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Jan Kynčl and Zuzana Safernová
On the nonexistence of k-reptile simplices in R3 and R4 191
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 191
2 Angles in simplices and Coxeter diagrams . . . . . . . . 193
3 A simple proof of Theorem 1.1 . . . . . . . . . . . . . . 194
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Imre Bárány and János Pach
Homogeneous selections from hyperplanes 197
1 The main result . . . . . . . . . . . . . . . . . . . . . . 197
2 Proof of Theorem 1.2 . . . . . . . . . . . . . . . . . . . 199
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

Amanda Folsom, Winfried Kohnen and Sinai Robins
Conic theta functions and their relations to theta functions 203
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

Erika M.M. Coelho, Mitre C. Dourado, Dieter Rautenbach
and Jayme L. Szwarcfiter
The Carathéodory number of the P3 convexity
of chordal graphs 209
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 209
2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
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A threshold for the Maker-Breaker clique game 353
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 353
2 Our results . . . . . . . . . . . . . . . . . . . . . . . . . 354
3 Conclusion and open problems . . . . . . . . . . . . . . 356
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

Dennis Clemens and Anita Liebenau
On the threshold bias in the oriented cycle game 359
1 Introduction and Results . . . . . . . . . . . . . . . . . 359
2 Outline of the proofs . . . . . . . . . . . . . . . . . . . 360
3 Concluding remarks . . . . . . . . . . . . . . . . . . . . 363
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

Dennis Clemens, Asaf Ferber, Roman Glebov, Dan Hefetz
and Anita Liebenau
Building spanning trees quickly in Maker-Breaker games 365
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 365
2 Outline of the proofs . . . . . . . . . . . . . . . . . . . 367
3 Concluding remarks and open problems . . . . . . . . . 369
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

Paul Dorbec, Gabriel Renault, Aaron Siegel and Éric Sopena
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Élie de Panafieu and Vlady Ravelomanana
Analytic description of the phase transition
of inhomogeneous multigraphs 449
1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
2 Main theorem . . . . . . . . . . . . . . . . . . . . . . . 451
3 Examples of application of the main theorem . . . . . . 453
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453



xvii

Fixed-point 455

Mahir Bilen Can, Yonah Cherniavsky and Tim Twelbeck
On the Bruhat-Chevalley order
on fixed-point-free involutions 457
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 457
2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . 459
3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 460
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461

Elyot Grant and Will Ma
A geometric approach to combinatorial fixed-point theorems:
extended abstract 463
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 463
2 Geometric proofs of Sperner-like theorems . . . . . . . . 466
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467

Hamiltonicity 469

Daniela Kühn, John Lapinskas, Deryk Osthus and Viresh Patel
Proof of a conjecture of Thomassen on Hamilton cycles
in highly connected tournaments 471
1 Sketch of the proof of Theorem 2 . . . . . . . . . . . . . 474
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475

Béla Csaba, Daniela Kühn, Allan Lo, Deryk Osthus
and Andrew Treglown
Proof of the 1-factorization
and Hamilton decomposition conjectures 477
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 477
2 Overview of the proofs of Theorems 1.1 and 1.3 . . . . . 480
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481

Andrzej Dudek, Alan Frieze, Andrzej Ruciński and Matas Šileikis
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Tommy Jensen
Ken-ichi Kawarabayashi
Peter Keevash
Daniel Král’
Daniela Kühn
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A problem of Erdó́s and Sós on 3-graphs

Roman Glebov1, Daniel Král’2 and Jan Volec3

Abstract. We show that for every ε > 0 there exist δ > 0 and n0 ∈ N such
that every 3-uniform hypergraph on n ≥ n0 vertices with the property that every

k-vertex subset, where k ≥ δn, induces at least
(
1
4 + ε

) (k
3
)
edges, contains K−4

as a subgraph, where K−4 is the 3-uniform hypergraph on 4 vertices with 3 edges.
This question was originally raised by Erdős and Sós. The constant 1/4 is the best
possible.

1 Introduction

One of the most influential results in the extremal graph theory is the cele-
brated theorem of Turán [14] that determines the largest possible number
of edges in an n-vertex graph without a complete subgraph of a given
size. Erdős, Simonovits, and Stone [5,7] generalized Turán’s theorem by
showing that the extremal number of an arbitrary graph F , defined as

ex(n,F) :=max{|E(G)| :G is a graph on n vertices with no copy of F},
is asymptotically determined by its chromatic number. Specifically, for
every graph F with at least one edge,

ex(n, F) =
(
χ(F)− 2
χ(F)− 1 + o(1)

)(
n

2

)
.
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Note that this problem is dual to determining the minimum number of
edges m(F) that guarantees an n-vertex graph G with at least m(n, F)
edges to contain a copy of F , since m(n, F) = ex(n, F)+ 1.
In Ramsey-Turán type problems, which were introduced by Sós in [13],

we are again interested in the largest possible number of edges of an n-
vertex graph without a copy of F , but under the additional restriction that
the graph has to be somewhat “far” from the Turán graph. Typically, such
a restriction is expressed by requiring that the graph has only sublinear
independence number. For more details on Ramsey-Turán theory, see the
survey by Simonovits and Sós [12].
In our problem, we are dealing with an even stronger restriction; we

require every linear-size subset of vertices not only to induce at least one
edge, but actually to induce a positive proportion of all possible edges.
We define the δ-linear density of a graph G to be the smallest density
induced on an δ-fraction of vertices, i.e.,

d(G, δ) := min
{
|E(G[A])|(|A|

2

) : A ⊆ V (G), |A| ≥ δ|V (G)|
}
.

Note that for any graph G the function d(G, δ) is a non-decreasing func-
tion of δ taking values in [0, 1].
However, requiring a positive δ-linear density immediately forces large

graphs to behave similarly to random graphs in the sense that they con-
tain every given graph as a subgraph, which follows, e.g., from [11, The-
orem 1].

Observation 1.1. For every ε > 0 and a fixed graph F , there exist δ > 0
and n0 ∈ N such that every graph G on at least n0 vertices with d(G, δ) ≥
ε contains F as an subgraph.

The notion of the δ-linear density has a natural generalization to a k-
uniform hypergraph H , where we define

d(H, δ) := min
{
|E(Hn[A])|(|A|

k

) : A ⊆ V (H), |A| ≥ δ|V (H)|
}
.

We now focus on 3-uniform hypergraphs. Let K4 be the complete hyper-
graph on 4 vertices, and K−4 the hypergraph on 4 vertices with 3 edges.
Erdős and Sós [6, Problem 5] asked whether, analogously to Observa-
tion 1.1 for graphs, a sufficiently large hypergraph with positive δ-linear
density contains a copy of K4, or at least a copy of K

−
4 . However, Füredi

observed that the following construction of Erdős and Hajnal [4] shows
that the situation in 3-uniform hypergraphs is completely different (hence
giving a negative answer to the question above).
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Example 1.2. Consider a random tournament Tn on n vertices. Let Hn

be the 3-uniform hypergraph on the same vertex set consisting of exactly
those triples that span an oriented cycle in Tn .

One can check that in every hypergraph obtained in this way, any four
vertices span at most two edges, i.e., Hn does not contain K

−
4 for every

n. On the other hand, for every δ > 0, the δ-linear density of Hn tends to
1/4 when n goes to infinity. Additional information about this problem
and its history can be found in [12, Section 5]. It is also worth noting
that in [11], Rödl presented a sequence of K4-free (but not K

−
4 -free) 3-

uniform hypergraphs with δ-linear density tending to 1/2.
Our main result is the following theorem stating that the bound 1/4 on

δ-linear density for K−4 -free sequences is in fact the best possible, which
answers the explicit question of Erdős [3] positively.

Theorem 1.3. For every ε > 0 there exist δ > 0 and n0 ∈ N such that
every 3-uniform hypergraph H on at least n0 vertices with d(H, δ) ≥
1/4+ ε contains K−4 as a subgraph.

2 Sketch of the proof

Suppose that Theorem 1.3 were false, then the following would be true.

There exists ε > 0 and a sequence (Hn)n∈N of K−4 -free hypergraphs
with order tending to infinity such that d(Hn, 1/n) ≥ 1

4 + ε.
(�)

We say that a sequence of 3-uniform hypergraphs (Hn)n∈N is convergent
if for every fixed hypergraph F the probabilities p(F, Hn) that random
|F | vertices of V (Hn) induce a copy of F converge. We refer to p(F, Hn)

as to the induced density of F in Hn . By a standard compactness argu-
ment, every sequence of hypergraphs have a convergent subsequence.
Therefore, we may assume that the sequence given in (�) is convergent.
Our aim is to show that the edge density of the sequence given in (�)

must tend to zero, which would contradict having positive δ-linear den-
sity.
The main tool used for the proof of Theorem 1.3 is the framework of

flag algebras. The framework was introduced by Razborov [10], who was
inspired by the theory of dense graph limits from Borgs et al. [1, 2] and
Lovász and Szegedy [9]. However, unlike just applying the standard flag
algebra approach, in order to prove Theorem 1.3 we need to find a way
of expressing the δ-linear density condition in this framework. Instead
of using the assumption on δ-linear density itself, we establish a certain
type of inequalities that are valid for any convergent sequence of K−4 -free
hypergraphs (Hn) such that d (Hn, f (n)) ≥ 1/4, where f (n) → 0. Let
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us be more specific about that. Fix a K−4 -free hypergraph F , and consider
an arbitrary K−4 -free superhypergraph F

′ of F on |F | + 1 vertices. For
any such a choice of a pair (F, F ′), we obtain one inequality as follows.
Let S be a fixed copy of F in Hn , and let U(S) be the set of vertices
v of V (Hn) \ V (S) such that S ∪ {v} induces F ′ in Hn . Let T be now
three random vertices from Hn not contained in S. The following two
outcomes are possible:

• If the size ofU(S) is small, i.e., o (|V (Hn)|), then both the probability
that T is a subset of U(S) and the probability that T is a subset of
U(S) and spans an edge in Hn , are o(1).

• If the size of U(S) is large, i.e., �(|V (Hn)|), then, by the assumption
on the δ-linear density, the probability that T ⊆ U(S) and span an
edge is at least quarter of the probability that T ⊆ U(S).

Therefore, we get that the following holds for every choice of S

4 · P[T ⊆ U(S) ∧ T ∈ E(Hn)] − P[T ⊆ U(S)] ≥ −o(1). (2.1)

Note that the little o goes to zero with n tending to infinity. The sought
inequality corresponding to the pair (F, F ′) is then obtained by taking the
expectation of (2.1), where the randomness comes from picking a copy S
of F in Hn . This expectation can be expressed using the language of flag
algebras.
It turned out, that for the proof of Theorem 1.3, it is enough to consider

the inequalities for the pairs (F2, F03 ) and (F2, F
1
3 ), where F2 is the only

2-vertex 3-uniform hypergraph, F03 is the empty 3-vertex hypergraph, and
F13 is the 3-vertex hypergraph with one edge.
Recall that our aim is to show that edge density of the sequence given

in (�) tends to zero. Unfortunately, we do not know how to apply flag
algebras directly to derive this claim. Instead, we use them only to show
that induced density of F5 tends to zero, where F5 is the 5-vertex hyper-
graph in Figure 2.1.

Figure 2.1. The hypergraph F5.

To cope with this, we sparsify each hypergraph Hn given in (�), i.e., we
remove each edge of Hn independently with a sufficiently small but fixed
positive probability, say ε/2. Therefore, we obtain a new sequence of
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hypergraphs (In) such that d (In, 1/n) ≥ 1/4 almost surely. Hence, the
induced density of F5 in the sequence (In) tends to zero. However, since
the hypergraphs In were obtained from Hn by a random sparsification, the
non-induced density of F5 in Hn has to tend to zero. But that implies, that
almost every vertex in Hn has degree at most n. Therefore, the number
of edges in Hn is O(n2), which finishes the proof of Theorem 1.3.

References

[1] C. BORGS, J. T. CHAYES, L. LOVÁSZ, V. T. SÓS and K.
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[6] P. ERDŐS and V. T. SÓS, On Ramsey-Turán type theorems for hy-
pergraphs, Combinatorica 2 (1982), 289–295.
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[12] M. SIMONOVITS and V. T. SÓS, Ramsey-Turán theory, Discrete
Mathematics 229 (2001), 293–340.
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An analogue of the Erdó́s-Ko-Rado
theorem for multisets

Zoltán Füredi1, Dániel Gerbner1 and Máté Vizer1

Abstract. We verify a conjecture of Meagher and Purdy [4] by proving that if
1 ≤ t ≤ k, 2k − t ≤ n and F is a family of t-intersecting k-multisets of [n], then

|F | ≤ AK (n + k − 1, k, t),
where AK (n, k, t) := maxi |An,k,t,i | with An,k,t,i := {A : A ⊆ [n], |A| =
k, |A ∩ [t + 2i]| ≥ t + i}.

1 Introduction

1.1 Definitions, notation

Let n and l be positive integers and let

M(n, l) = {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ l}
be an n× l rectangle. We call A ⊆ M(n, l) a k-multiset if the cardinality
of A is k and (i, j) ∈ A implies (i, j ′) ∈ A for all j ′ ≤ j . We think of
multisets as sets with multiplicities, but it helps finding short and precise
notation if we identify them with these special subsets of the rectangle.
We denote the multiplicity of i in F by m(i, F), i.e. m(i, F) := max{s :
(i, s) ∈ F} (m(i, F) ≤ l by definition).
Let F be a family of k-multisets of M(n, l). We call F t-intersecting

if t ≤ |F1 ∩ F2| for all F1, F2 ∈ F . Let

M(n, l, k, t) = {F : F is t-intersecting set of k-multisets of M(n, l)},
i.e. the class of t-intersecting families of k-multisets.
Let F ∈M(n, l, k, t). We call T ⊆ M(n, l) a t-kernel for F if |F1 ∩

F2 ∩ T | ≥ t for all F1, F2 ∈ F .

1 Alfréd Rényi Institute of Mathematics, P.O.B. 127, Budapest H-1364, Hungary. Email: z-
furedi@illinois.edu, gerbner.daniel@renyi.mta.hu, vizer.mate@renyi.mta.hu
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1.2 History

Let us briefly summarize some results using our notation.

Theorem 1.1 (Erdős, Ko, Rado, [3]). If n ≥ 2k and F ∈M(n, 1, k, 1)
then

|F | ≤
(
n − 1
k − 1

)
.

If n > 2k, then equality holds if and only if all members of F contain a
fixed element of [n].
They also proved that if n is large enough, every member of the largest

t-intersecting family of sets contains a fixed t-element set, but did not
give the optimal threshold. Frankl [5] showed for t ≥ 15 and Wilson [6]
for every t that the optimal threshold is n = (k − t + 1)(t + 1). Finally,
Ahlswede and Khachatrian [1] determined the maximum families for all
values of n.

Theorem 1.2 (Ahlswede, Khachatrian [1]). Let t≤k≤n and An,k,t,i=
{A : A ⊆ [n], |A| = k, |A∩[t +2i]| ≥ t + i}. If F ∈M(n, 1, k, t), then

|F | ≤ maxi |An,k,t,i | = AK (n, k, t).

Theorem 1.3 (Meagher, Purdy [4]). If n≥ k+1 andF ∈M(n, k, k, 1),
then

|F | ≤
(
n + k − 2
k − 1

)
.

If n> k + 1, then equality holds if and only if all members of F contain
a fixed element of M(n, k).

1.3 Conjectures

Brockman and Kay stated the following conjecture [2]:

Conjecture 1.4 ([2], Conjecture 5.2). There is n0(k, t) such that if n ≥
n0(k, t) and F ∈M(n, k, k, t), then

|F | ≤
(
n + k − t − 1

k − t

)
.

Furthermore, equality is achieved if and only if each member of F con-
tains a fixed t-multiset of M(n, k).

Meagher and Purdy also gave a possible candidate for the threshold
n0(k, t).
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Conjecture 1.5 ([4], Conjecture 4.1). Let k, n and t be positive integers
with t ≤ k, t (k − t)+ 2 ≤ n and F ∈M(n, k, k, t), then

|F | ≤
(
n + k − t − 1

k − t

)
.

Moreover, if n > t (k − t) + 2, then equality holds if and only if all
members of F contain a fixed t-multiset of M(n, k).

Note that if n < t (k− t)+2, then the family consisting of all multisets
which contain a fixed t-multiset of M(n, k) still has cardinality

(n+k−t−1
k−t

)
,

but cannot be the largest. Indeed, if we fix a t+2-multiset T and consider
the family of the multisets F with|F ∩ T | ≥ t +1, we get a larger family.
1.4 Results

The main idea of our proof is the following: instead of the well-known
left-compression operation, which is a usual method in the theory of in-
tersecting families, we define (in two different ways) an operation on
M(n, l, k, t) which can be called a kind of down-compression.

Theorem 1.6. Let 1 ≤ t ≤ k, 2k− t ≤ n and l be arbitrary. There exists

f :M(n, l, k, t)→M(n, l, k, t)

satisfying the following properties:

(i) |F | = | f (F)| for all F ∈M(n, l, k, t);
(ii) M(n, 1) is a t-kernel for f (F).

Using Theorem 1.6 we prove the following theorem which not only ver-
ifies Conjecture 1.5, but also gives the maximum cardinality of t-inter-
secting families of multisets in the case 2k − t ≤ n ≤ t (k − t)+ 2.
Theorem 1.7. Let 1 ≤ t ≤ k and 2k − t ≤ n. If F ∈M(n, k, k, t) then

|F | ≤ AK (n + k − 1, k, t).

2 Concluding remarks

Note that for a familyAn+k−1,k,t,i we can define a t-intersecting family of
k-multisets in M(n, k), hence the bound given in Theorem 1.7 is sharp.
However, we do not know any nontrivial bounds in case n < 2k − t .
Another interesting problem is the case l < k. Theorem 1.6 gives us a

small t-kernel, but the proof of Theorem 1.7 does not work in this case.
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Polynomial gap extensions
of the Erdó́s–Pósa theorem

Jean-Florent Raymond1 and Dimitrios M. Thilikos2

Abstract. Given a graph H , we denote by M(H) all graphs that can be con-
tracted to H . The following extension of the Erdős–Pósa Theorem holds: for
every h-vertex planar graph H , there exists a function fH : N → N such that ev-
ery graph G, either contains k disjoint copies of graphs inM(H), or contains a
set of fH (k) vertices meeting every subgraph of G that belongs inM(H). In this
paper we prove that fH can be polynomially (upper) bounded for every graph H

of pathwidth at most 2 and, in particular, that fH (k) = 2O(h
2) · k2 · log k. As a

main ingredient of the proof of our result, we show that for every graph H on h
vertices and pathwidth at most 2, either G contains k disjoint copies of H as a mi-

nor or the treewidth of G is upper-bounded by 2O(h
2) · k2 · log k. We finally prove

that the exponential dependence on h in these bounds can be avoided if H = K2,r .

In particular, we show that fK2,r = O(r2 · k2).

1 Introduction

In 1965, Paul Erdős and Lajos Pósa proved that every graph that does not
contain k disjoint cycles, contains a set of O(k log k) vertices meeting
all its cycles [6]. Moreover, they gave a construction asserting that this
bound is tight. This classic result can be seen as a “loose” min-max
relation between covering and packing of combinatorial objects. Various
extensions of this result, referring to different notions of packing and
covering, attracted the attention of many researchers in modern Graph
Theory (see, e.g. [1, 11]).
Given a graph H , we denote by M(H) the set of all graphs that can

be contracted to H (i.e. if H ′ ∈ M(H), then H can be obtained from
H ′ after contracting edges). We call the members of M(H) models of

1 LIRMM, Montpellier, France. Email: jean-florent.raymond@ens-lyon.org

2 Department of Mathematics, National and Kapodistrian University of Athens and CNRS
(LIRMM). Email: sedthilk@thilikos.info
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H . Then the notions of covering and packing can be extended as fol-
lows: we denote by coverH (G) the minimum number of vertices that
meet every model of H in G and by packH (G) the maximum number
of mutually disjoint models of H in G. We say that a graph H has the
Erdős–Pósa Property if there exists a function fH : N → N such that for
every graph G,

if k = packH (G), then k � coverH (G) � fH (k) (1.1)

We will refer to fH as the gap of the Erdős–Pósa Property. Clearly, if
H = K3, then (1.1) holds for fK3 = O(k log k) and the general question
is to find, for each instantiation of H , the best possible estimation of the
gap fH , if it exists.
It turns out that H has the Erdős–Pósa Property if and only if H is a

planar graph. This beautiful result appeared as a byproduct of the Graph
Minors series of Robertson and Seymour. In particular, it is a conse-
quence of the grid-exclusion theorem, proved in [14] (see also [3]).

Proposition 1.1. There is a function g : N → N such that if a graph
excludes an r-vertex planar graph R as a minor, then its treewidth is
bounded by g(r).

In [14] Robertson, Seymour, and Thomas conjectured that g is a low
degree polynomial function. Currently, the best known bound for g is
g(k) = 2O(k log k) and follows from [4] and [13] (see also [12, 14] for
previous proofs and improvements). As the function g is strongly used
in the construction of the function fH in (1.1), the best, so far, estimation
for fH is far from being exponential in general. This initiated a quest for
detecting instantiations of H where a polynomial gap fH can be proved.
The first result in the direction of proving polynomial gaps for the

Erdős–Pósa Property appeared in [9] where H is the graph θc consist-
ing of two vertices connected by c multiple edges (also called c-pumpkin
graph). In particular, in [9] it was proved that fθc(k) = O(c2k2). More
recently Fiorini, Joret, and Sau optimally improved this bound by prov-
ing that fθc(k) � ct · k · log k for some computable constant ct depending
on c [8]. In [15] Fiorini, Joret, and Wood proved that if T is a tree, then
fT (k) � cT · k where cT is some computable constant depending on T .
Finally, very recently, Fiorini [7] proved that fK4 = O(k log k).
Our main result is a polynomial bound on fH for a broad family of

planar graphs, namely those of pathwidth at most 2. We prove the fol-
lowing:

Theorem 1.2. If H is an h-vertex graph of pathwidth at most 2 and h >
5, then (1.1) holds for fH (k) = 2O(h2) · k2 · log k.
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Note that the contribution of h in fH is exponential. However, such a
dependence can be waived when we restrict H to be K2,r . Our second
result is the following:

Theorem 1.3. If H = K2,r , then (1.1) holds for fH (k) = O(r2 · k2).
Both results above are based on a proof of Proposition 1.1, with poly-

nomial g, for the cases where R consists of k disjoint copies of H and
H is either a graph of pathwidth at most 2 or H = K2,3 (Theorems 2.1
and 2.2 respectively). For this, we follow an approach that makes strong
use of the k-mesh structure introduced by Diestel et al. [4] in their proof
of Proposition 1.1. Our proof indicates that, when excluding copies of
some graph of pathwidth at most 2, the entangled machinery of [4] can
be partially modified so that polynomial bounds on treewidth are possi-
ble. Finally, these bounds are then “translated” to polynomial bounds for
the Erdős–Pósa gap using a technique developed in [10] (see also [9]).

Definitions and preliminaries. All graphs in this paper are simple, finite
and undirected and logarithms are binary. We use standard notation in
Graph Theory. We define k ·H as the graph obtained if we take k disjoint
copies of H .

Treewidth. A tree decomposition of a graph G is a tree T whose ver-
tices are some subsets of V (G) such that: (i)

⋃
X∈V (T ) X = V (G), (ii)

for every edge e of G there is a vertex of T containing both end of e, and
(iii) for all v ∈ V (G), the subgraph of T induced by {X ∈ V (T ), v ∈ X}
is connected. The width of a tree decomposition T is defined as equal
to maxX∈V (T ) |X | − 1. The treewidth of G, written tw(G), is the mini-
mum width of any of its tree decompositions. The pathwidth of G, writ-
ten pw(G), is defined as the treewidth if we consider paths instead of
trees.

2 Excluding packings of planar graphs

Theorems 1.2 and 1.3 follow combining the two following results with
the machinery introduced in [10] (see also [9]). They have independent
interest as they detect cases of Theorem 1.1 where g depends polynomi-
ally on k. In this extended abstract we only sketch the proof of Theo-
rem 2.1.

Theorem 2.1. Let H be a graph of pathwidth at most 2 on r > 5 vertices.
If G does not contain k disjoint copies of H as minor then tw(G) �
2O(r

2) · k2 · log 2k.
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Theorem 2.2. For every positive integer r , if G does not contain k dis-
joint copies of K2,r as minor then tw(G) = O(r2k2).

Proof of theorem 2.1. (sketch) We prove the contrapositive. Let k be a
integer, H a graph on r > 5 vertices and of pathwidth at most 2 and G
a graph. It can easily be proved that H �m 	r where 	r is the graph
obtained by a (r × 2) if we subdivide once the “horizontal” edges. If we
show that G contains k disjoint copies of 	r as minors then we are done.

Let g : N→N such that g(k, r)=k2 log 2k
(
180·2r(r−2) − 24 · 212 r(r−2)

)
+

6 · 212 r(r−2) − 1. We prove that for all graph G, tw(G) � g(k, r) implies
that G �m k · 	r . Let k and r > 5 be two positive integers and assume
that tw(G) � g(k, r). We examine below the case where δc(G) < c ·
3rk

√
log 3rk (the case δc(G) � c · 3rk√log 3rk is ommited). Observe

that c · 3rk√log 3rk < c · 3r√log 6r · k√log 2k. Let k0 = k
√
log 2k

and r0 = 3 · 2 r(r−2)2 , and remark that k0 � k and, r0 � c · 3r√log 6r
(remember that c � 648 and r > 5). With these notations, we have
δc(G) < 2k0r0. We will show that G �m k0 · 	r from which yields that
G �m k ·	r . By assumption, tw(G) � g(k, r). Using the results of [4],
we can prove that G contains 2k0 subsets X1, . . . , X2k0 of V (G) and a set

P of k0r0 = 3k0 · 2 r(r−2)2 disjoint paths of length at least 2 in G such that
(i) ∀i ∈ [[1, 2k0]], Xi is of size r0 = 3 · 2 r(r−2)2 and is connected in G by a
tree Ti using the elements of some set A ⊆ V (G), (ii) any path in P has
one of its ends in some Xi with i ∈ [[1, k0]], the other end in X2i and its
internal vertices are in none of the Xl , for all l ∈ [[1, 2k0]], nor in A, and
(iii) ∀i, j ∈ [[1, 2k0]], i �= j ⇒ Ti ∩ Tj = ∅.
We assume that for all i ∈ [[1, 2k0]], Xi = {v ∈ V (Ti), degT (v) � 2}.

It is easy to come down to this case by considering the minor of G ob-
tained after deleting in Ti the leaves that are not in Xi and contracting
one edge meeting a vertex of degree 2 which is not in X while such a
vertex exists. As Ti is a ternary tree, one can easily prove that for all
i ∈ [[1, 2k0]], Ti contains a path containing 2 log 23 |Xi | = (r − 1)2 + 1
vertices of Xi . Let us call Pi such a path whose two ends are in Xi .
Let us consider now the paths {Pi }i∈[[1,2k0]] and the paths that link the el-
ements of different Pi ’s. For each path i ∈ [[1, 2k0]], we choose in Pi
one end vertex (remember that both are in Xi ) that we name pi,0. We
follow Pi from this vertex and we denote the other vertices of Pi ∩ Xi by
pi,1, pi,1, . . . , pi,(r−1)2 in this order. The corresponding vertex of some
vertex pi, j of Pi ∩Xi (for i ∈ [[1, k0]]) is defined as the vertex of P2i ∩X2i
to which pi, j is linked to by a path of P . As said before, the sets {Pi ∩
Xi }i∈[[1,2k0]] are of size (r − 1)2+ 1. According to [5], one can find for all
i ∈ [[1, k0]] a subsequence of length r in pi,0, pi,1, . . . , pi,(r−1)2 , such that
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the corresponding vertices in X2i of this sequence are either in the same
order (with respect to the subscripts of the names of the vertices), or in
reverse order. For all i ∈ [[1, k0]], this subsequence, its corresponding
vertices and the vertices of the paths that link them together forms a 	r

model. We have thus k0 models of 	r in G, that gives us k disjoint mod-
els of	r in G (since k � k0). We showed that for all k and r > 5 positive
integers, if a graph G has tw(G) � g(k, r), then G �m k ·	r . Conse-
quently, if G has treewidth at least g(k, r), then G contains k disjoint
copies of H and we are done.

Postscript. Very recently, the general open problem of estimating fH (k)
when H is a general planar graph has been tackled in [2]. Moreover,
very recently, using the results of [13] we were able to improve both
Theorems 2.1 and 1.3 by proving polynomial (on both k and |V (H)|)
bounds for more general instantiations of H .
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The Erdó́s-Pósa property for long circuits

Dirk Meierling1, Dieter Rautenbach1 and Thomas Sasse1

Abstract. For an integer 
 at least 3, we prove that if G is a graph containing
no two vertex-disjoint circuits of length at least 
, then there is a set X of at most
5
3 
+ 29

2 vertices that intersects all circuits of length at least 
. Our result improves
the bound 2
+ 3 due to Birmelé, Bondy, and Reed (The Erdős-Pósa property for
long circuits, Combinatorica 27 (2007), 135-145) who conjecture that 
 vertices
always suffice.

1 Introduction

A family F of graphs is said to have the Erdős-Pósa property if there is
a function fF : N → N such that for every graph G and every k ∈ N,
either G contains k vertex-disjoint subgraphs that belong to F or there is
a set X of at most fF (k) vertices of G such that G − X has no subgraph
that belongs to F . The origin of this notion is [3] where Erdős and Pósa
prove that the family of all circuits has this property.
Let 
 be an integer at least 3. Let F
 denote the family of circuits of

length at least 
. In [2] Birmelé, Bondy, and Reed show that F
 has the
Erdős-Pósa property with

fF
(k) ≤ 13
(k − 1)(k − 2)+ (2
+ 3)(k − 1), (1.1)

which improves an earlier doubly exponential bound on fF
(k) obtained
by Thomassen [5]. The main contribution of Birmelé, Bondy, and Reed
[2] is to prove (1.1) for k = 2, that is, to show

fF
(2) ≤ 2
+ 3. (1.2)

For k ≥ 3, an inductive argument allows to deduce (1.1) from (1.2).
Birmelé, Bondy, and Reed [2] conjecture that

fF
(2) ≤ 
, (1.3)

1 Institut für Optimierung und Operations Research, Universität Ulm, Ulm, Germany.
Email: dirk.meierling@uni-ulm.de, dieter.rautenbach@uni-ulm.de, thomas.sasse@uni-ulm.de



20 Dirk Meierling, Dieter Rautenbach and Thomas Sasse

that is, for every graph G containing no two vertex-disjoint circuits of
length at least 
, there is a set X of at most 
 vertices such that G − X
has no circuit of length at least 
. In view of the complete graph of order
2
 − 1, (1.3) would be best possible. For 
 = 3, (1.3) was shown by
Lovász [4] and for 
 ∈ {4, 5}, (1.3) was shown by Birmelé [1].
Our contribution in the present paper is the following result.

Theorem 1.1. Let 
 be an integer at least 3. Let G be a graph containing
no two vertex-disjoint circuits of length at least 
.
There is a set X of at most 53
 + 29

2 vertices that intersects all circuits
of length at least 
, that is, fF
(2) ≤ 5

3
+ 29
2 .

While Theorem 1.1 is a nice improvement of (1.2), for k ≥ 3, the
above-mentioned inductive argument still leads to an estimate of the form
fF
(k) = O(
k2).
The rest of this paper is devoted to the proof of Theorem 1.1.

2 Proof of Theorem 1.1

With respect to notation and terminology we follow [2] and recall some
specific notions. All graphs are finite, simple, and undirected. We ab-
breviate vertex-disjoint as disjoint. If A and B are sets of vertices of a
graph G, then an (A, B)-path is a path P in G between a vertex in A and
a vertex in B such that no internal vertex of P belongs to A∪ B. If P is a
path and x and y are vertices of P , then P[x, y] denotes the subpath of P
between x and y. Similarly, if C is a circuit endowed with an orientation
and x and y are vertices of C , then C[x, y] denotes the segment of C
from x to y following the orientation of C . In all figures of circuits the
orientations will be counterclockwise.
We fix an integer 
 at least 3 and call a circuit of length at least 
 long.
If C is a circuit and P and P ′ are disjoint (V (C), V (C))-paths such

that P is between u and v and P ′ is between u′ and v′, then

• P and P ′ are called parallel (with respect to C) if u, u′, v′, v appear
in the given cyclic order on C and

• P and P ′ are called crossing (with respect to C) if u, u′, v, v′ appear
in the given cyclic order on C .

See Figure 2.1.
In the proof of Theorem 1.1 below we consider three cases according

to the length L of a shortest long circuit. If L is less than 3
/2, the
result is trivial. For L between 3
/2 and 2
 the following lemma implies
the desired bound. Finally, for L larger than 2
, Lemma 2.2 implies the
desired bound.
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Figure 2.1. Parallel and crossing pairs of paths.

Lemma 2.1. Let G be a graph containing no two disjoint long circuits.
If the shortest long circuit of G has length L with L ≥ 3

(⌈
1
2

⌉− 2),

then there is a set X of at most 13L + 
 + 14
3 vertices that intersects all

long circuits.

Proof. Let C be a shortest long circuit of G. We endow C with an
orientation. We decompose C into 6 cyclically consecutive and inter-
nally disjoint segments C1, . . . ,C6 such that C1, C3, and C5 have length⌈
1
2

⌉ − 2 and C2, C4, and C6 have lengths between ⌊ 13L − (⌈

1
2

⌉− 2)⌋

and
⌈
1
3L −

(⌈
1
2

⌉− 2)⌉, that is, the six segments cover all of C and Ci

andCi+1 overlap in exactly one vertex for every i ∈ [6]where we identify
indices modulo 6.
Let X1 = V (C1) ∪ V (C3) ∪ V (C5). See the left part of Figure 2.2.

Figure 2.2. On the left the six segments of C and the set X in bold. On the right
a long circuit formed by a (V (C2), V (C4))-path between u and v in G − (X1 ∪
V (C6)).

Let i ∈ [6] be even. Let Pi denote the set of (V (Ci), V (Ci+2))-paths in
G − (X1 ∪ V (Ci+4)). The choice of C implies that every path P in Pi
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has length at least 12
; otherwise P together with a segment of C avoiding
V (Ci+1) forms a long circuit that is shorter than C . See the right part of
Figure 2.2. This implies that for every path P in Pi , P together with a
segment of C containing V (Ci+1) forms a long circuit.
Let P = P2 ∪ P4 ∪ P6. Since G has no two disjoint long circuits, it

follows that P contains no two disjoint parallel paths and no four disjoint
crossing paths. See Figure 2.3.

Figure 2.3. Two disjoint long circuits formed by two disjoint parallel paths in
P or by four disjoint crossing paths in P .

Let X2 be a smallest set of vertices separating V (C2) and V (C4)∪V (C6)
in G − X1. Let X3 be a smallest set of vertices separating V (C4) and
V (C6) in G − (X1 ∪ X2). By the above observations and Menger’s theo-
rem, |X2| ≤ 3 and |X3| ≤ 3.
There is some even j ∈ [6] such that in G − (X1 ∪ X2 ∪ X3), all long

circuits intersectC only in V (C j ); otherwise there is a (V (Ci), V (Ci+2))-
path in G − (X1 ∪ X2 ∪ X3) for some even i ∈ [6]. This implies that
X1 ∪ X2 ∪ X3 ∪ V (C j ) intersects all long circuits of G. Since

|X1 ∪ X2 ∪ X3 ∪ V (C j )| ≤ 3
(⌈
1

2



⌉
− 2

)
+ 3+ 3

+
⌈
1

3
L −

(⌈
1

2



⌉
− 2

)⌉
+ 1

≤ 1

3
L + 
+ 14

3

we obtain the desired result.

Lemma 2.2. Let G be a graph containing no two disjoint long circuits.
If the shortest long circuit of G has length at least 2
− 3, then there is

a set X of at most 32
+ 29
2 vertices that intersects all long circuits.
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Sketch of the proof. We only sketch the proof. Specifically, we do not
give the proofs of the claims. Let C be shortest long circuit of G. Let L
denote the length of C . We endow C with an orientation.
As in [2], a path between two vertices x and y of C that is internally

disjoint from C is called long, if the segments C[x, y] and C[y, x] both
have length at least 12
.

Claim A. Every long path has length at least 
− 1.
Choose a long circuit D of G distinct from C and a segment C[x, y] of
C such that C[x, y] contains V (C) ∩ V (D) and has minimum possible
length. Note that x, y ∈ V (C) ∩ V (D).
We consider the two cases x �= y and x = y. Here we only sketch

the more general case x �= y. Let X1 denote the set of
⌈
1
2

⌉− 1 vertices

immediately preceeding x and let X2 denote the set of
⌈
1
2

⌉− 1 vertices

immediately following y. Let A = V (C) \ (X1 ∪ X2 ∪ V (C[x, y])) and
B = V (C[x, y]). In G − (X1 ∪ X2), there are no two disjoint parallel
(A, B)-paths and no four disjoint crossing (A, B)-paths; otherwise there
would be two disjoint long circuits. Hence, by Menger’s theorem, there
is a set X3 of at most 3 vertices separating A and B in G−(X1∪X2). The
circuit D uniquely decomposes into a set P of at least two (B, B)-paths
of length at least 1.

Claim B. If P contains a path P between x and y, then in G − (X1 ∪
X2 ∪ X3), there are at most

⌈
1
2

⌉+ 1 disjoint (A, V (P))-paths.

Claim C. IfP contains two paths, say P and P ′, between x and y, then in
G−(X1∪X2∪X3), there are at most

⌈
1
2

⌉+1 disjoint (A, V (D))-paths.

Claim D. If P is a path in P that is not a path between x and y, then in
G − (X1 ∪ X2 ∪ X3), there are at most 3 disjoint (A, V (P))-paths.

Claim E. If P1, . . . , P4 are four distinct paths in P that are no paths
between x and y, then in G − (X1 ∪ X2 ∪ X3), there are no four disjoint
paths Q1, . . . , Q4 such that Qi is a (A, V (Pi))-path for i ∈ [4].
Let V1 denote the set of vertices r of D such that P contains a path be-
tween x and y that contains r and let V2 denote the set of vertices s
of D such that P contains a path not between x and y that contains s.
Clearly, V1 ∪ V2 = V (D). By Claims B and C and Menger’s theorem,
there is a set X4 of at most

⌈
1
2

⌉ + 1 vertices separating A and V1 in

G− (X1∪ X2∪ X3). By Claims D and E and Menger’s theorem, there is
a set X5 of at most 9 vertices separating A and V2 in G− (X1∪ X2∪ X3).
Let X = {x, y} ∪ X1 ∪ X2 ∪ X3 ∪ X4 ∪ X5.
If G − X contains a long circuit, say D′, then D′ intersects A. Since

D and D′ intersect, there is an (A, V (D))-path P in G − X . In view of
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X3, P cannot end in B; in view of X4, P cannot end in V1; and, in view
of X5, P cannot end in V2, which is a contradiction. Hence X intersects
all long circuits. Since

|X | ≤ 2+ |X1| + |X2| + |X3| + |X4| + |X5| ≤ 3

2

+ 29

2
,

this completes the proof in the case x �= y. �

Proof of Theorem 1.1. Let C be shortest long circuit of G. Let L denote
the length of C .
If L is at most 53
+ 29

2 , then let X = V (C). If L is larger than 5
3
+ 29

2
but less than 2
−4, then Lemma 2.1 implies the existence of a set X with
the desired properties. If L is at least 2
− 3, then Lemma 2.2 implies the
existence of a set X with the desired properties.

Our main interest was to improve the factor of 
 in the bound in Theorem
1.1 and not the additive constant, which can easily be improved slightly.
The main open problem remains the conjectured inequality (1.3). We

believe that further ideas are needed for its proof. Furthermore, it is un-
clear whether the quadratic dependence on k in (1.1) is best possible. For

 = 3, that is, the classical case considered by Erdős and Pósa [3], it is
known that fF3(k) = O(k log k).
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A hypergraph Turán theorem via
Lagrangians of intersecting families

Dan Hefetz1 and Peter Keevash2

Abstract. Let K33,3 be the 3-graph with 15 vertices {xi , yi : 1 ≤ i ≤ 3} and
{zi j : 1 ≤ i, j ≤ 3}, and 11 edges {x1, x2, x3}, {y1, y2, y3} and {{xi , y j , zi j } :
1 ≤ i, j ≤ 3}. We show that for large n, the unique largest K33,3-free 3-graph on
n vertices is a balanced blow-up of the complete 3-graph on 5 vertices. Our proof
uses the stability method and a result on Lagrangians of intersecting families that
has independent interest.

1 Introduction

The Turán number ex(n, F) is the maximum number of edges in an F-
free r-graph on n vertices. It is a long-standing open problem in Extremal
Combinatorics to develop some understanding of these numbers for gen-
eral r-graphs F . For ordinary graphs (r = 2) the picture is fairly com-
plete, but for r ≥ 3 there are very few known results. Turán [5] posed
the natural question of determining ex(n, F) when F = Kr

t is a complete
r-graph on t vertices. To date, no case with t > r > 2 of this ques-
tion has been solved, even asymptotically. For a summary of progress on
hypergraph Turán problems we refer the reader to the survey [2].
In this paper, we determine the Turán number of the 3-graph K3

3,3 with
vertices {xi , yi : 1 ≤ i ≤ 3} and {zi j : 1 ≤ i, j ≤ 3}, and edges
{x1, x2, x3}, {y1, y2, y3} and {{xi , y j , zi j } : 1 ≤ i, j ≤ 3}. For an integer
n ≥ 5, let T 35 (n) denote the balanced blow-up of K

3
5 on n vertices, that

is, we partition the vertices into 5 parts of sizes �n/5� or �n/5�, and take
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as edges all triples in which the vertices belong to 3 distinct parts. Write
t35 (n) := e(T 35 (n)). Our main result is as follows.

Theorem 1.1. ex(n,K3
3,3) = t35 (n) for sufficiently large n. Moreover, if

n is sufficiently large and G is a K3
3,3-free 3-graph with n vertices and

t35 (n) edges, then G
∼= T 35 (n).

We prove Theorem 1.1 by the stability method and Lagrangians. Given
an r-graphG on [n] = {1, . . . , n}, we define a polynomial in the variables
x = (x1, . . . , xn) by

pG(x) :=
∑

e∈E(G)

∏
i∈e

xi .

The Lagrangian of G is

λ(G) = max{pG(x) : xi ≥ 0 for 1 ≤ i ≤ n and
n∑
i=1

xi = 1}.

A key tool in the proof will be the following result that determines the
maximum possible Lagrangian among all intersecting 3-graphs: it is
uniquely achieved by K 3

5 , which has λ(K
3
5 ) =

(5
3

)
(1/5)3 = 2/25.

Theorem 1.2. Let G be an intersecting 3-graph. If G �=K 3
5 , then λ(G)≤

λ(K 3
5 )− 10−3.

2 Lagrangians of intersecting 3-graphs

In this section we provide a rough sketch of the proof of Theorem 1.2.
Our proof consists of the following two steps:

(1) Prove that it suffices to bound from above the Lagrangian of a small
number of specific 3-graphs.

(2) Bound from above the Lagrangian of the 3-graphs determined in
step (1).

Step (1) consists of the following sub-steps:

(a) Prove that it suffices to consider intersecting 3-graphs which satisfy
certain desirable properties (e.g. the set of hyperedges is maximal
with respect to inclusion and covers pairs of vertices whose weight in
the assignment under consideration is strictly positive).

(b) Apply a down shifting operation (or just shifting for brevity) to the
set of hyperedges of the 3-graphs considered and prove that there is
just a small number of resulting hypergraphs and that these have some
desirable properties (all of these are depicted in Figure 2.1; note that



29 A hypergraph Turán theorem via Lagrangians of intersecting families

every such hypergraph has at most 7 vertices). Given an intersecting
3-graph F with vertex set [n], a shift of F is any hypergraph obtained
by applying the following rule: as long as there exist i ∈ A ∈ F such
that F ′ = (F \ {A}) ∪ {A \ {i}} is intersecting, replace F by F ′ and
repeat.

(c) For every 3-graph F as in (a) let S(F) be the hypergraph obtained
from it by shifting in (b). We define a 3-graph G = Gen(n, S(F))
such that |V (G)| = n and G ⊇ F . The family L of all such G is the
family of 3-graphs we will consider in step (2).

Is step (2) we go through all 3-graphs in L and prove a suitable upper
bound on the Lagrangian of each of its elements. The details vary from
3-graph to 3-graph but the general idea is to use the method of lagrange
multipliers while making use of a combinatorial weight shifting argu-
ment.

Figure 2.1. The family of hypergraphs resulting from down shifting.

3 An application to a hypergraph Turán problem

In this section we apply Theorem 1.2 to prove our main theorem on the
Turán number ofK3

3,3, namely that for large n, the unique extremal exam-
ple is T 35 (n), i.e. the balanced blow-up of K

3
5 . First we note some simple

facts about T 35 (n). It isK3
3,3-free, as for any attempted embedding ofK3

3,3

in T 35 (n), there must be some 1 ≤ i, j ≤ 3 such that xi and y j lie in
the same part, but then xi y j zi j cannot be an edge. The number of edges
satisfies

t35 (n) =
∑

0≤i< j<k≤4

⌊
n + i

5

⌋
·
⌊
n + j

5

⌋
·
⌊
n + k

5

⌋
= 2

25
n3 + O(n2).
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Also, the minimum degree satisfies

δ35(n) = t35 (n)−t35 (n−1) =
∑

0≤i< j≤3

⌊
n + i

5

⌋
·
⌊
n + j

5

⌋
= 6

25
n2+O(n).

We start by showing that the asymptotic result follows quickly from The-
orem 1.2. First we need some definitions. Suppose F and G are r-graphs.
The Turán density of F is π(F) = limn→∞

(n
r

)−1
ex(n, F). Given r-

graphs F and G we say f : V (F) → V (G) is a homomorphism if it
preserves edges, i.e. f (e) ∈ E(G) for all e ∈ E(F). We say that G
is F-hom-free if there is no homomorphism from F to G. The blow-up
density is b(G) = r !λ(G). We say G is dense if every proper subgraph
G ′ satisfies b(G ′) < b(G). We also need the following two standard facts
(see e.g. [2, Section 3]):

(i) π(F) is the supremum of b(G) over F-hom-free dense G,
(ii) dense r-graphs cover pairs.

Theorem 3.1. ex(n,K3
3,3) = 2

25n
3 + o(n3).

Proof. An equivalent formulation is that π(K3
3,3) = 12

25 . The lower bound
is given by the construction T 35 (n). For the upper bound, by fact (i)
above, it suffices to show that b(G) ≤ 12/25 for anyK3

3,3-hom-free dense
G. Suppose for a contradiction that G is K3

3,3-hom-free, dense, and has
λ(G) > 2/25. By Theorem 1.2, G is not intersecting, so we can choose
disjoint edges {x1, x2, x3} and {y1, y2, y3}. Then by fact (ii), G covers
pairs, so for every 1 ≤ i, j ≤ 3 there exists an edge {xi , y j , zi j }. How-
ever, this defines a homomorphism from K3

3,3 to G, which contradicts G
being K3

3,3-hom-free.

3.1 Stability

In order to prove Theorem 1.1, we will first prove the following stability
result.

Theorem 3.2. For any ε > 0 there exist δ > 0 and an integer n0 such
that ifF is aK3

3,3-free 3-graph with n≥n0 vertices and at least ( 225−δ)n3
edges, then there exists a partition V (F) = A1 ∪ . . . ∪ A5 of the vertex
set of F such that

∑
1≤i< j≤5 e(Ai ∪ A j ) < εn3.

Part of our proof follows the main ideas of [3]. The proof consists of
two main stages. In the first stage we gradually change F (as well as
some other related structure) by iterating a process which is called Sym-
metrization. This process consists of two parts: Cleaning and Merging.
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We refer to the basic object with which we operate as a pointed parti-
tioned 3-graph; by this we mean a triple (G,P,U) where G = (V, E)
is a 3-graph, P = {Pu : u ∈ V } is a partition of V such that u ∈ Pu
for every u ∈ V , and U ⊆ V is a transversal of P . The ultimate goal of
this process is to end up with a pointed partitioned 3-graph (Fsym,P,U)
such that Fsym[U ] ∼= K 3

5 and (1/5− β)n ≤ |A| ≤ (1/5+ β)n for every
part A ∈ P , where β > 0 is a sufficiently small real number. Note that
Theorem 1.2 plays a crucial role in achieving this goal.
The second stage is to show that F[V (Fsym)] is a subgraph of a blow-

up of K 3
5 . To do so, we will reverse the Merging steps performed during

Symmetrization (this process was called Splitting in [3]). Since the first
stage ensures that |V (F)| − |V (Fsym)| is very small, this will complete
the proof of Theorem 3.2.
Using Theorem 3.2 we can now prove Theorem 1.1. Let F = (V, E)

be a maximum sizeK3
3,3-free 3-graph on n vertices, where n is sufficiently

large. Clearly |E | ≥ t35 (n). The main steps of the proof are as follows:

(1) Show that it suffices to prove Theorem 1.1 under the additional as-
sumption that the minimum degree of F is at least δ35(n).

(2) Let V = A1 ∪ . . . ∪ A5 be a partition of the vertex set of F which
minimizes

� :=
∑

1≤i< j≤5
e(Ai ∪ A j )− 2

5∑
i=1

e(Ai).

Using Theorem 3.2 we can assume that � < εn3.
(3) Observe that ||Ai | − n/5| ≤ δn for every 1 ≤ i ≤ 5 and some
small real number δ > 0 as otherwise we would have the contradiction
|E | ≤ 2n3/25− δ2n3/40+ εn3 < t35 (n).

(4) Using (1), the fact that F is K3
3,3-free and the minimality of the par-

tition in (2), prove that for every u ∈ V there are at most αn2 edges
e ∈ E such that u ∈ e and |e ∩ Ai | > 1 holds for some 1 ≤ i ≤ 5,
where α > 0 is a small real number.

(5) Using (1), the fact that F is K3
3,3-free and the minimality of the par-

tition in (2), prove that |e ∩ Ai | ≤ 1 holds for every 1 ≤ i ≤ 5 and
every e ∈ E .

4 Concluding remarks and open problems
The natural open problem is to extend our results from 3-graphs to gen-
eral r-graphs. We would like to determine the Turán number of the r-
graph Kr

r,r with vertex set

V (Kr
r,r )={xi , yi : 1 ≤ i ≤ r} ∪ {zi jk : 1 ≤ i, j ≤ r, 1 ≤ k ≤ r − 2}
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and edge set

E(Kr
r,r )={{x1,..., xr }, {y1,..., yr }}∪{{xi , y j , zi j1,..., zi j (r−2)} :1≤ i, j≤r}.

The main difficulty seems to be in obtaining the analogue of Theorem 1.2,
i.e. determining the maximum Lagrangian of an intersecting r-graph. At
first, one might think that Kr

2r−1 should be optimal, since this is the case
when r = 3. However, this has Lagrangian (2r−1r ) (

1
2r−1

)r
, whereas stars

(in which edges consist of all r-tuples containing some fixed vertex) give
Lagrangians that approach 1

r !
(
1− 1

r

)r−1
, which is better for r ≥ 4. We

conjecture that stars are optimal for r ≥ 4 and that their blow-ups are
extremal. Namely, we conjecture that the following hypergraph Turán
result holds. Let Sr (n) be the r-graph on n vertices with parts A and B,
where the edges consist of all r-tuples with 1 vertex in A and r−1 vertices
in B, and the sizes of A and B are chosen to maximise the number of
edges (so |A| ∼ n/r). Write sr (n) = e(Sr (n)).
Conjecture 4.1. ex(n,Kr

r,r ) = sr (n) for r ≥ 4 and sufficiently large
n > n0(r). Moreover, if n is sufficiently large and G is a Kr

r,r -free r-
graph with n vertices and sr (n) edges, then G ∼= Sr (n).
More generally, our work suggests a direction of investigation in Ex-

tremal Combinatorics, namely to determine the maximum Lagrangian for
any specified property of r-graphs. For this paper, the property was that
of being intersecting. This direction was already started by Frankl and
Füredi [1], who considered the question of maximising the Lagrangian
of an r-graph with a specified number of edges. They conjectured that
initial segments of the colexicographic order are extremal. Many cases
of this have been proved by Talbot [4], but the full conjecture remains
open.
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Tight minimum degree conditions forcing
perfect matchings in uniform hypergraphs

Andrew Treglown1 and Yi Zhao2

Abstract. Given positive integers k and 
 where k/2 ≤ 
 ≤ k − 1, we give
a minimum 
-degree condition that ensures a perfect matching in a k-uniform
hypergraph. This condition is best possible and improves on work of Pikhurko [12]
who gave an asymptotically exact result, and extends work of Rödl, Ruciński and
Szemerédi [15] who determined the threshold for 
 = k − 1. Our approach makes
use of the absorbing method.

1 Introduction

A central question in graph theory is to establish conditions that ensure
a (hyper)graph H contains some spanning (hyper)graph F . Of course,
it is desirable to fully characterize those (hyper)graphs H that contain a
spanning copy of a given (hyper)graph F . Tutte’s theorem [18] charac-
terizes those graphs with a perfect matching. (A perfect matching in a
(hyper)graph H is a collection of vertex-disjoint edges of H which cover
the vertex set V (H) of H .) However, for some (hyper)graphs F it is un-
likely that such a characterization exists. Indeed, for many (hyper)graphs
F the decision problem of whether a (hyper)graph H contains F is NP-
complete. For example, in contrast to the graph case, the decision prob-
lem whether a k-uniform hypergraph contains a perfect matching is NP-
complete for k ≥ 3 (see [4, 6]). Thus, it is desirable to find sufficient
conditions that ensure a perfect matching in a k-uniform hypergraph.
Given a k-uniform hypergraph H with an 
-element vertex set S (where

0 ≤ 
 ≤ k − 1) we define dH (S) to be the number of edges containing
S. The minimum 
-degree δ
(H) of H is the minimum of dH (S) over all
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-element sets S of vertices in H . Clearly δ0(H) is the number of edges
in H . We also refer to δ1(H) as the minimum vertex degree of H and
δk−1(H) the minimum codegree of H .
Over the last few years there has been a strong focus in establish-

ing minimum 
-degree thresholds that force a perfect matching in a k-
uniform hypergraph. See [13] for a survey on matchings (and Hamilton
cycles) in hypergraphs. In particular, Rödl, Ruciński and Szemerédi [15]
determined the minimum codegree threshold that ensures a perfect
matching in a k-uniform hypergraph on n vertices for all k ≥ 3. The
threshold is n/2 − k + C , where C ∈ {3/2, 2, 5/2, 3} depends on the
values of n and k. This improved bounds given in [9, 14].
Less is known about minimum vertex degree thresholds that force

a perfect matching. One of the earliest results on perfect matchings
was given by Daykin and Häggkvist [3], who showed that a k-uniform
hypergraph H on n vertices contains a perfect matching provided that
δ1(H) ≥ (1 − 1/k)

(n−1
k−1

)
. Hàn, Person and Schacht [5] determined,

asymptotically, the minimum vertex degree that forces a perfect matching
in a 3-uniform hypergraph. Kühn, Osthus and Treglown [10] and inde-
pendently Khan [7] made this result exact. Khan [8] has also determined
the exact minimum vertex degree threshold for 4-uniform hypergraphs.
For k ≥ 5, the precise minimum vertex degree threshold that ensures a
perfect matching in a k-uniform hypergraph is not known.
The situation for 
-degrees where 1 < 
 < k − 1 is also still open.

Hàn, Person and Schacht [5] provided conditions on δ
(H) that ensure a
perfect matching in the case when 1 ≤ 
 < k/2. These bounds were sub-
sequently lowered by Markström and Ruciński [11]. Alon et al. [1] gave
a connection between the minimum 
-degree that forces a perfect match-
ing in a k-uniform hypergraph and the minimum 
-degree that forces a
perfect fractional matching. As a consequence of this result they de-
termined, asymptotically, the minimum 
-degree which forces a perfect
matching in a k-uniform hypergraph for the following values of (k, 
):
(4, 1), (5, 1), (5, 2), (6, 2), and (7, 3).
Pikhurko [12] showed that if 
 ≥ k/2 and H is a k-uniform hypergraph

whose order n is divisible by k then H has a perfect matching provided
that δ
(H) ≥ (1/2 + o(1))

( n
k−


)
. This result is best possible up to the

o(1)-term (see the constructions inHext(n, k) below).
In [16,17] we make Pikhurko’s result exact. In order to state this result,

we need some more definitions. Fix a set V of n vertices. Given a parti-
tion of V into non-empty sets A, B, let Ek

odd(A, B) (E
k
even(A, B)) denote

the family of all k-element subsets of V that intersect A in an odd (even)
number of vertices. (Notice that the ordering of the vertex classes A, B is
important.) Define Bn,k(A, B) to be the k-uniform hypergraph with ver-
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tex set V = A ∪ B and edge set Ek
odd(A, B). Note that the complement

Bn,k(A, B) of Bn,k(A, B) has edge set Ek
even(A, B).

Suppose n, k ∈ N such that k divides n. DefineHext(n, k) to be the col-
lection of the following hypergraphs: Hext(n, k) contains all hypergraphs
Bn,k(A, B) where |A| is odd. Further, if n/k is odd then Hext(n, k) also
contains all hypergraphsBn,k(A, B)where |A| is even; if n/k is even then
Hext(n, k) also contains all hypergraphs Bn,k(A, B) where |A| is odd.
It is easy to see that no hypergraph in Hext(n, k) contains a perfect

matching. Indeed, first assume that |A| is even and n/k is odd. Since
every edge of Bn,k(A, B) intersects A in an odd number of vertices,
one cannot cover A with an odd number of disjoint odd sets. Similarly
Bn,k(A, B) does not contain a perfect matching if |A| is odd and n/k is
even. Finally, if |A| is odd then since every edge of Bn,k(A, B) intersects
A in an even number of vertices, Bn,k(A, B) does not contain a perfect
matching.
Given 
 ∈ N such that k/2 ≤ 
 ≤ k−1 define δ(n, k, 
) to be the maxi-

mum of the minimum 
-degrees among all the hypergraphs inHext(n, k).
For example, it is not hard to see that

δ(n,k,k−1)=

⎧⎪⎪⎨⎪⎪⎩
n/2− k + 2 if k/2 is even and n/k is odd
n/2− k + 3/2 if k is odd and (n − 1)/2 is odd
n/2− k + 1/2 if k is odd and (n − 1)/2 is even
n/2− k + 1 otherwise.

(1.1)

In [16,17] we prove the following exact version of Pikhurko’s result.

Theorem 1.1. Let k, 
 ∈ N such that k ≥ 3 and k/2 ≤ 
 ≤ k − 1. Then
there exists an n0 ∈ N such that the following holds. Suppose H is a
k-uniform hypergraph on n ≥ n0 vertices where k divides n. If

δ
(H) > δ(n, k, 
)

then H contains a perfect matching.

In [16] we prove Theorem 1.1 for k divisible by 4 and then in [17] we
extend this result to all values of k. Independent to our work, Czygrinow
and Kamat [2] have proven Theorem 1.1 in the case when k = 4 and

 = 2.
As explained before, the minimum 
-degree condition in Theorem 1.1

is best possible. Theorem 1.1 and (1.1) together give the aforementioned
result of Rödl, Ruciński and Szemerédi [15].
In general, the precise value of δ(n, k, 
) is unknown because it is not

known what value of |A|maximizes the minimum 
-degree ofBn,k(A, B)
(or Bn,k(A, B)). (See [16] for a discussion on this.) However, in [16] we
gave a tight upper bound on δ(n, 4, 2).
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2 Overview of the proof of Theorem 1.1

The proof of Theorem 1.1 follows the so-called stability approach. We
first prove that

(i) H has a perfect matching or;
(ii) H is ‘close’ to one of the hypergraphs Bn,k(A, B) or Bn,k(A, B) in

Hext(n, k).

The extremal situation (ii) is then dealt with separately. For example,
suppose H is ‘close’ to an element Bn,k(A, B) from Hext(n, k). (So we
can view A, B as a partition of V (H).) The minimum 
-degree condition
on H ensures that H contains an edge e that intersects A in an even
number of vertices. Recall that no such edge exists in Bn,k(A, B); this is
the ‘reason’ why Bn,k(A, B) does not have a perfect matching. Thus, e
acts as a ‘parity breaking’ edge and can be used to form part of a perfect
matching in H .

Almost perfect matchings

To show that (i) or (ii) holds, we apply the following result of Markström
and Ruciński [11] to ensure an ‘almost’ perfect matching in H .

Theorem 2.1 (Lemma 2 in [11]). For each integer k ≥ 3, every 1 ≤

 ≤ k− 2 and every γ > 0 there exists an n0 ∈ N such that the following
holds. Suppose that H is a k-uniform hypergraph on n ≥ n0 vertices
such that

δ
(H) ≥
(
k − 

k

− 1

k(k−
)
+ γ

)(
n − 

k − 


)
.

Then H contains a matching covering all but at most
√
n vertices.

(In [11], Markström and Ruciński only stated Theorem 2.1 for 1 ≤ 
 <
k/2. In fact, their proof works for all values of 
 such that 1 ≤ 
 ≤ k−2.)
In the case when 
 = k − 1, we need a result of Rödl, Ruciński and
Szemerédi [15, Fact 2.1]: Suppose H is a k-uniform hypergraph on n
vertices. If δk−1(H) ≥ n/k, then H contains a matching covering all but
at most k2 vertices in H . Note that this minimum codegree condition is
substantially smaller than the corresponding condition in Theorem 1.1.
Further, if k/2 ≤ 
 < k − 1 then the minimum 
-degree condition in
Theorem 2.1 is also substantially smaller than the minimum 
-degree in
Theorem 1.1.

Absorbing sets

Given a k-uniform hypergraph H , a set S ⊆ V (H) is called an absorbing
set for Q ⊆ V (H), if both H [S] and H [S∪Q] contain perfect matchings.
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If the hypergraph H in Theorem 1.1 contains a ‘small’ set S which is
an absorbing set for any set Q ⊆ V (H) where |Q| ≤ √n is divisible by
k, then it is easy to find a perfect matching in H . Indeed, in this case the
minimum 
-degree of H − S satisfies the hypothesis of Theorem 2.1 (or
the hypothesis of Fact 2.1 in [15] if 
 = k − 1). Thus, H − S contains a
matching M covering all but a set Q of at most

√
n vertices. Then since

H [S ∪ Q] contains a perfect matching M ′, M ∪M ′ is a perfect matching
in H .
We give two conditions that ensure such an absorbing set S exists in H

(and thus guarantee a perfect matching in H ). Roughly speaking, the first
condition asserts that V (H) contains ‘many’ 
-tuples whose 
-degree is
‘significantly’ larger than δ(n, k, 
). The second condition concerns a
certain ‘common neighbourhood’ property. (Fixing r := �k/2�, this con-
dition roughly asserts that for any r-tuple P ∈ (V (H)

r

)
, more than half of

the r-tuples P ′ in
(V (H)

r

)
are such that P and P ′ have a common neigh-

bourhood which is not ‘too small’.) We will refer to these properties as
(α) and (β) respectively.

The auxiliary graph G

We then show that if H does not satisfy (α) and (β), then (ii) must be
satisfied. That is, H is ‘close’ to one of the hypergraphs Bn,k(A, B)
or Bn,k(A, B) in Hext(n, k). For this, we consider an auxiliary bipartite
graph G defined as follows: Set r := �k/2�, r ′ := �k/2�, Xr := (V (H)

r

)
and Yr

′ := (V (H)
r ′

)
. Further, let N := (n

r

)
and N ′ := (n

r ′
)
. G has vertex

classes Xr and Yr
′
. Two vertices x1 . . . xr ∈ Xr and y1 . . . yr ′ ∈ Yr

′
are

adjacent in G if and only if x1 . . . xr y1 . . . yr ′ ∈ E(H).
We show that, since H fails to satisfy (α) and (β), G is ‘close’ to the

disjoint union of two copies of KN/2,N ′/2. Once we have this information,
we give direct arguments on G to show that this implies that (ii) is indeed
satisfied.
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Fractional and integer matchings
in uniform hypergraphs

Daniela Kühn1, Deryk Osthus2 and Timothy Townsend3

Abstract. A conjecture of Erdős from 1965 suggests the minimum number of
edges in a k-uniform hypergraph on n vertices which forces a matching of size
t , where t ≤ n/k. Our main result verifies this conjecture asymptotically, for
all t < 0.48n/k. This gives an approximate answer to a question of Huang,
Loh and Sudakov, who proved the conjecture for t ≤ n/3k2. As a consequence
of our result, we extend bounds of Bollobás, Daykin and Erdős by asymptoti-
cally determining the minimum vertex degree which forces a matching of size
t < 0.48n/(k − 1) in a k-uniform hypergraph on n vertices. We also obtain fur-
ther results on d-degrees which force large matchings. In addition we improve
bounds of Markström and Ruciński on the minimum d-degree which forces a per-
fect matching in a k-uniform hypergraph on n vertices. Our approach is to induc-
tively prove fractional versions of the above results and then translate these into
integer versions.

Large matchings in hypergraphs with many edges

A k-uniform hypergraph is a pair G = (V,E) where V is a finite set of
vertices and the edge set E consists of unordered k-tuples of elements of
V . A matching (or integer matching) M in G is a set of disjoint edges of
G. The size of M is the number of edges in M . M is perfect if it has size
|V |/k.
A classical theorem of Erdős and Gallai [6] determines the number

of edges in a graph which forces a matching of a given size. In 1965,
Erdős [5] made a conjecture which would generalize this to k-uniform
hypergraphs.
Conjecture 1. Let n, k ≥ 2 and 1 ≤ s ≤ n/k be integers. The minimum
number of edges in a k-uniform hypergraph on n vertices which forces a
matching of size s is

max

{(
ks − 1
k

)
,

(
n

k

)
−

(
n − s + 1

k

)}
+ 1.

