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Abstract. By presenting the proofs of a few sample results, we introduce the
reader to the use of nonstandard analysis in aspects of combinatorics of numbers.

Introduction

In the last years, several combinatorial results about sets of integers that
depend on their asymptotic densities have been proved by using the tech-
niques of nonstandard analysis, starting from the pioneering work by R.
Jin (see e.g. [6, 8, 9, 12–14, 16, 17]). Very recently, the hyper-integers of
nonstandard analysis have also been used in Ramsey theory to investi-
gate the partition regularity of possibly non-linear diophantine equations
(see [6, 19]).

The goal of this paper is to give a soft introduction to the use of non-
standard methods in certain areas of density problems and Ramsey the-
ory. To this end, we will focus on a few sample results, aiming to give
the flavor of how and why nonstandard techniques could be successfully
used in this area.

Grounding on nonstandard definitions of the involved notions, the pre-
sented proofs consist of arguments that can be easily followed by the in-
tuition and that can be taken at first as heuristic reasonings. Subsequently,
in the last foundational section, we will outline an algebraic construction
of the hyper-integers, and give hints to show how those nonstandard ar-
guments are in fact rigorous ones when formulated in the appropriate lan-
guage. We will also prove that all the nonstandard definitions presented
in this paper are actually equivalent to the usual “standard” ones.

Two disclaimers are in order. Firstly, this paper is not to be taken as
a comprehensive presentation of nonstandard methods in combinatorics,
but only as a taste of that area of research. Secondly, the presented re-
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sults are only examples of “first-level” applications of the nonstandard
machinery; for more advanced results one needs higher-level nonstan-
dard tools, such as saturation and Loeb measure, combined with other
non-elementary mathematical arguments.

1 The hyper-numbers of nonstandard analysis

This introductory section contains an informal description of the basics
of nonstandard analysis, starting with the hyper-natural numbers. Let us
stress that what follows are not rigorous definitions and results, but only
informal discussions aimed to help the intuition and provide the essential
tools to understand the rest of the paper.1

One possible way to describe the hyper-natural numbers ∗N is the fol-
lowing:

• The hyper-natural numbers ∗N are the natural numbers when seen
with a “telescope” which allows to also see infinite numbers beyond
the usual finite ones. The structure of ∗N is essentially the same as N,
in the sense that ∗N andN cannot be distinguished by any “elementary
property”.

Here by elementary property we mean a property that talks about ele-
ments but not about subsets2, and where no use of the notion of infinite
or finite number is made.

In consequence of the above, the order structure of ∗N is clear. After
the usual finite numbers N = {1, 2, 3, . . .}, one finds the infinite numbers
ξ > n for all n ∈ N. Every ξ ∈ ∗N has a successor ξ + 1, and every
non-zero ξ ∈ ∗N has a predecessor ξ − 1.
∗N = {

1, 2, 3, . . . , n, . . .︸ ︷︷ ︸
finite numbers

. . . , N − 2, N − 1, N , N + 1, N + 2, . . .︸ ︷︷ ︸
infinite numbers

}
Thus the set of finite numbers N has not a greatest element and the set
of infinite numbers N∞ = ∗N \ N has not a least element, and hence
∗N is not well-ordered. Remark that being a well-ordered set is not an
“elementary property” because it is about subsets, not elements.3

1 A model for the introduced notions will be constructed in the last section.

2 In logic, this kind of properties are called first-order properties.

3 In logic, this kind of properties are called second-order properties.
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• The hyper-integers ∗Z are the discretely ordered ring whose positive
part is the semiring ∗N.

• The hyper-rationals ∗Q are the ordered field of fractions of ∗Z.

Thus ∗Z = −∗N∪{0}∪∗N, where−∗N = {−ξ | ξ ∈ ∗N} are the negative
hyper-integers. The hyper-rational numbers ζ ∈ ∗Q can be represented
as ratios ζ = ξ

ν
where ξ ∈ ∗Z and ν ∈ ∗N.

As the next step, one considers the hyper-real numbers, which are in-
strumental in nonstandard calculus.

• The hyper-reals ∗R are an ordered field that properly extends both
∗Q and R. The structures R and ∗R satisfy the same “elementary
properties”.

As a proper extension of R, the field ∗R is not Archimedean, i.e. it con-
tains non-zero infinitesimal and infinite numbers. (Recall that a number
ε is infinitesimal if −1/n < ε < 1/n for all n ∈ N; and a number � is
infinite if |�| > n for all n.) In consequence, the field ∗R is not complete:
e.g., the bounded set of infinitesimals has not a least upper bound.4

Each set A ⊆ R has its hyper-extension ∗A ⊆ ∗R, where A ⊆ ∗A. E.g.,
one has the set of hyper-even numbers, the set of hyper-prime numbers,
the set of hyper-irrational numbers, and so forth. Similarly, any function
f : A → B has its hyper-extension ∗ f : ∗A → ∗B, where ∗ f (a) = f (a)
for all a ∈ A. More generally, in nonstandard analysis one considers
hyper-extensions of arbitrary sets and functions.

The general principle that hyper-extensions are indistinguishable from
the starting objects as far as their “elementary properties” are concerned,
is called transfer principle.

