
EDIZIONI
DELLA
NORMALE

No-nonsense
Physicist
An overview of
Gabriele Giuliani’s work and life

edited by
Marco Polini, Giovanni Vignale,
Vittorio Pellegrini and Jainendra K. Jain



2

QUADERNI
SELECTIONS



R. Asgari
School of Physics
Institute for Research
in Fundamental Sciences
(IPM)
Tehran 19395-5531, Iran

J. Capps
Department of Physics
Carnegie Mellon University
Pittsburgh, PA 15213

S. Chesi
Beijing Computational
Science Research Center
Beijing 100084, China

M. Daniels
Department of Physics
Carnegie Mellon University
Pittsburgh, PA 15213

M. V. Fistul
Theoretische Physik III
Ruhr-University Bochum
D-4081 Bochum, Germany
and
Theoretical Physics
and Quantum Technologies
Department
National University
of Science and Technology
MISIS
Moscow, Russia

J. K. Jain
Department of Physics
The Pennsylvania State
University
University Park
PA 16802, USA

Y. Lyanda-Geller
Department of Physics
Purdue University
West Lafayette
IN 47907, USA

D. C. Marinescu
Department of Physics
and Astronomy
Clemson University
Clemson
South Carolina 29634 USA

P. Muzikar
Department of Physics
Purdue University
West Lafayette
IN 47907, USA

F. Pellegrini
SISSA
Via Bonomea 265
34136 Trieste, Italia

V. Pellegrini
Istituto Italiano di Tecnologia,
Graphene Labs,
Via Morego, 30
I-16163, Genova, Italia

M. Polini
Istituto Italiano di Tecnologia,
Graphene Labs,
Via Morego, 30
I-16163, Genova, Italia
and
NEST, Scuola Normale
Superiore,
Piazza dei Cavalieri, 7
56126, Pisa, Italia

L. P. Rokhinson
Department of Physics
Purdue University
West Lafayette
IN 47907, USA

G. Santoro
SISSA
Via Bonomea, 265
34136 Trieste, Italia

G. Simion
Department of Physics
Purdue University
West Lafayette
IN 47907, USA

C. E. Sosolik
Department of Physics
and Astronomy
Clemson University
Clemson
South Carolina 29634, USA

E. Tosatti
SISSA
Via Bonomea, 265
34136 Trieste, Italia

G. Vignale
Department of Physics
and Astronomy
University of Missouri
Columbia
Missouri 65211, USA

S. Yarlagadda
CMP Div.
Saha Institute
of Nuclear Physics
Kolkata, India

No-nonsense Physicist
An overview of Gabriele Giuliani’s work and life



No-nonsense
Physicist
An overview of
Gabriele Giuliani’s work and life

edited by
Marco Polini, Giovanni Vignale,
Vittorio Pellegrini and Jainendra K. Jain



c© 2016 Scuola Normale Superiore Pisa

ISBN 978-88-7642-535-6
ISBN 978-88-7642-536-3 (eBook)



Figure 1. Gabriele (left) and Gio-
vanni Vignale (right) promoting the
sales of their newly published book
at the Cambridge University Press
boot at the 2005 American Phys-
ical Society March Meeting in Los
Angeles (USA).

Figure 2. Gabriele with a big smile
on his face at the Montreal “Grand
Prix du Canada” in 2010.

Figure 3. Gabriele (left) and Giovanni Vignale (right) at the 1988 American
Physical Society March Meeting in New Orleans (USA).



Figure 4. Gabriele was a passionate supported of F.C. internazionale, one of the
two soccer teams based in the city of Milano (Italy). The picture was taken in
the summer of 2009.

Figure 5. Gabriele (right) with his (in)famous red minivan and his Formula Ford
car, which he used to call “his black girlfriend” (circa 2010).
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Preface

Gabriele Francesco Giuliani, Professor of Physics at Purdue University
(West Lafayette, Indiana, USA), died on November 22, 2012 (Thanksgiv-
ing Day) after a 12-year-long battle with a rare, slow-growing, relentless
form of cancer. His passion for life, his taste for simple and earthy pleas-
ures, and his no-nonsense attitude in science as in all other aspects of
life, remained with him until the last minute. This volume is as much
an attempt to pay tribute to his scientific contributions as to record the
many facets of his personality: scientist, educator, author, sportsman,
coach, polemist, family man, and provocateur. The gallery of photo-
graphs collected in the following pages will give an idea of the range of
his interests. The volume opens with a series of personal recollections of
Gabriele by his immediate family and friends. This is followed by a set
of scientific papers by former colleagues, collaborators and students of
Gabriele. These papers, especially written for this volume, report original
research on topics to which Gabriele made important contributions, and
often are inspired precisely by those contributions. A selection of reprints
of Gabriele’s most important scientific papers concludes the volume.

Born in Ascoli Piceno, Italy, on April 13, 1953, Giuliani was educated
at the University of Pisa where he graduated cum laude in 1976 under
the guidance of Professor Mario Tosi. He continued his studies at the
Scuola Normale Superiore in Pisa and was a researcher in Rome and in
Trieste, where he worked with Professor Erio Tosatti. In 1979 he met
Professor Albert Overhauser, who was to be the decisive influence in his
career. Fascinated by the physics of broken symmetry phases in simple
metals, he joined Overhauser at Purdue University in the study of collect-
ive modes of charge-density waves, the so-called “phasons” and “amp-
litons”. He eventually became a member of the physics faculty at Purdue
in 1984 –but not before completing an extremely fruitful postdoctoral ex-
perience at Brown University with Professor John Quinn. It was during
this period that some of his best known contributions sprang to life, such
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as the calculation of plasmon dispersions in semiconductor superlattices,
the discovery of the singular behavior of the quasiparticle linewidth as a
function of temperature in a two-dimensional electron gas, and the pre-
diction of a ferromagnetic phase transition in the two-dimensional elec-
tron gas in the quantum Hall regime (now experimentally observed).
Gabriele Giuliani’s field of research was the theoretical study of the

properties of low-dimensional electronic systems, particularly those that
are controlled by electron-electron interactions. His enthusiasm for the
theory of the interacting Electron Gas earned him the nickname of “EG”
since the Trieste days. Many of his contributions are widely known and
some of them are featured in textbooks. Besides the already mentioned
works, these include an elegant analysis of the role of impurities in the
integer quantum Hall effect, an experimentally confirmed theory of the
effect of a magnetic field on the critical current of a layered supercon-
ductor, and numerous contributions to the foundations of the theory of
Fermi liquids, most recently in the presence of spin-orbit interactions.
Among his legacies is a monograph, co-authored with Giovanni Vignale,
on the “Quantum theory of the electron liquid” (Cambridge University
Press, Cambridge, 2005), which has become a standard reference for be-
ginning students and advanced researchers.
Giuliani was known in physics circles for his flamboyant personality,

his quick sense of humor, and his unremitting critical eye. Shunning the
superficial and the fashionable he always strove for genuine accomplish-
ment and complete intellectual honesty. His criticism could be abrasive,
but never intentionally so. His ability to entertain and provoke with hu-
morous word play was unmatched. He never lost the purity and the en-
thusiasm of his happy childhood in Ascoli Piceno. An avid soccer player
and sports critic to his last days, he successfully coached soccer teams
of all age groups at Purdue and in the Lafayette area. Other interests of
his were Hammond-based blues, wildlife (he boasted to have once met
a grizzly bear at Yellowstone), and all kinds of “italica”, ranging from
spaghetti alla carbonara “better than sex”, to espresso brews, to Italian
politics which he followed with a mixture of wit, concern, and shame. In
the early 2000, after surviving against all odds a first major operation to
remove a large liposarcoma, he decided to act on one of the great passions
of his youth: auto racing. Equipped with an old van Diemen, which he
used to call “his black girlfriend”, he experienced the adrenaline rush of
Formula Ford racing. During this period he also participated as a volun-
teer race marshal in several racing events. Above all, Gabriele Giuliani
loved his family, his mentors, and his students, several of which are now
professors in various countries. With his mentors he always enjoyed a re-
lation based on admiration, respect and love, and to his students he tried
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to give back what his mentors had given him. A few weeks before dying,
musing on the twelve years that followed his first encounter with cancer,
he told his wife: “If somebody had offered me this twelve years ago, I
would’ve signed on the dotted line in a minute to be able to live as well as
I did for these twelve years”. He died as he had lived, joyously, defiantly,
and deeply engaged in his own life.
This volume is dedicated to Gabriele’s wife, PamelaWilhelm-Giuliani,

his children Daniela, Adriana and Giuseppe and his siblings, Alessandro
and Carla Cutolo. But, more broadly, it is dedicated to the whole sci-
entific community of which Gabriele was part, in the firm belief that the
fruits of his scientific ingenuity will outlive him.

ACKNOWLEDGEMENTS. The Editors of this Volume wish to thank Luisa
Ferrini and the whole team of the “Edizioni della Normale” at the Scuola
Normale Superiore (Pisa, Italy) for their interest in this Volume.
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Adriana Giuliani

My father was a bear. This aspect changed from perspective.
I saw a grizzly, bristled and growling, wild and protective. His mentor

Tosatti saw a teddy bear. His students saw a majestic and noble beast.
There are lots of bears. Honey-loving Pooh bears. Lame-joke Yogi

bears. Coke-drinking polar bears. Yellowstone-cabin soap bears. My
father was each and all of these.
He was a bear.
It is only fitting, for he loved bears.
When we would go hiking, he would seek them out. He would stand

one hill away, binoculars in hand, inching forward towards the animal he
was. He would stride, camcorder in hand, towards a bear cowering on the
side of the road. Park rangers yelled at him to get back. He would yell
back in uncomprehending Italian.
Bears can be protective or solitary. Prone to tremendous wrath and

wide smiles. Harmless unless provoked or hungry.
For a long time, I only saw one face of the bear. I knew him always

and only as my father, far replaced from the cub he invariably was or the
teddy bear he could seem. I never knew him as an erudite physicist nor
fervent calciatore nor unabashed racer nor stimulating professor. He was
my father. He was fierce, he was strong, he was unrelenting.
He expected and insisted upon only the best from his children, even

if this expectation was limited in scope to lawyer or physician. He was
smartly and often scathingly sarcastic. He stubbornly and bravely held
a moral standard and true compassion which too many surrender. It was
under his order that I was raised, tossed between his math lessons and his
Befana masquerades. Mostly, I feared him and in that fear, I respected
him.
He loved- infuriatingly, passionately, insistently- he loved. “I love you

guys”, he breathed on his deathbed, “so much”.
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He loved life. He loved speeding up the top of a mountain so he could
look down. He loved cooking with the colors of the Italian flag. He
loved swimming past the rocks, to the furthest proper boundaries and
beyond. He loved Christmas ornaments that glowed and whistling the
tune of “The Good, the Bad, and the Ugly”. When he smiled, it was
broad and wrinkled the edges of his eyes. When he laughed, it was loud
and emanated from deep in the throat. His spirit burst forth and embedded
itself in those moments.
He was free, unabashed, daring. He spoke with words that were only

ever his own. He drove alone, pedal pushed down, speeding his racecar
around the next corner. He flung curses at whoever needed them the most.
He climbed onto rocks where he would fall.
When he fell, and fall he would, he always stood back up. He always

defied the odds, beating them down with what only was pure will. When
he died, and die he would, it was only with the consent of that same will.
The odds never stood a chance against this bear of a man, with daunting
blue eyes and thick mane of black hair.
I never saw a mark or wrinkle or gray hair to show what he had over-

come. For my twenty long years, he was my same father. Always pro-
tective and guarded, always holding us up and telling us to be better.
He put his shoulder around me as I was shaking in an ambulance, mo-

ments from a scare with a car crash, and spoke in low tones “It’s okay,
baby. It’s okay”. He sent me a jubilant text when I completed my studies
in Guatemala, calling me gringa and signing el papa’ and again men-
tioning that I am muy blanca. “Adriana, Adriana mia”, he called me,
half-mumbling the words.
“Be good”, he always managed to say to me, as I kissed a grizzled

cheek and said goodbye. Eventually, the goodbyes came to an end.
It is only after his death, in my own adventures in Italy, in my moments

with my Nonna, in my sifting through old letters, in my meeting older
friends, that I have come to know the other faces of the bear. I learned
about the cigarette burns administered by his officemate in Trieste, about
his mandate on the cleanliness of his carpet in Providence, about his in-
sistence on getting water from his mother “per bere” instead of “per pia-
cere”. More stories trickle down to me, unveiling more and more the
character of a man I only knew as my father. More stories I still hold, in
the recesses of my mind, of the bear I saw in my eye. This is the best
proof that these memories and this spirit lives on.
A bear is a beast not to be trifled with and never to be forgotten.
February 7, 2014

Adriana Giuliani



Giuseppe Giuliani

When thoughts concerning my father come to mind, I always find myself
lost. Boys look up to their fathers. I must look up to what my father was
and what he stood for. Who was he? This is the hardest question which
I must approach everyday. Gabriele Giuliani constantly drove himself to
wrench the most out of life. He seemed to be able to accomplish any-
thing. Starting from the day he was born on the kitchen table of his par-
ents’ home in Ascoli Piceno, he pushed himself into becoming Professor
Giuliani, a great soccer player, a passionate musician, and a courageous
racecar driver. Most everyone knew him from one of these very different
and discrete worlds, but I knew him as the man that raised me. Gabriele
was very set in his ways; he would never compromise what he truly be-
lieved in for anything. This uncompromising nature was what I thought
was most unique about him. My father took many actions that were con-
sidered unusual or unaccepted because he believed whole-heartedly that
what he did was right, not that he would profit from it. Many people today
do not make decisions based on a moral basis but on a dormant nihilism
that lies in their instinctive nature. Though simple, I always admired this
in him because it made him more trustworthy in serious situations. In my
eyes, this along with his intelligence, passion for knowledge and drive to
push life to its limits made him who he was. I do not claim to understand
the full impact my father had on the academic world, the football world
and the racing world; I hope that through life and my studies I will dis-
cover more and more as to who my father was and what I have to look
up to. I loved my father, and I hope that what whatever I become would
have made him proud.
April 1, 2014

Giuseppe Giuliani



Memories of Gabriele

Paul Muzikar

It is not an easy task to capture Gabriele’s unique personality by putting
pen to paper. The excitement and liveliness he brought to everything he
did made a deep mark on those who knew him. In a profound way, he
showed us all the value of living one’s life with attention and with spirit.
In his remarks at Gabriele’s memorial service, his friend Nick Giordano
laid particular stress on Gabriele’s passion; this emphasis on passion is a
wise guide to follow in our thoughts of Gabriele. In the following I will
offer a few memories.
One absolutely crucial aspect of Gabriele’s years at Purdue was his

special connection with Al Overhauser. Gabriele had been a postdoc
with Al, and then, after working with John Quinn, returned to Purdue
as a colleague. They differed in many significant ways: conservative vs.
socialist, devout Catholic vs. skeptic. Yet they had a deep respect for
each other, and their mutual affection was wonderful to see. Their spe-
cial bond permitted them to have passionate discussions (i.e. arguments)
concerning all aspects of physics. An unwitting observer of such a dis-
cussion might easily misunderstand what was going on.
In a sense their strengths were complementary. Al was a tremendously

creative scientist; he was a constant source of ideas, and was not afraid of
voicing even somewhat unconventional ones. Gabriele’s clear, incisive,
critical intelligence served as a sounding board, and their mutual trust and
affection allowed for an exuberant and lively exchange.
Gabriele and Al shared a passion for condensed matter physics, believ-

ing it to be a sublimely beautiful subject. Gabriele transmitted this out-
look to his students and colleagues, and as the years went on, assumed a
leading role in the condensed matter group at Purdue.
In his teaching, Gabriele was demanding; he wanted his students to

really understand the physics. But he was very generous with his time
and effort in helping even an unskilled student, if he felt the student was
willing to work. Someone not willing to tackle physics with effort and
passion did not receive as much sympathy.
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Besides family and physics, Gabriele’s chief passion was soccer. I
think in his heart he believed that if physics had not worked out, he could
have had another life as a player in Serie A. He played soccer with pas-
sion, and taught others with passion. More than once, the two of us took
an afternoon break from physics, went to my house, and watched a Cham-
pion’s League game. His comments always gave me a mini-clinic on the
subtleties of the game.
His devotion to the Italian national team was intense. If the team lost

a critical game, it would be a bad mistake to make jokes about the defeat
after the game. A recovery period of perhaps a week was needed. It took
a lot of effort to convince him to grudgingly admit that a team not in Serie
A was very good.
Yellowstone National Park was another of Gabriele’s great passions.

His view, often strongly expressed, was that visiting Yellowstone far out-
ranked almost any other trip one could make. Perhaps as a European,
he avoided the tendency of Americans to take Yellowstone for granted.
He was quite proud of his somewhat dangerous encounter there with a
grizzly bear. Gabriele’s enthusiasm was the direct cause of the first trip
my wife and I made to Yellowstone, and I owe him for this.
Gabriele held strong views about food and cooking, and it must be ad-

mitted that his skill in the kitchen entitled him to those views. Countless
friends have eaten some of their best meals with Gabriele and his family.
On the other hand, it was somewhat risky to invite him over for dinner.
If Gabriele felt the food being served was perhaps not the best, it was
essentially impossible for him to offer false praise to his hosts; food was
too important to permit any diplomatic ‘white lies’. The converse of this
was that any praise from Gabriele had a deep meaning for the cook.
In all these endeavors (physics, soccer, cooking) the crucial point was

to approach the job with care, flair, and effort. He held himself, and all of
us, to a high standard in which laziness and inattention were the enemies.
Of course, this attitude could make Gabriele a ‘pain in the neck’ at times,
on the soccer pitch, in the kitchen, or in the physics building.
The reader may notice that, as promised in the first paragraph, the word

“passion” has perhaps been overused in the preceding recollections. But
I feel that no correction or revision is needed. Gabriele’s passion, ulti-
mately a form of love, coupled with his keen and quick mind, made him
the remarkable man we all miss so much.
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Introduction to electronic and optical
properties of two-dimensional
molybdenum disulfide systems

Reza Asgari

Abstract. Two-dimensional (2D) nanomaterials have attracted increasing atten-
tion because of their unusual physical and chemical properties. Among these 2D
nanomaterials, the monolayers of layered transition metal dichalcogenides exhibit
intriguing electronic and optical properties. In this chapter, therefore, the elec-
tronic and optical properties of monolayer MoS2 are briefly reviewed. We present
a model Hamiltonian within tight-binding theory, some transport properties like
the charge compressibility in the mean-field approximation, plasmon modes in
the Random-Phase Approximation and intrinsic optical properties of monolayer
MoS2. Finally, we briefly discuss many-body ground-state of the system and its
quantum phase transition in physical parametric space within Hartree-Fock theory.

1. introduction

Two-dimensional (2D) materials have been one of the most interesting
subjects in condensed matter physics for potential applications due to the
wealth of unusual physical phenomena that occur when charge, spin and
heat transport are confined to a 2D plane [1]. These materials can be
mainly classified in different classes which can be prepared as a single
atom thick layer namely, layered van der Waals materials, layered ionic
solids, surface growth of monolayer materials, 2D topological insulator
solids and finally 2D artificial systems and they exhibit novel correlated
electronic phenomena ranging from high-temperature superconductivity,
quantum valley or spin Hall effect to other enormously rich physics phe-
nomena. 2D materials can be mostly exfoliated into individual thin layers
from stacks of strongly bonded layers with weak interlayer interaction
and a famous example is graphene, hexagonal boron nitride [2] and black
phosphorus [3].
The 2D transition metal dichalcogenides, on the other hand, exhibit

novel correlated electronic phenomena ranging from insulator to super-
conductor show a wide range of electronic, optical, mechanical, chem-
ical, and thermal properties [4]. In contrast to the zero-gap graphene, the
2D transition metal dichalcogenides possess sizable bandgaps, very im-
portant to field-emission transistors and optoelectronic devices. They are
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a class of materials with the formula XY2, where X is a transition metal
element from group IV (Ti, Zr, Hf, and so on), group V (for instance V,
Nb, or Ta) or group VI (Mo, W, and so on), and Y is a chalcogen (S,
Se, or Te). These materials have crystal structures consisting of weakly
coupled layers YXY, where a X-atom layer is enclosed within two Y lay-
ers and the atoms in layers are hexagonally packed. Adjacent layers are
weakly held together by van der Walls interaction to form the bulk crystal
in a variety of polytypes, which vary in stacking orders and metal atom
coordination. The overall symmetry of transition metal dichalcogenides
is hexagonal or rhombohedral, and the metal atoms have octahedral or
trigonal prismatic coordination.
The monolayer MoS2 has recently attracted great interest because of

its potential applications in 2D nanodevices [5, 6], owing to the struc-
tural stability and lake of dangling bands, although it had been obtained
and studied in the several decades ago [7]. The monolayer MoS2 is a
direct gap semiconductor with a bandgap of 1.8 eV [5], and can be eas-
ily synthesized by using scotch tap or lithium-based intercalation [5–8].
The mobility of the monolayer MoS2 can be at least 217 cm2V−1s−1 at
room temperature using hafnium oxide as a gate dielectric, and the mono-
layer transistor shows the room temperature current on/off ratios of 108

and ultralow standby power dissipation [5]. Recently, the MoS2 nan-
oribbons have been obtained by using electrochemical method [9]. The
experimental achievements triggered the theoretical interests on the phys-
ical and chemical properties of monolayer MoS2 nanostructures to re-
veal the origins of the observed electrical, optical, mechanical, and mag-
netic properties, and guide the design of novel MoS2-based devices. The
layered structure of MoS2 is formed by graphene-like hexagonal arrange-
ment of Mo and S atoms bonded together to give S-Mo-S sandwiches.
The S-Mo-S units are stacked on top of each other and are held together
by weak noncovalent interactions. In this arrangement, in each layer Mo
atom is covalently bonded to six sulfur atoms, whereas each sulfur atom
is connected to three Mo atoms. The structure is uniquely determined by
the hexagonal lattice constant a, the out-of-plane lattice constant c, and
the internal displacement parameter z. The experimental lattice constants
and the internal displacement parameter were determined as a = 3.16 Å,
c = 12.58 Å, and z = 0.12 Å.
Optical spectroscopy, on the other hand, is a broad field and useful

to explore the electronic properties of solids. Optical properties can be
tuned by varying the Fermi energy or the electronic band structure of 2D
systems. Recently, developed 2D systems such as gapped graphene [10],
thin film of the topological insulator [11,12], and monolayer of transition
metal dichalcogenides [4] provide the electronic structures with direct
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band gap signatures. The optical response of semiconductors with dir-
ect band gap is strong and easy to explore experimentally since photons
with energy greater than the energy gap can be absorbed or omitted. The
thin film of the topological insulator, on the other hand, has been fab-
ricated experimentally by using Sb2Te3 slab [13] and has been shown
that a direct band gap can be formed owing to the hybridization of top
and bottom surface states. Furthermore, a non-trivial quantum spin Hall
phase has been realized experimentally which was predicted previously
in this system [14–16]. Although pristine graphene and surface states
of the topological insulator reveal massless Dirac fermion physics , by
opening an energy gap they become formed as massive Dirac fermi-
ons. The thin film of the topological insulator and monolayer transition
metal dichacogenides can be described by a modified-Dirac Hamilto-
nian. The optical response in monolayerMoS2 to increases in comparison
with its bulk and multilayer structures [17–21] since, as we mentioned
before, a monolayer of the molybdenum disulfide is a direct band gap
semiconductor [5], however its multilayer and bulk show indirect band
gap [4].
One of the main properties of MoS2 is a circular dichroism aspect re-

sponding to a circular polarized light where the left or right handed polar-
ization of the light couples only to the K or K ′ valley and it provides an
opportunity to induce a valley polarized excitation which can profoundly
be of interest in the application for valleytronics [22–24]. Another pe-
culiarity of MoS2 is the coupled spin-valley in the electronic structure
which is owing to the strong spin-orbit coupling originating from the ex-
istence of a heavy transition metal in the lattice structure and the broken
inversion symmetry too [25]. These two aspects are captured in a minima
massive Dirac-like Hamiltonian introduced by Xiao et al. [25] However it
has been shown , based on the tight-binding [26,27] and k.p method [28],
that other terms like an effective mass asymmetry, a trigonal warping, and
a diagonal quadratic term might be included in the massive Dirac-like
Hamiltonian. The effect of the diagonal quadratic term is very important,
for instance, if the system is exposed by a perpendicular magnetic field,
it will induce a valley degeneracy breaking term [26]. The optical prop-
erties of MoS2 have been evaluated by ab-initio calculations [29] and
studied theoretically based on the simplified massive Dirac-like model
Hamiltonian [30], which is by itself valid only near the main absorbtion
edge. A part of the model Hamiltonian which describes the dynamic
of massive Dirac fermions are known in graphene committee to have an
optical response quite different from that of a standard 2D electron gas.
Thus it would be worthwhile to generalize the optical properties of such
systems by using the modified-Dirac fermion model Hamiltonian [31].
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2. Theory and method

2.1. Electronic band structure and low-energy Hamiltonian

The applications of MoS2 monolayer in electronic and optoelectronic
devices are directly dependent on its electronic properties, such as band
structure and density of states. The band structure of bulk MoS2 calcu-
lated from first-principles show indirect-semiconducting behavior with
a bandgap of 1.2 eV, which originates from transition from the top of
valence band situated at � to the bottom of conduction band halfway
between � and K high symmetry points [32]. The optical direct bandgap
is situated at the K point. As the number of layers decreases, the in-
direct bandgap increases. In the monolayer, the material changes into
a 2D direct bandgap semiconductor with a gap of 1.8 eV. At the same
time, the optical direct gap at the K point stays almost unchanged and
close to the value of the optical direct bandgap at the K point of a bulk
system. The change in the band structure with layer number in MoS2
is due to quantum confinement and the resulting change in hybridization
between pz orbitals on S atoms and d orbitals on Mo atoms. The states
near � point are due to combination of the anti-bonding pz orbitals on
the S atoms and d orbitals on Mo atoms and have a strong interlayer
coupling effect.
The calculated bandgap of MoS2 monolayer varies from 1.6 to 1.9 eV

due to different approximations for the exchange and correlation func-
tionals [33]. The theoretical results based on the Perdew-Burke-Ernzerhof
functional form of the generalized gradient approximation showed that
the bandgap of MoS2 monolayer is about 1.9 eV [32], which agrees
with the experimental data observed from photoluminescence [5]. It is
known, however, that DFT always underestimates the bandgaps of ma-
terials owing to the calculated unreliable exited states. Furthermore,
the strong exciton binding due to the weak screening compared to bulk
cases in low-dimensional systems may affect the bandgap. Therefore,
the good bandgap agreement between theoretical and experimental res-
ults for MoS2 monolayer may be a mere coincidence. The GW approach
is expected to yield more accurate gaps and predicted that the gap of



17 Introduction to two-dimensionalMoS2

MoS2 monolayer is 2.7-2.9 eV due to the effect of confinement and en-
vironment on the electronic structure and exciton binding energy [34].
It was argued that the experimentally observed gap was optical gap and
the exciton binding energy was about 0.8-1.0 eV [34]. The fundamental
bandgap of MoS2 monolayer, therefore, is about 2.8 eV. The direct exper-
imental confirmation on the prediction is still not available, and the issue
is open to question.
Moreover, the inversion symmetry is broken in monolayer MoS2 sim-

ilar to gapped graphene however it is preserved in gapless graphene. In
a monolayer MoS2, the sulfur atoms will be transformed into an empty
site and therefore, the transition from bulk MoS2 to a monolayer MoS2
removes inversion symmetry and breaks down the Kramers degeneracy
in most of the Brillouin zone. We can say that the dispersion relation
or Hamiltonian has time-reversal symmetry if the band energy satisfies
E(k, τ, s) = E(−k,−τ,−s) and it will has inversion symmetry if
E(k, τ, s) = E(−k,−τ, s) where s and τ indicate the spin and valley in-
dexes, respectively. In a system where the inversion symmetry is broken,
the valley degree of freedom can be distinguished. Thus, there is an in-
trinsic valley dependent Berry phase effect that can result in a valley Hall
transport with carriers in different valleys turning into opposite directions
transverse to an in-plane electric field.
The band structures and bandgaps of monolayer MoS2 are very sens-

itive to the external strain [35]. Compared to that of graphene, a much
smaller amount of strain is required to vary the bandgap of MoS2. The
mechanical strains reduced the bandgap of semiconducting MoS2 caus-
ing a direct-to- indirect bandgap and a semiconductor-to-metal transition.
These transitions, however, significantly depend on the type of applied
force. In addition, the results demonstrate that the homogeneous biaxial
tensile strain of around 10% leads to semiconductor-to-metal transition
in all semiconducting MoS2. With the applied strain influencing the band
gap, the effective mass of carriers is also changed. By considering the
accurate bandgap of MoS2, the required strain for the transition should
be increased.
One of simplifications over the first-principle calculations is the tight-

binding Hamiltonian. In this regard, it is assume that the orbitals that are
very similar at atomic scales, can be used as a basic for expanding the
wave function. In order to construct a tight-binding Hamiltonian for the
system, the knowledge of the lattice symmetry is needed. The symmetry
space group of MoS2 is D1

3h which contains the discrete symmetries C3

(trigonal rotation), σv (reflection by the yz plane), σh (reflection by the xy
plane) and any of their products [25]. Besides the symmetry of the lattice,
it is essential to consider the local atomic orbitals symmetries. The tri-
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gonal prismatic symmetry dictates that the d and p orbitals split into three
and two groups, respectively, {dz2}, {dx2−y2, dxy}, {dxz, dyz} and {px , py},
{pz}. The reflection symmetry along the z direction allows the coupling
of Mo dxz, dyz orbitals with only the pz orbital of the S atom, whose con-
tribution at the valence band maximum (VBM) and the conduction band
minimum (CBM) located at the symmetry points is negligible accord-
ing to first principle calculations [36]. Therefore the conduction band
minimum is mainly formed from Mo dz2 orbitals and the valence band
maximum is constructed from the Mo {dx2−y2, dxy} orbitals with mixing
from S {px , py} (Refs. [36, 37]) in both cases.
We thus constructed [26] the tight-binding Hamiltonian for MoS2 by

using symmetry adapted states and assuming nearest neighbor hopping
terms;

ĤT B =
∑
iμν

{
εa
μνa

†
iμaiν + εb

μνb
†
iμbiν + εb′

μνb
′†
iμb′

iν

}
+
∑

〈i j〉,μν
ti j,μνa

†
iμ(biν + b′

iν)+ H.c. (2.1)

Here a and b(b′) indicate the Mo and S atoms in the up (down) layer,
respectively. The indices μ and ν show the orbital degrees of freedom
labelled as {1, 2, 3} ≡ {dz2, dx2−y2 + idxy, dx2−y2 − idxy} and {1′, 2′} ≡
{px + i py, px − i py} for Mo and S atoms, subsequently. Therefore the
matrices εa , εb(εb′), and ti j,μν =< a, i, μ|H |b, j, ν > are responsible
for the on-site energies of Mo and S atoms, and hopping between dif-
ferent neighboring sites in the space of different orbitals, respectively.
We do need to take into account the overlap integrals, S, defined sim-
ilar to the hopping terms of the Hamiltonian with elements si j,μν =<
a, i, μ|b, j, ν >.
Due to the trigonal rotational symmetry of the Hamiltonian, the sym-

metry properties of the lattice the number of independent variables are re-
duced [26]. Furthermore, a good approximation is provided by the Slater-
Koster method [38] in which all of the hopping and overlap integrals are
written as a linear combinations of the hopping integrals Vpdσ , Vpdπ and
overlap integrals Spdσ , and Spdπ where Vpdσ =< R′, p, σ |H |R, d, σ >
and Spdσ =< R′, p, σ |R, d, σ >, for instance.
One of the ways in which MoS2 differs from graphene is the presence

of strong spin-orbit interactions. The coupling between the spin and an-
gular momentum of electrons creates an internal magnetic field that can
break down Kramers degeneracy in systems without inversion symmetry,
such as, for example, zinc blende semiconductors as the twofold degen-
eracy throughout the Brillouin zone is no longer required. To complete
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our effective Hamiltonian, we need to add the spin-orbit interaction (SOI)
in the model which causes spin-valley coupling in the valence band. The
large SOI in MoS2 can be approximately understood by intra atomic con-
tribution HSO = ξ(r)S.L. The spinvalley coupling at the valence-band
edges suppresses spin and valley relaxation, as flip of each index alone is
forbidden by the valley-contrasting spin splitting. As a result, a change
in valence carrier spin state and hence valley in k-space will be far less
likely in monolayer MoS2. We only consider only the most important
contribution of the Mo atoms which gives rise to the spin-orbit coupling
term H Mo

SO = λ diag{0, s,−s} in the basis of states {1, 2, 3} where λ is
the spin-orbit coupling and s = ±.
Generally, our tight-binding model leads to seven bands for each spin

component, however, in the absence of external bias i.e. U c = 0 the sym-
metry between top and bottom S sublayers reduces the number of bands
to five. Two of them correspond to the conduction and valence bands,
from which we calculate the effective electron and hole masses, energy
gap, and valence band edge. Moreover, since the conduction band min-
imum mostly comes from d orbitals [36], we assume 10% mixing with
p orbitals for the conduction band. This assumption is in good agree-
ment with the result reported in Ref. [39]. This provides us with five
equations for seven unknown parameters based on the values obtained
from ab initio calculations and experimental measurements. Further-
more, it is reasonable to consider sμν/tμν = 0.1 eV−1 which reduces
the number of unknown parameters to five. We consider the energy gap

 = 1.9 eV, spin-orbit coupling λ = 80 meV, effective electron and
hole masses me = 0.37m0 and mh = −0.44m0 (m0 is the free electron
mass) [40], and EV B M = −5.73 eV [41]. Eventually, all parameters can
be fixed and we then obtain [26] the on-site energies A1 = −1.45 eV,
A2 = −5.8 eV, B = 5.53 eV and hopping integrals eiπ/6t11 = 0.82 eV,
e−iπ/6t21 = −1.0 eV, and e−iπ/2t22 = 0.51 eV.
Now, we present an effective low-energy two-band continuumHamilto-

nian governing the conduction and valence bands around the K and K ′
points, by exploiting the Löwdin partitioning method [42]. After straight-
forward but lengthy algebra, the final result for the two-band Hamiltonian
describing the conduction and valence bands near K or K ′ reads,

Hτ s = 


2
σz + λτ s

1− σz

2
+ t0a0q · σ τ

+ h̄2|q|2
4m0

(α + βσz)+ t1a
2
0q · σ ∗

τ σxq · σ ∗
τ (2.2)
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for spin s = ± and valley τ = ±, with Pauli matrices σ τ = (τσx , σy)

and momentum q = (qx , qy). The numeric values of the two-band model
parameters are t0 = 1.68 eV, t1 = 0.1 eV, α = 0.43, and β = 2.21.
Notice that α = m0/m+ and β = m0/m−−4m0v

2/(
−λ) where m± =
memh/(mh±me) and v = t0a0/h̄. Moreover, a quadratic correction δλ ≈
(0.03 eV)(a0|q|)2 arises to the spin orbit coupling due to folding down
of the five-band model to a two-band one. This correction is estimated
by using the effective masses of two spin-split valence band branches
as mh(↑) = −0.44m0 and mh(↓) = −0.46m0 at the K point. Notice
that the correction term can be safely ignored in the validity range of the
effective low-energy two-band model, (a0|q| � 1).
The Hamiltonian differs from that introduced by Xiao et al. [25] be-

cause of the second order terms in q. The diagonal q2 terms, which con-
tribute in the energy, to the same way as does the first order off-diagonal
term, are responsible for the difference between electron and hole masses
recently reported by using ab initio calculations [40]. Moreover, the last
term leads to anisotropic q3 corrections to the energy which contribute
to the trigonal warping effect. Importantly, α vanishes for the case that
me = −mh , however β remains a constant. Basically, there is the pos-
sibility to have a cubic off-diagonal term in the low-energy Hamiltonian
which in the calculation of the eigenvalues of the Hamiltonian are mul-
tiplied with the off-diagonal q terms and eventually contributes at the
same order as the diagonal q2 terms. Since that term is very small, we
thus ignore the q3 off-diagonal term.
Figure 1 shows the band structure of MoS2 consisting of five bands for

each spin in the absence of an external field. Two of them are spin po-
larized (dot-dashed and dashed lines) and the others are spin degenerate
(solid lines). We note that due to the limitations of our model, the high
energy bands may not be comparable with those of first principal calcula-
tions in a quantitative manner. Figure 1(b) shows a comparison between
our results and those calculated by density functional theory [40] indic-
ating that our theory is in good agreement with density functional theory
results close to the K point up to a high particle (hole or electron) dens-
ity 1014cm−2 (the Fermi energy is EF − ECBM � 0.2 eV). Nevertheless
our effective model Hamiltonian does not provide a good description of
the physics around the � point where other orbitals like pz must be con-
sidered in order to describe the electronic dispersion [39].
We further investigate the band structure close to the valence and con-

duction bands and our numerical results are shown, via contour plots
which show the isoenergy lines, in Figure 2. A strong anisotropy of the
constant energy lines can be seen around K points in the valence band,
due to the trigonal warping, while in the conduction band all lines are al-
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Figure 1. (Color online) (a) Band structure of MoS2 consisting of five bands in
which two are spin split in the valence band. The dot-dashed line refers to one
spin and the dashed line denotes another spin component. Solid lines refer to the
spin degenerate band. (b) A comparison between the band structure calculated
by the present theory (solid lines) and the results calculated in Ref. [40] (dashed
lines) based on density functional theory. Notice that our theory works quite well
around theK point for the particle (hole or electron) density less than 1014cm−2
(EF − EC B M � 0.2 eV). Here, a0 = a cos θ where a is the length of Mo-S
bond and θ is the angle between the bond and the xy plane. (c) Side and top
views of the lattice structure are seen where Mo atom (larger green sphere) is
surrounded by six S atoms.

most isotropic; the warping is due to the difference of the orbital structure
of the conduction and valence bands.
To study the interplay of spin and valley physics, we introduce, by ig-

noring trigonal warping, the effect of a time reversal symmetry breaking
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Figure 2. (Color online) Contour plots of the conduction (top panel) and valence
(bottom panel) bands in momentum space for spin-up component together with
isoenergy lines for to guide the eye. While the conduction band shows almost
isotropic dispersion, the trigonal warping occurs in the valence band around
K points due to the difference of the orbital structures of the conduction and
valance bands.

term by applying a perpendicular magnetic field, leading to the appear-
ance of Landau levels (LLs) as follows,

E±
n,τ s = ±

√[

− λτ s

2
+ h̄ωc

(
βn − ατ

2

)]2
+ 2

(
t0a0
lB

)2
n

+ λτ s

2
+ h̄ωc

(
αn − βτ

2

)
, n = 0, 1, . . .

(2.3)
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where ωc = eB/2m0 and lB = √
h̄/(eB) are the cyclotron frequency and

magnetic length, respectively. It should be noticed that the trigonal warp-
ing term, t1, leads to a second order perturbation correction in the Landau
level energy and accordingly its effect on the Landau levels is very weak.
In contrast to Ref. [60], we see an additional valley degeneracy breaking
term which is the reminiscent of the Zeeman-like coupling for valleys.
For more details of the derivation of the integral quantum Hall effect,
which was first suggested by Laughlin in 1981, see Ref. [43]. Figure 3
shows the band structure in the presence of the perpendicular magnetic
field calculated by the full tight-binding Hamiltonian. It should be no-
ticed that the edge band indicated in the figure might not be reliable ow-
ing to the absence of the symmetries at the edges and the contribution of
other d-orbitals which are not included in the tight-binding Hamiltonian.
The conduction band LLs are valley polarized and the valence band LLs
are both valley and spin polarized although we have not yet considered
the usual Zeeman interaction for spins. In particular, the n = 0 LLs,
E+
0,τ s = [
−h̄ωcτ(β+α)]/2 and E−

0,τ s = λτ s−[
+h̄ωcτ(β−α)]/2, de-
pend on the magnetic field strength in opposite ways for the two valleys.
More intriguingly, the splittings of LLs in the conduction and valence
bands δE+ ≈ 5.4h̄ωc and δE− ≈ 4.6h̄ωc, differ from each other due to
the difference ofme and−mh . The full numerical results also confirm our
results obtained by the low-energy Hamiltonian and shown in Figure 3.
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Figure 3. (Color online) Band structure of a zigzag nano-ribbon MoS2 in the
presence of the magnetic field with width W = 149a0 and the absence of the
Zeeman term. Notice that the edge band indicated in the figure might not be fully
correct due to the absence of the symmetries at the edges and the contribution
of other d-orbitals which are not included in the tight-binding Hamiltonian. The
magnetic length is lB = W/10.
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2.2. Plasmons in MoS2

In the following, we want to investigate the plasmon spectrum and the
screening behavior. For this purpose, we need to calculate the dielectric
function, restricting ourselves to Random Phase Approximation [44] in
order to account for electron-electron interactions, given by

ε(q, ω) = 1− V (q)χ(q, ω) (2.4)

where V (q) = e2/2πε0q is the Fourier transform of the Coulomb poten-
tial in two dimensions, ε0 the background dielectric constant. The free
charge-charge response function given by a two-dimensional integral in
momentum space

χ0(q, ω) =
∑

s,τ,σ,σ ′=±

∫
d2k

(2π)2
| < χτ s

σ (k)|χτ s
σ ′ (k+ q) > |2

× f [ετ s
σ (k)] − f [ετ s

σ ′ (k+ q)]
ω − ετ s

σ ′ (k+ q)+ ετ s
σ (k)+ i0

(2.5)

where ετ s
σ (k) and χ

τ s
σ (k) are the energies and eigenstates of the low-

energy Hamiltonian mentioned in the previous subsection, for a given
valley τ , spin s, and pseudospin σ . The collective mode [45] is calcu-
lating by evaluating ε(q, ωq) = 0. The knowledge of the appropriate
limiting behavior of the Lindhard function will be crucial in analyzing
the excitation spectrum of systems that support different types of col-
lective modes [46]. It is important mentioning that the plasmon energy
in monolayer MoS2 is of the form ωq ∼ √

nq at the long-wavelength
behavior as in a conventional two-dimensional electron gas [45].
Due to the large value of the band gap, the interband part of the elec-

tron-hole continuum MoS2 is energetically very high and, subsequently,
the plasmon dispersion enters the intraband the electron-hole continuum
area [45]. This is quite different compared to graphene where due to the
singularity of the free polarizability at the boundary, damping can only be
caused by interband transitions. The damping process and the plasmon
life time are open questions in monolayer MoS2.

2.3. Ground-state energy and quantum magnetic phase transition
in MoS2

To study the effect of electron-electron interactions, we use a model
which includes both intravalley (long-range) and intervalley (short-range)
interactions as introduced by Roldan et al. [47]. We [48] consider the in-
teraction of quasiparticles by using the leading diagram approximation,
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which is just the exchange interaction. In this regard, the interacting
Hamiltonian in the mean-field approximation reads as

V|intra = 1

2S

∑
kk′,τ ss′,αβ

∑
q �=0
vqψ

†
k−q,τ s,αψ

†
k′+q,τ s′,βψk′,τ s′,βψk,τ s,α

V|inter = U

2S

∑
kk′q,τ s,αβ

ψ
†
k−q,τ s,αψ

†
k′+q,τ̄ s̄,βψk′,τ̄ s̄,βψk,τ s,α

(2.6)

where s̄ means −s, for instance. To account partially the screening ef-
fect and importantly to avoid any divergence within mean-field theory in
the system with long-range Coulomb interaction, we use an interaction
potential including Thomas-Fermi screening

vq = 2πe2

ε0(qTF + |q|) (2.7)

where ε0 is the effective dielectric constant and qTF=2πe2D(εF)/ε0 is the
Thomas-Fermi screening wave vector in whichD(εF)=(g/2π)(kdk/dε)
is the density of states at the Fermi energy, i.e. k = kF. Here g indicates
the degeneracy of each energy level. U = U4d × S in which U4d is the
Hubbard repulsion coefficient which mostly comes from 4d orbitals of
Mo atoms [47] and S = 3

√
3/2a20 is the unit cell area.

The Hamiltonian consists of a momentum-dependent pseudospin ef-
fective magnetic field that acts in the direction of momentum k. The band
eignestates in the positive and negative energy bands have their pseudos-
pins either align or oppose to the direction of the momentum [49–51].
Therefore, the mean-field Hamiltonian can be simplified as

HM F = H0 − 1

S

∑
kk′,τ s,αβ

ψ
†
k,τ s,αvk−k′ραβ(k

′, τ s)ψk,τ s,β

+ U

S

∑
kk′,τ s,α

trace[ρ(k ′, τ̄ s̄)]ψ†k,τ s,αψk,τ s,α

(2.8)

where a density matrix is defined as

ραβ(k, τ s) = 〈ψ0|ψ†k,τ s,βψk,τ s,α|ψ0〉 (2.9)

The space in which the Hamiltonian is diagonalized is based on electron
(ck) and hole(vk) operators with (c

†
k,τ s v

†
k,τ s) = (a†k,τ s b†k,τ s)U , where U

is the unitary matrix which diagonalizes the single particle Hamiltonian
given as U = (|ψ+〉, |ψ−〉). By noticing that 〈ψ0|c†k,τ sck,τ s |ψ0〉 = nc

k,τ s ,



26 Reza Asgari

〈ψ0|v†k,τ svk,τ s |ψ0〉 = nvk,τ s and 〈ψ0|c†k,τ svk,τ s |ψ0〉 = 〈ψ0|v†k,τ sck,τ s |ψ0〉 =
0, it would be easy to find that

ρaa(k, τ s)= (t0a0)2k2
(

nc
k,τ s

(t0a0)2k2 + D2+
+ nvk,τ s

(t0a0)2k2 + D2−

)
ρbb(k, τ s)=

(
D2+nc

k,τ s

(t0a0)2k2 + D2+
+ D2−nvk,τ s

(t0a0)2k2 + D2−

)
ρab(k, τ s)= ρ∗ba(k, τ s)

= −(t0a0)τke−iτφ

(
D+nc

k,τ s

(t0a0)2k2+D2+
+ D−nvk,τ s

(t0a0)2k2+D2−

)
(2.10)

where

D± = 


2
+ h̄2k2

4m0
(α + β)− E±

E± = ±
√(


− λτ s

2
+ h̄2k2

4m0
β

)2
+ (t0a0)2k2 + 1

2
λτ s + h̄2k2

4m0
α.

(2.11)

Consequently, the mean-field Hamiltonian (more details of analytical cal-
culations will be present elsewhere [48]) can be written as

HH F = Bτ s
0 (k)σ0 + Bτ s(k) · σ τ

Bτ s
0 (k) =

1

2
λτ s + h̄2k2

4m0
α − 1

2

∫
d2k ′

(2π)2
vk−k′ {nc

k′,τ s + nvk′,τ s}

+ U
∫

d2k ′

(2π)2
{nc

k′τ̄ s̄ + nvk′τ̄ s̄}

Bτ s
z (k) =


− λτ s

2
+ h̄2k2

4m0
β

− 1

2

∫
d2k ′

(2π)2
vk−k′

{
(t0a0)2k ′2 − D2+
(t0a0)2k ′2 + D2+

nc
k′,τ s

+(t0a0)
2k ′2 − D2−

(t0a0)2k ′2 + D2−
nvk′,τ s

}
Bτ s

x (k)− i Bτ s
y (k) = (t0a0)k(cosφ − i sinφ)

+
∫

d2k ′

(2π)2
vk−k′

{
(t0a0)k ′D+

(t0a0)2k ′2 + D2+
nc

k′,τ s

+ (t0a0)k ′D−
(t0a0)2k ′2 + D2−

nvk′,τ s

}
(cosφ′ − i sinφ′)

(2.12)
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where nc,v
k,τ s = �(εF − εc,v

k,τ s) is the Fermi distribution at zero temperat-
ure. It must be noted that instead of following a self-consistent procedure
to find particle distribution function, we just use its noninteracting from.
Moreover, to investigate the magnetic phase of the ground state in the
Hartree-Fock approximation, we use Stoner exchange model in which
it is assumed that the system is partially spin polarized. The spin po-
larization rate and the total charge density are ζ = (n↑ − n↓)/n and
n = n↑ + n↓, respectively. Notice that kFs is the wave vector of two spin
components of spin at each valleys where for the electron doped case
they are the same but in a hope doped case, they differ from each other
and the Fermi wave vector is kFs = kF(1+ sζ )1/2 in electron doped case.
The Fermi wave vector given by kF = √

4πn/g where g stands for the
degeneracy of the band structure which is equal to 4 in the later case. The
total energy per particle including the kinetic and the exchange terms for
electron doped case, reads as

εtot(n, ζ, ε0,U) = E↑ + E↓
N↑ + N↓

Es =
∑
kτ

εc
kτ snc

kτ s =
S

(2π)2
∑
τ

∫
εc

kτ snc
kτ sd2k

= S

2π

∑
τ

∫
εc

kτ snc
kτ skdk = S

2π

∑
τ

∫ kFs

0
εc

kτ skdk

Ns =
∑
kτ

nc
kτ s =

S

2π

∑
τ

∫
nc

kτ skdk = S

2π
k2Fs

(2.13)

where the total energy of occupied state in the valence band is considered
as the vacuum energy and we ignore its contribution in the energy per
particle. At zero temperature and electron doped case we thus have

εtot(n, ζ, ε0,U) =
∑
τ s

∫ kFs
0 εc

kτ skdk

k2F↑ + k2F↓

= 1

2k2F

∑
τ s

∫ kFs

0
[|Bτ s(k)| + Bτ s

0 (k)]kdk

(2.14)

and in addition, for the case of the hole dope system, the ground state
energy can be written as [48]

εtot(n, ζ, ε0,U) = −
∑
τ s

∫ kFs
0 εvkτ skdk

k2F↑ + k2F↓

= 1

2k2F

∑
τ s

∫ kFs

0
[|Bτ s(k)| − Bτ s

0 (k)]kdk.

(2.15)
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Finally, the critical density [52] in which the paramagnetic-to-ferromag-
netic Bloch phase transition [53] occurs can be obtained by following
criteria εtot(ncr , 1, ε0,U) = εtot(ncr , 0, ε0,U). Efforts to observe the
ferromagnetic phase predicted by Bloch have likewise been frustrated by
the difficulty of achieving low values of the charge density. The closest
thing to an experimental observation of this transition has come so far
from experiments in the 2D electron gas at high magnetic field. Under
appropriate conditions the magnetic field suppresses not only the kinetic
energy, but also the correlation energy. This leaves the exchange energy
master of the field, and leads to a ferromagnetic transition [54]. Here, we
show that the such a transition takes place for a hole doped system rather
than an electron doped case in the absence of the magnetic field.
We introduce an ultraviolet cutoff, kc for which the low-energy Hamil-

tonian is valid. A typical value for the cutoff is 1/a0, however we choose
kc = 0.5/a0 to be more precise based on the comparison between the
electron dispersion relation calculated by our Hamiltonian and the results
obtained by ab initio band structure [40].
In Figure 4(a), we report Hartree-Fock theory results for the inverse

thermodynamic density of states ∂μ/∂n. The decrease in ∂μ/∂n with
density is a consequence of the difference between hyperbolic and para-
bolic dispersion. We see that ∂μ/∂n is positive and enhanced by ex-
change interactions over the density range covered in this plot. In
Ref. [55] a nonmonotonic behavior was also found for a bilayer graphene
system within the Hartee-Fock approximation and the change in sign of
the inverse thermodynamic density of states predicted in very low density.
To calculate the magnetic phase transition, we investigate the condi-

tion for which εtot(n, 1, ε0,U) = εtot(n, 0, ε0,U) is satisfied by giving
n, u and ε0 parameters. Figure 4(b) shows the magnetic phase diagram
at given the charge density. The critical value of the intervalley interac-
tion in which the phase transition is occurred is plotted as a function of
the dielectric constant for for both electron and hole cases. The results
suggest that the system with hole charge carrier can easily go to the ferro-
magnetic phase in comparison with a situation in which the charge carrier
is the electron.
It turns out that the Bloch transition, a ferromagnetic ground-state,

is quantitatively incorrect in the Hartee-Fock approximation. In order
to obtain accurate ground-state energy, a renormalized Hamiltonian for
low-energy excitations [56] theory so that to derive the expression for
the interaction function in a paramagnetic system and the knowledge of
the energy functional appropriate to an infinitesimally polarized electron
liquid is needed.
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Figure 4. (color online) (a) Charge compressibility, defined by (n2κ)−1 =
∂μ/∂n where μ is the chemical potential for the electron doped case as a func-
tion of the charge density for varies dielectric constant. (b) Magnetic phase
diagram in the parameters space where each curve indicates the part of the para-
meter space in which ground-state is paramagnetic (ferromagnetic)

2.4. Optical properties

The optical absorbtion spectrum of bulk MoS2 shows two main peaks
corresponding to exciton bands, the so called A and B excitons [5]. They
are the direct band gap transitions at the K point of the Brillouin zone
between the maxima of split valance bands and the minimum of the con-
duction band. A peak centered about 1.9 eV while B peak centered at
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2.05 eV. Photoluminescence spectra at various temperature [57] show
that the two peaks red-shift and broaden with the increased temperature.
Furthermore, experiments [18, 58] reported observation and electrostatic
tunability of charging effects in positively charge X+, neutral X0 and
negatively charged X− excitons in field effect transistors via photolumin-
escence and by using high quality monolayer MoS2. The conversion from
X0 to trion can be made by absorbing one electron or hole. By setting a
gate voltage to be negative, experimental sample is p-doped favoring ex-
citons to form lower energy bound complexes with free holes. As the
gate voltage decreases, more holes are injected into the sample and all
X0 turn into X− to form a positively charge hole-trion gas with positive
the gate voltage a similar situation occurs with free electrons to form an
electron-trion gas.
In this subsection, we would like to consider the intrinsic optical prop-

erties of MoS2 with no exciton physics. To do so, the modified Dirac
Hamiltonian, which describes the physics of monolayer MoS2 around K
point, can be used to describe optical conductivity of the system [31].
By having the Hamiltonian and calculating velocity operators along the
x and y directions h̄vx = ∂H

∂qx
and h̄vy = ∂H

∂qy
, the intrinsic optical con-

ductivity can be calculated by using the Kubo formula [61–63] in a clean
sample and it is given by

σxy(ω)=−i
e2

2πh

∫
d2q

f (εc)− f (εv)

εc − εv
{〈ψc|h̄vx |ψv〉〈ψv|h̄vy|ψc〉

h̄ω + εc − εv + i0+

+〈ψv|h̄vx |ψc〉〈ψc|h̄vy|ψv〉
h̄ω + εv − εc + i0+

}

σxx(ω)=−i
e2

2πh

∫
d2q

f (εc)− f (εv)

εc − εv
{〈ψc|h̄vx |ψv〉〈ψv|h̄vx |ψc〉

h̄ω + εc − εv + i0+

+〈ψv|h̄vx |ψc〉〈ψc|h̄vx |ψv〉
h̄ω + εv − εc + i0+

}
(2.16)

where f (ω) is the Fermi distribution function. We include only the inter-
band transitions and the contribution of the intraband transitions, which
leads to the fact that the Drude-like term, is no longer relevant here since
the momentum relaxation time is assumed to be infinite. This approxim-
ation is valid at low-temperature and a clean sample where defect, im-
purity, and phonon scattering mechanisms are ignorable. We also do not
consider the bound state of exciton in the systems. After straightforward
calculations, the real and imaginary parts of diagonal and off-diagonal
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components of the conductivity tensor at τ = + are given by [31]
σ�,τ s

xy (ω) = 2e2

h
P

∫
dq( f (εc)− f (εv))

×
{

τ(
′
τ sq − β ′q3)√

(
′
τ s + β ′q2)2 + q2[4((
′

τ s + β ′q2)2 + q2)− (h̄ω/t0)2]

}

σ�,τ s
xy (ω) = πe2

2h

∫
dq( f (εc)− f (εv))

×
{
τ(
′

τ sq − β ′q3)
(
′

τ s + β ′q2)2 + q2

}
δ(h̄ω/t0 − 2

√
(
′

τ s + β ′q2)2 + q2)

σ�,τ s
xx (ω) = −2e2

h
h̄ωP

∫
dq( f (εc)− f (εv))

×
{

q√
(
′

τ s + β ′q2)2 + q2[4((
′
τ s + β ′q2)2 + q2)− (h̄ω/t0)2]

q3[ 12 + 2β ′
′
τ s]

((
′
τ s + β ′q2)2 + q2)3/2[4((
′

τ s + β ′q2)2 + q2)− (h̄ω/t0)2]

}

σ�,τ s
xx (ω) = −πe2

2h

∫
dq( f (εc)− f (εv))

×
{

q√
(
′

τ s + β ′q2)2 + q2
− q3[ 12 + 2β ′
′

τ s]
((
′

τ s + β ′q2)2 + q2)3/2

}
δ
(

h̄ω/t0

− 2
√
(
′

τ s + β ′q2)2 + q2
)

(2.17)
where 
′

τ s = (
 − λτ s)/2t0, α′ = bα/t0, β ′ = bβ/t0, σ τ,sxy = σ�,τ s
xy +

iσ�,τ s
xy , b = h̄2/4m0a20 and σ

τ,s
xx = σ�,τ s

xx + iσ�,τ s
xx .

