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Prologue

Let me begin by citing Hermann Weyl ([93, p. 500]):
‘In these days the angel of topology and the devil of abstract algebra
ght for the soul of each individual mathematical domain’.
My motivation for this citation is rst of all a practical re exion on

the primary role played by the eld of Topology in the mathematics of
the 20-th century, and the danger that among algebraic geometers this
great heritage and its still vivid current interest may be not suf ciently
considered.
Second, the word ‘soul’ used by Weyl reminds us directly of the fact

that mathematics is one of the pillars of scienti c culture, and that some
philosophical discussion about its role in society is deeply needed. 1

Also, dozens of years dominated by neo liberism, and all the rest,
have brought many of us to accept the slogan that mathematics is a key-
technology. So, the question which is too often asked is: ‘for which im-
mediate purposes is this good for?’2 Instead of asking: ‘how beautiful,
important or enriching is this theory?’, or ‘how do all these theories con-
tribute to deep knowledge and wisdom, and to broad scienti c progress?’
While it is of course true that mathematics is extremely useful for the

advancement of society and the practical well being of men, yet I would
wish that culture and mathematics should be highly respected and sup-
ported, without the need of investing incredible amounts of energy de-
voted to make it survive. Our energy should better be reserved to the
major task of making mathematical culture more uni ed, rather than a
Babel tower where adepts of different disciplines can hardly talk to each
other.
Thus, in a way, one should conclude trying to underline the fruitful

interactions among several elds of mathematics, and thus paraphrase the
motto by Weyl by asking: ‘How can the angel of topology live happily
with the devil of abstract algebra?’.
Now, the interaction of algebraic geometry and topology has been

such, in the last three centuries, that it is often dif cult to say when does
a result belong to one discipline or to the other, the archetypical example
being the Bézout theorem, rst conceived through geometrical ideas, and
later clari ed through topology and through algebra.

1 Mathematics privileges problem solving and critical thinking versus passive acceptance of dog-
matic ‘truths’. And the peaceful survival of our current world requires men to lose their primitive
nature and mentality and to become culturally more highly developed.

2 And too often this is only measured by monetary or immediate nancial success.
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Thus, the ties are so many that I will have to soon converge towards
my personal interests. I shall mostly consider moduli theory as the ne
part of classi cation theory of complex varieties: and I shall try to show
how in some lucky cases topology helps also for the ne classi cation,
allowing the study of the structure of moduli spaces: as we have done
quite concretely in several papers ( [10–13,15,16]). Finally I shall present
how the theory of moduli, guided by topological considerations, gives in
return important information on the Galois group of the eld Q̄.
For a broader treatment, I refer the reader to the article [38], to which

this note is an invitation.

1. Applications of algebraic topology:
non existence and existence of continuous maps

Algebraic topology ourished from some of its applications, inferring
the non existence of certain continuous maps from the observation that
their existence would imply the existence of homomorphisms satisfying
algebraic properties which are manifestly impossible to be veri ed. The
most famous such examples are Brouwer’s xed point theorem, and the
theorem of Borsuk-Ulam.

Theorem 1.1 (Brouwer’s xed point theorem). Every continuous self
map f : Dn → Dn , where Dn = {x ∈ Rn||x | ≤ 1} is the unit disk,
has a xed point, i.e., there is a x ∈ D such that f (x) = x .

The proof is by contradiction:

1. Assuming that f (x) �= x ∀x , let φ(x) be the intersection of the bound-
ary Sn−1 of Dn with the half line stemming from f (x) in the direction
of x ; φ would be a continuous map

φ : Dn → Sn−1, s.t. φ|Sn−1 = IdSn−1 .

2. i.e., we would have a sequence of two continuous maps ( ι is the in-
clusion) whose composition φ ◦ ι is the identity

ι : Sn−1 → Dn, φ : Dn → Sn−1.

3. One uses then the covariant functoriality of reduced homology
groups Hi(X,Z): to each continuous map f : X → Y of topological
spaces is associated a homomorphism of abelian groups Hi( f,Z) :
Hi(X,Z) → Hi(Y,Z), and in such a way that to a composition f ◦ g
is associated the composition of the corresponding homomorphisms.
That is,

Hi( f ◦ g,Z) = Hi( f,Z) ◦ Hi(g,Z).

Moreover, to the identity is associated the identity.
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4. The key point is (one observes that the disc is contractible) to show
that the reduced homology groups

Hn−1(Sn−1,Z) ∼= Z, Hn−1(Dn,Z) = 0.

The functoriality of the homology groups, since φ ◦ ι = IdSn−1 , would
imply 0 = Hn−1(φ,Z) ◦ Hn−1(ι,Z) = Hn−1(IdSn−1,Z) = IdZ, the
desired contradiction.

The cohomology algebra is used instead for the Borsuk-Ulam theorem.

Theorem 1.2 (Borsuk-Ulam theorem). There exists no odd continuous
function F : Sn → Sm for n > m (F is odd means that F(−x) =
−F(x),∀x).
Here there are two ingredients, the main one being the cohomology

algebra, and its contravariant functoriality: to any continuous map f :
X → Y there corresponds an algebra homomorphism

f ∗ : H∗(Y, R) = ⊕dim(Y )
i=0 Hi(Y, R) → H∗(X, R),

for any ring R of coef cients.
In our case one takes as X := Pn

R
= Sn/{±1}, similarly Y := Pm

R
=

Sm/{±1} and lets f be the continuous map induced by F .
One needs to show that, choosing R = Z/2Z, then the cohomology al-

gebra of real projective space is a truncated polynomial algebra, namely:

H∗(Pn
R
,Z/2Z) ∼= (Z/2Z)[ξn]/(ξ n+1n ).

The other ingredient consists in showing that

f ∗([ξm]) = [ξn],
[ξm] denoting the residue class in the quotient algebra.
One gets then the desired contradiction since, if n > m,

0 = f ∗(0) = f ∗([ξm]m+1) = f ∗([ξm])m+1 = [ξn]m+1 �= 0.

Notice that up to now we have mainly used that f is a continuous map
f := Pn

R
→ Pm

R
, while precisely in order to obtain that f ∗([ξm]) =

[ξn] we must make use of the hypothesis that f is induced by an odd
function F .
This property can be interpreted as the property that F yields a com-

mutative diagram
Sn → Sm

↓ ↓
Pn

R
→ Pm

R
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which exhibits the two sheeted covering of Pn
R
by Sn as the pull-back

of the analogous two sheeted cover for Pm
R
. Now, as we shall digress

soon, any such two sheeted covering is given by a homomorphism of
H1(X,Z/2Z) → Z/2Z, i.e., by an element in H 1(X,Z/2Z), and this el-
ement is trivial if and only if the covering is trivial (that is, homeomorphic
to X × (Z/2Z), in other words a disconnected cover).
This shows that the pull back of the cover, which is nontrivial, corre-

sponds to f ∗([ξm]) and is nontrivial, hence f ∗([ξm]) = [ξn].
In this way the proof is accomplished.
Algebraic topology attaches to a good topological space homology

groups Hi(X, R), which are covariantly functorial, a cohomology alge-
bra H∗(X, R) which is contravariantly functorial, and these groups can
be calculated, by virtue of the Mayer-Vietoris exact sequence and of ex-
cision (see any textbook), by chopping the space in smaller pieces. In
particular, these groups vanish when i > dim(X).
To X are also attached the homotopy groups πi(X).

De nition 1.3.

(1) Let f, g : X → Y be continuous maps. Then f and g are said to
be homotopic (one writes f ∼ g) if there is continuous map F :
X × [0, 1] → Y such that f (x) = F(x, 0) and g(x) = F(x, 1).
Similar de nition for maps of pairs f, g : (X, X ′) → (Y,Y ′), which
means that X ′ ⊂ X is mapped to f (X ′) ⊂ Y ′ ⊂ Y .

(2) [X,Y ] is the set of homotopy classes of continuous maps f : X → Y .

(3) πi(X, x0) := [(Si , e1), (X, x0)] is a group for i ≥ 1, abelian for i ≥ 2,
and independent of the point x0 ∈ X if X is path-connected.

(4) X is said to be homotopy equivalent to Y ( X ∼ Y ) if and only if there
are continuous maps f : X → Y , g : Y → X such that f ◦ g and
g ◦ f are both homotopic to the identity (of Y , resp. of X).

The common feature is that homotopic maps induce the same homomor-
phisms on homology, cohomology, and homotopy.
We are, for our purposes, more interested in the more mysterious ho-

motopy groups, which, while not necessarily vanishing for i > dim(X),
enjoy however a fundamental property.
Recall the de nition due toWhitney and Steenrod ( [88]) of a bre bun-

dle. In the words of Steenrod, the notion of a bre bundle is a weakening
of the notion of a product, since a product X × Y has two continuous
projections pX : X×Y → X , and pY : X×Y → Y , while a bre bundle
E over B with bre F has only one projection, p = pB : E → B and its
similarity to a product lies in the fact that for each point x ∈ B there is
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an open set U containing x , and a homeomorphism of p−1
B (U) ∼= U × F

compatible with both projections onto U .
The fundamental property of bre bundles is that there is a long exact

sequence of homotopy groups

. . .→πi(F)→πi(E)→πi(B)→πi−1(F)→πi−1(E) → πi−1(B) → . . .

where one should observe that πi(X) is a group for i ≥ 1, an abelian
group for i ≥ 2, and for i = 0 is just the set of arc-connected compo-
nents of X (we assume the spaces to be good, that is, locally arcwise con-
nected, semilocally simply connected, see [55], and, most of the times,
connected).
The special case where the bre F has the discrete topology is the case

of a covering space, which is called the universal covering if moreover
π1(E) is trivial.
Special mention deserves the following more special case.