It is easy to see that the conjecture would be best possible: the first ex-
pression in the lower bound is obtained by considering the k-uniform

1 School of Mathematics, University of Birmingham, Birmingham B15 2TT, United Kingdom.
Email: d.kuhn@bham.ac.uk
2 School of Mathematics, University of Birmingham, Birmingham B15 2TT, United Kingdom.
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3 School of Mathematics, University of Birmingham, Birmingham B15 2TT, United Kingdom.
Email: txt238@bham.ac.uk
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clique K (k)ks−1 (complemented by n − ks + 1 isolated vertices); the sec-
ond expression in the lower bound is obtained as follows. Let H(s) be
a k-uniform hypergraph on n vertices with edge set consisting of all k-
element subsets of V (H(s)) intersecting a given subset of V (H(s)) of
size s − 1, that is H(s) = K (k)n − K (k)n−s+1.
The case s = 2 of Conjecture 1 corresponds to the Erdős-Ko-Rado

Theorem on intersecting families [7]. The conjecture also has applica-
tions to the Manickam-Mikós-Singhi conjecture in number theory (for
details see e.g. [2]). Despite its seeming simplicity Conjecture 1 is still
wide open in general. For the cases k ≤ 4, it was verified asymptotically
by Alon, Frankl, Huang, Rödl, Ruciński and Sudakov [1]. For k = 3,
it was recently proved by Frankl [8]. Bollobás, Daykin and Erdős [3]
proved Conjecture 1 for general k whenever s < n/(2k3), which ex-
tended earlier results of Erdős [5]. Huang, Loh and Sudakov [10] proved
it for s < n/(3k2). The main result in this paper verifies Conjecture 1
asymptotically for matchings of any size up to almost half the size of a
perfect matching. This gives an asymptotic answer to a question in [10].

Theorem 2. [15] Let n, k ≥ 2 and 0 ≤ a < 0.48/k be such that n, k,
an ∈ N. The minimum number of edges in a k-uniform hypergraph on n
vertices which forces a matching of size an is(

1− (1− a)k + o(1)
) (n

k

)
.

Large matchings in hypergraphs with large degrees

It is also natural to consider degree conditions that force matchings in
uniform hypergraphs. Given a k-uniform hypergraph G = (V, E) and
S ∈ (V

d

)
, where 0 ≤ d ≤ k − 1, let degG(S) = |{e ∈ E : S ⊆ e}| be

the degree of S in G. Let δd(G) = minS∈(Vd){degG(S)} be the minimum
d-degree of G. When d = 1, we refer to δ1(G) as the minimum vertex
degree of G. Note that δ0(G) = |E |.
For integers n, k, d, s satisfying 0 ≤ d ≤ k − 1 and 0 ≤ s ≤ n/k,

we let ms
d(k, n) denote the minimum integer m such that every k-uniform

hypergraph G on n vertices with δd(G) ≥ m has a matching of size s.
So the results discussed in the previous section correspond to the case
d = 0. The following degree condition for forcing perfect matchings has
been conjectured in [9, 14] and also received much attention recently.

Conjecture 3. Let n and 1 ≤ d ≤ k − 1 be such that n, d, k, n/k ∈ N.
Then

mn/k
d (k, n) =

(
max

{
1

2
, 1−

(
k − 1
k

)k−d}
+ o(1)

)(
n − d

k − d

)
.
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The lower bound here is given by the hypergraph H(n/k) defined after

Conjecture 1 and the following parity-based construction from [13]. For
any integers n, k, let H ′ be a k-uniform hypergraph on n vertices with
vertex partition A ∪ B = V (H ′), such that ||A| − |B|| ≤ 2 and |A| and
n/k have different parity. Let H ′ have edge set consisting of all k-element
subsets of V (H ′) that intersect A in an odd number of vertices. Observe
that H ′ has no perfect matching, and that for every 1 ≤ d ≤ k − 1 we
have that δd(H ′) = (1/2+ o(1))

(n−d
k−d

)
.

For d = k − 1, mn/k
k−1(k, n) was determined exactly by Rödl, Ruciński

and Szemerédi [19]. This was generalized by Treglown and Zhao [20],
who determined the extremal families for all d ≥ k/2. The extremal con-
structions are similar to the parity based one of H ′ above. For d < k/2
less is known. In [1] Conjecture 3 was proved for k − 4 ≤ d ≤ k − 1, by
reducing it to a probabilistic conjecture of Samuels. In particular, this im-
plies Conjecture 3 for k ≤ 5. Khan [11], and independently Kühn, Osthus
and Treglown [16], determined mn/k

1 (k, n) exactly for k = 3. Khan [12]
also determined mn/k

1 (k, n) exactly for k = 4. As a consequence of these
results, ms

1(k, n) is determined exactly whenever s ≤ n/k and k ≤ 4 (for
details see the concluding remarks in [16]). More generally, we propose
the following version of Conjecture 3 for non-perfect matchings.

Conjecture 4. For all ε > 0 and all integers n, d, k, s with 1 ≤ d ≤ k−1
and 0 ≤ s ≤ (1− ε)n/k we have

ms
d(k, n) =

(
1−

(
1− s

n

)k−d + o(1)

)(
n − d

k − d

)
.

In fact it may be that the bound holds for all s ≤ n − C , for some C
depending only on d and k. The lower bound here is given by H(s).
The case d = k − 1 of Conjecture 4 follows easily from the determi-
nation of ms

k−1(k, n) for s close to n/k in [19]. Bollobás, Daykin and
Erdős [3] determined ms

1(k, n) for small s, i.e. whenever s < n/2k3. As
a consequence of our main result, for 1 ≤ d ≤ k − 2 we are able to
determine ms

d(k, n) asymptotically for non-perfect matchings of any size
less than 0.48n/(k − d). Note that this proves Conjecture 4 in the case
0.53k ≤ d ≤ k − 2, say.
Theorem 5. [15] Let ε > 0 and let n, k, d be integers with 1 ≤ d ≤ k−2,
and let 0 ≤ a < min{0.48/(k−d), (1−ε)/k} be such that an ∈ N. Then

man
d (k, n) =

(
1− (1− a)k−d + o(1)

) (n − d

k − d

)
.



42 Daniela Kühn, Deryk Osthus and Timothy Townsend

We now focus again on the case s = n/k, i.e. perfect matchings. It was
shown by Hàn, Person and Schacht [9] that for k ≥ 3, 1 ≤ d < k/2 we
have mn/k

d (k, n) ≤ ((k − d)/k + o(1))
(n−d
k−d

)
. (The case d = 1 of this is

already due to Daykin and Häggkvist [4].) These bounds were slightly
improved by Markström and Ruciński [17], using similar techniques, to

mn/k
d (k, n) ≤

(
k − d

k
− 1

kk−d
+ o(1)

)(
n − d

k − d

)
.

Using similar methods to those developed to prove Theorem 5, we are
also able to slightly improve on this bound.

Theorem 6 ([15]). Let n and 1 ≤ d < k/2 be such that n, k, d, n/k ∈ N.
Then

mn/k
d (k, n) ≤

(
k − d

k
− k − d − 1

kk−d
+ o(1)

)(
n − d

k − d

)
.

Large fractional matchings

Our approach to proving these results uses the concepts of fractional
matchings and fractional vertex covers. A fractional matching in a k-
uniform hypergraph G = (V, E) is a function w : E → [0, 1] of weights
of edges, such that for each v ∈ V we have∑e∈E :v∈e w(e) ≤ 1. The size
of w is

∑
e∈E w(e). w is perfect if it has size |V |/k. A fractional vertex

cover in G is a function w : V → [0, 1] of weights of vertices, such that
for each e ∈ E we have

∑
v∈e w(v) ≥ 1. The size of w is

∑
v∈V w(v).

A key idea (already used e.g. in [1, 18]) is that we can switch between
considering the largest fractional matching and the smallest fractional
vertex cover of a hypergraph. The determination of these quantities are
dual linear programming problems, and hence by the Duality Theorem
they have the same size.
For s ∈ R we let f sd (k, n) denote the minimum integer m such that

every k-uniform hypergraph G on n vertices with δd(G) ≥ m has a frac-
tional matching of size s. It was shown in [18] that f n/kk−1(k, n) = �n/k�.
Similarly to [1], we now formulate the fractional version of Conjecture
1.

Conjecture 7. For all integers n,k,s with k≥2 and 1≤s≤ n/k we have

f s0 (k, n) = max
{(

ks − 1
k

)
,

(
n

k

)
−

(
n − s + 1

k

)}
+ 1.

As discussed in [1], this conjecture has applications to a problem on in-
formation storage and retrieval. To prove Theorems 2 and 5, we first
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prove Conjecture 7 asymptotically for fractional matchings of any size
up to 0.48n/k.

Theorem 8 ([15]). Let n, k≥2 be integers and let 0≤a≤0.48/k. Then
f an0 (k, n) =

(
1− (1− a)k + o(1)

) (n
k

)
.

We use Theorem 8, along with methods similar to those developed in [1],
to convert our edge-density conditions for the existence of fractional
matchings into corresponding minimum degree conditions. For 1 ≤ d ≤
k− 2 the following theorem asymptotically determines f sd (k, n) for frac-
tional matchings of any size up to 0.48n/(k − d). Note that this deter-
mines f sd (k, n) asymptotically for all s ∈ (0, n/k) whenever d ≥ 0.52k.
Theorem 9 ([15]). Let n, k ≥ 3, and 1 ≤ d ≤ k − 2 be integers and let
0 ≤ a ≤ min{0.48/(k − d), 1/k}. Then

f and (k, n) =
(
1− (1− a)k−d + o(1)

) (n − d

k − d

)
.

We then use Theorem 8 and a variant of Theorem 9, along with the Weak
Hypergraph Regularity Lemma, to prove Theorems 2 and 5 respectively,
by converting our fractional matchings into integer ones. We prove The-
orem 6 in a similar fashion, via the following two theorems.

Theorem 10 ([15]). Let n, k ≥ 2, d ≥ 1 be integers. Then

f n/(k+d)0 (k, n) ≤
(

k

k + d
− k − 1
(k + d)k

+ o(1)

)(
n

k

)
.

Theorem 11 ([15]). Let n, k ≥ 3, 1 ≤ d ≤ k − 2 be integers. Then

f n/kd (k, n) ≤
(
k − d

k
− k − d − 1

kk−d
+ o(1)

)(
n − d

k − d

)
.
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Cubic graphs



On cubic bridgeless graphs whose
edge-set cannot be covered
by four perfect matchings

Louis Esperet1 and Giuseppe Mazzuoccolo2

Abstract. The problem of establishing the number of perfect matchings necessary
to cover the edge-set of a cubic bridgeless graph is strongly related to a famous
conjecture of Berge and Fulkerson. In this paper we show that deciding whether
this number is at most 4 for a given cubic bridgeless graph is NP-complete. Our
proof makes heavy use of small cuts, so an interesting problem is to construct
large snarks (cyclically 4-edge-connected cubic graphs of girth at least five and
chromatic index four) whose edge-set cannot be covered by 4 perfect matchings. A
well-known example is the Petersen graph and the unique other known examples
were recently found by Hägglund using a computer program. In this paper we
construct an infinite family F of snarks whose edge-set cannot be covered by 4
perfect matchings. It turns out that the family F also has interesting properties
with respect to the shortest cycle cover problem. The Petersen graph and one
of the graphs constructed by Hägglund are the only known snarks with m edges
and no cycle cover of length 4

3m (indeed their shortest cycle covers have length
4
3m + 1). We show that all the members of F satisfy the former property, and we

construct a snark with no cycle cover of length less than 43m + 2.

1 Introduction

Throughout this paper, a graph G always means a simple connected finite
graph (without loops and parallel edges). A perfect matching of G is a
1-regular spanning subgraph of G. In this context, a cover, or a k-cover
of G is a set of k perfect matchings of G such that each edge of G be-
longs to at least one of the perfect matchings. Following the terminology
introduced in [2], the excessive index of G, denoted by χ ′e(G), is the least
integer k such that G has a k-cover.
A famous conjecture of Berge and Fulkerson [6] states that the edge-set

of every cubic bridgeless graph can be covered by 6 perfect matchings,

1 Laboratoire G-SCOP (Grenoble-INP, CNRS), Grenoble, France.
Email: louis.esperet@g-scop.inpg.fr. Partially supported by the French Agence Nationale de la
Recherche under reference ANR-10-JCJC-0204-01.

2 Laboratoire G-SCOP (Grenoble-INP, CNRS), Grenoble, France.
Email: mazzuoccolo@unimore.it. Research supported by a fellowship from the European Project
“INdAM fellowships in mathematics and/or applications for experienced researchers cofunded by
Marie Curie actions”.
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such that each edge is covered precisely twice. The second author re-
cently proved that this conjecture is equivalent to another conjecture of
Berge stating that every cubic bridgeless graph has excessive index at
most five [10].
Note that a cubic bridgeless graph has excessive index 3 if and only if it

is 3-edge-colorable, and deciding the latter is NP-complete. Hägglund [7,
Problem 3] asked if it is possible to give a characterization of all cubic
graphs with excessive index 5. We show that a characterization of all
cubic graphs with excessive index at least 5 is unlikely unless P=NP.

Theorem 1.1. Determining whether a cubic bridgeless graph G satisfies
χ ′e(G) ≤ 4 (resp. χ ′e(G) = 4) is an NP-complete problem.
The gadgets used in the proof of NP-completeness have many 2-edge-

cuts, so our first result does not say much about 3-edge-connected cubic
graphs. A snark is a non 3-edge-colorable cubic graph with girth (length
of a shortest cycle) at least five that is cyclically 4-edge-connected. A
question raised by Fouquet and Vanherpe [5] is whether the Petersen
graph is the unique snark with excessive index at least five. This ques-
tion was answered by the negative by Hägglund using a computer pro-
gram [7]. He proved that the smallest snark distinct from the Petersen
graph having excessive index at least five is a graph H̊ on 34 vertices.
We show that the graph H̊ found by Hägglund is a special member of an
infinite family F of snarks with excessive index precisely five.
We also show that our family F has interesting properties with respect

to shortest cycle covers. A cycle cover of a graph G is a covering of
the edge-set of G by cycles (connected subgraphs with all degrees even),
such that each edge is in at most one cycle. The length of a cycle cover
is the sum of the number of edges in all cycles of the cover. The Shortest
Cycle Cover Conjecture of Alon and Tarsi [1] states that every bridge-
less graph G has a cycle cover of length at most 75 |E(G)|. Note that it
was recently proved by Steffen [11] and Hou, Lai, and Zhang [8] that it
is enough to prove the Cycle Double Cover conjecture (a famous con-
jecture due to Seymour and Szekeres, and implied by the Shortest Cycle
Cover Conjecture) for snarks with excessive index at least five. For a
cubic bridgeless graph G there is a trivial lower bound of 43 |E(G)| on
the length of a cycle cover. On the other hand, the best known upper
bound, 3421 |E(G)|, was obtained by Kaiser, Král’, Lidický, Nejedlý, and
Šámal [9] in 2010.
We show that no graph G in our infinite family F has a cycle cover of

length 4
3 |E(G)|. We also find the first known snark with no cycle cover

of length less than 4
3 |E(G)| + 2 (it has 106 vertices).
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The reader is referred to the full version of the paper [4] for more
results and proofs.

2 An infinite family of snarks with excessive index 5

In this section we show how to construct a snark G with excessive index
at least 5 from three snarks G0,G1,G2 each having excessive index at
least 5. Taking G0 = G1 = G2 to be the Petersen graph, we obtain
the graph H̊ found by Hägglund using a computer program [7], and for
which no combinatorial proof showing that its excessive index is 5 was
known. Our proof holds for any graph obtained using this construction,
thus we exhibit an infinite family F of snarks with excessive index 5.
This answers a question of Fouquet and Vanherpe [5] in a very strong
sense.
The construction For i = 0, 1, 2, consider a snark Gi with an edge xi yi .
Let x0i and x

1
i (resp. y

0
i and y

1
i ) be the neighbors of xi (resp. yi ) in Gi

different from yi (resp. xi ). For i = 0, 1, 2, let Hi be the graph obtained
from Gi by removing vertices xi and yi . We construct a new graph G
from the disjoint union of H0, H1, H2 and a new vertex u as follows.
For i = 0, 1, 2, we introduce a set Ai = {ai , bi , ci } of vertices such that
ai is adjacent to x0i+1 and y

0
i−1, bi is adjacent to x

1
i+1 and y

1
i−1, and ci is

adjacent to ai , bi and u (here and in the following all indices i are taken
modulo 3). This construction is depicted in Figure 2.1.

Figure 2.1. The construction of G (right) from G0, G1, and G2.

Theorem 2.1. Let G0,G1,G2 be snarks such that χ ′e(Gi) ≥ 5 for i =
0, 1, 2. Then the graph G obtained from G0,G1,G2 by the construction
above is a snark with χ ′e(G) ≥ 5.

3 Shortest cycle cover

The length of a shortest cycle cover of a bridgeless graph G is denoted by
scc(G). Note that for any cubic graph G, scc(G) ≥ 4

3 |E(G)|. We show
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that for any graph G in the family F , scc(G) > 4
3 |E(G)|.

Theorem 3.1. Let G0,G1,G2 be snarks such that scc(Gi) >
4
3 |E(Gi)|

for i = 0, 1, 2. Then the graph G obtained from G0,G1,G2 by the
construction of Section 2 is a snark with scc(G) > 4

3 |E(G)|.

Figure 3.1. A snark G with scc(G) ≥ 4
3 |E(G)| + 2.

Furthermore, we exhibit the first known snark G satisfying scc(G) >
4
3 |E(G)| + 1.
Theorem 3.2. Any cycle cover of the graph G depicted in Figure 3.1 has
length at least 43 |E(G)| + 2.

4 Open problems

Hägglund proposed the following two problems (Problems 3 and 4 in
[7]):

• Is it possible to give a simple characterization of cubic graphs G with
χ ′e(G) = 5?
• Are there any cyclically 5-edge-connected snarks G with excessive

index at least five distinct from the Petersen graph?

If Berge-Fulkerson conjecture is true, then the first problem has a neg-
ative answer by Theorem 1.1 (unless P=NP). However, even assuming
the correctness of Berge-Fulkerson conjecture, the second problem is
still open, since each element of the infinite family F contains cyclic 4-
edge-cuts. Furthermore, the gadgets we use in the proof of Theorem 1.1
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have many 2-edge-cuts. Hence we leave open the problem of establish-
ing whether it is possible to give a simple characterization of 3-edge-
connected or cyclically 4-edge-connected cubic graphs with excessive
index (at least) 5.
Theorem 3.2 proves the existence of a snark G ∈ F with no cycle

cover of length less than 4
3 |E(G)| + 2. We believe that there exist snarks

in F for which the constant 2 can be replaced by an arbitrarily large
number. On the other hand, Brinkmann, Goedgebeur, Hägglund, and
Markström [3] conjectured that every snark G has a cycle cover of size
at most ( 43 + o(1))|E(G)|.
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Relating ordinary and total domination
in cubic graphs of large girth

Simone Dantas1, Felix Joos2, Christian Löwenstein2,
Dieter Rautenbach2 and Deiwison S. Machado1

Abstract. For a cubic graph G of order n, girth at least g, and domination number(
1
4 + ε

)
n for some ε ≥ 0, we show that the total domination number of G is at

most 1332n + O
(
n
g

)
+ O(εn), which implies γt (G)

γ (G) ≤ 1.92472+ O
(
n
g

)
.

For a finite, simple, and undirected graph G, a set D of vertices of G is
a dominating set of G if every vertex in V (G) \ D has a neighbor in D.
Similarly, a set T of vertices of G is a total dominating set of G if every
vertex in V (G) has a neighbor in T . Note that a graph has a total domi-
nating set exactly if it has no isolated vertex. The minimum cardinalities
of a dominating and a total dominating set of G are known as the domi-
nation number γ (G) of G and the total domination number γt(G) of G,
respectively. These two parameters are among the most fundamental and
well studied parameters in graph theory [3, 4, 6]. In view of their com-
putational hardness especially upper bounds were investigated in great
detail.
The two parameters are related by some very simple inequalities. Let

G be a graph without isolated vertices. Since every total dominating set
of G is also a dominating set of G, we immediately obtain

γt(G) ≥ γ (G). (1)

Similarly, if D is a dominating set of G, then adding, for every isolated
vertex u of the subgraph G[D] of G induced by D, a neighbor of u in G
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to the set D, results in a total dominating set of G, which implies

γt(G) ≤ 2γ (G). (2)

The complete bipartite graph Kn/2,n/2 and the complete graph Kn show
that (1) and (2) are sharp, respectively. In [2, 5] the trees that satisfy (1)
or (2) with equality are characterized constructively.
While numerous very deep results concerning bounds on the domi-

nation number and the total domination number under various conditions
have been obtained, the relation of these two parameters is not really well
understood. The characterization of the extremal graphs for (1) and (2)
and/or improvements of (1) and (2) even under strong additional assump-
tions appear to be very difficult. If the graph G arises, for instance, by
subdividing every edge of the complete graph Kn with n ≥ 3 twice, then
γ (G) = n and γt(G) = 2n − 1, that is, forbidding cycles of length up to
8 does not allow to improve (2) by much. Similarly, if the graph G has
vertex set

⋃
i∈[k](Ai ∪ Bi ∪ Ci), where

• the sets Ai , Bi , and Ci for all i ∈ [k] are disjoint,
• |Ai | = a, |Bi | = a + 1, and |Ci | = ka for every i ∈ [k],
• the closed neighborhood NG[u] of a vertex u in A j for j ∈ [k] is
Bj ∪⋃

i∈[k] Ai ,• the closed neighborhood NG[v] of a vertex v in Bj for j ∈ [k] is
A j ∪ {v} ∪ C j , and

• the closed neighborhood NG[w] of a vertex w in C j for j ∈ [k] is
Bj ∪ C j ,

then G is regular of degree (k + 1)a, has connectivity a, diameter 5,
γ (G) = k + 1, and γt(G) = 2k, that is, a large minimum degree, a large
degree of regularity, a large connectivity, a small diameter, and a large
value of the domination number do not force any serious improvement
of (2).

In the present extended abstract we consider the relation of the domina-
tion number and the total domination number for cubic graphs of large
girth.
Let G be a cubic graph of order n and girth at least g, that is, G has

no cycles of length less than g. Clearly, γ (G) ≥ 1
4n and γt(G) ≥ 1

3n.
The best known upper bound on the domination number of G, improving
earlier results from [10,11], is due to Král et al. [9], who show

γ (G) ≤ 0.299871n + O

(
n

g

)
. (3)
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Combining the above bounds, we immediately obtain the following im-
provement of (1).

Corollary 1. If G is a cubic graph of order n and girth at least g, then

γt(G)

γ (G)
≥ 1.111589− O

(
1

g

)
.

For a graph G of order n, minimum degree at least 2, and girth at least

g, Henning and Yeo [7, 8] show γt(G) ≤ 1
2n + O

(
n
g

)
. Applying a trick

from [10], this result leads to the following corollary.

Corollary 2. If G is a cubic graph of order n and girth at least g, then

γt(G) ≤ 121

248
n + O

(
n

g

)
≤ 0.488n + O

(
n

g

)
. (4)

Proof. LetG be as in the statement. In view of the desired bound, wemay
assume that g is sufficiently large. Since the 5th power of the line graph
of G is neither an odd cycle nor complete, has order 32n, and maximum
degree 124, the theorem of Brooks implies that there is a set M of at least
3
248n edges of G at pairwise distance at least 5 in G. Let T0 denote the set
of 2|M| vertices incident with the edges in M and let G1 = G \ NG[T0].
By construction, the graph G1 has order n − 6|M|, minimum degree at
least 2, and girth at least g. By the above result of Henning and Yeo, the
graph G1 has a total dominating set T1 of order at most 12(n − 6|M|) +
O

(
n
g

)
. Since T0 ∪ T1 is a total dominating set of G, we obtain

γt(G) ≤ 2|M| + 1

2
(n − 6|M|)+ O

(
n

g

)
≤ 1

2
n − |M| + O

(
n

g

)
≤ 1

2
n − 3

248
n + O

(
n

g

)
= 121

248
n + O

(
n

g

)
,

which completes the proof.
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Combining the above bounds, we immediately obtain the following im-
provement of (2).

Corollary 3. If G is a cubic graph of order n and girth at least g, then

γt(G)

γ (G)
≤ 121

62
+ O

(
1

g

)
≤ 1.952+ O

(
1

g

)
.

Note that Corollary 1 can only be close to the truth if the total domination
number is close to 1

3n. Similarly, Corollary 3 can only be close to the
truth if the domination number is close to 1

4n. Our main result shows
that, for a cubic graph G of order n and girth at least g, for which the
domination number is close to 1

4n, the total domination number is smaller
than guaranteed by (4). Specifically, we prove the following result.

Theorem 4. If G is a cubic graph of order n, girth at least g, and domi-
nation number

(
1
4 + ε

)
n for some ε ≥ 0, then

γt(G) ≤ 13

32
n + 15

4(g − 1)n +
187

8
εn ≤ 0.40625n + O

(
n

g

)
+ O(εn).

Because of the space restriction, we omit the proof of Theorem 4 in the
present extended abstract.
This result allows to improve Corollary 3 as follows.

Corollary 5. If G is a cubic graph of order n and girth at least g, then

γt(G)

γ (G)
≤ 701437

364436
+ O

(
n

g

)
≤ 1.92472+ O

(
n

g

)
.

Proof. Let G be as in the statement and let γ (G) = (
1
4 + ε

)
n for some

ε ≥ 0. By Corollary 2 and Theorem 4, we obtain
γt(G)

γ (G)
≤ min

{
13
32 + 187

8 ε,
121
248n

}
1
4 + ε

+ O

(
n

g

)
.

Since
(
13
32 + 187

8 ε
)
/
(
1
4 + ε

)
is increasing as a function of ε ≥ 0 and 13

32 +
187
8 ε = 121

248n for ε = 81
23188 , the desired result follows.

While the constants in our results improve previous estimates, they are
clearly far from the truth and should be improved. Suitably modifying
the proof strategy of Theorem 4, it is possible to show an upper bound on
the domination number of a cubic graph G of order n and girth at least g,
for which the total domination number is close to 1

3n. Unfortunately, this
bound is weaker than the result of Král et al. [9].
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Snarks with large oddness
and small number of vertices

Robert Lukot’ka1, Edita Máčajová2, Ján Mazák1

and Martin Škoviera2

Abstract. We estimate the minimum number of vertices of a cubic graph with
given oddness and cyclic connectivity. We show that a 2-connected cubic graph G
with oddness ω(G) different from the Petersen graph has order at least 5.41ω(G),
and for any integer k with 2 ≤ k ≤ 6 we construct an infinite family of cu-
bic graphs with cyclic connectivity k and small oddness ratio |V (G)|/ω(G). For
cyclic connectivity 2, 4, 5, and 6 we improve the upper bounds on the oddness ratio
of snarks to 7.5, 13, 25, and 99 from the known values 9, 15, 76, and 118, respec-
tively. We also construct a cyclically 4-connected snark of girth 5 with oddness 4
and order 44, improving the best previous value of 46.

1 Introduction

Snarks are connected bridgeless cubic graphs with chromatic index 4,
sometimes required to satisfy additional conditions, such as cyclic 4-
edge-connectivity and girth at least five, to avoid triviality. There are
several important conjectures in graph theory where snarks are the prin-
cipal obstacle: if true for snarks, they would hold for all graphs. Some
of the conjectures have been verified for snarks that are close to 3-edge-
colourable graphs. For example, the 5-flow conjecture is known to hold
for snarks with oddness at most 2, and the cycle double cover conjecture
has been verified for snarks with oddness at most 4 (see [4,5]). However,
snarks with large oddness remain potential counterexamples to these and
other conjectures, and therefore merit further investigation.
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The oddness of a cubic graph G, denoted by ω(G), is the minimum
number of odd circuits in a 2-factor of G. A cubic graph is 3-edge-
colourable if and only if its oddness is 0, so oddness provides a natural
measure of uncolourability of a cubic graph. Another common measure
of uncolourability is the resistance of G, ρ(G), the minimum number of
edges whose removal from G yields a 3-edge-colourable graph. Since
ρ(G) ≤ ω(G), resistance provides a practical lower bound for odd-
ness [8].
Our aim to provide bounds on the the ratio |V (G)|/ω(G) for a snark

G within the class of cyclically k-connected snarks. So far, only triv-
ial lower bounds for oddness ratio have been known; as regards the up-
per bounds, there are various constructions, probably not optimal. Since
the oddness ratio of the Petersen graph is 5, it is meaningless to attempt
improving this absolute lower bound. In Section 22 we therefore take
an asymptotic approach similar to that found in [3] and [8]. We sum-
marise the known results and our improvements in Table 11; we only
consider cyclic connectivity k ≤ 6 since no cyclically 7-connected snarks
are known. In fact, they are believed not to exist.

connectivity k LB current UB previous UB
2 5.41 7.5 9 (Steffen [8])
3 5.52 9 9 (Steffen [8])
4 5.52 13 15 (Hägglund [3])
5 5.83 25 76 (Steffen [8])
6 7 99 118 (Kochol [6])

Table 1. Upper (UB) and lower (LB) bounds on oddnes ratio |V |/ω.

Besides general bounds, we are also interested in identifying the smallest
snarks with oddness 4, addressing a long-standing open problem restated
as Problem 4 in [1]. Our best results in this direction are shown in Fig-
ure 4.1 and described in Section 44. For more details and full proofs
see [7].

2 Oddness and resistance ratios

The oddness ratio of a snark G is the quantity |V (G)|/ω(G), and its
resistance ratio is |V (G)|/ρ(G). We also examine asymptotic quantities

Aω = lim inf
|V (G)|→∞

|V (G)|
ω(G)

and Aρ = lim inf
|V (G)|→∞

|V (G)|
ρ(G)

.

Since the oddness ratio of a graph is at least as large as its resistance ratio,
we have Aω ≤ Aρ . The oddness and resistance ratios heavily depend
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on the cyclic connectivity of a graph in question. This suggests to study
analogous values Akω and A

k
ρ obtained under the assumption that the class

of snarks is restricted to those with cyclic connectivity at least k. Note
that A2ω = Aω, A2ρ = Aρ , and Akω ≤ Akρ for every k ≥ 2. Similar ideas
were pursued by Steffen [8] who proved that 8 ≤ Aρ ≤ 9 and therefore
Aω ≤ Aρ ≤ 9. Since snarks constructed in [8] are cyclically 3-connected,
we also have Aω = A2ω ≤ A3ω ≤ A3ρ ≤ 9.

3 Lower bounds on oddness ratio

A snark with girth at least 5 has oddness ratio at least 5. This bound is
best possible because of the Petersen graph, but it can be improved for
any other graph. Our approach is based on the following key observation.

Proposition 3.1. Let C be a set of 5-circuits of a bridgeless cubic graph
G. Then G has a 2-factor that contains at most 1/6 of 5-circuits from C.

Proof. Let P be the perfect matching polytope of G. For a vector x ∈
R|E(G)| let x(e) denote the entry corresponding to an edge e ∈ E(G), and
let δ(U) be the set of all edges with precisely one end in the subgraph
U of G. Since G is cubic and bridgeless, we have P �= ∅. Note that
the vector t = (1/3, 1/3, . . . , 1/3) always belongs to P . Consider the
function

f (x) =
∑
C∈C

∑
e∈δ(C)

x(e)

defined for each x ∈ P . Since f is linear, there is a vertex of P where f
reaches its minimum. Since t ∈ P , we have f (x0) ≤ 5/3 · |C|.
Let M be the perfect matching corresponding to x0 and let F be the

2-factor complementary to M . Assume that F contains k circuits from C.
If a 5-circuit C ∈ C belongs to F , it adds 5 to the sum in f (x0). If C does
not belong to F , it adds at least 1. Altogether f (x0) ≥ 5k + (|C| − k) =
|C| + 4k. Since f (x0) ≤ 5/3 · |C|, we obtain k ≤ |C|/6.
Proposition 3.1 has an interesting corollary: If G is a snark different

from the Petersen graph, then for every vertex v of G there exists a 2-
factor F of G such that every 5-circuit of F misses v. This gives a much
shorter alternative way of proving the result of DeVos [2] that the Petersen
graph is the only cubic graph having each 2-factor composed only of 5-
cycles.
The following lemma provides the main tool for bounding oddness

from above.

Lemma 3.2. Let G be a snark of order n with girth at least 4. If G has
q circuits of length 5, then ω(G) ≤ 3n + q/21.
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4 Constructions

Cyclic connectivity 2. Figure 4.1 (top) displays the smallest snarks of
oddness 4. Their order is 28 and cyclic connectivity is 2 and 3, respec-
tively. The proof of minimality is computer assisted. We also create an
infinite family of snarks with oddness ratio approaching 7.5 from below
and conjecture that every snark with oddness ω has at least 7.5ω − 5
vertices.

Cyclic connectivity 4. Let Pv4 and P
e
4 be the Petersen graph with either

two adjacent vertices removed or two non-adjacent edges disconnected,
respectively, and the dangling edges retained. There are two pairs of
dangling edges in both. By the Parity Lemma, in Pv4 the dangling edges
of each pair must have the same colour for every 3-edge-colouring, while
in Pe

4 they must have different colours. If we join a pair of dangling edges
from Pv4 to a pair of dangling edges from Pe

4 , we get an uncolourable 4-
pole N1 with 18 vertices. The 4-pole N2 with 26 vertices arises from Pe

4
and two distinct copies of Pv4 by joining each pair of dangling edges of
Pe
4 to a pair of edges edges in a different copy of P

v
4 . The 4-pole N2 is

uncolourable even after the removal of a vertex w. This is clearly true
if w belongs to a copy of Pv4 . If it was false for some w from a copy
of Pe

4 , then P
e
4 would have a 3-edge-colouring where the edges in both

pairs of dangling edges have the same colour. This would yield a 3-edge-
colouring of the Petersen graph minus a vertex, but no such colouring
exists.
To construct a cyclically 4-connected snark with arbitrarily large odd-

ness we take a number of copies of N1 and a number of N2, arrange them
into a circuit, and join one pair of dangling edges from each copy to a pair
of dangling edges of its predecessor and another pair of dangling edges
to a pair of dangling edges of its successor. The way in which copies
of N1 and N2 are arranged is not unique, therefore we may get several
non-isomorphic graphs even if we only use copies of one of N1 and N2.
In this construction, each copy of N1 adds 1 and each copy of N2 adds

2 to the resistance of the resulting graph. Thus if we take r copies of N2,
we get a cyclically 4-connected snark of order 26r with resistance 2r and
oddness at least 2r . If we take r copies of N2 and one copy of N1 we get a
cyclically 4-connected snark of order 26r+18 with resistance 2r+1 and
oddness at least 2r + 2. This shows, in particular, that A4ω ≤ A4ρ ≤ 13.
For r = 1 we obtain a cyclically 4-connected snark of order 44 with

resistance 3 and oddness 4 shown in Figure 4.1, currently the smallest
known non-trivial snark of oddness 4, improving the previous value of
46 [3].



63 Snarks with large oddness and small number of vertices

Cyclic connectivity 6. Let P3 be the Petersen graph with one vertex
removed and the dangling edges retained. Take r copies Q1, Q2, . . . , Qr

of P3. Arrange them into a circuit and, for each i ∈ {1, 2, . . . , r}, join
one dangling edge of Qi to a dangling edge of Qi−1 and do the same
for Qi+1 (indices reduced modulo r). There are r/2 pairs of oppositely
positioned copies of P3; join the remaining dangling edges for each such
pair. The result of is a cubic graph Lr of order 9r and resistance r .
To obtain a snark with cyclic connectivity 6 we apply superposition

to Lr (see [6] for details). Nontrivial supervertices will be copies of the
7-pole X having a vertex incident with three edges belonging to differ-
ent connectors, plus two more edges joining the first two connectors of
size 3. Nontrivial superedges will be copies of a 6-pole Y with 18 vertices
created from the flower snark J5 by removing two nonadjacent vertices,
one from the single 5-circuit of J5. We choose a circuit C in Lr which
passes through five vertices of each copy of P3 and finish the superposi-
tion by replacing each vertex on C with a copy of X and each edge on C
with a copy of Y ; we use trivial supervertices and superedges everywhere
outside C . The resulting graph has order 99r . Its resistance is at least r
due to the following proposition.

Proposition 4.1. Let G̃ be a snark resulting from a proper superposition
of a snark G. Then ρ(G̃) ≥ ρ(G).

Figure 4.1. Smallest snarks of oddness 4 with cyclic connectivity 2, 3, 4.
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Non-trivial snarks with given circular
chromatic index

Robert Lukot’ka1 and Ján Mazák1

Abstract. We introduce a new framework designed for constructing graphs with
given circular chromatic index. This framework allows construction of graphs with
arbitrary maximum degree and with additional properties, e.g. high connectivity or
large girth. We utilize this framework to construct a cyclically 4-edge-connected
cubic graph with girth 5 and circular chromatic index r for any rational r ∈ (3, 3+
1/4.5).

1 Introduction

Edge-colourings of graphs emerged more than a century ago among the
first topics in graph theory. They are especially important for 3-regular
graphs because of their deep connections to various other branches of
graph theory. According to the Vizing theorem, every cubic graph has
a 4-edge-colouring; most of them have a 3-edge-colouring. Bridgeless
cubic graphs with chromatic index 4 are called snarks.
It transpired that certain snarks are in many settings trivial when com-

pared to others. The most interesting snarks are those that are cyclically
4-edge-connected and have girth at least 5. Such snarks are called non-
trivial. A discussion of several aspects of triviality of snarks can be found
in [6].
For a real number r ≥ 2, a circular r-edge-colouring of a given graph

G is a mapping c : E(G)→ [0, r) such that 1 ≤ |c(e)− c( f )| ≤ r − 1
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for any two adjacent edges e and f of G. The circular chromatic index of
G is the infimum of all r such that G has a circular r-edge-colouring. In
fact, this infimum is always attained and the value of circular chromatic
index is always rational for a finite graph G. A proof of this and many
other properties of circular colourings can be found in the surveys [7, 8].
It is known that if a graph G has a circular r-edge-colouring and r is an
integer, then G also has an r-edge-colouring with colours being integers
from the set {0, 1, . . . , r − 1}. Thus we may omit the word “circular”
when referring to an r-edge-colouring.
Afshani et al. [1] proved that the circular chromatic index of a 2-edge-

connected cubic graph lies in the interval [3, 11/3]. The only known
bridgeless cubic graph with circular chromatic index greater than 7/2 is
the Petersen graph with index 11/3. It was conjectured that there are
no other such graphs; this folklore conjecture was proved for bridgeless
cubic graphs with girth at least six [3]. For any rational r ∈ (3, 10/3),
there are infinitely many cubic graphs with circular chromatic index r ;
the only known construction giving an interval of realized values of χ ′c is
described in [4]. All new snarks constructed in [4] contain 2-edge-cuts
and are thus trivial; the purpose of the present paper is to improve the
construction method and then use it to produce non-trivial snarks with
given circular chromatic index.
In the original construction, one has to construct the desired graph with

circular chromatic index r together with a feasible r-edge-colouring. Our
first improvement separates the construction of the graph from the con-
struction of the colouring; in fact, the colouring is obtained from the
modified construction without any additional effort. The second im-
provement consists in simplifying the construction to its bare essentials.
The concept of balanced schemes hides many of the technical details
and helps both authors and prospective readers. Another promising as-
pect of balanced schemes is that they do not depend on degrees of ver-
tices of the graph being constructed. We describe the framework in
Section 2.
Although we are dealing only with cubic graphs throughout the pa-

per, our framework can be extended to regular graphs with larger de-
gree in a straightforward way. In fact, only the building blocks would be
different—the rest of the machinery works with no change. Thus only the
current lack of suitable blocks separates us from a construction of regular
graphs with given circular chromatic index. We have also managed to
construct snarks of large girth with given circular chromatic index r from
some interval (3, 3+ α), however, the relation between girth and α is yet
to be determined.
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2 Balanced schemes

Our new construction is based on the concept of monochromatic net-
works devised in [4]. We refer the reader to this article for all the details
on monochromatic networks not covered here.
A p-line monochromatic network N is a subcubic graph with 2p ver-

tices of degree one called terminals. The terminals of the network N are
paired into p disjoint pairs in such a way that in every proper 3-edge-
colouring of N , the edges incident to paired terminals have the same
colour; we will denote this pairing by P(N ). The terminal edge incident
to a terminal v of a network N is denoted by e(v).
Two monochromatic networks can be naturally joined by identifying

terminal edges. A monochromatic line of a network N is a set of edges
having the same colour in every 3-edge-colouring of N and contain-
ing the two edges adjacent to the vertices in a pair of terminals from
P(N ). By joining monochromatic networks we also merge monochro-
matic lines; in fact, we are only interested in primary monochromatic
lines which are created from a starting terminal edge (which is a
monochromatic line in itself) by repeatedly extending it by joining other
monochromatic networks. Primary monochromatic lines are a crucial
concept of our construction.
For ε ∈ [0, 1], the ε-changeability of a network N is the maximal

possible value of ∑
(x,y)∈P(N )

|c(e(x))− c(e(y))|3+ε

over all (3 + ε)-edge-colourings c of N , where |q|3+ε = min{|q|, |3 +
ε − q|}. It is clear that if we join two monochromatic networks M and
N , the ε-changeability of the resulting monochromatic network does not
exceed the sum of ε-changeabilities of M and N .
Monochromatic networks with one or two lines can be easily con-

structed from any cubic graph by cutting an edge of any cubic graph
or by removing two adjacent vertices and turning the dangling edges into
terminal edges. This construction yields a 2-line monochromatic network
B from the Petersen graph (Figure 2.1).
Our aim is to simplify the view of monochromatic networks composed of
many smaller networks. We will represent such monochromatic networks
by schemes. An r-balanced scheme is a pair S = (G, ϕ) such that
• G is a multigraph that may contain parallel edges and semiedges; we
denote the end of an edge e incident with a vertex v by ev;

• ϕ is a labeling by rational numbers that assigns a value to both ends
of every edge and one value to each semiedge;
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Figure 2.1. The monochromatic network B with a (3+ ε)-edge-colouring.

• the sum of values at every vertex v of G (one value for every incident
edge or semiedge) is r .

The set of vertices of the underlying multigraph G of a scheme S is de-
noted by V (S). The vertices of S represent primary monochromatic lines
of the network corresponding to the scheme S and the edges (semiedges)
of S represent basic 2-line (1-line) monochromatic networks used in the
construction.
We say that an edge e = uv of S is representable if there exists a 2-line

monochromatic network N2 such that P(N2) = {(u1, u2), (v1, v2)} and
• the (1/r)-changeability of N2 is ϕ(eu)+ ϕ(ev);
• there exists a circular (3 + 1/r)-edge-colouring c of N2 such that
|c(e(u1)) − c(e(u2))|3+ε = ϕ(eu), |c(e(v1)) − c(e(v2))|3+ε = ϕ(ev),
and the colours of the edges incident to u1, u2, v1, v2 are all rational.

A network N2 satisfying the above definition is called a representative
of the edge e. The representability of a semiedge of S can be defined
in a similar way; we use a 1-line monochromatic network as the rep-
resentative. An r-balanced scheme is representable if all its edges and
semiedges are representable.
We will describe how to construct a subcubic graph G with circular

chromatic index 3+ 1/r from a representable r-balanced scheme S. Let
p be the number of vertices of S. We start with a p-line monochromatic
network N0 isomorphic to a matching containing p edges. Let 
 be an
arbitrary bijection between V (S) and the monochromatic lines of N0. For
each edge of N0, we fix one of its endvertices; these fixed vertices will
remain untouched until the very last step of the construction.
For each edge uv (and also for each semiedge) of S we do the follow-

ing: According to our definitions, the edge uv has a representative N .
We join N to the monochromatic lines 
(u) and 
(v). The resulting net-
work has (1/r)-changeability at least p. Hence if we identify the paired
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vertices of the resulting network, we get a graph with circular chromatic
index at least 3+ 1/r .
To produce a graph with circular chromatic index exactly 3+ 1/r , we

do a “copying trick”. Let d be the least common denominator of 1/r and
all the denominators in the fractions of the labeling ϕ. we start with d
primary monochromatic lines for each vertex of S. Instead of joining N
to the lines 
(u) and 
(v), we join d copies of N to all the lines 
(u) and

(v) (note that both 
(u) and 
(v) contain d monochromatic lines) so that
each line will be used exactly once. Apparently, the resulting network has
(1/r)-changeability at least dp, thus if we identify endvertices paired ac-
cording to the primary monochromatic lines, we get a graph with circular
chromatic index at least 3+ 1/r .
We will produce a (3 + 1/r)-colouring of our network alongside our

construction. The idea is to guarantee that both before and after joining d
copies of each network N for each vertex v ∈ S all the rational numbers
i/d ∈ [0, 3 + 1/r) are used as colours on the edges incident with non-
fixed ends of the primary lines of N . The second property in the definition
of a representable network guarantees that the total change of colour on
each primary monochromatic line will be exactly 1. Therefore at the last
step we may identity endvertices of primary monochromatic lines. The
resulting graph will have the circular chromatic index equal to 3+ 1/r .
We are now ready to sketch the proof of main result.

Theorem 2.1. For each rational t ∈ (3, 3+1/4.5), there is a non-trivial
snark with circular chromatic index t .

Proof. For each rational r ∈ (4.5,∞), we construct a representable r-
balanced scheme that uses only the network B as a representative. After
carrying out the construction described above we get a subcubic graph
G with desired circular chromatic index. If G is not connected, we can
take an arbitrary component of G. To make this graph cubic we just take
two copies of it and connect the corresponding vertices of degree 2. If
we use the same edge-colouring on both of the copies, then the circular
chromatic index does not increase (note that the difference of colours
incident to vertices of degree 2 is exactly 1 and therefore we can colour
the third edge). By performing the construction a bit more carefully we
can guarantee the resulting graph to be cyclically 4-edge connected.
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The graph formulation of the
union-closed sets conjecture

Henning Bruhn1, Pierre Charbit2 and Jan Arne Telle3

Abstract. In 1979 Frankl conjectured that in a finite non-trivial union-closed
collection of sets there has to be an element that belongs to at least half the sets.
We show that this is equivalent to the conjecture that in a finite non-trivial graph
there are two adjacent vertices each belonging to at most half of the maximal stable
sets. In this graph formulation other special cases become natural. The conjecture
is trivially true for non-bipartite graphs and we show that it holds also for the class
of chordal bipartite graphs and the class of bipartitioned circular interval graphs.

A set X of sets is union-closed if X,Y ∈ X implies X ∪ Y ∈ X . The
following conjecture was formulated by Peter Frankl in 1979 [4].

Union-closed sets conjecture. Let X be a finite union-closed set of sets
with X �= {∅}. Then there is a x ∈ ⋃

X∈X X that lies in at least half of
the members of X .
In spite of a great number of papers, see e.g. the good bibliography

of Marković [7] for papers up to 2007, this conjecture is still wide open,
allthough several special cases are known to hold. Various equivalent
formulations are known, in particular by Poonen [9] who among other
things translates the conjecture into the language of lattice theory.
In this paper we give a formulation of the conjecture in the language of

graph theory. A set of vertices in a graph is stable if no two vertices of the
set are adjacent. A stable set is maximal if it is maximal under inclusion,
that is, every vertex outside has a neighbour in the stable set.

Conjecture 1. Let G be a finite graph with at least one edge. Then
there will be two adjacent vertices each belonging to at most half of the
maximal stable sets.

Note that Conjecture 1 is true for non-bipartite graphs. Indeed, if ver-
tices u and v are adjacent there is no stable set containing them both and

1 Université Pierre et Marie Curie (Paris 6), Paris, France. Email: bruhn@math.jussieu.fr

2 LIAFA, Université Paris 7, France. Email: pierre.charbit@liafa.univ-paris-diderot.fr

3 Department of Informatics, University of Bergen, Norway. Email: telle@ii.uib.no
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so one of them must belong to at most half of the maximal stable sets. An
odd cycle will therefore imply the existence of two adjacent vertices each
belonging to at most half of the maximal stable sets. The conjecture is for
this reason open only for bipartite graphs. Moreover, in a connected bi-
partite graph, for any two vertices u and v in different bipartition classes
we have a path from u to v containing an odd number of edges, so that if
u and v each belongs to at most half the maximal stable sets there will be
two adjacent vertices each belonging to at most half the maximal stable
sets. Conjecture 1 is therefore equivalent to the following.

Conjecture 2. Let G be a finite bipartite graph with at least one edge.
Then each of the two bipartition classes contains a vertex belonging to at
most half of the maximal stable sets.

In this paper we show that Conjectures 1 and 2 are equivalent to the
union-closed sets conjecture. The merit of this graph formulation is that
other special cases become natural, in particular subclasses of bipartite
graphs. We show that the conjecture holds for the class of chordal bipar-
tite graphs and the class of bipartitioned circular interval graphs. More-
over, the reformulation allows to test Frankl’s conjecture in a probabilis-
tic sense: Bruhn and Schaudt [1] show that almost every random bipartite
graph satisfies Conjecture 2 up to any given ε > 0, that is, almost every
such graph contains in each bipartition class a vertex for which the num-
ber of maximal stable sets containing it is at most 12 + ε times the total
number of maximal stable sets.
Stable sets are also called independent sets, with the maximal stable

sets being exactly the independent dominating sets. The set of all max-
imal stable sets of a bipartite graph was studied by Prisner [10] who
gave upper bounds on the size of this set, also when excluding certain
subgraphs. More recently, Duffus, Frankl and Rödl [3] and Ilinca and
Kahn [6] investigate the number of maximal stable sets in certain regular
and biregular bipartite graphs. In work related to the graph parameter
boolean-width, Rabinovich, Vatshelle and Telle [11] study balanced bi-
partitions of a graph that bound the number of maximal stable sets.

For a subset S of vertices of a graph we denote by N (S) the set of
vertices adjacent to a vertex in S. We need two easy lemmas. The proof
of the first is trivial.

Lemma 3. Let G be a bipartite graph with bipartition U,W , and let S
be a maximal stable set. Then S = (U ∩ S) ∪ (W \ N (U ∩ S)).
Lemma 4. Let G be a bipartite graph with bipartition U,W , and let S
and T be maximal stable sets. Then (U ∩ S ∩ T ) ∪ (W \ N (S ∩ T )) is a
maximal stable set.
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Proof. Clearly, R = (U ∩ S ∩ T ) ∪ (W \ N (S ∩ T )) is stable. Trivially,
any vertex in W \ R has a neighbour in R. A vertex u in U \ R does not
lie in S or not in T (perhaps, it is not contained in either), let us say that
u /∈ T . As T is maximal, u has a neighbour w ∈ W ∩ T . This neighbour
w cannot be adjacent to any vertex in U ∩ S ∩ T as T is stable. So, w
belongs to R as well, which shows that R is a maximal stable set.

For a fixed graph G let us denote by A the set of all maximal stable
sets, and for any vertex v let us write Av for the sets of A that contain v
and Av for the sets of A that do not contain v. Let us call a vertex v rare
if |Av| ≤ 1

2 |A|.
Theorem 5. Conjecture 2 is equivalent to the union-closed sets conjec-
ture.

Proof. Let us consider first a union-closed set X �= {∅}, which, without
restricting generality, we may assume to include ∅ as a member. We put
U = ⋃

X∈X X and we define a bipartite graph G with vertex set U ∪ X ,
where we make X ∈ X adjacent with all u ∈ X .
Nowwe claim that τ : S �→ U\S is a bijection betweenA andX . First

note that indeed τ(S) ∈ X for every maximal stable set: Set A = U ∩ S
and B = X ∩ S. If U ⊆ S then U \ S = ∅ ∈ X , by assumption. So,
assume U � S, which implies B �= ∅. As S is a maximal stable set,
it follows that U \ S = U \ A = N (B). On the other hand, N (B) is
just the union of the X ∈ S ∩ X = B, which is by the union-closed
property equal to a set X ′ in X . To see that τ is injective note that, by
Lemma 3, S is determined byU ∩ S, which in turn determinesU \ S. For
surjectivity, consider X ∈ X . We set A = U \ N (X) and observe that
S = A ∪ (X \ N (A)) is a stable set. Moreover, as X ∈ X \ N (A) every
vertex in U \ A is a neighbour of X ∈ S, which means that S is maximal.
Now, assuming that Conjecture 2 is true, there is a rare u ∈ U , that is,

it holds that |Au| ≤ 1
2 |A|. Clearly A is the disjoint union of Au and of

Au , so that

|τ(Au)| = |Au| ≥ 1

2
|A| = 1

2
|X |.

As u ∈ τ(S) ∈ X for every S ∈ Au , the union-closed sets conjecture
follows.
For the other direction, consider a bipartite graph with bipartitionU,W

and at least one edge. Define X := {U \ S : S ∈ A}, and note that X �=
{∅} as G has at least two distinct maximal stable sets. By Lemma 3, there
is a bijection between X and A. Moreover, it is a direct consequence
of Lemma 4 that X is union-closed. From this, it is straightforward that
Conjecture 2 follows from the union-closed sets conjecture.
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Let us say that a bipartite graph satisfies the union-closed sets conjec-
ture if each of its bipartition classes contains a rare vertex. For a set X of
vertices we define AX to be the set of maximal stable sets containing all
of X . As before, we abbreviate A{x} to Ax .

Lemma 6. Let x be a vertex of a bipartite graph G. Then there is an
injection AN (x)→ Ax .

Proof. We define

i : AN (x)→ Ax , S �→ S \ L1 ∪ {x} ∪ (L2 \ N (S ∩ L3)),
where Li denotes the set of vertices at distance i to x . That i(S) is stable
and maximal is a direct consequence of the definition. Moreover, i(S) =
i(T ) for S, T ∈ AN (x) implies that S and T are identical outside L1∪ L2.
Moreover, S and T are also identical on L1 ∪ L2: First, L1 = N (x)
shows that L1 lies in both S and T . Second, since every vertex in L2 is a
neighbour of one in L1 ⊆ S ∩ T , no vertex of L2 can lie in either of S or
T . Thus, S = T , and we see that i is an injection.

We denote by N 2(x) = N (N (x)) the second neighbourhood of x .

Lemma 7. Let x, y be two adjacent vertices in a bipartite graph G with
N 2(x) ⊆ N (y). Then y is rare.

Proof. From N 2(x) ⊆ N (y) it follows that every maximal stable set
containing y must contain all of N (x). Thus, Ay = AN (x), which means
by Lemma 6 that |Ay| ≤ |Ax | and as |Ay| + |Ax | ≤ |A| the lemma is
proved.

We now apply the lemma to the class of chordal bipartite graphs. This
is the class of bipartite graphs in which every cycle with length at least
six has a chord. A vertex v in a bipartite graph is weakly simplicial if the
neighbourhoods of its neighbours form a chain under inclusion. Ham-
mer, Maffray and Preissmann [5], and also Pelsmajer, Tokaz andWest [8]
prove the following:

Theorem 8. A bipartite graph with at least one edge is chordal bipar-
tite if and only if every induced subgraph has a weakly simplicial ver-
tex. Moreover, such a vertex can be found in each of the two bipartition
classes.

Theorem 9. Any chordal bipartite graph with at least one edge satisfies
the union-closed sets conjecture.
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Proof. For a given bipartition class, let x be a weakly simplicial vertex in
it. Among the neighbours of x denote by y the one whose neighbourhood
includes the neighbourhoods of all other neighbours of x . Then y is rare,
by Lemma 7.

For two vertices u, v let us denote by Auv the set of S ∈ A containing
both of u and v, by Auv the set of S ∈ A containing u but not v, and by
Auv the set of S ∈ A containing neither of u and v.

Lemma 10. Let G be a bipartite graph. Let y and z be two neighbours
of a vertex x so that N 2(x) ⊆ N (y) ∪ N (z). Then one of y and z is rare.

Proof. We may assume that |Ayz| ≤ |Ayz|. Now, from N 2(x) ⊆ N (y) ∪
N (z) we deduce that Ayz = AN (x). Thus, by Lemma 6, we obtain
|Ayz| ≤ |Ax |. Since Ax ⊆ Ayz it follows that |Ay| = |Ayz| + |Ayz| ≤
|Ayz| + |Ayz| = |Ay|. As |A| = |Ay| + |Ay|, we see that y is rare.

We give an application of Lemma 10. The class of circular interval
graphs plays a fundamental role in the structure theorem of claw-free
graphs of Chudnovsky and Seymour [2] and are defined as follows: Let a
finite subset of a circle be the vertex set, and for a given set of subintervals
of the circle consider two vertices to be adjacent if there is an interval
containing them both. We may obtain a rich class of bipartite graphs
from circular interval graphs: For any circular interval graph, partition
its vertex set and delete every edge with both its endvertices in the same
class. We call any graph arising in this manner a bipartitioned circular
interval graph. The proof that these graphs satisfy the union-closed sets
conjecture has been left out of this extended abstract.

Theorem 11. Every bipartitioned circular interval graph with at least
one edge satisfies the union-closed sets conjecture.
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The union-closed sets conjecture almost
holds for almost all random bipartite
graphs

Henning Bruhn1 and Oliver Schaudt1

Abstract. Frankl’s union-closed sets conjecture states that in every finite union-
closed set of sets, there is an element that is contained in at least half of the
member-sets (provided there are at least two members). The conjecture has an
equivalent formulation in terms of graphs: In every bipartite graph with least one
edge, both colour classes contain a vertex belonging to at most half of the maximal
stable sets.
We prove that, for every fixed edge-probability, almost every random bipartite

graph almost satisfies Frankl’s conjecture.

1 Introduction

A full paper version of this extended abstract is available at the arXiv [4].
One of the most basic conjectures in extremal set theory is Frankl’s con-
jecture on union-closed set systems. A set X of sets is union-closed if
X ∪ Y ∈ X for all X,Y ∈ X .
Union-closed sets conjecture. Let X �= {∅} be a finite union-closed set
of sets. Then there is a x ∈ ⋃

X∈X X that lies in at least half of the
members of X .
While Frankl [6] dates the conjecture to 1979, it apparently did not

appear in print before 1985, when it was mentioned as an open problem
in Rival [8]. Despite being widely known, there is only little substantial
progress on the conjecture. For a survey on the conjecture, see [3].
Recently, Bruhn, Charbit, Schaudt and Telle [2] gave an equivalent

formulation in terms of graphs. For this, let us say that a vertex set S
in a graph is stable if no two of its vertices are adjacent, and that it is
maximally stable if, in addition, every vertex outside S has a neighbour
in S.

Conjecture 1.1 (Bruhn, Charbit, Schaudt and Telle [2]). Let G be a
bipartite graph with at least one edge. Then each of the two biparti-

1 Equipe Combinatoire et Optimisation, Université Pierre et Marie Curie (Paris 6), 4 place Jussieu,
75252 Paris. Email: bruhn@math.jussieu.fr, schaudt@math.jussieu.fr
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tion classes contains a vertex belonging to at most half of the maximal
stable sets.

So far, the graph formulation is only verified for chordal-bipartite
graphs, bipartite subcubic graphs, bipartite series-parallel graphs and bi-
partitioned circular interval graphs [2].
We prove a slight weakening of Conjecture 1.1 for random bipartite

graphs. For δ > 0, we say that a bipartite graph satisfies the union-
closed sets conjecture up to δ if each of its two bipartition classes has
a vertex for which the number of maximal stable sets containing it is at
most 12 + δ times the total number of maximal stable sets. A random
bipartite graph is a graph on bipartition classes of cardinalities m and n,
where any two vertices from different classes are independently joined
by an edge with probability p. We say that almost every random bipartite
graph has property P if for every ε > 0 there is an N such that, whenever
m + n ≥ N , the probability that a random bipartite graph on m + n
vertices has P is at least 1− ε.
Our main result is the following.

Theorem 1.2. Let p∈ (0,1) be a fixed edge-probability. For every δ>0,
almost every random bipartite graph satisfies the union-closed sets con-
jecture up to δ.

2 Discussion of averaging

Many of the partial results on Frankl’s conjecture are based on a tech-
nique called averaging. It consists in taking the average of the number of
member sets containing a given element, where the average ranges over
the set U =⋃

X∈X X of all elements. If that average is at least 12 |U | then
clearly X satisfies the conjecture. Averaging was used successfully by
Balla, Bollobàs and Eccles [1] when n ≥ � 132m+1�. Reimer [7] showed
that the average is always at least log2(|U |).
Averaging does not always work. It is easy to construct union-closed

set systems in which the average is too low. Czédli, Maróti and Schmidt
[5] even found such set systems of size |X | = �2|U |+1/3�. Nevertheless,
we see that, in the graph formulation, averaging almost always allows us
to conclude that the union-closed sets conjecture is satisfied (up to any
δ > 0).
To describe the averaging technique for bipartite graphs, let us write

A(G) for the set of maximal stable sets of a bipartite graph G. Conjec-
ture 1.1 is satisfied if G contains a rare vertex in both bipartition classes,
that is, a vertex that lies in at most half of the maximal stable sets.
We consider a bipartite graph G to have a fixed bipartition, which we

denote by (L(G), R(G)). When discussing the bipartition classes, we
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often refer to L(G) as the left side and to R(G) as the right side of the
graph. Let us consider a fixed edge probability p ∈ (0, 1) and put q =
1 − p. We denote by B(m, n; p) the probability space whose elements
are the random bipartite graphs G with |L(G)| = m and |R(G)| = n. We
note first that exchanging the sides turns a random bipartite graph G ∈
B(m, n; p) into a member of B(n,m; p), which means that it suffices
to show the existence of a rare vertex in L(G). All the discussion that
follows focuses on the left side L(G).
That a vertex v is rare means that |Av(G)|, the number of maximal

stable sets containing v, is at most 12 |A(G)|. Thus, if for the average∑
v∈L(G)

|Av(G)|
|A(G)| ≤

1

2
|L(G)|

then L(G) contains a rare vertex. Double-counting shows that the above
average is equal to

left-avg(G) :=
∑

A∈A(G)

|A ∩ L(G)|
|A(G)| ,

and thus our aim is to show that when m+ n is very large, it follows with
high probability that left-avg(G) ≤ m

2 for any G ∈ B(m, n; p).
Unfortunately, we do not reach this aim. While we show for large parts

of the parameter space (m, n) that the average is, with high probability,
small enough, we also see that when n is roughly q−m

2 the average be-
comes very close to m

2 , so close that our tools are not sharp enough to
separate the average from slightly above m

2 . Therefore, we provide for a
bit more space by settling on bounding the average away from ( 12 + δ)m
for any positive δ, which then only allows us to deduce the existence of
a vertex v ∈ L(G) that is almost rare, in the sense that v lies in at most
( 12 + δ)|A(G)| maximal stable sets.
Much of the previous discussion is subsumed in the following lemma.

Lemma 2.1. Let G be a bipartite graph, and let δ ≥ 0. If

left-avg(G) ≤ (
1
2 + δ

) |L(G)|
then there exists a vertex in L(G) that lies in at most

(
1
2 + δ

) |A(G)|
maximal stable sets.

The following result is the heart of our main result, Theorem 1.2:
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Theorem 2.2. For all δ > 0 and all ε > 0 there is an integer N so that
for G ∈ B(m, n; p)

Pr
[
left-avg(G) ≤ (

1
2 + δ

)
m
] ≥ 1− ε

for all m, n with m + n ≥ N and n ≥ max{20, (�3 log1/q(2)�+ 2)2} + 1.
In order to show how Theorem 1.2 follows from Theorem 2.2, we need

to deal with the special case when one side is of constant size while the
other becomes ever larger. Indeed, in this case averaging might fail—for
a trivial reason. If we fix a constant right side R(G), while L(G) becomes
ever larger, then L(G) contains many isolated vertices. Since the isolated
vertices lie in every maximal stable set they may push up left-avg(G) to
above m

2 .
However, isolated vertices are never a threat to Frankl’s conjecture: A

bipartite graph satisfies the union-closed sets conjecture if and only if it
satisfies the conjecture with all isolated vertices deleted. More generally,
it turns out that the special case of a constant right side is easily taken
care of:

Lemma 2.3. Let c be a positive integer, and let ε > 0. Then there is an
N so that for G ∈ B(m, n; p)

Pr [L(G) contains a rare vertex] ≥ 1− ε,
for all m, n with m ≥ N and n ≤ c.

Proof of Theorem 1.2. Let δ > 0 be given. By symmetry, it is enough to
show that the left side L(G) of almost every random bipartite graph G in
B(m, n; p) contains a vertex that lies in at most (12 + δ)|A| maximal sta-
ble sets. For this, consider a ε > 0, and let N be the maximum of the N
given by Theorem 2.2 and Lemma 2.3 with c = max{20, (�3 log1/q(2)�+
2)2}. Consider a pair m, n of positive integers with m + n ≥ N . If
n ≤ max{20, (�3 log1/q(2)� + 2)2} then Lemma 2.3 yields a rare ver-
tex in L(G) with probability at least 1 − ε. If, on the other hand, n ≥
max{20, (�3 log1/q(2)� + 2)2} + 1, Theorem 2.2 becomes applicable,
which is to say that with probability at least 1− ε we have left-avg(G) ≤(
1
2 + δ

)
m. Now, Lemma 2.1 yields the desired vertex in L(G).

3 Sketch of the proof of Theorem 2.2

In order to prove Theorem 2.2, we distinguish several cases, depending
on the relative sizes, m and n, of the two sides of the random bipartite
graph G. In each of the cases we need a different method.
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Our general strategy follows the observation that if there are many
more maximal stable sets with small left side than with large left side,
then the average over the left sides is small, too:

Lemma 3.1. Let ν > 0 and δ ≥ 0, and let G be a bipartite graph with
|L(G)| = m. Let L be the maximal stable sets A of G with |A∩ L(G)| ≥
( 12 + δ)m, and let S be those maximal stable sets B with |B ∩ L(G)| ≤
(1− ν)m2 . If |S| ≥ 1

ν
|L| then

left-avg(G) ≤ (
1
2 + δ

)
m.

We bound the number of maximal stable sets with large left side, usually
counted by a random variable LG , and at the same time we show that
there are many maximal stable sets with a small left side; those we count
with SG .
Up to n < q−m

2 we are able to use the same bound for the number LG

of maximal stable sets whose left sides are of size at least m2 : We prove
that with high probability LG is bounded by a polynomial in n. For right
sides that are much larger than the left side, i.e. m � n, we even extend
such a bound to maximal stable sets with left side ≥ m

3 .
For the maximal stable sets with small left side, counted by SG , we

need to distinguish several cases. When the left side of the graph is much
larger than the right side, namely m ≥ q− 5√n , we find with high proba-
bility a large induced matching in G. This in turn implies that the total
number of maximal stable sets is high, and thus clearly also the number
of those with small left side.
When the sides of the graph do not differ too much in size, m ≤ q− 5√n

and n ≤ q− 5√m , the variance of the number of maximal stable sets with
small left side is moderate enough to apply Chebychev’s inequality. Since
the expectation of SG is high, we again can use Lemma 3.1 to deduce
Theorem 2.2.
However, when the left side of the graph becomes much larger than

the right side, we cannot control the variance of SG anymore. Instead,
for q− 5√m ≤ n ≤ q−

m
16 , we cut the right side into many pieces each of

large size and apply Hoeffding’s inequality to each of the pieces together
with the left side. The inequality ensures that we find on at least one
of the pieces a large number of maximal stable sets of small left side.
Surpassing n ≥ q−

m
16 , we have to refine our estimations but we can still

use this strategy up to slightly below n = q−m
2 .