• Transfer principle: An “elementary property” P holds for the sets
A1, . . . , Ak and the functions f1, . . . , fh if and only if P holds for
the corresponding hyper-extensions:

P(A1, . . . , Ak, f1, . . . , fh) ⇐⇒ P(∗A1, . . . , ∗Ak, ∗ f1, . . . , ∗ fh)

Remark that all basic set properties are elementary, and so A ⊆ B ⇔
∗A ⊆ ∗B, A ∪ B = C ⇔ ∗A ∪ ∗B = ∗C , A \ B = C ⇔ ∗A \ ∗B = ∗C , and
so forth.

4 Remark that the property of completeness is not elementary, because it talks about subsets and
not about elements of the given field. Also the Archimedean property is not elementary, because it
requires the notion of finite hyper-natural number to be formulated.
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As direct applications of transfer one obtains the following facts: The
hyper-rationals ∗Q are dense in the hyper-reals ∗R; every hyper-real num-
ber ξ ∈ ∗R has an an integer part, i.e. there exists a unique hyper-integer
μ ∈ ∗Z such that μ ≤ ξ < μ+ 1; and so forth.
As our first example of nonstandard reasoning, let us see a proof of

König’s Lemma, one of the oldest results in infinite combinatorics.

Theorem 1.1 (König’s Lemma – 1927). If a finite branching tree has
infinitely many nodes, then it has an infinite branch.

Nonstandard proof. Given a finite branching tree T , consider the
sequence of its finite levels 〈Tn | n ∈ N〉, and let 〈Tν | ν ∈ ∗N〉 be
its hyper-extension. By the hypotheses, it follows that all finite levels
Tn �= ∅ are nonempty. Then, by transfer, also all “hyper-levels” Tν are
nonempty. Pick a node τ ∈ Tν for some infinite ν. Then {t ∈ T | t ≤ τ }
is an infinite branch of T .

2 Piecewise syndetic sets

A notion of largeness used in combinatorics of numbers is the following.

• A set of integers A is thick if it includes arbitrarily long intervals:
∀n ∈ N ∃x ∈ Z [x, x + n) ⊆ A.

In the language of nonstandard analysis:

Definition 2.1 (Nonstandard). A is thick if I ⊆ ∗A for some infinite
interval I .

By infinite interval we mean an interval [ν, μ] = {ξ ∈ ∗Z | ν ≤
ξ ≤ μ} with infinitely many elements or, equivalently, an interval whose
length μ− ν + 1 is an infinite number.
Another important notion is that of syndeticity. It stemmed from dy-

namics, corresponding to finite return-time in a discrete setting.

• A set of integers A is syndetic if it has bounded gaps:
∃k ∈ N ∀x ∈ Z [x, x + k) ∩ A �= ∅.

So, a set is syndetic means that its complement is not thick. In the lan-
guage of nonstandard analysis:
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Definition 2.2 (Nonstandard). A is syndetic if ∗A ∩ I �= ∅ for every
infinite interval I .

The fundamental structural property considered in Ramsey theory is
that of partition regularity.

• A family F of sets is partition regular if whenever an element A ∈ F
is finitely partitioned A = A1 ∪ . . . ∪ An , then at least one piece
Ai ∈ F .

Remark that the family of syndetic sets fails to be partition regular.5 How-
ever, a suitable weaking of syndeticity satisfies the property.

• A set of integers A is piecewise syndetic if A = T ∩ S where T is
thick and S is syndetic; i.e., A has bounded gaps on arbitrarily large
intervals:

∃k ∈ N ∀n ∈ N ∃y ∈ Z ∀x ∈ Z [x, x + k) ⊆ [y, y + n)⇒
⇒ [x, x + k) ∩ A �= ∅.

In the language of nonstandard analysis:

Definition 2.3 (Nonstandard). A is piecewise syndetic (PS for short) if
there exists an infinite interval I such that ∗A∩ I has only finite gaps, i.e.
∗A ∩ J �= ∅ for every infinite subinterval J ⊆ I .

Several results suggest the notion of piecewise syndeticity as a relevant
one in combinatorics of numbers. E.g., the sumset of two sets of natu-
ral numbers having positive density is piecewise syndetic6; every piece-
wise syndetic set contains arbitrarily long arithmetic progressions; a set
is piecewise syndetic if and only if it belongs to a minimal idempotent
ultrafilter7.

Theorem 2.4. The family of PS sets is partition regular.

5 E.g., consider the partition of the integers determined by

A =
⋃
n∈N

[−22n,−22n−1) ∪
⋃
n∈N

[22n−1, 22n)

and its complement Z \ A, neither of which is syndetic.
6 This is Jin’s theorem, proved in 2000 by using nonstandard analysis (see [13]).

7 See [11, Section 4.4].
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Nonstandard proof. By induction, it is enough to check the property for
2-partitions. So, let us assume that A = BLUE ∪ RED is a PS set; we
have to show that RED or BLUE is PS. We proceed as follows:

• Take the hyper-extensions ∗A = ∗BLUE ∪ ∗RED.
• By the hypothesis, we can pick an infinite interval I where ∗A has only
finite gaps.

• If the ∗blue elements of ∗A have only finite gaps in I , then BLUE is
piecewise syndetic.

• Otherwise, there exists an infinite interval J ⊆ I that only contains
∗red elements of ∗A. But then ∗RED has only finite gaps in J , and
hence RED is piecewise syndetic.

3 Banach and Shnirelmann densities

An important area of research in number theory focuses on combinatorial
properties of sets which depend on their density. Recall the following
notions:

• The upper asymptotic density d(A) of a set A ⊆ N is defined by
putting:

d(A) = lim sup
n→∞

|A ∩ [1, n]|
n

.