� and � refer to the real and imaginary parts of σ and P denotes the
principle value. It is worthwhile mentioning that the conductivity for
MoS2 for τ = − can be found by implementing px → −px and λ →
−λ. Using these transformations, the velocity matrix elements around
the K ′ point can be calculated by taking the complex conjugation of the
corresponding results for the τ = + case.
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Noticeably, the spin and valley transverse ac-conductivity are given by

σ s
xy =

h̄

2e

∑
τ

[σ τ,↑xy − σ τ,↓xy ]

σvxy =
1

e

∑
s

[σ K ,s
xy − σ K ′,s

xy ]
(2.18)

and for the longitudinal ac-conductivity case, an electric field can only
induce a charge current and corresponding conductivity is given as

σxx =
∑
τ

[σ τ,↑xx + σ τ,↓xx ]. (2.19)

2.5. Intrinsic dc-conductivity

To find the static conductivity in a clean sample, we set ω = 0 and
thus the interband longitudinal conductivity vanishes. Consequently, we
calculate only the transverse conductivity in this case. At zero temper-
ature, the Fermi distribution function is given by a step function, i. e.
f (εc,v) = �(εF − εc,v). Most of the interesting transport properties of
MoS2 originates from its spin splitting band structure for the hole doped
case. Therefore, for the later case, when the upper spin-split band con-
tributes to the Fermi level state, the dc-conductivity is given by

σ K↑
xy = −σ K ′↓

xy = − e2

2h

∫ qc

qF

(
′
K↑q − β ′q3)dq

((
′
K↑ + β ′q2)2 + q2)

3
2

= − e2

2h
CK↑ + e2

2h

2μ+ 2b(α − β)q2F

− λ+ 2μ+ 2bαq2F

(2.20)

and for the spin-down component we thus have

σ K↓
xy = −σ K ′↑

xy = − e2

2h

∫ qc

0

(
′
K↓q − β ′q3)dq

((
′
K↓ + β ′q2)2 + q2)

3
2

= − e2

2h
CK↓

(2.21)

where qc is the ultra violate cutoff and μ/t0 =
√
(
′

K↑ + β ′q2F)2 + q2F −

′

K↑ − α′q2F stands for the chemical potential and it is easy to show that
CK s = sgn(
−λs)−sgn(β) at large cutoff values. In a precise definition,
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CK s terms are the Chern numbers for each spin and valley degrees of
freedom and the total Chern number is zero owing to the time reversal
symmetry. Intriguingly, the quadratic term in Eq. (3), β, leads to a new
topological characteristic. When β
 > 0, with 
 > λ, system has a
trivial phase with no edge mode closing the energy gap however for the
case that β
 < 0, the topological phase of the system is a non-trivial with
edge modes closing the energy gap. In the case of the MoS2, the tight
binding model [26, 59] predicts the trivial phase (β > 0) with CK s = 0.
However, a non-trivial phase is expected by Refs. [27,28] (where β < 0)
which leads to CK s = 2. In other words, the term proportional to β has
a topological meaning in Z2 symmetry invariant like the ultra-thin film
topological insulator system [14] and the sign of β plays important role.
The transverse intrinsic dc-conductivity for the hole doped MoS2 case,

is given by

σ s
xy =

h̄

e
[σ K↑

xy − σ K↓
xy ] = e

2π

μ+ b(α − β)q2F

− λ+ 2μ+ 2bαq2F

σvxy =
2

e
[σ K↑

xy + σ K↓
xy ] = − e

h
CK + 2

h̄
σ s

xy

(2.22)

where, at large cutoff, CK = [sign(
 − λ) + sign(
 + λ)]/2 − sign(β)
stands for the valley Chern number and it equals to zero or 2 correspond-
ing to the non-trivial or trivial band structure, respectively. It should be
noted that in the absence of the diagonal quadratic term, the non-zero
valley Chern number at zero doping predicts a valley Hall conductivity,
which is proportional to sign(
). Therefore, the exitance of edge states,
which can carry the valley current, is anticipated. However, Z2 symmetry
prevents the edge modes from existing. Since the Z2 topological invariant
is zero when the gap is caused only the inversion symmetry breaking [65],
thus the topology of the band structure is trivial and there are no edge
states to carry the valley current when the chemical potential is located
inside the energy gap. Therefore, we can ignore the valley Chern number
in σvxy and thus the results are consistent with those results reported by
Xiao el al. [25] at a low doping rate where μ� 
− λ.

2.6. Intrinsic dynamical conductivity

In this subsection, we analytically calculate the dynamical conductivity
of the modified-Dirac Hamiltonian. Using the two-band Hamiltonian,
including the quadratic term in momentum, the optical Hall conductivity
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for each spin and valley components are given by

σ�,τ s
xy (ω) = τ e2

h
[Gτ s(ω, qF)− Gτ s(ω, qc)]

σ�,τ s
xy (ω) = τ πe2

2h


′
τ s − β ′q20,τ s

h̄ω′n(ω′)
× [�(2ε′F − λ′τ s − 2α′q20,τ s − h̄ω′)− (ω′ → −ω′)]
×�(n(ω′)− (1+ 2β ′
′

τ s))

(2.23)

where � and � indicate to the real and imaginary parts, respectively and
Gτ s(ω, q) reads as below

Gτ s(ω, q) = 
′
τ s

h̄ω′n(ω′)
ln

∣∣∣∣ h̄ω′ m(q)
n(ω′) − 2

√
(
′

τ s + β ′q2)2 + q2

h̄ω′ m(q)
n(ω′) + 2

√
(
′

τ s + β ′q2)2 + q2

∣∣∣∣
+ 1

4β ′h̄ω′n(ω′)
ln

∣∣∣∣ h̄ω′ m(q)
n(ω′) − 2

√
(
′

τ s + β ′q2)2 + q2

h̄ω′ m(q)
n(ω′) + 2

√
(
′

τ s + β ′q2)2 + q2

∣∣∣∣
− 1

4β ′h̄ω′ ln
∣∣∣∣ h̄ω′ − 2√(
′

τ s + β ′q2)2 + q2

h̄ω′ + 2√(
′
τ s + β ′q2)2 + q2

∣∣∣∣
where m(q) = 1+2β ′
′

τ s +2β ′2q2, n(ω′) = √1+ 4β ′
′
τ s + β ′2(h̄ω′)2,

h̄ω′ = h̄ω/t0, ε′F = εF/t0 and λ′ = λ/t0. The value of q0,τ s can be
evaluated from m(q0,τ s) = n(ω′). Note that qc, the ultra violate cutoff, is
assumed to be equal to 1/a0. Some special attentions might be taken for
the situation in which there is no intersection between the Fermi energy
and the band energy, for instance in a low doping hole case of the MoS2
in which the Fermi energy lies in the spin-orbit splitting interval. In this
case, the Fermi wave vector (qF, which has no contribution to the Fermi
level) vanishes.
The quadratic terms can also affect profoundly on the longitudinal dy-

namical conductivity which plays main role in the optical response when
the time reversal symmetry is preserved. In this case, one can find

σ�,τ s
xx (ω) = −πe2

4h

1

n(ω′)

(
1− 1+ 4β ′
′

τ s

2

(
2q0,τ s

h̄ω′

)2)

× [�(2ε′F − λ′τ s − 2α′q20,τ s − h̄ω′)− (ω′ → −ω′)]

× �(n(ω′)− (1+ 2β ′
′
τ s))

σ�,τ s
xx (ω) = −e2

h
[Hτ s(ω, qF)− Hτ s(ω, qc)] (2.24)
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where Hτ s(ω, q) is given by

Hτ s(ω, q) = (1+ 2β ′
′
τ s)m(q)− (1+ 4β ′
′

τ s)

2β ′2h̄ω′√(
′
τ s + β ′q2)2 + q2

+ 1+ 4β ′
′
τ s

2β ′2(h̄ω′)2
ln
∣∣∣ h̄ω′
2 −√(
′

τ s + β ′q2)2 + q2

h̄ω′
2 +√(
′

τ s + β ′q2)2 + q2

∣∣∣
+ (1+ 2β

′
′
τ s)(1+ 4β ′
′

τ s)+ β ′2(h̄ω′)2

2β ′2(h̄ω′)2n(ω′)

× ln
∣∣∣ h̄ω′
2

m(q)
n(ω′) −

√
(
′

τ s + β ′q2)2 + q2

h̄ω′
2

m(q)
n(ω′) +

√
(
′

τ s + β ′q2)2 + q2

∣∣∣.

(2.25)

Notice that, dropping the λ, α and β terms, it gives rise to the optical
conductivity of gapped graphene and the result is in good agreement with
the universal conductivity of graphene [64] for 
 = λ = α = β = 0.
The real part of the optical Hall conductivity for two set of parameters

are illustrated in Figure 5 where top and bottom panels indicate elec-
tron and hole doped systems, respectively. The effect of the mass asym-
metry between the effective masses of the electron and hole (α) bands
is neglected and it will be discussed later. It is clear that the quadratic
term, β, causes a reduction of the intensity of the optical Hall conduct-
ivity with no changing of the position of peaks for both electron and
hole doped cases. The position of peaks in the real part of Hall con-

ductivity is given by h̄ω =
√
(
− λτ s)2 + 4t20qFs2 for β = 0 case

and h̄ω′m(qFs)n(ω′)−1 − 2
√
(
′

τ s + β ′qFs2)2 + qFs2 = 0 and h̄ω′ −
2
√
(
′

τ s + β ′qFs2)2 + qFs2 = 0 for each spin component with corres-
ponding Fermi wave vector qFs and for the case that β �= 0. Surprisingly,
the last two equations for the later case are simultaneously fulfilled the
equation m(qFs) = n(ω′) in frequency. In the energy range shown in the
figures, the numerical value of the peak position for both cases are ap-
proximately equal and it indicates that the position of peaks and steplike
configuration don’t change due to the β term in a certain Fermi energy.
It should be noticed that the intensity of the real part of σxx decreases
with the quadratic term. Consequently, it indicates that the effective mass
approximation of the Hamiltonian for the MoS2 is not completely valid
because two sets of parameters with the same effective masses are show-
ing distinct results.
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Figure 5. (Color online). Real part of the Hall conductivity (in units of e2/h̄) for
(a) electron with εF = 1 eV and (b) hole with εF = −1 eV+ λ doped cases as a
function of photon energy (in units of eV) around the K point. Electron and hole
masses are set to be 0.5m0 and for two set of parameters, β = 0, t0 = 2.02 eV
and β = 1.77, t0 = 1.51.

2.7. Circular dichroism and optical transmittance

One of the main optical properties of the monolayer transition metal di-
chalcogenide system is the circular dichroism when it is exposed by a
circularly polarized light in which left- or right-handed light can be ab-
sorbed only by K or K ′ valley for the sake of angular momentum conser-
vations and time-reversal symmetry and it makes the material promising
for the valleytronic field. This effect originates from the broken inver-
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sion symmetry and it can be understood by calculating the interband op-
tical selection rule P± = m0〈ψc|vx ± ivy|ψv〉 for incident right-(+) and
left-(-)handed light. The photoluminescence probability for the modified
Dirac fermion Hamiltonian is

|P±| = m0t0a0
h̄

⎛⎝1± τ 
−λs
2 − h̄2

2m0
βq2√

(
−λs
2 )2 + t20a20q

2

⎞⎠ (2.26)

where q2 = q2x + q2y . Notice that the mass asymmetry term, α, has no ef-
fect on the optical selection rule. The selection rule can simply prove the
circular dichroism in the MoS2. Another approach which helps us to un-
derstand this effect is to calculate the optical conductivity around the K
point of two kinds of light polarizations as σ± =∑s{σ K s

xx ± σ K s
xy } which

has been calculated by using the Dirac-like model [24, 30] and now, we
modify that by using the modified-Dirac Hamiltonian. Our results [31]
show that �e[σ−] is large and comparable in size for either spin up or
down while �e[σ+] is small in comparison. The valley around the K
point can couple only to the left-handed light and this effect is washed up
by increasing the frequency of the light and the result is in good agree-
ment with recent experimental measurements [17]. The direct gap trans-
ition at the two degenerate valleys, together with this valley-contrasting
selection rule, suggest that one can optically generate and detect valley
polarizations in this class of materials.
In many semiconductor structures, the circular polarization of lumin-

escence from circularly polarized excitation originates from electron or
hole spin polarization. But in monolayer MoS2, the optical selection rule
originates from orbital magnetic moments at K valley independent of
electron spin. Actually, there was no experimental noticeable difference
between the photoluminescence polarization at zero field and in an in-
plane finite magnetic field. Therefore, based on the analysis of inversion
symmetry breaking, the helicity of the luminescence should exactly fol-
low that of the excitation light. In other words, the right-handed circu-
larly polarized excitation generates right-handed luminescence, and the
left-handed circularly polarized excitation generates left-handed lumin-
escence.
Furthermore, the optical transmittance is an important physical quant-

ity and it can be evaluated stemming from the conductivity. The optical
transmittance of a free standing thin film exposed by a linear polarized
light is given by [66]

T (ω) = 1

2

{∣∣∣ 2

2+ Z0σ+(ω)

∣∣∣2 + ∣∣∣ 2

2+ Z0σ−(ω)

∣∣∣2} (2.27)
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where Z0 = 376.73� and σ±(ω) = σxx(ω) ± iσxy are the vacuum im-
pedance and the optical conductivity of the thin film, respectively. For
the MoS2 case, the total Hall conductivity in the presence of the time re-
versal symmetry is zero and the total longitudinal conductivity is given
by σxx = 2(σ K↑

xx + σ K↓
xx ). The optical transmittance of the multilayer

of MoS2 systems has been recently measured [59] and it is about 94.5%
for each layer in the optical frequency range. The optical transmittance
of the MoS2 is displayed in Figure 6 for both electron and hole doped
cases using the numerical value defined as set0. The result shows that
the optical transmittance is about 98% for the frequency range in which
both spin components are active for giving response to the incident light.
Importantly, for the electron dope case, there are two minimums with dis-
tance about 0.16 eV/h̄ in frequency which mostly indicates the spin-orbit
splitting (2λ) in the valence band. The optical transmittance for electron
doped case is about 98% in all frequency range. Moreover, for the hole
dope case, the optical transmittance changes by tuning doping rate. Inter-
estingly, at μ = −0.942 eV the difference between the position of peaks
of two spin components, is approximately zero and consequently, the
total optical conductivity enhances in this resonating doping rate which
has significant effect on the optical transmittance of the system where the
transmittance decreases and particularly reaches to a value less than 90%
at the resonance frequency. Our numerical calculations show that the
hole doped MoS2 is darker than the electron doped one specially close
to the resonance frequency. Furthermore, this feature provides an oppor-
tunity with measuring the spin-orbit coupling by an optical transmittance
measurement.

3. Summary

This chapter only reviews our recent activity regarding the electronic and
optical properties of monolayer MoS2. The study of two-dimensional
crystal structures, especially transition-metal dichalcogenides, is an act-
ive and rapidly growing field of research, which is driven, on one hand,
by application-oriented investigation of transport and optoelectronic
devices, and on the other hand, by basic research efforts to study material
properties and novel effects related to the peculiar band structure.
The monolayer MoS2 and nanoribbon MoS2 offer many opportunities

for the investigation of fundamental phenomena and their practical ap-
plications. The basic electronic structure properties of exfoliated mono-
layer MoS2 is now well understood. MoS2 undergoes an indirect to dir-
ect band gap transition when is thinned down to one layer. The inversion
symmetry is not present for odd MoS2 layers. The loss of the inver-
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Figure 6. (Color online) Optical transmittance in a finite frequency for the elec-
tron (εF = 1 eV) and hole (εF = −1 eV + λ) doped cases including mass
asymmetry.

sion symmetry in conjunction with strong spin-orbital coupling leads to
a set of unique optical selection rules that couple spin and valley de-
grees of freedom. Their versatile and tunable properties make them ap-
plicable from energy storage and membrane to nanodevices (electronics,
optoelectronics, and spintronics). Some key features of MoS2 mono-
layer and nanoribbon, including bandgap, model Hamiltonian, plasmon
modes, ground-state phase transition, charge compressibility and optical
properties are highlighted. Especially, we have analytically calculated the
intrinsic conductivity of the electronic systems which govern a modified-
Dirac Hamiltonian by using the Kubo formula. The theoretical studies
showed that their applications in electronics, spintronics, and valleytron-
ics could be achievable by controlling the doping and functionalization.
There are many open questions regarding the correlation many-body ef-
fects, transport properties, spin and charge relaxation times in monolayer
MoS2 systems. It would be interesting to consider hybrid systems, for
example, an assembly of two different metal dichalcogenide sheets. For
these heterosystems, the band lineups and deformation potentials will
need to be established
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[59] A. C.-GOMEZ, R. ROLDÁN, E. CAPPELLUTI, M. BUSCEMA, F.
GUINEA, H. S. J. VAN DER ZANT and G. A. STEELE, Nano Lett.,
13 (2013), 5361.

[60] X. LI, F. ZHANG and Q. NIU, Phys. Rev. Lett. 110 (2013), 066803.
[61] T. STAUBER, N. M. R. PERES and A. K. GEIM, Phys. Rev. B 78

(2008), 085432.



43 Introduction to two-dimensionalMoS2

[62] WANG-KONG TSE and A. H. MACDONALD, Phys. Rev. B 84
(2011), 205327.

[63] STEVEN G. LOUIE and MARVIN L. COHEN, “Conceptual Founda-
tions ofMaterials: A StandardModel for Ground- and Excited-State
Properties”, Elsevier, 2006.

[64] K.ZIGLER, Phys. Rev. B 75 (2007), 233407.
[65] WANG YAO, SHENGYUAN A. YANG and QIAN NIU, Phys. Rev.

Lett. 102 (2009), 096801.
[66] A. FERREIRA, J. V.-GOMES, Y. V. BLUDOV, V. PEREIRA, N.

M. R. PERES and A. H. CASTRO NETO, Phys. Rev. B 84 (2011),
235410.



Friedel oscillations in a lateral superlattice
with spin-orbit interaction

Jeremy Capps, M. Daniels, C. E. Sosolik and D. C. Marinescu

Abstract. We investigate the Friedel oscillations that can be sustained in the
presence of the Coulomb interaction in a two-dimensional lateral superlattice (SL)
with spin-orbit interaction (SOI) linear in the electron momentum (Rashba). The
superlattice is modeled as a periodic array of infinitely attractive quantum wells
whose periodicity determines the apparition of energy minibands in the single
particle spectrum that are further spin-split by SOI. The Friedel oscillations are
obtained from the static real-space density response function 
ν(r) to an external
perturbation, evaluated self-consistently within the random-phase approximation
of the Coulomb interaction. The interplay in the momentum space between the
spin-orbit coupling and periodicity determines the overall characteristics of the
density fluctuations. In a singly occupied, chiral-split miniband approximation,
the amplitude and phase of the oscillations are studied numerically as functions
of several significant parameters of the system such as the miniband width, the
strength of the spin-orbit coupling and the superlattice constant.

1. Introduction

As a real-space manifestation of the many-body Coulomb interaction,
Friedel oscillations originate in the electron density fluctuations induced
by external potentials. They were observed in many STM measurements
at surfaces, where steps, impurities, surface dislocations, and point de-
fects can give rise to its characteristic Fermi wavelength-dependent oscil-
latory signature in tunneling spectroscopy scans [1–8]. On their account,
modulation effects have been registered on other phenomena, such as
quantum confinement and charge spilling, which appear in the so-called
“electronic growth” model for thin metallic films on semiconductors.
This model has been used to understand the critical thicknesses observed
in the growth modes of Ag and Pb films [9,10]. More recently, it has been
proposed that the Friedel oscillation may similarly modulate the growth
modes for graphene films on vicinal surfaces [11].
In this paper we are inspired by recent experimental investigations of

the vicinal stepped Au (111) [12] surface that probed the physics of a
periodic quasi-two dimensional system endowed with spin-orbit interac-
tion (SOI) to study the Friedel oscillations that can be supported in this
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context. To extend the applicability limit of our results, the theory is for-
mulated for a standard template of a periodic system, a semiconductor
lateral superlattice (SL) with SOI, essentially a 2D electron layer pat-
terned by a periodic array of electrostatic gates [13] that is simultaneously
characterized by the redistribution in k space of the single particle state
energies on account of the spin-orbit interaction and by a geometric-real
space periodic confinement that introduces a mini-band energy structure.
Because the characteristic parameters of this system, such as particle
density, miniband width, and periodicity, can be externally controlled, it
presents a good test case for theoretical predictions and experimental ob-
servation. Results derived in this framework can serve then as guidance
for similar problems in metallic surfaces where the particle concentration
is fixed.
The considerable interest dedicated to understanding the consequences

of the spin-orbit interaction in two-dimensional (2D) semiconductor-
based structures is primarily motivated by its potential application to
devices where the control of the electron spin is realized by electric fields.
While direct resolution of this problem has not been reached, the physics
of such systems continues to propose interesting subjects. Originating
either in the asymmetry of the quantum well structure (Rashba) [14] or in
the inversion asymmetry of the crystal (Dresselhaus) [15], SOI coupling
has been found responsible for a plethora of very diverse effects that are
generated by the frustrated spin motion. Among these, special situations
are encountered when SOI is competing with other dynamic restrictions
such as geometrical constraints as it happens in quantum wires or su-
perlattices or the Coulomb interaction that amplifies the role of the spin
effects through exchange.
Previously, the effects of the Coulomb repulsion on the physical prop-

erties of the homogeneous electron systems with SOI have been explored
in great detail both in terms of single particle properties [16] or as collect-
ive phenomenology [17–21] in complementary numerical and analytical
approaches [22,23]. Moreover, the superposition of SOI and spatial con-
finement has been shown before to produce specific phenomena that are
absent in homogeneous systems such as the induced spin accumulation
in the presence of an electric field [24–26] and the enhancement of the
excitation frequency of the collective plasma modes [27].
The behavior of Friedel oscillations in 2D homogeneous systems is

well understood as a consequence of the non-analyticity of the static po-
larization function �(q, 0) whose first order derivative is discontinuous
at a wavevector q equal to the diameter of the Fermi surface [28]. This
characteristic is responsible for the r−d decay of the oscillations at large
distances in a d-dimensional space. In systems with SOI, several partic-
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ular features of the electrostatic screening and of the Friedel oscillations
have been identified as a consequence of the modified single-particle
spectrum. Significant examples are the small-q high-temperature oscilla-
tions [29] and the beatings of the Friedel oscillations predicted to appear,
under certain circumstances, in the simultaneous presence of the Rashba
and Dresselhaus interactions [30].
In this work, we analyze the principal characteristics of the Friedel

oscillations in a superlattice with spin-orbit interaction, a system that
allows a momentum space interplay between the mini-band distortion
introduced by the spin-orbit coupling and the SL periodicity. Follow-
ing the traditional approach, we evaluate the the static polarization func-
tion of the system within the random-phase-approximation (RPA) of the
many-body Coulomb interaction and calculate the real space density fluc-
tuations as the Fourier transform of the response function. In a singly
occupied, spin-split miniband approximation, the density oscillations are
studied numerically as a function of several system parameters, such as
the strength of the interaction, the miniband width and the lattice period-
icity.

2. System Description

We consider the general model of a lateral semiconductor superlattice ob-
tained by applying a periodic potential along a certain spatial direction -
say x̂ in an isotropic two dimensional (2D) system [13]. A positive back-
ground exists to assure charge neutrality. The electron spin σ is coupled
to its momentum p through a Rashba spin-orbit coupling of strength α,
described by the Hamiltonian [14],

HSO I = α(σ × p) . (2.1)

The periodic potential along the x-axis is modulated as a sequence of N
infinitely attractive δ-functions equally spaced at distance a, whose role
is to produce a localization of the electron along the axis,

V (x) = −λ
∑

l

δ(x − la) . (2.2)

This potential has the benefit of leading to only one miniband in the
presence of weak tunneling, since there is a single bound state in each
quantum well, thus allowing for the realization of a good qualitative and
approximately quantitative model. The eigenstate and energy spectrum
in each isolated well are given, respectively, by ν(x) = √

κe−κ|x | , and
ε0 = −m∗κ2

2h̄2
, with κ = 2m∗λ/h̄2. (m∗ is the electron effective mass).
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The broadening of the single energy eigenstate into a miniband on ac-
count of tunneling in the simultaneous presence of the periodic potential
in Equation (2.2) and SOI in Equation (2.1) has been obtained by both
numerical [31] and analytical methods [32, 33]. Conceptually, the dif-
ference in the two approaches is established by the balance between the
magnitude of the two competing effects that determine the exact shape
of the spectrum, namely the strength of the tunneling which affects the
widening of the single particle levels embodied by the miniband width

and the strength of SOI which couples the electron momentum to its spin.
In both instances, however, the salient characteristics of the spectrum, i.e.
degeneracy at kx = 0 and kx = ±π/a, as well as the overall shape of
the dispersion curves are similar. Based on these findings, we anticipate
that the validity of our results, derived analytically within the approxim-
ation of the dominance of the band effects on the spin-orbit coupling will
maintain even in strongly SOI-coupled systems when the situation can be
reversed.
Following Ref. [32], the single particle states are built from a super-

position of the Bloch functions in the absence of the perturbation. An
electron of momentum k = {kx , ky} and spin state |σ 〉 is described by

ψkx ,ky ,σ = 1√
L y

eiky y|σ 〉 Rkx√
N

∑
l

eikx laν(x − la) , (2.3)

where Rkx =
[
1+ 2e−κa(1+ κa) cos kxa

]−1/2
is the normalization factor.

The corresponding energy eigenstates are calculated within the tight
binding approximation,

ε�k,σ = h̄2k2y
2m∗ + 


2
(1− cos kxa) . (2.4)

While ky , the momentum perpendicular on the SL axis, is continuous,
kx , along the axis, is subject to periodic boundary conditions and con-
sequently quantized kx = 2π

Na j , where j ∈ [−N/2, N/2]. 
 is a function
of the single energy level in the quantum well, 
 = 8ε0e−κa .
In the presence of the Rashba interaction corresponding to momenta

derived from Equation (2.4),

py = h̄ky ,

px = m∗

h̄

∂εkx ,ky ,σ

∂kx
=
(

m∗a


2h̄

)
sin kxa , (2.5)

the spin-degenerate miniband splits as a function of the spin eigenstates,
leading to chiral mini-bands indexed by μ = ±1. The single-particle
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energy is therefore,

Ek,μ = εk + μ
√(

h̄ky
)2 + (m∗
a

2h̄

)2
sin2 kxa , (2.6)

while the chiral state reflects the out-of-phase superposition of the two
spinors,

ψk,μ(x, y) = eiky yζkx (x)
1√
2

[| ↑> +μeiμϕk | ↓>] , (2.7)

with the dephasing angle ϕk satisfying,

tanϕk = h̄2ky

m∗
a sin kxa
. (2.8)

In the following considerations, we will assume that the two minibands
of opposite chirality are fully occupied. This condition determines the
maximum value of the x-axis momentum, kmaxxμ = π/a at the edge of the
Brillouin zone, the same for both chiralities. For a given total particle
density n0, and implicitly a set Fermi energy EF , the maximum value of
the y-axis wavevector is determined by solutions of the equation EF =
Ekx ,kmaxy ,μ for each value of kx . The maximum momentum along the y
axis, as function of kx , is calculated to be

h̄kmaxyμ (kxa) =
{
2m∗

{
EF −
 sin2 kxa

2
+ m∗α2

− αμ
[
2m∗

(
EF−
 sin2 kxa

2

)
+
(

m∗a


2h̄

)2
sin2 kxa+m∗2α2

]1/2}}1/2
.

(2.9)
The existence of solutions for both values of μ when kx ∈ [−π/a, π/a]
requires that the Fermi energy satisfies EF > 
[1+ arctan(αm∗a/h̄)], a
condition that constrains the relationship between the equilibrium particle
density, ν, and the structure parameters of the superlattice, 
, a and
α. At T = 0K , when the particle occupation number is represented
by the product of two independent Heaviside functions, n0k,μ = θ(πa −
|kx |)θ(kmaxyμ − |ky|), the particle density is given by

ν0 =
∑
k,μ

n0k,μ = 1

2π2

∫ π/a

0
dkx [kmaxy+ (kxa)+ kmaxy− (kxa)] (2.10)

where the second equality is obtained by transforming the sum into an
integral over the momentum states in the usual fashion.
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To illustrate the results of Equation (2.10) we introduce the standard
system for our simulations, a 2D InAs lateral superlattice (effective mass
m∗ = 0.023me, with me the electron mass) with particle density ν =
2.5 × 1011cm−2. While the particle density remains constant, the rest of
the SL characteristics, i.e. miniband width 
 and the SL constant a, are
considered the variable parameters of the problem along with the spin-
orbit coupling α. The latter is measured in units of 10−11eVm/h̄ that will
not be declared henceforth.
In Figure 1 we show the variation of the Fermi energy EF with the

strength of the spin orbit coupling α for a SL with miniband width 
 =
20 meV and three SL constants, a = 30 nm, 40 nm and 50 nm. Within
the limits of the analytical model used to determine the single particle
states, for a given particle density we register a weak evolution of the
Fermi energy with α, an outcome consistent with the assumption that the
the spin-orbit coupling effect is secondary to the miniband formation in
the system. In the following considerations, this SL description will be
the template used in all our numerical simulations.

Figure 1. The variation of the Fermi energy in a lateral superlattice with 
 =
20meV as a function of the spin orbit coupling α = 5 for a = 30nm, a = 40nm
and a = 50nm.

3. The density response function

The linear response of the electron system to a perturbation is described
in the Fourier transform space, by a simple proportionality relation that
connects the induced density fluctuations self-consistently with the ef-
fective potential experienced by the electrons. In the random-phase ap-
proximation (RPA) of the Coulomb effects, the effective potential is the
superposition between the external potential and the potential associated
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with the charge fluctuations themselves, leading to the well-known self-
consistent equation,


ν(q, ω) = P(q, ω)
[
Vex(q, ω)+
ν(q, ω)ṽ(q)

]
, (3.1)

where ṽ(q) = 1
N

∑
l 2πe2/

√
(qx + 2πl/a)2 + q2y is the Fourier trans-

form of the Coulomb interaction in 2D that explicitly incorporates the
fact that along the superlattice axis the conservation of the electron mo-
menta in the electrostatic scattering is realized only up to an integer mul-
tiple of the reciprocal lattice vector, 2π/a [27]. The proportionality factor
P(q, ω), the polarization of the electron system, is the Lindhard func-
tion written for the single particle energies and states described in Equa-
tion (2.6) [18,27]

P(q, ω) =
∑
μ,ν

∑
ky ,qy

n0k−q/2,μ − n0k+q/2,ν
Ek−q/2,μ − Ek+q/2,ν + h̄ω

× |Fμν(kx , ky, qx , qy)|2 ,
(3.2)

with the form factor Fμν(kx , ky, qx , qy) generated by the overlap of the
two different spinors,

|Fμν(kx , ky, qx , qy)|2 = 1

2

[
1+ μν cos(ϕk−q/2 − ϕk+q/2)

]
. (3.3)

Numerical estimates of the static polarization function presented below
are obtained for the InAs SL described above. For a given strength of the
SOI coupling and for a given SL periodicity, Equation (2.10) was used
to obtain the Fermi energy and the values of the maximum ky momenta
in Equation (2.9). Moreover, we denote by kmaxyμ the absolute maximum
value of the electron momentum along the y axis and use it as a scale
reference for qy . In Figure 2 the polarization surfaces are shown for three
different values of the SL constant a for the same value of the SOI con-
stant α = 5. The polarization values are expressed in terms of the density
of states at the Fermi surface, n0 calculated in the absence of SOI coup-
ling. In general, n0 is given by

n0(α) = 1

(2π)2
∑
k,μ

δ(εF − Ek,μ)

= 1

2π2
∑
μ

∫ π/a

0
dkx

1

|∇kyμEk,μ|kyμ=kmaxyμ

.

(3.4)

These pictures reproduce the characteristic behavior of 2D systems with
SOI, in which the polarization shows an increase in respect to the value at
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α = 0, on account of the possible transitions between states of opposite
chirality. This contribution is magnified by the increase in the SL constant
a which enhances the spin-orbit coupling through its effect on the x-axis
momentum px , Equation (2.5).

Figure 2. The static polarization function in a SL with 
 = 20.0 meV and
α = 5 for a = 30nm in (a), a = 40 nm in (b) and a = 50nm in (c).
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The static density response function is then evaluated from Equation (3.1)

χ(q, ω) = P(q, ω)
1− ṽ(q)P(q, ω) . (3.5)

Using the polarization values obtained before in Figure 2, the density
response function is plotted in Figure 3.

Figure 3. The static density response function in a SL with 
 = 20.0 meV for
α = 5.0 for a = 30nm in (a), a = 40 nm in (b) and a = 50nm in (c).
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4. Friedel oscillations

In the linear regime approximation, the Friedel oscillations result from
the density fluctuations registered in response to a perturbing potential
Vex . They are given by


ν(R) = 1

N

∑
�q

ei �q·Rχ(q)Vex(q) . (4.1)

As before, in the periodic system, the sum over �q has to take into ac-
count the fact that the wave vector qx is defined only up to a multiple
of the reciprocal lattice vector, 2πl/a, where l is an integer. In the fol-
lowing considerations we take the perturbing potential to be that of an
impurity localized at the origin at the system, Vex = Cδ(r), whose Four-
ier transform is a constant C . With this choice the quantities involved in
Equation (4.1) are periodic with 2π/a and consequently the sum over qx

can be separated into an integral over the first Brillouin zone and a sum
over all its periodic iterations. With this, Equation (4.1) becomes,


ν(R) = C
∑
qx ,qy

χ(qx , qy)e
i(qx Rx+qy Ry)

(
1

N

∑
l

ei 2πl
a Rx

)
. (4.2)

The latter sum can be evaluated exactly for a N -well SL,

I (Rx) = 1

N

∑
l

ei 2πl
a Rx = sin (N+1)πRx

a

N sin πRx
a

. (4.3)

The function I (Rx) describes an interference term of the single particle
states in the SL and reaches a maximum for integer values of the SL
constant, Rx = la, at the location of the gates. With this, we finally
write,


ν(R) = C I (Rx)

4π2

∫ π

−π
dqx

∫ ∞

−∞
dqyχ(qx , qy)e

i(qx Rx+qy Ry) , (4.4)

which is the basic equation that describes the Friedel oscillations in the
SL. It is easy to see in this configuration that the overall behavior of the
density fluctuations is the result of two distinct factors, the interference
effects that occur on the account of the geometric periodicity and the real
space variation produced by the non-analytical points of the polarization
function within the first Brillouin zone.
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5. Results and Discussion

Using the same InAs SL template as before, Equation (4.4) is computed
numerically to illustrate the behavior of the oscillations induced by an im-
purity of potential C = 1meV/m2 located at the N = 0 gate, considered
the origin of the system.
In Figure 4 we show a representative picture of the interference effect

between the oscillatory pattern imposed by the SL periodicity and the
density variation determined by the Fourier transform of the density re-
sponse function within the first Brillouin zone. The interference effect
described by Equation (4.3) generates the fast variation of the oscilla-
tions with a period proportional to 2a/(N + 1). They reach significant
amplitudes near the position of the gates where the interference factor
approaches (N + 1)/N . I (Rx) modulates the density oscillations that
result from the Fourier transform in the first Brillouin zone amplifying
the opposite sign density oscillations that occur in the vicinity of Rx = la
points. Since this pattern results from the periodicity of the SL, it is re-
produced identically in the presence of the spin orbit interaction of any
strength. As we show below, the spin orbit interaction changes only the
relative amplitude of the oscillations and for this reason, in the following
pictures we present only the oscillations that result from the integration
of the polarization function over the momentum q restricted to the first
Brillouin zone.

Figure 4. Friedel oscillations induced along the axis of a lateral SL by an im-
purity located at x = 0 . The system parameters are 
 = 20 meV, a = 30 nm
and α = 5.
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The relative variation of the density oscillations in respect to the equi-
librium values is plotted for different values of the SOI coupling strength
for the same SL parameters, 
 = 20 meV and a = 30 nm in Figure 5.
The amplitude of the oscillations decreases compared with the case of
α = 0, a result of the stronger coupling between the single particle elec-
tron states mediated by the spin-orbit interaction. This outcome repro-
duces the behavior of a 2D homogeneous system, where the amplitude
of the Friedel oscillations is known to decrease with α [18]. The dens-
ity fluctuations are commensurate with the SL period, the zeroes in 
ν
being realized at integer and half integer lattice constants. This is a con-
sequence of the periodicity of the polarization function in the momentum
space with π/a. The difference in the amplitudes as a function of α de-
creases with the distance from the impurity.

Figure 5. Friedel oscillations induced in a lateral superlattice by an impurity
located at x = 0 for different SOI coupling values α. The SL parameters are

 = 20 meV and a = 30nm.

In Figure 6 we present the variation of the Friedel oscillations with the
SL constant a for the same value of the SOI coupling strength α = 5
and miniband width 
 = 20 meV. As the SL constant increases, the
amplitude of the oscillations decreases indicating a stronger screening.
This feature is a consequence of the 
 dependence of the x-axis mo-
mentum involved in the SOI coupling. As before, the periodicity of the
polarization in the momentum space is localizes the nodes in the density
fluctuations at integer and half-integer lattice constants uniformly.
Further, we plot the oscillations induced along the x axis as a func-

tion of the SL miniband width, by comparison with the variation induced
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Figure 6. Friedel oscillations induced in a lateral superlattice by an impurity
located at x = 0 for different SL constants for the same value of the spin-orbit
interaction constant, α = 5 and 
 = 20 meV.

by SOI, in Figure 7 for the same values of the SL constant. These res-
ults indicate a stronger effect of the spin-orbit coupling in enhancing the
screening than the miniband width variation.
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Figure 7. Friedel oscillations induced along the SL axis as a function of the
miniband width for a = 30 nm and α = 0, 10.

These general characteristics also describe the density fluctuations re-
gistered along the central y-axis. That spectrum, however, carries the
imprint of y maximum momentum being a function of kx leading to an
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established pattern of oscillations further from the potential. The vari-
ation
ν is presented in Figure 5 as a function of SOI for a same SL with

 = 20 nm and a = 30nm and for different SL constants at the same
value of the SOI coupling, α = 5, and 
 = 20 meV in Figure 10. In
Figure 9 we present by comparison the change in the amplitude of the
oscillations for two miniband widths at two SOI coupling values.
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Figure 8. Friedel oscillations induced perpendicular on the SL axis at x = 0 as
a function of the spin-orbit coupling, for 
 = 20 meV and a = 30nm.
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Figure 9. Friedel oscillations induced perpendicular on the SL axis at x = 0 as
a function of the lattice constant, for 
 = 20 meV and α = 5.
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Figure 10. Friedel oscillations induced perpendicular on the SL axis at x = 0
as a function of different SL constants and bandwidths.

In conclusion, we analyzed the behavior of the density fluctuations re-
gistered in a lateral semiconductor superlattice with spin-orbit interaction
in the presence of the Coulomb interaction as a function of the miniband
width, the SOI coupling and SL constant. We find that the amplitude of
the oscillations, as well as their phase, is affected by the presence of SOI
which enhances the coupling between the single particle states indicating
a stronger screening.
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In-plane ferromagnetic instability
in a two-dimensional electron liquid
in the presence of Rashba spin-orbit
coupling

Stefano Chesi and Gabriele F. Giuliani

Abstract. We show that due to the peculiar structure of the non-interacting en-
ergy spectrum, the Coulomb interaction leads for all densities to an in-plane fer-
romagnetic instability in a two-dimensional electron liquid in the presence of suf-
ficiently strong Rashba spin-orbit coupling. This non perturbative phenomenon
is characterized by an interesting anisotropic momentum space repopulation and
is in nature quite different from the already identified out-of-plane ferromagnetic
instability.

The collection of articles in this volume will testify better than me the ex-
uberant and passionate character of Gabriele, as well as the broad range
of his interests and scientific contributions. Here I will reproduce (in the
next section) an older unpublished manuscript, which originated from
the research Prof. Giuliani and I carried out in Purdue in the period from
2002 until 2007, when Gabriele was my PhD advisor and an invaluable
example for both scientific and human aspects. The imaginative title of
the next Section is borrowed from one of his talks (see Figure 1). The per-
vasive humor of Gabriele is still at work today: I was reminded of it after
searching online without success for the SCEM06 conference cited in his
slides. In the spirit of this volume, I hope my introduction will further
illustrate the unconventional personality and gifts of Gabriele. Besides
mentioning a few memories from when I was a PhD student, I will re-
view some of his scientific ideas from that period and try to connect them
with more recent literature, which is obviously missing in the original
manuscript.
As a student, as a matter of fact, I regularly approached his office with

a feeling of uncertainty. First of all, the electric lights could be seen
through the closed door but were generally turned on at any time of the
day and night, making it difficult to guess if the office was occupied or
not. The light shined through a semi-transparent glass mostly covered by
old newspaper clippings (among which a large headline: Could anyone
be worse than Koch? Try Giuliani). So the worries related to the ongoing
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research were slightly amplified at the door. After a few moments try-
ing to detect any noise, I would hold on to my notes and knock. During
the meetings I would be dragged in a whirlpool of ideas intermixed with
a string of provocative remarks, anecdotes, and various considerations
on physics and a wide range of other subjects often including soccer (of
which Gabriele was a great lover). When I left the office, I was usually
quite puzzled on the outcome of the discussion and what to do next. The
views of Prof. Giuliani on our ongoing research seemed at first rather
paradoxical or far-fetched to my cautious and inexperienced attitude, but
they would reveal themselves in due time as useful and deeply true, such
that my PhD turned out in the end to be a very productive period of re-
search.

Figure 1. Gabriele loved to wrap physical concepts in colorful terms. In his
talks, the topic of this article was introduced as a ‘crescent moon’ instability
(by analogy to by analogy to Figure 4). Other noticeable slides from the same
presentation (SCEN06, Pisa) are the Four pere intermission (featuring a short
video of F. Totti) and How do we do our calculations? Buy the book! (obviously
referring to [17]).

Some of the ideas he formulated in our discussions have shown in my
opinion a remarkable foresight. For example, after we worked out the
phase diagram in Figure 3 [1] he liked to mention that the formation of
the thin sleeve of spin-polarized states along the dashed curve is very
analogous to what happens in the Peierls instability [2]. The dashed
curve indicates when the Fermi energy is crossing what he called the
‘kissing point’ of the two spin bands (see the left panel of Figure 2). In
this case, the spontaneous polarization arises by the formation of a gap
which removes the degeneracy and leads to a lower total energy of the
occupied spin branch. Interestingly, this picture is related to more recent
studies of a spontaneous helical nuclear-electronic spin polarization in
quantum wires [3]. The formation of these helical states can also be seen
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(after a gauge transformation generating a Rashba spin-orbit interaction
of suitable strength) as due to a similar Peierls-type instability, where
the coupled electron-nuclear spin polarization induces a finite gap at the
k = 0 band crossing of the one-dimensional electron states [4]. The en-
ergy gap could be detected in transport and experimental evidence in this
direction was recently reported [5]. Returning to two-dimensional sys-
tems, another scenario where similar physics plays an important role is
provided by pseudospin magnetism in graphene [6].
Beside the FZ ferromagnetic phase shown in Figure 3, in-plane polar-

ized states appear in the complete phase diagram in the Hartree-Fock ap-
proximation [7]. Gabriele liked to contrast the ‘tilting instability’ of spin
directions, giving rise to the FZ polarized states, to the ‘repopulation in-
stability’, a general mechanism giving rise to the in-plane ferromagnetic
states. This type of instability is the main topic of the present article.
Following his suggestion, the instability could also be studied at large
spin-orbit coupling through linear response, from the divergence of the
in-plane Pauli spin susceptibility [7]. The instability eventually gives rise
to in-plane spin-polarized states with strongly deformed oblong or even
‘bean-shaped’ occupations, schematically illustrated in the right panel of
Figure 4. Recently, the occurrence of these states was proposed in a vari-
ety of systems: bilayer graphene [8], electron liquids with short-range
interactions [9], and spinor Bose gases [10]. The associated breakdown
of Fermi liquid theory was also recently discussed [12,13].
Interestingly, the competition between the FZ phase and in-plane po-

larized states results in another peculiar feature of the Hartree-Fock phase
diagram. When the spin-orbit coupling α approaches zero (α = 0+), the
boundary between PM and FZ still occurs at rs � 2.01 as in Figure 3 but
a distinct phase boundary between FZ and the in-plane polarized states
survives at rs = 2.211 [7]. This behavior is peculiar because at α = 0 the
magnetic phase is fully isotropic (i.e., there is a single phase boundary at
rs � 2.01, the well known Bloch transition [11]) and Gabriele liked par-
ticularly this curious ‘non-analytic’ phase transition with respect to the
α, rs parameters. Although in this case I am not able to point the reader
to related literature, I would not be surprised if a similar phenomenon
could play an important role in other contexts, given Gabriele’s percept-
ive intuition!
In a similar way as with physics, Gabriele was also a supportive advisor

from the personal point of view. While utterly defiant of his disease, he
was promptly ready to help us in case of difficulties with his characteristic
decisiveness. His sometimes challenging attitude was always directed to
stimulate students and co-workers to achieve the best outcomes. Also for
this he will be deeply missed.



64 Stefano Chesi and Gabriele F. Giuliani

The crescent moon instability

The problem of a two-dimensional electron liquid in the presence of spin-
orbit coupling of the Rashba type is not only of fundamental importance
but also of particular technological relevance in view of the considerable
recent interest in the possibility of manipulating electronic spins by elec-
tric means in modern devices [14–16].
While the effect of the electron interaction in the clean two-dimen-

sional electron liquid is a classic problem studied now for decades [17],
the intriguing interplay of many body effects and spin-orbit coupling has
only recently began to receive serious attention. The simplest approaches,
still not completely characterized, are the random phase approximation
(RPA) and the Hartree-Fock (HF) theory. Within the RPA some of the
approximate quasiparticle properties were studied in Ref. [18], while the
corresponding diagrammatic expansion has been used to extract what
amounts to as the exact behavior of the system at high densities in
Ref. [19]. Albeit approximate, the HF mean field theory is at the mo-
ment the most promising framework to examine the phase diagram. In
this respect the behavior of and the observable effects [20] related to the
exchange energy in a quantum well were investigated in Ref. [21] for a
generalized form of spin-orbit coupling. Furthermore the structure of the
HF theory and the peculiar extension of the classic Bloch transition to a
homogeneous polarized phase scenario [17] was examined in Ref. [22].
Finally the relevance in this problem of spatially inhomogeneous, charge
and spin-density-wave distorted HF states was investigated in Ref. [23].
The purpose of the present paper is to point out the existence in this

system of an interesting in-plane ferromagnetic instability of the para-
magnetic state that occurs for sufficiently strong Rashba spin-orbit coup-
ling for all densities. The phenomenon acquires particular interest since it
is characterized by a peculiar breaking of the rotational symmetry of the
momentum space occupation. In this respect it can be seen to be quite dif-
ferent from the already identified out-of-plane ferromagnetic transition.
Although we will identify and prove the existence of this non perturb-
ative behavior within the HF theory, the physics underlining the phe-
nomenon is such that it is reasonable to expect that correlation effects
will enhance it.
The non interacting problem is defined by the following single-electron

Hamiltonian

Ĥ0 = p̂2

2m
+ α (σ̂x p̂y − σ̂y p̂x) , (1)

that describes motion limited to x-y plane and includes a (linear) spin-
orbit interaction of the Rashba type [24, 25], with α assumed to be pos-
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itive. The corresponding single-particle eigenfunctions and eigenvalues
are given by

ϕk,±(r) = eik·r
√
2L2

( ±1
ieiφk

)
, εk± = h̄2k2

2m
∓ αh̄ k , (2)

where L is the linear size of the system and φk is the angle between the
direction of the wave vector and the x-axis. Plots of the non interacting
spectrum are provided in Figure 2. It is important to notice that the locus
of the points of minimum energy is a circle of radius given by mα

h̄ , and that

the spinor in ϕk,+(−)(r) is parallel (antiparallel) to the unit vector φ̂k =
− sinφk x̂ + cosφk ŷ, and therefore can be assigned a positive (negative)
chirality.
The corresponding many-body problem is then obtained by accounting

for the electronic Coulomb interaction and a suitable homogeneous and
rigid neutralizing background [17]. While in the absence of the spin-orbit
terms the relevance of the interaction is solely determined by the dimen-

sionless density parameter r−1s =
√
πa2Bn (n being the electron density),

here we must also include in our considerations a second dimensionless
parameter, i.e. ᾱ = h̄α

e2
: the interplay of these two quantities is respons-

ible for a rich physical scenario.

Figure 2. Non interacting single particle spectrum in the presence of linear
Rashba spin-orbit interaction. Left: momentum space occupation for small spin-
orbit coupling, or large density, with generalized chirality less than one. Right:
case of large spin-orbit coupling, or small density, when only the bottom of the
lowest band is occupied, a situation in which the generalized chirality is larger
than one.

As described in Ref. [22], if one limits the analysis to spatially homogen-
eous states described by single Slater determinants of plane waves, one
finds that the only relevant degree of freedom is the orientation ŝk of the
spin quantization axis of each of the momentum states. As a consequence
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the HF energy will be in general a functional of ŝk and the occupation
numbers nkμ. This quantity is readily obtained and is given by:

E[nkμ, ŝk] =
∑
k;μ=±

(
h̄2k2

2m
nkμ − h̄αμ k φ̂k · ŝk nkμ

)
− 1

4L2
∑

k,k′;μ,μ′=±
vk−k′ (1+ μμ′ ŝk · ŝk′) nkμnk′μ′ , (3)

where the first line describes the one particle terms, kinetic plus spin-
orbit, and the second the exchange energy. For states constructed with
symmetric occupation in momentum space the already established phase
diagram is depicted in Figure 3 [22]. Neglecting low density phases that
are tantamount to a magnetized Wigner crystal, one can identify a para-
magnetic chiral phase (PM), that displays a reentrant behavior, and an
out-of-plane ferromagnetic chiral phase (FZ) that can be seen as an ex-
tension to finite ᾱ of the classic Bloch instability. Here the latter owes its
existence at higher densities to the cusp characterizing the single particle
spectrum (see Figure 2), and displays a non trivial spin texture in mo-
mentum space [22].

2.5 5 7.5 10 12.5 15 17.5 20
rs

0.2

0.4

0.6

0.8

Α�

PM

PM

FZ

Figure 3. Mean field phase diagram limited to solutions with symmetric mo-
mentum space occupation. Within the shaded area the system finds itself in an
out-of-plane ferromagnetic chiral phase (FZ). The rest of the phase diagram is
occupied by the chiral paramagnetic state (PM). The instability discussed in the
text will lead to a modification of this scenario for all densities.

Notice that the FZ phase can persist in a ever shrinking sliver of the plane
also at high densities, being located close to the line

ᾱ = 1

rs
+ π − 1− 2K

2π
, (4)
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where K � 0.916 is the Catalan constant. As it turns out all these states
can be elegantly classified by means of one parameter, the generalized
chirality χ which is defined in terms of the (dimensionless) radii κ0± of
the circles delimiting the occupied regions in momentum space. When
both chiral bands are occupied κ0+(−) corresponds to the Fermi radius of
the larger (smaller) circle, while when only the lower chiral band is occu-
pied κ0+(−) represents the outer (inner) radius of the occupied annulus. In
the first case χ coincides with the standard chirality χ0 = κ20+−κ20−

κ20++κ20−
while

in the second it is larger than one, i.e.

χ =

⎧⎪⎪⎨⎪⎪⎩
χ0 , for 0 < χ0 < 1

κ20+ + κ20−
κ20+ − κ20−

, for χ0 = 1 ,
(5)

so that (in units of the Fermi wave vector kF = √
2πn) κ0± = √|1± χ |.

The situation can be readily visualized by inspecting Figures 2 and 4.
Notice that both PM and FZ states have a renormalized momentum space
occupation.
Consider now the situation at high densities. In this case as ᾱ exceeds

the value of Equation (4) the system appears to settle into a PM state in
which only the lower chiral band is occupied and χ > 1. Here, at first
sight, it may appear safe to entertain the notion that by increasing the
spin-orbit coupling at constant density (and therefore the strength of the
non interacting part of the Hamiltonian) one would fall into the familiar
paradigm in which the interacting part of the Hamiltonian becomes even-
tually irrelevant and therefore amenable to perturbative treatment. This
is however not the case since, as we will presently show, for sufficiently
large ᾱ the effects of the Coulomb interaction are not perturbative. To
demonstrate this effect we will construct a broken symmetry trial state
and will show that its energy can be made lower than the corresponding
interacting PM. In particular we will consider a state in which the mo-
mentum space occupation is repopulated in such a way as to break the
circular symmetry in the kx , ky space as depicted in Figure 4. To be spe-
cific we will construct a Slater determinant with occupation determined
by the following Ansatz for the momentum occupation geometry (see
Figure 4) [26]

κ±(φ) = κ0± ± η cosφ , (6)

with the azimuthal direction of the spin quantization axis ŝk = φ̂k kept
unchanged [27]. Since the distortion is infinitesimal, to lowest order the
total energy change will depend on the value of the generalized chirality
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only. The energy change associated with Equation 6 can be calculated
in the limit of large χ . The kinetic plus spin-orbit energy change (in
Rydbergs) is given by:

δE0 �
[
3

r2s
−

√
2ᾱ

rs

(√
χ + 1−√χ − 1

)]
η2, (7)

while, in the same units, for the exchange energy we find

δEx � −2
√
2χ lnχ

πrs
η2 . (8)

Now, since for large ᾱ we have χ � (rs ᾱ)
2

2 to leading order these compet-
ing energy contributions simplify to

δE0 � 1

r2s
η2 , δEx � −4ᾱ ln(ᾱrs)

π
η2 . (9)

Thus for sufficiently large ᾱ the differential instability is established.

Figure 4. Left: Schematic of the symmetric unperturbed momentum space oc-
cupation for the paramagnetic state (area within the dashed annulus) and the
asymmetric occupation corresponding to the in-plane ferromagnetic trial state
(shaded area). Right: Case of large distortion in the limit of large ᾱ value.

Clearly by thickening one side of the annulus the repopulation of Equa-
tion (6) leads to both an in plane momentum along the x-axis and a polar-
ization along the y-axis. In the same regime of large values of χ and ᾱ we
find Px/N = 〈∑i p̂x,i 〉/N � h̄kFχη and Sy/N = 〈∑i σ̂y,i 〉/N � √

χη.
On the other hand the two quantities are balanced in such a way as to lead
to a vanishing net velocity. In particular Vx = Px/mN − αSy/N = 0.
This clearly minimizes the energy.
Although the resolution of the instability is to be explored we have

identified, by a consistency argument, the type of state that eventually
takes over in the limit of very large ᾱ or lower densities. This state cor-
responds to a fully polarized droplet in momentum space, as illustrated
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in the second panel of Figure 4. If one assumes that indeed the occupied
region is centered about the wave vector K = mα

h̄ x̂ (equal in magnitude
to the radius of the occupied annulus, see Figure 4) then in the rsᾱ→ ∞
limit, using the fact that the spin quantization axes are asymptotically
along ŷ, the functional (3) simplifies to

E � −ᾱ2 + 1

πr2s

∫
D

k2x dk −
√
2

(2π)2rs

∫
D

dk dk′

|k − k′| , (10)

where we have used Rydberg units for the energy and the wave vectors
are in units of kF . Here the integrals are performed over the occupied
region D of extension 2π (which we have folded from K back to the
origin). Equation (10) describes confined classical charges interacting
via an hard core potential that forces them to occupy the domain D and
an attractive Coulomb potential in the presence of an additional external
parabolic potential along the x direction. The ensuing occupation con-
sists of an oblate region, elongated in the y direction. In the limit of large
ᾱ the actual shape becomes independent of this variable and is solely de-
termined by the density parameter rs . Since Equation (10) is valid when
the linear size (approximately kF ) of the occupied region is small with
respect to the radius mα/h̄, it can also be applied in the large rs limit at
constant ᾱ. In this case the 1/r2s contribution can be neglected so that
the consistent HF ground state corresponds to a fully polarized circular
droplet of radius

√
2kF centered in K. Also in this case the velocity van-

ishes. The energy of this state can be calculated exactly and it is given
by:

E (trial) = −ᾱ2 + 2

r2s
− 16

3πrs
. (11)

This result can be compared with the energy of the corresponding PM
state which is given by

E (PM) ≥ −ᾱ2 − 1.203

rs
, (12)

where we used−ᾱ2 as a lower bound for the kinetic and Rashba contribu-
tions, and the minimum unpolarized exchange energy [22], which occurs
when the generalized chirality is χ � 0.9147. Clearly E (P M) ≥ E (trial) for
rs ≥ 4.044, thus establishing the instability of the PM phase also in the
low density limit.
It is important to realize that the physical underpinning of this sym-

metry breaking phenomenon can be attributed to the fact that as ᾱ is in-
creased, the occupied region in momentum space becomes an annulus of
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radius mα
h̄ . Since the electron number is constant the annulus keeps get-

ting thinner and, what is important, the bandwidth, approximately given
(in Rydberg units) by 1

r4s ᾱ
2 vanishes. This situation is depicted in the right

panel of Figure 2. It is quite clear that this phenomenon is quite robust so
that, while the description of the corresponding phase transition obtained
via mean field theory should be considered as a rough approximation,
correlation effects can only enhance the instability.
Although for any density the instability will occur for sufficiently large

spin-orbit coupling, on the other hand if ᾱ is kept constant, the Fermi
liquid picture is recovered in the limit of high densities. We conclude by
commenting that having established an in-plane ferromagnetic instability
does not establish the HF phase diagram of the system. This can only be
determined through a thoughtful numerical analysis.
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Josephson phase diffusion
in small Josephson junctions:
a strongly nonlinear regime

Mikhail V. Fistul

Abstract. I present a theoretical study of current-voltage characteristics (I -V
curves ) of small Josephson junctions. In the limit of a small Josephson coupling
energy E J � kB T the thermal fluctuations result in a stochastic dependence of
the Josephson phase ϕ on time, i.e. the Josephson phase diffusion. These thermal
fluctuations destroy the superconducting state, and the low-voltage resistive state
is characterized by a nonlinear I -V curve. Such I -V curve is determined by the
resonant interaction of ac Josephson current with the Josephson phase oscillations
excited in the junction. The main frequency of ac Josephson current is ω = eV/h̄,
where V is the voltage drop on the junction. In the phase diffusion regime the
Josephson phase oscillations show a broad spectrum of frequencies. The aver-
age I -V curve is determined by the time-dependent correlations of the Josephson
phase. Bymaking use of the method of averaging elaborated in Ref. [1] for Joseph-
son junctions with randomly distributed Abrikosov vortices I will be able to obtain
two regimes: a linear regime as the amplitudes of excited phase oscillations are
small, and a strongly nonlinear regime as both the amplitudes of excited Joseph-
son phase oscillations and the strength of resonant interaction are large. The latter
regime can be realized in the case of low dissipation. The crossover between these
regimes is analyzed.