In the interval q−m
2 ≤ n ≤ q−m3 , we encounter a serious obstacle.

There, we have to cope with an average that is very close to m
2 . It is

precisely for this reason that, overall, we only prove that left-avg(G) ≤
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(
1
2 + δ

)
m instead of left-avg(G) ≤ m

2 . To keep below the slightly higher
average, we only need to bound the number of maximal stable sets with
left side> ( 12 + δ)m. This number we almost trivally bound by 2λm , with
some λ < 1. On the other hand, we see that the number SG of maximal
stable sets of small left side is 2λ

′m with a λ′ as close to 1 as we want.
In the remaining case, we are dealing with an enormous right side:

n ≥ q−m3 . Then, it is easy to see that with high probability there is an
induced matching that covers all of the left side, which implies that every
subset of L(G) is the left side of a maximal stable set. This immediately
gives us left-avg(G) = m

2 .
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The robust component structure
of dense regular graphs

Daniela Kühn1, Allan Lo1, Deryk Osthus1 and Katherine Staden1

Abstract. We study the large-scale structure of dense regular graphs. This in-
volves the notion of robust expansion, a recent concept which has already been
used successfully to settle several longstanding problems. Roughly speaking, a
graph is robustly expanding if it still expands after the deletion of a small fraction
of its vertices and edges. Our main result states that every dense regular graph can
be partitioned into ‘robust components’, each of which is a robust expander or a
bipartite robust expander. We apply our result to obtain the following.

(i) We prove that whenever ε > 0, every sufficiently large 3-connected D-
regular graph on n vertices with D ≥ (1/4 + ε)n is Hamiltonian. This
asymptotically confirms the only remaining case of a conjecture raised
independently by Bollobás and Häggkvist in the 1970s.

(ii) We prove an asymptotically best possible result on the circumference of
dense regular graphs of given connectivity. The 2-connected case of this
was conjectured by Bondy and already proved by Wei.

1 Introduction

Our main result states that any dense regular graph G is the vertex-
disjoint union of boundedly many ‘robust components’. Each such com-
ponent has a strong expansion property that is highly ‘resilient’ and al-
most all edges of G lie inside these robust components. In other words,
the result implies that the large scale structure of dense regular graphs is
remarkably simple. This can be applied e.g. to Hamiltonicity problems in
dense regular graphs. Note that the structural information obtained in this
way is quite different from that given by Szemerédi’s regularity lemma.
The crucial notion in our partition is that of robust expansion. This is a

structural property which has close connections to Hamiltonicity. Given
a graph G on n vertices, S ⊆ V (G) and 0 < ν ≤ τ < 1, we define the
ν-robust neighbourhood RNν,G(S) of S to be the set of all those vertices
of G with at least νn neighbours in S. We say G is a robust (ν, τ )-
expander if, for every S ⊆ V (G) with τn ≤ |S| ≤ (1 − τ)n, we have
that |RNν,G(S)| ≥ |S| + νn.

1 School of Mathematics, University of Birmingham, Birmingham B15 2TT, United Kingdom.
Email: d.kuhn@bham.ac.uk, s.a.lo@bham.ac.uk, d.osthus@bham.ac.uk, kls103@bham.ac.uk
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There is an analogous notion of robust outexpansion for digraphs.
Kühn, Osthus and Treglown showed in [13] that every sufficiently large
dense robust outexpander contains a directed Hamilton cycle. The notion
has been crucial in several other recent papers.
Let G be a bipartite graph with vertex classes A and B. Then clearly

G is not a robust expander. However, we can obtain a bipartite analogue
of robust expansion by only considering sets S ⊆ A with τ |A| ≤ |S| ≤
(1 − τ)|A|. This notion extends in a natural way to graphs which are
‘close to bipartite’.
Our main result implies that for fixed r ∈ N, ε > 0 and n sufficiently

large, any D-regular graph on n vertices with D ≥ ( 1
r+1 + ε)n has a

partition into at most r (bipartite) robust expander components, so that
the number of edges between these is very small. We now give a more
formal statement of this.

Definition 1.1. (Robust partitions) Let n, D, k, 
 ∈ N and let 0 < ρ ≤
ν ≤ τ < 1. Suppose that G is a D-regular graph on n vertices. We
say that V is a robust partition of G with parameters ρ, ν, τ, k, 
 if the
following hold:

• V = {V1, . . . , Vk,W1, . . . ,W
} is a partition of V (G);
• for all X ∈ V we have that |X | ≥ D−ρn and e(X, V (G)\ X) ≤ ρn2;
• for all 1 ≤ j ≤ 
, Wj has bipartition A j , Bj such that G[Wj ] can be
made into a balanced bipartite graph with respect to this bipartition by
removing at most ρn vertices and at most ρn2 edges;

• for all 1 ≤ i ≤ k, G[Vi ] is a robust (ν, τ )-expander and for all 1 ≤
j ≤ 
, G[Wj ] is a bipartite robust (ν, τ )-expander with vertex classes
A j , Bj ;

• for all X, X ′ ∈ V and all x ∈ X we have dX (x) ≥ dX ′(x). In particular,
dX (x) ≥ D/(k + 
);

• for all 1 ≤ j ≤ 
 and for all u ∈ A j we have dBj (u) ≥ dA j (u), and
analogously for v ∈ Bj ;

• for all X ∈ V and all but at most ρn vertices x ∈ X we have dX (x) ≥
D − ρn;

• k + 2
 ≤ �(1+ ρ1/3)n/D�.
Note that the last property implies there are only a small number of possi-
ble choices for k and 
 when D is large. Our main result is the following.

Theorem 1.2 ([12]). For all α, τ > 0 and every non-decreasing function
f : (0, 1) → (0, 1), there exists n0 ∈ N such that the following holds.
For all D-regular graphs G on n ≥ n0 vertices where D ≥ αn, there exist
k, 
 ∈ N and ρ, ν with 1/n0 ≤ ρ ≤ ν ≤ τ ; ρ ≤ f (ν) and 1/n0 ≤ f (ρ)
such that G has a robust partition V with parameters ρ, ν, τ, k, 
.
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In the special case of dense vertex-transitive graphs (which are always
regular) a related partition result was obtained by Christofides, Hladký
and Máthé [6], who resolved the dense case of a question of Lovász [16]
on Hamilton paths (and cycles) in vertex-transitive graphs. It would be
interesting to obtain such robust partition results for further classes of
graphs. In particular, it might be possible to generalise Theorem 1.2 to
sparser graphs.

2 Two applications to longest cycles in regular graphs

Consider the classical result of Dirac that every graph on n ≥ 3 vertices
with minimum degree at least n/2 contains a Hamilton cycle. Suppose
we wish to strengthen this by reducing the degree threshold at the expense
of introducing some other condition(s). The two extremal examples for
Dirac’s theorem (i.e. the disjoint union of two cliques and the almost bal-
anced complete bipartite graph) make it natural to consider regular graphs
with some connectivity property, see e.g. the recent survey of Li [14] and
handbook article of Bondy [3].
In particular, Szekeres (see [9]) asked for which D every 2-connected

D-regular graph G on n vertices is Hamiltonian. Jackson [9] showed that
D ≥ n/3 suffices. This improved earlier results of Nash-Williams [17],
Erdős and Hobbs [7] and Bollobás and Hobbs [2]. Hilbig [8] improved
the degree condition to n/3 − 1, unless G is the Petersen graph or an-
other exceptional graph. Bollobás [1] as well as Häggkvist (see [9]) in-
dependently made the natural and far more general conjecture that any
t-connected regular graph on n vertices with degree at least n/(t + 1) is
Hamiltonian. However, the following counterexample (see Figure 2.1),
due to Jung [11] and independently Jackson, Li and Zhu [10], disproves
this conjecture for t > 3.

Figure 2.1. An extremal example for Conjecture 2.1.

Form divisible by four, constructG as follows. LetC1,C2 be two disjoint
copies of Km+1 and let A, B be two disjoint independent sets of orders
m,m − 1 respectively. Add every edge between A and B. Add a set
of m/2 independent edges from each of C1 and C2 to A so that together
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these edges form a matching of size m. Delete m/4 independent edges
in each of C1,C2 so that G is m-regular. Then G has 4m + 1 vertices
and is m/2-connected. However G is not Hamiltonian since G \ A has
|A| + 1 components (in other words, G is not 1-tough). Note that G has
a robust partition C1,C2, A ∪ B (so (k, 
) = (2, 1) in the definition of
robust partitions in Section 1).
Jackson, Li and Zhu believe that the conjecture of Bollobás and

Häggkvist is true in the remaining open case when t = 3.
Conjecture 2.1 ([10]). Let G be a 3-connected D-regular graph on n ≥
13 vertices such that D ≥ n/4. Then G contains a Hamilton cycle.

The above example shows that the degree condition in Conjecture 2.1
cannot be reduced. One can also show that none of the other conditions
can be relaxed.
There have been several partial results towards this conjecture. For

instance, Li and Zhu [15] proved it in the case when D ≥ 7n/22and
Broersma, van den Heuvel, Jackson and Veldman [5] proved it for D ≥
2(n + 7)/7. In [10] it is proved that, if G satisfies the conditions of the
conjecture, any longest cycle inG is dominating provided that n is not too
small. (Here, a subgraph H of a graph G is dominating if G \V (H) is an
independent set.) By considering robust partitions, we are able to prove
an approximate version of the conjecture. We hope that our methods can
be used to obtain the exact bound D ≥ n/4 for large n. This is work in
progress.
Theorem 2.2 ([12]). For all ε > 0, there exists n0 ∈ N such that every
3-connected D-regular graph on n ≥ n0 vertices with D ≥ (1/4+ ε)n is
Hamiltonian.

More generally, one can consider the circumference of dense regular
graphs of given connectivity. Bondy [4] conjectured that, for r ≥ 3,
every sufficiently large 2-connected D-regular graph G on n vertices with
D ≥ n/r has circumference c(G) ≥ 2n/(r−1). (Here the circumference
c(G) of G is the length of the longest cycle in G.) This was confirmed
by Wei [18], who proved the conjecture for all n and in fact showed that
c(G) ≥ 2n/(r − 1) + 2(r − 3)/(r − 1), which is best possible. We are
able to extend this (asymptotically) to t-connected dense regular graphs.
Theorem 2.3. Let t, r ∈ N. For all ε > 0 there exists n0 ∈ N such that
the following holds. Whenever G is a t-connected D-regular graph on
n ≥ n0 vertices where D ≥ (1/r+ε)n, the circumference of G is at least
min{t/(r − 1), 1− ε}n.
This is asymptotically best possible. Moreover, as discussed above, the

extremal example in Figure 2.1 shows that in general min{t/(r − 1), 1−



89 The robust component structure of dense regular graphs

ε}n cannot be replaced by min{t/(r − 1), 1}n. Theorem 2.3 shows that
the conjecture of Bollobás and Häggkvist is in fact close to being true
after all – any t-connected regular graph with degree slightly higher than
n/(t + 1) contains an almost spanning cycle.
We are also confident that our robust partition result (Theorem 1.2)

will have applications to other problems.

3 Sketch of the proof of Theorems 1.2 and 2.2
3.1 Sketch proof of Theorem 1.2

The basic proof strategy is to successively refine an appropriate partition
of G. So let G be a D-regular graph on n vertices, where D is linear in n.
Suppose that G is not a (bipartite) robust expander. Then V (G) contains
a set S such that N is not much larger than S, where N := RNν,G(S)
for appropriate ν. Consider a minimal S with this property. Since G is
regular, N cannot be significantly smaller than S. One can use this to
show that there are very few edges between S∪ N and X := V (G)\ (S∪
N ). Moreover, one can show that S and N are either almost identical or
almost disjoint. In the former case, G[S ∪ N ] is a robust expander and
in the latter G[S ∪ N ] is close to a bipartite robust expander. So in both
cases, S ∪ N is a (bipartite) robust expander component. Similarly, if X
is non-empty, it is either a (bipartite) robust expander component or we
can partition it further along the above lines. In this way, we eventually
arrive at the desired partition.

3.2 Sketch proof of Theorem 2.2

Let ε > 0 and let G be a 3-connected D-regular graph on n vertices,
where D ≥ (1/4 + ε)n. Theorem 1.2 gives us a robust partition V of G
containing exactly k robust expander components and 
 bipartite robust
expander components where k + 2
 ≤ 3, so there are only five possible
choices of (k, 
). Assume for simplicity that V consists of three robust
expander components G1,G2,G3. So (k, 
) = (3, 0). (The cases when

 > 0 are harder.) The result of [13] mentioned in Section 1 implies that
Gi contains a Hamilton cycle for i = 1, 2, 3. In fact, it can be used to
show that Gi is Hamilton p-linked for each bounded p. (Here a graph G
is Hamilton p-linked if, whenever x1, y1, . . . , xp, yp are distinct vertices,
there exist vertex-disjoint paths P1, . . . , Pp such that Pj connects x j to
y j , and such that together these paths cover all vertices of G.) This means
that the problem of finding a Hamilton cycle in G can be reduced to
finding only a suitable set of external edges, where an edge is external if
it has endpoints in different Gi . We use the assumption of 3-connectivity
to find these external edges.
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The (�, D) and (�, N ) problems
in double-step digraphs with unilateral
diameter

Cristina Dalfó1 and Miquel Àngel Fiol2

1 Preliminaries

We study the (�, D) and (�, N ) problems for double-step digraphs con-
sidering the unilateral distance, which is the minimum between the dis-
tance in the digraph and the distance in its converse digraph, obtained by
changing the directions of all the arcs.
The first problem consists of maximizing the number of vertices N of

a digraph, given the maximum degree � and the unilateral diameter D∗,
whereas the second one consists of minimizing the unilateral diameter
given the maximum degree and the number of vertices. We solve the first
problem for every value of the unilateral diameter and the second one for
some infinitely many values of the number of vertices.
Miller and Sirán [4] wrote a comprehensive survey about (�, D) and

(�, N ) problems. In particular, for the double-step graphs considering
the standard diameter, the first problem was solved by Fiol, Yebra, Alegre
and Valero [3], whereas Bermond, Iliades and Peyrat [2], and also Bei-
vide, Herrada, Balcázar and Arruabarrena [1] solved the (�, N ) problem.
In the case of the double-step digraphs, also with the standard diameter,
Morillo, Fiol and Fàbrega [5] solved the (�, D) problem and provided
some infinite families of digraphs which solve the (�, N ) problem for
their corresponding numbers of vertices.
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1.1 Double-step digraphs

A double-step digraph G(N ; a, b) has set of vertices ZN = Z/NZ and
arcs from every vertex i to vertices i + a mod N and i + b mod N ,
for 0 ≤ i ≤ N − 1, where a, b are some integers called steps such that
1 ≤ a < b ≤ N − 1. Because of the automorphisms i �→ i + α for 1 ≤
α ≤ N−1, the double-step digraphs are vertex-transitive. Moreover, they
are strongly connected if and only if gcd(N , a, b) = 1. It is known that
the maximum order N of a double-step digraph with diameter k is upper
bounded by the Moore-like bound N ≤ MDSD(2, k) =

(k+2
2

)
, where the

equality would hold if all the numbers ma + nb were different modulo
N , with m, n ≥ 0 and m + n ≤ k. In fact, this bound cannot be attained
for k > 1.
Every double-step digraph has an L-shaped form associated, which

tessellates the plane. If one of the steps, say a, equals 1, we can choose
an L-shaped tile with dimensions 
 = b, h being the quotient obtained
dividing N by 
, w = 
−s with s being the remainder of such a division,
and y = 1. Then, N = 
h + s with 0 ≤ s < 
 (see Figure 1.1).

Figure 1.1. An L-shaped form and its tessellation.

1.2 Unilateral distance

Given a digraph G = (V, A), the unilateral distance between two ver-
tices u, v ∈ V is defined as
dist∗G(u,v)=min{distG(u,v), distG(v,u)}=min{distG(u,v), distG(u,v)},
where distG is the standard distance in digraph G and distG is the distance
in its converse digraph G, that is, the digraph obtained by changing the
directions of all the arcs of G. From this concept, we can define the
unilateral eccentricity ecc∗ from vertex u, the unilateral radius r∗ of G,
and the unilateral diameter D∗ of G as follows:

ecc∗(u)=max
v∈V
{dist∗G(u,v)}, r∗=minu∈V {ecc

∗(u)}, and D∗=max
u∈V
{ecc∗(u)}.
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As an example, if we have G = CN , the directed cycle on N vertices,
then D∗ = �N/2�.
Note that, obviously, these parameters have as lower bounds the ones

corresponding to the underlying graph, obtained from digraph G by
changing the arcs for edges without direction.

2 The unilateral diameter of double-step digraphs
with step a=1

In this section we study the unilateral diameter of the double-step di-
graphs with a = 1 having ‘small’ b. Although we have not been able to
prove that the optimal results can be obtained always by taking such val-
ues of the steps, computational experiments seem to support this claim.
In fact, as we see in the next section, this approach allows us to solve the
(�, D∗) problem for every value of D∗, and also to solve the (�, N )∗
problem for infinitely many values of N .
As we have already seen, a double-step digraph G(N ; 1, b) with N =


h + s and 0 ≤ s < 
, can be described by an L-shaped form with
dimensions 
 = b, h = �N/
�, y = 1, and w = 
 − s. See again
Figure 1.1. In this context we have the following result for the unilateral
diameter D∗.

Proposition 2.1. For N = 
h + s, where 1 < 
 ≤ �√N� and 0 ≤ s ≤

 − 1, a double-step digraph G(N ; a, b) with a = 1 and b = 
 has
unilateral diameter

D∗ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⌊

+ h + s − 1

2

⌋
if 0 ≤ s ≤ 
− 2,⌊


+ h − 1
2

⌋
if s = 
− 1.

(2.1)

If there is not restriction for the value of 
, then the values in Eq. (2.1) are
an upper bound for the unilateral diameter. For instance, is for N = 430,
the unilateral diameter is 22 and the upper bound given by Equation (2.1)
is 23.

3 The (�, D∗) and (�,N )∗ problems for double-step digraphs
with unilateral diameter

3.1 The (�, D∗) problem

In our context, the (�, D∗) problem consists of finding the double-step
digraph G(N ; a, b) with maximum number of vertices given a unilateral
diameter D∗ and the maximum degree � = 2, that is, to find the steps



94 Cristina Dalfó and Miquel Àngel Fiol

that maximize the number of vertices for such a unilateral diameter. To
get a Moore-like bound (see Miller and Sirán [4]), notice that at distance
k = 1, 2, . . . , D∗ from vertex 0 there are at most 2(k + 1) vertices (k + 1
of them going forward and the other k + 1 going backwards). Then, this
gives

N ≤ M(2, D∗) = 2(1+2+· · ·+D∗+1)−1 = (D∗)2+3D∗+1. (3.1)
Moreover, if the maximum is attained, we get an ‘optimal’ X-shaped
tile which tessellates the plane, and this allows us to solve the (�, D∗)
problem, as shown in the following result.

Proposition 3.1. For each integer value k ≥ 0, the double-step digraph
G(N ; 1, b), with N = M(2, k) = k2+3k+1 and b = k+1 has unilateral
diameter D∗ = k.

3.2 The (�, N )∗ problem

In our context, the (�, N )∗ problem consists of finding the minimum uni-
lateral diameter D∗ in double-step digraphs given a number of vertices N
and their maximum degree� = 2, that is, to find the steps that minimize
the unilateral diameter for such a number of vertices. We begin with the
following general upper bound for the unilateral diameter.

Proposition 3.2. Given any number of vertices N ≥ 5, there exists a
double-step digraph with unilateral diameter D∗ satisfying

D∗ ≤
⌈√
2(N + 2)

⌉
− 2.

To solve the (�, N )∗ problem for double-step digraphs with minimum
unilateral diameter we consider the case s = 
 − 1 of Proposition 2.1.
Moreover, to keep track of the excluded vertices from the maximum
M(2, k), we define r as the subindex of the triangular number Tr =
1+ 2+ · · · + r = (r+1

2

)
.

Proposition 3.3.

(a) If 0 ≤ r < 1
2(
√
8k + 9−1), the double-step digraph G(N ; a, b), with

number of vertices N = k2 + 3k + 1− r(r + 1) and steps a = 1 and
b = 
 = k − r + 1, has minimum unilateral diameter D∗ = k.

(b) If 0 ≤ r <
√
k + 1, the double-step digraph G(N ; a, b), with number

of vertices N = k2+ 2k− r2 and steps a = 1 and b = 
 = k− r + 1,
has minimum unilateral diameter D∗ = k.
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Figure 3.1. The minimum unilateral diameter D∗ with respect to the number of
vertices N , for 5 ≤ N ≤ 106. (The largest points correspond to the (�, D∗)
problem, and the thick lines to the upper bound given in Proposition 3.2.)

Table 1. Some results of the (�, D∗) and (�, N )∗ problems solved with Propo-
sition 3.3.

Problem 
+ h r 
 h N = 
h + 
− 1 D∗

(�, D∗) even 0 k + 1 k + 2 k2 + 3k + 1 k
(�, N )∗ even 1 k k + 3 k2 + 3k − 1 k
(�, N )∗ even 2 k − 1 k + 4 k2 + 3k − 5 k
(�, N )∗ even 3 k − 2 k + 5 k2 + 3k − 11 k
· · · · · · · · · · · · · · · · · · · · ·

(�, N )∗ odd 0 k + 1 k + 1 k2 + 2k k
(�, N )∗ odd 1 k k + 2 k2 + 2k − 1 k
(�, N )∗ odd 2 k − 1 k + 3 k2 + 2k − 4 k
(�, N )∗ odd 3 k − 2 k + 4 k2 + 2k − 9 k
· · · · · · · · · · · · · · · · · · · · ·

As shown in Figure 3.1, the unilateral diameter D∗ does not increase
monotonously with the number of vertices N .
Note that if we fix r for any k large enough, we get an infinite family of

digraphs with minimum unilateral diameter for each number of vertices.
See some examples of the cases of Proposition 3.3 in Table 1.
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Critical groups of generalized de Bruijn
and Kautz graphs and circulant matrices
over finite fields

Swee Hong Chan1, Henk D. L. Hollmann1 and Dmitrii V. Pasechnik1

Abstract. We determine the critical groups of the generalized de Bruijn graphs
DB(n, d) and generalized Kautz graphs Kautz(n, d), thus extending and complet-
ing earlier results for the classical de Bruijn and Kautz graphs. Moreover, for a
prime p the critical groups of DB(n, p) are shown to be in close correspondence
with groups of n × n circulant matrices over Fp , which explains numerical data
in [11] and suggests the possibility to construct normal bases in Fpn from span-
ning trees in DB(n, p).

1 Introduction

The critical group of a directed graph G is an abelian group obtained
from the Laplacian matrix � of G; it determines and is determined by
the Smith Normal Form (SNF) of�. (For precise definitions of these and
other terms, we refer to the next section.) The sandpile group S(G, v) of
G at a vertex v is an abelian group obtained from the reduced Laplacian
�v of G; its order is equal to the complexity κ(G) of G, the number of
directed trees rooted at v, a fact that is related to the Matrix Tree Theo-
rem, see for example [8] and its references. If G is Eulerian, then S(G, v)
does not depend on v, and is then simply written as S(G); in that case,
it is equal to the critical group of G. The critical group has been studied
in other contexts under several other names, such as group of compo-
nents, Picard or Jacobian group, and Smith group. For more details and
background, see, e.g., [6].
Critical groups have been determined for a large number of graph fam-

ilies. For some examples, see the references in [1]. Here, we determine
the critical group of the generalized de Bruijn graphs DB(n, d) and gen-
eralized Kautz graphs Kautz(n, d), thus extending and completing the re-
sults from [8] for the binary de Bruijn graphs DB(2
, 2) and Kautz graphs

1 School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang
Link, Singapore 637371.
Email: sweehong@ntu.edu.sg, henk.hollmann@ntu.edu.sg, dima@ntu.edu.sg



98 Swee Hong Chan, Henk D. L. Hollmann, Dmitrii V. Pasechnik

Kautz((p− 1)p
−1, p) (with p prime), and [3] for the classical de Bruijn
graphs DB(d
, d) and Kautz graphs Kautz((d − 1)d
−1, d). Unlike the
classical case, the generalized versions are not necessarily iterated line
graphs, so to obtain their critical groups, different techniques have to be
applied.
Our original motivation for studying these groups stems from their re-

lations to some algebraic objects, such as the groups C(n, p) of invert-
ible n×n-circulant matrices over Fp (mysterious numerical coincidences
were noted in the OIES entry A027362 [11] by the third author, computed
with the help of [12,15]), and normal bases (cf. e.g. [9]) of the finite fields
Fpn . The latter were noted to be closely related to circulant matrices and
to necklaces by Reutenauer [13, Sect. 7.6.2], see also [5], and the related
numeric data collected in [2]. Here, we show that C(n, p)/(Zp−1 × Zn)

is isomorphic to the critical group of DB(n, p). Although we were not
able to construct an explicit bijection between the former and the latter,
we could speculate that potentially one might be able to design a new
deterministic way to construct normal bases of Fpn .

2 Preliminaries

Let M be an m × n integer matrix of rank r . For a ring F , we write
RF(M) = M�Fn , the F-module generated by the rows of M . The Smith
group [14] of M is defined as �(M) = Zn/RZ(M). The submodule
�(M) = Zn/RQ(M) ∩ Zn of �(M) is a finite abelian group called the
finite part of �(M). Indeed, if M has rank r , then �(M) = Zn−r ⊕�(M)
with�(M) = ⊕r

i=1Zdi , where d1, . . . , dr are the nonzero invariant factors
of M , so that di |di+1 for i = 1, . . . , r − 1. For invariant factors and the
Smith Normal Form, we refer to [10]. See [14] for further details and
proofs.
Let G = (V, E) be a directed graph on n = |V | vertices. The indegree

d−(v) and outdegree d+(v) is the number of edges ending or starting in
v ∈ V , respectively. The adjacency matrix of G is the n × n matrix A =
(Av,w), with rows and columns indexed by V , where Av,w is the number
of edges from v to w. The Laplacian of G is the matrix � = D − A,
where D is diagonal with Dv,v = d−v . The critical group K (G) of G is
the finite part of the Smith group of the Laplacian � of G. The sandpile
group S(G, v) of G at a v ∈ V is the finite part of the Smith group of the
(n − 1) × (n − 1) reduced Laplacian �v, obtained from � by deleting
the row and the column of � indexed by v. Note that by the Matrix Tree
Theorem for directed graphs, the order of S(G, v) equals the number of
directed spanning trees rooted at v.



99 Critical groups of de Bruijn and Kautz graphs and circulants

2.1 Generalized de Bruijn and Kautz graphs

Generalized de Bruijn graphs and generalized Kautz graphs [4] are
known to have a relatively small diameter and attractive connectivity
properties, and have been studied intensively due to their applications in
interconnection networks. The generalized Kautz graphs were first inves-
tigated in [7], and are also known as Imase-Itoh digraphs. Both classes
of graphs are Eulerian.
We will determine the critical group, or, equivalently, the sandpile

group, of a generalized de Bruijn or Kautz graph on n vertices by em-
bedding this group as a subgroup of index n in a group that we will refer
to as the sand dune group of the corresponding digraph. Let us now turn
to the details.
The generalized de Bruijn graph DB(n, d) has vertex set Zn , the set of

integers modulo n, and (directed) edges v→ dv+ i for i = 0, . . . , d−1
and all v ∈ Zn . The generalized Kautz graph Kautz(n, d) has vertex set
Zn and directed edges v → −d(v + 1) + i for i = 0, . . . , d − 1 and all
v ∈ Zn . Note that both DB(n, d) and Kautz(n, d) are Eulerian. In what
follows, we will focus on the generalized de Bruijn graph; the generalized
Kautz graph can be handled in a similar way, essentially by replacing d
by −d in certain places.
Let Zn = {a(x) ∈ Z[x] mod xn− 1 | a(1) = 0}. With each vertex v ∈

Zn , we associate the polynomial fv(x) = dxv−xdv∑d−1
i=0 x

i ∈ Zn . Since
fv(x) is the associated polynomial of the vth row of the Laplacian �(n,d)

of the generalized de Bruijn graph DB(n, d), the Smith group �(�(n,d))
of the Laplacian of DB(n, d) is the quotient of Z[x] mod xn − 1 by the
Zn-span 〈 fv(x) | v ∈ Zn〉Zn of the polynomials fv(x). Now note that
Z[x] mod xn − 1 ∼= Z⊕ Zn , so since

∑
v∈Zn

fv(x) = 0, we have that

�(�(n,d)) = (Z[x] mod xn − 1)/〈 fv(x) | v ∈ Zn〉Zn (2.1)
∼= Z⊕ Zn/〈 fv(x) | v ∈ Z′n〉Zn

where Z′n = Zn \{0}. It is easily checked that the polynomials fv(x) with
v ∈ Z′n are independent over Q, hence they constitute a basis for Zn over
Q. As a consequence, each element in the quotient group

S(n, d) = SDB(n, d) = Zn/〈 fv(x) | v ∈ Z′n〉Zn (2.2)

has finite order, and so S(n, d) is the critical group, or, equivalently, the
sandpile group, of the generalized de Bruijn graph DB(n, d). We define
the sand dune group �(n, d) = �DB(n, d) of DB(n, d) as �(n, d) =
Zn/〈gv(x) | v ∈ Z′n〉Zn , where gv(x) = (x − 1) fv(x) = dxv(x − 1) −
xdv(xd − 1). Now let ev = xv − 1; we have that e0 = 0, and Zn =
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〈ev | v ∈ Z′n〉Z, the Z-span of the polynomials ev. Furthermore, let
εv = dev− edv. The span inQn = {a(x) ∈ Q[x] mod xn−1 | a(1) = 0}
of the polynomials gv(x) with v ∈ Zn is the set of polynomials of the
form dc(x)− c(xd) with c(1) = 0; since εv = g0(x)+ · · · gv−1(x) for all
v ∈ Zn , we conclude that

�(n, d) = Zn/En,d, (2.3)

where Zn = 〈ev | v ∈ Z′n〉Z and En,d = 〈εv | v ∈ Z′n〉Z is the Z-
submodule of Zn generated by the polynomials εv = dev − edv. The
next result is crucial: it identifies the elements of the sand dune group
�(n, d) that are actually contained in the sandpile group S(n, d). (Due
to lack of space, we omit the not too difficult proofs in the remainder of
this section.)

Theorem 2.1. If a ∈ �(n, d) with a =∑
v avev, then a ∈ S(n, d) if and

only if
∑
v vav ≡ 0 mod n.

Corollary 2.2. We have �(n, d)/S(n, d) = Zn and so |�(n, d)| =
n|S(n, d)|.
The above descriptions of the sandpile group S(n, d) and sand dune

group �(n, d), and the embedding of S(n, d) as a subgroup of �(n, d)
are very suitable for the determination of these groups. In the process,
repeatedly information is required about the order of various group ele-
ments. The following two results provide that information.

Lemma 2.3. Let a =∑
v avεv ∈ �(n, d). Then the order of a in�(n, d)

is the smallest positive integer m for which mav ∈ Z for each v.

We say that v ∈ Zn has d-type ( f, e) in Zn if v, dv, . . . , de+ f−1v are
all distinct, with de+ f v = d f v. Now, by expressing ev in terms of the εv,
we can determine the order of ev. The result is as follows.

Lemma 2.4. Supposing v has d-type ( f, e), then ev =∑ f−1
i=0 d

−i−1εdiv+∑e−1
j=0 d

j− f (de − 1)−1εd f+ jv in Zn , and hence ev has order d f (de − 1) in
�(n, d).

2.2 Invertible circulant matrices

Let Qn be the n × n permutation matrix over a field F corresponding
to the cyclic permutation (1, 2, . . . , n) . An n × n circulant matrix over
F is a matrix that can be written as a1Qn + a2Q2n + . . . + anQn

n with
ai ∈ F for 1 ≤ i ≤ n. All the invertible circulant matrices form a
commutative group (w.r.t. matrix multiplication), namely, the centralizer
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of Qn in GLn(F). In the case F = Fp we consider here we denote this
commutative group by C(n, p). Note that C(n, p) contains a subgroup
isomorphic to Zp−1⊕Zn , namely the direct product of the group of scalar
matrices F∗p I := {λI | λ ∈ F∗p} and the cyclic subgroup generated by
Qn . Each circulant matrix has all-ones vector 1 := (1, . . . , 1)� as an
eigenvector. Thus C ′(n, p) := {g ∈ C(n, p) | g1 = 1} is a subgroup of
C(n, p), and we have the following formula.

C(n, p) = C ′(n, p)× F∗p I. (2.4)

3 Main results

Let n, d > 0 be fixed integers. The description of the sandpile group
S(n, d) and the sand-dune group �(n, d) of the generalized the Bruin
graph DB(n, d) involves a sequence of numbers defined as follows. Put
n0 = n, and for i = 1, 2, . . ., define gi = gcd(ni , d) and ni+1 = ni/gi .
We have n0 > · · · > nk = nk+1, where k is the smallest integer for
which gk = 1. We will refer to the sequence n0 > · · · > nk = nk+1
as the d-sequence of n. In what follows, we will write m = nk and
g = g0 · · · gk−1. Note that n = gm with gcd(m, d) = 1.
Since gcd(m, d) = 1, the map x → dx partitions Zm into orbits of the

form O(v) = (v, dv, . . . , do(v)−1v). We will refer to o(v) = |O(v)| as
the order of v.
For every prime p|m, we define πp(m) to be the largest power of p

dividing m. Let V be a complete set of representatives of the orbits O(v)
different from {0}, where we ensure that for every divisor p of m, all
integers of the form m/p j are contained in V .

Theorem 3.1. With the above definitions and notation, we have that

�(n, d) =
[ k−1⊕
i=0

Zni−2ni+1+ni+2
di+1

]
⊕
[⊕
v∈V

Zdo(v)−1
]
, (3.1)

and

S(n, d)=
[ k−1⊕
i=0

Zdi+1/gi ⊕ Zni−2ni+1+ni+2−1
di+1

]
⊕

[⊕
v∈V

Z(do(v)−1)/c(v)

]
, (3.2)

where c(v) = 1 except in the following cases. For any p|m,

c(m/πp(m)) =
{
πp(m), if p �= 2 or d ≡ 1 mod 4 or 4� |m;
π2(m)/2, if p = 2 and d ≡ 3 mod 4 and 4|m,

and if 4|m and d ≡ 3 mod 4, then c(m/2) = 2.
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For the generalized Kautz graph, a similar result holds. For v ∈ Zm , we
let O ′(v) denote the orbit of v under the map x → −dv, and we define
o′(v) = |O ′(v)|. Now take V ′ to be a complete set of representatives of
the orbits on Z′m . Finally, define c′(v) similar to c(v), except that now d
is replaced by −d (so the special case now involves d ≡ 1 mod 4). Then
we have the following.

Theorem 3.2. The sandpile group SKautz(n, d) of the generalized Kautz
graph Kautz(n, d) is obtained from S(n, d) by replacing V by V ′, o(v)
by o′(v), and c(v) by c′(v) in (3.2).

The above results can be proved in a number of steps. In what fol-
lows, we outline the method for the generalized de Bruijn graphs; for
the generalized Kautz graphs, a similar approach can be used. Further-
more, we note that many of the steps below repeatedly use Theorem 2.1
and Lemma 2.4. First, we investigate the “multiplication-by-d” map
d : x → dx on the sandpile and sand-dune group. Let �0(n, d) and
S0(n, d) denote the kernel of the map dk on �(n, d) and S(n, d), re-
spectively. It is not difficult to see that �(n, d) ∼= �0(n, d) ⊕ �(m, d)
and S(n, d) ∼= S0(n, d) ⊕ S(m, d). Then, we use the map d to deter-
mine �0(n, d) and S0(n, d). It is easy to see that for any n, we have
d�(n, d) ∼= �(n/(n, d), d) and dS(n, d) ∼= S(n/(n, d), d). With much
more effort, it can be show that the kernel of the map d on �(n, d) and
S(n, d) is isomorphic to Zn−n/(n,d)

d and Zd/(n,d) ⊕ Zn−1−n/(n,d)
d , respec-

tively. Then we use induction over the length k + 1 of the d-sequence
of n to show that �0(n, d) and S0(n, d) have the form of the left part of
the right hand side in (3.1) and (3.2), respectively. This part of the proof,
although much more complicated, resembles the method used by [8]
and [3].
Now it remains to handle the parts �(m, d) and S(m, d) with

gcd(m, d) = 1. For the “helper” group �(m, d) that embeds S(m, d),
this is trivial: it is easily seen that �(m, d) = ⊕v∈V 〈ev〉, and the or-
der of ev is equal to the size o(v) of its orbit O(v) under the map d,
so (3.1) follows immediately. The ev are not contained in S(m, d), but
we can try to modify them slightly to obtain a similar decomposition for
S(m, d). The idea is to replace ev by a modified version ẽv = ev −∑

p|m λp(v)eπp(v)m/πp(m), where the numbers λp(v) are chosen such that
ẽv ∈ S(m, d), or by a suitable multiple of ev, in some exceptional cases
(these are cases where c(v) > 1). It turns out that this is indeed possible,
and in this way the proof of Theorem 3.1 can be completed.
Finally, with the notation from Subsect. 2.2, we have the following

isomorphisms, connecting critical groups and circulant matrices.
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Theorem 3.3. Let d be a prime. Then

S(n, d) ∼= C ′(n, d)/〈Qn〉, and �(n, d) ∼= C ′(n, d).

The proof of Theorem 3.3 is by reducing to the case gcd(n, p) = 1 by
an explicit construction, and then by diagonalizing C(n, p) over an ap-
propriate extension of Fp. Essentially, as soon as gcd(n, p) = 1, one
can read off a decomposition of C(n, p) into cyclic factors from the irre-
ducible factors of the polynomial xn − 1 over Fp.
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Two notions of unit distance graphs

Noga Alon1 and Andrey Kupavskii2

Abstract. A complete (unit) distance graph in Rd is a graph whose set of ver-
tices is a finite subset of the d-dimensional Euclidean space, and two vertices are
adjacent if and only if the Euclidean distance between them is exactly 1. A (unit)
distance graph inRd is any subgraph of such a graph. We study various properties
of both types of distance graphs. We show that for any fixed d the number of com-
plete distance graphs in Rd on n labelled vertices is 2(1+o(1))dn log2 n , while the
number of distance graphs in Rd on n labelled vertices is 2(1−1/�d/2�+o(1))n2/2.
This is used to study a Ramsey type question involving these graphs. Finally, we
discuss the following problem: what is the minimum number of edges a graph
must have so that it is not realizable as a complete distance graph in Rd?

1 Introduction

This paper is devoted to the notion of a (unit) distance graph. There are
two well-known definitions:

Definition 1.1. A graph G = (V, E) is a (unit) distance graph in Rd if
V ⊂ Rd and E ⊆ {(x, y), x, y ∈ Rd, |x− y| = 1}, where |x− y| denotes
the Euclidean distance between x and y.

Definition 1.2. A graph G = (V, E) is a complete (unit) distance graph
in Rd if V ⊂ Rd and E = {(x, y), x, y ∈ Rd, |x − y| = 1}.
Distance graphs arise naturally in the study of two well-known prob-

lems of combinatorial geometry. First one, posed by Erdős [3], is the fol-
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lowing: determine the maximum number f2(n) of unit distances among
n points on the plane. Second is the following question, posed by Nelson
(see [2]): what is the minimum number χ(R2) of colours needed to color
the points of the plane so that no two points at unit distance apart receive
the same colour?
Let D(d) denote the set of all labeled distance graphs in Rd , and let

Dn(d) denote the set of all those of order n. Similarly, denote by CD(d)
the set of all labeled complete distance graphs in Rd , and let CDn(d)
denote the set of those of order n.
We reformulate the stated above questions in terms of distance graphs:

f2(n) = max
G∈Dn(2)

|E(G)| = max
G∈CDn(2)

|E(G)|.

χ(Rd) = max
G∈D(d)

χ(G) = max
G∈CD(d)

χ(G),

The second series of equalities follows from the well-known Erdős– de
Bruijn theorem, which states that the chromatic number of the space Rd

is equal to the chromatic number of some finite distance graph inRd . It is
easy to see that it does not matter which definition of distance graph we
use in the study of these two problems. However, sets D(d) and CD(d)
differ greatly, and we discuss it in the next section.

2 Results

The first theorem shows that in any dimension d the number of distance
graphs is far bigger that the number of complete distance graphs.

Theorem 2.1.

1. For any d ∈ N, we have |CDn(d)| = 2(1+o(1))dn log2 n .
2. For any d ∈ N we have |Dn(d)| = 2

(
1− 1

[d/2]+o(1)
)
n2
2 .

3. If d = d(n) = o(n), then we have |CDn(d)| = 2o(n2).
4. If d = d(n) � c n

log2 n
, where c > 4, then |Dn(d)| = (1+ o(1))2

n(n−1)
2 .

In other words, almost every graph on n vertices can be realized as a
distance graph in Rd .

Sketch of the proof. Let P1, . . . , Pm be m real polynomials in l real vari-
ables. For a point x ∈ Rl the zero pattern of the Pj ’s at x is the tuple
(ε1, . . . , εm) ∈ {0, 1}m, where ε j = 0, if Pj (x) = 0 and ε j = 1 if
Pj (x) �= 0. Denote by z(P1, . . . , Pm) the total number of zero patterns
of polynomials P1, . . . , Pm . Upper bounds from point 1 and 3 of the
theorem are proved using the following proposition from real algebraic
geometry ( [7], Theorem 1.3 and Corollary 1.5):
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Proposition 2.2 ( [7]). Let P1, . . . , Pm be m real polynomials in l real
variables, and suppose the degree of each Pj does not exceed k. Then
z(P1, . . . , Pm) �

(km



)
� (ekm/ l)l .

Denote by (vi1, . . . , v
i
d) the coordinates of the vertex vi in the distance

graph. For each unordered pair {i, j} of vertices of the graph define the
following polynomial Pi j :

Pi j = −1+
d∑
r=1
(vir − v jr )2.

It is easy to see that each labeled distance graph in Rd corresponds to a
zero pattern of the polynomials P12, . . . , Pn−1n.
Lower bound in part 1 of the theorem follows from the fact that certain

bipartite graphs with maximum degree d in one part are realizable as
complete distance graphs in Rd .
Lower bound in part 1 of the theorem is a corollary of the fact that

any [d/2]-partite graph is realizable as a distance graph in Rd . Upper
bound has several proofs, with the simplest one based on the regularity
lemma. It rests on the fact that complete ([d/2] + 1)-partite graph with
three vertices in each part is not realizable as distance graph in Rd .
The fourth part of the theorem is an easy consequence of the famous

theorem by Bollobás [1] concerning the chromatic number of the random
graph G(n, 1/2).

Next, we study the following two Ramsey-type quantities.

Definition 2.3. The (complete) distance Ramsey number RD(s, t, d)(
RCD(s, t, d)

)
is the minimum natural m such that for any graph G on

m vertices the following holds: either G contains an induced s-vertex
subgraph isomorphic to a (complete) distance graph in Rd or its comple-
ment Ḡ contains an induced t-vertex subgraph isomorphic to a (complete)
distance graph in Rd .

The quantity RD(s, s, d) was introduced in [6], and studied in several
follow-up papers, while the quantity RCD(s, s, d) was not studied so far.
The following theorem was proved in [4]:

Theorem 2.4 ([4]).

1. For every fixed d � 2 we have

RD(s, s, d) � 2
(

1
2[d/2] +o(1)

)
s
.
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2. For any d = d(s), 2 � d � s/2 we have

RD(s, s, d) � d · R
(⌈

s

[d/2]
⌉
,

⌈
s

[d/2]
⌉)
,

where R(k, 
) is the classical Ramsey number: the minimum number
n so that any graph on n vertices contains either a clique of size k or
an independent set of size 
.

By the last theorem the bounds for RD(s, s, d) are roughly the same as

for the classical Ramsey number R
(⌈

s
[d/2]

⌉
,
⌈

s
[d/2]

⌉)
:

s

2[d/2](1+ o(1)) � log RD(s, s, d) � 2s

[d/2](1+ o(1)),

where the o(1)-terms tend to zero as s tends to infinity.
Using Theorem 2.1 we can show that RCD(s, s, d) is far larger than

RD(s, s, d).

Theorem 2.5.

1. For any d = d(s) = o(s) we have RCD(s, s, d) � 2(1+o(1))s/2.
2. For d = d(s) � cs, where c < 1/2 and H(c) < 1/2, there exists a
constant α = α(c) > 0 such that RCD(s, s, d) � 2(1+o(1))αs .

This theorem is proved via standard probabilistic approach used to obtain
lower bounds on the Ramsey numbers.
The last (possible) difference between D(d) and CD(d) we point out

is the following. Fix an l ∈ N. The following theorem was proved in [5].

Theorem 2.6 ([5]). For any g ∈ N there exists a sequence of distance
graphs in Rd, d = 1, 2, . . . , with girth greater than g such that the chro-
matic number of the graphs in the sequence grows exponentially with d.

Unfortunately, we cannot prove a similar theorem for complete dis-
tance graphs. All we can prove is the following

Proposition 2.7. For any g ∈ N there exists a sequence of complete dis-
tance graphs in Rd, d = 1, 2, . . . , with girth greater than g such that

the chromatic number of the graphs in the sequence grows as �
(

d
log d

)
.

Every bipartite graph is realizable as a distance graph in R4. However,
for any fixed d there exists a bipartite graph that is not realizable as a
complete distance graph in Rd . In general, it seems difficult even for a
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bipartite graph G to decide whether G is realizable as a complete distance
graph in Rd or not. In particular, we introduce the quantity g2(d), which
is equal to the minimum possible number of edges in a bipartite graph K
that is not realizable as a complete distance graph in Rd . We obtained the
following theorem.

Theorem 2.8. For any d � 4 we have
(d+2
2

)
� g2(d) �

(d+3
2

)− 6.
The lower bound in this theorem states that if a bipartite graph is not

realizable as a complete distance graph in Rd, d � 4, then it must have at
least as many edges as the complete graph Kd+2 on d+ 2 vertices, which
is an obvious example of a graph that is not realizable as a distance graph
inRd . This is not the case for d = 3, since the graph K3,3 is not realizable
as a distance graph in R3 and it has 9 <

(5
2

)
edges. It is interesting

to determine, whether an arbitrary graph G that is not realizable as a
complete distance graph in Rd, d � 4, must have at least

(d+2
2

)
edges,

and to study the similar question for distance graphs.

Sketch of the proof of theorem 2.8. Both upper and lower bounds are
based on linear-algebraic considerations, mostly dealing with the notion
of affine dependence.
To obtain the upper bound, we prove that the bipartite graph K ′′ with

the parts A = {a1, . . . , ad}, B = {b1, . . . , bd} and with the set of edges
E = {(ai , b j ) : i > j} ∪ {(ai , b j ) : i � 3} is not realizable as a complete
distance graph in Rd .
To prove the lower bound we provide sufficient conditions for a bi-

partite graph to be realizable as a complete distance graph in Rd . The
construction of the realization is algorithmic.
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An interlacing approach for bounding
the sum of Laplacian eigenvalues
of graphs

Aida Abiad1, Miquel A. Fiol2, Willem H. Haemers2

and Guillem Perarnau2

Abstract. We apply interlacing techniques for obtaining lower and upper bounds
for the sums of Laplacian eigenvalues of graphs. Mainly, we generalize two theo-
rems of Grone and Grone &Merris, providing tight bounds and studying the cases
of equality. As a consequence, some results on well-known parameters of a graph,
such as the maximum and minimum cuts, the edge-connectivity, the (almost) dom-
inating number, and the edge isoperimetric number, are derived.

1 Introduction

Throughout this paper, G = (V, E) is a finite simple graph with n = |V |
vertices and e = |E | edges. Recall that the Laplacian matrix of G is
L = D − A where D is the diagonal matrix of the vertex degrees and A
is the adjacency matrix of G. Let us also recall the following result about
interlacing (see [2]).

Theorem 1.1. Let A be a real symmetric n × n matrix with eigenvalues
λ1 ≥ · · · ≥ λn . For some m < n, let S be a real n × m matrix with
orthonormal columns, S�S = I , and consider the matrix B = S�AS,
with eigenvalues μ1 ≥ · · · ≥ μm . Then,
(a) The eigenvalues of B interlace those of A, that is,

λi ≥ μi ≥ λn−m+i , i = 1, . . . ,m. (1.1)

1 Tilburg University, Department of Econometrics and O.R., Tilburg, The Netherlands. Email:
A.AbiadMonge@uvt.nl

2 Universitat Politècnica de Catalunya, BarcelonaTech, Department de Matemàtica Aplicada IV,
Barcelona, Catalonia. Email: fiol@ma4.upc.edu, Haemers@uvt.nl, guillem.perarnau@ma4.upc.edu
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(b) If the interlacing is tight, that is, for some 0 ≤ k ≤ m, λi = μi ,
i = 1, . . . , k, and μi = λn−m+i , i = k + 1, . . . ,m, then SB = AS.

Two interesting particular cases are when B is a principal submatrix of
A; and when B is the so-called quotient matrix of A with respect to a
given partition P = {I1, . . . , Im} of {1, . . . , n}.
The first case gives useful conditions for an induced subgraph G ′ of

a graph G, because the adjacency matrix of G ′ is a principal submatrix
of the adjacency matrix of G. However, the Laplacian matrix L′ of G ′
is in general not a principal submatrix of the Laplacian matrix L of G.
But L′ + D′ is a principal submatrix of L for some nonnegative diagonal
matrix D′. Therefore the left hand inequalities in (1.1) still hold for the
Laplacian eigenvalues, because adding the positive semi-definite matrix
D′ decreases no eigenvalue.
In the case that B is a quotient matrix of A, the element bi j of B is

the average row sum of the block of A with rows and columns indexed
by Ii and I j , respectively. Actually, the quotient matrix B does not need
to be symmetric or equal to S�AS, but in this case B is similar to (and
therefore has the same spectrum as) S�AS.
If the interlacing is tight, then (b) of Theorem 1.1 reflects that P is a

regular (or equitable) partition of A, that is, each block of the partition
has constant row and column sums. Moreover, if A is the adjacency
matrix of a graph G, then the bipartite induced subgraphs G[Ii , I j ] are
biregular, and G[Ii ] is regular (then we say that P is a regular partition
of G.) Alternatively, if the interlacing is tight for the quotient matrix of
the Laplacian matrix of G, then the first condition also holds, but not
necessarily the second (now we speak about an almost regular partition
of G.)
Assuming that G has n vertices, with degrees d1 ≥ d2 ≥ · · · ≥ dn ,

and Laplacian matrix L with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn(= 0), it is
known that, for 1 ≤ m ≤ n,

m∑
i=1
λi ≥

m∑
i=1

di . (1.2)

This is a consequence of Schur’s theorem [6] stating that the spectrum
of any symmetric, positive definite matrix majorizes its main diagonal.
In particular, note that if m = n we have equality in (1.2), because both
terms correspond to the trace of L. To prove (1.2) by using interlacing,
let B be a principal m × m submatrix of L indexed by the subindexes
corresponding to the m largest degrees, with eigenvalues μ1 ≥ μ2 ≥
· · · ≥ μm . Then, tr B = ∑m

i=1 di =
∑m

i=1 μi , and, by interlacing,
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λn−m+i ≤ μi ≤ λi for i = 1, . . . ,m, whence (1.2) follows. Similarly,
reasoning with the principal submatrix B (of L) indexed by them vertices
with minimum degrees we get:

m∑
i=1
λn−m+i ≤

m∑
i=1

dn−m+i . (1.3)

The next result, which is an improvement of (1.2), is due to Grone [4],
who proved that if G is connected and m < n then,

m∑
i=1
λi ≥

m∑
i=1

di + 1. (1.4)

In this paper, we give a generalization of this result by considering the
degrees of vertices in a given subset. Note that if we take m = 1 in (1.4),
we get λ1 ≥ d1+1. Guo [3] conjectured another generalization looking at
individual eigenvalues, which was proved by Brouwer and Haemers [1].
They showed that if λi is the i-th largest Laplacian eigenvalue, and di is
the i-th largest degree of a connected graph G on n vertices (in fact, it is
is enough to assume that G �= Km ∪ (n − m)K1), then λi ≥ di − i + 2,
1 ≤ i ≤ n − 1.

2 New results
In this section we present the main results of the paper. In particular, we
use interlacing for generalizing two results of Grone [4] and Grone and
Merris [5].

2.1 A generalization of Grone’s result

We begin with a basic result from where most of our bounds derive.
Given a graph G with a vertex subset U ⊂ V , let ∂U be the vertex-
boundary of U , that is, the set of vertices in U = V \U which have some
adjacent vertex in U . Also, let ∂(U,U) denote the edge-boundary of
U , which is the set of edges which connect vertices in U with vertices
in U = V \U , with cardinality e(U,U) = |∂(U,U)|. For every vertex
v ∈ V , let dv = d(v) stands for its degree.

Proposition 2.1. Let G be a graph on n = |V | vertices, having Lapla-
cian matrix L = (luv) with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn(= 0). For
any given vertex subset U = {u1, . . . , um} with 0 < m < n, we have

m∑
i=1
λn−i ≤

∑
u∈U

du + e(U,U)

|U | ≤
m∑
i=1
λi . (2.1)



114 Aida Abiad, Miquel A. Fiol, Willem H. Haemers and Guillem Perarnau

The equality on either side of (2.1) implies that the interlacing is tight,
and therefore that the partition ofG is almost equitable. In other words, in
case of equality every vertex x ∈ U is adjacent to either all or 0 vertices in
U , whereas each vertex x ∈ U has precisely b = e(U,U)/|U | neighbors
in U . Using this, it is straightforward to construct nontrivial examples
with equality. (If n = m + 1, equality holds trivially on both sides.)
In this context, observe that there is no graph (with n > 2) satisfy-

ing (1.4) for every 0 < m < n. However the complete graph Kn provides
an example for which the inequalities in Proposition 2.1 are equalities for
all 0 < m < n. Indeed, in this case we have λi = n for any 1 ≤ i < n
and for any set U of size m, e(U,U)/|U | = m, thus giving for any
0 < m < n,

m∑
i=1
λi = mn = m(n − 1)+ m =

∑
u∈U

du + e(U,U)

|U | ,

If the vertex degrees of G are d1 ≥ d2 ≥ · · · ≥ dn , we can choose con-
veniently the m vertices of U (that is, those with maximum or minimum
degrees) to obtain the best inequalities in (2.1). Namely,

m∑
i=1
λi ≥

m∑
i=1

di + e(U,U)

|U | , (2.2)

and
m∑
i=1
λn−i ≤

m∑
i=1

dn−i+1 + e(U,U)

|U | . (2.3)

Note that, since e(U,U) ≥ 1, (2.2) is a slight improvement of (1.2).
Moreover, (2.3), together with (1.3) for m + 1, yields

m∑
i=1
λn−m+i =

m∑
i=1
λn−i ≤

m∑
i=1

dn−i+1 +min
{
dn−m,

e(U,U)

|U |

}
. (2.4)

If we have more information on the structure of the graph, we can im-
prove the above results by either bounding e(U,U) or ‘optimizing’ the
ratio b = e(U,U)/|U |. In fact, the right inequality in (2.1) (and, hence,
(2.2)) can be improved when U �= ∂U . Simply first delete the vertices
(and corresponding edges) ofU \∂U , and then apply the inequality. Then
d1, . . . , dm remain the same and λ1, . . . , λm do not increase. Thus we ob-
tain:
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Theorem 2.2. Let G be a connected graph on n = |V | vertices, with
Laplacian eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn(= 0). For any given vertex
subset U = {u1, . . . , um} with 0 < m < n, we have

m∑
i=1
λi ≥

m∑
u∈U

du + e(U,U)

|∂U | . (2.5)

Notice that, as a corollary, we get Grone’s result [4] since e(U,U) ≥
|∂U |.
2.2 A generalization of a bound by Grone and Merris

In [5], Grone and Merris gave another lower bound for the sum of the
Laplacian eigenvalues, in the case when there is an induced subgraph
consisting of isolated vertices and edges. If the induced subgraph of a
subset U ⊂ V with |U | = m consists of r pairwise disjoint edges and
m − 2r isolated vertices, then

m∑
i=1
λi ≥

∑
u∈U

du + m − r. (2.6)

An improvement of this result was given by Brouwer and Haemers in [2].
Let G be a (not necessarily connected) graph with a vertex subsetU , with
m = |U |, and let h be the number of connected components of G[U ] that
are not connected components of G. Then,

m∑
i=1
λi ≥

∑
u∈U

du + h. (2.7)

Using interlacing, the bound (2.6) can also be generalized as follows:

Theorem 2.3. Let G be a connected graph of order n > 2 with Lapla-
cian eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn . Given a vertex subsetU ⊂ V , with
m = |U | < n, let G[U ] = (U, E[U ]) and G[U ] be the corresponding
induced subgraphs. Let θ1 be the largest Laplacian eigenvalue of G[U ].
Then,

m+1∑
i=1
λi ≥

∑
u∈U

du + m − |E[U ]| + θ1. (2.8)

The previous bounds on the sum of Laplacian eigenvalues are used
to provide meaningful results for the size of the maximum cut of
a graph, the edge-connectivity of the graph, the minimum size of
a dominating set and the (edge-)isoperimetric number. Given a graph
G on n vertices, the isoperimetric number is defined as i(G) =
minU⊂V

{
e(U,U)/|U | : 0 < |U | ≤ n/2

}
.
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Proposition 2.4. Let G be a graph on n vertices, with vertex degrees
d1 ≥ d2 ≥ · · · ≥ dn , and Laplacian eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn(=
0). Let m such that n2 ≤ m < n. Then,

i(G) ≤
m∑
i=1
(λi − di). (2.9)
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On the structure of the group of balanced
labelings on graphs

Yonah Cherniavsky1, Avraham Goldstein2 and Vadim E. Levit1

1 Abstract

Let G = (V, E) be an undirected graph with possible multiple edges and
loops (a multigraph). Let A be an Abelian group. In this work we study
the following topics:
1) A function f : E → A is called balanced if the sum of its values

along every closed truncated trail of G is zero. By a truncated trail we
mean a trail without the last vertex. The set H(E, A) of all the balanced
functions f : E → A is a subgroup of the free Abelian group AE of all
functions from E to A. We give a full description of the structure of the
group H(E, A), and provide an O(|E |)-time algorithm to construct a set
of the generators of its cyclic direct summands.
2) A function g : V → A is called balanceable if there exists some

f : E → A such that the sum of all the values of g and f along every
closed truncated trail of G is zero. The set B(V, A) of all balanceable
functions g : V → A is a subgroup of the free Abelian group AV of all
the functions from V to A. We give a full description of the structure of
the group B(V, A).
3) A function h : V ∪ E → A taking values on vertices and edges is

called balanced if the sum of its values along every closed truncated trail
of G is zero. The setW (V ∪E, A) of all balanced functions h : V ∪E →
A is a subgroup of the free Abelian group AV∪E of all functions from V ∪
E to A. The group H(E, A) is naturally isomorphic to the subgroup of
W (V ∪ E, A) consisting of all functions taking every vertex to 0. So we,
abusing the notations, treat H(E, A) as that subgroup of W (V ∪ E, A).

1 Computer Science and Mathematics, Ariel University, Israel.
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There is a natural epimorphism from W (V ∪ E, A) onto B(V, A), which
“forgets” the values of h on the edges. The kernel of this epimorphism is
precisely H(E, A). Thus, W (V ∪ E, A)/H(E, A) ∼= B(V, A). We use
this fact to give a full description of the group W (V ∪ E, A).

2 Introduction

For directed graphs, the study of integer-valued functions that vanish on
all cycles of a graph, and the notion of the cycle space are classical in
Graph Theory. For undirected graphs these questions where first ad-
dressed in [1]. In that work such functions are called cycle-vanishing
edge valuations. It turns out that in the undirected case the dimensions of
the cycle space and, dually, of the space of cycle vanishing edge valua-
tions are closely related 3-edge connectivity. In a very recent article [4]
the balanced functions from the union of the set of vertices and the set of
edges of a graph to a finite Abelian group A are considered. In that work,
which is closely related to [1], the number of such functions is calculated.
In [6] they study the triples (�, g,G), where � is a graph, G is a group,

and g is a function from the set of edges of � to G. The edges of �
are thought of as having arbitrary, but fixed, orientation and the equality
g(−e) = (g(e))−1 holds for every edge e, where−e is e with the inverted
orientation. Such triples are called gain or voltage graphs. A gain graph
is called balanced if the product of values of g along every cycle equals
the identity element. For the voltage graphs, being balanced is equivalent
to satisfying Kirchhoff’s voltage law. In [6] several strong criteria for the
gain graphs to be balanced are obtained. Voltage graphs are discussed
in [3]. For the survey on signed graphs, gain graphs, and related topics
see [8].

3 Results

A truncated trail (ttrail) p from a vertex x to a vertex y is an alternating
sequence v1, e1, v2, e2, ..., vn, en of vertices and edges such that v1 = x ,
each e j , for j = 1, ..., n− 1, connects v j and v j+1, en connects vn and y,
and ei �= e j for i �= j . Let p = v1, e1, v2, e2, ..., vn, en be a ttrail from a
vertex x to a vertex y and p′ = v′1, e′1, v′2, e′2, ..., v′n′, e′n′ be a ttrail from y
to a vertex w. Then, if p and p′ have no common edges, the ttrail p+ p′
from x tow is defined as v1, e1, v2, e2, ..., vn, en, v′1, e

′
1, v

′
2, e

′
2, ..., v

′
n′, e

′
n′ .

Let p = v1, e1, v2, e2, ..., vn, en be a ttrail from a vertex x to a vertex y.
Then the ttrail p−1 from y to x is defined as v′1, e

′
1, v

′
2, e

′
2, ..., v

′
n, e

′
n where

v′1 = y, v′i = vn+2−i for i = 2, ..., n, and e′j = en+1− j for j = 1, ..., n. A
ttrail p from a vertex x to itself is called a closed ttrail. A closed ttrail is
called a cycle if it contains every vertex only one time.
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The subgroup of all elements of A of order 2 is denoted A2. The image
2A of the doubling self-map a �→ 2a of A is a subgroup of A.

Definition 3.1. Vertices v and w of G are called k-edge-connected if
there exist k different ttrails between v and w such that no two of these
ttrails have any common edges. By definition, we say that a vertex v of
G is k-edge-connected to itself for all k.

The edge version of the famous Menger’s Theorem, which asserts that
two distinct vertices v and w of G are k-edge-connected if and only if no
deletion of any k−1 edges fromG disconnects v andw, plays crucial role
in our work. Its corollary is that k-edge-connectivity is an equivalence
relation on the vertices of G.
We denote the number of equivalence classes of k-edge-connected ver-

tices of G by conk(G). Note that con1(G) = con(G) is just the number
of the connected components of G. We denote the equivalence class of
k-edge-connected vertices of G, which contains a vertex v, by Conk(v).

Definition 3.2. A ttrail between two k-edge-connected vertices is called
a k-weakly closed ttrail of G.

Clearly, every closed ttrail of G is also a k-weakly closed ttrail of G
for every k.
In this work we mostly concentrate on the case when k = 3, since

it plays a crucial role in the structure of groups H(E, A), B(V, A) and
W (V ∪ E, A). It is shown in [7] that there exists a simple linear-time
algorithm for finding all 3-edge-connected components of an undirected
graph. Further, we introduce short ttrails, and obtain several related struc-
tural results, like Lemma 3.6 and Theorem 3.7. Then, we obtain the dual
results, like Lemma 3.13 and Theorem 3.12. Finally, we use these results
to obtain the group structure of H(E, A), B(V, A), and W (V ∪ E, A).
Definition 3.3. The boundary linear map δ : FE

2 → FV
2 is defined by

taking each edge to the sum of its two adjacent vertices.

Definition 3.4. The Cycle Space of G is defined as Ker(δ), and its ele-
ments are called the homological cycles of G.

Definition 3.5. A 3-weakly closed ttrail between vertices v andw, where
v can be equal tow, is called short if no one of its inner vertices is 3-edge-
connected to v.

Lemma 3.6. Every 3-weakly closed ttrail is a unique sum of short 3-
weakly closed ttrails.

Let x, y, u, w be (not necessarily distinct) vertices belonging to the
same 3-edge-connected component of G.
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Theorem 3.7. If two short 3-weakly closed ttrails, one from x to y and
the other from u to w, have a common inner vertex, then x = u, y = w,
and their first and last edges coincide.

Definition 3.8. Two short 3-weakly closed ttrails are called twins if their
first and last edges coincide.

Twinship is an equivalence relation between short 3-weakly closed ttrails.

Definition 3.9. For two vertices v,w of G, a homological path p be-
tween v and w is a vector p ∈ FE

2 such that δ(p) = v +w.
Definition 3.10. A homological path between two (not necessarily dis-
tinct) k-edge-connected vertices of G is called a k-weak homological cy-
cle of G.

Definition 3.11. The subspace of FE
2 , spanned by all the k-weak homo-

logical cycles of G, is called the k-Weak Cycle Space of G.

The Cycle Space is a subspace of the k-Weak Cycle Space for each k.
Next, we obtain the following dual results on functions from G to A.

Theorem 3.12. If a function f : E → A takes the Cycle Space of G to
0 then f is balanced. If a function f : E → A is balanced then it takes
the 3-Weak Cycle Space of G into A2 and the Cycle Space of G to 0.

Lemma 3.13. A function g : V → A such that g(V ) ∈ 2A or that for
some 3-edge-connected component W of V and any a ∈ A, g(w) = a, if
w ∈ W , and g(w) = 0 otherwise, is balanceable. In the other direction,
if a function g : V → A is balanceable then for any 3-edge-connected
vertices v and w we must have g(v)− g(w) ∈ 2A.
Using the above findings, we construct certain appropriate bases for

the Cycle Space of G, the 3-Weak Cycle Space of G, FE
2 , Fcon3(G)

2 , and
FV
2 , which we need to prove our three concluding theorems.

Theorem 3.14. The Abelian group H(E, A) of all the balanced func-
tions f : E → A is isomorphic to Acon3(G)−con(G) × A|V |−con3(G)2 .

Theorem 3.15. The Abelian group B(V, A) of all the balanceable func-
tions g : V → A is isomorphic to Acon3(G) × (2A)|V |−con3(G).
Theorem 3.16. The Abelian group W (V ∪ E, A) of all the balanced
functions h : V ∪ E → A is isomorphic to A|V |+con3(G)−con(G).