De nition 1.4. Assume that E is arcwise connected, contractible (hence
all homotopy groups πi(E) are trivial), and that the bre F is discrete,
so that all the higher homotopy groups πi(B) = 0 for i ≥ 2, while
π1(B) ∼= π0(F) = F .
Then one says that B is a classifying space K (π, 1) for the group π =

π1(B).
In general, given a group π , a CW complex B is said to be a K (π, 1)

if πi(B) = 0 for i ≥ 2, while π1(B) ∼= π .

Example 1.5. The easiest examples are the following ones:

1. the real torus T n := Rn/Zn is a classifying space K (Zn, 1) for the
group π = Zn;

2. a classifying space K (Z/2Z, 1) is given by the inductive limit P∞
R

:=
limn→∞ Pn

R
.

These classifying spaces, although not unique, are unique up to homo-
topy-equivalence (we use the notation X ∼h.e. Y to denote homotopy
equivalence, de ned above and meaning that there exist continuous maps
f : X → Y, g : Y → X such that both compositions f ◦ g and g ◦ f are
homotopic to the identity).
Therefore, given two classifying spaces for the same group, they not

only do have the same homotopy groups, but also the same homology
and cohomology groups. Thus the following de nition is well posed.

De nition 1.6. Let � be a nitely presented group, and let B� be a clas-
sifying space for �: then the homology and cohomology groups and al-
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gebra of � are de ned as

Hi(�,Z) := Hi(B�,Z),

Hi(�,Z) := Hi(B�,Z),

H∗(�,Z) := H∗(B�,Z),

and similarly for other rings of coef cients instead of Z.

We now come to the other side: algebraic topology is not only useful
to detect the non existence of certain continuous maps, it is also used to
assert the existence of certain continuous maps.
Indeed classifying spaces, even if often quite dif cult to construct ex-

plicitly, are very important because they guarantee the existence of con-
tinuous maps! We have more precisely the following (cf. [87, Theorem
9, page 427, and Theorem 11, page 428]).

Theorem 1.7. Let Y be a ‘nice’ topological space, i.e., Y is homotopy-
equivalent to a CW-complex, and let X be a nice space which is a K (π, 1)
space: then, choosing base points y0 ∈ Y, x0 ∈ X , one has a bijective
correspondence

[(Y, y0), (X, x0)] ∼= Hom(π1(Y, y0), π1(X, x0)), [ f ] �→ π1( f ),

where [(Y, y0), (X, x0)] denotes the set of homotopy classes [ f ] of contin-
uous maps f : Y → X such that f (y0) = x0 (and where the homotopies
F(y, t) are also required to satisfy F(y0, t) = x0, ∀t ∈ [0, 1]).
In particular, the free homotopy classes [Y, X] of continuous maps

are in bijective correspondence with the conjugacy classes of homomor-
phisms Hom(π1(Y, y0), π) (conjugation is here inner conjugation by
Inn(π) on the target).

While topology deals with continuous maps, when dealing with man-
ifolds more regularity is wished for. For instance, when we choose for
Y a differentiable manifold M , and the group π is abelian and torsion
free, say π = Zr , then a more precise incarnation of the above theorem
is given by the De Rham theory.
We have indeed the following proposition.

Proposition 1.8. Let Y be a differentiable manifold, and let X be a dif-
ferentiable manifold that is a K (π, 1) space: then, choosing base points
y0 ∈ Y, x0 ∈ X , one has a bijective correspondence

[(Y, y0), (X, x0)]diff ∼= Hom(π1(Y ), π), [ f ] �→ π1( f ),

where [(Y,y0), (X,x0)]diffdenotes the set of differential homotopy classes
[ f ] of differentiable maps f : Y → X such that f (y0) = x0.
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Remark 1.9. In the case where X is a torus T r = Rr/Zr , then f is
obtained as the projection onto T r of

φ̃(y) :=
∫ y

y0

(η1, . . . , ηr ), η j ∈ H 1(Y,Z) ⊂ H 1
DR(Y,R).

Here η j is indeed a closed 1-form, representing a certain De Rham co-
homology class with integral periods ( i.e.,

∫
γ
η j = ϕ(γ ) ∈ Z, ∀γ ∈

π1(Y )). Therefore f is de ned by
∫ y
y0
(η1, . . . , ηr ) mod (Zr ). Moreover,

changing η j with another form η j + dFj in the same cohomology class,
one nds a homotopic map, since

∫ y
y0
(η j + tdFj ) = ∫ y

y0
(η j )+ t (Fj (y)−

Fj (y0)).
In algebraic geometry, the De Rham theory leads to the theory of Al-

banese varieties, which can be understood as dealing with the case where
G is free abelian and the classifying maps are holomorphic.

Before we mention other results concerning higher regularity of the
classifying maps, we shall now give the basic examples of projective va-
rieties that are classifying spaces.

2. Projective varieties which are K (π, 1)

The following are the easiest examples of projective varieties which are
K (π, 1)’s.

(1) Projective curves C of genus g ≥ 2.
By the Uniformization theorem, these have the Poincaré upper half
plane H := {z ∈ C|Im(z) > 0} as universal covering, hence they
are compact quotients C = H/�, where � ⊂ PSL(2,R) is a discrete
subgroup isomorphic to the fundamental group of C , π1(C) ∼= πg.
Here

πg := 〈α1, β1, . . . αg, βg|�g
1[αi , βi ] = 1〉

contains no elements of nite order.
Moreover, the complex orientation of C induces a standard generator
[C] of H2(C,Z) ∼= Z, the so-called fundamental class.

(2) AV : = Abelian varieties.
More generally, a complex torus X = Cg/�, where � is a discrete
subgroup of maximal rank (isomorphic then to Z2g), is a Kähler clas-
sifying space K (Z2g, 1), the Kähler metric being induced by the trans-
lation invariant Euclidean metric i

2

∑g
1 dz j ⊗ dz j .

For g = 1 one gets in this way all projective curves of genus g = 1;
but, for g > 1, X is in general not projective: it is projective, and
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called then an Abelian variety, if it satis es the Riemann bilinear rela-
tions. These amount to the existence of a positive de nite Hermitian
form H on Cg whose imaginary part A ( i.e., H = S + i A), takes
integer values on � × �. In modern terms, there exists a positive
line bundle L on X , with Chern class A ∈ H 2(X,Z) = H 2(�,Z) =
∧2(Hom(�,Z)), whose curvature form, equal to H , is positive (the
existence of a positive line bundle on a compact complex manifold X
implies that X is projective algebraic, by Kodaira’s theorem, [67]).

(3) LSM : = Locally symmetric manifolds.
These are the quotients of a bounded symmetric domain D by a
cocompact discrete subgroup � ⊂ Aut(D) acting freely. Recall that a
bounded symmetric domain D is a bounded domain D ⊂⊂ Cn such
that its group Aut(D) of biholomorphisms contains, for each point
p ∈ D, a holomorphic automorphism σp such that σp(p) = p, and
such that the derivative of σp at p is equal to −I d. This property
implies that σ is an involution (i.e., it has order 2), and that Aut(D)0

(the connected component of the identity) is transitive on D , and one
can write D = G/K , where G is a connected Lie group, and K is a
maximal compact subgroup.
The two important properties are:
(3.1)D splits uniquely as the product of irreducible bounded symmet-
ric domains.
(3.2) each such D is contractible.
Bounded symmetric domains were classi ed by Elie Cartan in [24],
and there is only a nite number of them (up to isomorphism) for each
dimension n.
Recall the notation for the simplest irreducible domains:

(i) In,p is the domain D = {Z ∈ Mat(n, p,C) : Ip −t Z · Z > 0}.
(ii) I In is the intersection of the domain In,n with the subspace of

skew symmetric matrices.
(iii) I I In is instead the intersection of the domain In,n with the sub-

space of symmetric matrices.

We refer the reader to [60], Theorem 7.1, page 383 and exercise D,
pages 526-527, for a list of these irreducible bounded symmetric do-
mains.
In the case of type III domains, the domain is biholomorphic to the
Siegel’s upper half space:

Hg := {τ ∈ Mat(g, g,C)|τ = tτ, Im(τ ) > 0},
a generalisation of the upper half-plane of Poincaré.
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(4) A particular, but very explicit case of locally symmetric manifolds is
given by the VIP : = Varieties isogenous to a product.
These were studied in [29], and they are de ned as quotients

X = (C1 × C2 × · · · × Cn)/G

of the product of projective curves C j of respective genera g j ≥ 2 by
the action of a nite group G acting freely on the product.
In this case the fundamental group of X is not so mysterious and ts
into an exact sequence

1 → π1(C1×C2×· · ·×Cn) ∼= πg1 ×· · ·×πgn → π1(X) → G → 1.

