6)

Figure 4.1. Plot of the weighted coefficients a(0)k
2π Ak+β
�(k+β) given in (4.3) and the

corresponding 2-RT (green) and 5-RT (red), showing the convergence to the
Stokes coefficient iS1.

19 The particular weight used will be justified in the subsection dealing with the large-order be-
haviours predicted by resurgence. In here β is given by −Cη/Cτ�.
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Thus all the sectors F (�)(w) with � ≥ 0 are then allowed as part of a
general solution to (4.1), the transseries

F (w, σ) =
+∞∑
n=0

σ n F (n) (w) . (4.7)

The transseries (4.7) has to obey the non-linear ODE (4.1): this require-
ment will lead to linearised equations obeyed by the asymptotic sectors
��(w) for � ≥ 1; only �0(w) obeys the original non-linear differential
equation. Indeed equating equal powers of σ n and of e−�Aw, we find that
�0 obeys (4.1) and ��, � ≥ 1 obey

Cτ�

�∑
m=0

(
�

′
m − m A�m

)
��−m + 4Cτ�

�∑
m=0

�m��−m

+
(
w − 16Cτ�

3

)
�� = 0.

(4.8)

From these equations one obtains the recursion equations relating the co-
efficients a(�)k to the lower coefficients a(m)k for m < �. We do not find
a closed form expression for the coefficients anymore, but can determine
these up to any order or accuracy. Doing so we can verify numerically
(in the same way as was done for the a(0)m ) that all grow factorially: every
sector �� is asymptotic. To understand the asymptotic behaviour of the
sectors �� and to resum these, we need to analyse their respective Borel
transforms. There is no closed form expression for the coefficients, thus
we cannot determine the Borel transforms in an exact form. Still, we can
determine a set of coefficients, say N , and approximate the Borel trans-
form via a Padé approximant of order N (which we will generally choose
to be diagonal), defined in (3.50). As explained for the Airy function
example, given the Padé approximant, we can study the singular struc-
ture of the Borel transform by determining the zeros of the polynomial in
the denominator and observing any condensation of poles. For the Borel
transform of sector �0 this is shown in Figure 4.2. We can see in the
real line the condensation of poles into a cut starting at the initial value
A ≡ 3

2Cτ�
. Any other cuts, starting in the positive real axis at more dis-

tant points from the origin, will be overshadowed by the leading one in
the numerical checks.
The same analysis can be done for every asymptotic sector �� with

� ≥ 1. Doing so will show that both �0 and �1 will have singularities
only in the positive real axis, with cuts starting at s = A ≡ 3

2Cτ�
(the plot

of the poles of Borel-Padé for the asymptotic sector �1 will be exactly
the same as the one in Figure 4.2). Nevertheless performing an analysis
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Figure 4.2. In blue, the poles (in the Borel s-plane) of the Borel-Padé of order
N = 250 for the sector �0 (w), BP250 [�0] (s), are shown. In red the value of
the non-perturbative “instanton” action A = 3

2Cτ�
is shown.

of the poles of the Borel-Padé for any of the sectors �2 and higher will
show a condensation of poles not only in the positive real axis starting at
s = A, but also in the negative real axis starting at s = −A! This means
that the Borel transform of these sectors will have at least two cuts, start-
ing at these points (see [62] for further plots and behaviours). The use
of “at least” is related to the fact that numerically any other cuts starting
at further distances from the origin are on top of each other, thus being
indistinguishable. This behaviour is naturally expected from the shape
of the transseries (4.7). The singularities associated with the Borel-Padé
for each asymptotic sector as expected from the shape of the transseries
(4.7) can be found in Figure 4.3. In this figure, the sector being anal-
ysed is shown in blue, the possible cuts expected to appear (numerically)
in the positive real axis of the Borel plane are shown in red, while the
ones appearing in the negative real axis of the Borel plane are shown in
green. Note that there is no cut associated with the perturbative sector
�0, as this would correspond to having an action A = 0 as a solution in
the transseries (to see examples where this is the case, see [19]). From
Figure 4.3 we conclude:

• The singularities in the BPN [�0] (s) will appear at positions s =
�A, � ≥ 1 (positive real axis), with contributions coming from sec-
tors��, respectively. This means that we expect the asymptotic sector
�0(w) to have a discontinuity in the direction argw = 0 (positive real
axis);

• The BPN [�1] (s)will also have singularities starting at s = �A, � ≥ 1
(positive real axis), but now they are related to sectors��+1. There are
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no singular cuts in the negative real axis, as there is no cut associated
with �0 (there is no action A = 0). �1 (w) will only have a disconti-
nuity in the positive real axis, argw = 0;

• Starting at the BPN [�2] (s), there will be singularities in both the pos-
itive and negative directions of the real axis: in the positive real axis
we can expect singular contributions at s = �A, � ≥ 1, coming from
sectors ��+2, respectively; in the negative real axis we have one sin-
gular cut starting at s = −A, related to the sector�1. The asymptotic
sector �2(w) will have two discontinuities, in both the positive real
direction, argw = 0, and the negative one, argw = π ;

• Finally the last sector shown in Figure 4.3 is the expected cuts for
BPN [�3] (s). The singular behaviour for this case is: singularities in
the positive real axis at s = �A, � ≥ 1 (respectively associated with
sectors ��+3); singularities in the negative real axis at s = −A (as-
sociated with �2) and s = −2A (associated with �1). Sector �3(w)

will again have two discontinuities at argw = 0, π .

2AA 3A 4A nA…

Φ1 Φ2 Φ3 Φ4 ΦnΦ0

A 2A 3A

…Φ0 Φ2 Φ3 Φ4Φ1

-A

A 2A

…Φ0 Φ1 Φ3 Φ4Φ2

-A-2A A

…Φ0 Φ1 Φ4

-2A-3A -A

Φ3Φ2

2A

Φ5

Figure 4.3. Expected cuts apearing in the numerical analysis of the Borel-Padé
of sectors ��, � = 0, 1, 2, 3. The sector being analysed is shown in blue, the
expected cuts appearing in the positive real axis (and their positions) are shown
in red, and the cuts appearing in the negative real axis are shown in green. Note
that the cuts are shown going to infinity in a direction other than the real line, in
order to highlight where they start. Numerically, however, these cuts will all be
on top of each other, on the real axis.

One can write the expected behaviour near the singularities of the Borel
transforms for any sector �n(w):20

B [�n] (s)|s=kA 	 h({Sr })B [�n+k] (s − kA)
log (s − kA)

2π i
,

k > −n, k �= 0.
(4.9)

20 In [56] a different behaviour for the Borel transforms was found, related to the removal of a
different factorial growth. See footnote 3 on page 8 for more information.
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This is in fact the predicted behaviour coming from the form of the one-
parameter transseries (4.7): near any singularity s = kA of B [�n] (s),
the sector �n+k resurges through its Borel transform, up to a proportion-
ality factor h ({Sr }). This proportionality factor is a function of the Stokes
coefficients Sr , with r ∈{1, 2, · · · , k} if k > 0, and r ∈{−1,−2, · · · ,−k}
if k < 0. Abstracting oneself from the functional form of the Borel trans-
form and keeping only the algebraic form of the relations (4.9), we can
define the alien derivative as introduced in Section 2:

�kA�n = (n + k)Sk �n+k, k ≤ 1, k �= 0, (4.10)

and �ω�n = 0 for all other non-singular points ω ∈ C. These are once
again the so-called bridge equations, linking alien calculus with ordinary
calculus.21

This result can be derived systematically from the original bridge equa-
tions (2.49) and (2.50) introduced in Section 2 for the case of the one-
parameter transseries, and can also be found in Section 2 of [23]. Before
moving forward in our example let us briefly summarise how this deriva-
tion works. Start from the general bridge equations for a one-parameter
transseries (2.49), with expansion (2.50). Plugging the one-parameter
transseries (4.7) (with sectors defined in (4.5)) into (2.49), we obtain from
the left-hand side (recall that �̇kA = e−kAw�kA)

�̇kAF (w, σ) =
+∞∑
n=0

σ ne−(n+k)Aw�kA�n, (4.11)

while from the right-hand side we find

SkA (σ )
∂F (w, σ)

∂σ
=

+∞∑
r=0

S(r)k

+∞∑
m=0

σ r+m−1e−mAw�m . (4.12)

Comparing equal powers of the exponential e−Aw and of σ on both sides
one obtains restrictions to the constants S(r)k and to the alien derivative
acting on �n . It is not difficult to see that k ≤ 1 (and k �= 0 as by
construction there is no singularity at the origin of the Borel plane), and
that r = 1−k. Thus for each k ≤ 1 the allowed expansion (2.50) reduces
to

SkA (σ ) = S(1−k)k σ 1−k ≡ Sk σ
1−k, k ≤ 1. (4.13)

From this, we easily see that the only non-zero alien derivatives acting
of each sector �n will be the ones read from the behaviour of the Borel
transforms (4.10).

21 Note that �n is only defined for n ≥ 0; if n + k < 0 for any k, we have �kA�n = 0.
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4.1 Alien chain and discontinuities

We can summarise the algebraic structure of (4.10) pictorially as the one-
parameter alien chain of [19], reproduced in Figure 4.4. The k ≤ 1
restriction of (4.10) means that only �A is non-zero in the positive real
axis (θ = 0 direction). Equivalently, the singularities at s = (k + 1)A,
k ≥ 1, for each B [�n] (s) are directly related to the singularity at s = A
of all B [�n+�] (s) with 1 ≥ � ≤ k. We can see this directly in Figure
4.4: to move forward in the chain (from left to right) we can only act with
�+A, so that to connect two sectors �m and �� with � > m we need to
act with the alien derivative � − m times. In the negative real axis we
have singularities at s = −kA, k = 1, · · · , n (a finite number of them,
always stopping at �0), so to get from �� to �m we need to act with N
alien derivatives �−ni A in sequence, �−n1A�−n2A · · ·�−nN A, such that∑N

i=1 ni = � − m. Therefore, moving in the negative real direction one
can have many different paths, which are shown in Figure 4.4: any left-
moving paths are allowed with any combination of “instanton” sectors
�k with m < k < � as middle nodes. As an example, we have 4 possible
paths to connect �4 to �1:

• act with (�−A)3 : black links �4 → �3 → �2 → �1;
• act with�−A followed by�−2A, i.e. �−2A�−A: black link�4 → �3,
then blue link �3 → �1;

• act with�−2A followed by�−A , i.e. �−A�−2A: blue link�4 → �2,
then black link �2 → �1;

• act with �−3A: red link �4 → �1.

Φ0 Φ1 Φ2 Φ3 Φk Φn

Δ+A Δ+A Δ+A Δ+A · · ·Δ+A Δ+A · · ·Δ+A

· · · · · ·

Δ−A Δ−A · · ·Δ−A Δ−A · · ·Δ−AΔ−AΔ−A

Δ−2A Δ−2A

Δ−3A

Δ−(n−3)A

Δ−(n−k)AΔ−(k−3)A

Δ−(k−2)A

Δ−(k−1)A

Δ−kA Δ−(n−2)A

Δ−(n−1)A

Δ−nA

Figure 4.4. The alien chain (reproduction from [19]): pictorial representation of
the allowed actions of the alien derivative on the instanton sectors�k . Different
colours encode different actions.
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The chain of motions in Figure 4.4 only shows the allowed steps but
not the proportionality constants, or weights, that come associated with
each step (each action of an alien derivative). Using (4.10) the chain can
be re-drawn as in Figure 4.5 (also reproduced from [19]). For the example
given above, �4 → �1, the weights associated to each possible path are

• (�−A)3�4 = 3S−1 × 2S−1 × S−1�1 = 6 (S−1)3�1;
• �−2A�−A�4 = 3S−1 × S−2�1;
• �−A�−2A�4 = 2S−2 × S−1�1;
• �−3A�4 = S−3�1.

Note that action of two different alien derivatives does not commute (the
middle steps will be different). In this example we can easily see that
�−2A�−A �= �−A�−2A. This will be true in general: �nA and �mA

will not commute. From (4.10) one can determine their commutation
relations to be:

[�−nA,�−mA]�� = S−mS−n(n − m)(�− n − m)��−n−m . (4.14)

If we define operators formally as Ln = 1
S−n�−nA, one can easily see

that thes obey the commutation relations of a Virasoro algebra for n ≥ 1
(see [19] for a more detailed discussion on the algebra associated to the
alien derivative operators).

Φ0 Φ1 Φ2 Φ3 Φ4 Φ5

S1 2S1 3S1 4S1 5S1

4S−13S−12S−1S−1

· · ·

S−2 2S−2 3S−2

S−3 2S−3

S−4

Figure 4.5. The alien chain revisited (reproduction from [19]): pictorial rep-
resentation of the action of alien derivatives on the first 5 asymptotic sectors,
�k, k = 0, · · · , 5 in terms of weights of steps (a step is a single arrow), as
given by the bridge equations (4.10). The action of �+A,�−A is shown by
black links, with arrows pointing to the right or left, respectively. The action
of �−2A,�−3A,�−4A,�−5A are shown by blue, red, green and orange links,
respectively. The dashed links refer to when the action of the alien derivative is
zero. The weight of each step is written next to the arrow.

In order to describe the algebraic structure behind the bridge equations
(4.10), we closely follow [19] and introduce some elements needed to
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describe the motions in the alien chain:

• Step S: any single link connecting two nodes

S = (4.15)

• Weight of step w (S): product of Stokes coefficients and numerical
factors associated with the step, given by (4.10). These weights are
shown for each step in Figure 4.5. For a step connecting nodes �m

and �k :
w (S (m → k)) = k Sk−m . (4.16)

• Path P: trajectory connecting two nodes �m to �k , composed by any
number of steps

P = S1∪S2∪· · ·∪S�,= (4.17)

• Length of path � (P): number of steps in path P (each step has length
one)

� (P) = # {Si ∈ P} . (4.18)

• Weight of path w (P): product of the weights of all steps Si ∈ P

w (P) =
�(P)∏
i=1

w (Si) . (4.19)

• Combinatoric factor of path CF (P): division by permutations of
{Si ∈ P}

CF (P) = 1

(� (P))! . (4.20)

To fully describe Stokes phenomena, once the action of the alien deriva-
tives is understood one needs to determine the Stokes automorphisms
(or equivalently the discontinuities) along the singular Stokes directions.
For the problem at hand, the Stokes lines are at θ = 0 (for all sectors
�n, n ≥ 0) and at θ = π (for sectors �n, n ≥ 2). Recalling the defi-
nition of the Stokes automorphism (2.29), and the non-zero alien deriva-
tives acting in each singular direction (4.10), we can write

S0�n(w) = exp
{
e−Aw�A

}
�n;

Sπ�n(w) = exp

{
n∑

k=1
ekAw�−kA

}
�n. (4.21)
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We shall now show two particular examples of the above expressions.
Let us write the first terms of S0�2(w), obtained from expanding the
exponential:

S0�2(w)=�2 +
{
e−Aw�A+ 1

2!e
−2Aw(�A)

2+ 1

3!(�A)
3+· · ·

}
�2

(4.22)
= �2 + 3S1e−Aw�3 + 12

2! (S1)
2 e−2Aw�4

+ 60

3! (S1)
3 e−3Aw�5 + · · · .

The Stokes automorphism S0 connects the sector �2 to all other higher
sectors �m, m > 2, with some weight. For example for the connection
�2 → �4 the weight appearing above is the product of the non-analytic
factor e−2Aw and a statistical part given by (looking at Figure 4.5): one
path P of length � (P) = 2 (2 steps of black links), weight w (P) =
12 (S1)

2 and a combinatoric factor CF (P) = 1
2! .

In fact, it is very easy to generalise these results and obtain a closed-
form expression for the Stokes automorphism in the direction θ = 0. Due
to having only �A acting in this direction, by expanding the exponential
and using (4.10) we find

S0�n(w) =
+∞∑
k=0

1

k!e
−kAw (�A)

k �n (w)

=
+∞∑
k=0

e−kAw (S1)k
(n + k)!
n!k! �n+k (w) .

(4.23)

We now turn to the calculation ofSπ�4(w). Expanding the exponential:

Sπ�4(w)

= �4 +
⎧⎨⎩ 4∑

k=1
ekAw�−kA + 1

2!

(
4∑

k=1
ekAw�−kA

)2

+ 1
3!

(
4∑

k=1
ekAw�−kA

)3
+ · · ·

⎫⎬⎭�4 (4.24)

= �4 + 3S−1eAw�3 +
(
2S−2 + 6

2! (S−1)
2

)
e2Aw�2+

+
(
S−3 + 5

2! S−1S−2 +
1

3! (S−1)
3

)
e3Aw�1.
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The Stokes automorphism Sπ connects the sector �4 to all lower sec-
tors �m, m < 4, which are of finite number, with some weight. 22

Looking at the particular connection �4 → �2, the weight associated
is the product of the non-analytic factor e2Aw and a statistical factor com-
ing from two paths (see Figure 4.5 once again): path P1 (one step, blue
link) with length �(P1) = 1, weight w(P1) = 2S−2 and combinatoric
factor CF (P1) = 1; path P2 (two steps, black links) with �(P2) = 2,
w(P2) = 6 (S−1)2 and CF (P2) = 1

2! . A closed form expression for the
Stokes automorphism in the direction θ = π has been derived derived
in [23], but its expression is intricate due to several possible Stokes coef-
ficients S−k appearing, and we will not reproduce it here (see Section 2
of [23] for the expression and derivation).
This pattern of determining the contributions to the Stokes automor-

phisms was summarised in [19] as the following statement for the dis-
continuities (2.27)�

�

�

�

Disc0�n in positive real line: sum over all paths linking nodes
to the right �m>n .

Discπ�n in negative real line: sum over paths linking nodes to
the left �m<n .

Each term in these sums (�n → �m) is decomposed into two
factors:

• Non-analytic factor, dictated solely by beginning and end
nodes:

−e−(m−n)A/x �m .

• Statistical factor, sum over all allowed paths linking the two
nodes P(n → m), as in Figure 4.5:

SF(n→m) ≡
∑

P(n→m)

w (P)
� (P) .

These discontinuities, or Stokes automorphisms, encode all jumps the
transseries parameter σ goes through at Stokes lines, and define all the
resurgent properties of the transseries. Nevertheless, we have not yet ad-
dressed how to check that the transseries has indeed resurgent properties,
or how to determine the Stokes coefficients appearing in the bridge equa-

22 Note that the weight associated to reaching sector �0 is in fact zero.
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tions (4.10) (and consequently in the weights of paths as defined above).
This can be achieved via the large-order relations.

4.2 Large-order relations

To perform tests of the asymptotic behaviour of the sectors�n and check
whether the predictions given by resurgence are correct, we need to deter-
mine the large-order relations using Cauchy’s theorem (in much the same
way as was shown in the example of the previous Section). We have seen
that the sectors �n will generally have two Stokes lines, at θ = 0, π (the
only exceptions are �0,�1, which have only one Stokes line at θ = 0).
Taking F(x) = �n (x) (and assuming x = 1/w) for some asymptotic
sector, Cauchy’s theorem (3.31) can be written as

F (x) = − 1

2π i

∫ +∞

0
dw
Disc0F(w)

w − x

− 1

2π i

∫ −∞

0
dw
DiscπF (w)

w − x
.

(4.25)

For the specific case of the perturbative series �0 in (4.5), and following
the same procedure as was done in Section 3.3, we now find for large
order k � 1 (general large-order relations for the coefficients of higher
sectors were derived in [23])

a(0)k 	
+∞∑
m=1

(S1)m�(k+mβ)
2π i(mA)k+mβ

+∞∑
h=0

a(m)h (mA)h
�(k+mβ−h)
�(k+mβ) , k�1 (4.26)

	 S1
�(k+β)
2π iAk+β

(
a(1)0 +a(1)1

A

k
+ A2a(1)2 −(β−1)Aa(1)1

k2
+···

)
+ (4.27)

+(S1)2 �(k+2β)
2π i(2A)k+2β

(
a(2)0 +a(2)1

2A

k
+ 4A

2a(1)2 −2A(β−1)a(1)1
k2

+···
)

+O(3−k). (4.28)

To obtain the second and third lines, (4.27) and (4.28), we simply ex-
panded the first two terms of the sum in m for large order k. The leading
behaviour at large order is given in line (4.27), while (4.28) is exponen-
tially suppressed as 2−k (all the other terms of the sum in m are more
suppressed). Here, each line is an asymptotic expansion in k � 1. By
plotting the coefficients a(0)k

2π Ak+β
�(k+β) and related Richardson transforms, we

can see that that for large order k � 1 these should converge to the Stokes
coefficient−iS1 a(1)0 = −iS1. This is exactly what is shown in Figure 4.1,
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and provides a direct numerical calculation of the Stokes coefficient S1,
which value is estimated to be (with error 10−13)

S1 = 0.00547029853i. (4.29)

We have thus used the leading behaviour (4.27) predicted by resurgence
to determine the value of the Stokes coefficient S1. But we still need to
make further consistency checks of the predictions made by resurgence
on the large-order behaviour of sectors �n . The easiest check to perform
is of the subleading 1/k behaviour in (4.27): start by defining the ratio of
coefficients as done in [63]

Rk ≡ a(0)k+1
a(0)k

A

k
, (4.30)

with leading large-order behaviour given by

Rk 	
+∞∑
�=0

c�
k�
, c0 = 1, c1 = β, c2 = −Aa

(1)
1

a(1)0
, · · · . (4.31)

The coefficients c� predicted by resurgence can be directly read from the
behaviour in (4.27), once the ratio of coefficients a(0)k is taken. We can
check the convergence of Rk to the predicted coefficients c� (as was done
in [63]) by plotting the following

R̃k (�) ≡
(
Rk −

�−1∑
r=0

cr
kr

)
k� 	 c� +O (k−1) . (4.32)

In Figure 4.6 we plot R̃k (2) and the related Richardson transforms, in
order to see the convergence to the predicted value c2 = −2.44197298
(determined directly from the recursion equations coming from (4.1)).
We see that there is a rapid convergence to the predicted value, with error
10−10. One can also check higher predicted coefficients c�, thus verifying
the large-order behaviour predicted by resurgence for the perturbative
sector �0.
To further verify the predicted large-order behaviour predicted by

resurgence, we can also check the subleading (exponentially suppressed)
terms in (4.28). To do so, we need to perform a resummation of the lead-
ing behaviour in (4.27) and subtract it from the original a(0)k . In doing
so we can reach the exponentially suppressed terms in 2−k and check
the predictions in (4.28). As the series in k−1 appearing in line (4.27) is
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Figure 4.6. Convergence of the large-order behaviour of the ratio (4.30) to
the coefficient c2 (whose predicted value is shown in light blue). The original
values for the coefficients R̃k are shown in blue, and in green and red are the
corresponding 2-RT and 5-RT.

asymptotic, the resummation procedure can be performed via the Borel-
Padé method reviewed in the previous Section. This Borel-Padé resum-
mation in the order parameter k has some subtleties23 which go beyond
the scope of this review, but are treated in detail in [19, 23].
Once convinced from the large-order checks that the transseries has

resurgent properties, we can now address the study of exact results.

4.3 Exact results: ambiguity cancellation

The transseries (4.7) is the full solution to our differential equation (4.1).
Even though it is written as a formal sum of asymptotic expansions
around w � 1, it should include all analytic properties at every point
of the complex w-plane. In particular it should provide a way of deter-
mining the solution at argw = 0, and allow us to perform strong-weak
coupling interpolation (that is, from the strong coupling regime w � 1
that we started from, we ought to be able to reach the small coupling
w � 1 regime via numerical resummation):

1. The analytic properties of the transseries reflect its behaviour over all
the complex plane. Nevertheless, in many cases we are interested in
how these properties collapse for the line w ∈ R+, i.e. for positive
real coupling. In the case of MIS theory, this line (argw = 0) is a
Stokes line, so using methods such as Écalle-Borel-Padé resummation

23 In general one needs to determine lateral resummations in order to avoid poles in the integration
along the positive real axis (recall that the order parameter is real and positive), and this introduces
typically an exponentially suppressed error which is then cancelled by the next order in the large-
order relations.
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lead to non-perturbative ambiguities: due to the singularities along
this direction, we can only define the lateral resummations S0±F(w).
In fact, this is not the whole story: knowing the Stokes automorphism
across this Stokes line allows us to determine an unambiguous result
even when argw = 0;

2. Once the problem of cancelling any non-perturbative ambiguities
along the positive real line is solved, the method of Écalle-Borel-Padé
resummation will provide a way of determining exact results beyond
the regime w � 1. To do so, we will need to include increasingly
higher non-perturbative “instanton” sectors �n , leading to better re-
sults and allowing us to reach “weaker” coupling values. Moreover,
one can go beyond the linew ∈ R+, into any direction on the complex
w-plane by analytic continuation.

In summary, from the Stokes automorphism across the Stokes line w ∈
R+, we can write an unambiguous solution along this particular line. One
can then reach any other (non-singular) directions by simple analytic con-
tinuation of the resummation procedure. In this Subsection, we will focus
on the procedure of cancellation of non-perturbative ambiguities.
From the resummation procedure, we find a non-perturbative ambigu-

ity along the Stokes line argw = 0, since the lateral resummations of
each sector �� will return different values

(S0+ − S0−)�� (w) �= 0. (4.33)

This difference is exponentially small, and moreover, for an ODE with
real coefficients such as (4.1), where all the coefficients a(�)k are real, this
difference will be pure imaginary [42]. However, each of these sectors
is only part of the full transseries solution (4.7). For a general complex
parameter σ , having (4.33) for every sector of the transseries will result
in

(S0+ − S0−)F (w, σ) �= 0. (4.34)

What we will see next is that there is a proper choice of the transseries
parameter σ = σ0 which will allow us to cancel this difference, at the
level of the transseries. This will be achieved by a particular resummation
prescription, called median resummation (see e.g. [8, 42]). Cancelling
this ambiguity corresponds to cancelling the pure imaginary difference
between the lateral resummations, and reaching a final result which is
real.
Re-write the lateral resummations as S0± = 1

2(S0+ + S0−) ± 1
2(S0+ −

S0−). As was mentioned, this separation corresponds to taking the real
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and imaginary contributions from the lateral resummations. The imagi-
nary ambiguity of a sector F (�) = e−�Aw�� (w) of the transseries (4.7) is
defined as

ImF (�) ≡ 1

2i
(S0+ − S0−) F (�), (4.35)

while the real contribution of this sector to the lateral resummations is

ReF (�) ≡ 1

2
(S0+ + S0−) F (�). (4.36)

It is straightforward to write the lateral resummations as

S0±F (�) = ReF (�) ± i ImF (�). (4.37)

Each of these sectors will contribute with its own imaginary ambiguity
(and real part) to the transseries solution. All these contributions, together
with a proper choice of the transseries parameter σ , will allow us to have
an ambiguity-free, real transseries. Looking at the last expression we
could be tempted to start from the perturbative series F (0)(w) and keep
only the real contribution as the final unambiguous result (thus effectively
eliminating the imaginary part). However, this will not be the full real,
unambiguous solution to our problem: we know that it is the transseries
(4.7) which describes the full solution to the problem (4.1), and we would
find discrepancies if we were to compare the result coming from just the
perturbative series to some numerical calculation of the solution to (4.1).
This is where resurgence plays a major role: we know that the lateral

resummations are linked via the Stokes automorphism (2.27). Applied to
each sector F (�) we write

2i ImF (�) = −S0− ◦ (1− S0

)
F (�), (4.38)

where S0F
(�) is known from the previous Subsection, determined with

the help of alien calculus. For the direction argw = 0 one has a simple
closed form expression for the Stokes automorphism (4.23). From this
we can write

2i ImF (�) =
+∞∑
k=1

(S1)
k

(
�+ k
�

)
S0−F (�+k), (4.39)

where

(
k
�

)
≡ (k)!

�! (k−�)! . This expression relates the imaginary ambigu-

ity of any sector F (�) to the lateral resummation S0−F (m) of all higher
sectors m > �. On the other hand this lateral resummation can be re-
written in terms of its real part contribution and its imaginary ambiguity
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by using (4.37). We can iteratively re-write each imaginary contribution
in terms of the real and imaginary contributions of higher sectors, and fi-
nally obtain an expression for the imaginary ambiguity of sector F (�) only
in terms of the real contributions. This was derived in [42] (Appendix B)
and we transcribe the result:

2i ImF (�) =
+∞∑
k=1

(
�+ k
�

)
�(k) (S1)

k ReF (�+k),

� (k) =
k∑

r=1

r∑
s=1

(
r
s

)
(−1)s+1 sk

2r−1
.

(4.40)

Note that this relation between the imaginary ambiguity of any sector and
the real contributions of higher sectors is intimately related to the fact that
we have a one-parameter resurgent transseries. If the transseries solution
was not resurgent, we would not be able to derive these relations; if the
transseries had more than one transseries parameter, one would have to
re-derive similar relations (see [42] for a more in depth discussion).
We are now ready to see how to cancel the imaginary ambiguity for

the transseries solution. Our goal is to iteratively construct a real solution
to our problem. From a lateral resummation of the transseries solution
(4.7), we define (in the same way as done for each of its sectors)

S0+F (w, σ) = ReF (w, σ)+ i ImF (w, σ) , (4.41)

where

ReF (w, σ) =
+∞∑
�=0

Re σ� ReF (�) (w)− Im σ�ImF (�)(w); (4.42)

ImF (w, σ) =
+∞∑
�=0

Im σ� ReF (�) (w)+ Re σ�ImF (�)(w). (4.43)

The transseries solution will be real and unambiguous if one can find a
value of σ = σ0 such that ImF (w, σ0) = 0. To solve this condition, we
analyse the first few terms of ImF (w, σ) (σ = σR + iσI is the decom-
position of the transseries parameter into real and imaginary parts):

ImF (w, σ) = ImF (0) + σIReF
(1) + σRImF (1) + 2σRσIReF (2)

+ (σ 2R − σ 2I
)
ImF (2) + (3σ 2RσI − σ 3I

)
ReF (3) (4.44)

+ (σ 3R − 3σRσ 2I ) ImF (3) + · · · .
We know from (4.40) that the imaginary part of the each resummed sector
can be re-written via resurgence in terms of the real parts of higher (more
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exponentially suppressed sectors. One can do exactly this iteratively for
each term in the above expression. We start by re-writing the imaginary
ambiguity for the perturbative sector, ImF (0) using the formula (4.40):

ImF (0) = − i
2
S1ReF

(1)+ i

4
(S1)

3 ReF (3)− i

2
(S1)

5ReF (5)+· · · . (4.45)

As a result, (4.44) becomes

ImF (w, σ) =
(
σI − i

2
S1

)
ReF (1) + σRImF (1)

+ 2σRσIReF (2) + (σ 2R − σ 2I
)
ImF (2)

(4.46)

+
(
3σ 2RσI − σ 3I +

i

4
(S1)

3

)
ReF (3)

+ (σ 3R − 3σRσ 2I ) ImF (3) + · · · .
Noticing that the contribution from ImF (1) will be proportional toReF (�),
with � > 1 (and all other contributions will be of even higher order),
the cancellation at the level of ReF (1) requires (recall that S1 is a pure
imaginary number)

iσI = − S1
2
. (4.47)

Let us perform a consistency check of this result by checking the cancel-
lations at the next order. To do so, re-write ImF (1) using (4.40):

ImF (1) = −iS1ReF (2) + i (S1)3 ReF (4) + · · · . (4.48)

Plugging this into ImF (w, σ) results in

ImF (w, σ) =
(
σI − i

2
S1

)
ReF (1) + σR (2σI − iS1)ReF (2)

+ (σ 2R − σ 2I
)
ImF (2)

(4.49)

+
(
3σ 2RσI − σ 3I +

i

4
(S1)

3

)
ReF (3)

+ (σ 3R − 3σRσ 2I ) ImF (3) + · · · .
Once again, ImF (2) will have contributions proportional to higher terms
ReF (�), � > 2. Thus, the coefficients multiplying ReF (1) and ReF (2)

need to (separately) vanish. We can easily see that these do vanish pro-
vided (4.47) is satisfied. To check the next order one would have to
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re-write ImF (2) using (4.40), and check what happened at the order of
ReF (3). One finds that indeed (4.47) cancels the imaginary ambiguity of
the transseries at every order. It should be noted that only the imaginary
part of transseries parameter is fixed by this argument, with the real part
still a free parameter to be fixed via some initial conditions for the ODE
(4.1).
The final, unambiguous solution along the positive real axis is given

by

FR(w, σR)=S0+F(w, σR + iσI )=S0+F
(
w, σR − S1

2

)
, σR∈R. (4.50)

If one started from the perturbative series F (0)(w) alone, kept its real part
and used resurgence (i.e. (4.40)) to cancel its imaginary contribution, we
would reach the above result for σR = 0:

FR (w, 0) = S0+F
(
w,− S1

2

)
. (4.51)

The unambiguous real transseries given in (4.50) is an exact result, as it
requires the full transseries (with the asymptotic sectors weighted by the
Stokes coefficient) to cancel the ambiguitites coming from each sector.
Given a choice of σR , one can use the transseries solution (4.50) defined
in the positive real axis and analytically continue it to the whole complex
w-plane, including to small values of w. This was performed in [56], and
compared to a numerical solution of the differential equation (4.1): for
small values ofw the authors showed that the real transseries solution ob-
tained above correctly converged to the expected attractor solution (after
the decay of nonhydrodynamic modes), once a proper choice of σR was
made.
To conclude this discussion, note that we can see this ambiguity can-

cellation numerically from the lateral resummations of the transseries
sectors. Looking back at (4.44), we have

ImF
(
w,− S1

2

)
= ImF (0) + iS1

2
ReF (1) + · · · . (4.52)

From (4.40) we expect that ImF (0) will be of the order ofReF (1) ∼ e−Aw,
and that the two terms given above should cancel up to order of F (2) ∼
e−2Aw. In Figure 4.7 this cancellation is shown for different values of
w ∈ R+. The exponential order of the y0 = − log ImF (0)(w) is shown in
blue, while the exponential order of y1 = − log (ImF (0) + iS1

2 ReF (1)
)
is

shown in purple. We see that the imaginary contributions become notably
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smaller, and that indeed the choice of the transseries parameter cancels
these contributions up to the next order ∼ e−2Aw (for example see that
whenw = 3, y0 ∼ 25 and y1 ∼ 47). To determine the real and imaginary
parts of sectors F (0) and F (1) we performed numerical lateral resumma-
tions S0+ of these sectors for different values of w ∈ R+, and used the
relation (4.37).24

Figure 4.7. Exponential order of the imaginary part of leading terms in the
unambiguous transseries solution − log ImF (w, σ0). In blue the leading imag-
inary part coming from the resummation of the perturbative series is shown,
while in purple the cancellation of this imaginary contribution with the one com-
ing from the “one-instanton” sector is shown, resulting in a greatly suppressed
imaginary part.

5 Further directions: multi-parameter transseries, resonance
and beyond

In this review we focused on some simple examples of resurgent transse-
ries solutions for ordinary differential equations: a linear ODE (Airy
function) and a first-order non-linear ODE (MIS model). After intro-
ducing the basic concepts of resurgence and alien calculus, we devel-
oped the two examples to show how to use of resurgence to make pre-
dictions for the perturbative and non-perturbative asymptotic series of
their transseries solutions. These predictions can be thoroughly checked

24 Note the rapid decrease of the imaginary part of the transseries in Figure 4.7 when we take both
terms in (4.52), for small values of w, while for w > 1 the decrease stabilises. One can expect this
decrease not to stabilise but to be increase once the asymptotic regime w � 1 is reached, as was
seen in [23,60]. However, the limiting factor in the present case is the accuracy in the calculation of
the Stokes coefficient (4.29).
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numerically to high accuracy, using the Richardson extrapolation accel-
eration method, and resummation methods such as Écalle-Borel-Padé.
The tools (both analytic and numerical) presented in this paper can be

widely used to study any observable thought to have resurgent properties.
This analysis proceeds as follows:

• compute the observable via perturbation theory, and study the asymp-
totic behaviour of the perturbative expansion;

• identify the expected non-perturbative objects relevant to that observ-
able (whether they are instantons, renormalons or other non-pertur-
bative semi-classical contributions);

• incorporate both perturbative and non-perturbative results into a
transseries ansatz;

• from the theory of resurgence, make predictions for large-order be-
haviour of the transseries sectors, and numerically check these pre-
dictions against perturbative/non-perturbative data; alternatively use
the predictions to obtain non-perturbative data from the perturbative
series;25

• use Écalle-Borel-Padé resummation to resum the transseries, study
Stokes phenomena and obtain exact results such as strong/weak cou-
pling interpolation (see e.g. [44,55,60,71]) and cancellation of ambi-
guities (recent applications are e.g. [56, 60, 61]).

The general case of non-linear ODEs provides a natural setting to use
these tools (see e.g. [5, 6] for more general results). Nevertheless, their
use has been recently extended to observables governed by finite-dif-
ference equations (e.g. string equation for free energies of matrix mod-
els [23,55]), or implicitly defined via some set of partial differential equa-
tions (e.g. holomorphic anomaly equations in the context of topological
strings [82, 84, 97], exact quantisation conditions and uniform WKB in
the context of quantum mechanics [43,98]) or integral equations (e.g. the
so-called BES equation in the context of gauge-gravity duality [60, 61]).
Recently, we have started to understand the resurgent properties of

a wide range of problems in mathematical physics. These include ob-
servables in quantum field theories [66–68, 99, 100] and supersymmetric
gauge theories [44, 54, 101–103]. These problems are often challenging,
due to the lack of equations dictating the behaviour of the observables,
or difficulty in performing perturbation theory around non-perturbative
saddles. For this reason, the resurgence predictions for non-perturbative

25 This is particularly important in situations where the equations governing the behaviour of the
observable are unknown, and we can only have access to the perturbative results.
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phenomena can greatly help complete any information missing in the
transseries solution.

The relation between resurgence and the saddle point analysis of the
Airy function, as presented in Section 3, is a toy example of that be-
tween the so-called Picard-Lefschetz theory and resurgence for finite di-
mensional exponential type integrals (see e.g. [104, 105]). It is of great
interest to understand how general this relation is, in particular for infi-
nite dimensional path integrals. This open problem has been the focus of
recent research (see [16] and references therein).

The non-linear ODE studied in this paper required a one-parameter
transseries ansatz: we had only one type of non-perturbative contribu-
tions, i.e. only one “instanton” action A. However, in general there can be
different non-perturbative objects, with different actions Ai ∈ C. These
require a multi-parameter transseries ansatz (generally one parameter for
each independent Ai ). Moreover, if some of these actions are collinear
such that nAi + mA j = 0, for n,m ∈ N, a phenomenon called reso-
nance can occur. The transseries ansatz often needs to be extended to
lift the resonant behaviour, with the inclusion of other non-perturbative
trans-monomials such as log z. Examples of multi-parameter transseries
and resonance have been studied in [19,23], but a more general approach
of resurgence to multi-parameter transseries is of great interest for a wide
range of applications (including most of the open problems previously
mentioned).

On a more conceptual note, further directions of research on resur-
gence theory, relevant to the study of physical observables, include: the
computation of Stokes coefficients via general methods such as inte-
grability properties [25]; the study of higher order Stokes phenomenon
[106]; the analysis of Stokes phenomena for observables depending on
two or more parameters; the study of the algebraic structure of alien
derivative operators for multi-parameter transseries [19].
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[13] M. MARIÑO, Lectures on non-perturbative effects in large N
Gauge theories, matrix models and mtrings, Fortsch. Phys. 62
(2014), 455–540. [arXiv:1206.6272]

[14] D. SAUZIN, Introduction to 1-summability and Resurgence, In:
“Divergent Series, Summability and Resurgence I, Monodromy and
Resurgence, Part II”, Lecture Notes in Mathematics, Vol. 2153,
Springer, Heidelberg, 2016, 121–293. [arXiv:1405.0356]

[15] D. DORIGONI, An introduction to resurgence, trans-series and
alien calculus. [arXiv:1411.3585]
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The first Painlevé equation and a second-order Riccati equation,
Proceedings of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences A461 (2005), no. 2062, 3005–
3021.

[22] S. GAROUFALIDIS, A. ITS, A. KAPAEV and M. MARIÑO, Asymp-
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[67] G. V. DUNNE and M. ÜNSAL, Resurgence and trans–series in
quantum field theory: the CPN−1 model, JHEP 1211 (2012), 170.
[arXiv:1210.2423]
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Nonlinear eigenvalue problems

Carl M. Bender, Javad Komijani and Qing-hai Wang

Abstract. This paper begins with a review of earlier work on extending the no-
tion of an eigenvalue problem for a linear differential equation to an eigenvalue
problem for a nonlinear differential equation. In previous work it was argued that
in the nonlinear context a separatrix plays the role of an eigenfunction and the ini-
tial conditions that spawn the separatrix play the role of an eigenvalue. Previously
discussed nonlinear differential equations that have discrete eigenvalue structure
include the first-order equation y′ = cos(πxy) and the Painlevé transcendents P-I
and P-II. In new work it is shown here that the concept of a nonlinear eigenvalue
problem extends to huge classes of nonlinear differential equations. Numerical
and analytical results on the eigenvalue behavior for some of these new differen-
tial equations are presented.

1 Introduction

Eigenvalue problems for linear second-order differential equations are
well understood. For example, consider the Sturm-Liouville eigenvalue
problem [1] for the time-independent Schrödinger equation

−y ′′(x)+ V (x)y(x) = Ey(x), (1.1)

where E is the eigenvalue and y(x) is the eigenfunction. The eigenfunc-
tion y(x) is required to satisfy homogeneous boundary conditions. For
rising potentials V (x) these boundary conditions are often imposed at
±∞:

y(−∞) = 0, y(∞) = 0.

Variational methods [2] may be used to find accurate approximations to
the low-lying eigenvalues, and semiclassical (WKB) techniques [3] may
be used to find accurate approximations to the large eigenvalues. The
leading WKB approximation to the nth eigenvalue En is given by the
implicit phase-integral condition∫ xR

xL

dx
√
En − V (x) ∼ (n + 1

2

)
π (n � 1), (1.2)
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where x = xL and x = xR are turning points satisfying the algebraic
equation V (x) = En . Typically, the semiclassical (high-energy) approx-
imation to En has the form

En ∼ abn (n � 1),

where the numbers a and b are determined by the condition (1.2). For
instance, the semiclassical approximation to the eigenvalues of the har-
monic oscillator V (x) = x2 is

En ∼ 2n (n � 1),

and the semiclassical approximation to the eigenvalues of the anharmonic
oscillator V (x) = x4 is

En ∼
[
3�(3/4)

√
π/�(1/4)

]4/3
n4/3 (n � 1).

The solutions to the linear eigenvalue problem (1.1) have several charac-
teristic qualitative features. Let us assume that the potential V (x) has a
single minumum and rises as x → ±∞, like the potentials x2 and x4.
Then, the eigenfunctions exhibit distinct behaviors in each of five regions
of x . When x > xR and when x < xL, the eigenfunctions yn(x) decay
exponentially as |x | → ∞; these are the classically forbidden regions.
However, when xL < x < xR, the eigenfunctions are oscillatory and
yn(x) has exactly n nodes; this is the classically allowed region. When x
is near xL and xR, there is an abrupt transition between exponentially de-
creasing and oscillatory behavior. This transition is universally described
by the Airy function Ai(x). Furthermore, the eigenfunctions exhibit an
unstable behavior in the following sense. If the parameter E in (1.1) is
not an eigenvalue, there are two linearly independent solutions to this
equation; one solution grows exponentially as x → ∞ and decays ex-
ponentially as x → −∞ while the linearly independent solution grows
exponentially as x → −∞ and decays exponentially as x → ∞. How-
ever, if E is an eigenvalue, a solution that is linearly independent of the
eigenfunction grows exponentially as x → ±∞. Thus, an infinitesimal
change in E away from an eigenvalue causes the solution to (1.1) to lose
the property of square integrability. We emphasize that there is an abrupt
change in the character of the solution to (1.1) as E moves away from an
eigenvalue.
We show in this paper that nonlinear differential equations can have

eigenfunction-like solutions whose behaviors are strongly analogous to
the behaviors of eigenfunctions for linear eigenvalue problems. This idea
was originally proposed and investigated in Reference [4]. Specifically, it
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was proposed that a nonlinear differential equation may have a discrete
set of critical initial conditions that give rise to unstable separatrix so-
lutions. We interpret these special initial conditions as eigenvalues and
the unstable separatrices that emerge from these critical initial conditions
as the corresponding eigenfunctions. Our ultimate objective is to find
the large-n (semiclassical) asymptotic behavior of the nth eigenvalue by
using both numerical and analytic techniques.
A simple-looking first-order nonlinear differential equation that ex-

hibits eigenfunction and eigenvalue behavior is

y ′(x) = cos[πxy(x)] (1.3)

subject to the initial condition y(0) = E . The initial value E plays the
role of an eigenvalue. Solutions to this equation for various initial condi-
tions E are plotted in Figure 1.1.

Figure 1.1. Numerical solutions y(x) to (1.3) for 0 ≤ x ≤ 6 with initial con-
ditions y(0) ranging from 0 to 4.2. The solutions initially oscillate but abruptly
change their character and become smoothly and monotonically decaying. In
the decaying regime the solutions merge into discrete quantized bundles. The
bundles decay like 1/x as x → ∞.

Figure 1.1 shows that solutions to the initial-value problem (1.3) have n
maxima before vanishing like 1/t as t → ∞. As the initial condition
y(0) increases past the special critical value En , the number of maxima
changes from n to n+1. At these critical values the solution y(t) to (1.3)
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is an unstable separatrix curve. We understand this instability as follows:
If y(0) lies infinitesimally below En the solution merges with a bundle
of stable solutions all having n maxima, and when y(0) is infinitesimally
above En the solution merges with a bundle of stable solutions all having
n+1 maxima. The separatrix curves are displayed in Figure 1.2 as dashed
curves.

Figure 1.2. Same as in Figure 1.1 except that the separatrix (eigenfunction)
solutions (dashed lines) to (1.3) are shown. The separatrix solutions begin at
the eigenvalues E1 = 1.6026, E2 = 2.3884, E3 = 2.9767, E4 = 3.4675, and
E5 = 3.8975. The separatrices are unstable; if the initial condition y(0) lies
infinitesimally below (above) the eigenvalue, the solution rapidly diverges away
from the separatrix and merges with the bundle of solutions below (above) the
separatrix.

It is evident that the nonlinear eigenvalue problem illustrated in Fig-
ures 1.1 and 1.2 is qualitatively similar to the linear eigenvalue problem
(1.1) for the time-independent Schrödinger equation. First, the separa-
trices are unstable with respect to a small change in the eigenvalue En;
if y(0) = En is increased or decreased slightly, y(x) abruptly jumps
from the asymptotic bundle of solutions on one side of the separatrix to
the asymptotic bundle on the other side of the separatrix. Furthermore,
the eigenfunctions (separatrix curves) corresponding to the nth eigen-
value (the initial condition En) exhibit n oscillations in the “classically
allowed” region before decreasing monotonically to 0 in the “classically
forbidden” region. We can see in Figures 1.1 and 1.2 that this change
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from oscillatory to decaying behavior occurs over a narrow “turning-
point” region.
There is no known exact formula for the nth eigenvalue En . Lacking

such a formula, the challenge is to determine the asymptotic behavior of
the critical values En for large n. It was shown in Reference [4] that for
large n the nonlinear-differential-equation problem (1.3) reduces to a lin-
ear one-dimensional random-walk problem. This random-walk problem
was solved exactly and it was thereby established analytically that the nth
eigenvalue grows like anb for large n:

En ∼ 25/6
√
n (n → ∞). (1.4)

Kerr subsequently found an alternative derivation of this remarkable
semiclassical (high-energy) solution to this asymptotics problem and ver-
ified (1.4) [5]. [The numerical constant a = 25/6 and the exponent
b = 1/2 are surprising because there is no hint of such numbers in the
differential equation (1.3).]
The purpose of this paper is to demonstrate that there is a huge class of

second-order nonlinear-differential-equation eigenvalue problems having
discrete eigenvalues. It was shown in Refs. [4, 6] that nonlinear eigen-
value problems could be posed for the first two Painlevé transcendents.
These eigenvalue problems and their solutions are summarized in Sec-
tion 2. The Painlevé equations have the special property that their so-
lutions only have movable (or spontaneous) singularities that are poles;
there are no other kinds of movable singularities, such as branch points.
Thus, the solutions to these differential equations are meromorphic (they
only live on a one-sheeted Riemann surface). Consequently, such solu-
tions are relatively easy to study by using both numerical and asymptotic
analysis. The large-eigenvalue behaviors of these equations can be found
asymtotically by linearizing the eigenvalue problems. Specifically, for
large n the nonlinear eigenvalues are approximated by the eigenvalues
of a linear Schrödinger eigenvalue problem and the Hamiltonian for this
problem belongs to the class of PT -symmetric non-Hermitian Hamilto-
nians [7].
In Reference [6] it was proposed that one might extend the study of

nonlinear-differential-equation eigenvalue problems beyond the Painlevé
transcendents to more complicated differential equations such as the
Thomas-Fermi equation y ′′(x) = [y(x)]3/2x1/2. Indeed, the standard
physical solution to this equation, which satisfies the boundary condi-
tions y(0) = 1 and y(+∞) = 0, is an eigenfunction solution. Like the
solutions to (1.3), y(x) vanishes algebraically (specifically, like 144x−3)
as x → ∞. This is an unstable separatrix solution and the specific value
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of y′(0) that gives rise to this solution is an eigenvalue. If y′(0) is larger
than the critical value of y′(0), the function y(x) becomes singular at
some point x = a and blows up like 400a(x − a)−4 as x → a; if y′(0)
is less than the critical value, the function y(x) crosses 0 and becomes
complex. Unfortunately, the movable singularity at x = a is a logarith-
mic branch-point singularity [this is verified by expanding y(x) to high
order (sixteenth order!) in powers of (x − a)] and therefore the solutions
to this equation live on a Riemann surface having infinitely many sheets.
Consequently, this equation is difficult to analyze and it is hard to find
additional separatrix solutions.
Fortunately, we have found infinite numbers of nonlinear differential

equations whose movable singularities are just algebraic branch points,
and these equations, which are discussed in Section 3 are quite tractable.
It is most satisfying that the features of these new kinds of nonlinear-
differential-eigenvalue problems are qualitatively very similar to those of
the Painlevé equations, which are described in Section 2.

2 Nonlinear eigenvalue problems for Painlevé I and II

The Painlevé transcendents are six second-order nonlinear differential
equations whose movable (spontaneous) singularities are poles (and not
branch points, essential singularities, or other kinds of singularities).
Many papers and books have been written on these beautiful differen-
tial equations [8–15] and these equations arise often in mathematical
physics [16–23].
This section considers the first and second Painlevé transcendents, re-

ferred to here as P-I and P-II. The initial-value problem (IVP) for the P-I
differential equation is

y ′′(t) = 6[y(t)]2 + t, y(0) = c, y′(0) = b (2.1)

and the IVP for P-II (in which we have set an arbitrary additive constant
to 0) is

y′′(t) = 2[y(t)]3 + t y(t), y(0) = c, y′(0) = b. (2.2)

In this section we show that for the fixed initial condition y(0) = 0 there
is a discrete set of initial slopes y′(0) = bn that give rise to unstable sep-
aratrix solutions. Analogously, for a fixed initial slope y′(0) = 0, there is
a discrete set of initial values y(0) = cn that give rise to separatrix solu-
tions. For Painlevé I the large-n asymptotic behavior of the eigenvalues
bn is

bn ∼ BIn
3/5 (n → ∞) (2.3)
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and that of the eigenvalues cn is

cn ∼ CIn
2/5 (n → ∞). (2.4)

For Painlevé II the large-n asymptotic behavior of the eigenvalues bn is

bn ∼ BIIn
2/3 (n → ∞) (2.5)

and that of the eigenvalues cn is

cn ∼ CIIn
1/3 (n → ∞). (2.6)

The coefficients BI, CI, BII, and CII in these asymptotic behaviors can be
determined analytically as well as numerically. The analytical calcula-
tion of these constants for P-I and P-II is done by reducing the nonlinear
equations to the linear eigenvalue problems for the cubic and quarticPT -
symmetric Hamiltonians H = 1

2 p
2 + 2i x3 and H = 1

2 p
2 − 1

2 x
4 [6].

2.1 Eigenvalue problems for Painlevé I

In Reference [24] there is a brief asymptotic study of the first Painlevé
transcendent (2.1). It is easy to see that there are two possible asymptotic
behaviors of the solution to this differential equation as t → −∞; the so-
lutions to the P-I equation can approach either+√−t/6 or−√−t/6. An
elementary asymptotic analysis shows that if the solution y(t) approaches
−√−t/6, the solution oscillates stably about this curve with gradually
decreasing amplitude. On the other hand, while the curve+√−t/6 is an-
other possible asymptotic behavior, this behavior is unstable and nearby
solutions tend to veer away from it. The eigenfunction solutions to the
first Painlevé transcendent are those solutions that do approach the curve
+√−t/6 as t → −∞. These separatrix solutions resemble the eigen-
functions of conventional quantum mechanics in that they exhibit n os-
cillations before settling down to this asymptotic behavior. However, be-
cause the P-I equation is nonlinear, these oscillations are unbounded; the
nth eigenfunction passes through [n/2] double poles where it blows up,
and only then does it smoothly approach the curve +√−t/6. (The sym-
bol [n/2] means greatest integer in n/2.)
Let us discuss in greater detail the numerical solutions to the initial-

value problem for the P-I equation (1.1) for t < 0. To find these solutions
we use Runge-Kutta to integrate down the negative-real axis. When we
approach a double pole and the solution becomes large and positive, we
estimate the location of the pole and integrate along a semicircle in the
complex-t plane around the pole. We then continue integrating down the
negative-real axis. We choose the fixed initial value y(0) = 0 and allow
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the initial slope y′(0) = b to have increasingly positive values. (We only
present results for positive initial slope; the behavior for negative initial
slope is analogous.) We have found that the particular choice of y(0) is
not crucial; for any fixed y(0) the large-n leading asymptotic behavior of
the initial-slope eigenvalues bn is the same.
We find that above the critical value b1 = 1.851854034 (the first

eigenvalue) there is a continuous interval of b for which y(t) first has
a minimum and then has an infinite sequence of double poles (see Fig-
ure 2.1, left panel). However, if b increases past the next critical value
b2 = 3.004031103 (the second eigenvalue), the character of the solutions
changes abruptly and y(t) oscillates stably about −√−t/6 (Figure 2.1,
right panel). When b exceeds the critical value b3 = 3.905175320 (the
third eigenvalue), the solutions again exhibit an infinite sequence of poles
(Figure 2.2, left panel). When b increases past the fourth critical value
b4 = 4.683412410 (fourth eigenvalue), the solutions once again oscillate
stably about −√−t/6 (Figure 2.2, right panel). Our numerical analysis
indicates that there is an infinite sequence of critical points (eigenvalues)
at which the P-I solutions alternate between infinite sequences of double
poles and stable oscillation about −√−t/6.

Figure 2.1. Typical behavior of solutions to the first Painlevé transcendent
y(t) for the initial conditions y(0) = 0 and b = y′(0). In the left panel
b = 2.504031103, which lies between the eigenvalues b1 = 1.851854034 and
b2 = 3.004031103. In the right panel b = 3.504031103, which lies between
the eigenvalues b2 = 3.004031103 and b3 = 3.905175320. The dashed curves
are y = ±√−t/6. In the left panel the solution y(t) has an infinite sequence of
double poles and in the right panel the solution oscillates stably about −√

t/6.

The separatrix (eigenfunction) solutions that arise when y′(0) is an eigen-
value have a completely different (and unstable) character from those
in Figures 2.1 and 2.2. These special solutions exhibit a finite number
[n/2] of double poles (analogous to the oscillatory behavior of quantum-
mechanical bound-state eigenfunctions in the classically allowed region
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Figure 2.2. Solutions to the P-I equation (1.1) for y(0) = 0 and b = y′(0).
Left panel: b = 4.583412410, which lies between the eigenvalues b3 =
3.905175320 and b4 = 4.6834124103. Right panel: b = 4.783412410, which
lies between the eigenvalues b4 = 4.683412410 and b5 = 5.383086722.

of a potential well) and then exhibit a turning-point-like transition in
which the poles abruptly cease and y(t) exponentially decays towards
the limiting curve +√−t/6. The solutions arising from the first and sec-
ond critical points b1 and b2 are shown in Figure 2.3, those arising from
the third and fourth critical points b3 and b4 are shown in Figure 2.4, and
those arising from the tenth and eleventh critical points b10 and b11 are
shown in Figure 2.5. The critical points are analogous to eigenvalues be-
cause they give rise to unstable separatrix solutions; if y′(0) changes by
an infinitesimal amount above or below a critical value, the character of
the solutions changes abruptly and the solutions exhibit the two possible
kinds of generic behaviors shown in Figures 2.1 and 2.2.

Figure 2.3. First two separatrix solutions (eigenfunctions) of Painlevé I with
initial condition y(0) = 0. Left panel: y′(0) = b1 = 1.851854034; right panel:
y′(0) = b2 = 3.004031103. The dashed curves are y = ±√−t/6.
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Figure 2.4. Third and fourth eigenfunctions of Painlevé I with initial condition
y(0) = 0. Left panel: y′(0) = b3 = 3.905175320; right panel: y′(0) = b4 =
4.683412410.

Figure 2.5. Tenth and eleventh eigenfunctions of Painlevé I with initial con-
dition y(0) = 0. Left panel: y′(0) = b10 = 8.244932302; right panel:
y′(0) = b11 = 8.738330156. Note that as n increases, the eigenfunctions
pass through more and more double poles before exhibiting a turning-point-like
transition and approaching the limiting curve +√−t/6 exponentially rapidly.
This behavior is analogous to that of the eigenfunctions of a time-independent
Schrödinger equation for a particle in a potential well; the higher-energy eigen-
functions exhibit more and more oscillations in the classically allowed region
before entering the classically forbidden region, where they decay exponentially.

In Reference [6] the constant BI was determined numerically with great
accuracy by applying fifth-order Richardson extrapolation to the first eleven
eigenvalues. The value of BI in (2.3) was found to an accuracy of one part
in nine decimal places:

BI = 2.09214674. (2.7)

On the basis of the numerical analysis, one can say with confidence that
the underlined digit lies in the range from 3 to 5, so the determination of
BI is accurate to one part in 2× 108.
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If the initial slope is held fixed at y′(0) = 0 and the initial value y(0) =
c is allowed to become increasingly negative, a new sequence of negative
eigenvalues cn appears for which the solutions resemble the eigenfunc-
tion separatrix solutions in Figures 2.3–2.5. The first four eigenfunctions
are plotted in Figures 2.6 and 2.7.

Figure 2.6. First two separatrix solutions (eigenfunctions) of Painlevé I with
fixed initial slope y′(0) = 0. Left panel: y(0) = c1 = −0.7401954236; right
panel: y(0) = c2 = −1.206703845. The dashed curves are y = ±√−t/6.

Figure 2.7. Third and fourth eigenfunctions of Painlevé I with initial slope
y′(0) = 0. Left panel: y(0) = c3 = −1.484375587; right panel: y(0) = c4 =
−1.69951765.

Fourth-order Richardson extrapolation applied to the first 15 eigenvalues,
reveals that for large n the sequence of initial-value eigenvalues cn is
asymptotic to CIn2/5, where the numerical value of the constant CI in
(2.4) is [6]

CI = −1.0304844. (2.8)

The last digit is accurate to an error of ±1 and thus CI is determined to
an accuracy of one part in 107.
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2.2 Eigenvalue problems for Painlevé II

For P-II, a straightforward asymptotic analysis shows that as t → −∞,
there are three possible asymptotic behaviors for solutions y(t): y(t) ei-
ther oscillates stably about the negative axis or it approaches the curves
±√−t/2; both of these asymptotic behaviors are unstable. If we numer-
ically integrate (2.2), we see that when t becomes large and negative, a
typical solution to the P-II initial-value problem either oscillates about
the negative axis or passes through an infinite sequence of simple poles.
The special eigenfunction solutions pass through only a finite number of
poles and then approach either the positive or the negative branches of the
square-root curves. These eigenfunctions obey the boundary conditions
y(0) = 0 and y′(0) = ±b. [Because P-II is symmetric under y → −y,
there are two sets of eigenfunctions, one for each sign of y′(0).] The P-II
equation is particularly interesting because as t → +∞, the behavior
y → 0 becomes unstable. Thus, there are new kinds of eigenfunctions
for positive t . We have found eigenfunctions that satisfy y ′(0) = 0 and
y(0) = c and we examine the positive-c eigenfunctions numerically.
As in the case of P-I, if we choose y(0) = 0, there are critical val-

ues y′(0) = bn at which the solutions y(t) to P-II change their character.
Figures 2.8 and 2.9 show the solutions to the P-II equation for the initial
condition y(0) = 0 and y ′(0) = b for b1 < b < b2, b2 < b < b3,
b3 < b < b4, and b4 < b < b5. In these figures the behavior of the so-
lution alternates between having an infinite sequence of simple poles and
oscillating stably about y(t) = 0. However, when y ′(0) = b is at a criti-
cal value (eigenvalue) bn , the solution y(t) passes through a finite number
[n/2] of simple poles and then approaches either +√−t/2 or −√−t/2.
These eigenfunctions (separatrices) are plotted in Figures 2.10, 2.11, and
2.12 for n = (1, 2), (3, 4), and (20, 21).
The eigenfunctions in Figures 2.10, 2.11, and 2.12 alternate between

approaching the upper-unstable branch +√−t/2 or the lower-unstable
branch −√−t/2. Thus, there are actually two sequences of eigenval-
ues, one for even n and one for odd n. Using Richardson extrapolation,
we find that the sequences of eigenvalues b2n and b2n+1 have the same
asymptotic behavior

b2n ∼ b2n+1 ∼ BIIn
2/3 (n → ∞). (2.9)

Our numerical calculations reveal that the value of BII in (2.5) is [6]

BII = 1.8624128. (2.10)

The numerical data for P-II are noisier than those for P-I, and fourth-order
Richardson extrapolation gives the underlined eighth digit as 8± 2.
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Figure 2.8. Typical behavior of solutions to the second Painlevé transcen-
dent for the initial conditions y(0) = 0 and b = y′(0). In the left panel
b = 1.028605106, which lies between the eigenvalues b1 = 0.5950825526 and
b2 = 1.528605106. In the right panel b = 2.028605106, which lies between
the eigenvalues b2 = 1.528605106 and b3 = 2.155132869. In the left panel
the solution y(t) has an infinite sequence of simple poles and in the right panel
the solution oscillates stably about −√

t/6. The dashed curves are the functions
±√−t/2.

Figure 2.9. Solutions to the P-II equation (1.2) for y(0) = 0 and b = y′(0).
Left panel: b = 2.600745985, which lies between the eigenvalues b3 =
2.155132869 and b4 = 2.700745985. Right panel: b = 2.800745985, which
lies between the eigenvalues b4 = 2.700745985 and b5 = 3.195127590.

Next, we consider the positive-t solutions to P-II for vanishing initial
slope and positive initial condition for t ≥ 0. As t → +∞ (not−∞), the
nth eigenfunction passes through n simple poles before it approaches zero
monotonically. Fourth-order Richardson verifies (2.6) and determines
that for large n, cn ∼ CIIn1/3 [6], where

CII = 1.21581165. (2.11)

The last digit 5 has an uncertainty of ±1.
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Figure 2.10. First two separatrix solutions (eigenfunctions) of Painlevé II with
initial condition y(0) = 0. Left panel: y′(0) = b1 = 0.5950825526; right panel:
y′(0) = b2 = 1.528605106. The dashed curves are ±√−t/2.

Figure 2.11. Third and fourth eigenfunctions of Painlevé II with initial condition
y(0) = 0. Left panel: y′(0) = b3 = 2.155132869; right panel: y′(0) = b4 =
2.700745985.

Figure 2.12. The twentieth and twenty-first eigenfunctions of Painlevé II with
initial condition y(0) = 0. Left panel: y′(0) = b20 = 8.499476190; right panel:
y′(0) = b21 = 8.787666814.
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2.3 Asymptotic study of the Painlevé equations

In Reference [6] heuristic asymptotic techniques were proposed to obtain
analytic expressions for the constants BI and CI for P-I and BII and CII for
P-II. If we multiply the Painlevé-I equation in (2.1) by y′(t) and integrate
from t = 0 to t = x , we get

H ≡ 1
2 [y′(x)]2 − 2[y(x)]3 = 1

2 [y′(0)]2 − 2[y(0)]3 + I (x), (2.12)

where I (x) = ∫ x
0 dt ty

′(t). The path of integration is the same as that
used to calculate y(t) numerically; the path follows the negative-real axis
until it gets near a pole, at which point it makes a semicircular loop in the
complex-t plane to avoid the pole.
We calculate I (x) for large-negative x in the classically allowed region

(before the poles abruptly cease at the turning point) and find that on the
real-x axis, as n → ∞, I (x) fluctuates and becomes small compared
with H . This is not surprising because I (x) receives many positive and
negative contributions from the poles. We can see from the definition
of I (x) that I ′(x) vanishes when y′(x) vanishes. Near the points where
y′(x) vanishes, we verify numerically that I (x) is small compared with
−2[y(x)]3. Far from these points y(x) becomes large, but so does I (x).
However, −2[y(x)]3 blows up like a sixth-order pole and I (x) blows
up like a second-order pole. These asymptotic estimates are difficult to
verify analytically, but numerical analysis confirms these results. These
estimates are valid when x is large and negative but only in the classically
allowed region and not as x → −∞.
By examining I (x) as x → −∞, we can see a signal of an eigen-

value; as y ′(0) = b passes an eigenvalue, I (x) goes from having posi-
tive to negative (or negative to positive) fluctuations, but at an eigenvalue
I (x) is smooth and does not fluctuate. For large n we treat the fluctu-
ating quantity I (x) as small and we interpret H as a time-independent
quantum-mechanical Hamiltonian. [The isomonodromic properties of H
when I (x) is not neglected were studied in Reference [13].]
To support these observations regarding the behavior of I (x) on the

real axis, we have done extremely detailed numerical studies of the dis-
tribution of poles and the behavior of P-I in the complex-x plane. This
gives a much clearer and cleaner picture of the behavior of I (x) for large
x . We find that along the lines x = re±iπ/4, where r is real, the function
I (x) rapidly approaches 0 as r → ∞. This provides strong evidence
that the large-n (semiclassical) behavior of the eigenvalues is determined
by solving the linear time-independent quantum-mechanical eigenvalue
problem Ĥψ = Eψ , where Ĥ = 1

2 p̂
2 − 2x̂3 along these lines in the

complex-x plane. To find these eigenvalues we simply rotate Ĥ into the
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complex plane by 45◦ [25] and obtain the well-studied PT -symmetric
Hamiltonian [7]

Ĥ = 1
2 p̂

2 + 2i x̂3. (2.13)

The large eigenvalues of this Hamiltonian can be found by using the com-
plex WKB techniques discussed in Reference [7]. For the general class
ofPT -symmetric Hamiltonians Ĥ = 1

2 p̂
2+gx̂2 (i x̂)ε (ε ≥ 0), the WKB

approximation to the nth eigenvalue (n � 1) is given by

En ∼ 1

2
(2g)2/(4+ε)

[
�
(
3
2 + 1

ε+2
)√

π n

sin
(

π
ε+2
)
�
(
1+ 1

ε+2
)](2ε+4)/(ε+4) . (2.14)

For H in (2.13) we take g = 2 and ε = 1 and obtain the asymptotic
behavior

En ∼ 2
[√
3π�

(
11
6

)
n/�

(
1
3

)]6/5
(n → ∞). (2.15)

The Hamiltonian Ĥ in (2.13) is time independent, so we evaluate H in
(2.12) for fixed y(0) and large y′(0) = bn and obtain the result that

bn ∼
√
2En = BIn

3/5 (n → ∞), (2.16)

which verifies (2.3). We read off the analytic value of the constant BI:

BI = 2
[√
3π�

(
11
6

)
/�
(
1
3

)]3/5
, (2.17)

which agrees with the numerical result in (2.7). Also, if we take the initial
slope y′(0) to vanish and take the initial condition y(0) = cn to be large,
we obtain an analytic expression for CI,

CI = −
[√
3π�

(
11
6

)
/�
(
1
3

)]2/5
, (2.18)

which verifies the numerical result in (2.8). We emphasize that these
analytic results are in precise agreement with our numerical work on the
large-n behavior of the eigenvalues.
To obtain analytic expressions for BII in (2.10) and CII in (2.11), we

follow the same procedure as for P-I. We multiply the P-II equation by
y′(t) and integrate from t = 0 to t = x , where x is in the turning-point
region (where the simple poles stop). The result is

H ≡ 1
2 [y′(x)]2 − 1

2 [y(x)]4 = 1
2 [y′(0)]2 − 1

2 [y(0)]4 + I (x), (2.19)
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where I (x) = ∫ x0 dt ty(t)y′(t). The path of integration is the same as that
used to calculate P-II numerically; it follows the negative-real axis until
it gets near a simple pole, at which point it makes a loop in the complex-
t plane to avoid the pole. As before, we argue that along this path the
integrand of I (x) is oscillatory and that because of cancellations we may
neglect I (x) when n is large.
We treat H as the PT -symmetric quantum-mechanical Hamiltonian

Ĥ = 1
2 p̂

2 − 1
2 x̂

4 (2.20)

and we use (2.14) with g = 1/2 and ε = 2 to obtain

En ∼ 1
2

[
3n

√
2π�

(
3
4

)
/�
(
1
4

)]4/3
(2.21)

for the large eigenvalues of Ĥ . We then calculate the eigenvalues bn by
using √

2En ∼
[
3n

√
2π�

(
3
4

)
/�
(
1
4

)]2/3
(n → ∞). (2.22)

This formula allows us to identify the value of BII:

BII =
[
3
√
2π�

(
3
4

)
/�
(
1
4

)]2/3
. (2.23)

This result agrees with the numerical determination in (2.10).
To calculate CI I we note that the initial value y(0) is positive. How-

ever, if we neglect I (x) and assume a vanishing initial slope, we see that
the right side of (2.19) is negative. Thus, as we did for the cubic Hamilto-
nian 1

2 p̂
2 − 2x̂3, we perform a complex rotation of the coupling constant

to convert the quartic Hamiltonian to the form

Ĥ = 1
2 p̂

2 + 1
2 x̂

4. (2.24)

In this case we obtain the conventional Hermitian quartic-anharmonic-
oscillator Hamiltonian, which does not belong to the class of PT -sym-
metric Hamiltonians Ĥ = 1

2 p̂
2 + gx̂2(i x̂)ε . The WKB calculation men-

tioned earlier in Section 1 gives the large-eigenvalue approximation

En ∼
[
3n

√
π�
(
3
4

)
/�
(
1
4

)]4/3
(n → ∞) (2.25)

from which one can read off the value of CI I :

CI I =
[
3
√
π�
(
3
4

)
/�
(
1
4

)]1/3
, (2.26)

which agrees with the numerical result in (2.11).
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3 Nonlinear eigenvalue problems for more complicated
differential equations

In this section we introduce a new infinite class of nonlinear-differential-
equation eigenvalue problems of the form

y ′′(x) = 2M + 2
(M − 1)2 [y(x)]

M + x[y(x)]N , (3.1)

where M and N are integers. We refer to the equations in this class as
SP(M, N ) (SP stands for super-Painlevé). These equations are a natural
generalization of the first two Painlevé equations; P-I in (2.1) is SP(2, 0)
and P-II in (2.2) is SP(3, 1). These equations become particularly inter-
esting nonlinear eigenvalue problems when N is less than M − 1. We
consider this special class of equations because their solutions appear not
to have logarithmic movable singularities.
To understand the behaviors of solutions to these equations, let us first

recall how P-I works. It is clear that the solution to P-I can become
singular at an arbitrary point x = A and that the leading asymptotic
approximation to such a solution is

y(x) ∼ 1

(x − A)2
(x → A).

However, it is not obvious that the singularity at x = A is a pole. To
verify that this singularity is indeed a pole it is necessary to show that an
expansion around x = A is a Laurent series. To do this we substitute

y(x) = 1

(x − A)2

[
1+

∞∑
n=1

an(x − A)n
]

(3.2)

into (2.1) and collect powers of (x − A). If we solve recursively for the
coefficients an , we find that the first five coefficients are a1 = 0, a2 = 0,
a3 = 0, a4 = −A/10, and a5 = −1/6. However, the key result is that a6
is undetermined and thus is arbitrary. Since the series expansion for y(x)
contains two arbitrary constants, A and a6, it follows that this series is
the most general solution to the P-I equation. To complete the argument
one must show that the series expansion for y(x) converges when |x− A|
is sufficiently small. This establishes that the expansion (3.2) is a Laurent
series and verifies that the solutions to P-I are meromorphic.
To see what changes if we alter the P-I equation slightly, let us replace

the term x by x + x2. Now, if we seek a solution of the form (3.2), we
find that while the first five coefficients remain unchanged, a contradic-
tory equation arises in the next order; the only way to resolve this contra-
diction is to include a new term of the form b6(x − A)6 log(x − A). Now,
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the coefficient a6 remains arbitrary and b6 is determined. However, six
orders later a new contradiction arises and requires that we insert a new
logarithmic term of the form c12(x − A)12[log(x − A)]2. New logarith-
mic singularities continue to appear every six orders. This shows that the
solutions to the equation have movable singularities that are not second-
order poles; rather they are a complicated superposition of logarithms.
Thus, the solutions are not meromorphic and they live on a Riemann sur-
face having an infinite number of sheets.
The analysis above generalizes straightforwardly to the solutions to the

SP(M, N ) equation. It is easy to see that solutions to this equation can
become singular at a point x = A and that these singular solutions have
the leading asymptotic behavior

y(x) ∼ (x − A)−2/(M−1) (x → A). (3.3)

For simplicity, we study solutions that remain real on both sides of this
singularity, so hereafter we will assume that M is an even integer or (M−
1)/2 is an odd integer. We seek an asymptotic expansion of y(x) about
the point x = A of the form

y(x) = (x − A)−2/(M−1)
[
1+

∞∑
n=1

an(x − A)1/(M−1)
]
.

(This expansion is actually correct for both even and odd M; for odd
M half of the terms vanish.) If we substitute this expansion into the
SP(M, N ) equation and compare like powers of x − A to determine the
coefficients, we find that the an are uniquely determined up to n = 2(M+
1) for even M and n = M + 1 for odd M . However, so long as N is less
than M − 1, at this value of n the coefficient an is arbitrary. It is crucial
that if N ≥ M − 1, the an term contains logarithmic terms.
As an example, let us consider SP(4, 0). For this case the first seven

coefficients vanish a1 = a2 = a3 = a4 = a5 = a6 = a7 = 0 and the
next two coefficients are a8 = −9A/22 and a9 = 0. Next, we find that
a10 is not determined and thus is arbitrary. The next few coefficients are
a11 = 9/14, a12 = a13 = a14 = a15 = 0, a16 = 405A2/4598, a17 = 0.
From here on the coefficients begin to depend on the choice of a10: a18 =
−45Aa10/154, a19 = −135A/847, a20 = 6a210/23, a21 = 45a10/154,
and so on. Clearly, we have found the general solution because the series
contains two arbitrary constants, namely A and a10. Furthermore, while
we do not present a proof here, numerical analysis shows that the coeffi-
cients in the series have only geometric growth for large n, so the radius
of convergence of the series is nonzero.
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Of course, the series (3.3) is not a Laurent series because it contains
fractional powers of (x − A). However, our analysis shows that the so-
lutions to the class of equations SP(M, N ) have only algebraic singular-
ities, and because M is chosen to be even, we may seek solutions that
are entirely real. In particular, we can seek eigenfunction (separatrix)
solutions that are real.
Solutions to the SP(M, N ) equation have one or two possible real

asymptotic behaviors as x → −∞:

y(x) ∼ ±
[
−(M − 1)2x

2M + 2
]1/(M−N )

.

(There are two possible asymptotic curves when M − N is even but only
one when M − N is odd.) As in the P-I case, the upper curve is unstable
and the lower curve is stable. Thus, the discrete eigenfunction (separa-
trix) solutions that we seek approach the upper curve. For brevity, we
only consider here the eigenfunction solutions for which y(0) = 0. The
eigenvalues En are the initial values of the slope y′(0) that give rise to so-
lutions that approach the upper curve. For example, for M = 4 and N =
2, the first eight eigenvalues are 2.4240, 4.5364, 6.2471, 7.7792, 9.1960,
10.5292, 11.7973, 13.0127. The eigenfunctions associated with the 31st,
52nd, and 77th eigenvalues are plotted in Figures 3.1, 3.2, and 3.3.

Figure 3.1. Eigenfunction n = 31 for the SP(4, 2) equation. Note that the
eigenfunction solution is not bounded; at each of the peaks it blows up like
(x − A)−2/3. The dashed lines are the asymptotic curves ±√−9x/10. Note the
strong similarity to the eigenfunctions shown in the right panels of Figures 2.3
and 2.4 and the left panel of Figure 2.5.

Figure 3.2. Eigenfunction n = 52 for the SP(4, 2) equation. The dashed lines
are the curves ±√−9x/10.
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Figure 3.3. Eigenfunction n = 77 for the SP(4, 2) equation.

An analysis like that used to obtain (2.12) shows that if it is valid to
neglect the function I (x), we can replace the SP(M, N ) equation by a
simpler equation generated by the linear Hamiltonian

Ĥ = 1
2 p̂

2 + 2

(M − 1)2 x̂
M+1.

We need only solve the linear eigenvalue problem associated with this
Hamiltonian. Note that in this approximation the term containing the
parameter N has completely dropped out.
From the WKB formula (1.2) we determine that for large n, the nth

eigenvalue of Ĥ grows like n(2M+2)/(M+3) as n → ∞. Thus, the nth
separatrix eigenvalue y′(0) grows like

y′(0) ∼ n(M+1)/(M+3) (n → ∞). (3.4)

From our preliminary numerical studies we find that (3.4) holds in some
(but not all!) cases. For the case M = 4 we expect the large-n behavior
n5/7 and for M = 6 we expect the behavior n7/9. For M = 4 and N = 2
and for M = 6 and N = 4 this is exactly we find. Specifically, we
find that when M = 4, there are no eigenfunctions for N = 0, a full
set of eigenfunctons qualitatively identical to those shown in Figures 2.3-
2.5 for N = 1, and a half-set of eigenfunctions qualitatively identical to
those shown in the right panels of Figures 2.3 and 2.4 and the left panel
of Figure 2.5 when N = 2. For the case N = 2 the eigenvalues grow like
n5/7. However, when N = 1, the eigenvalues grow slightly less rapidly;
the nth eigenvalue grows like anb, where a = 2.04 and b = 0.56.
When, M = 6, there is a half-set of eigenfunctions when N = 0

and no eigenfunctions when N = 1. However, when N = 2, N = 3,
and N = 4, there are full sets of eigenfunctions. For the case N = 4
the eigenvalues grow like n7/9, but when N < 4, the eigenvalues grow
slightly less rapidly. Interestingly, it is the largest value of N that gives
an eigenspectrum whose asymptotic behavior is determined by a linear
approximation in which the yN term in the nonlinear equation can be
neglected! Evidently, for smaller values of N , the yN term cannot be
neglected. Specifically, when N = 0, the nth eigenvalue grows like
2.43n0.41; when N = 2, the nth eigenvalue grows like 2.55n0.54; when



88 Carl M. Bender, Javad Komijani and Qing-hai Wang

N = 3, the nth eigenvalue grows like 1.69n0.65. However, when N = 4,
the nth eigenvalue grows like 3.06n7/9.
We have shown in this paper that there is a huge, rich, and remarkable

class of nonlinear-differential-equation eigenvalue problems for which
there exists an infinite discrete set of eigenvalues. These differential equa-
tions are generalizations of the Painlevé transcendents. In full generality,
the differential equations resulting from extending P-I and P-II have the
form

y′′(x) = 2M + 2
(M − 1)2 [y(x)]

M + x P(y)+ Q(y),

where P(y) and Q(y) are polynomials in y(x) of degree less than M −
1. Clearly, there are additional general classes of nonlinear eigenvalue
problems that result from generalizing the other Painlevé transcendents.
These new kinds of problems deserve much intensive further analysis.
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Feynman diagrams
and their algebraic lattices

Michael Borinsky and Dirk Kreimer

Abstract. We present the lattice structure of Feynman diagram renormalization in
physical QFTs from the viewpoint of Dyson–Schwinger–Equations and the core
Hopf algebra of Feynman diagrams. The lattice structure encapsules the nested-
ness of diagrams. This structure can be used to give explicit expressions for the
counterterms in zero-dimensional QFTs using the lattice-Moebius function. Dif-
ferent applications for the tadpole-free quotient, in which all appearing elements
correspond to semimodular lattices, are discussed.