Notice that Theorem 4 in [4] follows from our Theorem 3.16 for a fi-
nite A.
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4 Conclusions

When every a ∈ A is of order 2, for example, if A = Z2, then 2A = 0 and
A2 = A. In that case our results for H(E, A) coincide with the classical
results for balanced gain graphs.
When A is the additive group of the real numbers then 2A = A and

A2 = 0, and our findings on H(E, A) coincide with the results of [1].
When A is a finite group, Theorem 4 in [4] follows from our Theo-

rem 3.16.
We have studied the group structure of the group W (V ∪ E, A), its

subgroup H(E, A), and its factor-group B(V, A). The dual problem is to
understand the structure of the subgroup B ′(V, A) of all balanced func-
tions on vertices and the factor-group H ′(E, A) of all balanceable func-
tions on edges. The elements of B ′(V, A) are, by abuse of notation, such
h ∈ W (V ∪ E, A) that h(e) = 0 for every edge e ∈ E . In the case when
A = Z2 this is identical to describing the consistent marked (vertex-
signed) graphs. These graphs were treated and characterized in [5].
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The price of connectivity for feedback
vertex set

Rémy Belmonte1, Pim van ’t Hof1, Marcin Kamiński2

and Daniël Paulusma3

Abstract. Let fvs(G) and cfvs(G) denote the cardinalities of a minimum feed-
back vertex set and a minimum connected feedback vertex set of a graph G, re-
spectively. In general graphs, the ratio cfvs(G)/fvs(G) can be arbitrarily large. We
study the interdependence between fvs(G) and cfvs(G) in graph classes defined
by excluding one induced subgraph H . We show that the ratio cfvs(G)/fvs(G) is
bounded by a constant for every connected H -free graph G if and only if H is a
linear forest. We also determine exactly those graphs H for which there exists a
constant cH such that cfvs(G) ≤ fvs(G)+ cH for every connected H -free graph
G, as well as exactly those graphs H for which we can take cH = 0.

1 Introduction

Numerous important graph parameters are defined as the cardinality of a
smallest subset of vertices satisfying a certain property. Well-known ex-
amples of such parameters include the cardinality of a minimum vertex
cover, a minimum dominating set, or a minimum feedback vertex set in
a graph. In many cases, requiring the subset of vertices to additionally
induce a connected subgraph defines a natural variant of the original pa-
rameter. The cardinality of a minimum connected vertex cover or a mini-
mum connected dominating set are just two examples of such parameters
that have received considerable interest from both the algorithmic and
structural graph theory communities. An interesting question is what ef-
fect the additional connectivity constraint has on the value of the graph
parameter in question.
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One notable graph parameter that has been studied in this context is
the vertex cover number τ(G), defined as the cardinality of a minimum
vertex cover of a graph G. The connected variant of this parameter is
the connected vertex cover number, denoted by τc(G) and defined as the
cardinality of a minimum connected vertex cover inG. The following ob-
servation on the interdependence between τ(G) and τc(G) for connected
graphs G is due to Camby et al. [2].

Observation 1.1 ([2]). For every connected graph G, it holds that
τc(G) ≤ 2 · τ(G)− 1.
Given a graph class G, the worst-case ratio τc(G)/τ(G) over all con-

nected graphs G in G is defined to be the price of connectivity for vertex
cover for the class G. Observation 1.1 implies that for general graphs, the
price of connectivity for vertex cover is upper bounded by 2, and the class
of all paths shows that the bound of 2 is asymptotically sharp [2]. Cardi-
nal and Levy [4], who coined the term “price of connectivity for vertex
cover”, showed a stronger upper bound of 2/(1 + ε) for graphs with av-
erage degree εn. Camby et al. [2] provided forbidden induced subgraph
characterizations of graph classes for which the price of connectivity for
vertex cover is upper bounded by t , for t ∈ {1, 4/3, 3/2}.
The above idea applies to other graph parameters as well. The follow-

ing observation, due to Duchet and Meyniel [5], shows the interdepen-
dence between the connected domination number γc(G) and the domina-
tion number γ (G) of a connected graph G.

Observation 1.2 ([5]). For every connected graph G, it holds that
γc(G) ≤ 3 · γ (G)− 2.
Adapting the terminology used above for vertex cover, Observation 1.2

implies that the price of connectivity for dominating set on general graphs
is upper bounded by 3. The class of all paths again shows that this bound
is asymptotically sharp. Zverovich [9] proved that for any graph G, it
holds that γc(H) = γ (H) for every induced subgraph H of G if and
only if G is (P5,C5)-free, that is, if and only if G does not contain an
induced subgraph isomorphic to P5 or C5. This implies that the price
of connectivity for dominating set is exactly 1 for the class of (P5,C5)-
free graphs. Camby and Schaudt [3] proved that γc(G) ≤ γ (G) + 1
for every connected (P6,C6)-free graph G, and showed that this bound is
best possible. They also obtained a sharp upper bound of 2 on the price of
connectivity for dominating set for (P8,C8)-free graphs, and showed that
the general upper bound of 3 is asymptotically sharp for (P9,C9)-free
graphs.
A feedback vertex set of a graph G is a set F of vertices such that

deleting F makes G acyclic, that is, the graph G − F is a forest. The
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cardinalities of a minimum feedback vertex set and a minimum connected
feedback vertex set of a graph G are denoted by fvs(G) and cfvs(G),
respectively. For any graph class G, we define the price of connectivity
for feedback vertex set to be the worst-case ratio cfvs(G)/fvs(G) over all
connected graphs G in G. In contrast to the aforementioned upper bounds
of 2 and 3 on the price of connectivity for vertex cover and dominating
set, respectively, the price of connectivity for feedback vertex is not upper
bounded by a constant. Graphs consisting of two disjoint cycles that are
connected to each other by an arbitrarily long path show that the price
of connectivity for feedback vertex set is not even bounded by a constant
for planar graphs. Interestingly, Grigoriev and Sitters [6] showed that
for planar graphs of minimum degree at least 3, the price of connectivity
for feedback vertex set is at most 11. This upper bound of 11 was later
improved to 5 by Schweitzer and Schweitzer [8], who also showed that
this bound is tight.

Our Results. We study the price of connectivity for feedback vertex set
for graph classes characterized by one forbidden induced subgraph H . A
graph is called H -free if it does not contain an induced subgraph isomor-
phic to H . We show that the price of connectivity for feedback vertex set
is bounded by a constant on the class of H -free graphs if and only if H
is a linear forest, that is, a forest of maximum degree at most 2. In fact,
we obtain a more refined tetrachotomy result on the interdependence be-
tween fvs(G) and cfvs(G) for all connected H -free graphs G, depending
on the structure of the graph H . In order to formally state our result, we
need the following terminology. The disjoint union G+H of two vertex-
disjoint graphs G and H is the graph with vertex set V (G) ∪ V (H) and
edge set E(G) ∪ E(H). We write sH to denote the disjoint union of s
copies of H , and Pn to denote the path on n vertices. Let H be a graph
and G the class of H -free graphs. The class G is called identical, ad-
ditive, or multiplicative if for all connected graphs G in G, it holds that
cfvs(G) = fvs(G), cfvs(G) ≤ fvs(G) + cH for some constant cH ≥ 0,
or cfvs(G) ≤ dH · fvs(G) for some constant dH ≥ 0, respectively. Our
result can now be formulated as follows.

Theorem 1.3. Let H be a graph, and let G be the class of H -free graphs.
Then

(i) G is multiplicative if and only if H is a linear forest;
(ii) G is additive if and only if H is an induced subgraph of P5+ sP1 or

sP3 for some s ≥ 0;
(iii) G is identical if and only if H is an induced subgraph of P3.
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2 The proof of Theorem 1.3

Statements (i), (ii) and (iii) in Theorem 1.3 follow from Lemmas 2.1, 2.3
and 2.4 below, respectively.

Lemma 2.1. Let H be a graph. Then there is a constant dH such that
cfvs(G) ≤ dH · fvs(G) for every connected H -free graph G if and only
if H is a linear forest.

Proof. If H is a linear forest, then the statement of the lemma follows
from the fact that every connected H -free graph has bounded diameter.
Before proving the reverse direction, we first introduce a family of

graphs that will be used later in the proof. Let Cn denote the cycle on
n vertices. For any three integers i, j, k, we define Bi, j,k to be the graph
obtained from Ci +C j by choosing a vertex x in Ci and a vertex y in C j ,
and adding a path of length k between x and y; if k = 0, then we simply
identify x and y. The graph B3,3,0 is called the butterfly.
Now suppose H is not a linear forest. We distinguish two cases.

Suppose H contains a cycle, and let C be a shortest cycle in H ; in
particular, C is an induced cycle. For any integer 
, the graph B
 :=
B|V (C)|+1,|V (C)|+1,
 is C-free and therefore H -free. The observation that
cfvs(B
) = fvs(B
) + 
 − 1 for every 
 ≥ 1 shows that no constant dH
exists as described in the lemma. If H does not contain a cycle, then
H is a forest. For any integer 
, the graph B3,3,
 is claw-free. Since we
assumed that H is not a linear forest and hence contains a claw, B3,3,
 is
also H -free. The observation that cfvs(B3,3,
) = fvs(B3,3,
) + 
 − 1 for
every 
 ≥ 1 completes the proof of Lemma 2.1.
Lemma 2.2 below exhibits a structural property of sP3-free graphs that

will be used in the proof of Lemma 2.3 below. The proof of Lemma 2.2
has been omitted due to page restrictions.

Lemma 2.2. For every integer s, there is a constant cs such that
cfvs(G) ≤ fvs(G)+ cs for every connected sP3-free graph G.

Lemma 2.3. Let H be a graph. Then there is a constant cH such that
cfvs(G) ≤ fvs(G)+ cH for every connected H -free graph G if and only
if H is an induced subgraph of P5 + sP1 or sP3 for some integer s.

Proof. First suppose H is an induced subgraph of P5. Let G be a con-
nected H -free graph. In particular, G is P5-free. Hence, due to a result
by Bacsó and Tuza [1], there exists a dominating set D ⊆ V (G) such
that D is a clique or D induces a P3 in G. Let F be a minimum feedback
vertex set of G. Note that |D \ F | ≤ 2 if D is a clique and |D \ F | ≤ 3
if D induces a P3. Since D is a connected dominating set in G, the set
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F ∪ D is a connected feedback vertex set of G of size at most |F | + 3.
Hence, we can take cH = 3.
Now suppose H is an induced subgraph of P5 + sP1 for some integer

s. Let G be a connected H -free graph. If G is P5-free, then we can take
cH = 3 due to the above arguments. Suppose G contains an induced path
P on 5 vertices. Let S be a maximal independent set in the graph obtained
from G by deleting the five vertices of P as well as all their neighbors in
G. SinceG is P5+sP1-free, we know that |S| ≤ s−1. Note that V (P)∪S
is a dominating set of G. Hence, by Observation 1.2, there is a connected
dominating set D in G of size at most 3(|V (P)∪ S|)− 2 ≤ 3s + 10. Let
F be a minimum feedback vertex set in G. Then F ∪ D is a connected
feedback vertex set in G of size at most |F | + 3s + 10. Hence, we can
take cH = 3s + 10.
If H is an induced subgraph of sP3 for some integer s, then the ex-

istence of a constant cH as mentioned in Lemma 2.3 is guaranteed by
Lemma 2.2.
It remains to show that if H is not an induced subgraph of P5 + sP1

or sP3 for any integer s, then there is no constant cH such that cfvs(G)−
fvs(G)+ cH for every connected H -free graph G. Let H be a graph that
is not an induced subgraph of P5 + sP1 or sP3 for any integer s. First
suppose H is not a linear forest. Then, by Lemma 2.1, there does not
exist a constant c such that cfvs(G) ≤ c · fvs(G) for every connected H -
free graph G. This implies that there cannot be a constant cH such that
cfvs(G) ≤ fvs(G) + cH for every connected H -free graph G. Finally,
suppose H is a linear forest. Since H is not an induced subgraph of
P5+ sP1 or sP3 for any integer s, it contains P6 or P4+ P2 as an induced
subgraph. Consequently, the class of H -free graphs is a superclass of the
class of {P6, P4+ P2}-free graphs. Hence, in order to complete the proof
of Lemma 2.3, it suffices to show that if G is the class of {P6, P4+P2}-free
graphs, then there exists no constant cH such that cfvs(G) ≤ fvs(G)+cH
for every connected G ∈ G.
For every integer k ≥ 1, let Lk be the graph obtained from k disjoint

copies of the butterfly by adding a new vertex x that is made adjacent
to all vertices of degree 2. For every k ≥ 1, the unique minimum feed-
back vertex set in Lk is the set {x, y1, y2, . . . , yk}, so fvs(Lk) = k + 1.
Every minimum connected feedback vertex set in Lk contains the set
{x, y1, y2, . . . , yk}, as well as exactly one additional vertex for each of
the vertices yi to make this set connected. Hence, cfvs(Lk) = 2k + 1 =
fvs(Lk)+k. The observation that Lk is {P6, P4+P2}-free for every k ≥ 1
implies that if G is the class of {P6, P4 + P2}-free graphs, then there ex-
ists no constant c such that cfvs(G) ≤ fvs(G) + c for every connected
G ∈ G.
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The proof of the next lemma has been omitted due to page restrictions.

Lemma 2.4. Let H be a graph. Then cfvs(G) = fvs(G) for every con-
nected H -free graph G if and only if H is an induced subgraph of P3.
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A local flow algorithm in bounded degree
networks

Endre Csóka1

1 Introduction

We show a deterministic local algorithm for constructing an almost max-
imum flow and an almost minimum cut in multisource-multitarget net-
works with bounded degrees. Locality means that we decide about each
edge or node depending only on its constant radius neighbourhood. We
show two applications of the flow algorithm, one is about how the neigh-
borhood distributions of arbitrary bounded degree graphs can be approxi-
mated by bounded size graphs, and the other one is related to the Aldous–
Lyons conjecture.
In our case, network means a graph with three kind of nodes: sources,

targets and regular nodes; and we have directed edges with capacities. A
local flow algorithm means a function that gets an edge and a constant-
radius neighbourhood of it, including the types of vertices and the ca-
pacities of the edges; and the function outputs the amount of flow on
that edge. A local flow algorithm is correct if for each network N , the
amounts produced by the local algorithm on all edges provide a flow.
For typical problems, we expect from local algorithms approximate so-

lutions only. We measure this error compared to the sum of all capacities
cap(N ). Namely, we say that we can find an almost maximum flow in
multisource-multitarget networks if for each ε > 0, there exists a correct
local flow algorithm that for each network N , outputs a flow with size at
most ε · cap(n) less than the size of the maximum flow.
Local algorithms are an equivalent description of constant-time dis-
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tributed algorithms. For more about local algorithms, see the survey pa-
per by Suomela [5]. It turned out that this is a useful tool for property
testing, as well. Property testing is an analogue of the Szemerédi regular-
ity theory, but for bounded degree graphs. Namely, we want to describe
very large graphs by bounded-size structures, such that this structure de-
scribes several properties and parameters of the entire graph. Nguyen and
Onak [4] proved the estimability of several parameters using randomized
local algorithms. For more about this topic, see the book by Lovász [3].

2 Model and results

There is an input network N = (G, c), as follows. G = (S, R, T, #E) is a
graph with degrees bounded by d. d is a global constant throughout the
paper. The vertices of G are separated into the disjoint union of the sets
S (source), R (regular) and T (target). #E is the set of directed edges of
G, which satisfies that (a, b) ∈ #E ⇔ (b, a) ∈ #E . We have a capacity
function c : #E → [0,∞) of the directed edges. The total capacity on all
edges is denoted by cap(N ) = ∑

e∈ #E
c(e). We will use the terms “graph”,

“path” and “edge” in the directed sense. Let V = V (G) = V (N ) =
S ∪ R ∪ T , |V | = n, out (A) = {

(a, b) ∈ #E ∣∣ a ∈ A, b /∈ A
}
, and

out (v) = out
({v}), and for an edge e = (a, b), let −e = (b, a) denote

the edge in the opposite direction.
A function f : #E → R is called a flow if it satisfies that ∀e ∈ #E(G) :

f (−e) = − f (e) and f (e) ≤ c(e), and ∀r ∈ R : ∑
e∈out (r)

f (e) = 0. The

value of a flow f is
∥∥ f ∥∥ = ∑

e∈out (S)
f (e). Denote a maximum flow by

f ∗ = f ∗(N ).
A set S ⊆ X ⊆ S ∪ R is called a cut. The value of a cut is

∥∥X∥∥ =∥∥X∥∥
N
= ∑

e∈out (X)
c(e). The Maximum Flow Minimum Cut Theorem [2]

says that min
S⊆X⊆S∪R

∥∥X∥∥ = ∥∥ f ∗∥∥.
The rooted r-neighborhood of a vertex v or edge e, denoted by hr (v) =

hr (G, v) and hr (e), means the (vertex- or edge-)rooted induced subnet-
work of the vertices at distance at most r from v or e, rooted at v or
e, respectively. The set of all possible r-neighborhoods are denoted by
B(r) and B(2)(r), respectively. A function F : B(2)(r) → R is called
a local flow algorithm, and for each network N , we define the flow on
N generated by F as F(N ) = (

e → F(hr (e))
)
. Similarly, C : B(r)→

{true, f alse} is called a local cut algorithm, and for each network N , we
define the cut on N generated by C as C(N ) =

{
v ∈ V (G)

∣∣∣C(
hr (v)

)}
.
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Theorem 2.1. For each ε > 0, there exists a local flow algorithm F that
for each network N ,

∥∥F(N )∥∥ ≥ ∥∥ f ∗(N )∥∥− ε · cap(n).
Summary of proof. We start from the empty flow, and we augment on all
augmenting paths in increasing order of length, and in a random order
within the same length. This provides an expectedly almost maximum
flow. In order to keep the locality, we skip the augmentation in some
specific low probability events. At each edge, this changes the flow with
low probability. Finally, we average the flow on all random orderings.

Theorem 2.2. For each ε > 0, there exists a probability distribution D
of local cut algorithms such that for each network N , F(N ) is a flow, and

EC∈D
∥∥C(N )∥∥ ≤ ∥∥ f ∗(N )∥∥+ ε · cap(n).

Summary of proof. First, we construct the flow with the local algorithm.
Then we construct a fractional cut, based on the length of the shortest
path from each node to a target node, using edges with not too small free
capacities. This fractional cut naturally provides a probability distribu-
tion on cuts.

Corollary 2.3. In the class of networks with capacities bounded by a
constant,

∥∥ f ∗(N )∥∥/n is estimable. In other words, for every ε > 0, there
exist k, r ∈ N and a function g : B(r)k → R such that if the vertices
v1, v2, ... vk are chosen independently with uniform distribution, then

E

(∣∣∣∣‖ f ∗(N )‖n
− g

(
hr (v1), hr (v2), ... hr (vn)

)∣∣∣∣) < ε.
Summary of proof. If we run the local flow algorithm on each neighbor-
hood, then the sample proportion of source nodes, multiplied by the av-
erage flow starting from these nodes is a good approximation.

3 Applications on neighborhood distributions

Let G denote the set of all graphs with degrees bounded by d. Let Hr (G)
denote the distribution of the r-neighborhood of a random vertex of a
graph G ∈ G. We call a family F of graphs nice if G1,G2 ∈ F ⇒
G1∪G2 ∈ F and G1 ⊆ G ∈ F ⇒ G1 ∈ F – where⊆ denotes nonempty
induced subgraph – and ∅ /∈ F . Let us denote the closure of the set
of all r-neighborhood distributions in F by D(F, r) = cl

{
Hr (G)

∣∣G ∈
F
}
. It is easy to see that D(F, r) is a convex compact subset of RB(r).

Therefore, D(F, r) is determined by its dual, as follows.
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Let us identify the natural base of RB(r) by the elements of B(r), and
let the linear extension of w : B(r) → R defined as the function w̃ :
RB(r)→ R, w̃

(∑
b∈B(r) λbb

)
=∑

b∈B(r) λbw(b). Let us define

m(F, w)= max
P∈D(F ,r)

∑
b∈B(r)

w(b)P(b) = max
P∈D(F ,r)

w̃(P)= sup
G∈F

w̃
(
Hr (G)

)
.

It is easy to see that, for a distribution P on B(r),

P ∈ D(F, r) ⇔ ∀w : B(r)→ [0, 1], w̃(P) ≤ m(F, w).

The following theorem expresses that if a graph G is distinguishable with
high probability from a nice family F , then it is distinguishable based on
the constant-radius neighborhood of only one random vertex, as well.

Theorem 3.1. Assume that Hr (G0) /∈ D(F, r) holds for a graph G0 ∈ G
and a nice family F of graphs; namely, there exists a w : B(r)→ [0, 1]
satisfying

w̃
(
Hr (G0)

)− m(F, w) ≥ δ > 0.
Then for all ε > 0, with r ′ = r ′(r, ε, δ), there exists a subset M ⊂ B(r ′)
and an induced subgraph G1 of G0 such that the following holds.

P
(
Hr ′(G1) ∈ M

)
> 1− ε,

∀G ∈ F : P
(
Hr ′(G) ∈ M

)
< ε.

Summary of proof. For each graph G and vertex weights μ1 : V (G) →
[0, 1] and α ∈ [0, 1], we construct a network with bounded degrees
and bounded edge capacities, in which a maximum flow defines a re-
distribution on the weights to μ2 : V (G) → [0, α] satisfying that, un-
der some condition,

∑
v∈V (G)

μ1(v) = ∑
v∈V (G)

μ2(v). If we use our lo-

cal flow algorithm on this network, then it provides a local redistribu-
tion of the weights with a small loss. Using this tool two times, from
w : B(r) → [0, 1], we get another function w′ : B(r ′) → [0, 1] such
that w̃′

(
Hr ′(G1)

)
> 1 − ε′ for some G1 ∈ G, but w̃′

(
Hr ′(G)

)
< ε′ for

all G ∈ F . Then the set M = {
B ∈ B(r ′) : w′(B) > 1/2

}
satisfies the

requirements.

Lovász [3] asked to find, for every radius r ∈ N and error bound ε > 0,
an explicit n = n(r, ε) ∈ N such that the r-neighborhood distribution of
each graph can be ε-approximated by a graph of size at most n. Formally,
∀G ∈ G : ∃G ′ ∈ G : ∣∣V (G ′)∣∣ ≤ n such that

∥∥Hr (G), Hr (G ′)
∥∥
1 < ε.
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Alon gave a simple proof of the existence of such a function, but the
proof did not provide any explicit bound. It is still open whether there
exists, say, a recursive function satisfying the requirement, and also how
to compute the graph G ′ from G. See Lovász [3] for details.
As a corollary of Theorem 3.1, we can show that if there exists an

arbitrary large error bound λ < 1 such that, for all r , we can find an
explicit upper bound on n(r, λ), then it provides explicit upper bounds on
n(r, ε) for all r ∈ N and ε > 0, as well.

3.1 Connection with the Aldous–Lyons Conjecture

We only show here the definitions about the Aldous-Lyons conjecture.
For details about this topic, we suggest reading [1] or [3].
Consider a probability distribution U of rooted graphs, including infi-

nite graphs, with degrees bounded by d. Select a connected rooted graph
from U , and then select a uniform random edge e from the root. We
consider e as oriented away from the root. This way we get a probability
distribution σ with an oriented “root edge”. Let R(σ ) denote the distribu-
tion obtained by reversing the orientation of the root of a random element
of σ . We say that U is a unimodular random graph if σ = R(σ ).
Let U denote the set of unimodular random graphs. Let Hr (U) de-

note the distribution of the r-neighborhoods of the root of U ∈ U . Let
D(U, r) = cl

{
Hr (U)

∣∣U ∈ U
}
. It can be easily shown that every graph

G with a uniform random root provides a U ∈ U with Hr (G) = Hr (U),
therefore, D(G, r) ⊆ D(U, r).
The Aldous–Lyons conjecture says that every unimodular distribu-

tion on rooted connected graphs with bounded degree is the “limit” of a
bounded degree graph sequence. More precisely,

Conjecture 3.2 (Aldous–Lyons). ∀r ∈ N : D(G, r) = D(U, r).

About this conjecture, the same idea as what we used in Theorem 3.1
provides the following result.

Theorem 3.3. If the Aldous–Lyons Conjecture is false, then there exists
a unimodular random graph U that can be distinguished with high prob-
ability from any graph, based on the constant-radius neighborhood of
only one random vertex. In other words, for all ε > 0, there exists an
r ∈ N, a subset M ⊂ B(r) and a unimodular random graph U ∈ U that
for all G ∈ G, the r-neighborhood of a random vertex of G is in M with
probability at most ε, but the r-neighborhood of the root of U is in M
with probability at least 1− ε.
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The maximum time of 2-neighbour
bootstrap percolation: algorithmic aspects

Fabrício Benevides1, Victor Campos1, Mitre C. Dourado2,
Rudini M. Sampaio1 and Ana Silva1

Abstract. In 2-neighbourhood bootstrap percolation on a graph G, an infection
spreads according to the following deterministic rule: infected vertices of G re-
main infected forever and in consecutive rounds healthy vertices with at least 2
already infected neighbours become infected. Percolation occurs if eventually ev-
ery vertex is infected. In this paper, we are interested in calculating the maximum
time t (G) the process can take, in terms of the number of rounds needed to eventu-
ally infect the entire vertex set. We prove that the problem of deciding if t (G) ≥ k
is NP-complete for: (a) fixed k ≥ 4; (b) bipartite graphs with fixed k ≥ 7; and (c)
planar bipartite graphs. Moreover, we obtain polynomial time algorithms for (a)
k ≤ 2, (b) chordal graphs and (c) (q, q − 4)-graphs, for every fixed q.

1 Introduction

Under r-neighbour bootstrap percolation on a graphG, the spreading rule
is a threshold rule in which Si+1 is obtained from Si by adding to it the
vertices of G which have at least r neighbours in Si . We say that a set S0
percolates G (or that percolation occurs) if eventually every vertex of G
becomes infected, that is, there exists a t such that St = V (G). In that
case we define tr (S) as the minimum t such that St = V (G). And define,
the percolation time of G as tr (G) = max{tr (S) : S percolates G}. In this
paper, we shall focus on the case where r = 2 and in such case we omit
the subscript of the functions tr (S) and tr (G).
Bootstrap percolation was introduced by Chalupa et al. [8] as a model

for interacting particle systems in physics. Since then it has found appli-
cations in clustering phenomena, sandpiles, and many other areas of sta-
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tistical physics, as well as in neural networks and computer science [10].
There are two broad classes of questions one can ask about bootstrap

percolation. The first, and the most extensively studied, is what happens
when the initial configuration S0 is chosen randomly under some proba-
bility distribution? One would like to know how likely percolation is to
occur, and if it does occur, how long it takes. The answer to the first of
these questions is now well understood for various graphs [1, 2, 15].
The second broad class of questions is the one of extremal questions.

For example, what is the smallest or largest size of a percolating set with
a given property? Interesting cases are solved in [3–5,7, 9, 17–19].
Here, we consider the decision version of the problem, as stated below.

PERCOLATION TIME PROBLEM

Input: A graph G and an integer k.
Question: Is t (G) ≥ k?

It is interesting to notice that infection problems appear in the literature
under many different names and were studied by researches of various
fields. The particular case in which r = 2 in r-neighbourhood bootstrap
percolation is also a particular case of a infection problem related to con-
vexities in graph, which are also of our interest.
A finite convexity space is a pair (V, C) consisting of a finite ground

set V and a set C of subsets of V satisfying ∅, V ∈ C and C is closed
under intersection. The members of C are called C-convex sets and the
convex hull of a set S is the minimum convex set H(S) ∈ C containing S.
A convexity space (V, C) is an interval convexity [6] if there is a so-

called interval function I : V2 → 2V such that a subset C of V belongs to
C if and only if I ({x, y}) ⊆ C for every two distinct elements x and y of
C . With no risk of confusion, for any S ⊂ V , we also denote by I (S) the
union of S with

⋃
x,y∈S I ({x, y}). In interval convexities, the convex hull

of a set S can be computed by exhaustively applying the corresponding
interval function until obtaining a convex set.
The most studied graph convexities defined by interval functions are

those in which I ({x, y}) is the union of paths between x and y with some
particular property. Some common examples are the P3-convexity [12],
geodetic convexity [13] and monophonic convexity [11]. We observe
that the spreading rule in 2-neighbours bootstrap percolation is equivalent
to Si+1 = I (Si) where I is the interval function which defines the P3-
convexity: I (S) contains S and every vertex belonging to some path of 3
vertices whose extreme vertices are in S. It will be convenient to denote
Si by Ii(S), where Ii(S) is obtained by applying i times the operation
I . Related to the geodetic convexity, there exists the geodetic iteration
number of a graph [14] which is similar to our definition of t (G).
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2 Results

We first prove the following NP-hardness results.

Theorem 2.1. PERCOLATION TIME is NP-complete for any fixed k ≥ 4.
If the graph is bipartite, it is NP-Complete for any fixed k ≥ 7. It is also
NP-Complete for planar bipartite graphs.

We first make a reduction from 3-SAT. We construct a graph G as
follows. For each clause Ci with literals 
i,1, 
i,2 and 
i,3, add to G a
gadget as in Figure 2(a). For each pair of literals 
i,a, 
 j,b such that one
is the negation of the other, add a vertex y(i,a),( j,b) adjacent to wi,a and
w j,b. Let Y be the set of all vertices created this way. Finally, add a
vertex z adjacent to all vertices in Y and a pendant vertex z′ adjacent
to z. It is possible to prove that the formula is satisfiable if and only if
t (G) ≥ 4. In the case of bipartite graphs, the reduction is from 4-SAT
and the construction is similar, but using the gadget in Figure 2(b). The
case of planar bipartite graphs is more technical and is by a reduction
from PLANAR 3-SAT using the gadget in Figure 2(c).

Figure 2.1. Gadget for each clause Ci .

Now we present our polynomial results. It is clear that t (G) ≥ 1 if and
only if G has a vertex of degree ≥ 2. The next result characterizes the
graphs with t (G) ≥ 2. The same question for t (G) ≥ 3 is still open.
Theorem 2.2. Let G be a graph. Then t (G) ≥ 2 if and only if there exist
u ∈ V (G) and a neighbour v of u such that A ∪ {v} is a hull set, where
A ⊂ V (G) contains every vertex which is neither u nor a neighbour of u.
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Now we show how to determine t (T ) in linear time, for any tree T .
Given two adjacent vertices u, v ∈ V (T ), denote by s(u, v) the maximum
time that u enters in the convex hull of S, among all hull sets S of the
subtree of T − v containing u; and by t (u) the maximum time that u
enters in the convex hull of S, among all hull sets S of T . Clearly, t (T )
equals maxu∈V (T )t (u) and the values s(u, v), t (u) are given by:

s(u,v)=

⎧⎪⎨⎪⎩
0, if |N (u)|≤2,
1+ the second value in the non-decreasing
ordering of the set {s(x, u) : x ∈N (u)\{v}}, if |N (u)|≥3.

t (u) =

⎧⎪⎨⎪⎩
0, if |N (u)| ≤ 1,
1+ the second value in the non-decreasing
ordering of the set {s(x, u) : x ∈ N (u)}, if |N (u)| ≥ 2.

(2.1)
In order to compute the values s(u, v) and s(v, u), for each edge uv ∈
E(T ), we use a directed graph D with vertex set V (T ) and edges {(u, v),
(v, u) | uv ∈ E(T )}. Observe that s(u, v) can be computed only after
all values s(x, y) are known, where (x, y) is an arc of D − v belonging
to a directed path from some leaf of T to u. Thus, consider a partition of
the arcs of D into sets S0, . . . , Sd−1, where d is the diameter of T , and
Si contains the arcs (u, v) such that the longest directed path of D − v
from some leaf to u has length i . In the beginning, we know s(u, v),
for all arc (u, v) ∈ S0. Further, as long as s(x, y) is known for each arc
(x, y) ∈ ⋃i−1

j=0 Sj , we can compute s(u, v), for every arc (u, v) ∈ Si ,
i ∈ [1, d − 1]. Therefore, we can compute all values s(u, v) in linear
time. With some modifications, we can adapt these ideas to obtain a
polynomial time algorithm for chordal graphs.

Theorem 2.3. If T is a tree, then t (T ) can be computed in linear time.
Let G be a chordal graph. If G is 2-connected, then t (G) can be com-
puted in time O(n2m); otherwise, t (G) can be computed in time
O(n2m2).

Considering (q, q − 4)-graphs, q fixed, we proved that the percolation
time t (G) is bounded by q, and we give linear time algorithms to obtain
t (G). We mention that these graphs generalize the P4-sparse graphs.
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[2] J. BALOGH, B. BOLLOBÁS and R. MORRIS, Bootstrap percolation
in three dimensions, Ann. Probab. 37 (4) (2009), 1329–1380.

[3] J. BALOGH and G. PETE, Random disease on the square grid, Ran-
dom Structures and Algorithms 13 (1998), 409–422.

[4] F. BENEVIDES and M. PRZYKUCKI, Maximal percolation time in
two-dimensional bootstrap percolation, submitted.

[5] F. BENEVIDES and M. PRZYKUCKI, On slowly percolating sets of
minimal size in bootstrap percolation, The Elec. J. Combinatorics,
to appear.

[6] J. CALDER, Some elementary properties of interval convexities, J.
London Math. Soc. 3 (1971), 422–428.

[7] C. CENTENO, M. DOURADO, L. PENSO, D. RAUTENBACH and J.
L. SZWARCFITER, Irreversible conversion of graphs, Theo. Comp.
Science 412 (2011).

[8] J. CHALUPA, P. L. LEATH and G. R. REICH, Bootstrap percolation
on a Bethe lattice, J. Phys. C 12 (1) (1979), 31–35.

[9] N. CHEN, On the Approximability of Influence in Social Networks,
SIAM J. Discrete Math. 23 (3) (2009), 1400–1415.

[10] P. A. DREYER and F. S. ROBERTS, Irreversible k-threshold pro-
cesses: Graph-theoretical threshold models of the spread of disease
and of opinion, Discrete Appl. Math. 157 (7) (2009), 1615–1627.

[11] P. DUCHET, Convex sets in graphs. II: Minimal path convexity, J.
Comb. Theory, Ser. B 44 (1988), 307–316.
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A multipartite Hajnal-Szemerédi theorem

Peter Keevash1 and Richard Mycroft2

Abstract. The celebrated Hajnal-Szemerédi theorem gives the precise minimum
degree threshold that forces a graph to contain a perfect Kk -packing. Fischer’s
conjecture states that the analogous result holds for all multipartite graphs except
for those formed by a single construction. Using recent results on perfect match-
ings in hypergraphs, we prove that (a generalisation of) this conjecture holds for
any sufficiently large graph.

1 Introduction

The celebrated Hajnal-Szemerédi theorem [6] states that if k divides n
then any graph G on n vertices with minimum degree δ(G) ≥ (k−1)n/k
contains a perfect Kk-packing3. This theorem generalised a result of Cor-
radi and Hajnal [3], who established the case k = 3, and is best-possible
in the sense that the theorem would not hold assuming any weaker mini-
mum degree condition. More recently, a series of papers [1,2,8,9] deter-
mined the minimum degree thresholds which force a perfect H -packing
in a graph for non-complete graphs H , culminating in the work of Kühn
and Osthus [11], who essentially settled the problem by giving the best-
possible such condition (up to an additive constant) for any graph H , in
terms of the so-called critical chromatic number.
In many applications it is natural to instead consider packings in a

multipartite setting, in which the analogous problem seems to be consid-
erably more difficult. More precisely, let V1, . . . , Vk be pairwise-disjoint
sets of n vertices each, and G be a k-partite graph with vertex classes
V1, . . . , Vk (so G has vertex set V1 ∪ · · · ∪ Vk and each Vj is an inde-

1 School of Mathematical Sciences, Queen Mary, University of London, London E1 4NS, United
Kingdom. Email: p.keevash@qmul.ac.uk

2 School of Mathematics, University of Birmingham, Birmingham B15 2TT, United Kingdom.
Email: r.mycroft@bham.ac.uk

3 A perfect H -packing in a graph G is a spanning collection of vertex-disjoint copies of H in G;
other sources have referred to the same notion as a perfect H -tiling or H -factor.
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pendent set in G). We define the partite minimum degree of G, denoted
δ∗(G), to be the largestm such that every vertex has at leastm neighbours
in each part other than its own, so

δ∗(G) := min
i∈[k]minv∈Vi

min
j∈[k]\{i} |N (v) ∩ Vj |,

where N (v) denotes the neighbourhood of v.
Fischer [5] conjectured that the natural multipartite analogue of the

Hajnal-Szemerédi theorem should hold. That is, he conjectured that if
δ∗(G) ≥ (k − 1)n/k then G must contain a perfect Kk-packing. This
conjecture is straightforward for k = 2, as it is not hard to see that any
maximal matching must be perfect. However, Magyar and Martin [13]
constructed a counterexample for k = 3, and furthermore showed that
their construction gives the only counterexample for large n. More pre-
cisely, they showed that if n is sufficiently large, G is a 3-partite graph
with vertex classes each of size n and δ∗(G) ≥ 2n/3, then either G con-
tains a perfect K3-packing, or G is isomorphic to the graph �n,3,3 defined
in Construction 1 for some odd n which is divisible by 3.
The implicit conjecture behind this result (stated explicitly by Kühn

and Osthus [10]) is that the only counterexamples to Fischer’s original
conjecture are the constructions given by the graphs �n,k,k defined in
Construction 1 when n is odd and divisible by k. We refer to this as
the modified Fischer conjecture. If k is even then n cannot be both odd
and divisible by k, so the modified Fischer conjecture is the same as the
original conjecture in this case. Martin and Szemerédi [15] proved that
(the modified) Fischer’s conjecture holds for k = 4. Another partial re-
sult was obtained by Csaba and Mydlarz [4], who gave a function f (k)
with f (k) → 0 as k → ∞ such that the conjecture holds for large n if
one strengthens the degree assumption to δ∗(G) ≥ (k − 1)n/k + f (k)n.
However, for general k the validity of even an asymptotic version of Fis-
cher’s conjecture (i.e. assuming that δ∗(H) ≥ (k − 1)n/k + o(n)) was
unknown until recently, when the results described below were obtained.

2 New results

Keevash and Mycroft [7] used new results on perfect matchings in k-
uniform hypergraphs4 to deduce the following asymptotic result (which

4 A hypergraph H consists of a vertex set V and an edge set E , where each edge e ∈ E is a subset
of V . The edges are not required to be the same size; if they are then we say that H is a k-uniform
hypergraph, or k-graph, where k is the common size of the edges.
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was also proved independently and simultaneously by Lo and Mark-
ström [12] using the ‘absorbing’ method.)

Theorem 2.1. For any k and ε > 0 there exists n0 such that any k-
partite graphG whose vertex classes each have size n ≥ n0 with δ∗(G) ≥
(k − 1)n/k + εn contains a perfect Kk-packing.

An r-partite graph can only contain a Kk-packing for r ≥ k, since
otherwise we do not have even a single copy of Kk . Fischer’s conjecture
pertains to the case r = k, but it is natural to ask also for an analogous
result for the case r > k. By a careful analysis of the extremal cases
of Theorem 2.1, we can prove an exact result answering both Fischer’s
conjecture and also this more general question for large n. This is the
following theorem, the case r = k of which shows that (the modified)
Fischer’s conjecture holds for any sufficiently large graph. (The graph
�n,r,k referred to in the statement is defined in Construction 1.)

Theorem 2.2. For any r ≥ k there exists n0 such that for any n ≥ n0
with k | rn the following statement holds. Let G be a r-partite graph
whose vertex classes each have size n such that δ∗(G) ≥ (k − 1)n/k.
Then G contains a perfect Kk-packing, unless rn/k is odd, k | n, and
G ∼= �n,r,k .
We now give the generalised version of the construction of Magyar and

Martin [13] showing Fischer’s original conjecture to be false.

Construction 1. Suppose rn/k is odd and k divides n. Let V be a vertex
set partitioned into parts V1, . . . , Vr of size n. Partition each Vi , i ∈ [r]
into subparts V j

i , j ∈ [k] of size n/k. Define a graph �n,r,k , where for
each i, i ′ ∈ [r] with i �= i ′ and j ∈ [k], if j ≥ 3 then any vertex in
V j
i is adjacent to all vertices in V j ′

i ′ with j ′ ∈ [k] \ { j}, and if j = 1

or j = 2 then any vertex in V j
i is adjacent to all vertices in V j ′

i ′ with
j ′ ∈ [k] \ {3− j}.

Figure 2.1. Construction 1 for the case k = r = 3.
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Figure 2.1 shows Construction 1 for the case k = r = 3. To avoid
complicating the diagram, edges between V1 and V3 are not shown: these
are analogous to those between V1 and V2 and between V2 and V3. For
n = k this is the exact graph of the construction; for larger n we ‘blow
up’ the graph above, replacing each vertex by a set of size n/k, and each
edge by a complete bipartite graph between the corresponding sets. In
general, it is helpful to picture the construction as an r by k grid, with
columns corresponding to parts Vi , i ∈ [r] and rows V j = ⋃

i∈[r] V
j
i ,

j ∈ [k] corresponding to subparts of the same superscript. Vertices have
neighbours in other rows and columns to their own, except in rows V 1

and V 2, where vertices have neighbours in other columns in their own
row and other rows besides rows V 1 and V 2. Thus δ∗(G) = (k − 1)n/k.
We claim that there is no perfect Kk-packing. For any Kk has at most
one vertex in any V j with j ≥ 3, so at most k − 2 vertices in⋃

j≥3 V
j .

Also
∣∣⋃

j≥3
∣∣V j = (k − 2)rn/k, and there are rn/k copies of Kk in a

perfect packing. Thus each Kk must have k − 2 vertices in⋃ j≥3 V
j , and

so 2 vertices in V 1 ∪ V 2, which must either both lie in V 1 or both lie in
V 2. However, |V 1| = rn/k is odd, so V 1 cannot be perfectly covered by
pairs. Thus G contains no perfect Kk-packing.

3 Rough outline of the proofs

As described above, Theorem 2.1, the asymptotic version of Fischer’s
conjecture, is proved by a short deduction from results on perfect match-
ings in uniform hypergraphs proved in [7]. Indeed, the result used gives
fairly general conditions on a k-graph H which guarantee that either

(a) H contains a perfect matching, or
(b) H is close to a ‘divisibility barrier’, one of a family of lattice-based

constructions which do not contain a perfect matching.

Given a graph G, we define the clique k-complex of G to be the hy-
pergraph J on V (G) whose edges are the cliques of size j in G for
1 ≤ j ≤ k. Then a perfect Kk-packing in G is a perfect matching in
the k-graph Jk consisting of all edges of J of size k. It is straightforward
to show that if G meets the conditions of Theorem 2.1, then Jk satisfies
the conditions necessary to apply the theorem from [7] described above.
Furthermore, it is similarly not difficult to show that Jk is not close to a
divisibility barrier, ruling out (b). So the theorem implies that (a) must
hold, completing the proof of Theorem 2.1.
However, if we instead only assume that G satisfies the weaker condi-

tions of Theorem 2.2, we can no longer deduce that Jk is not close to a
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divisibility barrier. Indeed, the clique k-complex of the graph �n,r,k con-
structed in Construction 1 is actually isomorphic to a divisibility barrier.
On the other hand, if Jk is close to a divisibility barrier then we can obtain
significant structural information regarding G. In fact, for k ≥ 3 we find
that we may partition G into two ‘rows’. That is, we may find a subset
Ui of each vertex class Vi of size pn/k for some 1 ≤ p ≤ k − 1 such
that the bipartite graphs G[Ui , Vj \ Uj ] for i �= j are almost-complete.
Except for a small number of ‘bad’ vertices, the rows G1 := G[⋃Ui ]
and G2 := G[⋃ Vi \Ui ] satisfy a similar degree condition to G, but with
p and k − p respectively in place of k. This suggests our approach: we
argue inductively to find a perfect Kp-packing in G1 and a perfect Kk−p-
packing in G2. Using the fact that we have almost all edges between
rows, we join each copy of Kp in the former packing to a copy of Kk−p
in the latter packing to form a Kk-packing in G, as required.
However, for k = 2 there is another possibility for G for which Jk

is close to a divisibility barrier. This is that G is pair-complete, meaning
that we may chooseUi ⊆ Vi of size n/2 for each i so thatG1 := G[⋃Ui ]
and G2 := G[⋃ Vi \Ui ] are almost-complete r-partite graphs, and there
are very few edges in the bipartite graphs G[Ui , Vj \ Uj ]. If there are
in fact no edges in these bipartite graphs, and r and n/2 are both odd,
then G cannot contain a perfect matching (i.e. perfect K2-packing). This
presents an obstacle to the proof strategy described above for k ≥ 3 (since
our inductive argument may fail for this reason). It transpires that we can
avoid this problem by initially deleting a well-chosen small Kk-packing
in G except for when G is exactly isomorphic to the graph �n,r,k , and the
theorem follows from this.

4 Future directions

As described in the introduction, the Hajnal-Szemerédi theorem on per-
fect Kk-packings in a graph G was followed by a sequence of papers
addressing the problem of finding an H -packing in G for an arbitrary
graph H . Following Theorem 2.2, it seems natural to ask for multi-
partite analogues of these theorems as well. In this direction, Martin
and Skokan [14] recently proved an approximate multipartite version of
the Alon-Yuster theorem. That is, they proved that if H is a graph with
χ(H) ≤ k, and G is a k-partite graph with vertex classes V1, . . . , Vk of
size n which satisfies δ∗(G) ≥ (k− 1)n/k+ o(n), then G contains a per-
fect H -packing. One natural question is whether this minimum degree
bound can be improved to include only a constant error term. Moreover,
this bound is not even asymptotically best possible for many graphs: to
find the degree threshold which forces a perfect H -packing in a k-partite
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graph for an arbitrary k-partite graph H an analogue of the critical chro-
matic number seems necessary.
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Directed cycle double covers: hexagon
graphs

Andrea Jiménez1, Mihyun Kang2 and Martin Loebl3

Abstract. Jaeger’s directed cycle double cover conjecture can be formulated as a
problem of existence of special perfect matchings in a class of graphs that we call
hexagon graphs. A hexagon graph can be associated with any cubic graph. We
show that the hexagon graphs of cubic bridgeless graphs are braces that can be
generated from the ladder on 8 vertices using two types of McCuaig’s augmenta-
tions.

The long-standing Jaeger’s directed cycle double cover conjecture [1]
(DCDC conjecture in short) is broadly considered to be among the most
important open problems in graph theory. A typical formulation asks
whether every 2-connected graph admits a family of cycles such that one
may prescribe an orientation on each cycle of the family in such a way
that each edge e of the graph belongs to exactly two cycles and these
cycles induce opposite orientations on e. In order to prove the DCDC
conjecture, a wide variety of approaches have arisen [1, 4], including a
topological approach. The topological formulation of the DCDC conjec-
ture is as follows: every cubic bridgeless graph admits an embedding in
a closed Riemann surface such that every edge belongs to exactly two
distinct face boundaries defined by the embedding; that is, with no dual
loop.

Our results. In this work, we formulate the DCDC conjecture as a prob-
lem of existence of special perfect matchings in a class of graphs that we
call hexagon graphs.
The class of the hexagon graphs of the cubic bridgeless graphs turns

out to be a subclass of braces. A brace is a simple (i.e. no loops and no
multiple edges), connected, bipartite graph on at least six vertices such
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that for every pair of non-adjacent edges, there is a perfect matching con-
taining the pair of edges. The class of braces, along with bricks, are a
fundamental class of graphs in matching theory, mainly because they are
building blocks of a perfect matching decomposition procedure, namely
of the tight cut decomposition procedure [2]. In [3], McCuaig introduced
a method for generating all braces starting from a large base set of graphs
and recursively making use of 4 distinct types of operations. Our main
results are:
A cubic graph G has a directed cycle double cover if and only if its

hexagon graph H admits a safe perfect matching.
The hexagon graphs arising from cubic bridgeless graphs are braces

that can be generated from the ladder on 8 vertices using 2 simple aug-
mentations of McCuaig (see Figure 1).

Figure 1. Simple augmentations.

Next we define the hexagon graphs and explain our results.

Hexagon graphs. We refer to the complete bipartite graph K3,3 as a
hexagon. For a graph G and a vertex v of G, let NG(v) denote the set of
neighbors of v in G.
Let G be a cubic graph with vertex set V and edge set E . A hexagon

graph of G is a graph H obtained from G following the next rules:

1. We replace each vertex v in V by a hexagon hv so that for every pair
u, v ∈ V , if u �= v, then hu and hv are vertex disjoint. Let V (H) =
{V (hv) : v ∈ V }.

2. For each vertex v ∈ V , let {vi : i ∈ Z6} denote the vertex set of hv
and {vivi+1, vivi+3 : i ∈ Z6} its edge set. With each neighbor u of v
in G, we associate an index iv(u) from the set {0, 1, 2} ⊂ Z6 so that if
NG(v) = {u, w, z}, then iv(u), iv(w), iv(z) are pairwise distinct.

3. (See Figure 2). Let X = ∪v∈V {v2i : i ∈ Z6} and Y = ∪v∈V {v2i+1 :
i ∈ Z6}. We replace each edge uv in E by two vertex disjoint edges
euv, e′uv so that if both viv(u) , uiu(v) belong to either X or Y , then euv =
viv(u)uiu(v)+3, e′uv = viv(u)+3uiu(v) . Otherwise, euv = viv(u)uiu(v) , e

′
uv =

viv(u)+3uiu(v)+3. Let E(H) = {E(hv) : v ∈ V } ∪ {euv, e′uv : uv ∈ E}.
We say that hv is the hexagon of H associated with the vertex v of G and
that {hv : v ∈ V } is the set of hexagons of H . We shall refer to the set
of edges

⋃
v∈V {vivi+3 : i ∈ Z6} as the set of red edges of H , to the set
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Figure 2. Red edges:= dashed lines, blue edges:= thin lines and white edges:=
thick lines. Moreover, X := white vertices, Y := black vertices.

of edges {euv, e′uv : uv ∈ E} as the set of white edges of H , and finally
to the set of edges

⋃
v∈V {vivi+1 : i ∈ Z6} as the set of blue edges of

H (see Figure 2). Moreover, we shall say that a perfect matching of H
containing only blue edges is a blue perfect matching.
Let G be a cubic graph and H be a hexagon graph of G. We ob-

serve two important properties: (i) H is bipartite; and (ii) if H ′ is another
hexagon graph of G, then H and H ′ are isomorphic.

Embeddings and hexagon graphs. Let G be a cubic graph, H the
hexagon graph of G, and W the set of white edges of H . Each blue per-
fect matching M of H encodes an embedding of G on a closed Riemann
surface with set of face boundaries the set of subgraphs of G induced by
the cycles in M�W . The converse also holds. That is, each embedding
of G on a closed Riemann surface defines a blue perfect matching M
of H , where the set of subgraphs of G induced by all cycles in M�W
coincides with the set of face boundaries of the embedding.
Finally, the embedding of G encoded by M has a dual loop if and only

if there is a cycle in M�W that contains both end vertices of a red edge.
We shall say that a blue perfect matching M is safe if no cycle of M�W
contains the end vertices of a red edge. This implies the first main result
stated above.

Braces and hexagon graphs. The generation of the hexagon graphs of
the cubic bridgeless graphs from the ladder on 8 vertices using 2 simple
augmentations of McCuaig is a hard technical result and it is contained
in the full version of this write-up.
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The weak form is: Let G be a cubic graph. Then the hexagon graph H
of G is a brace if and only if G is bridgeless. Below we sketch the proof.
Let B, W , and R denote the set of blue, white, and red edges, respec-

tively. Moreover, a blue edge is denoted by b, a white edge by w, and a
red edge by r . Each pair of disjoint edges, {b, b′}, {r, r ′}, or {b, r}, can be
simply extended to a perfect matching of H .
We note that each component of W ∪ R is a cycle on four vertices,

a square. Let w,w′ be a pair of disjoint white edges. The edges w,w′
belong to the same square ofW ∪R, or to two different squares ofW ∪R.
In either casew,w′ can be naturally extended to a perfect matching of H .
Similarly, each edge of a pair w, r of disjoint white and red edge belongs
to different square of W ∪ R, and therefore it can be completed into a
perfect matching of H .
Finally we consider a pair b, w of disjoint white and blue edge. If the

hexagon with b does not contain an end vertex ofw, then it is not difficult
to extend b, w to a perfect matching of H . Hence, let hu be the hexagon
that contains b and an end vertex of w, and let hv be the hexagon that
contains the other end vertex of w. Let b = uiui+1, w = ukv j , where
i, j, k ∈ Z6.
If k /∈ {i+3, i+4}, then b, w can be completed into a perfect matching

of H that contains the edges b, w, and ui+3ui+4.
Hence, without loss of generality we can assume that k = i + 3. Let

euv = uiv j+3 and euz = ui+1zl , where z is the neighbor of v in G such
that the white edge with an end vertex ui+1 has an end vertex in hz , and
l ∈ Z6. Given that in G, edges uv, uz have a common end vertex u
represented by hexagon hu , edge b = uiui+1 can be seen as the transition
between uv, uz, while ukuk+1 can be seen as this transition reversed.
Now let G be bridgeless. We observe that two adjacent edges in a cu-

bic bridgeless graph belong to a common cycle. Let C be such a cycle
for uv, uz. The two possible orientations of C correspond to two disjoint
cycles Cb,Cw in H , where b ∈ Cb and w ∈ Cw; they contain the transi-
tion and transition reversed (between uv, uz), respectively. Let Mb be the
perfect matching of Cb consisting of all blue edges and Mw be the perfect
matching of Cw consisting of all white edges. In particular, b ∈ Mb and
w ∈ Mw. Since each hexagon of H is intersected by Cb ∪ Cw either in a
pair of disjoint blue edges, or in the empty set, Mb ∪Mw can be extended
to a perfect matching of H .
On the other hand, if G has a bridge e = {u, v}, then let V1 be the com-

ponent of G− e containing u. Any perfect matching of G extending b, w
must induce a perfect matching of ∪x∈V1hx \ {ui+3}, but this set consists
of an odd number of vertices and thus no perfect matching containing
b, w can exist.
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Finding an Odd K3,3

Peter Whalen1 and Robin Thomas1

Abstract. In their 1999 paper, “Permanents, Pfaffian orientations, and even di-
rected curcuits”, Neil Robertson, Paul Seymour, and Robin Thomas provided a
good characterization for whether or not a bipartite graph has a Pfaffian orienta-
tion. Robin Thomas and Peter Whalen recently provided a shorter proof of the
central result using elementary methods. The first step in this new proof is the
finding of a subgraph of a brace isomorphic to a subdivision of K3,3 in which
each edge has been subdivided an even number of times. Here, we extend this
result to prove that any internally 4-connected non-planar bipartite graph contains
a subgraph isomorphic to a subdivision of K3,3 in which each edge has been sub-
divided an even number of times.

1 Introduction

While a well-known algorithm of Edmonds [1] provides a polynomial
time solution to the problem of finding a perfect matching in a graph, the
problem of counting the number of perfect matchings is #P-Complete [5].
Work by Kasteleyn [2], however, has led to the notion of a Pfaffian orien-
tation and an algorithm for computing the number of perfect matchings
in graphs admitting a Pfaffian orientation.

Definition 1.1. Let G be a directed graph. Then G is Pfaffian if for ev-
ery even cycle, C such that G − V (C) contains a perfect matching, the
number of edges directed in either direction of the cycle is odd. If G is
an undirected graph, we say that G is Pfaffian if there is an orientation
of the edges such that the resulting directed graph is Pfaffian. Such an
orientation is called a Pfaffian orientation.

The question of determining whether or not a graph has a Pfaffian ori-
entation has been solved for several cases, though remains open in gen-

1 School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332-0160, USA.
Email: pwhalen3@math.gatech.edu, thomas@math.gatech.edu
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eral. One solved case is that of bipartite graphs. The following elegant
result of Little [3] provides a characterization for this problem:

Theorem 1.2. Let G be a bipartite graph. Then G is Pfaffian if and
only if it does not contain a subgraph H and a perfect matching M such
that E(G) = E(H) ∪ M , E(H) ∩ M = ∅, and H is isomorphic to a
subdivision of K3,3 in which each edge is subdivided an even number of
times.

The disadvantage to this theorem is that it does not seem to immedi-
ately give rise to a polynomial time algorithm. Instead, a result of Robert-
son, Seymour, and Thomas [4] provides an algorithm for determining
whether a brace has a Pfaffian orientation which relies on a theorem also
independently proven by McCuaig.
Recently, Robin Thomas and Peter Whalen have provided a new proof

for the central theorem behind this algorithm that relies on more elemen-
tary methods. The first step of this process is to find a subgraph of G
isomorphic to a subdivision of K3,3 in which each edge is subdivided an
even number of times. We refer to such a subdivision as an odd K3,3
since each branch of the K3,3 is a path of odd length. In the context of
that result, it sufficed to find such a subgraph only when G is a brace.
The quality of having an odd K3,3, however, seems more naturally tied

to connectivity rather than to matching properties. So in this result, we
extended our theorem to show that any internally 4-connected, non-planar
bipartite graph contains a subgraph isomorphic to an odd K3,3. This re-
sult seems natural and has practical application in the study of Pfaffian
orientations.

2 Statement of the theorem

We first require several definitions

Definition 2.1. Let G be a 3-connected graph on at least 5 vertices such
that for every pair of sets X,Y ⊆ E(G) with E(G) = X ∪Y , X ∩Y = ∅,
if three vertices are incident with an edge in A and an edge in B then
|A| ≤ 3 or |B| ≤ 4. Then we say that G is internally 4-connected.
Definition 2.2. Let G be a graph and H a subgraph of G isomorphic to
a subdivision of K3,3. Let v1, v2, ..., v6 be the degree three vertices of H
and P1, P2, ..., P9 be the paths in H between vi . We then refer to H as a
hex or a hex of G, the vi as the feet of H , and the Pi as the segments of
H .

Definition 2.3. Let G be a graph and H a hex of G. We refer to a seg-
ment P of H as even if it has even length and odd otherwise. We refer to
H as even if all of its segments are even and similarly for odd.



155 Finding an Odd K3,3

The remainder of the paper deals with the proof of the following theorem:

Theorem 2.4. Let G be an internally 4-connected non-planar bipartite
graph. Then G has an odd hex.

3 The proof technique

The sketch of the proof of the theorem is as follows. G contains a hex
since G is 3-connected, non-planar, and not K5. Choose the hex with the
fewest number of even segments. If some segment of that hex is even,
it has a vertex v with degree 2 with respect to the hex. Since G is 3-
connected, we can use Menger’s theorem to augment the segment of the
hex containing v to find a path from v to elsewhere in the hex. With some
analysis, we show that this (or a similar argument) will always produce a
hex with more odd segments which completes the proof.
At each step in our proof, we consider a subgraph of G, H , that con-

sists of a hex plus potentially additional paths. Our main operation is to
find some piece of H that is not internally 4-connected and try to find
a new path that we might be able to use to find a hex with more odd
segments than our original choice.
Let the bipartition of G be (A, B). Suppose we have three internally-

vertex disjoint paths P1, P2, P3 meeting at a single vertex v. Let the ends
of P1, P2, P3 be a, b, c repectively and let v, a ∈ A and b, c ∈ B. Let
X be a subset of the vertices of G disjoint from this structure. We would
like a path with one end in the union of the interior of our paths and the
other in X . The core lemma that we use describes possible outcomes
of this situation. Note first that in the context of this subgraph, {a, b, c}
represents a three separation, so we should be able to find another path
out of this structure. By possibly rerouting the original paths, we find
four outcomes, one of which is a straightforward jump from a B vertex
along P1 to an A vertex in X . The other three are similarly explicit,
but somewhat more complicated. The proof of this lemma follows from
Menger’s theorem and induction and carefully analyzing the resulting
outcomes.
To prove the main theorem given the lemma, let H be the hex of G

with the fewest even segments. If at most 3 of the segments are odd,
say most of the feet are in A, then choose a B-vertex on one of the even
segments, v and apply Menger’s theorem to find a path to one of the
other segments. Choosing v as one of the feet of our new hex, we can
immediately find a hex with more odd segments. When H has at least
4 odd segments, we apply a similar argument. Suppose we look at a B
vertex on an A− A segment and find that the path we get from Menger’s
theorem ends at another B vertex. Then we can apply the main lemma. In
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the first outcome, we find a new path that ends instead at an A-vertex. In
the other outcomes, we get a large amount of structure (including parity)
in a neighborhood of B. We can generally take advantage of this structure
to find a new hex with more odd segments than our original.
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Zero-error source-channel coding
with entanglement

Jop Briët1, Harry Buhrman1, Monique Laurent1, Teresa Piovesan1

and Giannicola Scarpa1

1 Introduction

We study a problem from zero-error information theory—a topic well-
known for its rich connections to combinatorics [1, 8, 10–12, 14]—in a
setting where a sender and receiver may use quantum entanglement, one
of the most striking features of quantum mechanics. The problem that
we consider is the classical source-channel coding problem, where Alice
and Bob are each given an input from a random source and get access to
a noisy channel through which Alice can send messages to Bob. Their
goal is to minimize the average number of channel uses per source input
while allowing Bob to learn Alice’s inputs. Here we show that entan-
glement can allow for an unbounded decrease in the asymptotic rate of
classical source-channel codes. We also consider the source problem, the
case where Alice can send messages to Bob without noise. We prove a
lower bound on the rate of source codes with entanglement in terms of a
variant of the Lovász theta number [10, 13], a graph parameter given by
a semidefinite program.

1.1 Classical source-channel coding

We briefly explain the three relevant problems from zero-error informa-
tion theory and their well-known graph-theoretical characterizations.
A discrete dual source M = (X,U, P) consists of a finite set X, a

(possibly infinite) set U and a probability distribution P over X × U.
In a dual-source instance, with probability P(x, u), Alice gets an input
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x ∈ X and Bob a u ∈ U. Bob needs to learn Alice’s input without error
by having Alice send Bob as few bits as possible. Associated to M is
its characteristic graph G = (X, E), where {x, y} ∈ E if there exists a
u ∈ U such that P(x, u) > 0 and P(y, u) > 0. As observed in [14],
solving the zero-error source coding problem is equivalent to finding a
proper coloring of G that uses the minimum number of colors and the
Witsenhausen rate

R(G) = lim
m→∞

1

m
logχ(G�m) (1.1)

is the minimum asymptotic cost rate (i.e., the average number of bits
Alice needs to send Bob per source input) of a zero-error code for M.
Here G�m is the mth strong graph power [12] and log is the logarithm in
base 2.
A discrete channel N = (S,V, Q) consists of a finite input set S,

a (possibly infinite) output set V and a probability distribution Q(·|s)
over V for each s ∈ S. If Alice sends s ∈ S through the channel, then
Bob receives v ∈ V with probability Q(v|s). Associated to a channel is
its confusability graph H = (S, F), where {s, t} ∈ F if there exists a
v ∈ V such that both Q(v|s) > 0 and Q(v|t) > 0. As observed in [12],
α(H�n) is the maximum number of distinct possible messages that Alice
can send to Bob without error by using the channel n times. The Shannon
capacity

c(H) = lim
n→∞

1

n
logα(H�n) (1.2)

gives the maximum asymptotic rate of a zero-error channel code.
In the source-channel coding problem the parties get inputs from a dual

sourceM and get access to a channel N . As observed in [11], ifM has
characteristic graph G and N has confusability graph H , then a zero-
error coding scheme which encodes length m source-input-sequences
into length n channel-input-sequences defines a homomorphism from
G�m to H�n . The parameter

η(G, H) := lim
m→∞

1

m
min

{
n ∈ N : G�m ∃ homomorphism−−−−−−−−→ H�n

}
gives the minimum asymptotic cost rate (i.e., the minimum average num-
ber of channel uses per source input) of a zero-error code. Note that
R(G) = η(G, K2) and 1/c(H) = η(K2, H). In general η(G, H) ≤
R(G)/c(H) and in [11] it is shown that unbounded separations between
η(G, H) and R(G)/c(H) can occur.
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1.2 Source-channel coding with entanglement

We briefly introduce the model of entanglement-assisted coding, but a di-
rect algebraic definition of the entanglement-assisted variant of η(G, H)
is given in Definition 1.1. A state is a complex positive semidefinite ma-
trix with trace 1. The possible states of a pair of d-dimensional quantum
systems (A,B) are the states in Cd×d ⊗Cd×d . Such a pair is entangled if
its state is not a convex combination of states of the form ρA ⊗ ρB with
ρA ∈ Cd×d and ρB ∈ Cd×d . A t-outcome measurement is a collection
A = {Ai ∈ Cd×d : i ∈ [t]} of positive semidefinite matrices Ai that sat-
isfy

∑t
i=1 A

i = I . A measurement describes an experiment that one may
perform on a d-dimensional quantum system. If (A,B) is in a state σ ,
and Alice performs a t-outcome measurement A on A and Bob performs
an r-outcome measurement B on B, then they obtain outcomes i ∈ [t]
and j ∈ [r], respectively, with probability Tr((Ai ⊗ B j )σ ).
The entanglement-assisted protocol for solving the source-channel

coding problem is as follows:

(1) Alice and Bob get inputs x ∈ Xm and u ∈ Um , respectively, from the
sourceM;
(2) Alice performs a measurement {Asx ∈ Cd×d : s ∈ Sn} on her sys-
tem A (the measurement may depend on x);
(3) Alice sends the outcome s over N ;
(4) Bob receives an output v from N ;
(5) Bob performs a measurement {Byu,v ∈ Cd×d : y ∈ Xm} (which may
depend on u and v) on his system B;
(6) Bob obtains a measurement outcome y ∈ Xn .
A zero-error entanglement-assisted coding scheme satisfies that Bob’s
measurement outcome y is Alice’s input x with probability 1. With
a similar technique as in [6], we can define the entanglement variant
of η(G, H) as follows.
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Definition 1.1. For graphs G, H and m ∈ N, define η�m(G, H) as the
minimum positive integer n such that there exist d ∈ N and d×d positive
semidefinite matrices {ρsx : x ∈ V (G�m), s ∈ V (H�n)} and ρ such
that Tr(ρ) = 1,∑
s∈V (H�n)

ρsx = ρ ∀x ∈ V (G�m),

ρsxρ
t
y = 0 ∀{x, y} ∈ E(G�m), {s, t} ∈ V (H�n) ∪ E(H�n).