• The upper Banach density BD(A) of a set of integers A ⊆ Z gener-
alizes the upper density by considering arbitrary intervals in place of
just initial intervals:

BD(A) = lim
n→∞

(
max
x∈Z

|A ∩ [x + 1, x + n]|
n

)

= inf
n∈N

{
max
x∈Z

|A ∩ [x + 1, x + n]|
n

}
.

In order to translate the above definitions in the language of nonstandard
analysis, we need to introduce new notions.

In addition to hyper-extensions, a larger class of well-behaved subsets
of ∗Z that is considered in nonstandard analysis is the class of internal
sets. All sets that can be “described” without using the notions of finite
or infinite number are internal. Typical examples are the intervals

[ξ, ζ ] = {x ∈ ∗Z | ξ ≤ x ≤ ζ } ; [ξ,+∞) = {x ∈ ∗Z | ξ ≥ x} ; etc.
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Also finite subsets {ξ1, . . . , ξn} ⊂ ∗Z are internal, as they can be de-
scribed by simply giving the (finite) list of their elements. Internal subsets
of ∗Z share the same “elementary properties” of the subsets of Z. E.g.,
every nonempty internal subset of ∗Z that is bounded below has a least
element; in consequence, the set N∞ of infinite hyper-natural numbers
is not internal. Internal sets are closed under unions, intersections, and
relative complements. So, also the set of finite numbers N is not internal,
as otherwise N∞ = ∗N \ N would be internal.

Internal sets are either hyper-infinite or hyper-finite; for instance, all
intervals [ξ,+∞) are hyper-infinite, and all intervals [ξ, ζ ] are hyper-
finite. Every nonempty hyper-finite set A ⊂ ∗Z has its internal cardinal-
ity ‖A‖ ∈ ∗N; for instance ‖[ξ, ζ ]‖ = ζ − ξ + 1. Internal cardinality and
the usual cardinality agree on finite sets.

If ξ, ζ ∈ ∗R are hyperreal numbers, we write ξ ∼ ζ when ξ and ζ are
infinitely close, i.e. when their distance |ξ − ζ | is infinitesimal. Remark
that if ξ ∈ ∗R is finite (i.e., not infinite), then there exists a unique real
number r ∼ ξ , namely r = inf{x ∈ R | x > ξ}.8
We are finally ready to formulate the definitions of density in nonstan-

dard terms.

Definition 3.1 (Nonstandard). For A ⊆ N, its upper asymptotic density
d(A) = β is the greatest real number β such that there exists an infinite
ν ∈ ∗N with

‖∗A ∩ [1, ν]‖/ν ∼ β .

Definition 3.2 (Nonstandard). For A ⊆ Z, its upper Banach density
BD(A) = β is the greatest real number β such that there exists an infinite
interval I with

‖∗A ∩ I‖/‖I‖ ∼ β .

Another notion of density that is widely used in number theory is the
following.

• The Schnirelmann density σ(A) of a set A ⊆ N is defined by

σ(A) = inf
n∈N

|A ∩ [1, n]|
n

.

8 Such a real number r is usually called the standard part of ξ .
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Clearly BD(A) ≥ d(A) ≥ σ(A), and it is easy to find examples where
inequalities are strict. Remark that σ(A) = 1 ⇔ A = N, and that
BD(A) = 1 ⇔ A is thick. Moreover, if A is piecewise syndetic then
BD(A) > 0, but not conversely.

Let us now recall a natural notion of embeddability for the combinato-
rial structure of sets:9

• We say that X is finitely embeddable in Y , and write X ≤fe Y , if every
finite F ⊆ X has a shifted copy t + F ⊆ Y .

It is readily seen that transitivity holds: X ≤fe Y and Y ≤fe Z imply
X ≤fe Z . Notice that a set is ≤fe-maximal if and only if it is thick. Finite
embeddability preserves fundamental combinatorial notions:

• If X ≤fe Y and X is PS, then also Y is PS.
• If X ≤fe Y and X contains an arithmetic progression of length k, then
also Y contains an arithmetic progression of length k.

• If X ≤fe Y then BD(X) ≤ BD(Y ).

Remark that while piecewise syndeticity is preserved under≤fe, the prop-
erty of being syndetic is not. Similarly, the upper Banach density is pre-
served or increased under ≤fe, but upper asymptotic density is not.
Other properties that suggest finite embeddability as a useful notion

are the following:

• If X ≤fe Y then X − X ⊆ Y − Y ;

• If X ≤fe Y and X ′ ≤fe Y ′ then X − X ′ ≤fe Y − Y ′.

In the nonstandard setting, X ≤fe Y means that a shifted copy of the
whole X is found in the hyper-extension ∗Y .

Definition 3.3 (Nonstandard). X ≤fe Y if ν + X ⊆ ∗Y for a suitable
ν ∈ ∗N.

Remark that the key point here is that the shift ν could be an infinite
number.

The sample result that we present below, due to R. Jin [12], allows
to extend results that hold for sets with positive Schnirelmann density to
sets with positive upper Banach density.

9 This notion is implicit in I.Z. Ruzsa’s paper [20], and has been explicitly considered in [6, Section
4]. As natural as it is, it is well possible that finite embeddability has been also considered by other
authors, but I am not aware of it.
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Theorem 3.4. Let BD(A) = β > 0. Then there exists a set E ⊆ N with
σ(E) ≥ β and such that E ≤fe A.