Such varieties are said to be of the unmixed type if the group G does
not permute the factors, i.e., there are actions of G on each curve such
that

γ (x1, . . . , xn) = (γ x1, . . . , γ xn),∀γ ∈ G.

Equivalently, each individual subgroup πg j is normal in π1(X).
(5) Hyperelliptic surfaces: these are the quotients of a complex torus of

dimension 2 by a nite group G acting freely, and in such away that
the quotient is not again a complex torus.
These surfaces were classi ed by Bagnera and de Franchis ( [4], see
also [51] and [5]) and they are obtained as quotients (E1 × E2)/G
where E1, E2 are two elliptic curves, and G is an abelian group acting
on E1 by translations, and on E2 effectively and in such a way that
E2/G ∼= P1.

(6) In higher dimension we de ne the Generalized Hyperelliptic Varieties
(GHV) as quotients A/G of an Abelian Variety A by a nite group
G acting freely, and with the property that G is not a subgroup of the
group of translations. Without loss of generality one can then assume
that G contains no translations, since the subgroup GT of translations
in G would be a normal subgroup, and if we denote G ′ = G/GT , then
A/G = A′/G ′, where A′ is the Abelian variety A′ := A/GT .
We proposed instead the nameBagnera-de Franchis (BdF) Varieties
for those quotients X = A/G were G contains no translations, and G
is a cyclic group of order m, with generator g (observe that, when A
has dimension n = 2, the two notions coincide, thanks to the classi -
cation result of Bagnera-De Franchis in [4]).
A concrete description of such Bagnera-De Franchis varieties is given
in [38].
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2.1. Rational K (π, 1)’s: basic examples

An important role is also played by complex Rational K (π, 1)’s, i.e.,
quasi projective varieties (or complex spaces) Z such that

Z = D/π,

where D is a contractible manifold (or complex space) and the action of
π on D is properly discontinuous but not necessarily free.
While for a K (π, 1) we have H∗(π,Z) ∼= H∗(Z ,Z), H∗(π,Z) ∼=

H∗(Z ,Z), for a rational K (π, 1) we have H∗(π,Q) ∼= H∗(Z ,Q) and
therefore also H∗(π,Q) ∼= H∗(Z ,Q).
Typical examples of such rational K (π, 1)’s are:

(1) quotients of a bounded symmetric domain D by a subgroup � ⊂
Aut(D) which is acting properly discontinuously (equivalently, � is
discrete); especially noteworthy are the case where � is cocompact,
meaning that X = D/� is compact, and the nite volume case where
the volume of X via the invariant volume form for D is nite.

(2) the moduli space of principally polarized Abelian Varieties, where D
is Siegel’s upper half space

Hg := {τ ∈ Mat(g, g,C)|τ = tτ, Im(τ ) > 0},
and the group � is

Sp(2g,Z) := {M ∈ Mat(2g,Z)|t M I M = I }.
(3) The moduli space of curves of genus g ≥ 2, a quotient

(∗∗) Mg = Tg/Mapg

of a connected complex manifold Tg of dimension 3g − 3, called Te-
ichmüller space, by the properly discontinuous action of the Map-
ping class groupMapg. A key result (see [62,66,90]) is that
Teichmüller space Tg is diffeomorphic to a ball, and the action of
Mapg is properly discontinuous.

Denoting as usual by πg the fundamental group of a compact complex
curve C of genus g, we have in fact a more concrete description of the
mapping class group:

(M) Mapg ∼= Out+(πg).

The above superscript + refers to the orientation preserving property.
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The above isomorphism (M) is of course related to the fact that C is a
K (πg, 1), as soon as g ≥ 1.
As we already discussed, there is a bijection between homotopy classes

of self maps of C and endomorphisms of πg, taken up to inner conjuga-
tion. Clearly a homeomorphism ϕ : C → C yields then an associated
element π1(ϕ) ∈ Out(πg).
Teichmüller theory can be further applied in order to analyse the xed

loci of nite subgroups G of the mapping class group (see [29,66,90]).

Theorem 2.1 (Re ned Nielsen realization). Let G ⊂ Mapg be a nite
subgroup. Then Fix(G) ⊂ Tg is a non empty complex manifold, dif-
feomorphic to a ball. It describes the curves which admit a group of
automorphisms isomorphic to G and with a given topological action.

3. Regularity of classifying maps and fundamental groups
of projective varieties

3.1. Harmonic maps

Given a continuous map f : M → N of differentiable manifolds, we can
approximate it by a differentiable one, homotopic to the previous one.
Indeed, we may assume that N ⊂ Rn,M ⊂ Rm and, by a partition of
unity argument, that M is an open set in Rh . Convolution approximates
then f by a differentiable function F1 with values in a tubular neighbour-
hood T (N ) of N , and then the implicit function theorem applied to the
normal bundle provides a differentiable retraction r : T (N ) → N . Then
F := r ◦ F1 is the required approximation, and the same retraction pro-
vides a homotopy between f and F (the homotopy between f and F1
being obvious).
If however M, N are algebraic varieties, and algebraic topology tells

us about the existence of a continuous map f as above, we would wish
for more regularity, possibly holomorphicity of the homotopic map F .
Now, Wirtinger’s theorem characterises complex submanifolds as area

minimizing ones, so the rst idea is to try to deform a differentiable map-
ping f until it minimizes some functional.
We may take the Riemannian structure inherited form the chosen em-

bedding, and assume that (M, gM), (N , gN ) are Riemannian manifolds.
If we assume that M is compact, then one de nes the Energy E( f ) of

the map as the integral:

E( f ) := 1/2
∫
M

|Df |2dμM ,

where Df is the derivative of the differentiable map f , dμM is the vol-
ume element on M , and |Df | is just its norm as a differentiable section
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of a bundle endowed with a metric:

Df ∈ H 0(M, C∞(T M∨ ⊗ f ∗(T N ))).

These notions were introduced by Eells and Sampson in the seminal pa-
per [50], which used the heat ow

∂ ft
∂t

= �( f )

in order to nd extremals for the energy functional. These curves in the
space of maps are (as explained in [50]) the analogue of gradient lines in
Morse theory, and the energy functional decreases on these lines.
The obvious advantage of the ow method with respect to discrete

convergence procedures (‘direct methods of the calculus of variations’)
is that here it is clear that all the maps are homotopic to each other! 3

The next theorem is one of the most important results, rst obtained
in [50]

Theorem 3.1 (Eells-Sampson). Let M,N be compact Riemannian man-
ifolds, and assume that the sectional curvature KN of N is semi-negative
(KN ≤ 0): then every continuous map f0 : M → N is homotopic to a
harmonic map f : M → N . Moreover the equation �( f ) = 0 implies,
in case where M, N are real analytic manifolds, the real analyticity of f .

Not only the condition about the curvature is necessary for the exis-
tence of a harmonic representative in each homotopy class, but moreover
it constitutes the main source of connections with the concept of classi-
fying spaces, in view of the classical (see [71], [23]) theorem of Cartan-
Hadamard establishing a deep link between curvature and topology.

Theorem 3.2 (Cartan-Hadamard). Suppose that N is a complete Rie-
mannian manifold, with semi-negative (KN ≤ 0) sectional curvature:
then the universal covering Ñ is diffeomorphic to an Euclidean space,
more precisely given any two points there is a unique geodesic joining
them.

In complex dimension 1 one cannot hope for a stronger result, to have
a holomorphic map rather than just a harmonic one. The surprise comes
from the fact that, with suitable assumptions, the hope can be realized

3 The ow method made then its way further through the work of Hamilton, Perelman and others,
leading to the solution of the three dimensional Poincaré conjecture (see for example [75] for an
exposition).
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in higher dimensions, with a small proviso: given a complex manifold
X , one can de ne the conjugate manifold X̄ as the same differentiable
manifold, but where in the decomposition T X ⊗R C = T (1,0) ⊕T (0,1) the
roles of T (1,0) and T (0,1) are interchanged (this amounts, in case where
X is an algebraic variety, to replacing the de ning polynomial equa-
tions by polynomials obtained from the previous ones by applying com-
plex conjugation to the coef cients, i.e., replacing each P(x0, . . . , xN ) by
P(x0, . . . , xN )).
In this case the identity map, viewed as a map ι : X → X̄ is no

longer holomorphic, but antiholomorphic. Assume now that we have a
harmonic map f : Y → X : then also ι ◦ f shall be harmonic, but a
theorem implying that f must be holomorphic then necessarily implies
that there is a complex isomorphism between X and X̄ . Unfortunately,
this is not the case, as one sees, already in the case of elliptic curves; but
then one may restrict the hope to proving that f is either holomorphic or
antiholomorphic.
A breakthrough in this direction was obtained by Siu ( [84]) who

proved several results, that we shall discuss in the next sections.

3.2. Kähler manifolds and some archetypal theorem

The assumption that a complex manifold X is a Kähler manifold is
that there exists a Hermitian metric on the tangent bundle T (1,0) whose
associated (1, 1) form ξ is closed. In local coordinates the metric is
given by

h = �i, j gi, j dzid z̄ j , with dξ = 0, ξ := (�i, j gi, j dzi ∧ dz̄ j ).