1 The Hopf algebra of Feynman diagrams

Following [11] the BPHZ renormalization algorithm to obtain finite am-
plitudes in quantum field theory (QFT) shows that Feynman diagrams act
as generators of a Hopf algebra Hfg

D . Elaborate expositions of this Hopf
algebra exist [19].
The coproduct of the Hopf algebra of Feynman diagrams on a renor-

malizable QFT takes the form

Hfg
D → Hfg

D ⊗Hfg
D

� : �  →
∑

γ∈Ps.d.
D (�)

γ ⊗ �/γ (1.1)

(γ = ∅, γ = � allowed) where �/γ is the contracted diagram which is
obtained by shrinking all edges of γ in � to a point and

P s.d.
D (�) :=

{
γ ⊂ � such that γ =

∏
i

γi , γi ∈ P1PI(�) and ωD(γi)≤0
}
,

(1.2)

is the set of superficially divergent subdiagrams or s.d. subdiagrams.
ωD(�) denotes the power counting superficial degree of divergence of
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the diagram � in D dimensional spacetime in the sense of Weinberg’s
Theorem [24]. These are subdiagrams of � whose connected compo-
nents are superficially divergent 1PI diagrams. Applying an evaluation
of graphs by renormalized Feynman rules �R : Hfg

D → C, a specific
Feynman diagram will always map to a unique power in h̄, h̄h1(�).
For renormalized Feynman rules the task is to produce for each graph

providing an unrenormalized integrand (a form on the de Rham side) and
a domain of integration (the Betti side) a well-defined period by pairing
those two sides. There are two avenues to proceed to obtain renormal-
ized Feynman rules: one can either introduce a regulator ε say (dimen-
sional regularization being a prominent choice with spacetime dimension
D = 4− ε) and work with unrenormalized Feynman rules�(ε) depend-
ing on the regulator ε, or one renormalizes the integrand first avoiding a
regulator altogether. In the former case, the pairing gives a Laurent series
with poles of finite order in ε. The degree of the pole is bounded by the
coradical degree of the Feynman graph under consideration. Adding cor-
rection terms as dictated by the Hopf algebra provides an expression for
which the regulator can be removed, ε → 0. In the latter case, the inte-
grand is relegated to correction terms -again dictated by the Hopf algebra-
which amount to sequences of blow-ups with the length of the sequence
bounded by the coradical degree [9, 10, 16]. The nature of the coradi-
cal degree and its systematic study using the lattice structure of Feynman
diagrams will be described in what follows.
Using the reduced coproduct, �̃ = �− I ⊗ id− id⊗ I, the coradical

degree of an element h ∈ Hfg
D is the minimal number d =: cor(h) such

that

(id⊗(d−1) ⊗ �̃) ◦ · · · ◦ (id⊗ �̃) ◦ �̃︸ ︷︷ ︸
d−times

h = 0. (1.3)

The coradical degree of a Feynman diagram is a measure for the ‘nested-
ness’ of Feynman diagrams. For instance, a Feynman diagram of corad-
ical degree 1 has no subdivergences. Such a diagram is a primitive ele-
ment of the Hopf algebraHfg

D . A diagram with a single subdivergence has
coradical degree 2 and a diagram with a subdivergence, which has itself
a subdivergence, coradical degree 3 and so on.
But what is the coradical degree if we have to deal with overlapping

divergences? Of course, every diagram will have a well defined ε ex-
pansion even if it is not accessible by explicit calculation, but is there a
combinatorial description that enables us to analyze the coradical degree
directly? The answer can be found in the lattice structure of Feynman
diagrams.
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cussions. We also thank Fréderic Fauvet for organizing the workshop
Resurgence, Physics and Numbers, Centro de Giorgi, Pisa, May 2015,
and hospitality there.

2 The lattice of subdiagrams

It is obvious that Ps.d.
D (�) is a poset ordered by inclusion. The statement

that a subdiagram γ1 covers γ2 in Ps.d.
D (�) is equivalent to the statement

that γ1/γ2 is primitive.
The Hasse diagram of a s.d. diagram � can be constructed by the fol-

lowing procedure:

(i) Draw the diagram and find all the maximal forests γi ∈ Ps.d.
D (�) such

that �/γi is primitive.
(ii) Draw the diagrams γi under � and draw lines from � to the γi .
(iii) Subsequently, determine all the maximal forests μi of the γi and draw

them under the γi .
(iv) Draw a line from γi to μi if μi ⊂ γi .
(v) Repeat this until only primitive diagrams are left.
(vi) Then draw lines from the primitive subdiagrams to an additional ∅-

diagram underneath them.
(vii) In the end, replace diagrams by vertices.

Example 2.1. For instance, the set of superficially divergent subdiagrams
for D = 4 of the diagram, can be represented as the Hasse dia-

gram .

The motivation to search for more properties of these posets came from
the work of Berghoff [1], who studied the posets of subdivergences in the
context of Epstein-Glaser renormalization and discovered that the posets
of diagrams with only logarithmic divergent subdivergences are distribu-
tive lattices. The lattice nature of the set of subdivergencies of Feynman
diagrams has also been discussed in [12].
An important observation to make is that the set of superficially diver-

gent subdiagrams P s.d.
D (�) of a diagram � is a lattice for a big class of

QFTs. For convenience, we repeat the definition of a lattice here:

Definition 2.2 (Lattice). A lattice is a poset L for which an unique least
upper bound (join) and an unique greatest lower bound (meet) exists for
any combination of two elements in L . The join of two elements x, y ∈ L
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is denoted as x ∨ y and the meet as x ∧ y. Every lattice has a unique
greatest element denoted as 1̂ and a unique smallest element 0̂. Every
interval of a lattice is also a lattice.

In many QFTs, P s.d.(�) is a lattice for every s.d. diagram � [7]. The
union of two subdiagrams will play the role of the join.

Definition 2.3 (Join-meet-renormalizable quantum field theory).
A renormalizable QFT is called join-meet-renormalizable if P s.d.

D (�),
ordered by inclusion, is a lattice for every s.d. Feynman diagram �.

It turns out to be a sufficient requirement on the set P s.d.
D (�) to be a

lattice that it is closed under taking unions of subdiagrams.

Theorem 2.4. A renormalizable QFT is join-meet-renormalizable if
P s.d.
D (�) is closed under taking unions for all s.d. diagrams �: γ1, γ2 ∈

Ps.d.
D (�) ⇒ γ1 ∪ γ2 ∈ Ps.d.

D (�) for all s.d. diagrams �.

Proof. Ps.d.
D (�) is ordered by inclusion γ1 ≤ γ2 ⇔ γ1 ⊂ γ2. The join is

given by taking the union of diagrams: γ1 ∨ γ2 := γ1 ∪ γ2. Ps.d.
D (�) has

a unique greatest element 1̂ := � and a unique smallest element 0̂ := ∅.
Therefore P s.d.

D (�) is a lattice [21, Prop. 3.3.1]. The unique meet is given
by the formula, γ1 ∧ γ2 := ⋃

μ≤γ1 and μ≤γ2
μ.

Not every Feynman diagram fulfills this requirement. A counterexam-
ple of a Feynman diagram of φ6-theory in 3 dimensions where Ps.d.

D (�)

is not a lattice is given in figure 2.1b.

Figure 2.1. Counter-example for a renormalizable but not join-meet-renor-
malizable QFT: φ6-theory in 3 dimensions. (a) Example of a diagram where
Ps.d.3 (�) is not a lattice. (b) The corresponding non-lattice poset. Trivial vertex
multiplicities were omitted.

On the other hand, there is a large class of join-meet-renormalizable
quantum field theories which includes the standard model as established
by the following theorem:

Theorem 2.5 ([7, Corr. 2]). All renormalizable QFTs with only four-or-
less-valent vertices are join-meet-renormalizable.
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The proof follows from combinatorial properties of the underlying
graphs. This is a surprising result. Lattices are very well studied ob-
jects in combinatorics. It is worthwhile to search for more properties
which the lattices in physical QFTs carry. But first, we will explore how
the Hopf algebra and the lattice structure fit together.

3 The Hopf algebra of decorated lattices

It is well known that lattices and posets can be equipped with Hopf alge-
bra structures [20]. The Hopf algebra structure applicable in the present
case is the following decorated version of an incidence Hopf algebra:

Definition 3.1 (Hopf algebra of decorated posets). Let D be the set of
tuples (P, ν), where P is a finite poset with a unique lower bound 0̂ and
a unique upper bound 1̂ and a strictly order preserving map ν : P → N0

with ν(0̂) = 0. One can think of D as the set of bounded posets aug-
mented by a strictly order preserving decoration. An equivalence relation
is set up on D by relating (P1, ν1) ∼ (P2, ν2) if there is an isomorphism
j : P1 → P2, which respects the decoration ν: ν1 = ν2 ◦ j .
Let HP be the Q-algebra generated by all the elements in the quotient

P/ ∼ with the commutative multiplication:
mHP : HP ⊗HP → HP,

(P1, ν1)⊗ (P2, ν2)  → (P1 × P2, ν1 + ν2) , (3.1)

which takes the Cartesian product of the two posets and adds the decora-
tions ν. The sum of the two functions ν1 and ν2 is to be interpreted in the
sense: (ν1 + ν2)(x, y) = ν1(x) + ν2(y). The singleton poset P = {

0̂
}

with 0̂ = 1̂ and the trivial decoration ν(0̂) = 0 serves as a multiplicative
unit: u(1) = IHP := ({0̂}, 0̂  → 0

)
.

Equipped with the coproduct,

�HP : HP → HP ⊗HP,

(P, ν)  →
∑
x∈P

([0̂, x], ν)⊗
(
[x, 1̂], ν − ν(x)

)
, (3.2)

where (ν − ν(x))(y) = ν(y)− ν(x) and the counit ε which vanishes on
every generator except IHP , the algebraHP becomes a counital coalgebra.

This algebra and coalgebra is in fact a Hopf algebra [7] which aug-
ments the corresponding incidence Hopf algebra by a decoration. The
decoration is needed to capture at least the simplest invariant of a dia-
gram: The loop number.
Having defined the Hopf algebra, we can set up a Hopf algebra mor-

phism fromHfg
D toHP:
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Theorem 3.2 ([7, Thm. 3]). Let ν(γ ) = h1(γ ). The map,

χD : Hfg
D → HP,

�  → (Ps.d.
D (�), ν), (3.3)

which assigns to every diagram, its poset of s.d. subdiagrams decorated
by the loop number of the subdiagram, is a Hopf algebra morphism.

Because of the special structure of P s.d.
D (�) in join-meet-renormal-

izable theories, it is reasonable to define,

Hfg,L
D := imχD (3.4)

and it follows immediately that:

Corollary 3.3. In a join-meet-renormalizable QFT, Hfg,L
D ⊂ HL ⊂ HP,

where HL is the subspace of HP which is generated by all elements
(L , ν), where L is a lattice. In other words: In a join-meet-renormal-
izable QFT, χD maps s.d. diagrams and products of them to decorated
lattices.

Example 3.4. For any primitive 1PI diagram, i.e. � ∈ ker �̃,

χD(�) = (Ps.d.
D (�), ν) = , (3.5)

where the vertices in the Hasse diagram are decorated by the value of ν
and L = h1(�) is the loop number of the primitive diagram.
The coproduct of χD(�) inHP can be calculated using equation (3.2):

�HP = ⊗ I + I ⊗ . (3.6)

As expected, these decorated posets are also primitive inHP.

Example 3.5. For the diagram ∈ Hfg
4 , χD gives the decorated

poset,

χD = (3.7)
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of which the reduced coproduct inHP can be calculated,

(3.8)

This can be compared to the coproduct calculation,

(3.9)

and the fact that χD is a Hopf algebra morphism is verified after comput-

ing the decorated poset of each subdiagram of and comparing the

previous two equations:

(3.10)

4 An application of the Hopf algebra of decorated lattices

Some calculations are easily performed in the Hopf algebra of decorated
lattices, but hard do on the Feynman diagram counterpart. One example
is the evaluation of the counterterm in zero-dimensional QFTs, where the
Feynman rules map every diagram to a constant. The counterterm map
in a zero-dimensional field theory takes the form

SRD := φ ◦ SD, (4.1)

where φ are the Feynman rules, which map � to h̄h1(�) and SD is the
antipode onHfg

D .
Using the fact that χD is a Hopf algebra morphism it can be shown that

Proposition 4.1 ([7, Corr. 5]).

SRD(�) = h̄h1(�)μPs.d.
D (�)

(
0̂, 1̂
)

(4.2)

on the Hopf algebra of Feynman diagrams with 0̂ = ∅ and 1̂ = �, the
lower and upper bound of P s.d.

D (�), where SRD is the counterterm map in
zero-dimensional field theory and μL the Moebius function of the lattice
L. The Moebius function is defined as,

μP(x, y) =
⎧⎨⎩1, if x = y

− ∑
x≤z<y

μP(x, z) if x < y. (4.3)

for a poset P and x, y ∈ P.
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The calculation of the Moebius function is in general much easier than
the calculation of the antipode in formula (4.1). This statement can also
be used to deduce generating functions for the weighted number of prim-
itive diagrams in QFTs as was done for φ4 and Yang-Mills in terms of the
counter terms in [7]. In a future publication, these ideas will be used to
enumerate the weighted number of primitive diagrams for these theories
explicitly [8].

5 Properties of the lattices

Having established a connection between the Hopf algebra of Feynman
diagrams and the lattices, we can ask what the lattices tell us about the
coradical degree of the diagrams. It is easily seen from the definition of
the coproducts inHL andHfg that the length of the longest ‘chain’, a path
from top of the Hasse diagram to the bottom, is the coradical degree of
the Feynman diagram. If all complete chains have the same length, this
number is called the rank of the poset or lattice and the poset or lattice is
called ranked or graded.
A chain of the poset P s.d.

D (�) corresponds to a forest of the diagram in
the scope of the BPHZ algorithm. The statement that the poset Ps.d.

D (�)

is graded implies that all complete forests of the diagram have the same
cardinality. Furthermore, it means that the coradical filtration is in fact a
graduation of the Hopf algebra of Feynman diagrams [7].
Not all join-meet-renormalizable theories have this property for every

Feynman diagram. For instance, in φ4-theory in 4-dimensional space-
time, the diagram depicted in figure 5.1 with its subdiagrams in figure
5.1 appears. The corresponding lattice, shown in figure 5.1, is not graded.
Therefore, the corresponding Hopf algebraHfg,L

D is also not graded by the
length of the maximal chains of the lattices.
The appearance of these diagrams with non-graded lattices is charac-

teristic for theories with four-valent vertices. In theories with only three-
or-less-valent vertices all lattices are graded:

Theorem 5.1 ([7, Thm. 4]). In a renormalizable QFT with only three-
or-less-valent vertices:

• P s.d.
D (�) is a graded lattice for every propagator, vertex-type diagram

or disjoint unions of both;
• Hfg,L

D is bigraded by ν(1̂) and the length of the maximal chains of the
lattices, which coincides with the coradical degree inHfg,L

D ;
• Hfg

D is bigraded by h1(�) and the coradical degree of �;• Every complete forest of � has the same length.
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(a) (b)

(c)

with the complete forests ∅ ⊂ δ1 ⊂ αi ⊂ �.∅ ⊂ δ2 ⊂ βi ⊂ � and ∅ ⊂ γi ⊂ �.

Figure 5.1. Counter example of a lattice, which appears in join-meet-
renormalizable QFTs with four-valent vertices and is not graded. (a) Example of
a diagram where P s.d.4 (�) forms a non-graded lattice. (b) The Hasse diagram of
the corresponding non-graded lattice, where the decoration was omitted. (c) The
non-trivial superficially divergent subdiagrams and the complete forests which
can be formed out of them..

In theories with four-valent vertices, we can also enforce the disappear-
ance of all non-graded lattices by working in a renormalization scheme
where tadpole-diagrams vanish. Tadpoles are diagrams which can be
separated in two connected components by the removal of a single vertex
such that one connected component does not contain any external legs
of the initial diagram. Tadpole diagrams are also called snail or seagull
diagrams.
If we use such a renormalization scheme, we can define a Hopf ideal

I generated by all tadpole diagrams of the initial Hopf algebra Hfg
D and

form the quotient H̃fg
D := Hfg

D/I . Instead of working with Hfg
D the quo-

tient H̃fg
D can be used without changing any results, because the Feynman

rules vanish on the ideal I by requirement. In this quotient, the lattices
corresponding to the Feynman diagrams behave in a similar way as for
theories with only three valent vertices!
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Theorem 5.2 ([7, Thm. 5]). In a renormalizable QFT with only four-or-
less-valent vertices:

• P̃s.d.
D (�) is a graded lattice for every propagator, vertex-type diagram

or disjoint unions of both;
• Hfg,L

D /χD(I ) is bigraded by ν(1̂) and the length of the maximal chains
of the lattices, which coincides with the coradical degree inHfg,L

D ;
• H̃fg

D := Hfg
D/I is bigraded by h1(�) and the coradical degree of �;• Every complete forest of �, which does not result in a tadpole upon

contraction, has the same length.

Where P̃ s.d.
D (�) is the set of s.d. subdiagrams γ of � which do not yield

tadpole diagrams upon contraction �/γ .

6 The quotient H̃fg
D: applications

Kinematic renormalization schemes �R : H̃fg
D → C cover renormaliza-

tion schemes which allow for well-defined asymptotic states and hence
are natural from a physicists viewpoint. Such schemes evaluate tadpole
graphs to zero and hence are naturally defined for the above quotient H̃fg

D
as �R(I ) = 0.
Evaluating graphs by renormalized Feynman rules in such schemes

leads to periods which have a motivic interpretation [2, 3, 9]. We discuss
some of such schemes most crucial aspects. We closely follow [10] in this
section. As usual we concentrate on scalar field theory which is generic
for the whole situation.
As we saw already amplitudes in quantum field theory can be written

as a function of a chosen scale variable L = ln(S/μ2) chosen such that
it only vanishes when all external momenta vanish. We take S to be a
suitable linear combination of scalar products qi ·q j of external momenta
and squared masses m2e . Dimensionless scattering angles � are defined
accordingly as ratios qi · q j/S and m2e/S.
In these variables, amplitudes can be calculated as a perturbation ex-

pansion in terms of Feynman graphs � as
∑

� �R(�). Here, the renor-
malized Feynman rules�R are expressed in terms of such angle and scale
variables, and the graphs � are chosen in our quotient Hopf algebra H̃fg

D .
For any choice of angle and scale variables, �R is in the group

SpecC(H̃fg
D), and the restriction of this group to maps which originate

from evaluation of graphs by Feynman rules defines a sub-group
GFeyn := SpecFeyn(H̃fg

D) ⊂ SpecC(H̃fg
D).

Such a chosen decomposition of the variables reflects itself then in a
chosen decomposition of the group GFeyn into two subgroups Go.s., maps
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dependent on only one scale (o.s.) and Gfin, maps dependent only on the
angles. Elements � ∈ Go.s. are of the form

�(�) =
cor(�)∑
j=1

p j L
j , (6.1)

where the coefficients p j are periods in the sense of algebraic geometry
and are independent of the angles {�}, with the coradical degree cor(�)
giving the bound.
Still following [10], we allow for renormalization conditions which

are defined by kinematic constraints on Green-functions: we demand
that such Green functions, regarded as functions of S and {�}, vanish
(up to a specified order) at a reference point (in S, {�}-space) given by
S0, {�0}. We implement these constraints graph by graph. Hence renor-
malized Green functions as well as renormalized Feynman rules become
functions of S, S0,�,�0. Here, �,�0 stand for the whole set of an-
gles in the Feynman rules, with �0 specifying the renormalization point.
Note that minimal subtraction is not included in our set-up, renormalized
Feynman rules in that scheme do not vanish on the ideal I defined by
tadpole graphs.
Elements �fin ∈ Gfin are of the form

�fin(�) = c�0 (�), (6.2)

with c�0 (�) an L-independent function of the angles.
We hence obtain the decomposition ofGFeyn as a map�R  →(�fin,�o.s.),

which proceeds then by a twisted conjugation:

GFeyn & �R(S, S0,�,�0) = �−1
fin (�0) � �o.s.(S, S0) � �fin(�), (6.3)

with �fin(�0),�fin(�) ∈ Gfin and �o.s.(S, S0) ∈ Go.s.. The group law �

and inversion −1 are defined through the Hopf algebra underlying GFeyn.

6.1 The additive group and renormalization schemes

The most striking aspect of kinematic renormalization schemes is that
they allow for an intimate connection between the additive group Ga and
Spec(H̃fg

D). We have ∀h ∈ H̃fg
D [4, 10]

�L
R(h) = �

L1+L2
R = m ◦(�L1

R ⊗�
L2
R )◦�(h) = �

L1
R ��

L2
R , L = L1+L2.

(6.4)
Here, L = ln S/μ2 defines the scale relative to a renormalization scale
μ. �L

R : H̃fg
D → C are renormalized Feynman rules, and �L

R(�) ≡
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�L
R(�)({�,�0}) is a function also of angles {�} and {�0} (the latter for

the renormalization point).
Note that to derive Equation (6.4) and therefore the renormalization

group in the context of the quotient Hopf algebra H̃fg
D only combinatorial

properties of graphs and graph polynomials are needed [4, 10]. There is
an intimate connection to the representation theory of the additive group
Ga and Tannaka categories of Feynman graphs hiding between this set-up
which is studied elsewhere [6].

6.2 A tower of Hopf algebras

The quotient Hopf algebra H̃fg
D is actually part of a tower of Hopf algebras

which was defined in [17], which we follow closely here. We start with
the quotient H̃fg

∞ of the core Hopf algebra Hfg
∞ [15] of Feynman graphs,

in which every union of 1PI subdiagrams is superficially divergent, by I ,
H̃fg

∞ = Hfg
∞/I .

Hfg
∞ contains the renormalization Hopf algebra H̃fg

D itself as a quotient
Hopf algebra [15, 17] and similarly H̃fg

∞ contains H̃fg
D .

For the structure of Green functions with respect to the Hopf algebra
H̃fg

D we write G
r ({Q}, {M}, {g}; R) for a generic Green function, where

• r indicates the residue under consideration and we write |r | for its
number of external legs. Amongst all possible residues, there is a set
of residues provided by the free propagators and vertices of the theory.
We write R for this set. It is in one-to-one correspondence with field
monomials in a Lagrangian approach to field theory. The set of all
residues is denoted byA = F ∪R, which defines F as those residues
only present through quantum corrections.

• {Q} is the set of external momenta qe subject to the condition∑
e∈r

qe =
0, where the sum is over the external half edges of r .

• {M} is the set of masses in the theory.
• {g} is the set of coupling constants specifying the theory. Below, we
proceed for the case of a single coupling constant g, the general case
posing no principal new problems.

• R indicates a chosen kinematic renormalization scheme.

We also note that a generic Green function Gr ({Q}, {M}, {g}; R) has an
expansion into scalar functions

Gr ({Q}, {M}, {g}; R) =
∑

t (r)∈S(r)
t (r)Gr

t (r)({Q}, {M}, {g}; R). (6.5)

In terms of mass dimensions ([m2] = 2) we have N0 & [t (r)] ≥ 0 and
[Gr

t (r)({Q}, {M}, {g}; R)] = 0.
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Here, S(r) is a basis set of Lorentz covariants t (r) in accordance with
the quantum numbers specifying the residue r . For each t (r) ∈ S(r),
there is a projector Pt (r) onto this form factor.
For r ∈ R, we can write

Gr ({Q}, {M}, {g}; R) = �(r)Gr
�(r)({Q}, {M}, {g}; R)

+ Rr ({Q}, {M}, {g}; R), (6.6)

where Rr ({Q}, {M}, {g}; R) sums up all form factors t (r) but it only con-
tributes through quantum corrections. � are the unrenormalized Feyn-
man rules. Applied on the residue r , they evaluate to the tree-level am-
plitude �(r) for the vertex or edge associated to the residue r .
Each Gr ({Q}, {M}, {g}; R) can be obtained by the evaluation of a se-

ries of 1PI graphs

Xr (g) = I −
∑

res(�)=r
g|�|

�

Sym(�)
, ∀r ∈ R, |r | = 2, (6.7)

Xr (g) = I +
∑

res(�)=r
g|�|

�

Sym(�)
, ∀r ∈ R, |r | > 2, (6.8)

Xr (g) =
∑

res(�)=r
g|�|

�

Sym(�)
, ∀r /∈ R, (6.9)

where we take the minus sign for |r | = 2 and the plus sign for |r | > 2.
Furthermore, the notation res(�) = r indicates a sum over graphs with
external leg structure in accordance with r .
We write �,�R for the unrenormalized and renormalized Feynman

rules regarded as a map: H̃fg
D → C from the Hopf algebra to C.

We have

Gr
t (r)({Q}, {M}, {g}; R) = �

t (r)
R (Xr (g))({Q}, {M}, {g}; R), (6.10)

where each non-empty graph is evaluated by the renormalized Feynman
rules

�
t (r)
R (�) := (id− R) ◦ m ◦ (S�R ⊗ Pt (r)�P) ◦�(�) (6.11)

S�R (�) := −R ◦ m ◦ (S�R ⊗�P) ◦�(�) (6.12)

and �t (r)
R (I) = 1, and P the projection into the augmentation ideal of

H̃fg
D , P

t (r) the projector on the form factor t (r) and R the renormalization
map.
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It is in the evaluation Equation (6.11) that the coproduct of the renor-
malization Hopf algebra appears. Combining the combinatorial Dyson–
Schwinger equations (see [14] for a recent overview of such equations)
Equations (6.7, 6.8, 6.9) with Feynman rules and with the renormaliza-
tion group Equation (6.4) turns them into ordinary non-linear differential
equations studied in [22, 23] which determine the physics behind quan-
tum field theory.
The above sumover all graphs simplifieswhen one takes the Hochschild

cohomology of the (renormalization) Hopf algebra into account:

Xr (g) = δr,RI ±
∑
� 1PI
res(�)=r
�̃(�)=0

1

Sym(�)
g|�|B�

+(X
r (g)Q(g)), (6.13)

(− sign for |r | = 2, + sign for |r | > 2, δr,R = 1 for r ∈ R, 0 else) with
Q(g) being the formal series of graphs assigned to an invariant charge of
the coupling g:

Qr (g) :=
[

Xr∏
e∈r

√
Xe

] 1
|r |−2

. (6.14)

The existence of a unique invariant charge depends on the existence of
suitable coideals. Although we can define an invariant charge for every
residue r ∈ R with |r | > 2, the Slavnov-Taylor-Identities guaranty that
upon evaluation with a counter-term map, they will all give the same
renormalized charge. We can therefore drop the index r and write Q =
Qr . Bγ

+ are grafting operators which are Hochschild cocycles, and the
above combinatorial Dyson–Schwinger equations can be formulated in
any quotient Hopf algebra. More on such equations can be found in [13,
14, 17, 18, 25].
The existence of the equation above indicates immediately that there is

a natural Hopf algebra homomorphism η from the Hopf algebra of rooted
trees Hrt by the universal property. Together with the Hopf algebra mor-
phism χD to the Hopf algebra of decorated lattices, we have the following
relationships:

Hrt η−→ Hfg
D

χD−→ Hfg,L
D (6.15)

The relationships of these different Hopf algebras especially the mor-
phism given by η ◦ χD : Hrt → Hfg,L

D , will be subject of a future work.
Summarizing, there is a projective system of quotient Hopf algebras

(all of them can be obtained by taking the quotient with respect to I )

H̃fg
4 ← H̃fg

6 · · · ← H̃fg
2n ← · · · ← H̃fg

core = H̃fg
∞, (6.16)
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obtained by restricting the coproduct to sums over graphs which are su-
perficially divergent in

D = 4, 6, . . . , 2n, . . . ,∞
dimensions.
We can make this explicit by including the spacetime into the notation

for the coproduct:

Hfg
D → Hfg

D ⊗Hfg
D

�D : �  →
∑

γ∈Ps.d.
D (�)

γ ⊗ �/γ. (6.17)

Most striking is the connection to the additive groupGa which establishes
itself here as announced previously. We have

Xr = I ±
∑
j≥1

hrj . (6.18)

It follows from the above that the representation of Ga on the subvec-
torspace ∗H̃fg

D spanned by such generators h
r
i of the sub-Hopf algebras

(Foissy [13] discusses the appearance of such sub-Hopf algebras in great
detail) defined by a combinatorial DSE has the form L → exp LNr

where Nr is a lower triangular matrix for each residue r . More on this
and the resulting Tannakian structure of Feynman graphs will be given
in [6].
Let us conclude with two remarks which follow from this set-up.

Remark 6.1. Investigating the Cutkosky rules [5] we can write fix-point
equations for cut graphs and therefore fix-point equations for imaginary
part of Green functions. Indeed, following [5], all algebraic structures
needed to study the analytic properties of amplitudes can be formulated
in H̃fg

D , as tadpole graphs do not allow for non-trivial variations in external
momenta as there is no momentum flow through them.
The 1-cocycles Bγ

+ which run a Green function can then be decom-
posed according to the complete k-particle cuts of γ to obtain recursive
equations for Green functions and their imaginary parts. Details will be
given in future work (see also [5], in particular lemma (3) in that refer-
ence).

Remark 6.2. In the quotient H̃fg
D together with its accompanying com-

binatorial Dyson–Schwinger equations all renormalization group effects
come from a soft logarithmic breaking of conformal invariance as their
are no quadratic divergences left for kinematic renormalization schemes.
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Accordingly, Dyson–Schwinger equations are determined by kinematical
boundary conditions, and the equations themselves describe the dimen-
sionless quantum corrections to dimensionful tree-level amplitudes.
Fine-tuning or hierarchy problems are hence spurious. They are a typ-

ical consequence of using either a dimensionful regulator and/or renor-
malization schemes not in accordance with the equations of motion.
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Invariants of identity-tangent
diffeomorphisms expanded
as series of multitangents and multizetas

Olivier Bouillot and Jean Ecalle

Abstract. We return to the subject of local, identity-tangent diffeomorphisms f
of C and their analytic invariants Aω( f ), under the complementary viewpoints
of effective computation and explicit expansions. The latter rely on two basic
ingredients: the so-called multizetas (transcendental numbers) and multitangents
(transcendental functions), with resurgence monomials and their monics providing
the link between the two. We also stress the difference between the collectors (pre-
invariant but of one piece) and the connectors (invariant but mutually unrelated).
Much attention has been paid to streamlining the nomenclature and notations.

On the analysis side, resurgence theory rules the show. On the algebraic or combi-
natorial side, mould theory brings order and structure into the profusion of objects.
Along the way, the paper introduces quite a few novel notions: new alien operators,
new forms of resurgence, new symmetry types for moulds. It also broaches the
subject of ‘phantom dynamics’ (dealing with formal diffeos that nonetheless pos-
sess invariants Aω( f )) and culminates in the comparison of arithmetical and dy-
namical monics, a distinction that reflects the dual nature of the Aω( f ) as Stokes
constants and holomorphic invariants.
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1 Setting and notations

1.1 Introduction

The holomorphic invariants of identity-tangent diffeomorphisms are a
long-established subject. Awareness of their existence is as old as the
hills. It goes back at least 120 years, to Fatou’s geometric treatment [11].
The sharper-edged resurgent treatment, which yields a wealth of infor-
mation denied to the geometric approach, is not exactly new either: it
was laid out in full in [4] and [5], in the late seventies.
What is sorely lacking, however, is a realisation that these invariants

can be accurately described and explicitely calculated. Indeed, the pre-
vailing (if seldom clearly stated) opinion in the holomorphic dynamics
community appears to be that they cannot. With a view to correcting
this misapprehension, we posted in 2012 a short paper1 that showed oth-
erwise. Though it contained little that was strictly new (in the main,
it restated results already extant in decades-old papers like [3] or [5],
and referred for the computational programs to a recent PhD thesis [1]),

1 Invariants of identity-tangent diffeomorphisms: explicit formulae and effective computation. The
paper with the appended tables can be accessed online on
< http ://www.math.u-psud.fr/∼ecalle/fichiersweb/WEB iden tang 0.pdf >.
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such feedback as we received convinced us that these questions were still
dimly understood, and in need of a more thorough exposition.
So, with something of a sinking heart, we set about re-revisiting the

whole subject. Since we were at it, however, and given that ter repetita
non placent, we felt that we might just as well insert some new material.
These extras include:

(1) a procedure for the ‘uniformisation’ of convolution products and
powers in the Borel plane, leading to optimal bounds;

(2) a new class of alien operators, the medial operators ��
ω and �

��
ω ,

which do not obey the Leibniz rule but make up for it by having a
simpler definition and being easier to evaluate;

(3) the notion of affiliates of a diffeomorphism f , defined via the corre-
sponding substitution operators F and their images γ (F−1) under
an analytic γ ;

(4) a new class of mouldian symmetry types, of proven usefulness, and
the rather intriguing combinatorics that goes with them;

(5) special classes of multizetas and multitangents well-suited for ex-
pressing the invariants Aω( f ) and bringing out their parity proper-
ties;

(6) the distinction between the semi-invariant collectors, which carry the
multitangents, and the exactly invariant connectors, which carry the
multizetas;

(7) the distinction between the full arithmetical constraints on the mul-
tizetas and the weaker dynamical constraints, which are responsible
for making the invariants invariant;

(8) the complications specific to the ramified case (for diffeos f of tan-
gency order p ≥ 2), which call for new monics related to, yet distinct
from, the rational-indexed multizetas;

(9) the subject of phantom dynamics which deals with groups of for-
mal diffeos that nonetheless possess holomorphic invariants and for
which many of the key notions familiar from holomorphic dynamics
(sectorial models, connectors, Fourier analysis, etc) still make sense,
albeit in a new setting, with acceleration operators replacing Laplace
integration.

1.2 Classical results

We shall be concerned here with local 2 identity-tangent diffeomorphisms
of C, or diffeos for short, with the fixed-point located at∞ for technical

2 I.e. analytic germs of –
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convenience:

f : z  → z +
∑
1≤s

fs z
1−s fs ∈ C . (1.1)

Unless f be the identity map, we can always subject it to an analytic
(respectively formal) conjugation f  → f1 = h ◦ f ◦ h−1, followed if
necessary by an elementary ramification

(
f1(z1/p)

)p
, so as to give f the

following prepared (respectively normal) form:

fprep : z  → z + 1− ρz−1 +
∑
2<s0≤s

f[s] z1−s
(
s ∈ 1

p
N∗
)
(1.2)

fnorm : z  → z + 1− ρz−1 (1.3)

where s0 may be chosen as large as one wishes.3

The tangency order p and iteration residue ρ are the only formal in-
variants of identity-tangent diffeos. But our diffeos also possess count-
ably many (independent) scalar analytic invariants, also known as holo-
morphic invariants,4 which are best defined as the Fourier coefficients
of the so-called connectors.5 The connectors are pairs of germs of 1-
periodic analytic mappings π = (πno,π so) defined on the upper/lower
half-planes ±)(z) � 1. There are p such pairs, corresponding to the p-
fold ramification of z in (1.2). Here, no and so stand for north and south,
i.e. the upper and lower half-planes.
We shall throughout prioritise the standard case p = 1 , ρ = 0, i.e.

focus on diffeos of the form:

f := l ◦ g with l : = z  → z + 1 and g : z  → z +
∑
3≤s

gs z
1−s (1.4)

and merely sketch the changes required to cover the general case.
Any standard f possesses two well-defined, mutually inverse so-called

iterators, to wit f ∗± (direct iterator) and ∗f± (reciprocal iterator), defined

3 After ‘preparation’, the diffeo acquires new coefficients denoted f[s] for distinctiveness.
4 Analytic invariants means invariant relative to analytic changes of z-coordinate, whereas holo-
morphic invariant points to the holomorphic dependence of Aω( f ) in f – in contradistinction to
cases like that of diffeos with Liouvillian multipliers λ. Such diffeos do possess non-trivial analytic
invariants, but none with holomorphic dependence on f .

5 In the context of identity-tangent diffeos, the connectors are sometimes referred to as horn maps,
but the former notion is more general: in resurgent analysis (see Section 1.2 infra) the connectors
are the operators that take us from one sectorial model to the next.
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on U-shaped domains6 by the limits:

f ∗± (z) = lim
k→±∞ l−k ◦ f k ; ∗ f±(z) = lim

k→±∞ f −k ◦ lk . (1.5)

The connectors π±1, with their northern and southern components, are
then defined on ±)(z) � 1 by:

π := f ∗+ ◦ ∗ f− ; π−1 := f ∗− ◦ ∗ f+ . (1.6)

For reasons that will soon become apparent, we must also consider the
infinitesimal generators f∗ and π∗ of f and π . These are formal, gener-
ically divergent power respectively Fourier series. Of course, π∗ is not
constructed directly from π , but via its northern and southern compo-
nents. We thus have the three pairs:

π := (πno,π so) ; π−1 := (π−1
no ,π

−1
so ) ; π∗ := (π∗no,π∗so) (1.7)

along with the relations

f (z) = exp
(
f∗(z) ∂z

)
. z

(
f∗ ∂z f ∗ ≡ 1

)
(1.8)

π±1
no (z) = exp

( ± π∗no(z) ∂z
)
. z (1.9)

π±1
so (z) = exp

( ± π∗so(z) ∂z
)
. z . (1.10)

In (1.8) f ∗ and ∗f denote of course the formal iterators, i.e. the power
series solutions of the equations

f ∗ ◦ f = l ◦ f ∗ with f ∗(z) = z + o(1) (1.11)

f ◦ ∗f = ∗f ◦ l with ∗f (z) = z + o(1) (1.12)

normalised by the condition of carrying no constant term. Anticipating
on the sequel, here is how the scalar invariants can be read off the Fourier
expansions of the connectors:

πno(z) = z +
∑
ω∈�−

A+
ω e

−ω z ; π so(z) = z +
∑
ω∈�+

A−
ω e

−ω z (1.13)

π−1
no (z)= z +

∑
ω∈�−

A−
ω e

−ω z ; π−1
so (z) = z +

∑
ω∈�+

A+
ω e

−ω z (1.14)

π∗no(z) =+2π i
∑
ω∈�−

Aω e
−ω z ; π∗so(z) =−2π i

∑
ω∈�+

Aω e
−ω z . (1.15)

6 f ∗+ and ∗f+ are defined on a west-north-south domain, while f ∗− and ∗f− are defined on an east-
north-south domain.
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Pay attention to the altered position of± in 1.13 and 1.14; the reasons for
this apparent incoherence shall become clear in due course. The indices
ω run through � := 2π iZ∗ or �± := ±2π i N∗, and each of the three
systems

{A+
ω , ω ∈ �} , {A−

ω , ω ∈ �} , {Aω , ω ∈ �} (1.16)

constitutes a free and complete system of analytic invariants.7

1.3 Affiliates. Generators and mediators

General affiliates. To each identity-tangent germ f and each power se-
ries γ (t) = t +∑ γr tr+1 we associate the so-called γ -affiliate f♦ along
with an infinite-order differential operator F♦. The correspondence
( f, F)  → ( f♦, F♦) goes like this:

f  → f♦ := F♦ . z ; F  → F♦ := γ (F − 1) . (1.17)

For a general γ , the operator F♦ has a non-elementary coproduct:
cop(F♦) := F♦ ⊕ 1+ 1⊕ F♦ +

∑
1≤p,q

γ [p,q] (F♦)p ⊕ (F♦)q . (1.18)

As a consequence, the straightforward germ-to-operator correspondence:

f  → F = 1+
∑
1≤n

( f )n
∂n

n! ( f (z) := f (z)− z) (1.19)

assumes a more intricate form for the affiliates:

f♦  → F♦ = f♦ ∂ +
∑
2≤r

∑
1≤ni ,2≤nr

♦n1,...,nr ( f♦)n1
∂n1

n1! . . . ( f♦)
nr
∂nr

nr ! . (1.20)

Special affiliates: generators and mediators. The structure coefficients
γ [p,q] and ♦n1,...,nr shall be investigated in Section 5-1, Section 5-2 and
Section 5-4, but they assume a particularly simple form for three special
types of affiliates:

(i) the infinitesimal generator ( f∗, F∗) with γ (t) = log(1+ t);
(ii) the main mediator ( f�, F�) with γ (t) = 2 (1+t)−1

(1+t)+1 = t
1+ 1

2 t
;

(iii) the second mediator ( f��, F��) with γ (t) = (1+t)2−1
(1+t)2+1 =

t+12 t2
1+t+ 1

2 t
2 .

7 With the minor qualifier that, under a conjugation by a shift h of the form lα(z) := z + α, the
periodic germs π± also undergo conjugation by the same shift, with obvious repercussions for their
Fourier coefficients.
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The generators we have already mentioned. For them, the co-product
and the germ-to-operator correspondence reduce to

cop(F∗) = F∗ ⊗ 1+ 1⊕ F∗ , f  → F∗ = f∗ ∂ . (1.21)

For the mediators, the formulae, while still relatively simple, become
more interesting

cop(F�) = F� ⊗ 1+1⊗ F�

+
∑
1≤n

(
−1
4

)n (
Fn+1
� ⊗ Fn

� + Fn
� ⊗ Fn+1

�

)
(1.22)

cop(F��) = F�� ⊗ 1+1⊗ F��

+
∑
1≤n

(−1)n(Fn+1
�� ⊗ Fn

�� + Fn
�� ⊕ Fn+1

��

)
. (1.23)

Relating F and F�, F��. As operators, the mediators F� and F�� admit
three distinct types of expansions, each with its own merits and draw-
backs:

F� = 2
F − 1
F + 1 = 2 C� D−1

� = 2D−1
[�] C[�] (1.24)

F�� = F − F−1

F + F−1 = C�� D−1
�� = D−1

[��] C[��] . (1.25)

The operators C�,D�, C��,D�� are defined as follows:

C� =
n odd∑
1≤n

2−n f n�
∂n

n! || C� : ϕ(z)  → 1
2

(
ϕ(z+ 1

2 f�(z))−ϕ(z− 1
2 f�(z))

)
D� =1+

n even∑
1≤n

2−n f n�
∂n

n! || C� : ϕ(z)  → 1
2

(
ϕ(z+ 1

2 f�(z))+ϕ(z− 1
2 f�(z))

)
C��=

n odd∑
1≤n

f n�
∂n

n! ||C�� : ϕ(z)  → 1
2

(
ϕ(z+ f��(z))−ϕ(z− f��(z))

)
D��= 1+

n even∑
1≤n

f n��
∂n

n! ||C�� : ϕ(z)  → 1
2

(
ϕ(z+ f��(z))+ϕ(z− f��(z))

)
.

The operators C[�],D[�], C[��],D[��] are defined in exactly the same way,
but relative to inputs f[�], f[��] with f�(z) ∼ f��(z) ∼ f[�](z) ∼ f[��](z) ∼
f (z)−z. As operators acting on formal germs, D−1

� and D−1
�� have to be

expanded in the predictable way, leading to formulae such as:
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f�  →F�= f� ∂ +
1 ≤ r∑

(
n1 odd

n2,..,nr even

)(−1)r−121−
∑
ni f n1�

∂ n1

n1! f
n2
�

∂ n2

n2! . . . f
nr
�

∂ nr

nr ! (1.26)

f��  →F��= f�� ∂ +
1 ≤ r∑

(
n1 odd

n2,..,nr even

)(−1)r−1 f n1��
∂ n1

n1! f n2��
∂ n2

n2! . . . f nr��
∂ nr

nr ! . (1.27)

Let us focus on the second mediator F��, to avoid the nuisance of the

factors (1/2)n . Its first expansion F�� = F−F−1
F+F−1 is wholly unproblem-

atic, with a commuting numerator and denominator, and simply reflects
the definition of F��. The existence of parallel expansions C��D−1

�� and
D−1

[��] C[��] follows, to put it briefly, from the fact that the operators

C�� and C[��] , D�� and D[��] , D−1
�� and D−1

[��] , C��D−1
�� and D−1

[��]C[��]
verify exactly the same types of co-product as, respectively, the operators

sinh(∂) , cosh(∂) , cosh(∂)−1 , tanh(∂)

and from the fact that tanh(∂) has precisely a co-product of type (1.23).
But since numerators and denominators no longer commute, we should
expect the inputs f�� and f[��] to differ, in a way that remains to elucidate.
For the moment, let us observe that, of the latter two expansions, F�� =

C��D−1
�� is the more useful, since it allows us to express the operatorial

mediator F�� directly in terms of the germ f�� := F��.z. But the other
expansion, namely F�� = D−1

[��] C[��], has its merits too, since it relies on
a germ f[��] which, as we shall see in a moment, is ‘closer’ than f�� to
the original f and, unlike f��, converges whenever f does. It is also

more economical than the first expansion F�� = F−F−1
F+F−1 , in the sense of

concentrating all the odd or even terms respectively in the numerator and
denominator.

Relating f�, f�� to f . Equating the first two expansions of the mediators,
we get

(F + 1) C�D�−1 = F − 1 an (F2 + 1) C�D�−1 = F2 − 1 .
Letting these operators act on z, we find the sought-for relations

f�( f (z))+ f�(z) = f (z)− z (1.28)

f��( f (z))+ f��( f
−1(z)) = f (z)− f −1(z) . (1.29)
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Relating f[�], f[��] to f . Inverting the definition-based expansion of the
mediators, we get successively

F−1=(1−(1/2)F�)−1F� and F2−1=2(1−F��)
−1F��

(1−(1/2)F�)(F−1)=F� and (1−F��)(F
2−1)=2F��

(1−D−1
[�] C[�])(F−1)=2D−1

[�] C[�] and (1−D−1
[��]C[��])(F2−1)=2D−1

[��]C[��]
(D[�]−C[�])F=(D[�]+C[�]) and (D[��]−C[��])F2=(D[��]+C[��]).

Finally, letting the operators act on z, we get:

f

(
z − 1

2
f[�]
)

= z + 1

2
f[�] (1.30)

f ◦2(z − f[��]) = z + f[��]. (1.31)

This implies, first, that the germs z  → z − 1
2 f[�] and z  → z − f[��]

are respectively reciprocal to the germs z  → 1
2(z + f (z)) and z  →

1
2(z+ f ◦2(z)) and, second, that f[�] and f[��] are convergent if and only if
f is.

Relating f�, f�� and f[�], f[��]. Post-composing the identies (1.28)-(1.29)
by the germs z − (1/2) f[�](z) or z − f[��](z) and using (1.30)-(1.31) to
eliminate f , we find:

2 f[�](z) = f�

(
z + 1

2
f[�](z)

)
+ f�

(
z − 1

2
f[�](z)

)
(1.32)

2 f[��](z) = f��(z + f[��](z))+ f��
(
z − f[��](z)

)
. (1.33)

After some non-commutative manipulations on differential operators and
their generating series, this yields:

f[�] = f�+
∑
1≤s

∑
1≤mi

(
∑
2mi)!4−

∑
mi

s!(1−s+∑2mi)! f
1−s+2∑mi
�

∏
1≤i≤s

f (2mi )
� (1.34)

f[��] = f��+
∑
1≤s

∑
1≤mi

(
∑
2mi)!

s!(1−s+∑2mi)! f
1−s+2∑mi
��

∏
1≤i≤s

f (2mi )
�� (1.35)

1.4 Brief reminder about resurgent functions

We will have to be content here with a very sketchy presentation. The
algebra of resurgent fonctions admits three different realisations or mod-
els:
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(i) the formal model, consisting of formal power series ϕ̃(z) in z−1 or
of more general transseries;8

(ii) the convolutive model, consisting of microfunctions9 at ζ = 0,
whosemajors ϕ̌(ζ ) are defined at the origin only and constraint-free
but whose minors ϕ̂(ζ ) have the property of endless continuation10

and exponential growth;11

(iii) the geometric model(s), consisting of analytic germs ϕθ(z) defined
on sectorial neighbourhoods of ∞ of bisectrix arg(z−1) = θ and
aperture at least π .

The natural algebra product in the z-models (i) and (iii) is of course mul-
tiplication. In the ζ -model (ii) it is convolution, defined first locally12

by

(ϕ̂1 ∗ ϕ̂2)(ζ ) :=
∫ ζ

0
ϕ̂1(ζ1) ϕ̂2(ζ − ζ1) dζ1 (ζ ∼ 0) (1.36)

and then in the large by analytic continuation.
In practice, one starts with elements ϕ̃ of model (i) obtained as formal

solutions of differential or functional equations, and the aim is to resum
them, i.e. to go to model (iii). Generally speaking, this is possible only
over the detour through model (ii), with the formal Borel tranform B

z−σ  → ζ σ−1

�(σ)
; (∂σ )

nz−σ  → (∂σ )
n ζ

σ−1

�(σ)
; etc (1.37)

taking us from (i) to (ii), and the polarised Laplace transform Lθ

ϕθ (z) =
∫
arg(ζ )=θ

ϕ̂(ζ ) e−ζ z dζ (1.38)

taking us from (ii) to (iii).

8 The tilda stands for ‘formal’, but will be omitted in contexts where everything is formal.

9 I.e. minor-major pairs (ϕ̂(ζ ), ϕ̌(ζ )). The majors are defined up to regular germs at the origin, and
the minors are related to them under 2π i ϕ̂(ζ ) ≡ ϕ̌(ζ e−π i )− ϕ̌(ζ e+π i ) for ζ ∼ 0. In the present
paper, we shall almost entirely dispense with majors, since we shall mostly be dealing with so-called
integrable microfunctions, whose minors carry the complete information.

10 Laterally along any finite and finitely punctured broken lines.

11 I.e. at most exponential, along infinite but finitely punctured broken lines, with a suitable unifor-
mity condition.

12 When the minors ϕ̂ are not integrable at the origin, one must modify the definition and draw in
the majors ϕ̌. Convolution is then defined on loop integrals that avoid the origin.



120 Olivier Bouillot and Jean Ecalle

The most outstanding feature of the resurgence algebras is the exis-
tence on them of a rich array of so-called alien operators �ω and �±

ω ,

with indices ω running through C• := C̃ − {0}. These operators act on
all three models13, but are first defined in the convolutive model, where
they have the effect of measuring the singularities of the (often highly
ramified) minors ϕ̂ at or rather over ω. Here is how they act:

(�̂ωϕ̂)(ζ ) :=
∑

ε1,...,εr

εr

2π i
λε1,...,εr−1 ϕ̂

(
ε1
ω1

,...,
,...,

εr
ωr
)
(ω + ζ ) (1.39)

(�̂±
ω ϕ̂)(ζ ) :=

∑
ε1,...,εr

± εr λ
±
ε1,...,εr−1 ϕ̂

(
ε1
ω1

,...,
,...,

εr
ωr
)
(ω + ζ ) (1.40)

with ωr = ω, with signs ε j ∈ {+,−}, with weights λε , λ+ε , λ−ε defined by

λε1,...,εr−1 := p! q!
r ! with p :=

∑
εi=+

1 , q :=
∑
εi=−

1 (1.41)

λεε1,...,εr−1 := 1 if ε1 = · · · = εr−1 = ε (1.42)

:= 0 otherwise

and with ϕ̂(
ε1
ω1

,...,
,...,

εr
εr
)
(ω+ζ ) denoting the analytic continuation of ϕ̂ from ζ

to ω+ ζ under right (respectively left) circumvention of each intervening
singularity ω j if ε j = + (respectively ε j = −). We start of course with
a point ζ close enough to 0 on the axis arg(ζ ) = arg(ω), and extend the
definition in the large by analytic continuation. The operators �̂ω and
their pull-backs �ω in the formal model are derivations. This means that
in the convolutive or formal models the Leibniz identities hold:

�̂ω(ϕ̂1 ∗ ϕ̂2) = �̂ω(ϕ̂1) ∗ ϕ̂2 + ϕ̂1 ∗ �̂ω(ϕ̂2) (1.43)

�ω(ϕ̃1 . ϕ̃2) = �ω(ϕ̃1) . ϕ̃2 + ϕ̃1 . �ω(ϕ̃2) (1.44)

When working in any one of the multiplicative models (formal or geo-
metric), it is often convenient to phase-shift the alien operators, and to
set:

��ω := e−ωz�ω ( [∂z,��ω] ≡ 0 ) (1.45)

��±
ω := e−ωz�±

ω ( [∂z,��±
ω ] ≡ 0 ) (1.46)

The gain here is that the new operators commute with ∂z . These phase-
shifted operators are also the natural ingredients of the axial operators

13 With the same symbols doing service in all three, since no confusion is possible.
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DD
θ
and DD±

θ
:

DD
θ
=

∑
arg(ω)=θ

��ω (1.47)

DD±
θ
= 1+

∑
arg(ω)=θ

��±
ω = exp

( ± 2π i DD
θ

)
(1.48)

which are the key to the axis-crossing identities :

ϕ
θ−ε = (DD+

θ
ϕ)

θ+ε ; (Φ .DD+
θ
)
θ−ε = (DD+

θ
. Φ )

θ+ε (1.49)

ϕ
θ+ε = (DD−

θ
ϕ)

θ−ε ; (Φ .DD−
θ
)
θ−ε = (DD−

θ
. Φ )

θ+ε (1.50)

that connect two sectorial germs ϕθ−ε and ϕθ+ε relative to Laplace in-
tegration right and left of any given singularity-carrying axis θ in the
ζ -plane.14

1.5 Alien derivations as a tool for uniformisation

Convolution domains. A Riemann surface R is said to be unobstructed
if, for any point ζ on it, the set Sζ of all singular points seen or half-seen
from ζ has a discrete projection Ṡζ on C.
A ramified analytic germ ϕ̂(ζ ) at the origin 0• of C• is said to be end-

lessly continuable if under analytic continuation it extends to an unob-
structed Riemann surface.
Endlessly continuable germs are stable under convolution.
A convolution domain is an unobstructed Riemann surfaceR for which

the space Hol(R) of all holomorphic functions onR is closed under con-
volution.
Any unobstructed Riemann surface R can, in a unique way, through

the adjunction of a suitable set of singular points, be turned into a min-
imally ramified convolution domain R – the so-called convolution com-
pletion, or stabilisation, ofR.
Fine convolution domains. We shall introduce a notion of fine Riemann
surface and fine convolution domain which is hardly restrictive (all resur-
gent functions encountered in practice have Borel transforms that natu-
rally extend to fine surfaces) and has the merit of greatly facilitating the
proofs of all the statements to follow in this section.15

14 In (1.43), (1.44), ϕ denotes any resurgent function and Φ any resurgent operator (such as multi-
plication or postcomposition by a resurgent function etc).

15 Let us stress that fineness is by no means necessary for the statements in question to hold. It
simply makes life easier and costs nothing.
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For any ρ > 0 and θ1 < θ2 in R, let D±
ρ,θ1,θ2

denote the sets of all alien
operators � of the form:

D+
ρ,θ1,θ2

:=
{
�=�+

ωr
...�+

ω1
;
∑

|ωi |≤ρ , θ1≤argωr≤···≤argω1≤θ2
}

D−
ρ,θ1,θ2

:=
{
�=�−

ωr
...�−

ω1
;
∑

|ωi |≤ρ , θ1≤argω1≤···≤argωr≤θ2
}
.

Note that the number r of factors in the decomposition of � is not
bounded.
Let us say that an (unobstructed) Riemann surfaceR is fine if, for any

(ρ, θ1, θ2), the number of operators � in D±
ρ,θ1,θ2

such that �.Hol(R) �=
∅ is finite. This amounts to an extremely weak condition on the distribu-
tion ofR’s ramification points.
Any fine Riemann surface R can, in a unique way, through the ad-

junction of a suitable set of singular points, be turned into a minimally
ramified fine convolution domain R – the completion, or stabilisation,
ofR.

Atomic alien operators. Any ramification point η of a fine convolution
domain R is connected with the origin 0• by a well-defined taut broken
line �η or TT-path, which in turn can be uniquely represented by a se-
quence (ω1, . . . , ωr ) whose elements ωi ∈ C• represent the successive
intervals of �η. Inequalities of the form

0 < π(2 n − 1) < argωi+1 − argωi < π(2 n + 1)
respectively −π(2 n + 1) < argωi+1 − argωi < −π(2 n − 1) < 0

signal that �η makes n positive (respectively negative) turns round its
i th summit. Between any two aligned16 ωi , ωi+1 we must insert a sign
εi ∈ {+,−} to indicate whether �η circumvents the i th ‘summit’ to the
right or to the left.
To each ramification point η of a fine convolution domainR there also

correspond two ‘ramified shifts’ S+η , S−η and an alien operator D̂η.
Each S±η is defined locally, near 0•. In projection on C, it amounts to

an ordinary η̇-shift but it takes 0• to the end-point of �η in such as way as
to map the small intervals issuing from 0• in the direction argω∓π onto
the small interval of same length that ends the broken line �η.
The atomic alien operators D̂η (so-called because they measure the sin-

gularity at the end-point of �η rather than a superposition of singularities,

16 I.e. when argωi = argωi+1.
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as the alien derivations do) are then defined by:

D̂η : Hol(R) → Hol(Rη)

D̂η ϕ̂(ζ ) := ϕ̂(S+η (ζ ))− ϕ̂(S−η (ζ )) (1.51)

first for ζ near 0•, and then continued in the large, on a fine convolution
domainRη that may, and often is, more (never less) ramified thanR.
There is a natural order ≺ on the ramification set R ram of any fine

convolution domain R, along with a natural co-product on its atomic
operators:

D̂η(ϕ̂1 ∗ ϕ̂2) ≡
∑

η1,η2≺η
Hη1,η2

η

(
R P

η1,η2
η D̂η1 ϕ̂1

) ∗ (R Q
η1,η2
η D̂η2 ϕ̂2

)
(1.52)

(i) with R denoting the one-turn rotation operator round 0•,

(ii) with a sum
∑

η1,η2≺η that is always finite,

(iii) with integers Hη1,η2
η , Pη1,η2

η , Qη1,η2
η that reflect the self-intersection

pattern of the broken line �η.

The structure tensor Hη1,η2
η turns C(R ram) into a commutative algebra

with its own discretised convolution

(h1 ∗ h2)(η) :=
∑

η1,η2≺η
Hη1,η2

η h1(η1) h2(η2)
(
h1, h2 ∈ C(R ram)

)
(1.53)

The convolution algebra C(R ram)may be viewed as the discrete scaffold-
ing of the convolution algebra Hol(R). In fact, C(R ram) is isomorphic to
the quotient17 Holpolar(R)/Holsubpolar(R).

Uniformisation of convolution products or powers. Similar formulae (of
which there exist several variants) hold for ordinary points ζ ofR.
The following variant involves the standard alien derivations and has

the advantage of uniqueness:

ϕ̂(ζ ) ≡
∑
s

K ζ
ζs
ϕ̂(ζs)+

∑
r

∑
ωi

∑
s

(2π i)r K ζ
ζs ,ω

�̂ωr ...�̂ω1 ϕ̂(ζs,ω) (1.54)

17 A function ϕ̂ in Hol(R) is said to be of polar respectively subpolar type if it behaves like
h(η)

2π i (ζ̇−η̇) + o( 1
(ζ̇−η̇) ) respectively o(

1
(ζ̇−η̇) ) in the ramified vicinity of any given η ∈ Rram. The

space Holpolar(R) is clearly closed under convolution, with Holsubpolar(R) as an ideal.
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with a finite number of points ζs (respectively ζs,ω) located over ζ̇ (re-
spectively ζ̇ −∑ ω̇i ) but lying within the holomorphy star of ϕ̂ (respec-
tively �̂ωr . . . �̂ω1 ϕ̂), and with entire (respectively rational) structure co-
efficients K ζ

ζs
(respectively K ζ

ζs ,ω
).

Here is a second variant that relies on the operators �̂+
ω and �̂

−
ω of

(1.40). It is not unique, but can always be adjusted so as to involve only
entire coefficients H ζ

ζs
and H ζ

ζs ,ω,ε
.

ϕ̂(ζ )≡
∑
s

H ζ
ζs
ϕ̂(ζs)+

∑
r

∑
ωi ,εi

∑
s

H ζ
ζs ,ω,ε

�̂εr
ωr
. . . �̂ε1

ω1
ϕ̂(ζs,ω,ε) (1.55)

Both variants reduce the evaluation of any convolution product or power,
at any given point ζ of R, on any Riemann sheet, however distant from
0•, to a finite number of convolution integrals to be calculated on straight
intervals joining 0• to points ζi or ζi,ω, ζi,ω,ε that lie on the main Riemann
sheet.

For instance, if we apply (1.54) to the evaluation of the convolution
power ϕ̂ ∗n(ζ ), for any ζ ∈ R, any ϕ̂ ∈ Hol(R), and n → ∞, we find
that everything reduces to finitely many terms of the form

�̂ω ϕ̂
∗n(ζs,ω)=

1≤k≤r∑
ω∈sha(ω1,...,ωk)

n!
k!(n−k)!

(
ϕ̂∗(n−k)∗�̂ω1 ϕ̂∗...�̂ωk ϕ̂

)
(ζs,ω) (1.56)

with s and k bounded, so that in the end the asymptotics is dominated
by trite convolution integrals ϕ̂ ∗(n−k)(ζs,ω) evaluated on simple intervals
(0•, ζs,ω] safely located within the main Riemann sheet (or its boundary).
This uniformising virtue of alien derivations (by which we mean their

power to reduce complicated operations on ramified, multivalued func-
tions to simple operations on their, and their alien derivatives’, uniform
restrictions to the holomorphy star) is one of the main justifications
(though not the topmost) of alien calculus.

Remark. Alongside the TT-paths18 that connect any ζ ∈ R to the origin
0•, we must also consider two classes of more convolution-friendly, but
also more complex paths: the wildly contorted SS-paths19 and the even
more intricate ZZ-paths20. The SS-paths are useful for establishing the

18 “Taut broken lines”.

19 “Self-symmetrical and self-symmetrically shrinkable paths”.

20 “Self-symmetrical, self-symmetrically shrinkable, and self-replicating paths”.
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stability under convolution of endless continuability, and the ZZ-paths
for illustrating the formulae (1.52)-(1.56).
Where these paths fail miserably, though, is in providing decent esti-

mates for convolution products or powers on far-flung Riemann sheets.
For the convolution powers21, SS-path considerations lead to asymptoti-
cally correct estimates∣∣ϕ̂∗n(ζ )

∣∣ ≤ c0(ζ )
c1(ζ )n

n!
(
c0(ζ ), c1(ζ ) > 0

)
.

However, for points ζ ∈ R whose TT-path has k summits, the bounds
derivable in this way (especially c0) become hopelessly suboptimal as k
increases. Even for values as small as k = 20, c0 can fall off the mark by
something like a factor 1010.

The convolution domains R := C̃ −� with � a lattice. For any discrete
lattice � = τ1Z or τ1Z + τ2Z (τi ∈ C∗,)(τ1/τ2) �= 0), the surfaceR :=
C̃ −� is an – obviously fine – convolution domain with a particularly
simple structure: its ramified shifts S±η form a group which contains the
one-turn rotation R and is generated by just two elements (whether � is
one- or two-dimensional!). There is even an elementary algorithm for
finding all the ≺-antecedents of any ramification point η ∈ R ram, as well
as all the structure coefficients featuring in (1.52) and (1.54). This applies

in particular for the surface R := ˜C−2π iZ, which is the natural surface
of practically all the resurgent functions to appear in this investigation.

1.6 Medial operators

Their definition resembles that of the alien derivations

(�̂�
ωϕ̂)(ζ ) :=

∑
ε1,...,εr

εr

2π i
λ�ε1,...,εr−1 ϕ̂

(
ε1
ω1

,...,
,...,

εr
ωr
)
(ω + ζ ) (1.57)

(�̂��
ω ϕ̂)(ζ ) :=

∑
ε1,...,εr

εr

2π i
λ��ε1,...,εr−1 ϕ̂

(
ε1
ω1

,...,
,...,

εr
ωr
)
(ω + ζ ) (1.58)

with ωr = ω and the usual signs ε j ∈ {+,−} but with simpler weights
λ
�
ε , λ

��
ε , still independent of the intervals ωi :

λ�ε1,...,εr−1 = λ
[p,q]
� := 2−p−q = 21−r (1.59)

λ��ε1,...,εr−1 = λ
[p,q]
�� := #(p − q) 2−int(

p+q+1
2 ) (1.60)

21 Of a function ϕ̂(ζ ) regular at 0•.
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As usual, p and q denote the numbers of+ and− signs in {ε1, . . . , εr−1}.
As for the elementary factor #(p− q) ≡ #(q − p), it assumes only three
values, 0, 1,−1, and displays a remarkable 8-periodicity :
#(k+8)≡#(k) , # :[0,1,2,3,4,5,6,7]  →[1,1,0,−1,−1,−1,0,1] (1.61)
Like the earlier weights λε in (1.41) attached to the standard alien deriva-
tions, the new weights λ�ε , λ

��
ε add up to 1:∑

εi ∈{+,−}
λε1,...,εr−1 =

∑
εi ∈{+,−}

λ�ε1,...,εr−1 =
∑

εi ∈{+,−}
λ��ε1,...,εr−1 = 1 (∀ r)

The simplest way to express the relations between the new operators and
the classical ones is via the generating series:

DD� =
∑

arg(ω)=0
���

ω , DD�� =
∑

arg(ω)=0
����

ω (1.62)

The relations read:

DD� = 1

π
tan(πDD) = 1

π i

DD+ − 1
DD+ + 1 = 1

π i

1−DD−

1+DD− (1.63)

DD�� = 1

2π
tan(2πDD) = 1

2π i

DD+ −DD−

DD+ +DD− (1.64)

As pointed out at the outset, the new operators are neither derivations nor
automorphisms. They possess co-products sui generiswhich, once again,
are best expressed in terms of the generating series:

DD�  → DD� ⊗ 1+ 1⊗DD�

+
∑
1≤n

(π)2n
[
(DD�)n+1 ⊗ (DD�)n+(DD�)n ⊗ (DD�)n+1

]
DD��  → DD�� ⊗ 1+1⊗DD��

+
∑
1≤n

(2π)2n
[
(DD��)n+1 ⊗ (DD��)n+(DD��)n ⊗ (DD��)n+1

]
Short proofs. The quickest way to prove all the above relations at one
go is to start with the axis arg ζ = 0 punctured over N. Denoting σ and
τ the non-commuting “shifts” that take ζ small (with arg ζ = 0) to ζ + 1
after circumventing the point at 1 respectively to the right or to the left
(and then extending the action of σ and τ in the large), we find that

DD+ = (1− τ) (1− σ)−1 , DD− = (1− σ) (1− τ)−1 (1.65)
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Next, proceeding backwards, we define ���
ω,��

��
ω via (1.62) in terms of

DD�,DD��; then DD�,DD�� via (1.63)-(1.64) in terms of DD±; then DD± via
(1.65) in terms of the elementary shits σ, τ . After some rather easy cal-
culations in the non-commutative variables σ, τ , we find the expressions
(1.59), (1.60) for the weights λ�ω, λ

��
ω , though at first only for the case

when {ω1, ω2, ω3 . . . } = {1, 2, 3 . . . }. But we clearly have∑
εi0=±

λ�ε1,...,εr−1 = λ
�

ε1,...,[εi0 ],...,εr−1 ,∑
εi0=±

λ��ε1,...,εr−1 = λ
��

ε1,...,[εi0 ],...,εr−1 (∀i0 < r)

with the notation [εi0] signaling the omission of εi0 . It follows that the
weights λ�•, λ��• retain their expression (1.59),(1.60) for all sequences {ωi }
over N and, in fact, over R+.

1.7 Resurgence of the iterators and generators

The iterator f ∗ and ∗f , characterised by the relations (1.11)-(1.12), and
the (infinitesimal) generator f∗, characterised by the relation (1.8), verify
the following resurgence equations

�ω
∗f (z) = +Aω ∂z ∗f (z) (∀ω ∈ �) (1.66)

�ω f ∗(z) = −Aω e−ω ( f ∗(z)−z) (∀ω ∈ �) (1.67)

�ω f∗(z) = −ω Aω f∗(z) e−ω ( f
∗(z)−z) (1.68)

with the very same scalar coefficients Aω as in (1.15). For all values
of ω not in �, the alien derivatives are ≡ 0. If we now introduce the
differential operators:

Aω := Aω e
−ωz ∂z (∀ω ∈ �) (1.69)

the resurgence equations assume the form of the Bridge equation:22

��ω
∗f (z) = +Aω

∗f (z) (1.70)

��ω f ∗(z) = −(Aω . z) ◦ f ∗(z) . (1.71)

22 So-called because it relates ordinary and alien derivatives of one and the same resurgent function.
The Bridge equation has in fact much wider applications, and extends, in one form or another, to
practically all resonant local objects, of which identity-tangent diffeos are but a special case. An
entire book [6] has been devoted to the subject.
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When expressed in terms of the subsitution operators F∗ and ∗F associ-
ated with ∗f, f ∗, the Bridge equation takes an even more pleasant form[

��ω, F
∗] = − F∗ Aω (F∗ ϕ := ϕ ◦ f ∗) (1.72)[

��ω,
∗F
] = +Aω

∗F ( ∗F ϕ := ϕ ◦∗ f ) . (1.73)

Likewise, with the (operatorial) generator F∗ := f∗ ∂ = F∗.∂.F∗, we
get:

[��ω, F∗] = F∗ [∂,Aω] ∗F . (1.74)

But whichever variant we may care to consider, the commutation identi-
ties

[
��ω1,Aω2

] = 0 make it easy to iterate the above resurgence equa-
tions. Thus from (1.70) we straightaway derive

��ωr . . . ��ω1
∗f (z) = Aω1 . . .Aωr

∗f (z) (order reversion!) .
(1.75)

As a consequence, the effect on ∗f and f ∗ of the alien operators ��±
ω and

of the axial operators DDθ is easy to calculate. It is best written in terms
of the substitution operators ∗F and F∗ associated with ∗f, f ∗, and results
in the so-called axial Bridge equation:

Aθ = DDθ − ∗F DDθ F∗ (1.76)

A+
θ = DD+

θ
∗F DD−

θ F∗ = ∗F DD−
θ F∗ DD+

θ (1.77)

A−
θ = DD−

θ
∗F DD+

θ F∗ = ∗F DD+
θ F∗ DD−

θ . (1.78)

The axial Bridge equation23 involves differential (respectively substitu-
tion) operators Aθ (respectively A±

θ ):

Aθ =
∑

arg(ω)=θ
Aω (1.79)

A±
θ
= 1+

∑
arg(ω)=θ

A±
ω = exp

( ± 2π i Aθ

)
(1.80)

that are simply related to the differential (respectively substitution) oper-
ators�∗ (respectively�±) associated with the connectors of Section 1.1:

�no := A+
− π
2

; �so := A−
+ π
2

(1.81)

�−1
no := A−

− π
2

; �−1
so := A+

+ π
2

(1.82)

�∗no := +2π i A− π
2

; �∗so := −2π i A+ π
2
. (1.83)

23 We say Bridge equation in the singular since (1.77) and (1.78) are merely exponential variants of
(1.76). The commutation of the three automorphismsA±

θ ,DD
±
θ ,

∗F DD∓
θ F∗ is itself a consequence

of the commutation of the three derivations Aθ , DDθ , ∗F DDθ F
∗.
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The first identity (1.81) results from applying the direct axis-crossing for-
mula (1.49) with θ = −π

2 and ϕ = ∗f or Φ = ∗F , since ∗f
θ±ε = ∗f±. The

second identity (1.81) results from applying the inverse axis-crossing for-
mula (1.50) with θ = +π

2 and ϕ = ∗f or Φ = ∗F , since in that case
∗f

θ±ε = ∗f∓ (inversion!). The identities (1.82) and (1.82) immediately
follow.

Direct access to the generators and mediators of π . Consider now the
mediators π�, π�� of the connector π , with their northern/southern com-
ponents and their formal Fourier expansions. They run parallel to those
(see (1.68)) of the infinitesimal generator π∗:

π �,no(z) =+2π i
∑
ω∈�−

A�ω e
−ω z ; π �,so(z) =−2π i

∑
ω∈�+

A�ω e
−ω z (1.84)

π ��,no(z) =+2π i
∑
ω∈�−

A��ω e
−ω z ; π ��,so(z) =−2π i

∑
ω∈�+

A��ω e
−ω z (1.85)

Based on (1.67) and (1.57)-(1.58), we see that we can access the Fourier
coefficients of π∗, π�, π��, or indeed those of the general affiliate π♦, di-
rectly from one and the same resurgent function, namely f ∗:

��ω f ∗ = −Aω e−ω f ∗,

���
ω f ∗ = −A�ω e−ω f ∗,

����
ω f ∗ = −A��ω e−ω f ∗

(1.86)

without bothering about the corresponding affiliates of f , i.e. f∗, f�, f��,
f♦. Though it is true, as we shall aver in the next section, that f�, f��
etc. verify their own interesting resurgence equations with a mixture of
invariant and non-invariant resurgence constants from which, after some
sifting, all the Fourier coefficients A�ω, A

��
ω etc. can be reconstructed,

the fact remains that the f -affiliates have no particular closeness to the
corresponding π-affiliates.

1.8 Resurgence of the mediators

The relations (1.28)-(1.29), which may be viewed as perturbed differ-
ence equations, determine f� and f�� in terms of f . A standard argu-
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ment shows that f�(z) and f��(z) are resurgent in z, with first-order alien
derivatives verifying the homogeneous equation:

(��ω0 f�) ◦ f +��ω0 f� = 0 (∀ω0 ∈ π iZ − 2π iZ) (1.87)

(��ω0 f��) ◦ f ◦2 +��ω0 f�� = 0 (∀ω0 ∈ 12 π iZ − π iZ) (1.88)

whose general solution are of the form

��ω0 f� = Aω0
e−ω0 f

∗
(∀ω0 ∈ π iZ − 2π iZ) (1.89)

��ω0 f�� = A
ω0
e−ω0 f

∗
(
∀ω0 ∈ 12 π iZ − π iZ

)
(1.90)

with resurgent constants Aω0
and A

ω0
unrelated to the invariants Aω( f ).

In fact, Aω0
and A

ω0
are not invariant under analytic changes of z-coordi-

nates and, unlike the invariants Aω( f ), they involve coloured multizetas
as their transcendental ingredients, as we shall see in Section 3.6. But
the mediators’ alien derivatives of second (and higher) order obviously
depend only on the iterator f ∗ and involve no new resurgent constants
other than the invariants Aω:

��ω1 ��ω0 f� = ω0 Aω0
Aω1 e

−(ω0+ω1) f ∗ (∀ω1 ∈ 2π iZ) (1.91)

��ω1 ��ω0 f�� = ω0 A
ω0
Aω1 e

−(ω0+ω1) f ∗ (∀ω1 ∈ 2π iZ) (1.92)

Both systems still hold if we replace f�(z) := F�.z and f��(z) := F��.z by
��(z) := F�.φ(z) and ���(z) := F��.φ(z) for any convergent φ, except
that the first resurgent constants Aω0

and A
ω0
now depend on φ (while

the Aω1 depend on f alone). It would thus be possible to recover the
invariants of f from any such �� or ���, barring the highly exceptional
(but not impossible) case when all initial resurgent constants Aω0

or A
ω0

vanish.
This state of affairs is fairly typical for the general affiliates: whenever

γ is meromorphic with actual poles, the affiliate f♦(z) := γ (F−1) . z of
f verifies resurgent equations that involve, alongside the invariants Aω of
f , non-invariant constants like Aω0

and A
ω0
.
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1.9 Invariants, connectors, collectors

Let us survey in one table some of the main objects introduced so far or
yet to come.

diffeo collectors connectors invariants

g�
3
′
�−→ p�

3
′′
�−→ sp�

3
′′′
�−→ π � = (π � no,π � so)

3
′′′′
�−→ {A�ω}

↑2� ↓4� ↓5� no ↓5� so ↓6�

f = l ◦ g 1
′

−→ p± 1
′′

−→ sp± 1
′′′

−→ π± = (π±
no,π

±
so)

1
′′′′

−→ {A±
ω }

↓2∗ ↑4∗ ↑5∗ no ↑5∗ so ↑6∗

g∗
3
′
∗−→ p∗

3
′′
∗−→ sp∗

3
′′′
∗−→ π∗ = (π∗no,π∗so)

3
′′′′
∗−→ {Aω}

The middle row carries the objects of direct interest to us, while the up-
per and lower rows carry their two main affiliates (the first mediator and
the infinitesimal generator), which are more in the nature of auxiliary
constructs.
The first, third and fourth columns carry objects already familiar to

us. The second column, however, carries novel, highly interesting ob-
jects, the collectors, which are very close in a sense to the connectors,
yet should be, for the sake of conceptual cleanness, clearly held apart.
The collectors may assume four distinct forms:

(i) formal series of multitangents, noted p;
(ii) formal series of monotangents, also noted p;
(iii) formal Laurent series of z−1, noted lp
(iv) the singular part, noted sp, of these Laurent series.

One goes from (i) to (ii) by multitangent reduction as in Section 2.3 ; and
from (ii) to (iv) by the change Tes1  → z−s1 .
In any of these incarnations, the collectors are but a step removed from

the invariants. Yet they are not invariant themselves: they depend on
the z-chart in which the diffeo f is taken. Another difference is that
whereas the collectors π± are convergent Fourier series, the collectors
p± are condemned to remain formal power series in the countably many
coefficients fn of f . But this is perfectly all right, since the function of
the collectors is precisely to carry, in conveniently compact form, all the
information about the f -dependence of the connector π and, ultimately,
of the invariants Aω.
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One last remark is in order here: although we are basically interested
in the objects of the middle row, and more specifically in getting from
f to the invariants {A±

ω }, we shall see that the most advantageous route
is not the straight path through the arrows 1, 1′, 1′′, 1′′′′, but any of the
roundabout paths that start with 2∗ or 2�: these indirect routes are much
more economical in terms of calculations and also more respectful of the
underlying symmetries and parities.

1.10 The reverse problem: canonical synthesis

It can be shown that any convergent pair π = (πno,π so) is the connector
pair of some standard diffeo f = l ◦g. This raises the problem of synthe-
sis : how to reconstitute a germ f with a prescribed set of (admissible)
invariants? And how to select a canonical f among all possible choices?
A semi-canonical synthesis was sketched in [5] and a fully canonical one
was constructed in [9]. The latter depends on a single parameter c whose
real part must be chosen large enough.24 The construction produces a
canonical fc := ∗fc ◦ l ◦ f ∗c from its iterator f ∗c , which in turn is explic-
itly given, in operator form, by the formula

F∗
c := 1+

∑
r

∑
ωi∈�

(−1)r Ueω1,ω2,...,ωrc (z) Aωr . . .Aω2 Aω1 (1.93)

with a careful re-arrangement of the terms25 necessary to ensure conver-
gence. The two ingredients in (1.93) are the invariants Aω taken in oper-
ator form (1.69), and some special resurgence monomials Ueω

c (z) defined
by

Ueω
c (z) := e||ω||z+c

2||ω̄||z−1SPA
∫ ∞

0

e−
∑
(ωi ti+c2ω̄i t−1i )

(tr−tr−1)...(t2−t1)(t1−z)dt1...dtr
(1.94)

where SPA denotes a suitable average of all the 2r−1 possible integration
multipaths that reflect the 2r−1 manners in which the variables t j may
circumvent each other on their way from 0 to∞.

2 Multitangents and multizetas.

The multitangents and multizetas, being the transcendental ingredient in
the analytical expression of the invariants of identity-tangent diffeos26,

24 Synthesis cannot be absolute, i.e. parameter-free.

25 Known as arborification-coarborification.

26 And of much else – they are almost coextensive with the whole field of difference equations.
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deserve a short excursus. But we must begin with a brief reminder about
moulds, which are the proper tool for handling multi-indexed objects of
whatever description.

2.1 Mould operations and mould symmetries

Main mould operations. Moulds are functions of finite sequences ω =
(ω1, ..., ωr ) of any length r ≥ 0, noted as right-upper indices and ren-
dered, as mute variables, by a plain bold dot •. Moulds can be multiplied
and composed :

C• = A• × B• ⇐⇒ Cω =
∑

ω′ω′′=ω

Aω′
Bω′′

(2.1)

C• = A• ◦ B• ⇐⇒ Cω =
∑

ω1...ωs=ω

A|ω1|,...,|ωs| Bωs . . . Bωs (ωi �= ∅)

with all the predictable relations, including

(A• × B•) ◦ C• = (A• ◦ C•)× (B• ◦ C•) .