Nonstandard proof. By the nonstandard definition of Banach density,
there exists an infinite interval I such that the relative density ‖∗A ∩
I‖/‖I‖ ∼ β. By translating if necessary, we can assume without loss
of generality that I = [1,M] where M ∈ N∞. By a straight counting
argument, we will prove the following:

• Claim. For every k ∈ N there exists ξ ∈ [1,M] such that for all
i = 1, . . . , k, the relative density ‖∗A ∩ [ξ, ξ + i)‖/ i ≥ β − 1/k.

We then use an important principle of nonstandard analysis, namely:

• Overflow: If A ⊆ ∗N is internal and contains all natural numbers, then
it also contains all hyper-natural numbers up to an infinite ν:

A internal & N ⊂ A �⇒ ∃ν ∈ N∞ [1, ν] ⊆ A.

By the Claim, the internal set below includes N:

A = {ν ∈ ∗N | ∃ξ ∈ [1,M] ∀i ≤ ν ‖∗A ∩ [ξ, ξ + i)‖/ i ≥ β − 1/ν}.
Then, by overflow, there exists an infinite ν ∈ ∗N and ξ ∈ [1,M] such
that ‖∗A ∩ [ξ, ξ + i)‖/ i ≥ β − 1/ν for all i = 1, . . . , ν. In particular,
for all finite n ∈ N, the real number ‖∗A ∩ [ξ, ξ + n)‖/n ≥ β because it
is not smaller than β − 1/ν, which is infinitely close to β. If we denote
by E = {n ∈ N | ξ + n ∈ ∗A}, this means that σ(E) ≥ β. The thesis is
reached because ξ + E ⊆ ∗A, and hence E ≤fe A, as desired.
We are left to prove the Claim. Given k, assume by contradiction that

for every ξ ∈ [1,M] there exists i ≤ k such that ‖∗A ∩ [ξ, ξ + i)‖ < i ·
(β−1/k). By “hyper-induction” on ∗N, define ξ1 = 1, and ξs+1 = ξs+ns
where ns ≤ k is the least natural number such that ‖∗A∩ [ξs, ξs + ns)‖ <

ns · (β − 1/k); and stop at step N when M − k ≤ ξN < M . Since k is
finite, we have k/M ∼ 0 and ξN/M ∼ 1. Then:

β ∼ 1

M
· ∥∥∗A ∩ [1,M]∥∥ ∼ 1

M
· ∥∥∗A ∩ [ξ1, ξN )

∥∥
= 1

M
·
N−1∑
s=1

∥∥∗A ∩ [ξs, ξs+1)∥∥
<

1

M
·
(
N−1∑
s=1

ns ·
(

β − 1

k

))
= ξN − 1

M
·
(

β − 1

k

)
∼ β − 1

k
,

a contradiction.
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The previous theorem can be strengthened in several directions. For
instance, one can find E to be “densely” finitely embedded in A, in the
sense that for every finite F ⊆ X one has “densely-many” shifted copies
included in Y , i.e. BD ({t ∈ Z | t + F ⊆ Y }) > 0.10

4 Partition regularity problems

In this section we focus on the use of hyper-natural numbers in partition
regularity problems.

The notion of partition regularity for families of sets given in Section
2, is sometimes weakened as follows:

• A family F of sets is weakly partition regular on X if for every finite
partition X = C1 ∪ . . .∪Cn there exists F ∈ F which is contained in
one piece F ⊆ Ci .

Differently from the usual approach to nonstandard analysis, here it turns
out useful to work in a framework where hyper-extensions can be iterated,
so that one can consider, e.g.:

• The hyper-hyper-natural numbers ∗∗N ;
• The hyper-extension ∗ξ ∈ ∗∗N of an hyper-natural number ξ ∈ ∗N ;

and so forth. We remark that working with iterated hyper-extensions
requires caution, because of the existence of different levels of exten-
sions.11 Here, it will be enough to notice that, by transfer, one has that
∗N � ∗∗N, and if ξ ∈ ∗N \ N then ∗ξ ∈ ∗∗N \ ∗N; and similarly for n-th
iterated hyper-extensions.12

Let us start with a nonstandard proof of the classic Ramsey theorem
for pairs.

Theorem 4.1 (Ramsey – 1928). Given a finite colouring [N]2 = C1 ∪
. . . ∪ Cr of the pairs of natural numbers, there exists an infinite set H
whose pairs are monochromatic: [H ]2 ⊆ Ci .13

10 See [6, 9] for more on this topic.

11 See [7] for a discussion of the foundations of iterated hyper-extensions.

12 Notice also that ∗N is an initial segment of ∗∗N, i.e. ξ < ν for every ξ ∈ ∗
N and for every

ν ∈ ∗∗N \ ∗N (such a property is not used in this paper).
13 In other words, the family F = {[H ]2 | H infinite} is weakly partition regular on [N]2.
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Nonstandard proof. Take hyper-hyper-extensions and get the finite col-
oring

[∗∗N]2 = ∗∗([N]2) = ∗∗C1 ∪ . . . ∪ ∗∗Cr .

Pick an infinite ξ ∈ ∗N, let i be such that {ξ, ∗ξ} ∈ ∗∗Ci , and consider the
set A = {x ∈ N | {x, ξ} ∈ ∗Ci }. Then ξ ∈ {x ∈ ∗N | {x, ∗ξ} ∈ ∗∗Ci } =
∗A. Now inductively define the sequence {a1 < a2 < . . . < an < . . .} as
follows:

• Pick any a1 ∈ A, and let B1 = {x ∈ N | {a1, x} ∈ Ci }. Then
{a1, ξ} ∈ ∗Ci and ξ ∈ ∗B1.

