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4 Colourful Carathéodory theorem . . . . . . . . . . . . . 4
5 Colourful Carathéodory strengthened . . . . . . . . . . . 6
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Preface

On September 3-7, 2012, as part of the activities of the Mathematics
Research Center “Ennio De Giorgi” and on the invitation of its director
prof. Mariano Giaquinta, we organized the Workshop “Geometry, Struc-
ture and Randomness in Combinatorics” at Scuola Normale Superiore in
Pisa. The workshop was organized by Jiřı́ Matousek, Jaroslav Nešetřil
(Charles University, Prague) and Marco Pellegrini (CNR, Pisa) and has
been supported jointly by SNS and CRM Pisa and DIMATIA centre in
Prague.
This workshop intended to reflect some key recent advances in combi-

natorics, particularly in the area of extremal theory and Ramsey theory.
It also aimed to demonstrate the broad spectrum of techniques and its re-
lationship to other fields of mathematics, particularly to geometry, logic
and number theory.
Invited speakers included ten of the leading experts. We had the plea-

sure to invite Prof. Endre Szemerédi, the winner of the Abel Prize in
2012 for his fundamental contributions in the field of discrete mathemat-
ics and theoretical computer science. The workshop attracted 48 partici-
pants both from Italy and abroad.
The following list is that of the invited lectures at the workshop:

IMRE BARANY, Tensors, colours, and octahedral

BÉLA BOLLOBÁS, Extremal and probabilistic results on bootstrap per-
colation

MARIA CHUDNOVSKY, Extending the Gyarfas-Sumner conjecture

ZEEV DVIR, Configurations of points with many collinear triples: going
beyond Sylvester-Gallai

ZOLTAN FUREDI, Binary codes versus hypergraphs

JAROSLAV NEŠETŘIL, A unifying approach to graph limits II

PATRICE OSSONA DE MENDEZ, A unifying approach to graph limits I



xii Preface

ALEX SCOTT, Discrepancy in graphs, hypergraphs and tournaments
and (second talk)
Szemerédi regularity lemma for sparse graphs

JOZSEF SOLYMOSI, Sums vs. products
and (second talk)
The (7,4)-conjecture for finite groups

ENDRE SZEMERÉDI, On subset sums

Given the success of both scientific and public workshops, at the end of
the event, at the suggestion of Professor Mariano Giaquinta, it has been
proposed to organize a volume dedicated to this meeting. This proposal
was welcomed by all the speakers. The present volume has been edited
for the “CRM Series”, with the title “Geometry, Structure and Random-
ness in Combinatorics” and includes both original scientific articles in
extended form or survey articles on results and problems inherent in the
themes presented at the workshop. Each article submitted was reviewed.
We thank all the authors for their contribution and again Scuola Nor-

male Superiore and its Centro di Ricerca Matematica Ennio De Giorgi
and to DIMATIA Centre of Charles University for their generous sup-
port.

Pisa/Prague
Jiřı́Matoušek, Jaroslav Nešetřil, Marco Pellegrini
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Tensors, colours, octahedra

Imre Bárány

Abstract. Several theorems in combinatorial convexity admit colourful versions.
This survey describes old and new applications of two methods that can give such
colourful results. One is the octahedral construction, the other is Sarkaria’s tensor
method.

1 Introduction

Theorems of Carathéodory, Helly, and Tverberg are classical results in
combinatorial convexity. They all have coloured versions. Some others
involve colours directly. For instance in Kirchberger’s theorem [15], the
elements of a finite set X ⊂ Rd are coloured Red and Blue, and the state-
ment is that the Red and Blue points can be separated by a hyperplane if
and only if for every Y ⊂ X with |Y | ≤ d + 2, the Red and Blue points
in Y can be separated by a hyperplane.
The aim of this paper is to describe and explain old and new appli-

cations of two methods that have turned out to be useful when proving
such colourful results. One is the octahedral construction, discovered and
first used by László Lovász in 1991, which appeared in [4]. The other is
Karinbir Sarkaria’s tensor method, originally from [25] and developed
further in [5].
In the next section Tverberg’s theorem and its colourful version are

presented. The octahedral construction is given in Section 3 with appli-
cations followed in later sections.

2 Tverberg’s theorem and its coloured version

Tverberg’s theorem is a gem, one of my favourites. Here is what it says.

Theorem 2.1. Assume d ≥ 1, r ≥ 2 and X ⊂ Rd has (r − 1)(d + 1)+
1 elements. Then X has a partition into r parts X1, . . . , Xr such that⋂r
1 conv Xi �= ∅.
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The number (r − 1)(d + 1) + 1 is best possible here: for a general
position X with one fewer element, the affine hulls of an r-partition do
not have a common point (by counting dimensions).
The case r = 2 is Radon’s theorem from 1922 [21] that has a simple

proof: Given x ∈ Rd we write (x, 1) for the (d + 1)-dimensional vector
whose first d components are equal to those of x , and the last one is 1.
This time |X | = d+2 so the vectors (x, 1) ∈ Rd+1 have a nontrivial linear
dependence

∑
α(x)(x, 1) = (0, 0). Letting X1 = {x ∈ X : α(x) ≥ 0}

and X2 = {x ∈ X : α(x) < 0} is the partition needed. Indeed, defining
α =∑

x∈X1 α(x) and α∗(x) = α(x)/α for x ∈ X1 and α∗(x) = −α(x)/α
for x ∈ X2, we have convex combinations in

z =
∑
x∈X1

α∗(x)x =
∑
x∈X2

α∗(x)x

showing that z ∈ conv X1⋂ conv X2.

There are several proofs of Tverberg’s theorem, for instance in Tver-
berg [29, 30], Tverberg and Vrećica [31], Roudneff [23], Sarkaria [25],
Bárány and Onn [5], Zvagelskii [34], none of them easy. We will give
another proof in Section 8 which is from Arocha et al. [1].
The coloured version of Tverberg’s theorem follows now.

Theorem 2.2. For every d ≥ 1 and r ≥ 2 there is t = t (r, d) with
the following property. Given sets C1, . . . ,Cd+1 ∈ Rd (called colours),
each of size t , there are r disjoint sets S1, . . . , Sr ⊂ ⋃d+1

1 Ci such that
|Sj ∩ Ci | = 1 for every i, j and⋂r

1 conv Sj �= ∅.
In other words, given coloursC1, . . . ,Cd+1 ⊂ Rd of large enough size,

there are r disjoint and colourful sets Sj whose convex hulls have a point
in common. Colourful means that Sj is a transversal of the Ci , that is,
Sj contains one element from each Ci . The need for this result emerged
in connection with the halving plane problem (c.f. [3]). It was proved
there that t (3, 2) is finite. Shortly afterward it was proved by Bárány and
Larman [4] that t (r, 2) = r for all r , clearly the best possible result. The
same paper presents Lovász’s proof that t (2, d) = 2 for all d, the first
application of the octahedral method. To simplify notation we write [k]
for the set {1, 2, . . . , k}.

3 The octahedral construction

Proof of t (2, d) = 2. We have Ci = {ai , bi } ⊂ Rd , i ∈ [d + 1]. Note
that we may exchange the names of ai and bi later. We want to choose
a transversal T from C1, . . . ,Cd+1 such that the convex hulls of T and
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of the complementary transversal T have a point in common. For this
purpose let

Qd+1 = conv{±e1, . . . ,±ed+1}
be the standard octahedron inRd+1 (the ei are the usual basis vectors). We
define a map f : ∂Qd+1 → Rd by setting f (ei) = ai and f (−ei) = bi ,
and then extend f simplicially to ∂Qd+1, that is, to the facets of Qd+1.
Note that f maps the facets of Qd+1 to the convex hull of a transversal T
exactly, and the opposite facet is mapped to conv T . So what we need is
a pair of opposite facets whose images intersect.

This cries out for the Borsuk-Ulam theorem: ∂Qd+1 is homeomorphic
to Sd and so f is an Sd → Rd map. By a variant of Borsuk-Ulam there
are antipodal points z,−z ∈ ∂Qd+1 with f (z) = f (−z). If z lies on a
facet F , then−z lies on the opposite facet F . For simpler writing assume
that F = conv{e1, . . . , ed+1}, then F = conv{−e1, . . . ,−ed+1}, and we
see that conv{a1, . . . , ad+1} and conv{b1, . . . , bd+1} have f (z) = f (−z)
as a common point.
Actually, more is true: if z = ∑d+1

1 γi ei , then −z = ∑d+1
1 γi(−ei),

and the common point is
∑d+1

1 γi ai = ∑d+1
1 γi bi . Thus the common

point comes with the same coefficients in the convex combinations. �

This is the octahedral method. The basic idea is that facets of the octa-
hedron correspond to transversals of C1, . . . ,Cd+1, transversals have the
structure of ∂Qd+1, and disjoint transversals come from opposite facets,
and the next step is the use of algebraic topology like the Borsuk-Ulam
theorem above.

Unfortunately the method does not work for r ≥ 3. It was conjectured
in [4] that t (r, d) = r for all r and d. Finiteness of t (r, d) was proved
by Živaljević and Vrećica [33] using equivariant topology. Their result is
that t (r, d) ≤ 2r−1 if r is a prime (which implies finiteness of t (r, d) for
all r). The same was proved by different methods by Björner et al. [8] and
by Matoušek [17]. More recently Blagojević, Matschke, and Ziegler [9]
showed that t (r, d) = r if r + 1 is a prime which is again best possi-
ble. The strange primality condition in all cases is needed because cyclic
groups of prime order behave better in equivariant topology. But the the-
orem is probably true for every r , the primality condition is required for
the method and not for the problem. It is however disappointing (for a
convex geometer) that a completely convex (or linear, if you wish) prob-
lem does not have a direct convex (or linear) proof, and topology seems
a necessity here. Finding a purely geometric proof remains a challenge.
The interested reader may wish to read Günter Ziegler’s fascinating arti-
cle [32] about Tverberg’s theorem and its colourful version.
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Remark 3.1. Quite recently, Pablo Soberón [26] has found another (and
simpler) proof of t (2, d) = 2. It starts with the observation that the vec-
tors ai − bi , i ∈ [d + 1] are linearly dependent, so∑d+1

1 γi(ai − bi) = 0
for some not all zero γi . Some γi may be negative, but then we exchange
the names of ai and bi which makes γi positive. Then

∑
γi ai =∑

γi bi .
Assuming as we can that

∑
γi = 1,∑ γi ai =∑

γi bi is a common point
of the convex hulls of transversals a1, . . . , ad+1 and b1, . . . , bd+1. Note
that even the coefficients are the same. So this method gives exactly the
same result as the octahedral construction. A little extra is the efficient
algorithm that follows from this proof. The paper [26] gives precise con-
ditions for the existence of colourful partitions whose convex hulls have
a common point with equal coefficients. The proof uses tensors as in
Sarkaria’s lemma which will be described in Section 7.

4 Colourful Carathéodory theorem

Carathéodory’s classical theorem says in essence that being in the convex
hull has a very finite reason. Precisely, if A ⊂ Rd and a ∈ conv A, then
a ∈ conv B for some B ⊂ A with |B| ≤ d + 1. The colourful version of
this theorem is an old result of mine [2].

Theorem 4.1. If A1, . . . , Ad+1 ⊂ Rd and a ∈ ⋂d+1
1 conv Ai , then there

is a transversal ai ∈ Ai for all i , such that a ∈ conv{a1, . . . , ad+1}.
The colourful version contains the original one: simply take Ai = A

for every A. A natural question is how many such transversals are there,
and the natural setting for the question is when a is the origin (which
makes no difference), the points in

⋃d+1
1 Ai together with the origin are

in general position, and each Ai has exactly d + 1 elements. Of course,
0 /∈ ⋃d+1

1 Ai , and we may assume that each Ai ⊂ Sd−1, the unit sphere
of Rd . We call a transversal {a1, . . . , ad+1} special if the origin lies in its
convex hull. Define τ(d) as the minimal number of special transversals
under these conditions.

A neat construction from Deza et al. [10] shows that τ(d) ≤ d2 + 1
and it is not hard to check that τ(2) = 5. Carathéodory’s theorem has a
cone hull or positive hull version, slightly stronger than the convex one.
We write pos A for the cone hull of the elements in A ⊂ Rd , that is, pos A
is the set of vectors

∑n
1 γi ai with γi ≥ 0 and ai ∈ A for all i ∈ [n] and

all n ∈ Z.

Theorem 4.2. If A1, . . . , Ad ⊂ Rd and a ∈ ⋂d
1 pos Ai , then there is a

transversal ai ∈ Ai for all i such that a ∈ pos{a1, . . . , ad}.
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It is quite easy to check (or see [2] for the proof) that this result has the
following consequence.

Corollary 4.3. If a ∈ Rd , A1, . . . , Ad ⊂ Rd , and 0 ∈ ⋃d
1 conv Ai , then

there is a transversal ai ∈ Ai for all i such that 0 ∈ conv{a, a1, . . . , ad}.
The Corollary shows immediately that every point in

⋃d+1
1 Ai be-

longs to at least one special transversal, so τ(d) ≥ d + 1. The octa-
hedral construction has been used to improve this bound to a quadratic
one, in several papers. In particular, Bárány and Matoušek [6] show
τ(d) ≥ d(d + 1)/5 and τ(3) = 10 (which is best possible), Stephen
and Thomas [28] prove τ(d) ≥ (d + 2)2/4, and Deza et al. [11] give
τ(d) ≥ (d + 1)2/2, which is further improved to τ(d) ≥ 1

2d
2 + 7

2d − 8
when d ≥ 4 by Deza, Meunier, and Sarrabezolles in [12].
How can the octahedral construction help here? Well, it is clear that

a1, . . . , ad+1 is a special transversal iff −ad+1 ∈ pos{a1, . . . , ad}. Fix
now the special transversal a1, . . . , ad+1 and consider a partial transver-
sal b1 ∈ A1, . . . , bd ∈ Ad with bi different from ai for all i . The octahe-
dral construction defines a map f : ∂Qd → Rd by setting f (ei) = ai ,
f (−ei) = bi (for all i), and then extend it simplicially to ∂Qd . As
0 /∈ f (∂Qd) by the general position assumption, we can define g(x) =
f (x)/‖ f (x)‖. The map g : ∂Qd → Sd−1 is continuous and is essen-
tially an Sd−1 → Sd−1 map, so if it takes some (non-critical) value, then
it takes it at least twice, or else it takes every value at least once.
More precisely, if the degree of g is nonzero, then g takes every value

in Sd−1 at least once, and if its degree is zero, then it takes every non-
critical (in the sense of Sard’s Lemma, see Milnor’s book [18]) value at
least twice. But g takes the value −ad+1 at least once, since −ad+1 ∈
g(∂Qd). Moreover, this value is non-critical because of the general posi-
tion assumption. Writing T = {a1, . . . , ad+1} and B = {b1, . . . , bd} we
have established the following fact.

Lemma 4.4. Under the above condition either T ∪ B contains another
special transversal, different from T , or every bd+1 ∈ Ad+1 \ {ad+1} be-
longs to a special transversal from T ∪ B.

This consequence of the octahedral construction is used, with varying
outcome, in all quadratic lower bounds to τ(d). But the lemma also leads
to a completely combinatorial problem: determine the minimum number
of edges a hypergraphH can have provided it is a (d+1)-partite (d+1)-
uniform hypergraph with partition classes A1, . . . , Ad+1, |Ai | = d + 1
for each i , and satisfies the following conditions (mimicking those of the
special transversals):
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• for every a ∈⋃d+1
1 Ai there is T ∈ H with a ∈ T

• for every i and for every T ∈ H with T ∩ Ai = ai , and for every
B = {b1, . . . , bi−1, bi+1, . . . , bd+1} with B disjoint from T , either
there is T ∗ ∈ H, T ∗ �= T with T ∗ ⊂ T ∪ B, or for every a ∈ Ai
there is T ∗ ∈ H with a ∈ T ∗ and T ∗ \ {a} ⊂ T ∪ B.

Here the first condition comes from Corollary 4.3, and the second from
Lemma 4.4 as the role of ad+1 can be taken be an arbitrary a ∈ ⋃

Ai .
Note however that the condition 0 ∈ conv Ai is lost in this combinatorial
setting.

Open question 4.5. For a hypergraph H with these properties, does |H|
have to have at least d2 + 1 edges? 1 Even with no hypergraph, is it true
that τ(d) = d2 + 1?

5 Colourful Carathéodory strengthened

The following result is a generalization of Theorem 4.1. It was found at
the same time on two different continents, and was published by Holm-
sen, Pach, Tverberg [14] and by Arocha, Bárány, Fabila, Bracho, Mon-
tejano [1]. The proof is based on the octahedral construction. In both
cases the original target was a colourful Helly type theorem on the sphere,
see [14] or [1].

Theorem 5.1. If A1, . . . , Ad+1 ⊂ Rd , none of them empty and a ∈
conv(Ai ∪ A j ) for all distinct i, j ∈ [d + 1], then there is a transver-
sal ai ∈ Ai for all i , such that a ∈ conv{a1, . . . , ad+1}.
Proof. We identify a with the origin. We can assume that every Ai is
finite. Let T be the transversal with ai ∈ Ai for i ∈ [d + 1] whose
convex hull � = conv T is closest to the origin. Let z ∈ � be this
closest point. If z = 0 we are done, so assume z �= 0, and let H be
the hyperplane passing through, and orthogonal to, z. Write H+ for the
closed halfspace bounded by H and not containing 0. As z is on the
boundary of the simplex �, it is in the convex hull of a proper subset of
T , say of {a1, . . . , ad}.
We claim that z lies in the relative interior of conv{a1, . . . , ad}. As-

sume on the contrary that z is in the convex hull of {a1, . . . , ad−1}, say.
There is a point b ∈ (Ad ∪ Ad+1)\ H+ as otherwise Ad ∪ Ad+1 ⊂ H+ so
their convex hull does not contain the origin, contrary to the condition of

1 This question has recently been settled in the affirmative by Pauline Sarrabezolles [24], implying
τ(d) = d2 + 1.
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the theorem. Now {a1, . . . , ad−1, b} can be extended to a transversal T ∗
whose convex hull of contains the segment [z, b]. But [z, b], and conse-
quently conv T ∗, contains a point closer to the origin than z, contradicting
the choice of T .
Note that Ad+1 ⊂ H+ since replacing ad+1 by any b ∈ Ad+1 \ H+

would give a transversal whose convex hull is closer to the origin than
conv T . Let H0 be the hyperplane parallel to H and containing the origin,
and H− be the closed halfspace bounded by H0 and not containing �.
It follows that there is bi ∈ Ai∩H− for every i ∈ [d], as otherwise Ai∪

Ad+1 lies in the complement of H− and is then separated from the origin.
We can apply the octahedral construction now. Define f : ∂Qd → Rd by
setting f (ei) = ai , f (−ei) = bi and extend f simplicially to the facets
of Qd .
Again, ∂Qd is an Sd−1 so removing f (∂Qd) from Rd results in an

unbounded connected component and finitely many bounded connected
components (by the Jordan curve theorem in higher dimensions). The
unbounded component contains the interior of H+. The segment [0, z)
is disjoint from f (∂Qd) so it lies in some connected component �. It is
clear that � is not the unbounded connected component.
Consider now a point a ∈ Ad+1, and the halfline L starting at 0 in

direction −a. L starts in � and ends up in the unbounded component.
So it must intersect f (∂Qd) at some point v = L ∩ f (F) where F is a
facet of ∂Qd . Then v is in the convex hull of a transversal of A1, . . . , Ad
(even of {a1, b1}, . . . , {ad+1, bd+1}). Since 0 ∈ [a, v], the convex hull of
this partial transversal and a contains the origin, contrary to the choice
of T .

The theorem has d(d + 1)/2 conditions, one for each pair i, j . All
of them are needed as the following example shows. Assume the points
a, x1, . . . , xd+1, y are in general position and a ∈ conv{x1, . . . , xd+1},
and let Ai = {x1, . . . , xd+1} for i ∈ [d−1] and Ad = Ad+1 = {y}. There
is no transversal whose convex hull would contain a yet for every pair
i, j apart from d, d + 1, a ∈ conv(Ai ∪ A j ). The same example shows
that the conditions a ∈ conv(Ai ∪ A j ∪ Ak) for every triple i, j, k do not
work. More disappointingly, the result does not extend to the cone hull,
as shown by a very simple example in R2.

Open question 5.2. It would be interesting to design an effective algo-
rithm that, under the conditions of Theorem 4.1, finds a colourful simplex
whose convex hull contains the origin. The proof of Theorem 4.1, and
also that of Theorem 5.1 only gives the existence of such a simplex. So
in fixed dimension they give an algorithm with at most (d + 1)d+1 steps,
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H

H0

z

0

a1 a2

a3

b1

b2

b3

Figure 5.1. Figure for Theorem 6.1, almost works for Theorem 5.1. Only parts
of f (∂Qd) are drawn.

which is way too many when dimension is part of the input. For further
information about this question see Bárány, Onn [5].

6 Colourful Carathéodory for connected compacta

A theorem of Fenchel [13] asserts that if a compact set A ⊂ Rd is con-
nected, then a ∈ conv A implies the existence of B ⊂ A with a ∈ conv B
and |B| ≤ d. So the Carathéodory number can be lowered. The colourful
version of Fenchel’s result is given in Bárány and Karasev [7]. Its proof
is based on the octahedral construction, again. Recall that if A ⊂ Rd

is connected and compact, then for every hyperplane H disjoint from A,
one of the open halfspaces bounded by H contains A.

Theorem 6.1. Assume A1, . . . , Ad ⊂ Rd are compact connected sets
with 0 ∈ ⋂d

1 conv Ai . Then there is a transversal ai ∈ Ai (i ∈ [d] such
that 0 ∈ conv{a1, . . . , ad}.
The proof is similar to the previous one. Choose a transversal T =

{a1, . . . , ad} whose convex hull � is closest to the origin, and let z ∈ �
be this closest point. If z = 0 we are done, so suppose z �= 0. It is easy to
see (we omit the details) that � is a d − 1-dimensional simplex and that
z lies in the relative interior of S.
Let H be the hyperplane passing through, and orthogonal to, z, clearly

� ⊂ H . Again, let H0 be the hyperplane parallel to H and containing
the origin. As Ai is connected, there is a point bi ∈ H0 ∩ Ai for every
i ∈ [d]. The octahedral construction applies the same way as before.
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So we have f : ∂Qd → Rd , the simplicial extension from the vertices
f (ei) = ai , f (−ei) = bi . This time f (∂Qd) lies between H and H0,
and evidently 0 /∈ f (∂Qd). Again, removal of f (∂Qd) from Rd yields
connected components, and 0 is in the unbounded one. But the points on
the segment [0, z), close enough to z lie in a bounded component. This
shows that the open segment (0, z) intersects f (∂Qd). The intersection
point is in the convex hull of a transversal and closer to the origin than z.
Contradiction. �
In [7] a second (and interesting) proof of the theorem is given which

uses vector bundles and has some further consequences.

7 Sarkaria’s lemma

Assume X1, X2, . . . , Xr ⊂ Rd are finite sets, r ≥ 2. There is a good
necessary and sufficient condition for

⋂r
1 conv Xi = ∅ which we now

describe.

Theorem 7.1. Under the above conditions,
⋂r
1 conv Xi = ∅ if and only

if there are closed halfspaces D1, . . . , Dr with conv Xi ⊂ Di for every
i ∈ [r] such that⋂r

1 Di = ∅.
The proof is easy. One direction is trivial. For the other one set Ki =

conv Xi . The case r = 2 is just the separation theorem for convex sets.
For larger r we have K1 ∩⋂r

2 Ki = ∅ so by separation there is a closed
halfspace D1 containing K1 with D1 ∩⋂r

2 Ki = ∅. This way K1 is re-
placed by D1, and the same way K2 is replaced by D2, etc. After step j−1
we have

⋂ j−1
1 Di ∩⋂r

j Ki = ∅ and so K j ∩
(⋂ j−1

1 Di ∩⋂r
j+1 Ki

)
= ∅.

Here K j is convex, compact and
⋂ j−1
1 Di ∩ ⋂r

j+1 Ki is convex so the
separation theorem applies. �
The case when

⋂r
1 Di = ∅ can be characterized by duality. Assume

Di = {x ∈ Rd : ai x ≤ αi }.
Theorem 7.2. With the above notation

⋂r
1 Di=∅ if and only if (0,−1) ∈

pos{(ai , αi) : i ∈ [r]}.
Sketch of proof. The condition

⋂r
1 Di = ∅ is equivalent to ”the system

of linear inequalities ai x ≤ αi , i ∈ [r] has no solution”. Then Farkas’s
lemma proves the theorem. �
This an outer or dual type characterization. Sarkaria’s lemma is an

inner characterization of the fact that
⋂k
1 conv Xi = ∅. We need an ar-

tificial tool: choose vectors v1, . . . , vr ∈ Rr−1 so that their unique (up
to a multiplier) linear dependence is v1 + · · · + vr = 0. Suppose that
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X1, X2, . . . , Xr ⊂ Rd are finite sets, and write X = ⋃r
1 Xi . We assume

further that the Xis are disjoint. (Alternatively, we can consider X a mul-
tiset.) Each x ∈ X comes from a unique Xi = Xi(x). With each such x
we associate the tensor

x = vi ⊗ (x, 1) ∈ Rn

where n = (r − 1)(d + 1). The tensor x can be thought of as an (r − 1)
by (d + 1) matrix as well. Here is Sarkaria’s lemma [25], in the form
given in Bárány and Onn [5]. (Originally it used number fields instead of
tensors.)

Theorem 7.3. Under the above conditions,
⋂r
1 conv Xi = ∅ if and only

if 0 /∈ conv X .
Proof. We prove the theorem by showing that 0∈convX iff⋂r

1 convXi �=∅.
If 0 ∈ conv X , then there are α(x) ≥ 0 for all x ∈ X such that∑

x∈X
α(x) = 1 and

∑
x∈X

α(x)x = 0.

Replacing x by vi ⊗ (x, 1) gives

0 =
∑
x∈X

α(x)x =
r∑
i=1

∑
x∈Xi

α(x)vi ⊗ (x, 1)

=
r∑
i=1

vi ⊗
∑
x∈Xi

α(x)(x, 1).

Set zi = ∑
x∈Xi α(x)(x, 1) ∈ Rd+1 for i ∈ [r]. We claim that z1 = z2 =

· · · = zr . By symmetry it suffices to show that z1 = z2. By the choice of
the vectors v1, . . . , vr there is u ∈ Rr−1 such that uv1 = 1, uv2 = −1
and uvi = 0 for all i > 2. Multiplying the last formula by u from the left
gives 0 =∑r

i=1 uvi ⊗ zi = z1 − z2.
This implies, in particular, that the last coordinate of each zi is equal to

1/r . Thus yi = ∑
x∈Xi rα(x)x is a convex combination of the elements

of Xi , and y = y1 = · · · = yr . Consequently y is a common element of
each conv Xi .
The steps of this proof can be reversed easily showing that condition⋂r
1 conv Xi �= ∅ implies 0 ∈ conv X .

Remark 7.4. Note that when r = 2, v1 = 1 and v2 = −1, Sarkaria’s
lemma gives X1 respectively X2 as the set of elements with positive (and
negative) coefficients in the linear dependence of (x1, 1), . . . , (xd+2, 1).
Sarkaria’s tensor method is a direct and beautiful generalization of the
proof of Radon’s theorem.
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8 Kirchberger generalized

Recall Kirchberger’s theorem [15] from the first section with Red and
Blue points. We want to have more colours this time, so we give the
theorem in a slightly different form. The elements of a finite sets X ⊂ Rd

are coloured Red or Blue which is simply a partition of X into X1, (the
Red points) and X2, (the Blue ones). We say that X is separated along
the colours if conv X1 ∩ conv X2 = ∅. Now Kirchberger’s theorem says
that X is separated along the colours iff every subset of X , of size at most
d + 2, is separated along the colours.
The extension to more colours is quite natural now. Assume a finite set

(or multiset) X ⊂ Rd is coloured with r ≥ 2 colours, that is, there is a
partition X = X1∪· · ·∪ Xr . We say that X is separated along the colours
if

⋂r
1 conv Xi = ∅. The colourful version of Kirchberger’s theorem is a

result of A. Pór [20]:

Theorem 8.1. With the above notation X ⊂ Rd is separated along the
colours if and only if every subset of X of size at least (r − 1)(d + 1)+ 1
is separated along the colours.

Note that r = 2 is the original Kirchberger theorem. Theorem 8.1 can
be proved using Theorem 7.2, for instance. But here we aim for more.
Set n = (r − 1)(d + 1) and assume that, for every i ∈ [r] and for every
j ∈ [n + 1], a finite set Xi, j ⊂ Rd is given (which may be empty). This
can be thought of as an r by (n + 1) matrix whose i, j-entry is the set
Xi, j .

G1 G2 . . . Gn+1
X1 X1,1 X1,2 . . . X1,n+1
X2 X2,1 X2,2 . . . X2,n+1
...

...
...

...
...

Xr Xr,1 Xr,2 . . . Xr,n+1

We call the sets Xi = ⋃n+1
j=1 Xi, j colours and the sets G j = ⋃r

i=1 Xi, j
groups, (nothing to do with groups in algebra though). A transversal of
this system is a set Y = {y1, y2, . . . , yn+1} if y j ∈ G j for every j . In the
multiset case, of course, every y j ∈ Y comes from a uniquely determined
Xi, j ⊂ G j . The following result is form Arocha et al. [1].

Theorem 8.2. Under the above conditions, if every transversal is sepa-
rated along the colours, then so is some group G j .
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Proof. We use Sarkaria’s lemma. A transversal Y is separated along the
colours iff 0 /∈ convY (where Y ∈ Rn). If 0 /∈ convY for all transversals,
then by Theorem 4.1, we can’t have 0 ∈ convG j for all j , meaning that
0 /∈ convG j for some j ∈ [n + 1]. Then, by Sarkaria’s lemma again, G j

is separated along the colours.
Note that using Theorem 5.1 instead of colourful Carathéodory, one

gets a little more, namely, two groups whose union is separated along the
colours.

We give two applications of this result. The first is the colourful Kirch-
berger Theorem 8.1. The finite X is partitioned as X1 ∪ · · · ∪ Xr and we
define Xi, j = Xi for all j = [n + 1]. A transversal Y in this case is
sequence of n + 1 elements of X (possibly with repetitions), and Y is
separated along the colours simply means that

⋂r
1 conv(Y ∩ Xi) = ∅. If

all transversals are separated along the colours, then so is one group by
the theorem we just proved. But all groups are the same, which means
that X1, . . . , Xr are separated along the colours.

The second application is a proof of Tverberg’s theorem. We are given
a set X = {x1, . . . , xn+1} in Rd , n = (r − 1)(d + 1) and we are going
to find an r-partition X1 ∪ · · · ∪ Xr of X with

⋂r
1 conv Xi �= ∅. Define

Xi, j = {x j } for all i ∈ [r]. As each group is a single point repeated r
times, no group is separated along the colours. Theorem 8.2 implies then
that some transversal, say Y , is not separated along the colours. Note that
each y j ∈ Y comes from a unique Xi, j . For a fixed i , let Xi be the set of
y j ∈ Y that come from Xi, j . This is a partition of X . The fact that Y is
not separated along the colours means exactly that

⋂r
1 conv Xi �= ∅, as

required.

Open question 8.3. Give an effective algorithm to find a Tverberg par-
tition of a set X ⊂ Rd with (r − 1)(d + 1) + 1 elements. Note that
a positive answer to Open question 4.5 would solve this problem, via
Sarkaria’s lemma.

9 Tverberg’s theorem with tolerance

A partition of a finite set X ⊂ Rd with parts X1, . . . , Xr has tolerance t
if for every set T ⊂ X of size t

r⋂
1

conv(Xi \ T ) �= ∅.

A partition with tolerance with t = 0 is just a Tverberg partition. The
question is what size of X , as a function of d, r and t , guarantees the
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existence of an r-partition with tolerance t . This question is open even
in the case r = 2, t = 1 (see [27] for more information). Recently
Soberón and Strausz [27] have given an upper bound on this number.
Their argument uses Sarkaria’s lemma, that is why we present it here.

Theorem 9.1. Suppose d ≥ 1, r ≥ 2, t ≥ 0 are integers. Every X ⊂ Rd

with at least (r − 1)(d + 1)(t + 1) + 1 elements has a partition into r
parts with tolerance t .

Note that the slightly weaker bound (t+1)[(r−1)(d+1)+1] follows
from Tverberg’s theorem directly.
It will be convenient to say that S ⊂ Rd captures the origin if 0 ∈

conv S, and S captures the origin with tolerance t if 0 ∈ conv(S \ T ) for
every T ⊂ S with |T | ≤ t .

We need a definition and a lemma. Given S ⊂ S′ ⊂ Rp and a group
G, an action of G on S′ is said to be compatible with S if the following
holds:

• If A ⊂ S′ captures the origin, then so does gA for every g ∈ G,
• Ga captures the origin for every a ∈ S.

Lemma 9.2. Assume p ≥ 1 and t ≥ 0 are integers, n = p(t + 1) + 1,
S = {a1, . . . , an} ⊂ Rd , and G is a finite group with |G| ≤ p. If there
is an action of G on a set S′ which is compatible with S ⊂ S′, then there
are g j ∈ G (for all j ∈ [n]) such that the set {g1a1, . . . , gnan} captures
the origin with tolerance t .

We prove the theorem first.

Proof of Theorem 9.1. Set n = (r−1)(d+1)(t+1)+1, X= {x1, . . . , xn},
p = (r − 1)(d + 1), and let v1, v2, . . . , vr ∈ Rr−1 be the vertices of a
regular simplex centered at the origin. So α1v1 + · · · + αrvr = 0 iff
α1 = · · · = αr . Then v1, . . . , vr satisfy the conditions of Sarkaria’s
lemma. Define

S′ = {vi ⊗ (x j , 1) ∈ Rp : i ∈ [r], j ∈ [n]} and
S = {vr ⊗ (x j , 1) ∈ Rp : j ∈ [n]}.

There is a natural action of Zr (the cyclic group of order r) on S′, given
by m(vi ⊗ (x j , 1)) = vi+m ⊗ (x j , 1) where i + m is taken mod r .
Next we check the conditions of Lemma 9.2. For each a ∈ S′, Zra

captures the origin as
∑r

1 vi = 0. Suppose A is a subset of S′ that cap-
tures the origin. As the simplex with vertices v1, . . . , vr is regular, the
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coefficients of the convex combination that give 0 for A work for gA to
give 0 again for every g ∈ Zr . Note that the condition d ≥ 1 is needed as
it implies p ≥ r = |G|.
So the lemma applies and gives m j ∈ Zk , ( j ∈ [n]) such that, with

m j (vr ⊗ (x j , 1)) = vm j ⊗ (x j , 1) the set

Y = {m1(vr ⊗ (x1, 1),m2(vr ⊗ (x2, 1), . . . ,mn(vr ⊗ (xn, 1)}
= {vm1 ⊗ (x, 1), . . . , vmn ⊗ (xn, 1)}

captures the origin with tolerance t .