1. Introduction

A great attention is devoted to an experimental and theoretical study of
small Josephson junctions [2]. In these systems one can observe such
interesting physical phenomena as superconductor-insulator phase trans-
ition [3], Coulomb blockade of Cooper pairs [4,5], incoherent and coher-
ent Josephson phase-slips [6–8], Josephson phase diffusion [9,10], just to
name a few. The physical origin of all these phenomena is the presence
of thermal and/or quantum fluctuations that greatly influence the dc and
ac Josephson effect. In this paper we consider moderately small Joseph-
son junctions as the charging energy Ec is smaller than the Josephson
coupling energy, EJ . For such Josephson junctions one can safety neg-
lect the quantum fluctuations of Josephson phase. However, as EJ is
small, i.e. EJ � kB T , the Josephson phase diffusion regime induced
by thermal fluctuations, occurs. In the regime of a strong dissipation the
Josephson phase diffusion regime has been studied in detail experiment-
ally and theoretically [9–13]. Most pronounce features of the Josephson
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phase diffusion are the absence of the zero-voltage superconducting state,
nonlinear current voltage characteristics (I -V curves) occurring in a low
voltage region, and a strong suppression of the maximum current value.
In the presence of Josephson phase diffusion dc I -V curves can be

qualitatively explained as follows. As the dc voltage V is applied the ac
Josephson current with the main frequency ω = 2eV/h̄ is flowing in the
junction. Such a Josephson current excites the Josephson phase oscilla-
tions which, in turn, resonate with the alternating part of the Josephson
current leading to the finite dc current I . The thermal fluctuations result
in a broad spectrum of Josephson phase oscillations and determine the
strength of resonant interaction.
It is also well known for many years that in the Josephson phase diffu-

sion regime the dc I -V curves depend crucially on the Josephson phase
damping. Such a damping is determined mostly by various dissipative
effects and, in particular, the quasi-particles resistance. In the limit of
a large dissipation (damping) the amplitudes of excited Josephson phase
oscillations are small, and therefore, using the perturbation analysis the
dc I -V curve has been carried out quantitatively [2, 10, 12].

I = Ic

α

V Vp

V 2 + (δVp)2
, (1.1)

where we introduce the characteristic voltage Vp = h̄ωp/2e, the plasma
frequency ωp, and the dimensionless parameter α describing the dissip-
ative effects. In the Josephson phase diffusion regime the thermal fluc-
tuations induce a stochastic part of the Josephson phase ψ(t), and an
average dc I -V curve is determined by the specific time-dependent cor-
relation function of ψ(t), i.e. ρ(t) = < cos(ψ(t) − ψ(0)) >. As the
damping is large the ρ(t) shows a diffusive form: ρ(t) = exp(−δt). The
typical I -V curve of a small Josephson junction in the Josephson phase
diffusion regime is presented in Figure 1.
Notice here, that a crucial condition allowing one to obtain Equation

(1.1) is a large value of the damping parameter, α � 1. Thus, a next
question naturally arises: how vary the I -V curves in the limit of a small
damping? In such a case the Josephson phase displays oscillations with a
large amplitude, and the perturbation analysis can not be applied. Instead
of the perturbation approach I will use the method of averaging elabor-
ated in Refs. [1, 14]. Although this method has been used, previously,
in order to analyze the current resonances in long Josephson junctions
with randomly distributed Abrikosov vortices, i.e. coordinate-dependent
inhomogeneities, it is possible to adjust such a method to the Josephson
junction with thermal fluctuations, i.e. time-dependent inhomogeneities.
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Figure 1. The typical I -V curve of a small Josephson junction in the Josephson
phase regime. The voltage drop Vm and the current Im corresponding to the
maximum of I -V curve are shown.

The paper is organized as follows. In Section II the dynamics of the
Josephson phase in the low voltage resistive state and in the presence
of thermal fluctuations will be analyzed. In Section III we calculate the
time-dependent correlation functions of the Josephson phase ψ(t) de-
termining the electrodynamic properties of small Josephson junction. In
Section IV, by making use of the averaging method elaborated in Ref. [1]
we obtain the dc I -V curves of small Josephson junctions in the Joseph-
son phase diffusion regime. The Section V provides discussion and con-
clusions.

ACKNOWLEDGEMENTS. I acknowledge a partial financial support of the
Ministry of Education and Science of the Russian Federation.

2. The dynamics of the Josephson phase in the resistive state:
the Josephson phase diffusion regime

In order to quantitatively analyze the I -V curve of a small Josephson
junction in the Josephson phase diffusion regime we write the dynamic
equation for the Josephson phase ϕ(t)

ϕ̈(t)+ αϕ̇(t)+ sinϕ(t) = j + ξ(t). (2.1)

Here, j is the dc current, and ξ(t) is a random function of time t describ-
ing thermal fluctuations (the Langevin force). The dimensionless units
were used, i.e., the time is normalized to ω−1

p , the dc bias j = I/Ic is
normalized to the critical current value Ic. The solution of this equation
corresponding to the resistive state is written as

ϕ(t) = vt + ψ(t)+ ϕ1(t) , (2.2)
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where the dc voltage drop V is normalized to Vp as v = V/Vp, and
the random function ψ(t) determines the Josephson phase diffusion. As
the Josephson phase oscillations term ϕ1(t) is small, the perturbation ap-
proach can be used, and the Equation (1.1) is recovered. In a generic
nonlinear case ϕ1(t) is written as

ϕ1(t) = A(t)eivt + B(t)e−ivt , B(t) = A∗(t) . (2.3)

Thus, ϕ1(t) shows rapid oscillations of frequency v and a smooth time-
dependence describing by the function A(t). Substituting (2.3) in (2.1)
and carrying out the averaging over the rapid oscillations of frequency v
we obtain

|A|2 = 1

4

∫ ∫
dt1dt2G(t − t1)G

∗(t − t2){J0[|A|(t1)]J0[|A|(t2)]
+ J2[|A|(t1)]J2[|A|(t2)]} cos[ψ(t1)− ψ(t2)],

(2.4)

where Jn(x) are the Bessel functions, and the kernel G(x) is the Green
function of the following homogeneous equation

G̈(t)+ (2iv + α)Ġ(t)− (v2 − iαv)G(t) = 0. (2.5)

Similarly we calculate the dc current j flowing in the system

j = sin[A(t)eivt + B(t)e−ivt + vt + ψ(t)]
= 2

∫ ∞

0
dt I mG(t)

J1[|A|(t)]J0[|A|(t)]
|A|(t) cos[ψ(t)− ψ(0)] (2.6)

Thus, one can see that all electrodynamic properties of small Josephson
junctions in the phase diffusion regime are determined by the specific
correlation function, i.e. ρ(t) = < cos(ψ(t)− ψ(0)) >.

3. Time-dependent correlation function of the Josephson phase

In order to obtain the time-dependent correlation function of the Joseph-
son phase we write ψ(t) as

ψ(t) =
∫

dx R(t − x)ξ(x), (3.1)

where the kernel R(t) is the Green function of the following homogen-
eous equation

R̈(t)+ α Ṙ(t) = 0. (3.2)
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By making use of the method proposed and elaborated in [12, 15] we
obtain the correlation function ρ(t) in the following form

ρ(t) = exp

{
−
∫

dτ

τ0

∫
dξF(ξ)

{
1− eiτ0ξ [R(t−τ)−R(−τ)]}} , (3.3)

where F(ξ) and τ0 are the distribution function and the correlation time
of the current noise, accordingly. Since the R(t) is presented as R(t) =
(1−e−αt )

α
θ(t) we obtain in the limit of large dissipation

ρ(t) = exp(−δ|t |) , δ � α , (3.4)

where the parameter δ = τ0
2α2

∫
dξξ 2F(ξ) determines the decay of the

Josephson phases correlation function. In the opposite regime of δ � α

we obtain
ρ(t) = exp(−δα2|t |3/3) , δ � α . (3.5)

4. The I -V curves of small Josephson junctions:
phase-diffusion regime

First, we notice that the function |A(t)| smoothly depends on time in re-
spect to both the kernel G(t) and the correlation function ρ(t). Moreover,
the kernel G(t) has a simple form: G(t) = 1

α
eivt . By making use of this

assumption and taking into account an explicit expression for G(t) we
rewrite the Equations (2.4) and (2.6) as

|A|2 = J 20 [|A|] + J 22 [|A|]
4α2

∫ ∞

−∞
dteivt cos[ψ(t)− ψ(0)] (4.1)

and

j = 2J1[|A|]J0[|A|]
α|A|

∫ ∞

0
dt sin(vt) cos[ψ(t)− ψ(0)] (4.2)

Since we are interested in averaged quantity only, the dc I -V curve can be
expressed through the voltage dependent correlation time τ(v) = τ1(v)+
iτ2(v), where

τ1(v) =
〈∫ ∞

0
dt cos(vt) cos[ψ(t)− ψ(0)]

〉
(4.3)

and

τ2(v) =
〈∫ ∞

0
dt sin(vt) cos[ψ(t)− ψ(0)]

〉
(4.4)
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By making use of Equations (3.4) and (3.5) we obtain that τ1 approaches
to the finite value for small values of voltage v as

τ1(0) =
{
1
δ

if δ � α

�(1/3)(9δα2)−1/3 if δ � α
(4.5)

In the opposite limit of large values of v the τ1 decreases as 1/v2 for
overdamped junctions (δ � α) and it becomes exponentially small for
underdamped junctions (δ � α). The correlation time τ2 linearly in-
creases for small values of v, and decreases as 1/|v| for large values of
voltage v.
Next we analyze the Equations (4.1) and (4.2) determining the current-

voltage characteristics of a small Josephson junction. In the limit of a
small value of τ1(v) or more precisely τ1 � α2 the amplitude of Joseph-
son phase oscillations |A| is small, and expanding the Bessel functions
over a small argument A we obtain

j (v) = τ2(v)

α
, τ1(v)� α2. (4.6)

In this regime the current I increases linearly in the region of small
voltages, and in the limit δ � α we recover Equation (1.1). In the op-
posite regime, τ1(v)� α2, the amplitude of Josephson phase oscillations
becomes large but the current I is still strongly suppressed by oscillations
of Bessel functions. In this strongly nonlinear regime the averaged value
of I is expressed through the parameters τ1 and τ2 as

j (v) = τ2(v)
(
α

τ 21

)1/3
exp

[
−1
4

( τ1
4α2

)2/3]
, τ1 � α2. (4.7)

Thus, one can see that in the low dissipative junctions (α << 1) the linear
resistance is strongly (exponentially) suppressed.

5. Discussion and Conclusions

A theoretical study of the low-voltage resistive state of small Joseph-
son junctions has been developed. In such junctions as EJ � kB T the
thermal current fluctuations induce a stochastic time dependence of the
Josephson phase. These fluctuations of the Josephson phase destroy the
superconducting state and a specific resistive state occurs. The I -V curve
in such so-called Josephson phase diffusion regime crucially depends on
the dimensionless dissipation parameter α. As this parameter is large, i.e.
α � 1, the Josephson phase dynamics is strongly overdamped and the
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amplitudes of self-excited Josephson phase oscillations are small, there-
fore one can apply perturbation analysis, and the I -V curve is described
by Equation (1.1) or Equation (4.6). Moreover, in the case of a large dis-
sipation Vm = δVp and Im = Ic/(αδ) (see Figure 1). Notice here, that in-
troduced parameters δ and α can be expressed through the physical char-
acteristics of a junction as δ = (2πkB T )Rn/(Vp�0) and α = Vp/(Ic Rn),
where Rn is the quasi-particle resistance, Ic is the nominal critical cur-
rent, and �0 is the magnetic flux quantum [10].
In an opposite regime of a strongly underdamped junction, i.e. α � 1,

the amplitudes of self-excited Josephson oscillations are large, and the
perturbation analysis can not be applied. Instead of that I used the method
of averaging elaborated previously in Ref. [1,14]. In this a strongly non-
linear regime the I -V curve is described by Equations (4.7) and (4.5).
In this underdamped regime the both values Vm = Vpδ(α/δ)

2/3 and
Im � Ic exp [−4−5/3(δα8)−2/9)] are strongly suppressed in respect to the
overdamped case.
Finally, we notice that the crossover between these two regimes is de-

termined by the ratio of the parameters δ and α. Since this ratio depends
on the critical current value Ic, such a crossover can be observed experi-
mentally in a single setup just by application and variation of an external
magnetic field.
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Spin-dependent magnetic focusing

Yuli Lyanda-Geller, L. P. Rokhinson and Stefano Chesi

Abstract. Gabriele Giuliani was fascinated by spin-dependent phenomena. Here
we review experiments on spin separation in cyclotron motion, semiclassical the-
ory of effects of spin-orbit interactions on cyclotron resonance, and theory of spin
filtering by a quantum point contact in two-dimensional hole systems.

1. Introduction

It is a great honor to contribute to Gabriele Giuliani’s memorial volume,
and it has been a remarkable experience to work with Gabriele. In the
past 15 years, Condensed Matter physicists became greatly interested in
spin-dependent phenomena, creating a direction of research named ‘spin-
tronics’ [1]. Gabriele was genuinely interested in this trend, involved his
students in research in this field, and was instrumental in attracting sev-
eral faculty members with interest in spin-dependent phenomena to the
Purdue University Physics Department.
Among several interesting new phenomena discovered over the last

decade, there is spin-dependent magnetic focusing [2–4]. Classical elec-
tron focusing was first observed in metals [5, 6]. Coherent electron fo-
cusing is most remarkably pronounced in semiconductor nanostructures,
where it became a signature phenomenon for quantum ballistic trans-
port [7]. When two quantum point contacts in a two-dimensional elec-
tron gas are separated by multiples of the cyclotron diameter, injection
from one point contact results in an additional potential developed across
the detector point contact. It has been long appreciated that signature
quantum effects, such as the Aharonov-Bohm effect, have remarkable
spin counterparts due to spin-orbit interactions [8, 9]. In [2], it has been
discovered that the effect of magnetic focusing can be used as spin filter.

This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences,
Division of Materials Sciences and Engineering under Award DE-SC0010544 (Y.L-G), and by the
National Science Foundation under Grant No. 1307247-DMR (L.P.R.).
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The origin of such filtering can be traced to spin-orbit interactions intro-
ducing a dependence of the cyclotron radius on the spin of the charge
carriers.
Gabriele Giuliani recognized that several features observed in mag-

netic focusing experiments in two-dimensional hole gases are unaccoun-
ted for in a semiclassical theory of magnetic focusing. More specifically,
Gabriele was intrigued by the reappearance of a filtered spin component
at high in-plane magnetic fields. That led to the paper where a theory of
spin-dependent transmission through quantum point contacts in the two-
dimensional hole gas (2DHG) has been developed [10]. In the present
paper, which is our tribute to Gabriele, we review the results of exper-
iments on spin-dependent focusing, discuss the semiclassical theory of
spin-dependent focusing, and the spin filtering by quantum point contacts
in the presence of spin-orbit interactions.

2. Experiment

To demonstrate spatial separation of spins experimentally we fabricated
several 2DHG devices in the magnetic focusing geometry, see the in-
set in Figure 1. The structure is formed using atomic force microscopy
local anodic oxidation technique (AFM LAO) [11–13]. Oxide lines sep-
arate the 2DHG underneath by forming ∼ 200 mV potential barriers. A
specially designed heterostructure is grown by MBE on [113]A GaAs.
Despite very close proximity to the surface (350Å), the 2DHG has an ex-
ceptionally high mobility 0.4·106 V·s/cm2 and relatively low hole density
n = 1.38 · 1011 cm−2. The device consists of two QPCs oriented along
the [332̄] crystallographic direction, separated by a central gate; the litho-
graphically defined distance between QPCs is L = 0.8 μm. Potential in
the point contacts is controlled separately by two gates Ginj and Gdet , or
by the central gate GC . In our experiments the central gate was kept at
−0.3 V and∼ 0.2 Vwere applied to the gatesGinj andGdet . Asymmetric
biasing of point contacts provides sharper confining potential and reduces
the distance between the two potential minima by 
L ∼ 0.07 μm.
Magnetic focusing manifests itself as equidistant peaks in the mag-

netoresistance R(B⊥) for only one direction of B⊥. R is measured by ap-
plying a small current through the injector QPC while monitoring voltage
across the detector QPC. At B⊥ < 0, cyclotron motion forces the carriers
away from the detector. Then, only the 2DHG contributes to R, which has
almost no B⊥-dependence at low fields and shows Shubnikov–de Haas
oscillations at |B⊥| > 0.3 T. For B⊥ > 0, several peaks due to magnetic
focusing are observed. The peak separation 
B ≈ 0.18 T is consistent
with the distance between the injector and detector QPCs. The data is
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Figure 1. a) Magnetoresistance and layout of focusing devices. The voltage
across the detector (contacts 3 and 4) is measured as a function of magnetic field
perpendicular to the surface of the sample (B⊥). The lithographical separation
between point contacts is 0.8 μm. A current of 1 nA is flowing through the
injector (contacts 1 and 2). The positions of the magnetic focusing peaks are
marked with arrows. Inset: AFM micrograph of a sample (5μm×5μm). Light
lines are the oxide which separates different regions of the 2D hole gas. The
semicircles show schematically the trajectories for two spin orientations. b)
Focusing signal for the first focusing peak in a tilted magnetic field, plotted
versus B⊥. The values of the corresponding B‖, for B⊥ = 0.2 T, are marked
on the right. Curves are offset for clarity. The dashed black (solid red) curves
correspond to Ginj = 2e2/h (< e2/h).
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symmetric upon exchange of the injector and detector and simultaneous
reversal of the magnetic field direction.
When the conductance of both QPCs is tuned to be 2e2/h, the first

focusing peak splits into two peaks. When the in-plane component is
B‖ = 0 the peaks in the doublet have approximately the same height. If
the conductance of the injector QPC is Ginj < 2e2/h the rightmost peak
is slightly suppressed, which has been interpreted as due to spontaneous
polarization [14].
We use the spin filtering by QPCs in the presence of in-plane magnetic

field B|| to probe the spin states which correspond to the first focusing
peak doublet. Applying B‖ along [332̄] affects the energies of the spin
subbands without affecting the cyclotron motion. As the Zeeman splitting
of the spin subbands in a 2D gas increases, preferential transmission of
the largest-kF spin subband is expected for electrons, corresponding to
suppression of the left peak. Instead, in a hole gas we observe suppression
of the right peak up to B‖ ≈ 2.5 T, see Figure 1 b. For B‖ > 2.5 T the
right peak reappears and at B‖ = 7.3 T becomes as prominent as the left
one.

3. Theory

There has been a considerable interest to understand hole spectra in low
dimensional systems over the past decade, also in connection with re-
search in the field of quantum computing. Of special interest are hetero-
structures grown along the [001] direction, in which the hole spectra are
remarkably different from electron spectra. In this case, several authors
concluded that intrinsic Dresselhaus and Rashba spin-orbit interactions
are cubic in the wavevector [17], and that the in-plane g-factor describing
the Zeeman splitting of holes with an in-plane magnetic field is quadratic
in electron momentum and depends on its orientation. As it turns out,
however, earlier work [19] pointed out that for this crystallographic ori-
entation of the 2DHG, the Dresselhaus term gives rise to contributions
linear in momentum. Furthermore, approaches based on low-order per-
turbation theory are generally oversimplified because, as was discussed
in [20], do not take properly into account the non-perturbative effect of
a mutual transformation of heavy and light holes upon reflection from
the walls of the quantum well [21–23]. This effect results in the pres-
ence of two standing hole waves in the wavefunctions of hole states, cor-
responding to heavy and light holes moving along the growth direction,
as opposed to electron case with only one standing wave. Taking mu-
tual transformation of heavy and light holes into account considerably
alters the in-plane effective mass of holes, and the coupling constants of
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the intrinsic spin-orbit interaction as well. Numerical simulations taking
into account a finite number of levels of spatial quantization in the [001]
growth direction might also lead to inaccurate results, if proper care is
not taken upon truncation of the Hilbert space, because all levels of size
quantization result in contributions to the in-plane effective mass and cu-
bic spin-orbit splitting characterized by the same physical scale (i.e., all
contributions have in principle the same order of magnitude).
Our knowledge of properties of holes in quantum wells grown along

the [113] crystallographic orientation is even less extensive. Existing
analytical results [15, 16] were obtained in the so-called axial approx-
imation [17], which may take into account effects of the mutual trans-
formation of heavy and light holes upon reflection from the walls of
the quantum well only partially. Numerical work was performed which
should give more accurate results [10]. Although a progressively larger
number of spatial quantization levels were included, until the numerical
spectra did not change significantly, a more careful analysis of trunca-
tion errors seems necessary in the light of the non-perturbative nature
of the effects described above [20–23]. Nevertheless, conclusions about
certain properties can be drawn on symmetry grounds from the proper-
ties of [001]-grown structures. In particular, quantization along the [113]
crystallographic direction mixes in-plane and out-of-plane properties of
the [001] structures, which results in a contribution to the in-plane g-
factor independent of wavevector. This contribution is non-zero only be-
cause the bulk spectrum of holes is anisotropic. Both cubic- and linear-
in-momentum Rashba and Dresselhaus spin-orbit interactions are present
in the [113] configuration, and the linear in momentum Rashba spin-orbit
term is related to the anisotropy of the bulk hole spectra. Although the
precise magnitude and angular dependence of these interactions is not
known, we will describe how simple models explain the experimental
data on focusing in [113]-oriented hole quantum wells.

4. Semiclassical theory of focusing

It has long been appreciated that intrinsic spin-orbit (SO) interactions
can be interpreted as an effective momentum-dependent magnetic field
that influences the spin of charge carriers [24]. More recently, it has been
recognized [8,9,25–27] that SO interactions can be also viewed as an ef-
fective orbital magnetic field with an opposite sign for different spin ori-
entations. In order to explain the effect of spin filtering in magnetic focus-
ing qualitatively, it is reasonable to assume that charge carriers in GaAs
quantum well are characterized by an isotropic kinetic energy and the
Dresselhaus intrinsic spin-orbit interaction linear in the hole momentum.
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Indeed, for the lowest hole states in a 2DHG in both [113] and [001]
configurations, a linear Dresselhaus term is present. The simplified hole
Hamiltonian can be written as H = 1

2m (px + βσx)
2 + 1

2m (py − βσy)
2,

where m is the effective mass, �p is the electron momentum, σi are the
Pauli matrices (i = x, y), and β is the SO parameter. For simplicity it
is also reasonable to neglect anisotropy of the effective mass as this as-
sumption does not change the qualitative picture. In the semiclassical
description, appropriate for the range of magnetic fields B⊥ used for the
focusing experiments, the motion is described by simple equations:

d �p
dt

= e�v × �B �v = d�r
dt

= ∂ε±( �p)
∂ �p

ε± = 1

2m
(p ± β)2 + β2

2m
, (4.1)

where �r , �v and ε± are the charge carrier coordinate, velocity and energy
for the two spin projections. This description implies that the carrier
wavelength is smaller than the cyclotron radius, and that jumps between
orbits with different spin projections are absent, i.e., ε f � βp/m � h̄ωc.
Equation (4.1) show that the charge carrier with energy ε± = ε f is char-
acterized by a spin-dependent trajectory with momentum �p±, coordinate
�r±, and cyclotron frequency ω±

c . The solution to these equations is

p(x)± + i p(y)± = p± exp (−iω±
c t)

r (x)± + ir (y)± = i
√
2mε f

mω±
c

exp (−iω±
c t)

ω±
c = eB⊥

m
(1± β/p±). (4.2)

Thus, the cyclotron motion is characterized by a spin-dependent field
B± = B⊥(1 ± β/p±) = B⊥ ± Bso, where Bso is the SO effective field
characterizing the cyclotron motion. Using a semiclassical limit of the
quantum description [28], one obtains identical results.
In the focusing configuration, QPCs are used as monochromatic point

sources. Holes, injected in the direction perpendicular to the 2DHG
boundary, can reach the detector directly or after specular reflections from
the boundary. As follows from Eqs. (4.2), for each of the two spin pro-
jections there is a characteristic magnetic field such that the point contact
separation is twice the cyclotron radius for a given spin, L = 2Rc± =
2p f /eB±, p f =

√
2mε f . The first focusing peak occurs at

B±
⊥ = 2(p f ∓ β)

eL
. (4.3)
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The magnitude of β can be calculated directly from the peak splitting
β = (B+

⊥ − B−
⊥ )eL/4 = 7 ·10−9 eV·s/m. A larger value of β ≈ 25 ·10−9

eV·s/m was extracted from the splitting of the cyclotron resonance at
3 times higher hole concentration [29]. We note that Equation (4.3) is
more general than the Eqs. (4.2). The coefficient β essentially describes
the separation in momentum space of the two parts of the Fermi surface
which correspond to ε± = ε f , and includes contributions of various spin-
orbit terms in the 2DHG.
The difference of the spin-dependent focusing field B±

⊥ is proportional
to β and does not depend on the cyclotron frequency ωc = eB⊥/m. At
the same time, the difference of spin-dependent cyclotron frequencies
in Equation (4.2) is proportional to both ωc and β. Thus, the effective
magnetic field Bso is itself proportional to B⊥. This effect differs from
the spin-dependent shift of the Aharonov-Bohm oscillations in the con-
ductance of rings, where the additional spin-orbit flux and the Aharonov-
Bohm flux are independent of each other [9]. If the Zeeman effect is
taken into account, both ω±

c and R±
c acquire an additional dependence on

B⊥, as well as on the in-plane component B||.

5. Focusing peaks in in-plane magnetic field

The behavior of the focusing peaks in Figure 1b requires to consider sim-
ultaneously the charge carriers motion in the 2DHG and their transmis-
sion through quantum point contacts. The observed results cannot be
explained by considering only an intrinsic spin-orbit coupling of the 2D
hole system linear-in-momentum. Furthermore, both 2DDresselhaus and
Rashba SO terms which are cubic-in-momentum necessarily generate
additional linear-in-momentum contributions within the quantum point
contact, similar to the generation of both cubic and linear terms in the 2D
electron Hamiltonian from the bulk cubic Dresselhaus terms. To illustrate
the physics of filtering by point contacts we consider, for example, an
Hamiltonian with the cubic Rashba term of the form iγ

2 ( p̂
3−σ̂+ − p̂3+σ̂−).

Here, p̂± = p̂x ± i p̂y and σ̂± = σ̂x ± i σ̂y . Such cubic spin-orbit in-
teraction is responsible for a peculiar dispersion of the lowest two one-
dimensional (1D) subbands. For a channel with lateral extent W , aligned
with the x-axis, we can substitute 〈p2y〉 ∼ (h̄π/W )2 and 〈py〉 ∼ 0 in the
2D Hamiltonian, which gives

Ĥ1D = p̂x
2

2m
+ γ

(
3h̄2π2

W 2
p̂x − p̂3x

)
σ̂y + h̄2π2

2mW 2
. (5.1)

Due to the lateral confinement, a linear spin-orbit term appears in Equa-
tion (5.1), which is dominant at small momenta and coexist with a cubic
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contribution with opposite sign. Therefore, spin subbands in such a case
cross not only at kx = 0, but also at finite wave vectors kx = ±

√
3π

W .
In [10], the spin splitting due to Rashba term in quantum point contacts
was computed numerically taking into account up to 10 levels of size
quantization in the quantum well for various applied electric fields, as
shown in Figure 2. The 1D bands clearly display the main feature: the
presence of a crossing point at finite wave vector.
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Figure 2. Energy subbands of 1D channels obtained from a 15 nm quantum
well grown in the [113] direction. An electric field Ez = 1 V/μm along [113]
is present. The lateral confinement has width W = 40 nm. Upper panel: wire
along [332̄]. The inset shows the energy splitting of the two lowest subbands
at several values of B‖. The solid curve is for B‖ = 0 and the dashed curves
for B‖ = 0.5, 1, . . . 2.5 T. Lower panel: wire along [11̄0]. The inset shows the
energy splitting with a lateral electric field. The solid curve is for Ey = 0 and
the dashed curves for Ey = ±0.05,±0.015 V/μm (the splitting is reduced for
negative values of Ey).

As illustrated by the inset of Figure 2 (first panel), the degeneracies at
kx = 0 and finite kx are removed when B‖ �= 0. Within the effective
Hamiltonian (5.1), an external magnetic field is taken into account by
adding a Zeeman term g∗μB B‖σ̂x/2, where g∗ is the effective g-factor
[30] andμB the Bohr magneton. The total effective magnetic field, which
includes spin-orbit interactions, depends on values ofW and kx as follows

�Bef f (W, kx) = B‖ x̂ + 2γ h̄3

g∗μB

(
3π2

W 2
kx − k3x

)
ŷ, (5.2)

where x̂, ŷ are unit vectors along the coordinate axes. The eigenstates
of Equation (5.1), ψW (kx ,±) = eikx x |kx ,±〉W , have spinor functions
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|kx ,±〉W parallel/antiparallel to �Bef f and energies

ε±(W, kx) = h̄2k2x
2m

∓ 1

2
g∗μB | �Bef f (W, kx)| . (5.3)

At kx = 0 and kx = ±√
3π/W the spin splitting is g∗μB B‖, i.e., it is

only due to the external magnetic field.
In a realistic QPC the width W (x) of the lateral confinement changes

along the channel. As in [31], a sufficiently smooth variation of the
width is assumed, such that holes adiabatically follow the lowest orbital
subband. Introducing in Equation (5.1) a x-dependent width W (x) =
W0ex2/2
x2 , where 
x is a typical length scale of the QPC and W0 its
minimum width, one obtains the following effective Hamiltonian

ĤQ PC = p̂x
2

2m
+ V (x̂)+ g∗μB

2
B‖σ̂x

+γ [3m{V (x̂), p̂x} − p̂3x
]
σ̂y, (5.4)

with {a, b} = ab+ba [32]. The potential barrier has the following form:

V (x) = h̄2π2

2mW (x)2
= h̄2π2

2mW 2
0

e−x2/
x2 . (5.5)

The main qualitative conclusions are independent of the detailed form of
the potential, but Equation (5.5) allows to solve explicitly the 1D trans-
mission problem and obtain a spin-resolved conductance in the Landauer-
Büttiker formalism. The scattering eigenstates are obtained with incident
wavefunctions ψW=∞(kμ, μ) at x � −
x , where μ = ± denotes the
spin subband and k± are determined by the Fermi energy ε f , at which the
holes are injected in the QPC. For x � 
x , such QPC wavefunctions
have the asymptotic form

∑
ν=± tμ,νψ∞(kν, ν), where tμ,ν are transmis-

sion amplitudes. The spin-resolved conductances are simply given by
G± = e2

h

∑
μ=±

v±
vμ
|tμ,±|2 [33], where the Fermi velocities are v± =

∂ε±(∞,k±)
∂ h̄kx

, from Equation (5.3). The total conductance is G = G+ + G−.
Typical results at several values of B‖ are shown in Figure 3. As usual,
by opening the QPC, a current starts to flow above a minimum value of
W0 and, with a finite magnetic field, G+ �= G−. At zero magnetic field,
there is structureless unpolarized conductance (G+ = G−). At larger
magnetic fields, G− > G+, i.e., holes in the higher spin subband have
larger transmission at the first plateau. The sign is opposite to the case
of linear Rashba spin-orbit coupling (see [34]) and in agreement with the
experimental results of Figure 1. For a magnetic field B‖ ≈ 7 T (see
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the third panel of Figure 3) G+ � G− and the transmission becomes
unpolarized, as observed in the data of Figure 1. Finally, at even larger
values of B‖ > 7 T, G+ � e2/h, G− � 0 (fourth panel of Figure 3).
For such sufficiently large magnetic field the role of the spin-orbit coup-
ling becomes negligible and the spin direction (parallel/antiparallel to the
external magnetic field) of the holes is conserved. The injected holes re-
main in the original (+ or −) branch and the current at the first plateau
is polarized in the + band, which has lower energy. Deviations from this
behavior are due to non-adiabatic transmission in the spin subband. In
order to gain a qualitative understanding, we consider the semiclassical
picture of the hole motion in quantum point contact.
When a hole wave-packet is at position x , it is subject to a mag-

netic field �Bef f determined by W (x) and kx(x) as in Equation (5.2).
For holes injected at ε f , the momentum is determined by energy con-
servation. Treating the spin-orbit coupling as a small perturbation com-

pared to the kinetic energy, one has kx(x) �
√

k2f − π2/W (x)2, where

k f = √
2mε f /h̄ is the Fermi wave-vector in the absence of spin-orbit

coupling. Therefore, the injected hole experiences a varying magnetic
field in its semiclassical motion along x , due to the change of both kx and
W (x). For adiabatic transmission of the spin subbands, the spin follows
the direction of the magnetic field, but this is not possible in general if
B‖ is sufficiently small. In particular, for B‖ = 0 Equation (5.1) implies
that σ̂y is conserved. Therefore, the initial spin orientation along y is not
affected by the motion of the hole. On the other hand, �Bef f of Equa-
tion (5.2) changes direction when kx = √

3π/W . After this point, a hole
in the + branch continues its motion in the − branch and vice-versa.
At finite in-plane magnetic field the degeneracy of the spectrum is

removed but the holes do not follow adiabatically the spin branch, un-
less the Landau-Zener condition d By/dt

B‖ � ωB is satisfied, where h̄ωB =
g∗μB B‖. The change 
By in the spin-orbit field is obtained from Equa-
tion (5.2): |By| is equal to 2γ h̄3k3f /g

∗μB far from the QPC and vanishes
at the degeneracy point. This change occurs on the length scale 
x of
the QPC, and the estimate of the time interval is 
t � 
x/v, where v is
a typical velocity of the hole. This gives

B‖ �
√

h̄
By

g∗μB
t
�

h̄2
√
2γ k3f v/
x

g∗μB
. (5.6)

The estimate of v at the degeneracy point kx = √
3π/W is obtained from√

3π/W �
√

k2f − π2/W 2, which gives kx =
√
3
2 k f . Therefore, v is
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Figure 3. Total conductance G (black solid curves) and spin-resolved conduct-
ances G+ (blue, long-dashed) and G− (red, short-dashed), plotted in units of
2e2/h as functions of the minimum width W0 of the QPC [see Equation (5.5)].
In these simulations, m = 0.14m0 [16], where m0 is the bare electron mass,
g∗ = 0.8 [30], γ h̄3 = 0.45 eV nm 3, 
x = 0.3μm, and ε f = 2.3 meV.

large at the degeneracy point (v � v f , where v f = h̄k f /m is the Fermi
velocity), and to follow adiabatically the spin branches requires a large
external field. The crossover occurs for

B∗ � (h̄k f )
2√2γ h̄/(m
x)

g∗μB
. (5.7)

Below B∗, holes injected in the + band cross non-adiabatically to the −
spin branch when kx � √

3π/W . Therefore, holes injected in the lower
subband have higher energy at x � 0 and are preferentially reflected, as
seen in the second panel of Figure 3 (with B‖ = 3 T). The reflection is not
perfect, due to non-adiabaticity at kx � 0: at this second quasi-degenerate
point the − holes can cross back to the + branch, and be transmitted.
This discussion shows that, in a model where the cubic Rashba term

of 2D holes givs rise to both linear- and cubic-in-momentum terms in the
QPC, the degeneracy of the hole spectrum at kx = √

3π/W is crucial to
obtain the anomalous transmission of Figures 1 and 3. We expect that
when all cubic and linear terms are taken into account, arising from both
Rashba and Dresselhaus SO interactions, the result will be qualitatively
the same.

6. Conclusion

The cyclotron motion makes it possible to spatially separate spin cur-
rents in materials with sufficiently strong intrinsic spin-orbit interactions.
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We have understood the physical mechanisms which give rise to spin-
dependent magnetic focusing and the anomalous spin filtering by quan-
tum point contacts. Professor Gabriele Giuliani made important contri-
butions to the theory and our current understanding of spin-dependent
magnetic focusing, as well as in the broader field of spintronics and spin
transport.
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Charge density wave surface phase slips
and non-contact nanofriction

Franco Pellegrini, Giuseppe E. Santoro and Erio Tosatti

Abstract. Bulk electrical dissipation caused by charge-density-wave (CDW) de-
pinning and sliding is a classic subject. We present a novel local, nanoscale mech-
anism describing the occurrence of mechanical dissipation peaks in the dynamics
of an atomic force microscope tip oscillating above the surface of a CDWmaterial.
Local surface 2π slips of the CDW phase are predicted to take place giving rise to
mechanical hysteresis and large dissipation at discrete tip surface distances. The
results of our static and dynamic numerical simulations are believed to be relevant
to recent experiments on NbSe2; other candidate systems in which similar effects
should be observable are also discussed.

1. How it all began: Gabriele Giuliani and CDW in the 70’

Erio Tosatti – When I first met Gabriele — here “I” is ET— it was 1975,
when he turned up in my office at the University of Rome, introduced by
my senior colleague and former mentor Franco Bassani. Gabriele was
then a young undergraduate student of Pisa’s Scuola Normale (where I
also came from) and was seeking outside advisors for a thesis subject
in modern condensed matter theory. My Rome colleague Mario Tosi,
who was a professor, accepted to serve as his formal external advisor,
and so Gabriele started coming back periodically to Rome, working on
the general subject of the electron gas — “Electron Gas” even became
Gabriele’s nickname, as far as I was concerned. The age gap between
Gabriele and me was slightly less than ten years; we became friends and
spent time together, talking physics, politics, and everything else on our
minds. I had recently come back from Cambridge where I had worked
with Phil Anderson on a possible surface version of charge-density-waves
(CDWs) instabilities of the electron gas invented a decade earlier by Al
Overhauser in the US. I was enthusiastic about the subject, and ended up

We acknowledge research support by SNSF, through SINERGIA Project CRSII2 136287/1, by ERC
Advanced Research Grant N. 320796 MODPHYSFRICT, by EU-Japan Project 283214 LEMSU-
PER, and by MIUR, through PRIN-2010LLKJBX 001.
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Figure 1. Gabriele Giuliani (center) with Mario Tosi (left) and Franco Bassani
(right) on the Appennines during a trip from Rome to Gabriele’s hometown,
Ascoli Piceno (Autumn 1976). Photograph taken by Erio Tosatti.

getting Gabriele interested too, and so it was that CDWs and Overhauser
made their first entry in Gabriele’s life.
In 1977 when, after completion of his degree in Pisa, I asked Gabriele

to consider my newly founded group in Trieste, to which I had man-
aged to attract colleagues of the caliber of young Michele Parrinello and
of mature Mario Tosi. He liked it, and decided to join. In Trieste, we
began working on one-dimensional CDWs and similar systems [1–3].
He worked hard and got far ahead of my rudimentary command of many
body theory and related suggestions. I recall for example one calcula-
tion where he was supposed to reproduce, with some supposedly clever
approximation I had cooked up, one exactly known result. I abused him
abundantly because he was consistently failing to get the exact result by a
factor 2 — only to discover the hard way that he was right and the culprit
was my beloved approximation. In spite of all that, when one summer
I met Al Overhauser in the US, he approached me quite enthusiastically
about our otherwise universally ignored CDW paper [2], and declared
that he would be delighted to welcome Gabriele to visit his group, pos-
sibly for a PhD curriculum (a title that did not exist in Italy at the time).
And this is how Gabriele ended up at Purdue, in 1979, first as a postdoc
with Al Overhauser, and then, after a further postdoc at Brown University,
with a tenure. Our more than brotherly relationship continued uninterrup-
ted to his very last few days, with visits, contacts, and many many phone
and Skype calls which he would never forget to make in connection with
all kinds of occasions or even without. Besides Gabriele’s friendship, his
other main present has been his former student Giuseppe Santoro, who
came to Trieste at his suggestion to become a close friend and collabor-
ator to this day.
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Giuseppe Santoro – It was 1987— a few years after he returned to Purdue
from Brown — that I joined Gabriele at Purdue, the “I” now being GES.
I had met him already in a couple of occasions in Pisa, were I was a
student of the Scuola Normale Superiore that Gabriele regularly visited
during his trips to Italy, to visit his family in the beloved hometown
of Ascoli Piceno (Alé Ascoli was, as I soon discovered, Gabriele’s first
screen upon log-in on any computer on earth). By that time — we were
in the Quantum Hall Effect era — the focus of Gabriele research was the
two-dimensional electron gas, and this was the initial interest of my first
papers at Purdue. But I still cannot recall a single office day, during my
stay at Purdue from 1987 to 1991, in which Gabriele was not paying a
visit to Al Overhauser: and in Overhauser’s office, a most sure topic of
discussion was charge (and spin) density waves.
It is fair to say that, since the early days, Gabriele and CDW (first) and

two-dimensional electronic systems (later) remained entangled together.
It is thus fitting that this article, devoted to him and his legacy, should be
on the CDWs of a peculiar two-dimensional layered system, NbSe2, on
which we have recently come across.

2. Introduction

Charge-density-waves (CDWs) are static modulations of small amplitude
and generally incommensurate periodicities which occur in the electron
density distribution and in the lattice positions of a variety of materi-
als [4]. They may derive either by an exchange-driven instability of a
metallic Fermi surface [5], or by a lattice dynamical instability leading
to a static periodic lattice distortion (PLD) which may equivalently be
driven by electrons near Fermi [6,7] or finally just by anharmonicity [8].
A CDW superstructure, characterized by amplitude ρ0 and phase φ relat-
ive to the underlying crystal lattice can be made to slide with transport of
mass and charge and with energy dissipation under external perturbations
and fields [4].
Phase slips in bulk CDWs/PLDs are involved in a variety of phenom-

ena, including noise generation [9], switching [10], current conversion at
contacts [11], noise [12, 13] and more. While these phenomena are now
classic knowledge, there is to date no parallel work addressing the possib-
ility to mechanically provoke CDW phase slips at a chosen local point,
see pictorial illustration in Figure 2. In this work we describe a two-
dimensional model showing how a localized CDW/PLD phase slip may
be provoked by external action of an atomic force microscope (AFM) tip
at an arbitrarily chosen point outside a surface.
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Figure 2. Pictorial view of an AFM tip provoking phase slips over a surface
CDW modulation.

The study of the microscopic mechanisms leading to energy dissipation
and friction has very important theoretical and practical implications. In
recent years, experiments have started to single out the effects of mi-
croscopic probes in contact or near contact with different surfaces, and
much theoretical effort has been devoted to the understanding of such ex-
periments [14]. In particular, the minimally invasive non-contact experi-
ments offer a chance to investigate delicate surface properties and prom-
ise to bring new insight on localized effects and their interaction with the
bulk. The development of ultra-sensitive tools such as the “pendulum”
AFM [15, 16] offers a chance to investigate more delicate and intimate
substrate properties. Near a CDW material the tip oscillations may ac-
tuate, through van der Waals or electrostatic coupling, an electronic and
atomic movement in the surface right under the tip, amounting in this case
to coupling to the CDW order parameter. Owing to the periodic nature of
the CDW state, the coupled tip-CDW system has multiple solutions, char-
acterized by a different winding number (a topological property) which
differ by a local phase slip, and correspond to different energy branches.
At the precise tip-surface distance where two branches cross, the system
will jump from one to the other injecting a local 2π phase slip, and the
corresponding hysteresis cycle will reflect directly as a mechanical dis-
sipation, persisting even at low tip oscillation frequencies.
Recently, a non-contact atomic force microscopy (AFM) experiment

[17] on a NbSe2 sample has shown dissipation peaks appearing at spe-
cific heights from the surface and extending up to 2 nm far from it. These
peaks were obtained with tips oscillating both parallel and perpendicular
to the surface, and in a range of temperatures compatible with the surface
charge density wave (CDW) phase of the sample. In this paper, a model is
proposed explaining in detail the mechanism responsible for these peaks:
the tip oscillations induce a charge perturbation in the surface right under
the tip, but, due to the nature of the CDW order parameter, multiple stable
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charge configurations exist characterized by different “topological” prop-
erties. When the tip oscillates at distances corresponding to the crossover
of this different manifolds, the system is not allowed to follow the energy
minimum configuration, even at the low experimental frequencies of os-
cillation, and this gives rise to a hysteresis loop for the tip, leading to an
increase in the dissipation.

3. The Ginzburg-Landau model

In the following, we will use the term CDW to indicate a periodic modu-
lation of the charge density ρ, irrespective of the process behind its gen-
eration. This modulation is described, in the unperturbed system and for
the simplest form of CDW, as
ρ(r) = ρ0 cos(Q ·r+φ0), where ρ0 is the
intensity, λ = 2πQ−1 the characteristic wavelength, and φ0 an initially
constant phase, fixed by some far away agent. Perturbations to CDWs
have been studied extensively [4, 18–20], but most studies are concerned
either with uniform perturbations (e.g., the dynamics of a CDW under
an external electric field) or point-like perturbations (e.g., the static pin-
ning of the CDW by defects), and often consider one-dimensional mod-
els, appropriate for quasi-one-dimensional materials, where the coher-
ence length in the perpendicular directions is smaller than the atomic
distance. Here we wish to study, instead, the effect of a localized per-
turbation represented by a weakly interacting and slowly oscillating nano
or mesoscopic sized probe hovering above the surface, acting on a length
scale σ similar to the CDW wavelength, σ ∼ 2πQ−1, and on a material
where the coherence length is macroscopic in more than one dimension.
Starting from the standard Fukuyama-Lee-Rice model [18, 19] for

CDW, the charge modulation is described as a classical elastic medium,
through a Ginzburg-Landau (GL) theory. A complex space-dependent
(and later, time-dependent) order parameter ψ(r) = A(r)eiφ(r) will take
into account both the amplitude degree of freedom A, as well as the
phase φ, in terms of which the charge density modulation is expressed
as 
ρ(r) = A(r) cos(Q · r + φ(r)) = Re

[
ψ(r)eiQ·r]. The unperturbed

system has A(r) = ρ0 and φ(r) = φ0, both constant. The GL free-energy
functional, in absence of any external perturbation, will read:

F0[ψ(r)] =
∫
dr
[−2 f0 |ψ(r)|2 + f0 |ψ(r)|4 + κ |∇ψ(r)|2

]
, (3.1)

where f0 sets the energy scale and κ accounts for the elastic energy cost.
If we now consider the effect of an external perturbation — in our case,
the AFM tip, generically described as a potential V (r) coupling to the
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charge density modulation
ρ(r)—, we will need to add to the GL free-
energy functional an extra term of the form:

FV [ψ(r)] =
∫
dr V (r)
ρ(r) =

∫
dr V (r)Re

[
ψ(r)eiQ·r] . (3.2)

The literature [20, 21] has dealt extensively with the case in which V (r)
represents the potential due to impurities present in the sample, where it is
appropriate to take V (r) =∑i δ(r− ri), since the typical scale in which
the impurity potential acts is much smaller than 2πQ−1. In that case,
phase-only oscillations—with an essentially constant amplitude A(r)—
are often enough to study the ground state of the system, resulting from
the balance of elastic and potential energy, and described by a phase-only
GL functional of the form:

Fφ[φ(r)] =
∫
dr
[
κ |∇φ(r)|2 + V (r)ρ0 cos(Q · r+ φ(r))] . (3.3)

Extremely localized impurity perturbations of this sort, however, only im-
pose a likewise point-like constraint on the phase of the order parameter,
and cannot lead to a phase slip, in the absence of an external driver [20].
To model an AFM tip, on the contrary, we should consider the case where
V (r) has a given specific shape with a finite width σ of the order of the
wavelength 2πQ−1, and minimize the total GL free energyF = F0+FV ,
including the amplitude degree of freedom A(r). The fact that a phase-
only functional Fφ is inadequate in describing this specific effect can
be argued as follows. If we consider a purely one-dimensional model
Fφ[φ(x)], we would end-up with a linear behavior of φ(x)— the solu-
tion of the Laplace equation in one-dimension — in the regions where
the potential is zero. Since we expect a decay of φ towards some con-
stant φ0 far from the perturbation, this is a clearly unphysical result. But
moving to a two-dimensional phase-only functional does not improve the
situation very much. Indeed, due to the nature of the phase, which is
defined modulo 2π , given some boundary conditions the solution is not
univocally defined unless the total variation of φ along the sample is also
specified. Assuming the phase to have the unperturbed value φ0 far from
the perturbation, we can define the integer winding number N of a solu-
tion as the integral

N = 1

2π

∫
∇φ(x)dx , (3.4)

taken along the CDW directionQ (with N = 0 typically representing the
unperturbed case). Since any change in the winding number along the
Q direction would extend to the whole sample, and unnaturally raise the
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energy of such a solution, to recover a physical result we definitely need
to take into account the amplitude degree of freedom, which will allow
for the presence of dislocations and local changes in the winding number.
For these reasons, we consider the full GL problem F = F0 + FV

in two dimensions, with the complete complex order parameter ψ(r) =
A(r)eiφ(r), and in a subspace with a definite winding number. The final
result is expected to be similar to what previously considered in the wider
context of phase slips [20] and more specifically in the case of localized
phase slip centers [22, 23]. Namely, the local strain induced by the per-
turbation on the phase will reduce the order parameter amplitude, to the
point where a local phase slip event becomes possible. In more than one
dimension, the boundary between areas with different winding number
will be marked by vortices of the phase.
From this preliminary analysis, the mechanism responsible for the dis-

sipation peaks can be understood: as the tip approaches the surface, it
encounters points where the energies of solutions with different wind-
ing number undergo a crossover. At these points the transition between
manifolds is not straightforward, due to the mechanism required to create
the vortices; therefore the tip oscillations lead to jumps between different
manifolds, resulting in hysteresis for the tip, and ultimately dissipation.

4. Equilibrium and time-dependent GL simulations

To asses the validity of the proposed mechanism, we have performed
numerical simulations of the tip-surface interaction with a full GL free-
energy F[ψ(r)] = F0 + FV . For simplicity, a two-dimensional GL
functional is considered, since this takes into account the relevant elastic
effects while keeping the simulation simple enough: indeed, the exper-
imental substrate NbSe2 [17] has a quasi-two-dimensional structure, so
that volume effects are expected to be not crucial. Differently from the
experimental system [24], we will model the CDW as being character-
ized by a single wavevector Q, leading to a simpler order parameter and
a clearer effect. To represent the effect of the tip, the shape of a van der
Waals potential C/r6 is integrated over a conical tip at distance d from
the surface. We have found that the result of such a calculation can be
reasonably approximated in the main area under the tip by a Lorentzian
curve:

V (r; d) = V0(d)

r2 + σ 2(d) , (4.1)

where r is the distance in the plane from the point right below the tip and
the parameters are found to scale like V0(d) = V /d and σ(d) = σd2.
Knowing the shape of the perturbation, the total free energy F = F0 +
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Figure 3. Charge density 
ρ, order parameter amplitude A and potraits of
the phase φ for minimal free energy solutions with different winding-number N
and tip-surface distance d (in nm). Results from simulations on a 201×201 grid
with parameters (see text) f0 = 2 eV/nm, κ = 0.2 eV, Q = 2.5 nm, V = −9.4
eV·nm, σ = 1, 2 nm−1 and boundary conditions ψ0 = i (right and left sides).

FV is minimized numerically on a square grid of points with spacing
much smaller than the characteristic wavelength of the CDW, imposing
a constant boundary condition ψ0 on the sides perpendicular to Q, while
setting periodic boundary conditions in the other direction to allow for
possible phase jumps. The minimization is carried out through a standard
conjugated gradients algorithm [25]. The parameters we have employed
are order of magnitude estimates of the real parameters, reproducing the
relevant experimental effects on NbSe2 [17] in a qualitative fashion.
Figure 3 shows the charge density modulation
ρ, together with a plot

of the amplitude A(r) and a phase portrait of φ(r), corresponding to GL
minima with different winding-number N , for a non-contact (attractive)
tip at different distances d. The winding-number is calculated along the
line passing through the point right below the tip (center of the simula-
tion cell) according to Eq. (3.4), with N = 0 being the unperturbed case.
As predicted, we see upon decreasing d through the first and successive
critical distances d01, d12, etc. the appearance of vortex-antivortex pairs
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Figure 4. Minimal free energy F as a function of tip distance d for subspaces
with different winding number N (full lines) and evolution of F during a tip
oscillation (dashed line) with d0 = 1.8 nm, d̄ = 0.4 nm, ω = 6 · 104 Hz (other
parameters are the same as Figure 3).

for every unit increase of the winding number. These vortices are char-
acterized by a zero of the amplitude A(r) and a total change of the phase
by 2π on a path around them, as they separate the phase-slippage center
from the unaffected area far from the tip.
Since the solution with a given winding number N represents a local min-
imum, it is possible to use the minimization algorithm, for example by
starting from a reasonable configuration, to find solutions in a certain N -
subspace, even when that is not the global minimum for that given case.
This allows us to extend the calculation of the local free energy minima
in a given N subspace well beyond their crossing points, generating a
family of free energy curves of definite N as a function of the distance
d. Figure 4 (full lines) is an example, showing two successive crossing
points. We expect each crossing to give rise to a first order transition, and
thus to a hysteretic peak in the experimental dissipation trace. Of course,
a more complex CDW configuration or different parameters could give
rise to more and different peaks.
To justify more firmly the validity of the proposed dissipation mechan-

ism, we need to look into the dynamics of the CDW, upon varying the tip-
surface distance according to the law d(t) = d0+ d̄ cos(ωt), to guarantee
that the evolution through a crossing point does not lead to immediate
relaxation between different N -manifolds. To do this, the time evolution
of the system was simulated, following the time-dependent Ginzburg-
Landau equation [23]

−�∂ψ
∂t

= δF
δψ∗ . (4.2)
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This equation can be interpreted as an overdamped relaxation of the order
parameter towards the equilibrium position, with a relaxation rate �−1.
Integrating this equation (through a standard Runge-Kutta algorithm
[25]), the instantaneous force F = −∇dF as a function of the distance
can be computed for a tip performing a full oscillation perpendicular to
the surface according to the law d(t) = d0 + d̄ cos(ωt). Figure 5 shows
the force evolution during such oscillations at different frequencies. As
we can see, the tip suffers a hysteresis even at low frequencies, since the
decay from one manifold to the other happens far from the crossing point.
The area of the loops represents directly the dissipated energy per cycle
W , as reported in the inset.

5. Discussion and conclusions

We have shown that local surface CDW phase slips and vortex pairs can
be introduced by the external potential of an approaching tip. In the con-
text of macroscopic CDW conduction noise [4, 12, 13], the creation and
movement of vortices has been invoked earlier in connection with phase
slips near the CDW boundaries. In a broader context, our system can be
placed in between these macroscopic situations and the simple models of
defect pinning and phase-slip [20] by a localized perturbation.
Experimentally, Langer et al. [17] recently reported AFM dissipation

peaks appearing at discrete tip-surface distances above the CDWmaterial
2H-NbSe2, qualitatively suggesting, in a 1D toy model, the injection of
2π phase slips. The present results describe at the minimal level a theory
that can explain this type of phenomenon, connecting the phase slip to
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Figure 5. Force as a function of distance for evolutions with d0 = 1 nm, d̄ =
0.4 nm and different values of ω with � = 10−7 eV·s. Inset: total work W as a
function of oscillation frequency ω.
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a vortex-pair formation, and providing the time dependent portrait of the
injection process.
It would be of considerable future interest to explore further this effect

in other systems with different characteristics. In insulating, quasi-one
dimensional CDW systems the injected phase slip should also amount to
the injection of a quantized, possibly fractional pairs of opposite charges
[26]. In a spin density wave system, such as the chromium surface, a non-
magnetic tip would still couple to the accompanying CDW [27] where
surface phase slips could be injected. In superconductors, the induc-
tion of single vortices over Pb thin film islands has been experiment-
ally verified [28] and the feasibility of controlling single vortices through
magnetic force microscopy (MFM) tips demonstrated [29]: it would be
interesting to probe for dissipation peaks, as we have addressed above,
induced by the MFM tip creation of vortex pairs in thin superconducting
films.
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The quasiparticle lifetime in a doped
graphene sheet

Marco Polini and Giovanni Vignale

Abstract. We present a calculation of the quasiparticle decay rate due to electron-
electron interactions in a doped graphene sheet. In particular, we emphasize
subtle differences between the perturbative calculation of this quantity in a doped
graphene sheet and the corresponding one in ordinary parabolic-band two-dimen-
sional (2D) electron liquids. In the random phase approximation, dynamical over-
screening near the light cone yields a universal quasiparticle lifetime, which is
independent of the dielectric environment surrounding the 2D massless Dirac fer-
mion fluid.