Hodge theory shows that the cohomology of a compact Kähler mani-
fold X has a Hodge-Kähler decomposition, where H p,q is the space of
harmonic forms of type (p, q), which are in particular d-closed (and d∗-
closed):

Hm(X,C) = ⊕p,q≥0,p+q=mH p,q, Hq,p = H p,q, H p,q ∼= Hq(X,�p
X ).

We give just an elementary application of the above theorem, a charac-
terization of complex tori (see [28,32,35] for other characterizations)

Theorem 3.3. Let X be a cKM, i.e., a compact Kähler manifold X ,
of dimension n. Then X is a complex torus if and only if it has the
same integral cohomology algebra of a complex torus, i.e. H∗(X,Z) ∼=
∧∗H 1(X,Z). Equivalently, if and only if H∗(X,C) ∼= ∧∗H 1(X,C) and
H 2n(X,Z) ∼= ∧2nH 1(X,Z)
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Proof. Since H 2n(X,Z) ∼= Z, it follows that H 1(X,Z) is free of rank
equal to 2n, therefore dimC(H 1,0) = n. We consider then, chosen a base
point x0 ∈ X , the Albanese map

aX : X → Alb(X) := H 0(�1
X )

∨/Hom(H 1(X,Z),Z), x �→
∫ x

x0

.

Therefore we have a map between X and the complex torus T :=Alb(X),
which induces an isomorphism of rst cohomology groups, and has de-
gree 1, in view of the isomorphism

H 2n(X,Z) ∼= �2n(H 1(X,Z)) ∼= H 2n(T,Z).

In view of the normality of X , it suf ces to show that aX is nite. Let
Y be a subvariety of X of dimension m > 0 mapping to a point: then
the cohomology (or homology class, in view of Poincaré duality) class
of Y is trivial, since the cohomology algebra of X and T are isomorphic.
But since X is Kähler, if ξ is the Kähler form,

∫
Y ξm > 0, a contradiction,

since this integral depends only (by the closedness of ξ ) on the homology
class of Y .

One can conjecture that a stronger theorem holds, namely

Conjecture 3.4. Let X be a cKM, i.e., a compact Kähler manifold X ,
of dimension n. Then X is a complex torus if and only if it has the
same rational cohomology algebra of a complex torus, i.e. H∗(X,Q) ∼=
∧∗H 1(X,Q). Equivalently, if and only if H∗(X,C) ∼= ∧∗H 1(X,C).

3.3. Siu’s results on harmonic maps

The result by Siu that is the simplest to state is the following

Theorem 3.5.

(I) Assume that f : M → N is a harmonic map between two compact
Kähler manifolds and that the curvature tensor of N is strongly nega-
tive. Assume further that the real rank of the derivative Df is at least
4 in some point of M . Then f is either holomorphic or antiholomor-
phic.

(II) In particular, if dimC(N ) ≥ 2 and M is homotopy equivalent to N ,
then M is either biholomorphic or antibiholomorphic to N .

Let us try however to describe precisely the main hypothesis of strong
negativity of the curvature, which is a stronger condition than the strict
negativity of the sectional curvature.
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As we already mentioned, the assumption that N is a Kähler manifold
is that there exists a Hermitian metric on the tangent bundle T (1,0) whose
associated (1, 1) form is closed. In local coordinates the metric is given
by

�i, j gi, j dzid z̄ j , with d(�i, j gi, j dzi ∧ dz̄ j ) = 0.

The curvature tensor is a (1, 1) form with values in (T (1,0))∨ ⊗T (1,0), and
using the Hermitian metric to identify (T (1,0))∨ ∼= T (1,0) = T (0,1), and
their conjugates ((T (0,1))∨ = (T (0,1)) ∼= T (1,0) ) we write as usual the
curvature tensor as a section R of

(T (1,0))∨ ⊗ (T (0,1))∨ ⊗ (T (1,0))∨ ⊗ (T (0,1))∨.

Then seminegativity of the sectional curvature is equivalent to

−R(ξ ∧ η̄ − η ∧ ξ̄ , ξ ∧ η̄ − η ∧ ξ̄ ) ≤ 0,

for all pairs of complex tangent vectors ξ, η (here one uses the isomor-
phism T (1,0) ∼= T N , and one sees that the expression depends only on
the real span of the two vectors ξ, η).
Strong negativity means instead that

−R(ξ ∧ η̄ − ζ ∧ θ̄ , ξ ∧ η̄ − ζ ∧ θ̄ ) < 0,

for all 4-tuples of complex tangent vectors ξ, η, ζ, θ .
The geometrical meaning is the following (see [1, page 71]): the sec-

tional curvature is a quadratic form on ∧2(T N ), and as such it extends to
the complexi ed bundle ∧2(T N ) ⊗ C as a Hermitian form. Then strong
negativity in the sense of Siu is also called negativity of the Hermitian
sectional curvature R(v,w, v̄, w̄) for all vectors v,w ∈ (T N ) ⊗ C.
Then a reformulation of the result of Siu ( [84]) and Sampson ([81]) is

the following:

Theorem 3.6. Let M be a compact Kähler manifold, and N a Rieman-
nian manifold with semi-negative Hermitian sectional curvature. Then
every harmonic map f : M → N is pluri-harmonic.

Now, examples of varieties N with a strongly negative curvature are
the balls in Cn , i.e., the BSD of type In,1; Siu nds out that ( [84]) for the
irreducible bounded symmetric domains of type

Ip,q, for pq ≥ 2, I In,∀n ≥ 3, I I In,∀n ≥ 2, I Vn,∀n ≥ 3,

the metric is not strongly negative, but just very strongly seminegative,
where very strong negativity simply means negativity of the curvature as
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a Hermitian form on T 1,0⊗ T 0,1 = T 1,0⊗ T 0,1. This gives rise to several
technical dif culties, where the bulk of the calculations is to see that there
is an upper bound for the nullity of the Hermitian sectional curvature, i.e.
for the rank of the real subbundles of T M where the Hermitian sectional
curvature restricts identically to zero.
Siu derives then several results, and we refer the reader to the book [1]

for a nice exposition of these results of Siu.

3.4. Hodge theory and existence of maps to curves

Siu also used harmonic theory in order to construct holomorphic maps
from Kähler manifolds to projective curves. This the theorem of [86]

Theorem 3.7 (Siu). Assume that a compact Kähler manifold X is such
that there is a surjection φ : π1(X) → πg, where g ≥ 2 and, as usual, πg
is the fundamental groups of a projective curve of genus g. Then there is
a projective curve C of genus g′ ≥ g and a bration f : X → C (i.e.,
the bres of f are connected) such that φ factors through π1( f ).

In this case the homomorphism leads to a harmonic map to a curve,
and one has to show that the Stein factorization yields a map to some
Riemann surface which is holomorphic for some complex structure on
the target.
In this case it can be seen more directly how the Kähler assumption,

which boils down to Kähler identities, is used.
Recall that Hodge theory shows that the cohomology of a compact

Kähler manifold X has a Hodge-Kähler decomposition, where H p,q is
the space of harmonic forms of type (p, q):

Hm(X,C) = ⊕p,q≥0,p+q=mH p,q, Hq,p = H p,q, H p,q ∼= Hq(X,�p
X ).

The Hodge-Kähler decomposition theorem has a long story, and was
proven by Picard in special cases. It entails the following consequence:
Holomorphic forms are closed, i.e., η ∈ H 0(X,�p

X ) ⇒ dη = 0.
At the turn of last century this fact was then used by Castelnuovo and

de Franchis ([25, 46]):

Theorem 3.8 (Castelnuovo-de Franchis). Assume that X is a compact
Kähler manifold, η1, η2 ∈ H 0(X,�1

X ) are C-linearly independent, and
the wedge product η1 ∧ η2 is d-exact. Then η1 ∧ η2 ≡ 0 and there exists
a bration f : X → C such that η1, η2 ∈ f ∗H 0(C,�1

C). In particular,
C has genus g ≥ 2.
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From it one gets the following simple theorem ([27]):

Theorem 3.9 (Isotropic subspace theorem). On a compact Kähler
manifold X there is a bijection between isomorphism classes of brations
f : X → C to a projective curve of genus g ≥ 2, and real subspaces
V ⊂ H 1(X,C) (‘real’ means that V is self conjugate, V = V ) which
have dimension 2g and are of the form V = U ⊕ Ū , where U is a maxi-
mal isotropic subspace for the wedge product

H 1(X,C) × H 1(X,C) → H 2(X,C).

Another result in this vein is (cf. [34]).