We are almost done. Define Xi = {x j : m j = 1} for i ∈ [r]. This is
an r-partition of X and with this partition the set Y is exactly the set X
that appears in Sarkaria’s lemma. As Y captures the origin with tolerance
t , for every T ⊂ X of size at most t , 0 ∈ conv(X \ T ). Sarkaria’s
lemma implies then that

⋂r
1 conv(Xi \ T ) �= ∅. So X1, . . . , Xr form an

r-partition of X with tolerance t .

Proof of the lemma. Let G = {g1, . . . , gq}, q ≤ p. We use induc-
tion on r . The case t = 0 is the colourful Carathéodory Theorem 4.1
with Ga1, . . . ,Gan as colour classes. Suppose the lemma is true for
t − 1 but false for t . Given a vector (h1, . . . , hn) ∈ Gn define h · S =
{h1a1, . . . , hnan}. Since the lemma is false for r , for every h ∈ Gn there
is T ⊂ h · S with t points so that h · S \ T is separated from the origin.
So dist(0, conv(h · S \ T )) > 0.

For a given h ∈ Gn let D(h) denote the minimum of all such distances,
so D(h) > 0. Choose h∗ ∈ G∗ so that D(h∗) is minimal among all
the D(h). Let T ∗ be the t-element subset of h∗ · S for which D(h∗) =
dist(0, conv(h∗ · S \ T ∗)). Write� = conv(h∗ · S \ T ∗), so there is x ∈ �
which realizes this distance. Let H be the hyperplane in Rp that contains
x and is orthogonal to x . It follows that x is in the convex hull of a set
V ⊂ (h∗ · S \ T ∗) ∩ H with at most p elements. Write U = h∗ · S \ V
and let H− be the halfspace bounded by H and containing the origin.

It is easy to see that U is compatible with the action of G, and m =
|U | ≥ pt+1. The induction hypothesis yields a vector k ∈ G |U | such that
k ·U captures the origin with tolerance t−1. Observe that for each b ∈ U
there is gi ∈ G such that gib ∈ H−. This follows as the set Gb captures
the origin for every b ∈ U . Consider the sets (g1k) · U, . . . , (gqk) · U
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written as rows in the matrix below.

g1k1u1 g1k2u2 . . . g1kmum
g2k1u1 g2k2u2 . . . g2kmum

...
...

...
...

gqk1u1 gqk2u2 . . . gqkmum

By the previous observation, every column here contains an element in
H−. There are m ≥ pt + 1 columns and q ≤ p rows. By the pigeonhole
principle there is a g ∈ G such that (gk) · U has at least t + 1 elements
in H−.
Next we define a new vector h ∈ Gn by setting h j = gk j if a j ∈ U

and h j = h∗j otherwise. We claim that D(h) < D(h∗). Let T ⊂ h · S
be a set of at most t points such that 0 /∈ conv((h · S) \ T ). Now T
cannot contain t−1 or fewer points from (gh∗) ·U , because then h · S \T
would capture the origin. Thus T ⊂ (gh∗) · U and then there is a point
a ∈ H−∩((gh∗)·U) that is not in T . It follows that conv(V∪{a}) is closer
to the origin than conv V . Thus indeed D(h) < D(h∗) contradicting the
minimality of D(h∗).

Open question 9.3. Write T (d, r, t) for the smallest integer such that
every set X ⊂ Rd with T (d, r, t) points has an r-partition with tolerance
t . Theorem 9.1 shows that T (r, d, t) ≤ (r−1)(d+1)(t+1)+1. What is
the exact value of T (d, r, t)? Even the case t = 1 is open, the best known
lower bound is �5d/3� + 3 ≤ T (d, r, 1), cf [22] and [16].
Some recent results concerning T (d, r, t) for d ≤ 2 can be found in

Mulzer, Stein [19].
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[20] A. PÓR, “Diploma thesis”, Eötvös University, Budapest, 1998.
[21] J. RADON, Mengen konvexer Körper, die einen gemensamen Punkt

erhalten, Math. Ann. 83 (1921), 113–115.



17 Tensors, colours, octahedra
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Cliques and stable sets
in undirected graphs

Maria Chudnovsky

Abstract. The cochromatic number of a graph G is the minimum number of
stable sets and cliques of G covering the vertex-set of G. In this paper we survey
some resent results and techniques developed in an attempt to answer the question:
excluding which induced subgraphs causes a graph to have bounded cochromatic
number?

1 Introduction

All graphs in this paper are finite and simple. Let G be a graph. We
denote by V (G) the vertex-set of G. A tournament is a directed graph,
where for every two vertices u, v exactly one of the (ordered) pairs uv
and vu is an edge. For tournaments S and T , we say that T is S-free if no
subtournament of T is isomorphic to S. If S is a family of tournaments,
then T is S-free if T is S-free for every S ∈ S. A tournament is transitive
if it has no directed cycles (or, equivalently, no cyclic triangles). For a
tournament T , we denote by α(T ) the maximum number of vertices of
a transitive subtournament of T . Finally, the chromatic number of T is
the smallest number of transitive subtournaments of T whose vertex-sets
have union V (T ).
We say that a tournament S is a hero if there exists d > 0 such that

every S-free tournament has chromatic number at most d, and S is a
celebrity if there exists 0 < c ≤ 1 such that every S-free tournament T
has α(T ) ≥ c|V (T )|. Heroes and celebrities are studied in [1]. Some-
what surprisingly, it turns out that a tournament is a hero if and only if it
is a celebrity (the “only if” implication is clear, but the “if” is non-trivial).
The main result of [1] says that all heroes (and equivalently celebrities)
can be constructed starting from single vertices by repeatedly applying
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two growing operations; and every tournament constructed in that way is
a hero.
Similar questions make sense for undirected graphs as well as tour-

naments, and the goal of this paper is to survey recent progress on this
topic.

2 Heroes without direction

Let G be an undirected graph. For a subset X of V (G) we denote by
G|X the subgraph of G induced by X . The complement Gc of G is the
graph with vertex set V (G), such that two vertices are adjacent in G if
and only if they are non-adjacent in Gc. A clique in G is a set of vertices
all pairwise adjacent. A stable set in G is a set of vertices all pairwise
non-adjacent (thus a stable set in G is a clique in Gc). The largest size
of a clique in G is denoted by ω(G), and the largest size of a stable set
by α(G). The chromatic number of G is the smallest number of stable
sets of G with union V (G). Given a graph H , we say that G is H -free if
G has no induced subgraph isomorphic to H . If G is not H -free, we say
that G contains H . For a family F of graphs, we say that G is F-free if
G is F-free for every F ∈ F .
As with tournaments, one might ask what graphs H have the property

that every H -free graph G has chromatic number bounded by a constant
d (where d depends on H , but not on G). However, this question does
not have an interesting answer. The complete graph on n vertices is H -
free for every H that is not a complete graph, and has chromatic number
n. On the other hand, for every k > 0 there exist graphs with no clique
of size three and with chromatic number at least k (this is a theorem of
Erdős [4]), and so only graphs with at most two vertices have the property.
Let us modify the question a little. The cochromatic number of a graph

G is the minimum number of stable sets and cliques of G with union
V (G). We denote the cochromatic number of G by coχ(G). Let us say
that a family H is heroic if there exists a constant d(H) > 0 such that
coχ(G) ≤ d(H) for every every H-free graph G, and it is celebrated
if there exists a constant 0 < c(H) ≤ 1 such that every H-free graph
G contains either a clique or a stable set of size at least c(H)|V (G)|.
Clearly, if H is heroic, then it is celebrated. This turns out to be a better
undirected analogue of the concepts discussed in the Introduction. Heroic
and celebrated families of undirected graphs were studied in [3].
Let G be a complete multipartite graph with m parts, each of size m.

Then G has m2 vertices, and no clique or stable set of size larger than
m; and the same is true for Gc. Thus every celebrated family contains a
complete multipartite graph and the complement of one. The girth of a
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graph is the smallest length of a cycle in it. Recall that for every positive
integer g there exist graphs with girth at least g and no linear-size stable
set (this is a theorem of Erdős [4]). Consequently, every celebrated family
must also contain a graph of girth at least g, and, by taking complements,
a graph whose complement has girth at least g. Thus, for a finite family
of graphs to be celebrated, it must contain a forest and the complement
of one. In particular, if a celebrated family only contains one graph H ,
then |V (H)| ≤ 2. The following conjecture, proposed in [3], states that
these necessary conditions for a finite family of graphs to be celebrated
are in fact sufficient for being heroic.

Conjecture 2.1. A finite family of graphs is heroic if and only if it con-
tains a complete multipartite graph, the complement of a complete mul-
tipartite graph, a forest, and the complement of a forest.

We remark that this is closely related to a well-known conjecture made
independently by Gyárfás [5] and Sumner [10], that can be restated as
follows in the language of heroic families:

Conjecture 2.2. For every complete graph K and every forest T , the
family {K , T } is heroic.
For partial results on Conjecture 2.2 see [6–9].
Since a complete graph is a multipartite graph, the complement of one,

and the complement of a forest, we deduce that Conjecture 2.1 implies
Conjecture 2.2. The main result of [3] is that Conjecture 2.1 and Conjec-
ture 2.2 are in fact equivalent. A graph G is c-split if V (G) = X ∪ Y ,
where

• ω(X) ≤ c, and
• α(Y ) ≤ c.

The fact that Conjecture 2.2 implies Conjecture 2.1 is a consequence of
the following theorem of [3]:

Theorem 2.3. Let K and J be graphs, such that both K and J c are
complete multipartite. Then there exists a constant c(K , J ) such that
every {K , J }-free graph is c(K , J )-split.

Now let F be a family of graphs that contains a complete multipartite
graph, the complement of a complete multipartite graph, a forest, and the
complement of a forest, and let G be an F-free graph. By Theorem 2.3,
there exists a constant c such that G is c-split. Now applying Conjec-
ture 2.2 to G|X and Gc|Y , the assertion of Conjecture 2.1 follows.
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3 Cographs

The goal of this section is to discuss a generalization of Theorem 2.3. A
cograph is a graph obtained from one-vertex graphs by repeatedly taking
disjoint unions and disjoint unions in the complement. In particular, com-
plete graphs, their complements, complete multipartite graphs, and their
complements are all cographs. Thus Theorem 2.3 says that excluding a
pair of cographs (a complete multipartite graph and the complement of
one) from a graph G guarantees that G has a partition into two parts, each
of which excludes a cograph that is in some sense simpler (a complete
graph or its complement). It turns out that this idea can be generalized to
all cographs.
Let us make this more precise. We say that a graph G is anticon-

nected of Gc is connected. A component of G is a maximal non-empty
connected subgraph of G, and an anticomponent of G is a maximal non-
empty anticonnected induced subgraph of G.
First we observe that for every cographG with at least two vertices, ex-

actly one of G,Gc is connected. Next we recursively define a parameter,
called the height of a cograph, that measures its complexity. The height
of a one-vertex cograph is zero. If G is a cograph that is not connected, let
m be the maximum height of a component of G; then the height of G is
m+ 1. If G is a cograph that is not anticonnected, let m be the maximum
height of an anticomponent of G; then the height of G is m + 1.
Let G be a graph. Given a pair of graphs H1, H2, we say that G is

{H1, H2}-split if V (G) = X1 ∪ X2, where the subgraph of G induced
by Xi is Hi -free for every i ∈ {1, 2}. One of the results of [2] is the
following:

Theorem 3.1. Let k > 0 be an integer, and let H and J be cographs,
each of height k + 1, such that H is anticonnected, and J is connected.
Then there exist cographs H̃ and J̃ , each of height k, such that H̃ is con-
nected, and J̃ is anticonnected, and every {H, J }-free graph is (H̃ , J̃ )-
split.

Clearly Theorem 2.3 follows from Theorem 3.1 by taking k = 1, and
observing the cographs of height one are complete graphs and their com-
plements.

4 Excluding pairs of graphs

Given an integer P > 0, a graph G, and a set of graphs F , we say that G
admits an (F, P)-partition if the vertex set of G can be partitioned into P
subsets X1, . . . , XP , so that for every i ∈ {1, . . . , P}, either |Xi | = 1, or
the subgraph of G induced by Xi is F-free for some F ∈ F (we remark



23 Cliques and stable sets in undirected graphs

that the condition that |Xi | = 1 is only necessary when all the members
of F are one-vertex graphs).
The proof of Theorem 2.3 in [3] relies on the following fact:

Theorem 4.1. Let p > 0 be an integer. There exists an integer r > 0
such that for every graph G, if every induced subgraph of G with at most
r vertices is p-split, then G is p-split.

Here is a weaker statement that would still imply Theorem 2.3 (here
Kp is the complete graph on p vertices, and Sp is the complement of Kp):

Theorem 4.2. Let p > 0 be an integer. There exist integers r, k > 0
such that for every graph G, if every induced subgraph of G with at most
r vertices is p-split, then G admits a ({Kp, Sp}, k)-partition.
However, the proof of Theorem 3.1 did not follow the same route, and

no result similar to Theorem 4.2 exists in the setting of general cographs,
because of the following theorem of [2]:

Theorem 4.3. Let H , J be graphs, each with at least one edge. Then for
every choice of integers r, k there is a graph G such that

• for every S ⊆ V (G) with |S| ≤ r , the graph G|S is {H, J }-split,
and

• G has no ({H, J }, k)-partition.
Unfortunately, we do not have an easy construction for Theorem 4.3; our
proof involves probabilistic arguments.
By taking complements, the conclusion of Theorem 4.3 also holds if

each of H and J has a non-edge. Thus Theorem 4.2 is in a sense the
strongest theorem of this form possible. In view of this fact, the proof of
Theorem 3.1 in [2] takes a different route, and uses a much more general
result, which roughly says that excluding a pair of graphs, one of which is
not connected and the other not anticonnected, causes a graph to “break
apart” into a bounded number of simpler pieces.
Here is a more precise statement. We denote by c(H) the set of com-

ponents of H , and by ac(H) the set of anticomponents of H . We remark
that for every non-null graph G, at least one of c(G) or ac(G) equals
{G}.
Theorem 4.4. For every pair of graphs (H, J ) there exists an integer P
such that every {H, J }-free graph admits a (c(H)∪ ac(J ), P)-partition.

Please note that Theorem 4.4 is trivial unless H is not connected and J
is not anticonnected. Even though Theorem 4.4 was motivated by trying
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to prove Theorem 3.1, its generality makes it an interesting result on its
own (possibly more so than Theorem 3.1).
To deduce Theorem 3.1 from Theorem 4.4 one just needs to observe

the following:

Theorem 4.5. Let P, k be positive integers. Let F be a set of connected
cographs, all of height at most k. Then there exists a connected cograph
C of height k such that for every partition X1, . . . , XP of V (C) there
exists i ∈ {1, . . . , P} such that C|Xi contains every member of F .
The proof of Theorem 4.5 is not difficult, and can be found in [2].

5 Back to tournaments

Given tournaments H1 and H2 with disjoint vertex sets, we write H1 ⇒
H2 to mean the tournament H with V (H) = V (H1) ∪ V (H2), and such
that H |V (Hi) = Hi for i = 1, 2, and every vertex of V (H1) is adjacent
to (rather than from) every vertex of V (H2). One of the results of [1]
is a complete characterization of all heroes. An important and the most
difficult step toward that is the following:

Theorem 5.1. If H1 and H2 are heroes, then so is H1 ⇒ H2.

It turns out that translating the proof of Theorem 4.4 into the language
of tournaments gives the following result [2]:

Theorem 5.2. Let H1, H2 be non-null tournaments, and let H be H1 ⇒
H2. Let m = max(|V (H1)|, |V (H2)|). Then every H -free tournament
admits an ({H1, H2}, 2(m + 1)m)-partition.

Theorem 5.2 immediately implies Theorem 5.1. More precisely, we
have:

Theorem 5.3. Let H1, H2 be non-null tournaments, and let H be H1 ⇒
H2. Assume that for i = 1, 2 every every Hi -free tournament has chro-
matic number at most di . Let m = max(|V (H1)|, |V (H2)|) and let
d = max(d1, d2). Then every H -free tournament has chromatic num-
ber at most 2(m + 1)md.
We remark that this proof of Theorem 5.1 is much simpler than the one

in [1].
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A taste of nonstandard methods
in combinatorics of numbers

Mauro Di Nasso

Abstract. By presenting the proofs of a few sample results, we introduce the
reader to the use of nonstandard analysis in aspects of combinatorics of numbers.

Introduction

In the last years, several combinatorial results about sets of integers that
depend on their asymptotic densities have been proved by using the tech-
niques of nonstandard analysis, starting from the pioneering work by R.
Jin (see e.g. [6, 8, 9, 12–14, 16, 17]). Very recently, the hyper-integers of
nonstandard analysis have also been used in Ramsey theory to investi-
gate the partition regularity of possibly non-linear diophantine equations
(see [6, 19]).

The goal of this paper is to give a soft introduction to the use of non-
standard methods in certain areas of density problems and Ramsey the-
ory. To this end, we will focus on a few sample results, aiming to give
the flavor of how and why nonstandard techniques could be successfully
used in this area.

Grounding on nonstandard definitions of the involved notions, the pre-
sented proofs consist of arguments that can be easily followed by the in-
tuition and that can be taken at first as heuristic reasonings. Subsequently,
in the last foundational section, we will outline an algebraic construction
of the hyper-integers, and give hints to show how those nonstandard ar-
guments are in fact rigorous ones when formulated in the appropriate lan-
guage. We will also prove that all the nonstandard definitions presented
in this paper are actually equivalent to the usual “standard” ones.

Two disclaimers are in order. Firstly, this paper is not to be taken as
a comprehensive presentation of nonstandard methods in combinatorics,
but only as a taste of that area of research. Secondly, the presented re-
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sults are only examples of “first-level” applications of the nonstandard
machinery; for more advanced results one needs higher-level nonstan-
dard tools, such as saturation and Loeb measure, combined with other
non-elementary mathematical arguments.

1 The hyper-numbers of nonstandard analysis

This introductory section contains an informal description of the basics
of nonstandard analysis, starting with the hyper-natural numbers. Let us
stress that what follows are not rigorous definitions and results, but only
informal discussions aimed to help the intuition and provide the essential
tools to understand the rest of the paper.1

One possible way to describe the hyper-natural numbers ∗N is the fol-
lowing:

• The hyper-natural numbers ∗N are the natural numbers when seen
with a “telescope” which allows to also see infinite numbers beyond
the usual finite ones. The structure of ∗N is essentially the same as N,
in the sense that ∗N andN cannot be distinguished by any “elementary
property”.

Here by elementary property we mean a property that talks about ele-
ments but not about subsets2, and where no use of the notion of infinite
or finite number is made.

In consequence of the above, the order structure of ∗N is clear. After
the usual finite numbers N = {1, 2, 3, . . .}, one finds the infinite numbers
ξ > n for all n ∈ N. Every ξ ∈ ∗N has a successor ξ + 1, and every
non-zero ξ ∈ ∗N has a predecessor ξ − 1.
∗N = {

1, 2, 3, . . . , n, . . .︸ ︷︷ ︸
finite numbers

. . . , N − 2, N − 1, N , N + 1, N + 2, . . .︸ ︷︷ ︸
infinite numbers

}
Thus the set of finite numbers N has not a greatest element and the set
of infinite numbers N∞ = ∗N \ N has not a least element, and hence
∗N is not well-ordered. Remark that being a well-ordered set is not an
“elementary property” because it is about subsets, not elements.3

1 A model for the introduced notions will be constructed in the last section.

2 In logic, this kind of properties are called first-order properties.

3 In logic, this kind of properties are called second-order properties.
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• The hyper-integers ∗Z are the discretely ordered ring whose positive
part is the semiring ∗N.

• The hyper-rationals ∗Q are the ordered field of fractions of ∗Z.

Thus ∗Z = −∗N∪{0}∪∗N, where−∗N = {−ξ | ξ ∈ ∗N} are the negative
hyper-integers. The hyper-rational numbers ζ ∈ ∗Q can be represented
as ratios ζ = ξ

ν
where ξ ∈ ∗Z and ν ∈ ∗N.

As the next step, one considers the hyper-real numbers, which are in-
strumental in nonstandard calculus.

• The hyper-reals ∗R are an ordered field that properly extends both
∗Q and R. The structures R and ∗R satisfy the same “elementary
properties”.

As a proper extension of R, the field ∗R is not Archimedean, i.e. it con-
tains non-zero infinitesimal and infinite numbers. (Recall that a number
ε is infinitesimal if −1/n < ε < 1/n for all n ∈ N; and a number � is
infinite if |�| > n for all n.) In consequence, the field ∗R is not complete:
e.g., the bounded set of infinitesimals has not a least upper bound.4

Each set A ⊆ R has its hyper-extension ∗A ⊆ ∗R, where A ⊆ ∗A. E.g.,
one has the set of hyper-even numbers, the set of hyper-prime numbers,
the set of hyper-irrational numbers, and so forth. Similarly, any function
f : A → B has its hyper-extension ∗ f : ∗A → ∗B, where ∗ f (a) = f (a)
for all a ∈ A. More generally, in nonstandard analysis one considers
hyper-extensions of arbitrary sets and functions.

The general principle that hyper-extensions are indistinguishable from
the starting objects as far as their “elementary properties” are concerned,
is called transfer principle.

• Transfer principle: An “elementary property” P holds for the sets
A1, . . . , Ak and the functions f1, . . . , fh if and only if P holds for
the corresponding hyper-extensions:

P(A1, . . . , Ak, f1, . . . , fh) ⇐⇒ P(∗A1, . . . , ∗Ak, ∗ f1, . . . , ∗ fh)

Remark that all basic set properties are elementary, and so A ⊆ B ⇔
∗A ⊆ ∗B, A ∪ B = C ⇔ ∗A ∪ ∗B = ∗C , A \ B = C ⇔ ∗A \ ∗B = ∗C , and
so forth.

4 Remark that the property of completeness is not elementary, because it talks about subsets and
not about elements of the given field. Also the Archimedean property is not elementary, because it
requires the notion of finite hyper-natural number to be formulated.
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As direct applications of transfer one obtains the following facts: The
hyper-rationals ∗Q are dense in the hyper-reals ∗R; every hyper-real num-
ber ξ ∈ ∗R has an an integer part, i.e. there exists a unique hyper-integer
μ ∈ ∗Z such that μ ≤ ξ < μ+ 1; and so forth.
As our first example of nonstandard reasoning, let us see a proof of

König’s Lemma, one of the oldest results in infinite combinatorics.

Theorem 1.1 (König’s Lemma – 1927). If a finite branching tree has
infinitely many nodes, then it has an infinite branch.

Nonstandard proof. Given a finite branching tree T , consider the
sequence of its finite levels 〈Tn | n ∈ N〉, and let 〈Tν | ν ∈ ∗N〉 be
its hyper-extension. By the hypotheses, it follows that all finite levels
Tn �= ∅ are nonempty. Then, by transfer, also all “hyper-levels” Tν are
nonempty. Pick a node τ ∈ Tν for some infinite ν. Then {t ∈ T | t ≤ τ }
is an infinite branch of T .

2 Piecewise syndetic sets

A notion of largeness used in combinatorics of numbers is the following.

• A set of integers A is thick if it includes arbitrarily long intervals:
∀n ∈ N ∃x ∈ Z [x, x + n) ⊆ A.

In the language of nonstandard analysis:

Definition 2.1 (Nonstandard). A is thick if I ⊆ ∗A for some infinite
interval I .

By infinite interval we mean an interval [ν, μ] = {ξ ∈ ∗Z | ν ≤
ξ ≤ μ} with infinitely many elements or, equivalently, an interval whose
length μ− ν + 1 is an infinite number.
Another important notion is that of syndeticity. It stemmed from dy-

namics, corresponding to finite return-time in a discrete setting.

• A set of integers A is syndetic if it has bounded gaps:
∃k ∈ N ∀x ∈ Z [x, x + k) ∩ A �= ∅.

So, a set is syndetic means that its complement is not thick. In the lan-
guage of nonstandard analysis:
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Definition 2.2 (Nonstandard). A is syndetic if ∗A ∩ I �= ∅ for every
infinite interval I .

The fundamental structural property considered in Ramsey theory is
that of partition regularity.

• A family F of sets is partition regular if whenever an element A ∈ F
is finitely partitioned A = A1 ∪ . . . ∪ An , then at least one piece
Ai ∈ F .

Remark that the family of syndetic sets fails to be partition regular.5 How-
ever, a suitable weaking of syndeticity satisfies the property.

• A set of integers A is piecewise syndetic if A = T ∩ S where T is
thick and S is syndetic; i.e., A has bounded gaps on arbitrarily large
intervals:

∃k ∈ N ∀n ∈ N ∃y ∈ Z ∀x ∈ Z [x, x + k) ⊆ [y, y + n)⇒
⇒ [x, x + k) ∩ A �= ∅.

In the language of nonstandard analysis:

Definition 2.3 (Nonstandard). A is piecewise syndetic (PS for short) if
there exists an infinite interval I such that ∗A∩ I has only finite gaps, i.e.
∗A ∩ J �= ∅ for every infinite subinterval J ⊆ I .

Several results suggest the notion of piecewise syndeticity as a relevant
one in combinatorics of numbers. E.g., the sumset of two sets of natu-
ral numbers having positive density is piecewise syndetic6; every piece-
wise syndetic set contains arbitrarily long arithmetic progressions; a set
is piecewise syndetic if and only if it belongs to a minimal idempotent
ultrafilter7.

Theorem 2.4. The family of PS sets is partition regular.

5 E.g., consider the partition of the integers determined by

A =
⋃
n∈N

[−22n,−22n−1) ∪
⋃
n∈N

[22n−1, 22n)

and its complement Z \ A, neither of which is syndetic.
6 This is Jin’s theorem, proved in 2000 by using nonstandard analysis (see [13]).

7 See [11, Section 4.4].
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Nonstandard proof. By induction, it is enough to check the property for
2-partitions. So, let us assume that A = BLUE ∪ RED is a PS set; we
have to show that RED or BLUE is PS. We proceed as follows:

• Take the hyper-extensions ∗A = ∗BLUE ∪ ∗RED.
• By the hypothesis, we can pick an infinite interval I where ∗A has only
finite gaps.

• If the ∗blue elements of ∗A have only finite gaps in I , then BLUE is
piecewise syndetic.

• Otherwise, there exists an infinite interval J ⊆ I that only contains
∗red elements of ∗A. But then ∗RED has only finite gaps in J , and
hence RED is piecewise syndetic.

3 Banach and Shnirelmann densities

An important area of research in number theory focuses on combinatorial
properties of sets which depend on their density. Recall the following
notions:

• The upper asymptotic density d(A) of a set A ⊆ N is defined by
putting:

d(A) = lim sup
n→∞

|A ∩ [1, n]|
n

.

• The upper Banach density BD(A) of a set of integers A ⊆ Z gener-
alizes the upper density by considering arbitrary intervals in place of
just initial intervals:

BD(A) = lim
n→∞

(
max
x∈Z

|A ∩ [x + 1, x + n]|
n

)

= inf
n∈N

{
max
x∈Z

|A ∩ [x + 1, x + n]|
n

}
.

In order to translate the above definitions in the language of nonstandard
analysis, we need to introduce new notions.

In addition to hyper-extensions, a larger class of well-behaved subsets
of ∗Z that is considered in nonstandard analysis is the class of internal
sets. All sets that can be “described” without using the notions of finite
or infinite number are internal. Typical examples are the intervals

[ξ, ζ ] = {x ∈ ∗Z | ξ ≤ x ≤ ζ } ; [ξ,+∞) = {x ∈ ∗Z | ξ ≥ x} ; etc.
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Also finite subsets {ξ1, . . . , ξn} ⊂ ∗Z are internal, as they can be de-
scribed by simply giving the (finite) list of their elements. Internal subsets
of ∗Z share the same “elementary properties” of the subsets of Z. E.g.,
every nonempty internal subset of ∗Z that is bounded below has a least
element; in consequence, the set N∞ of infinite hyper-natural numbers
is not internal. Internal sets are closed under unions, intersections, and
relative complements. So, also the set of finite numbers N is not internal,
as otherwise N∞ = ∗N \ N would be internal.

Internal sets are either hyper-infinite or hyper-finite; for instance, all
intervals [ξ,+∞) are hyper-infinite, and all intervals [ξ, ζ ] are hyper-
finite. Every nonempty hyper-finite set A ⊂ ∗Z has its internal cardinal-
ity ‖A‖ ∈ ∗N; for instance ‖[ξ, ζ ]‖ = ζ − ξ + 1. Internal cardinality and
the usual cardinality agree on finite sets.

If ξ, ζ ∈ ∗R are hyperreal numbers, we write ξ ∼ ζ when ξ and ζ are
infinitely close, i.e. when their distance |ξ − ζ | is infinitesimal. Remark
that if ξ ∈ ∗R is finite (i.e., not infinite), then there exists a unique real
number r ∼ ξ , namely r = inf{x ∈ R | x > ξ}.8
We are finally ready to formulate the definitions of density in nonstan-

dard terms.

Definition 3.1 (Nonstandard). For A ⊆ N, its upper asymptotic density
d(A) = β is the greatest real number β such that there exists an infinite
ν ∈ ∗N with

‖∗A ∩ [1, ν]‖/ν ∼ β .

Definition 3.2 (Nonstandard). For A ⊆ Z, its upper Banach density
BD(A) = β is the greatest real number β such that there exists an infinite
interval I with

‖∗A ∩ I‖/‖I‖ ∼ β .

Another notion of density that is widely used in number theory is the
following.

• The Schnirelmann density σ(A) of a set A ⊆ N is defined by

σ(A) = inf
n∈N

|A ∩ [1, n]|
n

.

8 Such a real number r is usually called the standard part of ξ .
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Clearly BD(A) ≥ d(A) ≥ σ(A), and it is easy to find examples where
inequalities are strict. Remark that σ(A) = 1 ⇔ A = N, and that
BD(A) = 1 ⇔ A is thick. Moreover, if A is piecewise syndetic then
BD(A) > 0, but not conversely.

Let us now recall a natural notion of embeddability for the combinato-
rial structure of sets:9

• We say that X is finitely embeddable in Y , and write X ≤fe Y , if every
finite F ⊆ X has a shifted copy t + F ⊆ Y .

It is readily seen that transitivity holds: X ≤fe Y and Y ≤fe Z imply
X ≤fe Z . Notice that a set is ≤fe-maximal if and only if it is thick. Finite
embeddability preserves fundamental combinatorial notions:

• If X ≤fe Y and X is PS, then also Y is PS.
• If X ≤fe Y and X contains an arithmetic progression of length k, then
also Y contains an arithmetic progression of length k.

• If X ≤fe Y then BD(X) ≤ BD(Y ).

Remark that while piecewise syndeticity is preserved under≤fe, the prop-
erty of being syndetic is not. Similarly, the upper Banach density is pre-
served or increased under ≤fe, but upper asymptotic density is not.
Other properties that suggest finite embeddability as a useful notion

are the following:

• If X ≤fe Y then X − X ⊆ Y − Y ;

• If X ≤fe Y and X ′ ≤fe Y ′ then X − X ′ ≤fe Y − Y ′.

In the nonstandard setting, X ≤fe Y means that a shifted copy of the
whole X is found in the hyper-extension ∗Y .

Definition 3.3 (Nonstandard). X ≤fe Y if ν + X ⊆ ∗Y for a suitable
ν ∈ ∗N.

Remark that the key point here is that the shift ν could be an infinite
number.

The sample result that we present below, due to R. Jin [12], allows
to extend results that hold for sets with positive Schnirelmann density to
sets with positive upper Banach density.

9 This notion is implicit in I.Z. Ruzsa’s paper [20], and has been explicitly considered in [6, Section
4]. As natural as it is, it is well possible that finite embeddability has been also considered by other
authors, but I am not aware of it.
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Theorem 3.4. Let BD(A) = β > 0. Then there exists a set E ⊆ N with
σ(E) ≥ β and such that E ≤fe A.

Nonstandard proof. By the nonstandard definition of Banach density,
there exists an infinite interval I such that the relative density ‖∗A ∩
I‖/‖I‖ ∼ β. By translating if necessary, we can assume without loss
of generality that I = [1,M] where M ∈ N∞. By a straight counting
argument, we will prove the following:

• Claim. For every k ∈ N there exists ξ ∈ [1,M] such that for all
i = 1, . . . , k, the relative density ‖∗A ∩ [ξ, ξ + i)‖/ i ≥ β − 1/k.

We then use an important principle of nonstandard analysis, namely:

• Overflow: If A ⊆ ∗N is internal and contains all natural numbers, then
it also contains all hyper-natural numbers up to an infinite ν:

A internal & N ⊂ A �⇒ ∃ν ∈ N∞ [1, ν] ⊆ A.

By the Claim, the internal set below includes N:

A = {ν ∈ ∗N | ∃ξ ∈ [1,M] ∀i ≤ ν ‖∗A ∩ [ξ, ξ + i)‖/ i ≥ β − 1/ν}.
Then, by overflow, there exists an infinite ν ∈ ∗N and ξ ∈ [1,M] such
that ‖∗A ∩ [ξ, ξ + i)‖/ i ≥ β − 1/ν for all i = 1, . . . , ν. In particular,
for all finite n ∈ N, the real number ‖∗A ∩ [ξ, ξ + n)‖/n ≥ β because it
is not smaller than β − 1/ν, which is infinitely close to β. If we denote
by E = {n ∈ N | ξ + n ∈ ∗A}, this means that σ(E) ≥ β. The thesis is
reached because ξ + E ⊆ ∗A, and hence E ≤fe A, as desired.
We are left to prove the Claim. Given k, assume by contradiction that

for every ξ ∈ [1,M] there exists i ≤ k such that ‖∗A ∩ [ξ, ξ + i)‖ < i ·
(β−1/k). By “hyper-induction” on ∗N, define ξ1 = 1, and ξs+1 = ξs+ns
where ns ≤ k is the least natural number such that ‖∗A∩ [ξs, ξs + ns)‖ <

ns · (β − 1/k); and stop at step N when M − k ≤ ξN < M . Since k is
finite, we have k/M ∼ 0 and ξN/M ∼ 1. Then:

β ∼ 1

M
· ∥∥∗A ∩ [1,M]∥∥ ∼ 1

M
· ∥∥∗A ∩ [ξ1, ξN )

∥∥
= 1

M
·
N−1∑
s=1

∥∥∗A ∩ [ξs, ξs+1)∥∥
<

1

M
·
(
N−1∑
s=1

ns ·
(

β − 1

k

))
= ξN − 1

M
·
(

β − 1

k

)
∼ β − 1

k
,

a contradiction.
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The previous theorem can be strengthened in several directions. For
instance, one can find E to be “densely” finitely embedded in A, in the
sense that for every finite F ⊆ X one has “densely-many” shifted copies
included in Y , i.e. BD ({t ∈ Z | t + F ⊆ Y }) > 0.10

4 Partition regularity problems

In this section we focus on the use of hyper-natural numbers in partition
regularity problems.