• ξ ∈ ∗A ∩ ∗B1 ⇒ A ∩ B1 is infinite.14 Then pick a2 ∈ A ∩ B1 with
a2 > a1.

• a2 ∈ B1 ⇒ {a1, a2} ∈ Ci .

• a2 ∈ A⇒ {a2, ξ} ∈ ∗Ci ⇒ ξ ∈ ∗{x ∈ N | {a2, x} ∈ ∗C1} = ∗B2.
• ξ ∈ ∗A ∩ ∗B1 ∩ ∗B2 ⇒ we can pick a3 ∈ A ∩ B1 ∩ B2 with a3 > a2.

• a3 ∈ B1 ∩ B2 ⇒ {a1, a3}, {a2, a3} ∈ Ci , and so forth.

Then the infinite set H = {an | n ∈ N} is such that [H ]2 ⊆ Ci .

We now give some hints on how iterated hyper-extensions can be used
in partition regularity of equations. Recall that:

• An equation E(X1, . . . , Xn) = 0 is [injectively] partition regular over
N if the set of [distinct] solutions is weakly partition regular on N,
i.e., for every finite coloring N = C1 ∪ . . . ∪ Cr one finds [distinct]
monochromatic a1, . . . , an ∈ Ci such that E(a1, . . . , an) = 0.

A useful nonstandard notion in this context is the following:

Definition 4.2. We say that two hyper-natural numbers ξ, ζ ∈ ∗N are
indiscernible, and write ξ � ζ , if they cannot be distinguished by any
hyper-extension, i.e. if for every A ⊆ N one has either ξ, ζ ∈ ∗A or
ξ, ζ /∈ ∗A.15

14 Here we use the fact that the hyper-extension ∗X of a set X ⊆ N contains infinite numbers if and
only if X is infinite.

15 The name “indiscernible” is borrowed from mathematical logic. Recall that in model theory two
elements are named indiscernible if they cannot be distinguished by any first-order formula.
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Notice that indiscernibility coincides with equality on finite numbers,
because if k ∈ N is finite and ξ �= k, then trivially k ∈ {k} = ∗{k}
and ξ /∈ ∗{k}. Notice also that if k > 1 is any natural number, then
k ξ �� ξ . Indeed, if A is the set of those natural numbers n with the
property that the largest exponent a such that ka divides n is even, then
ξ ∈ ∗A ⇔ k ξ /∈ ∗A. A useful property that one can easily prove is the
following: “If ξ � ζ , then for every f : N → N one has ∗ f (ξ) � ∗ f (ζ ).”

By using the notion of indiscernibility, one can reformulate in nonstan-
dard terms:

Definition 4.3 (Nonstandard). An equation E(X1, . . . , Xn) = 0 is [in-
jectively] partition regular on N if there exist [distinct] hyper-natural
numbers ξ1 � . . . � ξn such that E(ξ1, . . . , ξn) = 0.
The following result recently appeared in [5].

Theorem 4.4. The equation X + Y = Z2 is not partition regular on N,
except for the trivial solution X = Y = Z = 2.
Nonstandard proof. Assume by contradiction that there exist α � β � γ

in ∗N such that α+ β = γ 2. Notice that α, β, γ are infinite, as otherwise
α = β = γ = 2 would be the trivial solution. By the hypothesis of
indiscernibility, α, β, γ belong to the same congruence class modulo 5,
say α ≡ β ≡ γ ≡ i mod 5 with 0 ≤ i ≤ 4. Now write the numbers in
the forms:

α = 5a · α1 + i ; β = 5b · β1 + i ; γ = 5c · γ1 + i

where a, b, c > 0 and α1, β1, γ1 are not divisible by 5. Pick a function
f : N → N such that, for n ≥ 5, the value f (n) is the unique k �≡ 0
mod 5 such that n = 5hk + i for suitable h > 0 and 0 ≤ i ≤ 4. Observe
that α1, β1, γ1 are the images under ∗ f of α, β, γ respectively; so, α �
β � γ implies that α1 � β1 � γ1, and therefore α1 ≡ β1 ≡ γ1 ≡ j �≡ 0
mod 5.

The equality α + β = γ 2 implies that either i = 0 or i = 2. Assume
first that i = 0. In this case γ 2 = 52cγ 21 where γ 21 ≡ j2 �≡ 0 mod 5. If
a < b then α+β = 5a(α1+5b−aβ1)where α1+5b−aβ1 ≡ j �≡ 0 mod 5.
It follows that 2c = a � c, a contradiction. If a > b the proof is similar.
If a = b then α + β = 5a(α1 + β1) where α1 + β1 ≡ 2 j �≡ 0 mod 5,
and also in this case we would have 2c = a � c, a contradiction. If i = 2
then γ 2 − 4 = 5c(5cγ 21 + 4γ1) where 5cγ 21 + 4γ1 ≡ 4 j �≡ 0 mod 5.
Now, in case a < b, one has that α + β − 4 = 5a(α1 + 5b−aβ1) where
α1 + 5b−aβ1 ≡ j �≡ 0 mod 5, and so it would follow that 5cγ 21 + 4γ1 =
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α1 + 5b−aβ1. But then we would have 4 j ≡ j , which is not possible
because j �≡ 0. The case a > b is similar. Finally, if a = b then
α+ β − 4 = 5a(α1+ β1) where α1+ β1 ≡ 2 j �≡ 0 mod 5, and it would
follow that 4 j ≡ 2 j , again reaching the contradiction j ≡ 0.
The notion of indiscernibility naturally extends to the iterated hyper-

extensions of the natural numbers. E.g., if �,� ∈ ∗∗N then � � �

means that for every A ⊆ N one has either �,� ∈ ∗∗A or �,� /∈ ∗∗A.
Notice that α � ∗α for every α ∈ ∗N.
In the sequel, a fundamental role will be played by the following spe-

cial numbers.