1. Introduction

Gabriele Giuliani loved the Landau theory of normal Fermi liquids [1–4].
The notion that a system of strongly interacting particles could behave
like an ideal gas of plain non-interacting particles, was to him a source of
endless fascination. This was largely a reflection of his “down-to-earth”
approach to theoretical physics. Gabriele disliked all forms of mystific-
ation and particularly the widespread one of couching trivial or wrong
ideas in high-sounding theoretical language. Fermi liquid theory, with
its deceptive simplicity, was precisely the opposite of mystification: it
was the sophisticated plainness he was striving for. At the heart of Fermi
liquid theory lies the concept of “quasiparticle” – a quasi-exact eigen-
state of a single excited particle that decays very slowly in time. How
slowly? The critical requirement is that the decay rate of the state remain
much smaller than its energy in the limit that the latter tends to zero.
If this condition is satisfied, then an “adiabatic switching-on” process
becomes viable, whereby, starting from an infinitely long-lived excited
eigenstate of the non-interacting system, and slowly turning on the inter-
action (“slowly” meaning at a rate that is much longer than the excitation
frequency – yet faster than the decay rate), one generates the long-lived
eigenstate of the interacting system.
A standard argument for estimating the decay rate (also known as in-

verse lifetime) of a quasiparticle goes as follows. Assuming that long-
lived quasiparticles exist with a small energy ξ in the vicinity of the
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Fermi surface it is evident that they can only decay by scattering into
other available (i.e., empty) quasiparticle states. This is because Pauli’s
exclusion principle pre-empts scattering of a fermion into an occupied
state (we ignore spin for simplicity). The number of available states is
thus proportional to ξ (at zero temperature) or to T , if ξ � kBT . Further,
conservation of momentum and energy require that the decay be accom-
panied by the production of a quasi-electron-quasi-hole pair, whose en-
ergy is also of the order of ξ or kBT , whichever is larger. The density of
such pairs is proportional to ξ or kBT . Taking the two factors together, we
conclude that the quasiparticle decay rate is proportional to ξ 2 or (kBT )2,
which is indeed much smaller than the excitation frequency, ξ or kBT , in
the limit that the latter tends to zero.
Notice that this somewhat circular argument is valid (when it is valid)

regardless of the strength of the electron-electron interaction. And in-
deed, for three-dimensional Fermi systems the naive argument gives the
right answer, even when the interactions are very strong (as in 3He and
in heavy fermion compounds) and the renormalizations of the effective
(i.e., quasiparticle) mass are correspondingly large. The situation is com-
pletely different in one spatial dimension, where the same argument fails
to predict the collectivization of the electron and the formation of the
Luttinger liquid state (the situation is very well described in Giamarchi’s
book [5]).
What about the two-dimensional (2D) electron liquid? In the early

1980s, when Gabriele was just beginning his career, two-dimensional
electron gases (2DEGs) in GaAs-based heterostructures and Si inversion
layers were among the most fashionable systems studied by condensed
matter physicists. The twin discoveries of the localizing effect of impur-
ities in two spatial dimensions [6] (scaling theory of localization) and,
more subtly, of the quantum Hall effect [7], which critically depended on
the former, appeared to undermine the Fermi liquid picture of the 2DEG.
The very existence of the metallic state of the 2DEG was in doubt [6].
With his “no-nonsense” attitude Gabriele followed those developments
closely, but never bought into the most adventurous ideas. To those who
denied the existence of the metallic state of electrons in 2D GaAs he was
likely to suggest the following thought experiment: “OK, let us stick this
end of the sample into the power socket, while you hold the other end...”
But at the same time he would not accept uncritically the conventional
wisdom about the Fermi liquid state in two spatial dimensions. And it
was so that, during his postdoc with John Quinn at Brown University,
he began to investigate the key question of the quasiparticle lifetime in
the 2DEG. Working within the Fermi liquid picture, he was able to es-
tablish [8] that the decay rate of a quasiparticle in the 2DEG does not
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scale as ξ 2 or (kBT )2 as the naive argument would suggest, but rather
as −ξ 2 ln(ξ) or −(kBT )2 ln(kBT ), depending on whether kBT � ξ or
kBT � ξ , respectively [9]:

1

τk
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−εF

h̄

1

4π

(
ξk

εF

)2
ln

( |ξk|
εF

)
, for kBT � |ξk|

−εF
h̄

1

2π

(
kBT

εF

)2
ln

(
kBT

εF

)
, for kBT � |ξk|.

(1.1)

Here ξk = h̄2k2/(2m) − εF is the parabolic-band energy measured from
the Fermi energy εF, m being the electron’s (band) mass and h̄k the 2D
momentum. The unexpected logarithmic enhancement of the decay rate
is due to a subtle feature of the 2D phase space available for the scattering
of quasi-particles near the Fermi surface—a feature that is not captured
by the naive argument. Another surprising feature of the Giuliani-Quinn
formula for the decay rate is that the coefficient of the leading terms
−ξ 2 ln(ξ) or −T 2 ln(T ) is independent of the electron-electron coupling
constant or, as Giuliani and Quinn aptly put it, of the magnitude of the
electron charge. This counterintuitive feature arises from the fact that,
in the Giuliani-Quinn theory, the dominant contribution to the decay rate
arises from scattering processes with small momentum transfer q: these
are the processes for which the Coulomb interaction between two qua-
siparticles is most strongly screened [4] by the electronic medium that
surrounds them, leading to an effective interaction that depends only on
the non-interacting density of states.
Equation (1.1) provides the justification for applying Fermi liquid the-

ory to the 2DEG, at least when disorder is not too strong. The logar-
ithmic enhancement of the decay rate does not create any serious danger
to the stability of quasiparticles, probably less than Gabriele’s thought
experiment to its hypothetical subjects. Over the years, the paper [8] in
which Equation (1.1) was first reported grew to be the standard refer-
ence on the subject. Adjustments had to be made [10] over the years to
include the contributions of 2kF scattering, vertex corrections, exchange
effects, etc..., but none of these refinements changed the basic picture
established in the original paper. Furthermore, numerous experiments
since then have established the validity of the Fermi liquid concept in the
2DEG [11], the quasiparticle lifetime has been probed in detail [12], and
the existence of the metallic state has been demonstrated [13].
Fast-forward 40+ years to 2004, the year in which, for the first time,

few-layer graphene sheets were electrically contacted and the field effect
was demonstrated [14]. In its pristine state, graphene, i.e. a single layer of
Carbon atoms arranged in a honeycomb structure, is a semimetal [15]. Its
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conical conduction and valence bands have dispersions ∼ ±h̄vF(k − kD)
in the vicinity of the Dirac point kD, where they touch. Due to the van-
ishing density of states at the Fermi level one would expect a complete
break-down of the Fermi liquid paradigm. And, indeed, many-body cal-
culations [16] suggest that the so-called massless Dirac fermion (MDF)
quasiparticles exhibit singular features, such as a logarithmically diver-
ging velocity [17] and linear-in-energy decay rates [18], which are hardly
compatible with the Landau Fermi liquid paradigm. Nevertheless, these
singularities are found to be relevant only for extremely low carrier dens-
ities and, when a sizeable Fermi surface is created (by doping, or, more
conveniently, by electrostatic gating), the conventional Fermi liquid de-
scription seems to take hold again, even in suspended sheets, where the
strength of electron-electron interactions is the largest. To be convinced
that this is truly the case, one must calculate carefully the decay rate
for quasiparticles near the Fermi surface. One might suppose that the
presence of the Fermi surface erases any difference between the ordin-
ary Schrödinger electrons of a 2DEG and the MDFs of graphene: after
all the parabolic dispersion of Schrödinger electrons is approximately
linear in the vicinity of the Fermi surface. However, the lesson of the
Giuliani-Quinn paper is that such a-priori arguments must be taken with
a good dose of skepticism, because subtle differences in the structure of
the phase space can lead to quantitative differences in the decay rate. And
indeed, a careful calculation, presented in the next few sections, exposes
several differences between the calculation of the quasiparticle lifetime
in graphene and in the 2DEG—differences that arise from the suppres-
sion of backscattering (characteristic of MDFs) as well as from the large
enhancement of screening in MDF systems at frequencies near the light
cone ω = ±vFq. The final upshot of the calculation, however, is that
the Giuliani-Quinn picture remains valid, with the added feature that col-
linear scattering processes with small momentum transfer are now more
important than ever, and completely dominate the behavior of the quasi-
particle lifetime, while 2kF processes (initially neglected by Giuliani and
Quinn) are happily suppressed.
The Fermi liquid properties and Coulomb decay rates of quasiparticles

in graphene sheets have been studied by many authors. We have provided
a (certainly incomplete) list of pertinent works in Refs. [19–32]. In this
Article we present a pedagogical description of the calculation leading to
an explicit formula for the Coulomb decay rate (i.e. inverse lifetime) of
a weakly-excited plane-wave state in a doped graphene sheet. Our main
results, Equation (2.47) and Equation (2.49), have been derived earlier by
other authors (see, e.g., Ref. [27]): the emphasis of this work is on the
intermediate steps of the calculation.
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2. Coulomb-enabled two-body decay rates
in a doped graphene sheet

In this Section we present a theory of the decay rate 1/τk,λ of a plane-
wave state with momentum h̄k and band index λ in a doped graphene
sheet, at a temperature T . We will consider decay rates solely due to
two-body Coulomb collisions.
For future purposes, we introduce the so-called graphene’s fine-struc-

ture constant [33] αee,

αee = e2

εh̄vF
. (2.1)

Here, the dielectric constant ε is the average of the dielectric constants
ε1 and ε2 of the media above and below the graphene flake, i.e. ε ≡
(ε1 + ε2)/2. The dimensionless parameter αee determines the strength of
electron-electron interactions with respect to the kinetic energy.
We start by considering the so-called “G0W-RPA” approximation for

the imaginary part of the self-energy �λ(k, ω) in a doped graphene sheet
[20] (from now on we set h̄ = 1, unless otherwise stated):

�m[�λ(k, ω)]
=
∫

d2q
(2π)2

∑
λ′

�m

[
vq

ε(q, ω − ξk−q,λ′, T )

]
Fλλ′(θk,k−q)

× [nB(ω − ξk−q,λ′)+ nF(−ξk−q,λ′)] ,

(2.2)

where λ, λ′ are band indices (λ = + denotes conduction-band states,
λ = − denotes valence-band states), θk,k−q is the angle between k and
k − q,

Fλλ′(ϕ) ≡ 1+ λλ′ cos (ϕ)
2

(2.3)

is the usual chirality factor, and

ξk,λ ≡ εk,λ − μ = λvFk − μ (2.4)

are Dirac-band single-particle energies measured from the chemical po-
tential μ.
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In Equation (2.2) nB/F(x) ≡ 1/[exp(βx) ∓ 1] are the usual Bose
(Fermi) statistical factors with β = (kBT )−1 and

ε(q, ω, T ) ≡ 1− vqχ
(0)(q, ω, T ) (2.5)

is the finite-temperature dynamical screening function in the random
phase approximation (RPA) [4]. Here vq = 2πe2/(εq) is the 2D Fourier
transform of the Coulomb interaction and χ(0)(q, ω, T ) the non-inter-
acting finite-temperature density-density response function of a 2D gas
of MDFs [34]. It contains both intra- and inter-band contributions.
Note that

�m

[
1

ε(q, ω, T )

]
= vq

�m[χ(0)(q, ω, T )]
|ε(q, ω, T )|2 . (2.6)

Using the previous identity in Equation (2.2) we find the following ex-
pression for the decay rate due to two-body Coulomb collisions:

1

τk,λ
≡−2�m[�λ(k, ξk,λ)]

=−2
∑
λ′

∫
d2q
(2π)2

v2q
�m[χ(0)(q, ξk,λ − ξk−q,λ′, T )]

|ε(q, ξk,λ − ξk−q,λ′, T )|2 Fλλ′(θk,k−q)

×[nB(ξk,λ − ξk−q,λ′)+ nF(−ξk−q,λ′)] . (2.7)

We now use the exact identity

nB(ξk,λ − ξk−q,λ′)+ nF(−ξk−q,λ′)
= 1− nF(ξk−q,λ′)
1− exp[−β(ξk,λ − ξk−q,λ′)] −

nF(ξk−q,λ′)
1− exp[β(ξk,λ − ξk−q,λ′)]

(2.8)

and introduce the following auxiliary delta function on the energy transfer
ω:

1 =
∫ ∞

−∞
dω δ(ξk,λ − ξk−q,λ′ − ω) . (2.9)

We can therefore rewrite Equation (2.7) as follows

1

τk,λ
= − 2

(2π)2
∑
λ′

∫ +∞

−∞
dω

1− nF(ξk,λ − ω)
1− exp(−βω)

×
∫ +∞

0
dq q

∣∣∣∣ vq

ε(q, ω,T )

∣∣∣∣2 �m[χ(0)(q, ω,T )]Aλλ′(k, q, ω)

+ 2

(2π)2
∑
λ′

∫ +∞

−∞
dω

nF(ξk,λ − ω)
1− exp(βω)

×
∫ +∞

0
dq q

∣∣∣∣ vq

ε(q, ω, T )

∣∣∣∣2 �m[χ(0)(q, ω, T )]Aλλ′(k, q, ω) .

(2.10)
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Note that the second term in the previous equation can be obtained from
the first term by performing the replacements 1−nF(ξk,λ−ω)→ nF(ξk,λ−
ω), 1 − exp(−βω) → 1 − exp(βω), and changing the overall sign. For
this reason, it is customary [4] to define the first term in Equation (2.10)
as the quasiparticle decay rate, the second term as the quasihole decay
rate and the sum of the two as the decay rate of the plane-wave state k, λ:

1

τk,λ
≡ 1

τ
(e)
k,λ

+ 1

τ
(h)
k,λ

. (2.11)

In Equation (2.10) we have introduced the following angular integral

Aλλ′(k, q, ω) ≡
∫ 2π

0
dθ δ(ξk,λ − ξk−q,λ′ − ω)

× Fλλ′(θk,k−q) , (2.12)

where θ is the angle between q and k, which can be oriented along the
x̂ axis without loss of generality, i.e. k = k x̂. For future purposes it is
important to note that

cos(θk,k−q) = k − q cos(θ)√
k2 + q2 − 2kq cos(θ)

. (2.13)

Since the integrand in Equation (2.12) is a function of cos(θ) only, we
can write

Aλλ′(k, q, ω) = 2
∫ π

0
dθ δ(ξk,λ − ξk−q,λ′ − ω)

× Fλλ′(θk,k−q) . (2.14)

The function Aλλ′(k, q, ω) can be easily evaluated analytically. One first
realizes that the delta function in Equation (2.12) gives a non-zero con-
tribution to Aλλ′ if and only if the equality

vFλk − vFλ′
√

k2 + q2 − 2kq cos(θ) = ω (2.15)

is satisfied. This condition does not depend on the chemical potential μ.

2.1. Intra-band contribution

For λ′ = +1 (intra-band scattering) Equation (2.15) reduces to√
k2 + q2 − 2kq cos(θ) = k − ω

vF
, (2.16)
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which requires k ≥ ω/vF. When this condition is satisfied,

cos(θ) = q2 − ω2/v2F + 2kω/vF
2kq

, (2.17)

which in turn requires∣∣∣∣q2 − ω2/v2F + 2kω/vF
2kq

∣∣∣∣ ≤ 1. (2.18)

Equation (2.17) admits always one solution in the interval [0, π]. When
Equation (2.17) is satisfied,

cos(θk,k−q)  → 1− q2 − ω2/v2F
2k(k − ω/vF) , (2.19)

and therefore

F++(cos(θk,k−q)) = 1+ cos(θk,k−q)
2

 → 1− q2 − ω2/v2F
4k(k − ω/vF) . (2.20)

For future purposes, we introduce the following definition:

F̃(k, q, ω) ≡ 1− q2 − ω2/v2F
4k(k − ω/vF) . (2.21)

Note that F̃(k, q, ω) = 1 for ω = ±vFq.
For intra-band scattering the result of the angular integration in Equa-

tion (2.14) is therefore

A++(k, q, ω)

=2× 2c(k − ω/vF)F̃(k, q, ω)
vF
√
(2k+q−ω/vF)(2k−q−ω/vF)(q−ω/vF)(q+ω/vF)

×�(k − ω/vF)�
(
1−

∣∣∣∣q2 − ω2/v2F + 2k(ω/vF)

2kq

∣∣∣∣) ,
(2.22)

where the first factor of two is the same as the one appearing in Equa-
tion (2.14). In Equation (2.22) �(x) = 1 if x ≥ 0 and 0 otherwise.
Furthermore, c is a numerical coefficient:

c =
{
1/2, for q = ω/vF and q = 2k − ω/vF
1, elsewhere

. (2.23)
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Indeed, for q = ω/vF and q = 2k − ω/vF we have cos(θ) = +1—
see Equation (2.17)—and therefore the solution, i.e. θ = 0, falls on the
boundary of the integration domain in Equation (2.14) (and therefore the
integral of the delta function gives an extra factor 1/2).
A careful analysis of Equation (2.22) allows us to conclude that

A++ = 4c(k − ω/vF)F̃(k, q, ω)
vF

√
[(2k − ω/vF)2 − q2](q2 − ω2/v2F)

(2.24)

for |ω|
vF

≤ q ≤ 2k − ω

vF
, (2.25)

and zero elsewhere. Note that for |ω|/vF ≤ q ≤ 2k −ω/vF the argument
of the square root in Equation (2.24) is positive.

2.2. Inter-band contribution

For λ′ = −1 (inter-band scattering) Equation (2.15) requires 0 ≤ k ≤
ω/vF since it must be√

k2 + q2 − 2kq cos(θ) = ω

vF
− k . (2.26)

We therefore find

cos(θ) = q2 − ω2/v2F + 2kω/vF
2kq

(2.27)

as in Equation (2.17), and

cos(θk,k−q)  → −1+ q2 − ω2/v2F
2k(k − ω/vF) . (2.28)

Note the difference between the previous result and Equation (2.19). We
therefore find that

F+−(cos(θk,k−q)) = 1− cos(θk,k−q)
2

 → F̃(k, q, ω) . (2.29)

We emphasize that, when Equations (2.16) and (2.26) are satisfied,
F+−(cos(θk,k−q)) = F++(cos(θk,k−q)).
In summary, we find

A+−(k, q, ω)

= 4c(ω/vF−k)F̃(k, q, ω)
vF
√
(2k+q −ω/vF)(2k−q− ω/vF)(q − ω/vF)(q+ω/vF)

×�(ω/vF − k)�

(
1−

∣∣∣∣q2 − ω2/v2F + 2k(ω/vF)

2kq

∣∣∣∣) .
(2.30)
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A careful analysis of Equation (2.30) allows us to conclude that

A+− = 4c(ω/vF − k)F̃(k, q, ω)
vF

√
[(2k − ω/vF)2 − q2](q2 − ω2/v2F)

. (2.31)

for ∣∣∣∣2k − ω

vF

∣∣∣∣ ≤ q ≤ ω

vF
, (2.32)

and zero elsewhere.

2.3. Intra-band scattering and the collinear scattering singularity

As we will see below in Sect. 2.4, for weakly-excited states only intra-
band terms contribute to the decay rate of a plane-wave state. We can
therefore focus only on Equations (2.24)-(2.25).

We clearly see from Equation (2.24) that the denominator of

A++(q, k, ω) vanishes like
√

q2 − ω2/v2F for ω → ±vFq. Now, the
imaginary part of the non-interacting density-density response function,

�m[χ(0)(q, ω, T )], in Equation (2.10) diverges [34] like 1/
√

q2 − ω2/v2F.
The combination of these two facts produces an overall factor 1/(q2 −
ω2/v2F) in Equation (2.10). Because of this factor, the standard static
screening approximation, [4,8] which consists in replacing ε(q, ω, T ) by
ε(q, 0, T ) in Equation (2.10), is seen to fail miserably in doped graphene,
yielding a logarithmically-divergent intra-band scattering rate [35, 36].
The divergence arises from the regions of phase space in which ω =
±vFq. This condition characterizes scattering events in which all the
involved electronic momenta are parallel to each other. The “collinear
scattering” singularity has been known for a long time in systems with
linear-in-momentum energy bands (see, for example, Ref. [37]) and has
been extensively discussed in the recent graphene-related literature (see,
for example, Ref. [26] and references therein to earlier work). This di-
vergence can be handled in a variety of ways: one can, for example,
introduce a cut-off in the integration over q or use dynamical screening,
as the G0W-RPA theory we have adopted since the very beginning seems
to suggest. Dynamical RPA screening, indeed, naturally cures the collin-
ear scattering singularity because ε(q, ω, T ) in Equation (2.10) diverges

precisely as 1/
√

q2 − ω2/v2F upon approaching q = |ω|/vF.
2.4. Asymptotic behavior of the decay rate for weakly-excited states

With this body of knowledge at our disposal, we can now evaluate Equa-
tion (2.10) analytically. For the sake of definiteness, we consider an n-
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doped graphene sheet with electron density n, Fermi energy εF = h̄vFkF,
and Fermi momentum kF = √

4πn/Nf. Here Nf = 4 is the number of
fermion flavors.
Let us start by considering the first term in Equation (2.10), i.e. the

quasiparticle decay rate. We consider a weakly-excited state composed
of a quasiparticle with k � kF and kBT � εF. The thermal factor

1− nF(ξk,+ − ω)
1− exp(−βω) (2.33)

imposes some natural bounds on the integration domain with respect to
the energy transfer ω. For ω < 0, the natural lower bound of integration
is kBT . For ω > 0 the upper bound of integration is of the order of
ξk,+ = vF(k − kF) � εF. For k → kF, moreover, we can approximate
Equations (2.24)-(2.25) as

A++(k, q, ω) � 2c(1− q2/4k2F)

vF

√
(1− q2/4k2F)(q

2 − ω2/v2F)

=
2c
√
1− q2/4k2F

vF

√
q2 − ω2/v2F

. (2.34)

¿From now on, we set c = 1 in Equation (2.34) since c �= 1 on a set of
zero measure with respect to the 2D integral in Equation (2.10).
In the same limits, the inter-band contribution to the quasiparticle de-

cay rate vanishes since, on the one hand, the thermal factor 1−nF(ξk,+−
ω) imposes ω < ξk,+ for T → 0, while, on the other hand, A+−(q, k, ω)
is non zero if and only if ω ≥ vFk (at any temperature—see Sect. 2.2). Fi-
nally, we emphasize that only the spectral density of intra-band electron-
hole pairs contributes to 1/τ (e)k,+, since A++(k, q, ω) �= 0 if and only if
q > |ω|/vF.
For small values of the energy transfer ω, |ω|/vF ≤ q ≤ 2kF − ω/vF,

and kBT � εF the imaginary part of the non-interacting density-density
response function can be approximated as following:

�m[χ(0)(q, ω, T )] � −N (0)
ω

vFq

√
1− q2

4k2F

× q√
q2 − ω2/v2F

, (2.35)

where

N (0) = NfkF
2πvF

(2.36)
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is the density-of-states at the Fermi energy. Equation (2.35) is a con-
tribution of purely intra-band origin. Note that: i) �m[χ(0)(q, ω, T )] is
proportional (and not inversely proportional, as in the ordinary 2DEG [4])

to the factor
√
1− q2/4k2F: this fact beautifully reflects the impossibility

of MDFs to be backscattered; ii) we have retained the frequency depend-
ence of the factor on the second line of the previous equation: this is
crucial to regularize the collinear scattering singularity for q → |ω|/vF
in Equation (2.34).
In the same range of values of ω, q, and T we have

�e[χ(0)(q, ω, T )] = −N (0) . (2.37)

We therefore conclude that, in the relevant range of values of ω, q, and
T , the RPA dielectric function can be well approximated by

ε(q, ω, T ) � 1+ 2πe2N (0)

εq
− i

2πe2N (0)

εq

× ω

vFq

√
1− q2

4k2F

q√
q2 − ω2/v2F

. (2.38)

It is useful at this stage to introduce the Thomas-Fermi screening wave
vector:

qTF ≡ 2πe2N (0)

ε
= NfαeekF . (2.39)

We therefore find

1

τ
(e)
k,+

� 4N (0)

(2π)2v2F

∫ +∞

−∞
dω ω

1− nF(ξk,+ − ω)
1− exp(−βω)

×
∫ 2kF−ω/vF

|ω|/vF
dq q

v2q(
1+ qTF

q

)2
+ q2TF

q2
ω2

v2F

1−q2/4k2F
q2 − ω2/v2F

1− q2/4k2F
q2− ω2/v2F

= 4N (0)α2ee

∫ +∞

−∞
dω ω

1− nF(ξk,+ − ω)
1− exp(−βω)

×
∫ 2kF−ω/vF

|ω|/vF
dq

1

q

1(
1+ qTF

q

)2
+ q2TF

q2
ω2

v2F

1− q2/4k2F
q2−ω2/v2F

1−q2/4k2F
q2−ω2/v2F

.

(2.40)

The integral over q in the previous equation is easily seen to diverge
logarithmically for ω → 0. Indeed, we can estimate the integral over q
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as follows:∫ 2kF−ω/vF

|ω|/vF
dq

1

q

1(
1+ qTF

q

)2
+ q2TF

q2
ω2

v2F

1− q2/4k2F
q2 − ω2/v2F

1− q2/4k2F
q2 − ω2/v2F

� 1

q2TF
ln

(
 

|ω|
)
,

(2.41)

where is an arbitrary ultraviolet cut-off whose value does not affect the
results to leading order in the low-energy and low-temperature limits.
To obtain Equation (2.41) we have neglected the first term in the de-

nominator, which is much smaller than the second term since the latter
diverges as (q2 − ω2/v2F)−1 when q approaches the lower bound of in-
tegration. In other words, “dynamical overscreening”, which occurs near
the light cone ω = ±vFq of a MDF system, completely dominates over
the conventional static screening (1 + qTF/q)2. From Equation (2.41)
it is clear that the logarithmic divergence for |ω| → 0 originates from
the region of small momenta. In the ordinary 2DEG, a similar diver-
gence [4] picks a finite contribution also from the region q ∼ 2kF. Chir-
ality of MDFs strongly suppresses this contribution in the case of a doped
graphene sheet.
In summary, we find

1

τ
(e)
k,+

→ 4N (0)

N 2
f k2F

∫ +∞

−∞
dω ω ln

(
 

|ω|
)

nF(ω − ξk,+)
1− exp(−βω) , (2.42)

where we have used that nF(x) + nF(−x) = 1. Note that the final result
(2.42) does not depend on the fine-structure constant αee. As emphasized
in the Introduction, this feature arises from the fact that the dominant con-
tribution to the quasiparticle decay rate arises from scattering processes
with small momentum transfer q. For these processes the Coulomb inter-
action between two quasiparticles is strongly screened by the electronic
medium, leading to an effective interaction that depends only on the non-
interacting density of states N (0).
The above Equation (2.42) is valid regardless of the relative magnitude

of temperature and quasiparticle energy ξk, provided they are both much
smaller than the Fermi energy. We now specialize to the case in which
one of these two quantities is much larger than the other. Following
Ref. [4], we first consider the zero-temperature limit in which βξk,+ � 1.
In this case the main contribution to the previous integral comes from the
region ω ∼ ξk,+. Since the logarithm is a slowly-varying function of its
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argument we find

1

τ
(e)
k,+

� 4N (0)

N 2
f k2F

ln

(
 

ξk,+

)∫ +∞

−∞
dω ω

nF(ω − ξk,+)
1− exp(−βω) . (2.43)

We now use the “beautiful integral” (Ref. [4], p. 497)∫ +∞

−∞
dy

x − y

(1+ e−y)(1− ey−x)
= x2 + π2
2(1+ e−x)

, (2.44)

with x = βξk,+ and y = β(ξk,+ − ω). We find∫ +∞

−∞
dω ω

nF(ω − ξk,+)
1− exp(−βω) =

1

β2

β2ξ 2k,+ + π2
2(1+ e−βξk,+)

. (2.45)

In the regime βξk,+ � 1 we therefore have

1

τ
(e)
k,+

� εF

h̄

1

πNf

(
ξk,+
εF

)2
ln

(
 

ξk,+

)
, (2.46)

where we have restored h̄. A careful inspection of Equation (2.10) shows
that, in the limit β|ξk,+| � 1, the decay rate of a plane-wave state is given
by is

1

τk,+
� εF

h̄

1

πNf

(
ξk,+
εF

)2
ln

(
 

|ξk,+|
)
, (2.47)

i.e. it is equal to that in the right-hand side of Equation (2.46), provided
that we replace ξk,+→|ξk,+| in this equation. To leading order in the zero-
temperature limit the functional dependence on ξk,+, i.e. −ξ 2k,+ ln(|ξk,+|),
coincides with that of an ordinary 2DEG [8].
We now turn to analyze the other relevant regime, i.e. β|ξk,+| � 1. In

this case the main contribution to the integral comes from a region of the
order of kBT centered around the origin. Once again, the logarithm can
be taken out of the integral giving a factor ln ( /kBT ).
In the regime β|ξk,+| � 1 we therefore find

1

τ
(e)
k,+

� εF

h̄

π

2Nf

(
kBT

εF

)2
ln

(
 

kBT

)
, (2.48)

where we have used an expansion of Equation (2.45) for β|ξk,+| → 0 and
we have restored h̄. Inspecting Equation (2.10) for ξk,+ = 0 we conclude
that

lim
ξk,+→0

1

τk,+
= 2

τ
(e)
k,+

� εF

h̄

π

Nf

(
kBT

εF

)2
ln

(
 

kBT

)
. (2.49)
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Once again, the functional dependence on temperature of Equation (2.48),
i.e. −T 2 ln(T ), coincides with that obtained by Giuliani and Quinn [8] for
an ordinary 2DEG.

3. Summary and conclusions

In summary, we have presented a pedagogical derivation of the quasi-
particle lifetime in a doped graphene sheet. Three main differences with
respect to the classic Giuliani-Quinn calculation [8] for an ordinary two-
dimensional electron gas have been identified: i) a simple Fermi golden
rule approach with statically screened Coulomb interactions is not vi-
able in graphene as it yields logarithmically-divergent intra-band scat-
tering rates due to the collinear scattering singularity; ii) the leading-
order contribution to the quasiparticle decay rate in the low-energy and
low-temperature limits is completely controlled by scattering events with
small momentum transfer: 2kF contributions are suppressed by the chiral
nature of massless Dirac carriers in graphene; iii) because of ii), the lead-
ing order contribution to the quasiparticle decay rate is completely in-
dependent on the strength on the background dielectric constant ε: the
result is therefore universal in that it does not depend on the substrate on
which graphene is placed.
Finally, we emphasize how the recently developed ability to align the

crystals of two graphene sheets [38] paves the way for two-dimensional-
to-two-dimensional tunneling experiments [12] in which inter-layer tun-
neling does not spoil momentum conservation. These experiments may
allow a direct measurement of the temperature and doping dependence of
the quasiparticle lifetime in high-quality graphene sheets.
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Chirality, charge and spin-density wave
instabilities of a two-dimensional electron
gas in the presence of Rashba spin-orbit
coupling

George E. Simion and Gabriele F. Giuliani

Abstract. We show that a result equivalent to Overhauser’s famous Hartree-Fock
instability theorem can be established for the case of a two-dimensional electron
gas in the presence of Rashba spin-obit coupling. In this case it is the spatially
homogeneous paramagnetic chiral ground state that is shown to be differentially
unstable with respect to a certain class of distortions of the spin-density-wave and
charge-density-wave type. The result holds for all densities. Basic properties of
these inhomogeneous states are analyzed.

1. Introduction

Recent interest in the properties of the quasi-two dimensional electron
and hole devices in the presence of structural (Rashba-Bychkov) [1, 2]
or intrinsic (Dresselhaus) [3] spin orbit has brought to the fore the prob-
lem of the interacting chiral electron liquid. It is therefore important
to revisit several of the fundamental notions of many-body theory for
this intriguing system. The purpose of present paper is to begin a the-
oretical exploration of the relevance and special properties of a class of
spatially non homogeneous spontaneously broken symmetry states of the
electron liquid in the presence of Rashba spin-orbit coupling in two di-
mensions. Specifically we will focus our attention on spin density and
charge density wave type states henceforth referred to for simplicity as
SDW and CDW. SDW and CDW states, originally conceived by A. W.
Overhauser, [4, 5] are generally stabilized by the electron-electron inter-
action and are characterized by spatial oscillations of the the spin density,
the charge density, or both. In the absence of spin-orbit coupling, one can
begin to describe SDW and CDW states by simply considering the elec-

GS work was partially supported by a grant from the Purdue Research Foundation.
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tron number density for both spin projections:

n↑ = n

2
+ A cos

(
�Q · �R + φ

2

)
, (1.1)

n↓ = n

2
+ A cos

(
�Q · �R − φ

2

)
. (1.2)

In these expressions the wave vector �Q spans the Fermi surface, i.e. does
satisfy the condition | �Q| � 2kF . A CDW corresponds to φ = 0, while
a SDW state obtains for φ = π . Mixed state are also possible: one such
state is beautifully realized in chromium [6–8]. As we will show, in the
presence of linear Rashba spin orbit the corresponding distorted states
are characterized by a more complex spatial dependence of the number
density, the spin density and, where appropriate, a chiral density. As a
first step towards establishing the fundamental properties of SDW- and
CDW-like states in the presence of spin-orbit interaction we present here
a generalization of the famous Overhauser’s Hartree-Fock (HF) instabil-
ity theorem. The latter represents an important exact result in many-body
theory for it establishes that, within HF, the homogeneous paramagnetic
plane wave state does not represents a minimum of the energy for an oth-
erwise uniform electron gas for it can be always variationally bettered by
a suitably constructed distorted SDW or CDW [9].
The paper is structured as follows: In Section 2 we discuss the relevant

aspects of the theory of a two dimensional non-interacting electron gas
in the presence of Rashba spin-obit coupling. Section 3 briefly discusses
useful notions of the electron-electron interaction within Hartree-Fock
approximation. Section 4 is dedicated to the actual proof of the theorem
and contains the main results. Finally the last Section contains the con-
clusions while a number of useful mathematical relations are derived in
the two Appendices.

ACKNOWLEDGEMENTS. The authors would like to acknowledge useful
discussions with A. W. Overhauser.

2. Two dimensional electron gas
in the presence of Rashba spin-orbit

In the presence of linear Rashba spin-orbit coupling, the one-particle
hamiltonian can be written as follows:

Ĥ0 = �p2
2m

+ α �p · (�σ × ẑ
)
, (2.1)
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where ẑ is the unit direction along the z-axis, the motion taking place in
the x, y plane.
The non interacting problem can be readily diagonalized to obtain the

energy spectrum and the eigenfunctions:

Ek,μ = h̄2k2

2m
− αμk , (2.2)

and

ψ�k,+ = 1√
2L

ei �k·�r
(

1
−ieiφ�k

)
, (2.3)

ψ�k,− = 1√
2L

ei �k·�r
(−ie−iφ�k

1

)
, (2.4)

where μ = ± labels a state’s chirality and φ�k is the angle spanned by the
x-axis and the two dimensional wave vector �k. A schematic of the lower
energy sector of the spectrum is plotted in Figure 1.

Figure 1. Non interacting energy spectrum in the presence of linear Rashba
spin-orbit coupling.

By making use of the states of Equations (2.3) and (2.4) as a basis for a
second quantization representation, the familiar fully interacting electron
gas hamiltonian reads:

Ĥ =
∑
�k,μ

E�k,μb̂�k,μb̂†�k,μ

+ 1

2L2
∑
�q,�k1,�k2
μ1,μ2
μ3,μ4

vq�
�k1,�k2,�q
μ1μ2μ3μ4

b̂†�k1+�q,μ1b̂
†
�k2−�q,μ2b̂�k2,μ3 b̂�k1,μ4,

(2.5)
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where the phase factor ��k1,�k2,�q
μ1μ2μ3μ4

is defined as follows:

�
�k1,�k2,�q
μ1μ2μ3μ4

= 1

4
i
μ1+μ2−μ3−μ4

2

× e
i
(
1−μ1
2 φ�k1+�q+

1−μ2
2 φ�k2−�q−

1−μ3
2 φ�k2−

1−μ4
2 φ�k2

)

×
[
1+ μ1μ4ei

(
φ�k1−φ�k1+�q

)][
1+ μ2μ3ei

(
φ�k2−φ�k2−�q

)]
.

(2.6)

Uncorrelated many body wavefunctions for the system at hand can be
represented by Slater determinants constructed by occupying any com-
binations of the chiral states Equations (2.3) and (2.4).

3. Hartree-Fock theory of a two-dimensional electron liquid
in the presence of Rashba spin-orbit coupling

An accurate description of a realistic electronic system requires that
electron-electron interaction be taken into account. A first step towards
developing such a many-body theory is to investigate the results of a
mean-field approach. The main idea behind the mean field procedure
is to find an effective Hamiltonian which is quadratic in the electron cre-
ation and annihilation operators and can therefore be easily diagonalized.
Within the HF theory, the ground state is approximated by a single Slater
determinant made out of single particle wavefunctions, which in turn,
are determined by imposing the requirement that the expectation value of
the Hamiltonian over the Slater determinant be a minimum [10]. Using
these wavefunctions as our basis set, a standard Wick decoupling proced-
ure [10] allows us to determine the effective HF potential. It can be easily
proved that the non-interacting chiral states are indeed among the solu-
tions of the corresponding HF equations. In this case, the HF potential is
diagonal in wave vectors and chiral indices:

V H F
�kμ,�k′μ′ = −δ�k,�k′δμ,μ′

2L2
∑
�κν
v�k−�κ

[
1+ μν cos(φ�k − φ�κ)

]
. (3.1)

The corresponding HF eigenvalues are given by:

ε�kμ = h̄2k2

2m
− αμk − 1

2L2
∑
�κν
v�k−�κ

[
1+ μν cos(φ�k − φ�κ)

]
. (3.2)

An evaluation of the Fermi energy of the two sub-bands leads to an inter-
esting problem. Since one band will, in general, acquire more exchange
energy than the other, this may result (in a first iteration) in two different
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Fermi levels. In order to equalize them (for elementary stability reasons),
electrons from one subband will have to be moved to the other. This is
the phenomenon of repopulation.
The spatially homogeneous chiral states are just one of the possible

Hartree-Fock solutions. A detailed analysis of the possible solutions cor-
responding to symmetric occupations in momentum space can be done by
systematically minimizing the total energy as a function of spin orienta-
tion and generalized chirality of the system [11]. More general solutions
correspond to non-symmetric occupations of the single particle chiral
states. The problem has been studied and the corresponding very in-
teresting phase diagram has been explored [11,12]. As we will presently
discuss there also exists an interesting class of spatially non-homogenous
solutions to the problem.

4. Proof of the instability theorem

We will proceed by showing that it is always possible to lower the energy
of the homogeneous paramagnetic chiral ground state by introducing a
suitable real space distortion which is periodic with wave vector �Q =
2kF x̂ . The general approach follows that of Fedders and Martin [13] and
is based on an Ansatz which represents a generalization of that given by
Giuliani and Vignale for the case of the three dimensional electron gas
[10].
Let us consider first the putative HF ground state of our many-body

system |�S〉. A complete, and, as we shall see convenient, description
of this determinantal state can be achieved in terms of the corresponding
single-particle density matrix elements here given by:

ραβ =
〈
�S

∣∣â†αâβ
∣∣�S

〉
, (4.1)

where here α and β label the one-particle states which are used to build
the Slater determinant.
Now, within the space of Slater determinants, any slightly modification

of the state |�S〉 can be described in terms of a corresponding infinites-
imal change of the single-particle density matrix elements. Let us indic-
ate such a change by δραβ . At this point the next task consists in trying to
evaluate the change of the total HF energy in terms of these quantities.
Since |�S〉 is a solution of the HF equations, [14] the first order vari-

ation in the energy must vanish so that the problem at hand is reduced to
determining the sign of the energy change to second order in the δραβ’s.
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The relevant expression is therefore given by [10]:


(2)EH F = 1

2

∑
(α,β)

δραβ
εβ − εα
nα − nβ

δρβα

+ 1

2

∑
(α,δ)
(β,γ )

(
vαβγ δ − vαβδγ

)
δραδδρδγ ,

(4.2)

where the notation (α, β)means that only states situated on opposite sides
of the Fermi sea are considered in the summation. In this formula, we
indicate the Hartree-Fock eigenvalues as εα and the corresponding occu-
pation numbers as nα.
The next step in our procedure consists in constructing a Slater determ-

inant for which the HF energy is lower than 〈�S|H |�S〉. In order to do,
we follow Overhauser’s idea and choose the new one-particle states to be
suitable linear combinations of chiral plane waves states situated near op-
posite points on the Fermi surface, the distortion being limited to a very
narrow strip. The width of this strip will play the role of a variational
parameter. We then carefully devise an expression for the wave vector
dependent amplitude of the coupling between the plane waves and con-
struct the corresponding Slater determinant. In the last step, we calculate
the change of the Hartree-Fock energy due to this perturbation to leading
order in the distortion amplitude from Equation (4.2).

4.1. Instability for the case of chirality equal one

Because it presents a formally simpler problem, the first case to be treated
is that in which only the lower subband is occupied while the upper one
is just about to be filled. [15] This situation is depicted in Figure 2.

Figure 2. Case of unit chirality when the states of the lower chiral subband are
occupied up to the lower threshold of the upper subband. The arrows indicate
the states that are coupled by the distortion along the kx axis.
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Let us build the new trial wavefunctions as mixtures of the wavefunc-
tions corresponding to wave vector �k with those corresponding to wave
vector �k ± �Q, i.e.

!�k � ψ�k,+ + A�k+ �Q,�kψ�k+ �Q,+ + A�k− �Q,�kψ�k− �Q,+ . (4.3)

Here, as anticipated, | �Q| = 2k+
F as shown in Figure 2.

In evaluating the HF energy change, only the states situated on oppos-

ite sides of the Fermi sea are relevant. We will consider
∣∣∣�k ± �Q

∣∣∣ > k+
F

and k < kF . Here, the occupation numbers are n�k = θ (kF − k), while
the amplitude satisfies the condition: A�k± �Q,�k = A�k,�k± �Q . The only non-
zero matrix elements of δρ̂ have the form:

δρ�k+ �Q
2 ,

�k− �Q
2
= δρ�k− �Q

2 ,
�k+ �Q

2
=
(

n�k+ �Q
2
+ n�k− �Q

2

)
A�k . (4.4)

These wavefunctions indeed describe SDW/CDW-like states. A simple
calculation shows that retaining only the linear order in the amplitude of
the distortion, the spin and the charge densities exhibit spatial oscillations
with wave vector 2k+

F . Specifically:

δSx (�r)
h̄

=
∑
�k

A�k
[(
cosφ�k+ �Q

2
− cosφ�k− �Q

2

)
sin �Q · �r

+
(
sinφ�k+ �Q

2
+ sinφ�k− �Q

2

)
cos �Q · �r

]
,

δSy (�r)
h̄

=
∑

k

A�k
[(
sinφ�k+ �Q

2
− sinφ�k− �Q

2

)
sin �Q · �r

−
(
cosφ�k+ �Q

2
+ cosφ�k− �Q

2

)
cos �Q · �r

]
,

δSz (�r)
h̄

=
∑

k

2A�k
[
1− cos

(
φ�k+ �Q

2
− φ�k− �Q

2

)]
cos �Q · �r ,

δn (�r) =
∑

k

4A�k
[
1+ cos

(
φ�k+ �Q

2
− φ�k− �Q

2

)]
cos �Q · �r .

(4.5)

The change in the HF energy is obtained by substituting the expression
of the non-zero density matrix elements from Equation (4.4) into Equa-
tion (4.2). The resulting expression can be expressed as:


(2)EH F = 
(2)0 EH F +
(2)H EH F +
(2)X EH F , (4.6)
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where we have defined



(2)
0 EH F =

∑
�k

(
n�k+ �Q

2
+ n�k− �Q

2

)ε�k− �Q
2 ,+

−ε�k+ �Q
2 ,+

n�k+ �Q
2
− n�k− �Q

2

A2k (4.7)



(2)
H EH F =1

2

∑
�k, �p

(
n�k+ �Q

2
+ n�k− �Q

2

) (
n �p+ �Q

2
+ n �p− �Q

2

)
×
(

V H,+
�k, �p, �Q + V H,+

�k, �p,− �Q
)

A�k A �p , (4.8)



(2)
X EH F =−1

2

∑
�k, �p

(
n�k+ �Q

2
+ n�k− �Q

2

) (
n �p+ �Q

2
+ n �p− �Q

2

)
×
(

V X,−
�k, �p, �Q + V X,−

�k, �p,− �Q
)

A�k A �p . (4.9)

with

V H,+
�k, �p, �Q = v�k+ �Q

2 ,+, �p−
�Q
2 ,+, �p+

�Q
2 ,+,�k−

�Q
2 ,+

(4.10)

V X,+
�k, �p, �Q = v�k+ �Q

2 ,+, �p−
�Q
2 ,+,�k−

�Q
2 ,+�p+ �Q

2 ,+
(4.11)

The Hartree and exchange terms in Equations (4.8)-(4.9) contain com-
binations of the matrix elements of the electron-electron interaction. By
employing Equation (2.6), after simple algebraic manipulations, we ob-
tain:

V H,+
�k, �p, �Q + V H,+

�k, �p,− �Q = vQ

2L2

[
1+ cos

(
φ�k+ �Q

2
− φ�k− �Q

2

)
+ cos

(
φ �p+ �Q

2
− φ �p− �Q

2

)
+ cos

(
φ�k+ �Q

2
− φ�k− �Q

2
+ φ �p+ �Q

2
− φ �p− �Q

2

)]
,

(4.12)

and

V X,+
�k, �p, �Q + V X,+

�k, �p,− �Q =
v|�k−�p|
2L2

[
1+ cos

(
φ �p+ �Q

2
− φ�k+ �Q

2

)
+ cos

(
φ�k− �Q

2
− φ �p− �Q

2

)
+ cos

(
φ �p+ �Q

2
− φ�k+ �Q

2
+ φ�k− �Q

2
− φ �p− �Q

2

)]
.

(4.13)

In order to explicitly evaluate the change in the Hartree-Fock energy, we
need to assume a specific expression for the distortion amplitudes. As
a first condition, we will perturb only a narrow region near the Fermi
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surface. Following the same pattern of the proof of reference [10], we
propose for the present problem the following educated variational guess:

A�k =

⎧⎪⎨⎪⎩ (bk+F )
3
2

ln 2b

∣∣∣∣∣n�k+ �Q
2

−n�k− �Q
2

∣∣∣∣∣
k
3
2

√|sinφ�k||cosφ�k| , bk+
F < k < ςbk+

F

0, otherwise ,

(4.14)

where b � 1 is our small parameter and the second arbitrary ς > 1. This
expression is intentionally chosen to display singularities for k = 0 and
φk = 0. These singularities are crucial to the present proof.
We now notice that in the expressions of the interaction matrix ele-

ments, there appear factors of the type:

cos
(
φ �p+ �Q

2
− φ�k+ �Q

2

)
=
(

p cosφ �p + k+
F

) (
k cosφ�k + k+

F

)+ pk sinφ �p sinφ�k√
p2 + k+2

F + 2k+
F p cosφ �p

√
k2 + k+2

F + 2k+
F k cosφ�k

.
(4.15)

Since we are only interested in the leading order expansion with respect
to b, these cosines can be simply taken to be equal to unity, since in the
region where the amplitude of the distortion is non-vanishing, both p/k+

F
and k/k+

F are of order b. Accordingly we will assume

cos
(
φ �p+ �Q

2
− φ�k+ �Q

2

)
� 1+ O

(
b2
)
. (4.16)

At this point, we recall that �k + �Q
2 and

�k − �Q
2 must lie on opposite sides

of the Fermi sea (i.e |�k − �Q
2 | < k+

F and |�k + �Q
2 | > k+

F ), which implies
that

∣∣cosφ�k∣∣ > b
2 .

We can now proceed to the evaluation of the three components of

(2)EH F from Equations (4.8)-(4.9) to leading order in b.
For
(2)0 EH F the first step is to calculate ε�k− �Q

2 ,+
−ε�k+ �Q

2 ,+
. Using (3.2),

with energies expressed in Ry, x = k
kF
and x ′ = k′

kF
, we have:

ε�k− �Q
2
− ε�k+ �Q

2

= 4u21
r2s

− 4α̃u1
rs

− 1

πrs

2π∫
0

1∫
0

x ′ (1+ cosϕ′) dx ′dφ′√
u21 + x ′2 − 2u1x ′ cosϕ′

− 4u2

r2s
+ 4α̃u2

rs
+ 1

πrs

2π∫
0

1∫
0

x ′ (1+ cosϕ′) dx ′dφ′√
u22 + x ′2 − 2u2x ′ cosϕ′

.

(4.17)
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with u1 = √
1+ x2 − 2x cosφ�k and u2 = √

1+ x2 + 2x cosφ�k . The
quadratures appearing in this expression can then be manipulated by
making use of the results of Appendix A.1. The result is:

ε�k− �Q
2
− ε�k+ �Q

2
= −16x cosφ

r2s

(
1− α̃rs

2
− rs

2π
ln |ξ x cosφ|

)
, (4.18)

where the logarithmic term accounts for the divergence of the derivative
of the HF single particle energy near the Fermi level. Here, ξ is a constant
approximately equal to 0.51.
By substituting (4.18) and (4.14) in (4.7) we obtain:



(2)
0 EH F = 16b3L2k2F(

ln 2b
)2

r2s π
2

ςb∫
b

dx

arccos b
2∫

0

dϕF0(x, ϕ) , (4.19)

where

F0(x, ϕ) = sinϕ

x cosϕ

(
1− α̃rs

2
− rs

2π
ln |ξ x cosϕ|

)
, (4.20)

an expression that, to leading order in b, reduces to:



(2)
0 EH F � 48Nb3 ln ς

rsπ2
. (4.21)

where N is the number of particles.
The Hartree term
(2)H EH F (containing vQ) can in turn be evaluated as

follows. By making use of the assumed amplitude in (4.14), we write:



(2)
H EH F = 16Nb3

π2
(
ln 2b
)2

rs

bς∫
b

dx

bς∫
b

dy

arccos b
2∫

0

dϕx

arccos b
2∫

0

dϕyFH , (4.22)

where

FH (x, y, ϕx , ϕy) = 1√
x y

√
sinϕx

cosϕx

√
sinϕy

cosϕy
. (4.23)

At this point, using the result (B.5), the leading order in b of this quantity
is given by:



(2)
H EH F � 64Nb4

(√
ς − 1)2

π2rs
. (4.24)
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The last term of (4.6), the exchange energy contribution, is clearly negat-
ive and therefore will certainly lower the energy. Its evaluation is formid-
able, for it involves several complicated and seemingly difficult quadrat-
ures. Rather than attempting to actually calculate it, we will establish a
lower limit for its magnitude.
We will restrict ourselves to the region in which both angles φ�k and

φ �p are in the first quadrant. Since this excludes some contributions of
the same sign, the exchange energy will be underestimated. We therefore
have:

∣∣∣
(2)X EH F

∣∣∣ ≥ 2Nb3

π2
(
ln 2b
)2

rs

bς∫
b

dx

bς∫
b

dy

arccos b
2∫

0

dϕx

arccos b
2∫

0

dϕyFX , (4.25)

where

FX (x, y, ϕx , ϕy) = 1√
x y

√∣∣sinϕx sinϕy

∣∣∣∣cosϕxcosϕy

∣∣
× 1√

x2 + y2 − 2xy cos
(
ϕx − ϕy

) . (4.26)

It is simple to see that this expression will turn out to be proportional to
(ln b)3. This is due to the presence of three singularities in the denom-
inator of the integrand. Of these one stems from the divergence of the
Coulomb potential, while the other two come from the upper limit of the
angular integrations.
Another simplification is provided by the use of the inequality:

1√
x2+y2−2xy cos

(
ϕx−ϕy

) ≥ 1√
x2+y2−2xy sinϕx sinϕy

. (4.27)

Using the same changes of variable as in Appendix B, i.e. tx = tan(φx/2)
and ty = tan(φy/2), we can rewrite this integral as follows:

∣∣∣
(2)X EH F

∣∣∣ ≥ 16Nb3

π2
(
ln 2b
)2

rs

bς∫
b

dx

bς∫
b

dy

√
2−b
2+b∫
0

dtx

√
2−b
2+b∫
0

dtyF̃X . (4.28)
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with

F̃X (x,y, tx , ty) = 1√
x y

1√
x2 + y2 − 8xytx ty

(1+t2x )(1+t2y )

× 1

1− t2x

√
tx

1+ t2x

1

1− t2y

√
ty

1+ t2y
.

(4.29)

It is clear now that the main contribution to the integral comes from the
region around the upper limit of integration for both tx and ty . In order
to retain the leading order term, a good approximation will be to replace
both t’s with 1 − b/2 in the denominator of the first square root. In this
way, we can separate the angular integrations in (4.25) to obtain:

∣∣∣
(2)X EH F

∣∣∣ ≥ 2Nb3

π2
(
ln 2b
)2

rs

bς∫
b

dx

bς∫
b

dy

1− b
2∫

0

dtx

1− b
2∫

0

dtyF̄X . (4.30)

where

F̄X (x, y, tx , ty) = 1√
xy

1√
x2 + y2 − 2xy

(
1− b2

8

)2
× 1

1− t2x

√
tx

1+ t2x

1

1− t2y

√
ty

1+ t2y
.

(4.31)

The last two integrals are evaluated using (B.5) and other changes of
variables (x = ub, y = vb) :

∣∣∣
(2)X EH F

∣∣∣ ≥ 8Nb3

π2rs

√
ς∫

1

du

√
ς∫

1

dv
1√(

u2 − v2)2 + u2v2b2

2

. (4.32)

The last quadrature is calculated in (B.8), leading us to a very simple
inequality for the exchange contribution:∣∣∣
(2)X EH F

∣∣∣ ≥ 8Nb3

π2rs
ln ς ln

1

b
. (4.33)

This term contains a logarithmic factor ln 1b , which allows the negative
change in the exchange contribution to control all the remaining terms.
This concludes the proof for this case.
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Figure 3. HF instability: symmetry breaking coupling for the case in which
only the lower subband is occupied.

The same chain of arguments does apply to the case in which the gen-
eralized chirality is greater than one. The coupling that produces this
kind of instability is schematically shown in Figure 3. All the formulas
we derived in the previous case do still apply. The only difference lies
in the lower integration limits of Equation (4.17), but no relevant contri-
bution ensues from this. The matrix elements related to the Hartree and
exchange contributions are the same, and, as a consequence, the leading
order approximation is identical.

4.2. Instability for the case of chirality less than one

The argument of the previous Section can be applied when the chirality
is less than one, i.e. when both chiral subbands are occupied. We can
try to break the symmetry by coupling states with the same chirality as
well as states with different chiralities. When same chirality states are
coupled, there is nothing new, as one simply just adds a chirality index
to the various quantities. In this case, the wave vectors characterizing the
oscillations are given by: Qμ = 2kμF and the trial wavefuntions can be
written as:

!�kμ � ψ�kμ + A�k+ �Qμ,�kμψ�k+ �Qμμ + A�k− �Qμ,�kμψ�k− �Qμμ . (4.34)

This type of coupling is depicted in Figure 4.
The corresponding distortion of the components of the spin density

and the number density can be again calculated up to the first order in the
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Figure 4. Symmetry breaking coupling of states with the same chirality.

amplitudes:

δSx (�r)
h̄

=
∑
k,μ

A�kμ
(
cosφ�k+μ − cosφ�k−μ

)
sin �Qμ�r

+
∑
k,μ

A�kμ
(
sinφ�k+μ + sinφ�k−μ

)
cos �Qμ�r,

(4.35)

δSy (�r)
h̄

=
∑
k,μ

A�kμ
(
sinφ�k+μ − sinφ�k−μ

)
sin �Qμ�r

−
∑
k,μ

A�kμ
(
cosφ�k+μ + cosφ�k−μ

)
cos �Qμ�r ,

(4.36)

δSz (�r)
2h̄

=
∑
k,μ

A�kμ
[
1− cos

(
φ�k+μ − φ�k−μ

)]
cos �Qμ�r, (4.37)

δn (�r)
4

=
∑
k,μ

A�kμ
[
1−cos

(
φ�k+μ − φ�k−μ

)]
cos �Qμ�r, (4.38)

where k±
μ = �k ± �Qμ

2 . We proceed in this case by choosing an amplitude
not unlike the one assumed above:

A�kμ =

⎧⎪⎨⎪⎩(bkμF)
3
2

ln 2b

∣∣∣∣∣n�k+ �Q
2 μ

−n�k− �Q
2 μ

∣∣∣∣∣
k
3
2

√|sinφ�k||cosφ�k| ,bkμF<k<ςbkμF
0, otherwise .

(4.39)

The proof of the corresponding instability theorem proceeds then in ex-
actly the same manner.
As anticipated, there is also not much difference when we try to couple

states with opposite chirality (see Figure 5). Although some of the ex-
pressions involved in the derivation do change, the main features of the
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Figure 5. States with opposite chiralities coupled to obtain a HF instability

argument remain unchanged. The coupling vector in this case is given
by Q = k+

F + k−
F . Here, we try to find a lower energy state by coupling

wavefunctions with wave vector �k with those with wave vector �k± �Q and
opposite chirality. The trial wavefunctions then read:

!�k+ � ψ�k+ + A�k+ �Q,�kψ�k+ �Q,− + A�k− �Q,�kψ�k− �Q,− . (4.40)

For A�k± �Q,�k = A�k,�k± �Q the only non zero variations of the matrix elements
of the single-particle density matrix operator acquire the following form:

δρ�k+ �Q
2 ,μ,

�k− �Q
2 ,−μ

= δρ�k− �Q
2 ,μ,

�k+ �Q
2 ,−μ

=
(

n�k+ �Q
2 ,μ

+ n�k− �Q
2 ,−μ

)
A�k .