The notion of partition regularity for families of sets given in Section
2, is sometimes weakened as follows:

• A family F of sets is weakly partition regular on X if for every finite
partition X = C1 ∪ . . .∪Cn there exists F ∈ F which is contained in
one piece F ⊆ Ci .

Differently from the usual approach to nonstandard analysis, here it turns
out useful to work in a framework where hyper-extensions can be iterated,
so that one can consider, e.g.:

• The hyper-hyper-natural numbers ∗∗N ;
• The hyper-extension ∗ξ ∈ ∗∗N of an hyper-natural number ξ ∈ ∗N ;

and so forth. We remark that working with iterated hyper-extensions
requires caution, because of the existence of different levels of exten-
sions.11 Here, it will be enough to notice that, by transfer, one has that
∗N � ∗∗N, and if ξ ∈ ∗N \ N then ∗ξ ∈ ∗∗N \ ∗N; and similarly for n-th
iterated hyper-extensions.12

Let us start with a nonstandard proof of the classic Ramsey theorem
for pairs.

Theorem 4.1 (Ramsey – 1928). Given a finite colouring [N]2 = C1 ∪
. . . ∪ Cr of the pairs of natural numbers, there exists an infinite set H
whose pairs are monochromatic: [H ]2 ⊆ Ci .13

10 See [6, 9] for more on this topic.

11 See [7] for a discussion of the foundations of iterated hyper-extensions.

12 Notice also that ∗N is an initial segment of ∗∗N, i.e. ξ < ν for every ξ ∈ ∗
N and for every

ν ∈ ∗∗N \ ∗N (such a property is not used in this paper).
13 In other words, the family F = {[H ]2 | H infinite} is weakly partition regular on [N]2.
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Nonstandard proof. Take hyper-hyper-extensions and get the finite col-
oring

[∗∗N]2 = ∗∗([N]2) = ∗∗C1 ∪ . . . ∪ ∗∗Cr .

Pick an infinite ξ ∈ ∗N, let i be such that {ξ, ∗ξ} ∈ ∗∗Ci , and consider the
set A = {x ∈ N | {x, ξ} ∈ ∗Ci }. Then ξ ∈ {x ∈ ∗N | {x, ∗ξ} ∈ ∗∗Ci } =
∗A. Now inductively define the sequence {a1 < a2 < . . . < an < . . .} as
follows:

• Pick any a1 ∈ A, and let B1 = {x ∈ N | {a1, x} ∈ Ci }. Then
{a1, ξ} ∈ ∗Ci and ξ ∈ ∗B1.

• ξ ∈ ∗A ∩ ∗B1 ⇒ A ∩ B1 is infinite.14 Then pick a2 ∈ A ∩ B1 with
a2 > a1.

• a2 ∈ B1 ⇒ {a1, a2} ∈ Ci .

• a2 ∈ A⇒ {a2, ξ} ∈ ∗Ci ⇒ ξ ∈ ∗{x ∈ N | {a2, x} ∈ ∗C1} = ∗B2.
• ξ ∈ ∗A ∩ ∗B1 ∩ ∗B2 ⇒ we can pick a3 ∈ A ∩ B1 ∩ B2 with a3 > a2.

• a3 ∈ B1 ∩ B2 ⇒ {a1, a3}, {a2, a3} ∈ Ci , and so forth.

Then the infinite set H = {an | n ∈ N} is such that [H ]2 ⊆ Ci .

We now give some hints on how iterated hyper-extensions can be used
in partition regularity of equations. Recall that:

• An equation E(X1, . . . , Xn) = 0 is [injectively] partition regular over
N if the set of [distinct] solutions is weakly partition regular on N,
i.e., for every finite coloring N = C1 ∪ . . . ∪ Cr one finds [distinct]
monochromatic a1, . . . , an ∈ Ci such that E(a1, . . . , an) = 0.

A useful nonstandard notion in this context is the following:

Definition 4.2. We say that two hyper-natural numbers ξ, ζ ∈ ∗N are
indiscernible, and write ξ � ζ , if they cannot be distinguished by any
hyper-extension, i.e. if for every A ⊆ N one has either ξ, ζ ∈ ∗A or
ξ, ζ /∈ ∗A.15

14 Here we use the fact that the hyper-extension ∗X of a set X ⊆ N contains infinite numbers if and
only if X is infinite.

15 The name “indiscernible” is borrowed from mathematical logic. Recall that in model theory two
elements are named indiscernible if they cannot be distinguished by any first-order formula.
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Notice that indiscernibility coincides with equality on finite numbers,
because if k ∈ N is finite and ξ �= k, then trivially k ∈ {k} = ∗{k}
and ξ /∈ ∗{k}. Notice also that if k > 1 is any natural number, then
k ξ �� ξ . Indeed, if A is the set of those natural numbers n with the
property that the largest exponent a such that ka divides n is even, then
ξ ∈ ∗A ⇔ k ξ /∈ ∗A. A useful property that one can easily prove is the
following: “If ξ � ζ , then for every f : N → N one has ∗ f (ξ) � ∗ f (ζ ).”

By using the notion of indiscernibility, one can reformulate in nonstan-
dard terms:

Definition 4.3 (Nonstandard). An equation E(X1, . . . , Xn) = 0 is [in-
jectively] partition regular on N if there exist [distinct] hyper-natural
numbers ξ1 � . . . � ξn such that E(ξ1, . . . , ξn) = 0.
The following result recently appeared in [5].

Theorem 4.4. The equation X + Y = Z2 is not partition regular on N,
except for the trivial solution X = Y = Z = 2.
Nonstandard proof. Assume by contradiction that there exist α � β � γ

in ∗N such that α+ β = γ 2. Notice that α, β, γ are infinite, as otherwise
α = β = γ = 2 would be the trivial solution. By the hypothesis of
indiscernibility, α, β, γ belong to the same congruence class modulo 5,
say α ≡ β ≡ γ ≡ i mod 5 with 0 ≤ i ≤ 4. Now write the numbers in
the forms:

α = 5a · α1 + i ; β = 5b · β1 + i ; γ = 5c · γ1 + i

where a, b, c > 0 and α1, β1, γ1 are not divisible by 5. Pick a function
f : N → N such that, for n ≥ 5, the value f (n) is the unique k �≡ 0
mod 5 such that n = 5hk + i for suitable h > 0 and 0 ≤ i ≤ 4. Observe
that α1, β1, γ1 are the images under ∗ f of α, β, γ respectively; so, α �
β � γ implies that α1 � β1 � γ1, and therefore α1 ≡ β1 ≡ γ1 ≡ j �≡ 0
mod 5.

The equality α + β = γ 2 implies that either i = 0 or i = 2. Assume
first that i = 0. In this case γ 2 = 52cγ 21 where γ 21 ≡ j2 �≡ 0 mod 5. If
a < b then α+β = 5a(α1+5b−aβ1)where α1+5b−aβ1 ≡ j �≡ 0 mod 5.
It follows that 2c = a � c, a contradiction. If a > b the proof is similar.
If a = b then α + β = 5a(α1 + β1) where α1 + β1 ≡ 2 j �≡ 0 mod 5,
and also in this case we would have 2c = a � c, a contradiction. If i = 2
then γ 2 − 4 = 5c(5cγ 21 + 4γ1) where 5cγ 21 + 4γ1 ≡ 4 j �≡ 0 mod 5.
Now, in case a < b, one has that α + β − 4 = 5a(α1 + 5b−aβ1) where
α1 + 5b−aβ1 ≡ j �≡ 0 mod 5, and so it would follow that 5cγ 21 + 4γ1 =
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α1 + 5b−aβ1. But then we would have 4 j ≡ j , which is not possible
because j �≡ 0. The case a > b is similar. Finally, if a = b then
α+ β − 4 = 5a(α1+ β1) where α1+ β1 ≡ 2 j �≡ 0 mod 5, and it would
follow that 4 j ≡ 2 j , again reaching the contradiction j ≡ 0.
The notion of indiscernibility naturally extends to the iterated hyper-

extensions of the natural numbers. E.g., if �,� ∈ ∗∗N then � � �

means that for every A ⊆ N one has either �,� ∈ ∗∗A or �,� /∈ ∗∗A.
Notice that α � ∗α for every α ∈ ∗N.
In the sequel, a fundamental role will be played by the following spe-

cial numbers.

Definition 4.5. A hyper-natural number ξ ∈ ∗N is idempotent if ξ �
ξ + ∗ξ .16

Recall van der Waerden Theorem: “Arbitrarily large monochromatic
arithmetic progressions are found in every finite coloring of N”. Here
we prove a weakened version about 3-term arithmetic progressions, by
showing the partition regularity of a suitable equation.

Theorem 4.6. The diophantine equation X1 − 2X2 + X3 = 0 is injec-
tively partition regular on N, which means that for every finite coloring
of N there exists a non-constant monochromatic 3-term arithmetic pro-
gression.

Nonstandard proof. Pick an idempotent number ξ ∈ ∗N. The following
three distinct numbers in ∗∗∗N are a solution of the given equation:

ν = 2ξ + 0 + ∗∗ξ ; μ = 2ξ + ∗ξ + ∗∗ξ ; λ = 2ξ + 2∗ξ + ∗∗ξ.

That ν � μ � λ are indiscernible is proved by a direct computation.
Precisely, notice that ∗ξ � ξ + ∗ξ by the idempotency hypothesis, and
so, for every A ⊆ N and for every n ∈ N, we have that

∗ξ ∈ ∗∗A − n = ∗∗(A − n) ⇔ ξ + ∗ξ ∈ ∗∗(A − n).

In consequence, the properties listed below are equivalent to each other:

16 The name “idempotent” is justified by its characterization in terms of ultrafilters: “ξ ∈ ∗
N is

idempotent if and only if the corresponding ultrafilter Uξ = {A ⊆ N | ξ ∈ ∗A} is idempotent with
respect to the “pseudo-sum” operation:

A ∈ U ⊕ V ⇐⇒ {n | A − n ∈ V} ∈ U
where A − n = {m | m + n ∈ A}”. The algebraic structure (βN,⊕) on the space of ultrafilters
βN and its related generalizations have been deeply investigated during the last forty years, reveal-
ing a powerful tool for applications in Ramsey theory and combinatorial number theory (see the
comprehensive monography [11]). In this area of research, idempotent ultrafilters are instrumental.
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• 2ξ + ∗ξ + ∗∗ξ ∈ ∗∗∗A
• 2ξ ∈ (∗∗∗A − ∗∗ξ − ∗ξ) ∩ ∗N = ∗[(∗∗A − ∗ξ − ξ) ∩ N]
• 2ξ ∈ ∗{n ∈ N | ξ + ∗ξ ∈ ∗∗(A − n)}
• 2ξ ∈ ∗{n ∈ N | ∗ξ ∈ ∗∗(A − n)}
• 2ξ ∈ ∗[(∗∗A − ∗ξ) ∩ N] = (∗∗∗A − ∗∗ξ) ∩ ∗N
• 2ξ + ∗∗ξ ∈ ∗∗∗A.

This shows that ν � μ. The other relation μ � λ is proved in the same
fashion.17

One can elaborate on the previous nonstandard proof and generalize
the technique. Notice that the considered elements μ, ν, λ were linear
combinations of iterated hyper-extensions of a fixed idempotent number
ξ , and so they can be described by the corresponding finite strings of
coefficients in the following way:

• ν = 2ξ + 0 + ∗∗ξ � 〈2, 0, 1〉
• μ = 2ξ + ∗ξ + ∗∗ξ � 〈2, 1, 1〉
• λ = 2ξ + 2∗ξ + ∗∗ξ � 〈2, 2, 1〉
Indiscernibility of such linear combinations is characterized by means
of a suitable equivalence relation ≈ on the finite strings, so that, e.g.,
〈2, 0, 1〉 ≈ 〈2, 1, 1〉 ≈ 〈2, 2, 1〉.
Definition 4.7. The equivalence ≈ between (finite) strings of integers is
the smallest equivalence relation such that:

• The empty string ≈ 〈0〉.
• 〈a〉 ≈ 〈a, a〉 for all a ∈ Z.
• ≈ is coherent with concatenations, i.e.

σ ≈ σ ′ and τ ≈ τ ′ �⇒ σ�τ ≈ σ ′�τ ′.

So, ≈ is preserved by inserting or removing zeros, by repeating finitely
many times a term or, conversely, by shortening a block of consecutive
equal terms. The following characterization is proved in [7]:

• Let ξ ∈ ∗N be idempotent. Then the following are equivalent:

1. a0ξ + a1∗ξ + . . .+ ak · k∗ξ � b0ξ + b1∗ξ + . . .+ bh · h∗ξ

17 Here we actually proved the following result ( [3] Th. 2.10): “Let U be any idempotent ultrafilter.
Then every set A ∈ 2U ⊕ U contains a 3-term arithmetic progression”.
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2. 〈a0, a1, . . . , ak〉 ≈ 〈b0, b1, . . . , bh〉.

Recall Rado theorem: “The diophantine equation c1X1+ . . .+cn Xn = 0
(ci �= 0) is partition regular if and only if∑i∈F ci = 0 for some nonempty
F ⊆ {1, . . . , n}”. By using the above equivalence, one obtains a non-
standard proof of a modified version of Rado theorem, with a stronger
hypothesis and a stronger thesis.

Theorem 4.8. Let c1X1 + . . . + cn Xn = 0 be a diophantine equation
with n ≥ 3. If c1 + . . .+ cn = 0 then the equation is injectively partition
regular on N.

Nonstandard proof. Fix ξ ∈ ∗N an idempotent element, and for simplic-
ity denote by ξi = i∗ξ the i-th iterated hyper-extension of ξ . For arbitrary
a1, . . . , an−1, consider the following numbers in n∗N:

μ1 = a1ξ + a2ξ1 + a3ξ2 + . . . + an−2ξn−3 + an−1ξn−2 + an−1ξn−1
μ2 = a1ξ + a2ξ1 + a3ξ2 + . . . + an−2ξn−3 + 0 + an−1ξn−1
μ3 = a1ξ + a2ξ1 + a3ξ2 + . . . + 0 + an−2ξn−2 + an−1ξn−1
...

...
...

...
...

...
...

...

μn−2 = a1ξ + a2ξ1 + 0 + a3ξ3 + . . . + an−2ξn−2 + an−1ξn−1
μn−1 = a1ξ + 0 + a2ξ2 + a3ξ3 + . . . + an−2ξn−2 + an−1ξn−1
μn = a1ξ + a1ξ1 + a2ξ2 + a3ξ3 + . . . + an−2ξn−2 + an−1ξn−1

Notice that μ1 � . . . � μn because the corresponding strings of coef-
ficients are all equivalent to 〈a1, . . . , an−1〉. Moreover, it can be easily
checked that the μis are distinct. To complete the proof, we need to find
suitable coefficients a1, . . . , an−1 in such a way that c1μ1+ . . .+ cnμn =
0. It is readily seen that this happens if the following conditions are ful-
filled: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(c1 + . . .+ cn) · a1 = 0
(c1 + . . .+ cn−2) · a2 + cn · a1 = 0
(c1 + . . .+ cn−3) · a3 + (cn−1 + cn) · a2 = 0

...

c1 · an−1 + (c3 + . . .+ cn) · an−2 = 0
(c1 + . . .+ cn) · an−1 = 0

Finally, observe that the first and last equations are trivially satisfied be-
cause of the hypothesis c1 + . . . + cn = 0; and the remaining n −
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2 equations are satisfied by infinitely many choices of the coefficients
a1, . . . , an−1, which can be taken in N.18

More results in this direction, including partition regularity of non-
linear diophantine equations, have been recently obtained by L. Luperi
Baglini (see [19]).

5 A model of the hyper-integers

In this final section we outline a construction for a model where one can
give an interpretation to all nonstandard notions and principles that were
considered in this paper.

The most used single construction for models of the hyper-real num-
bers, and hence of the hyper-natural and hyper-integer numbers, is the
ultrapower.19 Here we prefer to use the purely algebraic construction
of [2], which is basically equivalent to an ultrapower, but where only the
notion of quotient field of a ring modulo a maximal ideal is assumed.

• Consider Fun(N, R), the ring of real sequences ϕ : N → R where the
sum and product operations are defined pointwise.

• Let I be the ideal of the sequences that eventually vanish:
I = {ϕ ∈ Fun(N, R) | ∃k ∀n ≥ k ϕ(n) = 0}.

• Pick a maximal ideal M extending I, and define the hyper-real num-
bers as the quotient field:

∗R = Fun(N, R)/M.

• The hyper-integers are the subring of ∗R determined by the sequences
that take values in Z:

∗Z = Fun(N, Z)/M ⊂ ∗R.

18 Here we actually proved the following result ( [7] Th.1.2): “Let c1X1 + . . . + cn Xn = 0 be a
diophantine equation with c1 + . . .+ cn = 0 and n ≥ 3. Then there exists a1, . . . , an−1 ∈ N such
that for every idempotent ultrafilter U and for every A ∈ a1U ⊕ . . . ⊕ an−1U there exist distinct
xi ∈ A such that c1x1 + . . .+ cnxn = 0”.
19 For a comprehensive exposition of nonstandard analysis grounded on the ultrapower construc-
tion, see R. Goldblatt’s textbook [10].
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• For every subset A ⊂ R, its hyper-extension is defined by:

∗A = Fun(N, A)/M ⊂ ∗R.

So, e.g., the hyper-natural numbers ∗N are the cosets ϕ +M of se-
quences ϕ : N → N of natural numbers; the hyper-prime numbers are
the cosets of sequences of prime numbers, and so forth.

• For every function f : A→ B (where A, B ⊆ R), its hyper-extension
∗ f : ∗A→ ∗B is defined by putting for every ϕ : N → A:

∗ f (ϕ +M) = ( f ◦ ϕ)+M.

• For every sequence 〈An | n ∈ N〉 of nonempty subsets of R, its hyper-
extension 〈Aν | ν ∈ ∗N〉 is defined by putting for every ν = ϕ +M ∈
∗N:

Aν = {ψ +M | ψ(n) ∈ Aϕ(n) for all n} ⊆ ∗R.

It can be directly verified that ∗R is an ordered field whose positive ele-
ments are ∗R+ = Fun(N, R+)/M. By identifying each r ∈ R with the
coset cr+M of the corresponding constant sequence, one obtains that ∗R
is a proper superfield of R. The subset ∗Z defined as above is a discretely
ordered ring having all the desired properties.

Remark that in the above model, one can interpret all notions used in
this paper. We itemize below the most relevant ones.

Denote by α = ı +M ∈ ∗N the infinite hyper-natural number corre-
sponding to the identity sequence ı : N → N.

• The nonempty internal sets B ⊆ ∗R are the sets of the form B = Aα

where 〈An | n ∈ N〉 is a sequence of nonempty sets. When all An
are finite, B = Aα is called hyper-finite; and when all An are infinite,
B = Aα is called hyper-infinite.20

• If B = Aα is the hyper-finite set corresponding to the sequence of
nonempty finite sets 〈An | n ∈ N〉, then its internal cardinality is
defined by setting ‖B‖ = ϑ +M ∈ ∗N where ϑ(n) = |An| ∈ N is the
sequence of cardinalities.

• If ϕ,ψ : N → Z and the corresponding hyper-integers ν = ϕ +M
and μ = ψ + M are such that ν < μ, then the (internal) interval

20 It is proved that any internal set A ⊆ ∗
R is either hyper-finite or hyper-infinite.
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[ν, μ] ⊆ ∗Z is defined as Aα where 〈An | n ∈ N〉 is any sequence of
sets such that An = [ϕ(n), ψ(n)] whenever ϕ(n) < ψ(n).21

In full generality, one can show that the transfer principle holds. To show
this in a rigorous manner, one needs first a precise definition of “elemen-
tary property”, which requires the formalism of first-order logic. Then,
by using a procedure known in logic as “induction on the complexity of
formulas”, one proves that the equivalences P(A1, . . . ,Ak, f1, . . . , fh)⇔
P(∗A1, . . . , ∗Ak, ∗ f1, . . . , ∗ fh) hold for all elementary properties P , sets
Ai , and functions f j .

Remark that all the nonstandard definitions given in this paper are ac-
tually equivalent to the usual “standard” ones. As examples, let us prove
some of those equivalences in detail.

Let us start with the definition of a thick set A ⊆ Z. Assume first that
there exists a sequence of intervals 〈 [an, an + n] | n ∈ N 〉 which are
included in A. If 〈 [aν, aν + ν] | ν ∈ ∗N 〉 is its hyper-extension then, by
transfer, every [aν, aν+ν] ⊆ ∗A, and hence ∗A includes infinite intervals.
Conversely, assume that A is not thick and pick k ∈ N such that for every
x ∈ Z the interval [x, x + k] � A. Then, by transfer, for every ξ ∈ ∗Z
the interval [ξ, ξ + k] � ∗A, and hence ∗A does not contain any infinite
interval.

We now focus on the nonstandard definition of upper Banach density.
Let BD(A) ≥ β. Then for every k ∈ N, there exists an interval Ik ⊂ Z of
length |Ik | ≥ k and such that |A∩ Ik |/|Ik | > β−1/k. By overflow, there
exists an infinite ν ∈ ∗N and an interval I ⊂ ∗Z of internal cardinality
‖I‖ ≥ ν such that the ratio ‖∗A ∩ I‖/‖I‖ ≥ β − 1/ν ∼ β. Conversely,
let I be an infinite interval such that ‖∗A ∩ I‖/‖I‖ ∼ β. Then, for every
given k ∈ N, the following property holds: “There exists an interval
I ⊂ ∗Z of length ‖I‖ ≥ k and such that ‖∗A ∩ I‖/‖I‖ ≥ β − 1/k”. By
transfer, we obtain the existence of an interval Ik ⊂ Z of length |Ik | ≥ k
and such that |A ∩ Ik |/|Ik | ≥ β − 1/k. This shows that BD(A) ≥ β, and
the proof is complete.

Let us now turn to finite embeddability. Assume that X ≤fe Y , and
enumerate X = {xn | n ∈ N}. By the hypothesis, ⋂n

i=1(Y − xi) �= ∅
for every n ∈ N and so, by overflow, there exists an infinite μ ∈ ∗N
such that the hyper-finite intersection

⋂μ

i=1(
∗Y − xi) �= ∅. If ν is any

21 One can prove that this definition is well-posed. Indeed, if ϕ +M < ψ +M and 〈An | n ∈ N〉
and 〈A′n | n ∈ N〉 are two sequences of nonempty sets such that An = A′n whenever ϕ(n) < ψ(n),
then Aα = A′α .
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hyper-integer in that intersection, then ν + X ⊆ ∗Y . Conversely, let
us assume that ν + X ⊆ ∗Y for a suitable ν ∈ ∗Z. Then for every
finite F = {x1, . . . , xk} ⊂ X one has the elementary property: “∃ν ∈
∗Z (ν + x1 ∈ ∗Y & . . . & ν + xk ∈ ∗Y )”. By transfer, it follows that
“∃t ∈ Z (t + x1 ∈ Y & . . . & t + xk ∈ Y )”, i.e. t + F ⊆ Y .22

We finish this paper with a few suggestions for further readings. A
rigorous formulation and a detailed proof of the transfer principle can be
found in Chapter 4 of the textbook [10], where the ultrapower model is
considered.23 See also Section 4.4 of [4] for the foundations of nonstan-
dard analysis in its full generality. A nice introduction of nonstandard
methods for number theorists, including a number of examples, is given
in [15] (see also [12]). Finally, a full development of nonstandard anal-
ysis can be found in several monographies of the existing literature; see
e.g. the classical H. J. Keisler’s book [18], or the comprehensive collec-
tions of surveys in [1].
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A coding problem for pairs of subsets

Béla Bollobás, Zoltán Füredi, Ida Kantor, Gyula O. H. Katona
and Imre Leader

Abstract. Let X be an n–element finite set, 0 < k ≤ n/2 an integer. Suppose
that {A1, A2} and {B1, B2} are pairs of disjoint k-element subsets of X (that is,|A1| = |A2| = |B1| = |B2| = k, A1∩ A2 = ∅, B1∩B2 = ∅). Define the distance
of these pairs by d({A1, A2}, {B1, B2}) = min{|A1 − B1| + |A2 − B2|, |A1 −
B2| + |A2 − B1|}. This is the minimum number of elements of A1 ∪ A2 one has
to move to obtain the other pair {B1, B2}. Let C(n, k, d) be the maximum size of
a family of pairs of disjoint k-subsets, such that the distance of any two pairs is at
least d.
Here we establish a conjecture of Brightwell and Katona concerning an asymp-

totic formula for C(n, k, d) for k, d are fixed and n→∞. Also, we find the exact
value of C(n, k, d) in an infinite number of cases, by using special difference sets
of integers. Finally, the questions discussed above are put into a more general
context and a number of coding theory type problems are proposed.

1 The transportation distance

Let X be a finite set of n elements. When it is convenient we identify
it with the set [n] := {1, 2, . . . , n}. The family of the k-sets of an un-
derlying set X is denoted by ( Xk ). For 0 < k ≤ n/2 let Y be the fam-
ily of unordered disjoint pairs {A1, A2} of k-element subsets of X (that
is, |A1| = |A2| = k, A1 ∩ A2 = ∅). The transportation distance or
Enomoto-Katona distance d on Y is defined by

d({A1, A2}, {B1, B2})
= min{|A1 − B1| + |A2 − B2|, |A1 − B2| + |A2 − B1|}. (1.1)
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In fact, this is an instance of a more general notion. Whenever (Z , ρ) is
a metric space, we can define a metric ρ(s) on Z (s), the set of unordered
s-tuples from Z , by

ρ(s)({x1, . . . , xs}, {y1, . . . , ys}) = min
π∈Ss

s∑
i=1

ρ(xi , yπ(i)). (1.2)

It is not hard to verify that ρ(s) satisfies the triangle inequality, i.e., it
really is a metric. The transportation distance defined above is obtained
by taking s = 2, Z to be the set of k-elements subsets of X and ρ is half
of their symmetric difference.
The minimization problem (1.2) (where ρ can be an arbitrary metric) is

one of the fundamental combinatorial optimization problems, a so called
assignment problem, a special case of a more generalMonge-Kantorovich
transportation problem (see, e.g., the monograph [18]).
The transportation distance between finite sets of the same cardinalities

is one of the interesting measurements among many different ways to
define how two sets differ from each other. In [1], Ajtai, Komlós and
Tusnády considered the assignment problem from a different perspective,
and determined with high probability the transportation distance between
two sets of points randomly chosen in a unit square.
Since the transportation distance is an important notion, especially

from the algorithmic point of view, there are monographs and graduate
texts about this topic, see, e.g., [18]. It is also mentioned in the Encyclo-
pedia of Distances [5] as the “KMMWmetric” (page 245 in Chapter 14)
or as the “c-transportation distance”. Nevertheless, many combinatorial
problems are still unsolved. The packing of sets in spherical spaces with
large transportation distance will be discussed in [8].

2 Packings and codes

Given a metric space (Z , ρ) and a distance h > 0, the packing num-
ber δ(Z ,≥ h) is the maximum number of elements in Z with pairwise
distance at least h.
A (v, k, t) packing P ⊆ ( [v]k ) is a family of k-sets with pairwise inter-

sections at most t−1 (here v ≥ k ≥ t ≥ 1). In other words, every t-subset
is covered at most once. Its maximum size is denoted by P(v, k, t). Ob-
viously,

P(v, k, t) ≤
(

v

t

)
/

(
k

t

)
. (2.1)

If here equality holds then P is called a Steiner system S(v, k, t), or a
t-design of parameters v, k, t and λ = 1 (for more definitions concerning
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symmetric combinatorial structures esp., difference sets, etc. see, e.g.,
the monograph by Hall [10]). More generally, for a set K of integers,
a family P on v elements is called a (v, K , t)-design (packing) if every
t-subset of [v] is contained in exactly one (at most one) member of P and
|P| ∈ K for every P ∈ P .
Determining the packing number is a central problem of Coding The-

ory, it is essentially the same problem as finding the rate of a large-
distance error-correcting code.
If equality holds in (2.1) then every i-subset of [v] is contained in

( v−i
t−i )/(

k−i
t−i ) members of P for i = 0, 1, . . . , t − 1. We say that v, k,

and t satisfy the divisibility conditions if these t fractions are integers. It
was recently proved by Keevash [13] that for any given k and t there ex-
ists a bound v0(k, t) such that these trivial necessary conditions are also
sufficient for the existence of a t-design.

An S(v, k, t) exists if v, k, and t satisfy

the divisibility conditions and v > v0(k, t).
(2.2)

This implies Rödl’s theorem [17], that for given k and t as v →∞

P(v, k, t) = (1+ o(1))

(
v

t

)
/

(
k

t

)
. (2.3)

Even more, (2.2) implies that here the error term is only O(vt−1). The
case t = 2 was proved much earlier by Wilson [19]. For this case he also
proved the following more general version. For a finite K there exists a
bound v0(K , 2) such that for v > v0(K , 2)

a (v, K , 2) design exists if v and K satisfy

the generalized divisibility conditions,
(2.4)

namely, g.c.d.(( k2 ) : k ∈ K ) divides ( v
2 ) and g.c.d.(k−1 : k ∈ K ) divides

v − 1.

3 Packing pairs of subsets

In this paper, we concentrate on the space Y of pairs of disjoint k-subsets.
We say that a set C ⊂ Y of such pairs is a 2-(n, k, d)–code if the distance
of any two elements is at least d. Let C(n, k, d) be the maximum size
of a 2-(n, k, d)-code. Enomoto and Katona in [6] proposed the prob-
lem of determining C(n, k, d). For the origin of the problem see [4].
Connections to Hamilton cycles in the Kneser graph K (n, k) are dis-
cussed in [12]. The problem makes sense only when d ≤ 2k ≤ n.
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It is obvious, that a maximal 2-(n, k, 1) code consists of all the pairs,
C(n, k, 1) = |Y| = 1

2(
n
k )( n−kk ). A 2-(n, k, 2k) code consists of mutually

disjoint k-sets, hance C(n, k, 2k) = �n/2k�.
In Section 5 we present a method for the determination the exact value

of C(n, k, 2k − 1) for infinitely many n. However, we were able to com-
plete the cases k = 2, 3 only, the cases of pairs and triple systems.
Theorem 3.1. If n ≡ 1 mod 8 and n > n0 then C(n, 2, 3) = n(n−1)

8 .
If n ≡ 1, 19 mod 342 and n > n0 then C(n, 3, 5) = n(n−1)

18 .

The following theorem was proved in [2]. Let d ≤ 2k ≤ n be integers.
Then

C(n, k, d) ≤ 1

2

n(n − 1) · · · (n − 2k + d)

k(k − 1) · · · $ d+12 % · k(k − 1) · · · � d+12 �
. (3.1)

Quisdorff [16] gave a new proof and using ideas from classical coding
theory he significantly improved the upper bound for small values of n
(for n ≤ 4k). For completeness, in Section 6 we reprove (3.1) in an even
more streamlined way.
Concerning larger values of n one can build a 2-(n, k, d) code from

smaller ones using the following observation. If |(A1∪A2)∩(B1∪B2)| ≤
2k − d holds for the disjoint pairs {A1, A2} ∈ Y , {B1, B2} ∈ Y then
d({A1, A2}, {B1, B2}) ≥ d. Take a (2k−d+1)-packing P on n elements
and choose a 2-(|P|, k, d)-code on each members P ∈ P . We obtain∑

P∈P
C(|P|, k, d) ≤ C(n, k, d). (3.2)

This gives

P(n, p, 2k − d + 1)C(p, k, d) ≤ C(n, k, d). (3.3)

Fix p (and k, t and d) then Rödl’s theorem (2.3) gives

(1+ o(1))

(
n

2k − d + 1
)(

p

2k − d + 1
)−1

C(p, k, d) ≤ C(n, k, d).

Rearranging we get, that the sequence C(n, k, d)/( n
2k−d+1 ) is essentially

nondecreasing in n, for any fixed p (and k, t and d)

C(p, k, d)/

(
p

2k − d + 1
)
≤ (1+ o(1))C(n, k, d)/

(
n

2k − d + 1
)

.
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Since, obviously, C(2k,k,d)≥1 we obtain that lim
n→∞C(n,k,d)/( n

2k−d+1 )
exists, it is positive, it equals to its supremum, and finite by (3.1).
It was conjectured ( [2], Conjecture 8) that the upper estimate (3.1) is

asymptotically sharp. We prove this conjecture in Section 7.

Theorem 3.2.

lim
n→∞

C(n, k, d)

n2k−d+1
= 1

2

1

k(k − 1) · · · $ d+12 % · k(k − 1) · · · � d+12 �
.

4 The case d = 2, the exact values of C(n, k, 2)

Besides the cases mentioned in the previous Section (the cases d = 1,
d = 2k and (k, d) ∈ {(2, 3), (3, 5)}) we can solve one more case easily,
namely if d = 2. Since C(2k, k, 2) = |Y| = 1

2(
2k
k ) the construction (3.3)

gives P(n, 2k, 2k − 1) 12(
2k
k ) ≤ C(n, k, 2). Then the recent result of

Keevash (2.2) gives the lower bound in the following Proposition. The
upper bound follows from (3.1).

Proposition 4.1. C(n, k, 2) = ( n
2k−1 ) 14k (

2k
k ) for all n > n0(k) whenever

the divisibility conditions of (2.2) hold.

5 The case d = 2k − 1, the exact values of C(n, k, 2k − 1)
The distance δ(a, b) of two integers mod m (1 ≤ a, b ≤ m) is defined
by

δ(a, b) = min{|b − a|, |b − a + m|}.
(Imagine that the integers 1, 2, . . . ,m are listed around the cirle clock-
wise uniformly. Then δ(a, b) is the smaller distance around the circle
from a to b.) δ(a, b) ≤ m

2 is trivial. Observe that b − a ≡ d − c mod m
implies δ(a, b) = δ(c, d).
We say that the pair S = {s1, . . . , sk}, T = {t1, . . . , tk} ⊂ {1, . . . ,m}

of disjoint sets is antagonistic mod m if

(i) all the k(k − 1) integers δ(si , s j ) (i �= j) and δ(ti , t j ) (i �= j) are
different,

(ii) the k2 integers δ(si , t j ) (1 ≤ i, j ≤ k) are all different and
(iii) δ(si , t j ) �= m

2 (1 ≤ i, j ≤ k).

If there is a pair of disjoint antagonistic k-element subsets mod m then
2k2 + 1 ≤ m must hold by (ii) and (iii).

Problem 5.1. Is there a pair of disjoint, antagonistic k-element sets
mod 2k2 + 1?
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We have an affirmative answer only in three cases.

Proposition 5.2. There is a pair of disjoint, antagonistic k-element sets
mod 2k2 + 1 when k = 1, 2, 3.
Proof. We simply give such k-element sets in these cases. It is easy to
check that they satisfy the conditions.
k = 1: S = {1}, T = {2}.
k = 2: S = {1, 8}, T = {2, 3}.
k = 3: S = {1, 5, 19}, T = {2, 13, 15}.