Definition 4.5. A hyper-natural number ξ ∈ ∗N is idempotent if ξ �
ξ + ∗ξ .16

Recall van der Waerden Theorem: “Arbitrarily large monochromatic
arithmetic progressions are found in every finite coloring of N”. Here
we prove a weakened version about 3-term arithmetic progressions, by
showing the partition regularity of a suitable equation.

Theorem 4.6. The diophantine equation X1 − 2X2 + X3 = 0 is injec-
tively partition regular on N, which means that for every finite coloring
of N there exists a non-constant monochromatic 3-term arithmetic pro-
gression.

Nonstandard proof. Pick an idempotent number ξ ∈ ∗N. The following
three distinct numbers in ∗∗∗N are a solution of the given equation:

ν = 2ξ + 0 + ∗∗ξ ; μ = 2ξ + ∗ξ + ∗∗ξ ; λ = 2ξ + 2∗ξ + ∗∗ξ.

That ν � μ � λ are indiscernible is proved by a direct computation.
Precisely, notice that ∗ξ � ξ + ∗ξ by the idempotency hypothesis, and
so, for every A ⊆ N and for every n ∈ N, we have that

∗ξ ∈ ∗∗A − n = ∗∗(A − n) ⇔ ξ + ∗ξ ∈ ∗∗(A − n).

In consequence, the properties listed below are equivalent to each other:

16 The name “idempotent” is justified by its characterization in terms of ultrafilters: “ξ ∈ ∗
N is

idempotent if and only if the corresponding ultrafilter Uξ = {A ⊆ N | ξ ∈ ∗A} is idempotent with
respect to the “pseudo-sum” operation:

A ∈ U ⊕ V ⇐⇒ {n | A − n ∈ V} ∈ U
where A − n = {m | m + n ∈ A}”. The algebraic structure (βN,⊕) on the space of ultrafilters
βN and its related generalizations have been deeply investigated during the last forty years, reveal-
ing a powerful tool for applications in Ramsey theory and combinatorial number theory (see the
comprehensive monography [11]). In this area of research, idempotent ultrafilters are instrumental.
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• 2ξ + ∗ξ + ∗∗ξ ∈ ∗∗∗A
• 2ξ ∈ (∗∗∗A − ∗∗ξ − ∗ξ) ∩ ∗N = ∗[(∗∗A − ∗ξ − ξ) ∩ N]
• 2ξ ∈ ∗{n ∈ N | ξ + ∗ξ ∈ ∗∗(A − n)}
• 2ξ ∈ ∗{n ∈ N | ∗ξ ∈ ∗∗(A − n)}
• 2ξ ∈ ∗[(∗∗A − ∗ξ) ∩ N] = (∗∗∗A − ∗∗ξ) ∩ ∗N
• 2ξ + ∗∗ξ ∈ ∗∗∗A.

This shows that ν � μ. The other relation μ � λ is proved in the same
fashion.17

One can elaborate on the previous nonstandard proof and generalize
the technique. Notice that the considered elements μ, ν, λ were linear
combinations of iterated hyper-extensions of a fixed idempotent number
ξ , and so they can be described by the corresponding finite strings of
coefficients in the following way:

• ν = 2ξ + 0 + ∗∗ξ � 〈2, 0, 1〉
• μ = 2ξ + ∗ξ + ∗∗ξ � 〈2, 1, 1〉
• λ = 2ξ + 2∗ξ + ∗∗ξ � 〈2, 2, 1〉
Indiscernibility of such linear combinations is characterized by means
of a suitable equivalence relation ≈ on the finite strings, so that, e.g.,
〈2, 0, 1〉 ≈ 〈2, 1, 1〉 ≈ 〈2, 2, 1〉.
Definition 4.7. The equivalence ≈ between (finite) strings of integers is
the smallest equivalence relation such that:

• The empty string ≈ 〈0〉.
• 〈a〉 ≈ 〈a, a〉 for all a ∈ Z.
• ≈ is coherent with concatenations, i.e.

σ ≈ σ ′ and τ ≈ τ ′ �⇒ σ�τ ≈ σ ′�τ ′.

So, ≈ is preserved by inserting or removing zeros, by repeating finitely
many times a term or, conversely, by shortening a block of consecutive
equal terms. The following characterization is proved in [7]:

• Let ξ ∈ ∗N be idempotent. Then the following are equivalent:

1. a0ξ + a1∗ξ + . . .+ ak · k∗ξ � b0ξ + b1∗ξ + . . .+ bh · h∗ξ

17 Here we actually proved the following result ( [3] Th. 2.10): “Let U be any idempotent ultrafilter.
Then every set A ∈ 2U ⊕ U contains a 3-term arithmetic progression”.
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2. 〈a0, a1, . . . , ak〉 ≈ 〈b0, b1, . . . , bh〉.

Recall Rado theorem: “The diophantine equation c1X1+ . . .+cn Xn = 0
(ci �= 0) is partition regular if and only if∑i∈F ci = 0 for some nonempty
F ⊆ {1, . . . , n}”. By using the above equivalence, one obtains a non-
standard proof of a modified version of Rado theorem, with a stronger
hypothesis and a stronger thesis.