(4.41)

In this case, the new state is characterized by a similar spin and density
modulation:

δSx (�r)
h̄

=
∑

k

A�k
[
cos
( �Q�r − φ̃�k

)
+ cos �Q�r

]
, (4.42)

δSy (�r)
h̄

=
∑

k

A�k
[
sin
(
− �Q�r + φ̃�k

)
+ sin �Q�r

]
, (4.43)

δSz (�r)
h̄

=
∑

k

A�k
[
sin
( �Q�r − φ�k− �Q

2

)
(4.44)

+ sin
( �Q�r − φ�k+ �Q

2

)]
,

δn (�r)
2

=
∑

k

A�k
[
sin
( �Q�r − φ�k− �Q

2

)
(4.45)

− sin
( �Q�r − φ�k+ �Q

2

)]
,
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where φ̃�k = φ�k+ �Q
2
+φ�k− �Q

2
. The corresponding terms in the Hartree-Fock

energy change are:



(2)
0 EH F=

∑
�kμ

ε�k− �Q
2 μ

− ε�k+ �Q
2 −μ

n�k+ �Q
2 −μ

− n�k− �Q
2 μ

A2k

(4.46)

×
(

n�k+ �Q
2 ,μ

+ n�k− �Q
2 ,−μ

)
,



(2)
H EH F=12

∑
�k �pμν

(
V H,μν
�k, �p, �Q + V H,μν

�k, �p,− �Q
)

A�kμA �pν
(4.47)

×
(

n�k+ �Q
2 ,μ

+ n�k− �Q
2 ,−μ

)(
n �p+ �Q

2 ν
+ n �p− �Q

2 −ν
)
,



(2)
X EH F=−1

2

∑
�k �pμν

(
V X,μν
�k, �p, �Q + V X,μν

�k, �p,− �Q
)

A�kμA �pν
(4.48)

×
(

n�k+ �Q
2 ,μ

+ n�k− �Q
2 ,−μ

)(
n �p+ �Q

2 ν
+ n �p− �Q

2 −ν
)
,

where

V H,μν
�k, �p, �Q = v�k+ �Q

2 ,μ, �p−
�Q
2 ν, �p+

�Q
2 ,−ν,�k−

�Q
2 ,−μ

and

V X,μν
�k, �p, �Q = v�k+ �Q

2 μ, �p−
�Q
2 ,−ν,�k−

�Q
2 ,−μ, �p+

�Q
2 ,ν
.

The relevant interaction matrix elements which appear in the expression
of the Hartree term become:

2vQ

L2

[
(sinφ �p+ �Q

2
− sinφ �p− �Q

2

) (
sinφ�k− �Q

2
− φ�k+ �Q

2

)
, (4.49)

while those determining the exchange contribution reduce to:

v|�k−�p|
L2

[
cos
(
φ �p+ �Q

2
− φ�k+ �Q

2

)
+ cos

(
φ �p− �Q

2
− φ�k− �Q

2

)
+ cos

(
φ �p+ �Q

2
− φ�k− �Q

2

)
+ cos

(
φ �p− �Q

2
− φ�k+ �Q

2

)
(4.50)

− cos
(
φ�k+ �Q

2
− φ�k− �Q

2

)
− cos

(
φ �p+ �Q

2
− φ �p− �Q

2

)
+ cos

(
φ �p+ �Q

2
− φ�k+ �Q

2
+ φ�k− �Q

2
− φ �p− �Q

2

)
+ 1
]
.
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As in the previous cases, we assume the following coupling amplitude:

Aμ�k =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(bkμF)

3
2

ln 2b

∣∣∣∣∣n�k+ �Q
2 ,μ

−n�k− �Q
2 ,−μ

∣∣∣∣∣
k
3
2

√|sinφ�k||cosφ�k| ,
bk+

F < k
k < ςbk+

F
| cosφ�k| < b

2

0, otherwise .

(4.51)

The first term in the Hartree-Fock energy (4.7) has a positive contribu-
tion which is proportional to b3. This originates from the same log-
arithmic factor associated with the divergence of the derivative of the
single-particle energy at the Fermi level. The Hartree term introduces
higher order terms in b due to the presence of the sine factors in its matrix
elements. Finally, the leading order contribution to the exchange matrix
elements is 4v|�k−�p|. By evaluating integrals similar to those in Equa-
tion (4.25) we again obtain a negative energy change of order b3 ln(1/b).

5. Conclusions

We have been able to formally construct a number of distorted states
which, irrespective of the electron density, have a lower energy than the
spatially homogeneous paramagnetic chiral HF ground state, thereby af-
fording a rigorous proof of an equivalent of Overhauser’s Hartree-Fock
instability theorem for a two dimensional electron liquid in the presence
of linear Rashba spin-orbit coupling. It is important to notice that, as
mentioned in Section 3, to establish the instability we have not allowed
for momentum space repopulation: inclusion of this phenomenon would
have further lowered the energy of the trial states while greatly increasing
the difficulty of the analysis.
It is worth mentioning that the states that have been analyzed in this

paper differ in a number of ways form the original spin/charge density
waves proposed by Overhauser. Our states are chiral density states, that
display both spin and charge modulations. The presence of charge modu-
lations cannot be ignored and the Hartree term has to be evaluated expli-
citly. The exchange gain is shown to be bigger than kinetic and Hartree
terms. It is precisely the electrostatic term that is believed to be fatal to
the charge density waves once one adds some measure of correlations.
We prove that this is not the case for the chiral waves. The exchange
energy is different from the one in the absence of spin-orbit interaction
and does not necessarily favor the chiral instability as shown in Refer-
ence [11] of the manuscript. Our calculations show that e can induce the
chiral instability for all densities of the electron gas.
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Our results only represent the first step in understanding non homo-
geneous states in this interesting many-body system. How the inclusion
of correlations will modify the HF scenario is of course a most important
question. Advances in this respect can in principle be pursued by follow-
ing the program outlined in Reference [16]. Such a study will require a
much more complicated analysis. An alternative route is make use of per-
turbative techniques to establish the role of correlation in the high density
limit. Part of this program has been carried out in Reference [17].

A. Appendix

A.1. Elliptic integral expansion

For the purpose of our calculations the following expression must be eval-
uated in the limit of small u:

2π∫
0

1∫
0

x ′ (1+cosϕ) dx ′dϕ√
z2+x ′2−2zx ′ cosϕ

∣∣∣∣∣∣
z=1+u

−
2π∫
0

1∫
0

x ′ (1+cosϕ) dx ′dϕ√
z2+x ′2−2zx ′ cosϕ

∣∣∣∣∣∣
z=1−u

. (A.1)

An obvious problem is the presence of singularities in the integrand for
z = 1.
Let us define:

A (z) =
2π∫
0

1∫
0

x ′ (1+ cosϕ) dx ′dϕ√
z2 + x ′2 − 2zx ′ cosϕ

. (A.2)

Of course, A is not differentiable in z = 1. Still we have to evaluate ∂A(z)
∂z

and expand it in an asymptotic series around z = 1.

∂

∂z
A (z) = ∂

∂z

⎛⎜⎝z

2π∫
0

1/z∫
0

y (1+ cosϕ) dydϕ√
1+ y2 − 2y cosϕ

⎞⎟⎠
=

2π∫
0

1/z∫
0

y (1+ cosϕ) dydϕ√
1+ y2 − 2y cosϕ

+ z
∂

∂z

⎛⎜⎝ 2π∫
0

1/z∫
0

y (1+ cosϕ) dydϕ√
1+ y2 − 2y cosϕ

⎞⎟⎠ .

(A.3)
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The derivative in the second term can be evaluated in the following way:

∂

∂z

⎛⎜⎝ 2π∫
0

1/z∫
0

y (1+cosϕ) dydϕ√
1+y2 − 2y cosϕ

⎞⎟⎠=− 1

z2

2π∫
0

y (1+cosϕ) dϕ√
1+y2−2y cosϕ

∣∣∣∣∣∣
y= 1

z

= − 1

z2

2π∫
0

(1+ cosϕ) dϕ√
1+ z2 − 2z cosϕ

.

(A.4)

We can integrate this expression over its angular part so that the result is
expressed as:

2π∫
0

(1+ cosϕ) dϕ√
1+ z2 − 2z cosϕ

= −2 |z − 1|
z

E

( −4z

(z − 1)2
)

+ 2

z

(z + 1)2
|z − 1| K

( −4z

(z − 1)2
)
,

(A.5)

where E and K are the elliptic integrals of first and second kind defined
as in [18,19].
The asymptotic expansion of the elliptic integrals around z = 1 leads

to:
∂A (z)

∂z
= ρ − 12 ln 2+ 4+ 4 ln |z − 1| , (A.6)

where ρ =
2π∫
0

1∫
0

y(1+cosϕ)dydϕ√
1+y2−2y cosϕ

� 5.6639. Integrating over z we finally

obtain:

A (1+ u)− A (1− u) � 2 (ρ − 12 ln 2+ 4 ln |u|) u

� 8u (ln |ξu|) , (A.7)

with ξ � 0.51.

B. Evaluation of useful quadratures

We begin by calculating here the leading order term in the expansion of
the expression

I =
arccos b

2∫
0

√
sinϕ

cosϕ
dϕ for b� 1 . (B.1)
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Expanding the upper limit and setting t = tan ϕ2 , the integral becomes:

I � 2
√
2

1− b
2∫

0

dt

1− t2

√
t

1+ t2
(B.2)

� √
2

1− b
2∫

0

dt

√
t

1+ t2

(
1

1− t
+ 1

1+ t

)
,

The divergence in the limit b → 0 stems only from the first term and we
therefore proceed to try isolating the singularity:

I � √
2
1− b

2∫
0

dt
√

t
1+t2

1
1−t +

√
2
1∫
0

dt 1
1+t

√
t

1+t2
+ O(b) �

� −√
2
1− b

2∫
0

dt
√

t
1+t2

(ln (1− t))′ + 0.5256+ O(b) .

(B.3)

An integration by parts is used in the remaining integral to further isolate
the singular contribution:

I � −
√

2t

1+ t2
(ln (1− t))

∣∣∣∣∣
1− b

2

0

+√
2

1− b
2∫

0

dt
d

dt

(√
t

1+ t2

)
ln (1− t)+ 0.5256+ O(b) .

(B.4)

At this point the non singular second term is calculated numerically so
that the final result is:

I � ln b + 0.9475 . (B.5)

The following integral is used in the proof of the HF instability theorem:

J =
√
ς∫

1

√
ς∫

1

dudv√(
u2 − v2)2 + u2v2b2

2

, (B.6)

for b � 1.
Because the singular behavior originates from the region where u � v,

in order to find the leading order term, we approximate u2 − v2 with
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2u(u−v). Since the function is symmetric with respect to the interchange
of u and v we can use the relation

√
ς∫

1

du

√
ς∫

1

dv f (u, v) = 2

√
ς∫

1

du

u∫
1

dv f (u, v).

Then:

J �
√
ς∫

1

du

u

u∫
1

dv√
(u − v)2 + u2b2

8

� −
√
ς∫

1

du

u
ln

(
bu

2
√
2

)

+
√
ς∫

1

du

u
ln

(
u − 1+

√
(u − 1)2 + u2b2

8

)
.

(B.7)

The integrand of the first term has a logarithmic singularity in the limit
of small b while the second one is instead analytic in this limit. The main
contribution to the integral is therefore:

J � −
√
ς∫

1

du

u
ln

(
bu

2
√
2

)
� − ln ς ln b . (B.8)
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A brief overview of Giuliani’s contribution
to many-body aspects of the electron gas

Sudhakar Yarlagadda

Abstract. Among the various important contributions that Gabriele F. Giuliani
made in the area of theoretical condensed matter physics, the large body of work
(done over a period of a few decades) on the many-body aspects of the electron
gas is certainly seminal and has been recognized (very rightly) with an APS fel-
lowship. The present article is a perspective by his first PhD student and attempts
to provide highlights of the work with hopefully appropriate references. The main
contribution is a detailed analysis of the vertex corrections due to charge-density
and spin-density fluctuations in the electron liquid; employing these results to a
microscopic determination of the Landau Fermi liquid parameters.

Understanding the many-body aspects of an electron gas (EG) has been
a subject of ongoing interest for some decades. While the high-density
limit corresponds to an ideal paramagnetic gas, the low-density limit res-
ults in a solid. Contrastingly, the intermediate densities are not well char-
acterized owing to the absence of a small parameter to conduct perturb-
ation theory. In the intermediate regime, a noteworthy phenomenolo-
gical (and approximate) approach is the Landau’s theory of Fermi liquids.
Landau wrote down an effective Hamiltonian (for low-lying excitations)
which yields various properties of the system such as the effective mass
of an electron, the effective g-factor of an electron, spin susceptibility,
specific heat, etc.
As regards microscopic approaches to the electron-gas problem, Quinn

and Ferrel [1] worked out the theory within a random-phase approxim-
ation (RPA). Next, Rice [2] (and later others) incorporated the effect of
vertex corrections due to charge fluctuations without consistently includ-
ing the corrections due to spin-density fluctuations; consequently, the ap-
proach lead to serious problems.
More detailed analyses that take into account the vertex corrections

associated with both charge-density and spin-density fluctuations were
carried out for an unpolarized EG by various groups using different ap-
proaches [3–5]. First, Kukkonen and Overhauser [3] (KO) proposed an
analytic, clear, and simple scheme for taking into account the effects of
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exchange and correlations in an EG by considering both charge and spin
fluctuations. For the case of paramagnetic jellium, KO were the first
to exploit fully the many-body local field framework introduced earlier
on by Hubbard [7]. The KO theory was the first to provide a deriva-
tion of the effective interaction between two electrons in an unpolarized
EG. Second, the KO results were later confirmed by Vignale and Singwi
(VS) for the paramagnetic EG by means of a diagrammatic technique [4].
Next, Giuliani et al. [5,6] proposed a physically transparent approach, the
renormalized Hamiltonian approach (RHA), which was a generalization
of the RPA-based pioneering theory of Hamann and Overhauser [8]. The
RHA involves going beyond RPA by incorporating the effects of vertex
corrections associated with charge-density and spin-density fluctuations
to account for exchange and correlation effects in the paramagnetic EG.
In the RHA, a few electrons in the EG are labeled as test electrons; the
remaining part of the EG is treated as a screening medium. Needless to
say that the test electrons and the screening medium are not distinct phys-
ical entities. Owing to their common nature, exchange processes occur
between the test electrons and the screening medium. When the test elec-
trons move, they excite charge-density and spin-density fluctuations in
the screening medium; these fluctuations, in turn, screen the interaction
between the test electrons. Thus, the screening medium (on the average)
mimics the true physical processes. On averaging over the coordinates
of the screening medium, an effective renormalized Hamiltonian for the
clothed test electrons is obtained. Here, it must be noted that the coupling
with the screening medium occurs only through the charge-density and
spin-density fluctuations excited by the test electrons.
The diagrammatic analysis of VS was extended to the case of an infin-

itesimally polarized electron gas by Ng and Singwi [9]. Next, Giuliani
et al. extended their results for the unpolarized EG (using RHA) to the
case of an infinitesimally polarized EG [10]; they derived a quasiparticle
pseudo-Hamiltonian in terms of the charge and spin response functions
after incorporating the many-body local fields of the system. A major
motivating factor for the enterprise was to keep separate track of the two
spin occupation numbers so that functional derivatives can be taken with
respect to them to evaluate Landau Fermi liquid parameters. Later on, Gi-
uliani et al. [11] generalized the elegant and transparent approach of KO
to the case of an infinitesimally polarized EG. They derived the effective
interaction between two electrons for an infinitesimally polarized degen-
erate multi-valley system. They obtained the electron self-energy, from
the screened interaction, by using the GW approximation [12]. They also
show that the obtained self-energy is very similar to that derived by them
using RHA [10].
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It is remarkable that very similar results (i.e., self-energy of an elec-
tron, effective interaction between two electrons, etc.) for the EG for both
unpolarized and infinitesimally polarized cases were derived by three dif-
ferent approaches thereby lending credibility to the final results.
As regards response functions of an EG, it is worth mentioning that

analytical expressions were derived by Giuliani et al. for the static many-
body, spin-symmetric and spin-antisymmetric local-field factors of a ho-
mogeneous two-dimensional electron gas [13, 14]; their expressions re-
produce diffusion Monte Carlo data [15] and match the exact asymptotic
behaviors at both small and large wave numbers [16].
Lastly, an important enterprise of Giuliani et al. was to apply the de-

rived EG theory to calculating quantities of physical interest such as the
quasiparticle effective mass, the spin susceptibility enhancement, the ef-
fective g-factor, etc. [17, 18]. A quantitative comparison between exper-
iment and calculations of quasiparticle properties (that take into account
quasi-2D effects of the electronic wave function and valley degeneracy)
for silicon MOSFETs has been successfully carried out earlier for the
weak-coupling regime by Giuliani et al. in Reference [19]. On the other
hand, for the case of strongly interacting electrons, comparison between
theory and experiments (showing significant enhancement in effective
mass) in a single-valley GaAs/AlGaAs quantum well was also done by
Giuliani et al. [20]. Surprisingly, the on-shell approximation (meant for
weak-coupling) yielded a reasonable fit to the effective mass data unlike
the strong-coupling, Dyson-equation approach. Thus, perhaps, more ef-
fort is needed to understand the unexplored aspects of many-body local-
fields such as their frequency dependence.
All in all, while the contributions of Giuliani et al. in the area of many-

body EG are significant, the EG problem (given its many-body nature) is
far from being fully understood and will continue to be an area of focus
for a number of years to come.
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for working on the electron gas. When I write about Giuliani’s work
(involving me) on the electron gas, I must also acknowledge Overhauser’s
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Lifetime of a quasipartic1e in a two-dimensional electron gas 
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We have investigated the inelastic Coulomb lifetime 7" of a quasiparticle near to the 
Fermi surface of a two-dimensional electron gas. Within a perturbative approach based 
upon the random-phase approximation, we find that at low temperature 1/7" behaves like 
T2InT. Furthermore at small quasiparticle excitation energy, the leading contribution to 
1/7" is inversely proportional to the electronic density and does not depend upon the elec­
tric charge. Although the plasmon frequency goes to zero at long wavelength, plasmon 
emission contributes to the quasiparticle decay only when the quasiparticle excitation ener­
gy exceeds a certain threshold. The threshold becomes a small fraction of the Fermi energy 
in the high-density limit. 

I. INTRODUCTION 

The effect of Coulomb interaction on the lifetime 
of the electronic states close to the Fermi surface is 
a classic problem in many-body theory. For the or­
dinary three-dimensional (3D) electron gas, the in­
verse inelastic lifetime llr" associated with the 
electron-electron interaction has been evaluated 
within a perturbative approach by several authors 
since the pioneering work of Landau and 
Pomerantschusk. I -3 At zero temperature for a 
quasi particle state with wave vector P close to the 
Fermi wave vector PF, it is found 3 that 
liT" 0: (p -PF)2. Luttinger4 has established the va­
lidity of this result at all the orders in perturbation 
theory. In a one-dimensional electron gas neutral­
ized by a rigid positive background it has been 
found that th" 0: Ip-PF 1.4•5 The corresponding 
calculation for a two-dimensional (2D) electron gas 
has been performed by Chaplik.6 The result is 
liT" 0: (p-pdln Ip-PF I. 

There has been considerable interest in recent 
years in the physical properties of 2D metals. Elec­
trons confined in silicon inversion layers and to the 
GaAs layer of GaAs-AlxGal_xAs heterojunctions 
provide a vivid realization of such peculiar sys­
tems.? The inelastic broadening of the electronic 
states in these conductors plays a major role in the 
interpretation of magnetoconductance experi­
ments8- 12 and its bearing upon the localization 
problemY- 15 This is discussed in detail by 
Wheeler.s Several authors have invesitgated the 
Coulomb inelastic lifetime of the electronic states of 
a 2D metal in the presence of a finite concentration 
of impurities. 12,16 Their analysis, however, is re­
stricted to the diffusive regime and the results can-

26 

not be extrapolated to the pure-metal limit. The 
aim of this work is to present a detailed and 
comprehensive investigation of the temperature­
dependent Coulomb inelastic broadening in the sim­
ple case of a pure 2D electron gas, An interesting 
feature of the 2D situation is the possibility of plas­
ma modes affecting the Coulomb broadening of the 
electronic states. In the usual 3D case this 
phenomenon is inhibited by the large energy associ­
ated with plasma oscillations, For a 2D metal how­
ever, the plasma frequency goes to zero in the long­
wavelength limit l? and plasmon emission can in 
principle become an available decay channel also for 
thermal or low-energy electronic excited states, 

The paper is organized as follows, In Sec, II the 
microscopic theory of the Coulomb inelastic life­
time of a quasi particle is revisited and specialized to 
the case of a 2D electron gas, In Sec. III we evalu­
ate I Iree and explicitly establish its asymptotic 
behavior, Section IV provides some discussion with 
emphasis on the peculiar temperature and charge 
dependence of the results, Finally three appendixes 
complete the paper by providing a discussion of a 
few technical aspects of the theory, 

II. INELASTIC LIFETIME OF A QUASI PARTICLE 

Consider a degenerate gas of N electrons in its 
normal ground state. This can be well described in 
terms of filled Fermi sea. A quasi particle is ob­
tained by adding to the system an extra electron 
which occupies an otherwise empty state character­
ized by a wave vector ji and a spin projection (J, In 
complete analogy a quasihole can be obtained by re­
moving an electron from an otherwise occupied 

4421 ©1982 The American Physical Society 
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state. At T =0 K, if PF is the Fermi wave vector, 
necessarily P ?PF for a quasiparticle and P <;'PF for 
a quasihole. 

The ground state for these N ± I electrons config­
urations is of course again a filled Fermi sea with 
the same Fermi wave vector, apart from corrections 
of order 11 N. In the absence of any relaxation 
mechanism, quasi particle, and quasihole states are 
stationary. The mutual Coulomb interaction how­
ever, provides a way to redistribute energy and 
momentum among the electrons and causes a quasi­
particle (quasihole) state to decay. This leads to a 
finite inelastic lifetime liT" for these electronic 
states. 

For T=O K the situation is readily analyzed via 

standard time-dependent perturbation theory and 
I ITee is given by the decay rate of the correspond­
ing plane-wave state. At finite temperature the sit­
uation is more complicated and I IT" is defined by 
the relaxation rate of the occupation number np.u ' 

as obtained by an approach based on a transport 
equation of the type18 

an p.u _ 

at (I) 

where n 1.u is the distribution function at equilibri­
um. In both cases liT" can be evaluated within 
perturbation theory, with the use of the usual Fermi 
golden rule, 19 

where Vc (p, q) is the matrix element of suitable electron-electron interaction potential. 
Some discussion is in order as far as the proper choice of Vc is concerned. As pointed out by Quinn and 

FerrelV the use in Eq. (2) of the bare Coulomb potential matrix element v(q) for Vc leads to the unphysical re­
sult I ITee = 00. Such a difficulty can however be surmounted by allowing for screening effects. This is readi­
ly done within the random-phase approximation (RPA).3.19 Accordingly we choose a dynamically screened 
interaction of the form 

V (- -) v(q) 
c p,q = f(q,(E--E-+-)1fi) , 

p p q 

(3) 

where f(q,W) is the wave vector and frequency-dependent dielectric function of a two-dimensional electron 
gas.6•20 f is here evaluated at the frequency (Ep -Ep + q)ili corresponding to the energy transferred to the 
electron gas by the extra electron (hole) during the scattering. Notice that the use of a dynamical screening (as 
compared to a static one) makes Vc a complex quantity. 

The sum over k and a' appearing in Eq. (2) can be performed and, with the use of the fluctuation and dissi­
pation theorem, expressed in terms of the imaginary part of the susceptibility XO(q ,w) of a noninteracting elec­
tron gas,19 

~ ° ° ImXo(q,w) 
~ nr.u·(I-nr_q.u·)o(Er_q-Er-w)=- -wlk T ' 
r.u· S1T( I-e B ) 

(4) 

where S is the total surface and kB is Boltzmann's constant.21 Using this result and Eq. (3) in (2), lITe, can be 
expressed as 

--= v(q) - coth -- -tanh --I I f + 00 dw r [Iiw 1 [ Iiw -Il 11 
T,,(Il) 1iS(1+e -l!.IkBT) ~ -00 21T 2kBT 2kBT 

[_I 1 [ Il+/L-Ep+q 1 xIm ( ) 0 w- Ii ' 
f q,w 

(5) 

where /L is the chemical potential and we have introduced the quantity Il=E p -/L. Il is just the excitation en­
ergy of the quasiparticle (hole) state. This expression for I IT" applies equally well to the usual three­
dimensional case (see Appendix C).22 

If we use for the single-particle energy Er the free-electron value Iilk2/2m, the angular part of the integra­
tion involved in Eq. (5) can be carried out analytically. For a 2D system the result is 
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0, w>!1(q) , 

r2~ [a+Jl.-Ep+<i 1 2 
Jo #& w Ii = n!1(q)-w][!1(q)+1iq2/m + w]11/2' 

0, w < -!1(q)_1iq2/m 

(6) 

where 1i!1(q) (see Fig. 1) is the maximum value of the energy transfer for a scattering process in which the ex­
tra electron (hole) changes its wave vector by q, 

!1(q)=!!Ei_1iq2 . 
m 2m 

(7) 

With (6) in (5) and v (q)=21Te 1/q we finally obtain for a 2D electron gas, 

e2 [IO Iq+lOOJ J,I~+A.J/~ rq+1ooJ 1 
dw dq+ dw J, dq 

1T1i(I+e -A.1kST) -0) -LlooJ ° LlooJ 

[ h [~ 1 anh [/iw-a 1 j Im( 1!E(q,W)] 
X cot 2kBT -t 2kBT ! [!1(q)-w][!1(q)+(1iq2/m )+w]1 1/2 , 

where q ± (w) are the solutions of the equation 
!1(q)=w, i.e., 

q±(w)=p [I± [1- Jl.~a f12j· (9) 

Figure I illustrates the geometrical constraints im­
posed by energy and momentum conservation to the 

FIG.!. Geometry of the q,w space for a 2D electron 
gas. Single-particle excitations are possible only within 
the electron-hole continuum defined by w_ <; I w I <;w+, 
with w+(q)=tlpFqlm±fiq2!2m. Quasiparticle decay 
into electron-hole pairs is allowed only for q,w in the 
electron-hole continuum and such that 
-fi(q)-hq2Im <;w <; fi(q) [Eq. (7) in the text]. wp is 
the plasmon dispersion relation. The inset is an expan­
sion of the small q,w region and depicts a situation in 
which plasmon emission is possible. For illustration we 
have chosen here p = l.2PF and r, =0.318. 

(8) 

I 
decay processes in a 2D electron gas. 

A completely equivalent approach to this prob­
lem is to evaluate to the lowest order in the screened 
interaction the self-energy I(ji,Ep) of the quasipar­
tide (quasiholel. The corresponding diagram is 
shown in Fig. 2. llree is then obtained vial •19 

J...=_~ ImI(ji,Ep )' 
Tee " 

(1O) 

Ill. DECAY PROCESSES 

We turn now to the analysis of the elementary 
processes by which a quasipartide (quasihole) state 
can decay, as described by the imaginary part of the 
inverse dielectric function in (8). Within RP A we 
can divide Im(l/E) as follows: 

Im--=Im-- +im-- . I I I I I 
dq,w) E(q ,w) ,.h E(q,W) pi 

(11) 

FIG. 2. The simplest self·energy diagram for an elec· 
tron of wave vector ji and spin projection (J. The 
dashed line represents the screened Coulomb potential, 
Eq. (3). 
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The first term is associated with single electron-hole 
pair excitations with wave vector q and energy w. 
The second describes inelastic processes involving 
excitation of plasma modes. Since in a three­
dimensional electron gas the plasma frequency is al­
ways finite, for small excitation energies 1::.., single 
electron-hole pair excitations represent the only 
relevant dissipative processes. In a 20 system how­
ever, the plasma frequency (see Appendix A) goes to 
zero at long wavelength l7 and, as already men­
tioned above, plasmons became available at small 
energies. Multipairs excitations are also possible 
but they lead to a small effect at low excitation en­
ergies, and are disregarded in RPA. 

A. Decay into single-particle excitations 

Within RPA single electron-hole pair excitations 
are possible only for q and w inside the electron­
hole continuum (see Fig. I). At low temperature 
and small excitation energy I::.. only the region of 

1 

small w is relevant. In this case Eq. (8) can be con­
siderably simplified. 

We first notice that because of the singular 
behavior of the integrand in Eq. (8) for w=n(q) 
[i.e., q =q±(w)], the main contribution to the decay 
rate at low energies comes from scattering processes 
involving a small wave-vector change q of the order 
of P -PF. Accordingly, we write 

I I w [ [mw ]2]112 
Im f(q,W) ,-h = - 2e2PF 1- liqpF ,(12) 

where we have made use in (A3) of the small q and 
w expansion of the electronic susceptibility [Eqs. 
(5), (AI), and (A2)].23 For q and w outside of the 
electron-hole continuum, Im (1/ f ),h is zero. 

At T =0 K, the frequency integral of Eq. (8) is 
restricted to the interval 0, 1::../'11. In this case, mak­
ing use of (12) in (8), lIT" I ,.h can be reduced, after 
some straightforward manipulations, to a single 
quadrature. A direct inspection allows us to extract 
the leading contribution. We find 

_1_ "", __ I .!. In.!. -l-ln qTF ,T=O K, 1::..« PFqTF 
l

E [ ]2 [[] [2 121 ]] fz2 (2) 
1',,(1::..) ,-h 41Tfz El EF 2 PF m 

(13) 

a result previously obtained by Chaplik.6 In Eq. (13) EF=fz2p}/2m is the Fermi energy of the electronic sys­
tem and q!fi, is the Thomas-Fermi screening wave vector in 20, given by 2me 2/ft. The result of the numeri­
cal integration is shown in Fig. 3. 

At finite temperatures the integrals involved in Eq. (8) are not feasible. However, in the region of tempera­
tures much larger than l::../kB and much smaller than EF/kB' we have been able to evaluate the relevant con­
tribution. The result is 

(14) 

B. Decay into plasma modes 

At zero temperature, the contribution to Im( lIf) associated with the collective modes is given in RPA bylO 

I [ ]-1 
I ilRec(q,w) 

Im-(-) =-1T, B(w-wp(q)) , 
f q,w pi uW 

(15) 

where wp(q) is the plasma dispersion relation, as discussed in Appendix B. This expression is defined only for 
values of q and w lying outside of the electron-hole continuum (see Fig. I). For a 20 electron gas the quantity 
il Rec/ilw can be readily evaluated using Eqs. (A3) and (AI). 

Inserting Eq. (15) in (8) we find after some straightforward manipulations, 

I I 2e 2 t, 8W(q)-w+(q)) I 
1',,(1::..) PI=~ 0 dq ![n(q)-wp(q)][n(q)+(hq2/m)+wp(q)]11l2 [ilRedq,wp(q))/ilw] 

f min[a/~rolql] 

X min[MMllql] dwB(w -wp(q) , (16) 
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where qe is the critical wave vector for plasma modes (see Appendix B) and min[a,b] is the minimum between 
a and b. 

Finite contributions to I ITee in Eq. (16) come only from wave vectors q for which the condition 
w+(q) :o;wp(q):o; !l(q) is satisfied (see Fig. I). Furthermore, at zero temperature, the excitation energy II must 
be larger than nwp(if _), with if_defined in Eq. (B6). This leads to the existence of a finite excitation-energy 
threshold lle for the decay into plasmons. By using Eq. (B6) in (B2) we obtain for lle the following equation: 

[32me2EF(EF+lle)I1211/2 [11 I [EF+~(") 1J/4] 
II = cos -+-arccos 

e 31i 3 J EF+lle ' 
(17) 

where ~ is given by Eq. (B5). In the high-density 
limit, Eq. (17) reduces to the simpler form, 

(18) 

Here " is the average intere1ectronic distance mea­
sured in Bohr radii. 

In the general case Eq. (17) must be used. The 
values of lle as given by Eq. (17) and (18) are com­
pared for small " in Fig. 4. At metallic densities 
Eq. (17) gives quite large values for the excitation 
energy threshold lle> and the quasipartic1e decay 
into plasma modes is inhibited. In the high-density 
regime however, lle can be still considered as a 
small fraction of the Fermi energy. In this case, for 
small II and lle> we can make use in (16) of the ap­
proximate form 

aRee(q,w) 1 2 (19) 
aw w=wplql"" wp(q) , 

valid at small q. The result for IITee I pi is 

800 
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FIG. 3. Plot of (r,,1l2)-' measured in units of 4rrfzEF 
versus 11/4E,., as obtained via direct numerical compu­
tation. For illustration we have taken here r,=2. 

I 
1 

2 J 1/2 
__ ~~e(ll-ll)( _ - )1/2 

(ll) - 1'.2 e qm q - , 
Tee pi 11 

(20) 
with qm=min[1l212e2EF,qe] and if- is given in 
Eq. (B6). For II slightly larger than lle> (20) 
reduces to 

I 1 2v1me2 [ll-lle 11/2 
-Ill) ""-1'.-) -lle -ll- ,ll""lle . 
Tee pi 11 PF e 

(21) 

Finally, as II exceeds nwp(qc!=(2e 2EFqe)1I2, Eq. 
(20) can be written as 

_I_I ~2e:m [~11/2, llZnwp(qe)' 
Tee(ll) pl- Ii EF 

IV. DISCUSSION 

(22) 

In this paper we have calculated within a pertur-
bative approach the temperature-dependent 

o 150 

()" 0.100 

E," 

0.050 

0.0 0.1 0.2 0.3 

r, 

~ 

FIG. 4. Plasmon emission threshold 11, (measured in 
units of EF) versus r,lr; (r; =8v2/27) in the high­
density region. lle is obtained solving numerically Eq. 
(17). The dashed line is the asymptotic formula 
lleIEF=v2r, [Eq. (18)]. 
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Coulomb inelastic lifetime 1'ee of a quasi particle in a 
2D electron gas. Our findings [Eqs. (13) and (20)) 

complemented by the results of earlier calculations, 
are schematically summarized in Table I. It is clear 
that the customary textbook "phase-space argu­
ment,,1 leads to the correct answer only in the 3D 
case. 

In a 2D system, 1'ee displays an extra logarithmic 
dependence.6 This peculiar result stems from the 
concurrent effects of the planar geometry and the 
conservation of energy and momentum in the elec­
tronic collision processes, as expressed by Eq. (6).24 
This has been overlooked by several previous inves­
tigators. 

Another interesting feature is the complete in­
dependence of 1'" from the electric charge, as mani­
fest in Eqs. (13) and (14). This is just one of the 
consequences of the analytic dependence of the 
screened Coulomb potential regarded as a function 
of electric charge and wave vector. 

We have investigated for comparison the depen­
dence on the electric charge e of 1'" in the usual 3D 
case. In the high-density limit Quinn and Ferrel3 

find that 1/1'" is simply proportional to e. In the 
general case however, this dependence is much more 
involved as shown by the calculation of 1/1'" for a 
3D electron gas presented in Appendix C. 

Quite generally, the dependence of 1/1'" upon e is 
dictated by which values of the wave-vector transfer 
q are the most relevant ones in the decay process. 
In a 3D metal all the q values between zero and 2PF 
provide a relevant contribution to l/1'ee leading to 
the complicated structure of Eq. (Cl). For a 2D 
system the singular behavior displayed in Eq. (6) 
makes the q values of the order of P -PF to contri­
bute the leading term at low excitation energy. 
Since at long wavelength the screened Coulomb po­
tential is independent of e so does 1/1'", 

The situation resembles the dirty-metal case. 14 In 
the presence of a finite concentration of impurities 
momentum conservation is relaxed and diffusion 
dominates the dynamics at low energy. In this case, 
in all dimensions, the most relevant contributions to 
the inelastic Coulomb lifetime come from q values 
of the order (k B T ID) I /2, where D is the diffusion 
constant. As a consequence 1/1'" does not depend 
upon e both in twol6 and three25 dimensions. 

TABLE I. Asymptotic behavior of the inelastic 
Coulomb lifetime 1'" for P -''PF in a 3D, 20, and ID de­
generate electron gas. 

lIT" 

(p-pd 
(p-pdlnlp-PFI 

IP-PFI 

'Landau and Pomerantschusk (Ref. 1), Baber (Ref. 2), 
and Quinn and Ferrell (Ref. 3). 
bChaplik (Ref. 6) and this work. 
'Luttinger (Ref. 4). 

In the comparison with experiment the depen­
dence of the leading term in a temperature expan­
sion of 1/1'" upon the electronic density is usually 
of interest. For a 3D metal 1/1'" a:A3T2 with A3 
proportional to n -- 3/2. Our analysis of the 2D case 
gives [see Eq. (14)] 1/1'" a:A2T2InT with A2 in­
versely proportional to n. 

As discussed in Sec. III, at T =0 K, there exists a 
finite energy threshold for quasi particle decay into 
plasma modes. This threshold is a substantial frac­
tion of the Fermi energy at metallic densities. Such 
a fraction however decreases as the electronic con­
centration increases [see Eq. (18)]. At finite tem­
peratures the calculation becomes involved and no 
clear-cut statement can be made. We expect, how­
ever, the existence of a typical temperature thresh­
old Te of the order r,EFlkB for which the plasma 
decay mechanism becomes as important as the 
single-particle processes in the broadening of quasi­
particle states. Accordingly, above T" 1/1'" will 
display an additional contribution proportional to 
(T - Tell /2 and then to T I /2 as T is further in­
creased. 
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APPENDIX A: DIELECTRIC FUNCTION 
OF A 2D ELECTRON GAS 

The susceptibility XO(qw) of a noninteracting elec­
tron gas in 2D is readily evaluated at T = 0 K, via 
linear response theory. The result is20 

(AI) 
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where x =q 12pF, y=mwlfiqpF, and No is the den­
sity of states at the Fermi energy. 8(x) is the usual 
step function. Within RPA the dielectric constant 
f(q,W) is then given by 

f(q,w)=I-v(q)Xo(q,w) , 

with v(q)=21fe 2q. 

APPENDIX B: PLASMA WAVES 
IN A 2D ELECTRON GAS 

(A3) 

The dispersion relation wp(q) for plasma waves 
can be readily established within RP A. Making use 
of the results of Appendix A, the collective mode 
condition f(q,Wp(q))=O gives at long wave­
length,17,6.20 

(BI) 

and 

I 

with a=2e2EFlft and (3=3EF/2m. The second 
term in (BI) is relevant only for q:2: (4/3V2)r,PF, r, 
being the average interelectronic distance in Bohr 
radii. For r, :2: I, and in any case at low frequencies, 
the expression 

(B2) 

provides a satisfactory approximation. 
Plasma waves are well-defined collective modes 

only for q less than a critical wave vector qe defined 
by wp(qe)=w+(q), w+(q) being the upper edge of 
the electron-hole continuum (see Fig. I). From the 
condition dqe,w+(q))=O we obtain 

(B3) 

with 

[[ ]
213 1 [ []1I211/3 [ []1/2]1/3) V2] 

qe(r,)=2PF T 1- :~ + I-~ + 1- :~ - I-~ ---fr, , r,s,r,. 

In (B3) and (B4) r, = 27V2/3h 1.19. For q larger 
than qe plasmons suffer Landau damping. 

The plasmon frequency wp(q) intersects 
il(q)=(zpqlm-fUJ 2/2m (see text) only if !::..=E-/1 
is larger than the threshold value !::..(r,). With the 
use of Eq. (E2) we obtain 

(B5) 

where r; =8V2/2hO.42. In this case the condi­
tion wp(q)=il(q) is satisfied by q±m 

(B6) 

APPENDIX C: CHARGE DEPENDENCE 
OF I/T" 

(B4) 

In a 3D electron gas the only contribution to 
liT" comes from single electron-hole particle exci­
tations. The calculation can be carried out using 
Eq. (5) and the standard formulas for dq,w) and 
V(q).19 AtT=OKweobtain26 

I I e2pF [ I 
Tee(!::..) 3D ~lli I +(qW/2PF)2 

(Cl) 

where qW is the usual 3D Thomas-Fermi screening 
wave vector. The extreme RP A limit (i.e., high 
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densities) for lIT,,, as calculated by Quinn and Fer­
relV is recovered in the limit of qW «PF' 

I e PF1T' 6. . ... 
I 

2 2 [ ]2 -- ""--Il-) - , hIgh-densIty hmll . 
1',,(6.) 3D 32liqTF EF 

(C2) 

Since qW er: e we observe that I IT et 1 3D is propor­
tional to e in the high-density limit, whereas in the 
general case its charge dependence is fairly compli-
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We present a microscopic theory of the Hall conductance in a two·dimensional electron gas. Our 
approach is based on a single· particle picture and explicitly accounts for the effects of a random im· 
purity potential. Within the geometry introduced by Laughlin a general expression is derived from 
which it is possible to evaluate the Hall conductance in terms of the properties of the electronic spec· 
trum at the Fermi energy for any value of the magnetic field. When the chemical potential lies be· 
tween the bulk extended states of well-defined neighboring Landau bands, the Hall conductance is 
quantized in integral multiples of e'/h, even in the presence of a large density of localized states. 
Within our model the exactness of this quantization depends on the shape of the confining potential, 
the thickness of the sample, and the magnetic field. 

I. INTRODUCTION 

One of the most interesting properties of the two­
dimensional electron gas which can occur at a semicon­
ductor interface is the quantization of the Hall conduc­
tance.1 At very low temperature T and high magnetic 
field strength B, the Hall conductance (J Xl as a function of 
the Landau-level filling factor v=nsleB/hc)-1, ns being 
the number of electrons per unit area, is characterized by 
flat steps2 at integral multiples of the fundamental value 
e2/h. In those regions of concentration ns in which (J x, 
has the quantized value, (Jxx is essentially equal to zero lit 
would presumably be zero at zero temperature). This ef­
fect was first indicated by Ando, Matsumoto, and Uemura 
in a study of the effects of impurity centers on the proper­
ties of an otherwise noninteracting two-dimensional elec­
tron gas.) 

This result suggests very strongly that if we think of the 
density of states associated with a particular Landau level 
as broadened by impurity scattering, extended states exist 
only very close to the center of the Landau level and local­
ized states exist everywhere else. Establishing the validity 
of this picture from microscopic thenry remains a funda­
mental unsolved problem. Work in this direction has been 
recently carried out by several authors.4- 6 

The quantized Hall effect has received particular atten­
tion within the single-particle picture in which a prom­
inent role is played by the electronic states which are lo­
calized by the impurity random potential.7- 9 Within the 
same framework Kazarinov and Luryi have presented an 
argument based on quantum percolation theory. 10 Thou­
less and co-workers have investigated how the effect is in­
fluenced by the presence of a periodic substrate poten­
tial. ll 

The observation of a sizable cyclotron resonance shift in 
Si inversion layersl2 and of additional quantized steps in 
the Hall resistance at 3h/e2 and probably 3h/2e2 in 
GaAs-AlGaAs heterojunctions in the extreme quantum 
limit!3 casts, however, some doubts on the validity of the 
single-particle picture. The normal state of a two­
dimensional electron gas in the presence of a magnetic 

field is inherently unstable with respect to a many-body 
charge-density-wave or Wigner-lattice type of ground 
state. 14 It is not clear, however, what happens in the pres­
ence of an impurity random potential and what the mag­
netotransport of such an exotic ground state would be. 
The implication of such many-body effects on the Hall 
conductance of an ideal two-dimensional electron gas have 
recently received a great deal of attention. 1S - 17 

In order to establish the relevance of the many-body ef­
fects in the quantized Hall-effect problem a complete and 
reliable theory based on the single-particle picture must be 
first at hand which can treat exactly the problem associat­
ed with the impurity random potential for any value of 
the external magnetic field. 

Laughlin has presented an elegant argument which at­
tempts to demonstrate that the quantization is due to the 
long-range phase-rigidity characteristic of a supercurrent, 
and that it can be derived from gauge invariance and the 
existence of a mobility gap. S He does this by considering 
the response of a two-dimensional metallic ribbon to a 
change in the flux threading the ribbon. Because changing 
the flux threading the ribbon is certainly not a simple 
gauge transformation, the terminology of Laughlin's argu­
ment is inappropriate. ls Furthermore, his argument con­
tains the implicit assumption that the only consequence of 
adding an integral number of flux quanta hc / e is to re­
populate the current-carrying states. This assumption is 
obviously valid for the ideal system, but it is not so obvi­
ous in the presence of disorder when localized states can 
exist at the Fermi level. 

In this paper we investigate, within a single-particle pic­
ture, the eigenfunctions, eigenvalues, and distribution 
functions of the electrons in a two-dimensional metallic 
ribbon using a cyclindrical coordinate system appropriate 
to the geometry of the problem. In Sec. 11 we consider the 
ideal system, free of impurities, and establish the notation. 
There it is stressed that it is strictly necessary to mix orbi­
tals belonging to different Landau levels in order to be 
able to describe localized states. In Sec. III we introduce 
an effective random potential and discuss the structure of 
the electric spectrum. In particular we prove that in a rib-

28 2969 © 1983 The American Physical Society 
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FIG. 1. Geometrical arrangement for the ribbon geometry 
used throughout the paper. 

bon of finite radius the spectrum of the extended states (if 
any) is countable. This analysis is used in deriving a virtu­
ally exact expression for the Hall current which explicitly 
displays the dependence of this quantity on the tempera­
ture and the shape of the confining potential. The condi­
tions for observing a quantization of the Hall conductance 
are discussed. Finally, Sec. IV contains a discussion of the 
relevant physical questions and the conclusions. 

11. IDEAL METALLIC RIBBON 

In this section we consider an idealized model in which 
the system of electrons is confined to an impurity free rib­
bon of radius ro as shown in Fig. l. Cylindrical coordi­
nates (r,e,z) will be used to describe the motion of the 
electrons. The electrons are restricted to the radius r =ro 
by some confining potential, but they are free to move be­
tween the edges (0:0; z:o; dl and around (0:0; e:o; 21TI the rib­
bon. For large values of ro any small section of the ribbon 
will be indistinguishable from a similar small section of a 
standard Hall bar, in that a current I will flow in the e 
direction and a voltage t:. V will be present across the rib­
bon. The ratio of I to t:. V will define the Hall conduc­
tance. 

In order to mimic the behavior of a standard Hall bar, 
we want a magnetic field B which is everywhere perpen­
dicular to the ribbon. We introduce a vector potential 
A=(A"Ae,A,) in the cylindrical coordinate system 
in which r, 0, and z are unit vectors, and choose 
A,=A,=O and Ae=-(BztAII. Taking the curl of A 
leads to a magnetic field 

B=Br-(BztAI)zlr. 

Now Bris exactly radial magnetic field we want. The oth­
er term r-I(Bz +AI )zis extra. It does not bother us be­
cause the electrons are strictly confined to r =ro by a po­
tential of the type 

1
0 ifr=ro 

V(r)=O 
00 otherwise. 

(I) 

Therefore, the Lorentz force assoicated with Br will have 
no effect on the classical motion of the electrons. Of 

course, the constant vector potential A I just leads to 
"trapped flux" inside the ribbon which is independent of 
the magnetic field Br, but does not affect the classical 
motion of the electrons. 

The flux through the ribbon at a plane z is given by 

4l(z)= J B'da=n\ A'df =-21Tro(BztAI)· 
at z 'fat z 

(2) 

We define ~ = - 21TroA I as the trapped flux associated 
with A I, and we introduce the set z/ of values of z defined 
by the equation 

(3) 

where ~o=hc le is the flux quantum and / is an integer. 
Because Ae depends on z, the flux passing through the cir­
cle defined by the intersection of the cylinder r =ro and 
the plane z =const depends upon z. The plane z =z/ de­
fines the circle through which -/ flux quanta pass. 

Now let us look at the Hamiltonian. To start we will 
neglect boundary effects at z =0 and d. Because the elec­
trons are confined to the radius r =ro, the radial coordi­
nate does not enter the Hamiltonian. We have 

where for simplicity only the spatial degrees of freedom 
have been retained. Because A e is independent of 9 we 
can assume that the eigenfunctions of Ho are of the form 

1/I(z,9)=eileu (z) , (5) 

where / is an integer. Substituting this form into the 
Schriidinger equation gives the equation 

(6) 

Equation (6) is just the Schriidinger equation for a simple 
harmonic oscillator of frequency Wc =eB Imc centered at 
z =z/; thus, the eigenfunctions and eigenvalues of Ho can 
be written 

eile 
1/I./(z,9)= .r" u.(z-z/) , 

v21T 

E./=liwc(n +t), 
(7) 

where u.(z) is the nth harmonic-oscillator eigenfunction. 
The quantum numbers nand / have here the following 
meaning. n labels a set of well-defined Landau levels 
whose energy spacing is given by liwc. / represents the an­
gular momentum of the state. For a given n states with 
different values of / are degenerate. If the system has unit 
area the degeneracy of each Landau level is (21Ta~ )-1 

where aB = (cfJ/eB)1/2 is the magnetic length. This degen­
eracy is lifted by any potential term depending on the 
coordinate z added to the single-particle Hamiltonian (4). 
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Note that in (7) the "orbit-center" coordinate ZI is exactly 
the value given by Eq_ (3); this value was determined by 
requiring the circle defined by r =ro,z =ZI to enclose -I 
flux quanta. Changing the trapped flux by !l~ simply 
shifts each orbit center by 1lz1= -!l~/2rrroB. Any 
change !l~ is allowed; the electron orbits simply adjust 
themselves by shifting their centers to still enclose an in­
tegral number of flux quanta. In the absence of a poten­
tial which lifts the degeneracy, the eigenvalue Enl , given 
by Eq. (7), is unchanged. 

If we introduce a constant electric field E in the z direc­
tion (across the ribbon), there is an additional term eEz in 
the Hamiltonian. The eigenvalues and eigenfunctions of 
the ideal system in the presence of E are 

1/Inl(z,8)= .e; Un [Z-ZI+~ 1, 
V 2rr w, 

EnJ=IiIJJ,(n ++)+eEzl-+mv~, 
(8) 

where the drift velocity VD is defined as VD =cE lB. If 
E--->O these equations reduce to Eqs. (7). Clearly n and I 
are still good quantum numbers but the degeneracy with 
respect to I has been lifted. Notice that in the presence of 
an homogeneous applied electric field the orbitals 1/Inl(z,8) 
are centered at ZI-vDlw" as compared to ZI in the field­
free case. 

It is worth mentioning here that the operator 
O=aHo/apo can be written 

(mr5)-I[po+(erolc)A o] , 

where Ao=-(Bz+A11. Because Po is a constant of 
motion with value fil, the Hall current It carried by an 
electron in state 1nl) is 

It=-e(nIIOrolnl)=ew,(nll(z-zl)lnl)=-evD' 

(9) 

It is straightforward to verify that 

(nlli Inl)=O (10) 

so that no current is carried in the direction of the applied 
electric field. In (9) and (10), I nl) is the Dirac notation 
for the state whose wave function is 1/Inl(Z,e). In the ab­
sence of an external electric field no current flows in the 
system. If an electric field is present in the Z direction, as 
in (8), all the electronic states 1nl) carry the same Hall 
current, -evD' along e. Equations (9) and (10) lead to the 
values axx =0 for the longitudinal conductivity and 

aXy=-(e2Nlh)(drolal)-I, 

where N is the total number of electrons. 
It is interesting to realize that exactly the same results 

are obtained for any wave function ~nl(Z,e) of the type 

~na(Z,e)= ! c~1/Inl(Z,1J) . (11) 
1 

This implies that it is strictly necessary to allow for the 
mixing of different Landau levels in order to describe a 
non-current-currying state in a magnetic field. 19 

A different and elegant procedure to evaluate the Hall 
current in this geometry has been proposed by Laughlin.8 

The approach is based on the following formula: 

!lET 
IH=-C~ , (12) 

where ET is the total energy of the system and !lET is the 
change in ET caused by a change in flux !l~. This result 
can be obtained by noting that the current -density opera­
tor is 

Taking the expectation value of II and summing over oc­
cupied states leads to Eq. (l21. We can calculate ET using 
perturbation theory. Let us write 

(13) 

where 

IlB =(e Ic)oo!lA 1 =(e !l~/2rrc)O 

is the change in the Hamiltonian caused by a small change 
in A 1 (or in the flux !l~ = - 2rrrollA Il. Let us think of 
!lA 1 as varying in time as exp(iwt), where w is a very low 
frequency. Then the perturbation IlB causes a change in 
the single-particle density matrix !lp=p-po, where Po is 
the density matrix in the absence of 1lB. The use of 
linear-response theory gives 

(14) 

where fo(c) is the usual Fermi-occupation function. The 
change in the total energy can be written 

!lE = Tr(pH -pof/o) . (15) 

Keeping terms linear in the small perturbation gives 

!lEr= ![fo(cnl)(nllllB Inl)+Cnl(nll!lplnl)]. 
n.1 

(16) 

It is clear from Eq. (14) that the second term vanishes; 
therefore 

!lET=+~ !fo(cnl)(nIIOlnl)= eNvD!l~, (17) 
2rrc n,1 2rrroc 

where we have made use of Eq. (9). Also !n,dO(cnl )=N 
since, as noticed above, every state 1nl) carries the same 
current. Another way to obtain this result is to notice that 
a change !l~ in the threading flux displaces each orbit 
center by the same amount, 1lz1= -!l~/B. From Eqs. (8) 
this leads to a change eE!l~/B in the single-particle ener­
gy. Summing over all the occupied states the expression 
(17) for !lET is recovered.20 

Inserting (17) in (12) we get again 

(18) 
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E, 

FIG. 2. Schematic energy spectrum for an ideal two­
dimensional electron gas confined on a ribbon of width d. In the 
bulk region the spectrum consists of Landau levels separated by 
an energy We' re represents the cyclotron orbit radius for the 
n =0 Landau level. 

In the case in which an integral number n of Landau lev­
els are fully occupied we can write N =nrod /a~ and get 

(19) 

which amounts to the well-known expression for the quan­
tized Hall conductivity 

e2 
O'xy=-n--;;, n =0,1,2,3, ... (20) 

It is obvious that Eqs. (18)-(20) do not provide a theory 
for the quanti zed Hall effect since within this extremely 
simplified model O'xy is just a monotonic function of both 
B and the number of electrons N. The quanti zed expres­
sion (20) is recovered only for a set of values of N (or Bl of 
zero measure. 

Consider next the problem associated with the edge of 
the system. The electrons in our metallic ribbon must be 
confined to the region IJ ~ Z ~ d by some potential. If we 
assume that there is an infinite potential barrier at these 
positions, then the Landau-Ieve1 energies will increase as 
the orbit center comes within the cyclotron radius of the 
wall. The energy as a function of ZI, the position of the 
orbit center, is sketched in Fig. 2 for the ideal case with 
E=O. Note that the n =0 level with ZI =0 and d has the 
energy (+ )hw" the value of the n = 1 level in the bulk. 
The reason for this is, of course, that for the potential ap­
propriate to these orbit centers, only the odd eigenfunc­
tions of the full harmonic-oscillator potential inside the 
ribbon are solutions to the Schriidinger equation. Note 
that for orbit centers outside the ribbon the energy contin-

FIG. 3. Schematic of the classical orbits for extended and lo­
calized states in the ribbon geometry. Extended states are asso­
ciated with classical orbits which encircle any flux threading the 
ribbon. 

ues to increase approximately quadratically. These states 
represent "skipping orbits" or edge states. The very pres­
ence of the edge states leads to a smooth variation of the 
Fermi energy between the bulk Landau levels as they pro­
vide a non vanishing density of states in such regions. The 
role and the physical properties of the edge states of a 
two-dimensional electron gas in a Corbino disk have been 
discussed by Halperin.21 His treatment can be easily re­
peated for our cylindrical geometry and all his conclusions 
apply also in the present case. 

III. METALLIC RIBBON WITH IMPURITIES 

A. Structure of the energy spectrum 

Before attempting to evaluate the Hall current a discus­
sion on the nature and the structure of the spectrum of the 
system in this case is in order. We start with the Hamil­
tonian 

H =Ho+ezE + V(z,IJ) , (21) 

where Ho is given by Eqs. (4) and where V(z,IJ) is the ran­
dom potential caused by the impurities. As V explicitly 
depends upon Z and IJ in general; n and I are not good 
quantum numbers, which is to say, the set of wave func­
tions 1/>nl of Eqs. (8) does not represent a set of eigenstates 
of H. Accordingly we will introduce a new index (or set 
of indices) a in order to label the wave functions 1/>a and 
eigenvalues Ea of the system. 

The precise nature of the electronic states of a system in 
the presence of a random potential has not yet been eluci­
dated. In the absence of an externally applied magnetic 
field it is believed on the basis of scaling arguments that 
all the states must be 10calizedY However, when a uni­
form magnetic field is applied to the system the situation 
is different and it has been argued by several authors that 
extended states exist at the center of each Landau lev­
eI.4- 6,11 We will assume here that this is the case.ll Ac­
cordingly we will divide the states 1/>a into extended and 
localized states, The particular geometry of our system al­
lows us a quite natural distinction between localized and 
extended states. Following an analysis similar to that used 
by Kazarinov and Luryi,1O we can define the extended 
states as the ones associated with classical electronic orbits 
which circle the entire ribbon, whereas the localized states 
do not, as schematically pictured in Fig. 3. More precisely 
a state 1/>ae is extended if for any value of IJ between 0 and 
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21T there exists a value of z between 0 and d such that 
l1/1a, 12 goes to zero such as '0 1 as '0, the radius of the 

ribbon, goes to infinity. A state 1/1aL wili mstead be local­
ized at z· Jf if l1/1aL (z' ,e*) 12 is of the order '0 1, whereas 
for any value of z, l1/1aL (z,e* +1T) 12 goes exponentially to 
zero with '0 as '0 is made to grow. 

We shall now give an argument to show that even in the 
presence of impurities for a ribbon of finite size the energy 
eigenvalues of the extended states are isolated and there­
fore constitute a countable set. Let 1/1~, and E~, be the 
wave function and the energy of a given extended eigen­
state ae of H~, which is the Hamiltonian of the system, 
Eq. (21), where the "trapped flux" associated with A 1 is ~ 
[see Eqs. (2) and (3)]. Suppose now that the flux is adia­
batically changed to ~ + A~, with A~ < ~o. Since 1/1a, is as­
sociated with an orbit linked to the flux change an elec­
tron in this state will experience an induced emf and will 
respond to the perturbation. Accordingly 1/1~, and E~, 
will be mapped into 1/1~:6~ and E~:6~ which in principle 
can be obtained by solving the Schrooinger equation for 
HH6 •. 24 In the ideal case, where V =0, the result of such 
a flux change is readily established. If we start from a 
state ~~I,E~ as given in Eqs. (8), it is easy to establish that 
two possible solutions of the problem are possible, 

(22) 

corresponding to an increment of angular momentum by 
~,or 

1/1' E' 1/1.HL~. EH~_EH6. 7)hVD (23) 
ni, rzl---1> nl - ni' nl - n - 21Tro . 