Lemma 5.3. If there is a pair of disjoint, antagonistic k-element sets
mod m then C(m, k, 2k − 1) ≥ m.

Proof. Let (S, T ) be the antagonistic pair. The shifts S(u) = {a+u mod
m : s ∈ S}, T (u) = {s + u mod m : s ∈ T }(0 ≤ u < m) will serve as
pairs of disjoint subsets of X .
Suppose that S(u) and S(v) (u �= v) have two elements in common:

s1 + u = s2 + v �= s3 + u = s4 + v where s1, s2, s3, s4 ∈ S, (s1, s2) �=
(s3, s4). The difference is s1 − s2 = s3 − s4 contradicting (i). One can
prove in the same way that T (u) and T (v) (u �= v) and S(u) and T (v),
respectively, have at most one element in common. In other words the
intersection of any pair from the sets S(u), T (u), S(v), T (v) has at most
one element.
Suppose now that both S(u) ∩ S(v) and T (u) ∩ T (v) are non-empty

for some u �= v. Then s1 + u = s2 + v, t1 + u = t2 + v holds for some
s1, s2 ∈ S, t1, t2 ∈ T . This leads to v−u = s1−s2 = t1−t2, contradicting
(i), again.
Finally, suppose that both S(u)∩T (v) and T (u)∩ S(v) are non-empty

for some u �= v. Then s1 + u = t1 + v, t2 + u = s2 + v is true for
some s1, s2 ∈ S, t1, t2 ∈ T . Here v − u = s1 − t1 = t2 − s2 is obtained,
contradicting either (ii) or (iii) (the latter one, if s1 − t1 = t1 − s1 is
obtained).
This proves that the distance of the pairs (S(u), T (u)) and (S(v),

T (v)) (u �= v) is at least 2k − 1.
Corollary 5.4. Suppose that there is Steiner family S(n, 2k2 + 1, 2) and
a disjoint, antagonistic pair of k-element subsets mod 2k2 + 1 then

C(n, k, 2k − 1) = n(n − 1)
2k2

.

Proof. The upper bound C(n, k, 2k − 1) ≤ n(n − 1)/2k2 is a corollary
of (3.1).
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The lower estimate is obtained from (3.3). By Lemma 5.3 one can
choose 2k2+ 1 pairs of disjoint k-subsets with distance 2k − 1 in a set of
2k2+1 elements. This can be done in each of the members of S(n, 2k2+
1, 2). Since the members have at most one common element, the distance
of two pairs in distinct members of S(n, 2k2+ 1, 2) will have distance at
least 2k − 1. Therefore all the

|S(n, 2k2 + 1, 2)|(2k2 + 1) = ( n2 )

( 2k
2+1
2

)
(2k2 + 1) = n(n − 1)

2k2

pairs have distance at least 1.

Proof of Theorem 3.1. We only need lower bounds, i.e., constructions.
The case k = 3 follows from Wilson’s theorem (2.2) of the existence of
S(n, 19, 2), Proposition 5.2 and Corollary 5.4.
Similarly, the case k = 2 for n ≡ 1, 9 mod 72 follows in the same way

using Steiner systems S(n, 9, 2) and the fact C(9, 2, 3) = 9 from Corol-
lary 5.4. However, one can see that C(17, 3, 2) = 34 and then the results
follows from Wilson’s theorem (2.4) of the existence of S(n, {9, 17}, 2)
for all large n ≡ 1 mod 8 and construction (3.2).
The construction for C(17, 2, 3) is similar to the proof of Lemma 5.3.

The 9 pairs there are defined as {{x + 1, x + 8}, {x + 2, x + 3}} : x ∈
Z9}. These correspond to a perfect edge decomposition of K9 into C4’s
with side lengths 1, 3, 4, and 2. For n = 17 we take the pairs {{x, x +
7}, {x + 2, x + 6}} : x ∈ Z17} and {{y, y + 11}, {y + 7, y + 8}} : y ∈
Z17} which correspond to C4’s of side lengths (2, 5, 1, 6) and (7, 4, 3, 8),
respectively.
Note that the method gives thatC(n,1,1)= n(n−1)

2 when n≡1, 3 mod6.
This, however, is trivial for all n.

6 A new proof of the upper estimate

The upper estimate in (3.1) was proved in [2]. We give a new, more
illuminating proof here.
Given a pair {A, B} of disjoint k-element sets let P({A, B}, u, v) de-

note the family of pairs {U, V }where |U | = u, |V | = v andU ⊆ A, V ⊆
B or viceversa. We have

|P({A, B}, u, v)| = 2
(
k

u

)(
k

v

)
.

Suppose first u < v. Then the total number of pairs {U, V },U ∩ V =
∅, |U | = u, |V | = v in an n-element set is(

n

u

)(
n − u

v

)
.
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Let {A1, B1}, {A2, B2} be two pairs with distance at least d, and u < v be
two nonnegative integers such that u+v = 2k−d+1. By definition (1.1),
P({A1, B1}, u, v) and P({A2, B2}, u, v) are disjoint. We have

C(n, k, d) ≤ ( nu )( n−uv )

2( ku )( kv )

= n(n − 1) . . . (n − 2k + d)

2k(k − 1) . . . (k − u + 1)k(k − 1) . . . (k − v + 1)
(6.1)

for every pair u, v that satisfies the above requirements. If u = v, then
equality (6.1) holds by similar arguments.
The numerator does not depend on u, and the denominator is maxi-

mized when u and v are as close as possible, i.e., for u = 2k−$ d−12 % and
v = 2k − � d−12 �. Substituting these values, we obtain the upper estimate
in (3.1).

7 Nearly perfect selection

LetW be the family of pairs {U, V } such that U, V ⊆ [n], U ∩ V = ∅,
and |U | + |V | = 2k − d + 1 holds.
Note that |W| = 1

2

∑
0≤u≤2k−d+1(

n
u )( n−u

(2k−d+1)−u ). For a pair {A, B} of
disjoint k-element sets, letP({A, B}) denote the family of pairs {U, V } ∈
W for which U ⊆ A and V ⊆ B, or viceversa.

Lemma 7.1. d ({A1, B1} , {A2, B2}) ≤ d − 1 holds if and only if
P({A1, B1}) ∩ P({A2, B2}) �= ∅.
Proof. Suppose that {U, V } ∈ P({A1, B1})∩P({A2, B2}), sayU ⊂ A1∩
A2 and V ⊂ B1 ∩ B2. Then |A1 − A2| ≤ k − |U |, |B1 − B2| ≤ k − |V |
imply |A1 − A2| + |B1 − B2| ≤ 2k − |U | − |V | = d − 1 proving the
statement. The other case is analogous.
Conversely, if the distance is at most d − 1 then either |A1 − A2| +

|B1− B2| ≤ d− 1 or |A1− B2|+ |B1− A2| ≤ d− 1 must hold. Suppose
that the first one is true. Then |A1∩ A2|+|B1∩ B2| ≥ 2k−d+1 follows.
TakeU = A1∩ A2 and a V ⊆ B1∩ B2 such that |V | = 2k−d+1−|U |.
Then P({A1, B1}) ∩ P({A2, B2}) �= ∅ holds, as claimed.
We can view the sets P({A, B}) as the edges of a hypergraph on the

vertex set W . Let us call this hypergraph H. Then a 2-(n, k, d)-code
corresponds to a matching inH.
In his celebrated paper [17], Rödl established (2.3) in the following

way. He viewed the t-element sets as vertices of a
(k
t

)
-uniform hyper-

graphHn whose edges correspond to the k-element subsets of [n]. Equal-
ity (2.3) is in fact a statement about the existence of an almost perfect
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matching in Hn . Using the same key proof idea, a powerful general-
ization by Frankl and Rödl [7] guarantees the existence of almost per-
fect matchings in hypergraphs satisfying certain more general conditions.
Various generalizations and stronger versions versions were later proved,
e.g., by Pippenger and Spencer [15].
A function t : E(H) → R is a fractional matching of the hypergraph

H if
∑

e∈E(H);x∈e t (e) ≤ 1 holds for every vertex x ∈ V (H). The frac-
tional matching number, denoted ν∗(H) is the maximum of

∑
e∈E(H) t (e)

over all fractional matchings. If ν(H) denotes the maximum size of a
matching inH, then clearly

ν(H) ≤ ν∗(H).

Kahn [11] proved that under certain conditions, asymptotic equality
holds. Both the hypotheses and the conclusion are in the spirit of the
Frankl–Rödl theorem.
Given a hypergraph H with vertex set [n], a fractional matching t

and a subset W ⊆ [n], define t̄(W ) = ∑
W⊆e∈E(H) t (e) and α(t) =

max{t̄({x, y}) : x, y ∈ V (H), x �= y}. In other words, α(t) is a fractional
generalization of the codegree. Let t (H) denote

∑
e∈E(H) t (e). We say

thatH is s-bounded if each of its edges has size at most s.

Theorem 7.2 ([11]). For every s and every ε > 0 there is a δ such that
whenever H is an s-bounded hypergraph and t a fractional matching
with α(t) < δ, then

ν(H) > (1− ε)t (H).

Proof of Theorem 3.2. In the light of Lemma 7.1 it suffices to verify the
conditions of Theorem 7.2 and to produce a fractional matching t of the
hypergraphH of the desired size.
Define a constant weight function t : E(H)→ R by

t (e) = $
d−1
2 %!� d−12 �!
nd−1

.

For a vertex x = {U, V } ∈W with |U | = u and |V | = v we have

deg({U, V }) =
(
n − u − v

k − u

)(
n − k − v

k − v

)
≤ nd−1

(k − u)!(k − v)! ≤
nd−1

$ d−12 %!� d−12 �!
hence t is indeed a fractional matching. Note that t (H) is is asymptoti-
cally equal to the quantity in the statement of the Theorem 3.2.
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The hypergraph H is not regular but s-bounded with s = 1
2

∑
u(

k
u ) ·

( k
(2k−d+1)−u ). Here s does not depend on n. For x, y ∈ V (H) = W
let deg(x, y) denote the codegree of x = {U, V } and y = {U ′, V ′}, i.e.,
the number of hyperedges P({A, B}) that contain both x and y. If U ∪
V = U ′ ∪ V ′ (they partition the same (2k − d + 1)-element set) then the
codegre deg(x, y) = 0. Otherwise, |U ∪U ′ ∪ V ∪ V ′| ≥ 2k − d + 2 and
(U ∪U ′ ∪ V ∪ V ′) ⊂ (A ∪ B) imply that

deg({U, V }, {U ′, V }) = O(nd−2).

Hence α(t) = deg({U, V }, {U ′, V }) · t (e) = o(1) and Kahn’s theorem
completes the proof.

8 s-tuples of sets, q-ary codes

Let Y (s) be the family of s-tuples of pairwise disjoint k-element subsets
of [n]. A natural definition of a metric on Y (s) was already mentioned
in the introduction, in equation (1.2). With ρ being half the symmetric
difference, the distance is defined as

ρ(s)({A1, . . . , As}, {B1, . . . , Bs}) = min
π∈Ss

s∑
i=1
|Ai \ Bπ(i)|.

Let Cs(n, k, d) denote the maximum size of a subfamily S of Y (s) such
that any two elements in S have distance at least d. The proofs presented
in Sections 7 and 6 can be easily adapted to determining Cs(n, k, d), as
well. The proof of the lower and the upper bounds in Theorem 8.1 is
completely analogous to the proofs of inequality (3.1) and Theorem 3.2.

Theorem 8.1.

lim
n→∞

Cs(n, k, d)

nsk−d+1
= 1

s!
$ d−1s %!$ d−2s %! . . . $ d−ss %!

(k!)s .

Let Yq be the set of q-ary vectors of length n and weight k (weight is the
number of nonzero entries). Let Aq(n, d, k) be the maximum size of a
subset C ⊆ Yq such that ρ ′(u, v) ≥ d whenever u, v ∈ C. Here ρ ′ is the
Hamming distance.
With a slightly more technical proof along the same lines, the follow-

ing can be proven.

Theorem 8.2. Fix q ≥ 2, k and d. If d is odd, then, as n→∞,

Aq(n, d, k) ∼ nk− d−1
2 (q − 1)k− d−1

2
(
d−1
2

)!
k! .
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If d ≥ 2 is even, then, as n→∞,

Aq(n, d, k) ∼ nk− d
2+1(q − 1)k− d

2+1
(
d
2 − 1

)!
k! .

To use random methods constructing codes is not a new idea. The best
known general bounds for the covering radius problems are obtained in
this way, see, e.g., [9, 14].
We can also consider pairs (or more generally s-tuples) of q-ary vec-

tors of weight k. For simplicity, we will only state the results for pairs
here. Define the set Y (2)

q of pairs {u, v} of vectors such that
• u, v ∈ {0, 1, . . . , q − 1}n
• each of u and v has exactly k nonzero entries
• the supports of u and v are disjoint (i.e. ui = 0 for all i such that

vi �= 0, and vi = 0 for all i such that ui �= 0).
Define the distance between these pairs by

δ({u, v}, {w, z}) = min{ρ′(u, w)+ ρ ′(v, z), ρ ′(u, z)+ ρ ′(v,w)}
where ρ ′ is again the Hamming distance.
In the following, A2q(n, d, k) will denote the maximum size of a subset

C ⊆ Y (2)
q such that δ({u, v}, {w, z}) ≥ d for any pair {u, v}, {w, z} of

members of C.
Theorem 8.3. Fix q, d and k. If d is odd and q ≥ 3, then, as n→∞,

A2q(n, d, k) ∼ 1

2
· n

2k− d−1
2 · (q − 1)2k− d−1

2 · � d−14 �!$ d−14 %!
(k!)2 .

If d ≥ 2 is even and q ≥ 2, then, as n→∞,

A2q(n, d, k) ∼ 1

2
· n

2k− d
2+1 · (q − 1)2k− d

2 · � d4 �!
($ d4 % − 1)!

(k!)2 .

The distance δ used here is twice the distance defined in Section 1, hence
the apparent inconsistency of this result for q = 2 with Theorem 3.2.
For q = 2 and d odd we have Aq(n, d, k) = Aq(n, d + 1, k).

9 Open problems

We believe that for an arbitrary pair of k and d, there are infinitely many
n’s with equality in inequality (3.1).
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10 Further developments

Let us note that since announcing the first version of the present pa-
per Theorem 3.1 has been greatly extended by Chee, Kiah, Zhang and
Zhang [3]. They determined the exact value of C(n, 2, d) completely,
and for any fixed k the exact value of C(n, k, 2k − 1) for all n > n0(k)
satisfying either n = 0 mod k or n = 1 mod k and n(n − 1) = 0
mod 2k2. Their proofs are different: they use more design theory. How-
ever, our Section 5 is still interesting for its own sake and Problem 5.1 is
still open.

ACKNOWLEDGEMENTS. The authors are very grateful for the helpful
remarks of the referees.
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Combinatorica 4 (1984), 259–264.

[2] G. BRIGHTWELL and G. O. H. KATONA, A new type of coding
problem, Studia Sci. Math. Hungar. 38 (2001), 139–147.

[3] YEOW MENG CHEE, HAN MAO KIAH, HUI ZHANG, AND XI-
ANDE ZHANG, Optimal codes in the Enomoto-Katona space, Com-
binatorics, Probability and Computing, to appear. (Preliminary ver-
sion in Proc. IEEE Intl. Symp. Inform. Theory. IEEE, 2013.)

[4] J. DEMETROVICS, G. O. H. KATONA and A. SALI, Design type
problems motivated by database theory, J. Statist. Plann. Infer-
ence 72 (1998), 149–164. R. C. Bose Memorial Conference (Fort
Collins, CO, 1995).

[5] M. M. DEZA and E. DEZA, “Encyclopedia of Distances”, Springer,
2nd ed. 2013.

[6] H. ENOMOTO and G. O. H. KATONA, Pairs of disjoint q-element
subsets far from each other, Electron. J. Combin. 8 (2001), Research
Paper 7, 7 pp. (electronic). In honor of Aviezri Fraenkel on the
occasion of his 70th birthday.
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[9] Z. FÜREDI and J-H. KANG, Covering the n-space by convex bodies
and its chromatic number, Discrete Mathematics 308 (2008), 4495–
4500.



59 A coding problem for pairs of subsets

[10] M. HALL, “Combinatorial Theory”, 2nd ed., Wiley-Interscience,
1998.

[11] J. KAHN, A linear programming perspective on the Frankl-Rödl-
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String graphs and separators

Jiří Matoušek

Abstract. String graphs, that is, intersection graphs of curves in the plane, have
been studied since the 1960s. We provide an expository presentation of several
results, including very recent ones: some string graphs require an exponential
number of crossings in every string representation; exponential number is always
sufficient; string graphs have small separators; and the current best bound on the
crossing number of a graph in terms of pair-crossing number. For the existence
of small separators, the proof includes generally useful results on approximate
flow-cut dualities.

This expository paper was prepared as a material for two courses co-
taught by the author in 2013, at Charles University and at ETH Zurich.
It aims at a complete and streamlined presentation of several results con-
cerning string graphs. This important and challenging class of intersec-
tion graphs has traditionally been studied at the Department of Applied
Mathematics of the Charles University, especially by Jan Kratochvı́l and
his students and collaborators.
A major part of the paper is devoted to a separator theorem by Fox

and Pach, recently improved by the author, as well as an application of it
by Tóth in a challenging problem from graph drawing, namely, bounding
the crossing number by a function of the pair-crossing number. This is an
excellent example of a mathematical proof with a simple idea but relying
on a number of other results from different areas. The proof is presented
in full, assuming very little as a foundation, so that the reader can see
everything that is involved. A key step is an approximate flow-cut duality
from combinatorial optimization and approximation algorithms, whose
proof relies on linear programming duality and a theorem on metric em-
beddings.

Supported by the ERC Advanced Grant No. 267165 and by the project CE-ITI (GACR P202/
12/G061).
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1 Intersection graphs

The classes IG(M). LetM be a system of sets; we will typically con-
sider systems of geometrically defined subsets of R2, such as all seg-
ments in the plane. We define IG(M), the class of intersection graphs
ofM, by

IG(M) =
{
(V, E) : V ⊆M, E = {{M,M ′} ∈ (V

2

) : M ∩ M ′ �= ∅}
}
.

In words, the vertices of each graph in IG(M) are sets in M, and two
vertices are connected by an edge if they have a nonempty intersection.
Usually we consider intersection graphs ofM up to isomorphism; i.e.,

we regard a graph G as an intersection graph of M if it is merely iso-
morphic to a graph G ′ ∈ IG(M). In that case we call V (G ′) ⊆ M an
M-representation of G, or just a representation of G ifM is under-
stood.

Important examples

• ForM consisting of all (closed) intervals on the real line, we obtain
the class of interval graphs. This is one of the most useful graph
classes in applications. Interval graphs have several characterizations,
they can be recognized in linear time, and there is even a detective
storyWho Killed the Duke of Densmore? by Claude Berge (in French;
see [4] for English translation) in which the solution depends on prop-
erties of interval graphs.

• Disk graphs, i.e., intersection graphs of disks in the plane, and unit
disk graphs have been studied extensively. Of course, one can also
investigate intersection graphs of balls in Rd for a given d, or of unit
balls.

• Another interesting class is CONV, the intersection graphs of convex
sets in the plane.

• Here we will devote most of the time to the class STRING of string
graphs, the intersection graphs of simple curves in the plane.

• Another important class is SEG, the segment graphs, which are the
intersection graphs of line segments in R2.

Other interesting classes of graphs are obtained by placing various re-
strictions on the mutual position or intersection pattern of the sets repre-
senting the vertices.
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For example:

• For an integer k ≥ 1, k-STRING is the subclass of string graphs con-
sisting of all graphs representable by curves such that every two of
them have at most k points of intersection.1

• For k ≥ 1, the class k-DIR consists of the segment graphs possessing a
representation in which the segments involved have at most k distinct
directions. (So 1-DIR are just interval graphs.)

• The kissing graphs of circles, sometimes also called contact graphs
of circles or coin graphs, are disk graphs that admit a representa-
tion by disks with disjoint interiors; that is, every two disks either are
disjoint or just touch. The beautiful and surprisingly useful Koebe–
Andreev–Thurston theorem asserts that a graph is a kissing graph
of circles if and only if it is planar. While “only if” is easy to see, the
“if” direction is highly nontrivial. Here we have just mentioned this
gem of a result but we will not discuss it any further.

Typical questions For each class C of intersection graphs, and in par-
ticular, for all the classes mentioned above, one can ask a number of basic
questions. Here are some examples:

• How hard, computationally, is the recognition problem for C? That
is, given an (abstract) graph G, is it isomorphic to a graph in C? For
some classes, such as the interval graphs, polynomial-time or even
linear-time algorithms have been found, while for many other classes
the recognition problem has been shown NP-hard, and sometimes it is
suspected to be even harder (not to belong to NP).

• How complicated a representation may be required for the graphs in
C? In more detail, we first need to define some reasonable notion
of size of a representation of a graph in C. Then we ask, given an
integer n, what is the maximum, over all n-vertex graphs G ∈ C, of
the smallest possible size of a representation of G?
For example, it is not too difficult to show that each segment graph
has a representation in which all of the segments have endpoints with
integral coordinates. For such a representation, the size can be defined
as the total number of bits needed for encoding all the coordinates of
the endpoints.

1 Some authors moreover require that each of the intersection points is a crossing, i.e., a point
where, locally, one of the edges passes from one side of the second edge to the other (as opposed to
a touching point).
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• Can the chromatic number be bounded in terms of the clique num-
ber? It is well known that there are graphs G with clique number
ω(G) = 2, i.e., triangle-free, and with chromatic number χ(G) arbi-
trarily large. On the other hand, many important classes, such as in-
terval graphs, consist of perfect graphs, which satisfy ω(G) = χ(G).
Some classes C display an intermediate behavior, namely, χ(G) ≤
f (ω(G)) for all G ∈ C and for some function f N → N; establishing
a bound of this kind is often of considerable interest, and then one may
ask for the smallest possible f . If χ(G) cannot be bounded in terms
of ω(G) alone, one may still investigate bounds for χ(G) in terms of
ω(G) and the number of vertices of G.

• One may also consider two classes of interest, C and C ′, and ask for
inclusion relations among them (e.g., whether C ⊆ C′, or C′ ⊆ C, or
even C = C′). Some relations are quite easy, such as SEG ⊆ CONV ⊆
STRING, but others may be very challenging.
For example, Scheinermann conjectured in his PhD. thesis in 1984
that all planar graphs are in SEG. It took over 20 years until Chalopin,
Gonçalves, and Ochem [8] managed to prove the weaker result that all
planar graphs are in 1-STRING, and in 2009 Chalopin and Gonçalves
[7] finally established Scheinermann’s conjecture.

Thus, it should already be apparent from our short lists of classes and
questions that the study of intersection graphs is an area in which it is very
easy to produce problems (and exercises). However, instead of trying to
survey the area, we will focus on a small number of selected results.
Some of them also serve us as a stage on which we are going to show
various interesting tools in action.

Exercise 1.1. Prove carefully an assertion made above: every SEG-graph has
a representation with all segment endpoints integral. (Hint: check the definition
of SEG again and note what it does not assume.)

Exercise 1.2. Show that graphs in 100-STRING can be recognized in NP.

2 Basics of string graphs

We begin with a trivial but important observation: all of the complete
graphs Kn are string graphs. Hence, unlike classes such as planar graphs,
string graphs can be dense and they have no forbidden minors. Moreover,
they are not closed under taking minors; thus, the wonderful Robertson–
Seymour theory is not applicable.
Another simple observation asserts that every planar graph is a string

graph, even 2-STRING. The following picture indicates the proof:
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As we have mentioned, every planar graph is even a segment graph, but
this is a difficult recent result [7].

Example 2.1. It is not completely easy to come up with an example of a
non-string graph. Here is one:

v1

v2 v3

v4

v5v15

v12

(more generally, every graph obtained from a non-planar graph by replac-
ing each edge by a path of length at least two is non-string).

Sketch of proof. For contradiction we suppose that this graph has a rep-
resentation by simple curves (referred to as strings in this context), where
each vi is represented by a string γi and vi j is represented by γi j . From
such a representation we will obtain a planar drawing of K5, thus reach-
ing a contradiction.
To this end, we first select, for each i < j , a piece πi j of γi j connect-

ing a point of γi to a point of γ j and otherwise disjoint from γi and γ j .
Next, we continuously shrink each γi to a point, pulling the πi j along—
the result is the promised planar drawing of K5. The picture shows this
construction in the vicinity of the string γ1:

γ3

γ1

γ12

γ13

γ15

γ14

π12

π13

π14

π15

π12
π13

π14

π15

Admittedly, this argument is not very rigorous, and if the strings are arbi-
trary curves, it is difficult to specify the construction precisely. An easier
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route towards a rigorous proof hinges on the following generally useful
fact.

Lemma 2.2. Every (finite) string graph G can be represented by polyg-
onal curves, i.e., simple curves consisting of finitely many segments. We
may also assume that every two curves have finitely many intersection
points, and that no point belongs to three or more curves.

Sketch of proof. We start from an arbitrary string representation of G.
By compactness, there exists an ε > 0 such that every two disjoint strings
in the representation have distance at least ε. For every two strings γ, δ

that intersect, we pick a point pγ δ in the intersection. Then we replace
each string γ by a polygonal curve that interconnects all the points pγ δ

and lies in the open ε
2 -neighborhood of γ .

By a small perturbation of the resulting polygonal curves we can then
achieve finitely many intersections and eliminate all triple points.

Exercise 2.3. Let U ⊆ R2 be an open, arcwise connected set; that is, every
two points of U can be connected by a simple curve in U . Prove, as rigorously
as possible, that every two points of U can also be connected by a polygonal
curve.

Let us call a string representation as in Lemma 2.2 standard.

3 String graphs requiring exponentially many intersections

How hard is to recognize string graphs? Using an ingenious reduc-
tion, Kratochvı́l [19] proved that recognizing string graphs is NP-hard,
but the question remained, does this problem belong to the class NP?
A natural way of showing membership of the problem in NP would

be to guess a string representation, and verify in polynomial time that it
indeed represents a given graph G. A simple way of specifying a string
representation is to put a vertex into every intersection point of the strings,
and describe the resulting plane (multi)graph:
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In this description, the edges are labeled by the strings they come from.
Then it can be checked whether such a plane graph indeed provides a
string representation of G.
This argument may seem to prove membership in NP easily, but there

is a catch: namely, we would need to know that there is a polynomial
p(n) such that every string graph on n vertices admits a string represen-
tation with at most p(n) intersection points. However, as was noticed
in [17], this is false—as we will prove below, there are string graphs for
which every representation has exponentially many intersections. After
this result, for ten years it was not clear whether there is any algorithm at
all for recognizing string graphs.

Weak realizations As an auxiliary device, we introduce the following
notions. An abstract topological graph is a pair (G, R), where G is an
(abstract) graph and R ⊆ (E(G)

2

)
is a symmetric relation on the edge set.

A weak realization of such (G, R) is a drawing of G in the plane such
that whenever two edges e, e′ intersect (sharing a vertex does not count),
we have {e, e′} ∈ R. Thus, R specifies which pairs of edges are allowed
(but not forced) to intersect.
We call a weak realization standard if the corresponding drawing of

G is standard, by which we mean that the edges are drawn as polygonal
curves, every two intersect at finitely many points, and no three edges
have a common intersection (where sharing a vertex does not count).
(Moreover, as in every graph drawing we assume that the edges do not
pass through vertices.) Standard drawings help us to get rid of “local”
difficulties in proofs.

Exercise 3.1. (a) Prove that if (G, R) has a weak realization, then it also has
a standard weak realization. (This is analogous to Lemma 2.2, but extra care is
needed near the vertices!)
(b) Prove that if (G, R) has a weak realization W with finitely many edge

intersections in which no three edges have a common intersection, then it also
has a standard weak realization W ′ with at most as many edge intersections as
in W .

For a string graph G, let fs(G) denote the minimum number of inter-
section points in a standard string representation of G, and let

fs(n) := max{ fs(G) : G a string graph on n vertices}.
Similarly, for an abstract topological graph (G, R) admitting a weak re-
alization, let fw(G, R) be the minimum number of edge intersections in
a standard weak realization of (G, R), and

fw(m) := max{ fw(G, R) : (G, R) weakly realizable, |E(G)| = m}.
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Observation 3.2. fw(m) ≤ fs(2m).

Proof. Let (G, R) be an abstract topological graph withm edges witness-
ing fw(m). We may assume that G is connected and non-planar (why?),
and thus m ≥ n = |V (G)|.
We consider a (standard) weak realization W of (G, R) with fw(m)

intersections, and construct a string representation of a string graph H as
follows: we replace every vertex in W by a tiny vertex string, and every
edge by an edge string, as is indicated below:

This H has m + n ≤ 2m vertices, and using the monotonicity of fs , it
suffices to show that fs(H) ≥ fw(m). This follows since a string repre-
sentation of H with x intersections yields a weak realization of (G, R)

with at most x intersections, by contracting the vertex strings to points
and pulling the edge strings along (this is the same argument as in Exam-
ple 2.1).

Exercise 3.3. Prove that fs(n) ≤ fw(n2) + n2. (Or fs(n) ≤ fw(O(n2)) +
O(n2) if this looks easier.)

Theorem 3.4. There is a constant c > 0 such that fw(m) ≥ 2cm , and
consequently, fs(n) ≥ 2(c/2)n .

Proof. For k ≥ 1, we define a planar graph Pk according to the following
picture:

a

b v1

v′1

v2u1u2

u′
1u′

2

v3u3

u′
3 v′2v′3
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(Pk is obtained from Pk−1 by adding vertices uk and vk to the left and
right of uk−1, respectively, and adding the vertical edges {uk, u′k} and{vk, v′k}). Then we create an abstract topological graph (Gk, Rk) from
Pk : Gk is obtained from Pk by adding the edges {u1, v1}, . . . , {uk, vk},
and the relation Rk allows each of the edges {ui , vi } to intersect all of the
edges drawn dashed in the picture above. No other edge intersections are
permitted.
Each (Gk, Rk) has a weak realization:

u1u2 v3u3

a

b

u′
3 u′

2 v′3 u′
1 v′2 v′1

We prove by induction on i that in every weak realization of Gk , the edge
{ui , vi } intersects {a, b} at least 2i−1 times, 1 ≤ i ≤ k; then the theorem
will follow.
Since Pk is a 3-connected graph, it has a topologically unique drawing.

From this the case i = 1 can be considered obvious. For i ≥ 2, the sit-
uation for the edge {ui , vi } looks, after contracting the edge {ui−1, u′i−1}
and a simplification preserving the topology, as follows:

ui−1

vi−1

v′i−1

ui vi

Thus, the edge {ui , vi } has to cross {vi−1, v′i−1}.
Now we will use the drawing of {ui , vi } to get two different curves

π1, π2 that both “duplicate” the previous edge {ui−1, vi−1}. The first
curve π1 starts at ui−1 and follows {ui−1, ui } up to the point where {ui , vi }
intersects {ui−1, ui } the last time before hitting {vi−1, v′i−1} (that point can
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also be ui ). Then π1 follows {ui , vi } almost up to the first intersection
with {vi−1, v′i−1}, and finally, it goes very near {vi−1, v′i−1} until vi−1:

ui−1

vi−1

v′i−1

ui
vi

π1

If we remove the drawings of the edges {u j , v j }, j ≥ i − 1, from the
considered weak realization of Gk , and add π1 as a new way of drawing
the edge {ui−1, vi−1}, we obtain a weak realization of Gi−1. Therefore,
by the inductive hypothesis, π1 crosses {a, b} at least 2i−2 times.
Similarly we construct π2, disjoint from π1, which starts at ui−1 and

first follows {ui−1, vi }. It again has to cross {a, b} at least 2i−2 times, and
the induction step is finished.

4 Exponentially many intersections suffice

The first algorithm for recognizing string graphs was provided by Schae-
fer and Štefankovič [28], who proved an upper bound on the number of
intersections sufficient for a representation of every n-vertex string graph.
Similar to the previous section, their proof works with weak representa-
tions.

Theorem 4.1 ( [28]). We have fw(m) ≤ m2m . Consequently (by Exer-
cise 3.3), fs(n) = 2O(n2).

This result implies, by the argument given at the beginning of Sec-
tion 3, that string graphs can be recognized in NEXP (nondeterministic
exponential time).
Later Schaefer, Sedgwick, and Štefankovič [29] proved that string

graphs can even be recognized in NP. The main idea of their ingenious
argument is that, even though a string representation may require expo-
nentially many intersections, there is always a representation admitting a
compact encoding, of only polynomial size, by something like a context-
free grammar. They also need to show that, given such a compact encod-
ing of a collection of strings, one can verify in polynomial time whether
it represents a given graph. We will not discuss their proof any further
and we proceed with a proof of Theorem 4.1.
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Let (G, R) be a weakly realizable abstract topological graph with m
edges. It has a standard weak realization (edges are polygonal curves with
finitely many intersections, and no triple intersections; see Exercise 3.1).
Moreover, we can make sure that the edges cross at every intersection
point, since a “touching point” can be perturbed away:
(note the advantage of working with weak realizations, in which we need
not worry about losing intersections).
Theorem 4.1 is an immediate consequence of the following claim: if

W is a standard weak realization in which some edge e has at least 2m

crossings, then there is another standard weak realization W ′ with fewer
crossing than in W .

Lemma 4.2. If an edge e has at least 2m crossings, then there is a con-
tiguous segment ê of e that contains at least one crossing and that crosses
every edge of G an even number of times.

Proof. The lemma is an immediate consequence of the following com-
binatorial statement: If w is a word (finite sequence) of length 2m over
an m-letter alphabet �, then there is a nonempty subword (contiguous
subsequence) x of w in which each symbol of � occurs an even number
of times.
To prove this statement, let us define, for i = 0, 1, . . . , 2m , a mapping

fi � → {0, 1}, where fi(a) = 0 if a occurs an even number of times
among the first i symbols of w, and fi(a) = 1 otherwise. Since there are
only 2m distinct mappings � → {0, 1}, there are two indices i �= j with
fi = f j . Then the subword of w beginning at position i + 1 and ending
at position j is the desired x .

