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Abstract. I present a theoretical study of current-voltage characteristics (I -V
curves ) of small Josephson junctions. In the limit of a small Josephson coupling
energy E J � kB T the thermal fluctuations result in a stochastic dependence of
the Josephson phase ϕ on time, i.e. the Josephson phase diffusion. These thermal
fluctuations destroy the superconducting state, and the low-voltage resistive state
is characterized by a nonlinear I -V curve. Such I -V curve is determined by the
resonant interaction of ac Josephson current with the Josephson phase oscillations
excited in the junction. The main frequency of ac Josephson current is ω = eV/h̄,
where V is the voltage drop on the junction. In the phase diffusion regime the
Josephson phase oscillations show a broad spectrum of frequencies. The aver-
age I -V curve is determined by the time-dependent correlations of the Josephson
phase. Bymaking use of the method of averaging elaborated in Ref. [1] for Joseph-
son junctions with randomly distributed Abrikosov vortices I will be able to obtain
two regimes: a linear regime as the amplitudes of excited phase oscillations are
small, and a strongly nonlinear regime as both the amplitudes of excited Joseph-
son phase oscillations and the strength of resonant interaction are large. The latter
regime can be realized in the case of low dissipation. The crossover between these
regimes is analyzed.

1. Introduction

A great attention is devoted to an experimental and theoretical study of
small Josephson junctions [2]. In these systems one can observe such
interesting physical phenomena as superconductor-insulator phase trans-
ition [3], Coulomb blockade of Cooper pairs [4,5], incoherent and coher-
ent Josephson phase-slips [6–8], Josephson phase diffusion [9,10], just to
name a few. The physical origin of all these phenomena is the presence
of thermal and/or quantum fluctuations that greatly influence the dc and
ac Josephson effect. In this paper we consider moderately small Joseph-
son junctions as the charging energy Ec is smaller than the Josephson
coupling energy, EJ . For such Josephson junctions one can safety neg-
lect the quantum fluctuations of Josephson phase. However, as EJ is
small, i.e. EJ � kB T , the Josephson phase diffusion regime induced
by thermal fluctuations, occurs. In the regime of a strong dissipation the
Josephson phase diffusion regime has been studied in detail experiment-
ally and theoretically [9–13]. Most pronounce features of the Josephson
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phase diffusion are the absence of the zero-voltage superconducting state,
nonlinear current voltage characteristics (I -V curves) occurring in a low
voltage region, and a strong suppression of the maximum current value.
In the presence of Josephson phase diffusion dc I -V curves can be

qualitatively explained as follows. As the dc voltage V is applied the ac
Josephson current with the main frequency ω = 2eV/h̄ is flowing in the
junction. Such a Josephson current excites the Josephson phase oscilla-
tions which, in turn, resonate with the alternating part of the Josephson
current leading to the finite dc current I . The thermal fluctuations result
in a broad spectrum of Josephson phase oscillations and determine the
strength of resonant interaction.
It is also well known for many years that in the Josephson phase diffu-

sion regime the dc I -V curves depend crucially on the Josephson phase
damping. Such a damping is determined mostly by various dissipative
effects and, in particular, the quasi-particles resistance. In the limit of
a large dissipation (damping) the amplitudes of excited Josephson phase
oscillations are small, and therefore, using the perturbation analysis the
dc I -V curve has been carried out quantitatively [2, 10, 12].

I = Ic

α

V Vp

V 2 + (δVp)2
, (1.1)

where we introduce the characteristic voltage Vp = h̄ωp/2e, the plasma
frequency ωp, and the dimensionless parameter α describing the dissip-
ative effects. In the Josephson phase diffusion regime the thermal fluc-
tuations induce a stochastic part of the Josephson phase ψ(t), and an
average dc I -V curve is determined by the specific time-dependent cor-
relation function of ψ(t), i.e. ρ(t) = < cos(ψ(t) − ψ(0)) >. As the
damping is large the ρ(t) shows a diffusive form: ρ(t) = exp(−δt). The
typical I -V curve of a small Josephson junction in the Josephson phase
diffusion regime is presented in Figure 1.
Notice here, that a crucial condition allowing one to obtain Equation

(1.1) is a large value of the damping parameter, α � 1. Thus, a next
question naturally arises: how vary the I -V curves in the limit of a small
damping? In such a case the Josephson phase displays oscillations with a
large amplitude, and the perturbation analysis can not be applied. Instead
of the perturbation approach I will use the method of averaging elabor-
ated in Refs. [1, 14]. Although this method has been used, previously,
in order to analyze the current resonances in long Josephson junctions
with randomly distributed Abrikosov vortices, i.e. coordinate-dependent
inhomogeneities, it is possible to adjust such a method to the Josephson
junction with thermal fluctuations, i.e. time-dependent inhomogeneities.
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Figure 1. The typical I -V curve of a small Josephson junction in the Josephson
phase regime. The voltage drop Vm and the current Im corresponding to the
maximum of I -V curve are shown.