The units for multiplication or composition are the moulds 1•, Id• respec-
tively defined by:

1∅ := 1 ; 1ω1,...,ωr := 0 if r �= 0 (2.2)

Id ω1 := 1 ; Id ω1,...,ωr := 0 if r �= 1 (2.3)

There exist scores of other mould operations, unary or binary. They are
far too numerous to be assigned distinct symbols. So we resort to short
letter combinations instead – even, retroactively, for mould multiplica-
tion and composition, which for clarity are often noted mu(M•

1 ,M
•
2 ) and

ko(M•
1 ,M

•
2 ) instead of M

•
1 × M•

2 and M
•
1 ◦ M•

2 . The corresponding Lie
brackets are noted lu(M•

1 ,M
•
2 ) and lo(M

•
1 ,M

•
2 ).

The multiplicative inverse of a mould M• is usually noted muM•. It
exists if and only if M∅ �= 0.
The composition inverse of a mould M• is usually noted koM•. It

exists if and only if M∅ = 0 and Mω1 �= 0 ∀ω1.
A mould M• is said to be of constant type if Mω depends only on the

length r := r(ω) of the sequence ω, i.e. if Mω := mr . Such moulds
may conveniently be noted m(Id•) with m(t) :=∑mr tr . Multiplying or
composing constant-type moulds M• reduces to multiplying or compos-
ing the underlying power series m(t).
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Main mould symmetries. Most moulds tend to fall into one or the other
of four symmetry classes or types:

M•symmetral (respectively alternal) ⇔
⇔

∑
ω∈sha(ω′,ω′′)

Mω = Mω′
Mω′′

(respectively 0)

M•symmetrel (respectively alternel) ⇔
⇔

∑
ω∈she(ω′,ω′′)

Mω = Mω′
Mω′′

(respectively 0) .

Here, sha(ω′,ω′′) (respectively she(ω′,ω′′)) denotes the set of all se-
quences ω deducible from ω′ and ω′′ under plain (respectively contract-
ing27 ) shufflings. The main symmetry-types get exchanged under pre- or
post-composition by special constant-type moulds. Thus

symmetral• = exp(Id•) ◦ alternal• , alternel• = alternal ◦ log(1•+Id•)

symmetrel• − 1• = elternel•=(exp(Id•)−1•) ◦ alternal• ◦ log(1•+Id•).
Hairsplitting though it may seem, the distinction between symmetrel and
elternel should be maintained throughout: symmetral or symmetrel
moulds are stable under multiplication, whereas alternal and elternel
moulds are stable under composition. Likewise, alternal and alternel
moulds are stable under the Lie bracket lu.
Pre- respectively post-composition of alternalmoulds by c−1tanh(cId•)

respectively c−1 arctanh(c Id•) (chiefly for c = 1, 1/2, i, i/2) generates
new symmetry types, signalled by one or two “o” vowels in their name.
Though second in importance and frequency of occurrence to the four
main symmetry types, these new exotic types are of more than marginal
importance, especially in this investigation. They will repeatedly occur in
connection with the mediators, the medial alien operators, and the multi-
tangents To•,Too•.
Moulds of symmetral, symmetrel, or c-symmetrol 28 type generate three

multiplicative groups and their multiplicative inverses are given by simple

27 I.e. allowing order-compatible, pairwise contactions (ω′i , ω′′j )  → ω′i + ω′′j of elements from the
parent sequences.

28 I.e. moulds of type symmetral• ◦ (c−1 tanh(c Id•)) or symmetrel• ◦ ( Id•
1•− 1

2 Id
•
)
if c = 1

2 .
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involution formulae:

muS• = anti.S• ◦ (−Id•) if S• ∈ symmetral (2.4)

muS• = anti.S• ◦ (− Id•
1•+Id• ) if S• ∈ symmetrel (2.5)

muS• = anti.S• ◦ (−Id•) if S• ∈ c-symmetrol (2.6)

with anti Sω1,...,ωr := Sωr ,...,ω1 .

Main moulds relevant to our investigation.

symmetrel symmetral symmetrol
ze• za• zo• scalar-valued (multizetas)
S̃e

•
(z) S̃a

•
(z) S̃o

•
(z) resurgent-valued (resur.monomials)

Te•(z) Ta•(z) To•(z) meromorphic-va. (multitangents)

elternel alternal olternol
Tee•(z) Taa•(z) Too•(z) meromorphic-va. (multitangents)

Tee•ω Taa•ω Too•ω scalar-valued (multizeta sums)

2.2 Multizetas

In this subsection, all indices si are in N∗ and, to preempt divergence, we
(provisionally) assume s1 �= 1 for multizetas and s1, sr �= 1 for multitan-
gents.
We first consider three multizeta-valued moulds, ze•, za• and zo• :

zes1,...,sr :=
∑

n1>...>nr>0

n−s11 . . . n−srr (2.7)

zas1,...,sr :=
∑

n1≥...≥nr>0
n−s11 . . . n−srr

∏ 1

r j ! (2.8)

zos1,...,sr :=
∑

n1≥...≥nr>0
n−s11 . . . n−srr

∏
21−r j (2.9)

If the monomial
∏
n−sii in (2.8) or (2.9) involves t clusters of r1, ..., rt

identical integers ni (1 ≤ t ≤ r), the multiplicity corrections have to be
defined accordingly, as

∏
1/r j ! or∏ 21−r j . Clearly

za• = ze• ◦ (exp(Id•)− 1•) (2.10)

zo• = ze• ◦
( Id•

1• − 1
2 Id

•
)

= za• ◦
(
2 arctanh(

1

2
Id•
)

(2.11)

The moulds ze• and za• are obviously symmetrel and symmetral, while
zo• falls into a subaltern symmetry type: symmetrol (see Section 5.1).
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Fast computation of the multizetas. Our two guiding concerns here are:
replacing the sluggish rate of convergence of the series (2.7), (2.8), (2.9)
by a geometric rate of convergence and making manifest the multitzetas’
hidden parity properties.
Let trunze•n be the truncated multizetas, defined as in (2.7) but with

summation over n ≥ n1 > . . . nr > 0, and let remze•n be the remainder
multizetas, defined again as in (2.7) but with summation over +∞ ≥
n1 > . . . nr > n. Let trunza•n, trunzo•n and remza•n, remzo•n be simi-
larly defined. The symmetry types are preserved, so too are the relations
(2.10)-(2.11), and we have obvious mould factorisations

ze• = remze•n × trunze•n (2.12)

za• = remza•n × trunza•n (2.13)

zo• = remzo•n × trunzo•n . (2.14)

Using the elementary difference equations (in n) verified by remze•n , we
find for that mould a divergent but Borel resummable (and resurgent)
asymptotic expansion asremze•n , in decreasing powers of n, of the form:

asremzes1,...,sr = e∂

1− e∂
n−sr

e∂

1− e∂
n−sr−1 . . .

e∂

1− e∂
n−s1 (2.15)

= 1

ns1+···+sr−r
∏
1≤i≤r

1

s1 + · · · + si − i
+ o
( 1

ns1+···+sr−r
)
.

Here ∂ := ∂n and each operator e∂

1−e∂ = − ∂−1− 1
2− 1

12 ∂ + . . . in (2.15)
acts on everything standing to its right. The last two asymptotic series
factor into:

asremza•n = asremza•n ×
( 2

1• + eI •n

)
(2.16)

asremzo•n = asremzo•n ×
( I•n
1• − 1

2 I
•
n

)
(2.17)

with elementary right factors involving the moulds I •n and K •
n = 2

(
1• +

eI
•
n
)−1
I s1,...,srn = 0 if r �= 1 and I s1n := n−s1 , I ∅n := 0 (2.18)

Ks1,...,sr
n = κr n

−(s1+···+sr ) with
2

1+ et
=:
∑

κr t
r (2.19)

and with non elementary but essentially (up to an elementary power of n)
even left factors of the form

asremzas1,...,srn and asremzos1,...,srn ∈ nr−(s1+···+sr ) C[[n−2]]. (2.20)
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There is, however, a significant difference between the two factorisations.
Whereas we can see, by post-composing (2.15) by Id•×(1•−Id•)−1, that
asremzo• is given by a simple induction:

asremzos1,...,sr = H(∂) n−sr H(∂) n−sr−1 . . . H(∂) n−s1 (2.21)

with H(∂) := e∂

1−e∂ + 1
2 = − 1

2cotanh(
1
2∂), no such induction holds for

asremza•. That moulds admits only indirect definitions, like:

asremza• = asremzo• ◦
(
2 tanh(

1

2
Id•)

)
(2.22)

or

asremzas1,...,sr =
[
SAd1,...,dr .

∏
1≤i≤r

n−sii

]
ni=n

(2.23)

with

SA• :=
(
SE• × (1• + Id•)

)
◦
(
exp(Id•)− 1•

)
(2.24)

and with the important symmetrel mould SE•:

SEd1,...,dr :=
∏
1≤i≤r

ed1+···+di

1− ed1+···+di (2.25)

The first definition (2.22) results directly from (2.11) restriced to the re-
mainders. The second definition calls for some explanations. Here, each
di denotes the operator ∂ni that acts on ni alone. On the right-hand side
of (2.23), we let the operator SAd act on the product

∏
n−sii and then set

ni := n. To establish (2.23), we observe that (2.15) may be written

asremzes1,...,sr =
[
SEd1,...,dr .

∏
1≤i≤r

n−sii

]
ni=n

(2.26)

and we then use the relation asremza• = asremze• ◦ (exp(Id•)−1•) that
results from restricting (2.10) to the remainders. The interesting point
about (2.23) is that it relates the parity property (2.20) of asremza• to the
following parity property of SE•

neg.SE• =
(
SE• × (1• + Id•)

)
◦
(
− Id•

1• + Id•
)

(2.27)

and to the formula for its multiplicative inverse muSE•:

muSE• = e|•| anti.neg.SE• (2.28)

with

|(s1, ..., sr )|=
∑

si , neg.S
s1,...,sr := S−s1,...,−sr , anti.Ss1,...,sr := Ssr ,...,s1
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Acceleration of the convergence . When we calculate ze• according to
formula (2.12) by taking the exact value of the truncated factor trunze•n
and calculating the remainder factor remze•n from its asymptotic expan-
sion (2.15) cut off at the least term, we get an excellent approximation,
with an error that decreases roughly like exp(−2πn) as the truncation
order n increases. The same applies to za• and zo•: the truncated fac-
tors trunza• and trunzo• may have more summands than trunze•, but this
is more than offset by the parity simplifications in the remainder factors
remza• and especially remzo•.
We may note that this method remains valid, and retains its high effi-

ciency, for general complex values of the weights si , even when the in-
equalities0(s1+. . .+si) > i that guarantee the convergence of (2.7)-(2.9)
no longer hold.

Quadratic constraints. The symmetrelity of ze•, or the strictly equiva-
lent symmetries of za• and zo•, do not exhaust the set of algebraic con-
straints on the multizetas: there exists an another set of constraints, of
‘equal strength’, based on a radically different, essentially discrete29 en-
coding: see Section 6.2.

2.3 Multitangents

The multizetas enter invariant analysis indirectly, as scalars attached to
elementary periodicmeromorphic functions – the so-calledmultitangents.
Here are the main multitangent-valued moulds with their symmetry

types:

Te• 1→ Ta• 2→ To• symmetrel
1→ symmetral

2→ symmetrol
↓3 ↓4 ↓5 ↓3 ↓4 ↓5
Tee• 1→ Taa• 2→ Too• elternel

1→ alternal
2→ olternol

The two upper moulds are defined directly by30

Tes1,...,sr (z) :=
∑

n1>...>nr

(n1 + z)−s1 . . . (nr + z)−sr (2.29)

Tas1,...,sr (z) :=
∑

n1≥...≥nr
(n1 + z)−s1 . . . (nr + z)−sr

∏ 1

ri ! (2.30)

Tos1,...,sr (z) :=
∑

n1≥...≥nr
(n1 + z)−s1 . . . (nr + z)−sr

∏
21−ri (2.31)

29 Unlike the si -encoding, which of course extends to the complex field.

30 With the same r j in (2.30) as in (2.8).
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and the two lower moulds are derived from them through a suitable pre-
composition. Thus:

Te•=see (2.29) Tee•=Te• − 1• (Te-Tee)

Ta•=Te• ◦ (eId•−1•) Taa•=log(1•+Id•)◦Ta•◦(eId•−1•) (Ta-Taa)

To•=Te• ◦ ( Id•
1•− 1

2 Id
•
)
Too•=( Id•

1•+ 1
2 Id

•
) ◦ Te• ◦ ( Id•

1•− 1
2 Id

•
)

(To-Too)

In the sequel, we shall also require the inverses of Te•,Ta•,To• for mould
multiplication. In view of (2.4)-(2.6), we get

muTes1,...,sr (z) =
∑

n1≤...≤nr
(−1)r (n1 + z)−s1 . . . (nr+ z)−sr (2.32)

muTas1,...,sr (z) =
∑

n1≤..≤nr
(−1)r (n1 + z)−s1 . . . (nr+ z)−sr

∏ 1

ri ! (2.33)

muTos1,...,sr (z) =
∑

n1≤...≤nr
(−1)r (n1 + z)−s1 . . . (nr+ z)−sr

∏
n1−ri (2.34)

with an order reversal in the summation rule, and large inequalities in
place of the strict inequalities in (2.29)-(2.31).

Parity aspects. All six types of multitangents obviously verify

Ts1,...,sr (−z) ≡ (−1)s1+···+sr Tsr ,...,s1(z) (∀T∈{Te,Ta,To etc.}). (2.35)

In the case of Taa• and Too•, however, due to alternality/olternolity we
have an additional relation

Taasr ,...,s1(z) ≡ (−1)r−1 Taas1,...,sr (z) (2.36)

Toosr ,...,s1(z) ≡ (−1)r−1 Toos1,...,sr (z). (2.37)

Combining (2.35) and (2.36)-(2.37) we get the crucial parity separation
property, which sets Taa•, Too• apart from Te• ≈ Tee•:

Taas1,...,sr (−z) ≡ (−1)1+
∑
di Taas1,...,sr (z) with di := si − 1 (2.38)

Toos1,...,sr (−z) ≡ (−1)1+
∑
di Toos1,...,sr (z) with di := si − 1 (2.39)

Multitangents in terms of monotangents and multizetas. Multitangents
are entirely determined by their polar parts at the entire points z = n.
By calculating, based on the expansion (2.29), the Laurent expansion
of Tes(z) at such points, and then retaining only the polar part, we find
that Tes(z) can be expressed as a finite sum of elementary monotangents
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Tes1(z) = ∑
n1
(n1 + z)−s1 , also known as Eisenstein series. Here is the

formula:31

Tes1,...,sr (z)=
sup(si )∑
σ=2

tezes1,...,srσ Teσ (z)=
r∑
i=1

si∑
σi=2

tezes1,...,sri,σi
Teσi (z) (2.40)

with

tezes1,...,sri,σi
=

=
∑

σk=∑ sk∑
{

σi≤si
s j≤σ j ( j �=i)

} zeσ1,...,σi−1 zeσr ,...,σi+1
i−1∏
j=1
(−1)σ j

j �=i∏
1≤ j≤r

(−1)s j (σ j − 1)!
(σ j − s j )!(s j − 1)!

or more symmetrically

tezes1,...,sri,σi
=

=
∑

σk=∑ sk∑
{

σi≤si
s j≤σ j ( j �=i)

}zeσ1,...,σi−1 (−1)si−σi vizeσi+1,...,σr
j �=i∏

1≤ j≤r

(σ j − 1)!
(σ j − s j )!(s j − 1)!

vizes1,...,sr = (−1)s1+...sr zesr ,...,s1 . (2.41)

The leading monotangent Te1(z) = π
tan(πz) generates all others under dif-

ferentiation, and admits the following northern and southern expansions:

Te1no(z) = −π i − 2π i
∑
0<n

e+2π i n z if )(z) > 0 (2.42)

Te1so(z) = +π i + 2π i
∑
0<n

e−2π i n z if )(z) < 0. (2.43)

Since Tes1(z) = (−1)s1−1
(s1−1)! ∂

s1−1
z Te1(z), this yields

Tes1(z) =
∑
ω∈�∓

Tes1ω e
−ωz on each half -plane ± )(z) > 0 (2.44)

with

Tes1ω = sign()(ω)) 2π i ωs1−1

(s1 − 1)! and �∓ = 2π iZ∓ . (2.45)

31 For a more compact expression, based on generating series, see Section 6.3.
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All the above amounts to a simple procedure for calculating the Fourier
expansions, north and south, of the four classes of multitangents. The
three classes Tee• ≈ Te• , Taa•, Too• shall be of direct concern to us:

Tee•no(z) =
∑
ω∈�−

Tee•ω e−ω z ; Tee•so(z) =
∑
ω∈�+

Tee•ω e−ω z (2.46)

Taa•no(z) =
∑
ω∈�−

Taa•ω e−ω z ; Taa•so(z) =
∑
ω∈�+

Taa•ω e−ω z (2.47)

Too•no(z) =
∑
ω∈�−

Too•ω e−ω z ; Too•so(z) =
∑
ω∈�+

Too•ω e−ω z (2.48)

Localisation constraints. When dealing with a product of multitangents
Tes, we may perform the operations of reduction (of mutitangents into
sums of monotangents) and symmetrel linearisation in either order. If we
then identify the multizeta superpositions in front of each monotangent,
we get to the so-called reduction constraints:

Tes
1
(z).Tes

2
(z)

reduction−→
(∑

τ s
1

s1
Tes1(z)

)
.
(∑

τ s
2

s2
Tes2(z)

)
↓linearisation ↓linearisation∑
ε
s1,s2

s3
Tes

3
(z)

reduction−→ ∑
ε
s1,s2

s3
τ s

3

s3
Tes3(z) =∑ τ s

1

s1
τ s

2

s2
εs1,s2s3

Tes3(z) .

Here, the εs
i ,s j

sk
are elementary, integer-valued coefficients and the ex-

pressions τ s
i

s j are finite, homogeneous sums of multizetas of total weight

‖si‖−si−1.
If, instead of reduction, we use localisation (replacing each multitan-

gent by its two-sided Laurent expansion at z = 0), we get the so-called
localisation constraints:

Tes
1
(z).Tes

2
(z)

localisation−→ (
∑

θ s
1

n1
zn1).(

∑
θ s

2

n2
zn2)

↓linearisation ↓linearisation∑
ε
s1,s2

s3
Tes

3
(z)

localisation−→ ∑
ε
s1,s2

s3
θ s

3

n3
zn3 =∑ θ s

1

n1
θ s

2

n2
zn1+n2

with expressions θ s
i

n j that are again finite, homogeneous sums of multize-

tas of total weight ‖si‖ + n j .
Though more numerous, the localisation constraints are actually equiv-

alent to the reduction constraints, but they extend more smoothly to the
ramified case, i.e. to the case of multitangents and multizetas that carry
fractional indices si . In any case, the localisation constraints are not a
consequence of the symmetrelness of Te•.



142 Olivier Bouillot and Jean Ecalle

The multitangents Taa• and Too• in terms of Tee• ≈ Te•. Applying to
Too• a beautiful formula (see (5.16)-(5.17) in Section 5.4) that holds for
multitangents Te•♦ of any symmetry type and gives their explicit lineari-
sation into sums of symmetrel multitangents Te•, we find:

Toos1,...,sr (z)=
∑
σ∈Sr

∑
2≤t≤r

(I1,...,It )#σ∑
r1+···+rt=r

(−1)q(σ ) 21−r Tesσ,r1 ,...,sσ,rt (z) (2.49)

with sσ, j :=
∑
k∈I j

sσ (k) and q(σ ) := #
{
k k<r, σ−1(k)>σ−1(k+1)}

The summation is over all permutations σ of r elements and, for each σ ,
over all partitions of [1, . . . , r] into intervals Ii of ri elements, whereby
we demand that the partition (I1, . . . , Ir ) be ‘orthogonal’ to σ , i.e. such
that

(i) on any given I j the permutation σ assumes no two consecutive val-
ues;

(ii) σ increases on each interval I j .
In other words, we should have {k, k+1}∈I j⇒{σ(k+1)−σ(k)≥2}. The
orthogonality condition proper is (i). The condition (ii) is there simply to
ensure that any given summand Tesσ,r1 ,...,sσ,rt is counted only once. Lastly,
q(σ ) measures the incompatibility of the natural order < on [1, . . . , r]
with the σ -induced order {i <σ j} ⇔ {σ(i) < σ( j)}. Indeed, if j is
not <σ -maximal and j+ denotes the <σ -successor of j , we have q(σ ) =
#{ j ; j > j+}.
When applied to Taa•, the general formula (5.16)-(5.17) produces a

similar expansion, but with more numerous Te•-summands and, in front
of each of them, rational coefficients whose numerators possess no simple
multiplicative structure.32 They may be calculated, though, by applying
the universal formula (5.17).

Remark. Taa• better than Te• and Too• better than Taa•.
Actually, a systematic comparison would show that, of all types Te•♦
of multitangents that possess the desirable parity property (2.38)-(2.39),
Taa• and especially Too• are the simplest choices, not only where Te•-
linearisation is concerned, but in most other respects.
Taa• and Too• even compare favourably with Te•, which in any case

does not verify the parity property(2.38)-(2.39). Taa• and Too• may lack

32 Although, for r small, they seem to be all equal to 1. This, however, is deceptive.
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a simple direct definition like that of Te•, but after reduction to monotan-
gents, it is Taa• and especially Too•, not Te•, that give rise, by and large,
to the simpler expansions33, as shown by the Tables of Section 9.

2.4 Resurgence monomials

There exists an alternative, resurgent approach to multitangent reduc-
tion. In the convergent (i.e. s1, sr �= 1) and non-ramified (i.e. s j ∈ N∗
rather thanQ∗) case, it hardly improves on the above procedure (see Sec-
tion 2.3) but in the general case, especially when we go over to fractional
indices s j , the resurgent approach becomes the more flexible of the two
methods and even, in a sense, the only practical one. For clarity, though,
we first keep our two simplifying assumptions – no divergence34 and no
ramification35 – to sketch this alternative method.

Multizetaic monomials in the formalmodel. We shall set about construct-
ing three elementary resurgent-valued moulds 36 S̃e

•
(z), S̃a

•
(z), S̃o

•
(z),

beginning with the formal model. We start with the symmetrel monomi-
als S̃e

s
(z). They are defined by:

S̃e
•
(z) = e∂z

(1− e∂z )

(
S̃e

•
(z)× J•(z)

)
(2.50)

with an elementary mould J•(z):

J∅(z) := 0 ; Js1(z) := z−s1 ; Js1,...,sr (z) := 0 (∀ r ≥ 2). (2.51)

Together with the conditions S̃e
∅
(z) = 1 , S̃e

s1,...,sr
(∞) = 0 (∀r ≥ 1) the

induction (2.50) uniquely defines each S̃e
s
(z) as a constant-free, formal

power series in z−1. The companions monomials S̃a
•
(z) , S̃o

•
(z) are then

defined in the usual way, by post-composition:

S̃a
•
(z) := S̃e

•
(z) ◦ ( exp(Id• − 1•)) (2.52)

S̃o
•
(z) := S̃e

•
(z) ◦

(
Id•

1• − 1
2 Id

•

)
. (2.53)

33 Especially after the symmetral linearisation of the multizetas occuring as scalar coefficients in
these expansions.

34 I.e. s1 > 1

35 I.e. si ∈ N∗
36 They must be distinguished from the similar moulds asremze•n , asremza•n , asremzo•n , because the
emphasis here will be on the convolutive model and the associated monics.
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Multizetaic monomials in the convolutive model. In the convolutive mod-
el the induction becomes

Ŝe
s1,...,sr

(ζ )= e−ζ

(1− e−ζ )

∫ ζ

0
Ŝe

s1,...,sr−1
(ζ−ζr ) ζ sr−1r

�(sr )
dζr (2.54)

Multizetaic monomials in the sectorial model. Lastly, in the sectorial or
‘geometric’ models + and − (east and west), corresponding to Laplace
integration along the axes arg(ζ ) = 0 and arg(ζ ) = π , we get

Ses1,...,sr+ (z) =
∑

0<nr<...<n1

(n1 + z)−s1 . . . (nr + z)−sr (2.55)

Ses1,...,sr− (z) =
∑

n1≤..≤nr≤0
(−1)r (n1 + z)−s1 . . . (nr + z)−sr (2.56)

muSes1,...,sr+ (z) =
∑

0<n1≤...≤nr
(−1)r (n1 + z)−s1 . . . (nr + z)−sr (2.57)

muSes1,...,sr− (z) =
∑

nr<..<n1≤0
(n1 + z)−s1 . . . (nr + z)−sr (2.58)

For S• = Sa• or So• and multiplicity corrections χ(ri) = 1/ri ! or 21−ri ,
these expansions become respectively

Ss1,...,sr+ (z)=
∑

0<nr≤...≤n1
(n1 + z)−s1 . . . (nr + z)−srχ(ri) (2.59)

Ss1,...,sr− (z)=
∑

n1≤..≤nr≤0
(−1)r (n1 + z)−s1 . . . (nr + z)−srχ(ri) (2.60)

muSs1,...,sr+ (z)=
∑

0<n1≤...≤nr
(−1)r (n1 + z)−s1 . . . (nr + z)−srχ(ri) (2.61)

muSs1,...,sr− (z)=
∑

nr≤..≤n1≤0
(n1 + z)−s1 . . . (nr + z)−srχ(ri) (2.62)

Multizetaic monics. From the structure of the induction (2.50), one in-
fers directly (without calculation) that our monomials verify resurgence
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equations of the form37

�+
ω Se

•(z) = Tee•ω × Se•(z) (∀ω ∈ �+ = 2π iZ+) (2.63)

�−
ω Se

•(z) = Tee•ω × Se•(z) (∀ω ∈ �− = 2π iZ−) (2.64)

+2π i �ω Sa
•(z) = Taa•ω × Sa•(z) (∀ω ∈ �+ = 2π iZ+) (2.65)

−2π i �ω Sa
•(z) = Taa•ω × Sa•(z) (∀ω ∈ �− = 2π iZ−) (2.66)

+2π i ��
ω So

•(z) = Too•ω × So•(z) (∀ω ∈ �+ = 2π iZ+) (2.67)

−2π i ��
ω So

•(z) = Too•ω × So•(z) (∀ω ∈ �− = 2π iZ−) (2.68)

with scalar-valued moulds Tee•ω, Taa
•
ω , Too

•
ω, whose symmetry types fol-

low from their construction.38 These three moulds, for the moment, need
not bear any relation to their namesakes in Section 2.3, but we shall show
that they actually coincide with them.
Writing down the axis-crossing identity (1.49) with (2.12) and θ = +π

2
and the reverse identity (1.50) with (2.13) and θ = −π

2 , and minding the
fact that

Se•π
2 ±ε = Se•∓ (inversion!) ; Se•− π

2 ±ε = Se•± (no inversion!)

we find respectively

Te•so(z)× Se•−,so(z) = Se•+,so(z) with Te
•
so(z) =

∑
ω∈�+

Te•ω e
−ωz (2.69)

Te•no(z)× Se•−,no(z) = Se•+,no(z) with Te
•
no(z) =

∑
ω∈�−

Te•ω e
−ωz (2.70)

Thus, whether looking “north” or “south”, we arrive at the elementary
identity

Te•(z) = Se•+(z)×muSe•−(z) (2.71)

which of course can also be directly derived from the definitions (2.29)
paired with (2.59)-(2.62). But we get an interesting extra – namely,
that the moulds Tee•ω of (2.63) and (2.64) coincide with those defined
in the preceding subsection. If we now interpret the resurgence equations
(2.63)-(2.68) in the convolutive model, we get an alternative expression

37 We drop the tilde for simplicity.

38 Taa•ω is alternal, while
∑
Tee•ω e−ωz (respectively

∑
Too•ω e−ωz ) is elternel (respectively olter-

nol).
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of Tee•ω, Taa
•
ω, Too

•
ω as finite integrals in the ζ -plane, which translate, af-

ter some work, into fast-convergent power series. This will stand us in
good stead in the divergent and above all in the ramified cases. But we
must first devote a short aside to the question of parity.

Parity aspects. There is something slightly incongruous about the for-
mulae (2.65)-(2.68): they express the monics Taa•ω, Too

•
ω, which separate

parity, in terms of monomials Sa•(z), So•(z), which do not. To remove
this blemish, let us replace them by parity-separating monomials Sa•(z),
So•(z):

S̃a
•
(z) = S̃a

•
(z)× 2 (1• + eJ

•(z))−1 (2.72)

S̃o
•
(z) = S̃o

•
(z)× (1• − 1

2
J •(z)) (2.73)

with Js1(z) := z−s1 and Js1,...,sr (z) := 0 if r �= 1.
In the case of S̃o

•
, we get the bonus of a simple induction

S̃o
•
(z) := H(∂)

(̃
So

•
(z)× J •(z)

)
with (2.74)

H(∂) := e∂

1− e∂
+ 1

2
= 1

2

1+ e∂

1− e∂
= −1

2
cotan

(
∂

2

)
. (2.75)

Since the right factors in (2.72)-(2.73) are convergent, the new monomi-
als verify the same resurgence equations as the old ones, with the same
resurgence constants:

±2π i �ω Sa
•(z) = Taa•ω × Sa•(z) (∀ω ∈ �± = 2π iZ±) (2.76)

±2π i �ω So
•(z) = Taa•ω × So•(z) (∀ω ∈ �± = 2π iZ±). (2.77)

Remark. Our new monomials may separate parity and generate the re-
quired monics, but they no longer belong to the clear-cut symmetry types
symmetral/symmetrol, a fact that is reflected in the unusual form of their
multiplicative inverses:

muS̃a
•
(z) =

(
cosh(J •(z))

)−2 × anti.S̃a•(z) ◦ (−Id•) (2.78)

muS̃o
•
(z) =

(
1• − 1

4
J •(z)× J •(z)

)
× anti.S̃o•(z) ◦ (−Id•) (2.79)

If we now ask for monomials that separate parity and possess the ex-
act symmetries and produce the right monics, we can have that, too, by
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setting:

varS̃e
•
(z):=S̃e•(z)×(1• + J•(z)

) 1
2

varS̃a
•
(z):=S̃e•(z)×

(
2 tanh

(
1

2
J •(z)

))
= S̃a

•
(z)×cosh( J •(z))−1

varS̃o
•
(z):=S̃e•(z)×

(
J •(z)

1• − 1
2 J

•(z)

)
= S̃o•(z)×

(
1•− 1

2
J •(z)× J •(z)

)1
2

.

These variants still verify the resurgence equations (2.76)-(2.77). More-
over:

varSes1,...,sr+ (−z)≡(−1)s1+···+sr varSesr ,...,s1− (−z) and varSe• symmetrel
varSas1,...,sr+ (−z)≡(−1)s1+···+sr varSasr ,...,s1− (−z) and varSa• symmetral
varSos1,...,sr+ (−z)≡(−1)s1+···+sr varSosr ,...,s1− (−z) and varSo• symmetrol
Polylogarithmic monomials. We recall the inductive definition of the
polylogarithmic monomials Ṽ•(z) (symmetral) and monics V • (alternal),
whose proper province is the study of singular, resurgence-inducing
ODEs:

−(∂z + ω1 + · · · + ωr ) Ṽ ω1,...,ωr (z) = Ṽ ω1,...,ωr−1(z) z−1 (2.80)

�ω0 Ṽ ω1,...,ωr (z) =
∑

ω1+···+ωi=ω0
V ω1,...,ωi Ṽ ωi+1,...,ωr (z) (2.81)

We also require the (apparently) more general monomials V•
H(z), defined

by a similar induction:

−(∂z+‖•‖) Ṽ•
H(z) = Ṽ•

H(z)×H•(z)
(Hω(z) ∈ z−1C{z−1}) (2.82)

relative to any alternalmouldH•(z)with values in the ring of convergent
power series of z−1 (without constant term). Modulo convergent series of
z−1, the mould Ṽ•

H(z) actually reduces to Ṽ•(z), thanks to the formula:

Ṽ•
H(z)=(Ṽ•(z) ◦ L•

H)× L•
H(z) with L

ω
H∈C , Lω

H(z)∈ z−1C{z−1} (2.83)
with an alternal, scalar-valued mould L•

H and a symmetral, convergent-
valued mould L•

H(z). Both L
•
H and L•

H(z) are defined by the joint induc-
tion:

Lω
H =

ω2 �=∅∑
ω1ω2=ω

(L̂ω1

H ∗ Ĥω2)(|ω|)−
ω1,ω2 �=∅∑
ω1ω2=ω

Lω1

H .(1 ∗ L̂ω2

H )(|ω|) (2.84)

−(∂z + ‖•‖)L•
H(z) = L•

H(z)×H•(z)− z−1L•
H × L•

H(z). (2.85)
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The first relation, (2.84), expresses the constant Lω
H in terms of earlier

(shorter) mould components. The second relation,(2.85), when inter-
preted in the convolutive model, says that (ζ − |ω|)L̂ω

H(ζ ) is equal to
an entire function Êω(ζ ) which, due to (2.84), vanishes for ζ = |ω|. So
L̂ω
H(ζ ), too, is an entire function with at most exponential growth, and
that makes Lω

H(z) a convergent power series of z
−1. The resurgence con-

stants V •
H associated with Ṽ•

H(z) also reduce to the polylogarithmic mon-
ics V •, since Ṽω

H(z), owing to (2.83), verifies the following resurgence
equations:

�ω0 Ṽ ω1,...,ωr
H (z) =

∑
ω1+···+ωi=ω0

V ω1,...,ωi
H Ṽ ωi+1,...,ωr

H (z) (2.86)

with V •
H = V • ◦ L•

H

Multizetaic monomials in terms of polylogarithmic monomials. From what
precedes and from the decomposition

e−ζ

1− e−ζ
+ 1

2
= H(−ζ ) =

ω∈2π iZ∑
|ω|≤ρ

1

ζ + ω
+ Hρ(−ζ ) (∀ρ > 0) (2.87)

we can see that, for |ζ |, |ω| < ρ, the monomials Ŝe
s
(ζ ), Ŝa

s
(ζ ), Ŝo

s
(ζ ),

and the monics Teesω,Taa
s
ω,Too

s
ω that go with them, can be expressed as

finite sums of three ingredients:

(i) classical monomials V̂ω(ζ ) and monics V ω(ζ ) indexed by se-
quences ω that are ρ-small, i.e. such that |ω1| ≤ ρ, |ω2| ≤ ρ

for all factorisation ω = ω1.ω2;
(ii) functions of type L̂ω

H(ζ ) which, though not entire, are holomorphic
on the disk |ζ | ≤ ρ;

(iii) the companion monics Lω
H.

Altogether, this results in an effective procedure for calculating the mon-
ics Teesω,Taa

s
ω,Too

s
ω, with a guaranteed geometric rate of convergence

which, moreover, can be arbitrarily improved by taking ρ large (albeit at
the cost of increasing the number of summands).

2.5 The non-standard case (ρ �= 0). Normalisation

If we now drop the condition that ensured convergence, namely s1, sr �=
1, and yet insist on retaining all properties and symmetries of our moulds,
we must do two things to our infinite series: truncate them and correct



149 Invariants of identity-tangent diffeomorphisms

them. Concretely, we must set

Te•(z) := lim
k→∞Te

•
k(z) := lim

k→∞ mucoSe•k × doTe•k(z)× coSe•k
Se•±(z) := lim

k→∞Se
•
k,±(z) := lim

k→∞ mucoSe•k × doSe•k,±(z)
muSe•±(z) := lim

k→∞muSe
•
k,±(z) := lim

k→∞ mudoSe•k,±(z)× coSe•k .

Here, the symmetrel dominant factors Te•, doSe•k,±, mudoSe
•
k,± are de-

fined as in (2.29) and (2.55)-(2.58) but with sums truncated at±k instead
of ±∞. Thus
doTes1,...,srk (z) :=

∑
−k≤nr<...<n1≤k

(nr + z)−sr . . . (n1 + z)−s1 (∀si). (2.88)

As for the symmetrel, z-constant corrective factors coSe•k± and invcoSe
•
k±,

their definition reduces to

coSes1,...,srk := ( c + log k )r
r ! if (s1, ..., sr ) = (1, ..., 1) (2.89)

mucoSes1,...,srk := (−c − log k)r
r ! if (s1, ..., sr ) = (1, ..., 1) (2.90)

coSes1,...,srk =mucoSes1,...,srk := 0 if (s1, ..., sr ) �=(1, ..., 1). (2.91)

In the formal model, the resurgent-valued moulds S̃e
•
andmuS̃e

•
are still

uniquely defined by the induction (2.50) together with the condition

S̃e
s
(z) , muS̃e

s
(z) ∈ Q[[z−1]] ⊗Q[(c+ log z)] .− Q (∀s �= ∅). (2.92)

The normalising condition, in other words, is that S̃e
s
(z) and muS̃e

s
(z),

as formal series in z−1 and polynomials in the bloc (c+log z), should
have no constant term.
In the sectorial models, the c-normalisation implies:

Se

r times︷ ︸︸ ︷
1, ..., 1
± (0) = (γ − c)r

r ! ; muSe

r times︷ ︸︸ ︷
1, ..., 1
± (0) = (c − γ )r

r ! (2.93)

with

γ = lim
k→∞

(
1+ 1

2
+...+ 1

k
− log k

)
=0.577215...=Euler constant. (2.94)

For multitangents, we may still formally apply the procedure (2.40)-
(2.41) of Section 2.3 to reduce them into combinations of monotangents
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and multizetas, but this time we are liable to get formally divergent mul-
tizetas. The c-normalisation then amounts to setting ζ(1) = ze1 := γ − c
and to adopting for all divergent multizetas39 the unique symmetrel ex-
tension compatible with that initial choice.40

There are two natural choices for the normalisation constant c :
(i) Either we set c = 0, in which case we eschew γ in the formal model
but at the cost of introducing it in the convolutive and sectorial models. It
also complicates the definition of the multitangents and multizetas, since
it forces us to set ze1 = γ , which however is not entirely unnatural, in
view of the formula

σ �(σ) = exp

(
−γ σ +

∑
2≤n

(−1)n ζ(n)
n

σ n

)
(2.95)

(ii) Or we set c = γ , which forcibly introduces γ into the formal model
but rids us of it everywhere else, including in the definition of multitan-
gents and multizetas, since it amounts to setting ze1 = 0. This shall be
our preferred choice.

2.6 The ramified case (p > 1) and the localisation constraints

For diffeos f of tangency order p > 1, the prepared form (1.2) becomes
a power series of z−1/p. This inevitably leads to moulds whose indices si
(the weights) are no longer inN∗ but in p−1N∗ or even, in some instances,
in p−1Z∗.
Most results, starting with the symmetry relations, carry over to that

case, but with three significant changes:

(i) The finite reduction of multitangents into monotangents and multi-
zetas breaks down,

(ii) The Fourier coefficients Teesω, Taa
s
ω, Too

s
ω, which are the direct in-

gredients of the invariants Aω( f ), cease to be expressible as finite
sums of multizetas (even ramified ones).

(iii) The formulae (2.40)-(2.41) still make formal sense but lead to ex-
pansions which are not only infinite but also divergent. When prop-
erly re-summed, they yield the correct expressions, but from the
point of view of calculational expediency, this approach is worth-
less. Of course, straightforward Fourier analysis in the upper and

39 I.e. for all multizetas with initial index s1 = 1.

40 Thus ze1,1 := − 1
2 ze

2+ 1
2 (γ − c)2 , ze1,2 := −ze2,1− ze3+ (γ − c) ze2 etc. There exist simple

formulae for calculating the symmetrel extension of all multizetas relative to any given choice of
ze1.
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lower halves of the z-plane would yield the coefficients Teesω, Taa
s
ω,

Toosω, but not in the form of nice convergent series, and again at
great cost.

The resurgence approach of Section 2.4 and Section 2-5, on the other
hand, survives ramification without any modification. When pursued to
the end, this approach even leads to some sort of functional equation for
multizetas, that is to say, to something vaguely resembling the classical
relation between ζ(s) and ζ(1−s).
However, the presence of ramifications makes it advisable to rotate our

multitangents and monomials, so that we may handle functions which (as
far as the index symmetries permit) assume real values on the main real
half-axis. Thus, instead of Te•, S̃e• etc, we shall consider:

Tehs1,...,sr (z) :=
(
1

i

)s1+···+sr
Tes1,...,sr

( z
i

)
(2.96)

S̃eh
s1,...,sr

(z) :=
(
1

i

)s1+···+sr
S̃e

s1,...,sr
( z
i

)
. (2.97)

No finite reduction to monotangents. If we consider the equation (2.63)
for r=1 but with s1 in Q+ and interpret it correctly in the Borel plane,
we see that the familiar formula (2.45) for the Fourier coefficients of
monotangents transposes (taking the π/2-rotation into account) to the
fractional case:

Tehs1(z) =
∑

ω∈2πN

Tehs1ω with Tehs1ω = 2π
ωs1−1

�(s1)
. (2.98)

So the product41 Tehs1Tehs2 ≡ Tehs1,s2 + Tehs2,s1 + Tehs1+s2 has Fourier
coefficients of the form

Tehs1,s2ω + Tehs2,s1ω + Tehs1+s2ω = (2π)s1+s2

�(s1)�(s2)

ω=2πn∑
n1+n2=n

ns1−11 ns2−12 (2.99)

and this makes it obvious that Tehs1,s2 and Tehs2,s1 cannot simultaneously
be finite sums of monotangents Tehs .

41 Since symmetrelity survives ramification.
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SingTeh• still determines Teh• but in a completely new way. For n →
+∞, the right-hand side of (2.99) can be shown to possess a divergent
but n-resurgent and Borel resummable asymptotic expansion of the form
ns1+s2−1

∑
cs n−s (s ∈ Q+).

More generally, by adapting the argument leading to (2.40), one can
easily calculate the ramified Laurent series of any multitangent Tehs:

Tehs(z)= SingTehs(z)+ RegTehs(z) =
−|s|≤ν∑
ν∈N

θ sν z
ν +

−|s|≤ν∑
ν∈Q−N

θ sν z
ν (2.100)

with its multizetaic coefficients θ sν . As in the non-ramified case, Teh
s is

still completely determined by its singular part SingTehs. We may even,
if we so wish, derive from the singular part of (2.100) a formal reduction
of Tehs into monotangents:

Tehs(z)=
−∞<σ≤|s|∑
σ∈Q−N

τ sσ Teh
σ (z) with τ sσ := θ s−σ (2.101)

but the series defined in this way will be, generally speaking, everywhere
divergent, even if we take care to correctly define, as in (2.108) infra, the
monotangents Tehs1(z) with index s1 ∈ (1,−∞). If we now attempt to
calculate the Fourier coefficient of a general multitangent:

Tehs1,...,sr (z) =:
∑

ω∈2πN∗
Tehs1,...,srω e−ω z (2.102)

by identifying the Fourier coefficients on both sides of (2.101) and taking
(2.98) into account:

Tehsω =
−∞<σ≤|s|∑
σ∈Q−N

τ sσ Teh
σ
ω = 2π

−∞<σ≤|s|∑
σ∈Q−N

τ sσ
ωσ−1

�(σ)

= −2
−|s|<ν<+∞∑
−ν∈Q−N

θ sν �(1+ν) sin(πν) ω−ν−1 (2.103)

what we get on the right-hand side is again a divergent expansion, which
is ω-resurgent and Borel resummable. But Borel resummation in the
present instance amounts to calculating the following loop integral:

Tehs1,...,srω = 1

i

∮ −∞+εi

−∞−εi
Tehs1,...,sr(z) eω z dz (2.104)

= 1

i

∮ −∞+εi

−∞−εi
SingTehs1,...,sr(z) eω z dz (2.105)
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with an integration path connecting −∞ − ε i to −∞ + ε i and having
as its middle part a small half-circle{|z| = ε,0z > 0} centered at the
origin 0• and located in the main positive half-plane. This is indeed the
proper procedure for retrieving the Fourier coefficients of Tehs(z) from
the singular part SingTehs(z).

The ramified localisation constraints. Defining the formal multitangent-
to-monotangent reduction as in (2.101), we get the reduction constraints:

Tehs
1
(z).Tehs

2
(z)

reduction−→ (
∑

τ s
1

s1
Tehs1(z)).(

∑
τ s

2

s2
Tehs2(z))

↓linearisation ↓linearisation∑
ε
s1,s2

s3
Tehs

3
(z)

reduction−→ ∑
ε
s1,s2

s3
τ s

3

s3
Tehs3(z) =∑ τ s

1

s1
τ s

2

s2
εs1,s2s3

Tehs3(z)

with elementary, integer-valued coefficients εs
i ,s j

sk
and coefficients τ s

i

s j that

are finite, homogeneous sums of multizetas of total weight ‖si‖−si−1.
Although the multitangent expansions diverge, by equating (in the right-
lower corner) the coefficients in front of each Tehs3(z) we get a system of
finite relations between multizetas.
Using instead the (locally convergent) expansions at z = 0, we get the

localisation constraints, which are only seemingly more general than the
reduction constraints:

Tehs
1
(z).Tehs

2
(z)

localisation−→ (
∑

θ s
1

ν1
zν1).(

∑
θ s

2

ν2
zν2)

↓linearisation ↓linearisation∑
ε
s1,s2

s3
Tehs

3
(z)

localisation−→ ∑
ε
s1,s2

s3
θ s

3

ν3
zν3 =∑ θ s

1

ν1
θ s

2

ν2
zν1+ν2

Here, the coefficients θ s
i

n j are finite, homogeneous sums of multizetas of

total weight ‖si‖ + n j .
Lastly, for the Fourier coefficients Teh•ω (these monics, we recall, are

the direct ingredients of the holomorphic invariants Aω( f )) we get the
following system of constraints:

Tehs
1
(z).Tehs

2
(z)

Fourier−→ (
∑
Tehs

1

ω1
e−ω1 z).(

∑
Tehs

2

ω2
e−ω2 z)

↓linearisation ↓linearisation∑
ε
s1,s2

s3
Tehs

3
(z)

Fourier−→∑
ε
s1,s2

s3
Tehs

3

ω3
e−ω3 z=∑Tehs

1

ω1
Tehs

2

ω2
e−(ω1+ω2)z.

2.7 Meromorphic s-continuation of Sehs and Tehs etc.

The whole subject of s-continuation, being simply incidental to our in-
vestigation, shall receive only a sketchy treatment.
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Meromorphic s-continuation of the multizetas zes. There exist various
ways of proving the existence of a meromorphic continuation of zes1,...,sr

to the whole of Cr , with a singularity locus confined to the hyperplanes
∪i,n{s1+ · · · + si ∈ i − n} (n ∈ N). One of them relies on the convergent
expansions

zes1,...,si ,...,sr = −
∑
ki≥1

�(ki+si)
(ki+1)!�(si) ze

s1,...,si+ki ,...,sr

+ 1

si−1 ze
s1,...,si+si+1−1,...,sr (2.106)

−
∑
ki≥−1

�(ki+si)
(ki+1)!�(si) ze

s1,...,si−1+si+ki ,...,sr

valid for 1 < i < r , and with slight modifications for i = 1 or i = r as
well. The expansion (2.107) in turn results from plugging the identity

n−sii =
∑
ki≥0

�(ki+si)
ki !�(si) (1+ni)

−si−ki

into the definition of zes1,...,si ,...,sr or rather zes1,...,si−1,...,sr .
Similar expansions hold for zas and zos, of course, but here the parity

properties have the effect of ‘halving’ the number of hyperplanes in the
singularity locus.
The multiresidues at singular points s ∈ Zr are simple combinations

of convergent multizetas with indices s′ ∈ Nr ′ . The more negative com-
ponents si in s, the smaller the depths r ′ of the convergent multizetas
contributing to the multiresidues.

Meromorphic s-continuation of the multitangents Tehs(z). The s-contin-
uation of multitangents proceeds on the same lines as that of multizetas.
The main difference is the persistence, for multitangents, of convergent
‘polar’ expansions that rely on convergence-restoring corrections [. . . ]−sK .
For any integer K we set:[
z ± i n

]−s
K
=
∑
0≤k≤K

(±i)k e∓ 1
2π is

�(k+s)
k!�(s) n−s−k zk (0<n, 0<0z)

[
z
]−s
K

=
∑
0≤k≤K

2 (±i)k cos
(
1

2
π is

)
�(k+s)
k!�(s) ζ(s+k) zk . (2.107)

For s ∈ C − Z−, the monotangents admit ‘polar’ expansions of the form

Tehs(z) =
∑
n∈Z

(
(z + i n)−s − [z ± i n

]−s
K

)
(0(s)+ K > 2) (2.108)
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There exist exact analogues for the multitangents.

Meromorphic s-continuation of the monomials Sehs(z). In the convolu-
tive model (hence in the other models as well), the s-continuation of the
monomials Sehs(z) presents no difficulty, and provides an alternative ap-
proach to the s-continuation of the multizetas and multitangents, since
the latter can be derived from the monomials Sehs(z).

The closest thing to a reflection equation for multizetas. Let us start for
orientation with depth one, i.e. with ordinary zetas. Calculating the Lau-
rent expansion of Tehs(z) at z = 0, and assuming 0(s) > 1, we find:

Tehs(z) := z−s + 2 ζ(s) cos
(π
2
s
)
+ o(1) . (2.109)

Due to (2.108), this also extends to all regular values of s, with the only
difference that when 0(s) < 0 the term z−s is absorbed by o(1). On the
other hand, starting from the Fourier expansion of Tehs(z) and assuming
0(s) < 0, s �∈ −N, we find

Tehs(z) := 2π
∑
0<n

(2πn)s−1

�(s)
e−2πnz = (2π)s

ζ(1− s)

�(s)
+ o(1). (2.110)

Comparing (2.109) and (2.110) for 0(s) < 0, we recover the classical
reflection equation for the Riemann zeta function:

2 ζ(s) cos
(π
2
s
)
= (2π)s

ζ(1−s)
�(s)

⇐⇒ ζ(s) = 2s π s−1 sin
(π
2
s
)
�(1−s) ζ(1−s).

To find out if something of that reflection equation survives at depth r ≥
2, let us fix a sequence s = (s1, . . . , sr ) with 0(si) < 0 and all partial
sums s1+· · ·+si , si+· · ·+sr not in Z, and let us exploit the commutative
diagram:

Tehs(z)
reduction−→ singTehs(z)
↘ ↓

regTehs(z).

The leading term of the Laurent expansion of Tehs(z) at z = 0 is:

Tehs(z) =
∑

s′ s′′ = s

e
π i
2 (|s′′|−|s′|) zes

′
vizes

′′ + o(1) (2.111)
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with vizes1,...,sr := zesr ,...,s1 . As for the purely singular part
∑
csz−s of that

same Laurent exp[ansion, it yields the formal, infinite, monotangential
expansion

∑
csTeh

s(z) of Tehs(z):

Tehs(z)
formally=

0≤ni∈N∑
si si s

i = s

Tehsi−ni (z) Ze s
i , ni , s

i
. (2.112)

The scalars Ze s
i , ni , s

i
are here finite, homogeneous superposition of mul-

tizetas of total weight ni − |si |− |si | = ni + si − |s|. All monotangents
Tehsi−ni (z) having indices of negative real part, they tend to known con-
stants as z goes to 0:

Tehs(z)
formally=

0≤ni∈N∑
si si s

i = s

(2π)si−ni
ζ(1+ni−si)
�(si−ni) Ze s

i , ni , s
i+ o(1). (2.113)

Finally, formally equating (2.111) and (2.113), we get:∑
s′s′′ = s

e
π i
2 (|s′′|−|s′|)zes

′
vizes

′′≈
0≤ni∈N∑
si si s

i = s

(2π)si−ni
ζ(1+ni−si)
�(si−ni) Ze s

i , ni , s
i
. (2.114)

The finitely many multizetas on the left-hand side all carry indices with
negative real parts, and two of them (zes and vises) are exactly of depth r .
On the right-hand side, all but a finite number of multizetas carry indices
with positive real parts, and all are of depth < r .
This, sadly, is the closest thing we can get, with this approach, to a

reflection identity for multizetas. Note that the expansion on the right-
hand side of (2.114) is divergent, but Borel resummable when viewed as
a series in negative powers of the ‘variable’ t := 2π .
Ultimately, the obstruction to finding a satisfactory reflection formula

is the non-existence of a multivariate, symmetrel Poisson formula. The
fact is that the Fourier transform of the symmetrel Poisson distribution
De•

Dex1,...,xr :=
∑

−∞<n1<···<nr<+∞
δ(x1−n1) . . . δ(xr−nr ) (δ=Dirac) (2.115)

not only differs from De•, but is not even an atomic distribution.

3 Collectors and connectors in terms of f

3.1 Operator relations

We begin with identity-tangent germs f in the standard class (p, ρ) =
(1, 0), i.e. of the form f = l◦g, with the unit shift l(z) = z+1 and a germ
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g(z) = z+g(z) = z+O(z−2)which may be viewed as a perturbation. This
is an invitation to expand everything (collectors, connectors, invariants)
in series with a 1-linear, 2-linear, etc, part in g or, more conveniently, in
the corresponding operator G := G−1.
The iterator f ∗ is characterised by the germ identities f ∗ = l−1 ◦ f ∗ ◦

f ≡ l−1 ◦ f ∗ ◦ l ◦ g which in order-reversing operator notation42 read:
F∗ = G F∗

:1 with F∗
:1 := L F∗L−1. (3.1)

To solve (3.1) while respecting the symmetry between f, g and f −1, g−1,
we take as our basic ‘infinitesimals’ the following operators

G+
:n := Ln.(G − 1).L−n (ni ∈ Z) (3.2)

G−
:n := Ln.(G−1− 1).L−n (ni ∈ Z). (3.3)

With the notations of Section 1.2, this leads straightaway to simple formal
expansions for the iterators

F∗
+ = 1+

∑
1≤r

∑
0≤nr<...<n1

G+
:nr . . .G

+
:n1 (ni ∈ Z) (3.4)

F∗
− = 1+

∑
1≤r

∑
n1<...<nr<0

G−
:nr . . .G

−
:n1 (ni ∈ Z) (3.5)

∗F+ = 1+
∑
1≤r

∑
0≤n1<...<nr

G−
:nr . . .G

−
:n1 (ni ∈ Z) (3.6)

∗F− = 1+
∑
1≤r

∑
nr<...<n1<0

G+
:nr . . .G

+
:n1 (ni ∈ Z). (3.7)

These formulae, in turn, combine to produce new expansions which, de-
pending on how we analyse them (- whether in terms of multitangents
or Fourier series -) shall yield the collectors P or the connectors � in
operator form:

P+ ≈ �+ := ∗F−.F
∗
+=1+

∑
1≤r

∑
nr<...<n1

G+
:nr . . .G

+
:n1 (ni ∈ Z) (3.8)

P− ≈ �− := ∗F+.F
∗
−=1+

∑
1≤r

∑
n1<...<nr

G−
:nr . . .G

−
:n1 (ni ∈ Z). (3.9)

For standard diffeos f , the above expansions for F∗,∗F (respectively
�±1 ) are easily shown to converge when they are made to act on test

42 To diffeos f, g... we associate the operators F,G... of postcomposition by f, g...
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functions that are defined on suitably extended U-shaped domains (re-
spectively on suitably distant half-planes |)(z)| � 1). See Section 7.2.
But at this stage we do not have to worry about convergence: we shall
provisionnaly (up to Section 6 inclusively) regard our connectors and col-
lectors as generating functions that carry, in conveniently compact form,
the various k-linear contributions43. Each k-linear contribution unprob-
lematically converges, and for the moment this is all we require.
The real challenge is to extract from these expansions (- first in the

standard, then in the general case -) theoretically appealing, analytically
transparent, and computationally manageable expressions for (in that or-
der) the collectors, connectors, and invariants.

3.2 The direct scheme: from g to p

To break down the expansions (3.8)-(3.9) into sums of multitangents, we
require scalar coefficients �n± that can be collectively defined by the gen-
erating function:[

G±
: c−1r . . .G±

: c−11
.z
]
z=0

=:
∑

�
n1,...,nr± cn11 . . . cnrr (3.10)

with G±
:c−1 =

∑
1≤k

1

k!
(
g±1(z + c−1)− (z + c−1)

)k
∂kz . (3.11)

The collectors then read:

p+(z) = z +
∑
1≤r

∑
ni

�
n1,...,nr+ Ten1,...,nr (z) (3.12)

p−(z) = z +
∑
1≤r

∑
ni

�
nr ,...,n1− Ten1,...,nr (z) (3.13)

with an order reversal between (3.10) and (3.12) that reflects the order
reversal between (3.8) and (3.9).
Let us give an alternative, more analytical expansion. We first set

1

n!
(
g(z)− z

)n=:
∑
2n≤s

g+n,s z
−s+1 ,

1

n!
(
g−1(z)− z

)n=:
∑
2n≤s

g−n,s z
−s+1

Next, to account for the action of the derivation operators ∂z implicit
in the definition of the substitution operators G±

:n , we require integers δ••

43 k-linear, that is, in the ‘perturbation’ g or its coefficients gn
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defined by44∑
∑
(ni−li )=1

δ l1,..., lrn1,...,nr
xl11 . . . x

lr
r ≡ xn21 (x1+x2)n3 . . . (x1+· · · + xr−1)nr (3.14)

Letting the operators on both sides of (3.8) respectively (3.9) act on the
test function z, and collecting all r-linear summands, we find the sought-
after expansions for the collectors p±:

p+(z)=z+
∑
1≤r

ni+li≤si∑
0≤li
1≤ni

(−1)n−1δ l1,..., lrn1,...,nr
Tes1,...,sr (z)

∏
1≤i≤r

(si−1)! g+ni ,si−li+1
(si−li−1)! (3.15)

p−(z)=z+
∑
1≤r

ni+li≤si∑
0≤li
1≤ni

(−1)n−1δ l1,..., lrn1,...,nr
Tesr ,...,s1(z)

∏
1≤i≤r

(si−1)! g−ni ,si−li+1
(si−li−1)! (3.16)

with n := n1 + ...nr .

3.3 The affiliate-based scheme: from g♦ to p♦

We shall now express the general affiliate p♦ of p in terms of the corre-
sponding affiliate g♦ of g – not so much for the sake of p♦, but to prepare
for the specialisations g∗ (generator) and g�, g�� (mediators), and to show
what is so special about these three cases.
The first step is to take our stand on the trivial affiliate - p itself - and

to observe that after re-indexation, (3.8) may be re-written as

�+ =
∑
1≤r

∑
ni∈Z

On1,...,nrG+
:n1 . . .G

+
:nr (3.17)

with �+ := �+ − 1 , G+ := G+ − 1 , G+
:n := Ln G+ L−n and

with an elementary ‘ordering mould’ O•, clearly of symmetrel type:

On1 :=1 , On1,...,nr :=1 if n1<. . .<nr resp. :=0 otherwise. (3.18)
Let us show that for any γ (t) = t +∑ γr tr+1, an expansion exactly
analogous to (3.17) holds for the corresponding affiliates

�♦ =
∑
1≤r

∑
ni∈Z

O
n1,...,nr
♦ G♦:n1 . . .G♦:nr (3.19)

44 For r = 1, one should of course take δ01 := 1 and δ
l1
n1 := 0 if ( l1n1 ) �= (

0
1 ). The presence of n1, xr

on the left-hand side and their absence on the right-hand side is no oversight. It simply implies that

δ
l1,..., lr
n1,...,nr = 0 when n1 �= 1 or lr �= 0. If one finds (3.14) confusing, one should think of it as∑
δ
l1,l2,..., lr−1, 0
1, n2,...,nr−1,nr x

l1
1 . . . x

lr−1
r−1 ≡ x

n2
1 (x1+x2)n3 . . . (x1+. . . xr−1)nr .
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with
�♦ := γ (�) = γ (� − 1) ,
G♦ := γ (G) = γ (G − 1) ,
G♦:n := Ln.G♦.L−n

and with a suitable variant O•
♦ of the ordering mouldO• :

O•
♦ := γ (Id•) ◦ O• ◦̈ γ−1(Id•)

O•
♦ is derived fromO• by ordidary pre-composition by γ (Id•) and modi-

fied post-composition by γ−1(Id•). See (3.20) below. The order in which
these two operations are performed does not matter. The formula for
◦̈-composition is patterned on the formula (2.1) for ◦-composition:

C• = A• ◦̈ B• ⇐⇒ Cω =
ωi monoindicial∑

ω1...ωs=ω

A
〈
ω1

〉
,...,

〈
ωs

〉
Bω1 . . . Bωs (3.20)

except that the sum on the right-hand side of (3.20) extends only to those
factorisations of ω that involve mono-indicial factor sequences ωi , i.e.
factor sequences consisting each of one index ωi repeated ri times. And〈
ωi
〉 := (ωi) denotes that same factor sequence collapsed to its one index.

Thus we get:

C3,3,3,5 = A3,3,3,5B3B3B3B5 + A3,3,5B3,3B3B5

+ A3,3,5B3B3,3B5 + A3,5B3,3,3B5.

The last missing items are the multitangents Tee•♦ and the corresponding
structure coefficients. The former are defined by:

Tee•♦ = γ (Id•) ◦ Tee• ◦ δ(Id•) (γ ◦ δ = id) (3.21)

The latter are given by the generating series:[
G♦, c−1r . . .G♦, c−11 . z

]
z=0

=:
∑

�
n1,...,nr
♦ cn11 . . . cnrr (3.22)

where G♦, c−1 denotes the translated γ -affiliate of G:

G♦, c−1 :=
∑
1≤r

∑
1≤ni

♦n1,...,nr gn1♦ (z + c−1)
∂n1

n1! . . . g
nr
♦ (z + c−1)

∂nr

nr ! . (3.23)

See Section 1.3 and Section 3.2 and recall that ♦1 = 1 and ♦n1,...,nr = 0
if 1 < r and nr = 1. We are now in a position to expand p♦ in series of
multitangents Tee♦:

p♦(z) = z +
∑
1≤r

∑
ni

�
n1,...,nr
♦ Teen1,...,nr♦ (z) (3.24)
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Short proof: One should compare step by step the derivation of (3.24)
with that of the expansion (3.8) for p+. The key point here is that chang-
ing from operators to multitangents changes ◦̈ to ◦. Indeed, in a sum of
the form∑

ni∈Z

Cn1,...,nr (z + n1)
−σ1 . . . (z + nr )

−σr with C• := A•◦̈B• (3.25)

any contribution to Cn of the form A
〈
n1

〉
,...,

〈
nt

〉
Bn

1
. . . Bn

t
, with monoindi-

cial factor sequences nk consisting of identical indices nk , will contract
to ∏

1≤k≤t

∏
ni∈nk

(z + ni)
−si =

∏
1≤k≤t

(z + nk)
−∑

ni∈nk si (3.26)

3.4 Parity separation and affiliate selection

The relative complexity of g♦ counts for nothing. What matters is

(i) to get Tee•♦ and the corresponding expansions for p as simple as
possible;

(ii) to pick parity-respecting affiliates: (g−1)♦ ≡ −g♦ , (p−1)♦ ≡
−p♦.

We already know three parity-respecting affiliates:

γ0(t) = log(1+ t) (infinitesimal generator), (3.27)

γ1(t) = t
1+ 1

2 t
, (first mediator) (3.28)

γ2(t) = (1+t)2−1
(1+t)2+1 (second mediator) (3.29)

and the general parity-respecting affiliate obviously corresponds to func-
tions of the form γ = hi ◦ γi (0 ≤ i ≤ 2) with hi odd. So the task
now is to select one of those γ so as to optimise Tee•♦ and in particular
to make the formulae for their symmetrel Te•-linearisation as simple as
possible. But we have already suggested in Section 2.3 and we shall show
more conclusiveely in Section 5.4 that there exist no simpler choices than
γ0, γ1, γ2, with γ1 topping the list, and γ0 coming second. So we shall fo-
cus here on these three choices.

3.5 The generator-based scheme: from g∗ to p∗
Here, the structure coefficients �n∗ are given by the series:[
g∗(z + c−1r ) ∂ . . . g∗(z + c−11 ) ∂ . z

]
z=0

=:
∑

�n1,...,nr∗ cn11 . . . cnrr (3.30)
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The corresponding expansion for p∗ reads:

p∗(z) =
∑
1≤r

∑
ni

�n1,...,nr∗ Taan1,...,nr (z) (3.31)

Like with �•±, one may prefer more analytical variants. These rely on
integers δ• and δ•1 much simpler than the δ

•• of Section 3.2∑
li≥0 ,∑ li=r−1

δl1,...,lr xl11 . . . x
lr
r ≡ x1.(x1 + x2) . . . (x1 + · · · + xr−1) (3.32)∑

li≥0 ,∑ li=r
δ
l1,...,lr
1 xl11 . . . x

lr
r ≡ x1.(x1 + x2) . . . (x1 + · · · + xr ) (3.33)

and of course on the coefficients g∗s of g∗ : g∗(z) =∑2≤s g∗s z
1−s .

The corresponding expansion for p∗ and p′∗ read:

p∗(z) =
∑
1≤r

(−1)r−1
∑
0≤li<si

δl1,...,lr Taas1,...,sr (z)
∏
1≤i≤r

(si−1)! g∗si−li+1
(si−li−1)! (3.34)

p′∗(z) =
∑
1≤r

(−1)r
∑
0≤li<si

δ
l1,...,lr
1 Taas1,...,sr (z)

∏
1≤i≤r

(si−1)! g∗si−li+1
(si−li−1)! (3.35)

The second expansion is formally more appealing in that its multitan-
gents Taa• have exactly the same total weight

∑
s j as the accompanying

coefficient clusters. We may note that while it would be possible (though
rather pointless) to produce similar expansions for all derivatives p(n)∗ ,
nothing analogous exists for the indefinite integrals ‘p∗,“p∗. . . .

3.6 The mediator-based scheme: from g�, g�� to p�, p��

The relevant structure coefficients �� are defined in the usual way[
G�, c−1r . . .G�, c−11

. z
]
z=0

=:
∑

�
n1,...,nr
� cn11 . . . cnrr (3.36)

using the translates of the mediator in operator form:

G�, c−1 :=2
( ∑
1≤n odd

(g�(z+c−1))n
2n n! ∂n

)( ∑
0≤n even

(g�(z+c−1))n
2n n! ∂n

)−1
. (3.37)

The corresponding expansion for the collector involves Too• and reads:

p�(z) =
∑
1≤r

∑
ni

�
n1,...,nr
� Toon1,...,nr (z) (3.38)
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Appearance of coloured multitangents and multizetas. Although, as
pointed out in Section 1.8, the resurgence properties of the mediators f�
and g� are completely unrelated (both have distinct critical times and dis-
tinct resurgence constants) and have no bearing on the object of interest
to us, namely p�, a few complements about the very specific resurgence
regimen of mediators, quite different from that of infinitesimal generators
but fairly typical for the behaviour of general affiliates, may not be super-
fluous. The actual resurgence equations were obtained in Section 1.8.
Here, we shall focus on the nature of their resurgence constants Aω and
A
ω
.
The definition of the (first) mediator leads formally to an expansion

F� = 2− 4 (1+ L + G L)−1 (3.39)

= 2− 4 (1+L)−1 − 4 (1+L)−1
∑
1≤r

(−1)r (GL(1+L)−1)r (3.40)

valid in the formal model and, after the proper transpositions, in the con-
volutive model. In the right sectorial model this becomes:

F�,+ = 2− 4
∑
0≤n0

Ln0 − 4
0≤r∑

0≤nr<...<n1<n0
(−1)r+n0 G:nr . . .G:n1 L

n0 . (3.41)

Note that, due to the rightmost factor Ln0 , this expansion is only superfi-
cially similar to the expansion (3.4) of F∗+. However, applying both sides
of (3.41) to z and using

L (1+ L)−1 . z = 1

2
z + 1

4
, G:n1 L (1+ L)−1 . z = 1

2
G:n1 . z

we get for f�,+an expansion much closer in outward shape to that of
f ∗+(z):

f�,+(z) = 1− 2
1≤r∑

0≤nr<...<n1
(−1)r+n1 G:nr . . .G:n1 . z. (3.42)

Mind the change (−1)r+n0 → (−1)r+n1 from (3.41) to (3.42), which is
correct. If we now consider the limit $�(z) := limn→+∞ f�,+(z − n), we
obtain for $�(z) a formal expansion

$�(z) = −2
1≤r∑

−∞≤nr<...<n1<+∞
(−1)r+n1 G:nr . . .G:n1 . z (3.43)

which, like the expansion (3.8) of�+(z) and for much the same reasons,
is going to converge in the half-planes |)z| > y for y large enough, and
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whose Fourier coefficient are going to give the resurgence constants of
f�. (See Section 1.8). That said, the main difference with (3.8) is not so
much the presence of a factor (−1)r in (3.43), but of the factor (−1)n1 ,
which will be responsible for introducing bi-coloured multitangents and
bi-coloured multizetas: see (6.2) and take ε j ∈ 1

2 Z/Z.
The picture for the second mediator f�� would be quite similar, leading

to $��(z) := limn→+∞ f��,+(z − n) and a periodic expansion

$��(z) = −
1≤r∑

−∞≤nr<...<n1<+∞
(−1)r+n1 GG:nr . . .GG:n1 . z (3.44)

with GG:n := Ln . (G.G − 1) . L−n In any case, we see that while$� and
$�� bear some resemblance to �+, they are completely unrelated to p�
and p��.

3.7 From collectors to connectors

The dichotomy collector/connector. The various objects p♦ constructed
so far in this section have to be simultaneously examined under the view-
point of their f - and z-dependence.
They depend on a germ f = l ◦ g that moves freely within the formal

class (p, ρ) = (1, 0). As such, they are to begin with nothing more
than formal power series in the coefficients gs of g or, equivalently, the
coefficients g♦,s of its affiliates g♦:

p♦(z) =
∑
1≤r

si<si+1∑
si ,ni

∏
1≤i≤r

(g♦,si )
ni T

(
n1
s1

,...,
,...,

nr
sr
)

♦ (z). (3.45)

As functions of z, however, our objects may be viewed

(i) either as collectors (and noted p♦), i.e. as global meromorphic func-
tions defined on the whole of C with all their poles on Z and with
well defined expansions as finite sums of multitangents or, after re-
duction, as sums of monotangents with multizeta coefficients;

(ii) or as connectors (and noted π♦), i.e. as pairs of 1-periodic functions
defined in the upper or lower half-plane and possessing their own
distinct Fourier expansions there.

So far, the distinction between collectors and connectorsmay appear ten-
uous, but it acquires all its significance when, ceasing to regard the f -
dependence as formal, we focus on individual, convergent germs f =
l ◦ g and try to associate with them global z-functions (impossible) or
pairs of periodic z-germs (possible).
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To that end, let us consider the s-truncations truncs.p♦(z) obtained by
retaining in (3.45) the sole terms of global weight45

∑
ni si ≤ s. No-

tice that weight-truncation is intrinsical, in the sense that, in any given
z-chart46, it stays the same whether we choose the natural coefficient sys-
tem {gs, s ≥ 3} or any affiliate-based system {g♦,s, s ≥ 3} .

Divergence of the collectors. When s → +∞, truncs.p♦(z) does not
tend to a global function, irrespective of the choice of affiliation ♦. More-
over, even after finite reduction to monotangents, truncs.p♦(z) does not
converge to an infinite sum (even a formal one) of monotangents. This
may seem surprising, because:

(*) reducing truncs.p♦(z) to a series of montangents
∑

0<σ a
♦
s,σ Te

σ (z)
is the same as taking the negative part

∑
0<σ a

♦
s,σ z

−σ of the Laurent
expansion at z = 0 of truncs.p♦(z);

(**) the Borel transform
∑

0<σ a
♦
s,σ ζ

σ−1/(σ −1)! of that negative part,
when evaluated at the points ζ = 2π in, yields precisely the Fourier
coefficients of the truncated connectors truncs.π♦(z) — and these
Fourier coefficients, as we shall see in a moment, do converge when
s → ∞.

We shall have more to say about this apparent paradox and the reasons
behind it in Section 7, but for the moment let us observe that the only
meaning that can be attached to the limit lims→∞ truncs.p♦(z) is the for-
mal series (3.45) with its individual clusters

∏
i g

ni
♦,si T

(
n
s )(z) kept sepa-

rate.

Convergence of the connectors.
(*) From p to π = (πno,π so):
As s goes to∞ and for K± large enough, truncs.π(z)−z tends uniformly
to a 1-periodic limit πno(z)−z (respectively πso(z)−z) on the upper or
‘northern’ half-plane )z > K+ (respectively on the lower or ‘southern’
half-plane )z < −K−) .

(**) From p♦ to π♦ = (π♦,no,π♦,so):
The affiliate π♦(z) of π being of the form γ (�−1).z, the nth Fourier coef-
ficient of its northern or southern component is a polynomial in the first n

45 The ‘weight’ in question is that of the coefficient clusters. But the weight of the accompanying
multitangents (or, after reduction, of the multizeta-monotangent combinations) differs from the first
only by one unit.

46 But the weight truncation is of course dependent on the choice of z-chart.
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Fourier coefficients of πno or πso. So, as s → ∞, the (convergent) Fourier
series truncs.π♦,no and truncs.π♦,so converge (coefficient-wise)47, to two
formal Fourier series π♦,no and π♦,so. These are generally divergent, but
usually (and definitely so in the case of the generators π∗ or mediators π�,
π��) resurgent and Borel-resummable, with respect to some critical time
of the form z′ := exp(±nπ i z). In any case their Fourier coefficients are
well-defined, and this is all that matters to us at the moment.

More on the dichotomy collector/connector. Despite being very close to
the connectors, the collectors differ from them in two fundamental re-
spects: they are not invariant and they are of one piece.
The non-invariance is fairly obvious when p is taken in its natural

multitangent expansion, but even after monotangent reduction (when at
all it exists), p still remains non-invariant. Indeed, even when a formal
limit

∑
s∈N Te

s(z) exists (it sometimes does, though very exceptionally)
as the truncation goes to infinity, the ‘Borel transform’

∑
s∈N ζ

s−1/(s−1)!
assumes invariant values only when restricted to the set 2πZ∗.
As for being of one piece, this is a property not so much of the col-

lectors as of their constituent multitangents or monotangents, which are
meromorphic over the whole of C, in complete contrast to the connec-
tors, whose northern and southern components are usually completely
unrelated: each one may a priori be anything.

3.8 The ramified case (p > 1)

Everything carries over to the general case, when f ranges though a
general formal class (p, ρ). But when p > 1, we must take f to a
prepared form f = fnorm ◦ g (see (1.2)) with a ramified perturbation
g(z) = z +∑ gsz1−s and with fractional indexation: s ∈ p−1N∗.
The connectors are of course still invariant, but evenmore ‘fragmented’

than usual: there are now 2 p of them – p northern and p southern ones.
Each of these 2 p periodic germs is unrelated to the others and may a
priori be anything.
As for the collectors, as formal objects they are still of one piece,

but things get more tangled when we regard the truncations trunks .p♦(z)
or the individual clusters T(

n
s )(z) in the ramified equivalent of (3.45) as

global functions on ( ˜C − 2π iZ)p (the p-ramified covering ofC−2π iZ).
The thing is that we can no longer go from one upper-plane determina-
tion to the two neighbouring lower-plane determination by simply cross-

47 Recall that s-truncation is independent of ♦.
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ing the real axis between two consecutive singularities n and n + 1: by
so doing, one would get a wrong determination, dependent on n, and not
even periodic.

3.9 Reflexive and unitary diffeomorphisms

In this section, we find it convenient to switch from the s- or weight-
indexation g(z) = z+∑ gs z1−s to the d- or degree-indexation g(z) =
z+∑ g1+d z−d .
In Section 3.4 we observed that in the expansion (3.34) of p∗, coeffi-

cient clusters
∏
g∗1+di of even (respectively odd) total degree

∑
di ac-

company multitangents Taa• that are even functions with real Fourier
coefficients (respectively odd functions with purely imaginary Fourier
coefficients). As a consequence, there is no simple condition on the co-
efficients g∗1+di of g∗ capable of ensuring that p∗ be odd, whereas three
elementary conditions may ensure that it be even, namely:

(i) all coefficients g∗1+di of odd degree di vanish and those of even
degree are real;

(ii) all coefficients g∗1+di of even degree di vanish and those of odd
degree are purely imaginary;

(iii) all coefficients g∗1+di of even degree di are real and those of odd
degree are purely imaginary.

No special significance attaches to case (ii), but the cases (i) and (iii)
present interesting stability properties, with collectors and connectors in-
heriting the nature of f . This is an incentive for singling out the following
three types of diffeos f whose inverses f −1 either coincide with, or are
analytically conjugate to, the image of f under an elementary involution:

reflexive : f̌ = f −1 || weakly reflexive : f̌
an. cj.∼ f −1

unitary : f̄ = f −1 || weakly unitary : f̄
an. cj.∼ f −1

counitary: ˇ̄f = f −1 || weakly counitary: ˇ̄f an. cj.∼ f −1.

Here, f̄ denotes the complex conjugate of f , and f̌ := σ ◦ f ◦ σ with
σ(z) ≡ −z. Conjugation by τ , with τ(z) ≡ i z, clearly exchanges unitary
and counitary, so that weakly unitary is equivalent to weakly counitary.
Though unitariness seems a more natural notion, we shall work here with
counitariness, which is better adapted to the correspondance f  → π and
enables us to take f in standard form f = l ◦ g.
P1: f is reflexive iff the power series f∗ respectively f ∗ are even respec-

tively odd, in which case f∗±(−z) ≡ f∗∓(z) and f ∗±(−z) ≡ − f ∗∓(z).
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Likewise, f is counitary iff the power series f∗ respectively f ∗ are
of the form f∗re ◦ τ respectively τ−1 ◦ f ∗re ◦ τ with real f∗re , f ∗re, in
which case f̄∗±(−z) ≡ f∗∓(z) and f̄ ∗±(−z) ≡ − f ∗∓(z).

P2: If a standard f is reflexive respectively counitary, then its conju-
gate l+ 1

2 ◦ f ◦ l− 1
2 is of the standard form f = l ◦ g with reflexive

respectively counintary factors l and g := l− 1
2 ◦ f ◦ l− 1

2 .

P3: If f is (weakly or strictly) reflexive respectively counitary, then its
connector π is (strictly) reflexive respectively counitary. This is geo-
metrically obvious, from the relations P1 injected into the definition
(1.6), but the remarkable fact is that the analytical procedure (3.34)
also respects this conservation of reflexivity or counitariness at ev-
ery single step. Thus, if we apply it to the decomposition f = l ◦ g
(as in P2) of a reflexive f , we have to do with an even infinitesimal
generator g∗ that carries only coefficients g∗1+d of even degree d,
and (3.34) automatically produces an even p∗. The diffeo g itself is
of mixed parity, but its coefficients of g∗1+d of odd degree are fully
determined by the earlier coefficients of even degree, and can thus
be used in place of the g∗1+d . Either way, for reflexive diffeos the
calculation of the invariants is a much more pleasant affair than for
general diffeos, due to the drastic reduction in the mass of coeffi-
cients and (provided f be real) to the realness of p∗ and π∗.

P4: Conversely, any reflexive respectively counitary π is the invariant
of some reflexive respectively counitary f . This follows from the
canonical synthesis (see Section 1.4) which, for c real and large
enough, automatically produces diffeos fc of the required type.48

P5: (Reinhard Schäfke). The product or quotient of two reflexive (re-
spectively unitary) diffeomorphisms is obviously conjugate to a re-
flexive (respectively unitary) diffeomorphisms, but the converse is
also true: any weakly reflexive (respectively unitary) f can, for any
consecutive integers n j , be represented as a quotient of two strictly
reflexive (respectively unitary) diffeos f j :

f := f1 ◦ f −12 with

f (z) := z + 1+ o(1), f j (z) := z + n j + o(1), n1 − n2 = 1

48 As pointed out to us by Reinhard Schäfke, this can also be deduced from the bifactorisation of
f in P5 below, provided we admit the existence of a pre-image f for any given π , which fact again
follows from the canonical synthesis, but may also be established more directly.