Theorem 4.8. Let c1X1 + . . . + cn Xn = 0 be a diophantine equation
with n ≥ 3. If c1 + . . .+ cn = 0 then the equation is injectively partition
regular on N.

Nonstandard proof. Fix ξ ∈ ∗N an idempotent element, and for simplic-
ity denote by ξi = i∗ξ the i-th iterated hyper-extension of ξ . For arbitrary
a1, . . . , an−1, consider the following numbers in n∗N:

μ1 = a1ξ + a2ξ1 + a3ξ2 + . . . + an−2ξn−3 + an−1ξn−2 + an−1ξn−1
μ2 = a1ξ + a2ξ1 + a3ξ2 + . . . + an−2ξn−3 + 0 + an−1ξn−1
μ3 = a1ξ + a2ξ1 + a3ξ2 + . . . + 0 + an−2ξn−2 + an−1ξn−1
...

...
...

...
...

...
...

...

μn−2 = a1ξ + a2ξ1 + 0 + a3ξ3 + . . . + an−2ξn−2 + an−1ξn−1
μn−1 = a1ξ + 0 + a2ξ2 + a3ξ3 + . . . + an−2ξn−2 + an−1ξn−1
μn = a1ξ + a1ξ1 + a2ξ2 + a3ξ3 + . . . + an−2ξn−2 + an−1ξn−1

Notice that μ1 � . . . � μn because the corresponding strings of coef-
ficients are all equivalent to 〈a1, . . . , an−1〉. Moreover, it can be easily
checked that the μis are distinct. To complete the proof, we need to find
suitable coefficients a1, . . . , an−1 in such a way that c1μ1+ . . .+ cnμn =
0. It is readily seen that this happens if the following conditions are ful-
filled: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(c1 + . . .+ cn) · a1 = 0
(c1 + . . .+ cn−2) · a2 + cn · a1 = 0
(c1 + . . .+ cn−3) · a3 + (cn−1 + cn) · a2 = 0

...

c1 · an−1 + (c3 + . . .+ cn) · an−2 = 0
(c1 + . . .+ cn) · an−1 = 0

Finally, observe that the first and last equations are trivially satisfied be-
cause of the hypothesis c1 + . . . + cn = 0; and the remaining n −
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2 equations are satisfied by infinitely many choices of the coefficients
a1, . . . , an−1, which can be taken in N.18

More results in this direction, including partition regularity of non-
linear diophantine equations, have been recently obtained by L. Luperi
Baglini (see [19]).

5 A model of the hyper-integers

In this final section we outline a construction for a model where one can
give an interpretation to all nonstandard notions and principles that were
considered in this paper.

The most used single construction for models of the hyper-real num-
bers, and hence of the hyper-natural and hyper-integer numbers, is the
ultrapower.19 Here we prefer to use the purely algebraic construction
of [2], which is basically equivalent to an ultrapower, but where only the
notion of quotient field of a ring modulo a maximal ideal is assumed.

• Consider Fun(N, R), the ring of real sequences ϕ : N → R where the
sum and product operations are defined pointwise.

• Let I be the ideal of the sequences that eventually vanish:
I = {ϕ ∈ Fun(N, R) | ∃k ∀n ≥ k ϕ(n) = 0}.

• Pick a maximal ideal M extending I, and define the hyper-real num-
bers as the quotient field:

∗R = Fun(N, R)/M.

• The hyper-integers are the subring of ∗R determined by the sequences
that take values in Z:

∗Z = Fun(N, Z)/M ⊂ ∗R.

18 Here we actually proved the following result ( [7] Th.1.2): “Let c1X1 + . . . + cn Xn = 0 be a
diophantine equation with c1 + . . .+ cn = 0 and n ≥ 3. Then there exists a1, . . . , an−1 ∈ N such
that for every idempotent ultrafilter U and for every A ∈ a1U ⊕ . . . ⊕ an−1U there exist distinct
xi ∈ A such that c1x1 + . . .+ cnxn = 0”.
19 For a comprehensive exposition of nonstandard analysis grounded on the ultrapower construc-
tion, see R. Goldblatt’s textbook [10].
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• For every subset A ⊂ R, its hyper-extension is defined by:

∗A = Fun(N, A)/M ⊂ ∗R.

So, e.g., the hyper-natural numbers ∗N are the cosets ϕ +M of se-
quences ϕ : N → N of natural numbers; the hyper-prime numbers are
the cosets of sequences of prime numbers, and so forth.

• For every function f : A→ B (where A, B ⊆ R), its hyper-extension
∗ f : ∗A→ ∗B is defined by putting for every ϕ : N → A:

∗ f (ϕ +M) = ( f ◦ ϕ)+M.

• For every sequence 〈An | n ∈ N〉 of nonempty subsets of R, its hyper-
extension 〈Aν | ν ∈ ∗N〉 is defined by putting for every ν = ϕ +M ∈
∗N:

Aν = {ψ +M | ψ(n) ∈ Aϕ(n) for all n} ⊆ ∗R.

It can be directly verified that ∗R is an ordered field whose positive ele-
ments are ∗R+ = Fun(N, R+)/M. By identifying each r ∈ R with the
coset cr+M of the corresponding constant sequence, one obtains that ∗R
is a proper superfield of R. The subset ∗Z defined as above is a discretely
ordered ring having all the desired properties.