Theorem 3.10. Let X be a compact Kähler manifold, and let f : X→C
be a bration onto a projective curveC , of genus g, and assume that there
are exactly r bres which are multiple with multiplicities m1, . . .mr ≥ 2.
Then f induces an orbifold fundamental group exact sequence

π1(F) → π1(X) → π1(g;m1, . . .mr ) → 0,

where F is a smooth bre of f , and

π1(g;m1, . . .mr ) = 〈α1, β1, . . . , αg, βg, γ1, . . . γr | �g
1[α j , β j ]�r

1γi

= γ
m1
1 = · · · = γ mr

r = 1〉.
Conversely, let X be a compact Kähler manifold and let (g,m1, . . .mr )

be a hyperbolic type, i.e., assume that 2g − 2+ �i(1− 1
mi

) > 0.
Then each epimorphism φ :π1(X)→π1(g;m1, . . .mr) with nitely gen-

erated kernel is obtained from a bration f : X→C of type (g;m1, . . .mr).

The following (see [29] and [30]) is the main result concerning sur-
faces isogenous to a product.

Theorem 3.11.

a) A projective smooth surface S is isogenous to a product of two curves
of respective genera g1, g2 ≥ 2 , if and only if the following two con-
ditions are satis ed:

1) there is an exact sequence

1 → πg1 × πg2 → π = π1(S) → G → 1,

where G is a nite group and where πgi denotes the fundamental
group of a projective curve of genus gi ≥ 2;

2) e(S)(= c2(S)) = 4
|G|(g1 − 1)(g2 − 1).
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b) Write S = (C1 × C2)/G. Any surface X with the same topological
Euler number and the same fundamental group as S is diffeomorphic
to S and is also isogenous to a product. There is a smooth proper
family with connected smooth base manifold T , p : X → T having
two bres respectively isomorphic to X , and Y , where Y is one of the 4
surfaces S = (C1×C2)/G, S+− := (C1×C2)/G, S̄ = (C1×C2)/G,
S−+ := (C1 × C2)/G = S+−.

c) The corresponding subset of the moduli space of surfaces of general
type M

top
S = Mdiff

S , corresponding to surfaces orientedly homeomor-
phic, resp. orientedly diffeomorphic to S, is either irreducible and
connected or it contains two connected components which are ex-
changed by complex conjugation.
In particular, if S′ is orientedly diffeomorphic to S, then S′ is defor-
mation equivalent to S or to S̄.

4. Inoue type varieties

While a couple of hundreds examples are known today of families of
minimal surfaces of general type with geometric genus pg(S) :=
dim H 0(OS(KS)) = 0 (observe that for these surfaces 1 ≤ K 2

S ≤ 9), for
the value K 2

S = 7 there are only two examples known (cf. [63] and [44]),
and for a long time only one family of such surfaces was known, the one
constructed by Masahisa Inoue (cf. [63]).
The attempt to prove that Inoue surfaces form a connected component

of the moduli space of surfaces of general type proved to be successful
( [15]), and was based on a weak rigidity result: the topological type of
an Inoue surface determines an irreducible connected component of the
moduli space (a phenomenon similar to the one which was observed in
several papers, as [10,11,16,43]).
The starting point was the calculation of the fundamental group of an

Inoue surface with pg = 0 and K 2
S = 7: it sits in an extension (πg being

as usual the fundamental group of a projective curve of genus g):

1 → π5 × Z4 → π1(S) → (Z/2Z)5 → 1.

This extension is given geometrically, i.e., stems from the observation
([15]) that an Inoue surface S admits an unrami ed (Z/2Z)5 - Galois
covering Ŝ which is an ample divisor in E1 × E2 × D, where E1, E2
are elliptic curves and D is a projective curve of genus 5; while Inoue
described Ŝ as a complete intersection of two non ample divisors in the
product E1 × E2 × E3 × E4 of four elliptic curves.
It turned out that the ideas needed to treat this special family of Inoue

surfaces could be put in a rather general framework, valid in all dimen-
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sions, setting then the stage for the investigation and search for a new
class of varieties, which we proposed to call Inoue-type varieties.

De nition 4.1 ([15]). De ne a complex projective manifold X to be an
Inoue-type manifold if

(1) dim(X) ≥ 2;

(2) there is a nite group G and an unrami ed G-covering X̂ → X ,
(hence X = X̂/G) such that

(3) X̂ is an ample divisor inside a K (�, 1)-projective manifold Z , (hence
by the theorems of Lefschetz, π1(X̂) ∼= π1(Z) ∼= �) and moreover

(4) the action of G on X̂ yields a faithful action on π1(X̂) ∼= �: in other
words the exact sequence

1 → � ∼= π1(X̂) → π1(X) → G → 1

gives an injection G → Out(�), induced by conjugation by lifts of
elements of G.

(5) the action of G on X̂ is induced by an action of G on Z .

Similarly one de nes the notion of an Inoue-type variety, by requiring
the same properties for a variety X with canonical singularities.

The above de nition of Inoue type manifold, although imposing a
strong restriction on X , is too general, and in order to get weak rigid-
ity type results it is convenient to impose restrictions on the fundamental
group � of Z , for instance the most interesting case is the one where
Z is a product of Abelian varieties, curves, and other locally symmetric
varieties with ample canonical bundle.

De nition 4.2. We shall say that an Inoue-type manifold X is

(1) a special Inoue type manifold if moreover

Z = (A1 × · · · × Ar ) × (C1 × · · · × Ch) × (M1 × · · · × Ms)

where each Ai is an Abelian variety, each C j is a curve of genus
g j ≥ 2, and Mi is a compact quotient of an irreducible bounded
symmetric domain of dimension at least 2 by a torsion free subgroup;

(2) a classical Inoue type manifold if moreover
Z = (A1 × · · ·× Ar )× (C1 × · · ·×Ch) where each Ai is an Abelian
variety, each C j is a curve of genus g j ≥ 2;
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(3) a special Inoue type manifold is said to be diagonal if moreover:

(I) the action of G on X̂ is induced by a diagonal action on Z , i.e.,

G ⊂
r∏
i=1
Aut(Ai) ×

h∏
j=1
Aut(C j ) ×

s∏
l=1
Aut(Ml) (4.1)

and furthermore:
(II) the faithful action on π1(X̂) ∼= �, induced by conjugation by

lifts of elements of G in the exact sequence

1 → � = �r
i=1(�i) × �h

j=1(πg j ) × �s
l=1(π1(Ml))

→ π1(X) → G → 1
(4.2)

(observe that each factor �i , resp. πg j , π1(Ml) is a normal sub-
group), satis es the Schur property

(SP) Hom(Vi , Vj )
G = 0,∀i �= j.

Here Vj := � j⊗Q and, in order that the Schur property holds, it
suf ces for instance to verify that for each�i there is a subgroup
Hi of G for which Hom(Vi , Vj )

Hi = 0,∀ j �= i .

The Schur property (SP) plays an important role in order to show that an
Abelian variety with such a G-action on its fundamental group must split
as a product.
Before stating the main general result of [15] we need the following

de nition, which was already used in 3.3 for the characterization of com-
plex tori among Kähler manifolds.

De nition 4.3. Let Y , Y ′ be two projective manifolds with isomorphic
fundamental groups. We identify the respective fundamental groups
π1(Y ) = π1(Y ′) = �. Then we say that the condition (SAME HO-
MOLOGY) is satis ed for Y and Y ′ if there is an isomorphism � :
H∗(Y ′,Z) ∼= H∗(Y,Z) of homology groups which is compatible with the
homomorphisms

u : H∗(Y,Z) → H∗(�,Z), u′ : H∗(Y ′,Z) → H∗(�,Z),

i.e., � satis es u ◦ � = u′.
We can now state the following

Theorem 4.4. Let X be a diagonal special Inoue type manifold, and let
X ′ be a projective manifold with KX ′ nef and with the same fundamental
group as X , which moreover either
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(A) is homotopically equivalent to X;
or satis es the following weaker property:

(B) let X̂ ′ be the corresponding unrami ed covering of X ′. Then X̂ and
X̂ ′ satisfy the condition (SAME HOMOLOGY).
Setting W := X̂ ′, we have that

(a) X ′ = W/G where W admits a generically nite morphism f :
W → Z ′, and where Z ′ is also a K (�, 1) projective manifold, of
the form Z ′ = (A′

1×· · ·×A′
r )×(C ′

1×· · ·×C ′
h)×(M ′

1×· · ·×M ′
s).

Moreover here M ′
i is either Mi or its complex conjugate, and the

product decomposition corresponds to the product decomposi-
tion (4.2) of the fundamental group of Z .
The image cohomology class f∗([W ]) corresponds, up to sign,
to the cohomology class of X̂ .

(b) The morphism f is nite if n = dim X is odd, and it is generi-
cally injective if
(**) the cohomology class of X̂ (in H∗(Z ,Z)) is indivisible, or
if every strictly submultiple cohomology class cannot be repre-
sented by an effective G-invariant divisor on any pair (Z ′,G)

homotopically equivalent to (Z ,G).
(c) f is an embedding if moreover KX ′ is ample,

(*) every such divisor W of Z ′ is ample, and
(***) Kn

X ′ = Kn
X .
4

In particular, if KX ′ is ample and (*), (**) and (***) hold, also X ′ is
a diagonal SIT (special Inoue type) manifold.
A similar conclusion holds under the alternative assumption that the
homotopy equivalence sends the canonical class of W to that of X̂:
then X ′ is a minimal resolution of a diagonal SIT (special Inoue type)
variety.