169 Invariants of identity-tangent diffeomorphisms

and that too with explicit factors f j :

f weakly reflexive || f weakly counitary

f j :=(∗f )◦ ln j ◦ σ ◦ ( f ∗)◦ σ || f j :=(∗f )◦ ln j ◦σ ◦( f̄ ∗)◦ σ (3.46)

= f n j ◦ (∗f ) ◦ σ ◦ ( f ∗)◦ σ || = f n j ◦ (∗f )◦ σ ◦( f̄ ∗) ◦ σ (3.47)
= f n j ◦ h−1 ◦ σ ◦ h ◦ σ || = f n j ◦ h−1 ◦ σ ◦ h̄ ◦ σ (3.48)

Indeed, the equivalent definitions (3.46), (3.47), (3.48) make it clear,
respectively:
– that f1, f2 are reflexive (respectively counitary);
– that f = f1 ◦ f −12 ;
– that f1, f2 are analytic.49

P6: Piecing together all the above, we see that the commutative, non-
associative50 operation mixc:

mixc : (π1,π2)  → π := π f1,c◦ f2,c = π f2,c◦ f1,c (3.49)

(where f j,c stands for the c-canonical pre-image of π j ) respects re-
flexivity and counitariness.

4 Scalar invariants in terms of f

4.1 The invariants Aω as entire functions of f

Let π±
ω and π♦,ω be the Fourier coefficients of the connectors, as defined

in Section 3.5 by weight-wise truncation of the collectors and passage to
the limit:

If +)(z)�1:π±1(z) = z +
∑
ω∈�−

π±
ω e

−ωz ; π♦(z) =
∑
ω∈�−

π♦,ω e−ωz (4.1)

If −)(z)�1:π±1(z) = z +
∑
ω∈�+

π±
ω e

−ωz ; π♦(z) =
∑
ω∈�+

π♦,ω e−ωz (4.2)

The Fourier series for π±(z)−z are convergent, whereas those for π♦(z),
π∗, π� etc are (usually) merely formal. But this makes no difference to

49 The analytic h in (3.48) conjugates the weakly reflexive/counitary f with a strictly reflex-
ive/counitary f0, i.e. h ◦ f = f0 ◦ h. By definition, such a pair h, f0 exists. We may note in
passing that the factorisation f = f1 ◦ f −12 would still hold for complex (in the reflexive case) or
real (in the unitary case) values of n j , but in that case the above formulae break down ( f1, f2 are no
longer analytic) and we must take recourse to another, more involved construction.

50 mixc(π1,π2) is doubly germinal: for a given (π1,π2), it is defined for c large enough, and for a
given c , it is defined for (π1,π2) close enough to (id, id).
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the Fourier coefficients, which are always given by convergent series:

π±
ω = z +

∑
1≤r

∑
ni

�
n1,...,nr± Teen1,...,nrω (4.3)

π∗ω =
∑
1≤r

∑
ni

�n1,...,nr∗ Taan1,...,nrω (4.4)

π�ω =
∑
1≤r

∑
ni

�
n1,...,nr
� Toon1,...,nrω (4.5)

with the g-dependendence implicit in the coefficients �±, �∗, �� as de-
fined in (3.10), (3.30), (3.36), or explicit in the definitions (3.14), (3.32).
However, the need to define the alien operators�±

ω and�ω in uniform
manner for all ω clashes with the need to associate within one and the
same pair (πno, πso) respectively (π−1

no , π
−1
so ) northern and southern com-

ponents originating from the same collector p or p−1. This clash leads to
a regrettable but unavoidable disharmony in the correspondance between
the invariants A±

ω and Aω, as defined from the resurgence equations, and
the Fourier coefficients of the connectors, as derived from the collectors.
This correspondance takes the form:

∀ω ∈ �− : A+
ω = π+

ω ; A−
ω = π−

ω ; +2π i Aω = π∗ω

∀ω ∈ �+ : A−
ω = π+

ω ; A+
ω = π−

ω ; −2π i Aω = π∗ω

Remark. Nature of the convergence

(i) The convergence in (4.3) is completely unproblematic – absolute
with respect to the contributions attached to individual clusters∏

i(gsi )
ni

(ii) We also have absolute, cluster-wise convergence in (4.4) and (4.5)
provided we take the precaution of switching from the coefficient
systems {g∗,s} or {g�,s} back to the natural system {gs}.

(iii) But we can also dispense with that change if we take the precaution
of collecting in (4.4) or (4.5) all terms (in finite number) of total
weight s, and then of summing all s-contributions. But summing
separately the contributions attached to the clusters

∏
i(g∗,si )

ni or∏
i(g�,si )

ni would not do.

4.2 The case ρ( f ) �= 0. Normalisation

For diffeos of the form f (z) = z + 1 − ρz−1 + O(z−2) with a non-
vanishing ‘iterative residue’ ρ, the defining relation (1.5) for the right
and left iterators must be changed to

f ∗±(z) = lim
k→±∞ f k(z)− k ± ρ (c + log |k|) (4.6)
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with the normalisation constant c as in Section 2.5. In the formal model,
this leads to

f̃ ∗(z) = z + ρ (c + log z)+ o(z−1). (4.7)

That apart, nothing changes and all the previous results and formulae
still hold, including the explicit expansions (3.12)-(3.13) and (4.3), pro-
vided we set ze1 := γ − c and normalise all multizetas and multitangents
accordingly. As mentioned in Section 2.6, the recommended choice is
c = γ , since it amounts to setting ze1 := 0.

4.3 The case p �= 1. Ramification

Here again, the transition is straightforward. The ‘prepared’ form (1.2)
for the diffeo now carries fractional exponents s ∈ p−1 N∗. As a conse-
quence, the multiplicative z-plane and the convolutive ζ -plane are now
p-ramified, and so is the index set �, which is embedded in the ζ -plane.
We still have one single collector p respectively p∗, p� etc, ramified yet of
one piece, but p distinct pairs of connectors, π = (πno, πso) respectively
π∗ = (π∗no, π∗so) or π� = (π�no, π�so) etc, separately unramified and mu-
tually unrelated. The invariants π±

ω respectively π∗ω, π�ω are still given
by the familiar formulae (4.3), (4.4), (4.5) but with Fourier coefficients
Teesω respectively Taa

s
ω, Too

s
ω etc that are best calculated by resurgent

analysis, as in Section 2.7, and are no longer finite sums of multizetas,
even of ramified ones.
The transition to the most general case, with (ρ, p) any element of

(C,N∗), follows on exactly the same lines, and merely combines the par-
tial adjustments of the present and preceding subsections.

4.4 Growth properties of the invariants

Growth in ω for a given analytic f : For a diffeo f in prepared form
(1.2), any majorisation of its coefficients easily translates into a majori-
sation of its invariants:{ | f[s]| ≤ c0 c

s
1

} 4⇒ {
|A±

ω | ≤ C0 C
|ω|
1

}
. (4.8)

Rough estimates of (C0,C1) in terms of (c0, c1) were given in [5] and
sharper ones in [1]. These results can be derived from a geometric anal-
ysis in the z-plane or from a resurgent analysis in the ζ -plane. Things
change, though, when we go over to the Gevrey case.

Growth in ω for a given f of Gevrey class: Formal diffeos f (in prepared
form) of Gevrey class τ are easily shown to be stable under formal con-
jugations (also in prepared form) of the same Gevrey class. For 0 < τ ,
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the Gevrey class is non-analytic, and Gevrey conjugacy turns out to be
strictly stronger than formal conjugacy if and only if τ < 1. This implies,
for 0 < τ < 1 , the existence of Gevrey conjugation invariants. These,
however, can no longer be defined in the z-plane, since f is purely formal
and has no geometric realisation there. In the ζ -plane, though, the Borel
tranforms of the iterators ∗f and f ∗ still exist (again, assuming τ < 1);

still extend to uniform analytic functions on ˜C − 2π i Z; still verify the fa-
miliar resurgence equations (1.66)-(1.67); and still unambigously define
invariants A±

ω and Aω, which are still given by the explicit expansions
(4.3)-(4.4). The only difference lies in the faster than exponential growth
of f̂ ∗(ζ ) and ∗f̂ (ζ ) as |ζ | → ∞, and in the faster than exponential growth
of A±

ω as |ω| → ∞. More precisly, for 0 < τ < 1, the earlier implication
(4.8) becomes51:

{ | f[s]| ≤ c0 c
s
1 s

τ s } 4⇒ { |A±
ω | ≤ C0 C

|ω|
1 exp(C2 |ω| 1

1−τ )} (4.9)

Growth in f for a given ω. We may now fix ω and ask how A+
ω ( f ),

A−
ω ( f ), Aω( f ) behave as functions of f or, to simplify, as entire func-

tions of any given coefficient f[s] (s ≥ 2) relative to a prepared form
(1.2). Unlike with the ω-growth, there is little difference here between
A±
ω and Aω.

(i) If s > 2, all three entire functions A+
ω ( f[s]), A−

ω ( f[s]), Aω( f[s]) have
at most exponential growth in | f[s]| 1

s−1 .
(ii) If s = 2, the corresponding coefficient coincides up to sign with the

iterative residue (i.e. f[2] = −ρ), and the entire functions A+
ω (ρ),

A−
ω (ρ), Aω(ρ) have at most exponential growth in |ρ log ρ|. The

result appears to be sharp.52

These results are almost “special cases” of the following statement: at

any given point ζ0 on C̃ −�, the Borel transform of the direct iterator
assumes a value f̂ ∗(ζ0) which, as an entire function of f[s], is exactly of
exponential type in | f[s]| 1

s−1 . This applies even for s = 2. The difference
between the cases s �= 2 and s = 2 makes itself felt only when we move
ζ0 to some point ω0 located over �, to investigate the leading singularity
there and infer from it the value of the invariants. When ρ = 0, the
leading singularity in question is a simple pole aω0(ζ − ω0)

−1, but when

51 For details, see [5, page 424]

52 See the argument in [2, Section 8].
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ρ �= 0 it is of the form aω0(ζ−ω0)ρ ω0−1/�(ρ ω0) and can be quite violent
if ρ has an imaginary part.
We shall take up these growth and convergence issues more systemat-

ically in Section 7.

4.5 Alternative computational strategies

Direct Fourier analysis in the multiplicative plane. The methods amounts
to calculating the limit:53

A∓ε(ω)
ω = π±

ω = lim
k→±∞

∫ 1+z0

z0

(
l−k ◦ f 2k ◦ l−k(z)− z

)
eω z dz (4.10)

with ε(ω) := sign()(ω)). Although the parenthesised part of the inte-
grand converges to π±(z)− z for |)(z)| large enough, the above scheme,
even after optimisation in the choice of z0, is computationally costly (in-
tegral instead of series) and inefficient (arithmetical convergence) as well
as theoretically opaque (it sheds no light on the internal structure of the
invariants as functions of f ). But it has the merit of being almost insen-
sitive to the choice of ω, unlike the next method.

(ii) Asymptotic coefficient analysis in the formal model. The method
starts with the inductive calculation of the first N coefficients of the di-
rect iterator f ∗(z) from its functional equation (1.11). One then switches
to the Borel transform f̂ ∗(ζ ) and uses the method of coefficient asymp-
totics54 to derive the form of the two singularities55 closest to the origin
(they are located over ±2π i). When applied to a parameter-free diffeo f
with proper optimising precautions, the method is superbly efficient for
computing A±2π i , even for diffeos f that are ‘large’, i.e. distant from the
identity. Thus, with N taken in the region of 200 or 300, one typically
gets A±2π i with 100 exact digits or more, in less than half an hour of
Maple time.
The method works less well, however, for ω0 = 2π in with n > 1.

One must then start with a conformal mapping ζ  → ζ ′ = h(ζ ) of R =
˜C − 2π iZ that keeps 0• fixed and takes the points +ωmain0 and −ωmain0

53 If ρ( f ) �= 0, the shift l−k should of course be replaced by l−k+(c+log k)ρ , with c = γ as
recommended choice for the normalisation constant c. See Section 2.6.

54 For a brief exposition of the method, see for ex. the section Section 2.3 of Power Series with
sum-product Taylor coefficients and their resurgence algebra, J. Ecalle and S. Sharma, Ed. Scuola
Normale Superiore, Pisa, 2011.

55 Or of the 2 p closest singularities when p( f ) �= 0.
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closer to the origin than all other points ±ωmain, with ωmain denoting the
ramification point of R over ω that abuts the main real half-plane. One
can then apply the method of coefficient asymptotics in the ζ ′-plane, with
the Taylor series f̂ ∗(h−1(ζ ′)) in place of the series f̂ ∗(ζ ), to calculate
A+
ω0
and A−

−ω0 .

(iii) Resurgent analysis in the Poincaré plane. That method also is based
on the resurgence equation (1.67) verified by the direct iterator f ∗. But
instead of interpreting that resurgence equation, as usual, in the highly
ramified ζ -plane, one performs a conformal transform ζ → ξ derived
from the classical modular function λ :

ζ = q(ξ) :=− log(1− λ(ξ))=− logλ
(
−1
ξ

)
=16

∑
n odd

qn e
2π iξ (4.11)

qn :=
∑
d|n

1

d
= 1

n

∑
d|n

d (4.12)

That comformal transform does three things:

(*) it maps the Riemann surface R := ˜C − 2π i Z of the ζ variable uni-
formly onto the Poincaré half-plane )(ξ) > 0;
(**) it changes the power series f̂ ∗(ζ ) with finite radius of convergence
into a Fourier series f̂ ∗(q(ξ)) that converges on the entire Poincaré half-
plane.
(***) it turns the alien operators into finite superpositions of post-com-
position operators – more precisely, post-composition by simple homo-
graphies h±ω, j or h

±
ω, j with entire coefficients:

�±
ω ϕ̂(ξ) := ϕ̂ ◦ h±ω,1(ξ)− ϕ̂ ◦ h±ω,2(ξ) (4.13)

�ωϕ̂(ξ) :=
∑
1≤ j≤2r

mω, j ϕ̂ ◦ hω, j (ξ)
(
r := | ω

2π i
|,mω, j ∈ Q

)
(4.14)

The method is efficient enough for small values of ω, but as r := | ω
2π i |

increases, the distances

H±(ω) := max
)(ξ)>0

inf{ )(ξ) , )(h∓ω,1(ξ)) , )(h∓ω,2(ξ))} (4.15)

H(ω) := max
)(ξ)>0

inf{ )(ξ) , )(hω,1(ξ)) , . . . , )(hω,2r (ξ))} (4.16)

rapidly decrease to zero, making it necessary to evaluate our Fourier se-
ries for f̂ ∗(q(ξ)) close to the boundary of their domain of convergence,
i.e. the real axis, which of course is computationally costly.
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(iv) Explicit multizetaic expansions. This method, to which the present
paper is devoted, has the advantage of explicitness and theoretical trans-
parency, expressing as it does the invariants in terms of universal tran-
scendental constants (the multizetas) and of the diffeo’s Taylor coeffi-
cients. It has the further advantage of handling large values of ω almost
as efficiently as small ones. But the method’s chief drawback would seem
to be this: it involves expansions which converge very fast (faster than
geometrically) once they reach ‘cruising speed’, but which often take a
damn long time to reach that speed. This is the case, not so much for ω
large, but for f large, i.e. for diffeos too distant from id.

4.6 Concluding remarks

(i) The invariants as autark functions.
Local, analytic, resonant vector fields X ranging through a fixed formal
conjugacy class, possess holomorphic invariants Aω which are autark
functions of X , that is to say, of any given free56 Taylor coefficient of
X . Autark functions, very informally, are entire functions whose asymp-
totic behaviour in every sector of exponential increase or decrease admits
a complete description, with dominant exponential terms accompanied
by divergent-resurgent power series, which in turn verify a closed system
of resurgence equations. Whether the invariants Aω of diffeos are autark,
too, seems likely but is yet unproved. Be that as it may, one would like
to fully understand the asymptotic behaviour of Aω as f grows, or as any
given coefficient or parameter in f grows, since for very ‘large’ diffeos f
the direct computation of the invariants would in any case be very costly.

(ii) Formal multizetas: dynamical vs arithmetical variants.
There exist several distinct but most probably equivalent notions of arith-
metical formal multizetas, like the multizeta symbols subject to the two
systems of so-called quadratic multizeta relations, or again to the pen-
tagonal, hexagonal and digonal relations. But there also exists a demon-
strably distinct and weaker notion of dynamical formal multizetas (and
multitangents), by which we mean any system S of scalar-valued mul-
tizeta symbols (respectively function-valued multitangent symbols) that,
when inserted into the expansions (4.3) (respectively (3.15)) guarantees,
first, the convergence of these expansions, and, second, the invariance of
the Aω (respectively π) so produced. This immediately suggests a pro-

56 I.e. of each coefficient that may freely vary without causing X to leave its formal conjugacy class.
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gramme: to repeat for the dynamical multizetas what has been success-
fully done for their arithmetical counterparts, in particular to construct
explicit, complete and canonical systems of irreducibles.

(iii) Abstract invariants.
Let { SAω, ω ∈ �} be the system of ‘abstract’ invariants induced by a
system S of dynamical multizetas as above. Since the system of natural
invariants {Aω, ω ∈ �} is complete, there necessarily exist conversion
formulae of the form:

SAω0 =
∑
1≤r

∑
ω1+...ωr=ω0

Hω1,...,ωr
S Aω1 . . . Aωr (4.17)

that respect the basic ω-gradation and carry interesting ‘universal’ struc-
ture constants H •

S . These constants ought to be of particular significance
in the case of the system S0 of ‘rational’ dynamical multizetas which is
analogous, on the dynamical side, to the canonical system of ‘rational’57

multizetas on the arithmetical side.

5 Complement: twisted symmetries and multitangents.

The aim of this section is twofold:

(i) to review in a systematic and orderly fashion the combinatorial lem-
mas relevant to this investigation

(ii) to examine the most general symmetry types and the structure coef-
ficients attached to them— less for their own sake than for showing
how exceptional and deserving of attention the dozen or so special
symmetry types are.

5.1 Twisted alien operators

Let γ (t) =∑0≤r γr t
r+1 and consider the alien operator

DD♦ := γ (DD+ − 1) = γ (e2π i DD − 1) (5.1)

The ω-components of DD♦ are of the form:

DD♦ =
∑

arg(ω)=0
��♦

ω =
∑

arg(ω)=0
e−ω.z �♦

ω (5.2)

(�̂♦
ωϕ̂)(ζ ) :=

∑
ε1,...,εr

εr

2π i
λ♦ε1,...,εr−1 ϕ̂

(
ε1
ω1

,...,
,...,

εr
εr
)
(ω + ζ ). (5.3)

57 They become rational, of course, only after a homogeneous rescaling that amounts to setting
π := 1.
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Like with the λ-coefficients of the already familiar operators �ω, �
±
ω ,

��
ω, �

��
ω , the coefficients λ

♦
ε1,...,εr−1 that describe the action of �

♦
ω depend

only on the crossing pattern, i.e. on the number p, q of plus and minus
signs in the sequence {εi }. But in this case they are given by:

λ♦ε1,...,εr−1 = λ
[p,q]
♦ = (−1)q

∑
0≤k≤p

p!
(p−k)! k! γq+k . (5.4)

For γ (t) = t
1+t/2 or γ (t) = (1+t)2−1

(1+t)2+1 , we recover the structure coefficients
λ
[p,q]
� , λ[p,q]�� for the alien operators��

ω and�
��
ω introduced in Section 1.6.

λ
[p,q]
� = 2−p−q , λ

[p,q]
�� = #(p − q) 2−int(

p+q+1
2 )

where # is the even function from Z/8Z to Z verifying #(k+4) = −#(k)
and #(0) = #(±1) = 1. Since #(2) = −#(2+ 4) = −#(−2) = −#(2),
it follows that #(±2) = 0.

Short proof: After checking that the λ-coefficients of DD♦ inherit from
those ofDD+ the crucial property of depending solely on the crossing pat-
tern (p, q), we are left with the simple task of considering the case of
p initial right-crossings followed by q final left crossings. As in Sec-
tion 1.6 we begin with the situation when all singularities are located
over N. Next we define the non-commuting elementary shifts σ , τ as in
Section 1.6, then use the expansion

DD+−1 = (1− τ)(1− σ)−1 − 1 = (σ − τ)(1− σ)−1

=
(
σ − τ)(1+

∑
1≤p

σ p

)

and in each power (DD+−1)r collect the terms that contribute to (σ −
τ)τ qσ p.

5.2 Twisted mould symmetries

Given any two power series without constant term

α(t) =
∑
0≤r

αr t
1+r , β(t) =

∑
0≤r

βr t
1+r (α0 �= 0, β0 �= 0)

we denote by α(Id•), β(Id•), or simply α•, β• the moulds whose length-0
components vanish and whose length-r components are equal to

αω1 ≡ α0 , α
ω1,...,ωr ≡ αr−1 , βω1 ≡ β0 , β

ω1,...,ωr ≡ βr−1
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irrespective of the actual values of ωi . We then define coefficients α p,q

and βp,q by setting∑
α p,q t p1 t

q
2 := α

(
α−1(t1)+ α−1(t2)

)
(5.5)∑

βp,q t
p
1 t

q
2 := β−1(β(t1)+ β(t2)

)
. (5.6)

If M• ∈ α• ◦ alternal•, then for any two sequences ω′,ω′′ �= ∅:
1≤p,1≤q∑

(
ω′1..ω′ p=ω′
ω′′1..ω′′q=ω′′

)α p,q Mω′1
. . .Mω′ p

Mω′′1
. . .Mω′′q ≡

∑
ω∈sha(ω′,ω′′)

Mω. (5.7)

If M• ∈ alternal• ◦ β•, then for any two sequences ω′,ω′′ �= ∅:

0 ≡
1≤p,1≤q∑

ω∈shap,q (ω′,ω′′)
βp,q M

ω. (5.8)

If M• ∈ α• ◦ alternal• ◦ β•, then for any two sequences ω′,ω′′ �= ∅:
1≤p,1≤q∑

(
ω′1..ω′ p=ω′
ω′′1..ω′′q=ω′′

)α p,q Mω′1
. . .Mω′ p

Mω′′1
. . .Mω′′q ≡

1≤p,1≤q∑
ω∈shap,q (ω′,ω′′)

βp,q M
ω.

(5.9)
An important sub-case is when α, β are reciprocal, for it corresponds to
a symmetry type α• ◦ alternal• ◦ β• stable under mould-composition and
leads to identical coefficients α p,q = βp,q on both sides of (5.9).
It is often preferable to take elternel rather than alternal as a standard

of reference. Since

elternel• = (exp(Id•)− 1•) ◦ alternal• ◦ log(1• + Id•) (5.10)

we see at once that moulds respectively of type

elternel• ◦ δ• , γ • ◦ elternel• , γ • ◦ elternel• ◦ δ•

still verify identities of the form (5.7), (5.8), (5.9), but with new coeffi-
cients γ [p,q], δ[p,q], defined by∑

γ [p,q] t p1 t
q
2 := γ

(
γ−1(t1)+ γ−1(t2)+ γ−1(t1) γ−1(t2)

)
(5.11)∑

δ[p,q] t
p
1 t

q
2 := δ−1

(
δ(t1)+ δ(t2)+ δ(t1) δ(t2)

)
(5.12)

in place of αp,q, β p,q . Indeed, in view of (5.10), (5.11)-(5.12) results from
(5.5)-(5.6) under the change α(t) = γ (et − 1) , β(t) = log(1+ δ(t))
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5.3 Twisted co-products

As useful as the statements of Section 5.2 are the dual statements:

(i) If θ♦ = α(θ∗) with cop(θ∗) = 1⊕ θ∗ + θ∗ ⊕ 1, then
cop(θ♦) = 1⊕ θ♦ + θ♦ ⊕ 1+

∑
1≤p,q

α p,q (θ♦)p ⊕ (θ♦)q . (5.13)

(ii) If θ♦ = γ (θ) with cop(θ) = 1⊕ θ + θ ⊕ 1+ θ ⊕ θ , then

cop(θ♦) = 1⊕ θ♦ + θ♦ ⊕ 1+
∑
1≤p,q

γ [p,q] (θ♦)p ⊕ (θ♦)q . (5.14)

5.4 Twisted multitangents

Let γ (t) =∑0≤r γr t
r+1 and δ(t) =∑0≤r δr t

r+1 as usual58 and let

Te•γ,δ := γ (Id•) ◦ (Te• − 1•) ◦ δ(Id•) = γ (Id•) ◦ Tee• ◦ δ(Id•). (5.15)
Linearisation lemma: The twisted multitangents Te•γ,δ(z) can be u-
niquely expanded into sums of symmetrel multitangents Te•(z)

Ten1,...,nrγ,δ (z) =
∑
1≤s≤r

r1+···+rs=r∑
1≤ri

∑
σ∈Sr1,...,rs

Hr1,...,rs
σ Tenσ,1,...,nσ,s (z) (5.16)

with universal coefficients H r
σ = H r∗

[p,q] defined as follows

Hr1,...,rs (σ ) =H
r∗1 ,...,r∗s∗
[p,q]

=
r−s∗∑
k=0

[
p∑

l=0
γk+q+l

p!
(p−l)! l!

][∇k

k!
(
δr∗1−1...δr∗s∗−1

)]
.

(5.17)

(i) The sum (5.16) ranges over all ordered sequences (r1, . . . , rs) and all
permutations σ inSr1,...,rs , i.e. all σ that increase on each of the intervals
Irk of the partition

Ir1 6 · · · 6 Irs = [1, . . . , r] ∈ Z (card(Iri ) = ri).

(ii) The indices of Te•(z) on the right-hand side of (5.16) are given by

nσ,i =
∑
j∈Iri

nσ( j) ∀ i ∈ [1, s].

58 For the moment, we assume neither γ ◦ δ = id nor γ0 �= 0, δ0 �= 0.
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(iii) Ir∗1 6 · · · 6 Ir∗s∗ denotes the minimal sub-partition of Ir1 6 · · · 6 Irs
such that σ increases without gaps on each Ir∗k , i.e. such that

σ( j)− σ(i) ≡ j − i ∀i, j ∈ Ir∗k , ∀k ∈ [1, s∗].
(iv) There exist two full orders < and <σ on the set {Ir∗1 , . . . , Ir∗s∗ }:

{Ir∗k < Ir∗l } ⇔ i < j ∀(i, j) ∈ (Ir∗k , Ir∗l ) ⇔ k < l

{Ir∗k <σ Ir∗l } ⇔ σ(i) < σ( j) ∀(i, j) ∈ (Ir∗k , Ir∗l ).

For each k ≤ s∗ the immediate <σ -successor of Ir∗k is noted Ir∗k+ (when
it exists, i.e. when Ir∗

k+ is not <σ -maximal). The integer p (respectively
q) so defined

p :=
∑
k<k+

1 , q :=
∑
k>k+

1 (p + q ≡ s∗ − 1)

measures the compatibility (respectively incompatibility) of < and <σ .

(v) ∇ denotes the derivation on Q[δ0, δ1, δ2 . . . ] characterised by

∇δ0 := 0, ∇δ1 := (δ0)
2, ∇δ2 := 2 δ0 δ1, . . . , ∇δr :=

r−1∑
r ′=0

δr ′ δr−1−r ′ .

It readily follows that

∇r

r ! δr ≡ (δ0)
r+1 ,

∇l

l! δr ≡ 0 iff r < l.

Remark 1. When k takes either of its extreme values 0 or r − s∗, the
formula (5.17) gives for H r∗

[p,q] two γ -dependent parts respectively of the
form

(∗) γq + · · · + γp+q
(∗∗) γq+r−s∗ + · · · + γp+q+r−s∗ = γr−1−p + · · · + γr−1

while the δ-dependent parts reduce to

(∗) ∇0

0!
∏
i

δr∗i−1 =
∏
i

δr∗i−1

(∗∗) ∇r−s∗

(r−s∗)!
∏
i

δr∗i−1 =
∏
i

( ∇r∗i −1

(r∗i −1)!
δr∗i−1

)
=
∏
i

(δ0)
r∗i = (δ0)

r
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As a consequece of (∗∗), H r∗
[p,q] always contains the term γr−1 (δ0)r

among its summands.

Remark 2. Exchanging two adjacent intervals Ir∗i and Ir∗i+1 with non-
adjacent images59 σ(Ir∗i ) and σ(Ir∗i+1) leaves the pair (p, q) unchanged.
On the other hand, once (p, q) has been determined in function of σ
and the ordered sequence r∗, the order in r∗ no longer counts for the
determination of H r∗

γ,δ(p, q). For a given depth r , therefore, the max-
imum number of distinct values assumed by H r∗

γ,δ(p, q) cannot exceed∑r
k=1 k p(r, k), with p(r, k) denoting the number of k-multiple partitions

of r .

Example. Let us calculate the coefficients of Ten1,n3+n4,n2+n6+n7 in the
expansion (5.16) of Ten1,...,n6γ,δ . Starting from a partition r = (1, 2, 3) with
s = 3 we arrive at the refined partition r∗ = (1, 2, 1, 2) with s∗ = 4.
Applying (5.17) and the rules for handling ∇, we successively find:

H 1,2,1,2
[2,1] =

2∑
k=0

(γ1+k + 2 γ2+k + γ3+k)
∇k

k! (δ0δ1δ0δ1)

= +(γ1 + 2 γ2 + γ3) (δ
2
0 δ

2
1)

+(γ2 + 2 γ3 + γ4) (2 δ
4
0 δ1)

+(γ3 + 2 γ4 + γ5) (δ
6
0).

We would find exactly the same coefficient for Ten1,n3+n4,n2,n6+n7 and for
Ten1,n3+n4,n6+n7,n2 , in agreement with the observation of Remark 2 above.

Special cases. If we now assume that γ ◦ δ = id, we find few notewor-
thy simplications, apart from the automatic vanishing of the coefficient
Hr

[r−1,0] that stands in front of the lone ‘monotangent’ Te
|n| in the Te•-

expansion (5.16) of Ten. For real simplications, we must turn to the multi-
tangents Te•�c = Te•γc,δc with homographic driving series γc(t) = t

1+c t and
δc(t) = t

1−c t . In that case, a simple calculation shows that in the expan-
sion (5.16) of Tenγc,δc the only surviving terms Te

nσ,1,...,nσ,s are those whose
indices nσ,k carry no sums ni + ni+1 of consecutive terms. This implies
that the only non-zero coefficients H r∗

γc,δc
(p, q) correspond to reduced se-

quences r∗ with all multiplicities r∗i ≡ 1, so that s = r . Moreover, even
these surviving H r∗

[p,q] turn out to be extremely simple:

H 1,...,1
[p,q] = (1− c)p (−c)q . (5.18)

59 This of course is possible only if Ir∗i and Ir∗i+1 do not stem from one and the same Ik .
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When c = 1/2, we recover the formula (2.49) for the Te•-expansion of
the olternol multitangents Too•.
The family

γ (t) := 1

c

(1+ t)2 c − 1
(1+ t)2 c + 1 , δ(t) :=

(
1+ c t

1− c t

) 1
2 c

− 1 (5.19)

does not lead to simple results, except of course in the case c = 1/2,
where it coincides with (5.18), and in the case c = 1, where all coef-
ficients H r∗

γc,δc
(p, q) turn out to be simple products of Catalan numbers

times a negative power of 2 and an appropriate sign in front. Here is the
precise statement:

8-periodicity of H r∗
[p,q]. For γ, δ of the form

γ (t) := t + 1
2 t
2

1+ t + 1
2 t
2

, δ(t) :=
(
1+ t

1− t

) 1
2

− 1 (5.20)

we have

H
r∗1 ,...,r∗s
[p,q] = ρ∗(su−se+2 p) 2int(s/2)

∏
1≤i≤s

κ(r∗i ) (5.21)

= ρ(2 su+ p−q) 2int(s/2)
∏
1≤i≤s

κ(r∗i ) (5.22)

with

su :=
∑
r∗i =1

1, se :=
∑

r∗i even≥2
1, so :=

∑
r∗i odd≥3

1 (1+p+q≡su+so+se)

int(s)=integerpartof s (5.23)

ρ∗(m):Z/8Z→Z, [0,1,2,3,4,5,6,7]  →[−1,2,−1,0,1,−2,1,0] (5.24)
ρ(m): Z/8Z→Z, [0,1,2,3,4,5,6,7]  →[0,−1,2,−1,0,1,−2,1] (5.25)
κ(1):=1/2, κ(2n):= 1

22n
(2n−2)!
n!(n−1)! , κ(2n+1):=0 ∀n>1. (5.26)

Due to (5.26), H r∗
[p,q] vanishes unless none of the indices r

∗
i is odd ≥ 3.

Moreover, when all r∗i are either 1 or even, after division by elementary
factors (- powers of 2 and Catalan numbers -) we get an expression h:

h(p, q, su, se) := H
r∗1 ,...,r∗s
[p,q] 2−int(s/2)

∏
i

(1/κ(r∗i )) (5.27)

= ρ(2 su + p − q) (5.28)

= ρ∗(su − se + 2 p) = ρ∗(3 su + se − 2 q − 2) (5.29)
which turns out, quite unexpectedly, to be 8-periodic in the order-compat-
ibility coefficients p, q and the multiplicities su, se.
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5.5 Affliates : from function to operator

We have the choice between relating an affiliate F♦ to F itself or to its
infinitesimal generator F∗:

F♦ := γ (F − 1) = α(F∗)
(
F∗ := log(F)

)
. (5.30)

This implies handling two distinct systems of coefficients:

α(t)=t+
∑
1≤r

αr t
r+1, γ (t)=t+

∑
1≤r

γr t
r+1,

(
γ (t)=α(log(1+t)). (5.31)

The choice impacts the analytic expression of the correspondence f♦  →
F♦:

F♦  → f♦=F♦.z (5.32)

f♦  →F♦=
∑
1≤r

∑
1≤ni

♦n1,...,nr

(
f n1♦

∂n1z

n1!
)
...

(
f nr♦

∂nrz

nr !
)
(nr>1if r>1). (5.33)

Although F♦ is usually derived from F rather than F∗, the structure coef-
ficients ♦n1,...,nr are simpler to express in terms of the coefficients αn than
in terms of γn: in the former case, the sums involve fewer terms

∏
αm j

due to the homogeneity constraints
∑
ni = ∑m j . The simplest way to

ensure (5.32) is to set ♦1 = 1 and to impose that all other coefficients
♦n1,...,nr ending with nr = 1 should vanish. This, however, is not enough
to enforce the uniqueness of the expansion (5.33), due to the existence,
for n large enough, of universal identities of the form

0 ≡
∑

n1+···+nr=n
cn1,...,nr

(
f n1♦

∂n1z

n1!
)
. . .

(
f nr♦

∂nrz

nr !
)

(cn1,...,nr ∈Z). (5.34)

The latitude in the choice of the structure coefficients being 2r−2−par(r)
for r > 1 (par = partition number), it is clear that even imposing a
natural condition60 like{
αn = 1

(n + 1)! ∀n
}
4⇒{

♦n1=1 ∀n1 , ♦n1,...,nr = 0 ∀r≥2} (5.35)
is not enough to restore uniqueness. In fact, we know of no simple condi-
tion that does. In any case, here is a natural choice for the first structure

60 Natural indeed, since this choice of α leads to the fonction f♦(z) = f (z)− z and to the operator

F♦ = F − 1 =∑1≤n f n♦
∂nz
n! .
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coefficients:

♦1 = 1

♦2 = 2α1

♦3 = −3α2 +6α21
♦1,2 = 3α2 −2α21
♦4 = 4α3 −20α1 α2 +20α31
♦1,3 = −7α3 +20α1 α2 −11α31
♦2,2 = 2α3 +2α1 α2 −2α31
♦1,1,2 = 3α3 −6α1 α2 +3α31
♦5 = −5α4 +30α1 α3 +15α22 −105α21 α2 +70α41
♦1,4 = 21α4 − 366

5 α1 α3 − 171
5 α22 + 789

5 α21 α2 − 342
5 α41

♦2,3 = −28α4 + 348
5 α1 α3 + 168

5 α22 − 552
5 α21 α2 + 196

5 α41

♦3,2 = 9α4 − 114
5 α1 α3 − 99

5 α
2
2 + 321

5 α21 α2 − 138
5 α41

♦1,1,3 = 0

♦1,2,2 = −α4 + 86
5 α1 α3 + 51

5 α
2
2 − 229

5 α21 α2 + 102
5 α41

♦2,1,2 = +4α1 α3 −8α21 α2 +4α41
♦1,1,1,2 = 4α4 − 64

5 α1 α3 − 24
5 α

2
2 + 116

5 α21 α2 − 48
5 α

4
1 .

Remarkably enough, for index sums |n| ≥ 5, a fair number of structure
coefficients ♦n are always= 0, irrespective of α and despite having a last
index nr �= 1. Here are the first unconditionally vanishing coefficients:

|n|=5 : ♦1,1,3

|n|=6 : ♦2,4,♦3,1,2,♦1,1,1,3,♦1,1,1,1,2

|n|=7 : ♦2,5,♦1,3,3,♦1,1,1,4,♦1,1,2,3,♦1,2,1,3,♦2,1,1,3,♦2,1,2,2,♦1,1,1,1,3,
♦1,1,1,2,2,♦1,1,2,1,2,♦1,2,1,1,2,♦2,1,1,1,2,♦1,1,1,1,1,2 .

Here again, the case

α(t) = 1

c
tanh(c t) , γ (t) = 1

c

(1+ t)2 c − 1
(1+ t)2 c + 1 (5.36)

stands out for simplicity. It makes it possible to choose a system of struc-
ture coefficients which are all ≡ 0 except those of the form:

♦2m1−1,2m2,2m3,...,2mr = (−1)r−1 c−2+2
∑
mi (∀ r , ∀mi ≥ 1). (5.37)

When c = 1
2 we recover the earlier formula (1.26) for the mediator.
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5.6 Main and secondary symmetry types

Let us stand back and take stock. Alongside the four ubiquitous symme-
try types:

al ternal• = basi c symmetr y t ype

symmetral• = (exp Id•) ◦ al ternal•
al ternel• = al ternal• ◦ log(1• + Id•)

symmetrel• = (exp Id•) ◦ al ternal• ◦ log(1• + Id•)

we have a number of special symmetry types, of secondary but non-
negligible importance:

ol ternal• = α(Id•) ◦ al ternal•
= γ (Id•) ◦ (symmetral• − 1•)

al ternol• = al ternal• ◦ β(Id•)
= al ternel• ◦ δ(Id•)

ol ternol• = α(Id•) ◦ al ternal• ◦ β(Id•)
= γ (Id•) ◦ (symmetrel• − 1•) ◦ δ(Id•)

symmetrol• = symmetral• ◦ β(Id•)
= symmetrel• ◦ δ(Id•).

Choice 1. The most common choice for the quartet (α, β, γ, δ) is

α(t) := 2 tanh

(
1

2
t

)
, β(t) := 2 arctanh

(
1

2
t

)
(5.38)

γ (t) := t

1+ 1
2 t

, δ(t) := t

1− 1
2 t

. (5.39)

The corresponding structure constants are:

λ[p,q] = 2−p−q

γ [p,q] = (− 1
4

)inf(p,q)
if |p−q|=1 (resp. 0 otherwise)

♦n1,...,nr= (−1)r−121−∑ni if r,n1odd,n2,...,nr even (resp. 0 otherwise)

H
r∗1 ,...,r∗s
[p,q] = (−1)q ( 14)s−1 if r∗1=...=r∗s =1 (resp. 0 otherwise).
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Choice 2. More rarely we take

α(t) := tanh(t) , β(t) := arctanh(t) (5.40)

γ (t) := t + 1
2 t
2

1+ t + 1
2 t
2
, δ(t) :=

(
1+ t

1− t

) 1
2

− 1. (5.41)

This choice leads to marginally less simple structure coefficients:

λ[p,q] = #(p − q) 2−int(
p+q+1
2 )

γ [p,q] = (−1)inf(p,q) if |p − q| = 1 (resp. 0 otherwise)

♦n1,...,nr = (−1)r−1 if r, n1 odd , n2, ..., nr even (resp. 0 otherwise)

H
r∗1 ,...,r∗s
[p,q] = ρ(2 su+ p−q) 2int(s/2)∏1≤i≤s κ(r

∗
i ) ( resp. 0 if s0 �= 0 )

with su, so, se, ρ, #, κ as in (5.24)-(5.26). In particular:

ρ : Z/8Z→Z , [0,1,2,3,4,5,6,7]  →[0,−1,2,−1,0,1,−2,1]
# : Z/8Z→Z , [0,1,2,3,4,5,6,7]  →[1,1,0,−1,−1,−1,0,1]

ρ is odd and # even but both change signs under 4-shifts

ρ(k + 4) ≡ −ρ(k) , #(k + 4) ≡ −#(k).

Choice 3. If c �∈ {±1,±i,± 1
2 ,± i

2} the one-parameter family

αc(t) := 1

c
tanh(c t) , βc(t) := 1

c
arctanh(c t) (5.42)

γc(t) := 1

c

(1+ t)2 c − 1
(1+ t)2 c + 1 , δc(t) :=

(
1+ c t

1− c t

)1
2 c

− 1 . (5.43)

makes only γ [p,q] and ♦• simple:

λ[p,q] = no simple multiplicative structure

γ [p,q] = (−c2)inf(p,q) if |p − q| = 1 , (else = 0)

♦n1,...,nr = (−1)r−1 c−1+∑ ni if r, n1 odd , n2, ..., nr even (else = 0)

H
r∗1 ,...,r∗s
[p,q] = no simple multiplicative structure.

Choice 4. The homographic quartet:

α c(t) :=
(et − 1)

1+ c (et − 1) , β
c
(t) := t

1− c t
(5.44)

γ
c
(t) := t

1+ c t
, δ c(t) :=

t

1− c t
(5.45)
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predictably leads to simpler structure coefficients:

λ[p,q] = c q (1− c)p

γ [p,q] = 0 if |p − q| ≥ 2

γ [p,p] = (1− 2 c) c p−1 (c − 1)p−1
γ [p,p+1] = γ

[p+1,p]
c = c p (c − 1)p

♦n1,...,nr = no simple multiplicative structure

H
r∗1 ,...,r∗s
[p,q] = (−c)q (1− c)p if r∗1 = ... = r∗s = 1 (resp. 0 otherwise).

General case. Lasty, for arbitrary but mutually reciprocal (γ, δ), the
formulae read

λ[p,q] = (−1)q ∑
0≤k≤p

p!
(p−k)! k! γq+k

γ [p,q] : generated by γ (δ(t1)+δ(t2)+δ(t1) δ(t2)) =∑ γ [p,q] t p1 t
q
2

♦n1,...,nr : multiple competing expressions.

H
r∗1 ,...,r∗s
[p,q] =

r−s∗∑
k=0

[
p∑

l=0
γk+q+l

p!
(p−l)! l!

][∇k

k!
(
δr∗1−1...δr∗s∗−1

)]
In conclusion, of all secondary symmetry types, the simplest (and most
frequently occuring in practice) is the one at the intersection of the two
one-parameter families: γ = γ 1

2
= γ 1

2
, δ = δ 1

2
= δ 1

2
.

Remark 1. Consider the N-indexed mould har• defined by the induction

|•| har• = har•×Id•×har• (resp. = 0) if r(•) odd (resp. even)

or more explicitely

harn1 = 1

n1
(5.46)

harn1,...,nr := 0 ∀r even (in particularhar∅ :=0 ) (5.47)

harn1,...,nr := 1

n1+···+nr
∑
1<i<r

harn1,...,ni−1harni+1,...,nr (∀r odd≥3) (5.48)

har• is the simplest example of a i-olternal mould. It occurs naturally
in the study of some special trigonometric flexion algebras.61 Its inverse
kohar• under mould composition is even more elementary:

koharn1,...,n2r ≡ 0 , koharn1,...,n2r+1 ≡ (−1)r nr (5.49)

kohar• is the simplest instance of a i-alternol mould.

61 Cf. [10, page 177].
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Remark 2. There is an important operatorH, also acting on a trigonomet-
ric flexion algebra62, that happens to verify a co-symmetrol co-product.63

Remark 3. There seems to exist no simple notion of bracket (anti-
commutative and rational in its two arguments) for mediators and con-
sequently no proper equivalent of the Campbell-Hausdorff formula for
expressing (F.G)� in terms of F� and G�, other than the obvious ex-
pansion that relies on the coefficients γ [•] defined by the series in the
non-commutative variables t1, t2:∑

γ [[p1,q1,...,pr ,qr ]]t p11 tq12 ...t
pr
1 t

qr
2 :=γ

(
γ−1(t1)+γ−1(t2)+γ−1(t1)γ−1(t2)

)
with p1, qr ≥ 0 and all other pi , qi ≥ 1.

6 Complement: arithmetical vs dynamical monics

6.1 Distinguishing Stokes constants from holomorphic invariants

The scalars Aω( f ) may be viewed

(i) as Stokes constants;
(ii) as holomorphic invariants.

In their first capacity, they govern the Stokes transitions and are rigidly
determined. So too are the (presumably transcendental) monics — the
multizetas — which enter their expansions. We speak accordingly of
rigid or arithmetical monics.
There is more latitude, however, when we look upon the saclars Aω( f )

as holomorphic invariants and retain only those multizeta properties
which are directly responsible for their invariance. We speak in that case
of dynamical monics.
Both types of monics verify various types of relations, some infinite,

some finite-algebraic. When viewed as subject only to their various sys-
tems of algebraic relations over Q, our monics (whether rigid-arithme-
tical or dynamical) become formal monics. As such, they possess their
own system of independent generators, the so-called irreducibles. Be-
ing subject to laxer constraints, the dynamical irreducibles should be ex-
pected to be, and in fact are, more ‘numerous’ than the rigid-arithmetical
irreducibles.64

62 Cf. [10, (11.42)-(11-43)].

63 Cf. [10, (11.47)].

64 Though of course any complete system of irreducibles, of either sort, has to be countably infinite.
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6.2 Arithmetical multizetas

The two classical systems of algebraic (quadratic) constraints. Either sys-
tem of constraints is best expressed as a specific multiplication rule rela-
tive to a specific encoding.
In the first or α-encoding, the multizetas are given by polylogarithmic

integrals :

waα1,...,αl∗ := (−1)l0
∫ 1

0

dtl
(αl − tl)

. . .

∫ t3

0

dt2
(α2 − t2)

∫ t2

0

dt1
(α1 − t1)

(6.1)

with indices α j that are either 0 or unit roots, and l0 :=∑αi=0 1.
In the second or ( ε

s )-encoding, the multizetas are expressed as “har-
monic sums”:

ze∗
(
ε1
s1

,...,
,...,

εr
sr
) :=

∑
n1>···>nr>0

n−s11 . . . n−srr e−n11 . . . e−nrr (6.2)

with s j ∈ N∗ and unit roots e j := exp(2π iε j ) of ‘logarithms’ ε j ∈ Q/Z.
The stars ∗ means that the integrals or sums are provisionally assumed

to be convergent or semi-convergent : for waα∗ this means that α1 �= 0 and

αl �= 1, and for ze
(

ε
s )∗ this means that ( ε1s1 ) �= (

0
1) i.e. (

e1
s1
) �= (

1
1).

The corresponding moulds wa•∗ and ze•∗ turn out to be respectively sym-
metral and symmetrel :65

waα
1

∗ waα
2

∗ =
∑

α ∈ sha(α1,α2)
waα∗ ∀α1,∀α2 (6.3)

ze

(
ε1

s1

)
∗ ze

(
ε2

s2

)
∗ =

∑(
ε
s

)
∈ she
((

ε1

s1

)
,

(
ε2

s2

)) ze
(

ε
s

)
∗ ∀( ε1

s1

)
,∀( ε2

s2

)
. (6.4)

These are the so-called quadratic relations, which express multizeta di-
morphy. As for the conversion rule, it reads :66

wa∗e1,0
[s1−1],...,er ,0[sr−1] := ze∗

(
εr
sr

,
,
εr−1:r
sr−1

,...,
,...,

ε1:2
s1

)
(6.5)

ze∗
(
ε1
s1

,
,
ε2
s2

,...,
,...,

εr
sr

)
=: wa∗e1...er ,0[sr−1],...,e1e2,0[s2−1],e1,0[s1−1] (6.6)

with 0[k] denoting a subsequence of k zeros.

65 As usual, sha(ω′, ω′′) denotes the set of all simple shufflings of the sequences ω′, ω′′, whereas
in she(ω′, ω′′) we allow (any number of) order-compatible contractions ω′i + ω′′j .
66 With the usual shorthand for differences : εi : j := εi − ε j .
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There happen to be unique extensions wa•∗ → wa• and ze•∗ → ze• that
cover the divergent cases and keep our moulds symmetral or symmetrel
while conforming to the ‘initial conditions’ wa0 = wa1 = 0 and ze(

0
1 ) =

0. As we shall see in a moment, however, the divergent case calls for a
slight modification of the conversion rules (6.5)-(6.6).

Arithmetical multizeta irreducibles. The Q-ring ZE of formal multize-
tas, i.e. the Q-ring generated by the symbols waα and ze(

ε
s ) subject only

to the conversion rule (6.5)-(6.6) and the quadratic relations67 (6.3)-(6.4),
is known to be a polynomial ring, freely generated by a countable number
of so-called irreducibles.

Generating series. As borne out by past experience, it is advisable, for
most intents and purposes, to switch from the scalar multizetas wa• and
ze• to the generating series Zag• and Zig•:

Zag
(
u1
ε1

,...,
,...,

ur
εr

)
:=
∑
1≤s j

wae1,0
[s1−1],...,er ,0[sr−1] us1−11 us2−11,2 . . . usr−11...r (6.7)

Zig
(
ε1
v1

,...,
,...,

εr
vr

)
:=
∑
1≤s j

ze
(
ε1
s1

,...,
,...,

εr
sr

)
v
s1−1
1 . . . vsr−1r (6.8)

The bimould68 Zag• is symmetral, just as wa• was, while the bimould
Zig• has its own symmetry type: symmetril. The symmetrility relations
are patterned on the symmetrelity relations, but with the additive contrac-
tions wi + w j replaced by ‘polar’ contractions ŵi , w j , according to the
rules :

S

(
...,
...,

ûi
vi

,
,
u j
v j

,...
,...

)
= S

(
...,
...,

ui+u j
vi

,...
,...

)
P(vi−v j )

+ S

(
...,
...,

ui+u j
v j

,...
,...

)
P(v j−vi).

(6.9)

67 Though yet unproven, it is generally assumed (and backed by massive numerical evidence) that
the two systems of quadratic relations imply all other (known or yet to be discovered) algebraic
relations between multizetas.

68 What turns Zag•, Zig• into bimoulds is not so much their two-tier indexation wi = (
ui
vi
) but

rather the fact that the ui ’s and vi ’s interact in a very special way, through so-called flexions, which
allow only the addition of (several consecutive) ui ’s and the subtraction of (two not necessarily
consecutive) vi ’s with conservation of

∑
uivi .
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Here P(t) := 1/t . In (6.9) the dots may themselves contain any number
of additional contractions ŵk, wl . Thus:

S

(
...,
...,

ûi
vi

,
,
u j
v j

,...
,...

...,

...,
ûk
vk

,
,
ul
vl

,...
,...

)
=+S

(
...,
...,

ui+u j
vi

,...
,...

...,

...,
uk+ul
vk

,...
,...

)
P(vi−v j ) P(vk−vl)

+S
(
...,
...,

ui+u j
v j

,...
,...

...,

...,
uk+ul
vk

,...
,...

)
P(v j−vi) P(vk−vl)

+S
(
...,
...,

ui+u j
vi

,...
,...

...,

...,
uk+ul
vl

,...
,...

)
P(vi−v j ) P(vl−vk)

+S
(
...,
...,

ui+u j
v j

,...
,...

...,

...,
uk+ul
vl

,...
,...

)
P(v j−vi) P(vl−vk)

A typical symmetrility relation reads:

Sw1,w2 Sw3,w4 = +Sw1,w2,w3,w4+Sw1,w3,w2,w4+Sw3,w1,w2,w4+Sw1,w3,w4,w2
+Sw3,w1,w4,w2+Sw3,w4,w1,w2+Sŵ1,w3,w2,w4+Sŵ1,w3,w4,w2
+Sw1,ŵ2,w3,w4+Sw3,ŵ1,w4,w2+Sw1,w3,ŵ2,w4+Sw1,w3,ŵ2,w4
+Sŵ1,w3,ŵ2,w4 .

Summing up, not only do we have an exact equivalence between the old
and new symmetries:

{wa• symmetral} ⇐⇒ {Zag• symmetral} (6.10)

{ze• symmetrel} ⇐⇒ {Zig• symmetril} (6.11)

but the old conversion rule for scalar multizetas 69 becomes:

Zig• = Mini• × swap(Zag)• (6.12)(⇐⇒ swap(Zig•) = Zag• × Mana•
)
. (6.13)

Here, swap is the basic involution of the flexion structure:

(swap.S)
(
u1
v1

,...,
,...,

ur
vr

)
:= S

(
v′r
u′r

,...,
,...,

v′1
u′1

)
(6.14)

with u′i := u1+· · ·+ui and v′i := vi−vi+1 if i < r respectively v′r := vr .
As for Mana• and Mini• := swap.Mana•, they are elementary bi-

moulds whose only non-vanishing components are those carrying only
zeros in the lower (respectively upper) index row:

Mana
(
u1
0

,...,
,...,

ur
0

)
≡ Mini

(
0
v1

,...,
,...,

0
vr

)
≡ monor . (6.15)

69 Namely the rules (6.5)-(6.6) suitably modified to cover the divergent case.
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They can be expressed in terms of monozetas:

1+
∑
r≥2

monor t
r := exp

(∑
s≥2

(−1)s−1ζ(s) t
s

s

)
(6.16)

Even-odd separation. The natural environment of Zag• is the groupGARI,
central to flexion theory. Its complicated product gari is highly non-linear
in its second factor. Nonetheless Zag• admits remarkable factorisations
in GARI:

Zag• := gari(Zag•
I
,Zag•

II
,Zag•

III

) = gari
(
Zag

ev
,Zag

odd

)
(6.17)

Zag•
ev

:= gari(Zag
I
,Zag•

II

)
(6.18)

Zag•
odd

:= Zag•
III

(6.19)

where the various factors, like Zag• itself, possess a double symmetry:
Zag•ev, Zag

•
odd etc are symmetral, while the swappees Zig

•
ev, Zig

•
odd etc are

symmetril. The ‘even’ and ‘odd’ factors Zag•ev and Zag
•
odd are character-

ized by their behaviour under the involutions neg, pari:

(negS)
(
u1
v1

,...,
,...,

ur
vr

)
:=S

(−u1−v1
,...,
,...,

−ur−vr
)
;(pariS)

(
u1
v1

,...,
,...,

ur
vr

)
:=(−1)r S

(
u1
v1

,...,
,...,

ur
vr

)
(6.20)

and under invgari, i.e. the taking of the gari-inverse:

neg.pari.Zag•
ev
= Zag•

ev
(6.21)

neg.pari.Zag•
odd

= invgari.Zag•
odd

(6.22)

gari(Zag•
odd
,Zag•

odd
) = gari(neg.pari.invgari.Zag•,Zag•). (6.23)

Since all elements of GARI have one well-defined square-root,70 the last
identity (6.23) readily yields Zag•

odd
. Separating the last factor from the

first two is thus an easy matter (assuming the flexion machinery). Sep-
arating Zag•

I
from Zag•

II
is easy too, unless we insist on doing this in a

‘canonical’ way.
Here is the significance of these Zag•-factors in terms of multizeta ir-

reducibles.71 For simplicity, we consider only the case of ordinary or
‘colourless’ multizetas:

(i) The factor Zag•
I
carries only powers of the special irreducibe ζ(2) =

π2/6, of weight 2.

70 Apply expari. 12 .logari.

71 Recall that the weight s, length (or depth) r , and degree d are related by s = r+d.
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(ii) The factor Zag•
II
carries only irreducibles of even weight s ≥ 4 and

even depth, along with their products.
(iii) The factor Zag•

III
carries only irreducibles of odd weight s ≥ 3 and

odd depth, along with their products.

The even-multizeta / odd-multizeta irreducibles. The even/odd factorisa-
tion (6.17) of Zag• leads to a canonical decomposition ZE = ZEev ⊕
ZEodd of theQ-ring of multizetas into a direct sum of two sub-rings, each
with its own irreducibles. These even-irreducibles and odd-irreducibles
will lead in Section 9 to simpler expansions for the holomorphic invari-
ants Aω( f ). Mark in passing the importance of the hyphenation: a system
of, say, odd-irreducibles is not simply a system of irreducibles with odd
weight and odd depth; it must also consist of elements in ZEodd, i.e. of
elements generated by the scalar coefficients of Zag•odd.

The even-multitangents Te•ev(z). For any multitangent Tes(z) of monotan-
gential expansion Tes(z)=∑zesσ Te

σ (z)we set Tesev(z)=
∑
ev(zesσ )Te

σ (z),
with ev the natural projection of ZE onto ZEev. Since the multiplication
of monotangents involves only rational powers of π2, i.e. elements of
ZEev, the even-multitangents Tesev(z) are stable under multiplication, and
their multiplication stays commutative.

6.3 Dynamical multizetas

If we review those multizeta properties on which our expansions of the
invariants Aω( f ) effectively relied, we find three systems of ‘dynamical
constraints’:

(i) the symmetrelness constraints: zes
′
zes

′′=∑s∈she(s′,s′′) ze
s, which are

none other than the second quadratic relations (6.4).
(ii) the localisation constraints (see Section 2.3) which take into ac-

count the commutation of two operations on multitangents – multi-
plication and localisation72 – and derive from this fact finite multi-
zetas relations much weaker than the first quadratic relations.

(iii) the shift constraints (non-algebraic, see Section 2.7) which, for any
i ≤ r , expand zes1,...,si ,...,sr as a convergent series of:

(*) all si -translates zes1,...,si+ki ,...,sr of depth r and shift ki ≥ 1;
(**) some multizetas of depth < r .

72 I.e. taking the Laurent expansion of a multitangent at z = 0.
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Although the shift constraints (iii) are the ones most directly responsible
for the invariance of the Aω( f ), they are not finite. So we shall concen-
trate on the algebraic constraints (i)-(ii).

Algebraic dynamical constraints. We begin by introducing the coloured
symmetrel multitangent mould Te•(z) and the bimould Tig•(z) formed
from the generating series of multitangents. The definitions are trans-
parently patterned on those of ze• and Zig•:

Te(
ε1
s1

,...,
,...,

εr
sr
)
(z) :=

∑
+∞>n1>...>nr>−∞

i=r∏
i=1

(
e−nii (ni+z)−s1

)
(6.24)

Tig(
ε1
v1

,...,
,...,

εr
vr
)
(z) :=

∑
si≥1

Te
(
ε1
s1

,...,
,...,

εr
sr

)
(z) vs1−11 . . . vsr−1r . (6.25)

Clearly {Tig• symmetril} ⇔ {Te• symmetrel} ⇒ {ze• symmetrel}.
To see now how the localisation constraints compare with the first

quadratic relations (6.3), we must express the multitangents in terms of
multizetas, in two distinct ways that reflect (at the level of the generating
series Tig•(z) and Zig•) the two paths in the corresponding commutative
diagram of Section 2.3. We find:

Tigw(z)=
∑

w=w+w−
Zigw+

(z) viZigw−
(z)−

∑
w=w+w0w−

Zigw+
(z)Piw0(z) viZigw−

(z)

Tigw(z)= Rigw −
∑

w=w+w0w−
Zigw+� Qii7w08(z) viZig�w−

. (6.26)

The ingredient Pi,Qii,Rig• in the above formulae are defined as follows:

Pi(
ε1
v1
) := 1

v1
, Qii

(
ε1
v1

)
:=
∑
n1∈Z

e−2π in1ε1

n1+v1 ∀ε1 (6.27)

Pi
(
ε1
v1

...

...
εr
vr

)
:= 0 , Qii

(
ε1
v1

...

...
εr
vr

)
:= 0 ∀r �= 1 (6.28)

Rigw1,...,wr := 0 for r = 0 or r odd (6.29)

Rigw1,...,wr := (π i)r

r ! δ(ε1) . . . δ(εr ) for r even > 0 (6.30)

with δ denotingasusual thediscretedirac73andvi Zig•:=neg.pari.anti.Zig•.
Lastly, the bimoulds Pi•(z), Qii•(z), Zig•(z), vi Zig•(z) are derived from
Pi•, Qii•, Zig•, vi Zig• by changing vi into vi − z (∀i).

73 δ(0) := 1 and δ(t) := 0 for t �= 0.
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Dynamical multizeta irreducibles. Finding a system of irreducibles rela-
tive to the sole symmetrelness contraints on multizetas (‘second quadratic
relations’) is very easy.74 So let us examine instead the full (algebraic)
dynamical constraints (i.e symmetrelness plus ‘localisation’) and show
that we can derive from them a simple algorithm for expressing every
(colourless) multizeta of odd degree and depth ≥ 2 as a finite sum, with
rational coefficients, of multizetas of even degree.75 By equating our un-
inflected and inflected expressions of Tigw(z) and then setting z = 0, we
get the remarkable identity:∑

w=w+w−
Zigw+

viZigw−−
∑

w=w+w0w−
Zigw+

Piw0 viZigw−

= Rigw −
∑

w=w+w0w−
Zigw+� Qii7w08 viZig�w−

(∀w) (6.31)

with factor sequences w± that can be ∅, and with the usual flexion con-
ventions.76 As a consequence, (6.31) is of the form:

Zigw1,...,wr + (−1)r Zig−wr ,...,−w1 = “shorter terms”. (6.32)

But Zig• is symmetril and therefore mantir-invariant77, which again
yields an identity of the form:

Zig−w1,...,−wr + (−1)r Zig−wr ,...,−w1 = “shorter terms”. (6.33)

If we now take ‘colourless’ indices wi , i.e. indices wi := (
0
vi
), then sub-

tract (6.32) from (6.33), and calculate therein the coefficient of
∏
v
si−1
i ,

we find:

(1− (−1)d) ze
(
0
s1

,...,
,...,

0
sr

)
= “shorter terms”

(
d := −r +

∑
si
)
(6.34)

with quite explicit ‘shorter terms’.

74 For the uncoloured multizetas, it amounts to constructing a basis (the Lyndon basis will do, or
any other) on the Lie algebra freely generated by the symbols es with s ∈ N∗.
75 Recall that the degree d := s − r of a multizeta is defined as its total weight s minus its length
(or depth) r .

76 One goes from w0 to 7w08 by changing the upper index ε0 to | ε+| + ε0 + |ε−|, and from w+
(respectively w−) to w+� (respectively �w−) by changing the lower indices vi to vi − v0.

77 Mantir is a non-linear involution on bimoulds, whose definition is given in [10, pages 67-69]. But
all we need to know here is that mantir.S• = −pari.anti.S• + shorter terms.
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The dynamical constraints on multizetas thus provide us with a very
effective algorithm for the reduction (to simpler multizetas) of all un-
coloured multizetas ζ(s1, . . . , sr ) of depth r ≥ 2 and odd degree d :=∑

i(si − 1). We may note that, at depth r = 1, the monozetas of odd
degree are precisely the ζ(s) of even weight s. These are of course com-
mensurate with π s = (6ζ(2))s/2, but this is a consequence of the rigid-
arithmetical constraints, not of the dynamical ones!

6.4 The ramified case (tangency order p > 1)

Another striking difference between the (algebraic) dynamical con-
straints and the (algebraic) arithmetical ones makes itself felt when we
go over to the ramified situation, for diffeos f of tangency order p ≥ 2
and multizetas with indices si ∈ p−1N∗.
The dynamical constraints on the multizetas78 carry over almost un-

changed: the symmetrelness of ze• survives, of course, and so do the
finite localisation constraints (although the finite reduction of multitan-
gents into monotangents breaks down), as shown in Section 2.3.
On the other hand, it is not only the symmetralness of wa• — the first

leg of the arithmetical constraints — that cannot survive ramification:
the very definition of the mould wa• and the conversion rules (6.5)-(6.6)
cease to make sense, since these rules would equate the entire lengths of
0-sequences in α with the fractional weights si in s.

7 Complement: convergence issues and phantom dynamics

7.1 The scalar invariants

Although convergence issues are by no means central to this investigation
— the analytical expressions of the invariants Aω( f ) in terms of f is —
there seems to be a lot of muddled thinking about these questions, with
some authors insisting on seeing difficulties where there are none. So
a short section entirely devoted to the subject may not be superfluous,
even if it entails some repetitions and leads us, now and then, to state the
obvious.

Scalar invariant attached to convergent diffeos f . There are two ways of
establishing the existence of the scalar invariants as entire functions of

78 Recall, though, that in the ramified case the monics Tesω take the place of the multizetas as direct
transcendental ingredient of the invariants Aω( f ), and these Tesω are no longer finite superpositions
of multizetas.



197 Invariants of identity-tangent diffeomorphisms

f (i.e. of { fn}) when f ranges through a formal class Gp,ρ of identity-
tangent diffeomorphisms. Briefly restated in the terminology of this pa-
per, they are:

(i) The quite old and very elementary geometric approach. It con-
structs the iterators f ∗± and ∗ f± in the z-plane; derives from them
the connectors π±; then subjects the 1-periodic germs π±(z)− z to
Fourier analysis; and arrives directly at the invariants A±

ω ( f ).

(ii) The more informative resurgent approach, less ancient but already
four decades old. It focuses on the formal iterator f̃ ∗(z); forms
its Borel transform f̂ ∗(ζ ); readily finds its resurgence locus 2π iZ;
then, based solely on the functional equation f ∗ ◦ f = 1+ f ∗, it
immediately infers the form of the resurgence equations. Lastly,
depending on which alien operators it applies to f̂ ∗(ζ ), it directly
reaches all systems of invariants, whether {A±

ω ( f )} or {Aω( f )} or{A�ω( f )} etc, plus a wealth of information about them.

Having once establish the existence of the invariants Aω( f ) as entire
functions of f , the only task left is to find their Taylor expansion in the
countably many coefficients fn – or rather gn if f = l ◦ g:

Aω( f ) =
∑
r

∑
ni ,si

H

(
n1
s1

,...,
,...,

nr
sr

)
ω

∏
i

(gsi )
ni (7.1)

Series like (4.3) do just that, since their mode of derivation exactly mim-
ics the parallel constructions of the invariants according to the geometric
and resurgent methods. And the shape of the expansion (7.1) once found,
its convergence is guaranteed beforehand by the mere fact of Aω( f ) be-
ing an entire function of f . We do not have to bother about majorising

the coefficients H
(
n
s )

ω to prove the convergence of (7.1). It is exactly the
other way round: it is by directly establishing bounds on the growth of
Aω( f ) as a function of f or {gn} (as in the next subsection) that we can
most easily derive bounds on the coefficients H (

n
s ).

f -growth of the scalar invariants. This is yet another context where the
d-indexation (degree-based) is preferable to the s-indexation (weight-
based), for reasons spelled out in Remark 3 at the end of this paragraph.
So let us consider a diffeo f = l ◦ g in the standard class (p, ρ) = (1, 0),
with g(z) := g(z) − z = ∑

2≤d g1+d z
−d . The iterator f̃ ∗, or rather its
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essential part f̃ (z) := f̃ (z)− z, is given in the formal model by

f̃
∗
(z)=

∑
1≤r

[
e∂

1−e∂ .
∑
1≤kr

(g(z))kr
∂kr

kr !

]
...

[
e∂

1−e∂ .
∑
1≤kr

(g(z))k1
∂k1

k1!

]
.z (7.2)

=g(z)+
∑
2≤r

[
e∂

1−e∂ .
∑
1≤kr

(g(z))kr
∂kr

kr !

]
...

[
e∂

1−e∂ .
∑
1≤kr

(g(z))k2
∂k2

k2!

]
.g(z).

In the convolution model, this translates to an everywhere79 convergent
series

f̂ ∗(ζ ) = ĝ(ζ ) +
∑
1≤n

Ŵ n ĝ(ζ ) (7.3)

with the mixed (multiplication-convolution) operators K̂ acting thus:

(
Ŵ ϕ̂

)
(ζ ) := e−ζ

1− e−ζ
.
∑
1≤k

[
( ĝ ) ∗k(ζ )

]
∗ζ
[
(−ζ )k
k! ϕ̂(ζ )

]
. (7.4)

A product of two consecutive operators Ŵ involves a series of middle
terms of the form

Ŵ .Ŵ =
(
. . .
)
.

(∑
1≤k

(−ζ )k
k!

e−ζ

1− e−ζ

)
.
(
. . .
)

(7.5)

with bounds∣∣∣(−ζ )k
k!

e−ζ

1− e−ζ
∣∣∣ ≤ cε

|ζ |k−1
(k − 1)! (1+|ζ |) (∀ζ ∈ Kε , c

±
ε > 0) (7.6)

uniformly valid on the Kε

Kε := {ζ ∈ C, dist(ζ, 2π iZ∗) ≥ ε}. (7.7)

Kε := {ζ ∈ R, dist(ζ,Rram − 0•) ≥ ε} with R = ˜C − 2π iZ. (7.8)
Note that Kε (respectively Kε) contains a neighbourhood of the origin
0 (resp 0•). Using the expansion (7.4)-(7.5), the bounds (7.6), and the
estimates

|(̂g)∗ k(ζ )| < γ0 exp(γ1|ζ |) |ζ |2k−1/(2k−1)! (7.9)

79 I.e. at all points ζ not located over the singularity locus 2π iZ.
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tedious but elementary calculations80 lead to optimal81 estimates of type:

| f̂ (ζ )|
< c0,d(ζ ) exp

(
cd(ζ ) |g1+d | 1d

)
(2 ≤ d) (7.10)

< c0,D(ζ ) exp

(∑
d∈D

cd,D(ζ ) |g1+d | 1d
)

(D finite ⊂ {2, 3, . . . }) (7.11)

< c0,∞(ζ ) exp
(
c∞(ζ ) sup

d
|g1+d | 1d

)
(7.12)

for any ζ on the convolution domain R := ˜C−2π iZ. The main point to
observe is that all the terms Ŵ n ĝ(ζ ) in (7.3) can be calculated inductively
as convolution integrals of the form

e−ζ

1− e−ζ

∫ ζ

0•
(̂g)∗ k(ζ − ζ1) ϕ̂n,k(ζ1) dζ1 (7.13)

with a first convolution factor (̂g)∗ k(ζ − ζ1) that is uniform on C with
the bounds (7.9) and a second factor that is uniform on R and easily
bounded (by induction) on anyKε . To continue the induction, it is enough
to calculate the integral on a ζ1-path confined within the largest Kε that
contains ζ , without worrying about ζ−ζ1.
To derive from the estimates (7.10)-(7.12) analogous estimates for

the invariants A+
ω , we write the resurgence equations �±

ω f̂
∗
(z) =

−A±
ω exp(−ω f̂

∗
(z)). In the Borel plane this becomes82

f̂
∗
(ζ ′±)− f̂

∗
(ζ ′′±) = A+

ω . f̂
∗
ω
(ζ ) with

f̃
∗
ω
(z) = e−ω f̃ (z) − 1 ∼ −ω gs0 .z1−s0

(7.14)

with ζ close to 0• on the main Riemann sheet and ζ ′±, ζ ′′± both over ζ̇+ω
but on two consecutive Riemann sheets. Since f̂

∗
ω
(ζ )∼−ωgs0ζ s0−2/(s0−

2)! for ζ close to 0•, there exists for each value of the variable coef-
ficient g1+d at least one point ζ = ζ(g1+d) on the circle |ζ | = 1 where

80 Even if one were to retain only the part of the operators Ŵ that correspond to k = 1, the (much
simpler) calculations would already show that the estimates (7.10)-(7.12) cannot be improved upon.
Taking all k-parts into account does not alter the shape of the estimates, due to the bounds (7.9).

81 Optimal as long as we consider the absolute values |g1+d |1/d . But one might improve on (7.10)
by finding the indicatrix of exponential growth in |g1+d |1/d .
82 Since the first term “1” in exp(−ω f̂

∗
(z)) = 1+ . . . contributes nothing to the minors.
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| f̂ ∗
ω
(ζ )| = |ω gs0/(s0−1)!|. Considering the identity (7.14) for this partic-

ular ζ and its images ζ ′± and ζ ′′± and using (7.10), we get (7.15) for A+
ω , as

well as (7.16) and (7.17) by a similar argument. The analogous estimates
for Aω, A�ω, A

��
ω etc. follow in view of the bipolynomial correspondance

between any two systems of invariants.

|A±
ω |, |Aω|, |A�ω|, |A��ω | etc.

< c0,d(ω) exp
(
cd(ω) |g1+d | 1d

)
(∀ω, d ≥ 2) (7.15)

<c0,D(ω) exp
(∑
d∈D

cd,D(ω) |g1+d | 1d
)
(D finite) (7.16)

<c0,∞(ω) exp
(
c∞(ω) sup

d
|g1+d | 1d

)
(7.17)

Remark 1. The case of the iteration residue ρ. If we now let f = l ◦ g
range through all classes (1, ρ) by taking g(z) = −ρz−1 +O(z−1), and
ask about the asymptotics in ρ, we would get the wrong result by simply
setting g2 = −ρ in the estimate (7.15). The correct estimate is rather:
|A±

ω |, |Aω|, |A�ω|, |A��ω | etc.<c0,1(ω) exp (c1(ω)|ρ log |ρ||) (∀ω). (7.18)
The reason is not the change from (7.9) to the weaker estimates:

| ĝ ∗ k(ζ )| < γ0 exp(γ1|ζ |) |ζ |k−1/(k−1)! (7.19)

The real reason is that we now have f̂
∗
(z) = ρ log z + f̂

∗
(z) and

f̃
∗
ω
(z) = z−ω ρ exp(−ω f̃ ∗(z)) = z−ω ρ f̃

∗
ω
(z) (7.20)

so that (7.14) presently becomes83

f̂
∗
(ζ ′)− f̂

∗
(ζ ′′) = A+

ω .
ζ ωρ−1

�(ωρ)
∗ζ f̂

∗
ω
(ζ ) (7.21)

Remark 2. ‘Uniformisation’. Due to the ‘uniformisation’ formula (1.54)
or (1.55), we see that for any ζ ∈ R (but not above the imaginary axis),
f̂
∗
(ζ ) reduces to a finite sum

f̂
∗
(ζ ) = a0 f̂

∗
(ζ̇ )+

∑
ω∈2π iZ∗

aω f̂
∗
ω
(ζ̇ − ω) (7.22)

83 At least when −ωρ �∈ N. When −ωρ ∈ N, the positive z-powers in z−ω ρ f̃
∗
ω
(z) should be

neglected, as contributing nothing to the minors in the Borel plane.
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(i) with f̂
∗
ω
as in (7.20)

(ii) with coefficients a0, aω polynomial in the Aω
(iii) with ζ̇ the projection of ζ ∈ R onto the main Riemann sheet.

Remark 3. Weight-based vs degree-based indexation. While the s-
indexation f (z) = z +∑ fs z1−s is well-adapted to germ composition,
the d-indexation

∑
f{d} z−d is better suited to germ conjugation and, con-

sequently, to studying the asymptotics of Aω( f ). Indeed, take a diffeo f
in the standard class and fix 2 ≤ d ≤ d ′. There clearly exists a unique
diffeo h of the form h(z) := z +∑d−1≤n≤d ′−1 h{n} z

−n that conjugates f
to varf so as to remove the coefficient f{d} while keeping all other coeffi-
cients between d and d ′ unchanged:

f (z) := z + 1+
∑
2≤d

f{n} z−n → varf (z) := (h ◦ f ◦ h−1)(z)

= z + 1+
∑
2≤d

varf{n} z−n

On top of the defining condition (i), the h-conjugation verifies (ii)-(iii):

(i) varf{d} = 0 if n ≤ d ′, and varf{n} = f{n} with n �= d;
(ii) if d ′ < n, varf{n} is a polynomial in f{2}, f{3}, . . . , f{n} involving only

‘subhomogeneous’ monomials of form
∏

i( f{ni })
mi with n1m1 +

· · · + nrmr ≤ n;
(iii) if d|n and d ′ < n, the monomial ( f{d})n/d is effectively present,

with a nonzero rational coefficient, in the expression of varf{n}.

Since Aω( f ) = Aω(varf ), we see that the additional properties (ii)-(iii)
are perfectly coherent with the asymptotic estimates (7.10)-(7.15).

ω-growth of the scalar invariants. Fixing f = l ◦ g and ε0 < π , using
the relations (7.3), and calculating the successive integrals in (7.4) on
ζ1-paths contained in Kε0 , one easily arrives at exponential estimates

|A±
ω | < γ±

0 exp(γ±
1 |ω|) (∀ω ∈ 2πZ∗ , γ±

0 , γ
±
1 > 0) (7.23)

with constants γ±
0 , γ

±
1 that depend only on the growth of ĝ(ζ ) in the ver-

tical stripes |0(ζ )| < ε. This, however, does not apply to the other sys-
tems of invariants, like Aω, A�ω, A

��
ω etc, which, being the coefficients of

generically divergent but resummable Fourier series (see below), generi-
cally possess exponential growth in |ω|. log |ω| rather than |ω|.
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7.2 The connectors

For f = l ◦ g fixed and convergent, only the connectors π±(z) with
Fourier coefficients A±

ω have guaranteed convergence is some bi-domain|)(z)| > y. But as shown in Section 1.7, and 1.8, most other connec-
tors π♦(z) are merely resurgent and Borel resummable, each with a def-
inite critical time z0 := exp(∓2π i z), where n0 is the index of the first
non-vanishing invariant. This is definitely the case with the connectors
π∗(z), π�(z), π��(z).

7.3 The collectors

As already pointed out, collectors can be classified unter two viewpoints:

(i) type : there is p(z) itself and its various affiliates p♦(z)— genera-
tors, mediators etc,

(ii) nature : we can consider their natural multitangent expansions; or
their reduced monotangent expansions; or their local Laurent ex-
pansions at z = 0.

Now, as long as the collectors are viewed as generating series in the co-
efficients gn , as in Section 3, the question of their convergence does not
arise — the coefficients of each bloc is always convergent, and this is
all that matters from the perspective of this paper. But we may also ask,
gratuitously so to speak: given a fixed convergent germ f , which imper-
sonations of the collectors do converge, and in what sense?
From what we already know about the connectors, the question makes

sense only for p(z) itself, not for its affiliates. And p(z), as we shall see,
convergences only in its natural multitangent presentation.84

Convergence of the multitangential collectors p(z). The convergence of
the connectors π as scalar germs can be established in any number of
ways (e.g. from the estimates (7.23)) and it implies the convergence of
the associated substitution operators �. However, in order to ease the
transition to the collectors p and P, we need to look more closely at
these operators� and their constituent parts.
Set� := �+,G := G+,G :n := Ln .G . L−n consider the (for the mo-

ment, formal) operator� as given by (3.8) and replace its bifactorisation
� = ∗F− . F∗+ by the trifactorisation

� = �L ,n .�M,n .�R,n . (n large) (7.24)

84 Natural means that we take the Te•-expansions as they naturally result from the series (3.12) in
Section 3 and resort, at most, to symmetrel linearisation.
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with L, M, R standing for left, middle, right and with the truncated expan-
sions

�R,n := 1+
∑
1≤r

∑
n≤nr<...<n1

G+
:nr . . .G

+
:n1 = Ln . F∗

+ . L
−n (7.25)

�M,n := 1+
∑
1≤2 n

∑
−n≤nr<...<n1<n

G+
:nr . . .G

+
:n1 = G :(−n) . . .G :(n−1) (7.26)

�L ,n := 1+
∑
1≤r

∑
nr<...<n1<−n

G+
:nr . . .G

+
:n1 = L−n . ∗F− . Ln. (7.27)

For any two open setsD1,D2 of C, bounded or not, connected or not, but
with D2 ⊂ D1, and any operator H , we set

‖H‖D1,D2 := sup
‖ϕ‖D1≤1

‖H ϕ‖D2 and ‖H‖D := ‖H‖D,D∗ (7.28)

where D∗ denotes the set of all points in D whose distance from the
boundary of D is more than 1.
For any ε we can find n ∈ N and y ∈ R+ large enough to ensure

‖�R,n − 1‖DR ≤ ε ∀DR ⊂ {z,0z ≥ −6} (7.29)

‖�M,n − 1‖DM ≤ ε ∀DM ⊂ {z, |)z| ≥ y} (7.30)

‖�L ,n − 1‖DL ≤ ε ∀DL ⊂ {z,0z ≤ +6} (7.31)

and therefore

‖�− 1‖D ≤ 4 ε ∀D ⊂ {z, |0z| ≤ 3, |)z| ≥ y + 3}. (7.32)

Moreover, one can show that the statement would still hold (for a slightly
larger choice of n, y) if, instead of considering the norm ‖�−1‖D, we
were to consider the larger norms:

‖�−1‖SD=
∑

‖H
(
n
s

)
‖D

∏∣∣gsi ∣∣ni with �−1=
∑

H
(
n
s

) ∏
(gsi )

ni

relative to any natural expansion S of �−1 as a series of monomials∏
(gsi )

ni . But expanding� in this way is tantamount to viewing it as the
collectorPwith its natural multitangent expansion (relative to the system
Te•). Of course, the multitangential P and p converge separately on the
two half-planes |)(z)| > y, but in that sense, qua convergent objects,
already cease to be of one piece.
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Divergence of the monotangential collectors p(z). Bymultiplying the Lau-
rent expansions of Tes1(z) and Tes2(z) at z = 0 and then retaining only
the z-negative powers in the product, we get the multiplication rule for
(integer-indexed) monotangents:

Tes1(z)Tes1(z)=Tes1+s2(z)+
∑

2≤s3<max(s1,s2)
tes1,s2s3

Tes3(z) (s1, s2∈N ∗) (7.33)

with

tes1,s2s3
= [

1+ (−1)s1+s2−s3] ζ(s1 + s2 − s3)

×
[
(−1)s1−s3+ (s1 + s2−s3)!
(s1 − s3)!(s2 − 1)! + (−1)s2−s3+ (s1 + s2−s3)!