Remark that in the above model, one can interpret all notions used in
this paper. We itemize below the most relevant ones.

Denote by α = ı +M ∈ ∗N the infinite hyper-natural number corre-
sponding to the identity sequence ı : N → N.

• The nonempty internal sets B ⊆ ∗R are the sets of the form B = Aα

where 〈An | n ∈ N〉 is a sequence of nonempty sets. When all An
are finite, B = Aα is called hyper-finite; and when all An are infinite,
B = Aα is called hyper-infinite.20

• If B = Aα is the hyper-finite set corresponding to the sequence of
nonempty finite sets 〈An | n ∈ N〉, then its internal cardinality is
defined by setting ‖B‖ = ϑ +M ∈ ∗N where ϑ(n) = |An| ∈ N is the
sequence of cardinalities.

• If ϕ,ψ : N → Z and the corresponding hyper-integers ν = ϕ +M
and μ = ψ + M are such that ν < μ, then the (internal) interval

20 It is proved that any internal set A ⊆ ∗
R is either hyper-finite or hyper-infinite.
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[ν, μ] ⊆ ∗Z is defined as Aα where 〈An | n ∈ N〉 is any sequence of
sets such that An = [ϕ(n), ψ(n)] whenever ϕ(n) < ψ(n).21

In full generality, one can show that the transfer principle holds. To show
this in a rigorous manner, one needs first a precise definition of “elemen-
tary property”, which requires the formalism of first-order logic. Then,
by using a procedure known in logic as “induction on the complexity of
formulas”, one proves that the equivalences P(A1, . . . ,Ak, f1, . . . , fh)⇔
P(∗A1, . . . , ∗Ak, ∗ f1, . . . , ∗ fh) hold for all elementary properties P , sets
Ai , and functions f j .

Remark that all the nonstandard definitions given in this paper are ac-
tually equivalent to the usual “standard” ones. As examples, let us prove
some of those equivalences in detail.

Let us start with the definition of a thick set A ⊆ Z. Assume first that
there exists a sequence of intervals 〈 [an, an + n] | n ∈ N 〉 which are
included in A. If 〈 [aν, aν + ν] | ν ∈ ∗N 〉 is its hyper-extension then, by
transfer, every [aν, aν+ν] ⊆ ∗A, and hence ∗A includes infinite intervals.
Conversely, assume that A is not thick and pick k ∈ N such that for every
x ∈ Z the interval [x, x + k] � A. Then, by transfer, for every ξ ∈ ∗Z
the interval [ξ, ξ + k] � ∗A, and hence ∗A does not contain any infinite
interval.

We now focus on the nonstandard definition of upper Banach density.
Let BD(A) ≥ β. Then for every k ∈ N, there exists an interval Ik ⊂ Z of
length |Ik | ≥ k and such that |A∩ Ik |/|Ik | > β−1/k. By overflow, there
exists an infinite ν ∈ ∗N and an interval I ⊂ ∗Z of internal cardinality
‖I‖ ≥ ν such that the ratio ‖∗A ∩ I‖/‖I‖ ≥ β − 1/ν ∼ β. Conversely,
let I be an infinite interval such that ‖∗A ∩ I‖/‖I‖ ∼ β. Then, for every
given k ∈ N, the following property holds: “There exists an interval
I ⊂ ∗Z of length ‖I‖ ≥ k and such that ‖∗A ∩ I‖/‖I‖ ≥ β − 1/k”. By
transfer, we obtain the existence of an interval Ik ⊂ Z of length |Ik | ≥ k
and such that |A ∩ Ik |/|Ik | ≥ β − 1/k. This shows that BD(A) ≥ β, and
the proof is complete.

Let us now turn to finite embeddability. Assume that X ≤fe Y , and
enumerate X = {xn | n ∈ N}. By the hypothesis, ⋂n

i=1(Y − xi) �= ∅
for every n ∈ N and so, by overflow, there exists an infinite μ ∈ ∗N
such that the hyper-finite intersection

⋂μ

i=1(
∗Y − xi) �= ∅. If ν is any

21 One can prove that this definition is well-posed. Indeed, if ϕ +M < ψ +M and 〈An | n ∈ N〉
and 〈A′n | n ∈ N〉 are two sequences of nonempty sets such that An = A′n whenever ϕ(n) < ψ(n),
then Aα = A′α .
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hyper-integer in that intersection, then ν + X ⊆ ∗Y . Conversely, let
us assume that ν + X ⊆ ∗Y for a suitable ν ∈ ∗Z. Then for every
finite F = {x1, . . . , xk} ⊂ X one has the elementary property: “∃ν ∈
∗Z (ν + x1 ∈ ∗Y & . . . & ν + xk ∈ ∗Y )”. By transfer, it follows that
“∃t ∈ Z (t + x1 ∈ Y & . . . & t + xk ∈ Y )”, i.e. t + F ⊆ Y .22

We finish this paper with a few suggestions for further readings. A
rigorous formulation and a detailed proof of the transfer principle can be
found in Chapter 4 of the textbook [10], where the ultrapower model is
considered.23 See also Section 4.4 of [4] for the foundations of nonstan-
dard analysis in its full generality. A nice introduction of nonstandard
methods for number theorists, including a number of examples, is given
in [15] (see also [12]). Finally, a full development of nonstandard anal-
ysis can be found in several monographies of the existing literature; see
e.g. the classical H. J. Keisler’s book [18], or the comprehensive collec-
tions of surveys in [1].
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