Define η�(G, H) = limm→∞ η�m(G, H)/m.
We regain the parameter η(G, H) if we restrict the above matrices ρ and
ρsx to be {0, 1}-valued scalars. As in the classical setting, we obtain the
entangled variants of the Witsenhausen rate R�(G) = η�(G, K2) and
Shannon capacity 1/c�(H) = η�(K2, H). Alternatively these parame-
ters can be defined analogously to (1.1) and (1.2) based on entangled
variants of the chromatic and independence numbers χ�(G) and α�(H),
whose definitions are similar to Definition 1.1. The parameters α�(H)
and c�(H) were first defined in [6], where it was first shown that a sep-
aration α < α� is possible. It was later shown in [5, 9] that even the
zero-error capacity can be increased with entanglement (i.e., c < c�). To
the best of our knowledge, neither source nor source-channel coding has
been considered in the context of shared entanglement before.

2 Our results

2.1 The entangled chromatic number and Szegedy’s number

Our first result gives a lower bound for the entangled chromatic number,
which can be efficiently computed with semidefinite programming.

Theorem 2.1. For every graph G, ϑ+(G) ≤ χ�(G) and logϑ(G) ≤
R�(G).

Here ϑ(G) is the celebrated theta number of Lovász [10] defined by

ϑ(G)

=min{λ : ∃ Z ∈RV×V
(0 , Zu,u=λ−1 for u ∈ V , Zu,v=−1 for {u, v} /∈E},

where RV×V
(0 is the space of positive semidefinite matrices, and ϑ+(G) ≥

ϑ(G) is the variant of Szegedy [13] obtained by adding the constraint
Zu,v ≥ −1 for {u, v} ∈ E .
Combining with results of [3, 7], we get the chain of inequalities

c(G) ≤ c�(G) ≤ logϑ(G) ≤ R�(G) ≤ R(G).

As in the classical setting, the problem of giving stronger bounds on the
entangled Witsenhausen rate and Shannon capacity is wide open.
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2.2 Classical versus entangled source-channel coding rates

Our second result says that entanglement allows for an unbounded ad-
vantage in the asymptotic cost rate of a zero-error source-channel coding
scheme. For this we use (as in [5]) the “quarter orthogonality graph”
Hk (for odd k), with vertices all vectors in {−1, 1}k with an even number
of “−1” entries and with edges the pairs with inner product −1. We also
use the result of [15] showing the existence of a Hadamard matrix (i.e., a
matrix A ∈ {−1, 1}N×N that satisfies AAT = N I ) of size N = 4q2 if q
is an odd prime power with q ≡ 1 mod 4.
Theorem 2.2. For every odd integer k ≥ 5, we have

η�(Hk, Hk) ≤ log(k + 1)
(k − 1)

(
1− 4 log(k+1)

k−3
) . (2.1)

Moreover, if p is an odd prime and 
 ∈ N such that there exists a
Hadamard matrix of size 4p
 (which holds e.g. for p = 5 and 
 even)
and k = 4p
 − 1, then

η(Hk, Hk) >
0.154 k − 1

k − 1− log(k + 1) . (2.2)

The proof of the bound (2.1) uses the inequality η�(Hk, Hk) ≤ R�(Hk)/

c�(Hk). To show R�(Hk) ≤ log(k + 1), we prove χ�(Hk) ≤ k + 1 (by
constructing feasible operators from a (k + 1)-dimensional orthonormal
representation of Hk) and then conclude using the sub-multiplicativity of

χ� under strong graph powers. To show c�(Hk) ≥ (k−1)
(
1− 4 log(k+1)

k−3
)
,

we use the celebrated quantum teleportation scheme of [4] to exhibit an
explicit protocol that achieves such capacity on any channel with confus-
ability graph Hk . This proof-technique appears to be new in the context
of zero-error entanglement-assisted communication.
To show (2.2) we use properties of the fractional chromatic number

and vertex transitivity of Hk by which we lower bound η(Hk, Hk) by
lower bounding α(Hk) and upper bounding α(Hk). The lower bound
uses the existence of a Hadamard matrix of size k + 1 and the upper
bound combines the linear algebra method of Alon [1] with the beautiful
construction of certain polynomials in [2].
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Ramsey numbers for bipartite graphs
with small bandwidth

Guilherme O. Mota1, Gábor N. Sárk´́ozy2, Mathias Schacht3

and Anusch Taraz4

Abstract. We determine asymptotically the two color Ramsey numbers for bi-
partite graphs with small bandwidth and constant maximum degree and the three
color Ramsey numbers for balanced bipartite graphs with small bandwidth and
constant maximum degree. In particular, we determine asymptotically the two
and three color Ramsey numbers for grid graphs.

1 Introduction and Results

For graphs G1,G2, ...,Gr , the Ramsey number R(G1,G2, ...,Gr ) is the
smallest positive integer n such that if the edges of a complete graph Kn

are partitioned into r disjoint color classes giving r graphs H1, H2, ..., Hr ,
then at least one Hi (1 ≤ i ≤ r) contains a subgraph isomorphic to
Gi . The existence of such a positive integer is guaranteed by Ramsey’s
classical theorem. The number R(G1,G2, . . . ,Gr ) is called the Ramsey
number for the graphs G1,G2, . . . ,Gr . Determining R(G1,G2, . . . ,Gr )

for general graphs appears to be a difficult problem (see e.g. [13]). For
r = 2, a well-known theorem of Gerencsér and Gyárfás [7] states that
R(Pn, Pn) =

⌊
3n−2
2

⌋
, where Pn denotes the path with n ≥ 2 vertices.
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In [9] more general trees were considered. For a tree T , we write t1 and
t2, t2 ≥ t1, for the sizes of the vertex classes of T as a bipartite graph.
Note that if 2t1 ≥ t2, then R(T, T ) ≥ 2t1 + t2 − 1, since the following
edge-coloring of K2t1+t2−2 has no monochromatic copy of T . Partition the
vertices into two classes V1 and V2 such that |V1| = t1−1 and |V2| = t1+
t2 − 1, then use color “red” for all edges inside the classes and use color
“blue” for all edges between the classes. On the other hand, if 2t1 < t2, a
similar edge-coloring of K2t2−2 with two classes both of size t2−1 shows
that R(T, T ) ≥ 2t2. Thus, R(T, T ) ≥ max{2t1 + t2, 2t2} − 1. Haxell,
�Luczak and Tingley proved in [9] that for a tree T with maximum degree
o(t2), this lower bound is the asymptotically correct value of R(T, T ).
We try to extend this to bipartite graphs with small bandwidth (al-

though with a more restrictive maximum degree condition). A graph is
said to have bandwidth at most b, if there exists a labelling of the vertices
by numbers 1, . . . , n such that for every edge {i, j} of the graph we have
|i − j | ≤ b. We will focus on the following class of bipartite graphs.

Definition 1.1. A bipartite graph H is called a (β,�)-graph if it has
bandwidth at most β|V (H)| and maximum degree at most �. Further-
more, we say that H is a balanced (β,�)-graph if it has a legal 2-coloring
χ : V (H)→ [2] such that 1− β ≤ |χ−1(1)|/|χ−1(2)| ≤ 1+ β.
For example, all bounded degree planar graphs G are (β,�(G))-graphs
for any β > 0 [3]. Our first theorem is an analogue of the result in [9] for
(β,�)-graphs.

Theorem 1.2. For every γ > 0 and natural number �, there exist a
constant β > 0 and natural number n0 such that for every (β,�)-graph
H on n ≥ n0 vertices with a legal 2-coloring χ : V (H) → [2] where
t1 = |χ−1(1)| and t2 = |χ−1(2)|, t1 ≤ t2, we have

R(H, H) ≤ (1+ γ )max{2t1 + t2, 2t2}.

For more recent results on the Ramsey number of graphs of higher chro-
matic number and sublinear bandwidth, we refer the reader to the recent
paper by Allen, Brightwell and Skokan [1].
For r ≥ 3 less is known about Ramsey numbers. Proving a conjecture

of Faudree and Schelp [5], it was shown in [8] that for sufficiently large
n R(Pn, Pn, Pn) = 2n − 1, for odd n and R(Pn, Pn, Pn) = 2n − 2, for
even n. Asymptotically this was also proved independently by Figaj and
�Luczak [6]. Benevides and Skokan proved [2] that R(Cn,Cn,Cn) = 2n
for sufficiently large even n. In our second theorem we extend these
results (asymptotically) to balanced (β,�)-graphs.
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Theorem 1.3. For every γ > 0 and natural number �, there exist a
constant β > 0 and natural number n0 such that for every balanced
(β,�)-graph H on n ≥ n0 vertices we have R(H, H, H) ≤ (2+ γ )n.
In particular, Theorems 1.2 and 1.3 determine asymptotically the two

and three color Ramsey numbers for grid graphs.
We conclude this section with a few words about the proof method for

our main theorems. The proof of Theorem 1.2 combines ideas from [9]
and [4], while the proof of Theorem 1.3 follows a similar approach as
in [6], again, together with the result in [4]. Since the strategies for both
theorems are close to each other, we focus on the proof of Theorem 1.3,
for which we present an outline in the next section. Details can be found
in [12].

2 Sketch of the proof of Theorem 1.3

Here we will sketch the main ideas of our proof. The proof relies on the
regularity method for graphs and we refer the reader to the survey [10]
for related notation and definitions.

The first part of the proof follows the same pattern as the proof by
Figaj and �Luczak [6] for the case where H is a path. Namely, we apply
a multicolored variant of Szemerédi’s Regularity Lemma [14] to the 3-
colored complete graph KN with N = (2+ γ )n and get a partition with
a very dense reduced graph. The edges of the reduced graph inherit the
majority color of the respective pair. Applying Lemma 8 from [6] gives
us a monochromatic tree T in the reduced graph that contains a matching
M covering almost half of the vertices.
Switching back from the reduced graph to the colored complete graph,

we denote by GT the subgraph of KN whose vertices are contained in the
clusters represented by the vertices of T and whose edges run inside the
pairs represented by the edges of T and have the same color as the edges
of T . Thus GT is a monochromatic subgraph of KN whose regular pairs
are arranged in a structure mirroring that of T and all have density at least
1/3. Finally, we localize almost spanning super-regular subgraphs in the
pairs in GT represented by edges in M and denote the subgraph formed
by the union of these pairs by GM ⊂ GT .

To understand the motivation for the second part, recall that our overall
goal is to embed H into GT . Notice that GM has in fact enough vertices
to accomodate all of H . Indeed, most of the vertices of H will be mapped
to GM , and we will only have to use parts from GT \GM because we may
need to connect the various parts of H embedded into GM . Let us explain
this more precisely by assuming for the moment that H is just a path. Let
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m be an integer which is just a bit smaller than the size of the clusters
in GT (that we assume to be all of the same size). Applying the Blow-
up Lemma by Komlós, Sárközy and Szemerédi [11], we then embed the
first m vertices from each color class of H into the super-regular pair
represented by the first matching edge in M .
To be able to ‘reach’ the next super-regular pair in GM , where we can

embed the next m+m vertices of H , we need to make use of the fact that
the vertices representing these two pairs are connected by a path in T .
This path translates into a sequence of regular pairs in GT , into each of
which we embed an intermediate edge of H , thereby ‘walking’ towards
the next super-regular pair in GM . In this way, we only use few edges
of the regular pairs in GT \ GM , thus keeping them regular all the way
through, and leaving a bit of space in the super-regular pairs in GM , in
case we need to walk through them later again.

The task for the second part of our proof is to restructure our balanced
(β,�)-graph H in such a way that it behaves like the path in the embed-
ding approach described before. Here two major problems occur:

• Suppose for example that H is a graph consisting of a path whose
vertices are labelled by 1, . . . , n, with some additional edges between
vertices whose label differ by at most βn and have different parity
(because H is bipartite). For such a graph ‘making the connections’
as above is now more difficult. Suppose, for instance, that we have a
chain of regular pairs (Vi , Vi+1) in GT for i = 1, . . . , 4 and want to
use it to ‘walk’ with H from V1 to V5. We cannot simply assign vertex
1 to V1, then 2 to V2 and so on up to 5 to V5, because maybe {2, 5}
forms an edge in H but (V2, V5) is not a regular pair in GT .
The solution to this problem is to walk more slowly: assign vertex 1
to V1, then with the vertices 2, 3, . . . , βn+1 alternate between V2 and
V3, the next βn vertices continue the zig-zag pattern between V3 and
V4, and finally we send the last vertex to V5. What does this buy us?
Consider, e.g., the final vertex y that got mapped to V5. Due to the
bandwidth condition, all its potential neighbours were embedded in
V3 or V4, and due to the parity condition, they must all lie in V4. This
is good, because we have a regular pair (V4, V5).

• The second problem that we have to face is as follows. By definition,
H has a 2-coloring of its vertices that uses both colors similarly often
in total, but this does not have to be true locally – among the firstm+m
vertices of H , there could be far more vertices of color 1 than of color
2, which means that our approach to embed them into a super-regular
pair with two classes of the same size would fail.
The solution to this problem is to re-balance H . We use an ordering
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of H with bandwidth at most βn and cut H into small blocks of size
ξn, where βn ) ξn ) m. Then it is not hard to see that we can
obtain a new ordering of the vertices of H by changing the order in
which the blocks appear, so that in every interval of blocks summing
to roughly m consecutive vertices of H the two colors are balanced up
to 2ξn vertices. We can now assign the blocks forming these intervals
to super-regular pairs in GM in such a way that they there represent a
balanced 2-coloring and can therefore be embedded via the Blow-up
Lemma into the super-regular pair.

Both these problems can appear at the same time, but one can combine
these two solutions. Hence H can indeed be embedded into GT similarly
to the example of the path example given above, which finishes the proof.
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Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 10 (1967), 167–170.
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Polynomial bounds on geometric Ramsey
numbers of ladder graphs

Josef Cibulka1, Pu Gao2, Marek Krčál1, Tomáš Valla3 and Pavel Valtr1

Abstract. We prove that the geometric Ramsey numbers of the ladder graph on
2n vertices are bounded by O(n3) and O(n10), in the convex and general case,
respectively. We also prove polynomial upper bounds of geometric Ramsey num-
bers of pathwidth-2 outerplanar triangulations in both convex and general cases.

1 Introduction and basic definitions

A finite set P ⊂ R2 of points is in a general position if no three points
of P are collinear. The complete geometric graph on P , denoted by KP ,
is the complete graph with vertex set P , whose edges are drawn as the
straight-line segments between pairs of points of P .
The set of points P is in convex position if P is the set of vertices of a

convex polygon. If P is in convex position, we say that KP is a convex
complete geometric graph.
Károlyi, Pach and Tóth [4] introduced the concept of Ramsey numbers

for geometric graphs as follows. Given a graph G, the geometric Ram-
sey number of G, denoted by Rg(G), is the smallest integer n such that
every complete geometric graph KP on n vertices with edges arbitrarily
coloured by two colours contains a monochromatic non-crossing copy of
G. The convex geometric Ramsey number of G, Rc(G), is defined the
same way except that KP is restricted to the convex complete geometric
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27, 2011. Research was supported by the project CE-ITI (GAČR P202/12/G061) of the Czech
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graph. A graph G is said to be outerplanar if G can be drawn in the
plane without any edge crossing and with all vertices of G incident to the
unbounded face. Apparently, the numbers Rg(G) and Rc(G) are finite
only if G is outerplanar, and it follows immediately from the definitions
that Rc(G) ≤ Rg(G) for every outerplanar graph G.
The Ramsey numbers of outerplanar graphs, as well as of all planar

graphs, are bounded by a function linear in the number of vertices by a
result of Chen and Schelp [2]. However, the corresponding geometric
Ramsey numbers can be larger and it remains open whether there is a
general polynomial bound for all outerplanar graphs. By a simple con-
structive proof, it is easy to see that for any G on n vertices that contains
a Hamilton cycle, Rc(G) ≥ (n − 1)2 + 1. It has also been proved that,
for any cycle Cn on n vertices, Rg(Cn) ≤ 2(n − 2)(n − 1) + 2 [5], and
this upper bound is only known to be tight when n ∈ {3, 4}. Károlyi
et al. [5] found the exact value Rc(Pn) = 2n − 3 and the upper bound
Rg(Pn) ∈ O(n3/2), where Pn is a path on n > 2 vertices. The bounds
2n − 3 ≤ Rg(Pn) ≤ O(n3/2) remain the best known bounds on the geo-
metric Ramsey number of paths.
In this extended abstract, we contribute to this subject by showing

polynomial upper bounds on the geometric Ramsey numbers of the lad-
der graphs, see Definition 2.1, and their generalisation. In Section 2, we
show that the geometric Ramsey numbers of the ladder graph on 2n ver-
tices are bounded by O(n3) and O(n10) in the convex and general case,
respectively. In Section 3, we generalise the polynomial upper bounds
to the class of all subgraphs of pathwidth-2 outerplanar triangulations,
see Definition 3.1. These bounds are 20n7 and O(n22) in the convex and
general case, respectively
We note here that all colourings in this extended abstract, unless spec-

ified, refer to edge colourings. As a convention, in any 2-colouring, we
assume that the colours used are blue and red.
We abbreviate the set {1, 2, . . . , k} with [k] and {l, l + 1, . . . , k} with

[l, k]. We write (xi)ki=1 for the sequence x1, x2, . . . , xk . The sequence of
vertices (vi)


+1
i=1 is a path of colour c and length 
 if every pair {vivi+1},

i ∈ [
] is an edge and has colour c. A sequence (Ai)ki=1 is said to be a
partition of A if Ai are pairwise disjoint and ∪ki=1Ai = A.

2 Ladder graphs

The ladder graphs are defined as follows.

Definition 2.1. For any integer n ≥ 1, the ladder graph on 2n vertices,
denoted by L2n , is the graph composed of two paths (ui)ni=1 and (vi)

n
i=1,

together with the set of edges {uivi : i ∈ [n]}.
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In the following two subsections, we prove upper bounds on Rc(L2n)
and Rg(L2n). Both proofs use the following lemma due to Gritzmann et
al. [3].

Lemma 2.2 (Gritzmann et al. 1991[3]). Let G be an outerplanar graph
on n vertices and let P be a set of n points in general position. Then KP

contains a non-crossing copy of G.

2.1 Convex position

In this section, let C denote a set of 32n3 points in convex position. That
is, C is the set of vertices of some convex polygon. We label the vertices
v1, v2, . . . , v|C| in the clockwise order starting at an arbitrarily chosen
vertex v1. We write vi ≺ v j if and only if i < j . Let A, B ⊂ C . We say
that A precedes B and write A ≺ B if and only if for every u ∈ A and
every v ∈ B, u ≺ v. Notice that if A ≺ B, then the sets A and B can be
separated by a line.
For a pair of disjoint vertex sets (L , R), L ⊂ C , R ⊂ C , the complete

bipartite graph on (L , R), denoted by KL ,R , is the set of edges {u, v},
where u ∈ L and v ∈ R. A complete bipartite graph KL ,R is said to be
well-split if L ≺ R or R ≺ L . A well-split Km,n is a well-split KL ,R , for
some L and R such that |L| = m, |R| = n.
The following lemmas are used frequently throughout the proofs.

Lemma 2.3. If a 2-colouring of KC contains a monochromatic well-split
K2n2,2n2 , then it contains a monochromatic non-crossing copy of L2n .

Lemma 2.4. Let N be a positive integer. Let G be the complete graph
on a set A of points in general position and let (Ai)ni=1 be a partition of A
with |Ai | ≥ N for every i ∈ [n]. Then for any 2-colouring of the edges of
G, either there is a red path (ui)ni=1 with ui ∈ Ai for each i ∈ [n] or for
some i ∈ [n − 1] there exists a blue KBi ,Bi+1 with Bi ⊆ Ai , Bi+1 ⊆ Ai+1
and min{|Bi |, |Bi+1|} ≥ N/2.

Using Lemma 2.3 and 2.4, we are able to prove the following theorem.

Theorem 2.5. For every n ≥ 1, Rc(L2n) ≤ 32n3.

2.2 General geometric position

Definition 2.6. Two sets of points A and B in the plane are mutually
avoiding if |A|, |B| ≥ 2 and no line subtended by a pair of points in A
intersects the convex hull of B, and vice versa.
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A simple example of a pair of mutually avoiding sets are sets A and
B such that A ∪ B is in convex position and A and B can be separated
by a straight line. Observe that for any mutually avoiding pair (A, B),
every point in A “sees” all the vertices in B in the same order and vice
versa. That is, there are unique total orders u1 ≺ u2 ≺ · · · ≺ u|A| of
the points in A and v1 ≺ v2 ≺ · · · ≺ v|B| of the the points in B such
that every point in B “sees” u1, . . . , u|A| consecutively in a clockwise
order before seeing any vertex in B, whereas every point in A “sees”
v1, . . . , v|B| consecutively in a counterclockwise order before seeing any
vertex in A. A path (pi)
i=1 in either A or B is an increasing path if
p1 ≺ p2 ≺ · · · ≺ p
.
For any two sets of vertices A1, A2 both contained in A (or B), we

write A1 ≺ A2 if and only if for every u ∈ A1 and v ∈ A2, u ≺ v. An
embedding of the complete bipartite graph Km,n is said to be well-split
if the two sets of points representing the two vertex parts are mutually
avoiding.
The following proposition follows from the definition of a pair of mu-

tually avoiding sets.

Proposition 2.7. Assume A and B are mutually avoiding. Let Pu =
(xi)ni=1 be an increasing path in A and let Pv = (yi)ni=1 be an increasing
path in B. Then the ladder graph composed of the paths Pu and Pv and
edges {{xi , yi } : i ∈ [n]} is non-crossing.
Given a set of points in general position, the following theorem guaran-

tees the existence of two mutually avoiding subsets, each with reasonably
large sizes.

Theorem 2.8 (Aronov et al. 1994 [1]). Let A′ and B ′ be two sets of
points separated by a line, each of size 6n2. Then there exist mutually
avoiding subsets A ⊂ A′ and B ⊂ B ′ such that A and B are both of
size n.

By Lemma 2.2 and Proposition 2.7, we have the following generalisa-
tion of Lemma 2.3.

Lemma 2.9. If a 2-colouring of KP contains a monochromatic well-split
K2n2,2n2 , then it contains a monochromatic non-crossing L2n .

A complete geometric bipartite graph KL ,R is said to be separable if L
and R can be separated by a line. Notice that if L ∪ R is in convex posi-
tion, then KL ,R is separable if and only if it is well-split. Obviously, every
complete bipartite geometric graph KL ,R contains a separable complete
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bipartite graph with parts of sizes |L|/2 and |R|/2. However, all com-
plete bipartite geometric graphs that we encounter in subsequent proofs
are separable, so we state the following corollary of Theorem 2.8 and
Lemma 2.9 for separable complete bipartite graphs only.

Corollary 2.10. Every 2-colouring of KP containing a monochromatic
separable K24n4,24n4 contains a monochromatic non-crossing copy of L2n .

We conclude by the resulting theorem.

Theorem 2.11. The geometric Ramsey number of the ladder graph L2n
satisfies Rg(L2n) = O(n10).

3 Generalisation to pathwidth-2 outerplanar triangulations

An outerplanar triangulation G is a planar graph that can be drawn in
the plane in such a way that the outer face is incident with all the vertices
of G and every other face is incident with exactly three vertices.
The pathwidth of a graph was first defined by Robertson and Sey-

mour [6] as follows. A path decomposition of a graph G is a sequence
(Gi)

m
i=1 of subgraphs of G such that each edge of G is in at least one of

Gi and for every vertex v of G, the set of graphs Gi containing v forms
a contiguous subsequence of (Gi)

m
i=1. The pathwidth of a graph G is the

smallest k such that G has a path decomposition in which every Gi has
at most k + 1 vertices. Let pw(G) denote the pathwidth of G.
We now give an equivalent definition of pathwidth-2 outerplanar trian-

gulations that will be used in the later proofs.

Definition 3.1. Let PW2(n) be the class of outerplanar triangulations G
whose vertices can be decomposed into two disjoint sets Vu∪Vv = V (G)
such that the subgraphs induced by the two sets, Pu = G[Vu] and Pv =
G[Vv], are paths.
We then state the following theorem.

Theorem 3.2. For any G ⊆ G ′ ∈ PW2(n), Rc(G) ≤ 20n7 and Rg(G) ≤
O(n22).
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[1] B. ARONOV, P. ERDŐS, W. GODDARD, D. J. KLEITMAN, M.
KLUGERMAN, J. PACH and L. J. SCHULMAN, Crossing families,
Combinatorica 14 (2) (1994), 127–134.

[2] G. T. CHEN and R. H. SCHELP, Graphs with linearly bounded
Ramsey numbers, Journal of Combinatorial Theory, Series B 57 (1)
(1993), 138–149.



176 Josef Cibulka, Pu Gao, Marek Krčál, Tomáš Valla and Pavel Valtr
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Arrangements of pseudocircles and circles

Ross J. Kang1 and Tobias Müller1

Abstract. An arrangement of pseudocircles is a finite collection of Jordan curves
in the plane with the additional properties that (i) no three of the curves meet in a
point; (ii) every two curves meet in at most two points; and (iii) if two curves meet
in a point p, then they cross at p.
We say that two arrangements C = (c1, . . . , cn), D = (d1, . . . , dn) are equiv-

alent if there is a homeomorphism ϕ of the plane onto itself such that ϕ[ci ] = di
for all 1 ≤ i ≤ n. Linhart and Ortner (2005) gave an example of an arrangement
of five pseudocircles that is not equivalent to an arrangement of circles, and con-
jectured that every arrangement of at most four pseudocircles is equivalent to an
arrangement of circles. We prove their conjecture.
We consider two related recognition problems. The first is the problem of

deciding, given a pseudocircle arrangement, whether it is equivalent to an ar-
rangement of circles. The second is deciding, given a pseudocircle arrangement,
whether it is equivalent to an arrangement of convex pseudocircles. We prove
that both problems are NP-hard, answering questions of Bultena, Grünbaum and
Ruskey (1998) and of Linhart and Ortner (2008).
We also give an example of a collection of convex pseudocircles with the prop-

erty that its intersection graph (i.e. the graph with one vertex for each pseudocircle
and an edge between two vertices if and only if the corresponding pseudocircles
intersect) cannot be realized as the intersection graph of a collection of circles.
This disproves a folklore conjecture communicated to us by Pyatkin.

1 Introduction

An arrangement of pseudocircles is a finite list C = (c1, . . . , cn) of Jor-
dan curves in the plane satisfying the following three conditions:

1. no three curves intersect in a point;
2. every two curves intersect in at most two points; and
3. if two curves meet in a point p, then they cross at p.

1 Utrecht University, Utrecht, the Netherlands. E-mail: ross.kang@gmail.com, t.muller@uu.nl
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Wewill say that two arrangementsC=(c1, . . . , cn) andD = (d1, . . . , dn)
are equivalent if there exists a homeomorphism ϕ from the plane onto
itself with the property that ϕ[ci ] = di for all 1 ≤ i ≤ n.
Naturally, an arrangement of pseudocircles C = (c1, . . . , cn) is called

an arrangement of circles if each ci is a circle. We will say that an ar-
rangement of pseudocircles is circleable if it is equivalent to an arrange-
ment of circles. In this work, we are interested in a number of problems
which are related to the question of whether a given pseudocircle arrange-
ment is circleable. Unfortunately, due to page limitations, we are unable
to provide any full proofs for the results given below; however, we give
indications of the proof methodology used.

ACKNOWLEDGEMENTS. We thank Artem Pyatkin for bringing to our
attention the folkore conjecture described in Section 4 below as well as
for helpful pointers to the literature.

2 A smallest circleable arrangement

A natural question is whether every arrangement of pseudocircles is cir-
cleable. This question was studied before by Linhart and Ortner [6], who
showed that the pseudocircle arrangement in Figure 2.1 is not circleable.

Figure 2.1. An arrangement of five pseudocircles that is not circleable.

They also conjectured that this is a minimal example of a non-circleable
pseudocircle arrangement. We confirm their conjecture.

Theorem 2.1. Every arrangement of at most four pseudocircles is equiv-
alent to an arrangement of circles.

The proof of this theorem necessitates an involved case analysis which
is thankfully shortened by the use of circle inversions in the extended
complex plane. Theorem 2.1 provides a natural analogue of a celebrated
result of Goodman and Pollack [5], who showed that every arrangement
of up to eight pseudolines is equivalent to an arrangement of lines. Prior
to this an example was known of an arrangement of nine pseudolines not
equivalent to an arrangement of lines.
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3 Circleability and convexibility complexity

In this section, we shall discuss the computation complexity of some
pseudocircle recognition problems. Before we do so, we must appro-
priately define the input format.
Given an arbitrary list C = (c1, . . . , cn) of Jordan curves in the plane,

the arrangement multigraph for C is defined as follows: the vertices
are all the intersection points among the curves, while the edges are
all the maximal curve segments that have no intersection points. This
multigraph is already naturally endowed with an embedding in the plane,
which we may specify combinatorially for instance by a rotation system
(i.e. each vertex v is assigned a cyclic permutation of the edges incident
with v). Because of conditions (i) and (iii) of a pseudocircle arrangement,
we can straightforwardly derive from the embedded multigraph the infor-
mation of which edge belongs to which curve of C. Therefore, we may
assume that the input to the computational problems below are given as
the rotation system of a multigraph.
Given that not all pseudocircle arrangements are circleable, one might

wonder if there is an efficient characterization of circleable arrangements.
We write CIRCLEABILITY for the computational problem of deciding,
given a list C of Jordan curves in the plane, whether C can be realized as
an oriented circle arrangement. We indeed consider a restricted version
of this problem, CONVEX CIRCLEABILITY, on the input of arrange-
ments of convex pseudocircles. By using a corollary of a deep result of
Mnëv [8] on the recognition of stretchable pseudoline arrangements (see
also Shor [10]), we show the following.

Theorem 3.1. CONVEX CIRCLEABILITY is NP-hard.

It is natural also to consider the recognition problem for arrangements
of convex pseudocircles. We say that an arrangement of pseudocircles
is convexible if it is equivalent to an arrangement of convex pseudocir-
cles. We write PSEUDOCIRCLE CONVEXIBILITY for the problem of
deciding, given a list C of Jordan curves in the plane, whether C can be
realized as an arrangement of convex pseudocircles. Bultena, Grünbaum
and Ruskey [1] have asked about the complexity of this computational
problem. Later, Linhart and Ortner [7] asked the weaker question of
whether there exists a pseudocircle arrangement that is not convexible.
Again using the result of Mnëv, we answer both of these questions.

Theorem 3.2. PSEUDOCIRCLE CONVEXIBILITY is NP-hard.
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4 A folklore conjecture

If A = (A1, . . . , An) is a list of sets, then the intersection graph of A is
the graph G = (V, E)with vertex set V = {1, . . . , n} and an edge i j ∈ E
if and only if Ai ∩ A j �= ∅. A folklore conjecture that was communicated
to us by Artem Pyatkin [9] states that every intersection graph of a list of
convex curves is also the intersection graph of a list of circles. (We do
not use the word “arrangement” here because we do not necessarily want
to impose the restrictions 1–3 above.) This conjecture was apparently
inspired by the work of Dobrynin and Mel′nikov [2–4] on the chromatic
number of “arrangement graphs” of Jordan curves in the plane (i.e. graphs
whose vertices are the intersection points of the curves and whose edges
are the curve segments between these intersection points). To get a feel
for the conjecture observe for instance that, while all the pseudocircles of
the arrangement in Figure 2.1 are convex curves and the arrangement is
not equivalent to any arrangement of circles, one can easily construct a
family of five circles in the plane with the same intersection graph. We
are however able to produce a counterexample to the folklore conjecture
by placing additional pseudocircles as in Figure 4.1.

Figure 4.1. A collection of convex curves such that no collection of circles
defines the same intersection graph.

Theorem 4.1. The intersection graph of the convex pseudocircles in Fig-
ure 4.1 cannot be realized as the intersection graph of a list of circles.

The idea for this additional “gridding” of smaller pseudocircles is that
it ensures that, if the resultant intersection graph were realizable as the
intersection graph of a list of circles, then the original (Linhart-Ortner)
arrangement of pseudocircles would be circleable, a contradiction.
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Extended abstract for structure results
for multiple tilings in 3D

Nick Gravin1, Mihail N. Kolountzakis2, Sinai Robins1

and Dmitry Shiryaev1

Abstract. We study multiple tilings of 3-dimensional Euclidean space by a con-
vex body. In a multiple tiling, a convex body P is translated with a discrete mul-
tiset � in such a way that each point of Rd gets covered exactly k times, except
perhaps the translated copies of the boundary of P . It is known that all possi-
ble multiple tilers in R3 are zonotopes. In R2 it was known by the work of M.
Kolountzakis [9] that, unless P is a parallelogram, the multiset of translation vec-
tors � must be a finite union of translated lattices (also known as quasi periodic
sets). In that work [9] the author asked whether the same quasi-periodic structure
on the translation vectors would be true in R3. Here we prove that this conclusion
is indeed true for R3.
Namely, we show that if P is a convex multiple tiler inR3, with a discrete mul-

tiset � of translation vectors, then � has to be a finite union of translated lattices,
unless P belongs to a special class of zonotopes. This exceptional class consists of
two-flat zonotopes P , defined by the Minkowski sum of two 2-dimensional sym-
metric polygons in R3, one of which may degenerate into a single line segment. It
turns out that rational two-flat zonotopes admit a multiple tiling with an aperiodic
(non-quasi-periodic) set of translation vectors �. We note that it may be quite
difficult to offer a visualization of these 3-dimensional non-quasi-periodic tilings,
and that we discovered them by using Fourier methods.

The study of multiple tilings of Euclidean space began in 1936, when the
famous Minkowski facet-to-facet conjecture [15] for classical tilings was
extended to the setting of k-tilings with the unit cube, by Furtwängler [3].
Minkowski’s facet-to-facet conjecture states that for any lattice tiling of
Rd by translations of the unit cube, there exist at least two translated
cubes that share a facet (face of co-dimension 1). The conjecture was
strengthened by Furtwängler [3] who conjectured the same conclusion
for any multiple lattice tiling.
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21 Nanyang Link, Singapore 637371. Email: ngravin@pmail.ntu.edu.sg, rsinai@ntu.edu.sg,
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To define a multiple tiling, suppose we translate a convex body P with
a discrete multiset�, in such a way that each point ofRd gets covered ex-
actly k times, except perhaps the translated copies of the boundary of P .
We then call such a body a k-tiler, and such an action has been given the
following names in the literature: a k-tiling, a tiling at level k, a tiling
with multiplicity k, and sometimes simply a multiple tiling. We may
use any of these synonyms here, and we immediately point out, for poly-
topes P , a trivial but useful algebraic equivalence for a tiling at level k:∑

λ∈�
1P+λ(x) = k, (1)

for almost all x ∈Rd , where 1P is the indicator function of the polytope P .
Furtwängler’s conjecture was disproved by Hajós [7] for dimension

larger than 3 and for k ≥ 9 while Furtwängler himself [3] proved it for
dimension at most 3. Hajós [8] also proved Minkowski’s conjecture in all
dimensions. The ideas of Furtwängler were subsequently extended (but
still restricted to cubes) by the important work of Perron [16], Robin-
son [17], Szabó [21], Gordon [4] and Lagarias and Shor [11]. These
authors showed that for some levels k and dimensions d and under the
lattice assumption as well as not, a facet-to-facet conclusion for k-tilings
is true in Rd , while for most values of k and d it is false.
It was known to Bolle [2] that inR2, every k-tiling convex polytope has

to be a centrally symmetric polygon, and using combinatorial methods
Bolle [2] gave a characterization for all polygons in R2 that admit a k-
tiling with a lattice � of translation vectors. Kolountzakis [10] proved
that if a convex polygon P tilesR2 multiply with any discrete multiset�,
then�must be a finite union of two-dimensional lattices. The ingredients
of Kolountzakis’ proof include the idempotent theorem for the Fourier
transform of a measure. Roughly speaking, the idempotent theorem of
Meyer [14] tells us that if the square of the Fourier transform of a measure
is itself, then the support of the measure is contained in a finite union of
lattices.
A multiple tiling is called quasi-periodic if its multiset of discrete

translation vectors� is a finite union of translated lattices, not necessarily
all of the same dimension.

Theorem (Kolountzakis, 2002 [9]). Suppose that K is a symmetric con-
vex polygon which is not a parallelogram. Then K admits only quasi-
periodic multiple tilings if any.

In this work, we extend this result to R3, and we also find a fascinating
class of polytopes analogous to the parallelogram of the theorem above.
To describe this class, we first recall the definition of a zonotope, which
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is the Minkowski sum of a finite number of line segments. In other words,
a zonotope equals a translate of [−v1, v1] + · · · + [−vN , vN ], for some
positive integer N and vectors v1, . . . , vN ∈ Rd . A zonotope may equiv-
alently be defined as the projection of some l-dimensional cube. A third
equivalent condition is that for a d-dimensional zonotope, all of its k-
dimensional faces are centrally symmetric, for 1 ≤ k ≤ d. For example,
the zonotopes in R2 are the centrally symmetric polygons.
We shall say that a polytope P ⊆ R3 is a two-flat zonotope if P is

the Minkowski sum of n + m line segments which lie in the union of
two different two-dimensional subspaces H1 and H2. In other words, H1
contains n of the segments and H2 contains m of the segments (if one of
the segments belongs to both H1 and H2 we list it twice, once for each
plane). Equivalently, P may be thought of as the Minkowski sum of two
2-dimensional symmetric polygons one of which may degenerate into a
single line segment.
It turns out that if P is a rational two-flat zonotope, then P admits a

k-tiling with a non-quasi-periodic set of translation vectors �. For some
of the classical study of 1-tilings, and their interesting connections to
zonotopes, the reader may refer to the work of [12, 13, 19, 23], and [1].
Here we find it very useful to use the intuitive language of distributions
[18,20] in order to think – and indeed discover – facts about k-tilings. To
that end we introduce the distribution (which is locally a measure)

δ� :=
∑
λ∈�
δλ, (2)

where δλ is the Dirac delta function at λ ∈ Rd . To develop some intuition,
we may check formally that

δ� ∗ 1P =
∑
λ∈�
δλ ∗ 1P =

∑
λ∈�
1P+λ,

so that from the first definition (1) of k-tiling, we see that a polytope P is
a k-tiler if and only if

δ� ∗ 1P = k. (3)

Suppose the polytope P tiles multiply with the translates � ⊆ Rd . We
will need to understand some basic facts about how the � points are
distributed.
For any symmetric polytope P , and any face F ⊂ P , we define F− to

be the face of P symmetric to F with respect to P’s center of symmetry.
We call F− the opposite face of F . We use the standard convention of
boldfacing all vectors, to differentiate between v and v, for example. We
furthermore use the convention that [e] denotes the 1-dimensional line
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segment from 0 to the endpoint of the vector e. Whenever it is clear
from context, we will also write [e] to denote the same line segment - for
example, in the case that e denotes an edge of a polytope.
Suppose P ∈ R3 is a zonotope (symmetric polytope with symmetric

facets). A collection of four edges of P is called a 4-legged-frame if
whenever e is one of the edges then there exist two vectors τ 1 and τ 2
such that the four edges are

[e], [e] + τ 1, [e] + τ 2 and [e] + τ 1 + τ 2,

and such that the edges [e] and [e]+ τ 1 belong to the same face of P and
the edges [e] + τ 2 and [e] + τ 1 + τ 2 belong to the opposite face.

With the notion of 4-legged frames, we can introduce the following so-
called intersection property, which plays an important role in the proof
of the main theorem.
Suppose P is a k-tiler with a discrete multiset �, in R3. We say that

the intersection property holds, if⋂
e,τ1.τ2

(
e⊥ ∪ τ⊥1 ∪ τ⊥2

) = {0} , (4)

where the intersection above is taken over all sets of 4-legged frames
of P .
Recently, a structure theorem for convex k-tilers in Rd was found, and

is as follows.

Theorem (Gravin, Robins, Shiryaev 2012 [6]). If a convex polytope
k-tiles Rd by translations, then it is centrally symmetric and its facets are
centrally symmetric.

This theorem generalizes the theorem for 1-tilers by Minkowski [15].
One-tiler case was extensively studied in the past, and the complete char-
acterization for 1-tilers was given independently by Venkov [22] and Mc-
Mullen [13].
It follows immediately from the latter theorem that a k-tiler P ⊂ R3

is necessarily a zonotope. The following theorem extends the result of
Kolountzakis [9] from R2 to R3, providing a structure theorem for multi-
ple tilings by polytopes in three dimensions.
The main result here is the following theorem [5]:

Main Theorem. Suppose a polytope P k-tilesR3 with a discrete multiset
�, and suppose that P is not a two-flat zonotope. Then� is a finite union
of translated lattices.

Although the proof is involved, one of the main ideas is to compute
the Fourier transform of any 4-legged frame of a polytope, and show that
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its zeros form a certain countable union of hyperplanes. Another main
idea is to show that if the intersection property holds for P , then δ� has
discrete support.
We also show that each rational two-flat zonotope admits a very pe-

culiar non-quasi-periodic k-tiling. We note that it may be quite difficult
to offer a visualization of these 3-dimensional non-quasi-periodic tilings,
and that we discovered them by using Fourier methods.

Open Questions

The proof of the main theorem does not directly generalize to dimensions
higher that 3, since k-tilers in these dimensions are no longer all zono-
topes. So it might require some new ideas and methods to deal with the
higher dimension case, and we propose this as a primary direction for
future work.
It would also be very helpful to generalize Bolle’s characterization of

2-dimensional lattice k-tilers to higher dimensions.
Another important topic of future research would be to generalize the

Venkov-McMullen characterization [13] from 1-tilers in Rn to k-tilers. It
is already established that any k-tiler in Rn is centrally symmetric and
has centrally symmetric facets, and it is reasonable to conjecture that it
is enough to add one more condition on co-dimension 2 facets to get a
complete characterization.
Finally, it would be interesting to prove or disprove the following con-

jecture: if a polytope has a quasi-periodic multiple tiling, then it also has
a tiling with just one lattice.
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On the nonexistence of k-reptile simplices
in R3 and R4

Jan Kynčl1 and Zuzana Safernová1

Abstract. A d-dimensional simplex S is called a k-reptile (or a k-reptile simplex)
if it can be tiled without overlaps by k simplices with disjoint interiors that are
all mutually congruent and similar to S. For d = 2, triangular k-reptiles exist
for many values of k and they have been completely characterized by Snover,
Waiveris, and Williams. On the other hand, the only k-reptile simplices that are
known for d ≥ 3, have k = md , where m is a positive integer. We substantially
simplify the proof by Matoušek and the second author that for d = 3, k-reptile
tetrahedra can exist only for k = m3. We also prove a weaker analogue of this
result for d = 4 by showing that four-dimensional k-reptile simplices can exist
only for k = m2.

1 Introduction

A closed set X ⊂ Rd with nonempty interior is called a k-reptile (or a
k-reptile set) if there are sets X1, X2, . . . , Xk with disjoint interiors and
with X = X1 ∪ X2 ∪ · · · ∪ Xk that are all mutually congruent and similar
to X . Such sets have been studied in connection with fractals and also
with crystallography and tilings of Rd [3, 6, 8].
It easy to see that whenever S is a d-dimensional k-reptile simplex,

then all of Rd can be tiled by congruent copies of S: indeed, using the
tiling of S by its smaller copies S1, . . . , Sk as a pattern, one can induc-
tively tile larger and larger similar copies of S. On the other hand, not all
space-filling simplices must be k-reptiles for some k ≥ 2.
Clearly, every triangle tiles R2. Moreover, every triangle T is a k-

reptile for k = m2, since T can be tiled in a regular way with m2 congru-
ent tiles, each positively or negatively homothetic to T . See e.g. Snover
et al. [16] for an illustration.
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University, Faculty of Mathematics and Physics, Malostranské nám. 25, 118 00 Praha 1, Czech
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The question of characterizing the tetrahedra that tile R3 is still open
and apparently rather difficult. The first systematic study of space-filling
tetrahedra was made by Sommerville. Sommerville [17] discovered a
list of exactly four tilings (up to isometry and rescaling), but he assumed
that all tiles are properly congruent (that is, congruent by an orientation-
preserving isometry) and meet face-to-face. Edmonds [5] noticed a gap in
Sommerville’s proof and by completing the analysis, he confirmed that
Sommerville’s classification of proper, face-to-face tilings is complete.
In the non-proper and non face-to-face situations there are infinite fam-
ilies of non-similar tetrahedral tilers. Goldberg [7] described three such
families, obtained by partitioning a triangular prism. In fact, Goldberg’s
first family was found by Sommerville [17] before, but he selected only
special cases with a certain symmetry. Goldberg [7] noticed that even the
general case admits a proper tiling of R3. Goldberg’s first family also co-
incides with the family of simplices found by Hill [11], whose aim was to
classify rectifiable simplices, that is, simplices that can be cut by straight
cuts into finitely many pieces that can be rearranged to form a cube. The
simplices in Goldberg’s second and third families are obtained from the
simplices in the first family by splitting into two congruent halves. Ac-
cording to Senechal’s survey [14], no other space-filling tetrahedra than
those described by Sommerville and Goldberg are known.
For general d, Debrunner [4] constructed �d/2� + 2 one-parameter

families and a finite number of additional special types of d-dimensional
simplices that tile Rd . Smith [15] generalized Goldberg’s construction
and using Debrunner’s ideas, he obtained (�d/2� + 2)φ(d)/2 one-pa-
rameter families of space-filling d-dimensional simplices; here φ(d) is
the Euler’s totient function. It is not known whether for some d there is
an acute space-filling simplex or a two-parameter family of space-filling
simplices [15].
In recent years the subject of tilings has received a certain impulse

from computer graphics and other computer applications. In fact, our
original motivation for studying simplices that are k-reptiles comes from
a problem of probabilistic marking of Internet packets for IP traceback [1,
2]. See [12] for a brief summary of the ideas of this method. For this
application, it would be interesting to find a d-dimensional simplex that
is a k-reptile with k as small as possible.
For dimension 2 there are several possible types of k-reptile triangles,

and they have been completely classified by Snover et al. [16]. In partic-
ular, k-reptile triangles exist for all k of the form a2 + b2, a2 or 3a2 for
arbitrary integers a, b. In contrast, for d ≥ 3, reptile simplices seem to be
much more rare. The only known constructions of higher-dimensional k-
reptile simplices have k = md . The best known examples are theHill sim-
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plices (or the Hadwiger–Hill simplices) [4, 9, 11]. A d-dimensional Hill
simplex is the convex hull of vectors 0, b1, b1+b2, . . . , b1+· · ·+bd , where
b1, b2, . . . , bd are vectors of equal length such that the angle between ev-
ery two of them is the same and lies in the interval (0, π2 + arcsin 1

d−1).
Concerning nonexistence of k-reptile simplices in dimension d ≥ 3,

Hertel [10] proved that a 3-dimensional simplex is an m3-reptile using a
“standard” way of dissection (which we will not define here) if and only
if it is a Hill simplex. He conjectured that Hill simplices are the only
3-dimensional reptile simplices. Herman Haverkort recently pointed us
to an example of a k-reptile tetrahedron which is not Hill, which con-
tradicts Hertel’s conjecture. In fact, except for the one-parameter family
of Hill tetrahedra, three other space-filling tetrahedra described by Som-
merville [17] and Goldberg [7] are also k-reptiles for every k = m3.
The simplices and their tiling are based on the barycentric subdivision
of the cube. The construction can be naturally extended to find similar
examples of d-dimensional k-reptile simplices for d ≥ 4 and k = md .
Matoušek [12] showed that there are no 2-reptile simplices of dimension
3 or larger. For dimension d = 3 Matoušek and the second author [13]
proved the following theorem.

Theorem 1.1 ([13]). InR3, k-reptile simplices (tetrahedra) exist only for
k of the form m3, where m is a positive integer.

We give a new, simple proof of Theorem 1.1 in Section 3.
Matoušek and the second author [13] conjectured that a d-dimensional

k-reptile simplex can exist only for k of the form md for some posi-
tive integer m. We prove a weaker version of this conjecture for four-
dimensional simplices.

Theorem 1.2. Four-dimensional k-reptile simplices can exist only for k
of the form m2, where m is a positive integer.

Four-dimensional Hill simplices are examples of k-reptile simplices
for k = m4. Whether there exists a four-dimensional m2-reptile simplex
for m non-square remains an open question.

2 Angles in simplices and Coxeter diagrams

Given a d-dimensional simplex S with vertices v0, . . . , vd , let Fi be the
facet opposite to vi . A dihedral angle βi, j of S is the internal angle of the
facets Fi and Fj , that meet at the (d − 2)-face Fi ∩ Fj .
The Coxeter diagram of S is a graph c(S) with labeled edges such that

the vertices of c(S) represent the facets of S and for every pair of facets
Fi and Fj , there is an edge ei, j labeled by the dihedral angle βi, j .
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The most important tool we use is Debrunner’s lemma [4, Lemma 1],
which connects the symmetries of a d-simplex with the symmetries of
its Coxeter diagram (which represents the “arrangement” of the dihe-
dral angles). This lemma allows us to substantially simplify the proof
of Theorem 1.1 and enables us to step up by one dimension and prove
Theorem 1.2, which seemed unmanageable before.

Lemma 2.1 (Debrunner’s lemma [4]). Let S be a d-dimensional sim-
plex. The symmetries of S are in one-to-one correspondence with the
symmetries of its Coxeter diagram c(S) in the following sense: each
symmetry ϕ of S induces a symmetry  of c(S) so that ϕ(vi) = v j ⇔
 (Fi) = Fj , and vice versa.

3 A simple proof of Theorem 1.1

We proceed as in the original proof, but instead of using the theory of
scissor congruence, Jahnel’s theorem about values of rational angles and
Fiedler’s theorem, we only use Debrunner’s lemma (Lemma 2.1).
Assume for contradiction that S is a k-reptile tetrahedron where k is not

a third power of a positive integer. A dihedral angle α is called indivisible
if it cannot be written as a linear combination of other dihedral angles in
S with nonnegative integer coefficients. Call the edges of S (and of c(S))
with dihedral angle α the α-edges.
The following lemmas are proved in [13].

Lemma 3.1 ([13, Lemma 3.1]). If α is an indivisible dihedral angle in
S, then the α-edges of S have at least three different lengths.

Lemma 3.2 ([13, Lemma 3.3]). One of the following two possibilities
occur:

(i) All the dihedral angles of S are integer multiples of the minimal
dihedral angle α, which has the form π

n for an integer n ≥ 3. If two
α-edges meet at a vertex v of S, then the third edge incident to v has
dihedral angle π − α.

(ii) There are exactly two distinct dihedral angles β1 and β2, each of
them occurring three times in S.

First we exclude case (ii) of Lemma 3.2. The two triples of edges with
dihedral angles β1 and β2 form either a triangle and a claw, or two paths
of length three. In both cases, for each i ∈ {1, 2}, the Coxeter diagram
of S has at least one nontrivial symmetry which swaps two distinct edges
with label βi . By Debrunner’s lemma, the corresponding symmetry of
S swaps two distinct edges with dihedral angle βi , which thus have the
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same length. But then the edges with dihedral angle βi have at most 2
different lengths and this contradicts Lemma 3.1, since the smaller of the
two angles β1, β2 is indivisible.
Now we exclude case (i). Since there are at least three α-edges in S,

there is a vertex v of S where two α-edges meet. Let β = π − α. We
distinguish several cases depending on the subgraph Hα of c(S) formed
by the α-edges.

Figure 3.1. The α-edges form a path (left) or a four-cycle (right) in c(S).

• Hα contains three edges incident to a common vertex (which corre-
spond to a triangle in S). Then all the other edges must have the angle
β and we get the configuration with three-fold symmetry, which we
excluded in case (ii).

• Hα contains a triangle (the corresponding edges in S meet at a single
vertex). Then β = α, and thus α = π

2 , which contradicts Lemma 3.2
(i).

• Hα is a path of length three (this corresponds to a path in S, too). Then
two edges have the angle β > α and the remaining edge has some
angle γ �= α. See Figure. 3.1 (left). The resulting Coxeter diagram
has a nontrivial involution swapping two α-edges. By Debrunner’s
lemma, this contradicts Lemma 3.1.

• It remains to deal with the case where Hα is a four-cycle (which cor-
responds to a four-cycle in S). In this case the remaining two edges
have dihedral angle β, so the Coxeter diagram has a dihedral sym-
metry group D4 acting transitively on the α-edges. By Debrunner’s
lemma, all the α-edges have the same length. This again contradicts
Lemma 3.1.

We obtained a contradiction in each of the cases, hence the proof of The-
orem 1.1 is finished.
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Homogeneous selections
from hyperplanes

Imre Bárány1 and János Pach2

Abstract. Given d + 1 hyperplanes h1, . . . , hd+1 in general position in Rd , let
-(h1, . . . , hd+1) denote the unique bounded simplex enclosed by them. There
exists a constant c(d) > 0 such that for any finite families H1, . . . , Hd+1 of
hyperplanes in Rd , there are subfamilies H∗i ⊂ Hi with |H∗i | ≥ c(d)|Hi | and a
point p ∈ Rd with the property that p ∈ -(h1, . . . , hd+1) for all hi ∈ H∗i .

1 The main result

Throughout this paper, let H1, . . . , Hd+1 be finite families of hyperplanes
in Rd in general position. That is, we assume that (1) no element of
∪d+1i=1 Hi passes through the origin, (2) any d elements have precisely
one point in common, and (3) no d + 1 of them have a nonempty in-
tersection. A transversal to these families is an ordered (d + 1)-tuple
h = (h1, . . . , hd+1) ∈∏d+1

i=1 Hi , where hi ∈ Hi for every i .
Given hyperplanes h1, . . . , hd+1 ⊂ Rd in general position in Rd , there

is a unique simplex denoted by - = -(h1, . . . , hd+1) whose boundary
is contained in ∪d+11 hi . For simpler writing we let [n] stand for the set
{1, 2, . . . , n}. Our main result is the following.

Theorem 1.1. For any d ≥ 1, there is a constant c(d) > 0 with the
following property. Given finite families H1, . . . , Hd+1 of hyperplanes
in Rd in general position, there are subfamilies H∗i ⊂ Hi with |H∗i | ≥
c(d)|Hi | for i = 1, . . . , d+1 and a point p ∈ Rd such that p is contained
in -(h) for every transversal h ∈∏d+1

i=1 Hi .
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It follows from the general position assumption that the simplices-(h)
in Theorem 1.1 also have an interior point in common.

It will be convenient to use the language of hypergraphs. Let H =
H(H1, . . . , Hd+1) be the complete (d+1)-partite hypergraph with vertex
classes H1, . . . , Hd+1. We refer toH as the hyperplane hypergraph, or h-
hypergraph associated with the hyperplane families H1, . . . , Hd+1. The
hyperedges of H are the transversals of the families H1, . . . , Hd+1. Our
main result can now be reformulated as follows.

Theorem 1.2. For every positive integer d, there is a constant c(d) > 0
with the following property. Every complete (d+1)-partite h-hypergraph
H(H1, . . . , Hd+1) contains a complete (d + 1)-partite h-subhypergraph
H∗(H∗1 , . . . , H

∗
d+1) such that |H∗i | ≥ c(d)|Hi | for all i ∈ [d + 1] and⋂

h∈H∗ -(h) �= ∅.
In some sense, our theorem extends the following recent and beautiful

result of Karasev [5].

Theorem 1.3. [5] Assume r is a prime power and t ≥ 2r − 1. LetH be
a complete (d + 1)-partite h-hypergraph with partition classes of size t .
Then there are vertex-disjoint hyperedges (transversals) h1, . . . , hr of H
such that

⋂r
j=1-(h j ) �= ∅.

Two hyperedges (transversals) h and h′ of H are vertex-disjoint if hi
and h′i are distinct for each i .
Our Theorem 1.1 implies a weaker version of Karasev’s theorem.

Namely, the same conclusion holds with arbitrary r and t ≥ r/c(d).
Since c(d) will turn out to be doubly exponential in d, our result is quan-
titatively much weaker than the bound t ≥ 4r that follows fromKarasev’s
theorem for any r .
Theorem 1.3 is a kind of dual to Tverberg’s famous theorem [8]. In the

same sense, our result is dual to the homogeneous point selection theorem
of Pach [7] (see also [6]), which guarantees the existence of an absolute
constant cd > 0 with the following property. Let X1, . . . , Xd+1 be finite
sets of points in general position in Rd with |Xi | = n for every i . Then
there exist subsets X∗i ⊂ Xi of size at least cdn for every i ∈ [d + 1]
and a point p ∈ Rd such that p ∈ conv{x1, . . . , xd+1} for all transversals
(x1, . . . , xd+1) ∈ ∏d+1

i+1 X
∗
i . Here the assumption that the sets Xi are of

the same size can be removed (see e.g. [4]).

To establish Theorem 1.2, we need some preparation. Let h be an edge
of the h-hypergraph H = H(H1, . . . , Hd+1). The simplex -(h) is the
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convex hull of the points

vi =
⋂
j �=i

h j , i ∈ [d + 1].

Similarly, for h′ ∈ H the vertices of-(h′) are v′1, . . . , v′d+1. Here vi (and
v′i ) is the vertex of -(h) (and -(h′)) opposite to the facet contained in
hi (and h′i , respectively). The edges h and h′ are said to be of the same
type if, for each i ∈ [d + 1], the vertices vi and v′i are not separated by
either of the hyperplanes hi and h′i . We say that the h-hypergraph H is
homogeneous if every pair of its edges is of the same type.
The heart of the proof of Theorem 1.2 is the following “same type

lemma” for hyperplanes (cf. [2])

Lemma 1.4. For any d ≥ 1, there exists a constant b(d) > 0 with
the following property. Every complete (d + 1)-partite h-hypergraph
H(H1, . . . , Hd+1) contains a complete (d + 1)-partite subhypergraph
H∗(H∗1 , . . . , H

∗
d+1) with |H∗i | ≥ b(d)|Hi | for all i ∈ [d + 1] which is

homogeneous.

In this extended abstract we show how our main result, Theorem 1.1
follows from the same type lemma for hyperplanes. The proof of the
latter appears in the full version of the paper. Actually, there are two sep-
arate proofs there. The first one, which provides a better estimate for the
value of the constant b(d), uses duality and is based on the original same
type lemma (for points), [2] (see also [6]). The second proof is shorter,
and it utilizes a far reaching generalization of the same type lemma to
semialgebraic relations of several variables, found by Fox, Gromov, Laf-
forgue, Naor, and Pach [4], see also Bukh and Hubard [3] for a quanti-
tative form. The same result for binary semialgebraic relations was first
established by Alon, Pach, Pinchasi, Radoičić, and Sharir [1].

2 Proof of Theorem 1.2

Here we deduce Theorem 1.2 from Lemma 1.4.
LetH∗ denote the complete (d+1)-partite subhypergraph ofH whose

existence is guaranteed by the lemma. For a fixed h ∈ H∗ let h+i denote
the half-space bounded by hi that contains vertex vi of-(h), for i ∈ [d+
1]. The lemma implies that, for every hyperedge k = (k1, . . . , kd+1) ∈
H∗ and for every i , the half-space h+i contains the vertex ui of -(k)
opposite to hyperplane ki . To prove the theorem, it suffices to establish
the following claim. ⋂

h∈H∗
-(h) �= ∅.
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For h = (h1, . . . , hd+1) ∈ H∗, let ρ(h) denote the distance between
h1 and v1 = ∩d+12 h j , and let h′ ∈ H∗ be the edge for which ρ(h) is
minimal. By the general position assumption, we have ρ(h′) > 0. Set
v′ = ∩d+12 h′j . We show that v′ ∈ -(h) for every h ∈ H∗, which implies
the claim. To see this, we have to verify that v′ ∈ h+i for every h ∈ H∗
and for every i .
This is trivial for i = 1. Suppose that i ≥ 2. By symmetry, we

may assume that i = d + 1. We have to show that v′ ∈ h+d+1 for every
hd+1 ∈ H∗d+1.
Assume to the contrary that v′ /∈ h+d+1 for some hd+1 ∈ H∗d+1. Setting

k = (h′1, . . . , h′d, hd+1), we clearly have k ∈ H∗. The simplices-(k) and
-(h′) share the vertex vd+1 = ∩d1h′i . As vd+1 ∈ h+d+1, by the construction,
v′ /∈ h+d+1 implies that hd+1 intersects the segment [vd+1, v′] in a point u
in its relative interior, see Figure 1. On the other hand, we know that
u = ∩d+12 ki is the vertex of-(k) opposite to h1 = k1. Thus, u is closer to
h1 = k1 than v′ is. Therefore, we obtain that ρ(k) < ρ(h′), contradicting
the definition of h′. �

h 1

h 2

h 3

h3
v 

u

(k)

(h )

ρ

ρ

Figure 2.1. Illustration for Theorem 1.2, d = 2.

It follows from the above proof that Theorems 1.2 and 1.1 hold with
c(d) = b(d).
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Conic theta functions and their relations
to theta functions

Amanda Folsom1, Winfried Kohnen2 and Sinai Robins3

Abstract. It is natural to ask when the spherical volume defined by the intersec-
tion of a sphere at the apex of an integer polyhedral cone is rational. We use num-
ber theoretic methods to study a new class of polyhedral functions called conic
theta functions, which are closely related to classical theta functions. We show
that if K is a Weyl chamber for any finite reflection group, then its conic theta
function lies in a graded ring of classical theta functions and in this sense is ‘al-
most’ modular. It is then natural to ask whether or not the conic theta functions are
themselves modular, and we prove that (generally) they are not. In other words,
we uncover some connections between the class of integer polyhedral cones that
have a rational solid angle, and the class of conic theta functions that are almost
modular.

The present investigations arose from an interest in studying the vol-
ume of a spherical polytope, also known as a solid angle, and extending
the so-called Gram relations by use of conic theta functions [9]. We study
the relationship between volumes of spherical polytopes, and ‘almost’
modular conic theta functions associated to them, by considering some
connections between the following two apriori different problems:

Problem 1. Which lattice polyhedral cones K give rise to spherical poly-
topes with a rational volume?

Problem 2. Analyzing a certain conic theta function  K attached to a
polyhedral cone K , how ‘close’ is  K to being modular?

We first recall some of the basic definitions from the combinatorial
geometry of cones and the theory of modular forms. Suppose we are
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given a d-dimensional (simple) polyhedral cone, defined by

K :=
{

d∑
j=1
λ jw j | all λ j ≥ 0

}
,

where the edges of the cone are some fixed set of d linearly indepen-
dent vectors w j ∈ Rd . Such a cone K is called a pointed cone, and
in the present work every cone has the origin as its vertex. One impor-
tant special case of a polyhedral cone is the positive orthant, defined by
K0 := {(x1, . . . , xd) ∈ Rd | each x j ≥ 0} := Rd

≥0.
For each pointed cone K , we define its conic theta function by:

 K ,L(τ ) :=
∑

m∈L∩K
eπ iτ ||m||

2
, (1)

where τ lies in the complex upper half plane H := {τ := x + iy | x ∈
R, y ∈ R+} ⊂ C, and where L is a rank d lattice in Rd . If L is clear from
the context, we will only write  K . The conic theta function  K ,L(τ )
given in (1) is reminiscent of the modular theta function

θ(τ) :=
∑
n∈Z

eπ iτn
2
, (2)

a statement that we will make more precise in what follows. The func-
tion θ(τ) is a classical example of a modular form. Loosely speak-
ing, a holomorphic modular form of integer weight k on a suitable sub-
group � ⊆ SL2(Z) is any holomorphic function f : H → C satis-
fying f (γ τ) = (cτ + d)k f (τ ) for all γ := (

a b
c d

) ∈ �, as well as a
suitable growth condition in the cusps of �. It is well known that the
modular group SL2(Z) acts on H by fractional linear transformation(
a b
c d

)
τ := aτ+b

cτ+d , and so modular forms can be thought of as complex an-
alytic functions that obey a certain symmetry with respect to this action.
To see where the conic theta function naturally comes from, we let

Sd−1 be the unit sphere centered at the origin. We define the solid angle
ωK at the vertex of K by:

ωK := vol
(
K ∩ Sd−1)

vol
(
Sd−1

) . (3)

In other words, ωK is the normalized volume of a (d − 1)-dimensional
spherical polytope. With this normalization, we note that 0 ≤ ωK ≤
1, and that in two dimensions we have ωK = θ/2π , where θ is the
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usual 2-dimensional angle, measured in radians, at the vertex of the 2-
dimensional cone K . It is an elementary fact that

ωK =
∫
K
e−π ||x ||

2
dx, (4)

We note that when K is replaced by all of Euclidean space, the integral
(4) becomes

∫
Rd e−π ||x ||

2
dx = 1, confirming that we do indeed have the

proper normalization 0 ≤ ωK ≤ 1. For more information about rational
pointed cones, and connections between discrete volumes of polytopes
and local spherical angle contributions, the reader may consult [11] and
[3]. The papers [7, 8], provide further background for solid angles and
their relations.
Thus, the foregoing discussion shows that a strong motivation for

defining the conic theta function  K (τ ) is that it is essentially a discrete,
Riemann sum approximation to the integral definition of the volume ωK
of a spherical polytope, as defined by (4). We will make precise sense of
this intuition in the following section, which will be used later to consider
carefully the putative expansion of  K (τ ) at the cusp τ = 0.
Conic theta functions are also related to the representation numbers of

quadratic forms, a link which we explicate here. From the above defini-
tions, and using the lattice L := A(Zd), it is immediate that

 K ,L(τ )=
∑

m∈L∩K
eπ iτ ||m||

2 =
∑

m∈Zd∩K
eπ iτ(m

t (At A)m) =
∞∑
k=0

a(k)qk/2, (5)

where q = e2π iτ , and a(k) := #{m ∈ Zd | mt(At A)m = k, and k ∈
K }. This combinatorial interpretation of the Fourier coefficients tells us
that the k’th Fourier coefficient is the number of ways to represent the
integer k by the quadratic form mt(At A)m, while m is simultaneously
constrained to satisfy the finite system of linear inequalities defined by
the polyhedral cone K .
Another very recent analysis of cones from a different perspective

takes place in [5]. The authors of [5] define certain zeta functions at-
tached to polyhedral cones and analyze conical zeta values as a geometric
generalization of the celebrated multiple zeta values.
Here, we endeavor to show that the conic theta function K (τ ) is never

a modular form. However, when K is a Weyl chamber of a finite reflec-
tion group, we show that  K nevertheless belongs to a certain graded
ring of theta functions (see Theorem 5 below), and it is in this sense that
 K is ‘almost’ modular. We next give the simplest family of examples of
conic theta functions, arising from the positive orthant in each dimension.
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Example 3. For the conic theta function of the positive orthant K0 :=
Rd
≥0 (and L = Zd), we claim that

 K0(τ ) =
1

2d
(θ(τ )+ 1)d , (6)

where θ(τ) := ∑
n∈Z e

π iτn2 , the classical weight 1/2 modular form. In
particular,

 K0(τ ) =
1

2d

d∑
k=0

(
d

k

)
θ k(τ ), (7)

a linear combination of modular forms of distinct weights, with nonzero
coefficients, and hence  K0 is not a modular form.
To see (7), we begin with the case in which the dimension of K0 equals

1, so that here K0 := R≥0. We note that 1+ θ(τ) = 1+∑
n∈Z e

π iτn2 =
2+2∑n≥1 e

π iτn2 . Therefore, 1+ θ(τ) = 2 R≥0(τ ). Finally, the relation
 K0(τ ) =  d

R≥0(τ ) gives us the desired expansion (6) above. �

We notice that the positive orthant possesses a lot of symmetry, so it
is natural to ask if other cones with less symmetry might not be modular,
and for which cones K might we get a phenomenon similar in spirit to
the example above, in the sense that  K could be written as a linear
combination of “classical” theta functions attached to lower-dimensional
lattices.
We also note that, almost by definition, every cone K which is a Weyl

chamber necessarily has a rational solid angle ωK = 1
|W | , because the

Weyl group W tiles Rd with isometric copies of the cone K . For each
even integral lattice L, we define its usual theta function by:

!L(τ ) :=
∑
n∈L

eπ iτ ||n||
2
,

where τ lies in the upper half plane H . Next, we quote the standard fact
that when L is an even integral lattice, the theta function!L(τ ) turns out
to be a modular form, of weight d2 and level N , where N is the smallest

positive integer M such that M
(
At A

)−1
is also even integral.