Now we fix e and ê as in the lemma. We can deform the plane by a
suitable homeomorphism so that ê is a horizontal straight segment and
there is a narrow band along it, which we call the window, in which the
edges crossing ê appear as little vertical segments, and in which no other
portions of the edges are present:

e ê

f f f f f fg g g gh h

Any edge f �= e has an even number 2n f crossings with ê, and it inter-
sects the border of the window in 4n f points. Let us number these 4n f

points as p f,1, . . . , p f,4n f in the order as they appear along f (we choose
one of the two possible directions of traversing f arbitrarily).
Here is the procedure for redrawing the original weak representation

W into W ′ so that the total number of crossings is reduced.
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1. We apply a suitable homeomorphism of the plane that maps the win-
dow to a circular disk with ê as the horizontal diameter, while the
edges crossing ê still appear as vertical segments within the window.
For every f and every i = 1, 2, . . . , 2n f − 1, the point p f,2i is con-
nected to p f,2i+1 by an arc of f outside the window. Let us call these
arcs for i odd the odd connectors and for i even the even connectors.
The following illustration shows only one edge f , although the win-
dow may be intersected by many edges. The points p f,i are labeled
only by their indices, and the odd connectors are drawn thick:

e ê

f

1

2
3

4
5

6
7

8

10

9
11

12

2. We erase everything inside the window. Then we map the odd connec-
tors inside the window by the circular inversion that maps the outside
of the window to its inside, while the even connectors stay outside.
Crucially, two odd connectors that did not intersect before the circular
inversion still do not intersect. Next, we apply the mirror reflection
about ê inside the window to the odd connectors: As the picture il-

e

f

1

2 3

4

5

6

7

8

10

9
11

12

e

f 1 4

5

89

12

lustrates, these transformed odd connectors together with the original
even connectors connect up the initial piece of f to the final piece.
This new way of drawing of f crosses the window n f times, only
half of the original number. This is the moment where we use the
fact that each edge crosses ê an even number of times; otherwise, the
re-connection of f would not work.
After this redrawing of all the edges crossing ê, edges that did not
cross before still do not cross (while some intersections may be lost).
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3. It remains to draw the erased portion of e. We do not want to draw
it horizontally, since we would have no control over the intersections
with the transformed odd connectors. Instead, we draw it along the top
or bottom half-circle bounding the window, whichever gives a smaller
number of intersections (breaking a tie arbitrarily). Each f crosses

e

f

the window border 2n f times after the redrawing, and thus one of
the half-circles is crossed at most

∑
f n f times—while originally ê

was crossed 2
∑

f n f times. Hence the redrawing indeed reduces the
number of crossings. The resulting weak realization is not necessarily
standard, but we can make it standard without increasing the number
of intersections (Exercise 3.1(b)), and Theorem 4.1 is proved.

5 A separator theorem for string graphs

Let G be a graph. A subset S ⊆ V (G) is called a separator if there is a
partition of V (G) \ S into disjoint subsets A and B such that there are no
edges between A and B and |A|, |B| ≤ 2

3 |V (G)|.
Exercise 5.1. Check that the above definition of a separator is equivalent to
requiring all connected components of G \ S to have at most 23 |V (G)| vertices.
Exercise 5.2. (a) Show that every tree has a one-vertex separator.
(b) We could also define a β-separator, for β ∈ (0, 1), by replacing 2

3 in
the above definition by β. Check that for β < 2

3 , there are trees with no one-
vertex β-separator. From this point of view, the value 2

3 is natural. (For most
applications, though, having β-separators for a constant β < 1 is sufficient, and
the specific value of β is not too important.)

Separator theorems are results asserting that all graphs in a certain
class have “small” separators (much smaller than the number of vertices).
They have lots of applications, and in particular, they are the basis of
many efficient divide-and-conquer algorithms.
Probably the most famous separator theorem, and arguably one of the

nicest and most useful ones, is the Lipton–Tarjan separator theorem
for planar graphs, asserting that every planar graph on n vertices has a
separator of size O(

√
n ).
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Exercise 5.3. Show that the m × m square grid has no separator of size m/4.
Thus, the order of magnitude in the Lipton–Tarjan theorem cannot be improved.

The separator theorem has several proofs (let us mention a simple
graph-theoretic proof by Alon et al. [3] and a neat proof from the Koebe–
Andreev–Thurston theorem mentioned in Section 1; see, e.g., [24]).
There are scores of generalizations and variations. For example, every
class of graphs with a fixed excluded minor admits O(

√
n )-size separa-

tors [3].
Here we focus on a separator theorem for string graphs. Of course, in

this case we cannot bound the separator size by a sublinear function of
the number of vertices (because Kn is a string graph); for this reason, the
bound is in terms of the number of edges.

Theorem 5.4. Every string graph withm ≥ 2 edges has a separator with
O(
√
m logm) vertices.

The first separator theorem for string graphs, with a worse bound of
O(m3/4

√
logm ), was proved by Fox and Pach [13]. The improvement

to O(
√
m logm) was obtained while preparing this text, and it was pub-

lished in a concise form in [23].
The proof, whose exposition will occupy most of the rest of this chap-

ter, is a remarkable chain of diverse ideas coming from various sources.
Fox and Pach conjectured that the theorem should hold with O(

√
m ).

This, if true, would be asymptotically optimal: we already know this for
graphs with n vertices and O(n) edges, since every planar graph is a
string graph, but asymptotic optimality holds for graphs with any number
of edges between n and

(n
2

)
.

The separator theorem shows that string graphs are (globally) very dif-
ferent from typical (not too dense) random graphs and, more generally,
from expanders.
In the next section, we demonstrate a surprising use of Theorem 5.4;

for a number of other applications we refer to [13, 14]. Then we start
working on the proof of Theorem 5.4 in Section 7.

6 Crossing number versus pair-crossing number

Now something else: we will discuss crossing numbers in this section.
The crossing number cr(G) of a graph G is the smallest possible num-
ber of edge intersections (crossings) in a standard drawing of G. We
recall that in a standard drawing, edges are polygonal lines with finitely
many intersections and no triple points; see Section 3. In this section we
consider only standard drawings.
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One may also consider the rectilinear crossing number cr(G), which
is the minimum number of crossings in a straight-edge drawing of G, but
this behaves very differently from cr(G), and the methods involved in its
study are also different from those employed for the crossing number.

An algorithmic remark The crossing number is an extensively stud-
ied and difficult graph parameter. Let us just mention in passing that
computing cr(G) is known to be NP-complete, but a tantalizing open
problem is, how well it can be approximated (in polynomial time). On
the one hand, there is a constant c > 1 such that cr(G) is hard to approx-
imate within a factor of c [6], and on the other hand, there is a (highly
complicated) algorithm [9] with approximation factor roughly n9/10 for
n-vertex graphs with maximum degree bounded by a constant. The lat-
ter result may not look very impressive, but it is the first one breaking a
long-standing barrier of n.
A difficult case here are graphs with relatively small, but not too small,

crossing number, say around n. Indeed, on the one hand, for every fixed k,
there is a linear-time algorithm deciding whether cr(G) ≤ k [15, 18]. On
the other hand, for a graph with maximum degree bounded by a constant
and with crossing number k, a drawing with at most O((n + k)(log n)2)
crossings can be found in polynomial time; this is based on [22], with
improvements of [2, 11] (also see [10]).

The single-crossing lemma Here is a useful basic fact about drawings
minimizing the crossing number.

Lemma 6.1 (Single-crossing lemma). In every (standard) drawing ofG
that minimizes the crossing number, no two edges intersect more than
once.

Proof. We show that if edges e, e′ intersect at least twice, the number
of crossings can be reduced. We consider crossings X1 and X2 that are
consecutive along e. There are two cases to consider, the second one
being easy to overlook, and in each of them we redraw the edges locally
as indicated:

e

e′

e

e′
X1 X2

e
X1 X2

e′

e

e′
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This reduces the total number of crossings by at least 2. We also note
that since the part of e′ between X1 and X2 may be intersected by e,
this redrawing may introduce self-intersections of e—but these are easily
eliminated by shortcutting the resulting loops on e.

Exercise 6.2. Let us say that X1, X2 is a simple pair of crossings of edges e
and e′ if X1 and X2 are consecutive on both e and e′. Draw an example of two
edges that cross several times but that have no simple pair of crossings.

The lemma just proved shows that it does not matter whether we define
the crossing number as the minimum number of crossings or as the min-
imum number of crossing pairs of edges in a drawing. Do you believe
the previous sentence? If yes, you are in a good company, since many
people got caught, and only Pach and Tóth [26], and independently Mo-
har (at a 1995 AMS Conference on Topological Graph Theory), noticed
that the lemma proves nothing like that, since it is not clear whether a
drawing with minimum number of crossings also has a minimum num-
ber of crossing pairs. Indeed, the number of crossing pairs may very well
increase in a redrawing as in the proof of the lemma:

e

e′

e

e′f f

Thus, it makes good sense to define the pair-crossing number pcr(G) as
the minimum possible number of pairs of edges that cross in a drawing
of G. Clearly, pcr(G) ≤ cr(G) for all G.
It is generally conjectured that pcr(G) = cr(G) for all G, but if true,

this is unlikely to be proved by a “local” redrawing argument in the spirit
of Lemma 6.1—at least, many people tried that and failed.
A warning example is a result of Pelsmajer et al. [25], who found a

graph G with ocr(G) < cr(G). Here ocr(G) is the odd crossing number
of G, which is the minimum number, over drawings of G, of pairs of
edges that cross an odd number of times. A good motivation for studying
the odd crossing number is the famousHanani–Tutte theorem, asserting
that if a graph has a drawing in which every two non-adjacent edges
cross an even number of times, then it is planar (see [27] for a modern
treatment). In particular, this implies that ocr(G) = 0, pcr(G) = 0, and
cr(G) = 0 are all equivalent.
One direction of investigating the pcr/cr puzzle is to bound the crossing

number by some function of the pair-crossing number, and to try to get as
small a bound as possible. We begin with a simple result in this direction.

Proposition 6.3. If pcr(G) = k, then cr(G) ≤ 2k2.
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Proof. We fix a drawing D of G = (V, E) witnessing pcr(G). Let F ⊆
E be the set of edges that participate in at least one crossing, and let
E0 = E \F ; thus, the edges of E0 define a plane subgraph in D. We keep
the drawing of these edges and we redraw the edges of F so that every
two of them have at most one crossing, as in the proof of Lemma 6.1 (we
note that E0 does not interfere with this redrawing in any way). Since
|F | ≤ 2k, the resulting drawing has at most (2k2 ) ≤ 2k2 crossings.
The current strongest bound is based on the separator theorem for

string graphs.

Theorem 6.4. If pcr(G) = k ≥ 2, then cr(G) = O(k3/2(log k)2).

The following proof is due to Tóth [30]; he states a worse bound, but
the bound above follows immediately from his proof by plugging in a
better separator theorem.
We begin the proof with a variant of the single-crossing lemma (Lem-

ma 6.1).

Lemma 6.5 (Red-blue single-crossing lemma). Let G be a graph in
which each edge is either red or blue, and let D be a drawing of G.
Then there is a drawing D′ of G such that the following hold:

(i) Each edge in D′ is drawn in an arbitrarily small neighborhood of
the edges of D.

(ii) Every two edges intersect at most once in D′.
(iii) The number of blue-blue crossings in D′ is no larger than in D.

Proof. While edges e, e′ crossing at least twice exist, we repeat redraw-
ing operations similar to those in Lemma 6.1. However, while in that
lemma we swapped portions of e and e′, here we keep e fixed and route
e′ along it,

e

e′

e

e′
X1 X2

e
X1 X2

e′

e

e′

or the other way round. We may again introduce self-intersections of e
or e′, but we remove them by shortcutting loops.
To decide which way of redrawing to use, we let ê be the portion of e

between X1 and X2 (excluding X1 and X2), and similarly for ê′. Let b and
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b′ be the number of crossings of blue edges with ê and ê′, respectively,
and similarly for r, r ′. If the pair (b, r) is lexicographically smaller than
(b′, r ′), we route ê′ along ê, and otherwise, ê along ê′.
It is clear that if this redrawing procedure terminates, then it yields a

drawing D′ satisfying (i) and (ii). To show that it terminates, and that (iii)
holds, it suffices to check that each redrawing strictly lexicographically
decreases the vector (xBB, xRB, xRR) for the current drawing, where xBB
is the total number of blue-blue crossings, and similarly for xRB and xRR .
To check this, we distinguish three cases. If both e, e′ are blue, then the

redrawing decreases xBB . If both e, e′ are red, then xBB stays the same
and either xRB decreases, or it stays the same and xRR decreases. Finally,
if e is blue and e′ is red, then either xBB decreases, or it stays the same
and xRB decreases.

In order to prove Theorem 6.4, we will proceed by induction. The
inductive hypothesis is the following strengthening of the theorem.

Claim 6.6. Let G = (V, E) be a graph, and let D be a drawing of G
with k crossing pairs of edges and with � ≥ 2 edges that have at least
one crossing (thus, � ≤ 2k and k ≤ (

�

2

)
). Then there is a drawing D′ of

G such that every edge is drawn in an arbitrarily small neighborhood of
the edges in D, and D′ has at most Ak3/2(log �)2 crossings, where A is a
suitable constant.

Proof. We proceed by induction on � (the proof will also establish the
base case � = 2 directly).
As in the proof of Proposition 6.3, we first partition the edge set E into

F , the edges with crossings, and E0 = E \ F . Thus, |F | = �.
Let us consider the edges of F in the drawing D as strings (where we

cut off tiny pieces near the vertices, so that the strings meet only if the
corresponding edges cross). This defines a string graph with � vertices
and k edges.
By Theorem 5.4, this string graph has a separator of size at most

C
√
k log k, with a suitable constant C . This defines a partition of F into

disjoint subsets F0, F1, F1; we have �0 := |F0| ≤ C
√
k log k, |F1|, |F2| ≤

2
3�, and no edge of F1 crosses any edge of F2. Let ki be the number of
crossing pairs of edges of Fi in D, i = 1, 2; we have k1 + k2 ≤ k. Let �i
be the number of edges of Fi that cross some edge of Fi .
Actually, Theorem 5.4 can be applied only if k ≥ 2, while in our case,

for � = 2 it may happen that k = 1. But if k = 1, we simply put F0 = F
and F1 = F2 = ∅, and proceed with the subsequent argument.
Next, we apply the inductive hypothesis to the graphs G1 := (V, F1)

and G2 := (V, F2) (drawn as in D). This yields drawings D′1 and D
′
2 as
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in the claim. (If F1 has no crossings then, strictly speaking, the induc-
tive hypothesis cannot be applied, but then D′1 can be taken as the plane
drawing of G1 inherited from D, and similarly for F2.)
For �i ≥ 2, we can bound the number of crossings in D′i by Ak3/2i (log �i)

2

according to the inductive hypothesis; for �i = 0 there are no crossings
(and �i = 1 is impossible). We have �i ≤ |Fi | ≤ 2

3�, and hence log �i ≤
log �−c0, where c0 = log 32 > 0. For the subsequent computation, it will
be convenient to bound (log �i)

2 from above in a slightly strange-looking
way: by (log �)(log �− c0). The resulting bound Ak3/2i (log �)(log �− c0)
gives 0 for ki = 0 and so it is also valid in the case ki = �i = 0.
We overlay D′1 and D

′
2 and add the edges of F0 drawn as in D; this

gives a drawing D̃ of the graph (V, F). Let us color the edges of F1 ∪ F2
blue and those of F0 red. By the above, and using k

3/2
1 + k3/22 ≤ k3/2, the

total number of blue-blue crossings in D̃ can be bounded by

A(k3/21 + k3/22 )(log �)(log �− c0) ≤ Ak3/2(log �)2 − Ac0k
3/2 log �.

The first term of the last expression is the desired bound for the number of
all crossings, and thus the second term is the “breathing room”—we need
to bound the number of red-blue and red-red crossings by Ac0k3/2 log �.
We cannot control the number of red-blue and red-red crossings in D̃,

but we apply Lemma 6.5 to the graph (V, F) with the drawing D̃. This
provides a new drawing of (V, F), to which we add the edges of E0 from
the original drawing D, and this yields the final drawing D′. The number
of blue-blue crossings in D′ is no larger than in D̃, and the number of red-
blue and red-red crossings is at most |F0| · |F | = �0�. Using � ≤ 2k and
k ≤ (

�

2

) ≤ �2, we further bound this by (C
√
k log k)2k ≤ 4Ck3/2 log � ≤

Ac0k3/2 log �, provided that A was chosen sufficiently large.
This concludes the inductive proof of the claim and thus yields Theo-

rem 6.4.

7 Multicommodity flows, congestion, and cuts

We start working towards a proof of the separator theorem for string
graphs (Theorem 5.4). The overall scheme of the proof is given at the
end of this section, but most of the actual work remains for later sections.

s-t flows As a motivation for the subsequent developments, we briefly
recall the duality between flows and cuts in graphs. If G = (V, E) is a
graph with two distinguished vertices s and t , in which every edge has
unit capacity, then the maximum amount of flow from s to t equals the
minimum number of edges we have to remove in order to destroy all
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s-t paths. There is also a more general weighted version, in which the
capacity of each edge e is a given real number we ≥ 0.
Multicommodity flows Instead of flows between just two vertices, we
will use multicommodity flows; namely, we want a unit flow between
every pair {u, v} of vertices of the considered graph.
Let us remark that instead of requiring unit flow for every pair, we can

consider an arbitrary demand function D
(V
2

)→ [0,∞), specifying some
demand D(u, v) on the flow between u and v for every pair {u, v}. All
of the considerations below can be done in this more general setting; we
can also put weights on edges and vertices. For simplicity, we stick to the
unweighted case, which is sufficient for us; conceptually, the weighted
case mostly brings nothing new.
For our purposes, it is convenient to formalize a multicommodity flow

as an assignment of nonnegative numbers to paths in the considered
graph. Thus, we define P to be the set of all paths (of nonzero length) in
G, and a multicommodity flow is a mapping ϕ P → [0,∞). Since we
will talk almost exclusively about multicommodity flows, we will some-
times say just “flow” instead of “multicommodity flow”.
The amount of flow between two vertices u, v is

∑
P∈Puv

ϕ(P), where
Puv ⊆ P is the set of all paths with end-vertices u and v. If we think of
the vertices as cities and the edges as roads, then ϕ(P), P ∈ Puv may be
the number of cars per hour driving from u to v or from v to u along the
route P .

Edge congestion The requirement of unit flow between every pair of
vertices is expressed as

∑
P∈Puv

ϕ(P) ≥ 1, {u, v} ∈ (V
2

)
. We define the

edge congestion under ϕ as

econg(ϕ) = max
e∈E

∑
P∈P :e∈P

ϕ(P),

and the edge congestion of G as econg(G) = minϕ econg(ϕ), where the
minimum is over all flows with unit flow between every two vertices.2

If G is disconnected, then there are no flows ϕ as above, and we have
econg(G) = ∞.
Let us consider an edge cut in G, which for us is a partition (A, V \ A)

of V into two nonempty subsets. By E(A, V \ A) we denote the set of all
edges of G connecting A to V \ A. If there is a unit flow between every
two vertices of G, then |A| · |V \ A| units of flow have to pass through

2 A compactness argument, which we omit, shows that the minimum is actually attained.
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the edges of E(A, V \ A), and hence

econg(G) ≥ |A| · |V \ A|
|E(A, V \ A)| .

If we define the sparsity of the edge cut (A, V \ A) as

espars(A, V \ A) = |E(A, V \ A)|
|A| · |V \ A| ,

and the edge sparsity3 espars(G) :=minA espars(A, V \A), we can write
the conclusion of the previous consideration compactly as espars(G) ≥
1/ econg(G).

Approximate duality Unlike in the case of s-t flows, it turns out that
the last inequality can be strict.

Exercise 7.1. Let G be an n-vertex constant-degree expander, which means
that, for some constants � and β > 0, all degrees in G are at most � and
espars(G) ≥ β

n . The existence of such graphs, with some�,β fixed and n arbi-
trarily large, is well known; see, e.g., [16]. Prove that econg(G) > 1/ espars(G)
(assuming that n is sufficiently large in terms of � and β), and actually, that
econg(G) = �(

log n
espars(G)

). Hint: show that, say, half of the vertex pairs have
distance �(log n).

However, an important result, discovered by Leighton and Rao [22],
asserts that the gap between the two quantities cannot be very large; this
is an instance of approximate duality between multicommodity flows and
cuts.

Theorem 7.2 (Approximate duality, edge version). For every n-vertex
graph G we have

espars(G) = O
( log n

econg(G)

)
.

Although we won’t really need this particular theorem, the proof can
serve as an introduction to things we will actually use, and we present
it in Section 9.

Exercise 7.3 (Edge sparsity and balanced edge cut). Let β > 0 and let
G be a graph on n vertices such that espars(H) ≤ β for every induced subgraph
H of G on at least 23n vertices. Show that G has a balanced edge cut (A, V \ A)

with |E(A, V \ A)| ≤ βn2, where balanced means that 13n ≤ |A| ≤ 2
3n.

3 What we call edge sparsity is often called just sparsity. This quantity is also closely related to
the Cheeger constant, or edge expansion, of G, which is defined as minA⊆V :1≤|A|≤|V |/2(|E(A, V \
A)|/|A|).
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Vertex notions For the proof of the separator theorem for string graphs,
we will need vertex analogs of the “edge” notions and results just dis-
cussed.
For a flow ϕ in G we introduce the vertex congestion

vcong(ϕ) := max
v∈V

vcong(v), where vcong(v) :=
∑

P∈P :v∈P

1

2
ϕ(P),

and the vertex congestion ofG is vcong(G) := minϕ vcong(ϕ), where the
minimum is over all ϕ with unit flow between every two vertices. The 1

2
in the above formula should be interpreted as 1 if v is an inner vertex of
the path P , and as 12 if v is one of the end-vertices of P . We thus think of
the flow along P as incurring congestion 1

2ϕ(P) when entering a vertex
and congestion 1

2ϕ(P) when leaving it. (This convention is a bit of a
nuisance in the definition of vertex congestion, but later on, it will pay
off when we pass to a “dual” notion.)
By a vertex cut in G we mean a partition (A, B, S) of V into three

disjoint subsets such that A �= ∅ �= B and there are no edges between A
and B (this is like in the definition of a separator, except that we do not
require the sizes of A and B to be roughly the same).
If ϕ sends unit flow between every pair of vertices, then the flows be-

tween A and B contribute a total flow of |A|·|B| through S, and moreover,
from each vertex of S we have a flow of n − 1 to the remaining vertices.
Thus the total congestion of the vertices in S is at least |A|·|B|+ 1

2 |S|(n−
1). Losing a constant factor (and using n ≥ 2), we bound this somewhat
unwieldy expression from below by 1

4 |A|·|B|+ 1
4 |S|n = 1

4 |A∪S|·|B∪S|.
This suggests to define the sparsity of a vertex cut (A, B, S) as

vspars(A, B, S) := |S|
|A ∪ S| · |B ∪ S| ,

and the vertex sparsity of G is vspars(G) := min(A,B,S) vspars(A, B, S),
where the minimum is over all vertex cuts.
By the considerations above, we have vcong(G) ≥ 1/(4 vspars(G)).

We will need the following analog of Theorem 7.2:

Theorem 7.4 (Approximate duality, vertex version). For every con-
nected n-vertex graph G we have

vspars(G) = O
( log n

vcong(G)

)
.

The proof is deferred to Section 11.
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Exercise 7.5 (Vertex sparsity and separators). Let α > 0 and let G be a
graph on n vertices such that vspars(H) ≤ α for every induced subgraph H of
G on at least 23n vertices. Show that G has a separator of size at most αn

2.

String graphs have large vertex congestion The last ingredient in the
proof of the separator theorem for string graphs is the following result
about string graphs.

Proposition 7.6. For every connected string graph G with n vertices and
m edges, we have

1

vcong(G)
= O

(√m
n2

)
.

This is the only specific property of string graphs used in the proof of
the separator theorem. The next section is devoted to the proof of this
proposition.

Proof of the separator theorem for string graphs (Theorem 5.4).
Let G be a string graph with n vertices and m ≥ n edges. We have
1/ vcong(G) = O(

√
m/n2) by Proposition 7.6. By approximate duality

(Theorem 7.4), we have vspars(G) = O((log n)
√
m/n2), and so G has a

separator of size O(
√
m log n) according to Exercise 7.5.

Exercise 7.7. Let G be a string graph with m edges whose maximum degree
is bounded by a constant �. Derive from Theorem 7.2 (the edge version of the
approximate duality) and from Proposition 7.6 that G has a separator of size
O(
√
m logm), where the implicit constant may depend on �.

8 String graphs have large vertex congestion

The strategy of the proof of Proposition 7.6 is this: Given a string repre-
sentation of an n-vertex graph G and a multicommodity flow in G with a
small vertex congestion, we will construct a drawing of Kn in which only
a small number of edge pairs cross. This will contradict the following
result:

Lemma 8.1. For n ≥ 5, pcr(Kn) = �(n4).

The proof of this lemma relies on the following fact.

Fact 8.2. In every plane drawing of K5, some two independent edges
intersect, where independent means that the edges do not share a vertex.



84 Jiří Matoušek

This fact is a consequence of the Hanani–Tutte theorem mentioned
above Proposition 6.3, although that theorem is somewhat too big a ham-
mer for this purpose. But proving the fact rigorously is harder than it may
seem, even if we assume nonplanarity of K5 as known (although a rig-
orous proof of the nonplanarity is almost never included in graph theory
courses).

Exercise 8.3. Find a mistake in the following “proof” of Fact 8.2: Consider
a (standard) drawing of K5. If two independent edges cross, we are done, and
otherwise, some two edges sharing a vertex cross. But such crossings can be
removed by the following transformation

−→

and so eventually we reach a plane drawing—a contradiction.

Proof of Lemma 8.1. By Fact 8.2, in every drawing of Kn , every 5-tuple
of vertices induces a pair of independent edges that cross. A given pair
of independent crossing edges determines 4 vertices of the 5-tuple, and
so the number of 5-tuples inducing this particular pair of edges is at most
n − 4. So pcr(Kn) ≥

(n
5

)
/(n − 4) = �(n4).

We remark that Lemma 8.1 also follows from a generally useful result,
the crossing lemma of Ajtai et al. [1] and Leighton [20], which asserts
that every graph with n vertices and m ≥ 4n edges has crossing number
�(m3/n2). We actually need a version of the lemma for the pair-crossing
number, which holds with the same bound, as was observed in Pach and
Tóth [26, Thm. 3].4 This proof does not avoid Fact 8.2—it actually relies
on a generalization of it.

Proof of Proposition 7.6. Let G = (V, E), and let (γv : v ∈ V ) be a
string representation of G. We are going to produce a drawing of the
complete graph KV on the vertex set V .
We draw each vertex v ∈ V as a point pv ∈ γv, in such a way that all

the pv are distinct.
For every edge {u, v} ∈ (V

2

)
of the complete graph, we pick a path Puv

from Puv, in a way to be specified later. Let us enumerate the vertices
along Puv as v0 = u, v1, v2, . . . , vk = v. Then we draw the edge {u, v}

4 The argument in their proof is not quite correct, but the problem is rectified in Remark 2 in
Section 3 of [26].
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of KV in the following manner: we start at pu , follow γu until some
(arbitrarily chosen) intersection with γv1 , then we follow γv1 until some
intersection with γv2 , etc., until we reach γv and pv on it.

γv0

pv4

pv0

γv1

γv2
γv0

γv4

γv3

In this way we typically do not get a standard drawing, since edges may
share segments, have self-intersections and triple points, and they may
pass through vertices. However, we can obtain a standard drawing by
shortcutting loops and a small perturbation of the edges, in such a way
that no new intersecting pairs of edges are created. Hence, by Lemma 8.1,
there are �(n4) intersecting pairs of edges in the original drawing as
well. We are going to estimate the number of intersecting pairs in a dif-
ferent way.
We note that the drawings of two edges {u, v} and {u′, v′} cannot inter-

sect unless there are verticesw∈ Puv andw′∈ Pu′v′ such that γw∩γw′ �= ∅,
i.e., {w,w′} ∈ E(G) or w = w′. Let us write this latter condition as
Puv ∼ Pu′v′ .
How do we select the paths Puv? For this, we consider a flow ϕ for

which vcong(G) is attained. Since there is a unit flow between every pair
of vertices {u, v}, the values of ϕ(P) define a probability distribution on
Puv. We choose Puv ∈ Puv from this distribution at random, the choices
independent for different {u, v}.
The number X of intersecting pairs of edges in this drawing is a ran-

dom variable, and we bound from above its expectation. First we note
that

Prob
[ {u, v} and {u′, v′} intersect] ≤ Prob[Puv ∼ Pu′v′]

=
∑

P∈Puv,P ′∈Pu′v′ ,P∼P ′
Prob

[
Puv = P and Pu′v′ = P ′

]
=

∑
P∈Puv,P ′∈Pu′v′ ,P∼P ′

ϕ(P)ϕ(P ′)
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(for the last equality we have used independence). Therefore

E[X] =
∑

{{u,v},{u′,v′}}∈((
V
2 )
2 )

Prob
[ {u, v} and {u′, v′} intersect]

≤
∑

{u,v},{u′,v′}

∑
P∈Puv,P ′∈Pu′v′ ,P∼P ′

ϕ(P)ϕ(P ′)

=
∑

{w,w′}∈E or w=w′

∑
P,P ′∈P,w∈P,w′∈P ′

ϕ(P)ϕ(P ′)

=
∑

{w,w′}∈E or w=w′

( ∑
P∈P,w∈P

ϕ(P)

)( ∑
P ′∈P,w′∈P

ϕ(P ′)
)

.

The first sum in parentheses is at most 2 vcong(w), and the second one at
most 2 vcong(w′); the 2 is needed because of the paths P for which w is
an end-vertex. The number of terms in the outer sum is |E | + n ≤ 2m.
Altogether we get E[X] ≤ 8m vcong(G)2.
Since, on the other hand, we always have X = �(n4), we obtain

1/ vcong(G) = O(
√
m/n2) as claimed.

9 Flows, cuts, and metrics: the edge case

Here we prove the edge version of the approximate flow/cut duality, The-
orem 7.2. We essentially follow an argument of Linial, London, and
Rabinovich [21].

Dualizing the linear program The first step of the proof can be con-
cisely expressed as follows: express econg(G) by a linear program, du-
alize it, and see what the dual means.5

It is slightly nicer to work with 1
econg(G)

, which can be expressed as the
maximum t such that there is a flow ϕ with edge congestion at most 1
that sends at least t between every pair of vertices. The resulting linear

5 We assume that the reader has heard about linear programming and the duality theorem in it; if not,
we recommend consulting a suitable source. Here is a very brief summary: A linear program is
the computational problem of maximizing (or minimizing) a linear function over the intersection of
finitely many half-spaces in R

n (i.e., a convex polyhedron). Every linear program can be converted
to a standard form: maxx∈P cT x with P = {x ∈ R

n : Ax ≤ b, x ≥ 0}, where c ∈ R
n , b ∈ R

m ,
A is an m × n matrix, and the inequalities between vectors are meant componentwise. The dual of
this linear program is miny∈D bT y, D = {y ∈ R

m , AT y ≥ c, y ≥ 0}, and the duality theorem of

linear programming asserts that if P �= ∅ �= D, then minx∈P cT x = maxy∈D bT y.
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program has variables t ≥ 0 and ϕ(P), P ∈ P , and it looks like this:

max
{
t ≥ 0: ϕ(P) ≥ 0 for all P ∈ P,∑

P:e∈P ϕ(P) ≤ 1 for all e ∈ E, (9.1)∑
P∈Puv

ϕ(P) ≥ t for all {u, v} ∈ (V
2

)}
. (9.2)

The variables of the dual linear program are xe, e ∈ E , corresponding
to the constraints (9.1), and yuv, {u, v} ∈

(V
2

)
, corresponding to the con-

straints (9.2). The dual reads

min
{∑

e∈E xe: xe, yuv ≥ 0,∑
e∈P xe ≥ yuv, P ∈ Puv, {u, v} ∈

(V
2

)
, (9.3)∑

{u,v}∈(V2) yuv ≥ 1
}
, (9.4)

and its value also equals 1
econg(G)

by the duality theorem. (Checking this
claim carefully takes some work, and we expect only the most diligent
readers to verify it—the others may simply take it for granted, since the
linear programming duality is a side-topic for us.)
Fortunately, the dual linear program has a nice interpretation. We think

of the variables xe as edge weights, and then the constraints (9.3) say that
yuv is at most the sum of weights along every u-v path. From this it is
easy to see that in an optimal solution of the dual linear program, each
yuv is the length of a shortest u-v path under the edge weights given
by the xe. When the yuv are given in this way, we may also assume
that for every edge e = {u, v} ∈ E , we have xe = yuv: Indeed, if
xe > yuv, then there is a shortcut between u and v bypassing the edge
e, i.e., a u-v path of length yuv. So if we decrease xe to the value yuv, the
length of a shortest path between every two vertices remains unchanged
and thus no inequality in the linear program is violated, while

∑
e∈E xe

decreases.
Thus, if we write dw for the shortest-path (pseudo)metric6 induced on

V by an edge weight function w E → [0,∞), we can express the con-

6 We recall that ametric on a set V is a mapping d V ×V → [0,∞) satisfying (i) d(u, v) = d(v, u)
for all u, v; (ii) d(u, u) = 0 for all u; (iii) d(u, v) > 0 whenever u �= v; and (iv) d(u, v) ≤
d(u, x)+ d(x, v) for all u, v, x ∈ V (triangle inequality). A pseudometric satisfies the same axioms
except possibly for (iii).



88 Jiří Matoušek

clusion of the dualization step as

1

econg(G)
= min

⎧⎪⎪⎨⎪⎪⎩
∑

{u,v}∈E
dw(u, v)∑

{u,v}∈(V2)
dw(u, v)

: w E → [0,∞), w �≡ 0

⎫⎪⎪⎬⎪⎪⎭ . (9.5)

Here w �≡ 0 means that w is not identically 0; note that we replaced
the constraint (9.4), requiring the sum of all distances under dw to be at
least 1, by dividing the minimized function by the sum of all distances.

Cut metrics and line metrics To make further progress, we will in-
vestigate the minimum of the same ratio as in (9.5), but over different
classes of metrics.
A cut metric on a set V is a pseudometric7 c given by c(u, v) =

| f (u)− f (v)| for some function f V → {0, 1}.
By comparing the definitions, we can express the edge sparsity of a

graph as

espars(G) = min
{ ∑

{u,v}∈E c(u, v)∑
{u,v}∈(V2) c(u, v)

: c a cut metric on V, c �≡ 0
}
(9.6)

(please check).
Next, it turns out that we can replace cut metrics by line metrics in (9.6)

and the minimum stays the same. Here a line metric is a pseudometric
� such that �(u, v) = | f (u) − f (v)| for some function f V → R. We
leave the proof as an instructive exercise.
Exercise 9.1. Show that the minimum in

min
{ ∑

{u,v}∈E �(u, v)∑
{u,v}∈(V2) �(u, v)

: � a line metric on V, � �≡ 0
}

(9.7)

is attained by a cut metric, and hence it also equals espars(G). (Hint: show that
if the function f defining a line metric � attains at least three distinct values,
then some value can be eliminated.)

A key result that allows us to compare the minimum (9.5) over all
shortest-path metrics with the minimum (9.7) over all line metric follows
from the work of Bourgain [5]. His main theorem was formulated differ-
ently, but his proof immediately yields the following formulation, which
is the most convenient for our purposes.

7 Cut metric is really a misnomer, since a cut metric is almost never a metric; we should speak of
a cut pseudometric, but we conform to the usage in the literature. A similar remark applies to line
metrics considered below.
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Theorem 9.2. Let V be an n-point set. For every (pseudo)metric d on V
there exists a line metric � on V satisfying

(i) (� is below d) �(u, v) ≤ d(u, v) for all u, v ∈ V , and
(ii) (the average distance not decreased too much)∑

{u,v}∈(V2) �(u, v) ≥ c

log n

∑
{u,v}∈(V2) d(u, v),

for a constant c > 0.