(s2 − s3)!(s1 − 1)!

]
(7.34)

and (−1)s+ := (−1)s if s > 0 respectively (−1)s+ := 0 if s ≤ 0. Now,
if the monotangential expansions for p+ and p− always existed, since
p+ ◦ p− = id, going from the one to the other would involve mutiplying
many infinite sums of the form(∑

s1 even

as1 Te
s1(z)

)(∑
s2 even

bs2 Te
s2(z)

)
 →
(∑
s3 even

cs3 Te
s3(z)

)
(7.35)

with series
∑
as1 z

−s1 and
∑
bs2 z

−s2 whose convergence radii might be
small, since the convergence radius of the underlying series g(z) may be
anything. But the coefficient cs3 on the right-hand side of (7.35) are given
by

cs3 =
∑

s3=s1+s2
as1 bs2 +

∑
s3<max(s1,s2)

as1 bs2 te
s1,s2
s3

(7.36)

with a second sum that diverges if, for instance, all as1 and bs2 are positive

with lim |as1 |
1
s1 = a > 0, lim |bss |

1
s2 = b > 0 and 2 a b > 1. In that case,

the coefficients cs3 are not even defined.
So it would be more accurate to say that the monotangential collectors,

rather than diverging, generally do not even exist : they cannot be defined,
not even as formal series. What exists but fails to converge as s → +∞
is the weight-truncated, monotangential collectors85 truncs0 p±(z) (see
Section 3.7).

85 They exist unproblematically as finite sums, whether in multi- or monotangential form.
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7.4 Groups of invariant-carrying formal diffeos

One of the many advantages of the resurgent approach to the study of
holomorphic invariants is that it extends effortlessly to many subgroups
Gχ of the group G of all formal identity-tangent diffeos. Typically, these
groups Gχ are defined by a growth condition on the coefficients fs of
their elements that is

(i) stable under composition and reciprocation86;
(ii) stringent enough to ensure that formal conjugacy (in G) does not

imply actual conjugacy (in Gχ ).

This implies the existence on these groups Gχ of non-formal invariants,
and immediately raises the question of their description/calculation.
If we put aside a few pathological instances87, all such groupsGχ con-

sist of elements f̃ whose Borel transforms f̃ (ζ ) extend to well-defined
entire functions (albeit with supra-exponential growth), with iterators
f̃ ∗, ∗ f̃ that verify the familiar resurgence equations and produce com-
plete systems of holomorphic invariants Aω( f̃ ), exactly as on the analytic
group G0.
Before taking a closer look at some examples of ‘invariant-carrying’

groups Gχ , let us state a few useful lemmas.
Given a system {an, n ∈ C} with a geometric or slightly faster-than-

geometric rate of growth, and a numberω0∈C∗, we set bm :=∑n
|ω0 m|n
n! an .

Using the rough estimates log+ |bm| ∼ supn log
+ | |ω0 m|n

n! an|, we easily in-
fer the growth rate of log |bm| from that of log |am| in these four important
cases: {

log+|an|=O(n)}4⇒ {
log+|bm|=O(m)} (7.37){

log+|an|=O(nlogkn)
}4⇒ {

log+|bm|=O(m logk−1m)
}

(7.38){
log+|an|=O

(
n
logn

logkn

)}
4⇒

{
log+|bm|=O

(
m exp

(
logm

logkm

))}
(7.39)

{
limsup

log+|an|
nlogn

≤τ<1
}
4⇒

{
limsup

log+|bm|
m1/(1−τ)

≤1
}
. (7.40)

Here, log+ x := log x if 1 < x (respectively := 0 if 0 ≤ x ≤ 1). As we
can see, the actual value of ω0 is immaterial.

86 I.e. the taking of the composition inverse.

87 Corresponding to wildly irregular (‘oscillating’ in some sense) growth conditions χ .
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Moreover, if we set

b(w) = w +
∑

bm e
−mω0w (7.41)

c(z) = z +
∑

cmz
1−m = exp

(
−ω0 b

(
1

ω0

)
log

(
1

z

))
(7.42)

the Taylor coefficients cm are, in all four instances (7.37)-(7.40), subject
to exactly the same growth constraints as the Fourier coefficients bm .
Lastly, it is an easy matter to check that each of the growth conditions

listed in (7.37)-(7.40) is stable under composition and reciprocation, and
thus defines a group Gχ .

The analytic subgroup G0. There is no need to return to the group G0

and its invariants, except to emphasise a remarkable feature: any germ
f �= id in G0 has 2p connectors which, after a rescaling of type (7.42),
produce 2p new germs f(i1) still in G0. Each one of these f(i1) produces
2pi1 new germs f(i1,i2), each of which in turn produces 2pi1,i2 germs
f(i1,i2,i3), and so on indefinitely

88, without ever leaving the group G0.
This infinite self-replication property of G0 is more than a curiosity: it
has practical implications.89 It also raises the question: is self-replication
an exclusive feature of G0, or does it extend to other invariant-carrying
groups Gχ? It does, as we shall see, provided the growth condition χ is
extremely close to geometric growth (which ensures analyticity).

The near-analytic, self-replicating subgroupG0+ . The implication (7.38)
being optimal, on the group G[k] consisting of all f (let us drop the
clumsy tilda) whose coefficients verify

lim
n→+∞

log+ | fn|
n logk n

= 0 (7.43)

the mapping90 f  → resc.π is from G[k] to G[k−1] ⊂ G[k]. So it is only
the limit or intersection

G0+ := lim
k

G[k] =
⋂
k

G[k] (7.44)

88 For the process to stop, at a certain stage all f(i1,...,ir ) would have to be id, which of course
almost never happens.

89 E.g., in fractal analysis (see [12]) and in resummation theory: it played a part in the original
proof of Dulac’s conjecture about the non-accumulation of limit-cycles, prior to the introduction of
well-behaved convolution averages (see [7]).

90 resc.π is the connector π rescaled so as to become an element of G.



207 Invariants of identity-tangent diffeomorphisms

that possess the property of self-replication. To realise how close G0+
is to G0, we may note that verifying (7.43) for any k is a far more se-
vere condition than verifying the Denjoy quasi-analyticity conditions.
Expressed in terms of Taylor coefficients, these read:

|gn| 1n ≤ O(log1 n log2 n . . . logk−1 n) (7.45)

for some given k. That merely implies

log+ | fn| ≤ n
(
log2 n + · · · + logk n + o(logk n)

)
(7.46)

which is much weaker than (7.43), let alone (7.44). This is not to say,
of course, that G0+ consists only of quasi-analytic germs, since a smooth
function f must verify a Denjoy condition on a whole interval to qualify
as quasi-analytic.91

The maximal subgroup G0++ . Consider the Gevrey subgroups of G de-
fined by the growth conditions

G[[τ ]] :=
{
f ; lim sup

n→+∞
log+ | fn|
n log n

≤ τ

}
. (7.47)

For all elements f in G[[τ ]] of tangency order p = 1 to have everywhere
convergent Borel transforms, τ has to be < 1, in which case these f
possess invariants whose growth pattern is bounded by the bm-estimates
of (7.40). Elements f of tangency order p > 1, however, must first be
brought to a prepared form ( f (z1/p)p, which belongs to G[[pτ ]], or rather
to the ramified equivalent ofG[[pτ ]]. So the largest group whose elements
all possess holomorphic invariants is the intersection G0++ of all these
Gevrey goups:

G0++ :=
{
f ; lim

n→+∞
log+ | fn|
n log n

= 0

}
(7.48)

Elements of G0++ have connectors which are usually not in G0++ . since
their coefficients are subject only to the very weak growth constraints

log+ log+ |cr | = o(r log r) (7.49)

91 Growth conditions at one point never suffice to ensure the existence of a quasi-analytic ‘contin-
uation’ on a neighbourhood of that point. In fact, when the coefficients are all > 0 and with faster
than geometric growth, the ‘continuation’ never exists.
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This results from the optimal implication (7.39) or rather from its – still
valid – extension to the case where logk is replaced on both sides by any
regular92 germ L with ultra-slow growth.
7.5 A glimpse of phantom holomorphic dynamics

Let us for definiteness consider the “near-analytic” group G0+ . It has
much more in common with its analytic prototype G0 than the existence
of non-trivial (i.e. non-formal) conjugacy classes characterisable by holo-
morphic invariants Aω( f ). The notion of polarised sectorial model too
has its equivalent, but with acceleration operators taking the place of
Laplace integration. Indeed, for any slow acceleration z → z† with

z†
z

→ +∞ but
log z†
log z

→ 1 e.g. z = F(z†) := z†
log z†

(7.50)

the acceleration integrals ζ → ζ†

f̂ ∗†,±(ζ†) =
∫ (1±ε) i∞

0
CF(ζ†, ζ ) f̂

∗(ζ ) (7.51)

∗ f̂†,±(ζ†) =
∫ (1±ε) i∞

0
CF(ζ†, ζ )

∗ f̂ (ζ ) (7.52)

turns the non-polarised iterators f̂ ∗, ∗ f̂ into polarised iterators f̂ ∗†,±,
∗ f̂†,±

defined and regular in sectors S†,± of the ζ†-plane. Moreover, on the in-
tersection S†,+∩S†,−, which contains a southern half-plane {) ζ† < −y},
these polarised iterators can be subjected to the operation ◦̂ (which trans-
poses the ordinary composition ◦ to the Borel planes93) to produce an
object π̂†,so(ζ†) that will be the exact counterpart of a connector’s south-
ern component πso(z) for an ordinary analytic germs f in G0.
One may even perform Fourier analysis on π̂†,so(ζ†) and π̂†,no(ζ†) in

the ζ†-plane94 to calculate the invariants Aω( f ). This procedure (ineffi-
cient but perfectly workable) would essentially differ from the (efficient)
resurgent analysis in the ζ -plane. It would exactly mirror the (moder-
ately efficient – see Section 4.5) Fourier analysis performed on ordinary
connectors πso(z), πno(z) in the multiplicative z-plane.

92 “Regular” in the sense of verifying the universal asymptotics of slow-growing germs. See e.g.
[7, 8]. For instance, we may take L to be any transfinite exponential of log, again in the sense
of [7, 8].

93 (ϕ̂ ◦̂ f̂ )(ζ ) := ϕ̂(ζ )+∑1≤k 1
k! ( f̂ )∗k(ζ ) ∗ζ

(
(−ζ )k ϕ̂(ζ )

)
with f (z) = f (z)− z.

94 There is no contradiction here: the exponentials e±ωz have no image in the ζ -plane, but they
have one in the ζ†-plane, since e

±ωz = e±ωF(z†) is strictly sub-exponential in z†.
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For any f in G0+ , the mapping ϕ̂  → ϕ̂ ◦̂ f̂ is an algebra isomorphism
(relative to the convolution product), just as the substitution operators are
(relative to ordinary multiplication). Another aspect of “phantom holo-
morphic dynamics” (in non-polarised and polarised Borel planes) is the
notion of invariant subspaces or fuzzy orbits, which in a sense fill the role
of orbits in the (here non-existent) multiplicative plane. But the subject
is still in its infancy, and we had better stop here.

8 Conclusion

8.1 Some historical background

(i) Identity-tangent diffeos in holomorphic dynamics.
The iteration of one-dimensional analytic mappings – whether local or
global; identity-tangent or not – has a long history going back a century
or more. Fatou, for one, knew about the analytic classes of identity-
tangent diffeos and had formed a clear, geometry-based idea of their in-
variants. The subject then when into something of a hibernation until
the advent of high-power computation, which brought about an explo-
sive revival of holomorphic dynamics, one- and many-dimensional. For
the specific subject of analytic invariants, however, the main impetus for
renewal came from an unexpected quarter: resurgent analysis.
(ii) Identity-tangent diffeos and resurgent analysis.
The fact is that identity-tangent diffeos possess generically divergent but
always resurgent iterators and fractional iterates, with an interesting, non-
linear pattern of resurgence or self-reproduction at the singular points in
the Borel plane, and it was in the process of sorting out these phenomena
that resurgence theory was born, and later applied to general local objects
and much else. In a sense, this involved a retreat from dynamics proper,
since it meant focusing on the Borel plane, where the key dynamic no-
tions of trajectory, fixed point etc admit no simple interpretation. For the
invariants Aω, however, the shift in focus brought a definite advantage,
since in the Borel plane these invariants are automatically localised and
isolated (they appear as coefficients of the leading singularities over the
point ω) whereas in the multiplicative plane they are diffuse and inter-
twined (they make themselves felt only collectively and indirectly, via
Stokes phenomena and the like, and the only way to isolate them is by
Fourier analysis of type (4.10), which is but a half-hearted way of do-
ing what Borel analysis does neatly and efficiently). This applies not
just to identity-tangent diffeos, but to a huge range of local objects and
equations. It also works in both directions: in that of “analysis”, i.e.
calculating and investigating the invariants of a given object; and in that
of “synthesis”, i.e. prescribing an admissible system of ‘invariants’ and
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then constructing an object of which they are the actual invariants. And
it has to be said that in both directions resurgence theory performs rather
better than geometry. It leads in particular to a privileged or “canonical”
synthesis, a notion which eludes geometry.

8.2 Multitangents and multizetas

(iii) Identity-tangent diffeos and the resuscitation of multizetas.
Multizetas (of depth 2, to be precise) were first considered by Euler as
an isolated curiosity, and later fell into a protracted oblivion for want
of applications. They resurfaced only in the late 1970s and early 1980s
in [3–5], precisely in the context of holomorphic dynamics and identity-
tangent diffeos, as the transcendental ingredient in the make-up of their
invariants. Ten years later, the multizetas started cropping up in half
a dozen, largely unconnected contexts: braid groups and knot theory;
Feynman diagrams; Galois theory; mixed Tate motives; arithmetical di-
morphy; ARI/GARI and the flexion structure, etc. At the moment, all
these strands are in the process of merging or at least cross-fertilising,
and constitute a vibrant field of research.
(iv) Identity-tangent diffeos and the actual computation of their in-
variants.
The sections of [5] devoted to the invariants of identity-tangent diffeos
were written with no computational applications in mind, and no at-
tempt was made to optimise the calculational procedures. On the con-
trary, the PhD thesis [1], which revisits the subject 30 years on, lays its
main emphasis on these neglected aspects and provides effective Maple
programmes for the computations of the invariants; it also offers copious
asides on the algebraic aspects of multitangents, which largely, but not
exactly, mirror those of multizetas.

8.3 Remark about the general composition equation

The equations verified by the iterators and iteration roots of identity-
tangent diffeos are extremely special cases of the general composition
equation:

f ◦mr ◦ gr ◦ . . . f ◦m2 ◦ g2 ◦ f ◦m1 ◦ g1 = id (8.1)

with f unknown, mi ∈ Z and gi(z) = z + τi + O(z−1). The gen-
eral solution95 of (8.1) is also generally divergent but always resurgent

95 It is unique under the genericity assumption
∑
mi �= 0.
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and resummable.96 The subject is investigated in Section 11 and 12 of a
preprint accessible on the author’s homepage.97

The critical set � (containing the indices ω of all active alien deriva-
tions �ω) is often huge: it usually consists of all finite combinations
−λ j0 +

∑
n jλi (n j > 0) spanned by the (countably many) roots of

some exponential polynomial constructed from the data mi and τi . We
may adjust these data mi , τi so as to ensure � = 2π iZ, for example by
considering composition equations of the form

f ◦ gr ◦ . . . f ◦ g2 ◦ f ◦ g1 = id (8.2)

with g1(z)= z+1+O(z−2), gi(z)= z+O(z−2) (i ≥ 2). But even then the
complete formal solution remains extremely complex, and still depends
non-linearly on a countable infinity of parameters u j :

f̃ (z, u)= f̃ (z)+
∑

un eω z f̃n(z)
(
un=

∏
u
n j
j

)
. (8.3)

The bridge equation reads ��ω f̃ (z, u) = Aω f̃ (z, u) with operators Aω

that are hardly less complex:

Aω =
∑

〈n , j〉− j=k
u
n jr
j1
. . . u

n jr
j1

A j
ω,n ∂u j

(
ω̇ = 2π i k, k ∈ Z−r Z

)
. (8.4)

However, a drastic simplification occurs in the case r = 2:

Aω = 2π i Aω
∑
k∈Z∗

( j+k) u j+k ∂u j
(
ω̇ = 2π i k, k ∈ Z−2Z

)
. (8.5)

Instead of depending on a huge set of unrelated resurgence constants
A j
ω,n, with ω ∈ 2π iZ∗ but an index n running through all finite parts

of Z, the operators Aω now depend on an incomparably smaller set of
resurgence constants Aω, with ω ∈ 2π iZ∗.
The reason is of course that in the case r = 2, the composition equation

reduces to an iteration equation - to the taking of a ‘square root’:

f ◦ g2 ◦ f ◦ g1 = id ⇐⇒ ( f ◦ g2) ◦ ( f ◦ g2) = g−11 ◦ g2. (8.6)

This huge complexity gap between the case r ≥ 3 and r = 2 is remi-
niscent of the equally dramatic simplification that takes place with first
order singular ODE’s of ‘Euler type’ :

∂zY = Y +
∑

−1≤n≤n0
bn(z)Y

1+n (
bn(z) ∈ z−1C{z−1}). (8.7)

96 The critical time too is unique under the same genericity assumption
∑
mi �= 0.

97 The Natural Growth Scale.
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In the general case (2 ≤ n0 ≤ ∞), we get a resurgent formal solu-
tion f̃ (z, u) in C[[z−1, u zτ ez]], a critical set � = {−1} ∪ N∗, and an
infinite series of independent invariants An = Aω un+1∂u with indices
n ∈ {−1, 1, 2, 3 . . . }, whereas in the case n0 = 1, the equation (8.7) be-
comes an ODE of Riccati type; the critical set � reduces to {−1, 1}; and
we are left with just two independent invariants A−1,A1.

9 Tables

9.1 Multitangents: symmetrel, alternal, olternol

We express Taa• and Too• in terms of Te• ≈ Tee• according to the lin-
earisation lemma of Section 5.4, using throughout the shorthand ni, j,...
for ni+n j+. . . .
Table 1 : Comparing Te• ∼ Tee•, Taa•, Too•.

Taan1 = Toon1 = Ten1 , Taan1,n2 = Toon1,n2 = 1

2
Ten1,n2 − 1

2
Ten2,n1

6 Taan1,n2,n3 = 2Ten1,n2,n3−Ten1,n3,n2−Ten2,n1,n3−Ten2,n3,n1−Ten3,n1,n2

+2Ten3,n2,n1−Ten1+n3,n2+ 1
2
Ten1,n2,3+ 1

2
Ten1,2,n3+ 1

2
Ten3,n1,2

+ 1
2
Ten2,3,n1−Ten2,n1,3

4 Toon1,n2,n3 = Ten1,n2,n3−Ten1,n3,n2−Ten2,n1,n3−Ten2,n3,n1−Ten3,n1,n2
+Ten3,n2,n1 − Ten1,3,n2 − Ten2,n1,3

12 Taan1,n2,n3,n4 =
3Ten1,n2,n3,n4−Ten1,n2,n4,n3−Ten1,n3,n2,n4−Ten1,n3,n4,n2−Ten1,n4,n2,n3
+Ten1,n4,n3,n2−Ten2,n1,n3,n4+Ten2,n1,n4,n3−Ten2,n3,n1,n4−Ten2,n3,n4,n1
+Ten2,n4,n1,n3+Ten2,n4,n3,n1−Ten3,n1,n2,n4−Ten3,n1,n4,n2+Ten3,n2,n1,n4
+Ten3,n2,n4,n1−Ten4,n1,n2,n3+Ten4,n1,n3,n2+Ten4,n2,n1,n3+Ten4,n2,n3,n1
+Ten4,n3,n1,n2−3Ten4,n3,n2,n1 + Ten1,n2,n3,4 − Ten1,n3,n2,4 − Ten2,n3,n1,4
+Ten2,n4,n1,3 − Ten3,n1,n2,4 + Ten3,n2,n1,4 + Ten4,n2,n1,3 − Ten4,n3,n1,2
+Ten1,n2,3,n4 − Ten1,n2,4,n3 − Ten2,n1,3,n4 + Ten2,n1,4,n3 − Ten3,n1,4,n2
+Ten3,n2,4,n1 + Ten4,n1,3,n2 − Ten4,n2,3,n1 + Ten1,2,n3,n4 − Ten1,3,n2,n4
−Ten1,3,n4,n2 + Ten2,4,n1,n3 + Ten2,4,n3,n1 − Ten1,4,n2,n3 + Ten1,4,n3,n2
−Ten3,4,n2,n1 + 1

2
Ten1,2,n3,4 − Ten1,3,n2,4 + Ten2,4,n1,3 − 1

2
Ten3,4,n1,2
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8 Toon1,n2,n3,n4 =
+Ten1,n2,n3,n4−Ten1,n2,n4,n3−Ten1,n3,n2,n4−Ten1,n3,n4,n2−Ten1,n4,n2,n3
+Ten1,n4,n3,n2−Ten2,n1,n3,n4+Ten2,n1,n4,n3−Ten2,n3,n1,n4−Ten2,n3,n4,n1
+Ten2,n4,n1,n3+Ten2,n4,n3,n1−Ten3,n1,n2,n4−Ten3,n1,n4,n2+Ten3,n2,n1,n4
+Ten3,n2,n4,n1−Ten3,n4,n1,n2+Ten3,n4,n2,n1−Ten4,n1,n2,n3+Ten4,n1,n3,n2
+Ten4,n2,n1,n3+Ten4,n2,n3,n1+Ten4,n3,n1,n2−Ten4,n3,n2,n1 − Ten1,3,n2,n4
−Ten1,3,n4,n2 − Ten2,n1,3,n4 + Ten4,n1,3,n2 + Ten2,n4,n1,3 + Ten4,n2,n1,3
+Ten2,4,n1,n3 + Ten2,4,n3,n1 − Ten1,n2,4,n3 + Ten3,n2,4,n1 − Ten1,n3,n2,4
−Ten3,n1,n2,4 − Ten1,4,n2,n3 + Ten1,4,n3,n2 + Ten2,n1,4,n3 − Ten3,n1,4,n2
−Ten2,n3,n1,4 + Ten3,n2,n1,4 + Ten2,4,n1,3 − Ten1,3,n2,4

Taan1,...,n5 = 540 Te•-summands , Toon1,...,n5 = 308 Te•-summands
Taan1,...,n6 = 3 688 Te•-summands , Toon1,...,n6 = 2 612 Te•-summands
Taan1,...,n7 = 47 292 Te•-summands , Toon1,...,n7 = 25 988 Te•-summands
9.2 Parity properties of alternal and olternol multitangents

We begin by comparing the number of summands in the monotangent re-
ductions red1(Te•) and red1(Taa•) (respectively red2(Te•) and red2(Taa•))
of Te• and Taa• before (respectively after) symmetrel linearisation of the
resulting multizetas. N.B. A further reduction red3(Te•) and red3(Taa•),
corresponding to a complete decomposition of the multizeta into arith-
metical irreducibles, would yield even fewer summands.
The triplets [N1, N2, N3] of Table 2 are defined as follows. N1 is the

number of summands after reduction into a sum of monotangents Teni

and symmetrel multizeta coefficients ze•. N2 and N3 represent the num-
ber of summands left after taking multizeta dimorphy into account and
expressing everything in terms of multizeta irreducibles – either plain
irreducibles from Zig• or even-odd irreducibles from Zig•ev,Zig

•
odd. See

Section 6.2, Section 6.3. Note that N2 is about the same as N1, but that
N3 is much smaller.98

98 Of course, unlike N1, which has absolute significance, N2 and N3 depend on the particular
system of irreducibles chosen for the reduction. There exist privileged systems, but we cannot go
into that here. But whatever system we choose, the average values N3 will always be much smaller
than that N2.
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Table 2.

(n1, . . . , nr ) || #(Te•) | #(Taa•) | #(Too•)

(2, 7, 4) || 47, 45, 17 | 28, 26, 8 | 15, 15, 5
(5, 2, 2, 4) || 40, 39, 21 | 37, 37, 13 | 30, 30, 11

(5, 3, 3, 4, 2) || 210, 209, 69 | 294, 289, 38 | 212, 207, 32
(3, 1, 2, 3, 4, 2) || 455, 455, 33 | 491, 488, 30 | 382, 382, 26

(2, 1, 2, 1, 2, 2, 3) || 220, 203, 15 | 659, 578, 15 | 631, 567, 12

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 bis : Here are the even-irreducibles and odd-irreducibles to ap-
pear in the sequel, with their expression in terms of ordinary irreducibles.

ζ ev6,2 = ζ6,2−3ζ5ζ3
ζ ev8,2 = ζ8,2−4ζ7ζ3−2ζ 25
ζ ev10,2 = ζ10,2−5ζ3ζ9−5ζ7ζ5
ζ odd8,1,2 = ζ8,1,2+ζ6,2ζ3−3ζ5ζ 23 −

27

2
ζ9ζ2− 1310 ζ7ζ

2
2 −

44

105
ζ 32 ζ5+

72

175
ζ3ζ

4
2

ζ odd9,3,1 = ζ9,3,1+82ζ11ζ2+ 19310 ζ9ζ
2
2 +

8

55
ζ3ζ

5
2 +

226

35
ζ7ζ

3
2 +

288

175
ζ5ζ

4
2

ζ odd10,2,1 = ζ10,2,1−28ζ11ζ2− 415 ζ9ζ
2
2 −

36

25
ζ5ζ

4
2 −

124

35
ζ7ζ

3
2 −

208

385
ζ3ζ

5
2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The following twelve examples of multitangent reduction (of type red2)
are meant to cover all situations. They illustrate the phenomenon of par-
ity separation in Taa• and Too•, and its absence in Te• ≈ Tee•. The last
examples involve irreducibles of depth 2 and 3.
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Table 3 : Te2,7,3(z) has no definite parity in z.

Te2,7,3(z) =
∑
2≤m≤7

teze2,7,3m Tem(z)

teze2,7,31 = 10ze5,6+10ze6,5+35ze8,3+56ze3,8−10ze11−21ze4,7
−27ze7,4−28ze9,2=0

teze2,7,32 = 35ze3,7+36ze7,3+48ze5,5−6ze10−21ze8,2−28ze2,8

−45ze4,6−45ze6,4= 7
2
ζ ev8,2+56ζ7ζ3+35ζ 25 −

2296

275
ζ 52

teze2,7,33 = 15ze3,6+15ze6,3−6ze9−6ze4,5−6ze5,4−14ze2,7

−15ze7,2= 35
2
ζ9+ 10435 ζ3ζ

3
2 −21ζ7ζ2−4ζ5ζ 22

teze2,7,34 = 16ze3,5+16ze5,3−3ze8−10ze2,6−10ze6,2−18ze4,4

= 16ζ5ζ3− 652175 ζ
4
2

teze2,7,35 = 3ze3,4+3ze4,3−3ze7−6ze2,5−6ze5,2= 6
5
ζ3ζ

2
2 −6ζ5ζ2

teze2,7,36 = 4ze3,3−ze6−3ze2,4−3ze4,2=2ζ 23 −
6

5
ζ 32

teze2,7,37 = −ze5−ze2,3−ze3,2=−ζ3ζ2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4 : Taa2,7,3(z) is even in z since 2+7+3-3 is odd.

Taa2,7,3(z) =
∑

2≤m even≤10
taaze2,7,3m Tem(z)

taaze2,7,32 = 35ze3,7+36ze7,3+48ze5,5+ 373
6
ze10− 28

3
ze2,8− 7

3
ze8,2

−15ze4,6−15ze6,4=35ζ 25 +56ζ7ζ3+
7

2
ζ ev8,2−

392

275
ζ 52

taaze2,7,34 = 16ze3,5+16ze5,3+ 29
3
ze8− 10

3
ze2,6−6ze4,4− 10

3
ze6,2

= 16ζ5ζ3− 652525 ζ
4
2

taaze2,7,36 = 4ze3,3+ 1
6
ze6−ze2,4−ze4,2=2ζ 23 −

62

105
ζ 32

taaze2,7,38 = 0
taaze2,7,310 = 1

6
ze2= 1

6
ζ2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Table 5 : Too2,7,3(z) is even in z since 2+7+3-3 is odd.

Too2,7,3(z) =
∑

2≤m even≤6
tooze2,7,3m Tem(z)

tooze2,7,32 = 7ze8,2+35ze3,7+36ze7,3+48ze5,5+105ze10

= 35ζ 25 +56ζ7ζ3+7/2ζ ev8,2+
152

55
ζ 52

tooze2,7,34 = 16ze3,5+16ze5,3+ 39
2
ze8=+16ζ5ζ3]+ 1225 ζ

4
2

tooze2,7,36 = 2ze6+4ze3,3=2ζ 23
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 6 : Te2,7,4(z) has no definite parity in z.

Te2,7,4(z) =
∑
2≤m≤7

teze2,7,4m Tem(z)

teze2,7,41 = 30ze12+84ze4,8+84ze10,2+100ze6,6+112ze8,4−104ze7,5
−112ze5,7−112ze9,3−168ze3,9=0

teze2,7,43 = 14ze10+28ze2,8+35ze8,2+35ze4,6+35ze6,4−32ze5,5

−40ze7,3−42ze3,7= 992
175

ζ 52 −8ζ 25 −28ζ7ζ3
teze2,7,44 = 8ze9+8ze4,5+8ze5,4+20ze7,2+21ze2,7−20ze3,6−20ze6,3

= 14ζ7ζ2+ 85 ζ5ζ
2
2 +

35

2
ζ9− 17635 ζ3ζ

3
2

teze2,7,45 = 5ze8+6ze4,4+10ze2,6+10ze6,2−8ze3,5−8ze5,3

= 484

175
ζ 42 −8ζ5ζ3

teze2,7,46 = 2ze7+4ze2,5+4ze5,2−2ze3,4−2ze4,3=4ζ5ζ2− 45 ζ3ζ
2
2

teze2,7,47 = ze6+ze2,4+ze4,2= 2
5
ζ 32

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Table 7 : Taa2,7,4(z) is odd in z since 2+7+4-3 is even.

Taa2,7,4(z) =
∑

2≤modd≤11
taaze2,7,4m Tem(z)

taaze2,7,41 = 28ze4,8+36ze12+56ze8,4+84ze10,2+ 100
3
ze6,6−104ze7,5

−112ze5,7−112ze9,3−168ze3,9=0
taaze2,7,43 = 11ze10+ 28

3
ze2,8+ 35

3
ze4,6+ 35

3
ze6,4+ 49

3
ze8,2−32ze5,5

−40ze7,3−42ze3,7= 24352
5775

ζ 52 −8ζ 25 −28ζ7ζ3

taaze2,7,45 = 2ze4,4+ 10
3
ze2,6+ 10

3
ze6,2+ 17

3
ze8−8ze3,5−8ze5,3

= 1156

525
ζ 42 −8ζ5ζ3

taaze2,7,47 = 1

3
ze2,4+ 1

3
ze4,2+ 17

6
ze6= 74

105
ζ 32

taaze2,7,49 = 2

3
ze4= 4

15
ζ 22

taaze2,7,411 = 1

6
ze2= 1

6
ζ2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 8 : Too2,7,4(z) is odd in z since 2+7+4-3 is even.

Too2,7,4(z) =
∑

3≤modd≤5
tooze2,7,4m Tem(z)

tooze2,7,41 = 39ze12+28ze8,4+84ze10,2−104ze7,5−112ze5,7−112ze9,3
−168ze3,9=0

tooze2,7,43 = 7ze8,2− 23
2
ze10−32ze5,5−40ze7,3−42ze3,7

= 96

55
ζ 52 −8ζ 25 −28ζ7ζ3

tooze2,7,45 = −8ze3,5−8ze5,3− 9
2
ze8= 12

25
ζ 42 −8ζ5ζ3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Table 9 : Te5,3,3,4(z) has no definite parity in z.

Te5,3,3,4(z)=
∑
2≤m≤5

teze5,3,3,4m Tem(z)

teze5,3,3,41 = 6ze10,4+12ze5,9+15ze7,7+12ze5,5,4+15ze7,4,3+15ze4,7,3
+30ze6,5,3+30ze5,6,3+30ze5,4,5+30ze4,5,5+30ze7,3,4
+60ze4,6,4+60ze5,3,6+45ze4,4,6+90ze6,4,4−15ze6,8

= −6ze4,10=0
teze5,3,3,42 = 2ze4,9+10ze4,6,3+12ze4,5,4+15ze4,4,5+15ze4,3,6+30ze5,3,5

+30ze5,5,3+35ze7,3,3+36ze5,4,4+40ze6,3,4+45ze6,4,3−3ze5,8
−5ze6,7−6ze9,4= 240

7
ζ7ζ

3
2 −72ζ9ζ 22 −175ζ ev6,2ζ5−775ζ 25 ζ3

−600ζ7ζ 23 −200ζ odd9,3,1−700ζ odd10,2,1−
71900

3
ζ13− 319835 ζ5ζ

4
2

teze5,3,3,43 = ze5,7+5ze6,3,3+5ze4,3,5+6ze4,5,3+9ze5,4,3+10ze5,3,4
+9ze4,4,4−ze4,8=14ζ ev6,2ζ 22 +14ζ5ζ3ζ 22 +15ζ ev10,2+45ζ9ζ3
+55ζ7ζ5+ 10576684875875

ζ 62 −50ζ 25 ζ2

teze5,3,3,44 = 3ze4,3,4+3ze4,4,3+5ze5,3,3= 35
2
ζ5ζ

2
3 +

35

4
ζ odd8,1,2+

72

5
ζ7ζ

2
2

+29893
96

ζ11−45ζ9ζ2− 807 ζ5ζ
3
2

teze5,3,3,45 = ze4,3,3=10ζ5ζ3ζ2+7ζ7ζ3+ 129321925
ζ 52 +

7

2
ζ ev8,2+10ζ ev6,2ζ2−

45

2
ζ 25

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Table 10 : Taa5,3,3,4(z) is even in z since 5+3+3+4-4 is odd.

Taa5,3,3,4(z) =
∑

2≤m even≤8
taaze5,3,3,4m Tem(z)

taaze5,3,3,42 = 5ze4,3,6+22ze5,8+30ze5,5,3+30ze5,3,5+35ze7,3,3+ 25
3
ze6,4,3

+40
3
ze6,3,4+ 184

3
ze9,4+ 295

3
ze6,7+ 260

3
ze7,6+ 323

3
ze4,9

+291
2
ze13−16ze5,4,4−24ze4,5,4−5ze4,4,5−40ze8,5

−35
3
ze10,3− 80

3
ze4,6,3=−175ζ ev6,2ζ5−200ζ odd9,3,1−700ζ odd10,2,1

−600ζ7ζ 23 −775ζ 25 ζ3−
3102

35
ζ5ζ

4
2 −

71614

3
ζ13

taaze5,3,3,44 = ze4,3,4+35ze4,7+ 41
2
ze7,4+ 55

6
ze5,6+ 155

6
ze11− 29

3
ze8,3

+5ze5,3,3−ze4,4,3= 35
4
ζ odd8,1,2+

35

2
ζ5ζ

2
3 +

8967

32
ζ11− 12421 ζ5ζ

3
2

taaze5,3,3,46 = 8

3
ze5,4+ 25

6
ze4,5+ 13

6
ze9− 5

2
ze6,3= 14

3
ζ5ζ

2
2 −

21

2
ζ9

taaze5,3,3,48 = −1
6
ze4,3− 1

12
ze7= 5

3
ζ2ζ5− 3512 ζ7

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 11 : Too5,3,3,4(z) is even in z since 5+3+3+4-4 is odd.

Too5,3,3,4(z) =
∑

2≤meven≤6
tooze5,3,3,4m Tem(z)

tooze5,3,3,42 = 5ze10,3+30ze5,3,5+30ze5,5,3+35ze7,3,3+60ze8,5+138ze4,9

+147ze9,4+170ze6,7+ 123
2
ze5,8+ 385

2
ze7,6+ 861

2
ze13

−42ze5,4,4−42ze4,5,4−15ze4,4,5−10ze6,4,3−45ze4,6,3
= −775ζ3ζ 25 −200ζ odd9,3,1−700ζ odd10,2,1−175ζ ev6,2ζ5−

306

5
ζ5ζ

4
2

−600ζ7ζ 23 −
285455

12
ζ13

tooze5,3,3,44 = ze8,3+25ze6,5+51ze4,7+ 55
2
ze5,6+ 105

2
ze7,4+ 315

4
ze11

+5ze5,3,3−3ze4,4,3= 35
4
ζ odd8,1,2+

29629

96
ζ11+ 352 ζ5ζ

2
3

tooze5,3,3,46 = 15

2
ze5,4+ 15

2
ze4,5+ 15

2
ze9=3ζ5ζ 22

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Table 12 : Te5,2,3,4(z) has no definite parity in z.

Te5,2,3,4(z) =
∑
2≤m≤5

teze5,2,3,4m Tem(z)

teze5,2,3,41 = ze5,8+2ze4,9+3ze10,3+5ze11,2+15ze7,6−10ze6,7−5ze4,6,3
−15ze4,4,5−35ze8,3,2−35ze8,2,3−42ze5,4,4−18ze4,5,4
−30ze7,2,4−40ze5,3,5−45ze7,4,2−50ze6,3,4−50ze5,6,2
−50ze6,2,5−60ze6,4,3−70ze7,3,3−70ze6,5,2−76ze5,5,3=0

teze5,2,3,42 = 2ze5,7+10ze6,2,4+10ze5,2,5+15ze7,2,3−ze4,8−ze10,2−5ze6,6
−3ze9,3−5ze4,3,5−8ze5,3,4−9ze4,4,4−10ze6,3,3−15ze4,5,3
−15ze4,6,2−16ze5,5,2−20ze7,3,2−24ze5,4,3−35ze6,4,2

= 16ζ ev6,2ζ 22 +35ζ7ζ5+100ζ 25 ζ2+105ζ9ζ3−35ζ ev10,2−16ζ 23 ζ 32
−12462448
525525

ζ 62

teze5,2,3,43 = ze5,6+ze9,2−2ze5,2,4−3ze4,3,4−5ze6,2,3−5ze4,5,2−6ze4,4,3
−10ze6,3,2−10ze5,3,3−11ze5,4,2=8ζ5ζ 32 +60ζ ev6,2ζ3
+4136
175

ζ3ζ
4
2 −30ζ5ζ 23 −40ζ odd8,1,2−

112

5
ζ7ζ

2
2 −

3040

3
ζ11

teze5,2,3,44 = ze5,2,3−2ze4,3,3−3ze4,4,2−4ze5,3,2=10ζ ev6,2ζ2+
21

2
ζ7ζ3

+105
4
ζ 25 −4ζ 23 ζ 22 −

63

4
ζ ev8,2−

1696

275
ζ 52

teze5,2,3,45 = −Ze4,3,2=7ζ5ζ 22 +
53

36
ζ9+ 64

105
ζ3ζ

3
2 −14ζ7ζ2−

2

3
ζ 33

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Table 13 : Taa5,2,3,4(z) is odd in z since 5+2+3+4-4 is even.

Taa5,2,3,4(z) =
∑

3≤modd≤9
taaze5,2,3,4m Tem(z)

taaze5,2,3,41 = 5ze4,4,5+10ze4,3,6+18ze5,4,4+22ze4,5,4+30ze7,2,4
+15ze7,4,2+20ze2,5,6+30ze2,7,4+30ze4,7,2+40ze5,2,6
+70
3
ze2,8,3+ 100

3
ze2,6,5+ 145

3
ze4,6,3+ 8

3
ze10,3+ 80

3
ze7,6

+176
3
ze4,9+ 238

3
ze9,4−10ze5,6,2− 5

3
ze11,2− 5

3
ze2,11

−11
6
ze13− 20

3
ze6,4,3− 20

3
ze6,3,4−40ze5,3,5−70ze7,3,3

−76ze5,5,3− 35
3
ze8,3,2− 35

3
ze8,2,3− 50

3
ze6,5,2− 50

3
ze6,2,5

−70
3
ze6,7− 115

3
ze8,5− 200

3
ze5,8=0

taaze5,2,3,43 = Ze4,3,4+2ze4,4,3+4ze2,5,4+ 43
3
ze8,3+ 1

3
ze4,5,2+ 10

3
ze2,6,3

+22
3
ze5,2,4+ 7

6
ze7,4−26ze2,9−10ze5,3,3− 5

3
ze5,4,2− 5

3
ze6,2,3

−10
3
ze6,3,2− 10

3
ze2,3,6− 28

3
ze9,2− 37

3
ze4,7− 44

3
ze5,6

−65
6
ze6,5− 169

6
ze11

= 60ζ ev6,2ζ3+
15112

525
ζ3ζ

4
2 −

16

3
ζ5ζ

3
2 −40ζ odd8,1,2−30ζ5ζ 23 −1105ζ11

taaze5,2,3,45 = 5ze6,3−6ze4,5−12ze2,7− 1
3
ze4,3,2− 2

3
ze2,3,4− 13

3
ze7,2

−14
3
ze5,4− 32

3
ze9= 152

35
ζ3ζ

3
2 −

1

3
ζ5ζ

2
2 −

2

3
ζ 33 −

1447

36
ζ9

taaze5,2,3,47 = 5

6
ze4,3− 10

3
ze2,5− 11

6
ze7− 7

6
ze5,2= 26

15
ζ3ζ

2
2 −

5

6
ζ5ζ2− 496 ζ7

taaze5,2,3,49 = −1
6
ze5− 1

3
ze2,3= 2

3
ζ3ζ2− 53 ζ5

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Table 14 : Too5,2,3,4(z) is odd in z since 5+ 2+ 3+ 4− 4 is even.
Too5,2,3,4(z) =

∑
3≤m odd≤9

tooze5,2,3,4m Tem(z)

tooze5,2,3,41 = 10ze6,5,2+10ze5,6,2+15ze4,4,5+15ze4,3,6+15ze6,3,4
+20ze6,4,3+30ze2,5,6+35ze2,8,3+42ze4,5,4+45ze4,7,2
+45ze7,4,2+45ze2,7,4+48ze5,4,4+50ze2,6,5+60ze7,2,4
+60ze5,2,6+75ze4,6,3+30ze8,5+40ze6,7+87ze4,9+95ze7,6
+126ze9,4+47

2
ze10,3−5

2
ze5,8−5ze11,2−5

2
ze2,11−17

2
ze13

−40ze5,3,5−70ze7,3,3−76ze5,5,3=0
tooze5,2,3,43 = 3ze7,4+18ze8,3+3ze4,3,4+3ze5,4,2+3ze4,5,2+5ze2,6,3

+6ze2,5,4+6ze4,4,3+12ze5,2,4−5ze2,3,6−10ze5,3,3−5ze5,6
−15ze4,7−25ze9,2−39ze2,9−175

4
ze11

= 60ζ ev6,2ζ3+
712

25
ζ3ζ

4
2−30ζ5ζ 23−40ζ odd8,1,2−

104

7
ζ5ζ

3
2−

12985

12
ζ11

tooze5,2,3,45 = 15

2
ze6,3−ze2,3,4−5ze5,4−18ze2,7−10ze7,2−15

2
ze4,5−65

4
ze9

= 484/105ζ3ζ
3
2−8ζ5ζ 22−

2

3
ζ 33−

268

9
ζ9

tooze5,2,3,47 = 3

2
ze4,3−2ze5,2−5ze2,5−11

4
ze7=−5ζ5ζ2−214 ζ7+

12

5
ζ3ζ

2
2

tooze5,2,3,49 = −1
4
ze5−1

2
ze2,3=ζ3ζ2−52 ζ5

9.3 The invariants as entire functions of f : the general case

We write down, up to weight 10 inclusively, the expansions of the collec-
tors p, p∗, p� in terms of the g, g∗, g�. We assume p( f ) = 1 but impose
no restriction on ρ( f ) ≡ −g2. In these and all further examples, we
order the terms according to their total weight and, within a given total
weight, we start with the lowest monotangents.
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Table 15: p = id +∑Ps up to weight 10 with f = l ◦ g , g(z) =
z +∑2≤s gs z

1−s .

P2 = Te1g2,P3=Te2g3,P4=Te3g4,P5=Te4g5,
P6 = Te2

[
3ζ3g

3
2+6ζ3g4g2−6ζ3g23

]+Te3[2ζ2g4g2−2ζ2g23]+Te5g6,
P7 = Te3

[
6ζ3g

2
2g3+6ζ3g5g2−6ζ3g4g3

]+Te4[3ζ2g5g2−3ζ2g4g3]+Te6g7,
P8 = Te2

[
10ζ5g

4
2+10ζ5g6g2+30ζ5g24−40ζ5g5g3+50ζ5g4g22−50ζ5g2g23

[
+Te3[4

5
ζ 22 g6g2+

12

5
ζ 22 g

2
4+
16

5
ζ 22 g4g

2
2−
2

5
ζ 22 g

4
2−
16

5
ζ 22 g2g

2
3

−16
5
ζ 22 g5g3

]+Te4[ζ3g2g23+3ζ3g24+7ζ3g6g2+8ζ3g4g22−10ζ3g5g3]
+Te5[4ζ2g6g2−4ζ2g5g3]+Te7g8,

P9 = Te2
[16
7
ζ 32 g5g

2
2+
32

7
ζ 32 g

3
3−
48

7
ζ 32 g4g3g2+18ζ 23 g5g22+36ζ 23 g33

−54ζ 23 g4,g3g2
]+Te3[10ζ5g2g7+20ζ5g32g3+20ζ5g5g4+35ζ5g5g22

−5ζ5g4g3g2−30ζ5g33−30ζ5g6g3+12ζ3ζ2g5g22+24ζ3ζ2g33
−36ζ3ζ2g4g2g3

]+Te4[6
5
ζ 22 g2g7+

12

5
ζ 22 g5g4+

21

5
ζ 22 g

3
3+
69

10
ζ 22 g5g

2
2

−6
5
ζ 22 g3g

3
2−
18

5
ζ 22 g6g3−

111

10
ζ 22 g4g3g2

]+Te5[2ζ3g4g3g2+4ζ3g5g4
+8ζ3g7g2+10ζ3g5g22−12ζ3g6g3

]+Te6[5ζ(2)g2g7−5ζ(2)g6g3]
+Te8g9,

P10 = Te2
[
14ζ7g2g8+772 ζ7g

5
2+147ζ7g6g22+210ζ7g6g4+322ζ7g4g32

+441ζ7g24g2−84ζ7g3g7−140ζ7g25−322ζ7g23g22−588ζ7g5g3g2
]

+Te3[9ζ 23 g52+21ζ 23 g6g22+33ζ 23 g4g32+36ζ 23 g4g23−9ζ 23 g24g2−33ζ 23 g23g22
−48ζ 23 g5g3g2+

16

35
ζ 32 g8g2+

32

7
ζ 32 g4g

2
3+
48

7
ζ 32 g6g4+

32

105
ζ 32 g4g

3
2

+248
35

ζ 32 g
2
4g2+

568

105
ζ 32 g6g

2
2−
32

7
ζ 32 g

2
5−

32

105
ζ 32 g

2
3g
2
2−
244

105
ζ 32 g

5
2

−256
15

ζ 32 g5g3g2−
96

35
ζ 32 g3g7

]+Te4[ζ5g52+12 ζ5g23g22+11ζ5g8g2
+45ζ5g6g4+592 ζ5g4g

3
2+
81

2
ζ5g6g

2
2+
123

2
ζ5g

2
4g2−20ζ5g25−36ζ5g7g3

−45ζ5g4g23−57ζ5g5g3g2+15ζ3ζ2g4g32+21ζ3ζ2g6g22+36ζ3ζ2g4g23
−9ζ3ζ2g24g2−15ζ3ζ2g23g22−48ζ3ζ2g5g3g2

]+Te5[8
5
ζ 22 g8g2+

24

5
ζ 22 g6g4

+42
5
ζ 22 g4g

2
3+
58

5
ζ 22 g6g

2
2−
6

5
ζ 22 g4g

3
2−
6

5
ζ 22 g

2
3g
2
2−
6

5
ζ 22 g

2
4g2−

8

5
ζ 22 g

2
5

−24
5
ζ 22 g7g3−

94

5
ζ 22 g5g3g2

]+Te6[ζ3g24g2+2ζ3g5g3g2+5ζ3g6g4
+9ζ3g8g2+12ζ3g6g22−14ζ3g7g3

]+Te7[6ζ2g8g2−6ζ2g7g3]+Te9g10



224 Olivier Bouillot and Jean Ecalle

Table 16: p∗ = ∑
P∗s up to weight 10 with f = l ◦ g , g∗(z) =∑

2≤s g∗s z
1−s .

P∗2 = Te1g∗2,P∗3=Te2g∗3,P∗4=Te3g∗4,P∗5=Te4g∗5,
P∗6 = Te2

[
6ζ3g∗2g∗4−6ζ3g2∗3

]+Te5[g∗6]
P∗7 = Te3

[
6ζ3g∗2g∗5−6ζ3g∗3g∗4

]+Te6[g∗7]
P∗8 = Te2

[
30ζ5g

2∗4−
5

2
ζ5g

4∗2+10ζ5g∗2g∗6−40ζ5g∗3g∗5
]

Te3
[4
3
ζ 22 g∗2g2∗3−

4

3
ζ 22 g

2∗2g∗4
]+Te4[3ζ3g2∗4+14 ζ3g4∗2−10ζ3g∗3g∗5

+7ζ3g∗2g∗6
]+Te5[−2

3
ζ2g∗2g2∗3+

2

3
ζ2g

2∗2g∗4
]+Te7[g∗8]

P∗9 = Te2
[
36ζ(3)2g3∗3−

32

5
ζ 32 g

3
∗3+18ζ 23 g∗5g2∗2+

48

5
ζ 32 g∗2g∗3g∗4

−54ζ 23 g∗2g∗3g∗4−
16

5
ζ 32 g∗5g

2∗2
]+Te3[20ζ5g∗4g∗5+10ζ5g∗2g∗7

−30ζ5g∗3g∗6−5ζ5g3∗2g∗3
]+Te4[−1

5
ζ 22 g

3
∗3−

21

10
ζ 22 g

2∗2g∗5

+23
10
ζ 22 g∗2g∗3g∗4

]+Te5[8ζ3g∗2g∗7−12ζ3g∗3g∗6+4ζ3g∗4g∗5
+ζ3g3∗2g∗3

]+Te6[3
2
ζ2g

2∗2g∗5−
1

3
ζ2g

3
∗3−

7

6
ζ2g∗2g∗3g∗4

]+Te8[g∗9]
P∗10 = Te2

[
210ζ7g∗4g∗6−140ζ7g2∗5−84ζ7g∗3g∗7+14ζ7g∗2g∗8

]
−133
3
ζ7g

3
∗2g∗4+

133

3
ζ7g

2∗2g2∗3
]+Te3[36ζ 23 g2∗3g∗4−9ζ 23 g∗2g2∗4

+21ζ 23 g2∗2g∗6+
3

4
ζ 23 g

5
∗2−

32

5
ζ 32 g

2∗3g∗4−
64

15
ζ 32 g

2∗2g∗6

+32
3
ζ 32 g∗2g∗3g∗5−48ζ 23 g∗2g∗3g∗5

]+Te4[45ζ5g∗4g∗6−20ζ5g2∗5
−36ζ5g∗3g∗7+11ζ5g∗2g∗8−103 ζ5g

3
∗2g∗4−

25

6
ζ5g

2∗2g2∗3
]

+Te5[10
3
ζ 22 g∗2g∗3g∗5−

2

5
ζ 22 g

2∗3g∗4−
44

15
ζ 22 g

2∗2g∗6
]+Te6[9ζ3g∗2g∗8

−14ζ3g∗3g∗7+5ζ3g∗4g∗6+12 ζ(3)g
2∗2g2∗3+2ζ3g3∗2g∗4

]
+Te7[8

3
ζ2g

2∗2g∗6−
5

3
ζ2g∗2g∗3g∗5−ζ2g2∗3g∗4

]+Te9[g∗10]



225 Invariants of identity-tangent diffeomorphisms

Table 17: p�=∑P�s up to weight 10 with
f = l ◦ g, g�(z)=∑2≤s g�s z

1−s .

P�2 = Te1g�2,P�3=Te2g�3,P�4=Te3g�4,P�5=Te4g�5,
P�6 = Te2

[
Te5g�6+6ζ3g�4g�2−6ζ3g2�3

]+Te3ζ2g3�2
P�7 = Te3

[
6ζ3g�5g�2−6ζ3g�4g�3

]+Te4ζ2 32 g�3g2�2+Te6g�7
P�8 = Te2

[
10ζ5g�6g�2+30ζ5g2�4−40ζ5g�5g�3

]
+Te3[8

5
ζ 22 g

2
�3g�2−

8

5
ζ 22 g�4g

2
�2

]
+Te4[3ζ3g2�4+2ζ3g4�2−10ζ3g�5g�3+7ζ3g�6g�2]
+Te5[5ζ2g�4g2�2−2ζ2g2�3g�2]+Te7g�8

P�9 = Te2
[
18ζ 23 g�5g

2
�2+36ζ 23 g3�3−54ζ 23 g�4g�3g�2+

624

35
ζ 32 g�4g�3g�2

−208
35

ζ 32 g�5g
2
�2−

416

35
ζ 32 g

3
�3

]+Te3[10ζ5g�7g�2+20ζ5g�5g�4
−30ζ5g�6g�3

]+Te4[87
10
ζ 22 g�4g�3g�2−

9

2
ζ 22 g�5g

2
�2−

21

5
ζ 22 g

3
�3

]
+Te5[8ζ3g�3g3�2+8ζ3g�7g�2+4ζ3g�5g�4−12ζ3g�6g�3]
+Te6[17

2
ζ2g�5g

2
�2−

1

2
ζ2g�4g�3g�2−3ζ2g3�3

]+Te8g�9
P�10 = Te2

[
14ζ7g�8g�2+35ζ7g3�2g�4+210ζ7g�6g�4−84ζ7g�7g�3

−35ζ7g2�3g2�2−140ζ7g2�5
]+Te3[224

15
ζ 32 g�5g�3g�2+

128

35
ζ 32 g

2
�4g�2

−704
105

ζ 32 g�6g
2
�2−

416

35
ζ 32 g�4g

2
�3−

176

105
ζ 32 g

5
�2+6ζ 23 g5�2+21ζ 23 g�6g2�2

+36ζ 23 g�4g2�3−9ζ 23 g2�4g�2−48ζ 23 g�5g�3g�2
]+Te4[11ζ5g�8g�2

+29ζ5g�4g3�2+45ζ5g�6g�4−36ζ5g�7g�[3]−29ζ5g2�3g2�2−20ζ5g2�5
+9ζ2ζ3g�4g3�2−9ζ2ζ3g2�3g2�2

]+Te5[9
4
ζ 22 g

5
�2+

42

5
ζ 22 g�5g�3g�2

+33
5
ζ 22 g

2
�4g�2−

33

5
ζ 22 g�6g

2
�2−

42

5
ζ 22 g�4g

2
�3

]+Te6[+5ζ3g�6g�4
+7ζ3g2�3g2�2+9ζ3g�8g�2+13ζ3g�4g3�2−14ζ3g�7g�3

]
+Te7[13ζ2g�6g2�2+92 ζ2g2�4g�2−12 ζ2g5�2−9ζ2g�4g2�3−ζ2g�5g�3g�2]
+Te9g�10
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9.4 The invariants as entire functions of f : the reflexive case

As in Table 16, we write down the expansion of the collector p∗ in terms
of g∗, but this time for a reflexive f . Recall that a standard f is reflexive
iff f (− f (−z)) ≡ z, in which case its conjugate l1/2 ◦ f ◦ f −1/2 is of the
form l◦g with g also reflexive. See Section 3.9. Reflexivity automatically
implies ρ( f ) ≡ −g∗2 ≡ 0. There being fewer coefficients g∗s , we reach
weight 13.

Example 18: p∗ up to weight 13 for f = l ◦ g with
g∗(z) =∑1≤d g∗1+2d z

−2d .

P∗3 = Te2g∗3,P∗5=Te4g∗5,P∗6=Te2
[−6ζ3g2∗3],P∗7=Te6g∗7,

P∗8 = Te2
[−40ζ5g∗5g∗3]+Te4[−10ζ3g∗5g∗3],

P∗9 = Te2
[
36ζ 23 g

3
∗3−

32

5
ζ 32 g

3
∗3
]+Te4[−1

5
ζ 22 g

3
∗3
]+Te6[−1

3
ζ2g

3
∗3
]

+Te8[g∗9],
P∗10 = Te2

[−84ζ7g∗7g∗3−140ζ7g2∗5]+Te4[−36ζ5g∗7g∗3−20ζ5g2∗5]
+Te6[−14ζ3g∗7g∗3]

P∗11 = Te2
[
560ζ5ζ3g∗5g2∗3−

15648

175
ζ 42 g∗5g2∗3−80ζ ev6,2g∗5g2∗3

]
+Te4[80ζ 23 g∗5g2∗3−27221 ζ 32 g∗5g2∗3]+Te6[−3415 ζ 22 g∗5g2∗3]
+Te8[−5

3
ζ2g∗5g2∗3

]+Te10g∗11],
P∗12 =Te2[576

5
ζ3ζ

3
2 g

4∗3−216ζ 33 g4∗3−144ζ9g∗9g∗3−210ζ9g4∗3−1008ζ9g∗7g∗5
]

+Te4[18
5
ζ3ζ

2
2 g

4∗3+14ζ7g4∗3−210ζ7g∗7g∗5−78ζ7g∗3g∗9
]

+Te6[6ζ3ζ2g4∗3−103 ζ5g4∗3−28ζ5g∗7g∗5−44ζ5g∗9g∗3]
+Te8[−18ζ3g∗9g∗3],

P∗13 = Te2
[
720ζ 25 g∗7g2∗3+1200ζ 25 g2∗5g∗3+1344ζ7ζ3g∗7g2∗3

+2240ζ7ζ3g2∗5g∗3−168ζ ev8,2g∗7g2∗3−280ζ ev8,2g2∗5g∗3−
125056

385
ζ 52 g

2∗5g∗3

−375168
1925

ζ 52 g∗7g
2∗3
]+Te4[100ζ ev6,2g2∗5g∗3+500ζ5ζ3g2∗5g∗3

+540ζ5ζ3g∗7g2∗3+
6544

525
ζ 42 g

2∗5g∗3−
23824

175
ζ 42 g∗7g2∗3−180ζ ev6,2g∗7g2∗3

]
+Te6[140ζ 23 g∗7g2∗3+8821ζ 32 g2∗5g∗3−3064105

ζ 32 g∗7g
2∗3
]+Te8[ 8

15
ζ 22 g

2∗5g∗3

−39
5
ζ 22 g∗7g2∗3

]+Te10[−4ζ2g∗7g2∗3−23 ζ2g2∗5g∗3]+Te12g∗13
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9.5 The invariants as entire functions of f : one-parameter cases

Table 19: p∗ up to weight 12 for f = l ◦ g with g(z) = z + g2 z−1.

P2 = g2Te2 ,P4=0,P6=g32Te2
[
3ζ3
]
,

P8 = g42

(
Te2[10ζ5]+Te3

[
−2
5
ζ 22

])
,

P10 = g52

(
Te2
[
77

2
ζ7

]
+Te3

[
9ζ 23−

244

105
ζ 32

]
+Te4ζ5

)
,

P12 = g62

(
Te2[151ζ9]+Te3

[
3ζ ev6,2+63ζ3ζ5−

878

105
ζ 42

]
+Te4

[
10ζ7+3ζ2ζ5−185 ζ

2
2 ζ3

]
+Te5

[
− 8

35
ζ 32

])
,

P14 = g72

(
Te2
[
16

7
ζ 32 ζ5+18ζ 23 ζ5+9ζ odd8,1,2+

19343

24
ζ11

]
+Te3

[
15ζ ev8,2+6ζ ev6,2ζ2+261ζ7ζ3−

5972

231
ζ 52+

235

2
ζ 25+6ζ5ζ3ζ2

]
+Te4

[
+27ζ 33+

5027

72
ζ9+30ζ7ζ2−5110 ζ

2
2 ζ5−

732

35
ζ3ζ

3
2

]
+Te5

[
11ζ3ζ5−ζ ev6,2−

508

175
ζ 42
]+Te6[ζ7])

Table 20: p∗ up to weight 12 for f = l◦g with g(z) = z
[
1+2 g∗2 z−2

] 1
2
.

P∗2 = g∗2Te1 ,P∗4=0,P∗6=0,
P∗8 = g4∗2

(
Te2
[
−5
2
ζ5

]
+Te4

[
1

4
ζ3

])
P∗10 = g5∗2Te

3
[
3

4
∗ζ 23
]

P∗12 = g6∗2
(
Te2
[
3

2
ζ 33+

47

6
ζ [9]−4

5
ζ3ζ

3
2

]
+Te4

[
−21
40
ζ3ζ

2
2−

63

64
ζ7

]
+Te6

[
3

8
ζ3ζ2+ 1

16
ζ5

]
+Te8

[
− 1

16
ζ3

])
P∗14 = g7∗2

(
Te3
[
105

16
ζ 25−ζ 23 ζ 22−

189

32
ζ7ζ3

]
+Te5

[
1

2
ζ 23 ζ2−2ζ5ζ3

]
+Te7

[
1

8
ζ 23

])
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Table 21: p∗ up to weight 15 for f = l◦g with g(z) = z
[
1+3 g∗3 z−3

] 1
3
.

P∗3 = g∗3Te
P∗6 = g2∗3

(
Te2[−6ζ3]

)
P∗9 = g3∗3

(
Te2
[
36ζ 23−

32

5
ζ 32

]
+Te4

[
−1
5
ζ 22

]
+Te6

[
−1
3
ζ2

])
P∗12 = g4∗3

(
Te2
[
576

5
ζ3ζ

3
2−216ζ 33−210ζ9

]
+Te4

[
18

5
ζ3ζ

2
2+14ζ7

]
+Te6

[
6ζ3ζ2−103 ζ5

])
P∗15 = g5∗3

(
Te2
[
1296ζ 43+3780ζ9ζ3−140ζ7ζ5−

23054144

125125
ζ 62−

6912

5
ζ 23 ζ

3
2

−420ζ ev10,2
]+Te4[1332224

28875
ζ 52−

216

5
ζ 23 ζ

2
2+60ζ 25−238ζ7ζ3+49ζ ev8,2

]
+Te6

[
1007

1575
ζ 42−72ζ 23 ζ2+

190

3
ζ5ζ3−503 ζ

ev
6,2

]
+Te8

[
193

75
ζ 32

]
+Te10

[
16

15
ζ 22
]+Te12[ 7

45
ζ2

])
10 Synopsis

10.1 Diffeos, collectors, connectors, invariants

Given a general local identity-tangent mapping f of C,∞  → C,∞,
whether of tangency order 1 (i.e. f (z)− z ∼ Cst) or of order p > 1
(i.e. f (z) − z ∼ Cst z1−p), what can be said of its analytic invariants?
What are the most natural, complete systems {Aω, ω ∈ �} of invariants?
What methods are there for computing these Aω, singly or collectively?
How do these methods compare as to efficiency? Above all, on the more
theoretical side: which are the most explicit and/or economical formulae
for expanding the Aω into convergent series of f -dependent inputs (such
as the Taylor coefficients of f ) and f -independent, universal constants?
Practically all natural, complete systems {Aω, ω ∈ �} of invariants

consist of the Fourier coefficients of the so-called connectors π(z) – i.e.
trigonometric Fourier series which connect the various sectorial normal-
isations of f with their immediate neighbours. Although these invariant
connectors are totally independent and mutually unrelated, they all de-
rive from a more basic object, the collector p(z), which is unique and “of
one piece”, but unfortunately not invariant. The collector, with its natu-
ral expansions into series of multitangents or monotangents, is a natural
intermediary between f and the invariant-carrying connectors.
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10.2 Affiliates, generators, mediators

The analytic invariants Aω( f ) are also holomorphic in f as long as f
ranges through a fixed formal conjugacy classG(p,ρ) ofG, where p ∈ N∗
is the tangency order and ρ ∈ C the iteration residue. Thus, for elements
of the prototypal class G(1,0), which may be written as f = l ◦ g with
l(z) = z + 1 and g(z) = z + O(z−2), the invariants Aω( f ) as well
as the connector π(z) and collector p(z) that carry them, must be entire
functions of g, hence of each of g’s coefficients gn .
Now, given any analytic function γ (t) := ∑

0≤r γr t
r , we can asso-

ciate with f, g, π, p the so-called affiliates f♦, g♦, π♦, p♦ defined via the
corresponding substitution operators F,G,�,P.99

Three types of affiliates are of special relevance:

(i) the infinitesimal generators f∗, g∗, π∗, p∗, with γ (t) = log(1+ t).

(ii) the first or main mediators f�, g�, π�, p�, with γ (t) = t
1+ 1

2 t
.

(iii) the second mediators f��, g��, π��, p��, with γ (t) = (1+t)2−1
(1+t)2+1 .

Each of the three series f∗, f�, f�� is resurgent and verifies resurgence
equations ruled by (and yielding) the invariants Aω( f ). Here, f∗ is by far
the best choice.
The three series g∗, g�, g�� are resurgent, too, but with resurgence coef-

ficients Aω(g) totally unrelated to the Aω( f ). The usefulness of g∗,g�,g��,
however, lies elsewhere – namely in their providing a bridge, first to the
collectors p∗, p�, p�� and then to the connectors π∗, π�, π��. Here, the best
choice is not g∗, but g�, with g�� the second best choice.
As for the three connectors π∗, π�, π��, each is as good as the other,

since their Fourier coefficients stand in bi-polynomial correspondence
with one another.

10.3 Main alien operators

To each type of affiliate f♦ there naturally corresponds a specific system
of alien operators {�♦

ω , ω ∈ C•}.
The alien counterpart of the infinitesimal generators f∗ is the system

{�ω , ω ∈ C•} of (standard) alien derivations .
The alien counterparts of the mediators f� and f�� are the systems of

so-called medial alien operators100 {��
ω , ω ∈ C•} and {���

ω , ω ∈ C•}.
Although these medial operators are not exact derivations (they possess

99 Thus f♦(z) := F♦.z with F♦ := γ (F − 1).
100 These medial operators bear no relation to the so-called median convolution average.
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more complex co-products), they are in a sense more basic than the alien
derivations �ω, and simpler too, at least in many respects, such as nu-
merical computations. They occur naturally in several unrelated contexts
and deserve to have their own niche within alien calculus.

10.4 Main moulds

To each type of affiliate f♦ there also correspond specific mouldian sym-
metry types which extend the familiar four-type landscape of alternal/
symmetral and alternel/symmetrel. In the present instance, they also bring
order and structure into the plethora of auxiliary moulds required for ex-
panding the invariants Aω( f ). Here are the main moulds:101

(i) The scalar multizetas ze•, za•, zo•. They are the mainstay of this in-
vestigation, being the transcendental ingredient of the Aω( f ).
(ii) The multitangents Tee•(z),Taa•(z),Too•(z). They are meromorphic,
1-periodic functions of z. It is through their Fourier coefficients that the
multizetas smuggle their way into invariant analysis.
(iii) The multizetaic resurgence monomials S̃e

•
(z), S̃a

•
(z), S̃o

•
(z), which

are related – in several ways – to both the scalar multizetas and the mul-
titangents.
These very basic moulds give rise to interesting combinatorial devel-

opments, such as the conversion formulae from Taa• and Too• to Tee•.
We may note that, here again, the multitangents Too•, i.e. precisely the
ones associated with an ‘exotic’ symmetry type, turn out to be the most
useful.

10.5 Main results

Half the results presented in this paper deal with somewhat tangential
issues – the mould machinery, the alien operators, the attendant com-
binatorics, etc. Regarding the core concern of the investigation – the
expansion-description of the holomorphic invariants – we may point to
the following:
We derive explicit and optimal102 expansions for the collectors and

connectors of f = l ◦ g in their three main variants: first directly from g
to π, p, next from g∗ to π∗, p∗, lastly from g� to π�, p�. We even examine
the general, affiliate-based scheme, from g♦ to π♦, p♦, the better to bring
out the ‘specialness’ of the three main schemes.

101 The vowels ‘e’ and ‘a’ connote, as usual, alternelity/symmetrelity or alternality/symmetrality,
whereas the vowel ‘o’ points to less common symmetry types, related to the mediators.

102 Optimal in the sense of incapable of further simplification.



231 Invariants of identity-tangent diffeomorphisms

We also detain ourselves over the ramified case (p > 1) and the far-
going changes it brings: the finite reduction of multitangents to monotan-
gents breaks down; the procedure for recovering the multitangents from
their singular parts completely changes; the Fourier coefficients of the
multitangents are no longer expressible as finite sums of multizetas, not
even Q-indexed ones.
We describe the growth properties of each invariant Aω( f ) as an entire

function of exponential type in the Taylor coefficients of f .
We review various natural groups of formal germs, strictly larger than

the group G0 of analytic germs, yet close enough to G0 to possess non-
trivial analytic classes and holomorphic invariants Aω( f ). We charac-
terize G0++ , the largest of all such groups; and G0+ , the largest of all
self-replicating groups, whose elements produce connectors which, after
rescaling, still belong to the group, and in turn produce their own connec-
tors, ad infinitum. These developments may be taken as an introduction
to the subject of phantom holomorphic dynamics.
We also stress the distinction between the arithmetical and dynamical

monics. They are the same objects, but viewed differently:
(i) the former as ingredients of the Stokes constants, in which capacity
they are rigidly determined.
(ii) the latter as ingredients of the holomorphic invariants, the sole de-
mand on them being that of making the invariants invariant.
We show how the systems of (finite or infinite) relations that constrain

the monics change depending on which perspective we adopt. Most no-
ticeably, the finite, algebraic constraints on the dynamical monics turn
out to be significantly weaker than those on their arithmetical counter-
part.
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The resurgent approach
to topological string theory

Ricardo Couso-Santamaría

Abstract. In these notes I describe practical applications of resurgence to topo-
logical strings, a theory that enjoys connections with matrix models, enumerative
and complex geometry, and strong/weak dualities in Physics. Starting from the
asymptotic series representation of the free energy I outline recent results which
are first steps for arriving at a transseries, which should in principle contain all the
nonperturbative information of the theory.

1 Introduction

The goal of these notes is to present an overview of the work developed
in [7, 8] about the applications of resurgence to topological string theory.
These references are not pieces of mathematics but physics work so they
sit on a lower step in the staircase of rigor that has the work of Écalle at
the top [12]. The objective then is to introduce the ideas and techniques
that have been quite useful in understanding and uncovering nonperturba-
tive effects in physical theories, and to put part of the focus on issues that
could be taken as working problems for the resurgent mathematician. A
nice companion to this article is [21], which assumes no familiarity with
resurgence or topological strings.

The ultimate application of resurgence to Physics would be the use
resurgent techniques to define and compute nonperturbative observables
of a given physical theory. See [11] for an overview of the role of resur-
gence in Physics. By nonperturbative I mean valid for any value of the
interaction couplings, small or large. (In Mathematics we denote this
coupling by x−1 while in Physics we may call it gs .) However, such an
ambitious goal could not completely work in general for physical and
technical reasons. Resurgence can capture nonperturbative information
about a system and store it in the form of a transseries. This is a formal
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object in a variable x built out of exponentials and powers,

ϕ =
∞∑
n=0

σ ne−nAx
∞∑
g=0

x−gϕ(n)g , σ, A, ϕ(n)g ∈ C. (1.1)

The notation here is the following: A is called the instanton action in
physical contexts and I will stick to that name; n labels instanton num-
bers, where n = 0 denotes the perturbative sector; σ is called the trans-
series parameter and is not constrained at the formal level. Transseries
can be more general including many instanton actions, Aα, and associ-
ated sectors labeled by vectors n with natural numbers as entries. They
can also allow for other transseries monomials besides exponentials, such
as logarithms, log x . See for example [6, 13].
The computation of the transseries can be quite challenging in prac-

tice. Even if we have surpassed that obstacle we still have to perform
the task of resumming the trans series into a function of x that would
eventually define the physical observable ϕphys. The resummation han-
dles each asymptotic series

∑∞
g=0 x

−gϕ(n)g for every n to produce a finite
number for a given x . However we still have to determine the value of
the transseries parameter σ . For this we need some physical input, such
as a boundary condition for ϕphys at infinity. This last step is important
because resurgence alone cannot choose between all the possible nonper-
turbative completions. When we lack knowledge about the nonperturba-
tive regime of a physical theory we may not have a way to determine the
right completion.
In sight of such a disheartening picture we could just turn to other tech-

niques sometimes available in Physics such as the strong/weak coupling
duality or integrability, but we would be missing on the information re-
vealable by resurgence and displayed in the transseries. To illustrate what
I mean by the resurgent approach let us have a look at Figure 1.1 where
I show a practical route from an asymptotic series of perturbative nature,
ϕ(0), to a full nonperturbative physical quantity, ϕ. This approach will
not always be successful but it is always worth trying.
The starting point in most physical problems is a finite sequence of

perturbative coefficients, ϕ(0)g . How one arrives at these quantities and
how many of them can be computed depends very much on the prob-
lem. The asymptotic nature of the resurgent approach focuses strongly
on behaviors at large order g, so the more coefficients we have the more
precise our numerical results will be. For generic quantum field theories
computing ϕ(0)g for even moderate g requires calculating a large amount
of Feynman diagrams — roughly g! of them. For theories like topologi-
cal strings we rely on the recursive properties of the coefficients — like
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Figure 1.1. The resurgent diagram describes schematically the routes to the
transseries starting from perturbation theory, namely EQ and LO, as well as the
feedback triangle on the right-hand side and the resummation at the bottom.

the holomorphic anomaly equations, see later — to bypass Feynman dia-
grams altogether.
If our goal is to build a transseries by studying perturbative data alone

we have two routes, which generically complement each other. They are
labeled LO and EQ in Figure 1.1.
Route EQ, if available, is the fastest way to the transseries. We may

take it if we can find an equation of some type that the perturbative
asymptotic series, ϕ(0)(x), satisfies. The easiest way is to find a recursion
relation between the coefficients ϕ(0)g and build an equation from it. The
next step is to promote this equation to be valid not only perturbatively
but also for a transseries like (1.1). After this, computing coefficients ϕ(n)g
is basically a mechanical task.
To give a somewhat trivial example consider the list perturbative coef-

ficients
0, 1,−1, 3,−11, 51,−283, . . . (1.2)

that come from solving a Riccati equation in power series. Even if we
did not know that such equation was behind these numbers it would not
be too unlikely to find a (nonlinear) relation for them, namely

ϕ
(0)
0 = 0, ϕ

(0)
1 = 1, ϕ(0)g = −gϕ(0)g−1 +

g∑
h=0

ϕ
(0)
h ϕ

(0)
g−1−h, (1.3)

and eventually arrive at the equation

ϕ(0)′(x) = ϕ(0)(x)− ϕ(0)(x)2/x − 1/x . (1.4)

After this we can just drop the perturbative superscript and plug in a
transseries ansatz. This would tell us that the instanton action in (1.1)
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is A = −1 and that the following coefficients are

one-instanton, ϕ(1)g : 1, 2, 1,
4

3
, . . . (1.5)

two-instanton, ϕ(2)g : − 1,−5,−14,−122
3
, . . . (1.6)

and so on.
The route labeled LO (after large order) deals with the perturbative co-

efficients and nothing else. The goal is to determine, with as much detail
as possible, how the coefficients ϕ(0)g grow with g, because in those de-
tails are hidden the nonperturbative coefficients. This is what the theory
of resurgence tells us that generically happens. So, following with the
example, if we take the Riccati numbers (1.2) and pretend for a moment
to forget their origin, we can analyze numerically their dependence in the
index g. After some numerical computations we would find

ϕ(0)g ∼ sinh(π)

π

[
g!

(−1)g 1+
(g − 1)!
(−1)g−1 2+

(g − 2)!
(−1)g−2 1+

(g − 3)!
(−1)g−3

4

3
+ . . .

]
+
(
sinh(π)

π

)2 [ g!
(2(−1))g (−1)+

(g − 1)!
(2(−1))g−1 (−5)

+ (g − 2)!
(2(−1))g−2 (−14)+

(g − 3)!
(2(−1))g−3

(
−122
3

)
+ . . .

]
+ . . .

=
∞∑
n=1

Sn1
2π i

∞∑
h=0

(g − h)!
(nA)g−h

ϕ
(n)
h as g → ∞. (1.7)

Thus we find, in a very neat and organized fashion, all the nonperturbative
information we were looking for. As an extra bit we obtain the Stokes
constant S1, a quantity intrinsic to the problem that dictates how different
resummations are related to each other. See [?] for a rigorous resurgent
treatment of the Riccati equation. Let us stress now two important facts
about the LO route.
The first is that the relation between ϕ(0)g and ϕ(n)h displayed in (1.7) for

the Riccati example is generic. The presence of factorials of decreasing
intensity and the instanton action in the denominator is a general conse-
quence of resurgence and we expect to find relations similar to these for
other problems. That a relation exists between perturbative and nonper-
turbative data is not that surprising given the existence of route EQ. What
may be regarded as unexpected and useful is that the form of (1.7) is valid
for a large class of problems.
The second point is that the route LO is essentially a numeric approach

to the problem of finding the transseries, but one that is always available if



237 The resurgent approach to topological string theory

we can work with enough perturbative coefficients and precision. Prac-
tical concerns in this area include the use of convergence acceleration
techniques like Richardson extrapolation, see [5].
The roads labeled LO and EQ describe the square in Figure 1.1. There

is also a triangle between the transseries, the nonperturbative coefficients
ϕ(n)g (read out from the transseries), and new resurgence relations for ϕ(n)g
when g is large. The latter are quite similar in form to that in (1.7): the lhs
is ϕ(n)g and the rhs involves factorials, instanton actions, Stokes constants,

and other coefficients ϕ(m)h . Since we have one such resurgence relation
for each instanton number n the complete set of equations imposes quite
a constraint on the coefficients of the transseries. This is a property of
resurgence that we can take advantage of in problems where the roads
LO and EQ do not yield as much information as we wanted (e.g., due
to numerical obstacles) or when that information is incomplete (e.g., we
cannot determine the coefficients completely). That will be the case in
topological string theory.
The bottom part of the diagram deals with the resummation of the

transseries, the determination of the transseries parameter σ , and the re-
lated issue of Stokes phenomena. I will not cover these topics here be-
cause for topological string theory the problem is still under investigation
(see however the recent article [9]). I will just mention that to transform
a formal transseries into an actual function we use Borel resummation
on each of the asymptotic series ϕ(n)(x), see for example the second part
of [20]. This resummation process can lead to an ambiguous answer at
each instanton sector n. The cure to this problem comes from applying
Borel resummation to the complete transseries, that is, Borel–Écalle re-
summation. It can be a nontrivial step to prove that the resummation is
free of the ambiguities.
In the lucky cases in which we have access to alternative descriptions

of our theories we can compare the resummed transseries with these other
predictions. This can be a crucial step in determining the correct element
in the family of transseries parametrized by σ .