Example 4. Consider the 2-dimensional root system defined by

S :={(1, 1), (−1, 1), (1,−1), (−1,−1), (2, 0), (−2, 0), (0, 2), (0,−2)},
so that we have the root lattice Lroot := {m(1, 1)+ n(2, 0) | m, n ∈ Z}.
One fundamental domain for this group action on R2 is the polyhedral
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cone K whose edge vectors are the roots (1, 1) and (2, 0), and whose
(solid) angle is ω = 1

8 . Here, the conic theta function is

 K ,Lroot (τ ) =
∑

m≥0,n≥0
eπ iτ ||m(2,0)+n(1,1)||

2
(8)

=
∑

m≥0,n≥0
eπ iτ(4m

2+4mn+2n2). (9)

We arrive at the following representation of  K ,Lroot (τ ) as a nontrivial
rational linear combination of classical theta functions:

 K ,Lroot (τ ) =
3

8
+ 1

4

∑
k∈Z

eπ iτ(2k
2) + 1

4

∑
k∈Z

eπ iτ(4k
2)

+ 1

8

∑
(m,n)∈Z2

eπ iτ(4m
2+4mn+n2).

(10)

Therefore we see that for this example, K ,Lroot (τ ) is a nontrivial rational
linear combination of theta functions of different weights. In particular,
 K ,Lroot (τ ) is not modular. �
We define R to be the ring of all finite, rational linear combinations of

theta functions !L, for any d-dimensional even integral lattice L ⊂ Rd ,
varying over all dimensions d. The ring R has a natural grading, namely
it is graded by the weight k = d

2 of the relevant theta functions !L, for
each rank d lattice L ⊂ Rd . Equivalently, we may also grade R by the
dimension d of the lattices L ⊂ Rd , as d varies over the positive integers.
When a conic theta function lies in R, it is ‘almost modular’. The two
main results here are the following.

Theorem 5. If the polyhedral cone K is the Weyl chamber of a finite
reflection group W , then the conic theta function  K ,2Lroot (τ ) is in the
graded ring R.

On the other hand, we also have the following result.

Theorem 6. Suppose that the polyhedral cone K ⊂ Rd has the solid
angle ωK at it vertex, located at the origin, and that L := A(Zd) is an
even integral lattice of full rank. If ωK

| det A| is irrational, then  K ,L(τ ) is
not a modular form of weight k on any congruence subgroup, and for any
k ∈ 1

2Z, k ≥ 1
2 .

The tool that we use for the proof of Theorem 6 is the “q-expansion
principle”, due to Deligne and Rapoport [2, Théorème 3.9, p.304], which
tells us that if an integer weight modular form f has rational Fourier
coefficients at the cusp i∞, then the Fourier expansion of f at all other
cusps must also have rational coefficients.
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The Carathéodory number of the P3
convexity of chordal graphs

Erika M.M. Coelho1, Mitre C. Dourado2, Dieter Rautenbach3

and Jayme L. Szwarcfiter4

Abstract. If S is a set of vertices of a graph G, then the convex hull of S in the
P3-convexity of G is the smallest set HG (S) of vertices of G that contains S such
that no vertex in V (G)\HG (S) has at least two neighbors in S. The Carathéodory
number of the P3 convexity of G is the smallest integer c such that for every
set S of vertices of G and every vertex u in HG (S), there is a set F ⊆ S with
|F | ≤ c and u ∈ HG (F). We describe a polynomial time algorithm to determine
the Carathéodory number of the P3 convexity of a chordal graph.

1 Introduction

Graph convexities are a well studied topic. For a finite, simple, and undi-
rected graph G with vertex set V (G), a graph convexity on V (G) is a
collection C of subsets of V (G) such that

• ∅, V (G) ∈ C and
• C is closed under intersections.

The sets in C are called convex sets and the convex hull in C of a set S of
vertices of G is the smallest set HC(S) in C containing S.
Several well known graph convexities C are defined using some set P

of paths of the underlying graph G. In this case, a subset S of vertices
of G is convex, that is, belongs to C, if for every path P in P whose
endvertices belong to S also every vertex of P belongs to S. When P
is the set of all shortest paths in G, this leads to the geodetic convexity
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[2, 8, 12, 14]. The monophonic convexity is defined by considering as
P the set of all induced paths of G [9, 10, 13]. The set of all paths of
G leads to the all path convexity [7]. Similarly, if P is the set of all
triangle paths in G, then C is the triangle path convexity [6]. Here we
consider the P3 convexity of G, which is defined when P is the set of all
paths of length two. The P3 convexity was first considered for directed
graphs [11, 15–17]. For undirected graphs, the P3 convexity was studied
in [1, 4, 5].
A famous result about convex sets in Rd is Carathéodory’s theorem

[3]. It states that every point u in the convex hull of a set S ⊆ Rd lies
in the convex hull of a subset F of S of order at most d + 1. Let G
be a graph and let C be a graph convexity on V (G). The Carathéodory
number of C is the smallest integer c such that for every set S of vertices
of G and every vertex u in HC(S), there is a set F ⊆ S with |F | ≤ c and
u ∈ HC(F). A set S of vertices of G is a Carathéodory set of C if the set
∂HC(S) defined as HC(S) \⋃u∈S HC(S \ {u}) is not empty. This notion
allows an alternative definition of the Carathéodory number of C as the
largest cardinality of a Carathéodory set of C.
The Carathéodory number was determined for several graph convexi-

ties. The Carathéodory number of the monophonic convexity of a graph
G is 1 if G is complete and 2 otherwise [10]. The Carathéodory num-
ber of the triangle path convexity of G is 2 whenever G has at least one
edge [6]. It is known that the maximum Carathéodory number of the
P3 convexity of a multipartite tournament is 3 [16]. Some general re-
sults concerning the Carathéodory number of the P3 convexity are shown
in [1]. On the one hand, [1] contains efficient algorithms to determine
the Carathéodory number of the P3 convexity of trees and, more gen-
erally, block graphs. On the other hand, it is NP-hard to determine the
Carathéodory number of the P3 convexity of bipartite graphs [1].
In the present extended abstract we exclusively study the Carathéodory

number of P3 convexities of graphs. Since a graph G uniquely deter-
mines its P3 convexity C, we speak of a Carathéodory set of G and the
Carathéodory number c(G) of G. Furthermore, we write HG(S) and
∂HG(S) instead of HC(S) and ∂HC(S), respectively.
Our result is a polynomial time algorithm for the computation of the

Carathéodory number of a chordal graph, which extends results from [1].

2 Results

The following result from [5] plays a central role in our approach.

Theorem 2.1 (Centeno et al. [5]). If u and v are two vertices at distance
at most 2 in a 2-connected chordal graph G, then HG({u, v}) = V (G).
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Let G be a connected chordal graph. Let r be a vertex of G. Let the
graph G ′ arise from G by adding edges between all pairs of vertices of G
that lie in the same block of G. Let T be the breadth first search tree of
G ′ rooted in r .
For a vertex u of G, let V (u) denote the set of vertices of G that are

either u or a descendant of u in T . By the definition of T , we have that
V (r) = V (G) and if u is a vertex of G that is distinct from r , then V (u)
is the union of {u} and all vertex sets of components of G that do not
contain r . Furthermore, the set of children of u in T is the set of all
vertices of G that belong to V (u) and lie in a common block of G with
u. Note that a vertex of G that is distinct from r is a leaf of T if and only
if it is no cut vertex of G.
In order to determine the Carathéodory number of G, we consider the

following three values for every vertex u of G:

• c(G,r)(u) is the maximum cardinality of a set S with
– S ⊆ V (u) and

– u ∈ ∂HG[V (u)](S).

• c′(G,r)(u) is the maximum cardinality of a set S with
– S ⊆ V (u),

– u �∈ HG[V (u)](S),
– |HG[V (u)](S) ∩ NG(u)| = 1, and
– HG[V (u)](S) ∩ NG(u) ⊆ ∂HG[V (u)](S).

• c′′(G,r)(u) is the maximum cardinality of a set S with
– S ⊆ V (u),

– u ∈ HG[V (u)](S), and
– HG[V (u)](S) ∩ NG[u] ⊆ ∂HG[V (u)](S).

Let S(G,r)(u), S′(G,r)(u), and S
′′
(G,r)(u) denote sets of maximum cardinality

satisfying the conditions in the above definitions of c(G,r)(u), c′(G,r)(u),
and c′′(G,r)(u), respectively, that is, for instance, c(G,r)(u) = |S(G,r)(u)|.
Note that if u is a leaf of T , then no set as in the definition of c′(G,r)(u)
exists. In this case, let c′(G,r)(u) = −∞ and let S′(G,r)(u) be undefined.
The following lemma describes recursions for c(G,r)(u), c′(G,r)(u), and

c′′(G,r)(u), which allow their efficient recursive computation.
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Lemma 2.2. Let G, r , and T be as above. Let u be a vertex of G.

(a) c(G,r)(u) is the maximum of the following values:

(i) 1.
(ii) c(G,r)(v) + c(G,r)(w), where v and w are children of u in T and

distG(v,w) = 2.
(iii) c(G,r)(v) + c′(G,r)(w), where v and w are children of u in T and

distG(v,w) = 1.
(iv) c′′(G,r)(v) + c′′(G,r)(w), where v and w are children of u in T and

distG(v,w) = 1.
(b) c′(G,r)(u) is the maximum of the following values:

(i) −∞.
(ii) c(G,r)(u′), where u′ is a child of u in T that is a neighbor of u in

G.

(c) c′′(G,r)(u) is the maximum of the following values:

(i) 1.
(ii) c(G,r)(v)+ c(G,r)(w), where v and w are children of u in T such

that v and w are no neighbors of u in G and distG(v,w) = 2.
(iii) c(G,r)(v)+ c′(G,r)(w), where v and w are children of u in T such

that v is no neighbor of u in G and distG(v,w) = 1.
(iv) c′′(G,r)(v)+ c′′(G,r)(w), where v and w are children of u in T such

that v and w are no neighbors of u in G and distG(v,w) = 1.
Theorem 2.3. The Carathéodory number of a chordal graph can be de-
termined in polynomial time.

Proof. Let G be a chordal graph. Since the Carathéodory number of G
is the maximum of the Carathéodory numbers of the components of G,
we may assume that G is connected. Since c(G) = max{c(G,r)(r) : r ∈
V (G)}, it suffices to argue that, for every vertex r of G, the value c(G,r)(r)
can be determined in polynomial time. In fact, using the recursions given
in Lemma 2.2, it is possible to determine c(G,r)(r) in polynomial time
calculating the values c(G,r)(u), c′(G,r)(u), and c

′′
(G,r)(u) for all vertices u

of G in a bottom up fashion along the corresponding breadth first search
tree T . This completes the proof.

While the running time of the algorithm described in the proof of Theo-
rem 2.3 is obviously polynomial, it is possible to reduce it below some
immediate estimates, because many values are essentially calculated sev-
eral times, that is, there are many triples (r, s, u) of vertices of G with
c(G,r)(u) = c(G,s)(u), c′(G,r)(u) = c′(G,s)(u), and c

′′
(G,r)(u) = c′′(G,s)(u).
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Locally-maximal embeddings of graphs
in orientable surfaces

Michal Kotrbčík1 and Martin Škoviera1

1 Introduction

The set of all orientable cellular embeddings of a graph has the intrinsic
structure of adjacency between embeddings based on elementary opera-
tions on rotation schemes. Several types of elementary operations were
considered in the past, usually in proofs of interpolation theorems: mov-
ing a single arc within its local rotation, moving both ends of an edge
in the respective local rotations, and interchanging two arcs in the local
rotation at a given vertex, see [2, 6, 7, 10]. We call these operations rota-
tion moves. Each type of a rotation move gives rise to the structure of a
stratified graph on the set of all embeddings of a given graph. Stratified
graphs were studied by Gross, Rieper, and Tucker [5, 6, 8], although they
were implicit already in the works of Duke [2] and Stahl [10]. Very lit-
tle is known about stratified graphs in general, although their structure is
crucial for understanding the entire system of all embeddings of a given
graph. In the present paper we focus on embeddings that correspond to
local maxima in stratified graphs. We call a cellular embedding of a graph
into an orientable surface locally maximal if its genus cannot be raised by
moving a single arc within its local rotation. Somewhat surprisingly, the
concept of a locally-maximal embedding does not depend on which type
of a move is taken as a basis for the stratified graph, indicating its impor-
tant position in the hierarchy of graph embeddings between the minimum
genus and the maximum genus.
The main results of this paper are (1) a characterisation of locally-

maximal embeddings, (2) analysis of their relationship to the minimum
and the maximum genus of a graph, and (3) a simple greedy 2-approxi-
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University, 842 48 Bratislava, Slovakia.
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mation algorithm for maximum genus based on the notion of a locally-
maximal embedding. Full proofs and additional results can be found in
the forthcoming papers.

2 Fundamentals

The fundamental property of rotation moves is that any rotation move
changes the number of faces of an embedding by −2, 0, or +2, changing
the genus by −1, 0, or 1. This property is well known and was used in
several proofs of the interpolation theorem for the genus range of a graph.
The following result asserts that whenever a vertex v is incident with

at least three faces, there is a rotation move at v that merges three faces
into one, thus raising the genus. In this regard, all three types of rotation
moves display a similar behaviour.

Theorem 2.1. If a vertex v is incident with at least three faces of an
embedding ", then there exists a move of an arc at v that merges three
faces at v into one while leaving all other faces of " intact. There also
exists an interchange of two arcs at v that merges three faces at v into
one and leaves all other faces intact.

A particularly useful corollary of our proof of Theorem 2.1 is that mov-
ing any arc lying on the boundary of two distinct faces into a corner be-
longing to a third face merges these three faces into one.
The next result is the cornerstone of our theory of locally-maximal

embeddings as it shows that the concept of a locally-maximal embedding
is independent on which type of a move is chosen as its basis. At the
same time, it provides a characterisation of locally-maximal embeddings
in terms of the multiplicity of vertex-face incidences.

Theorem 2.2. For any orientable embedding" of a connected graph G
the following statements are equivalent.

(i) The embedding" is locally maximal.
(ii) The genus of " cannot be raised by interchanging two arcs in a

local rotation.
(iii) The genus of " cannot be raised by moving any edge in the rotation

of".
(iv) Every vertex of G is incident with at most two faces of".

A natural question about locally-maximal embeddings concerns their dis-
tribution within the embedding range. We therefore define the locally-
maximal genus of a graph G, γL(G), as the minimum among the gen-
era of all locally-maximal embeddings of G. For a graph G we fur-
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ther denote by μ(G) the largest number of pairwise disjoint circuits con-
tained in G; this number is sometimes known as the cycle packing num-
ber of G. We also define the reduced Betti number β ′(G) by setting
β ′(G) = β(G) − μ(G); note that the reduced Betti number is nonneg-
ative since μ(G) ≤ β(G). The importance of these two invariants is
explained by the following theorem.

Theorem 2.3. The maximum number of faces in a locally-maximal em-
bedding of a graph G does not exceed μ(G)+ 1 or μ(G), depending on
whether β ′(G) is even or odd, respectively.

The previous result enables us to prove that the relationship between
the Betti number, the reduced Betti number, and the genus parameters of
a graph is governed by the following inequalities.

Theorem 2.4. The following inequalities hold for every connected graph
G:

(i) γ (G) ≤ β ′(G)/2 ≤ γL(G) ≤ γM(G) ≤ β(G)/2
(ii) β ′(G)/2 ≤ γL(G) ≤ γM(G) ≤ β ′(G)
(iii) γM(G)/2 ≤ γL(G) ≤ γM(G)
Graphs G for which γM(G) = �β(G)/2� are known as upper-embeddab-
le graphs. With this analogy in mind we define a graph G to be lower-
embeddable if γL(G) = �β ′(G)/2�. As with upper-embeddable graphs,
many important classes of graphs are lower-embeddable.

Theorem 2.5. All graphs in the following classes are lower embeddable:
complete graphs Kn for all n ≥ 1, complete bipartite graphs Km,n for
all m, n ≥ 1, complete equipartite graphs Kn,...,n for all n ≥ 1, and
hypercubes Qn for all n ≥ 1.
A connected graph is called a cycle-tree if any two of its cycles are ver-

tex disjoint. It turns out that planar locally-maximal embeddings admit
a simple characterisation: A connected graph G has a planar locally-
maximal embedding if and only if G is a cycle-tree.

3 Constructions

The proof of the next theorem is based on the well-known edge-addition
technique of raising the genus by adding a pair of adjacent edges; for
technical details of the method see for example [9], [3], or [1].
We need the following definitions to state and prove our result. A

cycle-tree graph is called a k-cycle-tree if it contains exactly k cycles.
A component of a graph is called even if it has even number of edges.
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A face of an embedding is spanning if it is incident with each vertex
of the graph. The idea of a spanning face was used in [1] to construct
embeddings with genus γM(G)− 1;
Theorem 3.1. Let G be a connected graph. If G has a spanning k-cycle-
tree S such that G − E(S) has only even components, then G has a
locally-maximal embedding with k + 1 faces. In particular, γL(G) ≤
(β(G)− k)/2.

Sketch of a proof. Since each component of G− E(S) is even, G− E(S)
has a partition P into pairs of adjacent edges (see for example [9, Lemma
4]). Let us arrange the pairs from P into a linear order, and let {ei , fi } be
the i-th pair. Consider the graphs

G0 = S,

Gi = Gi−1 ∪ {ei , fi } for i ≥ 1.
Assuming that the number of pairs inP is n, we getGn = G. The proof is
finished by using the edge-addition technique and employing induction to
prove that for each i ∈ {0, 1, . . . , n} the graph Gi has a locally-maximal
embedding with i + 1 faces, at least one of them being spanning.
Although Theorem 3.1 cannot be used to construct all locally-maximal

embeddings, it is often useful in determining the locally-maximal genus
provided that one can obtain good lower bounds. In particular, Theo-
rem 3.1 can be used to prove lower-embeddability in Theorem 2.5, where
lower bounds follow from Theorem 2.3. The idea is as follows. Every
lower-embeddable graph G satisfies γL(G) = �β ′(G)/2�. Therefore, it
suffices to construct a spanning cycle-tree S of G with μ(G) or μ(G)−1
cycles such that G − E(S) consists of even components. In many cases,
the graph G − E(S) is connected. This method is in its nature similar
to the one used in the proofs of upper-embeddability, which are often
carried out by finding a connected cotree of the given graph.

4 Algorithms

Let us start with Greedy-Max-Genus Algorithm described in Figure 4.1.
The algorithm repeatedly increases the genus by employing suitable ro-
tation moves. By part (iv) of Theorem 2.2, the genus of an embedding
can be raised by a rotation move at a vertex v if and only if v is in-
cident with at least three faces. Note that testing whether a vertex is
incident with at least three faces, as well as finding and performing a
rotation move increasing the genus if such a move exists, can be easily
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done in polynomial time. It follows that the running time of Greedy-
Max-Genus Algorithm is polynomial. Moreover, by Theorem 2.2, the
embedding output by Greedy-Max-Genus Algorithm is locally maximal.
Since the genus of any locally-maximal embedding is at least γL(G), and
γL(G) ≥ γM(G)/2 by Theorem 2.4, we obtain the following theorem.

Greedy-Max-Genus Algorithm
Input: A connected graph G
Output: An embedding of G and its genus

1: randomly choose an embedding" of G
2: while there is a rotation move increasing the genus of"
3: apply one of such rotation moves to"
4: output" and the genus of"

Figure 4.1. 2-approximation algorithm for maximum genus.

Theorem 4.1. The Greedy-Max-Genus Algorithm from Figure 4.1 is a
polynomial-time 2-approximation algorithm for maximum genus. Fur-
thermore, the embeddings output by Greedy-Max-Genus Algorithm are
precisely the locally-maximal embeddings.

Part (iii) of Theorem 2.4 enables us to efficiently approximate also the
locally-maximal genus using a polynomial-time algorithm computing the
maximum genus of an arbitrary graph by Glukhov [4], or Furst et al. [3].

Theorem 4.2. There is a polynomial-time 2-approximation algorithm
for locally-maximal genus. �
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A characterization of triangulations
of closed surfaces

Jorge Arocha1, Javier Bracho1, Natalia García-Colín1

and Isabel Hubard1

Abstract. In this paper we prove that a finite triangulation of a connected closed
surface is completely determined by its intersection matrix. The intersection ma-
trix of a finite triangulation, K , is defined as MK = (dim(si ∩ s j ))n−10≤i,0≤ j , where
K2 = {s0, . . . sn−1} is a labelling of the triangles of K .

1 Introduction

Within the theory of convex polytopes, the study of the combinatorial
equivalence of k-skeleta of pairs polytopes which are not equivalent them-
selves has been of interest, this phenomena is referred to in the literature
as ambiguity [3].
It is well known that for k ≥ � d2 � the k-skeleton of a convex polytope

is not dimensionally ambiguous, this is, it defines the entire structure of
its underlying d-polytope. However for k < � d2 � the question is much
more intricate.
One of the most interesting results in this direction is the solution to

Perle’s conjecture by P. Blind and R. Mani [1] and, separately, by G.
Kalai [2] which states that the 1-skeleta of convex simple d-polytopes
define their entire combinatorial structure. Or, on its dual version, that
the dual graph (facet adjacency graph) of a convex simplicial d-polytope
determines its entire combinatorial structure.

2 Motivation & contribution

Allured by Perles’ conjecture, we decided to explore the extent to which
an adequate combination of combinatorial and topological assumptions
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would prove as powerful for characterising certain simplicial complexes.
The purpose of this work is to present our first result, product of this
exploration.
For topological assumption we will, in this instance, ask for the sim-

plicial complex of study to be a connected closed surface. As for com-
binatorial assumption, one might be tempted to choose only to have the
information provided by its dual graph. However, the dual graph of a
triangulation of a closed surface does not provide enough information to
characterise it, as there are some dual graphs to triangulations which have
been shown in [4] to have combinatorically different polyhedral embed-
dings.
Therefore, we will need to strengthen the combinatorial hypothesis. In

order to do so we will introduce the concept of an intersection preserving
mapping of simplices of a simplicial complex.

Definition 2.1. A bijective mapping f : Kd → K ′d between the sets of
d-simplices of two simplicial complexes, K and K ′, is an intersection
preserving mapping if for every pair of simplices s, t ∈ Kd dim(s ∩ t) =
dim( f (s) ∩ f (t)).

Throughout this paper we will use the notation Kl to refer to the set of
l-dimensional simplices of the complex K . Additionally, we will define
two particular triangulations of the projective plane, which are of interest
for this work.

Definition 2.2. We define a 10-triangle triangulation of the projective
plane, TP10, as the triangulation whose triangles have the vertex sets
(si)0={ai mod 5, ai+1 mod 5, x}, and (ri)0={ai mod 5, ai+1 mod 5, ai−2 mod 5}
for 0 ≤ i ≤ 4.
Definition 2.3. We define a 12-triangle triangulation of the projective
plane, TP12, as the triangulation whose triangles have the vertex
sets (si)0 = {ai mod 6, ai+1 mod 6, x}, for 0 ≤ i ≤ 5 and (ri)0 =
{ai mod 6, ai+1 mod 6, ai+4 mod 6} for 0 ≤ i ≤ 4 even, and (ri)0 =
{ai mod 6, ai+1 mod 6, ai+3 mod 6} for 0 ≤ i ≤ 4 odd.
We now use the aforementioned definitions to state the main result:

Theorem 2.4. Let ‖K‖ and ‖K ′‖ be geometric realizations of finite tri-
angulations which are homeomorphic to connected closed surfaces, and
let f : K2 → K ′2 be an intersection preserving mapping, then one of the
following three statements holds:

(1) f can be extended into a bijective simplicial mapping between K
and K ′
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(2) f cannot be extended into a simplicial mapping between K and K ′,
but both ‖K‖ and ‖K ′‖ are TP10

(3) f cannot be extended into a simplicial mapping between K and K ′,
but both ‖K‖ and ‖K ′‖ are TP12.

Consider the intersection matrix, MK = (dim(si ∩ s j ))n−10≤i,0≤ j , of a finite
triangulation, K , where K2 = {s0, . . . sn−1} is a labelling of the triangles
of K then, in the spirit of Perles’ conjecture, we can state the previous
theorem as;

Corollary 2.5. A finite triangulation of a connected closed surface is
completely determined by its intersection matrix.

3 Preliminaries

One of the peculiarities of triangulations of a closed surface is that the
neighbourhood of every vertex is a disk. Furthermore, the triangles in-
cident to any vertex of such surface form the simplest of triangulations
of a disk, namely an n-gon whose vertices are all linked by an edge to
a central vertex in the centre of the n-gon. We start off by analysing the
intersection patterns of such a structure.

Definition 3.1. An n-shell is the abstract triangulation n"
2 such that

n"
2
2 = {s0, s1, . . . , sn−1}, dim(si ∩ si+1 modn) = 1, dim(si ∩ s j ) = 0

for |i − j | ≥ 2 with i, j ∈ {0, . . . , n − 1}.
We will now focus on studying what other structures can have an in-

tersection pattern equal to that of a triangulated disk.

Lemma 3.2. The vertex sets of the triangles in an n-shell, with n ≥ 3,
n"

2
2 = {s0, . . . sn−1} can only take one of the following three types

(1) (si)0 = {ai mod n, ai+1 mod n, x} for all 0 ≤ i ≤ n, for any n;

(2) (s0)0={a0, a2, a1}, (s1)0={a1, a3, a2}, (s2)0={a2, a4, a3}, (s3)0 =
{a3, a0, a4}, and (s4)0 = {a4, a1, a0}, when n = 5; or

(3) (s0)0={a0, a1, a2}, (s1)0 = {a1, a2, a4}, (s2)0={a2, a3, a4}, (s3)0=
{a3, a0, a4}, (s4)0={a0, a5, a4}, and (s5)0={a5, a2, a0}, when n=6.

The proof of the lemma above consists of several parts and follows largely
by a detailed analysis of the combinatorial structure of n-cycles of trian-
gles.
It is easy to see that geometric realisations of the three types of triangu-

lations associated to puzzles of n-shells are an n-triangulation of a disk, a
5-triangulation of a Möbius band and a 6-triangulation of a Möbius band,
respectively.
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4 Proof of the theorem

Proof. For each vertex x ∈ K0 let nx" be the nx -cycle around x , by
hypothesis ‖nx"‖ is necessarily a disk.
(1) If, for all x ∈ K0, ‖ f (nx")‖ is also a disk, then the mapping h :

K0 → K ′0 such that h(x) =
⋂nx

i=1 f (si) is a bijective simplicial
mapping.

Assume then that there is a vertex x ∈ K0 such that ‖ f (nx")‖ is not a
disk.

(2) Suppose ‖ f (nx")‖ is the 5-triangulation of the Möbius band de-
scribed in Lemma 3.2.

Let nx"2= {s0, s1, s2, s3, s4}, where (si)0 = {ai mod 5, ai+1 mod 5, x} and
f (nx")2 = {s ′0,s ′1,s ′2,s ′3,s ′4} where (s ′0)0 = {a′0,a′2,a′1}, (s ′1)0 = {a′1,a′3,a′2},
(s ′2)0={a′2, a′4, a′3}, (s ′3)0 = {a′3, a′0, a′4}, and (s ′4)0 = {a′4, a′1, a′0}.
Given that K ′ is also a closed surface, then each of the simplices

s ′0, s
′
1, s

′
2, s

′
3, s

′
4 has got a triangle adjacent to its remaining free edge. Let

r ′i be the simplices such that dim(r
′
i ∩ s ′i) = 1, then (r ′0)0 = {a′0, a′2, x ′0},

(r ′1)0 = {a′1, a′3, x ′1}, (r ′2)0 = {a′2, a′4, x ′2}, (r ′3)0 = {a′3, a′0, x ′3}, and (r ′4)0 ={a′4, a′1, x ′4}. This is (r ′i )0 = {a′i mod 5, a′i+2 mod 5, x
′
i }. It follows that,

dim(r ′i ∩ s ′j ) ≥ 0 for all i �= j .
Note that the interior of each of the edges {a′i mod 5, a′i+1 mod 5} is in

the interior of the Möbius band, thus this edges cannot be repeated in any
further simplex in the complex.
This implies that xi �∈ {a′0, a′1, a′2, a′3, a′4}, because, if this was the

case, at least one of the edges {a′i mod 5, a′i+1 mod 5}would belong to (r ′i )1.
Then, dim(r ′i ∩ s ′j ) = 0
Let ri= f −1(r ′i ), then dim(ri∩si) = 1 and dim(ri∩s j )=0 for all i �= j .

As (si)0={ai mod 5, ai+1mod 5, x} then (ri)0={ai mod 5, ai+1mod 5, xi mod 5}.
Here dim(ri mod 5 ∩ si+1 mod 5) ≥ 0 and dim(ri mod 5 ∩ si−1 mod 5) ≥ 0

trivially, hence ai−1 mod 5, ai+2 mod 5 �∈ (ri)0. However, for dim(ri mod 5∩
si+2 mod 5) = 0 and dim(ri mod 5 ∩ si−2 mod 5) = 0 to be accomplished,
necessarily xi = ai+3 mod 5 = ai−2 mod 5.
That is, (ri)0 = {ai mod 5, ai+1 mod 5, ai−2 mod 5}, hence the simplicial

complex asociated to
⋃4

i=0 ri is a 5-triangulation of aMóbius band, where
dim(ri ∩ ri+2 mod 5) = dim(ri ∩ ri−2 mod 5) = 1, and as necessarily K2 =⋃4

i=0 ri ∪
⋃4

i=0 si and the geometric simplicial complexes associated to⋃4
i=0 ri and

⋃4
i=0 si are a Möbius band and a disk, respectively, then ‖K‖

is equal to TP10.
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The above also implies that dim(r ′i ∩r ′i+2 mod 5)=dim(r ′i ∩r ′i−2 mod 5)=
1 then v′ = v′i for all i = 1, . . . 4, so that K ′2 =

⋃4
i=0 r

′
i ∪

⋃4
i=0 s

′
i , hence‖K ′‖ is also equal to TP10.

(3) Suppose ‖ f (nx")‖ is the 6-triangulation of the Möbius band de-
scribed in Lemma 3.2.

Let nx"2 = {s0, s1, s2, s3, s4, s5}, where (si)0 = {ai mod 6, ai+1 mod 6, x}
and f (nx")2 = {s ′0, s ′1, s ′2, s ′3, s ′4, s ′5} where (s ′0)0 = {a′0, a′1, a′2}, (s ′1)0 ={a′1, a′2, a′4}, (s ′2)0 = {a′2, a′3, a′4}, (s ′3)0 = {a′3, a′0, a′4}, (s ′4)0 = {a′0, a′5, a′4},
and (s ′5)0 = {a′5, a′2, a′0}.
As‖K ′‖is a closed surface, then each of the simplices {s ′0,s ′1,s ′2,s ′3,s ′4,s ′5}
has got a triangle adjacent to its remaining free edge. Let r ′i be the sim-
plices such that dim(r ′i ∩ s ′i) = 1, then (r ′0)0 = {a′0, a′1, x ′0}, (r ′1)0 ={a′1, a′4, x ′1}, (r ′2)0 = {a′2, a′3, x ′2}, (r ′3)0 = {a′3, a′0, x ′3}, (r ′4)0 = {a′4, a′5, x ′4},
and (r ′5)0 = {a′2, a′5, x ′5}.
Here it follows that, dim(r ′i ∩ s ′j ) ≥ 0 for all i �= j , except for the pairs

i = 0 and j = 2, i = 1 and j = 5, i = 2 and j = 4, i = 3 and j =
1, i = 4 and j = 0 and i = 5 and j = 3; for these exceptions the
intersection might be empty.
The above implies that, if ri = f −1(r ′i ), then dim(ri ∩ si) = 1 and

dim(ri ∩ s j ) ≥ 0 for all i �= j , except for the pairs i = 0 and j = 2,
i = 1 and j = 5, i = 2 and j = 4, i = 3 and j = 1, i = 4 and j = 0,
and i = 5 and j = 3; for these exceptions the intersection might be
empty.
As (si)0 = {ai mod 6, ai+1 mod 6, x} then the vertex sets of the ri ’s are

(ri)0 = {ai mod 6, ai+1 mod 6, xi mod 6}.
Note that x ′0 �∈ {a′0,a′1,a′2,a′4,a′5} as the edges {a′0,a2}, {a′0, a4}, {a′0, a5},{a′0, a4} are edges whose interior is in the interior of the Möbius band.

Thus we might have v′0=a′3, however if that was the case dim(r ′0 ∩ r ′3) =
1, and dim(r0 ∩ r3) = 1, but this is not possible. Then necessarily x ′0 �∈{a′0, a′1, a′2, a′3, a′4, a′5}.
Using an argument analogous to the one in the previous case, we de-

duce that for each i , x ′i �∈ {a′0, a′1, a′2, a′3, a′4, a′5}; so that dim(r ′i ∩ s ′j ) = 0
for all i �= j , except for the pairs i = 0 and j = 2, i = 1 and j = 5, i =
2 and j = 4, i = 3 and j = 1, i = 4 and j = 0, and i = 5 and j = 3,
for which the intersection is empty.
The above implies dim(ri ∩ si) = 1 and dim(ri ∩ s j ) = 0 for all i �= j ,

except for the pairs i = 0 and j = 2, i = 1 and j = 5, i = 2 and j = 4,
i = 3 and j = 1, i = 4 and j = 0, and i = 5 and j = 3, for which
the intersection is empty. Hence, in order to accomplish the intersection
dimensions indicated by the puzzle necessarily, x0 = x1 = a4, x2 =
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x3 = a0, x4 = x5 = a2, thus; r0 = {a0, a1, a4}, r1 = {a1, a2, a4}, r2 =
{a2, a3, a0}, r3 = {a3, a4, a0}, r4 = {a4, a5, a2}, and r5 = {a0, a5, a2}.
Therefore, the simplicial complex associated to

⋃5
i=0 ri is a 6-triangu-

lation of a Möbius band and K2 =⋃5
i=0 si ∪

⋃5
i=0 ri , so that ‖K‖ is equal

to TP12.
The implication for K ′ is that dim(r ′0 ∩ r ′1) = 1, dim(r ′1 ∩ r ′4) =

1, dim(r ′4 ∩ r ′5) = 1, dim(r ′5 ∩ r ′2) = 1, dim(r ′2 ∩ r ′3) = 1, dim(r ′3 ∩
r ′0) = 1, which in turn implies v′ = v′i for all i ∈ {0, . . . 5} and, further,
K ′2 =

⋃5
i=0 s

′
i ∪

⋃5
i=0 r

′
i , so that K

′ is also equal to TP12.
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Quasi-perfect linear codes from singular
plane cubics

Massimo Giulietti1

Abstract. We present some recently obtained constructions of quasi-perfect linear
codes with small density arising from plane cubic curves defined over finite fields.

1 Introduction

Galois Geometry, that is the theory of combinatorial objects embedded
in projective spaces over finite fields, is well known to be rich of nice
algebraic, combinatorial and group theoretic aspects that have also found
wide and relevant applications in Coding Theory and Cryptography; see
e.g. the monography [5]. In this context an important role is played
by plane arcs and their generalizations - especially complete caps, sat-
urating sets and arcs in higher dimensions - since their code theoretic
counterparts are distinguished types of error-correcting and covering lin-
ear codes. In this extended abstract we present some recent results on
small complete caps and quasi-perfect linear codes, obtained in few joint
works with N. Anbar, D. Bartoli and I. Platoni, mostly unpublished.
Let Fq be the finite field with q elements and let C be an [n, k, d]q-

code, i.e., a q-ary linear code of length n, dimension k and minimum
distance d. The covering radius of C is the minimum integer R(C) such
that for any vector v ∈ Fn

q there exists x ∈ C with d(v, x) ≤ R(C). An
[n, k, d]q-code with covering radius R is denoted by [n, k, d]q R. Let t be
the integer part of (d − 1)/2. Clearly, R(C) ≥ t holds and when equal-
ity is attained the code C is said to be perfect. As there are only finitely
many classes of linear perfect codes, of particular interest are those codes
C with R(C) = t + 1, called quasi-perfect codes. One of the parameters
characterizing the covering quality of an [n, k, d]q R-code C is its cover-
ing density μ(C), introduced in [3] as the average number of codewords
at distance less than or equal to R from a vector in Fn

q . The covering

1 Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, Italia. Email:
giuliet@dmi.unipg.it



228 Massimo Giulietti

density μ(C) is always greater than or equal to 1, and equality holds pre-
cisely when C is perfect. Among codes with the same codimension s and
covering radius R, the shortest ones have the best covering density. This
explains why the problem of determining the minimal length n for which
there exists an [n, n − s, d]q R-code with given s, q, d and R, has been
broadly investigated. Throughout, such minimal length will be denoted
as l(s, R, q)d .
Here we will restrict our attention to codes with covering radius R = 2

and d = 4, i.e. quasi-perfect linear codes that are both 1-error correcting
and 3-error detecting. Interestingly, such codes have a nice geometrical
counterpart: the columns of a parity check matrix of an [n, n − s, 4]q2-
code can be considered as points of a complete cap of size n in the finite
projective space PG(s − 1, q). In particular, l(s, 2, q)4 coincides with
the minimum size of a complete cap in PG(s − 1, q). This makes it
possible to use methods from both Galois Geometries and Algebraic Ge-
ometry in order to investigate covering-radius-2 codes with small density.
Here, we are going to discuss some recently obtained upper bounds on
the minimum size of a complete cap which are valid for arbitrarily large
values of q. The key tool is the construction of complete caps in higher
dimensional spaces from singular plane cubic curves defined over Fq .

2 Complete caps from bicovering arcs

An n-cap in an (affine or projective) Galois space over Fq is a set of n
points no three of which are collinear. An n-cap is said to be complete if
it is not contained in an (n+1)-cap. A plane n-cap is also called an n-arc.
Let t (AG (N , q)) be the size of the smallest complete cap in the Galois
affine space AG(N , q) of dimension N over Fq . Since the affine space
AG(N , q) is embedded in the projective space PG(N , q), a complete
cap in AG(N , q) can be viewed as a cap in PG(N , q), whose complete-
ness can be achieved by adding some extra-points at the hyperplane at
infinity. Therefore, the following relation holds.

Proposition 2.1. Let M(N , q) denote the maximal size of a complete cap
in PG(N − 1, q). Then

l(N + 1, 2, q)4 ≤ t (AG(N , q))+ M(N , q).

In particular, l(5, 2, q)4 ≤ t (AG(4, q))+ q2 + 1.
The trivial lower bound for t (AG(N , q)) is

√
2q

N−1
2 . General con-

structions of complete caps whose size is close to this lower bound are
only known for q even and N odd. When N is even, complete caps of size
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of the same order of magnitude as cqN/2, with c a constant independent
of q, are known to exist for both the odd and the even order case.
Small complete caps in dimensions N ≡ 0 (mod 4) can be obtained

from plane arcs via the product method for caps: let q ′ = q
N−2
2 and fix a

basis of Fq ′ as a linear space over Fq ; identify points in AG(N , q) with
vectors of Fq ′ × Fq ′ × Fq × Fq ; for an arc A in AG(2, q), let

KA = {(α, α2, u, v) ∈ AG(N , q) | α ∈ Fq ′ , (u, v) ∈ A};
then the set KA is a cap in AG(N , q). For q odd, the completeness of
the cap KA depends on the bicovering properties of A in AG(2, q); see
Theorem 2.3 below. According to Segre [6], given three pairwise distinct
points P, P1, P2 on a line 
 in AG(2, q), P is external or internal to the
segment P1P2 depending on whether (x−x1)(x−x2) is a non-zero square
or a non-square in Fq , where x, x1 and x2 are the coordinates of P, P1 and
P2 with respect to any affine frame of 
.

Definition 2.2. Let A be a complete arc in AG(2, q). A point P ∈
AG(2, q) \ A is said to be bicovered with respect to A if there exist
P1, P2, P3, P4 ∈ A such that P is both external to the segment P1P2 and
internal to the segment P3P4. If every P ∈ AG(2, q) \ A is bicovered by
A, then A is said to be a bicovering arc.

Theorem 2.3 ([4]). Let A be a bicovering n-arc in AG(2, q); then KA

is a complete cap in AG(N , q).

3 Small complete caps from cubic curves

From now on we assume that the characteristic of Fq is p > 3. Let X
be an irreducible plane cubic curve defined over Fq , and consider the set
G of the non-singular Fq-rational points of X . As it is well known, for
any point O of G it is possible to give a group structure to G, by defining
a binary operation � in such a way that (G,�) is an abelian group with
neutral element O ∈ G. The point O is usually chosen as an inflection
point. One of the main properties of this operation is that three distinct
points in G are collinear if and only if their sum is the neutral element in
G. Then it is easy to see that for a subgroup H of G of index m, with
(3,m) = 1, and a point P in G \ H , the coset K = H � P is an arc.
In order to investigate the covering properties of such an arc, we recall

a general method, due to Segre and Lombardo-Radice, that uses Hasse-
Weil’s Theorem to prove the completeness of arcs contained in conic or
cubic curves. This method is based on the following idea for proving that
the secants of K cover a generic point P off the curve X : (1) write K in
an algebraically parametrized form; in the case of cubic curves X , this
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can be easily done when X is singular; (2) construct an algebraic curve
CP , defined over Fq , describing the collinearity of two points of K and P;
(3) show that CP is absolutely irreducible or has at least an absolutely ir-
reducible component defined over Fq ; (4) apply the Hasse-Weil bound to
guarantee the existence of a suitable Fq-rational point of CP (or of its irre-
ducible component): this is sufficient to deduce the collinearity between
P and two points in K . Finally, in order to obtain the completeness, it
might be necessary to extend the arc K with some points on X .
By Theorem 2.3, bicovering arcs in affine planes are a powerfool tool

to construct small complete caps in AG(N , q) with q odd and N ≡ 0
(mod 4). However, to establish whether a complete arc is bicovering can
be a difficult task. So far, three different types of irreducible plane cubic
curves have been investigated in order to prove the bicovering proper-
ties of the associated arcs: non-singular, cuspidal and nodal. The non-
singular (or elliptic) case was investigated in [1].

Theorem 3.1 ([1]). Let q be odd, and let m be a prime divisor of q − 1,
with 7 < m < 1

8
4
√
q. Assume that the cyclic group of order m admits

a maximal-3-independent subset of size s. Then for any positive integer
N ≡ 0 (mod 4),

t (AG(N , q)) ≤ s · q N−2
2 ·

(⌊
q − 2√q + 1

m

⌋
+ 31

)
. (3.1)

It has been noticed in [7] that in the cyclic group of order m there exists
a maximal 3-independent subset of size s ≤ (m + 1) /3. For specific
values of m, the upper bound on t (AG(N , q)) can be improved, as there
exist maximal-3-independent subsets of the cyclic group of order m of
size significantly less than m/3 (see [1, Table 1]).
The case of a cubic with a cuspidal rational singularity and a rational

inflection point is the object of the preprint [2].

Theorem 3.2 ([2]). Let q = ph with p > 3 a prime, h > 8. Let N ≡ 0
(mod 4), N ≥ 4. Let th be the integer in {1, . . . , 4} such that th ≡ h
(mod 4). Assume that pth > 144. Then

t (AG(N , q)) ≤ 2pq N
2 − 1

8 .

We now present some new results on cubics with both a rational node and
a rational inflection point, which for infinite q’s improve both Theorems
3.1 and 3.2.

Theorem 3.3. Let m be an odd divisor of q−1 such that (3,m) = 1 and
q + 1− (12m2 − 8m + 2)√q ≥ 8m2 + 8m + 1. (3.2)
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Assume that the cyclic group of order m admits a maximal 3-independent
subset of size s. Then there exists a bicovering arc in AG(2, q) of size
s(q−1)
m contained in the cubic curve with equation XY = (X − 1)3.
Theorem 3.3 can be used together with Theorem 2.3 in order to con-

struct small complete caps in affine spaces. Note that (3.2) holds when-
ever m ≤ 4√q

3.5 .

Corollary 3.4. Let m be an odd divisor of q − 1 such that (3,m) = 1
and m ≤ 4√q

3.5 . Assume that the cyclic group of order m admits a maximal
3-independent subset of size s. Then for N ≡ 0 (mod 4), N ≥ 4,

t (AG(N , q)) ≤ s(q − 1)
m

q
N−2
2 .

In the case where a group G is the direct product of two groups G1 × G2
of order at least 4, neither of which elementary 3-abelian, there exists a
maximal 3-independent subset of G of size less than or equal to (#G1)+
(#G2). Then the following holds.

Theorem 3.5. Let m be an odd divisor of q−1 such that (3,m) = 1 and
m ≤ 4√q

3.5 . Assume that m = m1m2 with (m1,m2) = 1 and m1,m2 ≥ 4.
Then for N ≡ 0 (mod 4), N ≥ 4

t (AG(N , q)) ≤ (m1 + m2)(q − 1)
m1m2

q
N−2
2

Corollary 3.6. Let q = q̄8 for an odd prime power q̄. Let m = (q̄2 −
1)/(2h3k), where 2h ≥ 4 is the highest power of 2 which divides q̄2 − 1,
and similarly 3k ≥ 3 is the highest power of 3 which divides q̄2−1. Then
for N ≡ 0 (mod 4), N ≥ 4

t (AG(N , q)) ≤ (2h2 + 2h13k)q N
2 − 1

8 .

with h1 + h2 = h.

Results on complete arcs contained in cubics with an isolated double
point have not appeared in the literature so far. This case is currently
under investigation by the authors of [2].
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Boxicity and cubicity of product graphs

L. Sunil Chandran1, Wilfried Imrich2, Rogers Mathew3

and Deepak Rajendraprasad4

Abstract. The boxicity (cubicity) of a graph G is the minimum natural number k
such that G can be represented as an intersection graph of axis-parallel rectangular
boxes (axis-parallel unit cubes) in Rk . In this article, we give estimates on the
boxicity and the cubicity of Cartesian, strong and direct products of graphs in
terms of invariants of the component graphs. In particular, we study the growth,
as a function of d, of the boxicity and the cubicity of the d-th power of a graph
with respect to the three products. Among others, we show a surprising result that
the boxicity and the cubicity of the d-th Cartesian power of any given finite graph
is in O (log d/ log log d) and !(d/ log d), respectively. On the other hand, we
show that there cannot exist any sublinear bound on the growth of the boxicity of
powers of a general graph with respect to strong and direct products.

1 Introduction

Throughout this discussion, a k-box is the Cartesian product of k closed
intervals on the real line R, and a k-cube is the Cartesian product of k
closed unit length intervals on R. Hence both are subsets of Rk with
edges parallel to one of the coordinate axes. All the graphs considered
here are finite, undirected and simple.

Definition 1.1 (Boxicity, Cubicity). A k-box representation (k-cube
representation) of a graph G is a function f that maps each vertex of
G to a k-box (k-cube) such that for any two distinct vertices u and v of
G, the pair uv is an edge in G if and only if the boxes f (u) and f (v) have
a non-empty intersection. The boxicity (cubicity) of a graph G, denoted
by boxicity(G) (cubicity(G)), is the smallest natural number k such that
G has a k-box (k-cube) representation.
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It follows from the above definition that complete graphs have boxicity
and cubicity 0 and interval graphs (unit interval graphs) are precisely
the graphs with boxicity (cubicity) at most 1. The concepts of boxicity
and cubicity were introduced by F.S. Roberts in 1969 [9]. He showed
that every graph on n vertices has an � n/2 �-box and a � 2n/3 �-cube
representation.
Given two graphs G1 and G2 with respective box representations f1

and f2, let G denote the graph on the vertex set V (G1) × V (G2) whose
box representation is a function f defined by f ((v1, v2)) = f1(v1) ×
f2(v2). It is not difficult to see that G is the usual strong product of G1

and G2 (cf. Definition 1.2). Hence it follows that the boxicity (cubicity)
of G is at most the sum of the boxicities (cubicities) of G1 and G2. The
interesting question here is: can it be smaller? We show that it can be
smaller in general. But in the case when G1 and G2 have at least one
universal vertex each, we show that that the boxicity (cubicity) of G is
equal to the sum of the boxicities (cubicities) of G1 and G2 (Theorem
2.1).

Definition 1.2 (Graph products). The strong product, the Cartesian
product and the direct product of two graphs G1 and G2, denoted re-
spectively by G1 �G2, G1 �G2 and G1×G2, are graphs on the vertex
set V (G1)× V (G2) with the following edge sets:

E(G1 �G2) = {(u1, u2)(v1, v2) : (u1 = v1 or u1v1 ∈ E(G1)) and
(u2 = v2 or u2v2 ∈ E(G2))},

E(G1 �G2) = {(u1, u2)(v1, v2) : (u1 = v1, u2v2 ∈ E(G2)) or
(u1v1 ∈ E(G1), u2 = v2)},

E(G1×G2) = {(u1, u2)(v1, v2) : u1v1 ∈ E(G1) and u2v2 ∈ E(G2)}.

The d-th strong power, Cartesian power and direct power of a graph G
with respect to each of these products, that is, the respective product of
d copies of G, are denoted by G�d , G�d and G× d , respectively. Please
refer to [7] to know more about graph products.

Unlike the case in strong product, the boxicity (cubicity) of the Carte-
sian and direct products can have a boxicity (cubicity) larger than the sum
of the individual boxicities (cubicities). For example, while the complete
graph on n vertices Kn has boxicity 0, we show that the Cartesian product
of two copies of Kn has boxicity at least log n and the direct product of
two copies of Kn has boxicity at least n−2. In this note, we give estimates
on boxicity and cubicity of Cartesian and direct products in terms of the
boxicities (cubicities) and chromatic number of the component graphs.
This answers a question raised by Douglas B. West in 2009 [10].
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We also study the growth, as a function of d, of the boxicity and the
cubicity of the d-th power of a graph with respect to these three prod-
ucts. Among others, we show a surprising result that the boxicity and
the cubicity of the d-th Cartesian power of any given finite graph is in
O (log d/ log log d) and !(d/ log d), respectively (Corollary 2.7). To
get this result, we had to obtain non-trivial estimates on boxicity and cu-
bicity of hypercubes and Hamming graphs and a bound on boxicity and
cubicity of the Cartesian product which does not involve the sum of the
boxicities or cubicities of the component graphs.
The results are summarised in the next section after a brief note on

notations. The proofs and figures are included in the full version of the
paper [3].

1.1 Notational note

The vertex set and edge set of a graph G are denoted, respectively, by
V (G) and E(G). A pair of distinct vertices u and v is denoted at times
by uv instead of {u, v} in order to avoid clutter. A vertex in a graph is
universal if it is adjacent to every other vertex in the graph. If S is a
subset of vertices of a graph G, the subgraph of G induced on the vertex
set S is denoted by G[S]. If A and B are sets, then A- B denotes their
symmetric difference and A× B denotes their Cartesian product. The set
{1, . . . , n} is denoted by [n]. All logarithms mentioned are to the base 2.

2 Our Results

2.1 Strong products

Theorem 2.1. Let Gi , i ∈ [d], be graphs with boxicity(Gi) = bi and
cubicity(Gi) = ci . Then

maxdi=1 bi ≤ boxicity(�d
i=1 Gi) ≤ ∑d

i=1 bi , and
maxdi=1 ci ≤ cubicity(�d

i=1 Gi) ≤ ∑d
i=1 ci .

Furthermore, if each Gi , i ∈ [d] has a universal vertex, then the second
inequality in both the above chains is tight.

If we consider the strong product of a 4-cycle C4 with a path on 3
vertices P3, we get an example where the upper bound in Theorem 2.1 is
not tight.

Corollary 2.2. For any given graph G, boxicity(G�d) and cubicity
(G�d) are in O (d) and there exist graphs for which they are in �(d).
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2.2 Cartesian products

We show two different upper bounds on the boxicity and cubicity of
Cartesian products. The first and the easier result bounds from above
the boxicity (cubicity) of a Cartesian product in terms of the boxicity
(cubicity) of the corresponding strong product and the boxicity (cubicity)
of a Hamming graph whose size is determined by the chromatic number
of the component graphs. The second bound is in terms of the maxi-
mum cubicity among the component graphs and the boxicity (cubicity)
of a Hamming graph whose size is determined by the sizes of the compo-
nent graphs. The second bound is much more useful to study the growth
of boxicity and cubicity of higher Cartesian powers since the first term
remains a constant.

Theorem 2.3. For graphs G1, . . . ,Gd ,

boxicity(�d
i=1 Gi) ≤ boxicity(�d

i=1 Gi)+ boxicity(�d
i=1 Kχi ) and

cubicity(�d
i=1 Gi) ≤ cubicity(�d

i=1 Gi)+ cubicity(�d
i=1 Kχi )

where χi denotes the chromatic number of Gi , i ∈ [d].
When Gi = Kq for every i ∈ [d], G = �d

i=1 Gi is a complete graph
on qd vertices and hence has boxicity and cubicity 0. In this case it is
easy to see that both the bounds in Theorem 2.3 are tight.

Theorem 2.4. For graphs G1 , . . . , Gd , with | V (Gi) | = qi and
cubicity(Gi) = ci , for each i ∈ [d],

boxicity(�d
i=1 Gi) ≤ maxi∈[d] ci + boxicity(�d

i=1 Kqi ), and
cubicity(�d

i=1 Gi) ≤ maxi∈[d] ci + cubicity(�d
i=1 Kqi ).

In wake of the two results above, it becomes important to have a good
upper bound on the boxicity and the cubicity of Hamming graphs. The
Hamming graph Kd

q is the Cartesian product of d copies of a complete
graph on q vertices. We call the Kd

2 the d-dimensional hypercube.

The cubicity of hypercubes is known to be in !
(

d
log d

)
. The lower

bound is due to Chandran, Mannino and Oriolo [4] and the upper bound
is due to Chandran and Sivadasan [6]. But we do not have such tight
estimates on the boxicity of hypercubes. The only explicitly known upper
bound is one of O (d/ log d) which follows from the bound on cubicity
since boxicity is bounded above by cubicity for all graphs. The only non-
trivial lower bound is one of 12(�log log d�+1) due to Chandran, Mathew
and Sivadasan [5].
We make use of a non-trivial upper bound shown by Kostochka on the

dimension of the partially ordered set (poset) formed by two neighbour-
ing levels of a Boolean lattice [8] and a connection between boxicity and
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poset dimension established by Adiga, Bhowmick and Chandran in [1] to
obtain the following result.

Theorem 2.5. Let bd be the largest dimension possible of a poset formed
by two adjacent levels of a Boolean lattice over a universe of d elements.
Then

1
2bd ≤ boxicity(Kd

2 ) ≤ 3bd .

Furthermore, boxicity(Kd
2 ) ≤ 12 log d/ log log d.

Below, we extend the results on hypercubes to Hamming graphs.

Theorem 2.6. Let Kd
q be the d-dimensional Hamming graph on the al-

phabet [q] and let Kd
2 be the d-dimensional hypercube. Then for d ≥ 2,

log q ≤ boxicity(Kd
q ) ≤ �10 log q� boxicity(Kd

2 ), and
log q ≤ cubicity(Kd

q ) ≤ �10 log q� cubicity(Kd
2 ).

Theorem 2.4, along with the bounds on boxicity and cubicity of Ham-
ming graphs, gives the following corollary which is the main result in
this article. The lower bound on the order of growth is due to the pres-
ence of Kd

2 as an induced subgraph in the d-the Cartesian power of any
non-trivial graph.

Corollary 2.7. For any given graph G with at least one edge,

boxicity(G�d) ∈ O (log d/ log log d) ∩�(log log d) , and
cubicity(G�d) ∈ !(d/ log d) .

2.3 Direct products

Theorem 2.8. For graphs G1, . . . ,Gd ,

boxicity(×d
i=1 Gi) ≤ boxicity(�d

i=1 Gi)+ boxicity(×d
i=1 Kχi ) and

cubicity(×d
i=1 Gi) ≤ cubicity(�d

i=1 Gi)+ cubicity(×d
i=1 Kχi )

where χi denotes the chromatic number of Gi , i ∈ [d].
In the wake of Theorem 2.8, it is useful to estimate the boxicity and

the cubicity of the direct product of complete graphs. Before stating
our result on the same, we would like to discuss a few special cases. If
G = ×d

i=1 K2 then G is a perfect matching on 2
d vertices and hence has

boxicity and cubicity equal to 1. If G = Kq × K2, then it is isomorphic
to a graph obtained by removing a perfect matching from the complete
bipartite graph with q vertices on each part. This is known as the crown
graph and its boxicity is known to be �q/2� [2].
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Theorem 2.9. Let qi ≥ 2 for each i ∈ [d]. Then,
1
2

∑d
i=1(qi − 2) ≤ boxicity

(×d
i=1 Kqi

) ≤ ∑d
i=1 qi , and

1
2

∑d
i=1(qi − 2) ≤ cubicity

(×d
i=1 Kqi

) ≤ ∑d
i=1 qi log(n/qi),

where n = "d
i=1qi is the number of vertices in ×d

i=1 Kqi .

Corollary 2.10. For graphs G1, . . . ,Gd ,

boxicity(×d
i=1 Gi) ≤

d∑
i=1
(boxicity(Gi)+ χ(Gi)).

Corollary 2.11. For any given graph G, boxici ty(G× d) is in O (d) and
there exist graphs for which it is in �(d).
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Planar graphs with � ≥ 8 are
(�+ 1)-edge-choosable

Marthe Bonamy1

Abstract. We consider the problem of list edge coloring for planar graphs. Edge
coloring is the problem of coloring the edges while ensuring that two edges that
are incident receive different colors. A graph is k-edge-choosable if for any as-
signment of k colors to every edge, there is an edge coloring such that the color
of every edge belongs to its color assignment. Vizing conjectured in 1965 that ev-
ery graph is (� + 1)-edge-choosable. In 1990, Borodin solved the conjecture for
planar graphs with maximum degree � ≥ 9, and asked whether the bound could
be lowered to 8. We prove here that planar graphs with � ≥ 8 are (�+ 1)-edge-
choosable.

1 Introduction

We consider simple graphs. A k-edge-coloring of a graph G is a coloring
of the edges of G with k colors such that two edges that are incident
receive distinct colors. We denote by χ ′(G) the smallest k such that G
admits a k-edge-coloring. Let�(G) be the maximum degree of G. Since
incident edges have to receive distinct colors in an edge coloring, every
graph G satisfies χ ′(G) ≥ �(G). A trivial upper-bound on χ ′(G) is
2�(G)− 1, which can can be greatly improved, as follows.
Theorem 1.1 (Vizing [12]). Every graph G satisfies �(G) ≤ χ ′(G) ≤
�(G)+ 1.
Vizing [13] proved that χ ′(G) = �(G) for every planar graph G with

�(G) ≥ 8. He gave examples of planar graphs with�(G) = 4, 5 that are
not �(G)-edge-colorable, and conjectured that no such graph exists for
�(G) = 6, 7. This remains open for �(G) = 6, but the case �(G) = 7
was solved by Sanders and Zhao [10], as follows.

Theorem 1.2 (Sanders and Zhao [10]). Every planar graph G with
�(G) ≥ 7 satisfies χ ′(G) = �(G).
An extension of the problem of edge coloring is the list edge coloring

problem, defined as follows. For any L : E → P(N) list assignment
of colors to the edges of a graph G = (V, E), the graph G is L-edge-
colorable if there exists an edge coloring of G such that the color of

1 LIRMM, Université Montpellier 2. Email: marthe.bonamy@lirmm.fr. Work supported by the
ANR Grant EGOS (2012-2015) 12 JS02 002 01.
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every edge e ∈ E belongs to L(e). A graph G = (V, E) is said to be list
k-edge-colorable (or k-edge-choosable) if G is L-edge-colorable for any
list assignment L such that |L(e)| ≥ k for any edge e ∈ E . We denote by
χ ′
(G) the smallest k such that G is k-edge-choosable.
One can note that edge coloring is a special case of list edge coloring,

where all the lists are equal. Thus χ ′(G) ≤ χ ′
(G). This inequality is in
fact conjectured to be an equality (see [8] for more information).
Conjecture 1.3 (List Coloring Conjecture). Every graph G satisfies
χ ′(G) = χ ′
(G).
The conjecture is still widely open. Some partial results were however

obtained in the special case of planar graphs: for example, the conjecture
is true for planar graphs of maximum degree at least 12, as follows.
Theorem 1.4 (Borodin et al. [6]). Every planar graph G with �(G) ≥
12 satisfies χ ′
(G) = �(G).
There is still a large gap with the lower bound of 7 that should hold by

Theorem 1.2 if Conjecture 1.3 were true.
Using Vizing’s theorem, the List Coloring Conjecture can be weakened

into Conjecture 1.5.
Conjecture 1.5 (Vizing [14]). Every graph G satisfies χ ′
(G)≤�(G)+1.
Conjecture 1.5 has been actively studied in the case of planar graphs

with some restrictions on cycles (see for example [11, 15, 16]), and was
settled by Borodin [4] for planar graphs of maximum degree at least 9 (a
simpler proof was later found by Cohen and Havet [7]).
Theorem 1.6 (Borodin [4]). Every planar graph G with �(G)≥ 9 sat-
isfies χ ′
(G)≤�(G)+ 1.
Here we prove the following theorem.

Theorem 1.7. Every planar graph G with�(G)≤8 satisfies χ ′
(G) ≤ 9.
This improves Theorem 1.6 and settles Conjecture 1.5 for planar

graphs of maximum degree 8.
Corollary 1.8. Every planar graph G with �(G) ≥ 8 satisfies χ ′
(G) ≤
�(G)+ 1.
This answers Problem 5.9 in a survey by Borodin [5]. For small values

of�, Theorem 1.7 implies that every planar graph G with 5 ≤ �(G) ≤ 7
is also 9-edge-choosable. To our knowledge, this was not known. It is
however known that planar graphs with�(G) ≤ 4 are (�(G)+ 1)-edge-
choosable [9, 14].

2 Method

The discharging method was introduced in the beginning of the 20th cen-
tury. It has been used to prove the celebrated Four Color Theorem ( [1]
and [2]).
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We prove Theorem 1.7 using a discharging method, as follows. A
graph is minimal for a property if it satisfies this property but none of its
proper subgraphs does. The first step is to consider a minimal counter-
example G (i.e. a graph G such that �(G) ≤ 8 and χ ′
(G) > 9, whose
every proper subgraph is 9-edge-choosable), and prove it cannot contain
some configurations. We assume by contradiction that G contains one of
the configurations. We consider a particular subgraph H of G. For any
list assignment L on the edges of G, with |L(e)| ≥ 9 for every edge e,
we L-edge-color H by minimality. We show how to extend the L-edge-
coloring of H to G, a contradiction.

The second step is to prove that a connected planar graph on at least
two vertices with� ≤ 8 that does not contain any of these configurations
does not satisfy Euler’s Formula. To that purpose, we consider a planar
embedding of the graph. We assign to each vertex its degree minus six
as a weight, and to each face two times its degree minus six. We apply
discharging rules to redistribute weights along the graph with conserva-
tion of the total weight. As some configurations are forbidden, we can
prove that after application of the discharging rules, every vertex and ev-
ery face has a non-negative final weight. This implies that

∑
v(d(v)−6)+∑

f (2d( f )−6) = 2×|E(G)|−6×|V (G)|+4×|E(G)|−6×|F(G)| ≥ 0,
a contradiction with Euler’s Formula that |E | − |V | − |F | = −2. Hence
a minimal counter-example cannot exist.

The complete proof was omitted due to space limitations. The proof
requires eleven forbidden configurations and eleven discharging rules,
which we do not present here because they rely on additionnal definitions.
The full proof can be found in [3].

3 Conclusion

The key idea in the proof lies in some recoloring arguments using directed
graphs. It allowed us to deal with configurations that would not yield
under usual techniques, and thus to improve Theorem 1.6. Though this
simple argument does not seem to be enough to prove Conjecture 1.5 for
� = 7, it might be interesting to try to improve similarly Theorem 1.4.
Note that the proof could easily be adapted to prove that planar graphs

with� ≥ 8 are (�+ 1)-edge-choosable. This would however be of little
interest considering the simple proof for � ≥ 9 presented in [7].
Conjecture 1.5 remains open for � = 5, 6 and 7. It might be inter-

esting to weaken the conjecture and ask whether all planar graphs are
(� + 2)-edge-choosable. This is true for planar graphs with � ≥ 7 by
Theorems 1.6 and 1.7. What about planar graphs with � = 6?
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Planar emulators conjecture is nearly true
for cubic graphs

Martin Derka1 and Petr Hliněný1

Abstract. We prove that a cubic nonprojective graph cannot have a finite planar
emulator, unless one of two very special cases happen (in which the answer is
open). This shows that Fellows’ planar emulator conjecture, disproved for general
graphs by Rieck and Yamashita in 2008, is nearly true on cubic graphs, and might
very well be true there definitely.