The paper is organized as follows. In Section II the dynamics of the
Josephson phase in the low voltage resistive state and in the presence
of thermal fluctuations will be analyzed. In Section III we calculate the
time-dependent correlation functions of the Josephson phase ψ(t) de-
termining the electrodynamic properties of small Josephson junction. In
Section IV, by making use of the averaging method elaborated in Ref. [1]
we obtain the dc I -V curves of small Josephson junctions in the Joseph-
son phase diffusion regime. The Section V provides discussion and con-
clusions.

ACKNOWLEDGEMENTS. I acknowledge a partial financial support of the
Ministry of Education and Science of the Russian Federation.

2. The dynamics of the Josephson phase in the resistive state:
the Josephson phase diffusion regime

In order to quantitatively analyze the I -V curve of a small Josephson
junction in the Josephson phase diffusion regime we write the dynamic
equation for the Josephson phase ϕ(t)

ϕ̈(t)+ αϕ̇(t)+ sinϕ(t) = j + ξ(t). (2.1)

Here, j is the dc current, and ξ(t) is a random function of time t describ-
ing thermal fluctuations (the Langevin force). The dimensionless units
were used, i.e., the time is normalized to ω−1

p , the dc bias j = I/Ic is
normalized to the critical current value Ic. The solution of this equation
corresponding to the resistive state is written as

ϕ(t) = vt + ψ(t)+ ϕ1(t) , (2.2)
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where the dc voltage drop V is normalized to Vp as v = V/Vp, and
the random function ψ(t) determines the Josephson phase diffusion. As
the Josephson phase oscillations term ϕ1(t) is small, the perturbation ap-
proach can be used, and the Equation (1.1) is recovered. In a generic
nonlinear case ϕ1(t) is written as

ϕ1(t) = A(t)eivt + B(t)e−ivt , B(t) = A∗(t) . (2.3)

Thus, ϕ1(t) shows rapid oscillations of frequency v and a smooth time-
dependence describing by the function A(t). Substituting (2.3) in (2.1)
and carrying out the averaging over the rapid oscillations of frequency v
we obtain

|A|2 = 1

4

∫ ∫
dt1dt2G(t − t1)G

∗(t − t2){J0[|A|(t1)]J0[|A|(t2)]
+ J2[|A|(t1)]J2[|A|(t2)]} cos[ψ(t1)− ψ(t2)],

(2.4)

where Jn(x) are the Bessel functions, and the kernel G(x) is the Green
function of the following homogeneous equation

G̈(t)+ (2iv + α)Ġ(t)− (v2 − iαv)G(t) = 0. (2.5)

Similarly we calculate the dc current j flowing in the system

j = sin[A(t)eivt + B(t)e−ivt + vt + ψ(t)]
= 2

∫ ∞

0
dt I mG(t)

J1[|A|(t)]J0[|A|(t)]
|A|(t) cos[ψ(t)− ψ(0)] (2.6)

Thus, one can see that all electrodynamic properties of small Josephson
junctions in the phase diffusion regime are determined by the specific
correlation function, i.e. ρ(t) = < cos(ψ(t)− ψ(0)) >.

3. Time-dependent correlation function of the Josephson phase

In order to obtain the time-dependent correlation function of the Joseph-
son phase we write ψ(t) as

ψ(t) =
∫

dx R(t − x)ξ(x), (3.1)

where the kernel R(t) is the Green function of the following homogen-
eous equation

R̈(t)+ α Ṙ(t) = 0. (3.2)
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By making use of the method proposed and elaborated in [12, 15] we
obtain the correlation function ρ(t) in the following form

ρ(t) = exp

{
−
∫

dτ

τ0

∫
dξF(ξ)

{
1− eiτ0ξ [R(t−τ)−R(−τ)]}} , (3.3)

where F(ξ) and τ0 are the distribution function and the correlation time
of the current noise, accordingly. Since the R(t) is presented as R(t) =
(1−e−αt )

α
θ(t) we obtain in the limit of large dissipation

ρ(t) = exp(−δ|t |) , δ � α , (3.4)

where the parameter δ = τ0
2α2

∫
dξξ 2F(ξ) determines the decay of the

Josephson phases correlation function. In the opposite regime of δ � α

we obtain
ρ(t) = exp(−δα2|t |3/3) , δ � α . (3.5)