Here 

corresponds to a rigid displacement of the orbit center by 
exactly the amount required to maintain an integral num­
ber of flux quanta threading its orbits. In (22) and (23), 
7) = A~ I ~o· Because the wave function must be single 
valued, it is clear that for 7) < I, the solution (22) is not ac­
ceptable and the response of the system will be character­
ized by the orbit-shifting process of Eq. (23). Notice that 
this implies that E~ does not belong to the spectrum of 
HH6.. An analogous phenomenon occurs in the system 
in the presence of impurities. Although eXf(i7)e)1/1~, is an 
eigenfunction of HH~ with eigenvalue Ea,' such a solu­
tion is not acceptable for nonintegral 7) since it is not a 
single-valued function of e. Thus, E~, does not belong to 
the spectrum of HH6(25 Therefore, the energy of the 
state ae will change with~. Furthermore, due to the ran­
dom nature of V(z,e), it is reasonable to expect that for 
very small values of 7), E~:6. will be smaller than E~e by 
an amount linear in 7). This process is exemplified in Fig. 
4(a). It is obvious that here the change in 1/1~, will be 
much more complicated than a simple rigid shift of the 
center of the orbit since the potential V(e,z) has a compli­
cated local structure. Now, since 1/1fuH. in an eigenfunc­
tion of HH~, the wave function exp( -i1/e)t~:6' is an 
eigenfunction of H' with eigenenergy E~:6. The fact 

0/::'., E;:'· 
"''-------

I 0 I 

" 
e-'~·o/;:'·,E;:'·" o/::'·,E;:'· 

- - - - - -- -- -,"'------

I bl 

'I'!e-I,E!e-1 \ o/!e+~o ,E~e+~o 
-------~--,~------

I c I 

FIG. 4. Evolution of an extended state level Ea, Iwith wave 
function 1/Ia,) upon an adiabatic change At!> of the threading flux. 
1/=A4>No. la) 1/<1, expli1/811/1~ is not an acceptable wave 
function; (b) 'I < I, exp( -i1/8)1/I::A; is not an acceptable wave 

function and EIU is isolated; Icl '1= I, E!:'o=E~_1 as 

1/I~:;0=expIi8)1/I~_I' 

that 1/1~:6, is an acceptable (i.e., single-valued) solution 
implies that exp( -i7)e)1/1~:6' is not and that the eigen­
value E~:6. does not belong to the spectrum of H'. 
Since the flux change A~ is completely arbitrary we con­
clude that for a ribbon of finite size the eigenvalues Et, of 
H. are isolated and the spectrum of the extended states of 
the system is countable. This situation is represented in 
Fig.4(b). 

If 7)= I, i.e., A~=~o, then exp( -ie)1/1~:'o is an accept­
able solution of H' with eigenenergy E~:'o, which 
by definition is nothin~ other than 1/1fu-1 [see Fig. 4(c)). 
The spectrum of HHm 0, m being any integer, is the same 
as the one of H.; the wave functions simply differ by the 
phase factor exp(imel. We have established that by 
changing the trapped flux ~ by one flux quantum each ex­
tended state 1/1ae is mapped into its nearest-neighboring 
1/1ae-1> with 

(24) 

This expression will be useful later. 
It is obvious that formally the same argument can be 
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FIG. 5. Schematic illustration of how the spectrum of the 
system is modified by an adiabatic change of the flux threading 
the ribbon. aL and CiL label the localized states of H; and 

;Ho 
H ; ae and lie are the corresponding labels for the extended 
states. After a whole quantum of flux ~o has been added, the 
states ae are mapped into ae =ae -I. The localized states are 
unaffected by the flux change. 

carried out for a localized state WaL' However, the nature 
of a localized wave function is such that this electronic 
state will not be significantly modified by any change of 
trapped flux. This amounts to the fact that it is only for 
the localized states that a change in the trapped flux ~ has 
the same effect of a gauge transformation. The situation 
for both extended and localized states is schematically pic­
tured in Fig. 5. 

If the external magnetic field is large enough the spec­
trum of the extended states of the system will still be 
characterized by a Landau-level structure. Each Landau 
level will, however, be broadened by the effect of the ran­
dom potential. In such a case the label ae can be resolved 
into a Landau band index v and a generalized orbit­
position quantum number A. With this notation Eq. (24) 
can be written as 

H~o ~ 
EvJ. =Ev.J.-I, (25) 

where it has been recognized that for a macroscopic sys­
tem ~o is a very small change of flux and cannot possibly 
induce a change of the Landau band index v. 

A word is in order here about the occupation of the ex­
tended states while the trapped flux ~ is changed. If the 
step-by-step change in ~ is adiabatic, we can make use of 

time-dependent perturbation theory as done in Sec. H. By 
a direct inspection of Eq. (14) (valid also in the presence of 
the potential n, it is easily realized that in this situation 
the occupation of the states does not change. If an elec­
tron occupies an extended state 1/I~J. after a full quantum of 

~Ho· ~ 
flux ~o has been added to ~, the state wvJ. ,I.e., 1/Iv.J.-1 
will be occupied. This is the transfer process originally 
suggested by Laughlin.8 However, notice that for the ex­
tended states the flux change by no means can be thought 
of as a gauge transformation. 

B. Hall current 

Within our single-particle picture the Hall current I H 

can be evaluated as follows: 

(26) 

where the sum runs over the possible states of the system. 
I(Ea ), p, and II have been defined in Sec. n. Making use 
of the relation 

j~p=_cilH =c ilH 
ilAo il~' 

(26) can be written as 

(27) 

where we have restricted the sum to the extended states 
only because as discussed in Sec. Ill, ilEaL/il~ is zero. 
Notice that in absence of extended states the Hall current 
is zero. 

In a macroscopic system we can expand Eq. (24) in 
powers of ~o and get 

(28) 

where we have also made use of the fact that the extended 
states are closely spaced. Corrections to Eq. (28) are readi­
ly shown to vanish with the inverse of the ribbon radius. 
By using (28) in (27) we obtain 

c ilEa, 
IH=--;: 'IJ(Ea,)-,-, (29) 

'1'0 a, uae 

after integrating by parts we find 

IH =..£.. I il/(Ea,) ilEa, Ea, . 
~o a, ilE., ilae 

(30) 

Here we have used 

il/(E.,) = [il/(E.,) ] [ilEa, ]. 
ilae ilE., ilae 

At low temperatures the derivative of the Fermi function 
is essentially the negative of a /) function which picks out 
the value of Ea, for which Eat =b, the chemical potential. 
Because of the possible presence of an electric field along 
the z direction, b can, in general, vary with position and 
each extended state will experience some average value 
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FIG. 6. Schematic energy spectrum for the extended states of 
a two-dimensional electron gas in the presence of an effective 
random potential V(z,8) at a fixed value of 8. Here the strength 
of V(z,8) is assumed to be much smaller than w, so that the 
Landau levels still provide an approximately good description 
scheme. Localized states levels (not shown) can be present 
everywhere in the energy range. 

~a.. We introduce the set of values aej for which 
Ea.=~a.' the local value of the chemical potential, and 
make use of the result 

o(j(x))= ~o(X -Xj) I ~~ I-I 
to obtain 

e [aEa• 1 IH=--h I Io(ae-aej)sgn -a- ~ae· 
ae I ae 

(31) 

When the Landau bands are well defined, Eq. (31) can be 
specialized to 

IH=-f tsgn [a:t l'i~'i' (32) 

where we have made use of the indices v and A introduced 
in the preceding section. In (32) the sum over v extends to 
all the Landau bands which cross the chemical potential at 
some value of A. 

First, let us apply Eq. (32) to the ideal case with boun­
daries for which the energy diagram of Fig. 2 applies. 
When the chemical potential lies between two Landau lev­
els, say, nand n + I, then the only crossings occur close to 
the boundaries. In the absence of an applied electric field 
there is no current unless the local values of the Fermi en­
ergy at the two edges differ by IlEF. In this case Eq. (32) 
gives IH = -nellEFlh which is the current carried by the 
edge states discussed by Halperin. If an electric field is 
applied along z with the use of (32) we obtain 

E, -----

FIG. 7. When curves like those of Fig. 6 are drawn for all 
values of 8, the Landau levels are broadened into Landau bands 
Iabeled with the index v, as shown schematically. 

e2 
IH=-nhIlV, (33) 

where Il V is the potential drop across the ribbon and n is 
the number of occupied bulk Landau bands. Equation 
(33) is a generalization of Eq. (19) to the case in which the 
electric field need not be homogeneous. In absence of im­
purities Eq. (33) is valid only for a very restricted range of 
values of Nonce B is fixed (or of B when N is fixed), The 
reason is that the chemical potential changes very rapidly 
between the Landau levels because the density of edge 
states is relatively small. In this case the width of the pia· 
teaus described by Eq. (33) would be a surface effect 
heavily dependent on the size of the sample. 

The situation does not change in an essential way when 
the effect of the random potential is considered. In this 
case, the diagram of Fig. 2 no longer applies since I is no 
longer a good quantum number. However, for a particu­
lar value of (J we can still draw energy levels as a function 
of the orbit center (taken as the average value of z for that 
particular value of (J for the particular eigenstate in ques­
tion). Then, instead of Fig. 2, something like the picture 
shown in Fig. 6 results. The wavy lines in Fig. 6 result 
from the particular distribution of impurities close to the 
value of (J for which the curves are drawn. If we repeated­
ly draw the equivalent of Fig. 6 for a large number of 
values of (J between 0 and 21T, we obtain a picture like that 
shown in Fig. 7. Again, if an electric field is applied and 
~ lies between the broadened Landau bands in the bulk, 
the value (33) for the Hall current is obtained, in spite of 
the presence of not current carrying states. 

Strictly speaking, I H turns out to be slightly smaller 
than (33). In the evaluation of the chemical potential 
differences we have assumed the value -e Il V for each 
Landau band. However, it takes the fun energy -ell V to 
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transfer an electron in the n =0 Landau level across the 
ribbon, it takes somewhat less than -e il V to transfer an 
electron in a higher level across the ribbon. 

We make one final argument which gives somewhat dif­
ferent insight into the mechanism of the Hall quantiza­
tion. Let us once more think of slowly changing, in time, 
the trapped flux ~ by an amount il~ IX exp(iwt). 

According to Faraday's law the rate of change of ~ 
gives rise to the induced emf, F= -e-!(a~/atle. If we 
assume that Cf xx =0, then the only response the system can 
make to this emf is a current flow I, perpendicular to F, 

- ll~l I,-Cfxy - e at . (34) 

If we integrate this to obtain the charge transfer associated 
with a flux change il~ we find 

Q = J I,dt = _lCfXyil~ . (35) 
e 

But due to the fact shown above that for il~ =~o each or­
bit center moves exactly one step into the position of its 
neighboring orbit center, we know that Q =en, where n is 
the number of filled Landau levels. Thus we obtain 

_! he en = Cfxy ( -e )-, 
e 

(36) 

and we again find CfXy =-n(e 2/h). The point to be em­
phasized is that, for the topology of the metallic ribbon, 
the change in flux is not a gauge transformation. There is 
a real emf associated with the rate of change of flux. The 
electrons sense this emf and their response leads to a flow 
of charge across the sample.26 

IV. DISCUSSION 

In this paper we have provided a microscopic theory of 
the Hall conductance for a two-dimensional electron gas 
in the presence of an impurity random potential. Our 
main result is Eq. (32) where the value of the Hall current 
I H is related to the electronic spectrum at the Fermi level. 

In previous works on quantized Hall conductance, the 
results are first derived for free electrons and then qualita­
tive arguments are given why the impurities cannot de­
stroy the quantized nature of the Hall conductivity. No 
explicit calculations were done for the disordered system. 
In addition, the question on the accuracy of the quantiza­
tion was not satisfactorily addressed. 

We have analyzed the electronic level structure in the 
presence of impurities. We show explicitly that for the ex­
tended states, when the trapped flux is adiabatically 
changed, the spectrum shifts in a way analogous to the 
behavior of free electrons and maps into itself when the 
change in flux is precisely one quantum. For the localized 
states, the change of the flux does not shift the level and 
amounts to just a gauge transformation. These are exact 
results that enable us to derive the quantized Hall conduc­
tance for electrons in the presence of impurities and the 
result can be considered as a non trivial generalization to 
the many-impurity case of Prange's simple result concern-

ing the single-impurity problem.17 It is also worth men­
tioning that the analysis of Sec. III provides a firm 
theoretical ground for justifying and assessing the limits 
of the picture put forward by Laughlin.8 Our general ex­
pression (32) for the Hall conductance can also be used in 
the case in which a weak periodic substrate potential acts 
on the electrons.!! Making use of it one easily finds that if 
the Fermi level lies between two of the magnetic subbands 
in which each Landau band is split by the periodic sub­
strate potential, the Hall conductance is still an integer 
multiple of e2/h in agreement with the conclusions of 
Thouless and co-workers.!! 

The other major point in our theory is the careful in­
clusion of the edge effects. We find that whenever the en­
ergy of an extended state crosses the local Fermi level ~, a 
term ±e 2Vh is contributed to IH, the sign being the same 
as that of aEae/aae. When the Fermi level lies between 
two Landau bands, for instance, nand n + I, the only 
crossings of this type occur at the edges and I H is found to 
assume the quantized value -ne2ilV /h, ilV being the 
voltage drop across the sample. As discussed at the end of 
Sec. I1I, however, the local values of ~ at the two crossing 
points at the edges of a given Landau band differs in gen­
eral by an amount smaller than il V. The correction is 
found to be dependent on the ratio of the corresponding 
skipping-orbit radius to the size of the sample. If our pic­
ture is correct the exactness of the quantization of I H 

must depend upon the specific shape of the potential con­
fining the electron gas in the plane. In the case of a shal­
low confining potential the Hall conductance will not be 
quantized as in Eq. (33). In the Appendix we present a 
model calculation in which this phenomenon is explicitly 
demonstrated. 

It must be stressed here that the Hall current is not car­
ried by the edge states only but is typically a bulk 
phenomenon. The restriction of I H to the nature of the 
confining boundary potential is the result of a great num­
ber of cancellations of bulk contributions. This situation 
is reminiscent of the Landau diamagnetism in which a 
similar phenomenon occurs. Finally, as clear from Eq. 
(27), temperature effects will also cause I H to deviate from 
the quantized values. 

The Hall conductance will maintain its quantized value 
as long as the Fermi level remains in the localized region 
of the density of states between two Landau bands. The 
width of such plateaus depends, therefore, on the capacity 
of the impurity potential to localize the electronic states. 
The presence of extended states in the bulk of the sample 
is necessary for our model to give a finite value for IH.2! 

When the Fermi level is within one of the Landau bands, 
i.e., within one of the shaded regions of Fig. 7, Eq. (33) 
need not be valid because several crossings of the local 
chemical potential by extended states can occur, leading 
via (32) to a completely different value of I H . This situa­
tion is schematically exemplified in Fig. 8 where the Hall 
conductivity is plotted against the fractional occupation 
number a~N /rod. 

Our approach is based on a single-particle picture and 
no explicit reference is made to the electron-electron in­
teraction. It must be understood, however, that the 
present theory implicitly contains some of the effects asso-
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b , 

FIG. 8. Behavior of the Hall conductivity (J" in the quan­
tized region. The plateau regions correspond to a situation in 
which the chemical potential lies between two Landau bands and 
localized states are being filled. Corrections associated with 
edge effects discussed in the text are neglected here. 

ciated with this interaction. In particular, the random 
potential-energy term V(z,O) of Eq. (2\) can be thought of 
as the total effective potential seen by a single quasiparti­
cle including the Hartree-Fock contributions within the 
normal state. Many-body effectslS - IJ possibly responsible 
for an instability of the normal statel4 have been neglected 
and are currently under investigation. 
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APPENDIX: HALL CONDUCTANCE OF AN IDEAL 
TWO-DIMENSIONAL ELECTRON GAS 

CONFINED BY A HARMONIC POTENTIAL 

In Sec. III we have shown that within the single-particle 
picture the occurrence of the quantized Hall effect crucial­
ly depends on the shape of the confining potential. If the 
latter is too shallow the Hall conductance will not be ex­
pressed by Eq. (33). In particular, for a realistic system, 
an edge correction will arise which is of the order of the 
ratio of aB to the sample size. For the sake of illustration, 
we explicitly demonstrate this phenomenon here, making 
use of the exactly solvable model of an ideal system con­
fined by a harmonic potential. Within the geometrical set­
up discussed in the text, we write the following Hamiltoni­
an: 

2 [ ]2 pz 1 Po 
Ho=-+- --mwz 

2m 2m '0 ' 

+eEzZ+Tmn2 [z-% r, (AI) 

n=\ 

n=O 
I 

o 

FIG. 9. Schematic energy spectrum of a two-dimensional 
electron gas confined on a ribbon by a harmonic potential. The 
Landau levels are parabolas. Energy is plotted vs Z/ =ai! /ro. 
Various Landau levels are separated by an energy Wc [Eq. 
(AS)). Crossing points between the parabolas and the local 
chemical potential ~ (dashed line) determines the Hall current I H 

via Eg. (32). "Edge corrections" are very large in this case and 
(J Xl is not quantized. 

where we have chosen A I = O. The last term represents a 
confining potential. Ho can be readily solved exactly in 
the same way as done for Ho in Sec. n, as Po is still a con­
served quantity. The problem reduces to the following 
Schriidinger equation for the z-dependent part of the wave 
function: 

pz mw, 2 
[ 

2 _2 ] 

2m +-2-(Z-Zi) +t:.EI-E u(z)=O, (A2) 

where the integer I has the same meaning as in Eq. (5) of 
the text. In (A2) we have defined 

w,=(w~+n2)112, (A3) 

ZI= 1+(~/w)2 [Zl+ [~ r%- ~ ], (M) 

mw; [ d [w,]2VD]2 
t:.EI 2[1+(w,/n)1] ZI-"2+ n ;; +const, 

(AS) 

with zl=a~II'o. The eigenfunctions and eigenvalues of 
Ho can still be classified by making use of the quantum 
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numbers n and I as in the free case. We have 

",11 ( 8) I ile ( -) ",.1 z, =.;;:;- e u. Z -zl , 
v 2iT 

(A6) 

Notice that as !l---+O these equations reduce to Eqs. (8). 
The spectrum of the system is composed by a series of 

parabolic Landau levels separated by an energy W, as 
described in Eqs. (A6l. This spectrum is represented in 
Fig. 9. 

The Hall current carried by each state 1/J~ is easily 
evaluated and is given by 
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Notice that in this case even in the absence of an electric 
field every state carries a finite current proportional to 
z,-d /2. This is in contrast with the picture discussed by 
Halperin in which only the eigenstates carry a finite 
current in this field as the localizing potential is flat in the 
bulk region. 21 

Making use of the Eq. (A 7), it is straightforward to 
evaluate the total Hall current. The result for T '''0 K is 
given by the general expression Eq. (32) obtained in the 
text. Looking at Fig. 9 it is now obvious that I H is not an 
integer multiple of e2/h since the value of the local chemi­
cal potential cannot be approximated by either zero or 
e /)" V as in the case of a sharp confining potential such as, 
for instance, the one represented in Fig. 2. 

ISJ. J. Quinn and B. D. McCombe, Comments Solid State Phys. 
IQ, 139 (1982). 

19This conclusion has been also verified in Ref. 7. 
20If we take il'" = "'0, then this is actually the Laughlin argu­

ment; for that case z, + ill, =z, + I, and each state moves to its 
neigh boring orbit. The net effect is to transfer one electron 
per occupied Landau level across the ribbon giving 
ilEr=ve ilV, where v is the number of occupied Landau level 
and il V = dE in the potential drop associated with E. Using 
Eq. (12), IH=-c."eilVNo and we are led once more to re­
sults (19) and (20). 

21B.1. Halperin, Phys. Rev. B~, 2185 (1982), 
22E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. 

Ramakrishnan, Phys. Rev. Lett. 41,673 (1979), 
23 A weaker assumption is actually sufficient since we can still al­

low all the states to be localized but have some of them with a 
localization length of the order of the size of the ribbon (see 
Ref. 5). 

24As according to our definition extended and localized states 
are topologically distinct it is reasonable to assume that an 
adiabatic change of the trapped flux does not modify the na­
ture of the given state. 

2SWe have assumed here that the applied electric field and the 
random potential lift any possible degeneracy of the Hamil­
tonian operator. The accidental degeneracy with an extended 
state close to one of the edges does not have any bearing on 
the argument because of the spatial separation. 

26This argument has been first put forward in Ref. 18. A simi­
lar reasoning due to Takemori can be found in Ref. 6. 
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In the presence of a finite elastic mean free path the frequency of the plasma excitations of a two­
dimensional electron gas is shown to be significantly affected in the Iow-density region by the diffusive na­
ture of the electronic dynamics. This remarkable phenomenon, absent in the familiar three-dimensional 
case, is peculiar to the electronic systems of lower dimensionality and appears to have been observed in sil­
icon inversion layers. 

In a normal three-dimensional metal the plasma frequen­
cy and its dispersion are not significantly affected by the 
presence of a small impurity concentration. In a two­
dimensional electron gas, however, the plasma frequency 
goes to zero with the wave vector l and the diffusive nature 
of the electronic dynamics leads at low density to a sizable 
and remarkable effect on the plasmon dispersion relation in 
the long-wavelength limit. 

Plasma excitations of the quasi-two-dimensional electron 
gas in the inversion layer of silicon metal-oxide-semi­
conductor field-effect transistor (MOSFET) systems have 
been observed and intensively investigated experimental­
ly2-6 The measurements are typically performed via far­
infrared transmission) and emission4 techniques, the cou­
pling between the plasmons and the radiation field being 
provided by an artificial grating overlay. Thermal excitation 
of two-dimensional plasmons has also been reported6 

In the high -density regime, in which the electronic 
dynamics is essentially metallic in character, the observed 
resonance position of the plasma modes is well described by 
a simple analysis based on Drude theory7,) At low densi­
ties, however, the measured plasma frequency significantly 
deviates from the value predicted by this simple approach as 
the plasmon appears to soften considerably. 

In this Rapid Communication we discuss a microscopic 
theory of the plasma modes of a two-dimensional electron 
gas in which the finite elastic lifetime of the electron 
momentum eigenstates is explicitly accounted for. This al­
lows us to describe the effects of the random impurity po­
tential on the plasma oscillations in the crossover from the 
metallic to the diffusive regime of the electronic dynamics, 
which takes place as the electron density is lowered. 

In the presence of a random distribution of impurities the 
dielectric properties of an electron gas still can be described 
in terms of a dielectric function E( q, w). The dispersion re­
lation for the plasma modes of this system is obtained by 
the usual requirement E(q, w) =0. Within the random­
phase approximation (RP A) this condition acquires the cus­
tomary form l-v(q)xO(q,w)=O. Here v(q) is the 
Fourier transform of the electron-electron interaction poten­
tial and XO( q, w)· is the density response function of the cor­
responding noninteracting system.8 

In the presence of a small density of impurities the densi­
ty response function of a two-dimensional noninteracting 
electron gas can be evaluated by means of standard pertur­
bation theory.9 Keeping diagrams of the ladder type only 
[Fig. l(a)], and assuming a delta function electron-impurity 

interaction, we obtain at zero temperatures lO 

t(q,w)- -Noli w I I (J) [(w+i/Tl2_2Dq2/1P 2-i/1 

q «PF, 0 < w «EF/If , 

where No= m"/rrli2 is the density of states at the Fermi en­
ergy EF, and D = vJr/2 is the diffusion constant in two 
dimensions. m", PF, and VF are, respectively, the electron 
effective mass, the Fermi wave vector, and velocity. Here 1 

is the elastic lifetime of the momentum eigenstates in the 
presence of impurities. This expression for XO( q, w) is ex­
tremely useful since it correctly describes the electronic den­
sity response for any value of the elastic lifetime. For very 
large values of 1, Eq. (J) reduces to the correct expression 
for the susceptibility of a noninteracting two-dimensional 
electron gastt in which the dynamics is purely metallic. For 
finite 1, in the limit of small wand q, t(q, w) displays the 
pole structure characteristic of the diffusive regime.1l 

For vanishing frequencies the expression (J) for the den­
sity response is inadequate as the relevant class of diagrams 
is in this case represented by the maximally crossed graphs 
[Fig. I (b) I which describe the onset of Anderson localiza­
tion. lJ The importance of this set of diagrams can be es­
timated by evaluating their contribution to t(q, w) for 
q -0. We find that this is proportional to NoIfwlnw1/iEF 
which corresponds to the well-known correction to the long­
itudinal conductivity in the weak localization regime. l4 This 
effect is important, and eventually dominating, only for very 
small values of W1. As in the actual experimental situation 
the value of W1 is typically of order one, it can be assumed 
that Eq. (J) provides a good approximation to the density 
response function in this regime. 

(a) (b) 

FIG. I. Diagrams contributing to xV(q, w) in the electron­
impurity interaction perturbation theory: (a) typical ladder diagram; 
(b) typical maximally crossed diagram. 
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Making use of Eq. (I) in the dispersion relation and tak­
ing v(q) = 21rel/Eoq, EO being a background dielectric con­
stant, the frequency of the plasmon n (q, T) is found to be 

n(q,T)=.l±.![!X(2+x)vtkl_l.jl/l_.i..] , (2) 
2 +x Tl T 

where x = q / k, and we have defined the two-dimensional 
Thomas-Fermi screening wave vector k as 21relNo/EO' 

n (q, T) displays several interacting features: (i) The plas­
ma frequency acquires a wave-vector-dependent imaginary 
part which corresponds to a plasmon lifetime roughly com­
parable to 2T; (in plasma oscillations are softened at small 
wave vectors as n (q, T) is lower than the corresponding 
plasma frequency in the pure case7.1l which, in our nota­
tion, is approximately given by (vJkq/2) Ill; (Hi) plasma 
modes exist only for wave vectors q larger than a critical 
value q' given by 

As q approaches q' from above, the real part of n(q, r) 
tends to zero proportionally to (q - q') 1/2. Clearly a region 
of values of q larger than q' exists such that Re( n) is com­
parable to Im ( n). In this case the plasma excitation is not 
well defined and loses its meaning. 

Notice that for T -+ 00, Hq. (2) recovers the result previ­
ously obtained by Stern for the case of a pure two­
dimensional metal, up to second order in q.11 

It is easy to realize that the plasmon softening occurring 
for small q is a direct consequence of the quasidiffusive na­
ture of the electronic dynamics in this regime. A direct in­
spection of Eq. (2) shows that the magnitude of this effect 
is strongly dependent on the value of the perturbation 
theory expansion parameter Ii/rEF=IiNo/rn, and therefore 
on the electronic density n. The lower the density the larger 
is the effect. This phenomenon is shown in Fig. 2. 

Making use of Eq. (2) it is also possible to calculate the 
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llvFk/EF = 5.0 

FIG. 2. Two-dimensional plasmon dispersion relalion n vs q for 
finite r as obtained from Eq. (2) (full line). The result for the pure 
metallic limit (dashed line) is shown for comparison. For illustra­
tion we have chosen K/rEF=0.2 and KvFk/EF=5.0. 

heat capacity associated with the excitation of two­
dimensional plasma modes. In doing so, care must be exer­
cised in dealing with the plasmon width15 

Our theory finds a natural application in the interpreta­
tions of the available data on the plasmons in silicon inver­
sion layers. In this case, the theory developed above re­
quires some minor modifications in view of the specific 
structure of the system at hand. In particular, the potential 
v( q) must be properly chosen in order to account for the 
oxide layer of dielectric constant Eo< and thickness d, and 
the metallic gate. Following Chaplik a suitable choice is 
provided here by7 

The plasmon frequency can be obtained in this case in a 
straightforward way making use of Eq. (J) by following the 
procedure outlined above16 With particular reference to the 
data of Ref. 3, in which the first observation of two­
dimensional intrasubband plasmons in the inversion layer of 
a (lOO) p-type Si MOSFET system was reported, we find 
that the present theory leads to a good fit of the plasmon 
resonance position throughout the whole density range 
assuming a single value for the electronic effective mass. A 
comparison of our theory and experiment is shown in Fig. 
3. 

It must be stressed here, however, that particular care 
must be taken in the choice of the elastic lifetime T. We 
have not attempted here to evaluate T from first principles 
but have regarded it as a parameter. If the value of T as 
given by a dc conductivity measurement (Le., the transport 
elastic lifetime Ttr) is used, the agreement with the experi­
mental findings is lost as the predicted resonance position 
becomes close to the one obtained for T -+ 00. We find that 
a value of T from three to four times smaller than Ttr is 

40,---------, 

FIG. 3. Comparison of the presenl theory (full line) wilh the ex­
perimental data taken from Ref. 3, in a plot of il/21rc (in cm -I) vs 
electronic density (in 1012 cm -2) at a fixed value of the excitation 
wave vector q = 1.78 X 104 cm -1 The dashed line represents the 
result one would obtain in the absence of impurities. As indicated, 
the value T-0.5xlO- 12 sec has been used. Here the values of the 
parameters are proper to a (IOO) p-type Si inversion layer syslem 
with <0=12, <0,=4, d=0.14xI0-4 cm, m·=0.2 m. 
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necessary to reach agreement with the data. In general, T is 
expected to be shorter than Ttr but is altogether unknown so 
that no firm conclusion on this matter can be drawn at this 
stage.1J 

In conclusion, we have discussed a microscopic theory of 
the plasma oscillations in a two-dimensional electron gas in 
the presence of a small impurity concentration. At variance 
with the usual three-dimensional situation the onset of a 
diffusive electronic dynamics has remarkable effects on the 
plasmon dispersion relation. In particular we predict the ex­
istence of a wave-vector cutoff for the existence of such 
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We have investigated the stability of a two-dimensional electron gas with two filled Landau levels 
(of opposite spin) in the high-field limit. The Zeeman energy can be increased by adding a com­
ponent of the magnetic field parallel to the surface. The lowest-lying excitations can be described in 
terms of singlet and triplet excitons. Taking interaction effects into account, we have found that at 
a critical Zeeman energy (smaller than the cyclotron energy), there is a first-order transition to a ful­
ly spin-polarized state in which two Landau levels of equal spin are filled. Exotic intermediate 
states of the spin-density-wave type have been found not to occur in the simple case of nondegen­
erate bands. 

INTRODUCTION 

In the presence of a sufficiently large magnetic field the 
carriers of a two-dimensional electron gas will populate 
only the lowest Landau, lowest spin level. The occurrence 
of the fractional quantum Hall effect 1 when this level is 
partially occupied has led to a great deal of interest in the 
effect of electron-electron interactions2.] on the properties 
of the system. The fractional quantum Hall regime is 
particularly challenging because all of the single-particle 
states are degenerate in the absence of electron-electron in­
teractions. If the cyclotron energy Wc is sufficiently 
large, then the Coulomb energy e211, where I =(1lc leB)!/2 
is the magnetic length, is the only relevant energy scale in 
the problem. Because of this, no small parameter exists 
with which one can construct a perturbation expansion. 

In the situation where Landau levels are either com­
pletely filled or completely empty, the situation can be 
considerably simpler. The low-lying excitations consist of 
electron-hole (e-h) pairs, and there are two types of e-h 
pair excitations. The singlet e-h pair occurs when a car­
rier is promoted to a higher Landau level without a 
change in spin; the triplet excitation involves the promo­
tion of a carrier to the opposite spin state of either the 
same Landau level or a higher one. Because the excited 
electron and the hole left behind in the lower energy level 
interact with one another, they can form a bound state 
(exciton). The binding energy of singlet and triplet exci­
tons in two-dimensional systems in a strong magnetic 
field has been studied by a number of authors.4 The ratio 
of the Coulomb energy to the cyclotron energy can act as 
the small parameter for a perturbation expansion. 

The present work is motivated by the consideration of 
systems in which the spin splitting is of the same order of 
magnitude as the cyclotron splitting. Then if both spin 
states of a given Landau level are fully occupied and the 
next Landau level is empty, the lowest energy excitation 

results from promoting an electron from the occupied 
upper spin state of the filled Landau level to the lower 
spin state of the next Landau level. In the absence of 
electron-electron interactions the energy of such an excita­
tion would be €=fi(w, -ws ), where Ws is the spin­
resonance frequency. Because the cyclotron frequency Wc 

depends on the component of magnetic field normal to 
the surface, while the spin-resonance frequency depends 
on the magnitude of B, this excitation can be made arbi­
trarily small (in fact, it can be negative in which case the 
lower spin states of both Landau levels are occupied while 
the upper spin states are empty). When electron-hole in­
teractions are included, the triplet exciton binding energy 
can exceed € and one might expect a spin-density-wave 
(SDW) instability.s What actually occurs is that before € 

becomes smaller than the triplet exciton binding energy, 
the electron-electron interactions cause a paramagnetic to 
ferromagnetic phase transition6 

EXCITONS 

Before proceeding to investigate the phase transition, it 
is worth reviewing the evaluation of the singlet and triplet 
excitons. 

The energy of the excitonic excitations of a two­
dimensional electron gas in a strong perpendicular mag­
netic field can be evaluated in closed form making use of 
the formalism developed in Ref. 3 in connection with the 
fractional quantum Hall-effect problem. 

The Hamiltonian for a two-dimensional electron gas in 
the presence of a dc magnetic field B can be written as 
H =Ho+H[, where 

Ho= ~ [wc(n ++)+CT€Z]CJ,k,aCn.k,a, (I) 
n,k,(J 

and 

31 6228 © 1985 The American Physical Society 
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H/= L Vnm.n'm,(k',k;q) 
n,n',m,m', 

k,k'.q, 
u,u' 

In these equations (T takes on the values ± I, and €z is the 
Zeeman energy (2€z =fiw,). The operator cJ,k,u creates 
an electron of spin (T = t in the single-particle state, 

where V( I r-r' I) is the electron-electron interaction. 
The sum appearing in Eq. (2) is over all values of n, n', 
m, m', k, k', q, (T, and (T'. In writing down these equa­
tions we have taken the two-dimensional electron gas to 
lie in the plane z =0, and have used the Landau gauge 
A=(O,Bzx,O) for the vector potential causing the normal 
component of the magnetic field. 

For the sake of simplicity we concentrate on the situa­
tion in which the filling factor v, defined as the ratio of 
the number of electrons N to the Landau-Ievel degeneracy 
NL , is equal to two, so that the two spin states of the 
n =0 Landau level are the only occupied states. This sit­
uation is sketched in Fig. I. The elementary excitations 
which we consider are the singlet exciton and the triplet 
exciton. The former is generated by promoting an elec­
tron from the filled n = 0 Landau level to the same spin 
state of the n = I Landau level and then "turning on" the 
many-particle interactions. The latter is generated when 
the spin of the electron is flipped in the process of promo-

(3) 

Here L is the length of the sample, k = (21T'IL) times an 
integer, Un (x) is the nth eigenfunction of the simple har­
monic oscillator, and I = (fu: I eBz ) I 12 is the magnetic 
length. For any given Landau-Ievel index n there are 
N L =L 2/21T'12 such states labeled by the wave vector k. 
These N L states are degenerate solutions of the nonin­
teracting problem. The matrix element Vnm n'm,(k',k ;q) 
is given by , 

(4) 

I 

tion to the next Landau level. 
Because we consider the cyclotron energy fiw, to be 

much larger than the Coulomb energy e21- 1, a simple 
perturbation theory can be constructed in powers of 
e21- l /w,. To first order in this parameter one need 
only consider intermediate states containing a single exci­
ton. Then, the exciton energy consists of three parts:4 (i) 
the "kinetic" energy, i.e., the excitation energy in the ab­
sence of electron-electron interactions, (ii) the exchange 
energy of the particle and hole, and (iii) the electron-hole 
binding energy. For the singlet exciton the kinetic energy 
is Wc> while for the triplet it is Ii(w, fw,). 

The exchange-matrix element E;m of an electron in the 
nth Landau level interacting with an electron of the same 
spin in the mth Landau level is - vnm(iq,O) where 

Vnm (Iq,] (p' -q -q))= Vnn,mm(P',p ;q) . 

Useful expressions are 

e2 '" voo(x'Y)=T t", dZ(Z2+ x 2)-1/2exp[ -t(z2-2izy+x 2)] , (5) 

e2 f'" 2 2-1/2[ x 2 Z2] I VIO(x'Y)=T _",dz(z +x ) 1- 2 - 2 exp-r,'(z2-2izy+x2)] , (6) 

VI1(x,y)= ~2 t"'", dz(Z2+ X 2)-1/2 [1- ~2 _ ~2 fexP[ -t(z2-2izy+x2)] . 

In particular if both electrons are in the n =0 level we 
have 

E~(q)= -voo(iq,O) 
2 

= ~e -lq/1212Ko(q2]2 12) , 
L 

(8) 

where Ko is a modified Bessel function.7 If the two elec­
trons are one in the n = 0 and one in the n = I level the 
result is 

E~I(q)= -VOI (iq,O) 

_ -2v'iTe2 -lq/1l12W (2]2/2) (9) - L e 1/2,112 q , 

where WIIl ,1/2 is a Whittaker function.7 The exchange 

I 
energy of an electron in the nth Landau level interacting 
with electrons of the same spin in the filled mth Landau 
level is 

€~m=_ Lvnm(p,O). (10) 
p 

The exchange energy €'f! is equal to (1T'/2)1/2e21- 1, and 
€~o=t€'f!=+€~I. Promoting an electron from the full 
n = 0 to the otherwise empty n = I Landau level gives rise 
to a net change €'f! -€~I = t€'f! in exchange energy. 

The electron-hole binding energy results from solving 
the following integral equation for the electron-hole vertex 
function fnu,mu'(P' -p,q,w) in terms of the irreducible 
vertex function r .. ,mu'(P' -p,q), and the Green's func­
tions G:;;(p,w), 
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f(p' -p,q,w)=y(p' -p,q)+i ~ y(p" -p,q)f(p" -p',q,w)Gh(p",w")Ge(p" +q,w+w") . (11) 
p",{J)" 

This integral equation is shown schematically in Fig. 2(a). 
The corresponding expansion for y nu. mu' is graphically 
represented in Fig. 2(b). In Eq. (11) appropriate Landau­
level and spin indices are understood. It is clear that 
within the Landau gauge the various contributions to 
Ynu.mu· are given by the matrix elements vnmlip,iq) intro­
duced above. 

The fact that we are restricting the calculation to the 
single-exciton approximation results in considerable sim­
plification. For an electron and hole of opposite sign Eq. 
(11) generates only the ladder graphs because the un­
screened interaction is instantaneous. For an electron and 
a hole of the same spin the first diagram of Fig. 2(b) cor­
responds to the RPA for Y nu.mu·(P' -p,q). F.or the case of 
the triplet exciton the RP A diagram does not occur and 
y(p' -p,q) is in the present case equal to VlO(P' -p,q). 
The single-particle Green's functions are given by 

(12) 

where E~.~ is the spin-dependent Hartree-Fock single­
particle or single-hole energy in the nth Landau level in­
cluding the exchange contribution and the ±ib refers to 
electron or hole states. The solution to Eq. (11) can readi­
ly be obtained by introducing r(k,q,w) the Fourier 
transform of f(p' -P19,w) with respect to the variable 
P' -po The poles of f(k,q,w) are the exciton energies.] 
It is easily found that if the electron and the hole are, 
respectively, in the nth and mth Landau level the result­
ing exciton energy can be simply written as 

(13) 

where ~nu.mu·=E~.u-E~.u· is the energy of the nonin­
teracting electron-hole pair, and ji nu.mu· is the Fourier 
transform with respect to the variable p' - p of the ap­
propriate irreducible vertex function. The labels t and s 
stand for triplet and singlet. In Eq. (13) we have made ex-

.- i / 
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n~ 'T<"" 
1 hwc E 

n~ol(// i 
~ws 

"- j " 1 "-
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FIG. 1. Schematic of the energy levels: Iim, is the Landau­
level separation, whereas Iim, is the spin splitting. Here Iim, and 
Iim, are comparable in magnitude. 

plicit that ji nu.mu· (and therefore E,~~) is solely a function 
of R2=i2(k 2+q2), a quantity that can be interpreted in 
terms of the exciton size.J.6 It is interesting to notice that 
this property is an explicit proof of the independence of 
our analysis upon the particular choice of the gauge [Eq. 
(3)]. 

The exciton energies of Eq. (13) can be readily evaluat­
ed in closed form and the results agree with those given 
by various authors.4 

SDW VERSUS FERROMAGNETIC INSTABILITY 

The case of particular interest in this work is that of the 
triplet exciton whose "kinetic" energy is E=Ii(wc -w,). 
We find that the energy of this exciton as a function of 
R2 is given by6 

E~1(R2)=E+[ t-IlIR2)]E:;O , (14) 

with 

ll(x)=te-X[(l+2x)Io(x)-2xI1(x)j. (15) 

In this equation In(x) is the modified Bessel function of 
order n. It is clear that E,OlIR 2) becomes negative when 
E!E:;O<Il(R 2)-t. The maximum value of Il(x) is 
Ilmax""O.573, so this corresponds to a positive value of 
€=Ii(w c -w,). If this inequality is satisfied, the binding 
energy of the triplet exciton is larger than the sum of the 
"kinetic" and exchange energies, and an instability must 
occur. 

. ' OtdJj 
I '\ l ""\ I~ -4( 

n,p+q,lT n,p'+q,lT (0) 

b . . 
I ' 

\ I . " 
~ . , 

I \ 

n,p+q,lT n,p'+q,lT (b) 
FIG. 2. lal Diagrammatic representation of the Bethe­

Sal peter equation for the vertex function of interacting 
electron-hole pairs of a two-dimensional electron gas in a mag­
netic field. Here we use the asymmetric Landau gauge represen­
tation in which the noninteracting electronic states are labeled 
by rneans of an integer Landau index n, one of the components 
of the wave vector, and the spin projection. (bl Perturbative 
contributions to the electron-hole irreducible vertex function to 
be used in the Bethe-Salpeter equation. The second term is ab­
sent in the triplet case. 
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At first glance one might expect a spin-density-wave in­
stabilityl with the value of the SDW wave vector QSDW 
determined by the location of the maximum of /l(x), i.e., 
QSDw::::e1.21-1. In order to investigate the behavior of the 
system for values of e21-1 large enough to cause this in­
stability, we introduce new operators which are linear 
combinations of c.ka for I nka) equal to 10, k, I) and 
Il,k +Q,I). Because these are the only two Landau lev­
els which are modified in the new ground state, we make 

I 

the following simplification in notation: ck stands for 
COkf and ak stands for Clkj' The Hamiltonian can be 
written H =Ho+ V where 

Ho=NL ( tWc-Ez) 

+ L[(twc+Ez)ctcd(+wc-Ez)akad (16) 
k 

and 

(17) 

The three terms in Ho correspond to the kinetic energies of the 01 Landau level, the or, and the II levels. The potential 
energy has five terms: The first is the exchange energy of the electrons in the 01 level interacting among themselves. 
The second is the exchange energy due to the particles in the I! level interacting with those in the 01 level. The final 
three terms are the interactions of the or particles among themselves, the II particles among themselves, and finally the 
interaction of the or and the Jj particles with one another. In writing down this approximation we assume that the 01 
level is full (contains N L electron) and always remains full. The I t level and all higher levels are empty and always 
remain empty. Only the or and II levels enter the dynamics. 

We make a Bogoliubov-Valatin transformation to new operators8 ap and f3k defined by 

Cp =coslJpap +sinlJpf3p , 

ap +Q= -sinlJpap +coslJpf3p . 

(18) 

(19) 

We express the Hamiltonian in terms of the operators ap and f3p and their Hermitian conjugates.9 We then apply the 
Hartree-Fock approximation assuming that the linear combination corresponding to the state ap is the lower energy state 
and therefore the occupied state. That is, we assume that (a!ap) =Np is finite while (f3!f3p) =0 where the angular 
brackets denote ground-state expectation value. After assuming that vnm(O,p' -p)=O due to charge neutrality we find 
that 

(H)HP=NL ( twc -Ez-tE~)+( tWc+Ez) Lcos2lJd( +Wc-EZ-E~o) Lsin2IJk 
k k 

- t L vlO(k' -k,Q)sin2IJksin(2IJk,)- t L voo(k' -k,0)COS2IJkcos2IJk, 
t~ t~ 

-t LVl!(k'-k,0)sin2IJksin2IJk,. 
k,k' 

(20) 

Because all the single-particle states are degenerate in the absence of electron-electron interactions, we expect that with 
periodic boundary conditions coslJk must be independent of k. In that case Eq. (20) simplifies to 

NLI (H )HP= twc -Ez- tE~ +( twc +Ez)cos21J+( twc -Ez-E~o)sin21J 

- tE~/l(l2Q2)sin2(21J)- tE~cos41J-tE~sin41J . (21) 

The extreme of (H) HP as a function of IJ must satisfy the 
equation 

sin(21J)(a -b sin21J)=0 , (22) 

where 

a =E+E~[ t-/l(l2Q2)] (23) 

and 

b=2E~[+-/l(l2Q2)]. (24) 

There are three possible solutions to Eq. (22): IJ=O, 
lJ=rr/2, and IJ=(J* where sin2(J*=a/b. The solution 

IJ=O corresponds to ak =Ck and gives the paramagnetic 
state. This state is a stable Hartree-Fock solution 
(32(H)HF/a21J>0) if E/E~>/lm"-t,,,o.o73. This is 
exactly the condition we found for the triplet exciton in­
stability, so that our starting paramagnetic state is a stable 
Hartree-Fock solution when the triplet exciton energy 
E?I(R 2) is positive. 

The solution lJ=rr/2 corresponds to ap=ap+Q giving a 
ferromagnetic ground state (i.e., the n =0 and n = I 
spin-down states are both occupied while the Ot state is 
empty). This extremum corresponds to a stable Hartree­
Fock solution if E/E~ < t -/lmax-0.667. The energy per 
particle (remember we have 2N L particles) is 
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Epara=+(wc-£~) , 

Eferro=fuuc-Ez-*l~ . 

These two energies are equal at 

£/£~=(wc -2£z)/£~= + . 

(25) 

(26) 

What about the solution e= (f which corresponds to a 
spin-density-wave state? This solution occurs when 
I a I < I b I and a and b have the same sign. These con­
ditions are satisfied if !Lmax - + < £ / £~ < t - !Lma" the re­
gion where both the paramagnetic and ferromagnetic 
solutions are minima as functions of e. This means that 
(f is always a maximum energy solution and hence unsta­
ble. 

DISCUSSION 

As shown in the previous section, in this simple situa­
tion the SDW state we expected never occurs.6•1O When 
the energy of the triplet exciton of the paramagnetic state 
vanishes, the paramagnetic state becomes unstable. How­
ever, before that occurs a paramagnetic to ferromagnetic 
phase transition will preempt such an excitonic instabili­
ty.11 It is apparent that if we had started with the stable 
ferromagnetic state and calculated the energy of the "trip­
let" exciton resulting from promoting a II electron to an 
unoccupied 01 state, we would find that the energy of the 
exciton vanished when £/£~> t-!Lmax' This would sig­
nal the instability of the ferromagnetic state. 

The paramagnetic to ferromagnetic transition occurs at 
£!£~ = +. This can be seen simply by writing the total 
energy. For the paramagnetic state a 01 particle has ener­
gy +wc -£z -£~ while 01 particle has energy 
+wc +£z -£~. The total Hartree-Fock energy is the sum 
of the "kinetic" and half the exchange energies of the in­
dividual particles 
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so that Ep=NL(Wc-£~). For the ferromagnetic state a 
01 particle has energy +wc-£z-£~-£~I, while a 11 
particle has energy twc -£z _£~I_£~I. Adding the ki­
netic and half the exchange energies gives 

EF=NL (2Wuc -2£z- +£~o _ +£~I-£~I) 
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By equating these we see that EF=Ep at £/£~=+, just 
as we showed after Eq. (26). 

It might be possible to observe the transition discussed 
in this paper by measuring the magnetic susceptibility in a 
field whose z component is held fixed (to keep filling fac­
tor v=2) and whose component parallel to the surface is 
varied. The de Haas-van Alphen effect has recently been 
studied in two-dimensional systems,12 so that the magneti­
zation itself is large enough to be detected. Structure in 
cyclotron and spin resonance should reflect the singlet and 
triplet exciton spectrum through the memory function 13 
or its spin equivalent. Because the exciton energies are 
different for the paramagnetic and ferromagnetic states, 
the phase transition might also be observed by this tech­
nique. 
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We have investigated the acoustic plasma branch present in the longitudinal spectrum of two 
spatially separated parallel quasi-two-dimensional conducting layers. Our approach is based on 
the dielectric theory and is completely analytical within the random-phase approximation. By 
means of a systematic analysis we have obtained several exact results concerning the plasma 
dispersion relation. In particular, we have derived an exact expression for cp the acoustic plasmon 
group velocity in terms of the effective masses, densities and geometrical parameters of the hetero­
structure. We find that when the two layers are identical the system always admits a branch of 
acoustic plasmons as undamped modes for any finite value of the distance between the layers. 

INTRODUCTION 

Momentous advances in growth techniques presently 
allow the fabrication of materials consisting of alternat­
ing layers of two or more semiconductors. At the vari­
ous interfaces electronic or hole layers can be trapped 
whose low-energy dynamics is, for all practical purposes, 
quasi-two-dimensional. l The current growth techniques 
can actually be exploited to tailor the properties of a het­
erostructure to specific dynamical requirements. In par­
ticular, it is in principle possible to design heterostruc­
tures with a customized excitation spectrum. 

Semiconducting electronic heterostructures have re­
cently provided a valuable testing ground for the study 
of plasma excitations in various geometrical 
configurations.2- 4 Semiconducting superlattices are a 
typical example of such a class of materials. In particu­
lar, they are the only known electronic systems in which 
plasmons have been directly observed. J Recently the 
possibility of acoustic surface plasma modes in certain 
semiconducting super/attices has also been investigat­
ed.5,6 

In this paper we focus our attention on a peculiar 
electronic system comprised of two spatially separated 
parallel quasi-two-dimensional conducting layers (Fig. I), 
This problem is of current experimental interest because 
the system at hand is a model for double-quantum-well 
heterojunctions and single inversion layers with more 
than one populated subband.7- 9 

The collective plasma excitation spectrum in double­
quantum-well electronic structures has been first investi­
gated by numerical means,7 A more transparent analyt­
ic treatment based on the dielectric approach has been 
later presented which explicitly showed the existence of 
two plasmon branches of which one is characterized in 
the electrostatic limit by an acoustic dispersion relation 
at long wavelength.8 The properties of such an acoustic 
branch have also been studied in the context of a single 
electronic inversion layer with two populated subbands.9 

Recently the possibility of the plasmon mechanism for 
superconductivity in a double well in which the effective 

interaction is mediated by both plasmon branches has 
also been studied. 1O 

The present analysis focuses on the condition for the 
existence as undamped modes of the acoustic plasma 
branch in terms of the relevant physical parameters of 
the heterostructure. Although our theory is based on 
the same formalism used in previous studies, our main 
results significantly differ from the ones previously re­
ported. In what follows we will develop a systematic 
and analytic approach which allows us to precisely 
characterize and examine the plasma dispersion relation 
in terms of the geometry, the Fermi velocities, and the 
electronic effective masses, In particular, for the case of 
identical layers we will explicitly derive in closed form a 
simple and exact expression for the plasmon group ve­
locity. Finally, we will prove that in the same situation 
the system always admits a branch of acoustic plasmons 
as undamped modes for any finite value of the layer sep­
aration. 

loyer I loyer 2 

FIG. I. Schematic of the electronic double layer system 
studied in the text. The layers are parallel and separated by a 
distance d. 

37 937 @ 1988 The American Physical Society 
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DISPERSION RELATION 

At long wavelength the collective plasma oscillations 
of a single li.e., isolated) two-dimensional electronic layer 
have a dispersion relation given byll 

where q is the magnitude of the It wo-dimension all in­
plane wave vector, n and m' the electronic density and 
effective mass, and fo is the average dielectric constant 
of the medium. Within the random-phase approxima­
tion IRPA), two-dimensional plasma excitations are 
therefore undamped for q == ° since wlq) lies outside the 
continuum of the electron-hole pair excitations. In what 
follows we shall refer to this type of mode as an optical 
plasmon. 

Consider next two parallel conducting quasi-two­
dimensional layers separated by a finite distance d Isee 
Fig. 11. Because of the lack of translational invariance 
the collective modes for the system at hand are given by 
the zeros of the determinant of the dielectric tensor 
f,jlq,w),8 The RPA expression for fi}lq,w) in this sys­
tem is given by 

where X~jlq,w) is the noninteracting charge susceptibili­
ty of the jth layer and Vijlq) stands for the Coulomb in­
teraction vertex between two electrons, respectively, in 
the ith and jth layer. In obtaining Eq. (2) we have as­
sumed that there is no overlap between electronic wave 
functions on different layers. If for simplicity sake we 
limit our analysis strictly to literally two-dimensional 
electronic layers the matrix elements V'/s are simply 
given by Vll lq)=Vnlq)=21Te 2/foq, and V12 lql=Vll lq) 
=e - qd21Te l /foll. Making use of Eq. (2) the dispersion 
relation is readily obtained as given by 

where the layer susceptibilities are accordingly evaluated 
for literally two-dimensional electrons. 11 Clearly this re­
sult is independent of the sign of the charge of the car­
riers on each layer. Equation (3) must then be then ex­
plicitly solved for w as a function of q. 

As shown in Ref. 8 the longitudinal spectrum of the 
total system is comprised of an optical plasmon branch 
[of the type of Eq. (I)], plus a new branch whose disper­
sion relation at long wavelength is of the type 
wlq )",cpq, i.e., an acoustic plasmon. A schematic of this 
spectrum is shown in Fig. 2. Although it is rather sim­
ple to arrive at a rough characterization of the spectrum 
some care must be taken in evaluating the acoustic 
plasmon group velocity cr The physical origin of the 
difficulty lies in the fact that in calculating the energy as-

w 

q 

FIG. 2. Schematic of the long-wavelength region of the lon­
gitudinal spectrum w vs q for the electronic double layer sys­
tem studied in the text. The two shaded regions labeled I and 
I + 2 are the electron-hole pair continua for the two layers. In 
region I only pairs in layer I can be excited, in region I + 2 
pairs in both layers can be excited. The two continuous thick 
lines represent. respectively, the optical lOP) and the acoustic 
branch lAP) of the plasmon spectrum. In this case the acous­
tic plasmon group velocity is taken to be larger than l'FI' the 
largest of the two Fermi velocities. 

sociated with the plasma oscillations a cancellation due 
to the screening of the long-range part of the Coulomb 
interaction occurs in the case of the acoustic branch. 

As well known within the RPA a bulk acoustic plas­
ma branch is well defined only if it lies outside the 
electron-hole pair continua of the two charge com­
ponents Isee dashed regions in Fig. 2), i.e., the region of 
the q,lu plane in which the imaginary part of the suscep­
tibilities X~lq,w) is different from zero. If wlq) lies in­
side one of the continua the plasma mode can decay into 
electron-hole pairs and is Landau damped. Accordingly, 
in RP A the condition for the existence of the acoustic 
branch as an un damped mode in the long-wavelength 
limit is then simply cp ~ uFl' where uFl is by definition 
the largest of UFl and Un, the Fermi velocities in the two 
layers. Our aim is to determine the precise condition for 
the validity of the above inequality. 12 

In order to obtain an exact expression for the plasmon 
group velocity cp in the region of Fig. 2 in which q ",0 
and ImIX~lq,w)1 =0, we proceed as follows. We first 
introduce for q ",,0 the power expansion 

(4) 

for the plasmon dispersion relation, and define a func­
tion Flq) as 

where D is defined in Eq. (3). For q ::0O, Flq) can in 
turn be written in terms of the power expansion lin fact 
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a Laurent-Taylor expansion) 

F(q)=1 _IQ-I+/o+/IH/2q l+ ... , (6) 

where the li'S are suitable coefficients which are derived 
with the use of Stern's formulas for the XJj(q,w)'s (Ref. 

11) in Eqs. (3) and (5). The mode condition Eq. (3) is 
then satisfied by requiring that all the coefficients I,'s 
vanish independently. As can be readily found I -I de­
pends on cp only and by equating its expression to zero 
we arrive after some algebra at the following equation: 

2k1d -( I +2k2d)[ 1-(vF2 lc/f ll -(m i Im r)( I +2k l d )[l-(vFllcp )2fll 

+[l+(mi Imr )+2k2dj[I-(vFlIc/l'/2[1-(vF2lc/l'/L=O, (7) 

where k, =2m;*e2/~ofz2 is the Thomas-Fermi wave vector of the ith layer. Equation (7) is the sought condition which 
determines in the general case the plasmon group velocity cp in terms of the effective masses, densities, and geometri­
cal parameters of the heterostructure. 

It should be noted that the present procedure is quite general in character and allows to obtain the dispersion rela­
tion at all orders in q. In fact, as it turns out the coefficients of the higher-order term!. in the expansion for w(q) can 
in principle be systematically evaluated simply by solving an equation in which only the coefficients of the lower-order 
terms appear. For instance, the value of C2 can be readily obtained in terms of cp as determined in Eq. (7) by requir­
ing that loin Eq. (6) be zero. This leads to the following equation: 

where we have defined Wi =(c;-v); )11l. 