For completeness, we demonstrate the main idea of the proof in Sec-
tion 10 below.

Proof of Theorem 7.2. Let d∗ be a shortest-path metric attaining the
minimum in the expression (9.5) for 1

econg(G)
. We apply Theorem 9.2

with d = d∗ and obtain a line metric �∗ satisfying (i), (ii) in the theorem.
Then

1

econg(G)
=

∑
{u,v}∈E

d∗(u, v)∑
{u,v}∈(V2)

d∗(u, v)
≥ c

log n
·

∑
{u,v}∈E

�∗(u, v)∑
{u,v}∈(V2)

�∗(u, v)

≥ c

log n
·min

⎧⎪⎪⎨⎪⎪⎩
∑

{u,v}∈E
�(u, v)∑

{u,v}∈(V2)
�(u, v)

: � a line metric on V, � �≡0

⎫⎪⎪⎬⎪⎪⎭
= c

log n
· espars(G).

10 Proof of a weaker version of Bourgain’s theorem

Here we prove a version of Theorem 9.2 with log n replaced by log2 n;
this weakening makes the proof simpler, while preserving the main ideas.
Providing a line metric � satisfying condition (i), � ≤ d, is equivalent to

providing a function f V → R that is 1-Lipschitz, i.e., satisfies | f (u)−
f (v)| ≤ d(u, v) for all u, v ∈ V .
A suitable f is chosen at random, in the following steps.

1. Let k be the smallest integer with 2k ≥ n, i.e., k = $log2 n%. Choose
an index j ∈ {0, 1, . . . , k} uniformly at random, and set p := 2− j .

2. Choose a random subset A ⊆ V , where each point v ∈ V is included
in A independently with probability p.
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3. Define f by f (u) := d(u, A) = mina∈A d(u, a).

A nice thing about this way of choosing f is that it is 1-Lipschitz for
every A ⊆ V , as can be easily checked using the triangle inequality. So it
remains to show that, with positive probability, the line metric induced by
f satisfies a weaker version of condition (ii), i.e., that it does not decrease
the average distance too much.
We will actually prove that for every u, v ∈ V , u �= v,

Prob
[
| f (u)− f (v)| ≥ c0

log n · d(u, v)
]
≥ c0
log n

, (10.1)

where the probability is with respect to the random choice of f as above,
and c0 > 0 is a suitable constant. Assuming (10.1), passing to expecta-
tion, and summing over {u, v} ∈ (V

2

)
, we arrive at

E
[∑

{u,v}∈(V2) | f (u)− f (v)|
]
≥ c20
log2 n

∑
{u,v}∈(V2) d(u, v),

and hence at least one f satisfies (ii) with log2 n instead of log n.
So we fix u, v and we aim at proving (10.1). Let us set� :=d(u, v)/(2k−
1). We have | f (u)− f (v)| = |d(u, A)− d(v, A)|, and the latter expres-
sion is at least � provided that, for some r ≥ 0, the set A intersects the
(closed) r-ball around u and avoids the (open) (r +�) ball around v, or
the other way round.

not empty

r
r + Δ

empty

not empty

r
r + Δ

empty

u v u vor

In order for this event to have a non-negligible probability, we need that
the number of points in the bigger balls is not much larger than in the
smaller ball. The trick for achieving this is to consider a system of balls
as in the next picture:
The picture is for k = 4. In general, Bi is the closed ball of radius i�,
i = 0, 1, . . . , k, centered at u for even i and at v for odd i . Let B◦i denote
the corresponding open ball (all points at distance strictly smaller than
i� from the center).
Let ni be the number of points in Bi . We claim that ni+1/ni ≤ 2

for some i ∈ {0, 1, . . . , k − 1}; indeed, if not, then |Bk | > 2k ≥ n—a
contradiction.
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u v
2Δ

4Δ
3Δ

Δ

We fix such an i , and we also fix j0 such that ni is approximately 2 j0 ;
more precisely, 2 j0 ≤ ni < 2 j0+1.
Let p = 2− j0 , and let us pick a random A as in the second step of the

choice of f with this value of p. By a simple calculation, which we leave
as an exercise, there is a constant c1 > 0 such that

Prob
[
A ∩ Bi �= ∅ and A ∩ B◦i+1 = ∅

] ≥ c1.

Exercise 10.1. Let X,Y be disjoint sets, and let A ⊆ X ∪ Y be a random sub-
set, where each point of X ∪ Y is included in A with probability p, independent
of all other points, with 0 < p ≤ 1

2 . Assuming
1
2p ≤ |X |, |Y | ≤ 2

p , show that
Prob[A ∩ X �= ∅ and A ∩ Y = ∅] ≥ c1 for a constant c1 > 0.

Now (10.1) follows easily: given u, v, the probability of choosing
j = j0 is 1

k+1 = �( 1
log n ), and conditioned on this choice, we have

Prob[| f (u)− f (v)| ≥ �] ≥ c1. This concludes the proof of the weaker
version of Theorem 9.2.

11 Flows, cuts, and metrics: the vertex case

Here we prove Theorem 7.4, the vertex case of the approximate duality,
and this will also conclude the quest for the proof of the separator theo-
rem for string graphs. Initially we proceed in a way similar to the edge
case from Section 9, but the last step is more demanding and uses a nice
method for producing sparse vertex cuts algorithmically.

Dualization again As before, we write 1
vcong(G)

as a linear program

and dualize it. The linear program differs from the one for 1
econg(G)

only
in the second line:

max
{
t ≥ 0: ϕ(P) ≥ 0 for all P ∈ P,∑

P:v∈P
1
2ϕ(P) ≤ 1 for all v ∈ V, (11.1)∑

P∈Puv
ϕ(P) ≥ t for all {u, v} ∈ (V

2

)}; (11.2)
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here the meaning of 12 is as in the definition of vcong(G) in Section 7.
In the dual, we have variables yuv indexed by pairs of vertices and zv
indexed by vertices, and it reads

min
{∑

z∈V zv: zv, yuv ≥ 0,∑
v∈P

1
2 zv ≥ yuv, P ∈ Puv, {u, v} ∈

(V
2

)
, (11.3)∑

{u,v}∈(V2) yuv ≥ 1
}
. (11.4)

This, too, can be interpreted using a metric on G. This time we have a
function s V → [0,∞) assigning weights to vertices. Let us define the
derived weight of an edge e = {u, v} by w(e) := 1

2(s(u) + s(v)) and
denote the corresponding shortest-path metric by ds . Then, in a way very
similar to the edge case, one can see that

1

vcong(G)
= min

{ ∑
v∈V s(v)∑

{u,v}∈(V2) ds(u, v)
: s V → [0,∞), s �≡ 0

}
. (11.5)

Here the convention with 1
2 for the vertex congestion pays off—the dual

has a nice interpretation in terms of shortest-path metrics.
Let s∗ be a weight function for which the minimum in (11.5) is at-

tained. Applying Bourgain’s theorem (Theorem 9.2) to the metric ds∗
yields a function f ∗ V → R that is 1-Lipschitz w.r.t. ds∗ and satisfies∑

v∈V s(v)∑
{u,v}∈(V2) | f ∗(u)− f ∗(v)| = O

(
log n

vcong(G)

)
.

The following theorem of Feige, Hajiaghayi, and Lee [12] then shows
how such an f ∗ can be used to produce sparse vertex cuts in G. This is
the last step in the proof of Theorem 7.4.

Theorem 11.1. Let G be a graph, s V → [0,∞) a weight function on
the vertices, ds the corresponding metric, and let f V → R be a non-
constant 1-Lipschitz function w.r.t. ds . Then

vspars(G) ≤
∑

v∈V s(v)∑
{u,v}∈(V2) | f (u)− f (v)| .

Proof. The proof actually provides a polynomial-time algorithm for find-
ing a vertex cut with sparsity bounded as in the theorem.
Let us number the vertices of G so that f (v1) ≤ f (v2) ≤ · · · ≤

f (vn). For every i = 1, 2, . . . , n − 1, we are going to find a vertex cut
(Ai , Bi , Si), and show that one of these will do.
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To this end, given i , we form an auxiliary graph G+i by adding new
vertices x and y to G, connecting x to v1 through vi , and y to vi+1
through vn .

x y

v1 v2 vi vi+1 vi+2 vn

G+
i

G . . . . . .

We let Si ⊆ V be a minimum cut in G+i separating x from y (which
can be found using a max-flow algorithm, for example). Let Ai :=
{v1, . . . , vi } \ Si and Bi := {vi+1, . . . , vn} \ Si , and let

α := min
i
vspars(Ai , Bi , Si) = min

i

|Si |
|Ai ∪ Si | · |Bi ∪ Si | .

Since {v1, . . . , vi } ⊆ Ai ∪ Si , we have |Ai ∪ Si | ≥ i , and similarly
|Bi ∪ Si | ≥ n − i . Thus, for every i we have

|Si | ≥ αi(n − i). (11.6)

In order to prove the theorem, we want to derive

α
∑

{u,v}∈(V2)
| f (u)− f (v)| ≤

∑
v∈V

s(v). (11.7)

Setting εi = f (vi+1) − f (vi) ≥ 0, we can rearrange the left-hand side:
α
∑

i< j( f (v j ) − f (vi)) = α
∑n−1

i=1 i(n − i)εi (we just look how many
times the segment between f (vi) and f (vi+1) is counted). Then, sub-
stituting from (11.6), we finally bound the left-hand side of (11.7) by∑n−1

i=1 εi |Si |. It remains to prove
n−1∑
i=1

εi |Si | ≤
∑
v∈V

s(v), (11.8)

and this is the most ingenious part of the proof.
Roughly speaking, for every term εi |Si |, we want to find vertices of

sufficient total weight sufficiently close to the interval [ f (vi), f (vi+1)].
We use Menger’s theorem, which guarantees that there are |Si | vertex-
disjoint paths that have to “jump over” the interval [ f (vi), f (vi+1)].
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More precisely, we express both sides of (11.8) as integrals. Namely, we
write

∑n−1
i=1 εi |Si | =

∫∞
−∞ g(z) dz, where g is the function that equals |Si |

on [ f (vi), f (vi+1)) and 0 elsewhere:

f(v1) f(v2) f(v3) f(vn)

ε1 ε2 εn−1

1

g(z)

S| |

. . .

. . .

Similarly,
∑

v∈V s(v) = ∫∞
−∞

∑n
i=1 hi(z) dz, where hi is the function

equal to 1 on [ f (vi)− s(vi )
2 , f (vi)+ s(vi )

2 ] and to 0 elsewhere:

f(vi)

1
1
2s(vi) 1

2s(vi)

hi(z)

We claim that g(z) ≤∑n
i=1 hi(z) for every z ∈ R; this will imply (11.8).

Let z ∈ [ f (vi), f (vi+1)], and set m = g(z) = |Si |. We want to show∑n
i=1 hi(z) ≥ m, which means that we need to find m distinct vertices v

such that | f (v) − z| ≤ s(v)

2 ; let us call such v the paying vertices since
we can imagine that they pay for g(z).
As announced, we use Menger’s theorem, which tells us that, since Si

is a minimum x-y cut in G+i , there are m x-y paths P1, . . . , Pm that are
vertex-disjoint except for sharing the end-vertices x and y. Each Pj con-
tains at least one edge e j = {a j , b j } with one endpoint among v1, . . . , vi
and the other among vi+1, . . . , vn . Hence z ∈ [ f (a j ), f (b j )], and since
f is 1-Lipschitz, | f (a j )− f (b j )| ≤ ds(a j , b j ) ≤ 1

2(s(a j )+s(b j )). Thus,
we have | f (a j )−z| ≤ s(a j )

2 or | f (b j )−z| ≤ s(b j )
2 (or both), and so a j or b j

is a paying vertex. This gives the desired m distinct paying vertices.
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On first-order definable colorings

Jaroslav Nešetřil and Patrice Ossona de Mendez

Abstract. We address the problem of characterizing H -coloring problems that
are first-order definable on a fixed class of relational structures. In this context, we
give also several characterizations of a homomorphism dualities arising in a class
of structures.

1 Introduction

Recall that classical model theory studies properties of abstract mathe-
matical structures (finite or not) expressible in first-order logic [20], and
finite model theory is the study of first-order logic (and its various exten-
sions) on finite structures [11,27].
Constraint Satisfaction Problems (CSPs), and more specifically H -

coloring problems, are standard examples of problems which can be ex-
pressed in monadic second order logic but usually not in the first-order
logic. Of course, expressing a H -coloring problem in first-order logic
would be highly appreciable, as it would allow fast checking (in at most
polynomial time) although problems expressed in monadic second order
logic are usually NP-complete. In this direction, it has been proved by
Hell and Nešetřil [18] that in the context of finite undirected graphs the
H -coloring problem is NP-complete unless H is bipartite, in which case
the H -coloring problem is clearly polynomially solvable. This, and a
similar dichotomy result of Schaefer [41], led Feder and Vardi [14, 15]
to formulate the celebrated Dichotomy Conjecture which asserts that,

The first author was supported by grant ERCCZ LL-1201, CE-ITI P202/12/6061, and by the Euro-
pean Associated Laboratory “Structures in Combinatorics” (LEA STRUCO).
The second author was upported by grant ERCCZ LL-1201, by the European Associated Laboratory
“Structures in Combinatorics” (LEA STRUCO), and partially supported by ANR project Stint under
reference ANR-13-BS02-0007.
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for every constraint language over an arbitrary finite domain, the cor-
responding constraint satisfaction problems are either solvable in poly-
nomial time, or are NP-complete. It was soon noticed that this conjecture
is equivalent to the existence of a dichotomy for (general) H -coloring
problems, and in fact it suffices to prove it for oriented graphs (see [15]
and [19]).
Alternatively, the class P of all polynomially solvable problems can be

described as the class of problems expressible (on ordered structures) in
first-order logic with a least fixed point operator [21, 44]. On the other
hand the class NP may be characterized (up to polynomial equivalence)
as the class of all problems which have a lift (or expansion) determined
by forbidden homomorphisms from a finite set [25]. Hence, we are led
naturally to the question of descriptive complexity of classes of structures
corresponding to H -coloring problems. A particular case is the question
whether a H -coloring problem may be expressed in first-order logic or
not.
In this paper, we will consider the relativized version of the problem of

first-order definability of H -coloring problems to graphs (or structures)
belonging to a fixed class C:
Problem 1.1. Given a fixed class C of graphs (directed graphs, relational
structures), determine which H -coloring problems are first-order defin-
able in C. Explicitly, determine for which graphs (directed graphs, rela-
tional structures) H there exists a first-order sentence φH such that

∀G ∈ C : (G |� φH ) ⇐⇒ (G → H).

The case where C is the whole class of all finite graphs (all finite directed
graphs, all finite relational structures with given finite signature) is well
understood. Atserias [1,2] and Rossman [39] proved that in this case first-
order definable H -colorings correspond exactly to finite homomorphism
dualities, and these dualities have been fully characterized (for undirected
graphs, by Nešetřil and Pultr [36]; for directed graphs, by Komárek [22];
for general finite structures, by Nešetřil and Tardif [37]) as follows:

Theorem 1.2 ([37]). For any signature σ and any finite set F of σ -
structures the following two statements are equivalent:

1. There exists D such that F and D form a finite duality, that is:

∀ finite G : (∀F ∈ F, F � G) ⇐⇒ (G → D)

2. F is homomorphically equivalent to a set of finite (relational) trees.
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Note that an example of such a duality for the class of all finite directed
graphs is the Gallai-Hasse-Roy-Vitaver theorem [16, 17, 40, 45], which
states that for every directed graph )G it holds:

)Pk+1 � )G ⇐⇒ )G → )Tk .
For general classes of graphs the answer is more complicated. For in-
stance, let C be the class of (undirected) toroidal graphs and let φ be the
sentence

∀x0 ∀x1 . . .∀x10
10∨
i=0
¬(xi ∼ xi+1) ∨ ¬(xi ∼ xi+2) ∨ ¬(xi ∼ xi+3),

where additions are considered modulo 11 and where u ∼ v denotes that
u and v are adjacent. Then, it follows from [43] that a graph G ∈ C satis-
fies φ if and only if it is 5-colourable. This property can be alternatively
be expressed by the following restricted duality:

∀G ∈ C : �−→ G ⇐⇒ G −→

In fact the class of toroidal graphs has all restricted dualities in the fol-
lowing sense: for every connected F there exists HF such that F � HF

and for every toroidal graph G holds

F �−→ G ⇐⇒ G −→ HF .

For a general class of graphs C, Problem 1.1 is very complex. We have to
specialize. Hence we first require that the studied class C has some basic
properties: we assume that

• C is hereditary (meaning that every induced subgraph of a graph in C
is in C);

• C is addable (meaning that disjoint unions of graphs in C are in C);
• C is topologically closed (meaning that every subdivision of a graph
in C is in C).

We approach the problem of characterizing first-order definable colorings
by first discriminating between the cases of sparse and dense classes of
graphs using our class taxonomy [32, 33, 35], which seems relevant here.
The second central ingredient of our study is the notion of homomorphism
preservation theorem (HPT) for a class C, which was investigated in [5,
7, 8, 35, 39]. Our approach can be outlined as follows:
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If there exists some integer p such that every p-subdivision of a com-
plete graph appears as a subgraph of some graph in C (meaning that C
is somewhere dense) then we prove that every first-order definable H -
coloring defines a restricted duality on the subclass C′ ⊆ C of the p-
subdivisions of simple graphs (follows from HPT for C′). Using a clas-
sical construction of Erdős [12], we deduce that if a H -coloring problem
is first-order definable on C then either H is bipartite, or the odd-girth of
H is at most 2p + 1.
Otherwise (meaning that C is nowhere dense) it follows from HPT for

nowhere dense classes that every first-order definable H -coloring defines
a restricted duality on C. In the case where there exists some integer p
such that p-subdivisions of graphs with arbitrarily large average degree
appear as subgraphs of graphs in C (meaning that C is not a bounded
expansion class) we prove that H cannot be a restricted dual of a non-
bipartite graph with arbitrarily large odd-girth. Modulo some reasonable
conjecture (Conjecture 1.4), we get that (as in the somewhere dense case)
H is either bipartite or has bounded odd-girth.
In the reminding case (where C is a bounded expansion class), we

prove that first-order definable coloring correspond to restricted duali-
ties, hence are exactly defined by a sentence expressing that no homo-
morphism exists from one of the connected graphs belonging to a finite
set.
This study naturally leads to the following conjecture:

Conjecture 1.3. Let C be a hereditary addable topologically closed class
of graphs. The following properties are equivalent:

1. for every integer p there is a non-bipartite graph Hp of odd-girth
strictly greater than 2p + 1 and a first order definable class Dp such
that a graph G ∈ C is Hp-colorable if and only if G ∈ Dp. Explicitly,
there exists a formula �p such that for every graph G ∈ C holds

(G � �p) ⇐⇒ (G → Hp);

2. the class C has bounded expansion.

In this paper, we make a significant progress toward a solution to Conjec-
ture 1.3. We state a structural conjecture, Conjecture 1.4, about nowhere
dense classes that fail to be bounded expansion classes, which expresses
that such classes are characterized by the existence (as subgraphs of
graphs in the class) of p-subdivisions of graphs with arbitrarily large
chromatic number and girth. More precisely:
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Conjecture 1.4. Let C be a monotone nowhere dense class that does not
have bounded expansion. Then there exists an integer p such that C in-
cludes p-subdivisions of graphs with arbitrarily large chromatic number
and girth.

Our main result toward a characterization of first-order definable col-
orings is the following reduction.

Theorem 1.5. Let C be a hereditary topologically closed class of graphs
that is somewhere dense or has bounded expansion. Then the following
properties are equivalent:

1. for every integer p there is a non-bipartite graph Hp of odd-girth
strictly greater than 2p+ 1 such that Hp-coloring is first-order defin-
able on C;

2. the class C has bounded expansion.

Moreover, if Conjecture 1.4 holds then the statement holds for every
hereditary addable topologically closed class of graphs, that is: if Con-
jecture 1.4 holds then Conjecture 1.3 also holds.

In support to Conjecture 1.4, we prove (Proposition 2.3) that it would
follow from a positive solution to any of the following two well known
conjectures.

Conjecture 1.6 (Erdős and Hajnal [13]). For every integers g and n
there exists an integer N = f (g, n) such that every graph G with chro-
matic number at least N has a subgraph H with girth at least g and chro-
matic number at least n.

The case g = 4 of the conjecture was proved by Rödl [38], while the
general case is still open. Remark that the existence of graphs of both
arbitrarily high chromatic number and high girth is a well known result
of Erdös [12].

Conjecture 1.7 (Thomassen [42]). For all integers c, g there exists an
integer f (c, g) such that every graph G of average degree at least f (c, g)
contains a subgraph of average degree at least c and girth at least g.

The case g = 4 of this conjecture is a direct consequence of the simple
fact that every graph can be made bipartite by deleting at most half of its
edges. The case g = 6 has been proved in [24].
Although we do not settle Conjecture 1.3, our study led us to the two

following characterization theorems of classes that have all restricted du-
alities.
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Theorem 1.8. Let C be a topologically closed class of graphs.
The following properties are equivalent:

1. the class C has bounded expansion;
2. the class C has all restricted dualities;
3. for every odd integer g there exists a graph Hg with odd-girth greater
than g such that every graph G ∈ C with odd-girth greater than g has
a homomorphism to Hg.

These results motivate more general studies of classes of relational struc-
tures having all restricted dualities, which includes classes of structures
whose Gaifman graphs form a class with bounded expansion. In a very
general setting, we obtain the following characterization:

Theorem 1.9. Let C be a class of σ -structures. Then C is bounded and
has all restricted dualities if and only if for every integer t there is an
integer N (t) such that for every A ∈ C there exists a σ -structure At
(called t-approximation of A) such that

• At has order |At | at most N (t),
• A→ At ,
• every substructure F of At with order |F | < t has a homomorphism
to A.

This paper is organized as follows:
In Section 2, we recall the notions needed in the development of our

study, in particular class taxonomy and basics on relational structures.
In Section 3, we discuss classes satisfying a homomorphism preserva-

tion theorem (HPT). On these classes, first-order definable H -colorings
correspond to finite restricted dualities. Moreover, when the considered
class is addable, they correspond to finite restricted dualities with con-
nected templates.
In Section 5, we discuss classes having all restricted dualities, that is

classes such that to every finite set F of connected templates correspond
a graph H such that a graph G in the class is H -colorable if and only if
none of the templates in F has a homomorphism to G.

2 Taxonomy of Classes of Graphs

In the following, we denote by Graph the class of all finite graphs. A
class of graphs C is monotone (respectively, hereditary, topologically
closed) if every subgraph (respectively, every induced subgraph, every
subdivision) of a graph in C also belongs to C. Notice that if a class C
is both hereditary and topologically closed it is also monotone: If H is a
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subgraph of a graph G ∈ C, the graph H is an induced subgraph of the
graph G ′ ∈ C obtained from G by subdividing every edge not in H , hence
H ∈ C. For a graph G, we denote by ω(G) its clique number, by χ(G)

its chromatic number, and by d(G) the average degree of its vertices. By
extension, for a class of graphs C we define

ω(C) = sup{ω(G), G ∈ C}
χ(C) = sup{χ(G), G ∈ C}
d(C) = sup{d(G), G ∈ C}

We proposed in [29, 31, 34] a general classification scheme for graph
classes which is based on the density of shallow (topological) minors
(we refer the interested reader to the monography [35]). This classifica-
tion can be defined in several very different ways and we give here one
of the simplest definitions, which relates to subdivision:
A subdivision (respectively, a k-subdivision) of an edge e = {u, v} of

a graph G consists in replacing the edge e by a path (respectively by a
path of length k + 1) with endpoints u and v. A subdivision of a graph G
is a graph H resulting from G by subdividing edges; the graph H is the
k-subdivision of G if it has been obtained from G by k-subdividing all
the edges (i.e. if all the edges of G have been replaced by paths of length
k + 1). The graph H is a ≤ k-subdivision of H if it has been obtained by
replacing each edge of G by a path of length at most k + 1.
Let p be a half-integer. A graph H is a shallow topological minor of

a graph G at depth p if some ≤ 2p-subdivision of H is a subgraph of
G; the set of all shallow topological minors of G at depth p is denoted
by G �̃ p and, more generally, C �̃ p denotes the class of all shallow
topological minors at depth p of graphs in C.
A class of undirected graphs C is somewhere dense if there exists an

integer p such that the p-th subdivision of every finite graph H may be
found as a subgraph of some graph in C; it is nowhere dense otherwise.
In other words, the class C is nowhere dense if

∀p ∈ N, ω(C �̃ p) <∞.

A particular type of nowhere dense classes will be of particular impor-
tance in this paper: A class C has bounded expansion [29] if

∀p ∈ N, d(C � p) <∞.

Among the numerous equivalent characterizations that can be given for
the property of having bounding expansion, we will make use of a char-
acterization based on the chromatic numbers of the shallow topological
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minors of the graphs in the class. This characterization can be deduced
from the following result of Dvořák [9, 10] (see also [35]):

Lemma 2.1. Let c ≥ 4 be an integer and let G be a graph with minimum
degree d > 56(c − 1)2 log(c−1)

log c−log(c−1) . Then the graph G contains a sub-
graph G ′ that is the 1-subdivision of a graph with chromatic number c.

Hence the following characterization of classes having bounded ex-
pansion:

Theorem 2.2. A class C has bounded expansion if and only if it holds

∀p ∈ N, χ(C �̃ p) <∞. (2.1)

Proof. According to Lemma 2.1, for every graph G and every integer p
there exists an integer C such that:

d(G �̃ p) ≤ C χ(G �̃ (2p + 1/2))4.
Moreover, as every graph G is (�d(G �̃ 0)� + 1)-colorable, every graph
in G �̃ p is (�d(G �̃ p)� + 1)-colorable, that is:

d(G �̃ p) ≥ χ(G �̃ p)− 1.
The result follows from these two inequalities.

Thus we see that parameters d and χ can be used to define bounded ex-
pansion classes, although nowhere dense classes are defined by means of
the parameter ω.
Characterizing nowhere dense classes that do not have bounded ex-

pansion in a structural way is challenging, and thus we proposed Conjec-
ture 1.4, from which Conjecture 1.3 would follow. We now prove that
Conjecture 1.4 follows from any of the Conjecture 1.6 (by Erdős and
Hajnal) or Conjecture 1.7 (by Thomassen):

Proposition 2.3. If either Conjecture 1.6 or Conjecture 1.7 holds, then
so does Conjecture 1.4.

Proof. Let C be a nowhere dense class of graphs which is not a bounded
expansion class. By definition of a bounded expansion class, there exists
an integer q such that C includes ≤ q-subdivisions of graphs with ar-
bitrarily large average degree hence (by standard pigeon-hole argument)
there is an integer p such that C includes exact q-subdivisions of graphs
with arbitrarily large average degree.
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Assume Conjecture 1.6 holds. Define p = 2q + 1, and let g, n ∈ N.
According to the statement of the conjecture, there exists N such that
every graph with chromatic number at least N has a subgraph with girth
at least g and chromatic number at least n. We can assume N ≥ 4.
Let d ≥ 56(N − 1)2 log(N−1)

log N−log(N−1) . Let G ∈ C be such that G includes
the q-subdivision of a graph with average degree at least 2d hence the
q-subdivision of a graph H with minimum degree at least d. Accord-
ing to Lemma 2.1, H has a subgraph H ′ that is the 1-subdivision of a
graph with chromatic number N . It follows that G has a subgraph which
is a p-subdivision of a graph K with chromatic number N . According
to Conjecture 1.6, the graph K has a subgraph K ′ which has chromatic
number at least n and girth at least g. It follows that G contains the p-
subdivision of a graph with chromatic number at least n and girth at least
g. Thus Conjecture 1.4 holds.
Assume that Conjecture 1.7 holds. Define p = 2q + 1, and let g, n ∈

N. Let d ≥ 56(n − 1)2 log(n−1)
log n−log(n−1) . According to the statement of the

conjecture, there exists N such that every graph with average degree at
least N has a subgraph with girth at least 2g + 1 and average degree at
least 2d hence a subgraph with girth at least 2g+ 1 and minimum degree
at least d. Let G ∈ C be such that G includes the q-subdivision of a
graph with average degree at least N . Then G has a subgraph which is
the q-subdivision of a graph H with minimum degree at least d and girth
at least 2g + 1. According to Lemma 2.1, H has a subgraph which is the
1-subdivision of a graph with chromatic number at least n. This subgraph
is a p-subdivision of a graph with girth at least g and chromatic number
at least n. Thus Conjecture 1.4 holds.

3 Homomorphism Preservation Theorems

Suppose that an H -coloring problem is first-order definable. By this we
mean that there is a first-order sentence � such that

G → H ⇐⇒ G |� �.

It immediately follows that ¬� is preserved by homomorphisms:

G � ¬� and G → G ′ �⇒ G ′ � ¬�

(for otherwise G → G ′ → H hence G � �, a contradiction).
Such a property suggests that such a formula � could be equivalent

to a formula with a specific syntactic form. Indeed the classical Homo-
morphism Preservation Theorem (HPT) asserts that a first-order formula
is preserved under homomorphisms on all structures if, and only if, it
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is logically equivalent to an existential-positive formula. The terms “all
structures”, which means finite and infinite structures, is crucial in the
statement of these theorems.

3.1 Finite Structures

It was not known until recently whether HPTwould hold when relativized
to the finite. In fact other well known theorems relating preservation
under some specified algebraic operation and certain syntactic forms, like
�Loś-Tarski theorem or Lyndon’s theorem, fail in the finite.
However, the finite relativization of the homomorphism preservation

has been proved to hold by B. Rossman [39] for general relational struc-
tures.

Theorem 3.1 ([39]). Let φ be a first order formula. Then,

G→ H and G � φ �⇒ H � φ

holds for all finite relational structures G and H if and only if for finite
relational structures φ is equivalent to an existential first-order formula.

It follows that for finite relational structures, the onlyH-coloring prob-
lems which are expressible in first-order logic are those for which there
exists a finite familyF of finite structures with the property that for every
structure G the following finite homomorphism duality holds:

∃F ∈ F F→ G ⇐⇒ G � H. (3.1)

In this paper, we will be mostly interested by graphs, although relational
structures will be considered in Section 5. Definitions and constructions
concerning relational structures are particularly discussed in Section 5.1.

3.2 Nowhere dense classes

If we want to relativize Theorem 3.1, we should consider each relativiza-
tion as a new problem. The �Loś-Tarski theorem, for instance, holds in
general, yet fails when relativized to the finite, but holds when relativized
to hereditary classes of structures with bounded degree which are closed
under disjoint union [3]. These examples stress again that some proper-
ties of structures (in general) and graphs (in particular) need, at times, to
be studied in the context of a fixed class, in order to state a relativized
version of a general statement which could fail in general.
In this context Atserias, Dawar and Kolaitis defined classes of graphs

called wide, almost wide and quasi-wide (cf. [6] for instance). It has been
proved in [3] that the extension preservation theorem holds in any class
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C that is wide, hereditary (i.e. closed under taking substructures) and
closed under disjoint unions, for instance hereditary classes with bounded
degree that are closed under disjoint unions. Also, it has been proved
in [4] [5] that the homomorphism preservation theorem holds in any class
C that is almost wide, hereditary and closed under disjoint unions. Al-
most wide classes of graphs include classes of graphs which exclude a
minor [23]. In [8] Dawar proved that the homomorphism preservation
theorem holds in any hereditary quasi-wide class that is closed under dis-
joint unions.

Theorem 3.2 ([8]). Let C be a hereditary addable quasi-wide class of
graphs. Then the homomorphism preservation theorem holds for C.
Moreover, we have proved that hereditary quasi-wide classes of graphs

are exactly hereditary nowhere dense classes [31]:

Theorem 3.3. A hereditary class of graphs C is quasi-wide if and only if
it is nowhere dense.

Thus it follows from Theorems 3.2 and 3.3 that the relativization of the
homomorphism preservation theorem holds for every hereditary addable
nowhere dense class of graphs. But nowhere dense classes are not the
only classes with relativized homomorphism preservation theorem. In the
next section we show HPT also holds for some nowhere dense classes.

3.3 Somewhere dense classes

We now show that relativized homomorphism preservation theorems are
preserved by particular interpretations, from which will deduce that
relativized homomorphism preservation theorems hold for the classes
Subq(Graph) of all q-subdivisions of (simple) finite graphs. This is
of particular interest as somewhere dense classes (i.e. classes which
fail to be nowhere dense) are characterized by containment of classes
Subq(Graph) for some q.
In the framework of the model theoretical notion of interpretation (see,

for instance [26, pp. 178-180]), we can construct the q-subdivision I(G)

of a graph G by means of first-order formulas on the q-tuples of vertices
of G:

• vertices of I(G) are the equivalence classes x of the (q + 1)-tuples
(v1, . . . , vq+1) with form

(

j︷ ︸︸ ︷
u, . . . , u,

q+1− j︷ ︸︸ ︷
v, . . . , v)
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where u and v are adjacent vertices in G (and 0 ≤ j ≤ q + 1), where
tuples of the form

(

j︷ ︸︸ ︷
u, . . . , u,

q+1− j︷ ︸︸ ︷
v, . . . , v) and (

q+1− j︷ ︸︸ ︷
v, . . . , v,

j︷ ︸︸ ︷
u, . . . , u)

are identified;
• edges of I(G) are those pairs {x, y} where x and y have representative
of the form

(

j︷ ︸︸ ︷
u, . . . , u,

q+1− j︷ ︸︸ ︷
v, . . . , v) and (

j+1︷ ︸︸ ︷
u, . . . , u,

q− j︷ ︸︸ ︷
v, . . . , v)

(for some u, v ∈ G and 0 ≤ j ≤ q).

The main interest of such a logical construction (called interpretation)
lies in the following property:

Proposition 3.4 (See, for instance [26], p. 180). For every first-order
formula φ[v1, . . . , vk] there exists a formula I(φ)[w1, . . . , wk] with k(q+
1) free variables (each wi represents a succession of (q + 1) free vari-
ables) such that for every graph G and every (x1, . . . , xk) ∈ I(G)k the
three following conditions are equivalent:

1. I(G) � φ[x1, . . . , xk];
2. there exist b1 ∈ x1, . . . , bk ∈ xk such that G � I(φ)[b1, . . . , bk];
3. for all b1 ∈ x1, . . . , bk ∈ xk it holds G � I(φ)[b1, . . . , bk].
In particular, it holds:

Corollary 3.5. For every sentence (i.e. closed first order formula) φ (in
the language of graphs) there exists a sentence ψ such that for every
graph G we have

G � ψ ⇐⇒ Sub2p(G) � φ. (3.2)

Lemma 3.6. If the homomorphism preservation theorem holds for a
hereditary class of graphs C, it also holds for the class Subq(C) of all
q-subdivisions of the graphs in C.
Proof. If q is odd then the property is obvious as C contains at most two
homomorphism equivalence classes, the one of K1 and the one of K2.
Hence we can assume q is even and we define p = q/2.
Let φ be a sentence preserved by homomorphisms on Sub2p(C), where

C is a hereditary class of graphs on which the homomorphism preserva-
tion theorem holds. Then we shall prove that there exists a finite family
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of 2p-subdivided graphs F , all of which satisfy φ, and such that for any
graph G it holds

Sub2p(G) � φ ⇐⇒ ∃F ∈ F Sub2p(F)→ Sub2p(G). (3.3)

According to Corollary 3.5 there exists a sentence ψ such that for every
graph G it holds

G � ψ ⇐⇒ Sub2p(G) � φ.