1 Introduction

A graph G has a finite planar emulator H if H is a planar graph and
there is a graph homomorphism ϕ : V (H) → V (G) where ϕ is locally
surjective, i.e. for every vertex v ∈ V (H), the neighbours of v in H are
mapped surjectively onto the neighbours of ϕ(v) in G. We also say that
such a G is planar-emulable. If we insist on ϕ being locally bijective, we
get a planar cover.
The concept of planar emulators was proposed in 1985 by M. Fel-

lows [5], and it tightly relates (although of independent origin) to the bet-
ter known planar cover conjecture of Negami [10]. Fellows also raised
the main question: What is the class of graphs with finite planar emula-
tors? Soon later he conjectured that the class of planar-emulable graphs
coincides with the class of graphs with finite planar covers (conjectured to
be the class of projective graphs by Negami [10]—still open nowadays).
This was later restated as follows:

Conjecture 1.1 (M. Fellows, falsified in 2008). A connected graph has
a finite planar emulator if and only if it embeds in the projective plane.

For two decades the research focus was exclusively on Negami’s
conjecture and no substantial new results on planar emulators had

1 Faculty of Informatics, Masaryk University Brno, Czech Republic. Email: xderka@fi.muni.cz,
hlineny@fi.muni.cz

Supported by the research centre Institute for Theoretical Computer Science (CE-ITI); Czech Sci-
ence foundation project No. P202/12/G061.
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been presented until 2008, when emulators for two nonprojective
graphs were given by Rieck and Yamashita [12], effectively disproving
Conjecture 1.1.

Planar emulable nonprojective graphs. Following Rieck and Ya-
mashita, Chimani et al [2] constructed finite planar emulators of all the
minor minimal obstructions for the projective plane except those which
have been shown non-planar-emulable already by Fellows (K3,5 and “two
disjoint k-graphs” cases, Def. 2.1), and K4,4 − e. The graph K4,4 − e is
thus the only forbidden minor for the projective plane where the existence
of a finite planar emulator remains open. Even though we do not have a
definite replacement for falsified Conjecture 1.1 yet, the results obtained
so far [2, 4] suggest that, vaguely speaking, up to some trivial opera-
tions (“planar expansions”), there is only a finite family of nonprojective
planar-emulable graphs. A result like that would nicely correspond with
the current state-of-art [9] of Negami’s conjecture.

While characterization of planar-emulable graphs has proven itself to
be difficult in general, significant progress can be made in a special case.
Negami’s conjecture has been confirmed in the case of cubic graphs in
[11], and the same readily follows from [9]. Here we prove:

Definition 1.2. A planar expansion of a graph G is a graph which results
from G by repeatedly adding a planar graph sharing one vertex with G,
or by replacing an edge or a cubic vertex with a connected planar graph
with its attachments (two or three, resp.) on the outer face.

Theorem 1.3. If a cubic nonprojective graph H has a finite planar emu-
lator, then H is a planar expansion of one of two minimal cubic nonpro-
jective graphs shown in Figure 1.1.

A computerized search for possible counterexamples to Conjecture 1.1,
carried out so far [4], shows that a nonprojective planar-emulable graphG
cannot be cubic, unless G contains a minor isomorphic to E2, K4,5−4K2,
or a member of the so called “K7 −C4 family”. Our new approach, The-
orem 1.3, dismisses the former two possibilities completely and strongly
restricts the latter one.

2 Cubic planar-emulable graphs

The purpose of this section is to prove Theorem 1.3. In order to do so,
we need to introduce some basic related concepts.

Definition 2.1. Graph G is said to contain two disjoint k-graphs if there
exist two vertex-disjoint subgraphs J1, J2 ⊆ G such that, for i = 1, 2,
the graph Ji is isomorphic to a subdivision of K4 or K2,3, the subgraph
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Figure 1.1. Two (out of six in total) cubic irreducible obstructions for the projec-
tive plane [6]. Although these graphs result by splitting nonprojective graphs for
which we have finite planar emulators [2] (namely K7 −C4 and its “relatives”),
it is still open whether they are planar-emulable.

G − V (Ji) is connected and adjacent to Ji , and contracting in G all the
vertices of V (G) \ V (Ji) into one results in a nonplanar graph.
Proposition 2.2 (Fellows, unpublished).

a) The class of planar-emulable graphs is closed under taking minors.
b) If G is projective and connected, then G has a finite planar emulator

in form of its finite planar cover.
c) If G contains two disjoint k-graphs or a K3,5 minor, then G is not

planar-emulable.
d) G is planar-emulable if, and only if, so is any planar expansion ofG.

Proof of Theorem 1.3. Glover and Huneke [6] characterized the cubic
graphs with projective embedding by giving a set I of six cubic graphs
such that; if H is a cubic graph that does not embed in the projective
plane, then H contains a graph G ∈ I as a topological minor.
Let us point out that four out of the six graphs in I contain two dis-

joint k-graphs, and so only the remaining two—G1 ∈ I and G2 ∈ I of
Figure 1.1, can potentially be planar-emulable. Hence the cubic graph
H in Theorem 1.3 contains one of G1,G2 as a topological minor. In
other words, there is a subgraph G ′ ⊆ H being a subdivision of a cubic
G ∈ {G1,G2}.
We call a bridge of G ′ in H any connected component B of H−V (G ′)

together will all the incident edges. In a degenerate case, B might consist
just of one edge from E(H) \ E(G ′) with both ends in G ′. We would
like, for simplicity, to speak about positions of bridges with respect to the
underlying cubic graph G: Such a bridge B connects to vertices u of G ′
which subdivide edges f of G—this is due to the cubic degree bound,
and we (with neglectable abuse of terminology) say that B attaches to
this edge f in G itself.
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Figure 2.1. Illustration for Lemma 2.3. The trivial bridge on the left takes over
the role of a branch vertex of G in the subdivision, resulting in existence of a
nontrivial bridge. The other case shows when the transitive closure of declared
attachment becomes important.

A bridge B is nontrivial if B attaches to some two nonadjacent edges of
G, and B is trivial otherwise. For a trivial bridge B; either B attaches to
only one edge in G, and we say exclusively, or all the edges to which B
attaches in G have a vertex w in common and we say that B attaches to
this w.
We divide the rest of the proof into two main cases; that either some

bridge of G ′ in H is nontrivial or all such bridges are trivial. In the “all-
trivial” case one more technical condition has to be observed: Suppose
B1, B2 are bridges such that B1 attaches to w and B2 attaches to an edge
f incident to w in G (perhaps B2 exclusively to f ). On the path Pf

which replaces (subdivides) f in G ′, suppose that B2 connects to some
vertex which is closer to w on Pf than some other vertex to which B1
connects to. Then we declare that B2 attaches to w, too. This is well
defined because of the following (Figure 2.1):

Claim 2.3. Let G ′ ⊆ H be a subdivision of G where G, H are cubic
graphs. Suppose that all bridges of G ′ in H are trivial, and that a bridge
B0 attaches (is declared to) both to w1 and w2, where w1w2 ∈ E(G).
Then there is G ′′ ⊆ H which is a subdivision of G, too, and a nontrivial
bridge of G ′′ in H exists.

In the described situation, we call B0 a conflicting bridge. We then
continue with the following claim obtained by routine examination of
(collections of) trivial bridges in view of Definition 2.1 (Figure 2.2).

Claim 2.4. Let G ′ ⊆ H be a subdivision of G where G, H are cubic
nonprojective graphs and G does not contain two disjoint k-graphs. Sup-
pose that all bridges of G ′ in H are trivial, and no one is conflicting
(cf. Lemma 2.3). Then H does not contain two disjoint k-graphs if, and
only if, H is a planar expansion of G.

After that, we use an exhaustive computerized enumeration of nontriv-
ial bridges to conclude the following. We would like to point out that
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Figure 2.2. Illustration of three collections of trivial bridges that attach to a
cubic vertex u. The first collection gives a planar expansion, while the other two
are the “minimal” non-planar-expansion cases.

due to necessity of the K3,5 case, there is likely no simple handwritten
argument summarizing the cases similarly as done in Lemma 2.4.

Claim 2.5. Let G ′ ⊆ H be a subdivision of G where G, H are cubic
nonprojective graphs. If there exists a nontrivial bridge of G ′ in H , then
H contains two disjoint k-graphs or a K3,5 minor.

3 Conclusions

We identified two graphs (Figure 1.1), for which existence of finite planar
emulator now becomes extremely interesting. We would like to point out
that similarity of these two graphs suggest that if one has a finite planar
emulator, so does the other one. If we however elaborate on this idea and
attempt to “unify” the graphs in the form of a common supergraph, we
have to use a nontrivial bridge. Perhaps, this provides a clue that these
two graphs should not be planar-emulable. Thus, providing an answer
for any of these two graphs would bring a better insight to the problem of
planar emulations not only for the cubic case, but also in general.
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[7] P. HLINĚNÝ, “Planar Covers of Graphs: Negami’s Conjecture”,
Ph.D. Dissertation, Georgia Institute of Technology, Atlanta, 1999.
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Random planar graphs
with minimum degree two and three

Marc Noy1 and Lander Ramos1

1 Main results

The main goal of this paper is to enumerate planar graphs subject to a
condition on the minimum degree δ. Asking for δ ≥ 1 is not very inter-
esting, since a random planar graph only contains a constant number of
isolated vertices. The condition δ ≥ 2 is directly related to the concept
of the core of a graph. Given a connected graph G, its core (also called
2-core in the literature) is the maximum subgraph C with minimum de-
gree at least two. The core C is obtained from G by repeatedly removing
vertices of degree one. Conversely, G is obtained by attaching rooted
trees at the vertices of C. The kernel of G is obtained by replacing each
maximal path of vertices of degree two in C by a single edge. The kernel
has minimum degree at least three, and C can be recovered from K by
replacing edges by paths. As shown in the figure below, the kernel may
have loops and multiple edges, which must be taken into account since
our goal is to analyze simple graphs. Another difficulty is that when re-
placing loops and multiple edge by paths the same graph can be produced
several times. To this end we weight multigraphs appropriately according
to the number of loops and edges of each multiplicity. We remark that
the concepts of core and kernel of a graph are instrumental in the theory
of random graphs [3, 5].

1 Department of Applied Mathematics, Universitat Politècnica de Catalunya, Barcelona. Email:
marc.noy@upc.edu, landertxu@gmail.com
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Notice that G is planar if and only if C is planar, if and only if K
is planar. It is convenient to introduce the following definitions: a 2-
graph is a connected graph with minimum degree at least two, and a
3-graph is a connected graph with minimum degree at least three. In
order to enumerate planar 2- and 3-graphs, we use generating functions.
From now on all graphs are labelled and generating functions are of the
exponential type. Let cn, hn and kn be, respectively, the number of planar
connected graphs, 2-graphs and 3-graphs with n vertices, and let

C(x) =
∑

cn
xn

n! , H(x) =
∑

hn
xn

n! , K (x) =
∑

kn
xn

n!
be the associated generating functions. Also, let tn = nn−1 be the number
of (labelled) rooted trees with n vertices and let T (x) =∑

tnxn/n!. The
decomposition of a connected graph into its core and the attached trees
implies the following equation

C(x) = H(T (x))+U(x), (1.1)

where U(x) = T (x) − T (x)2/2 is the generating function of unrooted
trees. Since C(x) is known completely [2], we have access to H(x).
Since T (x) = xeT (x), we can invert the above relation and obtain

H(x) = C(xe−x)− x + x2

2
.

The equation defining K (x) is more involved and requires the bivariate
generating function

C(x, y) =
∑

cn,k y
k x

n

n! ,

where cn,k is the number of connected planar graphs with n vertices and
k edges. We can express K (x) in terms of C(x, y) as

K (x) = C(A(x), B(x))+ E(x), (1.2)

where A(x), B(x), E(x) are certain elementary functions.
The knowledge of C(x) as the solution of a system of functional-

differential equations [2] leads to the following expression:

cn ∼ κn−7/2γ nn!,
where κ ≈ 0.4261 · 10−5 and γ ≈ 27.2269 are computable constants.
Analyzing the enriched generating function C(x, y) it is possible to ob-
tain results on the number of edges and other basic parameters in random
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planar graphs. Our main goal is to extend these results to planar 2-graphs
and 3-graphs.
Using Equations (1.1) and (1.2) we obtain precise asymptotic estimates

for the number of planar 2- and 3-graphs.

Theorem 1.1. The numbers of planar 2- and 3-graphs are asymptoti-
cally

hn ∼ κ2n−7/2γ n2 n!, γ2 ≈ 26.2076,
kn ∼ κ3n−7/2γ n3 n!, γ2 ≈ 21.3102.

As is natural to expect, hn and kn are exponentially smaller than cn . Also,
the number of 2-connected planar graphs is known to be asymptotically
c · n−7/2(26.1849)nn! (see [2]). This is consistent with the estimate for
hn , since a 2-connected has minimum degree at least two.
By enriching Equations (1.1) and (1.2) taking into account the number

of edges, we prove the following.

Theorem 1.2. The number of edges in random planar 2-graphs and 3-
graphs are both asymptotically normal with linear expectation and vari-
ance. The respective expected values are asymptotically μ2n and μ3n,
where μ2 ≈ 2.2614 and μ3 ≈ 2.3227.
The number of edges in connected planar graphs was shown to be [2]

asymptotically normal with expectation ∼ μn, where μ ≈ 2.2133. This
conforms to our intuition that increasing the minimum degree also in-
creases the expected number of edges.
It is also of interest to analyze the size Xn of the core in a random

connected planar graph, and the size Yn of the kernel in a random planar
2-graph.

Theorem 1.3. The variables Xn and Yn are asymptotically normal with
linear expectation and variance and

EXn ∼ λ2n, λ2 ≈ 0.9626,
EYn ∼ λ3n, λ3 ≈ 0.8259.

We remark that the value of λ2 has been recently found byMcDiarmid [4]
using alternative methods. Also, we remark that the expected size of
the largest block (2-connected component) in random connected pla-
nar graphs is asymptotically 0.9598n. Again this is consistent since the
largest block is contained in the core.
The picture is completed by analyzing the size of the trees attached to

the core.
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Theorem 1.4. The number of trees with k vertices attached to the core of
a random planar connected graph is asymptotically normal with linear
expectation and variance. The expected value is asymptotically

C
kk−1

k! ρ
kn,

where C > 0 is a constant ρ ≈ 0.03673 corresponding to the radius of
convergence of C(x).

For k large, the previous quantity grows like

C√
2π
· k−3/2(ρe)kn.

This quantity is negligible if k � log(n)/(log(1/ρe)). Using the first
and second moment method, it can be shown that the size of the largest
tree attached to the core is in fact asymptotically

log(n)

log(1/ρe)
.

Our last result concerns the distribution of the vertex degrees in random
planar 2-graphs and 3-graphs. It was proved in [1] that the probability
that a random vertex has degree k ≥ 1 in a random planar tends to a
constant d(k). The probability generating function

p(w) =
∑
k≥1

d(k)wk

is explicit although very complicated [1]. He prove a similar result for
planar 2- and 3-graphs.

Theorem 1.5. For each fixed k ≥ 2 the probability that a random ver-
tex has degree k in a random planar 2-graph tends to a constant dH (k),
and for each fixed k ≥ 3 the probability that a random vertex has de-
gree k in a random planar 3-graph tends to a constant dK (k). Moreover∑

k≥2 dH (k) =
∑

k≥3 dK (k) = 1, and the probability generating func-
tions

pH (w) =
∑
k≥2

dH (k)w
k, pK (w) =

∑
k≥3

dK (k)w
k

are computable in terms the probability generating function p(w) of con-
nected planar graphs (and other constants related to the enumeration of
planar graphs).
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We show that almost all planar 2-graphs have a vertex of degree two,
and almost all planar 3-graphs have a vertex of degree three. Hence
asymptotically all our results hold for planar graphs with minimum de-
gree exactly two and three, respectively. In addition, all the results for
connected planar graphs extend easily to arbitrary planar graphs.

2 Results for maps

We also find analogous results for planar maps. They are simpler to de-
rive and serve as a preparation for the results on planar graphs, while at
the same time they are new and interesting by themselves. A planar map
is a connected planar multigraph (loops and multiple edges are allowed)
embedded in the plane up to homeomorphism. A map is rooted if one
of the edges is distinguished and given a direction. In this way a rooted
map has a root edge and a root vertex (the tail of the root edge). A rooted
map has no automorphisms, in the sense that every vertex, edge and face
is distinguishable.
The enumeration of rooted planar maps was started by Tutte in his

seminal paper [6]. If mn is the number of maps with n edges, then

mn = 2 · 3n
(n + 2)(n + 1)

(
2n

n

)
, n ≥ 0.

The generating function M(z) =∑
n≥0mnzn is equal to

M(z) = 18z − 1+ (1− 12z)3/2
54z2

. (2.1)

Either from the explicit formula or from the expression for M(z) and
singularity analysis, it follows that

mn ∼ 2√
π
n−5/212n.

If mn,k is the number of maps with n edges and degree of the root face
equal to k, then M(z, u) =∑

mn,kukzn satisfies the equation

M(z, u) = 1+ zu2M(z, u)2 + uz
uM(z, u)− M(z, 1)

u − 1 . (2.2)

By duality, M(z, u) is also the generating function of maps in which u
marks the degree of the root vertex.
The core and the kernel of a map are defined as for connected graphs.

The situation is simpler for kernels since loops and multiple edges are
allowed. We define a 2-map as a map with minimum degree at least two,
and a 3-map as a map with minimum degree at least three.
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Theorem 2.1. Let hn and kn be, respectively, the number of 2-maps and
3-maps with n edges. The associated generating functions H(z) and
K (z) are given by

H(x) = 1− x

1+ x
M

(
x

(1+ x)2

)
+ x − 1,

K (x) =
H

(
x

1+ x

)
− x

1+ x
.

The following estimates hold:

hn ∼ κ2n−5/2(5+ 2
√
6)n, kn ∼ κ3n−5/2(4+ 2

√
6)n,

where

κ2 = 2√
π

(
2

3

)5/4
, κ3 = 2√

π

(
4− 4

√
2

3

)5/2
.

The same estimates hold for maps with minimum degree exactly two and
three, respectively.

We also prove a limit law for the size of the core and the kernel in
random maps.

Theorem 2.2. The size Xn of the core of a random map with n edges,
and the size Yn of the kernel of a random 2-map with n edges are asymp-
totically Gaussian with

EXn ∼
√
6

3
n, Var(Xn) ∼ n

6
,

EYn ∼ (2
√
6− 4)n, Var(Yn) ∼ (18

√
6− 44)n.

Furthermore, the size Zn of the kernel of a random map with n edges is
also Gaussian with

EZn ∼
(
4− 4

√
6

3

)
n, Var(Zn) ∼

(
128

3
− 52

3

√
6

)
n.

We also analyze the size of the trees attached to the core of a random
map.
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Theorem 2.3. Let Xn,k count trees with k edges attached to the core of a
random map with n edges. Then Xn,k is asymptotically normal and

EXn,k ∼ αkn
where

αk =
(
4+ 5

3

√
6

)
1

k + 1
(
2k

k

)(
1

12

)k

.

By the same argument as in the previous section, the size of the largest
tree attached to the core is asymptotically log n/ log 3.

Our last result in this section deals with the distribution of the degree of
the root vertex in 2-maps and 3-maps. The limiting probability pM(K )
that a random map has a root vertex (or face) of degree k exists for all
k ≥ 1. The probability generating function of the distribution is known
to be

pM(u) =
∑

pM(k)u
k = u

√
3√

(2+ u) (6− 5 u)3
.

The tail of the distribution is asymptotically

pM(k) ∼ 1

2
√
10π

k1/2
(
5

6

)k

.

We obtain analogous results for 2-maps and 3-maps.

Theorem 2.4. Let pM(u) be as before, and let pH (u) and pK (u) be the
probability generating functions for the distribution of the root degree in
2-maps and 3-maps, respectively. Then we have

pH (u) =
pM

(
w(1+ σ)
1+wσ

)
1+ σ
1+wσ −wσ

1− σ ,

pK (u) = pH (u)− σu2
1− σ .

Furthermore, the limiting probabilities that the degree of the root vertex
is equal to k exists, both for 2-maps and 3-maps, and are asymptotically

pH (k) ∼ 1

8

√
3(1− σ)
π

k1/2
(√

2

3

)k

,

pK (k) ∼ 1

8

√
3

(1− σ)π k
1/2

(√
2

3

)k

.
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Degenerated induced subgraphs of planar
graphs

Robert Lukot’ka1, Ján Mazák1 and Xuding Zhu2

Abstract. A graph G is k-degenerated if it can be deleted by subsequent removals
of vertices of degree k or less. We survey known results on the size of maximal k-
degenerated induced subgraph in a planar graph. In addition, we sketch the proof
that every planar graph of order n has a 4-degenerated induced subgraph of order
at least 8/9 · n. We also show that in every planar graph with at least 7 vertices,
deleting a suitable vertex allows us to subsequently remove at least 6 more vertices
of degree four or less.

1 Introduction

A graph G is k-degenerated if every subgraph of G has a vertex of de-
gree k or less. Equivalently, a graph is k-degenerated if we can delete
the whole graph by subsequently removing vertices of degree at most k.
The reverse of this sequence of removed vertices can be used to colour
(or even list-colour) G with k + 1 colours in a greedy fashion. Graph de-
generacy is therefore a natural bound on both chromatic number and list
chromatic number. In fact, for some problems graph degeneracy provides
the best known bounds on the choice number [3].
Every planar graph has a vertex of degree at most 5. Since a sub-

graph of a planar graph is planar, it also has a vertex of degree at most
5. Therefore, every planar graph is 5-degenerated. If k < 5, we can still
choose at least some of the vertices of G, and if these vertices induce a

1 Trnava University in Trnava, Slovakia. Email: robert.lukotka@truni.sk, jan.mazak@truni.sk
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k-degenerated graph, then they can be greedily coloured by k+1 colours.
Thus an interesting question is how large k-degenerated subgraph can be
guaranteed in a planar graph G.
Without the restriction to planar graphs Alon, Kahn, and Seymour [2]

determined exactly how large k-degenerated induced subgraph one can
guarantee depending only on the degree sequence ofG. For planar graphs
the only settled case is k = 0, due to four colour theorem. Except for
k = 4 all other values of k were examined. Most attention is devoted to
the case k = 1. The Albertson-Berman conjecture [1] asserts that every
planar graph has an induced forest with at least half of the vertices. The
best known bound, guaranteeing a forest of size at least 2/5 · |V (G)|, is
implied by the fact that planar graphs are acyclic 5-colourable [4].
We do not know of any results on maximum 4-degenerated induced

subgraphs of planar graphs. A likely reason is that such a bound is not
interesting for list-colouring applications: Thomassen [5] proved that ev-
ery planar graph is 5-choosable. The rest of this paper focuses on degen-
eracy 4.
We define two operations for vertex removal: deletion and collection.

To delete a vertex v, we remove v and its incident edges from the graph.
To collect a vertex v is the same as to delete v, but to be able to collect
v we require v to be of degree at most 4. The collected vertices induce a
4-degenerated subgraph. Vertices that are deleted or collected are collec-
tively called removed.
Our main results are the following two theorems.

Theorem 1.1. In every planar graph G we can delete at most 1/9 of its
vertices in such a way that we can collect all the remaining ones.

Theorem 1.2. In every planar graph with at least 7 vertices we can
delete a vertex in such a way that we can subsequently collect at least
6 vertices.

These results are probably not the best possible. The worst example
known to us is the icosahedron from which we need to delete one vertex
out of twelve to be able to collect the remaining eleven. We believe that
this is the worst case possible.

Conjecture 1.3. In each planar graph G we can delete at most 1/12 of
its vertices in such a way that we can collect all the remaining ones.

Conjecture 1.4. In each planar graph with at least 12 vertices we can
delete a vertex in such a way that we can subsequently collect at least 11
vertices.
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2 Sketch of the proof

To prove Theorem 1.1 we incorporate the degrees of the vertices of G to
the statement; let

 (G) =
∑
v∈V (G)

(deg(v)− 5). (2.1)

We prove the following theorem by induction on the number of vertices
of G. The function tc(G) stands for the number of tree components of G.

Theorem 2.1. If G is a planar graph, then there is a set S ⊂ V (G) with
at most �(G) = |V (G)|/12+ 1/36 · (G)+ 1/18 · tc(G) vertices such
that if we delete S we can subsequently collect all the vertices of G.

Since  (G) + 2 tc(G) ≤ |V (G)|, Theorem 2.1 implies Theorem 1.1.
Theorem 1.2 can be proved alongside Theorem 2.1.
We prove Theorem 2.1 by a discharging procedure. LetG be a minimal

counterexample to Theorem 2.1 (with respect to the number of vertices);
it can be easily shown that G is connected with minimal degree 5. We
embed G into the plane (for now, we let the embedding be arbitrary).

Type Degree Min. number Max. number Maximal
(t) (deg) of non-tr. faces of V5 neigh. charge

(n⊔) (n5) (mc)
10a 10+ 0 3 1
10b 10+ 0 ∞ 1/2
9a 9 1 3 1
9b 9 0 2 1
9c 9 0 3 if consecutive 9/10, 1, 9/10
9d 9 0 9 1/2
8a 8 0 1 1
8b 8 1 2 1
8c 8 2 3 if consecutive 9/10, 1, 9/10
8d 8 0 2 9/10
8e 8 0 8 1/2
7a 7 0 1 4/5
7b 7 1 2 13/20
7c 7 0 2 2/5
7d 7 0 7 1/3
6a 6 1 1 2/5
6b 6 0 6 0

Table 1. Maximal charges that can be send to a vertex.

Each vertex of degree at least 6 is assigned a certain type according to
Table 1. If w is of degree d, is contained on at least n⊔ non-triangular
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faces, and has at most n5 neighbours from V5, then w can be of type t . If
w can have more than one type, then the type of w is the type that occurs
first in the table. Let vw be an edge such that v is of degree 5 and w is
of degree at least 6. For every such edge we define the maximal charge
mc(v,w) that v can send to w. This maximal charge is given in the last
column of Table 1.
We start by assigning initial charges to the vertices and faces of G.

Each vertex v of degree d receives charge 6 − d and each face of length

 receives charge 2(3− 
). According to Euler’s theorem, the total initial
charge is equal to 12. In the discharging procedure, we redistribute the
charges between vertices and faces in a certain way such that no charge is
created or lost. The discharging procedure consists of the following three
steps.

Figure 2.1. Distance discharging (d+ denotes a vertex of degree at least d).

Step 1: Discharging to faces. For each vertex v and for each non-
triangular face that contains v, send 1/2 from v to f , except for two
cases: if v is of degree 6, then send 2/5; and if v is not of degree 6 but
both its neighbours on f are of degree 6, then send 3/5.

Step 2: Distance discharging. In every subgraph of G isomorphic to the
configuration in Figure 2.1 send 1/5 from vertex v to vertex w (vertices
are denoted as in Figure 2.1; the depicted vertices are pairwise distinct;
the numbers indicate degrees).

Step 3: Final discharging of the vertices of degree five. For each vertex
v of degree 5 carry out the following procedure. Order the neighbours w
of v which have degree at least 6 according to the value of mc(v,w)
starting with the largest value; let w1, w2, . . . be the resulting ordering.
If the value of mc(v,w) is the same for two neighbours of v, then we
order them arbitrarily. For i = 1, 2, . . . , send max{mc(v,wi), cha(v)}
from v to wi , where cha(v) denotes the current charge of v.

Since no face can have positive final charge, there exists a vertex with
positive charge. A very technical examination allows us to show that
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if we start with a certain embedding of G, then there is a vertex with
positive final charge not contained in any C3-cut or C4-cut of G.
We examine v together with its neighbourhood; this gives rise to a

number of cases, each of them leading to a contradiction. We demonstrate
this analysis on Configuration 7-3 shown in Figure 2.2 (the numbers in
the right part of the figure indicate the degrees of the vertices shown in
the left part). Since G contains no C3-cut, the triangles depicted in Figure
2.2 are faces and contain no vertices inside. The vertex v is of type 7d.

Figure 2.2. Configuration 7-3.

Configuration 7-3: Suppose first that the vertex v7 has degree at most 7.
Delete v6. Then we can collect v5, v4, v, v1, v2, and v7. We get a new
graph G ′ smaller than G, so there is a set S′ in G ′ with at most �(G ′)
vertices such that if we delete S′, we can collect the rest of G ′. If �(G)−
�(G ′) ≥ 1, we can extend the set S′ by v6 and obtain a contradiction with
the fact that G is a smallest counterexample to Theorem 2.1.
We want show that �(G) − �(G ′) ≥ 1. The hardest part is typically

to compute  (G) −  (G ′). Among the vertices removed from G, four
vertices have degree at least 5, two vertices have degree at least 6, and one
vertex has degree at least 7. After removing these vertices from the sum
(2.1) the value of decreases by at least 4. Moreover, all the neighbours
of the removed vertices have smaller degree in G ′ than in G. From the
fact that v is in noC3-cuts we know that there is no extra edge between the
neighbours of v; all such edges are shown in Figure 2.2. This decreases
 further by at least 17. Therefore (G)− (G ′) ≥ 21. It can be shown
that no new tree components are created, so together �(G) − �(G ′) ≥
42/36 ≥ 1.
We are left with the case where v7 has degree at least 8. If v7 has

another neighbour w of degree 5 besides v1, then we can delete v7 and
collect v1, v2, v, v4, v5, andw (again we need to check that� decreases by
at least 1). Otherwise, v7 has only one neighbour of degree 5, the vertex
v1. According to Table 1, mc(v1, v7) = 1, so v1 discharges nothing into
v in Step 3 and the final charge of v is at most 0. This contradicts the fact
that v has positive charge after the discharging.
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Strong chromatic index of planar graphs
with large girth

Mickaël Montassier1, Arnaud Pêcher2 and André Raspaud2

Abstract. Let � ≥ 4 be an integer. We prove that every planar graph with
maximum degree� and girth at least 10�+46 is strong (2�−1)-edge-colorable,
that is best possible (in terms of number of colors) as soon as G contains two
adjacent vertices of degree �. This improves [2] when � ≥ 6.

1 Introduction

A strong k-edge-coloring of a graph G is a mapping from E(G) to
{1, 2, . . . , k} such that every two adjacent edges or two edges adjacent
to a same edge receive two distinct colors. The strong chromatic index
of G, denoted by χ ′s(G), is the smallest integer k such that G admits a
strong k-edge-coloring.
Strong edge-colorability was introduced by Fouquet and Jolivet [7, 8]

and was used to solve the frequency assignment problem in some radio
networks.
An obvious upper bound on χ ′s(G) (given by a greedy coloring) is

2�(� − 1) + 1 where � is the maximum degree of G. The following
conjecture was posed by Erdős and Nešetřil [4,5] and revised by Faudree,
Schelp, Gyárfás and Tuza [6]:

Conjecture 1.1 (See [4–6]). If G is a graph with maximum degree �,
then

χ ′s(G) ≤
5

4
�2 if � is even and

1

4
(5�2 − 2�+ 1) otherwise.

Moreover, they gave examples of graphs whose strong chromatic indices
reach the upper bounds.
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The strong chromatic index was studied for different families of graphs,
as cycles, trees, d-dimensional cubes, chordal graphs, Kneser graphs,
see [10]. For complexity issues, see [9, 10].
Faudree, Schelp, Gyárfás exhibited, for every integer � ≥ 2, a planar

graph with maximum degree� and strong chromatic index 4�−4. They
established the following upper bound:

Theorem 1.2 ([6]). Planar graphs with maximum degree � are strong
(4�+ 4)-edge-colorable.
The purpose of this paper is to prove that if the girth is large enough,

then the upper bound can be strengthened to 2� − 1, which is best pos-
sible as soon as G contains two adjacent vertices of degree �. A first
attempt was done Borodin and Ivanova [2] who proved: every planar
graph with maximum degree � is strong (2� − 1)-edge-colorable if its
girth is at least 40

⌊
�
2

⌋ + 1. Here we improved the girth condition for
every � ≥ 6:
Theorem 1.3. Let F� be the family of planar graphs with maximum de-
gree at most �. Every graph of F� with girth at least 10� + 46 admits
a strong (2�− 1)-edge-coloring when � ≥ 4.
Next section is devoted to the outline of the proof of Theorem 1.3. For

the full version of this paper, see [3].

2 On planar graphs with large girth

A walk in a graph is a sequence of edges where two consecutive edges
are adjacent. Throughout the paper, by path we mean a walk where every
two consecutive edges are distinct. So a vertex or an edge can appear
more than once in a path. By cycle we mean a closed path (the first and
last edges of the sequence are adjacent).
The proof of Theorem 1.3 is based on some properties of odd graphs.
Let n be an integer; the odd graph On may be defined as follows:

• the vertices are the (n − 1)-subsets of {1, 2, . . . , 2n − 1}.
• two vertices are adjacent if and only if the corresponding subsets are
disjoint.

The odd graph On is n-regular and distance transitive. Moreover its odd-
girth is 2n − 1 and its even-girth is 6 [1]. We will use the notation S(x)
to denote the subset assigned to the vertex x in On . Also we can label
every edge xy by the label {1, . . . , 2n − 1} \ (S(x)∪ S(y)). Remark that
the obtained edge-labeling is a strong edge-coloring. As example, O3
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(the Petersen graph) is depicted in Fig 2.1. To prove Theorem 1.3, we
establish that there is a path of length exactly 2(n−1) between every pair
of vertices (not necessarily distinct) in the odd graph On (n ≥ 4).

Figure 2.1. The odd graph O3 and its edge labeling.

In the following, we consider the case � ≥ 4.
Let G ∈ F� be a counterexample to Theorem 1.3 with the minimum

order. Clearly G is connected and has minimum degree at least 1.

(1) G does not contain a vertex v adjacent to d(v)−1 vertices of degree 1.
By the way of contradiction, suppose G contains such a vertex v. Let u
be a vertex of degree 1 adjacent to v. By minimality of G, G ′ = G − u
admits a strong (2�−1)-edge-coloring. By a simple counting argument,
it is easy to see that we can extend the coloring to uv, a contradiction.
Consider now H = G − {v : v ∈ G, dG(v) = 1}.

(2) The minimum degree of H is at least 2 (by (1)). Graph H is planar
and has the same girth as G.

The following observation is well-known ( [11], Lemma 5):

(3) Every planar graph with minimum degree at least 2 and girth at least
5d + 1 contains a path consisting of d consecutive vertices of degree 2.
Let d = 2� + 9. It follows from the assumption on the girth, (2) and
(3) that H contains a path v0v1v2 . . . vd+1 in which every vertex vi for
1 ≤ i ≤ d has degree 2. In G, the path v1 . . . vd is an induced path and
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every vi (1 ≤ i ≤ d) may be adjacent to some vertices of degree 1, by
definition of H and (1).
Now, consider G ′ obtained from G by

• removing all the pendant vertices adjacent to v1 . . . vd
• removing the vertices v2 to vd−1.
By minimality of G, G ′ admits a strong (2� − 1)-edge coloring φ. Our
aim is to extend φ to G and get a contradiction.
Let cφ(u) be the set of colors of the edges incident to u. We can as-

sume that |cφ(v0)| = |cφ(vd+1)| = � (by adding vertices of degree 1
adjacent to v0 and vd+1 in G ′ as 2� < d and so |V (G ′)| < |V (G)|).
Let x = φ(v0v1) and y = φ(vdvd+1). For a set S of colors, define
S = {1, . . . , 2�− 1} \ S.
Extending φ to G is equivalent to find a special path P in the odd graph

O�. This path P must have the following properties:

P1. its length is d + 1. Let P = u0u1 . . . ud+1;
P2. u0 is the vertex of O� such that S(u0) = cφ(v0);
P3. ud+1 is the vertex of O� such that S(ud+1) = cφ(vd+1);
P4. the edge u0u1 is labeled with x ;
P5. the edge udud+1 is labeled with y.

Informally speaking, this path may be seen as a mapping of v0 . . . vd+1
into O�. If such a path exists, then one can extend φ to G by coloring the
edges incident to vi with colors of S(ui); the edge vivi+1 is colored with
the label of the edge uiui+1 in O� . In the following, if P is a path, then
we will denote by ||P|| the length (number of edges) of the path P .
As On is distance transitive and its even-girth is 6 [1], we have:

(4) Let xyz be a simple path of length 2 of On with n ≥ 3. Then xyz is
contained in a cycle of length 6.

(5) Let x be a vertex of On with n ≥ 3. Then x is contained in a cycle
of length 2k for any integer k ≥ 3.

The core of the proof is the following lemma (whose proof is omitted in
this extended abstract):

Lemma 2.1. Let u and v be two (not necessarily distinct) vertices of On

with n ≥ 4. There exists a simple path linking u and v of length exactly
2(n − 1).
We are now able to exhibit the path P linking u0 and ud+1. Let Ps =

u0s1 . . . s2(�−1)−1ud+1 be a path linking u0 and ud+1 of length 2(� − 1)
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in O�. Let u1 be the neighbor of u0 so that the edge u0u1 is labeled with
x . Let ud be the neighbor of ud+1 so that the edge udud+1 is labeled with
y. As � ≥ 3, let t be a neighbor of u0 distinct from u1 and s1, and let
w be a neighbor of ud+1 distinct from ud and s2(�−1)−1. Finally, by (4),
let C1 be a 6-cycle containing tu0u1 and let C2 be a 6-cycle containing
wud+1ud .

1. We first start from u0 making a loop around C1 going through first u1.
Hence P2 and P4 are satisfied.

2. We then leave u0 to ud+1 going through Ps .
3. Finally we make a loop around C2 going through first w. Hence P3
and P5 are satisfied.

Finally observe that ||P|| = 6+||Ps ||+6 = 2(�−1)+12 = 2�+10 =
d + 1 as required by P1.
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On homomorphisms of planar signed
graphs to signed projective cubes

Reza Naserasr1, Edita Rollová2 and Éric Sopena3

Abstract. We conjecture that every planar signed bipartite graph of unbalanced
girth 2g admits a homomorphism to the signed projective cube of dimension 2g−
1. Our main result is to show that for a given g, this conjecture is equivalent to
the corresponding case (k = 2g) of a conjecture of Seymour claiming that every
planar k-regular multigraph with no odd edge-cut of less than k edges is k-edge-
colorable.

1 Preliminaries

It is a classic result of Tait from 1890 that the Four-Color Theorem (Con-
jecture at that time) is equivalent to the statement that every cubic bridge-
less planar graph is 3-edge-colorable. It is easily observed that if a k-
regular multigraph is k-edge-colorable, then the number of edges with
exactly one end in X , assuming |X | is odd, is at least k. Seymour conjec-
tured in 1975 that for planar graphs the converse is also true:

Conjecture 1.1 (Seymour [6]). Every k-regular planar multigraph with
no odd edge-cut of less than k edges is k-edge-colorable.

In this work we focus on a direct extension of the Four-Color Theorem
using homomorphisms of signed graphs and its relation with Seymour’s
conjecture. The theory of homomorphisms of signed graphs includes in
particular the theory of graph homomorphisms. Here we introduce the
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basic notations but we refer to [4], to [5] and to references mentioned
there for more details.
Given a graph G, a signature on G is a mapping that assigns to each

edge of G either a positive or a negative sign. A signature is normally
denoted by the set � of negative edges. Given a signature � on a graph
G, resigning at a vertex v is to change the sign of each edge incident with
v. Two signatures �1 and �2 on G are equivalent if one can be obtained
from the other by a sequence of resignings or, equivalently, by changing
the signs of the edges of an edge-cut. A signed graph, denoted (G, �), is
a graph together with a class of equivalent signatures where � could be
any member of the class.
An unbalanced cycle in a signed graph (G, �) is a cycle having an odd

number of negative edges. Note that this is independent of the choice of
a representative signature. Furthermore, the notion of unbalanced cycle
is, in some sense, an extension of the classic notion of odd cycle, as a
cycle of (G, E(G)) is unbalanced if and only if it is an odd cycle. The
unbalanced-girth of (G, �) is then the shortest length of an unbalanced
cycle of (G, �).

Theorem 1.2 (Zaslavsky [7]). Two signatures �1 and �2 on a graph G
are equivalent if and only if they induce the same set of unbalanced cy-
cles.

A cycle that is not unbalanced, i.e., a cycle that has an even number of
negative edges (possibly none) is called balanced.
An important subclass of signed graphs, called consistent signed

graphs, is the class of signed graphs whose balanced cycles are all of
even length and whose unbalanced cycles are all of the same parity. This
class itself consists of two parts. When all the unbalanced cycles are odd,
then the set of unbalanced cycles of (G, �) is exactly the set of odd cy-
cles of G, thus in this case, by Theorem 1.2, E(G) is a signature. Such a
signed graph will then be called an odd signed graph. When all balanced
and unbalanced cycles are even, the graph G must be bipartite, and� can
be any subset of edges. Such a signed graph will be called an even signed
graph.
Given two graphs G and H , a homomorphism of G to H is a mapping

φ : V (G) → V (H) such that if xy ∈ E(G) then φ(x)φ(y) ∈ E(H).
Given two signed graphs (G1, �1) and (G2, �2)we say that (G1, �1) ad-
mits a signed homomorphism, or a homomorphism for short, to (G2, �2)

if there are signatures �′1 and �
′
2 equivalent to �1 and �2, respectively,

and a homomorphism ϕ of G1 to G2 such that ϕ also preserves the signs
of edges given by �′1 and �

′
2. The binary relation (G1, �1)→ (G2, �2),
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which denotes the existence of a homomorphism of (G1, �1) to (G2, �2),
is an associative one.
Using the definition of signed projective cube from the later paragraph,

the following conjecture is the main concern of this work:

Conjecture 1.3. Every consistent planar signed graph of unbalanced
girth k admits a homomorphism to the signed projective cube of dimen-
sion k − 1.
In an unpublished manuscript [1], B. Guenin, after introducing the

notion of signed graph homomorphisms, proposed that the larger class
of consistent signed graphs with an additional property (having no
(K5, E(K5))-signed-minor) satisfies the same conclusion. He has shown
relations between his conjecture and several other conjectures.
The case k = 3 of Conjecture 1.3 is the Four-Color Theorem. For odd

values of k it turns out that all the edges of both sides are negative, and
thus the problem is reduced to a graph homomorphism problem. There-
fore, by [3], for each such k this conjecture is equivalent to Conjecture 1.1
with the corresponding value of k. In this work we prove the analog for
even values of k and thus we examine only the following case of the
conjecture.

Conjecture 1.3 (even case). Every planar even signed graph of unbal-
anced girth at least 2g admits a homomorphism to SPC2g−1.
We now introduce signed projective cubes and some of their properties.
The projective cube of dimension d, denoted PCd , is the Cayley graph

(Zd
2, {e1, e2, . . . , ed} ∪ {J }) where ei is the vector of Zd

2 with the i-th co-
ordinate being 1 and other coordinates being 0 and J = (1, 1, 1, . . . , 1).
Let J be the set of edges corresponding to J . We define the signed
projective cube of dimension d, denoted SPCd , to be the signed graph
(PCd,J ).

Theorem 1.4 ([5]). All balanced cycles of SPCd are of even length, all
unbalanced cycles of SPCd are of the same parity, and the unbalanced
girth of SPCd is d + 1. Furthermore, for each unbalanced cycle UC of
SPCd and for each x ∈ {e1, e2, . . . , ed} ∪ {J }, there is an odd number of
edges of UC which correspond to x .

Using Theorem 1.4 and Theorem 1.2 we get that the signed projective
cube SPC2d (resp. SPC2d−1) is an odd (resp. even) signed graph and
thus if a signed graph (G, �) admits a homomorphism to SPC2d (resp.
SPC2d−1), we conclude that (G, �)must also be odd (resp. even). Thus,
in general, consistent signed graphs are the only graphs that can map to
signed projective cubes. The following theorem shows that the problem
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of finding a mapping of a consistent signed graph to a signed projective
cube is equivalent to a packing problem.

Theorem 1.5 ([1, 5]). An even (resp. odd) signed graph admits a homo-
morphism to SPC2d−1 (resp. SPC2d) if and only if it admits at least
2d − 1 (resp. 2d) edge disjoint signatures.

2 An extension of the Four-Color Theorem

A key lemma in the study of homomorphism properties of a planar graph
is the folding lemma of Klostermeyer and Zhang [2]. By considering
unbalanced cycles instead of odd cycles in the lemma, using the ideas of
Section 4 in [2] we will get the same result for the class of planar even
signed graphs.

Lemma 2.1 (Folding lemma). [5] Let G be a planar even signed graph
of unbalanced girth at least g. If C = v0 · · · vr−1v0 is a facial cycle of
G with r �= g, then there is an integer i ∈ {0, . . . , r − 1} such that the
graph G ′ obtained from G by identifying vi−1 and vi+1 (subscripts are
taken modulo r) is still of unbalanced girth g.

By repeated application of this lemma we conclude that:

Corollary 2.2. Given a planar even signed graph (G, �) of unbalanced
girth at least g, there is a homomorphic image (H, �1) of (G, �) such
that: (i) H is planar, (i i) (H, �1) is an even signed graph, (i i i) (H, �1)
is of unbalanced girth g and (iv) every facial cycle of (H, �1) is an
unbalanced cycle of length g.

We are now ready to prove the main theorem of the paper.

Theorem 2.3. The following two statements are equivalent:

(i) Every planar 2g-regular multigraph with no odd edge-cut of less
than 2g edges is 2g-edge-colorable.

(ii) Every planar even signed graph of unbalanced girth at least 2g ad-
mits a homomorphism to SPC2g−1.

Proof. First assume that every planar even signed graph of unbalanced
girth at least 2g admits a homomorphism to SPC2g−1 and let G be a pla-
nar 2g-regular multigraph with no odd edge-cut of less than 2g edges.
Using Tutte’s matching theorem we can easily verify that G admits a per-
fect matching. Let M be a perfect matching of G. Let GD be the dual
of G with respect to some embedding of G on the plane. Since G is
2g-regular, GD is clearly bipartite. Let MD be the edges in GD corre-
sponding to the edges of M . It is now easy to check that (GD,MD) is
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a planar even signed graph of unbalanced girth 2g. Therefore, by our
main assumption, (GD,MD) admits a homomorphism to SPC2g−1. This
mapping induces a 2g-edge-coloring on GD (not necessarily a proper
edge-coloring) using colors e1, . . . , e2g−1, J . By Theorem 1.4 every un-
balanced cycle has received exactly 2g different colors. In particular each
face of GD, which is an unbalanced cycle of length 2g, has received all
2g colors. Thus reassigning these colors to their corresponding edges in
G will result in a proper 2g-edge-coloring of G.
Now we assume that every planar 2g-regular multigraph with no odd

edge-cut of less than 2g edges is (properly) 2g-edge-colorable. Let (G,�)
be a plane even signed graph of unbalanced girth 2g. We would like to
prove that this signed graph admits a homomorphism to SPC2g−1. By
Corollary 2.2 we may assume that each face of (G, �) is an unbalanced
cycle of length exactly 2g. Let GD be the dual of G with respect to
its embedding on the plane. Obviously GD is a 2g-regular multigraph,
furthermore it is easy to check that GD has no odd edge-cut of strictly
less than 2g edges (this is the dual of having unbalanced girth at least
2g). Thus, by our main assumption, GD is 2g-edge colorable. Let Mi be
one of the color classes, which, therefore, is a perfect matching. Let�i be
the edges of G corresponding to the edges of GD in Mi . We claim that�i

is equivalent to �. This is the case because in both (G, �i) and (G, �)
each face is an unbalanced cycle, and any other cycle is unbalanced if
and only if it bounds an odd number of faces. That means that the sets of
unbalanced cycles in both signatures are the same and the claim follows
by Theorem 1.2. To complete the proof note that we have partitioned
edges of G into 2g sets �i each being a signature of (G, �). Thus, by
Theorem 1.5, (G, �) admits a homomorphism to SPC2g−1.

Note that if G is a simple bipartite graph, then the unbalanced girth
of (G, �) is at least 4. Furthermore, note that SPC3 is isomorphic to
(K4,4,M) where M is a perfect matching of K4,4. Therefore:

Corollary 2.4. Every planar even signed graph admits a homomorphism
to (K4,4,M).

Using Theorem 6.2 of [4] it follows that this corollary is stronger than
the Four-Color Theorem. This fact, in the edge-coloring formulation, was
already proved by P. Seymour [6].
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Classification of k-nets embedded
in a plane

Gábor Korchmáros1

Abstract. We present some recent, partly unpublished, results on k-nets embed-
ded in a projective plane PG(2,K) defined over a field K of any characteristic
p ≥ 0, obtained in collaboration with G.P. Nagy and N. Pace.

1 Introduction

A general problem in finite geometry is to determine geometric struc-
tures, such as graphs, designs and incidence geometries, which can be
embedded in a projective plane. Here we deal with k-nets embedded in
a projective plane PG(2,K) defined over a field K of any characteristic
p ≥ 0. They are line configurations in PG(2,K) consisting of k pairwise
disjoint line-sets, called components, such that any two lines from distinct
families are concurrent with exactly one line from each component. The
size of each component of a k-net is the same, the order of the k-net. The
concept of a k-net arose in classical Differential geometry, and there is a
long history about finite k-nets in Combinatorics, especially for k = 3,
related to affine planes, latin squares, loops and strictly transitive permu-
tation sets. In recent years a strong motivation for investigation of k-nets
embedded in PG(2,K) came from Algebraic geometry and Resonance
theory see [2, 8, 9, 13, 14].

2 k-nets embedded in PG(2,K)

The Stipins-Yuzvinsky theorem states that no embedded k-net for k ≥ 5
exists when p = 0; see [11, 14]. Our present investigation of k-nets em-
bedded in PG(2,K) includes groundfields K of positive characteristic

1 Dipartimento di Matematica e Informatica, Università degli Studi della Basilicata, Italia.
Email: gabor.korchmaros@unibas.it
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p, and as a matter of fact, many examples. This phenomena is not unex-
pected since PG(2,K) with K of characteristic p > 0 contains an affine
subplane AG(2,Fp) of order p from which k-nets for 3 ≤ k ≤ p + 1
arise taking k parallel line classes as components. Similarly, if PG(2,K)
also contains an affine subplane AG(2,Fph ), in particular if K = Fq

with q = pr and h|r , then k-nets of order ph for 3 ≤ k ≤ ph + 1 exist
in PG(2,K). Actually, more families of k-nets embedded in PG(2,Fq)

when q = pr with r ≥ 3 arise from Lunardon’s work; see [5, 6]. On the
other hand, no 5-net of order n with p > n is known to exist. This sug-
gests that for sufficiently large p compared with n, the Stipins-Yuzvinsky
theorem remains valid in PG(2,K). Our main result [4] in this direction
proves it:

Theorem 2.1. If p > 3ϕ(n
2−n) where ϕ is the classical Euler function

then no k-net with k ≥ 5 is embedded in PG(2,K).
Our approach also works in zero characteristic and provides a new

proof for the Stipins-Yuzvinksy theorem. A key idea in our proof is to
consider the cross-ratio of four concurrent lines from different compo-
nents of a 4-net. We prove that the cross-ratio remains constant when
the four lines vary without changing component. In other words, every
4-net in PG(2,K) has constant cross-ratio. In zero characteristic, and in
characteristic p with p > 3ϕ(n

2−n), the constant cross-ratio is restricted
to two values only, namely to the roots of the polynomial X2 − X + 1.
From this, the non-existence of k-nets for k ≥ 5 easily follows both in
zero characteristic and in characteristic p with p > 3ϕ(n

2−n). It should
be noted that without a suitable hypothesis on n with respect to p, the
constant cross-ratio of a 4-net may assume many different values, even
for finite fields.
In the complex plane, there is known only one 4-net up to projectivity;

see [11–14]. This 4-net, called the classical 4-net, has order 3 and it
exists since PG(2,C) contains an affine subplane AG(2,F3) of order 3,
unique up to projectivity, and the four parallel line classes of AG(2,F3)
are the components of a 4-net in PG(2,K). It has been conjectured that
the classical 4-net is the only 4-net embedded in PG(2,C).

3 3-nets embedded in PG(2,K)

There are known plenty of 3-nets embedded in PG(2,K). One infi-
nite family arises from plane cubic curves. More precisely, let C be a
plane (possible reducible) cubic curve equipped with its abelian group
(G,+) defined on the set of the nonsingular points of C, take three dis-
tinct cosets H + a, H + b, H + c of a subgroup H of G of order n, such
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that a+b+c = 0. Then, in the dual plane, the lines corresponding to the
points in these three cosets are the component of a 3-net. Such embedded
3-nets in PG(2,K) are called algebraic. The isotopy class of quasi-
groups coordinatizing an algebraic 3-net contains a group isomorphic to
H . Another infinite family arise from tetrahedrons of PG(3,K) by pro-
jection, and called of tetrahedron type. In the dual plane, the components
�1,�2,�3 of a tetrahedron type embedded 3-net lie on the six sides (di-
agonals) of a non-degenerate quadrangle such a way that �i = �i ∪ �i
with �i and �i lying on opposite sides, for i = 1, 2, 3. More precisely,
(�1,�2,�3) can be lifted to the fundamental tetrahedron of PG(3,K)
so that the projection π from the point P0 = (1, 1, 1, 1) on the plane
X4 = 0 returns (�1,�2,�3). For this purpose, it is enough to define the
sets lying on the edges of the fundamental tetrahedron:

�′1 = {(ξ, 0, 1, 0)|ξ ∈ L1}, �′2 = {(0, η, 1, 0)|η ∈ L2},
�′3 = {(1,−ζ, 0, 0)|ζ ∈ L3}, �′1 = {(0, α − 1, 0,−1)|α ∈ M1},
�′2 = {(β − 1, 0, 0,−1)|β ∈ M2}, �′3 = {(0, 0, γ − 1,−1)|γ ∈ M3},
and observe that π(�′i ) = �i and π(�′i ) = �i for i = 1, 2, 3. Moreover,
a triple (P1, P2, P3) of points with Pi ∈ �i ∪ �i consists of collinear
points if and only if if their projection does. Hence, (�′1 ∪ �′2, �′3 ∪
�′1,�

′
2 ∪�′3) can be viewed as a “spatial” dual 3-net realizing the same

group H . Clearly, (�′1 ∪ �′2, �′3 ∪�′1,�′2 ∪�′3) is contained in the sides
of the fundamental tetrahedron. We claim that these sides minus the ver-
tices form an infinite spatial dual 3-net realizing the dihedral group 2.K∗.
To prove this, parametrize the points as follows.

�1 = {x1 = (x, 0, 1, 0), (εx)1 = (0, 1, 0, x) | x ∈ K∗},
�2 = {y2 = (1, y, 0, 0), (εy)2 = (0, 0, 1, y) | y ∈ K∗},
�3 = {z3 = (0,−z, 1, 0), (εz)3 = (1, 0, 0,−z) | z ∈ K∗}.

(3.1)

Then,

x1, y2, z3 are collinear ⇔ z = xy,

(εx)1, y2, (εz)3 are collinear ⇔ z = xy ⇔ εz = (εx)y,
x1, (εy)2, (εz)3 are collinear ⇔ z = x−1y ⇔ εz = x(εy),

(εx)1, (εy)2, z3 are collinear ⇔ z = x−1y ⇔ z = (εx)(εy).
Thus, (�′1∪�′2, �′3∪�′1,�′2∪�′3) is a dual 3-subnet of (�1, �2, �3) and
H is a subgroup of the dihedral group 2.K∗. As H is not cyclic but it has
a cyclic subgroup of index 2, we conclude that H is itself dihedral.
The isotopy class of quasigroups coordinatizing a tetrahedron type 3-

net is a dihedral group. We also know a sporadic example; namely the
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Urzua 3-net of order 8 coordinatized by the quaternion group of order 8;
see [12].
In [3] we are dealt with 3-nets embedded in PG(2,K) which are co-

ordinatized by groups. Our main result is a complete classification for
p = 0:
Theorem 3.1. In the projective plane PG(2,K) defined over an alge-
braically closed field K of characteristic p ≥ 0, let � be am embedded
3-net of order n ≥ 4 coordinatized by a group G. If either p = 0 or
p > n then one of the following holds.

(I) G is either cyclic or the direct product of two cyclic groups, and �
is algebraic.

(II) G is dihedral and � is of tetrahedron type.
(III) G is the quaternion group of order 8, and � is the Urzúa 3-net of

order 8..
(IV) G has order 12 and is isomorphic to Alt4.
(V) G has order 24 and is isomorphic to Sym4.
(VI) G has order 60 and is isomorphic to Alt5.

A computer aided exhaustive search shows that if p = 0 then (IV) (and
hence (V), (VI)) does not occur, see [7]. Theorem 3.1 shows that every
realizable finite group can act in PG(2,K) as a projectivity group. This
confirms Yuzvinsky’s conjecture for p = 0.
A combinatorial characterization of algebraic 3-nets contained in a re-

ducible plane cubic is given in [1]:

Theorem 3.2. Let p > n or p = 0. If a component of a dual 3-net
is contained in a pencil, then the other two components consist of lines
tangents to a unique conic, and the converse also holds.

The proofs of Theorems 3.1 and 3.2 use several results on collineation
groups of PG(2,K) together with the classification of subgroups of
PGL(2,K) due to Dickson. Furthermore, the proof of Theorem 3.2
also uses the “Rédei polynomial approach” of Szőnyi for the study of
blocking-sets in PG(2, q); see [10].
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[10] T. SZŐNYI, Around Rédei’s theorem, Discrete Math. 208179
(1999), 557175.

[11] J. STIPINS, Old and new examples of k-nets in P2,
math.AG/0701046.
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An improved lower bound
on the maximum number
of non-crossing spanning trees

Clemens Huemer1 and Anna de Mier2

Abstract. We address the problem of counting geometric graphs on point sets.
Using analytic combinatorics we show that the so-called double chain point
configuration of N points has �∗(12.31N ) non-crossing spanning trees and
�∗(13.40N ) non-crossing forests. This improves the previous lower bounds on
the maximum number of non-crossing spanning trees and of non-crossing forests
among all sets of N points in general position given by Dumitrescu, Schulz, Shef-
fer and Tóth in 2011. A new upper bound of O∗(22.12N ) for the number of
non-crossing spanning trees of the double chain is also obtained.

1 Introduction

A geometric graph on a point set S (throughout, S has no three collinear
points) is a graph with vertex set S and whose edges are straight-line seg-
ments with endpoints in S. A geometric graph is called non-crossing (nc-
for short) if no two edges intersect except at common endpoints. Count-
ing nc-geometric graphs is a prominent problem in combinatorial geome-
try. In [7] it is proved that no set of N points has more than O∗(141.07N )
nc-spanning trees.3 The maximum number of nc-spanning trees (among
all sets of N points) is very likely much smaller. The point set with most
nc-spanning trees known so far is the so-called double chain. The double
chain of N = 2n points consists of two sets of n points each, one form-
ing a convex chain (the lower chain) and one forming a concave chain
(the upper chain). Furthermore, each straight-line defined by two points
from the upper chain leaves all the points from the lower chain on the
same side, and reversely; see Figure 2.1. Counting nc-geometric graphs

1 Universitat Politècnica de Catalunya, Barcelona, Spain. Email: clemens.huemer@upc.edu. Sup-
ported by Projects MTM2012-30951, DGR2009-SGR1040, and EuroGIGA, CRP ComPoSe: grant
EUI-EURC-2011-4306.

2 Universitat Politècnica de Catalunya, Barcelona, Spain. Email: anna.de.mier@upc.edu. Supported
by Projects MTM2011-24097 and DGR2009-SGR1040.

3 We use the O∗-, !∗-, and �∗-notation to describe the asymptotic growth of the number of geo-
metric graphs as a function of the number N of points, neglecting polynomial factors.
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on the double chain was initiated by Garcı́a et al. [6] who proved that it
has !∗(8N ) triangulations, �∗(9.35N ) nc-spanning trees and �∗(4.64N )
nc-polygonizations, where the latter bound also is the current best lower
bound on the maximum number of nc-polygonizations. The lower bound
for the number of nc-spanning trees of the double chain was subsequently
improved to �∗(10.42N ) [2] and to �∗(12.0026N ) [3]. We further im-
prove this bound to �∗(12.31N ) and also show a new lower bound of
�∗(13.40N ) for the maximum number of nc-forests among all sets of N
points. The methods we use are analytic combinatorics and singularity
analysis, with the same spirit and techniques as in [4]. We finally provide
a new upper bound of O∗(22.12N ) for the number of nc-spanning trees
of the double chain.

2 The lower bound

Theorem 2.1. The double chain on N points has �∗(12.31N ) non-
crossing spanning trees.

In this section we describe a family of trees that gives the desired
bound. Our construction depends on some parameters that need to be
maximized later.
For any spanning tree of the double chain, the vertices on the upper

and lower chains induce two forests FU and FL on a set of n points in
convex position; there are also some edges with one endpoint on each
chain (the interior edges). The first restriction is that we consider trees
where only one vertex in each component of FU is incident to interior
edges; this vertex will be called the mark of the component and we call
FU a marked forest.
Of the several interior edges that are incident to a mark v, let ev be

the rightmost one. The set of edges M1 = {ev : v is a mark} induces
a forest; this forest is uniquely determined by the leftmost edge in each
component (assuming the set of marks is known). The set of these edges
is denoted M2.
Now we pose two further restrictions on our trees. First, no edge ev is

incident with an isolated vertex of FL . Second, for each component C of
FL that is not incident to an edge ev, there is a unique edge joining this
component to a mark mC in FU , and this edge has as endpoint in FL the
leftmost vertex vC in C . Moreover, mC is as to the right as possible.
See Figure 2.1 for an example of such a tree.
We claim that to uniquely determine such a tree, it is enough to give:

s1) A marked nc-forest FU with at least k components on a set of n
points in convex position,
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Figure 2.1. A spanning tree of the double chain. The bold edges are the edges
of M2 and the thin continuous interior edges are the other edges of M1. The
edges in FU and FL are drawn as arcs.

s2) a subset of k of the marks in FU ,
s3) a nc-forest FL on a set of n points in convex position, and
s4) a subset ML of k vertices in FL such that none of these vertices

induces a component of FL .

Indeed, it suffices to do the following:

t1) Match the k marks from s2) with the k vertices in FL (correspond-
ing to the edges of M2);

t2) join the other marks in FU to the leftmost visible vertex in ML

(corresponding to the edges of M1\M2);
t3) for each component of FL that has no vertex in ML , take its leftmost

vertex and join it to the rightmost visible mark;
t4) if the result is not connected, let C1, . . . ,Cr be its connected com-

ponents, from left to right as encountered in the upper chain; for
i ≥ 2, join the leftmost mark in Ci to the rightmost visible vertex
of ML in Ci−1.

It can be shown using the methods of Section 3 that the number of nc-
forests on n points in convex position where each component has a mark
is !∗(9.5816 . . .n), and that for n sufficiently large, at least 40% of them
have 0.2237n or more components each. However, we choose FU in two
steps, as it actually gives us more choice. First we select 
 vertices out of
the n in the upper chain, and mark all of them, and then choose a marked
forest F ′U on n − 
 vertices, such that all components in this forest have
at least two vertices.
To determine the forest FL in s3) and s4) above, we choose m of the n

vertices of the lower chain that will be isolated, and then choose a forest
without isolated vertices on the remaining n − m points.
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The following estimates will be proved in Section 3.

Proposition 2.2.

(i) The number of marked non-crossing forests on n points in convex
position such that no component is an isolated vertex is cn−3/2ωnU (1+
O(1/n)), where ωU = 8.5816 . . . and c is a constant. Moreover, for
n large enough at least 40% of these forests have 0.1332n or more
components.

(ii) The number of non-crossing forests on n points in convex position
such that no component is an isolated vertex is dn−3/2ωnL(1+O(1/n)),
where ωL = 7.2246 . . . and d is a constant.

Setting k = βn, 
 = γ n and m = αn, and ignoring subexponential
terms, we get the following lower bound on the number of nc-spanning
trees of the double chain:(

n

γ n

)
8.5816n−γ n

(
0.1332(n−γ n)+γ n

βn

)(
n

αn

)
7.2246n−αn

(
n−αn
βn

)
.

Note that when choosing the k = βn marks from the upper forest FU we
are actually not using all the available marks, but only the ones that come
from isolated vertices and the first 0.1332(n − γ n) marks of the marked
forest F ′U .
Using the binary entropy function H(x)=−x log2(x)−(1−x) log2(1−

x), we can estimate a binomial coefficient as
(
εn
δn

) ≈ 2εH( δε )n.
The values α = 0.09, β = 0.256, γ = 0.258 give �∗(27.244139N/2) =

�∗(12.3126N ) nc-spanning trees on the double chain on N vertices, thus
proving Theorem 2.1.
Using a similar construction we can also prove a lower bound on the

number of nc-forests of the double chain. The details are omitted due to
lack of space and will appear elsewhere.

Theorem 2.3. The double chain on N points has �∗(13.40N ) non-
crossing forests.

The bound of !∗(9.5816 . . .n) marked forests on n points in convex
position implies a bound on the number of nc-spanning trees of the single
chain. This point set has triangular convex hull and all but one point p
of the set form a convex chain; also see [1]. To count the number of nc-
spanning trees of this set, connect each mark of a tree in a forest on the
convex chain to p.

Corollary 2.4. The single chain on N points has !∗(9.5816 . . .N ) non-
crossing spanning trees.
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3 Non-crossing forests of points in convex position

In this section we use generating functions and the techniques of analytic
combinatorics to prove Proposition 2.2.
Consider a set of n points in convex position, labelled counterclock-

wise p1, . . . , pn; the vertex p1 is called the root vertex. A systematic
study of several classes of non-crossing graphs with generating functions
was undertaken by Flajolet and Noy in [4]; the results in this section are
an extension of theirs using the same techniques (see also the book [5] by
Flajolet and Sedgewick).
Let T be a set of nc-trees and let FT be the set of those nc-forests

such that its connected components belong to T (by taking as the root of
each component the vertex with smallest label and relabelling the other
vertices suitably). Let T (z) and FT (z) be the corresponding generating
functions, that is,

T (z) =
∑
n≥1

tnz
n, FT (z) =

∑
n≥0

fnz
n,

where tn and fn denote the number of n-vertex graphs in T and FT ,
respectively. For technical convenience, we set f0 = 1 (but t0 = 0).
We have the following key relation

FT (z) = 1+ T (zFT (z)). (3.1)

The combinatorial explanation is as follows (see Figure 3.1). Given a
forest in FT , let t1 be the connected component that contains the root
vertex; this component is of course a tree of T . Now, the vertices (if any)
that lie strictly between any two consecutive vertices of t1 induce a nc-
forest, which belongs to FT . The substitution zFt(z) in T (z) reflects this
(where the term z corresponds to a vertex of t1). Thus, if an expression or
an equation for T (z) is known, we immediately get from equation (3.1)
an equation for FT (z).
It is well-known that the generating function T (z) for nc-trees satisfies

T (z)3 − zT (z)+ z2 = 0. (3.2)

Let T1 be the class of nc-trees with more than one vertex; clearly T1(z) =
T (z) − z. From equations (3.2) and (3.1) it follows that Y = FT1(z)
satisfies

(1+ z)3Y 3 − (3z2 + 7z + 3)Y 2 + (4z + 3)Y − 1 = 0. (3.3)

Now let T ∗1 be the class of marked nc-trees; then T ∗1 (z) = zT ′(z)− z. By
differentiating equation (3.2) and eliminating T (z)we get an equation for
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Figure 3.1. A nc-forest decomposes as a nc-tree (in grey) with a (possibly
empty) nc-forest between any two of its consecutive vertices.