2 Basics of topological strings

The first question that comes to mind is why apply the resurgent approach
to topological string theory. The answer is twofold.
First of all, topological string theory is a subject of interest by theoret-

ical physicists and mathematicians alike due to its central role in mirror
symmetry, in understanding questions of the full string theory and M-
theory and their dualities, as well as the connections with random matrix
theory/matrix models. See [17] for details. Topological string theory is
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defined from first principles as a perturbative expansion in a small pa-
rameter, gs , called the string coupling constant. This series turns out
to be asymptotic due to the factorial growth of the coefficients (Gevrey-
1). Although the nonperturbative nature of the theory has been probed
through several avenues, a general nonperturbative definition of topolog-
ical strings is lacking. Nevertheless some proposals have appeared, at
least for large classes of theories, that could fill this void, see for exam-
ple [18] for a recent approach. This problem of finding a nonperturbative
completion for a theory is one for which resurgence can provide valuable
insight.
This leads us to the second part of our answer. The perturbative topo-

logical string coefficients can be computed very efficiently in some cases
and that is the starting point we need for the resurgent approach along the
LO route. Moreover I will show that the EQ road is also available. That
is, there is an equation that generalizes the perturbative recursion — the
holomorphic anomaly equation — and that computes many ingredients
of the transseries.
Perturbative topological string theories are defined on top of topolog-

ical field theories of maps from Riemann surfaces to Calabi–Yau mani-
folds (CY). They come in two kinds, A and B, defined on different CYs
but related by mirror symmetry. This means that the two free energies,
on the A and B side, will agree as formal asymptotic series once we have
figured out the relation between the two geometries, also known as the
mirror map,

F (0),A(gs, t)
mirror←→
map

F (0),B(gs, z), t = t (z) (2.1)

The dependence on the geometries appears through moduli, which are
variables that capture the Kähler structure (parametrized by t) of the A-
model CY, or the complex structure (parametrized by z) on the B-model
CY. This means that these asymptotic series come in families labeled by
t or z, and we have to regard the coefficients F (0)

g as functions, not just
numbers. Moreover, the dependence on the moduli is not holomorphic,
so t and z also appear. Taking z → 0 we obtain a holomorphic limit1 of
the free energies. For the A model this limit has the form

F (0),A
g (gs, t)=

∞∑
g=0

g2g−2s

∞∑
d=1

Ng,d e
−dt , (2.2)

1 The holomorphic limit is not unique but attached to the notion of frame which will be ignored for
the sake of clarity and brevity. We use curly F to indicate holomorphic, while roman F to denote
holomorphic and nonholomorphic dependence.
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where Ng,d ∈Q are the famous Gromov–Witten invariants. These count,
in the appropriate sense, holomorphic maps from complex curves of
genus g into the CY with fixed degree or homology class d.
The A-side of things is not kind towards the resurgent approach be-

cause the calculations there are hard. The B-model is far more welcom-
ing thanks to the existence of the holomorphic anomaly equations that
relate free energies of different orders, [3, 4]. They are roughly of the
form

∂z F
(0)
g 	 ∂2z F

(0)
g−1 +

g−1∑
h=1

∂z F
(0)
h ∂z F

(0)
g−h, (2.3)

and they can be solved recursively in g. The expressions for F (0)
g can

be expressed quite compactly if we use an auxiliary (set of) variable(s),
S(z, z), rather than z. In these variables the perturbative free energies
have a dependence that is polynomial in S and rational in z with coeffi-
cients in Q.
About solving the holomorphic anomaly equations I only want to men-

tion that integration produces a constant, or rather a function of z but not
of z. This is called the holomorphic ambiguity. Finding what it is re-
quires nontrivial knowledge aboutF (0)

g at particular values of z called the
large-radius point and the conifold point. For certain CY geometries, or
toric type, this knowledge is believed to be enough to fix the ambiguity
for all orders [1,15]. A particularly simple geometry in this class is called
local P2 (along with its mirror) for which over a hundred perturbative free
energies were computed in [8] and were used for the resurgent analysis.
Recall that our goal is to exploit these perturbative coefficients to un-

cover the underlying transseries. That means finding instanton actions,
Aα (one or several, and their modulus dependence) and higher instanton
coefficients F (n)

g (z, S), for n �= 0. Taking the LO route alone would be
hopeless because it is mainly a numerical enterprise and we have to keep
track of two variables, z and S. Fortunately the path along EQ will be
opened once we extend the validity of the holomorphic anomaly equa-
tions past perturbation theory.

3 Resurgent approach to topological strings

At this point of the discussion we are sitting on the upper left corner of
the diagram in figure 1.1. We need to make progress in making EQ avail-
able while already cranking the numerical machine of LO. We also have
to start making predictions of what we should find. What particular func-
tions of z and S should the instanton actions be? How many of them are
there? What about higher instanton coefficients? The first two questions
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Figure 3.1. Dominant instanton actions obtained from large order growth of
perturbative free energies for different values of the complex modulus ψ =
z−1/3. A1 dominates for small ψ (around conifold point at ψ = 1), and AK
dominates for large ψ (around large-radius point at ψ = ∞). Since the actions
are holomorphic these results can be obtained for any value of the propagator.
In the transition region, around |ψ | 	 25, the two actions have similar weights
in the large-order growth of F (0)g and the numerics get worse.

can be guessed from previous experience in other theories, particularly
from matrix models. There it was understood that instanton actions, Aα,
are periods of the underlying geometry (the so called spectral curve), that
is, integrals along cycles of the relevant differential form in the theory.
Moreover, the periods are holomorphic and can be computed right after
we know what CY we are working with [10]. We only need to find what
particular linear combination of periods is realized as an instanton action,
since only a small number of cycles are independent. The LO approach
can tell us this numerically.
For local P2 there are three independent periods that are computed

from the so-called Picard–Fuchs equations. A possible basis for the peri-
ods is

(t (z), tc(z), 1) (3.1)

where t is the Kähler modulus and tc is the called the flat coordinate
around the conifold point. They can be written in terms of hypergeomet-
ric functions with respect to z. From a LO analysis of the free energies
we find two instanton actions as shown in Figure 3.1.

AK = 4π2i t (z), A1 = 2π i√
3
tc(z). (3.2)

Due to their geometric origin as periods they are labeled Kähler and coni-
fold. But we should not be too confident that our job finding actions is
over because some, with a larger absolute value, could be lurking behind
the dominant ones. To understand this remark notice that when we have
several instanton actions and their corresponding sectors the large-order
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growth of F (0)
g will include all of them. However, the order in which they

appear will depend on the relative size of the actions because Aα enters
the resurgence relation as A−g

α , so the smallest it is in absolute value the
more it contributes as g → ∞. Some actions might always be larger than
the dominant ones so they will only be seen as exponentially suppressed
contributions in g.
Let us now deal with the one-instanton sectors associated to the ac-

tions we have found. Now we have no external insight as to what they
should be so it is time to explore EQ. The logic to use here is the same
as that in the Riccati example: take your perturbative recursion and make
it into a single equation for F (0)(gs, z, Szz); then drop the perturbative
superscript, plug in your transseries ansatz and solve for the coefficients.
What worked like a charm for Riccati is going to fall short for topolog-

ical strings and the holomorphic anomaly equations. First of all we are
going to inherit the holomorphic ambiguity problem at every instanton
level n and order g. For Riccati the only ambiguity lied in the first coef-
ficient ϕ(1)0 but it was conventionally set to 1, transferring the ambiguity
to the transseries parameter σ . The difference between both examples
has to do with the nature of the equations. While Riccati is a differential
equation in x , the resurgent variable, the extended holomorphic anomaly
equations are only algebraic in gs (and differential in z and S). This also
means that the number of transseries parameters is not determined by the
equations.
We find that the EQ route is not as powerful as we would have wanted

and leaves several parts of the transseries undetermined:

- Number of transseries parameters: several transseries ansätze can
solve the equations, with or without logarithmic transmonomials.

- Holomorphic ambiguities: recursive integration produces ambiguities
that need to be fixed.

- Instanton actions: equations only impose that they are holomorphic,
what at least is in agreement with their interpretation as periods.

To arrive at the box ‘Transseries F’ in the resurgent diagram we need to
complement EQ with the LO path and some amount of guess work on
numerical results. Also, as we start making progress with this strategy
we can activate the feedback triangle

F (n)
g −→ Resurgence Relations −→ Transseries F −→ F (n)

g . (3.3)

This loop will act both as a source of information and as a consistency
check because transseries coefficients appear multiple times in resur-
gence relations, as we mentioned in the introduction.
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There is a big caveat here, though, one that we have not talked about
yet. We do not know what the resurgence relations look like exactly for
topological string theory. It is not an option here to derive a bridge equa-
tion that links alien and ordinary derivatives, as is done many examples
such as Riccati, due to the nature of the holomorphic anomaly equations
in relation to gs . So we work on the assumption that the relations will be
similar to those derived from a bridge equation because the bridge equa-
tion does appear in closely related theories like Painlevé equations and
matrix models. See [19] for a review on the relation between topolog-
ical strings and matrix models, and [2, 14] for a resurgent treatment of
Painlevé I equation and the quartic matrix model.

3.1 Main results

Here are the main results we find for the CY geometry of local P2. They
start to paint the picture of what the transseries for the free energy looks
like. Any attempt to obtain a nonperturbative value of the free energy
from resurgence will have to use the results described below. In par-
ticular it will be crucial to know which actions and their corresponding
transseries sector can contribute to a Borel-Écalle resummation of the
transseries.

Holomorphic ambiguities. We can solve the extended holomorphic a-
nomaly equations up to the holomorphic ambiguity and understand the
dependence of the solutions on z and S, although the resulting expres-
sions are not very illuminating.
To fix the ambiguities we look at what happens in the holomorphic

limit near the large-radius and conifold points. More precisely we take
the holomorphic limit of a resurgent relation linking perturbative and
nonperturbative free energies.

F (0)
g ∼ �(2g − 1)

A2g−1
S1
2π i

F (1)
0 ⇒ S1

2π i
F (1)
0 = lim

g→∞
A2g−1

�(2g − 1)F
(0)
g . (3.4)

Since we know how holomorphic perturbative free energies behave at
these special points we can extract results for the nonperturbative free
energies using large-order limits. This can sometimes be done analyti-
cally and others numerically, but it is enough to fix ambiguities. We will
comment on the fact that the Stokes constant cannot be disentangled from
the ambiguity later.

Further instanton actions. We find two other instanton actions, A2 and
A3, besides AK and A1. See Figure 3.2. They are also related to the
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Figure 3.2. Instanton actions A2, A3, associated to conifold points, lie almost
always behind A1 and can only be seen as subleading contributions to F

(0)
g when

g is large. In these figures we fix |ψ | = 2 and vary arg(ψ). We also check that
a 2-instanton sector contributes as well with action 2A1.

Figure 3.3. Representation of the real (red, dashed) and imaginary (orange,
pointed) parts of F (1)g (ψ, Szz) (wrt action A1 and g = 1, 3) for ψ = 2 and free
S. The blue and green plots show the numerical checks from large-order lying
on top of the analytic expressions computed from the extended holomorphic
anomaly equations. The dependence in the propagator is exponential (hence the
oscillations) times polynomial (hence the changes in amplitude).

conifold point which, using the right coordinate ψ = z−1/3, becomes
three conifold points, one for each instanton action.
Since there can only be three independent cycles for this geometry

there is a relation between all actions. It is A1 + A2 + A3 + AK = 0.
This suggests that the transseries is resonant, provided that all actions
here mentioned give rise to transseries sectors of their own.

Numerical checks. Inasmuch as we can carry out LO we find that all
free energies F (n)

g we come across can be computed, up to ambiguity,
from EQ. See an example of the numerical checks in Figure 3.3. This
gives credit to the extended holomorphic anomaly equations we obtained
out of the perturbative regime alone.

3.2 Open issues

Along the resurgent path we encountered several problems, some techni-
cal and some genuinely interesting from the resurgent viewpoint. I think
they are both worth describing.
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Numerical constraints. The numerical approach has an expiration date
from the start. A finite amount of data can only give a finite number
results of approximate precision. Taking large-order limits imposes a toll
on precision that can only be kept at bay if we identify in closed form the
numerical approximations we obtain for Aα, F

(n)
h , h = 0, 1, 2, . . .

On the other hand we also want to compute nonperturbative energies
from the extended holomorphic anomaly equations and analyze their own
resurgent properties (c.f., triangle in the resurgent diagram), but this turns
out to be computationally more demanding than perturbation theory was.
Eventually one is forced to perform a numerical integration of the equa-
tions around particular values of z.

Unfamiliar resurgence relation. Let us think about Riccati again for a
moment, and in particular about the asymptotics of the perturbative and
one-instanton sectors. They have the form, suppressing Stokes constants,

ϕ(0)g ∼
∞∑
h=0

�(g + 1− h)

Ag+1−h
ϕ
(1)
h +

∞∑
h=0

�(g − h)

(2A)g−h
ϕ
(2)
h + · · · (3.5)

ϕ(1)g ∼
∞∑
h=0

�(g + 1− h)

Ag+1−h
ϕ
(2)
h + · · · (3.6)

Note how ϕ
(2)
0 appears on both equations. This is a consequence of the

bridge equation and quite a natural one because no other ingredients are
available to play with. For topological strings and local P2 in particular,
we find2

F (0)
g ∼

∞∑
h=0

�(2g−1−h)
A2g−1−h1

F (1e1)
h +

∞∑
h=0

�(2g−1−h)
(2A1)2g−1−h

F̃ (2e1)
h + · · · (3.7)

F (1e1)
g ∼

∞∑
h=0

{
�(g + 1− h)

(+A1)g+1−h F̂ (2e1)
h + �(g + 1− h)

(−A1)g+1−h F̂
(e1,1)
h

}
+ · · · (3.8)

The two 2-instanton coefficients in the analogous slots are in fact dis-
tinct. Their being different comes from the way their ambiguities are
fixed, either imposing that the holomorphic limit is zero (for F̃) or that
it is a particular and natural quantity that generalizes the 1-instanton case
(for F̂). Both equations can be checked numerically. The question is

2 Notation: (1e1) = (1, 0, 0, . . .), (2e1) = (2, 0, 0, . . .), (e1,1) = (1, 1, 0, . . .), where the first entry
corresponds to A1 and the second to −A1.
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then, why are there two types of 2-instanton free energy and how can we
interpret them? Do both of them appear in the transseries?
With respect to this last question we can suspect that the bottom part

of the resurgent diagram could be useful to provide some insight. If we
manage to resum the transseries we may find that one or both of these
sectors are needed to reproduce the full physical observable.

Dissappearance of AK in the Borel plane. Instanton actions depend on
the complex structure z and so their strength (measured in absolute value)
varies as we move in the z-plane (or the ψ-plane). This means that in
one place AK can be dominant over (less strong than) A1 or the other
way around. The dominant one controls the large-order growth of F (0)

g
as g → ∞. Since we have analytic expressions for the actions we can
predict which one will be dominant in which areas. For small ψ or large
z, it should be AK the dominant action but we find numerically that F (0)

g
is controlled by A1. How can this be? We look at the Borel plane of
F (0), that is, we plot the singularities of the Borel transform of F (0) with
respect to gs (numerically using Padé approximants). Singularities are
related to instanton actions. There we can see how, as we vary ψ , the
singularities move. The closer to the origin the more dominant they are.
We find that the singularity for AK disappears when we dial ψ towards 0
even before it has the chance to become dominant. See Figure 3.4.3 That
is why we do not find it in the numerical analysis. However, we do not
yet understand the mechanism controlling the disappearance, though it
may be related to higher order Stokes phenomenon [16].

Stokes constants. A natural problem in resurgence is the computation of
Stokes constants. For the Riccati equation one can guess the value for S1
from the numerics or formally prove what this value is. In the approach
to topological strings we have to rely on numerics alone. However, we
have already used the information contained in the large-order numerics
to fix the holomorphic ambiguity and there is none left to find S1 and
other Stokes constants. Equivalently, we can only have expressions for
the product of the ambiguity and the Stokes constants but not for the two
separately. What we can show using LO and EQ is that S1 does not carry
dependence on z or S.

3 The perturbative free energy is an asymptotic series in g2s , while higher instanton sectors depend
on gs . This implies that the instanton actions come in pairs of opposite signs.
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Figure 3.4. Above: the analytic expressions for A1 and AK, in absolute value,
showing the would be transsition in dominance if AK did not dissappear as a
Borel singularity. Below: a sequence of frames showing the dissappearance of
the singularity as ψ decreases. We show AK as a purple diamond, A1 as a red
circle, and A3 as a green square, as well as their opposite values.

4 Conclusions

In the pages above I have described the basics of what resurgence can tell
us about topological string theory in the nonperturbative regime. Many
details have been simplified or skipped altogether. They can be found
in [7, 8]. The main goal has been to discuss the ideas summarized in the
resurgent approach diagram in Figure 1.1, as they are applied to topolog-
ical strings.
If we had to assign just one label for this work it would probably be

‘experimental mathematics’, because although our target theory is topo-
logical strings and the mathematical framework is resurgence, the tech-
niques we use can be aimed at other targets and the results obtained are
suggestive rather than rigorous. Formal theorems and proofs should fol-
low to set on firm grounds the evidence here exposed and shed light on
the issues yet to be understood. And while in other parts of Physics not
everything can be made rigorous the case of topological strings is singular
because it sits comfortably on the boundary of Physics and Mathematics.
In this way it should be shown if the free energy is resurgent and of

which kind. The resurgent relations between different coefficients should
be completely understood and the Stokes constants identified. We should
also aspire to understand the physical interpretation or realization of the
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nonperturbative data in the transseries. Avenues to explore, some of them
under development, include the eventual resummation of the transseries,
the relation with other nonperturbative approach to topological strings,
and the possible consequences of resurgence in enumerative geometry.
The applications of resurgence in Physics have increased considerably

in the past decade, but this trend will only finally take off when physicists
see clear and accessible examples of the usefulness of resurgence. The
exchange of ideas that took place at the conference ‘Resurgence, Physics
and Numbers’ is a big step towards this goal.
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[8] R. COUSO-SANTAMARÍA, J. D. EDELSTEIN, R. SCHIAPPA and
M. VONK, Resurgent transseries and the holomorphic anomaly:
nonperturbative closed strings in local CP2, Commun. Math. Phys.
338 (2015), 285–346.
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WKB and resurgence
in the Mathieu equation

Gerald V. Dunne and Mithat Ünsal

Abstract. In this paper, based on lectures by the authors at the May 2015 work-
shop Resurgence, Physics and Numbers, at the Centro di Ricerca Matematica En-
nio De Giorgio of the Scuola Normale Superiore in Pisa, we explain the origin
of resurgent trans-series in the Mathieu equation spectral problem, using uniform
WKB and all-orders (exact) WKB. Exact quantization conditions naturally arise,
and their expansion in the weak coupling regime produces resurgent trans-series
expressions which exhibit precise relations between different instanton sectors.
Indeed, the perturbative expansion encodes all orders of the multi-instanton ex-
pansion, an explicit realization of the general concept of “resurgence”. We also
discuss the transition from weak to strong coupling, an explicit realization of “in-
stanton condensation”.

1 Introduction

1.1 Some Motivation from Physics and Mathematics

Asymptotic analysis is a cornerstone of physics, providing accurate ex-
pansions when certain dimensionless combinations of physical parame-
ters are large or small. Such expansions are often divergent, and these di-
vergent expansions contain a wealth of information, in addition to giving
numerically accurate estimates in the appropriate limiting regimes. The
modern mathematical theory of resurgent asymptotics, based on Borel-
Ecalle summation, is based on trans-series expansions, in which for-
mal (divergent) series expansions in a small parameter are extended to
trans-series expansions that also include summations over exponentially
suppressed non-perturbative terms, as well as possible summations over
powers of logarithms [1–5]. While this mathematical theory arose from
quite abstract origins, it now appears that it is surprisingly well suited
to many problems in physics. For example, in the language of quantum
field theory, multi-instanton calculus is a trans-series expansion, involv-
ing a sum over an infinite set of non-perturbative multi-instanton sectors,
each of which is multiplied by a fluctuation series, and some of which are
multiplied by series of logarithms, due to quasi-zero modes. In another
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context, it is well known in physics that summation of classes of Feynman
diagrams often leads to series in powers of logarithms. From the physics
perspective, the primary new idea from the formal theory of resurgence
is the notion that there should generically be precise relationships be-
tween the fluctuations about different non-perturbative sectors, including
the vacuum sector (“perturbation theory”). Viewed from the path inte-
gral, this is quite unexpected. In these lectures we explain in simple terms
how this type of structure arises, using the classic example of instantons
in the quantum spectral problem for the periodic cosine potential, known
in mathematics as the Mathieu equation [6–11]. Using various forms
of WKB, extended to all orders, we show how the trans-series structure
arises. In the process, we find that not only is there a natural underlying
trans-series, but there are concrete quatitative relations between different
instanton sectors. Indeed, in an extreme manifestation of resurgence, we
show that all orders of the trans-series are encoded in a subtle way in the
divergent perturbative expansion itself. Here we explain what we mean
by this somewhat dramatic claim. We use the language of the underly-
ing differential equation, but these conclusions are even more interesting
when translated into the path integral formalism. We propose that these
ideas could in fact be used as a means to provide a sensible mathematical
definition of the path integral, even in Minkowski space, and moreover
a definition that provides also a means of making quantitative computa-
tions. One of the primary motivations is that in many physics applications
it would be desirable to have better control over the analytic continuation
of path integrals, for example for studying real-time processes, quantum
transport, or finite density systems. One of the main mathematical ad-
vantages of a trans-series, compared to just an ordinary divergent series,
is that the trans-series is designed to encode the proper analytic continu-
ation properties of the function it is describing. This sounds appealing,
but it is a notoriously difficult problem in path integrals, so we are moti-
vated to understand as much of this trans-series structure as possible, in
a well-defined concrete example. That is the purpose of these lectures.
The study of resurgent trans-series in quantum spectral problems be-

gan with the pioneering work of Bogomolny and Fateev, and Zinn-Justin,
Brézin, Parisi, Voros et al [12–17] (for an excellent review see [18]), as
well as in the mathematical literature from the work of Pham, Ramis,
Dillinger, Delabaere, Berry, Howls, Aoki, Takei et al [19–24]. It also
became clear from the work of Kruskal and Costin and co-workers, that
resurgent asymptotic analysis is a powerful tool in studying the asymp-
totics of nonlinear differential equations [3, 24, 25]. More recently, in
physics, Mariño, Schiappa and Weiss showed that the resurgent approach
yields interesting new insights in the study of matrix models and string
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theory [26,27]. Since then there has been a flourishing activity involving
applications in matrix models, string theory, quantum gauge theory and
sigma models, as well as new results in quantum mechanics [28–39]. In
these lectures, our goal is quite modest: study a well-known and widely
relevant system, the Mathieu equation, and understand it in great detail.
Surprisingly, through the eyes of resurgence we are able to see new re-
sults in this very old problem.
Two further pieces of motivation are the following general questions:

• What can weak coupling analysis tell us about strong coupling ?
• Can weak coupling and strong coupling be related, even if the degrees
of freedom re-organize themselves in a very non-trivial way, for ex-
ample across a transition ?

We will be able to phrase these questions more precisely in the context of
the Mathieu system, and see that resurgent asymptotic analysis provides
precise answers.

1.2 Resurgent trans-series in quantum spectral problems

In this paper we concentrate on trans-series expressions for energy eigen-
values in certain quantum mechanical spectral problems, more specifi-
cally the Schrödinger equation for the periodic cosine (Mathieu) poten-
tial.

−�2

2

d2

dx2
ψ(x)+ cos(x)ψ(x) = u ψ(x). (1.1)

This is an example of a more general class of quantum mechanical (QM)
spectral problems with potentials having degenerate harmonic minima.
In these cases it is known that standard Rayleigh-Schrödinger perturba-
tion theory leads to a perturbative series that is not only divergent, but also
Borel non-summable, in the sense that the expansion coefficients grow
factorially fast in magnitude and do not alternate in sign [13, 14, 40–43].
Thus, naive Borel summation leads to a non-perturbative imaginary part
for the energy, which moreover is ambiguous. This is doubly problem-
atic: not only is it ambiguous, but these systems are stable, and therefore
the energy should be real. (Contrast with the case of a cubic oscilla-
tor [44], or an inverted-double-well quartic oscillator [45], where the sys-
tem is unstable and the imaginary part has a natural physical interpreta-
tion.) The resurgent trans-series expression for the energy resolves these
apparent inconsistencies, because the perturbative series is only one part
of the full trans-series, and the ambiguous imaginary non-perturbative
term arising from Borel summation of perturbation theory is exactly can-
celled by a corresponding term in a higher non-perturbative sector. Resur-
gence implies that these cancellations occur to all orders, leading to a full
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trans-series that is not only real, but also unambiguous. This means that
perturbation theory on its own is incomplete, while the full trans-series is
complete. For a clear and exhaustive analysis of how these cancellations
occur for general real trans-series we refer the reader to [46].
In the context of the Mathieu equation, consider performing perturba-

tion theory within one of the potential wells, perturbing about the N th

energy level of the unperturbed harmonic well, leading to a perturbative
expression of the form

upert(�, N ) =
∞∑
n=0

�nun(N ). (1.2)

Notice that the system can be scaled in such a way that the sole param-
eter in the equation is �, and the “semiclassical limit” of small � refers
to the situation where the potential wells are deep. (See Section 2.1 be-
low.) The perturbative coefficients un(N ) are simple polynomials in the
level number N , and can be computed by straightforward iterative proce-
dures. For potentials with degenerate harmonic minima, the perturbative
expansion (1.2) is not Borel summable, which means that on its own it is
incomplete and indeed inconsistent. This is true not just for the ground
state (N = 0), but also for higher states, so long as N � 1/�, as dis-
cussed in more detail in Section 5 below. This situation can be remedied
by recognizing that the full expansion of the energy at small coupling is
in fact of the “trans-series” form:

utrans(�, N )

=
∞∑
k=0

∞∑
n=0

k−1∑
l=1

ck,n,l(N ) �n
(

1

�N+1/2 exp
[
− S

�

])k (
ln

[
−1

�

])l
.
(1.3)

Perturbation theory corresponds to the “zero-instanton sector”, k = 0,
with coefficients c0,n,0(N )≡un(N ). The higher (k≥1) instanton terms of
the trans-series involve a sum over non-perturbative factors exp[−k S/�],
multiplied by prefactors that are themselves series in � and in ln(1/�).
Note that the sum over logarithms in (1.3) begins in the k = 2 sector:
physically, these logarithms arise from the interaction between instantons
and anti-instantons, which requires k ≥ 2.
The basic building blocks of the trans-series, �, exp[−S/�] and

ln(1/�), are called “trans-monomials”, and are familiar from physical
examples. The parameter S in (1.3) is a numerical constant, the single-
instanton action. With our choice of scaling of the Mathieu equation,
S = 8 [see equation (2.7) below]. Remarkably, the expansion coefficients
ck,n,l(N ) of the trans-series are intertwined amongst themselves, in such
a way that the ‘necessary’ cancellations occur in order to render the full
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trans-series real and unambiguous. In practice, this works as follows: a
Borel analysis of the perturbative series requires an analytic continuation
in �, producing non-perturbative imaginary parts, but these are precisely
cancelled by the imaginary parts associated with the ln(−1/�) factors in
the non-perturbative portion of the trans-series. Similarly, the fluctua-
tions about the single instanton sector, given by the coefficients c1,n,0, are
also divergent, and Borel summation of these fluctuations produces new
imaginary parts, but these are cancelled by terms in the k = 3 sector. And
so on. Ambiguities only arise if you look at just one isolated portion of
the trans-series expansion, for example just the perturbative part, or just
some particular multi-instanton sector. When viewed as a whole, the ana-
lytic continuation of the trans-series expression is real, unique and exact.
An important first step in our argument is a seemingly small and in-

nocent shift of emphasis from much of the previous work studying the
divergence of perturbation theory in quantum spectral problems, which
has often concentrated on low-lying energy levels or bands, such as the
ground state or lowest band. In order to see the full structure of the trans-
series it proves useful to consider the spectral energy eigenvalue not just
as a function of the small coupling (which we can take here as �: see the
scaling defined in Section 2.1 below), but also of the level or band num-
ber, N , an integer that labels the perturbative energy level or band. The
fact that there exists such a label is physically clear for problems with
degenerate harmonic minima, corresponding just to the unperturbed har-
monic oscillator level number. Mathematically, it is clear from oscillation
theorems for Sturm-Liouville type problems in one dimension. Thus we
view the energy eigenvalue u in (1.1) as a function of two variables:

u = u(�, N ). (1.4)

This immediately defines three interesting, and quite distinct, spectral
regions:

1. N� � 1: weak coupling, far below the barrier;
2. N� ∼ O(1): intermediate coupling, near the barrier top;
3. N� � 1: strong coupling, far above the barrier.

Note that even the physical language used to describe the different spec-
tral regions is very different. In the weak coupling region the states are
described as superpositions of localized atomic states in the so-called
“tight-binding approximation”, while at strong-coupling the states are
more naturally treated as using the “nearly-free electron” picture of
weakly perturbed free states [47]. Near the barrier top, neither of these
approximations is satisfactory, and there is a complicated re-arrangement
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of degrees of freedom, a concrete realization of the phenomenon of “in-
stanton condensation” [48–52]. Correspondingly, the expansions of the
energy in these three regions are quite different, and yet they are all re-
lated. One of the main motivations of this work is to understand in more
precise detail how this transition from weak- to strong-coupling occurs.
In particular, we are motivated by the close analogy to so-called “large
N” techniques in quantum gauge theories and matrix models [53].
So far, the discussion sounds somewhat trivial. But the new result that

we wish to describe is that by considering the dependence of u(�, N )
on both � and N we find that there is a direct quantitative relation be-
tween perturbation theory and the all-orders multi-instanton trans-series
expression. For example, one explicit consequence of this relation is a
dramatically improved description of the one-instanton sector.

New Result for Mathieu Spectrum [54, 55]: The leading exponential
(“one-instanton”) splitting of the N th band in the weak-coupling regime
where N� � 1 can be written, including the series of fluctuations,

u(�,N ) = upert(�,N )± �√
2π

1

N !
(
32

�

)N+ 1
2

exp

[
− S

�

]
Pinst(�,N )+... (1.5)

where the fluctuation factor Pinst(�, N ) is expressed entirely in terms of
the perturbative expansion upert(�, N ):
Pinst(�, N )

= ∂upert(�, N )

∂N
exp

[
S
∫ �

0

d�

�3

(
∂upert(�, N )

∂N
− � +

(
N + 1

2

)
�2

S

)]
,

S ≡ Sinstanton = 8. (1.6)

This result (1.5, 1.6) agrees with the fluctuation series derived from the
asymptotics of Mathieu functions [60], and also with a recent 3-loop
computation for N = 0 [61], as discussed below in Section 4.3. The in-
teresting new thing in (1.5, 1.6) is that the fluctuation series Pinst(�, N ) is
expressed solely in terms of the perturbative fluctuation series upert(�, N ).
Thus, there is a direct relation between the fluctuations about the zero-
instanton sector (i.e., perturbation theory, upert(�, N )), and the fluctua-
tions about the one-instanton sector, Pinst(�, N ). This is an explicit ex-
ample of resurgence, quite different from the early term/late term rela-
tions that have been studied previously. This ‘constructive’ form of resur-
gence appears to have first been noticed in formulas for the ionization rate
for hydrogenic atoms [56], a result that motivated a systematic study by
Álvarez and Casares in the context of one dimensional oscillators [57,58],
in which such explicit perturbative/non-perturbative relations were found
in the cubic and quartic oscillator systems.
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The first factor in (1.6), ∂upert/∂N , is a density-of-states factor that is
well known at leading order in � [69, 70], but the remaining exponential
factor in (1.6) is new [54,55]. Similar relations can be derived expressing
the fluctuations in any higher-instanton sector exactly in terms of the fluc-
tuations about the zero-instanton sector (i.e., perturbation theory). Fur-
thermore, there are similar results for other potentials [40, 43, 45, 57, 58].
This is remarkable: it says that perturbation theory, u(�, N ), encodes
everything! One simply has to know how to decode this information.
In Section 2 we review basic known facts about the Mathieu spectrum.

In Sections 3 - 5 we illustrate and derive the results (1.5, 1.6) in the con-
text of the Schrödinger equation for these quantum mechanical systems,
but the result is even more interesting when interpreted in the language
of the path integral approach to the same spectral problem, as discussed
in Section 6. This is in fact our main motivation, as we wish to develop
a deeper insight into the general structure of semiclassical expansions,
having in mind potential applications to quantum field theory.

2 Basic facts about the Mathieu spectrum

Here we summarize the basic classic results concerning the spectrum of
the Mathieu equation (see, e.g. [6–11,60]).

2.1 Notation and Scaling

The Mathieu equation describes the nonlinear oscillator problem, and has
a wide array of applications [9,11]. We write the Mathieu equation in the
Schrödinger equation form (1.1), but by simple changes of variables, this
becomes the standard textbook form of the Mathieu equation [11]:
d2ψ

dz2
+(A − 2Q cos(2z)) ψ=0←→ −�2

2

d2ψ

dx2
+ cos(x)ψ=uψ. (2.1)

(We use capital letters A and Q, rather than the conventional lower-case
ones, to avoid confusion with symbols a and q, which have special mean-
ing in the related gauge theory discussion.) So we can translate back and
forth between notations with the identifications:

Q = 4

�2
, A = 8 u

�2
. (2.2)

We also wish to compare with the important work of Zinn-Justin and
Jentschura [42], who used yet another scaling:(

−1
2

d2

dx2
+ 1

8g
sin2(2

√
gx)

)
ψ = EZ J Jψ

←→
(
−(16g)2

2

d2

dx2
+ cos(x)

)
ψ = (16gEZ J J − 1)ψ. (2.3)
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Thus � plays the role of a coupling constant g:

� = 16 g , u = −1+ 16 g EZ J J = −1+ � EZ J J . (2.4)

The Mathieu system has a QM spectrum consisting of an infinite series
of bands and gaps (also known as regions of stability and instability), as
shown in Figure 2.1. Low in the spectrum the bands are very narrow,
and high in the spectrum the gaps are very narrow. The transition be-
tween these two behaviors occurs near the top of the potential barrier,
at u = 1, where the bands and gaps are of approximately equal width.
These features are explained quantitatively below, in Section 5. We are
particularly interested in the transition between the two extreme regions,
which occurs near u = 1, the maximum of the potential cos x .

Figure 2.1. The energy spectrum of the Mathieu equation, as a function of the
parameter �. The regions of stability (the bands) are shaded, with lower edges
shown as solid (blue) lines, and top edges shown as solid (red) lines. The bands
are separated by regions of instability (gaps), which are unshaded. The first 20
bands are shown. At small �, the bands are exponentially narrow, and the band
location follows the linear behavior in (2.6). High in the spectrum, the gaps
are exponentially narrow, and the gap location follows the quadratic behavior in
(2.10). The maximum and minimum of the potential, at u = ±1, are shown as
dotted lines. Note the smooth transition, near u ∼ 1, between narrow bands at
small �, and narrow gaps at large �. In this region, the bands and gaps are of
equal width, and are not exponentially narrow, as discussed Section 5.3.

2.2 Weak coupling: N� � 1

At small �, with N� � 1, we effectively have far-separated harmonic
wells, with high barriers between them. Then perturbation theory in a
given well, starting with the N th harmonic oscillator level, leads to the
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following perturbative expression [7–9,11,60]:

upert(�,N )∼ −1+�

[
N+ 1

2

]
− �2

16

[(
N+ 1

2

)2
+ 1
4

]

− �3

162

[(
N+ 1

2

)3
+ 3
4

(
N+ 1

2

)]

− �4

163

[
5

2

(
N+ 1

2

)4
+ 17
4

(
N+ 1

2

)2
+ 9

32

]
(2.5)

− �5

164

[
33

4

(
N+ 1

2

)5
+ 205

8

(
N+ 1

2

)3
+ 405
64

(
N+ 1

2

)]
−...

This expansion is indeed of the form of the perturbative expansion (1.2),
where at nth order of perturbation theory, the expansion coefficient un(N )
is a polynomial of degree n in the level number N . There is an implicit
assumption here that N� � 1.
For fixed N , the un(N ) are non-alternating in sign and diverge factori-

ally fast [41, 54,55,60]:

un(N ) ∼ − 22N

π (N !)2
�(n + 2N + 1)
16n+2N+1 , n → ∞. (2.6)

This means that the perturbative expansion is Borel non-summable, and
so the perturbative expression (2.6) must be extended to a trans-series.
The rate of divergence (2.6) of perturbation theory has a characteristic
form, with the factor 16 being equal to twice the instanton action, where
the instanton action for the Mathieu potential is:

S ≡ Sinstanton =
√
2
∫ π

−π
dx
√
cos(x)+ 1 = 8. (2.7)

In this spectral regime, well below the barrier top, the spectrum consists
of narrow bands, whose central location is given by (2.6), and whose
widths are given by the classic result [7, 9, 11, 60]

�uband(�, N ) ∼ 2�√
2π

1

N !
(
32

�

)N+1/2
exp

[
−8

�

]{
1− �

32

[
3

(
N + 1

2

)2
+4
(
N + 1

2

)
+ 3

4

]
+ O(�2)

}
. (2.8)

Physically, we interpret this as a non-perturbative single instanton term
[62,63], incuding the fluctuations about the single-instanton. This single-
instanton effect is real and unambiguous. The factor 8 in the exponent is
the instanton action for the Mathieu potential in (2.7).
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2.3 Strong Coupling: N� � 1

In the strong coupling regime, N� � 1, far above the barrier top, the
spectral behavior is completely different, as can be seen immediately
from Figure 2.1. We can probe this region by taking � large, keeping
N small and fixed, in which case the gap edges are (see [11], converted
to our notation):

u0 = �2

8

(
0− 1

�2
+ 7

4�6
− 58

9�10
+ 68687

2304�14
+ . . .

)
u(−)1 = �2

8

(
1− 4

�2
− 2

�4
+ 1

�6
− 1

6�8
− 11

36�10
+ 49

144�12

− 55

576�14
− 83

540�16
+ . . .

)
u(+)1 = �2

8

(
1+ 4

�2
− 2

�4
− 1

�6
− 1

6�8
+ 11

36�10
+ 49

144�12

+ 55

576�14
− 83

540�16
+ . . .

)
u(−)2 = �2

8

(
4− 4

3�4
+ 5

54�8
− 289

19440�12
+ 21391

6998400�16
+ . . .

)
u(+)2 = �2

8

(
4+ 20

3�4
− 763

54�8
+ 1002401

19440�12
− 1669068401

6998400�16
+ . . .

)
u(−)3 = �2

8

(
9+ 1

�4
− 1

�6
+ 13

80�8
+ 5

16�10
− 1961

5760�12

+ 609

6400�14
+ . . .

)
u(+)3 = �2

8

(
9+ 1

�4
+ 1

�6
+ 13

80�8
− 5

16�10
− 1961

5760�12

− 609

6400�14
+ . . .

)
u(−)4 = �2

8

(
16+ 8

15�4
− 317

3375�8
+ 80392

5315625�12
+ . . .

)
u(+)4 = �2

8

(
16+ 8

15�4
+ 433

3375�8
− 45608

5315625�12
+ . . .

)
. (2.9)

This is the regime where the kinetic energy dominates the potential en-
ergy, so the energy eigenvalues are obtained by perturbing around the
(degenerate) free-particle-on-a-circle states, with the potential 2

�2
cos(x)
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treated as a perturbation. The expansions (2.9) are convergent, with a ra-
dius of convergence that increases quadratically with the level index N .
They are conventionally expressed as continued-fraction representations
of the eigenvalues, generated by a Fourier decompostion of the gap-edge
eigenfunctions, and these continued-fraction expressions are themselves
convergent [6, 8, 9, 11]. Nevertheless, despite these convergence prop-
erties, there are also non-perturbative effects, associated with the narrow
splittings of the spectral gaps in this spectral region, as seen in Figure 2.1.
Rather than taking � � 1 with N fixed, the high spectral region could

also be probed by taking � → 0 and N → ∞, but with N� � 1 fixed.
This is motivated by analogous “large-N” expansions in quantum gauge
theories and matrix models [53]. We will see that this is a surprisingly
close analogy to the Matheiu spectrum. In this limit, for large level num-
ber N � 1/�, the continued-fraction expressions for the energy eigenval-
ues give approximate expressions for the energy of the N th gap as [11]:

u(�,N ) ∼ �2

8

(
N 2+ 1

2(N 2−1)
(
2

�

)4
+ 5N 2+7
32(N 2−1)3(N 2−4)

(
2

�

)8
+ 9N 4+58N 2+29
64(N 2−1)5(N 2−4)(N 2−9)

(
2

�

)12
+...

)
. (2.10)

This is an expansion in powers of (2/�)4. We observe that the nth co-
efficient has poles at certain integer values of N ≤ n, so the expression
(2.10) should really be interpreted as an expansion about N = ∞. We
discuss this further in Section 5.4. We also note that similar expansions,
with coefficients with analogous poles, occur in gauge theory large-N
expansions [64–66].
The strong-coupling expansion (2.10) does not fully describe the spec-

trum. It does not distinguish between the gap edges, u(±)N . Furthermore,
the � dependence of the expansion (2.10) is different from that in (2.9).
For a given N , there is a non-perturbative splitting of the gap, occuring
at order 1/�2N . Thus, as the level index N increases, the gap splitting
occurs at higher orders in perturbation theory, becoming exponentially
small [11]:

�ugap(�,N ) ∼ �2

4

1(
2N−1(N−1)!)2

(
2

�

)2N[
1+O

((
2

�

)4)]

∼ N �2

2π

( e

N �

)2N
, N�1. (2.11)
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Note that this has the same form as the non-perturbative effects in the
large-N expansion of the Gross-Witten-Wadia unitary matrix model, in
the strong coupling phase [48,49,65].
These strong-coupling results are very different from the weak-cou-

pling expressions described in Section 2.2. The expansions are conver-
gent rather than divergent, and the expansions do not appear to have a
trans-series structure. Nevertheless, we show below in Section 5.4 that
in fact a more natural way to interpret the expressions (2.9) is as trans-
series [67].

2.4 Theorems Concerning Band and Gap Widths

Here we summarize the known rigorous estimates of the widths of bands
and gaps (stability or instability regions) for the Mathieu problem. These
generalize to the more general case of a periodic potential with a unique
minimum in each period.

Band-Width Theorem [Harrell [77], Weinstein-Keller [69], Con-
nor et al [70]]: For a periodic potential with a unique minimum in
each period, the width of the N th band has the leading behavior

�uband ∼ 2

π

∂u

∂N
exp

[
−1

�
S

]
(1+ O(�))

S =
∫
turning points

√
V (x)− Vmin dx (2.12)

where the exponent involves the action under the barrier. For the
Mathieu equation, this produces the leading part of expression
(2.8), as we discuss in Section 5. Our new result (1.5, 1.6) re-
fines this estimate considerably, giving all the O(�) corrections,
and moreover expresses these corrections entirely in terms of the
perturbative series.

Gap-Width Theorem [Dykhne [68], Weinstein-Keller [69], Con-
nor et al [70], Avron and Simon [78]]: For a periodic potential
with a unique minimum in each period, the width of the N th gap
for u � Vmax has the leading behavior:

�ugap ∼ 2

π

∂u

∂N
exp

[
−1

�
Im S̃

]
(1+ O(�))

S̃ =
∫
complex turning points

√
V (x)− Vmin dx (2.13)
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where the exponent now involves the action on a cycle connecting
complex turning points. For the Mathieu equation, this produces
the leading part of expression (2.11), as we discuss in Section 5.

Note the remarkable fact that these leading expressions (2.12, 2.13) for
the band width and gap width have a common form, just with different
turning points. This will be explained in Section 5. This gap-width result
can also be extended, along the lines of (1.5, 1.6) for the bands [67].

3 Uniform WKB for the Mathieu equation

In this Section we outline our first approach to the spectrum, which dem-
onstrates how a trans-series expression such as (1.3) arises for the energy
levels, in the weak coupling regime where �N � 1. Here we outline
the overall strategy and summarize a few technical details. For further
details, see [54, 55]. The resurgent structure of the Mathieu equation
system has also been studied in [59].

3.1 Strategy of uniform WKB

Uniform WKB is a well-known approach [73–75], based on the simple
idea of mapping the Schrödinger problem to a known “comparison prob-
lem”. Since the wells are harmonic, the relevant comparison problem is
the harmonic oscillator system, whose eigenfunctions are parabolic cylin-
der functions. In the context of resurgence theory, the explicit use of
uniform WKB was introduced by Álvarez et al in the study of quantum
anharmonic oscillators [57, 58, 76]. The novelty of [40, 43, 57, 58, 76] is
that the uniform WKB expansion is extended well beyond the leading
terms studied in [73–75], which reveals a surprising new layer of rich
mathematical structure.
The comparison mapping is achieved by making a parabolic uniform

WKB ansatz for the wave-function:

ψ(x) = 1√
ϕ′(x)

Dν

(
1√
�
ϕ(x)

)
. (3.1)

Here Dν is the parabolic cylinder function [6, 80], and ν is an ansatz pa-
rameter whose physical meaning will become clear below. It is closely
related to the band label N . This uniformWKB ansatz converts the linear
Schrödinger equation forψ(x) into a nonlinear equation for the argument
function ϕ(x), which can then be solved perturbatively. Straightforward
local analysis near the (harmonic) potential minimum leads to a pertur-
bative expansion of the energy:

u = upert(�, ν) =
∞∑
n=0

�nun(ν). (3.2)
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The coefficient un(ν) is a polynomial, of degree n, in the ansatz parameter
ν. In the � → 0 limit, the ansatz parameter ν tends to an integer N ,
labelling the unperturbed harmonic oscillator energy level. In fact, when
ν = N , the expansion (3.2) coincides precisely with the result upert(�, N )
of Rayleigh-Schrödinger perturbation theory in (1.2). As mentioned in
the Introduction, this perturbative series expression is incomplete, and
indeed ill-defined, because the series is not Borel summable. This is not
particularly surprising because so far the analysis has been purely local,
making no reference to the existence of neighboring degenerate minima
of the potential. To determine the energy spectrum properly we must
impose a global boundary condition that relates one minimum to another.
This global condition implies that ν is only exponentially close to the

integer N , with a small correction that is a function of both N and �
[54, 55]:

νglobal(�, N ) = N + δν(�, N ) (3.3)

The correction term δν(, N ) has a trans-series form:

δν(�,N )=
∞∑
k=1

∞∑
n=0

k−1∑
l=1

dk,n,l(N )

(
1

�N+1/2 exp
[
− S

�

])k(
ln

[
−1

�

])l
�n. (3.4)

As explained below, this trans-series structure follows directly from the
properties of the parabolic cylinder functions, and it is therefore generic
for potentials with degenerate harmonic minima.
The global boundary condition determines the ansatz parameter ν as a

function of � and N , as in (3.3, 3.4), and then the trans-series form of the
energy eigenvalue follows immediately by inserting this into the formal
perturbative series expansion:

utrans(N , �) = upert (�, N + δν(N , �)) =
∞∑
n=0

�nun(N + δν(N , �)). (3.5)

Recall that the coefficients un(ν) are polynomials. We are using the fact
that a formal expansion of a trans-series is itself a trans-series.
This uniform WKB approach explains in very elementary terms why

the energy generically has a trans-series form for potentials with degener-
ate harmonic classical minima: all properties of the � → 0 limit are sim-
ply mapped to the resurgent asymptotic properties of the parabolic cylin-
der functions. All analytic continuations needed to analyze questions of
resurgence and cancellation of ambiguities are ultimately expressed in
terms of the well-known analytic continuation properties of the parabolic
cylinder functions.
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3.2 Perturbative expansion of the uniform WKB ansatz

The parabolic cylinder function Dν(z) satisfies the differential equation

d2

dz2
Dν(z)+

(
ν + 1

2
− z2

4

)
Dν(z) = 0. (3.6)

Therefore the uniform WKB ansatz (3.1) converts the linear Schrödinger
equation (1.1) to a non-linear equation for the argument function ϕ(x):

V (x)−u− 1
8
ϕ2(ϕ′)2+ �

2

(
ν+ 1

2

)
(ϕ′)2+ �2

4

√
ϕ′
(

ϕ′′

(ϕ′)3/2

)′
=0. (3.7)

Notice that the ansatz parameter ν appears in this nonlinear equation,
whereas it does not appear in the original Schrödinger equation. This
nonlinear equation can be solved using simultaneous perturbative expan-
sions for ϕ(x) and u:

u = u0 + �u1 + �2u2 + . . . (3.8)

ϕ(x) = ϕ0(x)+ �ϕ1(x)+ �2 ϕ2(x)+ . . . (3.9)

Note that the expansion coefficients un and ϕn(x) also depend on the
ansatz parameter ν, simply because they come from solving the equation
(3.7), in which the parameter ν now appears.

3.2.1 Leading order of the perturbative expansion The leading order of
(3.7) determines ϕ0(x) and u0:

ϕ20(ϕ
′
0)
2 = 8(V (x)− u0). (3.10)

It is notationally simpler in this case to shift the coordinate x by π so that
the minimum of the potential is at x = 0. Thus we take V (x) = − cos x .
Clearly the spectrum is unchanged by this shift. Requiring regular behav-
ior at x = 0 we determine

u0 = −1 (3.11)

ϕ0(x) = 4
√
2 sin

( x
4

)
. (3.12)

Physically, we understand u0 = −1 simply as the reference energy of the
bottom of the potential well.
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3.2.2 First order of the perturbative expansion At O(�), again imposing
regularity at x = 0, we find straightforwardly

u1 = ν + 1

2
(3.13)

ϕ1(x) =
(
ν + 1

2

)
2
√
2

ln cos x4
sin x

4

. (3.14)

Once again, the result u1 = ν + 1
2 is clear: it just gives the harmonic

energies �
(
ν + 1

2

)
, above the reference energy at the bottom of the well:

to this order u(ν, �) = −1+ �
(
ν + 1

2

)+ . . . .

3.2.3 Higher orders of the perturbative expansion This perturbative ex-
pansion can be extended to any desired order. One finds that the energy
u(ν, �) has an expansion of the form

upert(�, ν) = −1+ �

(
ν + 1

2

)
−

∞∑
n=2

�n Pn

(
ν + 1

2

)
(3.15)

where Pn is a polynomial of degree n, with definite parity. Explicitly, the
first few terms are:

upert(�,ν)∼−1+�

[
ν+1

2

]
−�2

16

[(
ν+1

2

)2
+1
4

]

− �3

162

[(
ν+1

2

)3
+3
4

(
ν+1

2

)]

− �4

163

[
5

2

(
ν+1

2

)4
+17
4

(
ν+1

2

)2
+ 9

32

]

− �5

164

[
33

4

(
ν+1

2

)5
+205
8

(
ν+1

2

)3
+405
64

(
ν+1

2

)]
−... (3.16)

Replacing ν by an integer quantum number N , this expansion (3.16)
agrees with the result (2.6) of Rayleigh-Schrödinger perturbation theory
about the N th harmonic oscillator level. But, as before, this is a formal,
divergent asymptotic expansion, which moreover is not Borel summable,
so this is not the whole story. We are missing the information about the
fact that the spectrum consists of bands, not of discrete levels. This omis-
sion is because we have not yet applied the correct physical boundary
conditions.
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3.3 Global boundary condition: connecting different minima

To fully determine the spectrum, we need to extend the previous local
analysis, in the neighborhood of a minimum of the potential, with global
information about how neighboring minima are related.
It is well known (see Figure 2.1) that each perturbative level labeled

by the integer index N splits into a continuous band of states (in classi-
cal language these are the “stability regions” of the Mathieu equation).
In the QM Schrödinger context this phenomenon arises from the Bloch
condition:

ψ(x + 2π) = ei θψ(x) (3.17)

where θ is a real angular parameter that labels states within a given band
of the spectrum. Conventional Floquet analysis [6, 9–11, 79] expresses
this Bloch boundary condition in terms of the discriminant. Define two
independent solutions ψ1(x) and ψ2(x), normalized as follows at some
arbitrary chosen point (which we take here to be at x = −π , the center
of a barrier between two potential minima: recall that here we are taking
the potential V (x) = − cos x):(

ψ1 (−π) ψ ′
1 (−π)

ψ2 (−π) ψ ′
2 (−π)

)
=
(
1 0
0 1

)
. (3.18)

Then, using the symmetry of the Mathieu potential, we can re-write the
Bloch condition in the compact form [11]:

cos θ = ψ1(π). (3.19)

This is the exact quantization condition, which determines the band spec-
trum. To make this exact quantization condition practically useful, we
need a way to evaluate the right-hand-side of (3.19). This can be done
numerically, or using asymptotics, as we do in this paper. The band-edge
states correspond to θ = 0 or θ = π , and are periodic or anti-periodic
functions, respectively. For other values of θ the wavefunctions are quasi-
periodic (see (3.17)), corresponding to states within a given band. All this
is very well known.
Now let us apply this global boundary condition (3.19) to the uniform

WKB ansatz (3.1). First, define even and odd functions

f±(x) = 1√
ϕ′(x)

(
Dν

(
ϕ(x)√

�

)
± Dν

(
−ϕ(x)√

�

))
(3.20)
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where we have used the fact that ϕ(x) is odd, and ϕ′(x) is even, on the
interval x ∈ [−π, π]. Then the normalized basis functions in (3.18) are

ψ1(x) = 1

W
(
f ′− (−π) f+ (x)− f ′+ (−π) f−(x)

)
(3.21)

ψ2(x) = 1

W (− f− (−π) f+(x)+ f+ (−π) f−(x)) (3.22)

whereW is the (constant) Wronskian:

W ≡ f+(x) f ′−(x)− f ′+(x) f−(x) = −
√
8π

�

1

�(−ν) . (3.23)

Then the exact (Bloch) quantization condition (3.19) can be written (in
two equivalent forms):

cos θ = 1+ 2

W f ′+ (π) f− (π) (3.24)

= −1+ 2

W f ′− (π) f+ (π) . (3.25)

Thus, the global boundary condition is imposed at the midpoint between
two neighboring perturbative vacua: xmidpoint = π . Moreover, the global
condition is expressed in terms of parabolic cylinder functions evaluated
at xmidpoint. This Bloch condition results in the perturbative energy level
splitting into a continuous band, with states within the band labeled by
the angular parameter θ . The bottom of the lowest band has θ = 0 and
its wave function is an even function, while the top of the lowest band
has θ = π and its wave function is an odd function. For such band-edge
states the Bloch conditions (3.24, 3.25) take a simpler form:

(even state) : f− (π) = 0 (3.26)

(odd state) : f+ (π) = 0. (3.27)

Using the uniform WKB ansatz (3.20) we find that these band edges are
determined by the exact condition:

Dν

(
ϕ(π)√

�

)
= ±Dν

(
−ϕ(π)√

�

)
. (3.28)

Now we come to the main point. The argument ϕ(π), just like the pertur-
bative expansion of the energy in (3.16), is a Borel non-summable series
in �, with leading term being non-zero: ϕ0(π) = 4. Thus, as � → 0
we are interested in the asymptotics of the parabolic cylinder functions
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at large magnitude of their argument. But in order to make sense of the
Borel non-summable series we must analytically continue in � off the
Stokes line, the positive real axis, � > 0. Then the argument of the
parabolic cylinder functions in (3.28) becomes complex, and we need to
use the asymptotics of these functions off the real axis [6, 11]:

Dν(z) ∼ zν e−z
2/4 (1+ . . . )+ e±iπν

√
2π

�(−ν) z
−1−ν ez

2/4 (1+ . . . ) ,

π

2
< ± arg(z) < π. (3.29)

The sign here depends on which way we continue off the real axis. The
ellipsis denote known fluctuation terms [6, 11, 54]. Thus, we see that the
exact quantization condition for the band edges (3.28) requires a balance
between the two exponential terms in (3.29). Had we been on the real
axis, we would eliminate the growing exponential in (3.29) by setting ν
equal to a non-negative integer, but this is just perturbation theory. Bal-
ancing the two exponentials expresses the exact quantization condition in
the following form:

(
e±iπ �

)ν
�(−ν) = ± (ϕ(π))2ν+1

e−
1
2
ϕ2(π)

�√
2π �

(1+ . . . ) . (3.30)

Expanding about an integer, writing ν = N+δν, and the fact that ϕ2(π)2� =
8
� −

(
ν + 1

2

)
ln 2+ . . . , we find the exponentially small shift in (3.3). The

higher order terms generate powers of ln� (for further details, see [54]).
Thus we see immediately how the trans-series structure arises: inserting
ν = N + δν(�, N ) into the formal expansion (3.2, 3.16), we generate
a trans-series expression for u, of the form (1.3). By construction, all
analytic continuations are self-consistent, because we have simply used
the analytic continuation properties of the parabolic cylinder functions.
All higher fluctuation terms can be deduced straightforwardly from the
fluctuations of the parabolic cylinder functions.
This resurgence procedure works because the global boundary condi-

tion is expressed in terms of parabolic cylinder functions of 1/�, and for
these functions the analytic continuation properties are rigorously known.
Thus, trans-series expressions of the form (1.3) also arise for other poten-
tials with harmonic minima. Ambiguities only arise if you first expand
the global boundary condition and look at just one isolated portion of the
resulting trans-series expansion, for example just the perturbative part, or
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just some particular multi-instanton sector. When viewed as a whole, the
analytic continuation of the trans-series expression is unique and exact,
and leads to real and unambiguous energy eigenvalues.

4 Relating perturbative and non-perturbative sectors

4.1 Results of Zinn-Justin and Jentschura

We now compare with the beautiful results of Zinn-Justin and Jentschura
(ZJJ) [42]. (Recall Equations (2.3, 2.4), which translate between their
notation for the Mathieu equation and ours.) ZJJ conjectured an exact
quantization condition of the form:(

32

�

)−BZJJ e
1
2 AZJJ

�
(
1
2−BZJJ

)+(−32
�

)−BZJJ e− 1
2 AZJJ

�
(
1
2+BZJJ

)= 2cosθ√
2π

(4.1)

where θ is the Bloch angle, and AZJJ(�, E) and BZJJ(�, E) are functions
of energy that need to be computed. ZJJ derived the following expansions
(we rewrite the following expressions in terms of � ≡ 16g instead of g):

BZJJ(�, E) = E + �

16

(
1

4
+ E2

)
+
(

�

16

)2 (5E
4

+ 3E3
)

+
(

�

16

)3 (17
32

+ 35E2

4
+ 25E4

2

)

+
(

�

16

)4 (721E
64

+ 525E3

8
+ 245E5

4

)
+ . . . (4.2)

AZJJ(�, E) = 16

�
+ �

16

(
3

4
+ 3E2

)
+
(

�

16

)2 (23E
4

+ 11E3
)

+
(

�

16

)3 (215
64

+ 341E2

8
+ 199E4

4

)

+
(

�

16

)4 (4487E
64

+ 326E3 + 1021E5

4

)
+ . . . (4.3)

ZJJ showed that expanding the transcendental quantization condition
(4.1) leads to a trans-series expression for the energy eigenvalue, and
made extensive numerical checks of the associated resurgent cancella-
tions. We also note that the computation of BZJJ(�, E) is straightforward,
while AZJJ(�, E) is considerably more involved [42].



269 WKB and resurgence in the Mathieu equation

4.2 Inversion and a surprise

Consider inverting the expression for BZJJ(E,�), to express it as EZJJ(�,B)
[54, 55]:

EZJJ(�, B) = B − �

16

(
B2 + 1

4

)
−
(

�

16

)2 (
B3 + 3B

4

)
−
(

�

16

)3 (5B4
2

+ 17B2

4
+ 9

32

)
−
(

�

16

)4 (33B5
4

+ 205B3

8
+ 405B

64

)
− . . . (4.4)

We see that this agrees with the perturbative weak coupling expansion
(2.6), with the definitions (2.4) and the identification of B with the band
label number N :

B = N + 1

2
. (4.5)

Thus, computing the function BZJJ(�, E) is equivalent to computing
Rayleigh-Schrödinger perturbation theory. These are the fluctuations
about the perturbative vacuum.
Using (4.4), the non-perturbative function AZJJ(�, E) in (4.3) can be

re-expressed as a function of B:

AZJJ(�, B) = 16

�
+ �

16

(
3B2 + 3

4

)
+
(

�

16

)2 (
5B3 + 17B

4

)
+
(

�

16

)3 (55B4
4

+ 205B2

8
+ 135

64

)
+
(

�

16

)4 9
64

(
336B5 + 1120B3 + 327B)+ . . . (4.6)

Notice the striking similarities between terms in the expansions of
AZJJ(�, B) and EZJJ(�, B). To see this explicitly, we compute:

∂EZJJ(�, B)

∂B
= 1− �

8
B −

(
�

16

)2 (
3B2 + 3

4

)
−
(

�

16

)3 (
10B3 + 17B

2

)
−
(

�

16

)4 (165B4
4

+ 615B2

8
+ 405

64

)
− . . . (4.7)
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and compare this with

−�2

16

∂AZJJ(�,B)

∂�
= 1−

(
�

16

)2(
3B2+ 3

4

)
−
(

�

16

)3(
10B3+ 17B

2

)
−
(

�

16

)4(165B4
4

+ 615B
2

8
+ 405
64

)
−... (4.8)

We deduce the remarkably simple relation:

∂EZJJ
∂B

= − �

16

(
2B + �

∂AZJJ
∂�

)
. (4.9)

It is straightforward to check this to higher orders in �.
In other words, the non-perturbative function AZJJ(�, B), and there-

fore also AZJJ(�, E), can be deduced immediately from knowledge of
the perturbative energy EZJJ(�, B). Thus, only one of the two functions
BZJJ(�, E) and AZJJ(�, E) is actually needed to generate the entire trans-
series. Note that this fact is not at all obvious when these functions are
written in terms of E as BZJJ(�, E) and AZJJ(�, E), as in (4.2, 4.3), but
become clear when everything is expressed in terms of B, as in (4.4, 4.6).
We will understand the reason for this in Section 5. The implication of
this fact is that the exact quantization condition (4.1) involves only one
function. See for example Eq. (68) in [54].

4.3 Implications and two independent confirmations

This relation between the AZJJ and BZJJ functions has some remarkable
implications. Recall that the function EZJJ(�, B) describes the fluctua-
tions about the perturbative vacuum, while AZJJ(�, B) describes the fluc-
tuations about the single-instanton [42, 55]. For example, the single-
instanton fluctuation factor comes from

∂EZJJ
∂B

e−
1
2 AZJJ ∼ e−8/�

(
1− �

8
B − ...

)(
1− �

32

(
3B2 + 3

4

)
− ...

)
= e−8/�

(
1− �

32

(
3B2 + 4B + 3

4

)
− . . .

)
(4.10)

in agreement with the fluctuation factor in (2.8). At first sight, it looks
from (4.10) as though one needs both EZJJ(�, B) and AZJJ(�, B) in or-
der to compute the fluctuations about the single-instanton sector. But be-
cause of the simple relation (4.9) between EZJJ(�, B) and AZJJ(�, B), it is



271 WKB and resurgence in the Mathieu equation

enough to know just EZJJ(�, B), which means just knowing perturbation
theory.
Combining these facts, and re-writing in terms of the energy eigen-

value u, we arrive at the result written in the compact form (1.5, 1.6). For
example, going to the next higher order in � we find:

�uband(�,N ) ∼ 2�√
2π

1

N !
(
32

�

)N+1/2
exp

[
−8

�

]
×
{
1− �

32

[
3

(
N+ 1

2

)2
+4
(
N+ 1

2

)
+ 3
4

]

+ �2

32768

(
144

(
N+ 1

2

)4
+64

(
N+ 1

2

)3
(4.11)

−312
(
N+ 1

2

)2
−176

(
N+ 1

2

)
−87

)
+O(�3)

}
.

We stress that this is a completely constructive relationship. Given some
number of orders of the perturbative expansion upert(�, N ) about the per-
turbative vacuum, from (1.5, 1.6) we can immediately write down the
same number of orders of the fluctuations about the single-instanton sec-
tor. In (4.11) we have shown the first few orders of this fluctuation.
Moreover, this relation between perturbative and non-perturbative ef-

fects extends throughout the entire trans-series, to all higher multi-
instanton sectors [55]. They are all encoded in the perturbative series
upert(�, N ). Therefore, the fluctuations about the single-instanton sad-
dle, and all other non-perturbative saddles, are precisely encoded in the
fluctuations about the perturbative vacuum. This surprising result is in
fact consistent with the ambitious goal of resurgence, which claims that
the expansion about one saddle contains, in principle, information about
the expansions around other saddles, provided one knows how different
saddles are connected. This connection is provided by the exact quanti-
zation condition (3.19), which is itself a statement of the Bloch boundary
condition [55].
At the one-instanton level, we have two independent confirmations of

this result. Long ago, in a truly remarkable paper, Dingle and Müller
computed many orders of the series corrections to the exponential band
splitting, directly from the asymptotics of the Mathieu differential equa-
tion [60]. We can compare (4.11) with equation (72) of [60], and after
adjusting notation (their q0 ≡ (2N + 1), and their h ≡ 2/�) we see
complete agreement. This comparison can easily be carried out to higher
orders.
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From the physics perspective, an even more interesting comparison is
to a recent direct brute-force Feynman diagram computation of the fluc-
tuations about the single-instanton sector, to three loop order [61] (the
corresponding result has also been confirmed for the double-well sys-
tem [61]). Specifically, for the single-instanton expansion of the lowest
(N = 0) band, the diagrammatic computation found the fluctuation factor
(translated to our normalizations: their g ≡ �/8):

exp

[
−8

�

][
1−7
8

(
�

8

)
−0.460937498

(
�

8

)2
− . . .

]
. (4.12)

This diagrammatic computation involved more than 20 three-loop Feyn-
man digrams, each involving propagators in the presence of an instanton,
and only some of these diagrams could be evaluated exactly. Hence the
third coefficient is only known numerically. This field-theoretic result
should be compared with the fluctuation factor in (4.11) with N = 0:

exp

[
−8

�

][
1−7
8

(
�

8

)
− 59

128

(
�

8

)2
− . . .

]
. (4.13)

We see agreement up to 7 decimal places. Considering the complexity
of the Feynman diagrammatic approach [61], compared with the sim-
plicity of the result (1.6), we see that resurgence is telling us something
quite novel and non-trivial about perturbation theory. Furthermore, we
note that in the diagrammatic computation, certain diagrams evaluated
to numbers involving zeta values, but these all presumably cancel in the
end because the final coefficient is rational. This is surprisingly reminis-
cent of such cancellations found in QFT at higher loops, a fact that has
fascinating number theoretic and combinatorial implications [81].
It is also interesting to compare the result (1.5, 1.6) with the theorems

of Harrell, Weinstein-Keller and Connor et al [69,70,77] listed in Section
2.4. These results give one part of the prefactor to leading order, namely
the density of states factor ∂u/∂N , but do not say anything about higher
orders in �. Presumably there is a strong theorem here awaiting a more
rigorous proof.

5 All-orders WKB analysis of the Mathieu equation:
actions and dual actions

There is another, complementary, WKB approach to this problem, often
called “exactWKB”, or “all-ordersWKB” [24]. While the uniformWKB
approach has the advantage that it explains straightforwardly where the
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trans-series structure comes from in the weak-coupling spectral region,
the all-orders WKB has an advantage that it can easily describe both high
and low energy, and even energies near the top of the barrier. There is
also an interesting connection to low energy beahvior of certain super-
symmetric quantum field theories [38,83–89].
We begin with Dunham’s all-orders WKB action [80,90]:

a(�, u) =
√
2

2π

(∮
C

√
u − Vdx − �2

26

∮
C

(V ′)2

(u − V )5/2
dx

− �4

213

∮
C

(
49(V ′)4

(u − V )11/2
− 16V ′V ′′′

(u − V )7/2

)
dx − . . .

)
(5.1)

where the contour integral encircles the turning points. The leading term
is just the familiar WKB action. We write this expansion as a formal
series in powers of �2, with coefficients that are functions of the energy u:

a(�, u) =
∞∑
n=0

�2n an(u). (5.2)

Remarkably, the higher-order WKB actions can be obtained by acting
on these leading WKB actions with differential operators with respect
to the energy u [38, 84, 85]. This follows from the fact that for V =
cos(x), the numerators in (5.1), which are given by the derivatives of V ,
can be re-expressed as polynomials of V . Therefore by differentiating√
u − V with respect to u, and taking appropriate combinations, one can

generate the integrands in (5.1) up to total derivatives which vanish after
integrating around the turning points. For example, at the next two orders:

a1(u) = 1

48

(
2u

d2

du2
+ d

du

)
a0(u) (5.3)

a2(u) = 1

2945

(
28u2

d4

du4
+ 120u d3

du3
+ 75 d

2

du2

)
a0(u). (5.4)

In fact, a0(u) satisfies a 2nd-order Picard-Fuchs equation (5.11), so these
can be further simplified, but we do not need this fact here.
The all-orders WKB expression for the location of a narrow band or

gap can be expressed as [80,90]:

a(�, u) =
{
N � (gap)(
N + 1

2

)
� (band).

(5.5)

This “all-orders Bohr-Sommerfeld” formula relates a complicated ex-
pression in the energy, u, and coupling, �, to an integer that labels the
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band or gap. This can be inverted to express the energy as a function
of N and �. For example, when u ≈ −1, we can expand and invert,
which leads to the perturbative expansion (2.6), as we illustrate in the
next sub-section. Alternatively, we can expand at u � 1 and then invert,
which leads to the strong-coupling expansion (2.10), as we illustrate in
the following sub-section. Expanding near the barrier top, u ≈ 1, yields
information about the spectrum in this regime.
All this is perturbative information, obtained from the formal all-orders

WKB expansion (5.1) in powers of �. But, as is clear from the Mathieu
spectrum shown in Figure 1, we are also interested in non-perturbative
information related to the width of the bands and gaps, whose central
locations are given by (5.5). This non-perturbative information can be
extracted from the same all-orders expansion (5.1), but with different
contours, now encircling the other turning points; for example, for the
energy range below the barrier top, the new turning points are those asso-
ciated with tunneling through the barrier between two adjacent wells. For
energies above the barrier top, these turning points merge and go into the
complex plane, and this expression continues smoothly. Thus, we write
this “dual” action as

aD(�, u) =
√
2

2π

(∮
CD

√
u − Vdx − �2

26

∮
CD

(V ′)2

(u − V )5/2
dx

− �4

213

∮
CD

(
49(V ′)4

(u − V )11/2
− 16V ′V ′′′

(u − V )7/2

)
dx − . . .

)
(5.6)

integrated over the dual integration cycle CD, which encircles these dual
turning points. For the Mathieu problem there are just two independent
cycles, C and CD, and they correspond to the generators of the two cy-
cles of the underlying torus. Note that the higher-order WKB dual actions
can also be obtained from the leading one by acting with certain differ-
ential operators: in fact, since the only difference is the different cycles,
the relations have exactly the same form as in (5.4), with an replaced
with aDn . With proper analytic continuation, this quantization condition
permits smooth transitions and dualities between the various spectral re-
gions, connecting weak and strong coupling, and also the bottom and
top of the wells. The distinction between the various regions is encoded
in the location of the turning points in the complex plane, and the asso-
ciated Stokes lines. For energies inside the wells there are real turning
points. As the energy approaches the barrier top, the turning points come
together and coalesce, and move apart again along the imaginary axis for
energy above the barrier top.
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Given this dual action, there is an elegant compact formula (2.12) for
the leading width of a band, for energies well below the potential barrier
(i.e. here −1 ≤ u � 1). In terms of the action and dual action, this
leading order result reads:

�uband ∼ 2

π

∂u

∂N
e−

2π
�
Im aD0 ∼ �

π

∂u

∂a0
e−

2π
�
Im aD0 . (5.7)

There is also an elegant compact formula (2.13) for the leading width of
a gap, for energies well above the potential barrier (i.e. here u � 1). In
terms of the action and dual action, this leading order result reads:

�ugap ∼ 2

π

∂u

∂N
e−

2π
�
Im aD0 ∼ �

π

∂u

∂a0
e−

2π
�
Im aD0 . (5.8)

Notice that these formula are the same! Furthermore, notice that the pref-
actor can be interpreted as a frequency, and the exponential factor as a
probability of tunneling through the barrier: for band widths, the tun-
neling is between real turning points, but for gap widths it is tunneling
between complex turning points. The energy dependence of a0 and aD0
is very different in the different spectral regions, and this explains the
difference between the final expressions (2.8, 2.11) for the Mathieu band
and gap widths, even though they come from expressions with a com-
mon form.

5.1 Weak coupling

The leading order terms of the actions are expressed in terms of elliptic
integrals

a0(u) =
√
2

π

∫ u

−1
dy

√
y − u

y2 − 1 = 4

π

(
E

(
1+ u

2

)
−1
2
(1− u)K

(
1+ u

2

))
(5.9)

aD0 (u) = −
√
2

π

∫ 1

u
dy

√
y − u

y2 − 1 = −4i
π

(
E

(
1− u

2

)
−1
2
(1+ u)K

(
1− u

2

))
. (5.10)

These actions are two independent solutions of the second-order Picard-
Fuchs equation:

d2a0
du2

= 1

4(1− u2)
a0(u) (5.11)
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and consequently they satisfy the Wronskian relation

a0(u)
daD0 (u)

du
− aD0 (u)

da0(u)

du
= 2i

π
(5.12)

which simply expresses the Legendre relation [hereK′ denotesK(1−k2),
using the conventions of [11]]:

EK′ + E′K − KK′ = π

2
. (5.13)

The higher-order WKB actions can be obtained by the action of certain
differential operators on a0(u) or aD0 (u), as noted above in (5.4). For
example, the first two next-to-leading order actions calculated from (5.4)
are

a1(u) = 1

48π
(
1−u2)

(
(1−u)K

(
1+u
2

)
+2uE

(
1+u
2

))
(5.14)

a2(u) = − 1

46080π
(
1−u2)3

[
(1−u)(4u3+93u2−60u+75)K

(
1+u
2

)
+2(4u4−153u2−75)E(1+u

2

)]
(5.15)

and similarly for aD1 (u) and a
D
2 (u).

5.1.1 Band center location from Bohr-Sommerfeld at weak coupling The
all-orders Bohr-Sommerfeld expression (5.5) that identifies u with the
center of the band is:

�

2

(
N + 1

2

)
= a(u, �) ≡

∞∑
n=0

�2nan(u). (5.16)

The WKB actions an(u) can be expanded near the bottom of the wells,
u ∼ −1:

a0(u) ∼ u + 1
2

+ (u + 1)2
32

+ 3(u + 1)3
512

+ 25(u + 1)4
16384

+245(u + 1)
5

524288
+ . . . (5.17)

a1(u) ∼ 1

128
+ 5(u + 1)

2048
+ 35(u + 1)2

32768
+ 525(u + 1)3

1048576

+8085(u + 1)
4

33554432
+ . . . (5.18)

a2(u) ∼ 17

262144
+ 721(u + 1)

8388608
+ 10941(u + 1)2

134217728

+141757(u + 1)
3

2147483648
+ 3342339(u + 1)4

68719476736
+ . . . (5.19)
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Inserting these expansions into the all-orders Bohr-Sommerfeld expres-
sion (5.16) we obtain:

N + 1

2
= 2

�

(
a0(u)+ �2a1(u)+ �4a2(u)+ . . .

)
∼ 1

�

(
(u + 1)+ (u + 1)2

16
+ 3(u + 1)3

256
+ 25(u + 1)4

8192

+245(u + 1)
5

262144
+ . . .

)

+2�
(
1

128
+ 5(u + 1)

2048
+ 35(u + 1)2

32768
+ 525(u + 1)3

1048576

+8085(u + 1)
4

33554432
+ . . .

)

+2�3
(

17

262144
+ 721(u + 1)

8388608
+ 10941(u + 1)2

134217728

+141757(u + 1)
3

2147483648
+ 3342339(u + 1)4

68719476736
+ . . .

)
+ . . . (5.20)

This expresses the band label N as a formal series in �, with coefficients
that are functions of the energy u. To compare with perturbation theory,
we invert to write the energy u as a formal series in �, with coefficients
that are functions of the band label N . Doing so, we obtain precisely the
perturbative expansion (2.6). Notice, that in this latter formal series, the
coefficients of the formal series in � are simple polynomials in

(
N + 1

2

)
.

Also recall that this perturbative expansion (2.6) is non-Borel-summable
in this regime where N� � 1.

5.1.2 Band width at weak coupling The exponentially narrow band
widths can be evaluated using the dual actions. In the weak-coupling
region,

u ∼ −1+ 2 a0(u)+ · · · = −1+ �

(
N + 1

2

)
+ . . . (5.21)

π Im[aD0 ] ∼ 4+ 1+ u

2

(
ln

(
1+ u

32

)
− 1
)
+ . . . (5.22)
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Therefore, from (5.7) we obtain the band width estimate (using Stirling’s
formula in the last step):

�uband ∼ 2�

π

(
�
(
N + 1

2

)
32 e

)−(N+ 1
2 )

e−8/�

∼
√
2

π

24(N+1)

N !
(
2

�

)N− 1
2

e−8/� (5.23)

in agreement with (2.8).

5.2 Strong coupling

5.2.1 Gap center location from Bohr-Sommerfeld at strong coupling In
the strong coupling region (i.e. u � 1, or N� � 1) the all-orders Bohr-
Sommerfeld condition (5.5) that identifies u with the center of the gap
reads

�

2
N=a(u,�)≡

∞∑
n=0

�2nan(u) (5.24)

The WKB actions an(u) can be expanded for u�1 as:

a0(u) ∼
√
2u

(
1− 1

16u2
− 15

1024u4
− 105

16384u6
−...

)
(5.25)

a1(u) ∼ − 1

16(2u)5/2

(
1+ 35

32u2
+ 1155

1024u4
+ 75075

65536u6
+...

)
(5.26)

a2(u) ∼ − 1

64(2u)7/2

(
1+ 273

64u2
+ 5005

512u4
+ 2297295

131072u6
+...

)
. (5.27)

Combining these expansions we find

N = 2

�

(
a0(u)+�2a1(u)+�4a2(u)+...

)
∼ 2

√
2u

�

[
1− 1

16u2
− 15

1024u4
− 105

16384u6
− 15015

4194304u8
−...

]
− �

8(2u)5/2

[
1+ 35

32u2
+ 1155

1024u4
+ 75075

65536u6
+ 4849845

4194304u8
+...

]
− �3

32(2u)7/2

[
1+ 273

64u2
+ 5005

512u4
+ 2297295

131072u6
+ 115426311
4194304u8

+...
]

−... (5.28)
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This expresses the band label N as a formal series in �, with coefficients
that are functions of the energy u. To compare with the strong-coupling
expansion, we invert to write the energy u as a formal series in �, with
coefficients that are functions of the band label N . This leads to (here we
have defined the “action” a ≡ N �

2 ):

u ∼
[
a2

2
+ 1

4 a2
+ 5

64

1

a6
+ 9

128

1

a10
+ . . .

]
+�2

[
1

16 a4
+ 21

128

1

a8
+ 55

128

1

a12
+ . . .

]
+ . . . (5.29)

∼ 1

2

(
N�

2

)2
+ 1

4

(
2

N�

)2 1(
1− �2

(N�)2

)

+ 5

64

(
2

N�

)6 (
1+ 7�2

5(N�)2

)
(
1− �2

(N�)2

)3 (
1− 4�2

(N�)2

) + . . . (5.30)

We recognize precisely the strong-coupling expansion (2.10). Thus, the
all-orders-WKB action a(u, �) determines the (convergent) expansion of
the location of the gap high up in the spectrum.

5.2.2 Gap width at strong coupling Despite these expressions (for the
center of the N th gap) being convergent, there are still non-perturbatively
small corrections associated with the narrow gaps high in the spectrum
(see Figure 2.1). Expanding the leading actions in this spectral region we
find

u ∼ 1

2
a20 + · · · = �2

8
N 2 + . . . (5.31)

π Im[aD0 ] ∼
√
2u (ln(8u)− 2)+ . . . (5.32)

Therefore, from (5.8) we obtain the gap width estimate:

�ugap ∼ �2N

2π

( e

�N

)2N
(5.33)

in agreement with (2.11). Thus, the formulas (5.7, 5.8) have the correct
form in both extreme limits, in one case referring to the width of a band,
and in the other to the width of a gap.



280 Gerald V. Dunne and Mithat Ünsal

5.3 Intermediate coupling:
instanton condensation near the barrier top

Near the barrier top, where u ∼ 1, there is a transition from the divergent
perturbative behavior characteristic of the weak coupling region, to the
convergent perturbative expansions characteristic of the strong-coupling
region. As is clear from the plots in Figures 2.1 and 5.1, the transition is
smooth, but connecting the regions requires careful interpretation of the
various expansions. Of particular interest are the different mechanisms
by which non-perturbative terms arise in the different physical regions.
For example, the general expressions for the exponentially narrow width
of a band (5.7) deep in the weak coupling region, and of a gap (5.8) high
in the strong coupling region, are not valid in the region in the vicinity
of the barrier top, because the single-instanton factor exp

[− 2π
� Im a

D
0

]
is

no longer exponentially small. Thus, the explicit expressions (2.8) and
(2.11) are not accurate in this region of the spectrum. Physically, this is
a region of “instanton condensation”. This is of particular interest as it is
a direct analogue of an instanton condensation phenomenon observed in
matrix models and 2d gauge theories [48–52].