For the proof of Theorem 4.4 the rst step consists in showing that W :=
X̂ ′ admits a holomorphic mapping to a manifold Z ′ of the above type
Z ′ = (A′

1 × · · · × A′
r ) × (C ′

1 × · · · × C ′
h) × (M ′

1 × · · · × M ′
s), where M

′
i

is either Mi or its complex conjugate.
First of all, by the results of Siu and others ([31, 84, 85], [34, Theo-

rem 5.14]) cited in Section 3, W admits a holomorphic map to a product
manifold of the desired type

Z ′
2 × Z ′

3 = (C ′
1 × · · · × C ′

h) × (M ′
1 × · · · × M ′

s).

4 This last property for algebraic surfaces follows automatically from homotopy invariance.
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Then one looks at the Albanese variety Alb(W ) of the Kähler manifold
W , whose fundamental group is the quotient of the Abelianization of
� = π1(Z) by its torsion subgroup.
Then the cohomological assumptions and adjunction theory are used

to complete the result.
The study of moduli spaces of Inoue type varieties, and their connected

and irreducible components, relies very much on the study of moduli
spaces of varieties X endowed with the action of a nite group G: and it
is for us a strong motivation to pursue this line of research.
This topic will occupy a central role in the following sections, rst in

general, and then in the special case of algebraic curves.

5. Moduli spaces of symmetry marked varieties

5.1. Moduli marked varieties

We give now the de nition of a symmetry marked variety for projective
varieties, but one can similarly give the same de nition for complex or
Kähler manifolds; to understand the concept of a marking, it suf ces to
consider a cyclic group acting on a variety X . A marking consists in this
case of the choice of a generator for the group acting on X . The marking
is very important when we have several actions of a group G on some
projective varieties, and we want to consider the diagonal action of G on
their product.

De nition 5.1.

(1) A G-marked (projective) variety is a triple (X,G, η) where X is a
projective variety, G is a group and η : G → Aut(X) is an injective
homomorphism

(2) equivalently, a marked variety is a triple (X,G, α) where α : X ×
G → X is a faithful action of the group G on X .

(3) Two marked varieties (X,G, α), (X ′,G, α′) are said to be isomor-
phic if there is an isomorphism f : X → X ′ transporting the action
α : X × G → X into the action α′ : X ′ × G → X ′, i.e., such that

f ◦ α = α′ ◦ ( f × id) ⇔ η′ = Ad( f ) ◦ η, Ad( f )(φ) := f φ f −1.

(4) If G is a subset of Aut(X), then the natural marked variety is the
triple (X,G, i), where i : G → Aut(X) is the inclusion map, and it
shall sometimes be denoted simply by the pair (X,G).

(5) A marked curve (D,G, η) consisting of a smooth projective curve
of genus g and a faithful action of the group G on D is said to be
a marked triangle curve of genus g if D/G ∼= P1 and the quotient
morphism p : D → D/G ∼= P1 is branched in three points.
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Remark 5.2. Observe that:

1) we have a natural action of Aut(G) on G-marked varieties, namely, if
ψ ∈ Aut(G),

ψ(X,G, η) := (X,G, η ◦ ψ−1).

The corresponding equivalence class of a G-marked variety is de ned
to be a G-(unmarked) variety.

2) the action of the group Inn(G) of inner automorphisms does not
change the isomorphism class of (X,G, η) since, for γ ∈ G, we may
set f := η(γ ), ψ := Ad(γ ), and then η ◦ ψ = Ad( f ) ◦ η, since
η(ψ(g)) = η(γgγ−1) = η(γ )η(g)(η(γ )−1) = Ad( f )(η(g)).

3) In the case where G = Aut(X), we see that Out(G) acts simply tran-
sitively on the isomorphism classes of the Aut(G)-orbit of (X,G, η).

Let us see now how the picture works in the case of curves: this case is
already very enlightening and intriguing.

5.2. Moduli of curves with automorphisms

There are several ‘moduli spaces’ of curves with automorphisms. First of
all, given a nite group G, we de ne a subset Mg,G of the moduli space
Mg of smooth curves of genus g > 1: Mg,G is the locus of the curves
that admit an effective action by the group G. It turns out thatMg,G is a
Zariski closed algebraic subset. The description of these Zariski closed
subsets is related to the description of the singular locus of the moduli
space Mg (for instance of its irreducible components, see [45]), and of
its compacti cationMg, (see [36]).
In order to understand the irreducible components of Mg,G we have

seen that Teichmüller theory plays an important role: it shows the con-
nectedness, given an injective homomorphism ρ : G → Mapg, of the
locus

Tg,ρ := Fix(ρ(G)).

Its imageMg,ρ inMg,G is a Zariski closed irreducible subset (as observed
in [39]). Recall that to a curve C of genus g with an action by G we can
associate several discrete invariants that are constant under deformation.
The rst is the above topological type of the G-action: it is a homo-

morphism ρ : G → Mapg, which is well-de ned up to inner conjugation
(induced by different choices of an isomorphism Map(C) ∼= Mapg).
We immediately see that the locus Mg,ρ is rst of all determined by

the subgroup ρ(G) and not by the marking. Moreover, this locus remains
the same not only if we change ρ modulo the action by Aut(G), but also
if we change ρ by the adjoint action by Mapg.
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De nition 5.3.
1) The moduli space of G-marked curves of a certain topological type ρ
is the quotient of the Teichmüller submanifold Tg,ρ by the centralizer
subgroup Cρ(G) of the subgroup ρ(G) of the mapping class group. We
get a normal complex space which we shall denoteMg[ρ]. Mg[ρ] =
Tg,ρ/Cρ(G) is a nite covering of a Zariski closed subset of the usual
moduli space (its imageMg,ρ), therefore it is quasi-projective, by the
theorem of Grauert and Remmert.

2) De ning Mg(ρ) as the quotient of Tg,ρ by the normalizer Nρ(G) of
ρ(G), we call it the moduli space of curves with a G-action of a given
topological type. It is again a normal quasi-projective variety.

Remark 5.4.

1) If we consider G ′ := ρ(G) as a subgroup G ′ ⊂ Mapg, then we get a
natural G ′-marking for any C ∈ Fix(G ′) = Tg,ρ .

2) As we said, Fix(G ′) = Tg,ρ is independent of the chosen marking,
moreover the projection Fix(G ′) = Tg,ρ → Mg,ρ factors through a
nite mapMg(ρ) → Mg,ρ .

The next question is whether Mg(ρ) maps 1-1 into the moduli space
of curves. This is not the case, as we shall easily see. Hence one gives
the following de nition.

De nition 5.5. Let G ⊂ Mapg be a nite group, and let C represent a
point in Fix(G). Then we have a natural inclusion G → AC := Aut(C),
and C is a xed point for the subgroup AC ⊂ Mapg: AC is indeed the
stabilizer of the point C in Mapg, so that locally (at the point ofMg cor-
responding to C) we get a complex analytic isomorphismMg = Tg/AC .
We de ne HG := ∩C∈Fix(G)AC and we shall say that G is a full sub-

group if G = HG . Equivalently, HG is the largest subgroup H such that
Fix(H) = Fix(G).
This implies that HG is a full subgroup.

Then we have:

Proposition 5.6. If H is a full subgroup H ⊂ Mapg, and ρ : H ⊂
Mapg is the inclusion homomorphism, then Mg(ρ) is the normalization
of Mg,ρ .

5.3. Numerical and homological invariants of group actions
on curves

As already mentioned, given an effective action of a nite group G on
C , we set C ′ := C/G, g′ := g(C ′), and we have the quotient morphism
p : C → C/G =: C ′, a G-cover.
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The geometry of p encodes several numerical invariants that are con-
stant on Mg,ρ(G): rst of all the genus g′ of C ′, then the number d of
branch points y1, . . . , yd ∈ C ′.
We call the set B = {y1, . . . , yd} the branch locus, and for each yi

we denote by mi the multiplicity of yi (the greatest number dividing the
divisor p∗(yi)). We choose an ordering of B such that m1 ≤ · · · ≤ md .
These numerical invariants g′, d,m1 ≤ · · · ≤ md form the so-called

primary numerical type.
p : C → C ′ is determined (Riemann’s existence theorem) by the mon-

odromy, a surjective homomorphism:

μ : π1(C ′ \ B) → G .

We have:

π1(C
′ \ B) ∼= �g′,d

:= 〈γ1, . . . , γd, α1, β1, . . . , αg′, βg′ |
d∏
i=1

γi

g′∏
j=1

[α j , β j ] = 1〉.

We set then ci := μ(γi), a j := μ(α j ), b j := μ(β j ), thus obtaining a
Hurwitz generating vector, i.e. a vector

v := (c1, . . . , cd, a1, b1, . . . , ag′, bg′) ∈ Gd+2g′

s.t.

• G is generated by the entries c1, . . . , cd, a1, b1, . . . , ag′, bg′ ,
• ci �= 1G , ∀i , and
• ∏d

i=1 ci
∏g′

j=1[a j , b j ] = 1.