ACOUSTIC PLASMON: EXISTENCE CONDITION 

By definition, the critical value de of d is the value of 
the layers separation for which c p = V Fl' By using this 
value of cp in Eq. (7) we obtain 

(9) 

For larger values of the distance, the branch lies outside 
the electron-hole continua. We immediately notice that 
our exact, and indeed very simple, expression for de 
clearly predicts a critical distance equal to zero in the 
particular case in which the two Fermi velocities are 
identical. Accordingly, in such a situation an undamped 
acoustic plasmon branch always exists for all finite of the 
interlayer distance d. This is at variance with the results 
of Refs. 8 and 9,u Furthermore, when vFl =vF2=vF and 
m r =m i, Eq. (7) has an exact simple closed form solu­
tion, given by 

vF(I+kd) 
c = 
p (1+2kd)1/2' 

(10) 

where k =k I =k2. As illustrated in Fig. 3, cp increases 
from its critical value v FI at first quadratically and then 
(asymptotically) like a square root with kd. 

We also want to stress the fact that for any finite value 
of d greater then de there always exists an acoustic 
branch. The plasma modes in each layer are decoupled 
strictly only for d = co .14 

With a procedure similar to that used to obtain Eq. (7) 

(8) 

we have also studied the solution for the acoustic mode 
in the region which is outside the electron-hole continu­
um of the layer with smaller Fermi velocity, but inside 
the continuum of the electron-hole excitations of the lay­
er with greater Fermi velocity (the shaded region labeled 
1 in Fig. 2). In this region ImIX~I(q,w)1 is different 
from zero. The solution for w( q) is then necessarily 
complex, and the acoustic branch is damped. One can 
verify that when cp approaches (from below) the limiting 

O~O----~----~6~--~9~--~12 

kd 

FIG. 3. Plot of the ratio of cp' the plasmon group velocity, 
to v f the Fermi velocity vs kd, the product of the Thomas­
Fermi wave vector and the layers distance, for the case in 
which the two layers are identical. Notice that for small kd, 
the value of cp increases quadratically from its critical value vf' 
For large kd, cp increases like (kd )1/2 
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value UFI the imaginary part of w(q) is much smaller 
than the real part and is exactly zero for cp =uF1' The 
latter situation occurs when d =de• The two solutions 
for cp(d) obtained in this way perfectly match. This is 
in contrast with the conclusions reached in Ref. 8. 
There the RP A is held responsible for a series of odd re­
sults that are instead a consequence of an incorrect 
analysis. 

It must be mentioned here that Landau damping of 
the acoustic branch is still possible via intersubband ex­
citations. This will, of course, have an energy threshold 
close in value to the subband separation and will there­
fore be negligible in the long-wavelength limit. ll 

In conclusion, we have characterized the acoustic part 
of the longitudinal spectrum of an electronic double lay­
er system within the RP A. By means of a systematic 
analytical approach we have obtained several exact re­
sults concerning the plasma dispersion relation. In par­
ticular, we have derived an exact expression for cp ' the 
acoustic plasmon group velocity, and dc, the critical dis-
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tance for their existence, in terms of the effective masses, 
densities, and geometrical parameters of the structure. 
Finally, an interesting and exact result is that when the 
two layers are identical, for any finite value of their dis­
tance, the system always admits a branch of acoustic 
plasmons as undamped modes. 

A similar analysis can be carried out also for the opti­
cal plasmon. In such a case, however, the energy is 
mainly determined by the long-range part of the 
Coulomb interaction which makes the problem rather 
trivial. 
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cal plasmons given in Ref.·8 never exists for finite albeit 
large d. 

IlThis phenomenon is similar to the absence of Landau damp­
ing for surface plasmons in semiconducting superlattices first 
discussed in G. F. Giuliani and J. J. Quinn, Phys. Rev. Let!. 
51,919 (1981). 
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The problem of the many-body enhancement of the static spin susceptibility at long wavelengths 
and its relation to the quasi particle effective mass is investigated for a normal electron gas in two­
dimensional space as a function of the electronic density. We start from a discussion of the results 
of the simple Hartree-Fock approximation for various interaction potentials and proceed to develop 
a complete theory. We find that the effects of the electron-electron interaction are significantly 
larger than in the familiar three-dimensional case. Our approach is based on a new self-consistent 
scheme which goes beyond the simple random-phase approximation by explicitly allowing for 
charge- and spin-fluctuation-induced vertex corrections of the Hubbard type. We show that when 
the latter are neglected, the many-body enhancement of the spin susceptibility can be cast in a re­
markably simple and elegant analytic form. 

I. INTRODUCTION 

The enhancement of the paramagnetic spin susceptibil­
ity Xs of an electron gas (EG) due to the electron-electron 
interaction is a classic many-body problem. Pioneering 
work on the subject goes all the way back to Bloch, 
Wigner, and Sampson, and Seitz.1 The challenging aspect 
of this problem is the fact that at metallic densities the 
concomitant effects of exchange and correlation are both 
large but opposite in sign and eventually lead to a value 
for Xs sensibly larger than the free-electron Pauli value. 
Both for the three-dimensional (3D) and the two­
dimensional (2D) case within the Hartree-Fock (HF) ap­
proximation, in which only the exchange contribution is 
retained, Xs actually diverges for values of the parameter 
's' the average electron distance in Bohr radii, respective­
ly equal to (91T/4)1/)",,6.03 and 1T/2 1/2 ",,2.22. The situa­
tion is further complicated by the appearance of the more 
exotic instabilities of the spin-density-wave type.2,) At 
metallic densities the effect of the correlations is to rid 
the spin susceptibility of these instabilities. Ultimately the 
correct many-body enhancement results from a delicate 
balance of the two contributions. 

The value of Xs is physically accessible through a num­
ber of different experimental techniques. The situation is 
particularly favorable since the effects of the electron­
phonon interaction can in general be safely neglected. 
This makes the spin-susceptibility problem an especially 
valuable testing ground for many-body theories. 

For the case of a 3D EG there are reported data from 
conduction-spin-resonance, spin-wave, Knight-shift, and 
total-susceptibility measurements.4 Several theoretical 
methods have been employed for the solution of this 
problem for the 3D EG. J,5-9 In general it is believed that 
there exists a reasonably good agreement between theory 
and experiment, although Fig. 6 of Ref. 4 may raise some 
doubts since the various theories arguably seem to cover 
all the conceivable (as well the inconceivable), experimen­
tal results. More specifically there exists a theoretical 
"consensus curve" of Xs versus r" which not only ap­
pears to be supported by the experimental results, but has 

been reproduced within a few percent via a variety of 
diverse many-body techniques, ranging from self­
consistent-field approachesY microscopic Landau 
Fermi-liquid analyses,6,7 to full fledged perturbative­
theoretic calculations.5,7,8 In all cases the amount of ana­
lytic and numerical work necessary to reach the final 
answer is considerable. 

The major problem with the familiar three-dimensional 
metals is that for obvious reasons the density dependence 
of the many-body enhancement of Xs can only be approx­
imately measured by looking at different materials. This 
makes it difficult to clearly discern the sought 
phenomenon amid band-structure effects whose relevance 
varies from metal to metal. 

For the case of a 2D EG the study of the many-body 
enhancement of the static paramagnetic spin susceptibili­
ty has a decisive advantage in that currently available 
quasi-two-dimensional electronic systems, notably the Si­
inversion-layer structures, are characterized by the rather 
interesting possibility of varying the carrier density and 
other intrinsic parameters within the same sample. ID This 
offers the remarkable possibility of measuring Xs for a 
range of density values while keeping constant other 
uninteresting (albeit not necessarily irrelevant) factors. 

In this case an experimental determination of Xs can 
be achieved by concomitantly measuring, by magneto­
transport techniques, both the quasi particle effective 
mass 11,12 and the anomalous Lande g factoL 13, 14 

The purpose of the present paper is to provide a theory 
of the many-body enhancement of the static paramagnet­
ic spin susceptibility in a normal 2D EG at long wave­
lengths and discuss the density dependence of this re­
markable phenomenon as well as its relation to the quasi­
particle mass renormalization. 

A natural starting point for our analysis is provided by 
a discussion of the Hartree-Fock theory, which sets the 
stage for a more complete and reliable approach. As it 
will be shown however, the inclusion of correlation effects 
is necessary. Janak was the first to attempt the study of 
the effects of screening in his study of the effects of the 
electronic interactions on the Lande g factoL I5 His 
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theory suffered, however, from serious shortcomings and 
was limited to a static approach to screening. Work along 
similar lines can be found in Refs. 16-18. 

The effect of correlations can more satisfactorily be in­
cluded by employing, as a first approximation, an ap­
proach due to Hamann and Overhauser and based on the 
dynamically screened exchange approximation.3 It is 
quite satisfying, although hitherto unnoticed, that in this 
case the many-body enhancement of the spin susceptibili­
ty can be cast in a simple and elegant analytic form. 

In order to go beyond this useful, but necessarily 
simplified, approach we then proceed to develop a com­
plete theory based on the Landau theory of the Fermi 
liquids and a new self-consistent scheme in which the 
effects of charge- and spin-fluctuation-induced vertex 
corrections are accounted for following the procedure 
first suggested, in its most elementary form, by Hub­
bard. 19 An extensive investigation of the relevance of 
these corrections in realistic situations has been discussed 
elsewhere.20 

The present paper is structured as follows: In Sec. 11 
we discuss several interesting results concerning the ap­
plication of the Hartree-Fock theory to the case of vari­
ous interaction potentials; in Sec. III we develop the for­
malism for the dynamically screened exchange approach 
and relate the many-body enhancement for the spin sus­
ceptibility to the quasiparticle effective mass; in Sec. IV 
we introduce the generalized Hubbard many-body local 
fields which account for charge- and spin-fluctuation­
induced vertex corrections; in Sec. V we develop a gen­
eral theory for the spin susceptibility by relating such a 
quantity to the quasi particle effective interaction; finally, 
in Sec. VI we discuss our results and provide some con­
clusions. 

H. HARTREE-FOCK THEORY 

We start at first with an analysis of the Hartree-Fock 
(HF) theory. Within this approximate scheme one can 
readily obtain the static spin susceptibility Xs(q,w) by 
following the procedure of Wolff. 21 One finds that 
Xs(q,O) can be expressed as 

_ 2 np_ ql2- np+q/2 
Xs(q,O)-2,uB ~ E _ E u (p), (I) 

p p+ql2 p-ql2 

where ,uB is the Bohr magneton, np is the momentum­
space occupation number, and Ep, the quasiparticle ener­
gy, is given by the familiar expression 

2 
Ep=L- ~ v(p-p'). 

2m Ip'l <PF 

(2) 

In Eq. (I) u (p) is the solution of the integral equation 

n -n 
u(k)=l+ ~ p-q/2 p+ql2 v(k-p)u(p), 

p Ep+q12 - Ep- q/2 
(3) 

v (q) being the Fourier transform of the appropriate in­
teraction potential. In the long-wavelength limit this 
equation is easily solved to give for Xs the static value of 
the susceptibility, Xs(q-.O,O), the following expression, 

(4) 

In Eq. (4) XP is the Pauli susceptibility given by ,u1N(O), 
where N(O)=m/rrli is the density of states for a nonin­
teracting electron gas in two dimensions, In Eq. (4) m' is 
the quasiparticle effective mass defined in terms of the 
derivative of the quasiparticle energy evaluated at the 
Fermi wave vector PF via the relation 

v =!!...= [~l. 
qp m' ap PF 

(5) 

For illustrative purposes we will first examine the sim­
ple case of a short-range (local) interaction which we 
model here via a delta-function potential so that 
v (q) = C, where C is a constant. In this case there is no 
correction to the bare mass and the susceptibility can be 
readily expressed in analytic form as follows: 

xkSI(z) [1-(I-z-2)1128(1-z-2)] 

XP 1-...f..[I-(1-z-2)1128(1-z-2)]' 
2,u1 

(6) 

where z =q /2PF' It is clear that in this case the ratio is 
independent of the electronic density. In Fig, 1 we plot 
X~I as a function of z for different values of the interac­
tion strength C. We note that for z < I, X~SI is a constant 
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FIG. \. Enhanced spin susceptibility X~'(zI/Xp vs z=qI2PF' 
given by Eq. (61 in text, for a delta-function interaction of 
strength C. The curves are for different values of C I( 2JL~ I. 
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whose value diverges as C tends to the critical value 21l~' 
For C larger than this value x~) changes sign and de­
creases in magnitude. For z > I the situation is more in­
teresting. For C less than 21l~' xkS) is a monotonically de­
creasing function of z. When C exceeds this value, howev­
er, xiS) becomes negative (a sign of incipient ferromag­
ne tic instability), and displays a singularity for z 
=[1-( 1-21l~/C)2rll2. This behavior is quialitatively 
not dissimilar from the one encountered in the 3D 
case first discussed by Wolff. 21 

We will consider next the case of a screened interaction 
potential which we write in the general form 

(7) 

where, as mentioned above, r, is the mean electronic sep­
aration measured in units of the Bohr radius aB' and is 
related to the electronic density via the relation 
r, = (11'a/n ) -1/2. In Eq. (7) a is a positive adjustable pa­
rameter which controls the range of the interaction. In 
the long-wavelength limit, using Eqs. (I), (3), and (5), one 
can obtain the following simple analytic formula for the 
HF susceptibility for this case: 

xs _~ 11-~ [ r, 8(a2-1) [E:.-tan-I I J-~ 8(I-a2) In [1-(I-a2)1!2 J j )-1 (8) 
Xp - m m 21/211' (a2-1)112 2 (a2-1)112 231211' (l-a2)112 1+( l-a2)112 ' 

where 8(x) is the familiar step function and the effective mass m * can be explicitly obtained from Eqs. (2), (5), and (7) 

and is given by 

m 21/2r, ar, (2a 2-I)r, 8(a2-1) [11' -I I j 
~=1--11'--+2J72- 21/211' (a2_1)1/2 2- tan (a2-1)112 

+ In . 
(2a2-I)r, 8(I-a2) 11-(I-a2)112 1 

231211' (I-a2)1/2 I +(I-a2)1/2 
(9) 

A noteworthy feature of Eq. (8) is the manifest possibility of a polarization instability signaled by a diverging spin 
response. This situation can be realized when the denominator of Eq. (8) vanishes. This in turn occurs when, for a 
given a, r, acquires the following critical value 

r --a --tan -- n ---'-"----'''c:-'-:-c:-*-2 112 [2 +2a2 8(a2-1)[11' -I I j a28(l-a2)111-(I-a2)112lj-1 
s 11' 11' (a2-1)1/2 2 (a2-1)1/2 11' (l-a l )I/2 1+(I-a2)1!2 

(10) 

A plot of the above expression is displayed in Fig. 2. The 
critical value r,* increases almost linearly with a. 

A specific case of interest is that of Thomas-Fermi 
screening, characterized by the condition a= r,l21 12. In 
this case, at variance with the corresponding 3D situa­
tion, the screening length is independent of the electron 
density. As can be readily verified, for this choice of a, 
the divergence does not occur and the spin susceptibility 
is a well-behaved simple monotonic function of r,*, which 
is displayed in Fig. 3 by the curve labeled TF. Notice that 
in this case the many-body enhancement of the spin 
response is rather small. 

Finally for a =0 one recovers the HF result for the 
Coulomb interaction. In this case, upon making use of 
Eqs. (8) and (9), one readily obtains the following expres­
sion for the HF spin susceptibility: 

xs 
(11) 

11'rs 
1- 2J72 

Care must be taken in this limit since the ratio m Im * 
diverges here logarithmically for vanishing a, i.e., 

m rs a 
-----In- as a-.O. 
m* 211211' 2 

(12) 

occurs for Coulomb interactions at r,* =11'12 112",2. 22. 
This is displayed by the curve labeled HF in Fig. 3. It 
should be mentioned at this point, however, that within 
HF such an instability is preempted by a sudden transi­
tion to a ferromagnetic ground state. As is readily found, 

r,* 
5 

6.0. 

4.0. 

2.0. 

DO. 0..4 o.S 1.2 1.6 2.0. 

a 
FIG. 2. Plot of r,* the critical value of the average electronic 

separation, given by Eq. (10) in text, vs the screening parameter 
a. The curve displays the divergence condition of spin suscepti­
bility in the Hartree-Fock approximation with screened interac-

As shown in Eq. (11) above, a differential instability tion. 
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FIG. 3. Plot of the many-body susceptibility enhancement 
Xs IX? vs the density parameter r,. The solid curves labeled G + 
& G _, G +, and RPA correspond to the following three cases: 
(i) our full theory, (h) no spin fluctuations, and (iii) no vertex 
corrections, respectively. The dashed curves labeled HF and TF 
correspond, respectively, to Hartree-Fock approximation and 
Hartree-Fock approximation with Thomas-Fermi screening. 
The meaning of these curves is explained in the text. 

such a phenomenon is characterized by the Bloch condi­
tion r, ::: 31T2i12116(2i/2 -11 "" 2. 01. 

As well-known correlations do in general change the 
nature of the ground state and make the ferromagnetic 
phase energetically unfavorable, it is interesting to men­
tion, however, how such a situation is drastically 
modified by the presence of a large quantizing magnetic 
field when a number of Landau levels are completely 
filled. In this case the energy separation between the 
Landau levels will in general lead to a quenching of the 
correlations, thereby restoring the (at times perhaps more 
interesting) HF scenario.22 

Ill. GENERALIZED HARTREE-FOCK THEORY: 
THE HAM ANN-OVER HA USER APPROACH 

In this section we will derive a simple formula for the 
susceptibility based on the dynamically screened ex­
change approach of Hamann and Overhauser which is 
known to lead to the correct result for the spin problem 
in 303 Here, and in what follows, we will focus our 
analysis on the case of the Coulomb interaction. The gist 
of the approach is as follows. One starts with the deriva­
tion of a suitable pseudo-Hamiltonian in which only the 
quasiparticle degrees of freedom of the electron gas ap­
pear explicitly. As first discussed in Ref. 3 this can be 
achieved by introducing an appropriate canonical trans­
formation designed to eliminate, (more appropriately 
average out), the collective part of the spectrum of the 
system. Such a pseudo-Hamiltonian can be written as 

H qp = 2, Ep :a~,aap,a:+t 2, Re[Ac(q,€p -€p-q)] :a~_q,aa~'+q,a,ap',a·ap.a:' (13) 
p,CT p,p',q,a,(]' 

where we have used a normal product representation, and a~.a (ap,a) is a creation (destruction) operator of a quasipar­
ticle of momentum p and spin a = ± I, and €p =p 2/2m. In Eq. (13) Ep' the quasiparticle energy, is given by 

[ If'" IIm[Ac(q,w)]1 1 
Ep=€p- 2, np_qRe[Ac(q,€p-€p_q))+-P dw _ ' 

q 1T 0 W €p+f p_q 
(14) 

where the symbol P mandates that the principal value of 
the integral must be taken. In Eqs, (13) and (14) Ac(q,w) 
is an effective potential which is defined in terms of 
Xc(q,w), the full momentum- and frequency-dependent 
charge response function of the system, as follows: 

Ac(q,w)=v(q)[1 +v (q)Xc(q,w)j. (15) 

Within the present approximation the function Xc(q,w) 
can be written as 

Xo(q,w) 
Xc(q,w)= I () ( )' -v q Xo q,w 

(16) 

where Xo(q,w) is the familiar Lindhard function for a 20 
EG.2J It should be emphasized here that the expression 
for the quasiparticle energy Ep of Eq. (14) is appropriate 
for an unpolarized electron system, Moreover, in Eq, (14) 
the second term is the dynamically screened exchange, 
whereas the third one represents the appropriate contri­
bution of the corresponding Coulomb hole. As should be 

I 
clear from Eqs, (14)-(16), the present approximation is 
equivalent to the familiar random-phase approximation 
(RPA).24,25 

The next step consists of studying the response of the 
quasiparticle gas to an externally applied sinusoidal mag­
netic field H ocosq' x. This can be achieved by adding to 
H qp the suitably transformed coupling term Hint given by 

Hint =tIlBH02,(Sz)aa :at+q,aak,a: +H.c., (17) 
k,a 

where H.c. stands for Hermitian conjugate, (5, )l1ll1) 

= ± I. Then, to do the equivalent of solving the HF 
equation, the total Hamiltonian given by H qp + Hint is 
again canonically transformed so as to remove the off­
diagonal terms in the single quasiparticle operators. The 
transformed Hamiltonian is given by 

(18) 

where the appropriate form of the operator T can be sur-
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mised from the HF analysis to be 

T=+ 2 C(k)(S')aa :at+Q/2,aak-q/2,a: - H.c,. (19) 
k,a 

Then, upon requiring that the off-diagonal one-particle 
terms vanish, and upon defining 

It is easily seen that if Ac(q,w) is replaced by the 
screened potential v (q), then one simply recovers the HF 
susceptibilities of the previous section, 

In the limit of small q we have found that, interestingly 
enough, the integral equation (2!) for u (p) can be solved 
exactly. In this limit the many-body enhancement of the 
susceptibility can then be cast in the following elegant 
and suggestive form: 

U (k)=(Ek+q12 - E k - Q/2 )C(k), (20) 

one can see that Xs(q,O) is given again by the HF expres­
sion of Eq, (4), In this case, however, u (k) is determined 
by the following integral equation: 

(2!) 

m* 
Xs m 

(22) 
* ' 

XP 1-.!!!..../23(r,) 
m ' 

where the functions 12,)(r,) depend only on the density 
parameter r, and the dimensionality of the system, For 
the 3D EG case, I)(r,) is given by the following single 
quadrature, 

(23) 

For a 2D EG, instead, 12(r,) can be written in a closed analytic form and is identical to that obtained from Eq. (8) for 
the case of Thomas-Fermi screening, i.e., 

r 2EHr2-2) [1/' I 1 8(2-r;) 11-(1-r;/2)1/2 1 I ()--'- ' --tan- I - In ----'--,....,. 
2 rs - 81/21/' (r;/2-I)112 2 (r;/2-1)1/2 (l-r;/2)112 1+(1-r;/2)1/2 

(24) 

A plot of both I) (r,) and 12 (r,) is provided in Fig. 4. 
Both these curves are proportional to - r,lnr, in the limit 
of small r,. It should be noted that the r, dependence of 
12 (r,) is more pronounced. The resulting values for 

0.5 

2D 

0.4 

0.00:--L--'--~....I..4-~-..J 

rs 
FIG. 4. Plot of 1"J' Eqs. (20) and (21) in the text, vs the densi­

ty parameter rs. Notice that I,(rs) is larger than its 3D coun­
terpart and leads to a more pronounced many-body enhance· 
ment. Both functions behave as - r,lnrs for small rs. 

I 
Xs IXp in three dimensions can be readily shown to 
reproduce the results of Ref. 3, i,e" the "consensus 
curve". A plot of the susceptibility ratio Xs IXp for the 
case of a 2D EG is shown in Fig, 3 by the curve labeled 
RP A, 25 This curve was obtained using Eqs. (22) and (23) 
and the appropriate value of the effective mass ratio 
m' Im as calculated from Eqs, (5) and (14).20,26 Notice 
the large enhancement over the result of the Thomas­
Fermi screened potential. It should be stressed here that 
for large r, the many-body corrections are comparatively 
significantly larger in two dimensions. 

It is interesting to notice here that the perhaps surpris­
ing result of Eq. (24) (i.e., the fact that the RPA result ba­
sically displays the same structure as the Thomas-Fermi 
theory) is peculiar to the 2D situation and can be traced 
to the fact that in such a case the static Lindhard 
response function Xo(q,O) is independent of the wave vec­
tor q for q < 2PF' 

IV. HUBBARD VERTEX CORRECTIONS 

In order to go beyond the dynamically screened ex­
change theory, we discuss here an approximate approach 
which allows one to account for the effects of charge- and 
spin-fluctuation-induced vertex corrections, 

As originally suggested by Hubbard l9 and later exploit­
ed,27 and generalized by several other authors,28,29 it is 
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possible to include some of the short-range effects of ex­
change and correlation by introducing suitable many­
body local fields G+lq,w) and G_Iq,w). For the sake of 
the present analysis it will suffice to define here these 
quantities through their relation to the full momentum­
and frequency-dependent charge and spin susceptibilities 
of the system. A complete discussion of such a procedure 
can be found in Ref. 26. We have 

Xolq,w) 
12S) 

and 

_ 2 Xolq,w) 
Xslq,w)- -!ls . (26) 

1 +vlq)G -lq,w)Xolq,w) 

Clearly the fields G+lq,w) and G_Iq,w), respectively, 
account for charge- and spin-fluctuation-induced vertex 
corrections. In Eqs. 12S) and (26) the quantity Xolq,w) 

I 

differs from the usual LindhardJO function in that in its 
evaluation the expression for the momentum-space Ibare) 
occupation number np appropriate to the interacting sys­
tem must, in principle, be used.26 

The many-body local fields not only enter the response 
functions, but can be shown also to modify in a 
significant fashion the effective potentials appearing in 
the theory.3l,26 For instance, in order to account for 
charge-fluctuation-induced vertex corrections, the expres­
sion for Ac of Eq. (IS) must be modified as follows: 

Aclq,w)=v Iq)ll +v Iq)[ I-G + Iq,w)]2Xclq,wil. (27) 

The physical processes associated with G _ Iq,w) neces­
sitate here further discussion. The inclusion of G _ in the 
theory accounts for the effects of spin fluctuations and 
leads to extra terms in the quasiparticle energy. For in­
stance, for an un polarized state, Eq. (14) is in this case 
modified to read26 

l 
1 00 IIm[Aclq,w)]I+3IIm[Aslq,w)]1 1 

Ep=fp- I np_qRe[Aclq,fp-fp_qH3Aslq,fp-fp_q)]+-P J dw _ + ' 
q 1T 0 w fp fp_q 

(28) 

where Ac is defined in Eq. (27) and the new effective po­
tential As is defined in terms of the full momentum- and 
frequency-dependent spin response Xslq,w) as follows: 

The exact expressions for G + Iq, w) and G _ Iq, w) are 
not known in general, so appeal must be made to approx­
imate procedures. A possible way to tackle the problem is 
to investigate the exact asymptotic behaviors of these 
functions and then, as is customarily done, assume for 
them simple analytic formulas designed to interpolate be­
tween the known regimes. We find that suitable formulas 
for the 2D EG case are given by 

G+loo )q 
G I )- - (30) 

± q Iq2+[{3±G±(00)pdl lll ' 

where for the sake of simplicity we have neglected the 
frequency dependence of these functions. In Eq. (30) the 
quantities G ± loo ) and {3i are density dependent and are 
related to the limiting values of the functions G + Iq, w) 
and G _ Iq,w), respectively, for large and small wave vec­
tors q. 

The exact large-wave-vector limits of the many-body 
local fields in a 2D EG have been analyzed in Ref. 32. 
There it was shown how the appropriate limiting values 
of G + Iq, w) and G _ Iq, w) can be expressed in terms of 
gIO), the value at the origin of the pair correlation func­
tion of the system. g (0) is a function of the electronic 
density and its theoretical value can be approximately ob­
tained via direct perturbative or numerical ap­
proachesY·34 

The coefficient {3+ can be simply obtained from the 
compressibility sum rule which relates the static charge 
susceptibility, Eq. 12S), to E, the total ground-state ener­
gy of the electronic system, a quantity which has been the 
object of several detailed investigations and is therefore 

I 
approximately known. 35 - 37 For a more detailed analysis 
the reader is referred to Ref. 26. 

Finally, once {3 + is known {3 _ can be determined 
through a self-consistent procedure that will be discussed 
in detail in the next section. 

V. SPIN SUSCEPTIBILITY 

Making use of the results of the previous section, we 
can now proceed to the evaluation of the many-body 
enhancement of the spin susceptibility. 

The first possible improvement upon the calculation 
contained in Sec. m is the inclusion of the effect of 
charge-fluctuation-induced vertex corrections described 
by the function G +. The procedure employed to obtain 
the susceptibility in this case is identical to that of Sec. 
m in which these corrections were neglected. As is 
readily found, the susceptibility ratio in this case is still 
determined by the effective mass ratio m' Im and the 
function ulk) through Eqs. (4) and (21). In this situation, 
however, in Eq. (21) and (14) the modified expression for 
the effective potential Aclq,w) of Eq. (27) must be used. 
The results of such a calculation are displayed in Fig. 3 
by the curve labeled G +. It should be noticed that the 
inclusion of the many-body local field G + leads to a rath­
er large enhancement of Xs Itp as compared to the RP A 
calculation. An analysis of the effective mass for this case 
can be found in Ref. 26. 

To carry the susceptibility analysis further, the effects 
of the processes associated with the spin-fluctuation­
induced vertex corrections will be considered next. In this 
case the procedure employed above lands into difficulty 
in view of the fact that spin fluctuations in the electron 
gas will couple directly to any externally applied magnet­
ic field, so that an alternative method of deriving the spin 
susceptibility must be used. A possible way to proceed is 
to make use of the Landau theory of the Fermi liquid.38 
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Within such a framework the static spin susceptibility Xs 
can be obtained in terms of the quasi particle interaction 
function as follows: 

Xp =~+~ frr !!.if a , 
Xs m' rr 0 2rr 

(31) 

where the antisymmetrized interaction function fa is 
given by 

(32) 

and f ua' can be obtained from the quasi particle energy 
E; via a functional derivative with respect to the occupa­

I 

tion number n ~ as follows: 

, oE; 
faa =--

- on;:" (33) 

In order to perform the functional derivative of Eq. (33), 
the expression for the quasi particle energy in a system 
with arbitrary polarization must be found. By following 
the procedure outlined in Refs. 3 and 26 a generalization 
of Eq. (14) to the polarized state can be obtained. 39 The 
enhancement of the spin susceptibility is then calculated 
by a straightforward application of Eqs. (31) and (33). 
The result can be cast in the following form: 39 

XP _ m J2rr d~ - - --m --2 [AclkF-pp,O)- AsikF-PF'O)] 
Xs m' 0 12rr) 

+ __ 2_-2 J~ dz~ J 00 du[Q_Iq,iw)Q+iq,iw)P +Iz,u HQ_iq,iudp _Iz,u )], 
rrl a OPF ) 0 z 0 

(34) 

where ~ is the angle between a fixed vector p F and a vari­
able vector kF' both of which lie on the Fermi surface, 
and we have introduced the variables z =q 12PF and 
u =(um IqPF' In Eq. (34) the functions Q± and P + are 
defined as follows: 

Q+lq,w)= [ ]' l-vlq)Xolq,w) l-G+iq,w) 
(35) 

G_Iq,w) 
(36) 

and 

(37) 

It should be pointed out here that in formulating a 
complete theory for the spin susceptibility with the in­
clusion of the effects of spin fluctuations, particular care 
must be taken to also allow for transverse spin fluctua­
tions. In deriving the expression of Eq. (34), this has been 
done by treating longitudinal and transverse spin fluctua­
tions on the same footing, so that, for the sake of simpli­
city, only one many-body local field li.e., G _) is used here 
to describe the phenomenon.39 

We have made use of Eqs. 130) and (34) - (37) to evalu­
ate the spin susceptibility. The necessary effective-mass 
ratio has also been determined by using Eq. (28) for the 
quasi particle energy. A crucial input of the present 
analysis is represented by the many-body local field 
G±lq,w) discussed in the previous section. As explained 
there, we have made use of the interpolation formulas of 
Eq. 130), which, in turn, depend on the choice of the 
density-dependent quantities f3± and glO). We have 
chosen for g 10) the theoretical value obtained in Ref. 34. 
As far as f3+ is concerned, as mentioned above, we have 
determined this parameter as a function of the electronic 
density from the total ground-state energy E via the 
compressibility sum rule. For E we have used the ap-

I 
proximate interpolation formula proposed by Jonson,35 
which was obtained by implementing for the case of a 2D 
EO the classic numerical method of Singwi, Tosi, Land, 
and Sjolander.40 Figure 5 displays the appropriate values 
of f3+ for a 2D EO as a function of the density parameter 
r,. 

Furthermore, and most importantly, we have deter­
mined the coefficient f3 _ via the following self-consistent 
procedure. Once the value of f3+ has been established, 
one starts with a trial value for f3- and proceeds to evalu­
ate the corresponding m' and XslXp, respectively, from 
Eqs. IS) and (34). Then, by equating such a value to 
Xslq ...... O,O) ,as given by Eq. (26), a new f3- is then deter­
mined from the relation 

6.0 

5.5 

f3_ 
5 . .0 

4.5 

4 . .0 

3.5 

3 . .0 

2.5 

.05 1..0 2 . .0 2.5 

FIG. 5. Theoretical self-consistent results for the coefficients 
/3+ and /3-, defined in Eq. (30) in text, vs the density parameter 



SPIN SUSCEPTIBILITY IN A TWO-DIMENSIONAL ELECTRON GAS 5439 

Xs(q->O,O) 

Xp 
(38) 

which is readily obtained from Eq. (26) if one makes use 
of the familiar Lindhard function for Xo(q,w). This value 
for (3- becomes then the starting input for a new itera­
tion. This procedure is repeated until convergence is 
reached. The appropriate self-consistent values for (3+ 
and (3- obtained in this way are plotted in Fig. 5 as a 
function of the density parameter 's. It is important to 
realize that once (3 + and (3 _ are determined, our theory is 
free of arbitrary parameters. A plot of the susceptibility 
enhancement for this last case, representing our new full 
theory, is finally shown by the solid curve labeled G + & 
G _ in Fig. 3. 

VI. DISCUSSION AND CONCLUSIONS 

We have theoretically investigated the problem of the 
many-body enhancement of the paramagnetic spin sus­
ceptibility in a 2D EG. We have studied in detail the im­
plications of the HF theory for the cases of local and 
screened interactions, in which case the problem has a 
simple analytic solution given by Eqs. (8) and (9) of Sec. I. 

We have accounted for correlation effects beyond HF 
by a number of methods of increasing sophistication and 
physical significance. We have first evaluated the spin­
response ratio Xs Ixp, by solving exactly in the long­
wavelength limit an integral equation first introduced by 
Hamann and Overhauser,J and based on a generalization 
of the original Wolff HF theory formulation. 21 Our re­
sults, notably Eqs. (22)-(24), are extremely simple and al­
Iowa direct and straightforward calculation of Xs. In 
fact, once the effective mass is known, in the 30 EG case 
we reduce the problem to a single quadrature and easily 
recover the established result of the "consensus curve". 3.4 

We find that for the case of a 20 EG our result has a sim­
ple analytic form and formally coincides with that ob­
tained within the HF approximation making use of the 
Thomas-Fermi screened potential, the only difference 
stemming from the different value attained by the quasi­
parucle effective mass. It is also interesting to notice in 
this respect that the result for Xslxp of Eqs. (22) and (24) 
has the same structure of the simple Thomas-Fermi for­
mula of Eq. (8), so that it formally coincides with the re­
sult first obtained by J anakY 

We have analyzed the effect on the susceptibility of 
both charge- and spin-fluctuation-induced vertex correc­
tions which we have accounted for by means of the 
many-body fields G + and G _, which we have here ap­
proximated by suitable interpolation formulas in the spir­
it of Hubbard. 

The results of our study are summarized in Fig. 3, 
where the curve labeled G + & G _ represents our new re­
sult for the many-body enhancement of the spin suscepti-

bility in a 20 EG. An important conclusion which can 
be drawn from our study is that the final value of Xs re­
sults from a subtle balance between various competing 
effects and that the simple RP A,25. 3 although providing a 
reasonable starting point, does not account for the full 
extent of the many-body physics inherent in the 
phenomenon at hand. It should also be stressed howev­
er, that it is not enough to go beyond the RP A j~st by in­
troducing, as is customary, the symmetric local field G 
while altogether neglecting the effects of the spin fluctu:­
tIOns: III general, such a procedure tends to make things 
worse. We have arrived at the conclusion that the con­
comitant effects of both charge- and spin-fluctuations­
induced vertex corrections must be accounted for in a sa­
tisfactory approach. 

It must be stressed here that, in general, for large 
values of the density parameter rs the many-body correc­
tions are comparatively significantly larger in two dimen­
sions than in three dimensions. 

It must also be remarked that the results are sensibly 
dependent on the specific values used for g (0) which 
enters the many-body fields, as well as the particular ap­
proximate interpolation formulas used for the latter. In 
particular, the choice of Eq. (30) as suitable expressions 
for G ± was motivated only by natural requirements of 
simplicity and a~herence to the spirit of Hubbard's origi­
nal diagrammatIc analysis of Ref. 19. In order to check 
the ultimate validity of the present theoretical approach, 
we have investigated the importance of our specific 
choice of Eq. (30) by making use of more complicated, yet 
stIll frequency-independent, reasonable forms of G i. We 
have concluded that in spite of possible small changes in 
the actual numerical values, the results and conclusions 
reported above remain valid, although further rigorous 
studies on the importance of the frequency and wave­
vector dependence of the many-body local fields in an 
electron gas are still needed. 

Finally, although the present work is strictly con­
cerned with the simple electron-gas model, we expect 
that a similar qualitative behavior will characterize the 
spin susceptibility of electrons and holes in layered elec­
tronic systems and superlattices. In particular, the 
present approach can be generalized to the more realistic 
case of electrons in quasi-two-dimensional semiconduct­
ing heterostructures and more specifically to inversion 
layers. As it turns out, the inclusion of the specific physi­
cal features and parameters related to the structure, such 
as the finite-thickness effects, the image potentials, the 
vanous background dielectric constants, the valley de­
generacy, and band mass, is of crucial importance in such 
cases. Work on this particularly interesting problem is re­
ported elsewhere20 
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We present the microscopic derivation of a quasiparticle pseudo-Hamiltonian for an infinitesimally 
polarized electron liquid. The Hamiltonian is expressed in terms of suitably defined quasiparticle opera­
tors. Our approach is based on a canonical transformation which allows one to replace the bare 
Coulombic coupling between the interacting electrons with an effective interaction between quasiparti­
cles in which collective charge and spin fluctuations are explicitly accounted for. The relevant matrix 
elements of the charge and spin-density operators enter our theory via linear-response functions: the 
charge response, the longitudinal and transverse spin responses, and the mixed charge-spin response. 
These susceptibilities are in turn expressed in terms of the appropriate many-body local fields. As a 
consequence our method can be seen as an attempt to satisfactorily include in a self-consistent manner 
the effects of the vertex corrections associated with charge and spin-fluctuations of the electron liquid. 
As a result useful expressions for the quasi particle energy and the effective interaction between two 
quasi particles are determined. These can, in turn, be employed in a microscopic determination of the 
parameters of the Landau theory of the Fermi liquid. The generalization of our results to a multicom­
ponent system is also discussed. 

I. INTRODUCTION 

Understanding the many-body aspects of an electron 
gas (EG) has been a subject of steady interest for the past 
few decades. 1-3 The EG, unlike a system of classical 
particles, behaves like a gas at high densities and like a 
solid at low densities.4 In both these extreme limits, the 
ground-state energy of the EG has been evaluated exact­
Iy. In the high density limit, the ground-state energy was 
obtained as a series in terms of r" the average electronic 
separation in units of the Bohr radius, in three dimen­
sions (3D) by Gell-Mann and Brueckners and in two di­
mensions (20) by Rajagopal and Kimba1l6 and by Isihara 
and Toyoda.7 Wigner showed that at sufficiently small 
densities the electrons localize to form a crystal lattice 
and hypothesized that in 3D a bcc structure is the most 
stable one.4 Later on it was verified that, among the sim­
ple lattices, the bcc structure has the lowest energy and 
the ground-state energy for the bcc lattice was obtained 
as a power series in terms of r,-I 12.8 In 2D, Bonsall and 
Maradudin9 calculated the ground state energy for arbi­
trary electron lattices, and showed that the triangular 
one, as expected, has the lowest energy. 

In the intermediate density regime, which is relevant in 
three dimensions for simple metals, and in two dimen­
sions for systems like the electrons in an inversion layer 
in most density regimes, the usual perturbative tech­
niques are not effective owing to the lack of an expansion 
parameter. Hence, one has to take recourse to approxi­
mate methods which are not completely rigorous but are 
physically justifiable. A review of a number of these tech­
niques can be found in Ref. I. Quite useful in this respect 
are the numerical techniques based on the quantum 
Monte Carlo methods. IO - 12 

Among the various approximate methods designed to 
deal with the intermediate density regime of particular 

interest for its physical appeal and elegance is Landau's13 
original phenomenological theory of the Fermi liquids 
which treats accurately low-lying excitations. Landau 
called these excitations quasi particles and postulated a 
one-to-one correspondence between them and the excited 
states of a noninteracting Fermi liquid. He wrote down 
the excitation energy of the system in terms of the energy 
of the quasiparticles and their effective interaction. The 
quasiparticle interaction function can be used in turn to 
obtain various physical properties of the system and can 
also be parametrized in terms of experimentally obtain­
able data. Within the framework of perturbative Green's 
function techniques it was shown by Luttinger and 
Nozieresl4 that the Landau theory is valid in the limit of 
zero temperature, long wavelength, and zero frequency. 

For an EG long-range screening of the Coulombic in­
teraction is an important factor. The simplest approxi­
mation that takes this into account is the random phase 
approximation (RP Al. In this approximation the 
screened charge response of the EG is assumed to be that 
of the noninteracting system. IS Using a many-body local 
field, commonly named after him, Hubbard 16 improved 
upon this approximation of the screened charge suscepti­
bility by including, in an approximate fashion, some ex­
change corrections. 

More recently, Hubbard approach was generalized in 
such a way as to include the effects of vertex corrections 
due to both charge and spin fluctuations in an unpolar­
ized EGY-21 In these papers, using formally different 
approaches, expressions for the quasi particle self-energy 
and effective interaction were obtained. As it was point­
ed out in Ref. 20, these results are basically equivalent. 

This body of work showed that the quasipartic1e self­
energy and effective interaction can be expressed in terms 
of suitable generalized Hubbard many-body local fields 
and the charge and spin susceptibilities of the system, 
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which, in turn, can be also expressed in terms of the same 
quantities. As for the case of an infinitesimally polarized 
EG, work on the subject was carried out by Ng and 
Singwi by means of a diagrammatic approach?' This ap­
proach to the many-body theory of the EG has already 
found it applications.22•23 

In this paper, we extend the results obtained previously 
for the unpolarized system by the present authors20 and 
derive a quasiparticle pseudo-Hamiltonian for an 
infinitesimally polarized liquid in terms of the response 
functions and many-body local fields of the system. One 
of the motivating factors for the present work is to arrive 
at useful expressions that can then be employed within a 
Landau theory of the Fermi liquid to evaluate various 
physical quantities of interest. 23 

The basic idea leading to the definition of a pseudo­
quasiparticle-Hamiltonian was previously devel­
oped by Hamann and Overhauser for the case of an un­
polarized system.24 These authors limited their analysis 
to the simple case of the RPA. Our treatment, on the 
other hand, is much more general, and is designed to in­
corporate the effects of vertex corrections associated with 
charge and spin-density fluctuations to account for ex­
change and correlation effects in the infinitesimally polar­
ized electron liquid. 

We begin by viewing the electron liquid as a system 
comprised of a few interacting "test" electrons and a 
screening dielectric medium characterized only by its col­
lective charge and spin density excitations. The test elec­
trons and the medium interact via effective potentials 
which we express in terms of (a priori unknown) ap­
propriate local field factors G so as to account for their 
deviations (due to exchange and correlation effects 
beyond RP A) from the bare Coulomb potential. By using 
a canonical transformation this interaction terms are 
then eliminated to first order, thereby generating an 
effective coupling between the test electrons. Upon 
averaging over the coordinates of the screening medium 
we then obtain the sought renormalization of the test 
electrons states. An important step in this procedure is 
represented by the identification of the various a priori 
unknown matrix elements in terms of appropriate 
response functions of the medium: the charge, the longi­
tudinal and the transverse spin, and the mixed charge­
spin response susceptibilities. These response functions 
are in turn expressed via the corresponding generalized 
Hubbard many-body local fields. Finally we show that in 
order to achieve a physically self-consistent description of 
the situation the factors G do in fact coincide with the 
Hubbard many-body local fields appearing in the 
response functions of the medium. 

With this purpose in mind it is important to be able to 
generalize our treatment of the many-body effects in the 
electron liquid to the case of a multicomponent system. 
This is in fact necessary for the case of the electronic sys­
tem occurring in a silicon inversion layer. There the mul­
ticomponent nature of the electronic band structure leads 
to further interesting and important modifications. 

Our paper is structured as follows. In Sec. 11, we intro­
duce the total Hamiltonian which we use to model the 
EG. In Sec. III the bulk of the renormalization pro-

cedure is presented and a quasiparticle pseudo­
Hamiltonian is arrived at. Next, in Sec. IV we express 
our results in terms of the quasi particle energy and the 
quasiparticle effective interaction. Section V contains a 
discussion of our results and their implications. The con­
nection of our theory to previous work is also provided 
there. The paper contains two Appendices. In Appendix 
A we derive useful expressions for the various response 
functions that enter our quasiparticle pseudo­
Hamiltonian for the case of a multi-component system. 
Finally, in Appendix B an exact expression for the mixed 
charge-spin response function is obtained. 

11. TOTAL HAMILTONIAN 

To describe the excitations of an electron liquid we em­
ploy the picture based on the concept of quasiparticle and 
similar to Landau's phenomenological theory of the nor­
mal Fermi liquid. We start by selecting a few electrons 
from the EG and call them test electrons. The remaining 
EG is treated as a screening dielectric medium. As the 
test electrons move through the dielectric medium they 
produce fluctuations in the density of spin up and spin 
down electrons. These fluctuations provide virtual cloth­
ing to the test electrons and also screen the interaction 
between them. Thus, the dielectric mimics the true pro­
cesses in an average way. It is important to realize that 
in reality the test electrons and the electrons comprising 
the dielectric are physically the same. This must be taken 
into account when exchange effects are considered. 

The goal is to derive a Hamiltonian containing only the 
degrees of freedom of the clothed test electrons or quasi­
particles. To this end we proceed as follows. We write 
the total Hamiltonian of the system as 

(1) 

where Hifl is the Hamiltonian of the test electrons and is 
given by 

Hifl = l: E~a :'uap.u 
P.u 

++ l: v(q)a:-q.ua;+q.u·ap·.u·ap.u , (2) 
p.p. 

q,(J,a' 

where q*O, a:'u (ap•u ) creates (destroys) a quasiparticle 
with momentum p and spin index IJ, (IJ = ± I ), v (q) is the 
Fourier transform of the bare Coulomb potential, with E~ 
being the bare (band) energy of the test electron. In Eq. 
(I) H&ml is the Hamiltonian of the dielectric medium and 
is described by specifying its eigenstates In) and its ei­
genvalues Wn• Furthermore, HI is the part of the total 
Hamiltonian that takes into account the test electron­
medium coupling and is given as follows: 

HI = l: vlq)[I-G+lq,E~+q-E~)]p_qa:+q.aap.a 
p.q.a 

- l: vlq)G~lq,~+q-~)IJ~~qa:+q.aap.p, 
P.q. 
a.p.~ 

(3) 
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where q*O, a,,B=±I; Jl=x,y,z; and a~ is a Pauli ma­
trix. Furthermore, Pq and S~ are the operators associated 
with charge- and spin-density fluctuations, respectively. 
Since at this stage the nature and strength of the poten­
tials appearing in HI is unknown we have introduced the 
quantities G + and G"- in order to account for exchange 
and correlation effects. The G's are taken to be functions 
of the change in momentum and the change in energy of 
the test electron. In the above equation it has been as­
sumed that G + and G"- have reflection symmetry with 
respect to the plane perpendicular to the axis of polariza­
tion, namely the z axis. In general, for a polarized EG in 
its ground state one expects that G'-- =G~ =G~ 
*G'- =G _. Later on we will identify these G± and G~ 
factors in terms of the true many-body local fields of the 
EG as a whole (see Sec. Ill). It is of interest to note that 
in real space the effective potential felt by a test electron 
of momentum p and spin a as obtained from Eq. (3), can 
be expressed as (see Appendix A and Ref. 18 for a similar 
result) 

~~(q,w)=v(q)1 [Iln r(q,w)t Iln I (q,w)] 

X[I-G + (q,f:+q -f:ll 

-a[lln r(q,w)- Iln I (q,w)] 

XG'-(q,f:+q-f:ll, (4) 

where z is the quantization axis for the spin a and Iln u 

represents the density fluctuations of electrons with spin 
projection a. 

Ill. RENORMALIZATION PROCEDURE 

To obtain the quasiparticle Hamiltonian of an 
infinitesimally polarized system we adopt the following 
renormalization procedure. We first perform a canonical 
transformation on the total Hamiltonian so as to elimi­
nate the term HI up to first order. This, in turn, pro­
duces an effective coupling between the test electrons 
through their interaction with the charge and spin­
density fluctuations. This is similar to the procedure em­
ployed in deriving the Frohlich phonon mediated 
electron-electron effective interactionY The transformed 
Hamiltonian is given by H'=e-THe T, where the opera­
tor r is determined from the requirement 

(5) 

The above form involving only the Hamiltonians of the 
noninteracting test electrons and the dielectric medium in 
the commutator is chosen for the definition of r for the 
following reasons. First, this form enables us to deter­
mine the matrix elements of r with respect to the eigen­
states of the dielectric medium. Second, as will be shown 
below, this definition yields the renormalization term as a 
combination of identifiable dynamic response functions of 
the dielectric medium. Last, this form correctly yields 

the RPA result for the pseudo-Hamiltonian when the ex­
change and correlation vertex corrections are neglected. 

A. Averaging out the medium 

The second step involves explicitly removing the de­
grees of freedom of the dielectric medium. This is done 
by averaging the transformed Hamiltonian H' over the 
uniformly infinitesimally polarized state 10) of the medi­
um. We thus obtain the following quasi particle pseudo­
Hamiltonian HQP: 

which now contains only the test electron operators. In 
the pseudo-Hamiltonian given above, constants and 
higher order terms in v(q) have been omitted. Later on, 
in Sec. IV we present arguments to show that the neglect 
of higher-order terms is consistent with the requirement 
that the correct pseudo-Hamiltonian must contain all the 
correlation effects. The expectation value with respect to 
the polarized state 10) on the right-hand side ofEq. (6) is 
precisely the term that leads to a renormalization of the 
bare interaction potential and also to the clothing of a 
bare electron. This term can be evaluated from the ma­
trix elements (0IH1In) and (olrln). Then, from Eqs. 
(3) and (5) we obtain 

p,q,u 

where for the sake of brevity we have defined 

(8) 

(9) 

and 

(10) 

In obtaining Eq. (7), we used the relationship 
Gi[I(q,w)=G~n.( -q, -w) for which the justification 
will become clear in Sec. III when the G's are shown 
to coincide with the many-body local fields. We now 
define S±=sx±iSY and use the fact that the 
quantities (OIS+ln) (nIS+IO), (OIS-ln) (nIS-IO), 
(OIS'ln)(nIS±IO), and (Olpln)(nIS±IO) vanish. 
Furthermore, for q*O, we also utilize the fact 
that (olp 10) and (OIS~ 10) vanish whereas 
(Olpql n ) (nIS'.-q!O) has in general a nonzero value for a 
polarized system. Then from Eqs. (3) and (7) we obtain 



7890 SUDHAKAR YARLAGADDA AND GABRIELE F. GIULIANI 

(OIH I Tlo)= 2 I P -G + Iq, -~~:( -q)llll-G~ [q,~~(q)lll (n Ipqlo)ll 
p,p',q, 
(J,(J',n 

+aa'G _ Iq, -~~:( -q)]G~ [q,~~(q)J1 (n IS~ IQ) 12 

-(all-G + Iq, -~;:( -q)llG~ [q,~~(q)I(Olp_qln }(n IS~IO) 

XG~' [q,~~'(q)J1 (n IS~ IQ) 12 

( )2 + + X V q ap'+q,_.,ap',.,ap_q,_.ap,. 

~~'(q)-wnO 
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Ill) 

Now, on recognizing that the operator T is anti-Hermitian we obtain from Eq. 11 \) the renormalization term 
t (01 I HI' Tllo) of the quasi particle pseudo-Hamiltonian H QP' Then, in the renormalization term, upon identifying the 
various matrix elements of the charge and spin fluctuations in terms of the various dynamic response functions, to be 
defined below, we obtain the following compact expression: 

(OI[H I , Tllo) =22 E~R(p)a:'.ap,. + 2 I V.,.,[q, -~~:( -q),~~(q),~~(q)la:_q,.a;+q,.ap" .. ap,. 
p,. p,p', 

q,a,(J' 

(12) 

where the terms Vu,.' and V~,., are the longitudinal and transverse components of the renormalization part of the 
effective interaction between two quasi particles and are given by 

Vu,u,(q,E,w,o)=v(q)2([I-G + (q,E)][I-G~ (q,w)IRexc(q,o) 

+aa'G _(q,E)G~ (q,w)Rexs(q,o)/( -!l1 )-1 a[l-G + (q,E)]G~ (q,w) 

+a'II-G~(q,w)]G_(q,€)IReXcs(q,o)), 113) 

and 

114) 

with !lB being the Bohr magneton, In Eq, 112) ECR is the Coulomb hole part26 of the renormalization term and is ob­
tained upon rearranging the creation and destruction operators in the usual order of a Hamiltonian expressed in the 
second quantized form 

In the above equation it is understood that the factors 
G ± are functions of q and ~; (q), while G ~ is a function 
of q and ~J'(q). Moreover, the response functions de­
pend on q and w. 

The various response functions appearing in the 
effective interaction terms and the Coulomb hole term 
[see Eqs. 113)-115)1 are Xc the charge response, Xs the 
spin response, XT• the transverse spin response, and Xes 
the mixed charge-spin response.27 Exact expressions for 
these response functions are as follows: 

2a Re[( l-G~)G -IXes 41G~ 1
2XT'/( -!l1) 1 

+ T • 
~;(q)-w ~p '(q)-w 

(15) 

1 (n Ip-qlO)ll ) 
v+wno+il1 ' 

116) 

l(nIS'.-qiO}1 2 ) 

v+wno+il1 ' 

(17) 
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I(n IS::~ 10)12 ) 
n+wno+i1] , 

(18) 

and 

- 1 (Olp_qln)(n IS~IO) 
Xes(q, v)- ! +. 

n V-Wno 11] 

(OIS~ln )(nlp_qIO) 

v+wno+i1] 

=! 1 (OIS'-q!n )(n.lpqIO) 
n V-W nO+I1] 

(nIS'-qIO)(Olpqln) ). (19) 

v+wno+i1] 

Details of the derivation of Xes are presented in Appen­
dixB. 

B. Self-consistent identification of the 6's 

The last step in the renormalization procedure involves 
identification of the vertex correction factors a. With 
this goal in mind, we will first express the response func­
tions appearing in the renormalization term [see Eqs. 
(l2)-(l5)} as functionals of the many-body local fields G± 
and G ~. Then, based on the formal similarity of the po­
tentials given by Eqs. (4) and (A6) we make the physically 
reasonable ansatz that the vertex correction factors a 
coincide identically with the corresponding many-body 
local fields G that enter the expression for the response 
functions. 

For a single-component system the many-body local 
fields G ± (Ref. 16) are commonly defined through the 
various response functions of the unpolarized medium as 
follows: 

(20) 

and 

_ 2 Xo 
XS=/lB l+v(q)G-Xo 

(21) 

The Xo appearing in the above equations differs from the 
Lindhard28 polarizability for a noninteracting EG in that 
here it is defined in terms of exact occupation numbers if 
the local fields G ± are taken to be consistent with 
Niklasson's definition (see below).29 

In Appendix A, for an infinitesimally polarized mul­
ticomponent system, we have derived expressions for the 
various response functions in terms of the many-body lo­
cal fields of a single component. Here, we merely present 
the results for a single-component system 

xJ +xJ+4v(q)xJxJG-
Xc 1J (22) 

_ 2 X6+XJ-4v(q)X6xJ(J-G+) 
Xs- -/lB 1J ' 

X6-XJ 
Xes=-1J-- , 

where 

1J= I-v (q)(X6 +xJ)( I-G+ -G -) 

-4v(qh6XJG-(J-G+) . 

(23) 

(24) 

(25) 

The Xo appearing in the above equations is the response 
of a free EG defined in terms of the exact occupation 
numbers n ~ as follows: 

a _ I n~_q -n~ 
Xo(q,w)=n! _Aa( )+. 

p W I.lp q 11] 
(26) 

with n being the volume of the system. For the trans­
verse spin response XTa , we only present its defining 
equation in terms of the local field G ~ as follows: 

(27) 

where, similarly to Xo, the noninteracting transverse 
response x6'a too is defined in terms of the exact occupa­
tion numbers, i.e., 

(28) 

For an unpolarized system, the expressions for the 
charge and spin responses, given by Eqs. (22) and (23), 
reduce to the defining equations of G ± as given by Eqs. 
(20) and (21). The mixed charge-spin response Xes, as ex­
pected, reduces to zero for the unpolarized case. As for 
the transverse spin response, the isotropy of the unpolar­
ized system reduces it to +Xs with the transverse x6'a and 
G~ coinciding with their unpolarized counterparts +Xo 
and G_. 

Now, the a's that enter the expressions for effective in­
teractions given in Eqs. (13) and (14) correspond to the 
exchange and correlation corrections to the Hartree in­
teraction between a test electron and the charge and spin 
density fluctuations in the dielectric medium. Similarly, 
the local fields G ± and G ~ too represent the corrections 
to the Hartree interaction between an electron and the 
density fluctuations in the EG. These facts are made ex­
plicit in the expressions for the potentials given by Eqs. 
(4) and (A6). Now, since the test electrons and the 
screening dielectric medium are one and the same, we ex­
pect the a's and the G's to coincide. Hence, we postulate 
that the a's coincide identically with the corresponding 
many-body local fields G's for all values of q and w for an 
infinitesimally polarized system. Then the quasiparticle 
pseudo-Hamiltonian is given as follows: 
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p,. 