Assume that G � ψ and G → H , with G, H ∈ C. Then Sub2p(G) � φ

and Sub2p(G) → Sub2p(H). As φ is preserved by homomorphisms on
Sub2p(C) we get Sub2p(H) � φ hence H � ψ . Thus ψ is preserved
by homomorphisms on C. As the homomorphism preservation theorem
holds by assumption on C, ψ is equivalent on C with a positive first-order
formula, that is: there exits a finite family F0 of finite graphs such that
for every G ∈ C it holds:

G � ψ ⇐⇒ ∃F ∈ F0 F → G.

Moreover, by considering the subgraphs induced by the homomorphic
images of the graphs F ∈ F0 and as C is hereditary, we can assume
F0 ⊆ C. Thus every F ∈ F0 satisfies ψ hence the 2p-subdivision of
the graphs in F0 satisfy φ. Let F be the set of the 2p-subdivisions of
the graphs in F0. As φ is preserved by homomorphisms on Sub2p(C)

it follows that for every graph G ∈ C if there exists F ∈ F such that
F → Sub2p(G) then Sub2p(G) satisfies φ. Conversely, if Sub2p(G)

satisfies φ for some G ∈ C then G satisfies ψ , thus there exists F ∈ F0
such that F → G hence Sub2p(F)→ Sub2p(G).

We deduce this extension of Rossman’s theorem to the class of p-
subdivided graphs:

Corollary 3.7. For every integer p, the homomorphism preservation the-
orem holds for Subp(Graph).

For a discussion on relativization of the homomorphism preservation
theorem, we refer the reader to [35, Chapter 10].
We summarize below the results obtained in this section:

Lemma 3.8. Let C be a hereditary class of graphs. Assume H -coloring
is first-order definable on C.
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• If C is topologically closed and somewhere dense, then there exist an
integer p (independent of H ) and a finite set F of finite graphs such
that for every graph G it holds

Sub2p(G) � H ⇐⇒ ∃F ∈ F : F → Sub2p(G). (3.4)

• If C is addable and nowhere dense, then there exists a finite set F of
finite graphs such that for every graph G ∈ C it holds

G � H ⇐⇒ ∃F ∈ F : F → G. (3.5)

Proof. If C is topologically closed and somewhere dense, then there exist
an integer p such that the class S2p of all 2p-subdivisions of finite graphs
is a subclass of C. As H -coloring is first-order definable on C (thus on
S2p) and as the homomorphism preservation theorem holds for S2p (ac-
cording to Corollary 3.7), H -coloring may be expressed on S2p by an
existential first-order formulas, that is there exists a finite set F of finite
graphs such that for every graph G equivalence (3.4) holds.
If C is addable and nowhere dense, then the existence of a finite set F

of finite graphs such that for every graph G ∈ C equivalence (3.5) holds
immediately follows from Theorem 3.2.

4 Connectivity of Forbidden Graphs

Homomorphism preservation theorems allow to reduce the study of first-
order colorings of a class C to the study of finite restricted dualities of C,
that is of pairs (F, H), where F is a finite set of finite graphs, where H
is a graph, and where it holds

∀G ∈ C : (∃F ∈ F : F � G) ⇐⇒ (G → H). (4.1)

In general, it is not required that F � H when F ∈ F , nor is it
required that the graphs in F are connected. We shall see that if the
class C is addable or monotone then we can require the graphs in F to be
connected, and that if C is monotone we can further require every F ∈ F
belongs to C (hence cannot be homomorphic to H ).
For a graph G, we define Pre(G) has the set of all the graphs G ′ ob-

tained from G by identifying two vertices of G. Note that we have the
following property:

Lemma 4.1. Let F,G be graphs. Then F → G if and only if either
F is isomorphic to a subgraph of G, or there is F ′ ∈ Pre(F) such that
F ′ → G.
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Proof. Assume f : F → G is a homomorphism. Either f is injective
and F is isomorphic to a subgraph of G, or at least two vertices of F
are identified by f and thus there is F ′ ∈ Pre(F) such that F ′ → G.
Conversely, if F is isomorphic to a subgraph of G or if there is F ′ ∈
Pre(F) such that F ′ → G then obviously F → G.

Let C be a class of graphs and let (F, H) be a restricted duality of C.
We say that the set F is minimal if

• every element of F is a core (that is a graph F such that every homo-
morphism F → F is an automorphism);

• for any proper subset of F ′ of F , the pair (F ′, H) is not a restricted
duality of C,

• and for any F ∈ F , the pair (F \ {F} ∪ Pre(F), H) is not a restricted
duality of C.

It is clear that we can restrict our attention to minimal restricted dualities,
as if (F, H) is a restricted duality of a class C then there exists minimal
F ′ such that (F ′, H) is a restricted duality of C.
Lemma 4.2. Let (F, H) be a restricted duality of C, with F minimal.

• If the class C is addable, then every graph in F is connected.
• If the class C is monotone, then every graph in F is connected and
F ⊆ C (hence F � H holds for every F ∈ F).

Proof. Assume C is addable, and assume for contradiction that F1+F2 ∈
F . By minimality of F , neither (F \ {F1+ F2}∪{F1}, H) nor (F \ {F1+
F2}∪{F2}, H) are restricted dualities of C. Hence there exist G1,G2 ∈ C
such that F1 � G1, F2 → G1 (hence G1 → H ), F1 → G2, F2 � G2

(henceG2 → H ). As C is addable, G1+G2 ∈ C. But F1+F2 → G1+G2,
what contradicts G1 + G2 → H .
Assume C is monotone, and assume F ∈ F . By minimality of F ,

there exists G ∈ C such that F → G but no graph F ′ ∈ Pre(F) is
homomorphic to G. Thus, according to Lemma 4.1, F is isomorphic to a
subgraph of G hence, as C is monotone, F ∈ C. Assume for contradiction
that F = F1 + F2. Then F1, F2 ∈ C and none of F1, F2 is homomorphic
to the other. By minimality of F it follows that F1 → H , F2 → H hence
F1 + F2 → H , contradicting F1 + F2 ∈ F .

5 Restricted Dualities

As restricted dualities appear as the central notion when dealing with
first-order definable coloring, we take time to define and characterize
classes with all restricted dualities in the more general framework of re-
lational structures.
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5.1 Classes of Relational Structures

We recall some basic definitions, notations and result of model theory.
Our terminology is standard, cf. [11, 26]:
A signature σ is a finite set of relation symbols, each with a specified

arity. A σ -structure A consists of a universe A, or domain, and an inter-
pretation which associates to each relation symbol R ∈ σ of some arity
r , a relation RA ⊆ Ar .
A σ -structure B is a substructure of A if B ⊆ A and RB ⊆ RA for

every R ∈ σ . It is an induced substructure if RB = RA ∩ Br for every
R ∈ σ of arity r . Notice the analogy with the graph-theoretical concept
of subgraph and induced subgraph. A substructure B of A is proper if
A �= B. IfA is an induced substructure of B, we say that B is an extension
of A. If A is a proper induced substructure, then B is a proper extension.
If B is the disjoint union of A with another σ -structure, we say that B is
a disjoint extension of A. If S ⊆ A is a subset of the universe of A, then
A ∩ S denotes the induced substructure generated by S; in other words,
the universe of A ∩ S is S, and the interpretation in A ∩ S of the r-ary
relation symbol R is RA ∩ Sr .
The Gaifman graph Gaifman(A) of a σ -structure A is the graph with

vertex set A in which two vertices x �� y are adjacent if and only if there
exists a relation R of arity k ≥ 2 in σ and v1, . . . , vk ∈ A such that
{x, y} ⊆ {v1, . . . , vk} and (v1, . . . , vk) ∈ RA.
A block of a σ -structure A is a tuple (R, x1, . . . , xk) such that R ∈ σ

has arity k and (x1, . . . , xk) ∈ RA. The incidence graph Inc(A) is the
bipartite graph (A, B, E) where A is the universe of A, B is the set of all
blocks of A, and E is the set of the pairs {(R, x1, . . . , xk), y} ⊆ B × A
such that y ∈ {x1, . . . , xk}. Thus for us Inc(A) is a simple graph. No
multiple edges are needed for our purposes.
A homomorphism A → B between two σ -structure is defined as a

mapping f : A → B which satisfies for every relational symbol R ∈ σ

the following:

(x1, . . . , xk) ∈ RA �⇒ ( f (x1), . . . , f (xk)) ∈ RB.

The class of all σ -structures is denoted by Rel(σ ).
The definition of bounded expansion extends to classes of relational

structures: a class C of relational structures has bounded expansion if the
class of the Gaifman graphs of the structures in C has bounded expan-
sion. It is immediate that two relational structures have the same Gaif-
man graph if they have the same incidence graph, but that the converse
does not hold in general. For a class of relational structures C, denote
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by Inc(C) the class of all the incidence graphs Inc(A) of the relational
structures A ∈ C.
Proposition 5.1 ([35]). Assume that the arities of the relational symbols
in σ are bounded, and let C be an infinite class of σ -structures. Then the
class C has bounded expansion if and only if the class Inc(C) has bounded
expansion.

5.2 Classes with all restricted dualities

A class of σ -structures A has all restricted dualities if every non-empty
connected σ -structure has a restricted dual for C, that is: for every non-
empty connected σ -structure F there exists a σ -structureD such that F �
D and

∀A ∈ C : (F→ A) ⇐⇒ (A � D).

Note that this definition implies that also for any finite set F1,F2, . . . ,Ft
of connected σ -structures there exists a σ -structure D such that Fi � D
(for 1 ≤ i ≤ t) and

∀A ∈ C : (∃i ≤ t : Fi → A) ⇐⇒ (A � D).

For a structure A and an integer t , define�t(A) as the minimum order of
a structure B such that

• A→ B,
• every substructure F of B with order |F | < t has a homomorphism to
A.

Intuitively, such a structure B can be seen as approximate core of A:
For t ≥ |B|, A and B are homomorphism-equivalent and B is the core
of A (alternately, B is the minimal retract of A). A structure B with
the above properties and order �t(A) is called a t-approximation of (the
homomorphism equivalence class of) A.
It appears that existence of a uniform approximation is equivalent for a

class to having all restricted dualities. This is formalized by Theorem 1.9,
stated in the introduction. Theorem 1.9 will be proved now:

Proof of Theorem 1.9. Assume C is bounded and has all restricted dual-
ities and let t ∈ N be an integer. Let Z be a strict bound of C, that is a
structure such that for every A ∈ C it holds A → Z but Z � A. As
the sequence (�t(A))t∈N is obviously non-decreasing, we may assume
without loss of generality that t ≥ |Z |. For a structure A ∈ C, let Ft(A)

be the set of all connected cores T of order at most t such that T � A.
This set is not empty as it contains the core of Z. For T ∈ Ft(A), let
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DT be the dual of T relative to C and let A′ be the product of all the
DT for T ∈ Ft(A). First notice that for every T ∈ Ft(A) we have
T � A hence A → DT. It follows that A → A′. Let T′ be a con-
nected substructure of order at most t of A′. Suppose for a contradiction
that T′ � A. Then Core(T′) ∈ Ft(A) hence A′ → DT′ thus T′ � A′ (as
for otherwise T′ → DT′), a contradiction. Thus T′ → A. It follows that
�t(A) ≤ |A′| ≤ C(t) for some suitable finite constant C(t) independent
of A (for instance, one can choose C(t) to be the product of the orders of
all the duals relative to C of connected cores of order at most t).
Conversely, assume that we have supA∈C �t(A) < ∞ for every t ∈

N. The class C is obviously bounded by the disjoint union of all non-
isomorphic minimal order 1-approximations of the structures in C. Let
F be a connected σ -structure, let t ≥ |F |, and let D be a set of t-
approximations of all the structures A ∈ C such that F � A. As all
the �t(A) are bounded by some constant C(t), the set D is finite. If D
is empty, let Dt(F) be the empty substructure. Otherwise, let Dt(F) be
the disjoint union of all the graphs in D. First notice that F � Dt(F)
as for otherwise F would have a homomorphism to some structure in D
(as F is connected), that is to some t-approximation B′ of a structure B
such that F � B (this would contradict F → B′). Also, if F → A then
A � Dt(F) (for otherwise F→ Dt(F)) and if F � A then D contains a
t-approximation A′ of A thus A→ Dt(F). Altogether, Dt(F) is a dual of
F relative to C.

We proved in [30] that bounded expansion classes have all restricted
dualities:

Theorem 5.2. Let C be a class with bounded expansion. Then for every
connected graph F there exists a graph D such that (F, D) is a restricted
homomorphism duality for C:

∀G ∈ C (F → G) ⇐⇒ (G � H). (5.1)

Theorem 5.2 naturally extends to relational structures by considering
Gaifman graphs. We sketch a proof of this generalization, which is based
on the above Theorem 1.9.

Theorem 5.3. LetK be a class of relational structures. If the class of the
Gaifman graphs of the structures in K has bounded expansion then the
class K has all restricted dualities.

Sketch of the proof. Let K be a class of relational structures. Assume the
class of the Gaifman graphs of the structures inK has bounded expansion.



117 On first-order definable colorings

Let A ∈ K, and let t ∈ N be at least as large as the maximum arity of a
relation in the signature of A.
The tree-depth td(G) of a graph G is the minimum height of a rooted

forest whose closure includes G as a subgraph. One of the most inter-
esting properties of tree-depth is that there exists a function � : N → N
with the property that if the Gaifman graph of a structure B has tree-
depth at most t then there exists a homomorphism f : B→ B such that
| f (B)| ≤ �(t) [28]. For integer t , we defined in [28] the graph invariant
χt as follows: for a graph G, χt(G) is the minimum number of colors
needed in a coloring of G such that the union of every subset of k ≤ t
color classes induces a subgraph with tree-depth at most k (such color-
ings are called low tree-depth colorings). It has been proved in [29] that a
class of graphs C has bounded expansion if and only if for every integer t
it holds sup{χt(G) : G ∈ C} <∞ (this is related to Theorem 2.2 above).

Consider a coloring c of the Gaifman graph ofA by N=χt(Gaifman(A))

colors, which is such that the union of every subset of k ≤ t color classes
induces a subgraph with tree-depth at most k. It follows that for each I ∈([N ]
t

)
there exists a homomorphism f I : AI → AI such that | f I (AI )| ≤

�(t), where AI denotes the substructure of A induced by elements with
color in I . Define the equivalence relation ∼ on the domain of A by

x ∼ y ⇐⇒ c(x) = c(y) and ∀I ∈
([N ]

t

)
f I (x) = f I (y).

Define the structure Â (with same signature as A) whose domain is the
set of the equivalence classes [x] ∈ A/ ∼, and relations are defined by

([x1], . . . , [xki ]) ∈ RÂi ⇐⇒ ∀I ∈
([N ]

t

)
( f I (x1), . . . , f I (xki )) ∈ RAi .

We also define a N -coloration of Â by ĉ([x]) = c(x). One checks easily
that Â and ĉ are well defined. By construction, x ,→ [x] is a homomor-
phism A→ Â. Moreover, for every I ∈ ([N ]

t

)
the mapping [x] ,→ f I (x)

is a homomorphism ÂI → AI (where ÂI is the substructure of Â induced
by colors in I ). It follows that

|�t(A)| ≤ | Â| ≤ �(t)N
t ≤ �(t)χt (Gaifman(K))t .

According to Theorem 1.9, this implies that the class K has all restricted
dualities.

For an alternate proof of this Theorem, we refer the reader to [30,35].
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5.3 Topologically closed classes of graphs with all restricted duali-
ties

The special case of topologically closed classes of graphs is of particular
interest here, and we have in this case a much simpler characterization of
the classes that have all restricted dualities. We are now ready to prove
Theorem 1.8.

Proof of Theorem 1.8. The proof follows from the next three implica-
tions:

• (1)⇒ (2) is a direct consequence of Theorem 5.2.
• (2)⇒ (3) is straightforward (consider for Hg a dual of Cg for C).
• (3)⇒ (1) is proved by contradiction: assume that (3) holds and that
C does not have bounded expansion. According to Theorem 2.2 there
exists an integer p such that C �̃ p has unbounded chromatic number.
As C is topologically closed there exists an odd integer g ≥ p and
a graph G0 ∈ C such that G0 is the (g − 1)-subdivision of a graph
H0 with chromatic number χ(H0) > |Hg|. According to (3), there
exists a homomorphism f : G0 → Hg. As Cg � Hg, the ends of
a path of length g cannot have the same image by f . It follows that
any two adjacent vertices in H0 correspond to branching vertices of
G0 which are mapped by f to distinct vertices of Hg. It follows that
χ(H0) ≤ |Hg|, a contradiction.

6 On first-order definable H -colorings

In this section we prove our main characterization result on first-order
definable colorings, stated in the introduction as Theorem 1.5.

Proof of Theorem 1.5. Assume that the class C is somewhere dense.
As C is topologically closed, there exists an integer p such that
Sub2p(Graph) ⊆ C. Assume for contradiction that there exists a non-
bipartite graph H (different from K1) of odd-girth strictly greater than
2p+1 and a first-order formula� such that for every graph G ∈ C holds

(G � �) ⇐⇒ (G → H).

According to Corollary 3.7, as ¬� is preserved by homomorphisms on
C (hence on Sub2p(Graph)) it is equivalent on Sub2p(Graph) with an
existential first-order formula, that is: there exists a finite family F such
that for every graph G it holds:

∀F ∈ F F � Sub2p(G) ⇐⇒ Sub2p(G)→ H.
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Clearly, the graphs in F are non-bipartite. Let g be the maximum of girth
of graphs in F and let G be a graph with chromatic number χ(G) > |H |
and odd-girth odd− girth(G) > g. Then for every F ∈ F we have
F � Sub2p(G) hence Sub2p(G) → H . However, has the odd-girth of
H is strictly greater than 2p+1 two branching vertices of Sub2p(G) cor-
responding to adjacent vertices of G cannot be mapped to a same vertex.
It follows that |H | ≥ χ(G), a contradiction.
To the opposite, if C has bounded expansion, there exists for every

integer p a non-bipartite graph Hp of odd-girth strictly greater than 2p+1
and a first order formula �p such that for every graph G ∈ C holds

(G � �p) ⇐⇒ (G → Hp).

Indeed, consider for �p the formula asserting that G contains an odd
cycle of length at most 2p+ 1, and for Hp the restricted dual of the cycle
C2p+1 with respect to C (whose existence follows from Theorem 5.2.
Now assume that Conjecture 1.4 holds, and that C is a hereditary topo-

logically closed addable nowhere dense class that is not a bounded ex-
pansion class. Then there exists an integer p such that C includes 2p-
subdivisions of graph with arbitrarily large chromatic number and girth.
Assume for contradiction that there is a non-bipartite graph Hp of odd-
girth strictly greater than 2p + 1 such that Hp-coloring is first-order de-
finable on C, and let � be a formula such that for every G ∈ C it holds
G → Hp if and only if G |� �. According to Theorem 3.2, there exists
a finite family F of finite graphs such that G |� Hp if and only if no
graph in F is homomorphic to G. The graphs in F are non-bipartite (C
contains long odd cycles homomorphic to Hp). Let g be the maximum
of the odd-girths of the graphs in F . Let G ∈ C be a 2p-subdivision of a
graph H with girth greater than g and chromatic number χ(H) > |Hp|.
As the girth of G is greater than g, no graph in F is homomorphic to G
hence there exists a homomorphism f : G → Hp. As C2p+1 � G it
follows that vertices of G linked by a path of length 2p + 1 are mapped
to distinct vertices of Hp hence f defines a homomorphism H → K|Hp |,
contradicting χ(H) > |Hp|.
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[34] J. NEŠETŘIL and P. OSSONA DE MENDEZ, On nowhere dense
graphs, European Journal of Combinatorics 32 (2011), no. 4, 600–
617.
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Combinatorial applications
of the subspace theorem

Ryan Schwartz and József Solymosi

Abstract. The Subspace Theorem is a powerful tool in number theory. It has
appeared in various forms and been adapted and improved over time. Its applica-
tions include diophantine approximation, results about integral points on algebraic
curves and the construction of transcendental numbers. But its usefulness extends
beyond the realms of number theory. Other applications of the Subspace Theorem
include linear recurrence sequences and finite automata. In fact, these structures
are closely related to each other and the construction of transcendental numbers.
The Subspace Theorem also has a number of remarkable combinatorial applica-
tions. The purpose of this paper is to give a survey of some of these applications
including bounds on unit distances, sum-product estimates and a result about the
structure of complex lines. The presentation will be from the point of view of a
discrete mathematician. We will state a number of variants and a corollary of the
Subspace Theorem and give a proof of a simplified special case of the corollary
which is still very useful for many problems in discrete mathematics.

1 Introduction

The Subspace Theorem is a powerful tool in number theory. It has ap-
peared in various forms and been adapted and improved over time. Its
applications include diophantine approximation, results about integral
points on algebraic curves and the construction of transcendental num-
bers. But its usefulness extends beyond the realms of number theory.
Other applications of the Subspace Theorem include linear recurrence se-
quences and finite automata. In fact, these structures are closely related
to each other and the construction of transcendental numbers.
The Subspace Theorem also has a number of remarkable combinatorial

applications. The purpose of this paper is to give a survey of some of
these applications including sum-product estimates and bounds on unit
distances. The presentation will be from the point of view of a discrete
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mathematician. We will state a number of variants and a corollary of
the Subspace Theorem below but we will not prove any of them as the
proofs are beyond the scope of this work. However we will give a proof
of a simplified special case of the corollary of the Subspace Theorem
which is still very useful for many problems in discrete mathematics.
A number of surveys have been given of the Subspace Theorem high-

lighting its multitude of applications. Notable surveys include those of
Bilu [6], Evertse and Schlickewei [20] and Corvaja and Zannier [11].
These surveys give many proofs of results from number theory and alge-
braic geometry including those mentioned above.
Wolfgang M. Schmidt was the first to state and prove a variant of the

Subspace Theorem in 1972 [29]. His theorem has been extended multiple
times and has played a very important role in modern number theory.
Before we state the Subspace Theorem we need some definitions. A
linear form is an expression of the form L(x) = a1x1+a2x2+· · ·+anxn
where a1, . . . , an are constants and x = (x1, . . . , xn). A collection of
linear forms is linearly independent if none of them can be expressed as
a linear combination of the others. A complex number is algebraic if
it is a root of a univariate polynomial with rational coefficients. Given
x = (x1, . . . , xn) we define the maximum norm of x :

‖x‖ = max(|x1|, . . . , |xn|).
Theorem 1.1 (Subspace Theorem I). Suppose we have n linearly inde-
pendent linear forms L1, L2, . . . , Ln in n variables with algebraic coef-
ficients. Given ε > 0, the non-zero integer points x = (x1, x2, . . . , xn)
satisfying

|L1(x)L2(x) . . . Ln(x)| < ‖x‖−ε

lie in finitely many proper linear subspaces of Qn .

This generalises the Thue-Siegel-Roth Theorem on the approximation
of algebraic numbers [28] to higher dimensions.
Theorem 1.1 has been extended in various directions by many authors

including Schmidt himself, Schlickewei, Evertse, Amoroso and Viada.
Analogues have been proved using p-adic norms and over arbitrary num-
ber fields and bounds on the number of subspaces required have been
found. These bounds depend on the degree of the number field and the
dimension. For some of these results and more information see [20, 21]
and [2].
Now we give a p-adic version of the Subspace Theorem that we will

use in the next section. Given a prime p, the p-adic absolute value is
denoted |x |p and satisfies |p|p = 1/p. |x |∞ denotes the usual absolute
value so |x |∞ = |x |. We may refer to∞ as the infinite prime.
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Theorem 1.2 (Subspace Theorem II). Suppose S = {∞, p1, . . . , pt} is
a finite set of primes, including the infinite prime. For every p ∈ S let
L1,p, . . . , Ln,p be linearly independent linear forms in n variables with
algebraic coefficients. Then for any ε > 0 the solutions x ∈ Zn of∏

p∈S

n∏
i=1
|Li,p(x)|p ≤ ‖x‖−ε

lie in finitely many proper linear subspaces of Qn .

In Theorem 1.2 we assume that a continuation of the p-adic norm to
Q has been chosen for each p ∈ S.
The power and utility of the Subspace Theorem is already evident in

the above forms but there is a corollary which makes even more applica-
tions possible. This corollary was originally given by Evertse, Schlick-
ewei and Schmidt [21]. We present the version with the best known
bound due to Amoroso and Viada [2].

Theorem 1.3. Let K be a field of characteristic 0, � a subgroup of K ∗
of rank r , and a1, a2, . . . , an ∈ K ∗. Then the number of solutions of the
equation

a1z1 + a2z2 + · · · + anzn = 1 (1.1)

with zi ∈ � and no subsum on the left hand side vanishing is at most

A(n, r) ≤ (8n)4n
4(n+nr+1).

We will consider the following problems.
The Erdős unit distance problem is an important problem in combina-

torial geometry. It asks for the maximum possible number of unit dis-
tances between n points in the plane. This problem is still open but re-
cently Frank de Zeeuw and the authors have made progress towards this
problem when the distances considered are roots of unity. Theorem 1.3
lets us consider distances from a group with rank not too large.
Given a finite set of real numbers we can define its sum set and product

set. It is believed that for any such set either its sum set or product set is
large. If the product set is “very” small then Theorem 1.3 gives that the
sum set is “very” large.
There are many results in combinatorial geometry concerning the

structure of lines. We highlight one such result about sets of lines with
few intersection points.
The structure of this paper will be as follows. In the next section we

give a number of well-known applications of Theorems 1.1-1.3. In Sec-
tion 3 we give combinatorial applications and the special case of Theo-
rem 1.3 via Mann’s Theorem.
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2 Number theoretic applications

In this section we give a few well-known applications of Theorems 1.1-
1.3. These are not the best known results but they are given here with
proofs as they may be of use to discrete mathematicians to illustrate how
to use Theorems 1.1-1.3.

2.1 Transcendental numbers

Adamczewski and Bugeaud showed that all irrational automatic numbers
are transcendental using the Subspace Theorem [1]. An automatic num-
ber is a number for which there exists a positive integer b such that when
the number is written in b-ary form it is the output of a finite automa-
ton with input the nonnegative integers written from right to left. For a
detailed proof see the survey paper of Bilu [6].
Here we will use a method similar to the proof of Theorem 3.3 in [6]

to show:

Theorem 2.1. The number α given by the infinite sum

α =
∑
n≥1

1

22n

is transcendental.

Mahler showed in [26] that α is transcendental and Kempner showed
that a large class of numbers defined similarly to α are transcendental
[23]. The Subspace Theorem provides a tidy proof of this fact.

Proof of Theorem 2.1. Consider the binary expansion:

α = 1

4
+ 1

16
+ 1

256
+ 1

65536
+ · · · = 0.0101000100000001 . . .2 .

So the binary expansion of α consists of sections of zeros of increasing
length separating solitary ones. Thus the expansion is not periodic and
hence α is not rational. We let bn be the string given by the first n digits
of this expansion. One can check that each bn has two disjoint substrings
of zeros of length n/8.
Assume α is not transcendental. Then it is algebraic. Now each bn

starts with a string AOBO, where O is a string of zeroes, the length of
O is at least n/8 and A and B might have length zero. We will use the ra-
tional number represented in base 2 by 0.AOBOBO . . . to approximate
α. Call this number π . Then

π = M

2a(2b − 1)
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where M ∈ Z and a and b are the lengths of the strings A and OB
respectively. Clearly b ≥ n/8 and a + b ≤ n since AOB is a substring
of bn . Since α starts with bn we have

|α − π | ≤ 1

2a+b+n/8
�⇒ |2a+bα − 2aα − M| ≤ 1

2n/8
.

Now we apply the Subspace Theorem in the form given in Theorem 1.2.
We let S = {2,∞} and

L1,∞(x) = x1, L2,∞(x) = x2, L3,∞(x) = αx1 − αx2 − x3,

L1,2(x) = x1, L2,2(x) = x2, L3,2(x) = x3.

Note that by our assumption that α is not transcendental the linear form
L3,∞ has algebraic coefficients. Let x = (2a+b, 2a,M). Now |M| ≤ 2a+b
since 0 < π < 1. So ‖x‖ ≤ 2a+b ≤ 2n . Multiplying the absolute values
of the linear forms together we get

∏
p∈S

3∏
i=1
|Li,p(x)| = |2a|2|2a|∞|2a+b|2|2a+b|∞|M|2|2a+bα − 2aα − M|∞

≤ 1

2n/8

≤ 1

‖x‖1/8 .

The first inequality holds because |α−π | ≤ 2−a−b−n/8 and |2|2|2|∞ = 1.
We can do this for each n and b = b(n) increases as n increases since

b ≥ n/8. Thus infinitely many of the vectors x = x(n) are distinct. By
Theorem 1.2 these vectors are contained in finitely many subspaces of
Q3. Thus one of these subspaces contains infinitely many of them. That
is, there exist c, d, e ∈ Q such that

c2a(n) + d2a(n)+b(n) + eM(n) = 0
for infinitely many n. The coefficient e cannot be zero since b(n) →
∞ as n → ∞. Dividing by 2a(n)(2b(n) − 1) and taking limits we get
α = −d/e so α is rational. This is a contradiction. Thus α must be
transcendental.

2.2 Linear recurrence sequences

A linear recurrence sequence is a sequence of numbers where the first few
terms are given and the higher order terms can be found by a recurrence



128 Ryan Schwartz and József Solymosi

relation. A famous example is the Fibonacci sequence {Fn} where F0 =
0, F1 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 2. More formally, a linear
recurrence sequence consists of constants a1, . . . , ak in a field K for some
k > 0 along with a sequence {Rm}∞m=0 with Ri ∈ K for 0 ≤ i ≤ k − 1
and

Rn = a1Rn−1 + a2Rn−2 + · · · + ak Rn−k, for n ≥ k.

If {Rm} is not expressible by any shorter recurrence relation then it is said
to have order k. In this case ak �= 0.
We are interested in the structure of the zero set of a linear recurrence

sequence. This is the set

S({Rm}) = {i ∈ N : Ri = 0}.
The Skolem-Mahler-Lech Theorem states that this set consists of the
union of finitely many points and arithmetic progressions [25]. Schmidt
has given a quantitative bound for this theorem using various tools in-
cluding a variant of Theorem 1.3 [30].
We will show a special case of this theorem using Theorem 1.3. We

will restrict our attention to simple nondegenerate linear recurrence se-
quences. To define such sequences we need to define the companion
polynomial of the recurrence sequence. If {Rm} is given as above then the
companion polynomial of {Rm} is C(x) = xk−a1xk−1−· · ·−ak−1x−ak .
Suppose the roots of this polynomial are α1, . . . , α� with multiplicity
b1, . . . , b� respectively. Each αi is nonzero since ak �= 0. If the com-
panion polynomial has k distinct roots it is called simple. If αi/α j is not
a root of unity for any i �= j then the sequence is called nondegenerate.
A version of this theorem was given in [20]. The improved bound given
here is due to Amoroso and Viada [3].

Theorem 2.2. Suppose {Rm} is a simple nondegenerate linear recur-
rence sequence of order k with complex coefficients. Then

|S({Rm})| ≤ (8k)8k
6
.

Proof. We can express the recurrence relation using a matrix equation:⎡⎢⎢⎢⎢⎢⎢⎣

a1 a2 . . . ak−1 ak
1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

⎤⎥⎥⎥⎥⎥⎥⎦

n ⎡⎢⎢⎢⎢⎣
Rk−1
Rk−2

...

R0

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
Rk−1+n
Rk−2+n

...

Rn

⎤⎥⎥⎥⎥⎦ . (2.1)
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We call the k × k matrix above A. The characteristic polynomial of A is
given by

χ(λ) = (−1)k(λk − a1λ
k−1 − · · · − ak).

This is the same, up to sign, as the companion polynomial of {Rm}. Thus
A has distinct nonzero eigenvalues and so can be diagonalized. So A =
PDP−1 for some invertible k × k matrix P and

D =

⎡⎢⎢⎢⎢⎣
α1 0 . . . 0

0 α2 . . . 0
...

...
. . . 0

0 0 . . . αk

⎤⎥⎥⎥⎥⎦ .

So Dn is a diagonal matrix with αni in the i-th row and column. Thus,
multiplying out PDnP−1 we see that every element of An is a linear
combination of the n-th powers of the αi ’s. Now, by the matrix equation
in (2.1) we see that Rn is given by the k-th row of An multiplied by
[Rk−1, Rk−2, . . . , R0]T and so

Rn = c1α
n
1 + c2α

n
2 + · · · + ckα

n
k for every n ≥ k.

Then applying Theorem 1.3 to the equation c1x1+ c2x2+ · · ·+ ckxk = 0
with solutions from the group of rank at most k generated by {α1, . . . , αk}
we get that the number of solutions is at most

A(k, k) ≤ (8k)4k
4(k+k2+1) ≤ (8k)8k

6
.

Since the sequence is nondegenerate we cannot have two values n, n′
giving the same value for αni and αn

′
i for each i , hence each solution

corresponds to a unique value from S({Rm}).

3 Combinatorial applications

3.1 A proof of a very special case of Theorem 1.3

Theorem 1.3 gives a bound on the number of nondegenerate solutions
of a linear equation from a multiplicative group with rank not too large.
What happens if the group in question has rank zero? This corresponds
to solutions that are roots of unity. Theorem 1.3 can then be seen as a
generalisation of the following result which follows from a theorem of
H.B. Mann from 1965.

Theorem 3.1. Given (a1, . . . , ak) ∈ Qk , a ∈ C∗, consider the equation

a1x1 + a2x2 + · · · + akxk = a.
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The number of solutions (ω1, . . . , ωk) of this equation with the ωi ’s roots
of unity and no vanishing subsum is at most (k ·�(2k))k where

�(k) =
∏
p≤k

p prime

p.

Note that the logarithm of the function � above is an important function
in number theory called the first Chebyshev function.
Theorem 3.1 along with Lemma 3.2 below were proved by Frank de

Zeeuw and the authors in [32]. The roots of unity give a relatively simple
example of an infinite multiplicative group. We will give the proof of
Theorem 3.1 below. First we prove Lemma 3.2 which was Mann’s result
mentioned above [27].