4. The I -V curves of small Josephson junctions:
phase-diffusion regime

First, we notice that the function |A(t)| smoothly depends on time in re-
spect to both the kernel G(t) and the correlation function ρ(t). Moreover,
the kernel G(t) has a simple form: G(t) = 1

α
eivt . By making use of this

assumption and taking into account an explicit expression for G(t) we
rewrite the Equations (2.4) and (2.6) as

|A|2 = J 20 [|A|] + J 22 [|A|]
4α2

∫ ∞

−∞
dteivt cos[ψ(t)− ψ(0)] (4.1)

and

j = 2J1[|A|]J0[|A|]
α|A|

∫ ∞

0
dt sin(vt) cos[ψ(t)− ψ(0)] (4.2)

Since we are interested in averaged quantity only, the dc I -V curve can be
expressed through the voltage dependent correlation time τ(v) = τ1(v)+
iτ2(v), where

τ1(v) =
〈∫ ∞

0
dt cos(vt) cos[ψ(t)− ψ(0)]

〉
(4.3)

and

τ2(v) =
〈∫ ∞

0
dt sin(vt) cos[ψ(t)− ψ(0)]

〉
(4.4)
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By making use of Equations (3.4) and (3.5) we obtain that τ1 approaches
to the finite value for small values of voltage v as

τ1(0) =
{
1
δ

if δ � α

�(1/3)(9δα2)−1/3 if δ � α
(4.5)

In the opposite limit of large values of v the τ1 decreases as 1/v2 for
overdamped junctions (δ � α) and it becomes exponentially small for
underdamped junctions (δ � α). The correlation time τ2 linearly in-
creases for small values of v, and decreases as 1/|v| for large values of
voltage v.
Next we analyze the Equations (4.1) and (4.2) determining the current-

voltage characteristics of a small Josephson junction. In the limit of a
small value of τ1(v) or more precisely τ1 � α2 the amplitude of Joseph-
son phase oscillations |A| is small, and expanding the Bessel functions
over a small argument A we obtain

j (v) = τ2(v)

α
, τ1(v)� α2. (4.6)

In this regime the current I increases linearly in the region of small
voltages, and in the limit δ � α we recover Equation (1.1). In the op-
posite regime, τ1(v)� α2, the amplitude of Josephson phase oscillations
becomes large but the current I is still strongly suppressed by oscillations
of Bessel functions. In this strongly nonlinear regime the averaged value
of I is expressed through the parameters τ1 and τ2 as

j (v) = τ2(v)
(
α

τ 21

)1/3
exp

[
−1
4

( τ1
4α2

)2/3]
, τ1 � α2. (4.7)

Thus, one can see that in the low dissipative junctions (α << 1) the linear
resistance is strongly (exponentially) suppressed.

5. Discussion and Conclusions

A theoretical study of the low-voltage resistive state of small Joseph-
son junctions has been developed. In such junctions as EJ � kB T the
thermal current fluctuations induce a stochastic time dependence of the
Josephson phase. These fluctuations of the Josephson phase destroy the
superconducting state and a specific resistive state occurs. The I -V curve
in such so-called Josephson phase diffusion regime crucially depends on
the dimensionless dissipation parameter α. As this parameter is large, i.e.
α � 1, the Josephson phase dynamics is strongly overdamped and the
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amplitudes of self-excited Josephson phase oscillations are small, there-
fore one can apply perturbation analysis, and the I -V curve is described
by Equation (1.1) or Equation (4.6). Moreover, in the case of a large dis-
sipation Vm = δVp and Im = Ic/(αδ) (see Figure 1). Notice here, that in-
troduced parameters δ and α can be expressed through the physical char-
acteristics of a junction as δ = (2πkB T )Rn/(Vp�0) and α = Vp/(Ic Rn),
where Rn is the quasi-particle resistance, Ic is the nominal critical cur-
rent, and �0 is the magnetic flux quantum [10].
In an opposite regime of a strongly underdamped junction, i.e. α � 1,

the amplitudes of self-excited Josephson oscillations are large, and the
perturbation analysis can not be applied. Instead of that I used the method
of averaging elaborated previously in Ref. [1,14]. In this a strongly non-
linear regime the I -V curve is described by Equations (4.7) and (4.5).
In this underdamped regime the both values Vm = Vpδ(α/δ)

2/3 and
Im � Ic exp [−4−5/3(δα8)−2/9)] are strongly suppressed in respect to the
overdamped case.
Finally, we notice that the crossover between these two regimes is de-

termined by the ratio of the parameters δ and α. Since this ratio depends
on the critical current value Ic, such a crossover can be observed experi-
mentally in a single setup just by application and variation of an external
magnetic field.
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