+t }; (I v(q)+ V •.• ,[q, -Il;:( -q),Il;(q),Il;(q)lla:_q,.a;+q,.,ap',.,ap,. 
p,p' 

q,O',O" 
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(29) 

where EcH, V.,." and V~'.' are formally given by Eqs. (13)-(15) with the G's replaced by the corresponding local 
fields G, 

IV. QUASIPARTlCLE PSEUDO-HAMILTONIAN 

For the sake of clarity, we now express the quasiparticle Hamiltonian in terms of normal products so that the ex­
change contribution from the effective interaction appears explicitly in the quasiparticle self-energy, We have 

H QP = }; E;:a :'.ap,.: 

p" 

+t }; (I v(q)+ V.,.,[q, -Il;:( -q),Il;(q),Il;(q)]j :a;_q,.a;+q,.,ap',.,ap,.: 
p,p', 

q,O",O" 

(30) 

Here constant terms have been omitted, In the above equation, the longitudinal component V.,.' corresponds to the 
case in which the spins of the quasiparticles are unchanged after interaction while the transverse component VT ,cor­
responds to the case where opposite spin quasiparticles interact and flip their spins. For the sake of complete~;ss we 
provide the expressions for these two as follows: 

V.,.,(q,E,W,/))=V(q )2([I-G +(q,E)][ I-G~ (q,w)]ReXc(q,/))taa'G _(q,E)G~ (q,w)ReXs(q,/))/( -f.L1) 

-I a[I-G +(q,€)]G~ (q,w)ta'[ I-G~ (q,w)]G _(q,E)jReXcs(q,/))) , (31) 

and 

(32) 

The (fully renormalized) quasiparticle energy E; occurring in Eq. (30) contains both a dynamically screened exchange 
part Esx and a Coulomb hole part ECH 

E;=E;+Esx(p)+EcH(p) , 

where 

(33) 

In the above expression the first term corresponds to the familiar Hartree-Fock exchange energy while the remaining 
terms represent exchange contribution from the dynamical screening produced by charge and spin-density fluctuations. 
In Eq. (33) the Coulomb hole term ECH is given by Eq. (15) with the factors G replaced by their corresponding many­
body local fields G. 

The above derivation of the quasiparticle Hamiltonian is readily extended to the case of an EG with v v degenerate 
components. The problem is considerably simplified under the assumption that the density fluctuations are the same 
for all the components. Also for the case of a multivalley system where the relevant valleys are separated by a large 
momentum, an electron retains its valley after being scattered by other electrons. Then the electrons in different valleys 
can be regarded as different components with the component index v representing an additional quantum number. An 
additional complication is however represented by the fact that in the derivation of the quasi particle Hamiltonian, the 
many-body local fields G±, must be replaced by G:t, i.e" those appropriate for a multicomponent system (see Appendix 
A for further details), The final expression for the quasiparticle Hamiltonian is given as follows: 
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HQP = I E: :a:'u.vap.u,v:+t I Hv(q)+ Vu,u,(q, - ~::( -q),~:(q),~~(q))l:a:-q,u.va:+q,U"V,ap',u"v,ap,u,v: 
p,u,V P'~I~, 

a,a ,v,v 

+ V~,u,(q, -~V( -q),~~U(q),~~U(q)):a:_q,_u,va:+q,_U"v,ap',u"v,ap,u,v:] . 

(35) 

The quasipartic1e energy and the effective interaction 
terms are still formally the same as those appearing in 
Eq. (15) and Eqs. (31)-(34). As for the response functions 
that enter these terms, expressions are derived in Appen­
dixA. 

V. DISCUSSION AND CONCLUSIONS 

We have derived a quasipartic1e pseudo-Hamiltonian 
for a multicomponent infinitesimally polarized Fermi 
liquid. This quasiparticle Hamiltonian is constructed in 
such a way as to properly account in an averaged way for 
the usually unwieldy effects of correlations beyond the 
popular RP A. This was achieved through the approxi-

mate use of Hubbard generalized many-body local fields 
associated with both charge and spin fluctuations. Our 
results can at this point be used to perform explicit calcu­
lations of many-body effects in the EG. To this purpose 
suitable approximations to the Hubbard local fields must 
be used. Such approximate expressions involve in turn 
the knowledge of the exact limits acquired by such quan­
tities.29- J2 The alternative is to use for these functions 
the output of numerical work. 12 Lately a elegant self­
consistent method for the evaluation of useful expressions 
of the Hubbard local fields has been devised.2] The re­
sults of such an analysis will be presented elsewhere.]] 

Our results of Eqs. (15), (33), and (34) for the self­
energy can be recast in the following transparent and use­
ful form (see Ref. 33): 

-2a Re[(1-G~ )G _lXcs)jgU(p-q,ltJ-f)+4v(q )2IG~ 12Xru I( -1J~)g -U(p-q,ltJ-f)] , 

(36) 

where in order to recover our results one must set ltJ=f:. 
Here gU(k,ltJ) is the bare one electron Green's function 
and is defined as follows: 

(37) 

Furthermore, in Eq. (36) it is understood that the G ± are 
functions of q and ~~(q), that the G~ is a function of q 
and ~~U(q), and that the response functions depend on q 
and f. The expressions for the effective interaction terms 
in Eqs. (31) and (32) and that for the self-energy in Eq. 
(36) can be seen to be e~uivalent to the corresponding re­
sults of Ng and Singwi,2 who however did not attempt to 
express their expressions in a transparent form (see also 

Ref. 33). There are also some differences mostly associat­
ed with the frequency dependence of the various quanti­
ties. The results of Ref. 21 can in fact be recovered if in 
our Eqs. (31), (32), and (36) in the many-body local fields 
that are prefactors to the response functions the complex 
conjugate forms are replaced by the corresponding com­
plex forms, and the frequencies of all the local fields are 
replaced by the frequency appearing in the response func­
tions. 

It is of interest to note that for the special case of an 
unpolarized electron liquid, the charge and spin fluctua­
tions are not coupled and also, owing to the isotropy, the 
effective potential due to the transverse spin fluctuations 
is just twice that due to the longitudinal spin fluctuations. 
Accordingly the quasipartic1e self-energy of Eq. (36) 
simplifies to the following form for the unpolarized case: 

(38) 

As for the quasipartic1e Hamiltonian, it is still given by Eq. (30) with ~~U(q)=~~(q) and the following simplifications 
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for the screened exchange, Coulomb hole and the effective interaction terms: 

Esx(p)= - ~h-q(v(q l+v(q )2111-G +[q,A~(q)WRexdq,A~(q)j+ 31G - [q,A~(q)WReXs[q,A~(q))I( -Jl~ ll)] , 
q 

(39) 

ECH(P)=-~V(q)2p foo dW Im [II-G+12xc+3IG_12xs/(-Jl~) 1 ' 
q 0 1/' A~(q)-w 

(40) 

Vu,u,(q,E,W,cS)=v(q )2( [I-G + (q,El][ I-G~ (q,wl]Rexc(q,cSl+t7(J'G _ (q,E)G~ (q,w)ReXs(q,cS)/( -Jl~)j , 

(41) 

and 

V~,U,(q,E,W,cS)=( I-uu')v(q )2G _ (q,E)G~ (q,w)ReXs(q,o)/( -Jl~) . (42) 

For this case the quasipartic1e self-energy and effective in­
teraction terms of Ref. 21 are obtained form Eqs. (38), 
(41), and (42) by making the same modifications as in the 
polarized case. The above results for the effective in­
teraction terms of an unpolarized system agree with those 
derived in Refs. 17, 19, and 20. In these papers however, 
the question of the proper frequency dependence of the 
various response functions and the corresponding local 
fields was not tackled. 

It must be mentioned that our quasiparticle energy 
yields what in a diagrammatic analysis would amount to 
the on-shell value of the self-energy. Furthermore, and in 
connection with the above, it should be made clear that 
the quasi particle Hamiltonian derived here should only 
be used for calculations carried out to first order. This 
prescription is the consequence of the fact that in our 
derivation the renormalization term is explicitly con­
structed so as to ignore higher-order terms in H'. On the 
other hand, we believe that such a procedure is appropri­
ate in view of the fact that, as readily verified, our 
pseudo-Hamiltonian leads by construction to the expect­
ed RP A results when the many-body local-field correc­
tions are neglected.35 

For the case of a mUlti-component system our ap­
proach does not take into account the effects due to the 
difference in the density fluctuations between com­
ponents. Future work that includes these effects is in 
progress. 
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APPENDIX A 

In this appendix, using arguments based on linear 
response theory, we will derive the response functions for 
an infinitesimally polarized EG with Vu degenerate com­
ponents. We will refer here to the various components as 
valleys (as in band valleys). We will assume that the val­
leys are separated by large vectors in momentum space 
and it is therefore reasonable to assume that electrons re­
tain their valley index after a scattering process. 

When an external potential ~ext(q,w) is applied to the 
electronic system it sets up density fluctuations An t of 
spin-up and An I of spin-down electrons. Assuming that 
these density fluctuations are equal for all the valleys, the 
total effective potential felt by a spin up electron can be 
written by generalizing the procedure of Refs. 17 and 34 
as follows: 

1 
2Ant 2Anl I 

~t =~e,,+v(q) [Ant +An 1]-[G1!ntra +G}'i~tra +G}i~ter(vu -l)]---[G}i~tra +G,t;;ter(vv -1)]-- , 
• ., vl)" Vu 

(AI) 

where for the sake of brevity the q and w dependence of the potentials, the density fluctuations, and the many-body lo­
cal fields has not been displayed. In the above equation the G's are assumed to be the same for each valley, the sub­
scripts x and c denote exchange and correlation effects, and the labels intra and inter refer to intravalley and intervalley 
processes. Furthermore, among the terms containing the Coulombic potentials v(q), the sum of the first two terms in­
volving the density fluctuations represents the Hartree term, the next one is the exchange term, and the remaining ones 
are correlation terms. The total effective potential felt by a spin down electron can be similarly written as 

(A2) 
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Furthermore, for an unpolarized system, we note that for 
symmetry reasons 

(A3) 

and 

(A4) 

We assume that the above relations remain approximate­
ly valid for an infinitesimally polarized system. Also, 
when the electrons after interacting with each other 
scatter back to their original valleys, we can write 

(A5) 

With these approximations the potential felt by an elec­
tron with spin a( = ±)) can be cast in the following com­
pact form: 

~,=~ext+v(q)[~nt +~nd(l-G~) 

-av(q)[~nt-~ndG"- , (A6) 

where the quantities G:t are defined as follows: 

G:t ==.L[ Gntra +G,ti~tra Hvvivvv -I )G,t i~tra 1. (A7) 
Vv" , 

Then on defining the single valley local fields G ± as 

G ± == G1}.tra + GJ.i~tra ±G'~i~tra , (AS) 

we obtain the following useful form for the multivalley 
local fields G:t defined in Eq. (A7): 

(A9) 

We will now derive the expression for the charge 
response of an infinitesimally polarized system. In the 
presence of a spin independent infinitesimal external po­
tential ~ex" the total effective potential ~, felt by an elec­
tron of spin a is still given by Eq. (A6). The density fluc­
tuation ~n, is related to ~, via the relation 

(A 10) 

where xg is the response for a free EG as defined in Eq. 
(26) in the text. Then using Eqs. (A6) and (A 10) we ob­
tain the expression for charge response from its definition 

~nt+~nl X -
C ~ext 

vvxci +vvxJ +4v(q)v~xcixJG"-

where 

:Dv == l-v(q)(vvxci+vvXJ)(I-G"+- -G"-) 

_4v(q)2v,XJXJG"-(I-G~) . 

(All) 

(AI2) 

For an unpolarized system, for which xJ = xJ, the expres­
sion for Xc simplifies to the following 

Xc l-v(q)(I-G"+- )vvXo 

whereXo=xJ+X5· 

(Al3) 

To derive the spin response function, we consider the 
case of an infinitesimal external magnetic field H ;xt set­
ting up density fluctuations ~n t and ~n I' Using Eq. 
(A6) we get the relevant effective potential to be 

~,=/LBaH;xt +v(q)[~nt +~n d(l-G~) (AI4) 

-av(q)[~nt-~ndG"- . 

Then from the definition of spin response and from Eqs. 
(AIO) and (AI4) it follows that 

_ ~nl -~n! 
XS=/LB H' 

ext 

(AI5) 

For an unpolarized system this reduces to the familiar 
form 

_ 2 vvXo 
Xs- -/LB v 

l-v(q)G - vvXo 
(AI6) 

The mixed charge-spin response function is obtained 
by using Eqs. (A6), (A 10), and (AI4) 

~n!+~nl vvXJ-vvX5 

/LBH!xt :Dv 

(AI7) 

It should be noted that for an unpolarized system, as can 
be expected from symmetry considerations, Xcs=O. 

The transverse spin response X T, can be defined for a 
multivalley system as follows: 

T,- 2 vvX6' X = -/LB (AIS) 
I +2v(q)G~vvX6' 

where X6'(q,w) is defined in Eq. (2S) in the text. The 
only unknown quantity in Eq. (AIS) is the transverse 
many-body local field G ~ for which we propose the fol­
lowing ansatz: 

GTl!=_I_[Gt! +G!! +G 11 
- - 2vv x,intra c,intra x,intra 

+GL~tra -2G,~intral. (AI9) 

Now, for an unpolarized system XT, simplifies to tXs 
with X6' and G ~ reducing to their unpolarized forms xg 
and G"-, respectively. However, it should be noted that 
within the present approximation of GJ{;).intra =G;(;).intra, 
and the transverse field G ~ coincides with the longitudi­
nal field G"-. 

APPENDIXB 

We will consider here a system with arbitrary polariza­
tion and derive the expression for the mixed charge-spin 
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response function Xcs' Let the initial state of the system 
be 10) and let the Hamiltonian H be characterized by 
eigenstates In) having excitation energies WnO' Let the 
ground state of the system be I G ). In order to obtain an 
expression of Xcs' we begin by considering the spin 
response of the system due to an external spin symmetric 
potential ~(r, t). The Hamiltonian corresponding to the 
perturbation is (with standard notation) given by 

He=[Pq~(q,w)e-,wt+c.c.Je~t . (BI) 

Then the Schriidinger equation can be written as 

1B2) 

where 11/I(t)) is an eigenstate of the total Hamiltonian 
and can be projected onto the states In) as follows: 

1B3) 

The boundary conditions are given by 

where use has been made of the fact that 

(OIS~IO)=O . 1B8) 

In Eq. (B7) the second and third terms on the right 
hand side vanish since In) cannot be coupled to 10) by 
both S~ and P_q since the former has momentum q 
whereas the latter has momentum -q. Then we obtain 
the following expression for the spin response: 

Similarly, upon applying an external magnetic field 
h ~x, (r, t), the charge response is given by 

(
I if n=O 

a (-00 = 
n ) 0 otherwise. 1B4) 

Substituting Eq. 1B3) in Eq. (B2) and retaining only the 
terms that are first order in tb(q,w), we obtain after in­
tegration 

( I I ),1.( ) (-iw+iw"o+~1t n Pq 0 'I' q,w e 
an(t)= . 

w-wno+l71 

(n Ip_qlO )~(q,w )*e liw+iw"o+~)t 
IBS) 

where n *0. Then on defining 

(B6) 

with S'-q being the induced spin density fluctuation 
operator and using Eqs. 1B3), IBS), and (B6), we obtain 

(oIS'-q In )( n Ip_qlo )~(q,w)*eIiW+~)1 

w+wno-i71 

(n IS'-q 10)( Olpqln )~(q,w)el-iw+~)t 1 
w+wno+i71 ' 

(p_q(w)) 

IlBh;x,(q,w) 

(B7) 

(BIO) 

Then on using the definition of Xcs given in Eq. (A17) we 
obtain the following relationship for the mixed charge­
spin response function: 

I (Olp_qln )(nIS~IO) 
Xcs(q,v)=I +. 

n V-Wno 171 

_ (OIS~ln )(nlp_qIO) ) 

v+wno +i71 

=Il (OIS'-qln )(n.lpqIO) 
n V-W no+l71 

_ (nIS'-qIO)(Olpqln) ) 

v+wno+i71 . 
(BI!) 
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We present a quantitative theory of the quasiparticle properties in a Fermi liquid. Our approach uses 
as an input our previous result for the quasiparticie energy which incorporates the vertex corrections as­
sociated with charge and spin-density fluctuations through suitably defined many-body local fields. The 
method is explicitly applied to the case of the quasi-two-dimensional electron liquid occurring in silicon 
inversion layers_ 10 particular, we discuss results for the effective mass m * and the modified Land" fac­
tor g * (Wilson ratiol that are in reasonable agreement with reported findings. Our calculations are per­
formed by making use of a self-consistent static model for the many-body local fields and are consequent­
ly free of arbitrary parameters. 

L INTRODUCTION 

The problem of an electron gas (EG) neutralized by a 
uniform positive background is still .t well understood. 
Although several of the physical properties have long 
been qualitatively explained, meaningful quantitative 
comparisons with experimental data are still not feasible_ 
This work is concerned with furthering the microscopic 
theoretical understanding of the quasi particle properties 
of such a system in the Fermi-liquid regime_ Quinn and 
Ferrell l provided a framework for the microscopic evalu­
ation of the quasi particle energy in an electron gas by im­
plementing through diagrammatic means what is com­
monly referred to as the random-phase approximation 
(RPA). Next, Ricel incorporated the vertex corrections 
in the RP A form of the self-energy by including the Hub­
bard many-body local field. J Some problems in Rice's 
theory were subsequently resolved within the same gen­
eral framework by Ting, and co-workers in their theory 
of the quasi-two-dimensional (Q2D) electron liquid.4•5 A 
more detailed discussion of the merits and shortcomings 
of these important papers will be presented below and 
elsewhere6 .7 All these papers considered only the 
charge-density fluctuations while neglecting the effect of 
the spin-density fluctuations. More recently, a more de­
tailed analysis that accounts for the vertex corrections as­
sociated with both the charge-density fluctuations and 
the spin-density fluctuations was carried out by the au­
thors of Refs_ 8-11 for an unpolarized electron gas_ By 
making use of different approaches, these authors ob­
tained equivalent results for the effective interaction be­
tween two electrons. Moreover, in Refs. 9-11, general 
and complete expressions for the self-energy were also ob­
tained. Calculations performed making use of the results 
of these theories have been carried out both for three­
dimensional9. ll and for two-dimensional systems1J. 14 As 
for the ~olarized case, Ng and Singwi 15 and the present 
authors 6.7 have obtained the self-energy and the effective 
interaction for a system with infinitesimal polarization 
again by incorporating the many-body local fields associ­
ated with the charge- and spin-density fluctuations. Once 
the self-energy of an infinitesimally polarized EG is 

known, one can carry out calculations within the frame­
work of Landau's Fermi-liquid theory l7 and obtain vari­
ous physical properties such as the effective mass m *, the 
modified Lande factor g*, the spin susceptibility, and the 
compressibility _ 

As regards the experimental determination of these 
physical properties, the density dependence of the cyclo­
tron mass has been obtained by Smith and Stiles l8 from a 
study of the fluctuation of magnetoconductance in inver­
sion layers by using Shubnikov-de Haas (SdHl type of 
experiments. To obtain the same information on the cy­
clotron effective mass, Abstreiter et al. 19 used cyclotron 
resonance measurements. Fang and StileslO and Neu­
gebauer et al. ll performed a series of SdH type of experi­
ments on silicon inversion layers also and obtained the 
dependence of g * on density. These authors did not take 
the enhancement of the electron mass into account while 
deducing the value of g*. Consequently, their reported 
values of g * show a dramatic increase as the density is 
changed. Suzuki and Kawamotoll noted this fact and 
rescaled the data values of g' of Fang and StileslO using 
the values of m * experimentally obtained by Smith and 
Stiles. 18 

Several authors have tried to explain the behavior of 
m * and g * as a function of density. Although each of 
these approaches has interesting insights, they do not 
properly consider the various subtleties of present-day 
many-body theories_ The first step toward explaining the 
dependence of g * on the carrier density was taken by 
JanakIJ Janak's expression for the electronic self-energy 
takes into account only the Coulombic interaction simply 
screened by a static RPA dielectric function_ As a result, 
the expression for g * has the right functional form, 
whereas the expression for the effective mass includes 
only screened-exchange effects with the Coulomb hole 
contribution being left out. Furthermore, the contribu­
tion to the self-energy from intervalley scattering is taken 
to be the same as that due to intra valley scattering lead­
ing to a considerable, yet spurious, enhancement in the 
predicted g' values_ 

The next step toward explaining the behavior of g' 
was taken by Suzuki and Kawamoto,ll who introduced 
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the Hubbard modification factor] in a static RP A dielec­
tric function and allowed for some valley degeneracy 
effects. These authors employed the Landau's Fermi­
liquid-theory results using an ad hoc exchange type quasi­
particle interaction function as a result of which the 
spin-symmetric and the spin-antisymmetric parts of the 
interaction function are equal. Their calculated values of 
g' are close in magnitude, although weaker in density 
dependence, when compared to their rescaled version of 
the experimental values reported in Ref. 20. As for the 
m' values, they obtain much smaller values than those 
observed by Smith and Stiles. IS 

Further work along these lines was done by Ando and 
Uemura,24 who also attempted to account for many-body 
effects beyond RPA by a Hubbard many-body local field. 
The Hubbard function chosen by these authors takes into 
account the quasi-two-dimensional nature of the system, 
but the expression for g' incorrectly contains the bare 
mass of the electron instead of its effective mass. These 
authors, too, choose an electronic self-energy involving 
only a static dielectric function. The values of g' calcu­
lated by these authors show stronger density dependence 
when the electronic wave function is assumed to have a 
finite extent in the third dimension. 

Ting, Lee, and Quinn4 went beyond the above theories 
by considering a dynamic dielectric function. These au­
thors adopt the microscopic approach to Fermi-liquid 
theory formulated by Rice.2 They start with the ground­
state energy which they obtain via the integration-over­
the-coupling-constant algorithm. Unfortunately, the 
functional dependence of their dielectric function with 
respect to the occupation numbers contained only the 
effects due to the local fields associated with parallel spins 
and neglects those due to antiparallel spins. The major 
shortcoming of this theory is that the trend of the anoma­
lous g factor as a function of the density is the opposite of 
what one would expect and is, in fact, observed experi­
mentally (see Fig. 2 of Ref. 4). 

Vinter25 also developed a theory to explain the 
effective-mass behavior in inversion layers by taking the 
Q2D nature of the system into account. His self-energy 
involves dynamic screening within the RPA. His calcula­
tions, however, were carried out in the single-pole ap­
proximation which, in general, cannot be trusted from a 
quantitative viewpoint.26 Moreover, the reported values 
are in reasonable agreement with the observed data only 
when the thickness of the inversion layer is neglected. 

It should also be pointed out that all the theories to 
date consider an oversimplified model for the local-field 
correction that enters the formula for the dielectric func­
tion. Also, proper attention has not been paid to the 
effects of spin-density fluctuations. In particular, the 
Hubbard-type local fields used in these theories do not 
have the appropriate behavior in the limiting cases of 
small and large momentum transfer. 

The present paper gives a detailed account of some of 
the results reported previously by the present aut horsY 
In Ref. 27 the derivation of g' is put on a more rigorous 
and satisfactory footing than that presented earlier on in 
Ref. 28. Finally, an alternative, yet physically less satis­
factory procedure based on the integration-over-the-

coupling-constant algorithm will be discussed elsewhere.6 
The paper is organized as follows. In Sec. II we discuss 

Landau's theory of Fermi liquids so as to set up a frame­
work for deriving and calculating m' and g'. Section III 
deals with a necessary input to Landau's phenomenologi­
cal theory - the quasi particle energy of an infinitesimally 
polarized electron liquid. The quasi particle energy fully 
takes into account the many-body effects related to 
charge and spin fluctuations in the liquid. Here we also 
discuss the various response functions that enter the ex­
pression for the quasiparticle energy. Then, using the 
quasiparticle energy, we derive expressions for the quasi­
particle interaction function and for the enhanced g fac­
tor. In Sec. IV, we set up a scheme to calculate m' and 
g' without involving any arbitrary parameters. The 
method involves approximating the many-body local 
fields by Hubbard-type static functions whose large 
momentum values are known exactly and whose small 
momentum values are determined self-consistently in the 
course of the calculation. Last, in Sec. V we discuss our 
results and compare them with previous work. In the 
Appendix, we derive a formula for the parameter that 
enters the expression for the static spin-symmetric local 
field G~ (q,O). 

n. LANDAU'S FERMI-LIQUID THEORY 

The Landau theory of the Fermi liquids is based on the 
following phenomenological yet fundamental relation ex­
pressing the change in the total energy of a system as a 
functional of Bn k. the change of the quasiparticle occupa­
tion number n [ from its ground-state value n ~a: 

BE[n a" 1 = ~ Ea[noa" lBna +1 ~ fa.a· BnaBn a' 
q ~ k q k 2 ~ k.p k P 

k,1l k,p,ll,u' 

(I) 

In the above equation, Bn [ is assumed to be nonvanish­
ingly only for states lying close to the Fermi surface, so 
that all the various quasi particle momenta have a magni­
tude equal to PF' This stipulation clearly indicates that 
such an approach is explicitly designed to treat the low­
energy processes in the electron gas. 

The quasiparticle energy E[ and the Landau interac­
tion function fk.~ appearing in Eq. (I) can be related to 
the total energy via appropriate functional derivatives in 
the standard way: 

E"[na"l=~ 
k q Bnl: 

(2) 

and 

a,a'_ B2E _BEk'[nn 
fk,p - BnaBna' - Ona' 

k p p 

(3) 

It should be noted here that since k and p both lie on the 
Fermi surface, in an isotropic system fk.~ depends only 
on the angle ~ between these two momenta. According­
ly, in what follows we shall drop the subscripts of f. 
Various physical quantities of interest can then be ob­
tained once the interaction function is known. For in-
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stance, in a 2D system we have the following relations for 
the effective mass rn', the enhanced compressibility K', 
the enhanced spin susceptibility X s and the modified 
Lande factor g' (see Ref. 4): 

rn' rn' f2rrd~ 
~=l+~ -fs(~)cos~, 

rn rr 0 2rr 
(4) 

(5) 

(6) 

and 

(7) 

where X~ is the free-electron Pauli value of the spin sus­
ceptibility. In Eqs. (4)-(7) the notations fs and fa indi­
cate the spin-symmetric and spin-antisymmetric com­
ponents of the Landau interaction function, which are 
defined as follows: 

_f1.1+fl.l 
f,= 2 IS) 

and 

_ fl.l_fl,) 
fa= 2 (9) 

Also, in Eq. (5) the compressibility does not include the 
contribution from the rigidity of the positive background. 
From Eqs. (4), (6), and (7) we note the following exact re­
lationship: 

Xs=~~ 
X~ rn g 

I IQ) 

which displays the relation between g' and the Wilson 
ratio. It should be mentioned here that the Eqs. (4), (5), 
and (6) represent only phenomenological expressions for 
the corresponding physical quantities. On the other 

where G ~, G '~, and G ~l' are the generalized H ubbard 
many-body local fields associated with the charge fluctua­
tions, longitudinal spin fluctuations, and transverse spin 
fluctuations, respectively. These quantities will be 
defined below in terms of the corresponding response 
functions: the charge susceptibility Xc, the longitudinal 
spin susceptibility Xs' and the transverse spin susceptibil­
ity XTa , respectively. Furthermore, V(q) is the bare 

hand, the same quantities can be expressed through a 
series of rigorous relations as follows: 

I - I l aE~ I 
-;;;; = PF ap Pf ' 

and at zero temperature 

I a2E 
-=A-
K' aA 2 

and 

(It) 

(12) 

(13) 

where A is the surface area and H is the magnetic field. 
In any case, we find that for computational reasons it is 
easier, for instance, to obtain rn' using Eq. 11 t) rather 
than Eq. (4). In principle, both approaches should lead to 
the same answer. In practice, however, this is not always 
the case and care must be taken to insure the consistency 
of the theory. 

Ill. MICROSCOPIC DERIVATION 
OF THE FERMI-LIQUID PARAMETERS 

As was made clear in the preceding section, an essen­
tial ingredient in the evaluation of the effective mass and 
the enhanced g factor is the quasi particle self-energy as a 
functional of the occupation numbers n k' To this end, 
we have developed a quasi particle pseudo-Hamiltonian 
for an infinitesimally polarized electron gas. 16 The Ham­
iltonian takes into account the vertex corrections associ­
ated with both charge and spin fluctuations. The fully re­
normalized quasi particle energy that appears in the Ham­
iltonian can be expressed in the following physically 
transparent form: 

114) 

where E~x(p) is the screened-exchange term and ECH(p) 
is the Coulomb-hole term. The screened-exchange con­
tribution is given by 

Coulombic interaction and X cs is the mixed charge-spin 
response. Here, all the G's and the x's are appropriate 
for a multivalley electronic system with vG degenerate 
valleys. In Eq. (15) it is understood that the G~ and the 
Xc s,cs are functions of q and Il~(q)=€; -€~_q while the 
G~v and XTa are functions of q and Il;alq)=€~-f;-"q. 
Here, the €~_q are the free-electron band energies. As for 
the Coulomb hole contribution, we have 
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2a Re[( I-G": )G'...lXcs 

(16) 

In the above equation, it is understood that the factors 
G't are functions of q and Il:(q) while G~u is a function 
of q and Il~a(q), Moreover, the response functions de­
pend on q and w, 

For an infinitesimally polarized system the expressions 
for the various response functions, assuming that G ± re­
tain the symmetry of an unpolarized system, are given 
byl6 

vuX6 +vuX5+4V(q )~XJX5G'... 
Xc= (17) 

(18) 

and 

vuX6- vuX5 
Xcs= :JJu 

(19) 

where the denominator :JJu in the above equations is 
defined to be 

:JJu = 1- V(q)(vuX6+VuXJ)(I-G~ -G'...) 

-4V(q)2v;X6X5G'... (1-G~) , (20) 

As for the transverse spin response, it is simply defined as 
follows: 

Ta 
Ta- 2 VuXO 

X = -P.B I +2V(q)G6 vuX6" 
(21) 

The functions Xo and X6" appearing in the above equa­
tions are the free-electron longitudinal and transverse 
responses and can be defined in terms of a one-electron 
Green's function g"(p,w) as follows: 

Joo dE 
Xo(q,w)=~ ~ga(p,E)ga(p+q,E+W) 

p -00 211'l 
(22) 

and 

X6a(q,W)=~ r ~g-a(p,E)ga(p+q,E+W), (23) 
p -00 211'l 

where it should be made clear that ga (p, w) is, in turn, 
defined in terms of the exact occupation numbers n ~ as 
follows: 

na I-na 
ga(p,w)= p ,+ p 

W-Ep-I''1 w-Ep+i1/ 
(24) 

For unpolarized systems we recover the following famil­
iar forms for Xc and X s, which can be treated as the 
defining equations for G ±: 

Xc= u 
1- V(q)( l-G + )vuXo 

(25) 

and 

(26) 

Furthermore, for unpolarized systems due to symmetry 
XTa=Xs/2 and Xcs=O, 

In order to obtain the quasiparticle interaction func­
tion by taking the functional derivative of the quasiparti­
cle energy E: with respect to the occupation number n~, 
it is useful to recast the expression for E~ given by Eqs, 
(14)-116) in the following compact form: 

-2a Re[( I-G~· )G'...lXcs I )ga(p-q,E~ -E) 

+4V(q )2IG"!12XTa /( -p.1 )g-a(p-q,E~ -E)l ' (27) 

In Eq, (27) it is understood that the many-body local fields G't are functions of q and Il~(q), while G ~ is a function of q 
and ll~a(qJ. Furthermore, all the response functions depends on q and E, In order to take the functional derivative of 
the quasiparticle energy with respect to the occupation number n k. we recognize that 

IlXo'(q,w) 
---=llaa,[galp+q,E;+w)+ga(p_q,€;-w)] , 

Iln; 
(28) 

Then by assuming that the local fields are independent of n ~ one obtains from Eqs, (3) and (27) the following result for 
the Landau interaction function of a non polarized electron liquid: 

(29) 
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and 

r I I I I 2 l Xs1q,0) j J' =J. - 2Vlq) [G'-lq,OI]-l 
1 -/lB I q~k-p 

(30) 

In the above equations the terms in the square brackets represent the contribution from the screened exchange while 
the terms Jr. a are associated to higher-order correlation effects and are given by 

(31) 

In Eq. (31) it is understood that the G~ are functions of q and fl;lq) while the Q~ arefunctions of q and E. Further­
more, in Eg. (31) we have defined 

and 

Y=[!lIk+q,Ek +E)+ ilIk-q,Ek -EI]ilIp-q,Ep -El, 

Q + = 1- Vlq)vrXol I-G'- I , 

(321 

(33) 

(34) 

At this point we perform a contour integration so as to switch the integration in Eq. (3 I) from over the real axis to 
over the imaginary axis. We then obtain from Eqs. (7), (9), and (29)-13 I) the following expression for the enhanced 
Lande factor)9 

L.=l-m* f~ ~ iV1q )+V(q)1 r[I-G~lq,0IfXclq,0)-[G'-lq,0)fXslq'101 I j 
g* 0 121T) I 1 -/lB) q~k-p 

2v"m*m JX JX IjRe(II-G~*[q'fl;lq)lIG,-[q'fl~lql]J 
+--J- dz du Vlq) Q I . IQ I . I P+lz,ul 

1T 0 0 _ q,IW + q,IW 

where we have defined the variables z =q /2PF' 
u =wm /qPF' and the function 

_ [(z2- u2-1 12+12zu )2]1/2±lzL U2_1) 
P.iz,U)- 1 1 2 1 

[Iz -u-- 1) +12zu I ] 

IV. SELF-CONSISTENT CALCULATION 
OF m *,g*, and Gi IN INVERSION LAYERS 

(36) 

In this section we develop a simplified yet practical 
self-consistent static model for the many-body local fields. 
We begin by discussing first the nature of the bare 
effective interaction Vlq) in a Q2D structure. The model 
used consists of a semiconductor-oxide-metal sandwich. 
The semiconductor is characterized by a static dielectric 
constant Es while the oxide layer has dielectric constant 
EO and thickness D. Stern and Howard3o proposed the 
following simple expression for the extent of the wave 
function in the direction perpendicular to the surface for 
electrons in the lowest subband: 

(35) 

1)lz)= 1 b2
3 r2z exp 1- b; I ' (37) 

where the parameter b is given by 3/ (z ) with (z ) being 
the average electronic distance from the oxide­
semiconductor interface. The appropriate value for bean 
be obtained by an approximate minimization of the ener­
gy per particle. 3D The corresponding bare Coulomb in­
teraction between two electrons in the lowest subband 
can be expressed as 

21Te 1 
Vlq)=-Llq) , 

E,q 

where the form factor Llq) is given by5 

(38) 

Llq)=ll +x )-6 jf[33+54X +44X2+ l8x J+ 3x 4 ] 
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withx=q/b. 
In order to calculate m * and g * for various densities 

we need an expression for the many-body local fields 
G~(q,w). Such a knowledge can only result from an ex­
act solution of the many-body problem at hand. Accord­
ingly, one has to employ approximate analytic expres­
sions for these quantities. An alternative procedure is to 
follow a suitable numerical routeY 

In general, the G~(q,w) are wave-vector and frequen­
cy dependent. Follo~ing the work of Niklasson,32 it has 
been recently possible to derive exact expressions for the 
limiting values of the local fields for large and small q in 
the static regime. 33.34 For intermediate values of the 
momentum, however, only educated guesses, direct nu­
merical work, or suitable physically judicious combina­
tions of both currently represent viable methods of ap­
proach. In the present work we will therefore approxi­
mate the G ~ (q,w) by means of suitable static interpolat­
ing function~ in the manner of Hubbard. 3 Our functions 
will be accordingly constructed so as to interpolate be-
tween G~(q .... O,w=O) at small wave vectors and 
G~ ( 00 )= G~ (q .... oo,w=q2 /2m ) for large wave vectors. 
It ~hould be ~oticed here that our selections of the values 
of ware designed so as to remain approximately close to 
the single-particle excitation frequency regime of the 
noninteracting system. 

Taking all the above considerations into account, we 
write for our many-body local fields the following simple 
interpolation formulas: 

L(YH) G~(oo)q 
"" L (q) -yr=q 2=+=[=f3±=G=~=(=00=)P=F=Of (40) 

where, as explained below, the coefficients f3± are deter­
mined in a self-consistent way from the static long­
wavelength limits of the charge and spin susceptibilities. 

From Eqs. (39) and (40) we see that for large values of q 
the local fields are independent of the form factor L (q) so 
that their functional form resembles that of the local 
fields in two dimensions. Clearly in this limit the physical 
properties of the electron liquid are determined by short 
distance processes. In fact, as shown in Ref. 34, the fol­
lowing relationships hold for the case of a single-valley 
2DEG: G+(oo)=I-g(O) and G_(oo)=g(O). In these 
formulas g( 0) is the value at the origin of the probability 
of finding two electrons separated by a distance r. 3S The 
corresponding expressions for a multivalley system are l6• J 

(41) 

and 

(42) 

g(O) is a density-dependent property of the electron 
liquid. Numerical calculations of g(O) for 2D electron 
systems have been carried out by Jonson for the case of a 
Q2D system with no valley degeneracy.36 Jonson's work 
was an application of the classic method of Singwi 

et a/.37 In our calculation we therefore elect to fix 
G~( 00) by using for g(O) the numerical values calculated 
by-Jonson.38 

We turn next to the discussion of the small-wave­
vectors regime and will describe explicitly how the 
coefficients f3± appearing in Eq. (40) can be obtained. We 
deal first with the straightforward case of f3 +. This 
coefficient is directly related to the q .... O limit of the 
static-charge-response function Xc(q,O) and is simply 
fixed by means of the compressibility sum rule. 3s This ex­
act relationship stipulates that 

2 *-1' E(q,O)-1 - I' Xc(q,O) (43) nK-Im --Im 
q~O V(q) q-O 1+ V(q)Xc(q,O) , 

where n is the electronic density, E(q,O) is the static 
dielectric constant, and K* is the compressibility as 
defined by Eq. (12).39 By making use of Eqs. (25), (38), 
(40), and (43) we can write the following relationship be­
tween f3 + and K*: 

I 2 11 2L(PF)E,,) 
-;;; = 1frla;2 rsvu - (2!vu )1 !2f3+Es Ry*, (44) 

where Ry*=me4/2E;v is the effective Rydberg, 
a; =E,,/me2 is the effective Bohr radius, rs is the aver­
age electronic separation in units of a;, and 
E,,=(E, +Eo)/2. At this point K* can be evaluated from 
Eq. (12) using the ground-state energy as calculated by 
Jonson36 for the case of a Q2D electron gas with two val­
leys. After some simple manipulations (see Appendix for 
details) we arrive at the following expression for f3 +: 

f3+= 2E"L(PF) [~+-.i. [1.]1/2 __ B_I_2 
Es Vv 1f 8vu Vv (B 2+rs) 

+~ [l.]I!2_B_I _]-1 (45) 
4vv Vv (B 2+rs)3 ' 

where A I =0.625, B 1= 1.782, and B2 =6.25. 
In order to determine f3 _ we adopt instead the follow­

ing self-consistent procedure. We start with a trial value 
for f3 _ and proceed to a first evaluation of m * via Eqs. 
(11) and (14)-(16). Once m * is known, g* is obtained 
from Eq. (35). Then, from these the value of the long­
wavelength static spin susceptibility can be evaluated 
from Eq. (10). Now, from the definition of the spin sus­
ceptibility given in Eq. (26) we obtain the following equa­
tion for Xs(q""O,O) in termsoff3_: 

Xs(q .... O,O) [1- 2L(PF):avVu ]-1 (46) 

X~ f3_EsaBPF 

On substituting into Eq. (46) the value of Xs (q""O,O) ob­
tained from Eq. (10), a new value for f3- is determined. 
This iterative procedure is repeated until convergence is 
reached.4!l Once f3+ and f3- are determined, our theory is 
free of arbitrary parameters. 

V. RESULTS AND DISCUSSION 

We have carried out a number of self-consistent calcu­
lations of both m * and g *, as a function of the electronic 
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density, for a scenario appropriate to the quasi-two­
dimensional electron liquid occurring in a [100] silicon 
inversion layer. In particular, all the numerical results 
reported here have been obtained for the following values 
of the parameters: band mass m =0.19, valley degenera­
cy Vu =2, oxide dielectric constant €o=3.8, semiconduc­
tor dielectric constant €, = I!. 8, thickness of the oxide 
layer D = 5330 A, the average electronic distance from 
the oxide-semiconductor interface 3 /b = 32. 5 A. 

m * and g * have been calculated making use of Eqs. 
(11) and (35), Given the nature of our theory the present 
results are parameter free. Our self-consistent results for 
the corresponding coefficients f3± are plotted in Fig. I as 
a function of 's. There the curves numbered (I) and (2) 
correspond to the theory in this paper and that of Ref. 6, 
respectively. The number of iterations necessary to 
achieve convergence (usually within a few percent) de­
pends on the quality of the initial guess, with five being a 
typical number. 

One of the important questions we have addressed is 
that of understanding the overall relevance and the 
separate effects of the density-fluctuation-induced vertex 
corrections as accounted for by means of the many-body 
local fields G ~ and G "-. The results of our study are 
summarized in Figs. 2 and 3, where the three cases (i) 
G~ =G"- =0, (RPA), (ii) G~ *0, G'~ =0 (no spin­
density fluctuations), and (iii) G ~ *0, G"- *0 (the full 
theory), are displayed. As before, in Fig. I, the curves 
numbered (]) and (2) pertain to the theory developed in 
the present paper and to that of Ref. 6, respectively. We 

20 

15 

10 

1.0 2.0 3.0 

FIG. 1. Self-consistency values of the coefficients 13- and 13 
defined in the text, vs the dimensionless average electronic sepa­
ration 's. The curves labeled 13-1 I) and 13-(2) are, respectively. 
the result of the present theory and that of Ref. 6. The values of 
the parameters used in the calculations are given in the text at 
the beginning of Sec. V. 
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1.1 

1.0 
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FIG. 2. Plot of the effective mass m * /m vs the electronic 
areal density n. The open circles are the observed values report­
ed in Ref. 18. The solid curves labeled G + &G _ I I) and 
G + &G _ (2) display, respectively, the result of the present 
theory and that of Ref. 6. The dashed curve labeled G _ I I) is 
the result one obtains if spin-density fluctuations are neglected. 
The dashed curve labeled RP A is the result one obtains if all the 
many-body local fields were to be neglected. The parameters 
are the same as in Fig. 1. 
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FIG. 3. Plot of the ratio g* /g vs the electronic areal density 
n. The open circles are the original values reported by Fang 
and Stiles in Ref. 20. The dashed curve labeled SK represents 
the very same data as rescaled by Suzuki and Kawamoto in Ref. 
22. The solid curve labeled G l &G I I) displays the results of 
the present theory. The dashed curve labeled Go I I) is the re­
sult one obtains if spin-density fluctuations are neglected. The 
dashed curve labeled RPA is the result one obtains if all the 
many-body local fields were to be neglected. The parameters 
are the same as in Fig. 1. 



49 MANY-BODY LOCAL FIELDS AND FERMI-LIQUID ... 14195 

have also plotted in our figures the experimental values 
for m • from Ref. 18, and the g' data reported in Ref. 20. 
Furthermore, in Fig. 3 we have also displayed the very 
same g* data as rescaled by Suzuki and Kawamoto [22]. 
This rescaling amounts to extracting the g * values from 
the original data of Fang and Stiles20 by making use not 
of the effective-mass values measured in that experiment 
(which showed no enhancement), but those obtained in 
the different experiment of Smith and Stiles. I! The validi­
ty of such a procedure is still controversial. 

It must first be noted that the agreement of the full 
theory with the experimental data is rather satisfactory. 
Also, interestingly, it is clear from Figs. 2 and 3 that in­
cluding only the spin-symmetric local field G ~, as was 
done in the previous theories that tried to go beyond the 
simple RP A, leads to large deviation from the result of 
the full theory and the experimental data. In fact when 
the full theory is implemented a cancellation 
phenomenon seems to take place and the RP A result (ex­
cept for the low-density region) appears to lead to a 
reasonable answer throughout most of the density regime 
analyzed. We therefore conclude that the effects due to 
the spin-density fluctuations should not be neglected and, 
in fact, one is likely to do worse than the simple RP A by 
only including spin-symmetric local fields, as is often 
done. 

From the above discussion on the performance of the 
RPA theory one could naively surmise that the general­
ized Hubbard corrections can be safely ignored altogeth­
er. This is readily seen to be incorrect by recalling that, 
as discussed in Ref. 41, the RPA gives a sensibly smaller 
spin susceptibility enhancement than the present many­
body theory in the case of a strictly two-dimensional elec­
tron liquid. 

A few words must be spent to describe the limitations 
of the present approach and further developments of the 
present theory that should be pursued. It is obvious that 
the quantitative results of this theory are strongly depen­
dent on the model chosen to describe the generalized 
Hubbard local fields. In particular, the popular static ap­
proximation used must be regarded with caution. A 
source of important numerical undeterminacy is also 
represented by the particular choice of the values of the 
density-dependent quantity g(O). Since the evaluation of 
such an important physical property of the electron gas is 
by no means a trivial task, this tends to amplify the prob­
lem. The quantitative validity of our theory could be im­
proved if more care is devoted to the effects of the valley 
degeneracy. In particular, a theory accounting for in­
dependent charge and spin fluctuations in different val­
leys should be developed. 
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APPENDIX 

In this Appendix, we will derive an expression for the 
quantity {3 + by first obtaining the compressibility from 
the total ground-state energy and then using Eq. (44) of 

Sec. IV. The ground-state energy comprises three parts, 
namely, noninteracting kinetic energy, exchange energy, 
and correlation energy. The noninteracting kinetic ener­
gy per particle is simply given by 

_ Ry* 
tKIN---2 . 

vurs 
(All 

The exchange energy for a strictly two-dimensional elec­
tronic system was first derived by Chaplik and it is given 
by42 

(A2) 

Jonson36 has calculated numerically the exchange energy 
for various rs values for a Q2DEG system with two val­
leys. The system is a Si( I DO)-Si02 inversion layer that 
corresponds to a metal-oxide-semiconductor field-effect 
transistor with infinite oxide thickness. We curve fit his 
data to a simple extension of the formula given by the 
above equation and obtain 

· [ ]1!2 Q2D_ 8Ry 2 
Ex ---3- - (A I +A 2rs), 

11'rs Vu 

(A3) 

where A I =0.625 and A2 =0.0428. Here rs ranges be­
tween 0.5 and 4.0. As for the correlation energy per par­
ticle, we assume a form first introduced by Wigner43 as an 
interpolation between the high-density limit and the low­
density Wigner lattice limit: 44 

(A4) 

By curve fitting the above equation to the numerical 
correlation energy obtained by Jonson36 employing the 
method of Singwi et al.,3) we obtain for the Q2DEG sys­
tem described above BI =1.782 and B2=6.2S. For a 
large enough system we can write the total energy as fol­
lows: 

E=Ah(rs ) , (AS) 

where A is the area of the system and from Eqs. (A 11, 
(A3), and (A4) h(rs) is here given by 

At this point we make use of Eqs. (12) and (AS) to obtain 
the following formula for the compressibility K*: 

I r2 3r 
-=.!..h"(r )+~h'(r ) 
K* 4 s 4 s' 

(A7) 

Then, on substituting the expression for h of Eq. (A6), we 
obtain 
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Ry' BI Ry' BI 

41Tv,.rsa;l (B 2+rs)2 - 21Tv,.a;2 (B2+rs)1 . 

(AS) 

Making use of Eqs. (44) and IAS) we finally arrive at the 
sought after expression for the coefficient f3 t: 
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A new type of surface polariton, which can occur at the surface of a semiconducting 
superlattice, is introduced. Because of the quantization of the electron energy levels by 
the superJattice potential this new polariton mode has the remarkable property of being 
free from Landau damping. 

PACS numbers: 71.36.+c, 71.45.-d, 73.40.Lq 

Electromagnetic modes which propagate along 
the interface between two media with different 
dielectric properties and which involve photons 
coupled to dipole excitations are called surface 
polaritons. ' In simple metals and degenerate 
semiconductors, which are well approximated by 
a jellium model, the surface plasmon-polariton 
occurs at a frequency w'P which is always small­
er than the bulk plasmon frequency wp.' Because 
the presence of the surface destroys the lattice 
translational invariance, surface plasmons in 
these systems can always excite electron-hole 
pairs, and they are thus subject to Landau damp­
ing. 3 Both in semiconducting and metallic super­
lattices the bulk plasmon spectrum4" is rich in 
structure. In the former the single-particle 
spectrum is characterized by quantized electron­
ic minibands. In the quantum limit, in which 
only the lowest miniband is occupied, there can 
exist both intrasubband and intersubband collec­
tive modes. The frequency of these modes de­
pends in different ways on q and k, the compo­
nents of wave vector parallel and perpendicular 
to the superlattice layers, respectively. The 
existence of this rich structure in the bulk excita­
tion spectrum gives rise to a novel set of surface 
polariton modes' with the remarkable property 
of being free of Landau damping. The surface 
polariton frequency for a given value of q can 
occur either above or below the bulk plasmon 
continuum, depending on the ratio of the back­
ground dielectric constants of the semiconductor 
and the bounding material. In the case of polar 
semiconductors the electric field of the excita­
tions gives rise to plasmon -phonon interaction 
resulting in coupled surface plasmon-phonon 
polaritons. Because this new type of surface 
polariton has never been observed experimentally, 
the object of this note is to elucidate a few of its 
remarkable properties in the hope of stimulating 
experiment. 

The simplest model of a superlattice which cor­
rectly describes the intrasubband plasma modes 7 

consists of a periodic array of two-dimensional 
electron-gas layers imbedded in a material of 
background dielectric constant Es' In this model 
the miniband structure of the super lattice is ne­
glected' and only the ground subband and the 
intrasubband collective modes are conSidered.' 
The bulk plasmon spectrum can most easily be 
obtained by writing the general solution of the 
wave equation in the regions between the electron 
layers, assuming that E(z +na) =exp(iJ.na)E(z), 
where a is the super lattice period, and imposing 
the standard electromagnetic boundary conditions 
at each of the two-dimensional electron layers. 
For q «k F, k F being the Fermi wave vector of a 
two-dimensional electron gas, and w« qk ,him, 
the resulting dispersion relation is given by 

w2(q, k) = (1/2Es )qa S(q, k)w p ' • (1) 

Here wp is the effective three-dimensional plas­
ma frequency, w.'=4rrn se'/ma, where lis is the 
number of electrons per unit area in any layer. 
S(q, k) =sinhqa {coshqa - coskaj -1 is a structure 
factor. For small values of the parameter qa, 
corresponding to strong coupling between the lay­
ers' a band of plasma modes results with fre­
quencies w(q, k) between w +(q) = w(q, 0) and w_(q) 
= w(q, rr / al. This band appears as the upper 
shaded region in Fig. 1, a plot of frequency w 
vs wave vector q. 

In order to describe surface excitations we as­
sume that the periodic array of two-dimensional 
electron layers described above fills the space 
z > 0, while an insulator of dielectric constant Eo 

fills the space z < O. We follow exactly the same 
prescription of writing down solutions of the 
wave equation in each region and imposing stan­
dard boundary conditions at the planes z = na for 
Il = 0, 1, 2, . .. . However, in this case we are 
interested in the situation in which the electric 
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FIG. 1. A plot of frequency vs qa, the product of 

wave number parallel to the layers and superIattice 
spacing. The upper shaded region is the band of bulk 
intrasubband pJasmons. rhe lower shaded region is 
the single-particle continuum. The surface polariton 
mode is the solid line which intersects the bulk plasmon 
continuum at (qa)' = 0.154 as shown in the inset. 

field in the region z > 0 satisfies the relation 
E(z +na) ~e-"na E(z), where Cl has a positive real 
part. In addition, the boundary condition at z = 0 
is different from those at z = na for n ~ 1, be­
cause of the ahrupt change in background dielec­
tric constant from Es to to, and because only the 
decaying-wave solution is allowed in the region 
z < O. In the electrostatic or nonretarded limit 
(cq »w) the resulting dispersion relation is 

[l_e(o+, la II E + - v, X(q, w) J 

+[l_e(O-, la l [E_+v,x(q,w)l~o. (2) 

Here Cl, the inverse of the penetration depth, is 
the complex value of k for which the bulk disper­
sion relation [Eq. (1) J is satisfied for the given 
value of q and w. We have introduced the symbols 
X(q, w), the polarizability of the two-dimensional 
electron gas; v, =2rre'/q, the Fourier transform 
of the two-dimensional Coulomb interaction; and 
E, = ;(Es ± Eo). The solution of Eq. (2), which 
must be obtained numerically, depends in an im­
portant way on the ratio of E, to Eo. For 1., ". to 

the parameter Cl is real, and the surface mode 
occurs at a frequency above the bulk plasmon con­
tinuum. For large values of qu, Cl is equal to q, 
but it decreases to zero as q decreases to the 

920 

value q*. Thus, for wavelengths short compared 
to super lattice period, the penetration depth is 
one wavelength, while for qo:q*, the penetration 
depth becomes infinite. For Es < Eo, Cl acquires 
an imaginary part (equal to rr/a) and the surface 
mode falls below the continuum. The result is 
illustrated by the solid curve in Fig. 1 which cor­
responds to a semiconductor -vacuum interface 
with E s ~ 13 and Eo'" 1. It is interesting to note 
that the frequency of the surface mode intersects 
the bulk plasmon continuum at a finite value of 
the wave vector q; an enlargement of the region 
of intersection is shown in the inset. The inter­
section with the continuum occurs at a value of q 
~ q* given by 

(3) 

For q <q* surface modes do not exist because 
the decay parameter Cl is purely imaginary. As 
E s approaches Eo the value of q* increases loga­
rithmically, so that the existence of surface 
modes depends quite critically on the difference 
in background dielectric constants of the semi­
conducting super lattice and the bounding medium. 
If the first two-dimensional electron layer oc­
curs a small distance (compared to the super­
lattice period) from the interface, the value of q* 
is increased as would be expected. We have ob­
tained numerical results for the case in which Eo 

> i..,; the surface mode lies below the continuum 
and intersects the lower edge at a value of q* 
given by Eq. (3). 

In a three-dimensional jellium model, a sur­
face plasmon of wave vector q, parallel to the 
surface, and frequency w can always decay into 
an electron-hole pair conserving both energy and 
the parallel component of the wave vector. The 
reason for this is that the electronic energy spec­
trum is a continuous function of k, the normal 
wave number, and any change in k is allowed be­
cause the presence of the surface relaxes the 
condition of wave-vector conservation. In the 
semiconducting super lattice, however, the quan­
tization of the electronic energy levels by the 
superlattice potential makes it impossible to con­
serve energy and parallel wave vector in the 
creation of an electron-hole pair by an elemen­
tary excitation lying outside the single -particle 
continuum. For the simple model used in this 
note, the single -particle continuum consists of 
that portion of the w-q plane in which w <hq(k r 
+q/2)2m. The single-particle continuum ap­
pears as the lower shaded region in Fig. 1. For 
the model considered in Ref. 4, there are a num-
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ber of "two-dimensional" electronic subbands 
separated by energy Izwno from the ground sub­
band, and there can exist a set of intersubband 
collective modes. In that case, there are addi­
tional regions of the Single-particle continuum 
defined by -nq(k F - q/2)/2m +wnO <w <nq(k F +q/ 
2)/2m +wno for each subband separation wnO' 
Collective surface excitations lying outside the 
single-particle continuum are unable to decay 
into a single electron-hole pair and are thus not 
subject to Landau damping. Therefore, in high­
mobility semiconducting super lattices, these 
surface modes should have a very long lifetime. 

A good candidate for possible observation of 
the surface polariton modes discussed here is 
the GaAs-AI,Gal-xAs superlattice system.' In 
this system the background dielectric function 
E, is not a constant, but it is a function of fre­
quency: E,(W) = E,( "")(w' - W L') (w' - W r')-" 
where E, (00) is the high -frequency dielectric 
constant, and W Land wr are the longitudinal and 
transverse optical phonon frequencies respec­
tively. By taking account of the frequency depen­
dence of E,(W), we find a system of coupled bulk 
intrasubband-plasmon-optical-phonon bands, as 
shown by the two upper shaded regions in Fig. 2. 
The plasmon continuum is very similar to that 
in Fig. 1 in which coupling to phonons is neglect­
ed. The bulk longitudinal optical phonon mode 
becomes dispersive, and is broadened into a 
band by coupling to the plasmons. The param­
eters used in the numerical calculation are E,(<Xl) 
=10.9, E,(0)=(W L'/W T ')E,(OO)=13, and Eo=1; the 
values of W Land W p are taken to be 5.5 x 1013 

sec-' and 3.13 X10 13 sec- l respectively. The 
solid lines represent the coupled surface plas­
mon-phonon polariton modes. Again, we ob­
serve the plasmonlike mode above the bulk con­
tinuum for values of q larger than some critical 
value. la 

The phononlike mode begins below the bulk 
phonon continuum, but the coupling to the plas­
mon forces it to merge with the continuum and 
eventually to reappear above it at a larger value 
of q. 

Because the surface polaritons are nonradia­
tive, they do not couple directly to light. In 
order to observe the modes in optical absorption 
or reflectance it will be necessary to destroy the 
translation invariance along the surface by, for 
example, producing a grating on the surface. 
The grating spacing I should satisfy the inequal­
ity 1< 2rrq*-'; this is in the range of thousands of 
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FIG. 2. Same plot as Fig. 1 when coupling to optical 
phonons is included. The two upper shaded regions are 
bulk intrasubband-plasmon-phonon modes. The two 
solid curves are ihe coupled surface polariton modes. 
The phononlike polariton intersects the continuum from 
above, and reappears below the continuum for very 
small values of wave vector. 

angstroms and should not be difficult to achieve. 
The relatively large values of q* make attenuated 
total reflection seem an unlikely method of ob­
servation. However, resonant Raman scattering" 
and electron-energy-Ioss spectroscopy appear 
to be possible techniques for observing these 
surface polaritons. In these experiments large 
momentum transfer along the surface is pOSSible, 
so that values of q greater than q* can be attained. 
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