Lemma 3.2 (Mann). Suppose we have

a1ω1 + a2ω2 + · · · + akωk = 0,
with ai ∈ Q, the ωi ’s roots of unity, and no proper nontrivial subsum
vanishing. Then for every 1 ≤ i, j ≤ k,

(
ωi/ω j

)�(k) = 1.
A result of Conway and Jones gives an improved bound in Lemma 3.2

and hence in Theorem 3.1 [10]. Evertse has also given a bound on sums
of the form given in Theorem 3.1 but with a1, . . . , ak ∈ C∗ [19].

Proof. Dividing by an appropriate factor we may assume that our equa-
tion is of the form 1+a2ω2+· · ·+akωk = 0. Then we just need to show
that each ω

�(k)
i = 1. We let s be the smallest value such that ωs

i = 1 for
1 ≤ i ≤ k. The proof proceeds by showing that s is squarefree and any
prime that divides s cannot be larger than k. This means s ≤ �(k).
Suppose p j divides s exactly. Then each ωi = ρσi · ω∗i , with ρ a

primitive p j -th root of unity, σi < p and ω∗i an (s/p)-th root of unity. So
rewriting the sum grouping powers of ρ we get

0 = 1+ (a2ω2 + · · · + akωk) = 1+ (α0 + α1ρ + · · · + αp−1ρ p−1),

where, for each i , αi ∈ K := Q(ω∗2, . . . , ω
∗
k ) satisfies

α� =
∑
i∈I�

aiω
∗
i , with I� = {i : σi = �}.

Let f (x) = αp−1x p−1+· · ·+α1x + (1+α0). Then f is a polynomial of
degree at most p−1 over the field K and f (ρ) = 0. If f were identically
zero then, by the minimality of s, we would have a vanishing subsum.
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The degree of ρ over K gives us that p divides s only once. Specifi-
cally since [K (ρ) : Q] = [K (ρ) : K ][K : Q] we have

degK (ρ) = [K (ρ) : K ] = [K (ρ) : Q]
[K : Q] = φ(s)

φ(s/p)
.

This is p if j > 1 and p−1 if j = 1.But the degree of f is at most p−1
so we must have j = 1 since ρ is a root of f .
Now f must be a multiple of the irreducible polynomial m of ρ over

K . But m(x) = x p−1 + x p−2 + · · · + 1 so f (x) = cm(x) where c is
a nonzero constant. Thus f has p nonzero coefficients and thus so does
the original sum giving p ≤ k.

Proof of Theorem 3.1. We first show that if we are given a ∈ C∗ and two
sums a1ω1 + · · · + akωk = a and a′1ω

′
1 + · · · + a′kω

′
k = a with rational

coefficients and no vanishing subsums then for any ω′j , there is an ωi such
that (ω′j/ωi)

�(2k) = 1.
Since a1ω1 + · · · + akωk = a = a′1ω

′
1 + · · · + a′kω

′
k , we get

a1ω1 + · · · + akωk − a′1ω
′
1 − · · · − a′kω

′
k = 0. (3.1)

This summay have vanishing subsums so we consider minimal vanishing
subsums of the form ∑

i∈I�
aiωi −

∑
j∈I ′�

a′jω
′
j = 0.

Each ω′j is contained in such a minimal subsum of length at most 2k. This
subsum also contains some ωi otherwise the original sum would have a
vanishing subsum. Now the previous lemma gives that (ω′j/ωi)

�(2k) = 1.
Note that above we require a ∈ C∗. If a = 0 then the two original

sums will count as vanishing subsums when we consider the combined
equation (3.1) so Lemma 3.2 does not apply.
Now we can prove the theorem. For a ∈ C∗ and k a positive integer

define S(a, k) as the set of k-tuples (ω1, . . . , ωk), where each ωi is a root
of unity, such that there are ai ∈ Q satisfying a1ω1+· · ·+akωk = a with
no vanishing subsums.
We fix a k-tuple (ω1, . . . , ωk) ∈ S(a, k). Given an element of S(a, k),

for each ω′j (the j-th coordinate of that element) there is an i such that
ω
−�(2k)
i (ω′j )�(2k) = 1. So ω′j is a root of the polynomial ω

−�(2k)
i x�(2k) =

1. This polynomial has �(2k) roots. We have k choices for j so at most
k�(2k) choices for each ω′j . This gives the required bound.

This theorem can be used to prove Theorem 3.3 from the next section.
We will show how using Theorem 1.3 instead allows the proof of the
stronger Theorem 3.4.
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3.2 Unit distances

The unit distance problem was first posed by Erdős in 1946 [17]. It asks
for the maximum number, u(n), of pairs of points with the same distance
in a collection of n points in the plane. By scaling the point set one may
assume that the most popular distance is one, hence the name of the prob-
lem. The problem seeks asymptotic bounds. Erdős gave a construction
using a

√
n ×√n portion of a square lattice giving

u(n) ≥ n1+c/ log log n.

Number theoretic bounds for the number of integer solutions of the equa-
tion x2 + y2 = a give the above inequality. Erdős conjectured that the
magnitude of u(n) is close to this lower bound. The best known upper
bound is u(n) ≤ cn4/3. A number of proofs have been given showing
u(n) ≤ cn4/3 using tools such as cuttings, edge crossings in graphs and
the Szemerédi-Trotter Theorem. The first proof was due to Spencer, Sze-
merédi and Trotter [35]. For more details of the problem see [7]. We
will look at a special case of this problem when the distances considered
come from a multiplicative group with rank not too large. This does not
seem to be a huge limitation as the unit distances from the lower bound
construction above come from such a group as will be explained below.
Using Theorem 3.1 Frank de Zeeuw and the authors were able to show

the following theorem [32]. Two points in the plane are said to have
rational angle if the angle that the line between these two points makes
with the x-axis is a rational multiple of π .

Theorem 3.3. Let ε > 0. Given n points in the plane, the number of unit
distances with rational angle between pairs of points is less than n1+ε.

These unit distances correspond to roots of unity. The proof proceeds
by counting certain paths in the unit distance graph and using Mann’s
Theorem to bound the number of edges.
Using Theorem 1.3 in place of Mann’s Theorem one can instead con-

sider unit distances from a multiplicative group with rank not too large
with respect to the number of points [31]. Note that a unit distance in the
plane can (and will) be considered as a complex number of unit length.
So all unit distances can be considered as coming from a subgroup of C∗.

Theorem 3.4. Let ε > 0. There exist a positive integer n0 and a constant
c > 0 such that given n > n0 points in the plane, the number of unit
distances coming from a subgroup � ⊂ C∗ with rank r < c log n is less
than n1+ε.
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This is our first combinatorial application of Theorem 1.3. The proof
is given below.
Suppose G = G(V, E) is a graph on v(G) = n vertices and e(G) = m

edges. We denote the minimum degree in G by δ(G).
Note that by removing vertices with degree less than m/(2n) we have

a subgraph H with at least e(H) ≥ m/2 edges and δ(H) ≥ m/(2n). The
number of vertices in H is at least v(H) ≥ √m. We will consider such a
well behaved subgraph instead of the original graph.

Proof of Theorem 3.4. Let G be the unit distance graph on n points with
unit distances coming from � as edges. We show that there are less than
n1+ε such edges, i.e. distances, for any ε > 0. We can assume that
e(G) ≥ (1/2)n1+ε, v(G) ≥ n1/2+ε/2 and δ(G) ≥ (1/2)nε.
Consider a path in G on k edges Pk = p0 p1 . . . pk . We denote by

ui(Pk) the unit vector between pi and pi+1. The path is nondegenerate
if

∑
i∈I ui(Pk) = 0 has no solutions where I is a nonempty subset of

{0, 1, . . . , k−1}. Note that such a sum is a sum of elements of � with no
vanishing subsums. We will denote by Pk(v,w) the set of nondegenerate
paths of length k between vertices v and w.
The number of nondegenerate paths of length k from any vertex is at

least
k−1∏
�=0

(δ(G)− 2� + 1) ≥ nkε

22k
.

The first expression is true since if we consider a path P� on � < k
edges then all but 2� − 1 possible continuations give a path P�+1 with no
vanishing subsums. The inequality is true if we assume 2k ≤ (1/2)nε,
which is true if k < (ε log n)/ log 2− 1, a fact we will confirm at the end
of the proof. From this we get that the number of nondegenerate paths Pk
in the graph is at least n1/2+(k+1/2)ε/22k+1. So there exist vertices v,w in
G with

|Pk(v,w)| ≥ n(k+1/2)ε−3/2

4k
.

Consider a path Pk ∈ Pk(v,w), Pk = p0 p1 . . . pk . Let a be the complex
number giving the vector between p0 and pk . Since Pk is nondegenerate
we get a solution of (1/a)x1 + (1/a)x2 + · · · + (1/a)xk = 1 with no
vanishing subsums. Thus Theorem 1.3 gives

|Pk(v,w)| ≤ (8k)4k
4(k+kr+1).
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This with the lower bound give

((k + 1/2)ε − 3/2) log n ≤ k log 4+ 4k4(k + kr + 1) log(8k)
≤ c′rk5 log k,

�⇒ ε ≤ c′rk4 log k
log n

+ c′′

k
. (3.2)

Since r + 1 ≤ c log n we can choose k an integer satisfying

C ′((log n)/r)1/5 ≤ k ≤ C ′′((log n)/r)1/5.

Then, with this k, the right hand side of (3.2) goes to zero as n increases.
Earlier we assumed that k ≤ (ε log n)/ log 2−1. This holds for the value
of k given above for n large enough. So the number of unit distances
from � is less than cn1+ε for each ε > 0.

Performing a careful analysis of Erdős’ lower bound construction one
can show that all unit distances come from a group with rank at most
c log n/ log log n for some c > 0. This group is generated by considering
solutions of the equation x2+y2 = p where p is a prime of the form 4m+
1. Using the prime number theorem for arithmetic progressions we get
the bound on such solutions and thus on the rank. For all the details see
[31]. So Erdős’ construction satisfies the conditions of Theorem 3.4. A
similar approach could be used for other types of lattices. So all the best
known lower bounds for the unit distance problem have unit distances
coming from a well structured group. It would be interesting to see if any
configuration of points with maximum unit distances has such a structure.

3.3 Sum-product estimates

The theory of sum sets and product sets plays an important part in com-
binatorics and additive number theory. The goal of the field is to show
that for any finite subset of a field either the sum set or the product set is
large. We will focus on the complex numbers.
Formally, given a set A ⊂ C, the sum set, denoted by A + A, and

product set, denoted by AA, are

A + A := {a + b : a, b ∈ A}, AA := {ab : a, b ∈ A}.
Note that

|A| ≤ |A + A|, |AA| ≤
(|A| + 1

2

)
= |A|

2

2
+ |A|

2
.

The following long standing conjecture of Erdős and Szemerédi [18] has
led to much work in the field.
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Conjecture 3.5. Let ε > 0 and A ⊂ Z with |A| = n. Then

|A + A| + |AA| ≥ Cn2−ε.

This conjecture is still out of reach. The best known bound, which holds
for real numbers and not just integers, is Cn4/3−o(1) due to Solymosi [34].
A similar bound was proved recently by Konyagin and Rudnev in [24].
Chang showed that when the product set is small Theorem 1.3 can be

used to show that the sum set is large [8]. The following reformulation of
Chang’s observation is due to Andrew Granville.

Theorem 3.6. Let A ⊂ C with |A| = n. Suppose |AA| ≤ Cn. Then
there is a constant C ′ depending only on C such that

|A + A| ≥ n2

2
+ C ′n.

We will present a proof of Theorem 3.6 below. To use Theorem 1.3 we
need a multiplicative subgroup with finite rank to work with. The follow-
ing lemma of Freiman, which appears as Lemma 1.14 in [22], provides
this.

Lemma 3.7 (Freiman). Let A ⊂ C. If |AA| ≤ C|A| then A is a subset
of a multiplicative subgroup ofC∗ of rank at most r , where r is a constant
depending on C .

Proof of Theorem 3.6. We consider solutions of x1 + x2 = x3 + x4 with
xi ∈ A. A solution of this equation corresponds to two pairs of elements
from A that give the same element in A+A. Let us suppose that x1+x2 �=
0 (there are at most |A| = n solutions of the equation x1 + x2 = 0 with
x1, x2 ∈ A.)
First we consider the solutions with x4 = 0. Then by rearranging we

get
x1
x3
+ x2
x3
= 1. (3.3)

By Lemma 3.7 and Theorem 1.3 there are at most s1(C) solutions of
y1 + y2 = 1 with no subsum vanishing. Each of these gives at most n
solutions of (3.3) since there are n choices for x3. There are only two
solutions of y1 + y2 = 1 with a vanishing subsum, namely y1 = 0 or
y2 = 0, and each of these gives n solutions of (3.3). So we have a total
of (s1(C)+ 2)n solutions of (3.3).
For x4 �= 0 we get

x1
x4
+ x2
x4
− x3
x4
= 1. (3.4)
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Again by Freiman’s Lemma and Theorem 1.3, the number of solutions of
this with no vanishing subsum is at most s2(C)n. If we have a vanishing
subsum then x1 = −x2 which is a case we excluded earlier or x1 = x3
and then x2 = x4, or x2 = x3 and then x1 = x4. So we get at most 2n2

solutions of (3.4) with a vanishing subsum (these are the x1+x2 = x2+x1
identities.)
So, in total, we have at most 2n2+s(C)n solutions of x1+x2 = x3+x4

with xi ∈ A. Suppose |A + A| = k and A + A = {α1, . . . , αk}. We may
assume that α1 = 0. Recall that we ignore sums ai + a j = 0. Let

Pi = {(a, b) ∈ A × A : a + b = αi }, 2 ≤ i ≤ k.

Then
k∑
i=2
|Pi | ≥ n2 − n = n(n − 1).

Also, a solution of x1 + x2 = x3 + x4 corresponds to picking two values
from Pi where x1 + x2 = αi . Thus

2n2 + s(C)n ≥
k∑
i=2
|Pi |2 ≥ 1

k − 1

(
k∑
i=2
|Pi |

)2
≥ n2(n − 1)2

k − 1
by the Cauchy-Schwarz inequality. The bound for k follows.

Note that in this paper we use a simple bound, Freiman’s lemma, on
the rank of the multiplicative group. Results in the direction of the so
called polynomial Freiman conjecture give better bounds on the rank of
a large subset of the set with small product set.

3.4 Line configurations with few intersections

A number of other combinatorial results follows from Theorem 1.3. We
give one more of these, from combinatorial geometry. This is similar
to a result due to Chang and Solymosi [9]. A complex line is a line in
the complex plane. Specifically, a complex line is given by an equation
ax+by = c where a, b, c ∈ C and x and y are the (complex) coordinates
in C2. Given two lines L and M we denote their intersection point by
L ∩ M .
Theorem 3.8. Let C > 0. Then there exists c > 0 such that for any
n + 3 lines L1, L2, L3,M1, . . . ,Mn in C2, with the Li not all parallel
and L1 ∩ L2, L1 ∩ L3 and L2 ∩ L3 distinct the following holds. If the
number of distinct intersection points Li ∩ Mj , 1 ≤ i ≤ 3, 1 ≤ j ≤ n,
is at most C

√
n then any line L /∈ {L1, L2, L3} has at least cn distinct

intersection points L ∩ Mj , 1 ≤ j ≤ n.
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There are many structure results similar to Theorem 3.8 in discrete ge-
ometry. These include Beck’s Theorem [5], a structure theorem for lines
containing many points of a cartesian product by Elekes [14] and general-
isations of this line theorem to surfaces by Elekes and Rónyai [15], Elekes
and Szabó [16] and Frank de Zeeuw and the authors [33]. The proofs of
these results used the Szemerédi-Trotter Theorem and techniques from
commutative algebra and algebraic geometry. These theorems have been
used to prove various results including a conjecture of Purdy about the
number of distinct distances between two sets of collinear points in the
plane. For more details see [12,13] and [33].
We do not prove Theorem 3.8 completely but only give a sketch of

how it follows from Theorem 1.3. We don’t try to find an efficient quan-
titative version here and we don’t explain the methods used in detail. The
techniques applied are standard methods in additive combinatorics. All
the details can be found in [36]. The proof requires a refinement of the
Balog-Szemerédi Theorem [4]. We are going to use the notation of sums
along a graph. For two subsets of a group A and B and a bipartite graph
G = G(A, B) with vertex classes A and B the sums (or products) along
G is the set

A +G B = {a + b|a ∈ A, b ∈ B, (a, b) ∈ G}.
The cardinality of G, which is denoted by |G|, is the number of edges
in G.

Theorem 3.9 (Balog-Szemerédi). Let us suppose that A and B are two
finite subsets of an abelian group such that |A| = |B| = m and |A +G

B| ≤ Cm where |G(A, B)| ≥ cm2. Then there are sets A′ ∈ A, B ′ ∈ B
such that |A′ + B ′| ≤ Dm and |A′ × B ′ ∩G(A, B)| ≥ δm2 where D and
δ > 0 depends on c and C only.

Apply a projective transformation which moves L1 to the x-axis, L2 to the
y-axis, and L3 to the horizontal line y = 1. The three lines have distinct
intersection points thus such a transformation exists. Let us denote the
x-coordinates of L1∩Mi and L3∩Mj by xi and y j respectively. The two
sets of x-coordinates are denoted by X and Y. Define a bipartite graph
with vertices given by the x-coordinates of the intersection points of the
lines Mi with L1 and L3 (with vertex sets X and Y without multiplicity.)
Two points are connected by an edge in the graph if they are connected by
a line Mj . This is a bipartite graph on at most C

√
n vertices with n edges.

If Mi ∩ L2 is the point (0, α) then xi/yi = α/(α − 1), or equivalently
xi = αyi/(α−1). The Balog-Szemerédi Theorem and Freiman’s Lemma
imply that there are large subsets X ′ ⊂ V1 and Y ′ ⊂ V2 so that X ′ and Y ′
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are subsets of a multiplicative subgroup of C∗ of rank at most r(C) and
the subgraph spanned by X ′,Y ′ still has at least some δn edges. We show
that the lines represented by these δn edges cannot have high multiplicity
intersections outside of L1, L2, L3. If (a, b) is a point of Mi connecting
two points xi ∈ X ′ and yi ∈ Y ′ then (a−xi)/(a− yi) = b/(b−1),which
gives a solution (xi , yi) to the equation cx + dy = 1 if a �= 0, b �= 0, 1.
Here c, d depend on a and b only. As xi and yi are from a multiplicative
group of bounded rank, we have a uniform bound, B, on the number
of lines between X ′ and Y ′ which are incident to (a, b). There are δn
lines connecting at most C

√
n points. No more than C

√
n/2 of them

might be parallel to any given line. Any line intersects at least δn−C√n
of them. Any intersection point outside of the lines L1, L2, and L3 is
incident to at most B lines, so there are at least cn distinct intersection
points L ∩ Mj , 1 ≤ j ≤ n, with any other line.

We are unaware of any proof of this fact without Theorem 1.3.
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[4] A. BALOG and E. SZEMERÉDI, A statistical theorem of set addi-
tion, Combinatorica 14 (1994), 263–268.

[5] J. BECK,On the lattice property of the plane and some problems of
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May 2007.

[7] P. BRASS, W. MOSER and J. PACH, “Research Problems in Dis-
crete Geometry”, chapter 5: Distance Problems, Springer, 2006,
183–257.

[8] M.-C. CHANG, Sum and product of different sets, Contributions to
Discrete Mathematics 1(1), 2006.

[9] M.-C. CHANG, Sum-product theorems and incidence geometry,
Journal of the European Mathematical Society 9(3) (2007), 545–
560.

[10] J. H. CONWAY and A. J. JONES, Trigonometric diophantine equa-
tions (on vanishing sums of roots of unity), Acta Arithmetica 30
(1976), 229–240.

[11] P. CORVAJA and U. ZANNIER, Applications of the subspace theo-
rem to certain diophantine problems, In: H. P. Schlickewei, Schmidt
K., and R. F. Tichy (eds.), “Diophantine Approximation”, Develop-
ments in Mathematics, Vol. 16, Springer Vienna, 2008, 161–174.

[12] G. ELEKES, A note on the number of distinct distances, Periodica
Mathematica Hungarica 38(3) (1999), 173–177.

[13] G. ELEKES Sums versus products in number theory, algebra and
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Can connected commuting graphs of finite
groups have arbitrarily large diameter?

Peter Hegarty and Dmitry Zhelezov

Abstract. We present a two-parameter family, of finite, non-abelian random
groups and propose that, for each fixed k, as m → ∞ the commuting graph of
Gm,k is almost surely connected and of diameter k. As well as being of indepen-
dent interest, our groups would, if our conjecture is true, provide a large family
of counterexamples to the conjecture of Iranmanesh and Jafarzadeh that the com-
muting graph of a finite group, if connected, must have a bounded diameter.

We present a way to construct a family of random groups related to the
conjecture of Iranmanesh and Jafarzadeh about commuting graphs of fi-
nite groups. Let G be a non-abelian group. We define the commuting
graph of G, denoted by �(G), as the graph whose vertices are the non-
central elements of G, and such that {x, y} is an edge if and only if
xy = yx . One can just as well define the graph to have as its vertices
the non-identity cosets of Z(G), with {Zx, Zy} adjacent if and only if
xy = yx and we stick to this definition henceforth. The conjecture of
Iranmanesh and Jafarzadeh is as follows.

Conjecture 1. (Iranmanesh and Jafarzadeh, [5]) There is a natural
number b such that if G is a finite, non-abelian group with �(G) con-
nected, then diam(�(G)) ≤ b.

The initial motivation was to show that Conjecture 1 is false by provid-
ing a counterexample using probabilistic methods. Some partial results in
favor of Conjecture 1 (see details in the full length version of the present
note, [4]) were already known at the moment the work on this project was
initiated. It might seem natural to guess that for the commuting graph to
be of large diameter, the group itself should be far from being abelian.
However, it turns out in many cases the opposite holds and the commut-
ing graph is connected and is of small diameter. It is thus reasonable to
look at ”more abelian” groups. Guidici and Pope [3] were first to con-
sider the case of p-groups and provided a few notable results in support
of Conjecture 1.
Let us recall some basic definitions first. If x, y are two elements of a

group G, then their commutator [x, y] is defined to be the group element
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x−1y−1xy. The commutator subgroup of G is the subgroup generated by
all the commutators and is denoted G ′. If G ′ ⊆ Z(G) one says that G
is of nilpotence class 2. Quite surprisingly, one of the results of Guidici
and Pope was that in this case the centre of the group should be of con-
siderable size, otherwise the conjecture holds.

Theorem 2. If G is of nilpotence class 2 and |Z(G)|3 < |G|, then
diam(�(G)) = 2.
The general idea behind our construction is that if Conjecture 1 is false,

then it should already fail among groups of nilpotence class two. Even
more, one can take G such that both Z(G) and G/Z(G) are both elemen-
tary abelian 2-groups, that is, additive groups of some vector spaces over
F2. However, instead of trying to construct an explicit counterexample
we are going to introduce randomness in defining commutator relations
in order to study how the commuting graph of a typical group of that
kind looks like. As illustrated by many applications of the probabilistic
method pioneered by Erdős (see [1] for the full treatment), the behaviour
of a random object is often easer to analyse, so by adjusting parameters it
is sometimes possible to provide an example with desired properties. Un-
fortunately, we were unable to disprove the conjecture in full in this way,
but were able to produce a group whose commuting graph is of diameter
10, which became the largest value achieved by that time1.
Before we proceed with the model of random groups, let us describe

the significant success which took place since our work was undertaken.
In [2], Giudici and Parker provide explicit examples of connected com-
muting graphs of unbounded diameter, thus disproving Conjecture 1.
Their construction is based on and inspired by the random groups pre-
sented here, though they were able to devise an explicit construction.
They have checked by computer that their model produces examples of
commuting graphs of every diameter between 3 and 15, though it ap-
pears to remain open whether every positive integer diameter is achiev-
able. As a remarkable counterpoint to their result, Morgan and Parker [6]
have proved that if G has trivial centre then every connected component
of �(G) has diameter at most 10. Note that this condition specifically
excludes nilpotent groups. In contrast to these purely group-theoretical
advances, we are not aware of any further progress having been made on
the analysis of the random groups described below.
Returning to our random construction, the group is defined as follows.

Let m, r be positive integers and V = Vm and H = Hr be vector spaces

1 September 2012.
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over F2 of dimensions m and r respectively. Let φ : V × V → H be a
bilinear map. Set G := V × H and define a multiplication on G by

(v1, h1) · (v2, h2) := (v1 + v2, h1 + h2 + φ(v1, v2)). (1)

Then it is easy to check that

(i) (G, ·) is a group of order 2m+r , with identity element (0, 0).
(ii) LetH := {(0, h) : h ∈ H}. ThenH is a subgroup of G and G/H ∼=

V , as an abelian group.
(iii) G ′ ⊆ H ⊆ Z(G).
(iv) G is abelian if and only if φ is symmetric.
(v) The commutator of two elements is given by

[(v1, h1), (v2, h2)] = (0, φ(v1, v2)− φ(v2, v1)) (2)

The map φ(·, ·) is taken uniformly at random among all possible bilinear
maps. It is then clear, due to (2), that, for two fixed distinct elements
of G, their commutator becomes uniformly distributed on H. Moreover,
if we fix a basis (v1, ..., vm) of V then all the commutator relations are
determined by the skew-symmetric matrix A with Ai, j = φ(vi , v j ) −
φ(v j , vi). Now we are going to define the parameters m and r such that
the commuting graph�(G) is similar to the Erdős–Rényi graphGn,p with
p = n−1+ε , which is known to have diameter concentrated at $1/ε% with
high probability for small ε > 0.

Let k ≥ 2 be an integer, and δ ∈
(
0, 1

2k(k−1)
)
a real number. There is

a choice of real number δ1 > 0 such that the following holds: for each
positive integer m, if we set

r := �(1− δ1)m�, p := 2−r , n := 2m − 1, (3)

then, for all m sufficiently large,

1+ logn p ∈
(
1

k
+ δ,

1

k − 1 − δ

)
. (4)

The probability that an edge of �(G) is present is then p, as this is the
probability that a uniformly chosen random element of H is zero. Thus
one can hope that its diameter is concentrated around k, as it would be if
the states of all edges were independent as in Gn,p.
Unfortunately, it becomes difficult to translate the known methods of

Gn,p to our setting due to large amount of dependence between edges,
so we were unable to prove this correspondence in full. However, some
convincing structural results appear to be amenable to the second moment
method.
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Proposition 3. Let Gm,k be the group defined above with corresponding
parameters m, r and k. Then

(i) As m →∞, P(G ′ = Z(G) = H)→ 1.
(ii) There is some δ3 > 0, depending on the choices of δ and δ1, such

that, asm →∞, �(Gm,k) almost surely has a connected component
of size at least n−n1−δ3 . The diameter of �(Gm,k) is at least k w.h.p.,
but might be infinite if it is not connected.

So in fact to provide a counterexample to Conjecture 1 it is sufficient
to prove that �(Gm,k) remains connected for large m and fixed k. We
conjecture that even a more precise statement holds.

Conjecture 4. As m → ∞, �(Gm,k) is almost surely connected and of
diameter k.
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Matematica, cultura e società 2003 (2004). ISBN 88-7642-129-7
Ricordando Franco Conti, 2004. ISBN 88-7642-137-8
N.V. KRYLOV, Probabilistic Methods of Investigating Interior Smooth-
ness of Harmonic Functions Associated with Degenerate Elliptic Opera-
tors, 2004. ISBN 978-88-7642-261-1
Phase Space Analysis of Partial Differential Equations. Proceedings,
vol. I, 2004 (2005). ISBN 978-88-7642-263-1
Phase Space Analysis of Partial Differential Equations. Proceedings,
vol. II, 2004 (2005). ISBN 978-88-7642-263-1



Fotocomposizione “CompoMat” Loc. Braccone, 02040 Configni (RI) Italia
Finito di stampare nel mese di dicembre 2014
dalla CSR, Via di Pietralata 157, 00158 Roma


	Cover
	Title Page
	Copyright Page
	Table of Contents
	Preface
	Authors’ affiliations
	Tensors, colours, octahedra
	1 Introduction
	2 Tverberg’s theorem and its coloured version
	Theorem 2.1.
	Theorem 2.2.

	3 The octahedral construction
	Remark 3.1.

	4 Colourful Carath´eodory theorem
	Theorem 4.1.
	Theorem 4.2.
	Corollary 4.3.
	Lemma 4.4.
	Open question 4.5.

	5 Colourful Carath´eodory strengthened
	Theorem 5.1.
	Open question 5.2.


	6 Colourful Carath´eodory for connected compacta
	Theorem 6.1.

	7 Sarkaria’s lemma
	Theorem 7.1.
	Theorem 7.2.
	Theorem 7.3.
	Remark 7.4.


	8 Kirchberger generalized
	Theorem 8.1.
	Theorem 8.2.
	Open question 8.3.


	9 Tverberg’s theorem with tolerance
	Theorem 9.1.
	Lemma 9.2.
	Open question 9.3.
	References



	Cliques and stable setsin undirected graphs
	1 Introduction
	2 Heroes without direction
	Conjecture 2.1.
	Conjecture 2.2.
	Theorem 2.3.



	3 Cographs
	Theorem 3.1.

	4 Excluding pairs of graphs
	Theorem 4.1.
	Theorem 4.2.
	Theorem 4.3.
	Theorem 4.4.
	Theorem 4.5.

	5 Back to tournaments
	Theorem 5.1.
	Theorem 5.2.
	Theorem 5.3.
	References




	A taste of nonstandard methodsin combinatorics of numbers
	Introduction
	1 The hyper-numbers of nonstandard analysis
	Theorem 1.1 (K¨onig’s Lemma – 1927).

	2 Piecewise syndetic sets
	Definition 2.1 (Nonstandard).
	Definition 2.2 (Nonstandard).
	Definition 2.3 (Nonstandard).
	Theorem 2.4.




	3 Banach and Shnirelmann densities
	Definition 3.1 (Nonstandard).
	Definition 3.2 (Nonstandard).
	Definition 3.3 (Nonstandard).
	Theorem 3.4.



	4 Partition regularity problems
	Theorem 4.1 (Ramsey – 1928).
	Definition 4.2.
	Definition 4.3 (Nonstandard).
	Theorem 4.4.
	Definition 4.5.
	Theorem 4.6.
	Definition 4.7.
	Theorem 4.8.





	A coding problem for pairs of subsets
	1 The transportation distance
	2 Packings and codes
	3 Packing pairs of subsets
	Theorem 3.1.

	4 Thecased = 2, the exact values of C(n, k, 2)
	Proposition 4.1.

	5 Thecased = 2k − 1, the exact values of C(n, k, 2k − 1)
	Problem 5.1.
	Proposition 5.2.
	Lemma 5.3.
	Corollary 5.4.



	6 A new proof of the upper estimate
	7 Nearly perfect selection
	Lemma 7.1.
	Theorem 7.2 ([11]).


	8 s-tuples of sets, q-ary codes
	Theorem 8.1.
	Theorem 8.2.
	Theorem 8.3.

	9 Open problems
	10 Further developments
	References

	String graphs and separators
	1 Intersection graphs
	Exercise 1.1.
	Exercise 1.2.

	2 Basics of string graphs
	Example 2.1.
	Lemma 2.2.
	Sketch of proof.
	Exercise 2.3.



	3 String graphs requiring exponentially many intersections
	Exercise 3.1.
	Observation 3.2.
	Exercise 3.3.
	Theorem 3.4.

	4 Exponentially many intersections suffice
	Theorem 4.1 ( [28]).
	Lemma 4.2.


	5 A separator theorem for string graphs
	Exercise 5.1.
	Exercise 5.2.
	Exercise 5.3.
	Theorem 5.4.

	6 Crossing number versus pair-crossing number
	Lemma 6.1 (Single-crossing lemma).
	Exercise 6.2.
	Proposition 6.3.
	Theorem 6.4.
	Lemma 6.5 (Red-blue single-crossing lemma).
	Claim 6.6.

	7 Multicommodityflows, congestion, and cuts
	Exercise 7.1.
	Theorem 7.2 (Approximate duality, edge version).
	Exercise 7.3 (Edge sparsity and balanced edge cut).
	Theorem 7.4 (Approximate duality, vertex version).
	Exercise 7.5 (Vertex sparsity and separators).
	Proposition 7.6.
	Exercise 7.7.

	8 String graphs have large vertex congestion
	Lemma 8.1.
	Fact 8.2.
	Exercise 8.3.

	9 Flows, cuts, and metrics: the edge case
	Exercise 9.1.
	Theorem 9.2.

	10 Proof of a weaker version of Bourgain’s theorem
	Exercise 10.1.

	11 Flows, cuts, and metrics: the vertex case
	Theorem 11.1.
	References


	On first-order definable colorings
	1 Introduction
	Problem 1.1.
	Theorem 1.2 ([37]).
	Conjecture 1.3.
	Conjecture 1.4.
	Theorem 1.5.
	Conjecture 1.6 (Erd˝os and Hajnal [13]).
	Conjecture 1.7 (Thomassen [42]).
	Theorem 1.8.
	Theorem 1.9.

	2 Taxonomy of Classes of Graphs
	Lemma 2.1.
	Theorem 2.2.
	Proposition 2.3.



	3 Homomorphism Preservation Theorems
	3.1 Finite Structures
	3.2 Nowhere dense classes
	Theorem 3.2 ([8]).
	Theorem 3.3.
	3.3 Somewhere dense classes
	Proposition 3.4 (See, for instance [26], p. 180).
	Corollary 3.5.
	Lemma 3.6.
	Corollary 3.7.
	Lemma 3.8.

	4 Connectivity of Forbidden Graphs
	Lemma 4.1.
	Lemma 4.2.


	5 Restricted Dualities
	5.1 Classes of Relational Structures
	Proposition 5.1 ([35]).
	5.2 Classes with all restricted dualities
	5.3 Topologically closed classes of graphs with all restricted dualities

	6 Onfirst-order definable H-colorings
	References


	Combinatorial applicationsof the subspace theorem
	1 Introduction
	Theorem 1.1 (Subspace Theorem I).
	Theorem 1.2 (Subspace Theorem II).
	Theorem 1.3.

	2 Number theoretic applications
	2.1 Transcendental numbers
	Theorem 2.1.
	2.2 Linear recurrence sequences
	Theorem 2.2.


	3 Combinatorial applications
	3.1 A proof of a very special case of Theorem 1.3
	Theorem 3.1.

	Lemma 3.2 (Mann).
	3.2 Unit distances
	Theorem 3.3.
	Theorem 3.4.



	3.3 Sum-product estimates
	Conjecture 3.5.
	Theorem 3.6.
	Lemma 3.7 (Freiman).



	3.4 Line configurations with few intersections
	Theorem 3.8.
	Theorem 3.9 (Balog-Szemer´edi).
	References


	Can connected commuting graphs of finitegroups have arbitrarily large diameter?
	Conjecture 1. (Iranmanesh and Jafarzadeh, [5])
	Theorem 2.
	Proposition 3.
	Conjecture 4.
	References

	CRM SeriesPublications by the Ennio De GiorgiMathematical Research Center Pisa
	Published volumes
	Volumes published earlier