We see that the monodromy μ is completely equivalent, once an isomor-
phism π1(C ′ \ B) ∼= �g′,d is chosen, to the datum of a Hurwitz gener-
ating vector (we also call the sequence c1, . . . , cd, a1, b1, . . . , ag′, bg′ of
the vector’s coordinates a Hurwitz generating system).
A second numerical invariant of these components of Mg(G) is ob-

tained from the monodromy μ : π1(C ′ \{y1, . . . , yd}) → G of the restric-
tion of p to p−1(C ′ \ {y1, . . . , yd}), and is called the ν-type or Nielsen
function of the covering.
The Nielsen function ν is a function de ned on the set of conjugacy

classes in G which, for each conjugacy class C in G, counts the number
ν(C) of local monodromies c1, . . . , cd which belong to C (observe that the
numbers m1 ≤ · · · ≤ md are just the orders of the local monodromies).
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Observe in fact that the generators γ j are well de ned only up to con-
jugation in the group π1(C ′ \ {y1, . . . , yd}), hence the local monodromies
are well de ned only up to conjugation in the group G.
We have already observed that the irreducible closed algebraic sets

Mg,ρ(G) depend only upon what we call the ‘unmarked topological type’,
which is de ned as the conjugacy class of the subgroup ρ(G) inside
Mapg. This concept remains however still mysterious, due to the compli-
cated nature of the groupMapg. Therefore one tries to use more geometry
to get a grasp on the topological type.
The following is immediate by Riemann’s existence theorem and the

irreducibility of the moduli spaceMg′,d of d-pointed curves of genus g′.
Given g′ and d, the unmarked topological types whose primary numeri-
cal type is of the form g′, d,m1, . . . ,md are in bijection with the quotient
of the set of the corresponding monodromies μ modulo the actions by
Aut(G) and by Map(g′, d).
Here Map(g′, d) is the full mapping class group of genus g′ and d un-
ordered points.
Thus Riemann’s existence theorem shows that the components of the

moduli space
M(G) := ∪gMg(G)

with numerical invariants g′, d correspond to the following quotient set.
De nition 5.7.

A(g′, d,G) := Epi(�g′,d,G)/Mapg′,d × Aut(G) .

Thus a rst step toward the general problem consists in nding a ne
invariant that distinguishes these orbits.
In the paper [39] we introduced a new homological invariant ε̂ for G-

actions on smooth curves and showed that, in the case where G is the
dihedral group Dn of order 2n, ε̂ is a ne invariant since it distinguishes
the different unmarked topological types.
This invariant generalizes the classical homological invariant in the

unrami ed case.

De nition 5.8. Let p : C → C/G =: C ′ be unrami ed, so that d = 0
and we have a monodromy μ : π1(C ′) → G.
Since C ′ is a classifying space for the group πg′ , we obtain a continu-

ous map
m : C ′ → BG, π1(m) = μ.

Moreover, H2(C ′,Z) has a natural generator [C ′], the fundamental class
of C ′ determined by the orientation induced by the complex structure
of C ′.
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The homological invariant of the G-marked action is then de ned as:

ε := H2(m)([C ′]) ∈ H2(BG,Z) = H2(G,Z).

If we forget the marking we have to take ε as an element in H2(G,Z)/

Aut(G).

In the rami ed case, one needs also the following de nition.

De nition 5.9. An element

ν = (nC)C ∈
⊕
C �={1}

N〈C〉

is admissible if the following equality holds in the Z-module Gab:∑
C
nC · [C] = 0

(here [C] denotes the image element of C in the abelianization Gab).

The main result of [40] is the following ‘genus stabilization’ theorem.

Theorem 5.10. There is an integer h such that for g′ > h

ε̂ : A(g′, d,G) → (K∪)/Aut(G)

induces a bijection onto the set of admissible classes of re ned homology
invariants.
In particular, if g′ > h, and we have two Hurwitz generating systems

v1, v2 having the same Nielsen function, they are equivalent if and only if
the ‘difference’ ε̂(v1)ε̂(v2)−1 ∈ H2,�(G) is trivial.

The above result extends a nice theorem of Livingston, Dun eld and
Thurston ([47, 69]) in the unramifed case, where also the statement is
simpler.

Theorem 5.11. For g′ >> 0

ε̂ : A(g′, 0,G) → H2(G,Z)/Aut(G)

is a bijection.

Remark 5.12. Unfortunately the integer h in Theorem 5.10, which de-
pends on the group G, is not explicit.

A key concept used in the proof is the concept of genus stabilization
of a covering, which we now brie y explain.
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De nition 5.13. Consider a group action of G on a projective curve C ,
and let C → C ′ = C/G the quotient morphism, with monodromy

μ : π1(C ′ \ B) → G

(here B is as usual the branch locus). Then the rst genus stabilization
of the differentiable covering is de ned geometrically by simply adding
a handle to the curve C ′, on which the covering is trivial.
Algebraically, given the monodromy homomorphism

μ : π1(C ′ \ B) ∼= �g′,d

:=
〈
γ1, . . . , γd, α1, β1, . . . , αg′, βg′ |

d∏
i=1

γi

g′∏
j=1

[α j , β j ] = 1
〉
→ G,

we simply extend μ to μ1 : �g′+1,d → G setting

μ1(αg′+1) = μ1(βg′+1) = 1G .

In terms of Hurwitz vectors and Hurwitz generating systems, we replace
the vector

v := (c1, . . . , cd, a1, b1, . . . , ag′, bg′) ∈ Gd+2g′

by
v1 := (c1, . . . , cd, a1, b1, . . . , ag′, bg′, 1, 1) ∈ Gd+2g′+2.

The operation of rst genus stabilization generates then an equivalence
relation among monodromies (equivalently, Hurwitz generating systems),
called stable equivalence.

The most important step in the proof, the geometric understanding of
the invariant ε ∈ H2(G,Z) was obtained by Livingston [69].

Theorem 5.14. Two monodromies μ1, μ2 are stably equivalent if and
only if they have the same invariant ε ∈ H2(G,Z).

A purely algebraic proof of Livingston’s theorem was given by Zim-
mermann in [96], while a nice sketch of proof was given by Dun eld and
Thurston in [47].

5.4. Classi cation results for certain concrete groups

The rst result in this direction was obtained by Nielsen ([78]) who
proved that ν determines ρ if G is cyclic (in fact in this case H2(G,Z) =
0!).
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In the cyclic case the Nielsen function for G = Z/n is simply a func-
tion ν : (Z/n) \ {0} → N, and admissibility here simply means that∑

i

i · ν(i) ≡ 0 (mod n).

The class of ν is just the equivalence class for the equivalence relation
ν(i) ∼ νr (i), ∀r ∈ (Z/n)∗, where νr (i) := ν(ri), ∀i ∈ (Z/n).
From the re ned Nielsen realization theorem of [29] (2.1) it follows

that the components of Mg(Z/n) are in bijection with the classes of
Nielsen functions (see also [36] for an elementary proof).
The genus g′ and the Nielsen class (which re ne the primary numerical

type), and the homological invariant h ∈ H2(G/H,Z) (here H is again
the subgroup generated by the local monodromies) determine the con-
nected components ofMg(G) under some restrictions: for instance when
G is abelian or when G acts freely and is the semi-direct product of two
nite cyclic groups (as it follows by combining results from [29, 36, 48]
and [49]).

Theorem 5.15 (Edmonds). ν and h ∈ H2(G/H,Z) determine ρ for G
abelian. Moreover, if G is split-metacyclic and the action is free, then h
determines ρ.

However, in general, these invariants are not enough to distinguish un-
marked topological types, as one can see already for non-free Dn-actions
(see [39]). Already for dihedral groups, one needs the re ned homologi-
cal invariant ε̂.

Theorem 5.16 ([39]). For the dihedral group G = Dn the connected
components of the moduli space Mg(Dn) are in bijection, via the map ε̂,
with the admissible classes of re ned homology invariants.

The above result completes the classi cation of the unmarked topolog-
ical types for G = Dn; moreover this result entails the classi cation of
the irreducible components of the lociMg,Dn (see the appendix to [39]).
It is an interesting question: for which groups G does the re ned ho-

mology invariant ε̂ determine the connected components ofMg(G)?
In view of Edmonds’ result in the unrami ed case, it is reasonable to

expect a positive answer for split metacyclic groups.
As mentioned in [47, page 499], the group G = PSL(2,F13) shows

that, for g′ = 2, in the unrami ed case there are different components
with trivial homology invariant ε ∈ H2(G,Z): these topological types of
coverings are therefore stably equivalent but not equivalent.
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6. Connected components of moduli spaces and the action
of the absolute Galois group

Let X be a complex projective variety: let us quickly recall the notion of
a conjugate variety.

Remark 6.1.

1) φ ∈ Aut(C) acts on C[z0, . . . zn], by sending P(z) = ∑n
i=0 ai z

i �→
φ(P)(z) := ∑n

i=0 φ(ai)zi .
2) Let X be as above a projective variety

X ⊂ Pn
C
, X := {z| fi(z) = 0 ∀i}.