Figure 5.1. The bands (shaded) and gaps, as a function of the parameter
Q ≡ 4

�2
, near the barrier top u = 1. The vertical lines denote the values

Q = π2

16

(
N ± 1

4

)2
, where N is the band label, and which agree accurately

with the points at which the band/gap edges intersect the line u = 1. The curved
solid lines show the expressions in (5.41), which gives the gap splitting at the
top of a band, centered at u = 1. This leading expression fits the exact curves
quite well.
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In the spectral region near u ∼ 1:

a0 ∼ 4

π
+ u − 1

2π

[
ln

(
32

u − 1
)
+ 1
]
+ . . . (5.34)

−iaD0 ∼ 1

2
(u − 1)+ . . . (5.35)

The fact that aD0 vanishes at u = 1 implies that the single-instanton ap-
proximations (2.8, 2.11) are no longer good, as the exponentially small
instanton factor exp

[− 2π
� Im a

D
0

]
is now of order 1. The fact that a0(u)

tends to a non-zero constant implies the leading scaling between N and
� in this region:

N + 1

2
∼ 8

π �
(band center at u = 1) (5.36)

N ∼ 8

π �
(gap center at u = 1). (5.37)

We had already expected that the barrier top would be in the vicinity of
N ∼ 1/�, but the behavior a0(u) ∼ 4/π fixes the non-trivial coefficient
to be 8/π . We can now use these estimates (5.36, 5.37) in either the
weak-coupling expansion (2.6) or the strong coupling expansion (2.10)
to obtain two very different looking expressions for the energy at the top
of the barrier:

uweak ∼ −1+ 8

π

[
1− 1

16

8

π
− 1

28

(
8

π

)2
− 5

214

(
8

π

)3
− 33
218

(
8

π

)4
−...

]
+O(�)

= 1+O(�) (5.38)

ustrong ∼ 1

2

[(
4

π

)2
+ 1
2

(π
4

)2+ 5

32

(π
4

)6+ 9

64

(π
4

)10+...]+O(�)

= 1+O(�). (5.39)

It is interesting that these two different expansions agree at u ∼ 1, but
there are corrections ∼ O(�), corresponding to the band and gap widths
in the vicinity of the barrier top.
The estimates in (5.36, 5.37) can be refined further: the edges of the

bands/gaps when u = 1 are given by (see also [69]):

N ± 1

4
∼ 8

π�
(band/gap edge at u = 1) (5.40)
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as shown in Figure 5.1. In this figure, showing the bands (shaded) and
gaps (unshaded), plotted as a function of the parameter Q = 4

�2
that ap-

pears in the Mathieu equation (2.1, 2.2), we see clearly that at one of
these edges, the band and the gap immediately above and below have
equal width. Physically, this is directly related to the fact that the dis-
criminant can be expressed in terms of the reflection and transmission
amplitudes [71], and the fact that at the top of an inverted harmonic bar-
rier the reflection and transmission probabilities are equal, both being
1/2 [72]. Relatively little is known rigorously about the corrections to
this behavior of the band/gap widths in this region, even though in some
sense it is the most interesting region physically [38, 69, 70]. The results
of Weinstein and Keller imply that the small � behavior for the upper
band edges has leading behavior

u ∼ 1± π�

16
+ . . . (5.41)

These lines are shown in Figure 5.1, and we see that they do indeed in-
tersect the upper band edges quite accurately. It would be interesting to
investigate more precisely the band and gap widths in this region.

5.4 Summary of different behaviors of Mathieu spectrum
in different regions

It is worth comparing the form of the expressions for the energy in the
three different spectral regions.

•Weak coupling: N� � 1, deep inside the wells, far below the bar-
rier top. Here the band edge energy eigenvalues u(±)(�, N ) are expressed
as a resurgent trans-series:

u(±)(�, N ) ∼
∞∑
n=0

un(N )�
n

± 32√
π N !

(
32

�

)N−1/2
exp

[
−8

�

] ∞∑
n=0

dn(N )�
n + . . .(5.42)

The first term is the formal perturbative series, upert(�, N ), which is di-
vergent and Borel non-summable. The leading Borel poles occur at the
two-instanton location. The first, one-instanton, exponential correction
in (5.42) gives the leading band width. Furthermore, the expansion co-
efficients un(N ) and dn(N ) are explicitly related: the dn(N ) are fully
determined by the un(N ), as in (1.5, 1.6).

• Strong coupling: N� � 1, far above the barrier top. Here the
gap edges are conventionally written as the convergent expansions (2.9).
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This raises an obvious question: how can such convergent expansions
smoothly connect to the trans-series expansion (5.42) below the barrier
top? In fact [38], one can re-write the expansions (2.9) in the following
suggestive form:

u(±)(�,N )=�2N 2

8

N−1∑
n=0

αn(N )

�4n
±�2

8

(
2
�

)2N
(2N−1(N−1)!)2

N−1∑
n=0

βn(N )

�4n
+... (5.43)

where the coefficient functions αn(N ) and βn(N ) are rational functions
of the gap label N , but have poles at the two-instanton location. Thus
the expansions truncate at n = N . Note that this has a similar form to
the trans-series in (5.42). As N → ∞, the polynomial expansions in 1

�4

extend to infinite series. Remarkably, with this re-arrangement we find
once again that the expansion coefficients αn(N ) and βn(N ) are explicitly
related: the βn(N ) are fully determined by the αn(N ). Thus, the strong-
coupling expansions can also be written in a form that matches the trans-
series structure of the weak-coupling region [67].

• Transition region: intermediate coupling: N� ∼ 8
π
, near the bar-

rier top. This is the instanton condensation region, where the single-
instanton exponential factor becomes of order 1, so that all instanton or-
ders need to be taken into account. Here, relatively little is known pre-
cisely. One concrete statement is that the bands and gaps in this region
have equal width at leading order, and this width is O(�), for example as
in (5.41).

6 Path integral interpretation:
steepest descents and Lefschetz thimbles

We have used WKB techniques in the framework of differential equa-
tions to derive the new result (1.5, 1.6), which relates higher orders of the
non-perturbative trans-series expansion to the perturbative series. But the
result is even more interesting when viewed from the equivalent path in-
tegral language. Here, different instanton sectors correspond to different
saddle points of the path integral, and so we learn that there is a saddle
point expansion of the path integral representation of the quantum resol-
vent, in which the fluctuations about different saddle points are directly
related to one another. In practice, this has been confirmed by the work
of [61] because their diagrammatic computation of the fluctuations about
the one-instanton sector is based on a perturbative expansion of the path
integral about the one-instanton sector. But the fact that this computa-
tion is so technically difficult means that there should be a simpler way
to understand the final result. We propose that this is an example where
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a saddle point expansion in terms of Lefschetz thimbles can be imple-
mented explicitly.
To illustrate the basic idea, we turn back to a zero-dimensional exam-

ple, and recall the results of Berry and Howls [19] concerning an all-
orders steepest descents expansion of an ordinary contour integral. They
considered a contour integral of the form

I (n)(�) =
∫
Cn

dz e−
1
�
f (z) = 1√

1/�
exp

[
−1

�
fn

]
T (n)(�) (6.1)

where the contour Cn follows the steepest descent path through the sad-
dle point zn of the function f (z). The first two factors on the RHS are the
dominant exponential term and the Gaussian fluctuation prefactor. The
remaining factor, T (n)(�), is a formal series in �, and represents all or-
ders of the perturbative fluctuations about this saddle point. Physicists
typically just keep the exponential and the Gaussian prefactor. Berry
and Howls [19] point out that there is a great deal of interesting infor-
mation encoded in the further fluctuations T (n)(�). For example, under
relatively mild assumptions about the function f (z), one can show by
straightforward contour deformation that the fluctuations about different
saddle points are directly related. This is a manifestation of Darboux’s
theorem: the fluctuations about a given point are governed by the nearest
singularity, which here is the nearest (connected) saddle point [19]. This
fact can be expressed as the following integral transform:

T (n)(�) = 1

2π i

∑
m

(−1)γnm
∫ ∞

0

dv

v

e−v

1− �v/(Fnm)
T (m)

(
Fnm
v

)
(6.2)

where the sum is over all other saddles topologically connected to the nth

saddle, and the γnm determine the orientations of the deformed steepest
descent contours. Here Fnm ≡ fm − fn is the difference of the exponents
at the saddle points zm and zn . An immediate consequence of this result
is that if we write the fluctuation about the nth saddle as

T (n)(�) ∼
∞∑
r=0

T (n)
r �r (6.3)

then expanding both sides of (6.2) we find a relation between the fluctu-
ation coefficients around saddle points zn and zm :

T (n)
r ∼ (r − 1)!

2π i

∑
m

(−1)γnm
(Fnm)

r

[
T (m)
0 + Fnm

(r − 1) T
(m)
1

+ (Fnm)
2

(r − 1)(r − 2) T
(m)
2 + . . .

]
, r → ∞. (6.4)
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Notice the universal large-order factorial divergence of fluctuations, and
more importantly notice that this says that fluctuations about neighboring
saddles are explicitly related.
For full details see [19], but here it is more appropriate to illustrate how

this works with some examples. Consider the zero-dimensional “parti-
tion function” for the Mathieu system, writing the periodic potential as
V (z) = sin2(z):

Z(�) =
∫ π/2

−π/2
dz e−

1
�
sin2(z). (6.5)

There are two saddle points: z0 = 0 and z1 = π
2 . It is straightforward to

generate the “perturbative expansion” about the “vacuum” saddle point
at z0 = 0. The expansion coefficients in (6.3) for n = 0 are:

T (0)
r = �

(
r+ 1

2

)2
√
π�(r+1)

∼ (r−1)!√
π

(
1−

1
4

(r−1)+
9
32

(r−1)(r−2)−
75
128

(r−1)(r−2)(r−3)+...
)
.

r→∞ (6.6)

It is also straightforward to generate the fluctuation expansion about the
“non-perturbative saddle” at z1 = π

2 :

T (1)(�) ∼ i
√
π

(
1− 1

4
g2 + 9

32
g4 − 75

128
g6 + . . .

)
. (6.7)

Comparing coefficients, we see that the low-order coefficients of the fluc-
tuations about the non-perturbative saddle z1 govern the large-order be-
havior of the fluctuations about the vacuum saddle z0. Below we consider
a more interesting example where there are three saddles.
This is a general feature of a wide class of ordinary exponential inte-

grals: fluctuations around different saddles are quantitatively related. In
studying path integrals, and especially semiclassical multi-instanton ex-
pansions of path integrals, we often motivate our formal manipulations by
analogy with steepest descents asymptotic analysis of ordinary integrals.
Thus, it is a reasonable question to ask whether or not something like
this could possibly occur for (infinite dimensional!) path integrals. This
leads to the theory of infinite dimensional Morse Theory and Lefschetz
thimbles. Even the generalization from a one-dimensional integral to a
multi-dimensional integral introduces interesting and highly non-trivial
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effects [91–94]. There are many more subtleties in going from finite to
infinite dimensions [95–97].
Instead of delving into this unresolved issue, let us illustrate what hap-

pens when you ask this question about the Mathieu system. Here we
have done the calculation without using the path integral, but we can
re-interpret the results in path integral terms. Specifically, consider the
Schrödinger problem with periodic potential V (x) = sin2(x). The large
order growth of the perturbative expansion coefficients for the ground
state energy is [41]

cn ∼ n!
(
1− 5

2
· 1
n
− 13

8
· 1

n(n − 1) − . . .

)
. (6.8)

This is the large-order growth of the fluctuation about the vacuum sad-
dle point, for the ground state energy. Next, we can inspect the multi-
instanton trans-series expansion for the same physical quantity, the
ground state energy, and look for the fluctuations about the ‘nearest’ sad-
dle point with the same quantum numbers as the perturbative vacuum.
This is the instanton/anti-instanton saddle point, and we find [55]

Im E0 ∼ π e−2
1
2�

(
1− 5

2
· � − 13

8
· �2 − . . .

)
. (6.9)

Notice the correspondence of the factors appearing in these different ex-
pansions, about different saddles. This is very surprising. It means that
to some degree the basic resurgent relation between large-order behavior
of fluctuations about one saddle and low-orders of fluctuations about a
neighboring saddle is indeed inherited by the path integral. (This is not
just a feature of the Mathieu system: a similar relation holds also for the
double-well potential).
To emphasize that this structure could be quite general we consider

a further example that has the interesting feature of having more saddle
points. Let us generalize the zero-dimensional example above, by replac-
ing the periodicMathieu potential V (x) = sin2(x) by the doubly-periodic
elliptic potential of Lamé type [98]:

V (x) = sd2(x |m) , 0 ≤ m ≤ 1 (6.10)

where 0 ≤ m ≤ 1 is the elliptic parameter. Note that this potential in-
terpolates smoothly between the periodic Mathieu case, V (x) = sin2(x),
when m = 0 and the “Sinh-Gordon” potential, V (x) = sinh2(x), when
m = 1. We write the zero dimensional partition function as the trace over
the period:

Z(�|m) = 1√
�π

∫ K

−K
dz e−

1
�
sd2(z|m). (6.11)
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This has the following “perturbative expansion” about the “vacuum sad-
dle” at z = 0.

Z pert(�|m) =
∞∑
n=0

a(0)n (m) �n. (6.12)

For example, at some chosen values of m we have:

Zpert (�|0) = 1+ 1

4
� + 9

32
�2 + 75

128
�3 + 3675

2048
�4 + 59535

8192
�5 + . . .

Zpert (�|1) = 1− 1

4
� + 9

32
�2 − 75

128
�3 + 3675

2048
�4 − 59535

8192
�5 + . . .

Zpert

(
�

∣∣∣∣14
)

= 1+ 1

8
� + 9

64
�2 + 105

512
�3 + 1995

4096
�4 + 48195

32768
�5 + . . .

Zpert

(
�

∣∣∣∣34
)

= 1− 1

8
� + 9

64
�2 − 105

512
�3 + 1995

4096
�4 − 48195

32768
�5 + . . .

Zpert

(
�

∣∣∣∣12
)

= 1+ 0 � + 3

32
�2 + 0 �3 + 315

2048
�4 + 0 �5 + . . . (6.13)

These perturbative expansions are divergent for all m, but are non-alter-
nating for m < 1/2, and alternating for m > 1/2. This latter fact reflects
the duality relation: Z(�|m) = Z(−�|1 − m), which follows from a
property of the Jacobi elliptic function sd.
The “action” function V (z) has two different types of non-trivial sad-

dles, one set along the real axis and another on the imaginary axis. Their
relative distance from the vacuum saddle at z = 0 is governed by the
value of the elliptic parameter m. At the real saddle point z1 = K(m),
we have the action S1 = 1

1−m , while at the imaginary saddle at z2 =
iK(1 − m) we have S2 = − 1

m . These two different saddles can be seen
in the large-order behavior of the perturbative fluctuation coefficients.
Numerically, by studying the large-order behavior of the expansion coef-
fiicents about z0 = 0, one finds [98]

a(0)n (m) ∼ (n − 1)!
π

(
Sn+1/21 (m)+ (−1)n|S2|n+1/2(m)

)
(6.14)

For m < 1
2 , S1 dominates and the a

(0)
n (m) are non-alternating in sign. For

m > 1
2 , S2 dominates and the a

(0)
n (m) alternate in sign. Form = 1

2 , S1 and
S2 are equal in magnitude, and the odd terms vanish due to interference
cancellations. Thus both the real and complex saddles influence the large-
order growth of the fluctuations about the trivial vacuum saddle at z0 = 0.
This is an explicit example of the sum of neighboring saddles in (6.4).
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Actually, this relation can be made even more precise [98], noting that
the fluctuations about the saddles z1 = K(m) and z2 = iK(1−m) can be
written as

Z (1) (�|m) = i e−S1/�
∞∑
n=0

a(1)n (m)�n (6.15)

Z (2) (�|m) = i e−S2/�
∞∑
n=0

a(2)n (m)�n (6.16)

and one finds an exact resurgence relation:

Z (0) (�|m) = 2

2π i

∑
k∈{1,2}

∫ ∞

0

dv

v

1

1− � v
Z (k)(v|m) (6.17)

and an exact relation between the expansion coefficients a(k)n :

a(0)n (m) =
∑
j=0

(n − j − 1)!
π

(
a(1)j (m)

S n− j
1

+ a(2)j (m)

S n− j
2

)
. (6.18)

Now we can ask again how much of this resurgent structure is inherited
by the path integral version of this problem. The partition function is
now an infinite dimensional functional integral:

Z(�|m) =
∫

Dx e−S[x] =
∫

Dx e−
∫
dτ
(
1
4 ẋ
2+ 1

�
sd2(

√
�x |m)

)
. (6.19)

As before for the Mathieu case, we illustrate our point using the simplest
observable, the perturbative ground state energy, for which we find per-
turbative expansions as functions of m. For several selected values of m
the first few terms are:

E (0) (�|0) = 1− 1

4
� − 1

16
�2 − 3

64
�3 − 53

1024
�4 − 297

4096
�5 − . . .

E (0)(�|1) = 1+ 1

4
� − 1

16
�2 + 3

64
�3 − 53

1024
�4 + 297

4096
�5 − . . .

E (0)

(
�

∣∣∣∣14
)

= 1− 1

8
� − 11

128
�2 − 3

128
�3 − 889

32768
�4 − 225

8192
�5 − . . .

E (0)

(
�

∣∣∣∣34
)

= 1+ 1

8
� − 11

128
�2 + 3

128
�3 − 889

32768
�4 + 225

8192
�5 − . . .

E (0)

(
�

∣∣∣∣12
)

= 1+ 0 � − 3

32
�2 + 0 �3 − 39

2048
�4 + 0 �5 − . . . (6.20)
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These expansions are remarkably similar to the zero dimensional expan-
sions of the zero dimensional partition function in (6.13). For example,
we again observe the duality relation: E (0)(�|m) = E (0)(−�|1−m), and
the perturbative expansions are non-alternating form < 1

2 , but alternating
for m > 1

2 .
The Lamé potential is doubly periodic, in the complex plane. This

means that there are two types of instantons: real instantons and complex
“ghost” instantons. The real instantons tunnel between minima of the
potential along the real axis, while the complex instantons tunnel between
saddles along the imaginary axis. The associated classical actions are:

SI(m) = 2 arcsin(
√
m)√

m(1− m)
(6.21)

SG(m) = −2 arcsin(√1− m)√
m(1− m)

. (6.22)

Then one can study the large order growth of the perturbative expansion
coefficients for the ground state energy and one finds that both the real
and complex instantons contribute to this large-order behavior [98]:

an(m) ∼ −16
π
n!
(

1

(SII(m))
n+1 −

(−1)n+1
|SGG(m)|n+1

)
. (6.23)

This is remarkable. It means that the complex instantons directly affect
perturbation theory, even though they are not in the original path integral
measure, which is a sum over all real paths. The close resemblance to
the resurgent structure of the zero-dimensional analogue system [see Eq.
(6.14)] strongly suggests once more that analytic continuation of path
integrals may inherit resurgent structure.
Thus we would be tempted to define a path integral by its resurgent

thimble expansion:∫
DA e−

1
�
S[A] =

∑
thimbles k

Nk e
− i

�
Simag[Ak ]

∫
�k

DA e−
1
�
Sreal[A] (6.24)

where the sum over Lefschetz thimbles is the analogue of the sum over
steepest descent contours, but now is a sum over functional steepest de-
scents contours, or thimbles. This type of expansion is purely formal, but
the previous two examples illustrate that there is some truth to it. We take
this as motivation to formalize such expansions more rigorously.
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7 Conclusion

In these lectures we have reviewed a number of different approaches
to the general question of resurgent asymptotic expansions for spectral
problems, using the Mathieu equation as a concrete example. We have
found several interesting new facts, which we believe motivate a more
rigorous mathematical analysis of these problems. We hope we have
convinced the reader, both physicist and mathematician alike, that there
are some interesting new features still lurking in this very old problem,
waiting to be made more precise. One of the main conclusions is that
there is more structure when one considers the eigenvalue u as a func-
tion of two variables, both the level/band/gap label N as well as the cou-
pling �. This has surprisingly close analogies with “large-N” methods
in physics [53]. This also motivates the problem of understanding bet-
ter the mathematical properties of trans-series of more than one variable.
The path integral interpretation of these results, and the close relation to
multi-instanton calculus for quantum field theories (both supersymmet-
ric and non-supersymmetric), encourages us to reconsider more seriously
the question of defining an all-orders steepest descents expansion of path
integrals. Some initial work along these lines has appeared recently [99].
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[22] E. DELABAERE, H. DILLINGER and F. PHAM, Exact semiclassi-
cal expansions for one-dimensional quantum oscillators, J. Math.
Phys. 38 (1997), 6126; E. DELABAERE and F. PHAM, Resurgent
methods in semi-classical asymptotics, Ann. de l’I. H. Poincare, A
71 (1999), 1.

[23] T. AOKI, T. KAWAI and Y. TAKEI, Algebraic analysis of singu-
lar perturbations: On exact WKB analysis, RIMS-947; T. KAWAI
and Y. TAKEI, Secular equations through the exact WKB analysis,
RIMS, Kyoto University, 1991.

[24] C. J. HOWLS, T. KAWAI and Y. TAKEI (eds.), “Towards the Exact
WKB Analysis of Differential Equations, Linear or Non-Linear”,
Kyoto University Press, 1999.

[25] O. COSTIN, Exponential asymptotics, transseries, and generalized
Borel summation for analytic rank one systems of ODE’s, IMRN
8, (1995); O. COSTIN and M. D. KRUSKAL, Optimal uniform
estimates and rigorous asymptotics beyond all orders for a class
of ODE’s, Proc. Roy. Soc. Lond. 452 (1996); O. COSTIN and M.
D. KRUSKAL, On optimal truncation of divergent series solutions
of nonlinear differential systems; Berry smoothing, Proc. R. Soc.
Lond. A 455 (1999), 1931-1956.

[26] M. MARINO, R. SCHIAPPA and M. WEISS, Nonperturbative ef-
fects and the large-order behavior of matrix models and topologi-
cal strings, Commun. Num. Theor. Phys. 2 (2008), 349–419,

[27] M. MARINO, R. SCHIAPPA and M. WEISS,Multi-instantons and
multi-cuts, J. Math. Phys. 50 (2009), 052301.

[28] S. PASQUETTI and R. SCHIAPPA, Borel and Stokes nonperturba-
tive phenomena in topological string theory and c=1 matrix mod-
els, Annales Henri Poincaré 11 (2010), 351.
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[37] R. COUSO-SANTAMARÍA, R. SCHIAPPA and R. VAZ, Finite N
from resurgent large N, Annals Phys. 356 (2015), 1, [1501.01007
[hep-th]].
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Renormalised conical zeta values

Li Guo, Sylvie Paycha and Bin Zhang

Abstract. Conical zeta values associated with rational convex polyhedral cones
generalise multiple zeta values. We renormalise conical zeta values at poles by
means of a generalisation of Connes and Kreimer’s Algebraic Birkhoff Factorisa-
tion. This paper serves as a motivation for and an application of this generalised
renormalisation scheme. The latter also yields an Euler-Maclaurin formula on ra-
tional convex polyhedral lattice cones which relates exponential sums to exponen-
tial integrals. When restricted to Chen cones, it reduces to Connes and Kreimer’s
Algebraic Birkhoff Factorisation for maps with values in the algebra of ordinary
meromorphic functions in one variable.

1 Introduction

Multiple zeta values (MZVs) are special values of the multiple zeta func-
tion at integral arguments. Their study which has been very active for
over two decades arose interest from both mathematics and physics. At
arguments where the multiple zeta functions are divergent, renormali-
sation methods borrowed from quantum field theory have been adapted
to extract information from the divergence, including the stuffle and/or
shuffle relations known to be satisfied by convergent MZVs. See for ex-
ample [4,10,14,16]. MZVs were generalised by Terasoma [15] to conical
zeta values (CZVs) which were studied in [6,12,15,17,18] in the contexts
of cyclotomic multiple zeta values and Witten multiple zeta values.
To a rational convex polyhedral cone C ⊂ Rk and the interior Co of C ,

one assigns the conical zeta value (CZV)1

ζ(C; <s) := ζ o(C; <s) :=
∑

(n1,··· ,nk)∈Co∩Zk

n−s11 · · · n−skk

1 This definition differs from Terasoma’s in [15] by the fact that we do not take linear combinations
amongst the ni ’s, however it can easily be shown that the two definitions generate the same sets of
CZVs.

This work is supported by the National Natural Science Foundation of China (Grant No. 11071176,
11221101 and 11371178) and the National Science Foundation of US (Grant No. DMS 1001855).
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at <s = (s1, · · · , sk) ∈ Zk if the series is convergent. Here the stuffle and
shuffle relations ofMZVs are replaced by the open and closed subdivision
properties discussed in [6]. We investigate divergent CZVs along the
lines of the renormalisation methods implemented in previous works to
study divergent MZVs.
More precisely, the purpose of this paper is threefold, we

(a) regularise the corresponding divergent expressions at si≤0 by means
of a Laplace-type regularisation:

(ε1, · · · , εk)  −→
∑

(n1,··· ,nk)∈Co∩Zk

eε1n1+···+εknk

ns11 · · · nskk
;

(b) justify the need for a multivariate regularisation, the usual single vari-
able regularisation (εi = λiε) being too restrictive to be implemented
on all cones;

(c) compare the multivariate and univariate approach for Chen cones,
where the CZVs amount to MZVs.

A natural idea is to apply Connes and Kreimer’s Algebraic Birkhoff Fac-
torisation [2], see also [13]. One of the main ingredients needed for such
a factorisation is a coalgebra structure on the source space - here the space
of lattice cones - of the maps to be renormalised. In [8] we showed that
the space of lattice cones carries a cograded, coaugmented, connnected
coalgebra structure; in the present paper, we show that this coalgebra can
be enlarged to a differential coalgebra structure (Theorem 3.5).
Due to the geometric nature of convex cones, which is reflected in

the specific coproduct built on the corresponding space of lattice cones,
one cannot implement a univariate regularisation, namely one depending
on a single parameter ε, as Connes and Kreimer did in their Algebraic
Birkhoff Factorisation on Feynman graphs. The coproduct we use in-
volves transverse cones built by means of an orthogonal projection, so we
need a regularisation procedure which can be implemented for all cones
under consideration, as well as their faces, together with the transverse
cones to their faces. For a small enough family of lattice cones, such as
the family of lattice Chen cones (see Equation 3.3), their faces and the
transverse lattice cones to their faces, one can use a univaluate regulari-
sation, in which case the regularised maps take values in Laurent series.
Connes and Kreimer’s Algebraic Birkhoff Factorisation can then be ap-
plied to the coalgebra of lattice cones modulo a minor adjustment due to
the absence of a product on the space of such cones. However, to deal
with general convex cones and the transverse cones to their faces, we
need (Remark 4.1) a multivariate regularisation (Equation (5.1)) which
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involves a vector parameter <ε = (ε1, · · · , εk) ∈ Ck . The regularised
maps we build this way take values in the space of multivariate meromor-
phic germs at zero with linear poles (Proposition-Definition 5.4), which
we investigated in [7].
Specifically, to renormalise divergent CZVs associated to lattice cones

(C,$), we implement a generalisation (Theorem 2.5) of Connes and
Kreimer’s Algebraic Birkhoff Factorisation device [2] to the map on the
coalgebra of lattice cones defined by an exponential sum S(C,$) on the
lattice cones (C,$). The generalised Algebraic Birkhoff Factorisation
carried out in [8] applies to maps with a

• source space that is not any longer a Hopf algebra needed to handle
exponential sums acting on the colagebra of lattice cones, which is
only equipped with a partial product,

• target space that is not any longer a Rota-Baxter algebra required to
handle exponential sums with values in the algebra of multivariate
meromorphic functions.

In the present paper, we further generalise the coalgebra of cones on
which we implement the Algebraic Birkhoff Factorisation equipping it
with an additional differential structures. Indeed, in view of renormalis-
ing CZVs, not only do we need to renormalise the exponential sums but
also their derivatives with respect to the regularisation parameter. Hence
the need for an additional differential structure which comes with a dec-
oration <s leading to decorated (open) lattice cones ((C,$); <s) (compare
with Definition 2.8 in [6]).
This renormalisation procedure (Theorem 5.7) implemented on the

exponential sums S((C,$); <s) associated with decorated lattice cones
((C,$); <s) implies an Euler-Maclaurin formula (Equation 6.1) on lattice
cones [8] which relates exponential sums to the corresponding exponen-
tial integrals. The renormalised CZV ζ ren ((C,$), <s) associated with a
decorated lattice cone ((C,$); <s) are derived (Equation (4.2)) from the
factors entering the factorisation formula of the associated exponential
sum S((C,$); <s).
On the smaller coalgebra of lattice Chen cones, the multivariate reg-

ularisation procedure implemented on the algebra of all convex lattice
cones, can be reduced to a univariate regularisation procedure by specify-
ing one direction of regularisation <ε := <a ε for some fixed vector <a. Then
(Proposition 6.2) our renormalisation procedure amounts to the usual Al-
gebraic Birkhoff Factorisation on the maps given by the exponential sums
on the lattice cones, with values in Laurent series, thus independent of the
choice of the direction <a. As a by-product, our geometric renormalisa-
tion procedure therefore yields renormalised MZVs at negative integers
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as the special case of renormalised CZVs associated with lattice Chen
cones. However, these renormalised MZVs do not satisfy the stuffle rela-
tions [9] due to the use of the coproduct on Chen cones which involves an
orthogonal complement map. Thus, the renormalised MZVs we obtain
here by a geometric approach as particular instances of CZVs differ from
the ones derived in [14] and [10] by an alternative algebro-combinatorial
approach. As observed in [8], the renormalised CZVs derived here by
means of a multivariate Algebraic Birkhoff Factorisation, can alterna-
tively be derived directly from the derivatives of the exponential sums
on cones by means of the projection onto the holomorphic part of the
meromorphic germs they give rise to. In this respect, the multivariate
parametrisation approach – imposed here by the geometric nature of the
cones – bares over the univaluate one, the advantage that renormalisation
then amounts to a projection on the target space of multivariate mero-
morphic germs without the need for an Algebraic Birkhoff Factorisation.
So, not only is the multivariate approach necessary when dealing with the
space of all cones, but it is also very useful in so far as it suggests a pos-
sible way to circumvent the use of an Algebraic Birkhoff Factorisation.

2 Generalised Algebraic Birkhoff Factorisation

Let us first recall the Algebraic Birkhoff Factorisation of Connes and
Kreimer’s renormalisation scheme [2], which we shall then generalise in
order to later renormalise divergent CZVs.

Theorem 2.1. Let H be a commutative connected graded Hopf algebra
and (R, P) be a Rota-Baxter algebra of weight −1, ϕ : H → R be an
algebra homomorphism.

(a) There are algebra homomorphisms ϕ− : H → k + P(R) and ϕ+ :
H → k+ (id− P)(R) such that

ϕ = ϕ
∗ (−1)
− ∗ ϕ+. (2.1)

Here ϕ∗ (−1)
− is the inverse of ϕ− with respect to the convolution prod-

uct.
(b) If P is idempotent: P2 = P, then the decomposition in (a) is unique.

It is easy to see that P is a Rota-Baxter operator of weight −1 if and
only if id − P is and P is idempotent if and only if id − P is. Thus by
exchanging P and id−P , we obtain a variation of the Algebraic Birkhoff
Factorisation in Theorem 2.1 [3]:

ϕ = ϕ̃
∗(−1)
+ ∗ ϕ̃−, (2.2)

where ϕ̃+ : H → k+ (id− P)(R) and ϕ̃− : H → k+ P(R).
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On the one hand, in [8], we generalised the Algebraic Birkhoff Factori-
sation of Connes-Kreimer’s renormalisation scheme for connected coal-
gebras without the need for either a Hopf algebra in the source or a Rota-
Baxter algebra in the target. On the other hand, we provided the following
differential variant in [11].

Theorem 2.2. If (H, d) is in addition a differential Hopf algebra
(R, P, ∂) is a commutative differential Rota-Baxter algebra, and ϕ is a
differential algebra homomorphism, then ϕ− and ϕ+ are also differential
algebra homomorphisms.

In order to explore the structure of renormalised CZVs, we combine
these two generalisations.

Definition 2.3. A differential cograded, coaugmented, connect-
ed coalgebra is a cograded, coaugmented, connected coalgebra

(
C =⊕

n≥0
C(n),�, ε, u

)
with linear maps δσ : C → C for σ in an index set &

such that
�δσ = (id⊗ δσ + δσ ⊗ id)�,
δσ (C(n)) ⊆ C(n+1),
δσ δτ = δτ δσ ,

σ, τ ∈ &.

(2.3)

The linear maps δσ , σ ∈ &, are called coderivations on C.

It follows from the definition that δσ stablises ker ε. Recall the counit
property of ε for �:

β� = (ε ⊗ id)�, βr = (id⊗ ε)�, (2.4)

where

β� : C→ k⊗ C, x  → 1⊗ x, βr : C→ C⊗ k, x  → x ⊗ 1,
with

β−1
� : k⊗ C→ C, a ⊗ x  → ax, β−1

r : C⊗ k→ C, x ⊗ a  → ax .

Lemma 2.4. For a differential cograded, coaugmented, connnected
coalgebra (C,�, ε, u) with coderivations δσ , σ ∈&, we have εδσ =0.
Proof. Apply ε ⊗ ε to the two sides of the identity �δσ = (id ⊗ δσ +
δσ ⊗ id)�. By the counit property in Equation (2.4), on the left hand side
we have

(ε ⊗ ε)�δσ =(ε ⊗ id)(id⊗ ε)�δσ =(ε ⊗ id)βrδσ =(εδσ ⊗ id)βr .
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Similarly on the right hand side we have

(ε ⊗ ε)(id⊗ δσ + δσ ⊗ id)� = (ε ⊗ εδσ )�+ (εδσ ⊗ ε)�

= (1⊗ εδσ )β� + (εδσ ⊗ 1)βr .
Thus we obtain (1⊗ εδσ )β� = 0. Hence εδσ = 0.

As we shall argue later on, the renormalisation of CZVs requires the
following generalised version of the Algebraic Birkhoff Factorisation and
its differential variant to connected coalgebras in the source space, which
are not necessarily Hopf algebras, and algebras in the target space which
are not necessarily Rota-Baxter algebras. Further, we will generalise the
the variation of Algebraic Birkhoff Factorisation in Equation (2.2) in or-
der to derive the Euler-Maclaurin formula in Section 5.2.

Theorem 2.5. Let C = ⊕
n≥0C

(n) be a differential cograded, coaug-
mented, connnected coalgebra with coderivations δσ , σ ∈ & . Let A be a
unitary differential algebra with derivations ∂σ , σ ∈ &. Let A = A1⊕A2
be a linear decomposition such that 1A ∈ A1 and

∂σ (Ai) ⊆ Ai , i = 1, 2, σ ∈ &.

Let P be the projection of A to A1 along A2 and the set G(C, A) of linear
maps ϕ : C → A such that ϕ(I) = 1A where I = u(1). Given ϕ ∈
G(C, A) such that ∂σϕ = ϕδσ , σ ∈ &, define maps ϕi ∈ G(C, A), i =
1, 2, by the following recursive formulae on ker ε:

ϕ1(x) = −P
(
ϕ(x)+

∑
(x)

ϕ1(x
′)ϕ(x ′′)

)
, (2.5)

ϕ2(x) = (idA − P)
(
ϕ(x)+

∑
(x)

ϕ1(x
′)ϕ(x ′′)

)
. (2.6)

Here
∑

(x) x
′ ⊗ x ′′ := �(x)− | ⊗ x − x ⊗ | is the reduced coproduct.

(a) We have ϕi(ker ε) ⊆ Ai (hence ϕi : C→ k1A + Ai with ϕi(I) = 1A)
and δσϕi = ϕiδσ , i = 1, 2, σ ∈ &. Moreover,

ϕ = ϕ
∗(−1)
1 ∗ ϕ2 (2.7)

(b) ϕ1 and ϕ2 are are the unique maps in G(C, A) such that ϕi(ker ε) ⊆
Ai for i = 1, 2, and Equation (2.7) holds.

(c) If moreover A1 is a subalgebra of A then ϕ
∗(−1)
1 lies in G(C, A1).
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Remark 2.6.

• With the notations of Theorem 2.1, we observe that Equation (2.7)
with ϕ1 = ϕ− yields Equation (2.1) usually seen in the literature
whereas setting ϕ1 = ϕ+ amounts to Equation (2.2), which we will
apply in Section 5.2.

• When the coderivations δσ and derivations ∂σ , σ ∈ &, are taken to be
the zero maps, we obtain the generalisation [8, Theorem 4.4] of the
Algebraic Birkhoff Factorisation of Connes and Kreimer [2] which
does not involve the differential structure, for maps from a connected
coalgebra (which is not necessarily equipped with a product) to a de-
composable unitary algebra (which does not necessarily decompose
into a sum of two subalgebras). This also generalises the differential
Algebraic Birkhoff Factorisation in [11].

Proof. The proof follows the same argument as the one for [8, Theo-
rem 4.4] and will be omitted.

3 A differential coalgebraic structure on lattice cones

We now apply the general setup in the last section to lattice cones.

3.1 Lattice cones

We begin with recalling the notion and basic properties of lattice cones.
See [8] for details. In a finite dimensional real vector space, a lattice is a
finitely generated subgroup which spans the whole space over R. Such a
pair, namely a real vector space equipped with a lattice is called a lattice
vector space. Let V1 ⊂ V2 ⊂ · · · be a family of finite dimensional real
vector spaces, and let$k be a lattice in Vk such that$k = $k+1∩Vk . The
vector space V :=⋃∞

k=1 Vk and the corresponding lattice $ :=⋃∞
k=1$k

are equipped with their natural filtration. Such a pair (V,$) is called a
filtered lattice space. Usually we work in (R∞,Z∞) with Vk = Rk , $k

the standard lattice Zk , and {e1, e2, · · · } the standard basis.
For a filtered lattice space (V,$), a point/vector in$ is called a lattice

point/vector, a rational multiple of an integer point/vector is called a
rational lattice point/vector.
For a subset S of V , let lin(S) denote its R-linear span. In this paper,

we only consider subspaces of V spanned by rational lattice vectors.
Let V := ∪k≥1Vk with $ = ∪k≥1$k be a filtered lattice space. An

inner product Q(·, ·) = (·, ·) on V is a sequence of inner products

Qk(·, ·) = (·, ·)k : Vk ⊗ Vk → R, k ≥ 1,
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that is compatible with the inclusion jk : Vk ↪→ Vk+1 and whose restric-
tion to $⊗ Q and hence $ takes values in Q. A filtered lattice space to-
gether with an inner product is called a filtered lattice Euclidean space.
Let L be a subspace of Vk . Set

L⊥Q
k := {v ∈ Vk | Qk(v, u) = 0 for all u ∈ L} .

The inner product Qk gives the direct sum decomposition Vk = L⊕ L⊥Q
k

and hence the orthogonal projection

π
Q
k,L⊥ : Vk → L⊥Q

k (3.1)

along L as well as an isomorphism

ι
Q
k,L : Vk/L → L⊥Q

k .

Also, the induced isomorphism Q∗
k : Vk → V ∗

k yields an embedding
V ∗
k ↪→ V ∗

k+1. We refer to the direct limit V
� := ⋃∞

k=1 V
∗
k = lim−→ V ∗

k

as the filtered dual space of V . We henceforth take Vk = Rk and fix
an inner product Q(·, ·) = (·, ·) on V� dropping the superscript Q to
simplify notations.
We collect basic definitions and facts on lattice cones that will be used

in this paper, see [6] for a detailed discussion.

(a) By a cone in Vk we mean a closed convex (polyhedral) cone in Vk ,
namely the convex set

〈v1, · · · , vn〉 := R{v1, · · · , vn} = R≥0v1 + · · · + R≥0vn, (3.2)

where vi ∈ Vk , i = 1, · · · , n.
(b) A cone is called rational if the vi ’s in Equation (3.2) are in $k . This

is equivalent to requiring that the vectors are in $k ⊗ Q.
(c) A subdivision of a cone C is a set C = {C1, · · · ,Cr } of cones such

that

(i) C = ∪ri=1Ci ,
(ii) C1, · · · ,Cr have the same dimension as C , and
(iii) C1, · · · ,Cr intersect along their faces, i.e. , Ci ∩ C j is a face of

both Ci and C j .

We will use Fo(C) denote the set of faces of C1, · · · ,Cr that are not
contained in any proper face of C .

(d) A lattice cone in Vk is a pair (C,$C) with C a cone in Vk and $C a
lattice in lin(C) generated by rational vectors.
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(e) A face of a lattice cone (C,$C) is the lattice cone (F,$F) where F
is a face of C and $F := $C ∩ lin(F).

(f) A primary generating set of a lattice cone (C,$C) is a generating
set {v1, · · · , vn} of C such that
(i) vi ∈ $C , i = 1, · · · , n,
(ii) there is no real number ri ∈ (0, 1) such that rivi lies in$C , and
(iii) none of the generating vectors vi is a positive linear combina-

tion of the others.

(g) A lattice cone (C,$C) is called strongly convex (resp. simplicial) if
C is. A lattice cone (C,$C) is called smooth if the additive monoid
$C ∩ C has a monoid basis. In other words, there are linearly in-
dependent rational lattice vectors v1, · · · , v� such that $C ∩ C =
Z≥0{v1, · · · , v�}.

(h) A Chen cone is a smooth cone in R∞ of the form

CChenk := 〈e1, e1 + e2, · · · , e1 + · · · + ek〉. (3.3)

Note that the faces of a Chen cone 〈e1, e1 + e2, · · · , e1 + · · · + ek〉
are of the form 〈e1 + · · · + ei1, e1 + · · · + ei2, · · · , e1 + · · · + eil 〉 for
some indices 1 ≤ i1 < · · · < il ≤ k, so they are not Chen cones in
general.

(i) A subdivision of a lattice cone (C,$C) is a set of lattice cones
{(Ci ,$Ci ) | 1 ≤ i ≤ r} such that {Ci | 1 ≤ i ≤ r} is a subdivision of
C and $Ci = $C for all 1 ≤ i ≤ r .

(j) Let F be a face of a cone C ⊆ Vk . The transverse cone t (C, F) to
F is the projection πk,F⊥(C) of C in lin(F)⊥ ⊆ Vk , where πk,F⊥ =
πk,lin(F)⊥ .

(k) Let (F,$F) be a face of the lattice cone (C,$C). The transverse
lattice cone (t (C, F),$t (C,F)) along the face (F,$F) is the projec-
tion of (C,$C) on lin(F)⊥ ⊆ Vk . More precisely,

(t (C, F),$t (C,F)) := (πk,F⊥(C), πk,F⊥($C)). (3.4)

We also use the notation t ((C,$C), (F,$F)) to denote the trans-
verse lattice cone.

As in the case of ordinary cones, we have the following property which
will later be used to extend by linearity the exponential sum from smooth
lattice cones to any lattice cone, it generalises known results for ordinary
cones, see, e.g. [5, Example 2, page 48].

Proposition 3.1. Any lattice cone can be subdivided into smooth lattice
cones.
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Proposition 3.2. [8] Transverse cones enjoy the following properties.
Let F be a face of a cone C.

(a) (Transitivity) t (C, F) = t
(
t (C, F ′), t (F, F ′)

)
if F ′ is a face of F.

(b) (Compatibility with the partial order) We have {H @ t (C, F)} =
{t (G, F) | F @ G @ C}.

(c) (Compatibility with the dimension filtration) dim(C) = dim(F)+
dim (t (C, F)) for any face F of C.

To the first two properties, there are corresponding properties for lattice
cones:

(d) (Transitivity) t ((C,$C), (F,$F)) = t
(
t
(
(C,$C), (F ′,$F ′)

)
,

t
(
(F,$F), (F ′,$F ′)

))
if (F ′,$F ′) is a face of (F,$F).

(e) (Compatibility with the partial order) We have

{(H,$H ) @t ((C,$C),(F,$F))}
={(t ((G,$G),(F,$F))|(F,$F)@(G,$G)@(C,$C)}.

3.2 The coalgebra of lattice cones

Let Ck denote the set of lattice cones in Vk , k ≥ 1. The natural in-
clusions Ck → Ck+1 induced by the natural inclusions Vk → Vk+1,
$k → $k+1, k ≥ 1, give rise to the direct limit C = lim−→ Ck = ∪k≥1Ck .
We equip the Q-linear space QC generated by C with a coproduct by

means of transverse lattice cones [8]. The maps

� : QC −→ QC ⊗ QC,

(C,$C)  →
∑
F@C

(t (C, F),$t (C,F))⊗ (F,$C ∩ lin(F)), (3.5)

ε : QC −→ Q, (C,$C)  −→
{
1, C = {0},
0, C �= {0}, (3.6)

and
u : Q → QC, 1  → ({0}, {0}) (3.7)

define a cograded, coaugmented, connnected coalgebra with the grading

QC =
⊕
n≥0

QC(n), (3.8)

where
C(n) := {(C,$C) ∈ C

∣∣ dim C = n
}
, n ≥ 0.
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Corollary 3.3. For a given lattice cone (C,$C), the subspace⊕
F@C

Q(F,$C ∩ lin(F))⊕
⊕

F ′@F@C
Q(t (F, F ′),$t (F,F ′))

of QC is a subcoalgebra of QC.

Now we work in the filtered lattice Euclidean space (R∞,Z∞) with
Vk = Rk , $k the standard lattice Zk , and {e1, e2, · · · } the standard basis.
Let Z∞

≤0 := lim−→ Zk
≤0. For any element <s = (si) ∈ Z∞

≤0, we set |<s| :=∑ |si |.
On the space QDC freely generated by the set

DC := C × Z∞
≤0

of decorated (open) lattice cones, there is a family of linear operators

δi : QDC → QDC, ((C,$C); <s)  → ((C,$C); <s − ei). (3.9)

By an inductive argument on |<s|, we obtain
Lemma 3.4. For (C,$C) ∈ C, k ≥ 1 and <s ∈ Zk

≤0, we have

((C,$C); <s) = δ
−s1
1 · · · δ−skk ((C,$C); <0).

We next extend the coproduct � on QC to a coproduct on QDC, still
denoted by �. We proceed by induction on n := |<s|. For n = 0, we have
<s = <0 and define

�
(
(C,$C); <0

)
=
∑(

(C(1), $C(1) ); <0
)
⊗
(
(C(2), $C(2) ); <0

)
,

using the coproduct �(C,$C) = ∑
(C(1), $C(1) ) ⊗ (C(2), $C(2) ) on QC

define in Equation (3.5).
Assume that the coproduct � has been defined for ((C,$C); <s) with

|<s| = � for � ≥ 0. Consider ((C,$C); <s ) ∈ DCwith <s ∈ Zk
≤0, |<s| = �+1.

Then there is some i such that si ≤ −1 and we define
�((C,$C); <s) = (� δi)((C,$C); <s + ei)

:= (Di �)((C,$C); <s + ei),
(3.10)

where Di = δi ⊗ 1+ 1⊗ δi . Explicitly, we have

�((C,$C); <s ) = D−s1
1 · · · D−sk

k �((C,$C); <0). (3.11)
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The counit ε in Equation (2.4) is trivially extended to a map on QDC for
which we use the same notation

ε : QDC → Q,

ε((C,$C); <s ) =
{
1, ((C,$C); <s) = (({0}, {0}); <0),
0, otherwise.

(3.12)

In particular, ε vanishes on cones of positive dimension. In view of the
canonical embedding C → DC, the unit u defined in Equation (2.4) can
be seen as the map

u : Q → QDC, 1  → (({0}, {0}); 0). (3.13)

Denote

DC(n) := {((C,$C); <s)
∣∣ dim C + |<s| = n

}
, n ≥ 0. (3.14)

Then by definition, we have DC(0) = {(({0}, {0}); 0)} and δi(DC(n)) ⊆
DC(n+1), n ≥ 0.

Theorem 3.5. Let �, ε, u be as defined in Equations. (3.11), (3.12) and
(3.13). Equipped with the grading as in Equation (3.14) and the deriva-
tions in Equation (3.9), the quadruple (QDC,�, ε, u) becomes a differ-
ential cograded, coaugmented, connected coalgebra.

Proof. The first equation in Equation (2.3) is just Equation (3.10). The
other equations follow from the definitions.
We prove the coassociativity by induction on |<s | with the initial case

|<s | = 0 given by the coassociativity of � on QC, where a lattice cone
(C,$C) ∈ C is identified with ((C,$C); <0).
Suppose the coassociativity has been proved for vectors <s ∈ Zk

≤0 with
|<s | = n ≥ 0 and let <s ∈ Zk

≤0 with |<s | = n + 1. Then there is
some index i with si ≤ −1. By the induction hypothesis, we have
(� ⊗ id)�((C,$C); <s + <ei) = (id ⊗ �)�((C,$C); <s + <ei). It follows
that

(�⊗id)�((C,$C);<s)
= (�⊗id)Di�((C,$C);<s+<ei)
= (δi⊗id⊗id+id⊗δi⊗id+id⊗id⊗δi)(�⊗id)�((C,$C);<s+<ei)
= (δi⊗id⊗id+id⊗δi⊗id+id⊗id⊗δi)(id⊗�)�((C,$C);<s+<ei)
= (id⊗�)Di�((C,$C);<s+<ei)
= (id⊗�)�((C,$C);<s).

This proves the coassociativity.
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We also prove the counit property (ε ⊗ id)� = β� by induction on |<s|
with the initial case |<s| = 0 given by the counit property onQC. Suppose
that the property is proved for lattice cones with |<s| = � ≥ 0. Then for
((C,$C); <s) ∈ DC with |<s| = � + 1, there is some 1 ≤ i ≤ k such that
si ≤ −1. Then
(ε⊗id)�((C,$C);<s) = (ε⊗id)(δi⊗id+id⊗δi)�((C,$C);<s+ei)

= (εδi⊗id+ε⊗δi)�((C,$C);<s+ei)
= (ε⊗δi)�((C,$C);<s+ei)
= (id⊗δi)(ε⊗id)�((C,$C);<s+ei)
= (id⊗δi)β�((C,$C);<s+ei)
= β�δi((C,$C);<s+ei)
= β�((C,$C);<s).

This completes the induction. The proof of (id⊗ ε)� = βr is similar.
From the fact that QDC is cograded with the grading in Equation

(3.14), we have
QDC = Qu(1)⊕ ker ε

and QDC(0) = {(({0}, {0}); (0))}. Hence QDC is connected.

Corollary 3.6. Let Ch be the set of lattice Chen cones, their faces and
their transverse lattice cones in (R∞,Z∞) and DCh = Ch × Z∞

≤0 , then
QCh and QDCh are sub-coalgebras of QDC.

4 Renormalisation on Chen cones

We want to renormalise MZVs, so we consider the space QDCh. For
a lattice cone (C,$C) with interior (Co,$C), one way to regularise the
sum ∑

<n∈Co∩$C

1

is to introduce a linear form α on Vk and a parameter ε, and then define

φ(C,$C) :=
∑

<n∈Co∩$C

eα(<n)ε.

Usually, we assume that α is rational, that is α(<n) ∈ Q for all <n ∈ $k .
A problem arises with this regularisation: a necessary condition for

S(C,$C)(ε) to be a Laurent series in ε is ker(α) ∩ Co ∩ $C = {0}, for
otherwise there are infinite many 1’s in the summation.
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Remark 4.1.

(a) For a single lattice cone, it is easy to find such a linear function α, but
problems can arise to find a linear function well suited for a family
of lattice cones. For the family C, it is impossible to find a universal
α; take any v ∈ ker(α), then α vanishes on 〈v〉.

(b) For the family of cones in the first orthant, it is also impossible to
find a universal α. This can be reduced to the two dimensional case.
Any rational vector v in the open upper half plane defines a cone 〈v〉
in the first quadrant or a transverse cone 〈v〉 = t (C, f ) of a face f
of a two dimensional cone C in the first quadrant. Choosing v in
ker(α) implies that α vanishes on 〈v〉. This extends to the closed
upper half-plane since 〈e1〉 is a cone in the first quadrant.

However, it is possible to find such an α for a small enough family, for
example the family Ch.

Proposition 4.2. A linear form α = ∑
aie∗i is negative on all cones in

Ch if and only if ai < ai+1 < 0 for i ∈ N.

Proof. In order to give the proof, we first determine the form of the trans-
verse cones to faces of a Chen cone C := 〈v1, · · · , vk〉, where we have
set vi := e1 + · · · + ei for i ≥ 1. For positive integers p < q, denote
[p, q] := [p, p + 1, · · · , q], and v[p,q] = vp, vp+1, · · · , vq . Then a face
of C is of the form

F = 〈v[ j0,i1],v[ j1,i2], · · · ,v[ jn ,in+1]〉,
0=: i0 ≤ j0 ≤ i1≤ j1 ≤ i2≤ j2 ≤ ·· · ≤ in−1≤ jn ≤ in+1 ≤ jn+1 := k+ 1.

Here p≤q means p + 2 ≤ q. Then the transverse cone is generated by
πF⊥(vm) with i� < m < j�, for 0 ≤ � ≤ n + 1 with i�≤ j� .
First let us compute πF⊥(em) for i� < m < j�, for 0 ≤ � ≤ n + 1 with

i�≤ j�. We know that

(a1) if � = 0, i0≤ j0, then

em= j0−i0−1
j0−i0 (em−e j0)−

1

j0−i0
∑

i0<t< j0,t �=m
(et−e j0)+

1

j0−i0 (v j0);

(a2) if 0 < � < n + 1, i�≤ j�, then

em= j�−i�−1
j�−i� (em−e j�)−

1

j�−i�
∑

i�<t< j�,t �=m
(et−e j�)

+ 1

j�−i� (v j�)−
1

j�−i� (vi�);
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(b) if � = n + 1, in+1≤ jn+1, then

em = em .

For 0 ≤ � < n + 1 and i� < t < j�, there is (et − e j�) ⊥ lin(F). For
� = n + 1 and in+1 < t < jn+1, there is et ⊥ lin(F). Thus for the
projection of em we have

(a) if 0 ≤ � < n + 1, i�≤ j�, i� < m < j�, then

πF⊥(em) = j� − i� − 1
j� − i�

(em − e j�)−
1

j� − i�

∑
i�<t< j�,t �=m

(et − e j�);

(b) if � = n + 1, in+1≤ jn+1, in+1 < m < jn+1, then

πF⊥(em) = em .
Therefore,

(a) if 0 ≤ � < n + 1, i�≤ j�, i� < m < j�, then

πF⊥(vm) = j� − m

j� − i�

∑
i�<t≤m

(et − e j�)−
m − i�
j� − i�

∑
m<t< j�

(et − e j�)

= j� − m

j� − i�

∑
i�<t≤m

et − m − i�
j� − i�

∑
m<t≤ j�

et;

(b) if � = n + 1, in+1≤ jn+1, in+1<m< jn+1, then πF⊥(vm) = ein+1+1 +· · · + em .

We are now ready to prove the proposition, noting that α is negative on
a transverse cone if and only if it is so on its generators πF⊥(vm), i� <
m < j�, 0 ≤ � ≤ n + 1.
Let α be negative on all transverse cones to faces of the cone C =

〈v1, · · · , vk〉, k ≥ 1. Then the transverse cone for the face 〈v1, · · · ,
v̂i , · · · , vk〉 (the cone spanned by v1, · · · , vk except vi ), i = 1, · · · , k−1,
is spanned by 1

2(ei−ei+1), by the above Case (a). Then applying α to this
transverse cone, we have ai < ai+1. Now for the cone 〈v1, · · · , vk−1〉, by
Case (b), the transverse cone is generated by ek , applying α yields ak < 0.
This is what we need.
Conversely, suppose that α =∑ aie∗i satisfies ai < ai+1 < 0. Clearly,

α is negative on C and its faces. It is also negative on πF⊥(vm) in Case
(b). For πF⊥(vm) in Case (a), using the fact

j� − m

j� − i�

∑
i�<t≤m

1 = m − i�
j� − i�

∑
m<t≤ j�

1,

we find α(πF⊥(vm)) < 0. Therefore α is negative on all transverse cones.
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We now fix a linear function α =∑ aie∗i with ai < ai+1 < 0, and for
((C,$C), <s) ∈ DCh, we set

φ((C,$C), <s) =
∑

<n∈$C∩Co

eα(<n)ε

<n<s , (4.1)

where we have set <n<s = ns11 · · · nskk with <n := (n1, · · · , nk) ∈ $C and
<s = (s1, · · · , sk) ∈ Zk

≤0.
Applying the same proof as for Lemma 4.4 in [8], we have

Lemma 4.3. The image φ((C,$C), <s) is a meromorphic function in ε
for any decorated lattice cone ((C,$C), <s) in DCh.

This gives rise to a linear map:

φ : QDCh → C[ε−1, ε]]
to which we can then apply Connes-Kreimer’s renormalisation scheme on
the coalgebra of Chen cones as in Theorem 2.5, without bothering about
the product structure. So, applying the induction formula with (R, P) =
(C[ε−1, ε]],−π+), where π+ is the projection to the holomorphic part,
we have

φ = φ
∗(−1)
− ∗ φ+,

where φ∗(−1)
− is the holomorphic part and φ+ is the polar part. Here φ−

takes values in C[[ε]] and φ+ takes values in C[ε−1].
Let us define renormalised MZVs as

ζ ren((C,$C), <s) := φ
∗(−1)
− ((C,$C), <s)(0). (4.2)

We will see that the renormalised MZVs do not depend on the parameters
ai , a fact which might seem surprising at first glance and that will be
proved in the sequel. An important consequence is that the parameters
can be seen as formal parameters, thus allowing for a regularisation in a
more general situation than the one of Chen cones considered here.

5 Renormalised CZVs

As we previously discussed, it is impossible to find a universal linear
function α which would regularise all lattice cones simultaneously, but
it is possible to find one for the family of Chen cones; in the Chen
cone case, we renormalise along a direction <a := (a1, a2, · · · )ε. Since
the parameter ε can be viewed as a re-scaling of variables, this sug-
gests to replace the parameters <a := (a1, a2, · · · , ak) by the variables
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<ε = ∑
εi e∗i ∈ V ∗, where ε1 := a1ε, ε2 := a2ε, · · · , εk := akε , and to

define

Sok ((C,$C);<s)(<ε):=
∑

<n∈$C∩Co

e〈<n,<ε〉

<n<s =
∑

(n1,···,nk)∈Co∩$C

en1ε1 ···enkεk
ns11 ···nskk

(5.1)

for a strongly convex lattice cone (for example, a simplicial cone)
(C,$C) ∈ C with C ⊂ Rk and where we have set <n<s = ns11 · · · nskk with<n := (n1, · · · , nk) ∈ $C and <s = (s1, · · · , sk) ∈ Zk

≤0.
The sum (5.1) is absolutely convergent on

Č− :=
{
<ε :=

k∑
i=1

εi e
∗
i

∣∣∣ 〈<x, <ε〉 < 0 for all <x ∈ C
}
,

which has dimension k.

Remark 5.1. With our convention that 0s = 1 for s with Re(s) ≤ 0, the
function Sok ((C,$C); <s )(<ε) in the variables <ε =∑ εi e∗i does not depend
on the choice of k ≥ 1 such that C ⊆ Vk and <s ∈ Zk

≤0. Thus we will
suppress the subscript k in the sum.

Choosing the above multivariate regularisation implies that – in con-
trast to Connes and Kreimer’s renormalisation scheme – the range space
is no longer the space of Laurent series. The new target space is a space
of multivariate meromorphic germs discussed in [7] which is not a Rota-
Baxter algebra, thus requiring2 the generalised version of Connes and
Kreimer’s renormalisation scheme corresponding to Theorem 2.5.

5.1 Regularisations

The function So((C,$C), <s) is a very specific type of meromorphic func-
tion, for it has linear poles. We briefly review the relevant definitions, and
refer the reader to [7] for a more detailed discussion.

Definition 5.2. Let k be a positive integer.

(a) A germ of meromorphic functions at 0 on Ck is the quotient of two
holomorphic functions in a neighborhood of 0 inside Ck .

2 As observed in [8], the renormalised CZVs we derive here by means of a multivariate Algebraic
Birkhoff Factorisation, can alternatively be derived directly from the derivatives of the exponential
sums on cones by means of the projection onto the holomorphic part of the meromorphic germs they
give rise to, an alternative renormalisation method which gives rise to the same CZVs.
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(b) A germ of meromorphic functions f (<ε) on Ck is said to have lin-
ear poles at zero with rational coefficients if there exist vectors
L1, · · · , Ln ∈ $k⊗Q (possibly with repetitions) such that f �n

i=1Li
is a holomorphic germ at zero whose Taylor expansion under a basis
of $k has rational coefficients.

(c) We will denote byMQ(Ck) the set of germs of meromorphic func-
tions on Ck with linear poles at zero with rational coefficients. It is a
linear subspace over Q.

Composing with the projection Ck+1 → Ck dual to the inclusion jk :
Ck → Ck+1 then yields the embedding

MQ(C
k) ↪→ MQ(C

k+1),

thus giving rise to the direct limit

MQ(C
∞) := lim−→ MQ(C

k) =
∞⋃
k=1

MQ(C
k).

Fix an inner product Q(·, ·) in (R∞,Z∞), a polar germ is a meromorphic
germ at zero of the form

h(�1, · · · , �m)
Ls11 · · · Lsnn ,

where

(a) h lies inMQ,+(Cm),
(b) �1, · · · , �m, L1, · · · , Ln lie in $k ⊗ Q, with L1, · · · , Ln linearly in-

dependent, such that

Q(�i , L j ) = 0 for all (i, j) ∈ [m] × [n];
(c) s1, · · · , sn are positive integers.
The subspace of MQ(C∞) generated by all polar germs is denoted by
MQ,−(C∞). LetMQ,+(C∞) be the algebra of holomorphic germs.

Proposition 5.3 ([7]). For any given inner product Q(·, ·) on R∞, there
is a direct sum decomposition

MQ(C
∞) = MQ,−(C∞)⊕MQ,+(C∞).

Thus we have the projection map

π+ : MQ(C
∞) → MQ,+(C∞). (5.2)



317 Renormalised conical zeta values

One advantage to work with this multivariate regularisation is that the
target space is stable under partial derivatives, and we thus have a linear
map compatible with coderivatives. The partial derivation

∂i = ∂

∂εi
,

combined with the usual subdivision techniques implemented to define
exponential sums and integrals on cones (see e.g. [1])

Proposition 5.4. For any smooth lattice cone (C,$C), the image
So((C,$C); <s)(<ε) defines an element in MQ(C∞). For a general lat-
tice cone (C,$C), the germ of functions∑

F∈Fo(C)

So((F,$F); <s)

does not depend on the choice of the subdivision C = {(Ci ,$Ci )} of
(C,$C) into smooth lattice cones in Proposition 3.1.

Thanks to Proposition 5.4, we extend (5.1) to any lattice cone setting

So((C,$C); <s) :=
∑

F∈Fo(C)

So((F,$F); <s),

for any subdivision C = {(Ci ,$Ci )} of (C,$C) into smooth lattice
cones.

Proof. We first prove this for a smooth lattice cone (C,$C) with |<s| = 0.
Let C = 〈v1, · · · , vm〉 with {v1, · · · , vm} being a basis of $C . Since an
element <x in C ∩$C can be written in a unique way as

∑m
j=1 n jv j where

n j ∈ Z≥0, we have for <ε =∑m
j=1 ε j e

∗
j ∈ Č−,

So(C,$C)(<ε) :=
m∏
j=1

∑
n j∈Z≥1

en j 〈v j ,<ε〉

=
m∏
j=1

e〈v j ,<ε〉

1− e〈v j ,<ε〉
=

m∏
j=1

eL j (<ε)

1− eL j (<ε) ,
(5.3)

where L j (<ε) = 〈v j , <ε〉. They are holomorphic on Č− and extend to germs
of meromorphic functions on Ck with simple linear poles at L1(<ε) =
0, · · · , Ln(<ε) = 0.

Indeed, from the generating power series x
ex−1 =

∞∑
n=0

Bn
xn

n! of Bernoulli

numbers, we have that 1
1−ex = − 1

x
x

ex−1 is in MQ(C). Then the same
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holds for ex

1−ex = 1
1−ex − 1. Thus for each linear form L on Ck with

rational coefficients, both L
1−eL and

eL

1−eL are inMQ(Ck).
For a smooth lattice cone, the conclusion that So(C,$C)(<ε) lies in

MQ(Ck) follows from Equation (5.3) since MQ(Ck) is closed under
multiplication.
Next for a smooth lattice cone (C,$C) and <s ∈ Zk

≤0. Notice that by
definition, So(C,$C)(<ε) is absolutely convergent on Č−. The same holds
for ∑

<n∈Co∩$C

∂−<s
<ε e〈<n,<ε〉 =

∑
<n∈Co∩$C

<n−<se〈<n,<ε〉,

so that on Č−, we have

∂−<s
<ε So(C,$C)(<ε) =

∑
<n∈Co∩$C

<n−<se〈<n,<ε〉 = So((C,$C); <s)(<ε).

This shows that So((C,$C); <s )(<ε) and Sc((C,$C); <s )(<ε) lie inMQ(Ck).
Now for a general lattice cone (C,$C), suppose C ′ = {C ′

1, · · · ,
C ′
r ′ } is another subdivision of C into smooth lattice cones. Let C ′′ =

{C ′′
1 , · · · , (C ′′

r ′′ } be a common refinement of the two subdivisions into
smooth lattice cones, which exists by Lemma 2.3 in [6]. Then for any
element F ∈ Fo(C), the subdivision C ′′ = {C ′′

1 , · · · ,C ′′
r ′′ } induces a sub-

division DF = {DF
1 , · · · DF

rF } of Fo by some elements of Fo(C ′′). Then
we have

Co =
⋃

F∈Fo(C)

Fo =
⋃

F∈Fo(C)

⋃
G∈Fo(DF )

Go =
⋃

G∈Fo(C ′′)
Go.

Therefore on Č−, we have∑
F∈Fo(C)

So((F,$C ∩ lin(F)); <s ) =
∑

G∈Fo(C ′′)
So((G,$C ∩ lin(G)); <s ).

By the same argument, the above equation holds when C ′′ is replaced by
C ′. This gives what we need.
Noting that faces of a smooth lattice cone are smooth, we know for any

lattice cone (C,$C), So((C,$C); <s)(<ε) ∈ MQ(C∞).

Consequently, we have a linear map

So : QDC → MQ(C
∞), ((C,$C); <s)  → So((C,$C); <s).

By definition, the following conclusion holds.
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Corollary 5.5. Let (C,$C) be a lattice cone and let C={(C1,$C), · · ·,
(Cr ,$C)} be a subdivision of C. Then for <s ∈ Zk

≤0 we have

So((C,$C); <s ) =
∑

F∈Fo(C)

So((F,$C ∩ lin(F)); <s )

inMQ(C∞).

By an analytic continuation argument, we have the following relations
among regularised CZVs.

Proposition 5.6. For the linear map

So : QDC → MQ(C
∞)

and any i ∈ Z>0,
Soδi = ∂i S

o.

That means that for any ((C,$C), <s) in DC, we have

So((C,$C); <s)(<ε) = ∂−<s So(C,$C)(<ε),
where ∂−<s = ∂

−s1
1 · · · ∂−skk .

Proof. For a given <s ∈ Zk
≤0 and a simplicial lattice cone (C,$C) ∈ C

with C ⊂ Rk , by absolute convergence we have

∂i S
o((C,$C); <s)(<ε) = So((C,$C); <s − ei)(<ε) = So(δi((C,$C); <s))(<ε)

for <ε ∈ Č−. Therefore by analytic continuation, inMQ(C∞), we have

∂i S
o((C,$C); <s)(<ε) = So(δi((C,$C); <s))(<ε),

that is,
Soδi = ∂i S

o

for any simplicial lattice cone. Then by definition of So, Soδi = ∂i So

holds in general.

5.2 Renormalisation

When V is equipped with two inner products (which might be taken to
be the same), we can use one to construct the coalgebraQDC from trans-
verse lattice cones introduced in Section 2 and use the other one to con-
struct the decomposition

MQ(C
∞) = MQ,+(C∞)⊕MQ,−(C∞)
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in Proposition 5.3. Since MQ,+(C∞) is a unitary subalgebra, the Al-
gebraic Birkhoff Factorisation in Theorem 2.5 applies, with C = QDC
and

A = MQ(C
∞),

A1 = MQ,+(C∞),
A2 = MQ,−(C∞),
P = π+ : MQ(C

∞) → MQ,+(C∞).

We have chosen A1 to be the holomorphic part since it contains the unit.
See the remark after Theorem 2.5 for this nonorthodox choice of A1. We
consequently obtain the following theorem.

Theorem 5.7 (Algebraic Birkhoff Factorisation for CZVs). For the
linear map

So : QDC → MQ(C
∞),

there exist unique linear maps So1 : QDC → MQ,+(C∞) and So2 :
QDC → Q + MQ,−(C∞), with So1({0}, {0}) = 1, So2({0}, {0}) = 1,
such that

So = (So1)
∗(−1) ∗ So2 . (5.4)

The same theorem applies to the sub-coalgebra QC, which yields a fac-
torisation of So : QC → MQ(C∞), giving rise to two linear maps
So1 : QC → MQ,+(C∞) and So2 : QC → Q + MQ,−(C∞). We can
legitimately use the same notation as in Theorem 5.7 since they corre-
spond to the restriction of the linear maps in Theorem 5.7 as a result of
the uniqueness of the factorisation.
In [8], we identify So2 with the exponential integral and give a formula

for
μo(C,$C) := (So1)

∗(−1)(C,$C)

as follows.

Proposition 5.8. As a linear map on QC, we have

So2 = I,

μo = π+ So.

Here I is the exponential integral on lattice cones [8] defined as follows
on simplicial cones and then extended to any cone by the subdivision
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property. If v1, · · · vk ∈ $C is a set of primary generators of a simpli-
cial cone C , and u1, · · · , uk a basis of $C , for 1 ≤ i ≤ k, let vi =
k∑
j=1

a jiu j , a ji ∈ Z. Define linear functions Li := Lvi :=
k∑
j=1

a ji 〈u j , <ε〉
and let w(C,$C) denote the absolute value of the determinant of the
matrix [ai j ], then

I (C,$C)(<ε) := (−1)kw(C,$C)

L1 · · · Lk . (5.5)

Proposition 5.8 can be generalised to QDC as follows.

Proposition 5.9. For ((C,$C); <s ) ∈ QDC, we have

So1((C,$C); <s ) = ∂−<s So1(C,$C),

So2((C,$C); <s ) = ∂−<s So2(C,$C)
(5.6)

and
μo = π+ So. (5.7)

Proof. By Proposition 5.6 , So are compatible with the coderivations on
QDC and derivations on MQ(C∞). The conclusion then follows from
Theorem 2.5.

For ( (C, $C); <s ) ∈ DC the expressions μo( (C,$C); <s ) =
(So1)

∗(−1)((C,$C); <s ) in the Algebraic Birkhoff Factorisation of So is a
germ of holomorphic functions which we can therefore evaluate at 0.

Definition 5.10. The value

ζ o((C,$C); <s ) := (So1)
∗(−1)((C,$C); <s )(0)

is called the renormalised open CZV of (C,$C) at <s.
In particular, this definition applies to cones in Ch andDCh.

Corollary 5.11. The germs of functions (So1)
∗(−1)(C,$C) are generat-

ing functions of renormalised open CZVs at nonpositive integers. More
precisely, for a lattice cone (C,$C) ∈ C, we have

(So1)
∗(−1)(C,$C)(<ε) =

∞∑
<r∈Zk≥0

ζ o((C,$C);−<r )<ε
<r

<r ! . (5.8)

Proof. By Equation (5.6), we have

∂ <r<ε (S
o
1)

∗(−1)(C,$C)(0)=(So1)∗(−1)((C,$C);−<r )(0)=ζ o((C,$C);−<r ),
as needed.
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6 Comparison of the two renormalisation schemes

So far, we have two approaches to renormalise sums on Chen cones,
which can be related by means of a restriction <ε = <a ε along a direction
<a: the first one by which the Algebraic Birkhoff Factorisation procedure
is implemented after restricting, the second one by which the Algebraic
Birkhoff Factorisation procedure is implemented before restricting.
Under the restriction along a direction <a, the splittings of the target

space in the two approaches differ as it can be seen in the following
counterexample which shows that evaluation E<a along a given direction
<a ε does not commute with the projection π+:

π+ ◦ E<a �= E<a ◦ π+,

where the projection π+ on the left hand side is the one onMQ(C∞) and
the one on the right hand side is onMQ(C).

Counterexample 6.1. Let f (ε1, ε2) := ε1
ε2
, then

π+ ◦ E<a( f ) = a1
a2

�= 0 = E<a ◦ π+( f ).

But surprisingly, these two renormalisation procedures give the same
renormalised values for Chen cones.

Proposition 6.2. For Chen cones, the factorisations obtained by

• first implementing the Algebraic Birkhoff Factorisation on the expo-
nential sum So and then restricting along a direction <aε, and

• first restricting the exponential sum So along a direction <aε and then
implementing the Algebraic Birkhoff Factorisation

coincide.

Proof. We first investigate the first renormalisation procedure. Since the
Algebraic Birkhoff Factorisation applied to the exponential sum So on
cones boils down to the Euler-Maclaurin formula on cones [8], we have
that on QC

So = μo ∗ I, (6.1)

where ∗ is the convolution associated with the coproduct on lattice
cones. For any lattice cone (C,$C), μo(C,$C) is holomorphic and
I (C,$C) is a Q-linear combination of expressions of the form 1

L1···Lm
where L1, . . . , Lm are m linearly independent linear forms on some Vk .
By Proposition 5.9, differentiating yields for any lattice cone (C,$C) and
any <s, a holomorphic function μo((C,$C); <s) and a sum I ((C,$C); <s)
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of expressions of the form c
L
s1
1 ···Lsmm where L1, . . . , Lm are m linearly in-

dependent linear forms on some Vk and s1, · · · , sm non-negative inte-
gers. Now, restricting along the direction <ε = <a ε yields for any lattice
cone (C,$C) and <s, a map μ0((C,$C); <s)|<ε=<a ε in Q[[ε]]. Furthermore,
the restriction I ((C,$C); <s)|<ε=<a ε lies in Q[ε−1]ε−1 if ((C,$C); <s) �=
(({0}, {0}), <0) as a sum of restricted fractions. So if we let

μ̃((C,$C); <s)(ε) = μo((C,$C); <s)(<ε)|<ε=<a ε,

and

Ĩ ((C,$C); <s)(ε) = I ((C,$C); <s)(<ε)|<ε=<a ε,

with φ((C,$C); <s)(ε) = So((C,$C); <s)(<ε)|<ε=<a ε as in (4.1), we have

φ = μ̃ ∗ Ĩ ,

where μ̃((C,$C); <s) ∈ Q[[ε]] and Ĩ ((C,$C); <s) ∈ Q + Q[ε−1]ε−1.
The alternative renormalisation procedure is to implement Algebraic

Birkhoff Factorisation on the restricted map φ, which yields a factorisa-
tion

φ = φ
∗(−1)
− ∗ φ+,

with φ∗(−1)
− ((C,$C); <s) ∈ C[[ε]], and φ+((C,$C); <s) ∈ C[ε−1].

Thus both factorisations are for linear maps between the same spaces.
Now the standard argument of the uniqueness of the Algebraic Birkhoff
Factorisation then shows that the two factorisations coincide.

Corollary 6.3. The renormalisedMZVs do not depend on the parameters
a1, a2, · · · .

Let us illustrate the two approaches on a simple example. To simplify
notations, for k linear forms L1, · · · , Lk , we set

[L1, · · · , Lk] := eL1

1− eL1
eL1+L2

1− eL1+L2
· · · eL1+L2+···+Lk

1− eL1+L2+···+Lk . (6.2)

and
eε

1− eε
= −1

ε
+ h(ε). (6.3)
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Example 6.4. For k = 2 and the Chen cone 〈e1, e1 + e2〉, we have

So(〈e1, e1 + e2〉,$2) = [ε1, ε2],

π+([ε1,ε2]) = π+
((

− 1

ε1
+h(ε1)

)(
− 1

ε1+ε2+h(ε1+ε2)
))

= π+
(
−h(ε1+ε2)

ε1
− h(ε1)

ε1+ε2+h(ε1)h(ε1+ε2)
)

= −h(ε1+ε2)−h(ε2)
ε1

− h(ε1)−h
(
ε1−ε2
2

)
ε1+ε2 +h(ε1)h(ε1+ε2).

So

π+ ([ε1, ε2]) |(a1ε,a2ε) = −h((a1 + a2)ε)− h(a2ε)

a1ε

−
h(a1ε)− h

(
(a1−a2)ε

2

)
(a1 + a2)ε

+ h(a1ε)h((a1 + a2)ε).

Evaluating at ε = 0 yields

ζ(0, 0) = −(a1 + a2)− a2
a1

h′(0)−
a1+a2
2

a1 + a2
h′(0)+ h(0)2

= −3
2
h′(0)+ h(0)2 = 3

8
.

On the other hand, to use formula (4.2) to find φ∗(−1)
− needs more involved

computations. We easily get

φ
∗(−1)
− (〈e1〉,Ze1) = h(a1ε),

and

φ
∗(−1)
− (〈e1 + e2〉,Z(e1 + e2)) = h((a1 + a2)ε).

The reduced coproduct applied to the two dimensional Chen cone reads

�′(〈e1,e1+e2〉,$2)=(〈e2〉,Ze2)⊗(〈e1〉,Ze1)
+
(
〈e1−e2〉,Ze1−e22

)
⊗(〈e1+e2〉,Z(e1+e2)).
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Thus

φ−(〈e1, e1 + e2〉,$2)

= −P
((

− 1

a1ε
+ h(a1ε)

)(
− 1

(a1 + a2)ε
+ h((a1 + a2)ε)

)
+
(
− h(a2ε)

) (
− 1

a1ε
+ h(a1ε)

)
+
(
− h((a1 − a2)ε/2)

) (
− 1

(a1 + a2)ε
+ h((a1 + a2)ε)

))
= h((a1 + a2)ε)− h(a2ε)

a1ε
+ h(a1ε)− h((a1 − a2)ε/2)

(a1 + a2)ε
−h(a1ε)h((a1 + a2)ε)

+h(a2ε)h(a1ε)+ h((a1 − a2)ε/2)h((a1 + a2)ε).

Now by the equation

φ−(〈e1, e1 + e2〉,$2)+ φ
∗(−1)
− (〈e1, e1 + e2〉,$2)

+φ−(〈e2〉,Ze2)φ∗(−1)
− (〈e1〉,Ze1)

+φ−
(
〈e1 − e2〉,Ze1 − e2

2

)
φ
∗(−1)
− (〈e1 + e2〉,Z(e1 + e2))

= 0,

we have

φ
∗(−1)
− (〈e1, e1 + e2〉,$2) = −h((a1 + a2)ε)− h(a2ε)

a1ε

−
h(a1ε)− h

(
(a1−a2)ε

2

)
(a1 + a2)ε

+ h(a1ε)h((a1 + a2)ε).

This agrees with π+ ([ε1, ε2]) |(a1ε,a2ε).
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Combinatorics of Poincaré s
and Schröder s equations

Frédéric Menous, Jean-Christophe Novelli and Jean-Yves Thibon

Abstract. We investigate the combinatorial properties of the functional equation
φ[h(z)] = h(qz) for the conjugation of a formal diffeomorphism φ of C to its lin-
ear part z  → qz. This is done by interpreting the functional equation in terms of
symmetric functions, and then lifting it to noncommutative symmetric functions.
We describe explicitly the expansion of the solution in terms of plane trees and
prove that its expression on the ribbon basis has coefficients in N[q] after clear-
ing the denominators (q)n . We show that the conjugacy equation can be lifted
to a quadratic fixed point equation in the free triduplicial algebra on one genera-
tor. This can be regarded as a q-deformation of the duplicial interpretation of the
noncommutative Lagrange inversion formula. Finally, these calculations are inter-
preted in terms of the group of the operad of Stasheff polytopes, and are related
to Ecalle’s arborified expansion by means of morphisms between various Hopf
algebras of trees.

1 Introduction

Algebraic identities between generic formal power series can often be
interpreted as identities between symmetric functions. This is the case,
for example, with the Lagrange inversion formula (see, e.g., [34, Example
24, page 35, Example 25, page 132], [30, Section 2.4], and [31]). The
problem can be stated as follows. Given

ϕ(z) =
∑
n≥0

ϕnz
n (ϕ0 �= 0) (1.1)

find the coefficients gn of the unique power series

g(z) =
∑
n≥0

gnz
n+1 satisfying z = g(z)

ϕ(g(z))
. (1.2)

This project has been partially supported by the project CARMA of the French Agence Nationale
de la Recherche.
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We can assume that ϕ0 = 1 and that

ϕ(g) =
∑
n≥0

hn(X)g
n =

∏
n≥1

(1− gxn)
−1 =: σg(X) (1.3)

is the generating series of the homogeneous symmetric functions of an
infinite set of variables X . In λ-ring notation, the solution reads

gn = 1

n + 1hn((n + 1)X) (1.4)

(recall that σt(nX) = σt(X)n , see, e.g., [34, page 25]). On this expres-
sion, it is clear that gn is Schur positive, in fact, it is the Frobenius charac-
teristic of the permutation representation ofSn on the set PFn of parking
functions of length n. These calculations can be lifted to the algebra of
noncommutative symmetric functions, and the result is then interpreted
in terms of representations of 0-Hecke algebras. This in turn leads to
various combinatorial interpretations, to q-analogues, and to a new inter-
pretation of the antipode of the Hopf algebra of noncommutative formal
diffeomorphisms [39].
There is another functional equation which can be investigated in this

setting. Given a formal diffeomorphism

φ(z) =
∑
n≥0

φnz
n+1 with φ0 = q �= 0, (1.5)

one may look for a formal diffeomorphism tangent to identity

h(z) =
∑
n≥0

gnz
n+1 = zg(z) (g0 = 1), (1.6)

conjugating φ to its linear part

h−1 ◦ φ ◦ h(z) = qz or equivalently φ[h(z)] = h(qz) = qzg(qz). (1.7)

In terms of symmetric functions, we can assume that

φ(z) = qzσz(X) (1.8)

so that the conjugacy equation reads

φ[h(z)] = qh(z)σh(z)(X) = qz
∑
n≥0

gn(qz)
n, (1.9)

and interpreting gn as symmetric functions gn(X), we can get rid of z by
homogeneity (since gn(zX) = zngn(X)). Our functional equation reads
now

g(X)σg(X) = g(qX). (1.10)
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We can lift this to noncommutative symmetric functions, for example as

g(q A) =
∑
n≥0

Sn(A)g(A)
n+1. (1.11)

For q = 0, this reduces to the functional equation for the antipode of
the noncommutative Faà di Bruno Hopf algebra [2,39], so that this prob-
lem can indeed be regarded as a generalisation of the noncommutative
Lagrange inversion.
The conjugacy equation for h is often called Poincaré’s equation, and

the equivalent one for h−1, Schröder’s equation. Indeed, it has been
first discussed by Schröder [43], who discovered a few explicit solu-
tions, which are still essentially the only known ones. It is easy to show
the existence and unicity of a formal solution when q is not a root of
unity. The analyticity of the solution for |q| �= 1 has been established
by Koenigs [28]. It is interesting that this result can be easily proved by
means of inequalities involving the Schröder numbers [33], defined by
the same Schröder in a totally different context [42]. Much more difficult
is Siegel’s proof of convergence in the case q = e2π iθ with θ satisfy-
ing a diophantine condition [44] (see also [16] for a modern proof under
Bruno’s condition). Again in this case, the Schröder numbers play a cru-
cial role in the majorations.
We shall see that analyzing the conjugacy equation at the level of the

noncommutative Faà di Bruno algebra provides a simple explanation of
this fact, by letting Schröder trees appear naturally in the iterative so-
lution of a q-difference equation. The resulting expressions turn out to
be identical to those produced by Ecalle’s arborification method [14–16].
This coincidence will be explained in Section 11, where it will be proved
that both methods can be interpreted in terms of calculations in the group
of an operad and in related Hopf algebras.
Identifying the noncommutative Faà di Bruno algebra with noncom-

mutative symmetric functions as in [39], we have several bases at our
disposal. The solution g of the noncommutative Poincaré equation is
naturally expressed in the complete basis SI . After clearing out the de-
nominators (q; q)n , it turns out that its homogeneous components gn are
positive on the ribbon basis. This unexpected fact suggests that these
should be the graded characteristics of some projective modules over 0-
Hecke algebra, a conjecture that we expect to investigate in another pa-
per. This positivity property will be proved in two different ways. We
shall first recast the conjugacy equation as a quadratic fixed point prob-
lem, by means of the triduplicial operations introduced in [40]. On the
ribbon basis, the quadratic map is manifestly positive. Next, compar-
ing the binary tree expansion with the previous one based on reduced
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plane trees, we obtain a natural bijection between these trees and hy-
poplactic classes of parking functions (aka parking quasi-ribbons or seg-
mented nondecreasing parking functions). This solves a problem which
was left open in [38], and provides a bijection similar to the duplicial
bijection of [40] between nondecreasing parking functions and binary
trees.
In Section 6, we describe the expansion of gn on the ribbon basis. The

numerator of each coefficient is a q-analogue of n!, recording a statistic
on permutations which is explicitly described.
In Section 7, we discuss Schröder’s equation at the level of noncommu-

tative symmetric functions. It leads to a different combinatorics. There
is no natural expansion on trees, but instead, there is a rather explicit al-
gebraic formula for the coefficients, which amounts to applying a simple
linear transformation to a famous sequence of noncommutative symmet-
ric functions, the q-Klyachko elements Kn(q) [19, 29], which occur as
well as Lie idempotents in descent algebras or as noncommutative Hall-
Littlewood functions [24]. It is then shown in Section 8 that the same
coefficients arise when the problem is considered from the point of view
of mould calculus and differential operators. Thus, at least for this prob-
lem, the mould calculus approach can be seen to be dual to that relying
on the noncommutative Faà di Bruno algebra.
The rest of the paper is devoted to the explanation of the coincidence

between the coefficients of our first plane tree expansion, and Ecalle’s
arborified coefficients. The short story is that on the one hand, the paper
[15] provides an interpretation of the arborification method as a lift of the
original problem to an equation in the group of characters of a Connes-
Kreimer algebra. On the other hand, our version with plane trees of the
functional equation can be naturally interpreted in the group of a free
operad. This group turns out to be isomorphic to the group of characters
of a Hopf algebra of reduced plane forests, which admits a surjective
morphism to the previous Connes-Kreimer algebra.
Section 9 provides some background on the operad of reduced plane

trees. It is a free operad with one generator in each degree n ≥ 2, also
known as the operad of Stasheff polytopes, or as a free S-magmatic op-
erad [26, 32]. We describe the associated group, and prove that it is iso-
morphic to the group of characters of the Hopf algebra of reduced plane
trees of [12].
In Section 10, we explain the encoding of the previous group by means

of Polish codes of trees, and illustrate the method on the cases of La-
grange inversion and of the Poincaré equation.
In Section 11, we recall the Hopf algebraic interpretation of the ar-

borification method [15, 16], and prove that the skeleton map already in-
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troduced in [39] induces a morphism of Hopf algebras between reduced
plane forests and the N∗-decorated Connes-Kreimer algebra.
In Section 12, we review briefly the interpretation of Lagrange inver-

sion and of Cayley’s formula for the solution of a generic differential
equation in terms of an operad on (non-reduced) plane trees.
Finally, it is generally interesting to look at the images of formal se-

ries in combinatorial Hopf algebras under various characters. In the Ap-
pendix (Section 13), we review a few examples of explicit solutions of the
conjugacy equation. Apart from the trivial case of linear fractional trans-
formations φ(z) = qz/(1− z) (corresponding to the alphabet A = {1}),
there is the already nontrivial case of the logistic map φ(z) = qz(1− z),
corresponding to A = {−1}, for which explicit solutions (already given
by Schröder) are known for q = −2, 2, 4. The case A = E, correspond-
ing to φ(z) = qzez is not explicitly solved, but it leads to interesting
statistics on pairs of permutations. These examples are investigated nu-
merically in [7–10].

2 Notations

This paper is a continuation of [39, 40]. Our notations for ordinary sym-
metric functions are as in [34], and for noncommutative symmetric func-
tions as in [19,29].
The classical algebra of symmetric functions, denoted by Sym or

Sym(X), is a free associative and commutative graded algebra with one
generator in each degree:

Sym = C[h1, h2, . . .] = C[e1, e2, . . .] = C[p1, p2, . . .] (2.1)

where the hn are the complete homogeneous symmetric functions, the en
the elementary symmetric functions, and the pn the power sums.
Its usual bialgebra structure is defined by the coproduct

�0hn =
n∑
i=0

hi ⊗ hn−i (h0 = 1) (2.2)

which allows to interpret it as the algebra of polynomial functions on the
multiplicative group

G0 = {a(z) =
∑
n≥0

anz
n (a0 = 1)} (2.3)

of formal power series with constant term 1: hn is the coordinate function

hn : a(z)  −→ an. (2.4)

Indeed, hn(a(z)b(z)) = (�0hn)(a(z)⊗ b(z)).
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But hn can also be interpreted as a coordinate on the group

G1 = {A(z) =
∑
n≥0

anz
n+1 (a0 = 1)} (2.5)

of formal diffeomorphisms tangent to identity, under functional composi-
tion. Again with hn(A(z)) = an and hn(A(z)B(z)) = �1(A(z)⊗ B(z)),
the coproduct is now

�1hn =
n∑
i=0

hi ⊗ hn−i ((i + 1)X) (h0 = 1) (2.6)

where hn(mX) is defined as the coefficient of tn in (
∑
hktk)m . The re-

sulting bialgebra is known as the Faà di Bruno algebra [27].
These constructions can be repeated word for word with the algebra

Sym of noncommutative symmetric functions. It is a free associative
(and noncommutative) graded algebra with one generator Sn in each de-
gree, which can be interpreted as above if the coefficients an belong to a
noncommutative algebra. In this case, G0 is still a group, but G1 is not, as
its composition is not anymore associative. However, the coproduct �1

�1Sn =
n∑
i=0

Si ⊗ Sn−i ((i + 1)A) (S0 = 1) (2.7)

remains coassociative, and Sym endowed with this coproduct is a Hopf
algebra, known as Noncommutative Formal Diffeomorphims [2, 39], or
as the noncommutative Faà di Bruno algebra [13].
The classical trick of regarding a generic series as a series of symmet-

ric functions amounts to working in one of these Hopf algebras. The
occurence of trees in the solutions of certain problems can be traced back
to the existence of Hopf algebras morphisms between these algebras and
various Hopf algebras of trees.
Recall that bases of Symn are labelled by compositions I of n. The

noncommutative complete and elementary functions are denoted by Sn
and$n , and the notation SI means Si1 · · · Sir . The ribbon basis is denoted
by RI . The notation I � n means that I is a composition of n. The
conjugate composition is denoted by I∼. The product formula for ribbons
is

RI RJ = RI J + RIAJ (2.8)

where for I = (i1, . . . , ir ) and J = ( j1, . . . , js),

I J=(i1,,...,ir , j1,..., js) and I A J=(i1,,...,ir+ j1,..., js). (2.9)
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The graded dual of Sym is QSym (quasi-symmetric functions). The
dual basis of (SI ) is (MI ) (monomial), and that of (RI ) is (FI ).
The evaluation Ev(w) of a word w over a totally ordered alphabet A

is the sequence (|w|a)a∈A where |w|a is the number of occurrences of a
in w. The packed evaluation I = pEv(w) is the composition obtained by
removing the zeros in Ev(w).
Two permutations σ, τ ∈ Sn are said to be sylvester-equivalent if the

decreasing binary trees1 of σ−1 and τ−1 have the same shape. The gen-
erating function of the number of inversions on a sylvester class is given
by the q-hook-length formula [1, 25].

3 Recursive solution of Poincaré’s equation

Equation (1.11) can be written as a q-difference equation

g(q A)− g(A) =
∑
n≥1

Sn(A)g(A)
n+1. (3.1)

Introducing a homogeneity parameter t , we have

g(qt A)− g(t A) =
∑
n≥1

tn Sn(A)g(t A)
n+1. (3.2)

Let gn be the term of degree n in g, so that

g(t A) =
∑
n≥1

tngn(A). (3.3)

Comparing the homogeneous components in both sides of (3.2), one gets
a triangular system allowing to compute the gn recursively. For n ≤ 3:

g0 = 1,

(q − 1)g1 = S1,

(q2 − 1)g2 = 2S1g1 + S2,

(q3 − 1)g3 = 2S1g2 + S1g
2
1 + 3S2g1 + S3.

(3.4)

Define

qn = qn − 1, (q)n = qnqn−1 · · · q1 and g̃n = (q)ngn (3.5)

1 The decreasing tree T (w) of a word without repeated letters w = unv and maximal letter n is the
binary tree with root n and left and right subtrees T (u) and T (v).
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The first g̃n are then

g̃1 = S1,

g̃2 = (q − 1)S2 + 2S11,
g̃3 = (q)2S3 + 3(q2 − 1)S21 + 2(q − 1)S12 + (5+ q)S111.

(3.6)

On the ribbon basis of Sym, the expression is quite remarkable:

g̃1 = S1,

g̃2 = (q + 1)R2 + 2R11,
g̃3 = (1+ q)(1+ q + q2)R3 + (2+ q + 3q2)R21

+ 3(1+ q)R12 + (5+ q)R111.

(3.7)

Indeed, g̃n is a linear combination of ribbons with positive coefficients
which are all q-analogues of n!. Note that it is immediate, by induction
on n, that g̃n|q=1 = n!Sn1 , but it is not clear that the coefficients are in
N[q]. A combinatorial interpretation of these coefficients will be given
below (Theorem 6.4).

4 A tree-expanded solution

In order to solve (3.2), define a q-integral by2

−
∫ b

a
tn−1dqt =

[
tn

qn − 1
]b
a

(4.1)

and a q-difference operator

�q f (t) = f (qt)− f (t)

t
. (4.2)

Then,

�q−
∫ t

0
f (s)dqs = f (t) (4.3)

so that g is the unique solution of the fixed point equation

g(t A) = g0 +
∑
n≥1

Sn(A)−
∫ t

0
sn−1g(s A)n+1dqs. (4.4)

2 This is just the ordinary q-integral up to conjugation by the transformation t  → (q − 1)t .
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This equation is of the form

g = g0 +
∑
n≥2

Fn(g, . . . , g) (4.5)

where

Fn(x1, . . . , xn) = Sn−1−
∫ 1

0
sn−2x1(s) · · · xn(s)dqs (4.6)

is an n-linear operator. The solution can therefore be expanded as a sum
over reduced plane trees (plane trees in which all internal vertices have at
least two descendants), which will be called Schröder trees in the sequel.
Proceeding as in [39], we introduce another indeterminate S0 (non-

commuting with the other Sn) and set g0 = S0. The solution is then a
linear combinations of monomials SI where I is a vector of nonnegative
integers, with i1 > 0.
The first g̃n are then

g̃1= S100

g̃2=(q − 1)S2000 + S11000 + S10100

g̃3=(q)2S
30000 + (q2 − 1)(S210000 + S201000 + S200100)

+(q − 1)(S120000 + S102000)

+ S1110000 + S1101000 + S1011000 + S1010100 + (q + 1)S1100100.

(4.7)

We can interpret each Si as the symbol of an (i + 1)-ary operation in
Polish notation. Then, g̃n is a sum over Polish codes of Schröder trees as
in [39, Figure 4]:

g̃2 = (q − 1) 2
�� ��

0 0 0

+ 1
�� ��

1
�� ��

0

0 0

+ 1
�� ��

0 1
�� ��

0 0

(4.8)

= (q − 1)S2000 + S11000 + S10100. (4.9)

The exponent vectors I encoding Schröder trees as above will be referred
to as Schröder pseudocompositions.
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From (4.6), we have:

Theorem 4.1. Let I be a Schröder pseudocomposition, and T (I ) be the
tree encoded by I . The coefficient of SI in g is

mI (q) =
∏

v∈T (I )

1

qφ(v)−1
(4.10)

where v runs over the internal vertices of T (I ) and φ(v) is the number
of leaves of the subtree of v.

Note 4.2. These coefficients are precisely those obtained by Ecalle’s ar-
borification method [14–16]. This coincidence will be explained in Sec-
tion 11.

Example 4.3. For

T = 2

����
����

���

����
����

���

1
�� ��

1
�� ��

0

0 0 0 3
�� ��

���
���

�

0 0 0 0

(4.11)

decorating each internal vertex v with the number φ(v)− 1, we obtain

7
����

����
�

����
����

��

1
		 



4
		

��

3
��� �� 



(4.12)

so that

m210010300000 = 1

q7 q4q 3 q1
. (4.13)

Note 4.4. The I whose nonzero entries are all equal to 1 correspond to
binary trees. The anti-refinements J @ I of such an I , obtained by
summing consecutive nonzero entries in all possible ways, correspond to
the trees T (J ) obtained by contracting (internal) left edges in all possible
ways in T (I ). This procedure provides a way to group Schröder trees
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into classes labelled by binary trees. An algebraic interpretation of these
groups will be provided below.

Example 4.5. The contractions of the binary tree T (1101100011000)
are

which are respectively, reading the diagram by rows,
T (201100011000), T (110200011000), T (110110002000),
T (20200011000), T (20110002000), T (11020002000),
and T (2020002000).

5 A binary tree expansion

5.1 A bilinear map on Sym

The preceding remark (Note 4.4) suggests that, as in the case of Lagrange
inversion, the conjugacy equation can be cast as a quadratic fixed point
problem. This is easily done at the level of noncommutative symmetric
functions.
Let� be the linear operator on Sym introduced in [38,39], and defined

by
�S(i1,...,ir ) = S(i1+1,i2,...,ir ) . (5.1)
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Writing

g(qt A)−g(t A)=
∑
n≥1

tn Sn(A)g(t A)
n+1 (5.2)

=
(∑
n≥1

tn Sn(A)g(t A)
n

)
g(t A) (5.3)

=t S1(A)g(t A)2+t
(∑
n≥2

tn−1Sn(A)g(t A)n
)
g(t A) (5.4)

=t S1(A)g(t A)2+t�
[∑
n≥1

tn Sn(A)g(t A)
n+1
]
g(t A) (5.5)

=t S1(A)g(t A)2+t�[g(qt A)−g(t A)]g(t A) (5.6)

we see that g is the unique solution of the quadratic functional equation

g(t A) = 1+−
∫ t

0

(
S1(A)g(s A)+ t��qg(s A)

)
g(s A)dqs (5.7)

of the form
g = 1+ Bq(g, g). (5.8)

The bilinear map Bq has a simple expression in the complete basis. For
two compositions I � i and J � j ,

Bq(SI , SJ ) = −
∫ 1

0

(
S1S

I SJ si+ j +�SI (qi − 1)si S J s j )) dqs (5.9)

= S1I J + qi�SI J

qi+ j+1
. (5.10)

It follows that in the ribbon basis

Bq(RI , RJ ) = (R1I + qi R1AI )RJ

qi+ j+1
. (5.11)

As a consequence, the coefficients of g̃n on the ribbon basis are in N[q].
A combinatorial interpretation will be provided below.
For example, with g0 = 1, we have,

g1 = Bq(g0, g0)
g2 = Bq(g0, g1)+ Bq(g1, g0)
g3 = Bq(g0, g2)+ Bq(g1, g1)+ Bq(g2, g0)

(5.12)
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so that one gets

g̃1 = q1Bq(g̃0, g̃0)

g̃2 = q2(Bq(g̃0, g̃1)+ Bq(g̃1, g̃0))
g̃3 = q3(Bq(g̃0, g̃2)+ q2

q1
Bq(g̃1, g̃1)+ Bq(g̃2, g̃0))

(5.13)

and

g̃1 = S1

g̃2 = (S11)+ (S11 + q1S2)

g̃3 = (2S111 + q1S
12)+ q2

q1
(S111 + q1S

21)

+ (2S111 + q1S
12 + 2q2S21 + q1q2S3)

= q1q2S3 + 3q2S21 + 2q1S12 +
(
q2
q1

+ 4
)
S111,

(5.14)

which coincides with (3.6).

5.2 Triduplicial expansion

These equations can be lifted to Schröder trees, by setting as above g0 =
S0 and using (5.9) without modification. We recover then the same ex-
pressions for gn as in the previous section.
Indeed, start again with (5.13) and g̃0 = g0 = S0. We then have

g̃1 = S100,

g̃2 = (S10100)+ (S11000 + q1S
2000),

g̃3 = (S1010100 + S1011000 + q1S
102000)+ q2

q1
(S1100100 + q1S

200100)

+
(
S1101000 + S1110000 + q1S

120000

+ q2S
201000 + q2S

210000 + q1q2S
30000

)
,

(5.15)

which again gives back (4.7).

Now, (5.11) can be lifted in another way. Indeed, in the same way as
Lagrange inversion is directly related to Catalan numbers (in the guise
of nondecreasing parking functions) and to the free duplicial algebra on
one generator CQSym [40], we find here the little Schröder numbers
which are related to the free triduplicial algebra on one generator (defined
in [40]), into which CQSym is naturally embedded.
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More precisely, the co-hypoplactic subalgebra of PQSym, denoted by
SQSym in [38], spanned by hypoplactic classes of parking functions
(parking quasi-ribbons), has been identified in [40] as the free triduplicial
algebra on one generator. Its graded dimension is given by the number of
Schröder trees, but no natural bijection between these trees and parking
quasi-ribbons had been known up to now. However, this algebra has a
basis Pα which is mapped to the ribbon basis RI by a Hopf algebra mor-
phism χ . This suggests that the operations on ribbons involved in (5.11)
might be the image under χ of triduplicial operations on parking quasi-
ribbons and that an analogue of the S-basis should exist in SQSym. We
shall see that this is indeed the case, by means of bijections between three
families of Schröder objects: parking quasi-ribbons, Schröder trees, and
Schröder pseudocompositions. These bijections will allow to transport
the triduplicial structure on the latter objects.
Recall from [38] that hypoplactic classes of parking functions are rep-

resented as parking quasi-ribbons, or segmented nondecreasing parking
functions, i.e., nondecreasing parking functions with bars allowed be-
tween different values, for example

{1}, {11, 12, 1 | 2}, (5.16){
111, 112, 11 | 2, 113, 11 | 3, 122, 1 | 22, 123, 1 | 23, 12 | 3, 1 | 2 | 3}.

(5.17)
With a parking quasi-ribbon α, we associate the elements

Pα :=
∑
a=α
Fa, (5.18)

where a denotes the hypoplactic class of a. For example,

P11|3 = F131 + F311 , P113 = F113. (5.19)

The product formula in this basis is

PαPβ = Pα|β ′ + Pα·β ′ (5.20)

where β ′ = β[|α|] (i.e., the word formed by the entries of β shifted
by the length of α), and the dot denotes concatenation. The triduplicial
operations on parking quasi-ribbons are defined by [40]

α ≺ β = α · β[max(α)− 1], (5.21)

α ◦ β = α |β[|α|], (5.22)

α B β = α · β[|α|]. (5.23)
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One easily checks that they satisfy the seven triduplicial relations

(x ≺ y) ≺ z = x ≺ (y ≺ z)

(x ◦ y) ◦ z = x ◦ (y ◦ z)
(x B y) B z = x B (y B z)

(x B y) ≺ z = x B (y ≺ z)

(x ◦ y) ≺ z = x ◦ (y ≺ z)

(x B y) ◦ z = x B (y ◦ z)
(x ◦ y) B z = x ◦ (y B z).

(5.24)

In order to define the triduplicial operations on Schröder pseudocompo-
sitions, we first need a bijection, which will be described below.

5.3 A bijection between parking quasiribbons and Schröder trees

The bijection between Schröder pseudocompositions and Schröder trees
is trivial, as it is essentially the Polish notation for the tree. The difficult
point is the correspondence between trees and parking quasi-ribbons.

Among all Schröder trees, we have binary trees, and among parking
quasi-ribbons, we have parking quasi-ribbons without bars, that are non-
decreasing parking functions. Both are counted by Catalan numbers.

We shall first describe the bijection from binary trees to parking quasi-
ribbons without bars. Its extension to all Schröder trees will then be
straigthforward. Let φ be this bijection. It is recursively defined as fol-
lows. Set φ(∅) = ∅ and φ(•) = 1.

Given a tree T with left and right subtrees respectively T1 and T2, we
have

φ(T ) = φ(T2) · (φ(T1)[max(φ(T2))− 1]) · (|T1| +max(φ(T2)), (5.25)

with the convention that, if T2 is empty, max(φ(T2)) = 1, and the dot
denotes concatenation. This operation can also be described as collecting
the vertices of T recursively by visiting first its right subtree, then its left
subtree and finally its root, with the rules that a leaf takes the value of
the last visited vertex (1 if there were none) and an internal vertex gets as
value the size of its left subtree added to the value of its right son (added
to 1 if there is no right son).
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Example 5.1. We have

8
���

���
���

���

6
��

5
����

6
��

4 4
��

5 2


		

1 1

−→ 1124455668. (5.26)

Let us now extend φ to all Schröder trees. First, Schröder trees are in
bijection with binary trees with two-colored left edges: if an internal node
s has more than two children with corresponding subtrees T1, T2, . . . , Tr ,
draw r − 1 left edges (of the second color) from s and attach to the new
r nodes the r subtrees in order, as in a binary tree:

s
���

���
�

�� ��
�

���
���

�

T1 T2 . . . Tr

−→ s
��
����
�� ���

���
�

���
� ��

�� Tr

���� ��
. . .

T1 T2

This amounts to reverting the contraction process described in Note 4.4.
Having computed this tree, send it with the previous bijection to a non-

decreasing parking function, and insert a bar between two letters if they
are separated by a left branch of the second color.

Example 5.2. The continuation of (5.26) is

8
���

���
���

���

6
��

5
����

6
��

4 4
��

5 2


		

1 1

−→ 8
���

������
��� ���

���

6
��

5
���� ��

6
��

4 4
��

5 2
				 



1 1

−→ 11|244|5566|8.

(5.27)

Theorem 5.3. The previous algorithm provides a bijection between
Schröder trees and parking quasi-ribbons.

Before proving the theorem, let us describe the inverse bijection ψ =
φ−1 from nondecreasing parking functions to binary trees. Set ψ(1) =
∅. Let p = a1 . . . ar be a nondecreasing parking function. Let w =
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w1 . . . wr−1 be the word such that wk = ak + r − 1− k. Let � be greatest
index of w such that a� = a�+1 and w� = ar (as a0 = 1, if � does not
exist, set � = 0). Then compute recursively the images of a1 . . . a� as the
right subtree of the root, and of (a�+1 . . . ar−1)[a� − 1] as the left subtree
of the root.

Example 5.4. Consider all nondecreasing parking functions112445566X,
where X is bound by the constraint of being a nondecreasing parking
function, so that X ∈ {6, 7, 8, 9, 10}. The word w is the same for all
those parking functions, namely 988988776, where we write in boldface
the wk such that ak = ak+1. Note that the 6 can be bold or not depending
on the value of X : if X is 6, it is indeed in bold. Now, the index � is
well-defined in all the examples, so that we can separate the word and
apply it recursively:

1124455666 −→�=9 (∅, 112445566)
1124455667 −→�=8 (1, 11244556)
1124455668 −→�=6 (122, 112445)
1124455669 −→�=4 (12233, 1124)
112445566 10 −→�=0 (112445566,∅)

(5.28)

Proof. Let us now prove that φ is indeed a bijection and that its inverse
is ψ as claimed.
First, the values of φ are clearly nondecreasing parking functions.
For ψ , the crucial point is to prove that it is well-defined (see (5.28)

for an illustration).
Given a nondecreasing parking function p = a1 . . . ar , the allowed

values for ar are in the interval [ar−1, r]. And this interval corresponds
precisely to the values taken by the subword of w obtained by selecting
the indices i such that ai = ai+1. Indeed, any of these values belong
to this interval, since all values of w do. Conversely, a direct induction
on the length of p implies the result, since the only question concerns
the index r − 1 which is considered in the subword of w iff ar−1 = ar .
Finally, if one splits p after the rightmost occurrence w� of such a value,
both the prefix of p and its suffix a�+1 . . . ar−1 are parking functions: it is
obvious for the prefix and is easy for the suffix, since we considered the
rightmost occurrence. This occurrence has only strictly smaller values to
its left (wi −wi+1 can be at most 1), so that the shifted suffix is a parking
function. Now, by definition, the values of ψ are binary trees, so that at
this point, we have maps going from each set to the other. Let us now see
why they are inverses of each other.
Both maps are recursive, so we just need to prove that they are inverse

of each other on the first step. Let p = a1 . . . ar be a nondecreasing
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parking function which is the image under φ of a binary tree T having T1
and T2 as left and right subtrees. Since ar is the sum of the size of T1 and
of the maximal value of φ(T2), ar corresponds to the valuew� in the word
w where � is the size of T2 and r−�−1 is the size of T1. Now, this value �
necessarily satisfies a� = a�+1, since a� is the maximal value M of T2 and
a�+1 = 1+M − 1. Finally, among all indices k satisfying ak = ak+1 and
wk = w�, � is the only one such that the suffix a�+1 . . . ar−1 is a parking
function, since any other occurrence in w has one equal value to its right,
which contradicts the fact of being a nondecreasing parking function.
Since φ and ψ both have the right image sets and ψ ◦ φ is the identity

map on binary trees, they both are bijections, inverses of each other.

Finally, let us see why the extension of φ to Schröder trees is a bi-
jection. First, all left branches relate numbers that cannot be equal, so
that separations on nondecreasing parking functions are made between
non equal letters, which is the required condition about parking quasi-
ribbons. The converse is also true: the number of left branches in a binary
tree T is equal to the number of different letters plus one in φ(T ). So the
map from binary trees with two-colored left branches to parking quasi-
ribbons is a bijection and the composition of both bijections through the
middle object of binary trees with two-colored left branches is still a bi-
jection.

5.4 Triduplicial operations on Schröder pseudocompositions

Now that we have a bijection between parking quasiribbons and Schröder
pseudocompositions, we can translate the triduplicial operations initially
defined on parking quasiribbons to Schröder pseudocompositions.

Definition 5.5. Let I and J be two Schröder pseudocompositions. De-
fine J ′ such that J = J ′0m and J ′ does not end by a 0.
Then

I ≺ J = J A I = J ′0m−1.I (5.29)

I ◦ J = J ′ A I · 0m−1 (5.30)

I B J = J ′ · I · 0m−1 . (5.31)

Example 5.6. Denoting by a the parking quasi-ribbon 1 and by x the
pseudocomposition 100,

a ≺ a = 11 x ≺ x = 10100 (5.32)

a ◦ a = 1|2 x ◦ x = 2000 (5.33)

a B a = 12 x B x = 11000, (5.34)

which coincide with the bijection described in the previous section.
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Theorem 5.7. The operations above endow the set of Schröder pseudo-
compositions with the structure of a triduplicial algebra, freely generated
by x = 100.

Proof. This is a direct consequence of the translation of the triduplicial
operations on Schröder pseudocompositions.
We shall prove it for each rule. Operation ≺ on parking quasi-ribbons

is defined by α ≺ β = α ·β[max(α)−1] and via the bijectionψ extended
to parking quasi-ribbons, it corresponds to glueing the image of α to the
rightmost leaf of β so that, on Schröder pseudocompositions, one obtains
J ′.0m−1.I .
Operations ◦ and B on parking quasi-ribbons are defined by α ◦ β =

α |β[|α|] and α B β = α · β[|α|] and via the bijection ψ extended to
parking quasi-ribbons, it corresponds to putting the image of α as the left
child of the rightmost internal node labelled 1 of the image of β (which
is also the last visited internal node of the tree in Polish notation) with
an edge of the natural color (for B) or of the second color (for ◦). The
translation on Schröder pseudocompositions is straightforward.

Define now an order ≤ on parking quasiribbons by the cover relation
β � α if α = uv, β = u|v′ (5.35)

with v′ = v if the last letter of u is smaller than the first letter of v, and
v′ = v[1] otherwise.
For example, the predecessors of 11|23 are 11|2|3 and 1|2|34.
With this order, we can define a basis Sα by

Sα =
∑
α≤β

Pβ . (5.36)

For example,

S1 = P1, S11 = P11 + P1|2, S12 = P12 + P1|2, S1|2 = P1|2 (5.37)

and
S11|23 = P11|23 + P1|2|34 + P11|2|3 + P1|2|3|4. (5.38)

The Hopf epimorphism χ : SQSym→ Sym is defined by

χ(Pα) = RI∼ (5.39)

where I is the bar composition of α whose parts are the lengths of the
factors between the bars, e.g., for α = 111|24|5, I = 321.
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It is then clear that

χ(Sα) = SI
∼
. (5.40)

For Um ∈ SQSymm and Vn ∈ SQSymn , define

Bq(Um, Vn) = qm+n+1Bq(Um, Vn), (5.41)

where Bq is defined after Eq. (5.8). Then, in the bases P and S with both
indexations:

Bq(Sα,Sβ) = q|α|Sβ≺(α◦1) + Sβ≺(αB1) (5.42)

Bq(SI ,SJ ) = q|I |�SI J + S1I J (5.43)

Bq(Pα,Pβ) = q |α|Pβ≺(α◦1) + Pβ≺(αB1) + q |α|Pβ◦α◦1 + Pβ◦αB1 (5.44)

Bq(PI ,PJ ) = q |I |P�I J + P1I J + q |I |P1AJ ′AI0m + P1J ′AI0m (5.45)

where, as above, J = J ′0m and J ′ does not end by a 0.
For example, one can recover the computation of g̃3 in (5.15): start

from the expression of g̃1 and g̃2 in this same equation and then compute
g̃3 according to Eq. (5.13):
The first term is Bq(g̃0, g̃2):

Bq(S0, S
10100) = q0S

110100 + S1010100 = S1010100,

Bq(S0, S
11000) = q0S

111000 + S1011000 = S1011000,

Bq(S0, S
2000) = q0S

12000 + S102000 = S102000.

(5.46)

Note that some SI here are not indexed by Schröder pseudocompositions,
but these terms eventually disappear as their coefficient is q0 = q0− 1 =
0. The second term is Bq(g̃1, g̃1):

Bq(S
100, S100) = q1S

200100 + S1100100. (5.47)

The third term is Bq(g̃2, g̃0):

Bq(S
10100, S0) = q2S

201000 + S1101000,

Bq(S
11000, S0) = q2S

210000 + S1110000,

Bq(S
2000, S0) = q2S

30000 + S120000,

(5.48)

so that we recover (5.15).
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6 Expansion on the ribbon basis

The expression of g in Sym is recovered by setting S0 = 1. As in the case
of the Lagrange series, it is interesting to expand g on the ribbon basis.
As we have already seen before, the first terms are

g̃1 = R1, (6.1)

g̃2 = (1+ q)R2 + 2R11, (6.2)

g̃3 = (1+ q)(1+ q + q2)R3 + (2+ q + 3q2)R21
+ 3(1+ q)R12 + (5+ q)R111. (6.3)

We can observe that each coefficient is a q-analogue of n!. We shall now
prove this fact, and describe the relevant statistics on permutations.
For a pseudo-composition I , let Î be the ordinary composition ob-

tained by removing the zero entries.
For a binary tree t = T (I ), set

Pt =
∑
J@I

m J (q)S
J (6.4)

For a pseudo-composition J encoding a tree T (J ), let

dJ =
∑

v∈T (J )
(φ(v)− 1) (6.5)

Then, the coefficient of RK in (q)n Pt is equal to

(q)nmI (q)q
dI−dJ (6.6)

where J is the coarsest anti-refinement of I such that K ≤ Ĵ . Indeed, RK
will then occur in all the refinements of J , and if I ′ is such a refinement,
then,

mI ′(q) = mI (q)
∏

v∈C(I,I ′)
qφ(v)−1 (6.7)

where C(I, I ′) is the set of vertices of T (I ) which have been contracted
in T (I ′). Thus, factoring the coefficient mI (q), we see that RK picks up
a factor ∏

i

(qi + 1)ni = qdI−dJ if
mJ (q)

mI (q)
=
∏
i

qnii (6.8)

when summing over the Boolean lattice of refinements of J .

Example 6.1. For I = (1101100011000) and K = (51), we have J =
(20200011000), and on the picture (extracted from 4.5)
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6
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2

we can read that the coefficient of R51 in the projection of
(q)6PT (1101100011000) on Sym is

(q)6
q6q3q22q

2
1

q4 = q5q4
q2q1

q4 = q10+ 2q8+ q9+ 2q7+ 2q6+ q5+ q4. (6.9)

For a pseudo-composition I , let I � be its coarsest anti-refinement. The
polynomial

(q)nmI (q)q
dI−dI� (6.10)

is, up to left-right symmetry, the q-hook-length formula for the binary
tree T (I ) [1, 25] (with its leaves removed). Indeed, for a vertex v of a
binary tree t = T (I ), dI − dI � coincides with the number of internal
nodes of its left subtree.

Example 6.2. Continuing with I=(110110011000), I �=(2020002000),

T (I ) = 6

����
����

��
����

����
��

3
		

��
2

�� 



2
�� 



1
		 ���

1
�� ���

T (I �) = 6
���

���
�

����
���

2
�� �� 2

�� ��

(6.11)
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and (6.10) yields

(q)6
q6q3q22q

2
1

q6+3+2+1+2+1−(6+2+2) = q5q4
q2q1

q3+1+1 = q5q4
q2q1

q5 (6.12)

which is the q-hook-length formula for the left-right flip

6
���

��� ���
���

2 �� 3
��

1 2 ��

1

3
���

��� ���
���

1 �� 0
��

0 1 ��

0

(6.13)

of the skeleton of T (I ). Indeed, the power of q is 3 + 1 + 1 = 5 (given
by the sum of the sizes of the right subtrees), and the denominator is
q6q2q1q3q2q1 (recording the sizes of all the subtrees).

Thus, up to a fixed power of q, this expression enumerates by number
of non-inversions the permutations in the sylvester class labelled by the
binary tree T (I ).
Summing over all binary trees, we see that each coefficient cK (q) of

RK in g̃n is indeed a q-analogue of n!.
Translating these results at the level of permutations yields the follow-

ing description of the expansion of g̃n on the ribbon basis of Sym:

Definition 6.3. Let σ be a permutation and let α be the top of its sylvester
class, that is, the permutation with the smallest number of inversions in
its sylvester class. Let I = (i1, . . . , ir ) be a composition and let D be the
descent set of the conjugate Ĩ . Define CI (σ ) as

q inv(σ )−inv(α)q inv(α,D), (6.14)

where inv(α, D) is the number of pairs (i < j) such that αi > α j and
j ∈ D.

Theorem 6.4. The coefficient of RI in the expansion of g̃n is equal to∑
σ∈Sn

CI (σ ). (6.15)

For example, here are the tables for n = 3 and n = 4 of all coefficients
CI , where permutations are grouped by sylvester classes.
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σ/I 3 21 12 111

123 1 1 1 1

132 q q 1 1

312 q2 q2 q q

213 q 1 q 1

231 q2 q2 1 1

321 q3 q2 q 1

(6.16)

σ/I 4 31 22 211 13 121 112 1111

1234 1 1 1 1 1 1 1 1

1243 q q q q 1 1 1 1

1423 q2 q2 q2 q2 q q q q

4123 q3 q3 q3 q3 q2 q2 q2 q2

1324 q q 1 1 q q 1 1

3124 q2 q2 q q q2 q2 q q

1342 q2 q2 q2 q2 1 1 1 1

3142 q3 q3 q3 q3 q q q q

3412 q4 q4 q4 q4 q2 q2 q2 q2

1432 q3 q3 q2 q2 q q 1 1

4132 q4 q4 q3 q3 q2 q2 q q

4312 q5 q5 q4 q4 q3 q3 q2 q2

2134 q 1 q 1 q 1 q 1

2143 q2 q q2 q q 1 q 1

2413 q3 q2 q3 q2 q2 q q2 q

4213 q4 q3 q4 q3 q3 q2 q3 q2

2314 q2 q2 1 1 q2 q2 1 1

2341 q3 q3 q3 q3 1 1 1 1

2431 q4 q4 q3 q3 q q 1 1

4231 q5 q5 q4 q4 q2 q2 q q

3214 q3 q2 q 1 q3 q2 q 1

3241 q4 q3 q4 q3 q 1 q 1

3421 q5 q5 q3 q3 q2 q2 1 1

4321 q6 q5 q4 q3 q3 q2 q 1

(6.17)
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7 Schröder’s equation for the inverse of h

Let now f = h−1 where h−1 ◦ φ ◦ h(z) = qz or equivalently

f ◦ φ(w) = q f (w) (w = h(z)). (7.1)

This is Schröder’s equation. In the noncommutative setting, with again
φ(z) = qzσz(A), it becomes∑

k≥0
fkq

k+1wk+1σw((k + 1)A) = q
∑
n≥0

fnw
n+1 (7.2)

which translates into the recurrence relation

fn =
∑
k+l=n

qk fk Sl((k + 1)A). (7.3)

Theorem 7.1. Let L be the linear endomorphism of Sym defined by

L(SI ) = Si1(A)Si2((i1 + 1)A)Si3((i1 + i2 + 1)A)
· · · Sir ((i1 + · · · + ir−1 + 1)A). (7.4)

Then,

fn = L

(
Sn

(
A

1− q

))
=
∑
I�n

qmaj(I )

(1− qi1)(1− qi1+i2) · · · (1− qi1+···+ir )
L(SI ),

(7.5)

where A/(1− q) and maj is defined as in [29, 6.1]3.

For example,

f1 = 1

1− q
S1(A) (7.6)

f2 = 1

1− q2
S2(A)+ q

(1− q)(1− q2)
S1(A)S1(2A) (7.7)

f3 = 1

1− q3
S3(A)+ q2

(1− q2)(1− q3)
S2(A)S1(3A)

+ q

(1− q)(1− q3)
S1(A)S2(2A) (7.8)

+ q3

(1− q)(1− q2)(1− q3)
S1(A)S1(2A)S1(3A)

3 maj(I ) is the sum of the descents of I , i.e.,maj(I ) = (r − 1)i1 + (r − 2)i2 + · · · + ir−1 if
I = (i1, . . . , ir ).
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Proof. Replacing Sl((k + 1)A) by Sl(A) in (7.3), we obtain a recurrence
relation satisfied by the expansion on the basis SI of the Sn(A/(1− q)).
To recover fn from this expression, we just have to replace each factor
Sik of S

I by Sik ((i1 + · · · + ik−1 + 1)A).
Note 7.2. The noncommutative symmetric function

Kn(q) = (q)nSn

(
A

1− q

)
=
∑
I�n

qmaj(I )RI (7.9)

is the q-Klyachko function. For q a primitive nth root of 1, it is mapped to
Klyachko’s Lie idempotent in the descent algebra of the symmetric group
[19, 29]. It is also a noncommutative analogue of the Hall-Littlewood
function Q′

1n [24].

Naturally, we may also choose to define f by

fn =
∑
k+l=n

qk Sl((k + 1)A) fk . (7.10)

With this choice

f =
(
L

(
σ1

(
A

1− q

)))
(7.11)

and it is what we obtain by mould calculus in the next section (the bar
involution is defined by SI = SI , where I is the mirror composition).

8 A noncommutative mould expansion

Ecalle’s approach to the linearization equation (1.7) is to find a closed
expression of the substitution automorphism

H : ψ  −→ ψ ◦ h (8.1)

as a differential operator. The idea is to look for an expansion of the form

H =
∑
I

MIU
I (8.2)

where I = (i1, . . . , ir ) runs over all compositions, U I = Ui1 · · ·Uir as
usual, and the Un are the homogeneous component of the differential
operator

U : ψ  −→ ψ ◦ u, where φ(z) = qu(z), (8.3)

given by the Taylor expansion at z of ψ(z + (u(z)− z)),

Un =
∑
I�n

u I

�(I )
zn+�(I )∂�(I )z . (8.4)
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In this setting, the functional equation (1.7) reads

HUMq = MqH, where (Mqψ)(z) = ψ(qz). (8.5)

We have already identified our generic power series φ(z) with qzσz(X),
so that un = hn(X). A natural noncommutative analogue is to set un =
Sn(A). There is another way to introduce noncommutative symmetric
functions in this problem. The substitution maps U and H , being au-
tomorphisms, are grouplike elements in the Hopf algebra of differential
operators. So, it is natural to introduce a second alphabet B (commuting
with A) and to identify Un with Sn(B). The problem amounts to looking
for H as an element of (the completion of) Sym(A) ⊗ Sym(B). Let us
write it as H(B), regarded as a symmetric function of B with coefficients
in Sym(A). Then (8.5) reads now

H(B)σ1(B) = H(qB). (8.6)

This is solved by

H(B) =
←∏
i≥0

λ−qi (B) = · · · λ−q2(B)λ−q(B)λ−1(B) (8.7)

which may be denoted by

H(B) = σ1

(
B

q − 1
)

(8.8)

Setting F = H−1, we have that

F(B) = σ1(B)σq(B)σq2(B) · · · (8.9)

is the image of σ1(A/(1− q)) (in the sense of [29]) by the bar involution
SI  → SI , so that

Fn =
∑
I�n

qmaj(I )

(1− qi1)(1− qi1+i2) · · · (1− qn)
SI , (8.10)

The function f (z) is obtained by acting on the identity: f (z) = Fz. This
is obtained from

U I z = L(SI (A))z|I |+1 . (8.11)

Indeed,

Unz
m =

∑
I�n

SI

�(I )!
m!

(m − �(I ))! z
m+n

=
∑
I�n

MI (m)S
I zm+n = Sn(mA)z

m+n.
(8.12)
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9 The operad of reduced plane trees

9.1 A free operad

We shall now investigate the relation between our Schröder tree expan-
sion (Section 4) and Ecalle’s arborification. So far, the SI with I a
Schröder pseudocomposition have been interpreted as elements of the
free triduplicial algebra SQSym. They can also be interpreted as ele-
ments of a free operad (see [3, 5]). We shall see that this operad, which
is based on reduced plane trees, is also related to the noncommutative
version of the Hopf algebra of formal diffeomorphisms tangent to iden-
tity [2].
The set of reduced plane trees with n leaves will be denoted denoted

by PTn , and PT denotes the union
⋃

n�1 PTn .
The number of leaves of a tree t will be called its degree d(t), and we

define the grading gr(t) of a tree as its degree minus 1. In low degrees we
have

PT1 = {◦}, PT2 =
{ }

, PT3 =
{

, ,
}
, . . . (9.1)

The leaves (in white in the pictures) are also called external vertices
whilst the other vertices (in black) are said to be internal (note that ◦
has no internal vertex). For instance, the tree

t =

has degree d(t) = 8, grading gr(t) = 7 and i(t) = 4 internal vertices.

Definition 9.1. The free non-& operad S in the category of vector spaces
is the vector space

S =
⊕
n�1

Sn where Sn = CPTn . (9.2)

The composition operations

Sn ⊗ Sk1 ⊗ . . .⊗ Skn −→ Sk1+...+kn (n � 1, ki � 1) (9.3)

map the tensor product of trees t0⊗ t1⊗ . . .⊗ tn to the tree t0 ◦ (t1, . . . , tn)
obtained by replacing the leaves of t0, from left to right, by the trees
t1, . . . , tn .
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For instance,

◦ ◦, , ◦,
)

= (9.4)

The tree ◦ of PT1 is the unit of this composition. A proof of its asso-
ciativity can be found in [3] or [5], where this operad is called a free S-
magmatic operad. Note that S is also called the operad of Stasheff poly-
topes (see [26,32]) so that the letter S can stand for Stasheff or Schröder
as well.

9.2 The group of the operad

Let Ŝ be the completion of the vector space S with respect to the grading
gr(t) = d(t)− 1. The group of the operad S is defined as:
Definition 9.2. Let

Gncdiff =
{
◦ +
∑
n�2

p(n), p(n) ∈ Sn
}
⊂ Ŝ (9.5)

endowed with the composition product

p ◦ q = q +
∑
n�2

p(n) ◦
⎛⎝q, . . . , q︸ ︷︷ ︸

n

⎞⎠ ∈ Gncdiff (9.6)

for p = ◦ +∑n�2 p(n) and q ∈ Gncdiff.

This is indeed a group (see e.g., [5]). Elements of Gncdiff can be de-
scribed by their coordinates

p =
∑
t∈PT

pt t and q =
∑
t∈PT

qt t. (9.7)

(with q◦ = p◦ = 1) so that the coordinates of r = p ◦ q are given by
rt =

∑
t=t0◦(t1,...,tn)

pt0qt1 . . . qtn (9.8)

This expression involves the so-called admissible cuts defining the co-
product in Hopf algebras of the Connes-Kreimer family. It suggests that
the elements of Gncdiff can be interpreted as characters of the bialgebra
defined as follows.
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Let
T (S) =

⊕
p�1

S⊗p
(9.9)

be the reduced tensor algebra over S (whose basis is given by plane
forests f = t1 · . . . · tk) equipped with the coalgebra structure defined
on trees by

�̃(t) =
∑

t=t0◦(t1,...tn)
t0 ⊗ (t1 · . . . · tn) (9.10)

where · means concatenation, and then extended as an algebra morphism
on T (S). For example,

Δ̃

( )
= ◦ ⊗ + ⊗ · ◦ + ⊗ ◦ · ◦ · ◦. (9.11)

It is then clear that any p ∈ Gncdiff can be identified as the algebra mor-
phism ϕp defined by

ϕp(t) = pt (9.12)

so that, if r = p ◦ q, then
ϕp◦q = ϕr = ϕp ∗ ϕq = μ ◦ (ϕp ⊗ ϕq) ◦ �̃ (9.13)

where ∗ is the usual convolution product for a bialgebra, and μ is the
multiplication of C. Note that if

∧
(t1 · t2 · . . . · tn) (with n � 2) is the

tree obtained by grafting the trees t1, . . . , tn to a common root (in other
words,

∧
(t1 · t2 · . . . · tn) = cn ◦ (t1, . . . , tn), where cn is the corolla with

n leaves) the map �̃ is the unique algebra map such that

�̃(◦) = ◦ ⊗ ◦, (9.14)

�̃
(∧

(t1, . . . , tn)
)
= ◦ ⊗

∧
(t1, . . . , tn)

+
(∧

⊗Id
)
◦ �̃(t1 · t2 · . . . · tn) (9.15)

9.3 The Hopf algebra of reduced plane trees and its characters

The quotient of the bialgebra T (S) by the relations t · ◦ = ◦ · t = t is a
graded unital algebraHPT, spanned by ◦ and the forests t1 · t2 · . . . · tn with
ti ∈ ∪n�2PTn , with ◦ as unit.
It is a Hopf algebra for the coproduct defined on trees by

�(t) = (p ⊗ p) ◦ �̃(t) (9.16)

where p is the projection from T (S) toHPT.
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In the former example:

Δ

( )
= ◦ ⊗ + ⊗ + ⊗ ◦. (9.17)

It is now clear that the group Gncdiff is precisely the group of characters
of this Hopf algebra (for p ∈ Gncdiff, ϕp(◦) = 1).
This Hopf algebra was first considered in [12] (with the opposite co-

product P ◦ �, where P(u ⊗ v = v ⊗ u)), where it is called the Hopf
algebra of reduced plane trees Hred

pl . The coproduct can be described in
terms of admissible cuts of a tree t ∈ PT, i.e., (possibly empty) subsets
c of edges not connected to a leaf with the rule that along any path from
the root of t to any of its leaves, there is at most one edge in c. The
edges in c are naturally ordered from left to right. To any admissible cut
c corresponds a unique subforest Pc(t), the pruning, concatenation of the
subtrees obtained by cutting the edges in c, in the order defined above.
The coproduct can then be defined by:

�(t) =
∑

c∈Adm t

Rc(t)⊗ Pc(t), (9.18)

where Rc(t) is the trunk, obtained by replacing each subtree of Pc(t)
with a single leaf.
So far, we have defined the group of the operad of Stasheff polytopes

(or Schröder trees), and shown that it coincides with the group of charac-
ters of the Hopf algebra of reduced plane trees. We shall see that it is also
a group of formal noncommutative diffeomorphisms related to the non-
commutative Lagrange inversion (see [39]) and to the noncommutative
version of Poincaré’s equation.

10 Noncommutative formal diffeomorphisms

10.1 A group of noncommutative diffeomorphisms

As pointed out in [2], it is possible to consider formal diffeomorphisms
in one variable with coefficients in an associative algebra, but if this alge-
bra is not commutative, the set of such diffeomorphisms is not anymore
more a group because associativity is broken. Nevertheless, there is still
a noncommutative version of the Faà di Bruno Hopf algebra.
We can recover a group by regarding the coefficients as well as the

variable as formal noncommutative variables. Heuristically, let us start
with a fixed diffeomorphism u of

Gdiff = {u(z) = z +
∑
n≥1

unz
n+1 ∈ C[[z]]} (10.1)
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in the variable z with coefficients un . Consider now that z is replaced by
S0 and that each un is replaced by a variable Sn . We get a series

gc = S0 +
∑
n�1

SnS
n+1
0 (10.2)

in an infinity of noncommuting variables. Nothing prevents us from “it-
erating” gc as we would do with an ordinary power series

gc ◦ gc = gc +
∑
n�1

Sng
n+1
c

= S0 + S1S
2
0 + S2S

3
0 + S1(S1S

2
0)S0 + S1S0(S1S

2
0)+ ...

(10.3)

Further iterations lead to words in the variables S0, S1, . . . indexed by
Schröder pseudocompositions, which will eventually represent all re-
duced plane trees.
Let S◦ = S0 and, if t = ∧

(t1, . . . , tn), St = Sn−1St1 . . . Stn . We
recover the correspondence with Polish codes. For example,

S = S2S0S1S3S0S0S0S0S0S1S0S0 = S201300000100 (10.4)

Identifying trees with their Polish codes, the group Gncdiff can be de-
scribed as

Gncdiff =
{
g =

∑
t∈PT

gt S
t , gt ∈ C, g◦ = 1

}
⊂ C〈〈S0, S1, . . .〉〉 (10.5)

where C〈〈S0, S1, . . .〉〉 is the completion of the algebra of polynomials,
with respect to the degree in S0.
If we set g = g(S0, S1, . . .) = g(S0;S) (S = S1, . . .), then,

Theorem 10.1. The composition f ◦ g = h in Gncdiff is given by

h(S0;S) = f (g;S). (10.6)

In other words we substitute g to the variable S0 in f . Graphically we
substitute trees to leaves. It is easy to check that this group coincides with
the previous one. If

g =
∑
t∈PT

gt S
t , f =

∑
t∈PT

ft S
t , h = f ◦ g =

∑
t∈PT

ht S
t ∈ Gncdiff, (10.7)
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then ht is a sum of contributions from f and g. The contributions to ht
can be

• ft S
t if we substitute the S0 part of g to any S0 (a leaf) of the term ft S

t

of f .
• gt St if we substitute the term gt St of g to the S0 part of f
• ft0gt1 . . . gtn S

t if when substituting (from left to right) the terms gt1S
t1 ,

..., gtn S
tn to n S0 variables (leaves) in ft0S

t0 , we get the monomial St .

This means that

ht =
∑

(t0;t1...tn)=(Rc(t);Pc(t))
ft0gt1 . . . gtn (10.8)

which is precisely the convolution of characters inHPT.
In the sequel, we shall denote by the same letter (for instance g) an

element of Gncdiff regarded as a series of trees

g =
∑
t

gt t, (10.9)

as a series of noncommutative monomials

g =
∑
t

gt S
t , (10.10)

or as the character g sending t on gt .

10.2 Inversion in Gncdiff and Lagrange inversion

One can compute the compositional inverse of fc (defined by ft = 1 if
t is a corolla and 0 otherwise). This yields a signed series involving all
trees.
Consider the series

fc = S◦ +
∑
n�1

S
∧
(◦·n+1). (10.11)

We shall work here in T (S) (where ◦ is not the unit). Let i(t) be the
number of internal vertices of a tree t . The inverse of fc is then given by

gc =
∑
t∈PT

(−1)i(t)St (10.12)
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since

gc = S0 +
∑
n�1

∑
t=∧(t1·...·tn+1)

ti∈PT

(−1)i(t)S
∧
(t1·...·tn+1) (10.13)

= S0 +
∑
n�1

∑
t=∧(t1·...·tn+1)

ti∈PT

(−1)1+i(t1)+...i(tn+1)SnSt1 . . . Stn+1 (10.14)

= S0 −
∑
n�1

Sng
n+1
c (10.15)

so that S0 = gc +∑n�1 Sng
n+1
c = fc ◦ gc.

In order to establish a link with the noncommutative analogue of La-
grange inversion (see [39]), we can look for the compositional inverse
of

fL =
(
1+

∑
n�1

SnS
n
0

)−1
· S0 ∈ Gncdiff, (10.16)

where the exponent −1 means here the multiplicative inverse as a formal
power series. Working with trees, consider the series of trees L such that

L = ◦ +
∑
k�1

∧
(L ·k · ◦) (10.17)

then L =∑ Lt t with Lt = 1 or 0.
The inverse gL of fL is

∑
Lt St . Indeed,

gL = S◦ +
∑
k�1

S
∧
(L ·k ·◦) (10.18)

= S0 +
∑
k�1

Skg
k
L S0 (10.19)

=
(
1+

∑
n�1

Sng
n
L

)
S0 (10.20)

and obviously fL ◦ gL = S0.
Apart from ◦, all the trees of PT occuring in gL are such that the right-

most subtree of each internal vertex is a leaf (S0). Let PTL be the set of
such trees, and let α be the map sending ◦ to itself and t ∈ PTL to the
tree (with possible unary internal vertices) obtained by removing all the
righmost leaves of its internal vertices. We obtain in this way the tree
expansion of Section 5.3 in [39].
One can also define St for such trees. Now

α(L) = ◦ +
∑
n�1

∧
(α(L)·n) (10.21)



363 Combinatorics of Poincaré s and Schröder s equations

and if we replace trees by their Polish codes, the resulting series g satis-
fies

g = S0 +
∑
n�1

Sng
n, (10.22)

the functional equation considered in [39]. This correspondence will be
explained in details in Section 12, using a group morphism from Gncdiff

to the group GC of the Catalan operad.

10.3 The conjugacy equation

Let Y be the grading operator on trees (Y (t) = (d(t) − 1)t), and let
qY (t) = qd(t)−1t . The noncommutative analogue of the conjugacy equa-
tion can be written as

g(qS0;S) = qgc(g;S) (10.23)

where the initial diffeomorphism is the corolla series. This equation also
reads

q−1g(qS0;S) = qY g = gc ◦ g. (10.24)

It is not difficult to compute the coefficients of the solution g=∑t ct(q)t ,
noticing that c◦(q) = 1 and, if t =∧(t1, . . . , tn) then,

qd(t)−1ct(q) = ct(q)+ ct1(q) . . . ctn (q). (10.25)

As we have already seen, the coefficients have the closed form

ct(q) =
∏
v∈t

1

qφ(v)−1 − 1 (10.26)

where v runs over the internal vertices of t and φ(v) is the number of
leaves of the subtree of v.
For example, for

t = , ct(q) = 1

(q7 − 1)(q − 1)(q4 − 1)(q3 − 1) . (10.27)

Surprisingly, the same coefficients appear in the commutative case, in
Ecalle’s arborified solution of the conjugacy equation, which has been
interpreted in [15] in terms of characters on the Connes-Kreimer Hopf
algebra HCK of (non plane) rooted trees decorated by positive integers.
We shall see that there is indeed a kind of noncommutative arborification,
which will be eventually explained by a morphism of Hopf algebras.
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11 Commutative versus noncommutative

11.1 Commutative diffeomorphisms
and the Connes-Kreimer algebra

In this section we recall briefly how certain (commutative) formal dif-
feomorphisms can be obtained as characters of a Hopf algebra (see [15]
and [16]), in particular the solution of the conjugacy equation

qu(h(z)) = h(qz) (11.1)

where u and h are formal diffeomorphisms of Gdiff (tangent to the iden-
tity). The use of trees to encode diffeomorphisms appears in [14] and is
related to differential operators indexed by trees, an idea originally due
to Cayley.
We shall rely upon the references [6], [17] and [18], except that we use

the opposite coproduct, in order to avoid antimorphisms.
A rooted tree4 T is a connected and simply connected set of oriented

edges and vertices such that there is precisely one distinguished vertex
(the root) with no incoming edge. A forest F is a (commutative) mono-
mial in rooted trees.
Let l(F) be the number of vertices in F . One can decorate a forest by

N∗, that is, with each vertex v of F , we associate an element nv of N∗.
We denote by TN (resp. FN) the set of decorated trees (resp. forests). It
includes the empty tree, denoted by ∅. As for sequences, if a forest F is
decorated by n1, . . . , ns (l(F) = s), we write

|F | = n1 + . . .+ ns . (11.2)

For n in N∗, the operator B+
n associates with a forest of decorated trees

the tree with root decorated by n connected to the roots of the forest :
B+
n (∅) is the tree with one vertex decorated by n. For example,

B+
n

⎛
⎝ n4

n5

n1

n2n3

⎞
⎠ =

n

n1

n2
n3

n4

n5

(11.3)

The linear span HCK of FN is the graded Connes-Kreimer Hopf algebra
of trees decorated by N∗ for the product

π(F1 ⊗ F2) = F1F2 (11.4)

and the unit ∅.

4 Not to be confused with rooted plane trees, of which Schröder trees are a special case.
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The coproduct � can be defined by induction

�(∅) = ∅⊗ ∅, (11.5)

�(T1 . . . Tk) = �(T1) . . . �(Tk), (11.6)

�(B+
n (F)) = ∅⊗ B+

n (F)+ (B+
n ⊗ Id) ◦�(F). (11.7)

There exists a combinatorial description of this coproduct (see [17]). For
a given tree T ∈ TN, an admissible cut c is a subset of its vertices such
that, on the path from the root to an element of c, no other vertex of c
is encountered. For such an admissible cut, Pc(T ) is the product of the
subtrees of T whose roots are in c and Rc(T ) is the remaining tree, once
these subtrees have been removed. With these definitions, for any tree T ,
we have

�(T ) =
∑

c adm.

Rc(T )⊗ Pc(T ). (11.8)

For example,

Δ

(
n1

n2n3

)
=

n1

n2n3

⊗∅+
n1

n3

⊗•n2+
n1

n2

⊗•n3

+•n1⊗•n2•n3+∅⊗
n1

n2n3

Definition 11.1. Given a formal diffeomorphism

u(z) = z +
∑
n�1

unz
n+1, (11.9)

we associate with any tree T (see [15, 16, 36, 37]) a monomial AT (z)
recursively defined as follows:

• For the empty tree A∅(z) = z,
• If T = Bn+(∅) then AT (z) = unzn+1,
• If T = Bn+(F) where F = T a1

1 . . . T ak
k is a non empty product of k

distinct decorated trees, with multiplicities a1, . . . , ak (a1+ . . .+ak =
s), then

AT (z) = 1

a1! . . . ak ! A
a1
T1
(z) . . . AakTk (z)

(
∂a1+···+ak
z unz

n+1) (11.10)

The main result is then:



366 Frédéric Menous, Jean-Christophe Novelli and Jean-Yves Thibon

Theorem 11.2. The map ρu sending a character ϕ of HCK to the formal
diffeomorphism of Gdiff

ρu(ϕ)(z) =
∑
T∈TN

ϕ(T )AT (z) (11.11)

is a group homomorphism from the group of characters GCK of HCK to
Gdiff.

See [15,16,36,37] for proofs.

Going back to the equation u(h(z)) = q−1h(qz), one can observe that

• u = ρu(ϕ0), where ϕ0 is the character given by ϕ0(T ) = 1 (resp. 0) if
T = ∅ or T = Bn+(∅) (resp. otherwise).• If the conjugating h is given by a character θ (h=ρu(θ)) then q−1h(qz)
is given by the character θ ◦ qY where qY (F) = q |F |F .

Therefore, the conjugacy equation can be lifted to the character equation

ϕ0 ∗ θ = θ ◦ qY . (11.12)

This equation is easily solved. For a tree T = Bn+(T1 . . . Ts), we get

(q |T | − 1)θ(T ) = θ(T1) . . . θ(Ts) (11.13)

so that

θ(T ) =
∏
v∈T

1

q |Tv | − 1 (11.14)

where Tv is the subtree of T whose root is the vertex v.
A more explicit expression can be found in [16]. Such “arborified” ex-

pressions are useful for analysis since they allow to prove the analyticity
of the conjugating map under some diophantine conditions on q (ensur-
ing a geometric growth of the numbers θ(T ), see e.g., [16]).

11.2 RelatingHCK andHPT

The similarity of the coefficients ct(q) and θ(T ) suggests a link between
both versions of the conjugacy equation, which turns out to be under-
standable at the level of Hopf algebras.

Theorem 11.3. Let sk (for “skeleton”) be the map defined from PT to
TN by sk(◦) = ∅ and, if t = ∧

(t1, . . . , tn) (n � 2), then sk(t) =
Bn−1+ (sk(t1) . . . sk(tn)).
This map extends naturally to an algebra morphism from HPT to HCK

which is actually a Hopf algebra morphism.
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For example if t = ,,

T = sk (t) =
2

11

3

(11.15)

The proof follows immediately by comparing the recursive (or combina-
torial) definition of the coproducts.
This Hopf morphism induces a group morphism sk∗ sending a charac-

ter ϕ ∈ GCK to the character sk
∗(ϕ) = ϕ ◦ sk. It sends the character θ to

the character defined by

g =
∑
t

ct(q)t. (11.16)

In other words, for any reduced plane tree t , ct(q) = θ(sk(t)).

11.3 The final diagram

Let us summarize the situation:

• We have a noncommutative analogue of the conjugacy equation whose
solution is a character onHPT defined by the coefficients ct(q),

• In the commutative case, the solution can be computed as a character
onHCK,

• Both characters are related by the group morphism sk∗.
There is also a morphism from Gncdiff to Gdiff, so that we also get the
solution in the commutative case. For u ∈ Gdiff, the algebra map αu
sending S0 to z and Sn to un defines a group morphism and, if we denote
by gc ∈ Gncdiff the sum of all corollas, then αu(gc) = u. This morphism
also sends the solution of the noncommutative conjugacy equation to the
solution of the commutative one.
The final picture is then:

Theorem 11.4. The diagram

GCK
sk∗−→ Gncdiff

↘
ρu

↓ αu

Gdiff

(11.17)

is commutative.
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Proof. Consider a character ϕ ∈ GCK. Then, on the one hand

ρu(ϕ) =
∑
T

ϕ(T )AT (z) (11.18)

and, on the other hand, as φ = sk∗(ϕ) (φ(t) = ϕ(sk(t)),

αu(φ) = αu

(∑
t

φ(t)St
)
=
∑
T

ϕ(T )αu

( ∑
sk(t)=T

St
)
. (11.19)

The above diagram commutes if, for any tree T ,

AT (z) = αu

( ∑
sk(t)=T

St
)
. (11.20)

The result is obvious for T = ∅, and for any tree Cn = B+
n (∅), since

ACn (z) = unzn+1 and the only reduced tree with such a skeleton is the
corolla cn+1:

αu(S
cn+1) = αu(SnS

n+1
0 ) = unz

n+1 = ACn (z). (11.21)

Now, from Definition 11.1, if T = B+
n (T

a1
1 . . . T ak

k ) where T1,...,Tk are
distinct rooted trees, then

AT (z) =
(

n + 1
a1, a2, . . . , ak

)
Aa1T1(z) . . . A

ak
Tk
(z)unz

n+1−a1−...−ak . (11.22)

Let
X0 = S0 and Xi =

∑
sk(t)=Ti

St . (11.23)

If W (a0, a1, . . . , ak) is the set of all possible words obtained by concate-
nating ai copies of Xi , then∑

sk(t)=T
St =

∑
w∈W (n+1−a1−...−ak ,a1,...,ak)

Snw (11.24)

since a tree has skeleton T if and only if it can be written cn◦(t1, . . . tn) for
the operadic composition, where the n-tuple (t1, . . . tn) contains exactly
ai trees with skeleton Ti and n + 1 − a1 − · · · − ak trees ◦. There are

exactly

(
n + 1

a1, a2, . . . , ak

)
such n-tuples, and, by induction,

αu

( ∑
sk(t)=T

St
)

= Aa1T1(z) . . . A
ak
Tk
(z)unz

n+1−a1...−ak
( ∑
w∈W (n+1−a1···−ak ,a1,...,ak)

1

)
= AT (z)

(11.25)
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12 The Catalan operad

The preceding considerations can be repeated almost word for word for
the free operad on one generator in each degree

C =
⊕
n≥1

CTn (12.1)

where Tn denotes the set of all plane trees on n vertices:

T1 = {•}, T2 =
{ }

, T3 =
{

,
}
, T4 =

⎧⎨⎩ , , , ,

⎫⎬⎭ , . . .

(12.2)
endowed with the same composition as in S. We shall call it the Catalan
operad, although it probably has other names [5, 26].
General plane trees can be represented by their Polish codes, as mono-

mials SI , where Sn is now the symbol of an n-ary operation, that is
S• = S0 and SB+(t1,...,tk) = Sk St1 . . . Stk . For instance,

S = S3100200. (12.3)

As observed in [39], these I are also the evaluation vectors on nonde-
creasing parking functions.
The discussion of Lagrange inversion and related problems given in

[39] can be interpreted as calculations in the group GC of this operad.
The functional equation

g =
∑
n≥0

Sng
n (12.4)

can be rewritten as

(S0 − S10 − S200 − · · · ) ◦ g = S0 (12.5)

so that it amounts to inverting the series

f = S0 −
∑
n≥1

Sn0
n

(12.6)

in the group GC . The relation with the computations in Section 10.2 can
be elucidated with the help of a surjective group morphism from Gncdiff

to GC . Recall that PTL is the set of Schröder trees such that the rightmost
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subtree of each internal vertex is a leaf. Let α be the map which sends ◦
to • and any other tree t of PT :

• to the the plane tree obtained by removing all the rightmost leaves of
its internal vertices if t is in PTL ,

• to 0 otherwise.
This map is surjective on plane trees and induces a linear map on mono-
mials in S0, S1, ... which happens to be a group morphism from Gncdiff to
GC . If we still denote by α this morphism, then, since

α(gc) = α

(
S◦ +

∑
n�1

S
∧
(◦·n+1)

)
= S0 +

∑
n≥1

Sn0
n ∈ GC, (12.7)

α(gL) = α

⎛⎝(1+∑
n�1

SnS
n
0

)−1
S0

⎞⎠ = S0 −
∑
n≥1

Sn0
n ∈ GC . (12.8)

we can obtain the composition inverse of these series of GC as α( fc) and
α( fL), which gives back the formulas of [39].
The functional equation for g can also be written

g = S0 +�g · g =: S0 + B(g, g) (12.9)

Each plane tree in the solution of (12.4) corresponds to a unique binary
tree BT (S0) in the solution of (12.9). This induces a bijection between
plane trees and binary trees: writing (see (5.1))

B(SI , SJ ) = �SI SJ , (12.10)

there is a unique way to decompose a plane tree SI on n vertices as

SI = B(SI1, SI2) (12.11)

so that recursively
SI = BT (S0, . . . , S0) (12.12)

for a unique binary tree T with n − 1 internal vertices. For example,

S = S10 = B(S0, S0), (12.13)

S = S200 = B(S10, S0) = B(B(S0, S0), S0), (12.14)

S = S110 = B(S0, S
10) = B(S0, B(S0, S0)) (12.15)
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We recover in this way the classical rotation correspondence.
In fact, if, in the one to one correspondence with plane tree, SI1 = St1

and SI2 = St2 , the tree corresponding to SI = B(SI1, SI2) = �SI SJ is
t = B+(B−(t1), t2). Using this trick we get for instance

S3100200= S = B(S , S ) = B(B(S , S•), B(S , S•)) (12.16)

that corresponds finally to the binary tree B(B(B(S0, B(S0, S0)), S0),
B(B(S0, S0), S0)):

•
��   •

��
•

��•   •
•

(12.17)

Another question which can be investigated in this context is the formal
solution of the generic differential equation

dx

ds
= f (x(s)), x(0) = x0. (12.18)

Rather than stating Cayley’s formula for x (k) in terms of rooted trees
and derivatives, we shall write down a noncommutative version involving
plane trees and the coefficients of the generic power series f . Assuming
without loss of generality that x0 = 0, we can look for a series X (s) ∈ GC
satisfying

dX

ds
=
∑
n≥0

SnX (s)
n. (12.19)

Thus,

X (s) = S0s +
∑
n≥1

Sn

∫ s

0
X (u)ndu =:

∑
n≥1

Xn
sn

n! (12.20)

and solving iteratively as usual, we get successively

X1 = S0, (12.21)

X2 = S10, (12.22)

X3 = 2S200 + S110, (12.23)

X4 = 6S3000 + 3S2100 + 3S2010 + 2S1200 + S1110. (12.24)

Identifying as before trees and their Polish codes,

Xn =
∑
t∈Tn

ct S
t (12.25)
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and setting

Fn(Y1 . . . ,Yn) = Sn

∫ s

0
Y1(u) · · ·Yn(u)du (12.26)

we have

Xn+1 =
n∑

k=1

∑
i1+···+ik=n

Fk

(
Xi1

si1

i1! , . . . , Xik
sik

ik !
)
, (12.27)

which gives for the coefficient ct of t = B+(t1, . . . , tk) ∈ Tn+1

ct
sn+1

(n + 1)! =
∫ s

0
ct1 · · · ctk

u|t1|+···+|tk |

|t1|! · · · |tk |!du (12.28)

so that

ct =
(

n

|t1|, . . . , |tk |
)
ct1 · · · ctk (12.29)

which is clearly the recursion for the number of decreasing (or increasing)
labellings of t , also given by the hook-length formula

ct = (n + 1)!
∏
v∈t

1

hv
(12.30)

where hv is the number of nodes of the subtree with root v. For instance,

for the tree that corresponds to the monomial S2100, there are 3 de-

creasing labelings:

4

32

1

,

4

23

1

,

4

13

2

. (12.31)

Replacing each Sk by
f (k)

k! , we recover Cayley’s formula for x
(n),

dnx

dsn
=
∑
|t |=n

a(t)δt , (12.32)

where

a(t) = |t |!
t !|St | , (12.33)

St being the symmetry group of t ,

B+(t1, . . . , tn)! = |B+(t1, . . . , tn)| · t1! · · · tn!, •! = 1. (12.34)
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and the elementary differentials are defined by [4]

δi• = f i , δiB+(t1,...,tn) =
N∑

j1,..., jn=1
(δ

j1
t1 · · · δ jntn )∂ j1 · · · ∂ jn f i (12.35)

In particular, the solution is given by

x(s) = x0 +
∑
t

s|t |

|t |!a(t)δt(0) (12.36)

For example,

x (4) = f ′′′( f, f, f )+ 3 f ′′( f, f ′( f ))
+ f ′( f ′′( f, f ))+ f ′( f ′( f ′( f ))).

(12.37)

Note that with the interpretation of Sn as an n-linear operation, our formal
calculations are valid for x ∈ RN : we can write the Taylor expansion of
f as

f (x) = F0 + F1(x)+ F2(x, x)+ F3(x, x, x)+ · · · (12.38)

without expliciting the expression of Fn in terms of partial derivatives.
Once again, the functional equation (12.19) can be recast as a quadratic

fixed point problem:

dX

ds
= S0 + (S1 + S2X (s)+ S3X

2(s)+ · · · )X (s)
= S0 + (�X ′(s))X (s)

(12.39)

so that

X (s) = S0s +
∫ s

0
�X ′(u) · X (u)du = S0s + B(X (s), X (s)) (12.40)

The bilinear map B acts on trees by

B
(
SI
si

i ! , S
J s

j

j !
)
=
(
i + j

i, j

)
�SI J

si+ j+1

(i + j + 1)! (12.41)

13 Appendix: numerical examples

In the case of Lagrange inversion, comparison between the formal non-
commutative solution and numerical examples (specializations of the al-
phabet, or characters) leads to interesting insights. We shall give here a
(short) list of known workable examples.
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13.1 Warmup: A = 1

The alphabet A = 1 is defined by Sn(1) = 1 for all n. In this case,

φ(z) = qz

1− z
= qzσz(1) (13.1)

is a Möbius transformation, and it is trivial to conjugate it to its linear
part when q �= 1. However, it is a good exercise to work out the series
solution. We have

Sn(m) =
(
n + m − 1

n

)
so that L(SI )(1) = n!

i1! · · · ir ! = n!SI (E)
(13.2)

where E is defined by Sn(E) = 1/n!. Hence,

f (z) =
∫ ∞

0
e−t L

(
zσzt

(
E

1− q

))
dt = z

1− z
1−q

. (13.3)

13.2 The logistic map: A = −1
The logistic map is defined by

φ(z) = qz(1− z) = qzσz(−1). (13.4)

Indeed, by definition, σz(−1) is the inverse of σz(1), so that S1(−1) = −1
and Sn(−1) = 0 for n > 1.
The recurrence for gn(−1) is here

(1− qn)gn =
n−1∑
k=0

gkgn−1−k (13.5)

yielding

g1 = 1

1− q
,

g2 = 2

(1− q)(1− q2)
,

g3 = 5+ q

(1− q)(1− q2)(1− q3)
, . . .

(13.6)

the numerator being a q-analogue of n!.



375 Combinatorics of Poincaré s and Schröder s equations

For q = −2, 2, 4, these series have explicit forms in terms of elemen-
tary functions:

q=−2: f (z)=
√
3

6

(
2π−3arccos

(
z− 1

2

))
,h(z)= 1

2
−cos

(
2z√
3
+π

3

)
,

q=2: f (z)=−1
2
ln(1−2z),h(z)= 1

2

(
1−e−2z),

q=4: f (z)=(arcsin√z)2,h(z)=(sin√z)2 . (13.7)

Numerical investigations, including a conjecture for the radius of conver-
gence in the general case, can be found in [7, 8].

13.3 The Ricker map: A = E

This case corresponds to

φ(z) = qzez. (13.8)

No closed expression is known for f or g, but a numerical study can be
found in [7].
We have

Sn(mE) = mn

n! , so that L(S
I )

= 1i1(i1 + 1)i2(i1 + i2 + 1)i3 · · · (i1 + · · · ir−1 + 1)ir
i1!i2! · · · ir !

(13.9)

and we can compute

f1 = 1

1− q
,

f2 = 3q + 1
2!(1− q)(1− q2)

,

f3 = 16q3 + 11q2 + 8q + 1
3!(1− q)(1− q2)(1− q3)

, . . .

(13.10)

The numerators are q-analogues of (n!)2, whose combinatorial interpre-
tation requires further investigations.
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[18] L. FOISSY, Les algèbres de Hopf des arbres enracinés décorés. II,
Bull. Sci. Math., 126 (2002), 249–288.

[19] I.M. GELFAND, D. KROB, A. LASCOUX, B. LECLERC, V. S. RE-
TAKH, and J.-Y. THIBON, Noncommutative symmetric functions,
Adv. in Math. 112 (1995), 218–348.

[20] I. GESSEL, Noncommutative Generalization and q-analog of the
Lagrange Inversion Formula, Trans. Amer. Math. Soc. 257 (1980),
no. 2, 455–482.

[21] R.GROSSMAN and R. G. LARSON, Hopf-algebraic structure of
families of trees, J. Algebra 126 (1989), 184–210.

[22] R. GROSSMAN and R. G. LARSON, Hopf-algebraic structure of
combinatorial objects and differential operators, Israel J. Math. 72
(1990), 109–117.

[23] M. HAIMAN, Conjectures on the quotient ring by diagonal invari-
ants, J. Algebraic Combin. 3 (1994), 17–36.

[24] F. HIVERT, Hecke algebras, difference operators, and quasi-sym-
metric functions, Adv. Math. 155 (2000), 181–238.

[25] F. HIVERT, J.-C. NOVELLI and J.-Y. THIBON, Trees, functional
equations and combinatorial Hopf algebras, Europ. J. Combin. 29
(2008), 1682–1695.

[26] R. HOLTKAMP,OnHopf algebra structures over free operads, Adv.
Math. 207 (2006), 544–565.

[27] S. A. JONI and G.-C. ROTA, Coalgebras and bialgebras in combi-
natorics, Contemp. Math. 6 (1982), 1–47.

[28] G. KOENIGS, Recherches sur les intégrales de certaines équations
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