The action of φ extends coordinatewise to Pn
C
, and carries X to another

variety, denoted Xφ , and called the conjugate variety. Since fi(z) = 0
implies φ( fi)(φ(z)) = 0, we see that

Xφ = {w|φ( fi)(w) = 0 ∀i}.
If φ is complex conjugation, then it is clear that the variety Xφ that we
obtain is diffeomorphic to X ; but, in general, what happens when φ is not
continuous?
Observe that, by the theorem of Steiniz, one has a surjection Aut(C)→

Gal(Q̄/Q), and by specialization the heart of the question concerns the
action of Gal(Q̄/Q) on varieties X de ned over Q̄.
For curves, since in general the dimensions of spaces of differential

forms of a xed degree and without poles are the same for Xφ and X , we
shall obtain a curve of the same genus, hence Xφ and X are diffeomor-
phic.

6.1. Galois conjugates of projective classifying spaces

General questions of which the rst is answered in the positive in most
concrete cases, and the second is answered in the negative in many cases,
as we shall see, are the following.

Question 6.2. Assume that X is a projective K (π, 1), and assume φ ∈
Aut(C).
A) Is then the conjugate variety Xφ still a classifying space K (π ′, 1)?
B) Is then π1(Xφ) ∼= π ∼= π1(X)?

Since φ is never continuous, there would be no reason to expect a positive
answer to both questions A) and B), except that Grothendieck showed
([58]).
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Theorem 6.3. Conjugate varieties X,Xφ have isomorphic algebraic fun-
damental groups

π1(X)alg ∼= π1(X
φ)alg,

where π1(X)alg is the pro nite completion of the topological fundamental
group π1(X)).

We recall once more that the pro nite completion of a group G is the
inverse limit

Ĝ = lim
K� f G

(G/K ),

of the factor groups G/K , K being a normal subgroup of nite index in
G; and since nite index subgroups of the fundamental group correspond
to nite unrami ed (étale) covers, Grothendieck de ned in this way the
algebraic fundamental group for varieties over other elds than the com-
plex numbers, and also for more general schemes.
The main point of the proof of the above theorem is that if we have

f : Y → X which is étale, also the Galois conjugate f φ : Y φ → Xφ is
étale ( f φ is just de ned taking the Galois conjugate of the graph of f , a
subvariety of Y × X).
Since Galois conjugation gives an isomorphism of natural cohomology

groups, which respects the cup product, as for instance the Dolbeault
cohomology groups H p(�

q
X ), we obtain interesting consequences in the

direction of question A) above. Recall the following de nition.

De nition 6.4. Two varieties X,Y are said to be isogenous if there exist
a third variety Z , and étale nite morphisms fX : Z → X , fY : Z → Y .

Remark 6.5. It is obvious that if X is isogenous to Y , then Xφ is isoge-
nous to Y φ .

Theorem 6.6.

i) If X is an Abelian variety, or isogenous to an Abelian variety, the
same holds for any Galois conjugate Xφ .

ii) If S is a Kodaira bred surface, then any Galois conjugate Sφ is also
Kodaira bred.

iii) If X is isogenous to a product of curves, the same holds for any
Galois conjugate Xφ .

Proof.

i) X is an Abelian variety if and only it is a projective variety and there
is a morphism X × X → X , (x, y) �→ (x · y−1), which makes X
a group (see [77], it follows indeed that the group is commutative).
This property holds for X if and only if it holds for Xφ .
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ii) The hypothesis is that there is f : S → B such that all the bres are
smooth and not all isomorphic: obviously the same property holds,
after Galois conjugation, for f φ : Sφ → Bφ .

iii) It suf ces to show that the Galois conjugate of a product of curves is
a product of curves. But since Xφ × Y φ = (X × Y )φ and the Galois
conjugate of a curve C of genus g is again a curve of the same genus
g, the statement follows.

Proceeding with other projective K (π, 1)’s, the question becomes more
subtle and we have to appeal to a famous theorem by Kazhdan on arith-
metic varieties (see [41,42,64,65,70,91]).

Theorem 6.7. Assume that X is a projective manifold with KX ample,
and that the universal covering X̃ is a bounded symmetric domain.
Let τ ∈ Aut(C) be an automorphism of C.
Then the conjugate variety X τ has universal covering X̃ τ ∼= X̃ .

Simpler proofs follow from recent results obtained together with An-
tonio Di Scala, and based on the Aubin-Yau theorem. These results yield
a precise characterization of varieties possessing a bounded symmetric
domain as universal cover, and can be rather useful in view of the fact
that our knowledge and classi cation of these fundamental groups is not
so explicit.
We just mention the simplest result (see [41]).

Theorem 6.8. Let X be a compact complex manifold of dimension n with
KX ample.
Then the following two conditions (1) and (1′), resp. (2) and (2′) are

equivalent:

(1) X admits a slope zero tensor 0 �= ψ ∈ H 0(Smn(�1
X )(−mKX )),

(for some positive integer m);
(1′) X ∼= �/� , where � is a bounded symmetric domain of tube type

and � is a cocompact discrete subgroup of Aut(�) acting freely.
(2) X admits a semi special tensor 0 �= φ ∈ H 0(Sn(�1

X )(−KX ) ⊗ η),
where η is a 2-torsion invertible sheaf, such that there is a point
p ∈ X for which the corresponding hypersurface Fp := {φp =
0} ⊂ P(T X p) is reduced.

(2′) The universal cover of X is a polydisk.

Moreover, in case (1), the degrees and the multiplicities of the irreducible
factors of the polynomial ψp determine uniquely the universal covering
X̃ = �.
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6.2. Arithmetic of moduli spaces and faithful actions of the absolute
Galois group

A basic remark is that all the schemes involved in the construction of
the Gieseker moduli space are de ned by equations involving only Z-
coef cients.
It follows that the absolute Galois group Gal(Q,Q) acts on the Gieseker

moduli spaceMa,b. In particular, it acts on the set of its irreducible com-
ponents, and on the set of its connected components.
After an incomplete initial attempt in [8] in joint work with Ingrid

Bauer and Fritz Grunewald, we were able in [9] to show:

Theorem 6.9. The absolute Galois group Gal(Q̄/Q) acts faithfully on
the set of connected components of the Gieseker moduli space of surfaces
of general type,

M := ∪x,y∈N,x,y≥1Mx,y.

The main ingredients for the proof of theorem 6.9 are the following ones.

(1) De ne, for any complex number a ∈ C \ {−2g, 0, 1, . . . , 2g − 1},
Ca as the hyperelliptic curve of genus g ≥ 3 which is the smooth
complete model of the af ne curve of equation

w2 = (z − a)(z + 2g)�2g−1
i=0 (z − i).

Consider then two complex numbers a, b such that a ∈ C \ Q: then
Ca

∼= Cb if and only if a = b.
(2) If a ∈ Q̄, then by Belyi’s theorem ([18]) there is a morphism fa :

Ca → P1 which is branched only on three points, 0, 1,∞.
(3) The normal closure Da of fa yields a triangle curve, i.e., a curve Da

with the action of a nite group Ga such that Da/Ga
∼= P1, and

Da → P1 is branched only on three points.
(4) Take surfaces isogenous to a product S = (Da × D′)/Ga where the

action of Ga on D′ is free. Denote by Na the union of connected
components of the moduli space parametrizing such surfaces.

(5) Take all the possible twists of the Ga-action on Da × D′ via an au-
tomorphism ψ ∈ Aut(Ga) (i.e., given the action (x, y) �→ (γ x, γ y),
consider all the actions of the form

(x, y) �→ (γ x, ψ(γ )y).

One observes that, for each ψ as above, we get more connected com-
ponents in Na .
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(6) Then an explicit calculation (using (4) and (5)) shows that the sub-
group of Gal(Q̄/Q) acting trivially on the set of connected compo-
nents of the moduli space would be a normal and abelian subgroup.

(7) Finally, this contradicts a known theorem (cf. [53]).

6.3. Change of fundamental group

Jean Pierre Serre proved in the 60’s ( [82]) the existence of a eld auto-
morphism φ ∈ Gal(Q̄/Q), and a variety X de ned over Q̄ such that X
and the Galois conjugate variety Xφ have non isomorphic fundamental
groups.
In [9] this phenomenon is vastly generalized, thus answering question

B) in the negative.

Theorem 6.10. If σ ∈ Gal(Q̄/Q) is not in the conjugacy class of com-
plex conjugation, then there exists a surface isogenous to a product X
such that X and the Galois conjugate surface Xσ have non-isomorphic
fundamental groups.

Since the argument for the above theorem is not constructive, let us obser-
ve that, in work in collaboration with Ingrid Bauer and Fritz Grunewald
( [7, 9]), we discovered wide classes of explicit algebraic surfaces isoge-
nous to a product for which the same phenomenon holds.
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[1] J. AMORÓS, MARC BURGER, A. CORLETTE, D. KOTSCHICK and
D. TOLEDO, “Fundamental Groups of Compact Kähler Manifolds”,
Mathematical Surveys and Monographs, Vol. 44, Providence, RI:
American Mathematical Society (AMS), 1966, xi, 140 pp.

[2] A. ANDREOTTI and T. FRANKEL, The second Lefschetz theorem
on hyperplane sections, In: “Global Analysis (Papers in Honor of
K. Kodaira)” Univ. Tokyo Press, Tokyo (1969), 1–20.

[3] T. AUBIN, Équations du type Monge-Ampére sur les variétés
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