T ′(z), namely,

(27z2 − 4z)T ′(z)3 + (1− 6z)T ′(z)− 1+ 8z = 0,
from which an equation for T ∗1 (z) follows immediately. Again from (3.1)
we obtain an equation for Y = FT ∗1 (z):

27z(1+ z)3Y 4 − (83z3 + 180z2 + 93z + 4)Y 3
+ (99z2 + 106z + 12)Y 2 − (12+ 40z)Y + 4 = 0. (3.4)

Once an algebraic equation for FT (z) is known, it is routine to obtain an
asymptotic estimate of the coefficients of FT (z). The method we apply
is the one described in [4, Section 4] or, more generally, in Lemma VII.3
and Corollary VI.1 of [5]. The main idea is that the singularity of FT (z)
with smallest modulus determines the asymptotic behaviour of the coef-
ficients of FT (z). More concretely, if ρ is this singularity, and under cer-
tain conditions that in our case are immediate to check, then [zn]FT (z) =
γ n−3/2ρ−n(1+O(1/n)), for some constant γ . To find ρ we use the fact
that it must be one of the roots of the discriminant of the equation sat-
isfied by FT (z), as explained in [5, Section VII.7.1]. Carrying out the
calculations for equations (3.3) and (3.4), we obtain the values given in
item (ii) and in the first part of item (i) in Proposition 2.2.
As for the number of components, we consider the bivariate generating

function
FT (z) =

∑
n≥0

fn,kz
nwk,

where fn,k stands for the number of forests in FT with n vertices and k
components. It is easy to see that equation (3.1) becomes

FT (z, w) = 1+wT (zFT (z, w)). (3.5)
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Let Xn,k = [znwk]FT (z, w)/[zn]FT (z) and let μn be the mean of Xn,k .
Thenμn ∼ κn, where κ is obtained as follows. Let ρ(w) be the dominant
singularity of FT (z, w) (it thus satisfies ρ(1) = ρ). Then κ = −ρ ′(1)/ρ.
Moreover, Xn,k converges in law to a Gaussian law. (See [4, Section 5]
and [5, Section IX.7.3] for details.) This implies that for each positive ε,
1/2−ε of the forests inFT with n vertices have at least μnn components,
for sufficiently large n.
To finish the proof of item (i) of Proposition 2.2, we use equation (3.5)

to find an equation satisfied by F∗1 (z, w) and then carry out the necessary
calculations.

4 The upper bound

Theorem 4.1. The double chain on N points has O∗(22.12N ) non-
crossing spanning trees.

We only give a sketch of the proof. Recall that for any nc-spanning tree
of the double chain, the vertices on the upper and lower chains induce two
forests FU and FL on a set of n points in convex position and a forest FI
formed by interior edges, i.e., edges with one endpoint on each chain. The
product of the numbers of forests FU , FL and FI gives an upper bound
on the number of nc-spanning trees of the double chain. We partition the
set of nc-spanning trees into 2n − 1 classes, according to the number of
edges of FI . For asymptotic counting, it is sufficient to only consider the
one class of nc-spanning trees, with k edges in forest FI , that contains
most spanning trees. For a fixed value of k, we can show that the number
of nc-spanning trees of the double chain is maximized when both FU
and FL are forests with k

2 components. We also show that the number of
forests FI with k edges is

≈
min{k,n}∑

=1

(
n




)2(2n − 3− 

k − 


)
=

min{k,n}∑

=1

g(
).

Then the value 
 = 
(k) that maximizes this sum is determined. Us-
ing the formula for F(n, c), the number of nc-forests with c components
on a set of n points in convex position [4], we determine the value k
that maximizes g(
(k))(F(n, k/2))2, which leads to the claimed bound
O∗(22.12N ).
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On the structure of graphs with large
minimum bisection

Cristina G. Fernandes1, Tina Janne Schmidt2 and Anusch Taraz2

Abstract. Bounded degree trees and bounded degree planar graphs on n vertices
are known to admit bisections of width O(log n) and O(

√
n), respectively. We

investigate the structure of graphs that meet this bound. In particular, we show
that such a tree must have diameter O(n/ log n) and such a planar graph must
have tree width �(

√
n). To show the result for trees, we derive an inequality that

relates the width of a minimum bisection with the diameter of a tree.

1 Introduction and results

A bisection of a graph G is a partition of its vertex set into two sets L and
R of sizes differing by at most one. The width of a bisection is defined
to be the number of edges with one vertex in L and one vertex in R, and
the minimum width of a bisection in G is denoted by MinBis(G). Deter-
mining a bisection of minimum width is a famous optimization problem
that is (unlike the Minimum Cut Problem) known to be NP-hard [4].
In this paper, we will concentrate on minimum bisections of trees and

planar graphs. Jansen et al. showed that dynamic programming gives an
algorithm with running time O(2t n3) for an arbitrary graph on n vertices
when a tree decomposition of width t is provided as input [5]. Thus,
the problem becomes polynomially tractable for graphs of constant tree
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width. On the other hand, it is open whether finding a minimum bisection
for a planar graph is in P or is NP-hard. Currently, the best known approx-
imation algorithm achieves an approximation ratio of O(log n) for arbi-
trary graphs on n vertices [6], and nothing better has been established for
planar graphs. Further, Berman and Karpinski showed that the Minimum
Bisection Problem restricted to 3-regular graphs is as hard to approximate
as its general version [3]. Moreover, Arora et al. presented a PTAS for
finding a minimum bisection in graphs with a linear minimum degree [1].
Thus, we focus on graphs that have small (in fact, constant) maximum de-
gree and still a large minimum bisection width. If T is a tree on n vertices
and maximum degree d, one can show that owing to the existence of a
separating vertex (i.e. a vertex whose removal leaves no connected com-
ponent of size greater than n/2), we always have MinBis(T ) ≤ d · log2 n.
Similarly, using the Planar Separator Theorem [2], this idea can be gener-
alized to give anO(

√
n) upper bound on MinBis(G) for planar graphs G

with bounded maximum degree. Both bounds are tight up to a constant
factor as one can show that the perfect ternary tree on n vertices has
minimum bisection width �(log n) and the square grid on n vertices has
minimum bisection width �(

√
n).

Our aim is to investigate the structure of bounded degree graphs that
have a large minimum bisection, in other words, treesTwithMinBis(T)=
�(log n) and planar graphs G with MinBis(G) = �(√n). For example,
we will show that in a bounded degree tree with minimum bisection of
order �(log n), the length of any path must be bounded by O(n/ log n).
More generally, we establish the following inequality:

Theorem 1.1. Let T be a tree on n vertices and denote by�(T ) its max-
imum degree and by diam(T ) its diameter. Then

MinBis(T ) ≤ 8�(T )n

diam(T )
.

In the case of planar graphs, we can no longer use the diameter to control
the minimum bisection. For example, a graph consisting of a square grid
on 3

4n vertices connected to a path on
n
4 vertices has linear diameter but

does not allow a bisection of constant width. However, we can show that
a planar graph with a minimum bisection width close to the upper bound
O(
√
n) must indeed be far away from a tree-like structure.

Theorem 1.2. For every d ∈ N and every c > 0, there is a γ = γ (c) > 0
such that for all planar graphs G on n vertices with �(G) ≤ d, we have

MinBis(G) ≥ c
√
n ⇒ tw(G) ≥ γ√n.
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Using Theorem 6.2 of Robertson, Seymour, and Thomas in [7], this im-
mediately implies that there is a constant γ ′ = γ ′(c) > 0 such that every
such planar graph contains a square grid on γ ′n vertices as minor.

2 Trees

Although the statement in Theorem 1.1 looks like an elementary inequal-
ity, its proof is somewhat lengthy and we need to introduce a few more
definitions to be able to sketch it. First, we define the relative diameter
of a graph to be

diam∗(G) := 1
|V (G)|

∑
G′: component of G

(diam(G ′)+ 1).

Observe that, in a tree, there is only one component to consider and thus
the relative diameter of a tree denotes the fraction of the vertices in a
longest path of the tree, but we will need this parameter also for graphs
that may not be connected.
Moreover, we need to take a more general approach and consider par-

titions where the size of the classes can be specified by an input param-
eter m. Furthermore, we denote by eG(V1, . . . , Vk) the number of edges
in G that have their vertices in two different sets Vi �= Vj and define
[n] = {1, 2, 3, . . . , n} for n ∈ N. The following theorem is the driving
engine for the proof of Theorem 1.1.

Theorem 2.1. For all trees T on n ≥ 3 vertices and for all m ∈ [n], the
vertex set of T can be partitioned into three classes L ∪ R ∪ S such that
one of the following two options occurs:

(i) S = ∅ and |L| = m and eT (L , R, S) ≤ 2.
(ii) S �= ∅ and |L| ≤ m ≤ |L| + |S| and eT (L , R, S) ≤ 2

diam∗(T )�(T )
and diam∗(T [S]) ≥ 2 diam∗(T ).

This result states that we can either find a partition into two sets L and R
with exactly the right cardinality by cutting very few edges, or there is a
partition with an additional set S, such that the set L is smaller and the set
L ∪ S is larger than the required size m, as well as the additional feature
that the relative diameter of T [S] is at least twice as large as that of T .
Using Theorem 2.1 recursively for the graph T [S], the relative diameter
can therefore be doubled in each round, until it exceeds 1/2, at which
point Option (ii) in Theorem 2.1 is no longer feasible, which will then
prove Theorem 1.1.
We conclude this section with a few words about how to prove Theo-

rem 2.1. Consider a longest path P in T and denote by x0 and y0 its first
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and last vertex. For each vertex z ∈ V (P), let Tz be the component of
T − E(P) that contains z and call z the root of Tz . We label the vertices
of T with 1, 2, . . . , n so that x0 receives label 1; for each z ∈ V (P), the
vertices of Tz receive consecutive labels and z receives the largest label
among those; for all z, z′ ∈ V (P) with z �= z′, if x0 is closer to z than to
z′, then the label of z is smaller than the label of z′. Given this labeling,
we now define for every x ∈ [n] the vertex f (x) := x + m. If for some
vertex x ∈ V (P) the vertex f (x) lies also in P , then we are done by
choosing L := {x + 1, . . . , x + m} and R := [n] \ L , which satisfies all
requirements of Option (i) in Theorem 2.1. Otherwise, one can show that
there exists a vertex z ∈ V (P) such that all vertices of P that are mapped
into V (Tz) and the vertex sets of all trees that are mapped completely
into Tz by f form a set S such that the condition on diam∗(T [S]) is sat-
isfied. Furthermore, this vertex z has the property that the set L , which
consists of the vertex sets of all trees whose roots have labels strictly be-
tween z − m and z and of some additional vertices from Tz , satisfies the
remaining conditions of Option (ii) in Theorem 2.1.

Figure 2.1. Construction of S and L := L1 ∪ L2.

3 Planar graphs

To sketch the proof for Theorem 1.2, consider its contrapositive: for all
d∈N and for all c>0, we choose γ >0 so small that

γ

(
2 log2

3

γ
√
2
+ 7

)
d ≤ c.

We claim that then, for every planar graph G on n vertices with �(G) ≤
d, the following holds:

tw(G)+ 1 ≤ γ√n ⇒ MinBis(G) ≤ c
√
n. (3.1)
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To explain how we find a bisection of sufficiently small width, let us
assume that, for some 0 < δ < 1, we can find δ-separators of a given
size in the graph G and its subgraphs, i.e. a vertex subset whose removal
leaves connected components of size at most δn. Having removed such
a separator S′ from the graph, we can assign the vertices of all but one
component of G − S′ to L and R, so that |L| ≤ � n2� and |R| ≤ � n2�. We
then continue recursively with the remaining component, which has size
at most δn. At the end, we denote by S the union of the various separators
and distribute the vertices in S to the sets L and R in such a way that L
and R form a bisection of G. It is easy to see that eG(L , R) ≤ �(G) · |S|
and it only remains to find a bound on |S|.
In each round of a first phase, we use a cluster from an optimal tree

decomposition of G that can serve as a 1/2-separator and, by assumption,
has size at most γ

√
n. Denote by ni the number of vertices after the i-th

round. This first phase stops when γ
√
n > 3√

2

√
ni . Due to ni ≤ n/2i−1,

it is easy to see that the index i∗, where this happens for the first time,
can be bounded by a constant depending only on γ .
After the i∗-th round, we switch to 2/3-separators guaranteed by the

Planar Separator Theorem [2], which will have size at most 3√
2

√
ni . Dur-

ing this second phase, ni ≤ (2/3)i−i∗ni∗ holds and thus the number of
vertices collected in S during the second phase can be bounded from
above by

∞∑
i=i∗

3√
2

√
ni ≤ 3√

2

√
ni∗

∞∑
i=0

(√
2
3

)i

≤ α
√
ni∗, with α = 9√

2
+ 3√3.

Summing up, we have |S| ≤ i∗γ
√
n + α√ni∗ in total. Now, computing

an upper bound on i∗ and on ni∗ will give the desired bound.

4 Concluding remarks and open questions

In Theorem 1.1 and Theorem 1.2 we have established necessary condi-
tions for trees and planar graphs to have large minimum bisection width,
namely a small diameter and a large tree width, respectively. In both
cases, these conditions are not sufficient, but it would be interesting to
find additional conditions that give characterizations of graphs in certain
classes with large minimum bisection.
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Coloring intersection graphs
of arcwise connected sets in the plane

Micha-l Lasoń1,2, Piotr Micek1, Arkadiusz Pawlik1

and Bartosz Walczak3

Abstract. A family of sets in the plane is simple if the intersection of its any
subfamily is arcwise connected. We prove that the intersection graphs of simple
families of compact arcwise connected sets in the plane pierced by a common line
have chromatic number bounded by a function of their clique number.

1 Introduction

A proper coloring of a graph is an assignment of colors to the vertices of
the graph such that no two adjacent ones are assigned the same color. The
minimum number of colors sufficient to color a graphG properly is called
the chromatic number of G and denoted by χ(G). The maximum size of
a clique (a set of pairwise adjacent vertices) in a graph G is called the
clique number of G and denoted by ω(G). It is clear that χ(G) � ω(G).
A class of graphs is χ-bounded if there is a function f : N → N such
that χ(G) � f (ω(G)) holds for any graph G in the class.
In this paper, we focus our attention on the relation between the chro-

matic number and the clique number for classes of graphs arising from
geometry. The intersection graph of a family of sets F is the graph with
vertex set F and edge set consisting of pairs of intersecting elements
of F . We consider families F of arcwise connected compact sets in the
plane. For simplicity, we identify the familyF with its intersection graph.
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In the one-dimensional case of subsets of R, the only arcwise con-
nected compact sets are closed intervals. They define the class of interval
graphs, for which χ(G) = ω(G). The study of the chromatic number
of intersection graphs of geometric objects in higher dimensions was ini-
tiated in the seminal paper of Asplund and Grünbaum [1], where they
proved that the families of axis-aligned rectangles in R2 are χ-bounded.
On the other hand, Burling [2] showed that triangle-free intersection
graphs of axis-aligned boxes in R3 can have arbitrarily large chromatic
number.
Gyárfás [3] proved χ-boundedness of the class of graphs defined by

intersections of chords of a circle. This was generalized by Kostochka
and Kratochvı́l [4], who showed that the families of convex polygons in-
scribed in a circle are χ-bounded. McGuinness [5] proved that the fami-
lies of L-shapes (shapes consisting of a horizontal and a vertical segments
of arbitrary lengths, forming the letter ‘L’) all of which intersect a fixed
vertical line are χ-bounded. Later, McGuinness [6] showed that the sim-
ple families F of compact arcwise connected sets in the plane pierced by
a common line with ω(F) � 2 have bounded chromatic number. A fam-
ily is simple if the intersection of its any subfamily is arcwise connected,
and is pierced by a line 
 if the intersection of its any member with 
 is a
nonempty segment. Suk [8] proved χ-boundedness of the simple families
of x-monotone curves intersecting a fixed vertical line.
We generalize the results of McGuinness, allowing any bound on the

clique number, and of Suk, getting rid of the x-monotonicity assumption.

Theorem 1.1. The class of simple families of compact arcwise connected
sets in the plane pierced by a common line is χ-bounded.

This contrasts with a recent result due to Pawlik et al. [7] that there are
triangle-free intersection graphs of straight-line segments with arbitrarily
large chromatic number. This explains why the assumption of Theorem
1.1 that the sets are pierced by a common line is necessary.
The ultimate goal of this quest is to understand the border line be-

tween the classes of graphs (and classes of geometric objects) that are
χ-bounded and those that are not. The authors would like to share two
open problems in this context.

Problem 1.2. Are the families (not necessarily simple) of x-monotone
curves in the plane pierced by a common vertical line χ-bounded?

Problem 1.3. Are the families of curves in the plane pierced by a com-
mon line χ-bounded?
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2 Preliminaries

First we simplify the setting of Theorem 1.1. Let F be a simple family
of compact arcwise connected sets in the plane pierced by a common
line with ω(F) � k. We can assume without loss of generality that this
piercing line is the horizontal axis R × {0}. Call it the baseline. The
base of a set X , denoted by base(X), is the intersection of X with the
baseline. The intersection graph of the bases of the members of F is an
interval graph and thus can be properly colored with k colors. To find a
proper coloring of F , we can restrict our attention to one color class in
the coloring of this interval graph. Thus we assume that no two members
of F intersect on the baseline and show that F can be colored properly
with a bounded number of colors.
Let F+ = {X ∩ (R × [0,+∞)) : X ∈ F} and F− = {X ∩ (R ×

(−∞, 0]) : X ∈ F}. Clearly, F+ and F− are simple families of arcwise
connected sets. If we find proper colorings φ+ and φ− of F+ and F−,
respectively, with bounded numbers of colors, then the coloring of F by
pairs of colors (φ+, φ−) is proper on F . Thus we assume that F = F+
(the other case F = F− is symmetric). All geometric objects that we
consider from now on are contained in R × [0,+∞). Thus we consider
families of compact arcwise connected subsets of R × [0,+∞) all of
which are pierced by the baseline. We call such families attached.

Theorem 2.1. For k � 1, there is ξk such that χ(F) � 2ξk holds for any
attached family F with ω(F) � k.

The case k = 1 is trivial, and the case k = 2 is the result of McGuin-
ness [6]. Our proof of Theorem 2.1 depends heavily on the techniques
developed by McGuinness [6] and Suk [8].
Let X ≺ Y denote that base(X) is entirely to the left of base(Y ). The

relation ≺ is a total order on any attached family F . For attached sets
X1 and X2 such that X1 ≺ X2, define F(X1, X2) = {Y ∈ F : X1 ≺
Y ≺ X2}. For an attached family X , we define ext(X ) to be the only
unbounded arcwise connected component of (R× [0,+∞)) \⋃X .

Lemma 2.2 ( [5]). Let F be an attached family, let a, b � 0, and sup-
pose χ(F) > 2a+b+1. Then there exists a subfamily H of F such that
χ(H)>2a and for any intersecting H1, H2∈H we have χ(F(H1, H2))�
2b.

A subfamily G of an attached family F is externally supported in F if
for any X ∈ G there exists Y ∈ F such that Y ∩ X �= ∅ and Y ∩ ext(G) �=
∅.
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Lemma 2.3. Let F be an attached family, let a�0, and suppose χ(F)>
2a+1. Then there exists a subfamily G of F that is externally supported
in F and satisfies χ(G) > 2a .

Let F be an attached family. A k-clique in F is a family of k pairwise
intersecting members of F . For a k-cliqueK, define int(K) to be the only
arcwise connected component of (R×[0,+∞))\⋃K containing the part
of the baseline between the two least members of K. A k-bracket in F is
a family B ⊆ F consisting of a k-cliqueK, a set P ⊆ int(K) called hook,
and a set S called support such that S ≺ K or K ≺ S and S ∩ P �= ∅.
For such a k-bracket B, define int(B) to be the only arcwise connected
component of (R × [0,+∞)) \⋃B containing the part of the baseline
between S and K. The following lemma exhibits a crucial property of
these two constructs.

Lemma 2.4. If S is an attached clique or bracket, then any closed curve
c such that S∪{c} is simple, int(S)∩c �= ∅, and ext(S)∩c �= ∅ intersects
all members of S.

3 Proof sketch of Theorem 2.1

The proof of Theorem 2.1 proceeds by induction on k. The case k = 1
is trivial. Thus assume for the remainder of this section that k � 2 and
the statement of the theorem holds for k − 1. A typical application of
the induction hypothesis looks as follows: if F is an attached family with
ω(F) � k, G ⊆ F , and there is X ∈ F \ G intersecting all members of
G, then ω(G) � k − 1 and thus χ(G) � 2ξk−1 .
Define βk = 5ξk−1 + ξ2 + k + 7, γk = 2ξk−1 + k + 5, δk,1 = ξk−1 +

βk + γk + 2, δk,i = δk,i−1+βk + γk + 2 for i � 2, and finally ξk = δk,k+1.
For a k-clique or k-bracket S, define F(S) = {X ∈ F : base(X) ⊆

int(S)}. The following technical fact (considered in the induction con-
text) is a generalization of an analogous statement in [8], with a similar
proof.

Lemma 3.1. Let F be an attached family with ω(F) � k and S be a
k-clique or k-bracket in F . Let R = {R ∈ F(S) : R ∩ ext(S) �= ∅} and
D = {D ∈ F(S) : D ∩⋃

(R ∪ S) �= ∅}. Then χ(D) � 2βk .

A fancy k-clique in an attached family F consists of a k-clique K, a
set P ⊆ int(K) called hook, two intersecting sets X1, X2 ∈ F(−∞, K1)
called left guards, and two intersecting sets Y1,Y2 ∈ F(Kk,+∞) called
right guards, where K1 and Kk are the least and the greatest elements of
K, respectively.



303 Coloring intersection graphs in the plane

Claim 3.2. Any attached family F with ω(F) � k and χ(F) > 2γk

contains a fancy k-clique.

Proof. Find in F sets X1 ≺ X2 ≺ Y1 ≺ Y2 so that X1 ∩ X2 �= ∅,
Y1 ∩ Y2 �= ∅, and χ(F(X2,Y1)) � χ(F) − 4 > 22ξk−1+k+1. Apply
Lemma 2.2 to find H ⊆ F(X2,Y1) such that χ(H) > 2ξk−1 and for any
intersecting H1, H2 ∈ H we have χ(F(H1, H2)) � 2ξk−1+k . It follows
that H contains a k-clique K such that χ(F(K)) � 2ξk−1+k > 2ξk−1k.
Since |K| = k, the members of F(K) that intersect

⋃
K can be properly

colored with 2ξk−1k colors. Hence there exists P ∈ F(K) disjoint from⋃
K, so that P ⊆ int(K). The clique K with hook P , left guards X1, X2,

and right guards Y1,Y2 forms a fancy k-clique in F .

A (k, i)-bracket system in an attached family F consists of k-brackets
B1, . . . ,Bi with pairwise intersecting supports, and two intersecting sets
X1, X2 ∈ F(B1) ∩ . . . ∩ F(Bi) called guards.
Claim 3.3. Any attached family F with ω(F) � k and χ(F) > 2δk,i

contains a (k, i)-bracket system.

Proof. The proof goes by induction on i . We start with i = 1. First,
apply Lemma 2.3 to find G ⊆ F that is externally supported in F and
satisfies χ(G) > 2ξk−1+βk+γk+1. Next, apply Lemma 2.2 to find H ⊆ G
such that χ(H) > 2ξk−1 and for any intersecting H1, H2 ∈ H we have
χ(G(H1, H2)) � 2βk+γk . It follows that H contains a k-clique K such
that χ(G(K)) � 2βk+γk . Let R = {R ∈ F(K) : R ∩ ext(K) �= ∅} and
D = {D ∈ G(K) : D ∩⋃

(K∪R) �= ∅}. Lemma 3.1 yields χ(D) � 2βk .
Let G ′ = G(K) \ D. It follows that χ(G ′) � 2βk+γk − 2βk > 2γk . Claim
3.2 guarantees a fancy k-clique K′ with hook P , left guards X1, X2, and
right guards Y1,Y2 in G ′. Since G is externally supported in F , there
exists S ∈ F that intersects P and ext(G). Since P /∈ D and S ∩ P �= ∅,
we have S /∈ R. This and S∩ext(K) ⊇ S∩ext(G) �= ∅ imply S /∈ F(K).
Therefore,K′ with hook P , support S, and guards X1, X2 or Y1,Y2 forms
a (k, 1)-bracket system in F .
Now, suppose i � 2. As above, find G ⊆ F externally supported in F

andH ⊆ G such that χ(H) > 2δk,i−1 and for any intersecting H1, H2 ∈ H
we have χ(G(H1, H2)) � 2βk+γk . By the induction hypothesis, H con-
tains a (k, i − 1)-bracket system with brackets B1, . . . ,Bi−1 and guards
X1, X2. Thus χ(G(X1, X2)) � 2βk+γk . Again, G has a fancy k-clique K′
with hook P , left guards X1, X2, and right guards Y1,Y2, and there exists
S ∈ F \ F(X1, X2) intersecting P and ext(G). By Lemma 2.4, S in-
tersects all the supports of B1, . . . ,Bi−1 (it cannot intersect the k-cliques
of B1, . . . ,Bi−1 as ω(F) � k). Thus the k-bracket Bi with k-clique K′,



304 Micha-l Lasoń, Piotr Micek, Arkadiusz Pawlik and Bartosz Walczak

hook P and support S together with B1, . . . ,Bi−1 and guards X1, X2 or
Y1,Y2 forms a (k, i)-bracket system in F .

To complete the proof of Theorem 2.1, observe that if χ(F) > 2ξk =
2δk,k+1 , then by Claim 3.3 F contains a (k, k + 1)-bracket system, which
contains k + 1 pairwise intersecting supports, contradicting ω(F) � k.
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A characterization of edge-reflection
positive partition functions
of vertex-coloring models

Guus Regts1

Abstract. Szegedy (B. Szegedy, Edge coloring models and reflection positivity,
Journal of the American Mathematical Society 20, 2007, 969–988.) showed that
the partition function of any vertex-coloring model is equal to the partition func-
tion of a complex edge-coloring model. Using some results in geometric invariant
theory, we characterize for which vertex-coloring model the edge-coloring model
can be taken to be real valued that is, we characterize which partition functions
of vertex-coloring models are edge-reflection positive. This answers a question
posed by Szegedy.

1 Introduction

Partition functions of vertex- and edge-coloring models are graph invari-
ants introduced by de la Harpe and Jones [4]. In fact, in [4] they are
called spin and vertex models respectively. Both models give a rich class
of graph invariants. But they do not coincide. For example the number
of matchings in a graph is the partition function of a real edge-coloring
model but not the partition function of any real vertex-coloring model.
This can be deduced from the characterization of partition functions of
real vertex-coloring models by Freedman, Lovász and Schrijver [3]. (It
is neither the partition function of any complex vertex-coloring model,
but we will not prove this here.) Conversely, the number of indepen-
dent sets is not the partition function of any real edge-coloring model,
as follows from Szegedy’s characterization of partition functions of real
edge-coloring models [7], but it is the partition function of a (real) vertex-
coloring model.
However, Szegedy [7] showed that the partition function of any vertex-

coloring model can be obtained as the partition function of a complex
edge-coloring model. Moreover, he gave examples when the edge-
coloring model can be taken to be real valued. This made him ask the
question which partition functions of real vertex-coloring models are par-

1 CWI, Amsterdam. Email: regts@cwi.nl
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tition functions of real edge-coloring models (cf. [7, Question 3.2]). In
fact, he phrased his question in terms of edge-reflection positivity. We
will not say anything about this here. See [7] or the full version of the
present extended abstract [6].
In this note we completely characterize for which vertex-coloring mod-

els there exists a real edge-coloring model such that their partition func-
tions coincide, answering Szegedy’s question.
The organization of this paper is as follows. In the next section we give

definitions of partition functions of edge and vertex-coloring models and
state our main result (cf. Theorem 2.4). In Section 3 we give a sketch of
the proof of Theorem 2.4.

ACKNOWLEDGEMENTS. I thank Lex Schrijver for his comments on the
full version of this paper. In particular, for simplifying some of the proofs.

2 Partition functions of edge and vertex-coloring models

We give the definitions of edge and vertex-coloring models and their par-
tition functions. After that we describe Szegedy’s result how to obtain
a complex edge-coloring model from a vertex-coloring model such that
their partition functions are the same. (The existence also follows from
the characterization of partition functions of complex edge-coloring mod-
els given in [1], but Szegedy gives a direct way to construct the edge-
coloring model from the vertex-coloring model.) And finally we will
state our main result saying which partition functions of vertex-coloring
models are partition function of real edge-coloring models.
Let G be the set of all graphs, allowing multiple edges and loops. Let

C denote the set of complex numbers and let R denote the set of real
numbers. If V is a vector space we write V ∗ for its dual space, but by C∗
we meanC\{0}. For a matrixU we denote byU ∗ its conjugate transpose
and by UT its transpose.
Let F be a field. An F-valued graph invariant is a map p : G → F

which takes the same values on isomorphic graphs.
Throughout this paper we setN = {1, 2 . . .} and for n ∈ N, [n] denotes

the set {1, . . . , n}. We will now introduce partition functions of vertex
and edge-coloring models.
Let a ∈ (C∗)n and let B ∈ Cn×n be a symmetric matrix. We call the

pair (a, B) an n-color vertex-coloring model2. If moreover, a is positive
and B is real, then we call (a, B) a real n-color vertex-coloring model.

2 Vertex-coloring models with a equal to the all ones vector were introduced by de la Harpe and
Jones in [4] where they are called spin models.
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When talking about a vertex-coloring model, we will sometimes omit the
number of colors. The partition function of an n-color vertex-coloring
model (a, B) is the graph invariant pa,B : G → C defined by

pa,B(H) :=
∑

φ:V (H)→[n]

∏
v∈V (H)

aφ(v) ·
∏

uv∈E(H)
Bφ(u),φ(v), (2.1)

for H ∈ G.
We can view pa,B in terms of weighted homomorphisms. Let G(a, B)

be the complete graph on n vertices (including loops) with vertex weights
given by a and edge weights given by B. Then pa,B(H) can be viewed as
counting the number of weighted homomorphisms of H into G(a, B).
In this context pa,B is often denoted by hom(·,G(a, B)). So in par-
ticular the number of proper k-colorings is the partition function of a
vertex-coloring model. The vertex-coloring model can also be seen as
a statistical mechanics model where vertices serve as particles, edges as
interactions between particles, and colors as states or energy levels.
Let for a field F,

R(F) := F[x1, . . . , xk] (2.2)

denote the polynomial ring in k variables. We will only consider F = R
and F = C. Note that there is a one-to-one correspondence between lin-
ear functions h : R(F)→ F and maps h : Nk → F; α ∈ Nk corresponds
to the monomial xα := xα11 · · · xαkk ∈ R(F) and the monomials form a
basis for R(F). We call any h ∈ R(C)∗ a k-color edge-coloring model3.
Any h ∈ R(R)∗ is called a real k-color edge-coloring model. When talk-
ing about an edge-coloring model, we will sometimes omit the number
of colors. The partition function of a k-color edge-coloring model h is
the graph invariant ph : G → C defined by

ph(G) =
∑

φ:E(G)→[k]

∏
v∈V (G)

h
( ∏
e∈δ(v)

xφ(e)
)
, (2.3)

for G ∈ G. Here δ(v) is the multiset of edges incident with v. By con-
vention, a loop is counted twice.
Let us give a few examples.

Example 2.1 (Counting perfect matchings). Let k = 2. Define the the
edge-coloring model h : R[x1, x2] → R by h(xa11 x

a2
2 ) = δa1,1. Then

ph(G) is equal to the number of perfect matchings of G. To see this,

3 Edge-coloring models were introduced by de la Harpe and Jones in [4] where they are called
vertex models.
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note that for an assignment of the colors to the edges of G there is a
contribution in the sum (2.3) if and only if at each vertex there is a unique
edge which is colored with 1, that is, if and only if the edges colored with
1 form a perfect matching.

Example 2.2 (Counting proper k-edge-colorings). Let k ∈ N. Define
the k-color edge-coloring model h by

h(xa11 · · · xakk ) =
{
1 if ai ≤ 1 for all i
0 else

.

Then ph(G) is equal to the number of proper k-edge-colorings of G.

For more examples we refer to [4] and [7]. The edge-coloring model
can also be considered as a statistical mechanics model, where edges
serve as particles, vertices as interactions between particles, and colors
as states or energy levels.
We will now describe a result of Szegedy [7] (see also [8]) showing

that partition functions of vertex-coloring models are partition functions
of edge-coloring models.
Let (a, B) be an n-color vertex-coloring model. As B is symmetric we

can write B = UTU for some k×n (complex) matrixU , for some k. Let
u1, . . . , un ∈ Ck be the columns of U . Define the edge-coloring model h
by h := ∑n

i=1 ai evui , where for u ∈ Ck , evu ∈ R(C)∗ is the linear map
defined by p �→ p(u) for p ∈ R(C).

Lemma 2.3 (Szegedy [7]). Let (a, B) and h be as above. Then pa,B =
ph .

Let (a, B) be an n-color vertex-coloring model. We say that i, j ∈ [n]
are twins of (a, B) if i �= j and the i th row of B is equal to the j th row
of B. If (a, B) has no twins we call the model twin free. Suppose now
i, j ∈ [n] are twins of (a, B). If ai+a j �= 0, let B ′ be the matrix obtained
from B by removing row and column i and let a′ be the vector obtained
from a by setting a′j := ai + a j and then removing the i th entry from it.
In case ai + a j = 0, we remove the i th and the j th row and column from
B to obtain B ′ and we remove the i th and the j th entry from a to obtain
a′. Then pa′,B′ = pa,B . So for every vertex-coloring model with twins,
we can construct a vertex-coloring model with fewer colors which is twin
free and which has the same partition function.
We need a fewmore definitions to state our main result. For a k×n ma-

trix U we denote its columns by u1, . . . , un . Let, for any k, (·, ·) denote
the standard bilinear form on Ck . We call the matrix U nondegenerate
if the span of u1, . . . , un is nondegenerate with respect to (·, ·). In other
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words, if rk(UTU) = rk(U). For l ∈ N, let Ol(C) be the complex orthog-
onal group, i.e. Ol(C) := {g ∈ Cl×l | (gv, gv) = (v, v) for all v ∈ Cl}.
We think of vectors in Ck as vectors in Cl for any l ≥ k. We can now
state our main result.

Theorem 2.4. Let (a, B) be a twin-free n-color vertex-coloring model.
Let U be a nondegenerate k × n matrix such that UTU = B. Then the
following are equivalent:

(i) pa,B = py for some real edge-coloring model y,

(ii) there exists l ≥ k, g ∈ Ol(C) such that the set {
(
gui
ai

)
| i =

1, . . . , n} is closed under complex conjugation,
(iii) there exists l ≥ k, g ∈ Ol(C) such that

∑n
i=1 ai evgui is real.

If moreover, UU ∗ ∈ Rk×k , then we can take g equal to the identity in (ii)
and (iii).

Note that for h :=∑n
i=1 ai evgui in Theorem 2.4, we have, by Lemma

2.3, ph = pa,B . Moreover, observe that if the set of columns of gU
are closed under complex conjugation, then gU(gU)∗ is real. So the
existence of a nondegenerate matrix U such that UTU = B and UU ∗ is
real, is a necessary condition for pa,B to be the partition function of a real
edge-coloring model.
In case B is real, there is an easy way to obtain a k × n rank k matrix

U , where k = rk(B), such that UU ∗ ∈ Rk×k and UTU = B, using the
spectral decomposition of B. So by Theorem 2.4, we get the following
characterization of partition functions of real vertex-colorings that are
partition functions of real edge-coloring models. We will state it as a
corollary.

Corollary 2.5. Let (a, B) be a twin-free real n-color vertex-coloring
model. Then pa,B = ph for some real edge-coloring model h if and
only if for each i ∈ [n] there exists j ∈ [n] such that
(i) ai = a j ,

(ii) for each eigenvector v of B with eigenvalue λ :
{
λ>0⇒ vi = v j ,
λ<0⇒ vi = −v j .

3 A sketch of the proof of Theorem 2.4

Here we give short sketch of the proof of Theorem 2.4. For the full proof
see [6]. First of all, Lemma 2.3 shows that (iii) implies (i). The following
easy lemma gives the equivalence between (ii) and (iii) for the same g in
Theorem 2.4.
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Lemma 3.1. Let u1, . . . , un ∈ Ck be distinct vectors, let a ∈ (C∗)n and
let h :=∑n

i=1 ai evui . Then h is a real edge-coloring model if and only if

the set {
(
ui
ai

)
| i = 1, . . . , n} is closed under complex conjugation.

Proof. Suppose first that the set {
(
ui
ai

)
| i = 1, . . . , n} is closed under

complex conjugation. Then for p ∈ R(R), h(p) = ∑n
i=1 ai p(ui) =∑n

i=1 ai p(ui) = h(p). Hence, h(p) ∈ R. So h is real valued.
Now the ’only if’ part. By possibly adding some vectors to {u1, ..., un}

and extending the vector a with zero’s, we may assume that {u1, ..., un}
is closed under complex conjugation. We must show that ui = u j implies
ai = a j . We may assume that u1 = u2. Using Lagrange interpolating
polynomials we find p ∈ R(C) such that p(u j ) = 1 if j = 1, 2 and
0 else. Let p′ := 1/2(p + p). Then p′ ∈ R(R) and consequently,
h(p′) =∑n

i=1 ai p(ui) = a1 + a2 ∈ R. Similarly, there exists q ∈ R(C)
such that q(u1) = i, q(u2) = −i and q(u j ) = 0 if j > 2. Setting
q ′ := 1/2(q + q) and applying h to it, we find that i(a1 − a2) ∈ R. So
we conclude that a1 = a2. Continuing this way proves the lemma.

What remains is the proof of (i) implies (iii), which is the hardest part.
Our proof of this is based some on fundamental results in geometric in-
variant theory. We will now sketch our approach.
Let h be a real l-color edge-coloring model such that ph = pa,B . Then,

using that U is nondegenerate and that the columns of U are distinct, we
can apply a result from [2] and a result from [5] to find g ∈ Ol(C) such
that h =∑n

i=1 ai evgui .
Suppose now that UU ∗ ∈ Rk×k . Define for an l × n matrix W the

function fW : Ol(C) → R by g �→ tr(gW (gW )∗), where tr denotes
the trace. The function fW was introduced by Kempf and Ness [5] in
the context of reductive algebraic groups acting on finite dimensional
vector spaces. Denote by Stab(W ) the subgroup of Ol(C) that leaves
W invariant. Let e ∈ Ol(C) denote the identity matrix.

Lemma 3.2. The function fW has the following properties:

(i) infg∈Ol (C) fW (g) = fW (e) if and only if WW ∗ ∈ Rl×l ,
(ii) If WW ∗ ∈ Rl×l , then fW (e) = fW (g) if and only if g ∈ Ol(R) ·
Stab(W ).

To prove that we can take g equal to the identity, we first find, as above,
g ∈ Ol(C) such that h =∑n

i=1 ai evgui . By Lemma 3.1, this implies that
gU(gU)∗ is real. Hence, by Lemma 3.2 (i) fgU attains its infimum at the
identity. Equivalently, fU attains its infimum at g. So by Lemma 3.2 (ii),
g ∈ Ol(R) · Stab(U). From this we can conclude that h is real valued.
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Adjacent vertex-distinguishing edge
coloring of graphs

Marthe Bonamy1, Nicolas Bousquet1 and Hervé Hocquard2

Abstract. An adjacent vertex-distinguishing edge coloring (AVD-coloring) of a
graph is a proper edge coloring such that no two neighbors are adjacent to the
same set of colors. Zhang et al. [17] conjectured that every connected graph on at
least 6 vertices is AVD (�+ 2)-colorable, where � is the maximum degree.
In this paper, we prove that (� + 1) colors are enough when � is sufficiently

larger than the maximum average degree, denoted mad. We also provide more
precise lower bounds for two graph classes: planar graphs, and graphs with mad <
3. In the first case, � ≥ 12 suffices, which generalizes the result of Edwards et
al. [7] on planar bipartite graphs. No other results are known in the case of planar
graphs. In the second case, � ≥ 4 is enough, which is optimal and completes the
results of Wang and Wang [14] and of Hocquard and Montassier [9].

1 Introduction

In the following, a graph is a connected simple graph on at least three
vertices. A (proper) edge k-coloring of a graph is a coloring of its edges
using at most k colors, where any two incident edges receive distinct col-
ors. The chromatic index of a graph G, denoted by χ ′(G), is the smallest
integer k such that G admits an edge k-coloring. Let �(G) be the maxi-
mum degree of G. Since incident edges receive distinct colors in an edge
coloring, every graph G satisfies χ ′(G) ≥ �(G). The Vizing’s theorem
ensures that the reverse inequality is nearly true, more precisely:

Theorem 1.1 ([12]). Every graph G satisfies�(G)≤χ ′(G)≤�(G)+1.
An adjacent vertex-distinguishing edge k-coloring (AVD k-coloring

for short) is a proper edge k-coloring such that, for any two adjacent
vertices u and v, the set of colors assigned to edges incident to u differs
from the set of colors assigned to edges incident to v. The AVD-chromatic
index of G, denoted by χ ′avd(G), is the smallest integer k such that G ad-
mits an AVD k-coloring. It should be noted that, while an isolated edge
admits no AVD coloring, the AVD-chromatic index is finite for all con-
nected graphs on at least three vertices. AVD colorings are also known
as adjacent strong edge colorings [17] and 1-strong edge colorings [1].

1 LIRMM (Université Montpellier 2), 161 rue Ada, 34392 Montpellier Cedex, France. Email:
marthe.bonamy@lirmm.fr, bousquet@lirmm.fr
2 LaBRI (Université Bordeaux 1), 351 cours de la Libération, 33405 Talence Cedex, France. Email:
hocquard@abri.fr

This research is partially supported by the ANR Grant EGOS (2012-2015) 12 JS02 002 01
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Note that AVD colorings are special cases of vertex-distinguishing proper
edge colorings. Such colorings are proper edge colorings such that no
two (not necessarily adjacent) vertices are adjacent to the same set of
colors. The corresponding chromatic index is called the observability
and was studied for different graph classes [3, 5, 6, 8].
Since an AVD coloring is a proper edge coloring, every graph G sat-

isfies χ ′avd(G) ≥ �(G). In addition, every graph G with two adjacent
vertices of degree�(G) satisfies χ ′avd(G) ≥ �(G)+1. Zhang et al. [17]
completely determined the AVD-chromatic index of paths, cycles, trees,
complete graphs, and complete bipartite graphs. They noted that a cycle
of length five requires five colors, but conjectured that it is the only graph
with such a gap between χ ′avd(G) and �(G).
Conjecture 1.2 ([17]). Every graph G on at least 6 vertices satisfies
χ ′avd(G) ≤ �(G)+ 2.
Balister et al. [2] proved Conjecture 1.2 for graphs with�(G) = 3 and

for bipartite graphs.
For edge coloring, Theorem 1.1 ensures that the chromatic index of a
graph can only have two values: �(G) or �(G) + 1, and the classi-
fication of graphs depending on this received considerable interest (for
instance [11]). For AVD coloring, if Conjecture 1.2 holds then the AVD
chromatic index of a graph can only have three values: �(G), �(G)+ 1
or �(G)+ 2. When considering a given graph class that allows two ver-
tices of maximum degree to be adjacent, there are only two possible upper
bounds: �(G) + 1 or �(G) + 2. Similarly, the classification of graph
classes depending on this received subsequent interest, for instance:

Theorem 1.3 ([7]). Every (connected) bipartite planar graph G with
�(G) ≥ 12 satisfies χ ′avd(G) ≤ �(G)+ 1.
Let mad(G) = max

{
2|E(H)|
|V (H)| , H ⊆ G

}
be the maximum average de-

gree of the graph G, where V (H) and E(H) are the sets of vertices and
edges of H , respectively. Wang and Wang [14] made the link between
maximum average degree and AVD-chromatic index and proved Conjec-
ture 1.2 for graphs with �(G) ≥ 3 and mad(G) < 3.
Theorem 1.4 ([14]). Every (connected) graph G with �(G) ≥ 3 and
mad(G) < 3 satisfies χ ′avd(G) ≤ �(G)+ 2.
They also gave sufficient conditions for graphs of bounded maximum

average degree to be AVD (�(G)+ 1)-colorable. Combined with results
of Hocquard and Montassier [9], we have:

Theorem 1.5 ([9, 14]). Every (connected) graph G with �(G) ≥ 3 and
mad(G) < 3− 2

�(G) satisfies χ
′
avd(G) ≤ �(G)+ 1.



315 Adjacent vertex-distinguishing edge coloring of graphs

Two main questions arise from these partial results: can this threshold
of 3 as an upper-bound on mad(G) be reached with a sufficiently large
lower-bound on�(G) in the case of Theorem 1.5, and broken in the case
of Theorem 1.4? We answer positively to these questions with Theo-
rem 1.6: there is no threshold in the case of Theorem 1.5 (and thus in the
case of Theorem 1.4).

Theorem 1.6. Every graph G with �(G) > 3 × (mad(G))2 satisfies
χ ′avd(G) ≤ �(G)+ 1.
In the case of edge coloring, the best lower bound is due to Woodall

[15]: every graph G with �(G) > 3×mad(G)
2 satisfies χ ′(G) = �(G).

There is a very large gap between this bound and its AVD counterpart,
but this is essentially due to the fact that most methods on edge coloring
are not transposable to AVD coloring. On the other hand, the gap be-
tween the bound for AVD coloring and its list edge counterpart is a mere
constant factor [4] (note that list edge coloring is similarly conjectured to
be always possible with �(G)+ 1 colors [13]).
By Theorem 1.6, planar graphs with sufficiently large maximum de-

gree are AVD (�(G) + 1)-colorable. We provide a more refined lower-
bound, and prove here that the bipartite hypothesis in Theorem 1.3 is
unnecessary.
Theorem 1.7. Every planar graphG with�(G)≥12 satisfies χ ′avd(G)≤
�(G)+ 1.
In the case of graphs with maximum average degree at most 3, we

improve Theorem 1.5 by showing that �(G) ≥ 4 is enough to reach the
threshold of 3, as follows.
Theorem 1.8. Every graph G with �(G) ≥ 4 and mad(G) < 3 satisfies
χ ′avd(G) ≤ �(G)+ 1.
Note that Theorem 1.8 is best possible since Figure 1.1 provides a sub-

cubic graph with mad(G) = 11
4 < 3 that is not AVD (�+ 1)-colorable.

Figure 1.1. A graph G with �(G) = 3 and mad(G) = 11
4 < 3 such that

χ ′avd(G) = 5.

2 Method

We prove Theorems 1.6, 1.7 and 1.8 using a discharging method. We first
choose a partial order on graphs. It depends on the theorem to prove but
is basically a customization of the lexicographic order on the number of
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vertices of each degree. In a first time, we consider by contradiction a
“minimal” counter-example, and prove that it has some strong structural
properties. We then prove that a graph with those structural properties
cannot satisfy the assumptions of the theorem, which provides a con-
tradiction. Due to the limited number of pages, the complete proofs of
Theorems 1.6, 1.7 and 1.8 are omitted. We nevertheless sketch the proof
of Theorem 1.8.
The four following lemmas provide the most relevant examples of

structural properties that we proved on a minimal counter-example of any
of Theorems 1.6, 1.7 and 1.8, where the number of colors is k + 1, for
k ≥ 4. In each case, we assume by contradiction that the graph contains
such a configuration, we color by minimality a smaller graph and prove
that the coloring can be extended to the whole graph.

Lemma 2.1. No vertex v2 is adjacent to two vertices v1 and v3, with
d(v1), d(v2) and d(v3) ≤ k

2 .

Lemma 2.1 follows from a recoloring algorithm. The proof is quite
involved, when a simple proof exists when k

2 is replaced by
k
4 , but this

bound is decisive for Theorems 1.6 and 1.7.

Lemma 2.2. No vertex has at least k2 neighbors of degree 1.

Lemma 2.3. No vertex of degree 2 is adjacent to two vertices of degree
at most k2 + 1.
Lemmas 2.2 and 2.3 follow from a simple combinatorial argument,

except in the case of a vertex of degree 2 adjacent to a vertex of degree
exactly k

2 +1, where the result is derived from a recoloring argument and
from the 2-connectivity of a minimal counter-example.

Lemma 2.4. No vertex is adjacent to two vertices u, v with d(u) = 2
and d(v) ≤ 2.
Lemma 2.4 follows from a simple reduction to a smaller graph, where

the choice of the partial order is decisive. Those four lemmas are not
enough for Theorems 1.6 and 1.7. Lemma 2.1 is decisive for Theo-
rems 1.6 and 1.7, and Lemmas 2.2 to 2.4 suffice for Theorem 1.8.
We consider a graph G with �(G) ≤ k that satisfies Lemmas 2.2, 2.3

and 2.4, and assign to each vertex its degree as weight. We then design
discharging rules to rearrange the weight along the graph so as to derive
that mad(G) ≥ 3. The following observation is instrumental in the proofs
of Theorems 1.6 and 1.8.

Observation 2.5. For any vertex partition (V1, V2) of a graph G, if every
vertex v has an initial weight of d(v), and the weight can be rearranged
along the graph so that every vertex v1 of V1 has a weight of at least
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2 × d(v1) and every vertex v2 of V2 has a weight of at least m, then
mad(G) ≥ m.
Thus, to prove Theorem 1.8, we design a single discharging rule stating

that a vertex u with d(u) ≥ 3 that has a neighbor v of degree 1 or 2 gives
a weight of 1 to v. We consider V1 to be the set of vertices of degree 1,
and V2 the set of vertices of degree at least 2. By Lemma 2.2, the vertices
incident to a vertex of degree 1 are of degree at least 4, and in particular
V1 is an independent set. Let u be a vertex of G. If u ∈ V1, since V1 is an
independent set, the vertex u gives nothing and receives d(u), so it has a
final weight of 2 × d(u). If u ∈ V2 with d(u) = 2, by Lemma 2.3, the
vertex u is adjacent to at least one vertex of degree at least 3, and receives
1 from it. Since it gives nothing, it has a final weight of at least 3. If
u ∈ V2 with d(u) ≥ 3 and u has a neighbor of degree 2, by Lemmas 2.3
and 2.4, the vertex u is adjacent to no other vertex of degree at most 2,
and d(u) ≥ 4, so u has a final weight of at least 3. If u ∈ V2 and has no
neighbor of degree 2 with d(u) ≥ 3, by Lemma 2.2, the vertex u has at
most d(u)− 3 neighbors of degree 1, so u has a final weight of at least 3.
By Observation 2.5, mad(G) ≥ 3.
For Theorem 1.7, we use a combinatorial argument to prove that a ver-

tex cannot have too many small vertices, with an optimal bound (optimal
for a combinatorial argument not involving any recoloring algorithm) de-
pending on the respective degrees and on the number of colors. For The-
orem 1.6, we use a method from a beautiful proof by Borodin, Kostochka
and Woodall [4] (later simplified in [15]) of a similar result on list edge
coloring.

3 Conclusion and perspectives

With Theorem 1.6, we made a significant step towards Conjecture 1.2, by
proving that there are many graphs that need one less color. Our methods
will however not be sufficient for the conjecture itself, as they require
sparsity hypotheses. However, we could aim at proving that all planar
graphs are AVD (�(G) + 2)-colorable, by further developing the proof
of Theorem 1.7. We conclude with two conjectures.

Conjecture 3.1. For any graph G, if the set of vertices of maximum de-
gree in G forms an independent set, then χ ′avd(G) ≤ �(G)+ 1.
Conjecture 3.2. For any graph G, if G admits a subgraph H such that
χ ′avd(H) > χ

′
avd(G), then either H is not connected or �(H) = 2.
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Rainbow path and minimum degree
in properly edge colored graphs

Anita Das1, P. Suresh1 and S. V. Subrahmanya1

Abstract. A rainbow path in a properly edge colored graph is a path in which
all the edges are colored with distinct colors. Let G be a properly edge colored
graph with minimum degree δ and let t be the maximum length of a rainbow path
in G. In this paper, we show that t ≥ � 3δ5 �. It is easy to see that there exist
graphs for which t ≤ δ; with respect to some proper edge coloring. For example,
δ-regular graphs of chromatic index δ are graphs for which t ≤ δ, with respect
to their optimum proper edge coloring. We leave open the question of getting a
lower bound as close to δ as possible.

1 Introduction

Given a graph G = (V, E), a map c : E → N (N is the set of non-
negative integers) is called a proper edge coloring of G if for every two
adjacent edges e1 and e2 of G, we have c(e1) �= c(e2). If G is assigned
such a coloring c, then we say that G is a properly edge colored graph.
We denote the color of an edge e ∈ E(G) by color(e).
A path in an edge colored graph with no two edges sharing the same

color is called a rainbow path. Similarly, a cycle in an edge colored
graph is called a rainbow cycle if no two edges of the cycle share the
same color. Given a coloring of the edges of G, a rainbow matching is
a matching whose edges have distinct colors. Rainbow cycles, rainbow
paths and rainbow matching in properly edge colored complete graphs
are related to partial transversal of latin squares. Latin squares have been
a popular topic in combinatorics at least since the times of Euler, who
studied them extensively. A survey on rainbow paths, cycles and other
rainbow sub-graphs can be found in [6]. Several theorems and conjec-
tures on rainbow cycles can be found in a paper by Akbari, Etesami,
Mahini and Mahmoody in [1].
Maximum length rainbow paths and rainbow cycles are studied exten-

sively in properly edge colored complete graphs. Hahn conjectured that
every proper edge coloring of Kn (Kn is a complete graph having n ver-
tices) admits a Hamiltonian rainbow path (a rainbow path visiting every

1 E-Comm Research Lab, Education & Research, Infosys Limited Bangalore, India. Email:
Anita Das01@infosys.com, Suresh P01@infosys.com, subrahmanyasv@infosys.com,
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vertex of Kn). Later, Maamoun andMeyniel [7] disproved this conjecture
by constructing counterexamples for the case where n is a power of two.
Still it is widely believed that in every proper edge coloring of Kn , there is
a rainbow path on n−1 vertices, though this is far from proved. Gyárfás
and Mhalla in [5] have shown that the number of vertices in a maximum
rainbow path in (a properly edge colored) Kn is at least (2n+ 1)/3. Very
recently in [4], H. Gebauer and F. Mousset have improved this bound and
have shown that, in every proper edge coloring of Kn , there is a rainbow
path of length ( 34 − o(1))n.
1.1 Our results

In this paper, we consider the problem of finding a maximum length rain-
bow path in a properly edge colored graph G. Let δ be the minimum
degree of G. The main result of this paper is the following:

Theorem 1.1. If t is the maximum length of a rainbow path in a properly
edge colored graph G, then t ≥ ⌊

3
5δ
⌋
.

We are unable to show that the bound given in this paper is tight. On
the other hand, it is easy to see that, we cannot expect to get a lower
bound greater than δ. For example, consider δ regular graphs of chro-
matic index δ which are optimally properly edge colored. Clearly for
these cases maximum rainbow path length cannot exceed δ. We leave
open the question of getting a lower bound of δ − c, for some constant c.

1.2 Preliminaries

All graphs considered in this paper are finite, simple and undirected. A
graph is a tuple (V, E), where V is the finite set of vertices and E is
the set of edges. For a graph G, we use V (G) and E(G) to denote its
vertex set and edge set, respectively. The neighborhood N (v) of a vertex
v is the set of vertices adjacent to v but not including v. The degree
of a vertex v is dv = |N (v)|. We write |V (G)|, δ, � for the order,
minimum degree and maximum degree of G, respectively. A path is a
non-empty graph P = (V, E) of the form V = {p1, p2, . . . , pk} and
E = {{p1, p2}, {p2, p3}, . . . , {pk−1, pk}}, which we usually denote by
the sequence {p1, p2, . . . , pk}. The length of a path is its number of
edges. If P = {p1, p2, . . . , pk} is a path, then the graphC = P∪{pk, p1}
is a cycle, and |E(C)| is the length of C . We represent this cycle by the
cyclic sequence of its vertices, for example C = {p1, p2, . . . , pk, p1}.

2 Proof of the main results

Let G be a properly edge colored graph with the length of maximum
rainbow path equal to t . In this Section, C stands for the set of colors
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used in the proper edge coloring of the graph G. The following lemma
ensures a rainbow path of length

⌈
δ+1
2

⌉
starting from any vertex in a

properly edge colored graph G. Due to page restriction we omitted the
proof.

Lemma 2.1. Given any vertex x in G, there exists a rainbow path of
length at least

⌈
δ+1
2

⌉
starting from x .

The following lemma ensures that if the maximum length of a rainbow
path is small enough, then we can convert the maximum rainbow path
into a rainbow cycle by some simple modifications.

Lemma 2.2. Let G be a properly edge colored graph with a rainbow
path of maximum length, say t . If t <

⌊
3
5δ
⌋
, then G contains a rainbow

cycle of length (t + 1).
Proof. Assume for contradiction that there is no rainbow cycle of length
t + 1 in G. Let P = {u0(= x), u1, u2, . . . , ut(= y)} be a rainbow path
of length t in G. Let U = {color(ui , ui+1), 0 ≤ i ≤ t − 1} and Uc =
C \U , where C is the set of colors used to color the edges of G properly.
Clearly |U | = t . Let Tx = {ui : 0 ≤ i ≤ t, (x, ui) ∈ E(G) and
color(x, ui) ∈ Uc} and let Ty = {ui : 0 ≤ i ≤ t, (y, ui) ∈ E(G)
and color(y, ui) ∈ Uc}. First note that |{(x, z) ∈ E(G) : color(x, z) ∈
Uc}| ≥ δ − t . Moreover, if (x, z) ∈ E(G) with color(x, z) ∈ Uc, then
z ∈ V (P), i.e., z = ui for some 1 ≤ i ≤ t , since otherwise we would
have rainbow path of length t + 1 in G. It follows that |Tx | ≥ δ − t .
By a similar argument, we get |Ty| ≥ δ − t . Note that u0, u1 /∈ Tx
since u0 = x and color(x, u1) ∈ U . Also, ut /∈ Tx , since if (x, ut) is
an edge and is colored using a color from Uc, then we already have a
t + 1 length rainbow cycle, contrary to the assumption. So, we can write
Tx = {ui : 2 ≤ i ≤ t − 1 and color(x, ui) ∈ Uc}. By similar reasoning,
we can write, Ty = {ui : 1 ≤ i ≤ t − 2 and color(y, ui) ∈ Uc}. Define
Mx = {u j : u j+1 ∈ Tx}.
Observation 1. |Mx | = |Tx | ≥ δ − t .

Claim 1. Mx ∩ Ty �= ∅.
If possible suppose Mx ∩ Ty = ∅. Now, |Mx | + |Ty| ≤ t − 1, as both

Mx ⊂ V (P) and Ty ⊂ V (P) and number of vertices on P excluding x
and y is t − 1. (Note that x, y /∈ Mx and x, y /∈ Ty .) As |Mx | ≥ δ− t and
|Ty| ≥ δ−t and Mx∩Ny = ∅ by assumption, we have δ−t+δ−t ≤ t+1.
That is, 2δ ≤ 3t − 1. So, t ≥ 2δ+1

3 . This is a contradiction to the fact that
t <

⌊
3
5δ
⌋
. Hence Claim 1 is true.

Claim 2. If ui ∈ Mx ∩ Ty , then color(y, ui) = color(x, ui+1).



322 Anita Das, P. Suresh and S. V. Subrahmanya

If possible suppose Claim 2 is false. That is, ui ∈ Mx ∩ Ty and
color(y, ui) �= color(x, ui+1).
Now consider the cycle: CL = {x, u1, . . . , ui , y, ut , ut−1, . . . , ui+1, x}.
Clearly CL is a rainbow cycle, as color(y, ui) �= color(x, ui+1) and
color(y, ui) ∈ Uc and color(x, ui+1) ∈ Uc. Note that, the length of CL
is t + 1, as we removed exactly one edge, namely (ui , ui+1) from P and
added two new edges, namely (y, ui) and (x, ui+1) to CL . So, the length
of CL is t − 1+ 2 = t + 1, contradiction to the assumption. Hence, we
can infer that if ui ∈ Mx ∩ Ty , then color(y, ui) = color(x, ui+1). Let
Sy = {v ∈ V (P)− Mx : color(y, v) ∈ U − {color(y, ut−1)}}.
Observation 2. |Mx | + |Ty| + |Sy| − |Mx ∩ Ty| ≤ t − 1.
Proof: This is because Sy is disjoint from Mx ∪Ty and Sy ∪Mx ∪Ty ⊆

V (P)− {y, ut−1}. (Note that y = ut and ut−1 do not appear in Mx , Ty or
Sy .)

We partition the set Mx ∩ Ty as follows. Let ui ∈ Mx ∩ Ty . If
color(ui , ui+1) appears in one of the edges incident on y, then ui ∈ A
otherwise ui ∈ B.

Observation 3. |Ty| ≥ δ − t + |B|.
Proof: To see this first note that there are at least δ edges incident on y

and at most t − |B| of them can get the colors from U , since |B| colors
inU do not appear on the edges incident on y, by the definition of B. So,
at least δ − t + |B| of the edges incident on y have colors from Uc, and
clearly any w, such that (y, w) is an edge, colored by a color in Uc has
to be on P , since otherwise we have a longer rainbow path.

Claim 3. If ui ∈ A, then the edge incident on y with color color(ui , ui+1)
has its other end point on the rainbow path P . That is, if w is such that
(y, w) is an edge and color(ui , ui+1) = color(y, w), then w ∈ V (P).
If possible suppose Claim 3 is false.

Let (y, w) ∈ E(G) with color(y, w) = color(ui , ui+1) and w /∈ V (P).
Now, consider the path: P ′={w,y,ut−1,ut−2,..., ui+1,x(= u0),u1,..., ui }.
Clearly P ′ is a rainbow path as color(ui , ui+1) = color(y, w), the edge
(ui , ui+1) /∈ E(P ′) and color(ui+1, x) ∈ Uc, since ui ∈ Mx . Note that,
the length of P ′ is t + 1. This is a contradiction to the fact that t is the
maximum length rainbow path in G. Hence Claim 3 is true.

Now, partition A as follows: if ui ∈ A, then by the above claim the
edge incident on y with the color color(ui , ui+1) has its other end point
say w, on P . If w ∈ Mx , then let ui ∈ A1, else ui ∈ A2.

Observation 4. |MX ∩ Ty| = |A| + |B| = |A1| + |A2| + |B|.
Observation 5. |Sy| ≥ |A2|. To see this, recall that Sy = {v ∈ V (P) −
Mx : color(y, v) ∈ U − {color(y, ut−1)}}. By definition of A2, for
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each ui ∈ A2 there exists a unique vertex w = w(ui) ∈ V (P)−Mx such
that (y, w) is an edge and color(y, w) = color(ui , ui+1) ∈ U . Since
ui ∈ A2 ⊂ Mx , i < t − 1 and thus color(ui , ui+1) �= color(y, ut−1). It
follows that {w(ui) : ui ∈ A2} ⊆ Sy , and therefore we have |Sy| ≥ |A2|.
Claim 4. |A1| ≤ |Mx |

2 .
Recall that, for each ui ∈ A1, there is a unique vertex w = w(ui) such

that (y, w) is an edge with color(ui , ui+1) = color(y, w). Moreover,
w ∈ Mx , by the definition of A1 and A1 ∪ {w(ui) : ui ∈ A1} ⊆ Mx . Note
that w(ui) is uniquely defined for ui since it is the end point of the edge
incident on y colored with the color of the edge (ui , ui+1). Moreover,
A1 ∩ {w(ui) : ui ∈ A1} = ∅, since A1 contains vertices which are end
points of edges from y, colored by the colors in Uc whereas each w(ui)
is the end point of some edge from y which is colored by a color in U . It
follows that 2|A1| ≤ |Mx |. That is, |A1 ≤ |Mx |

2 , as required.
Now, substituting δ− t + |B| for |Ty| (by Observation 3), |A2| for |Sy|

(by Observation 5), and |A1| + |A2| + |B| = |Mx ∩ Ty| (by Observation
4) in the inequality of Observation 2, and simplifying we get |Mx | + δ −
t − |A1| ≤ t − 1. Now using |A1| ≤ |Mx |/2 (Claim 4) and simplifying
we get |Mx |

2 + δ − t ≤ t − 1. Recall that |Mx | ≥ δ − t (Observation 1).
Substituting and simplifying we get, t ≥ 3δ+2

5 ≥ ⌊
3
5δ
⌋
, contradicting the

initial assumption. Hence the Lemma is true.

Theorem 2.3. Let G be a properly edge colored graph with minimum
degree δ. If t is the maximum length of a rainbow path in G, then t ≥⌊
3δ
5

⌋
.

Proof. If possible suppose t <
⌊
3δ
5

⌋
. By Lemma 2.2, G contains a rain-

bow cycle of length t + 1. Let CL be this cycle. Note that, CL con-
tains (t + 1) vertices and (t + 1) edges. Now, t + 1 ≤ � 3δ5 �. Let CL ={u0, u1, . . . , ut , u0} and V (CLc) = V (G)\V (CL). LetU = {color(e) :
e ∈ E(CL)} and Uc = C \U , where C is the set of colors used to color
the edges of G properly. Let Fi = {z ∈ V (CLc) : (ui , z) ∈ E(G)}.
Claim 1. |Fi | ≥

⌈
2δ
5

⌉
. Moreover, for z ∈ Fi , color(ui , z) ∈ U .

First part follows from the fact that degree(ui) ≥ δ and there are at
most

⌊
3δ
5

⌋
vertices in CL . If possible suppose color(ui , z) ∈ Uc. Now

consider the path P ′ = {z, ui , ui+1, ui+2, . . . , ut , u0, . . . , ui−1}. Clearly,
P ′ is a rainbow path as color(ui , z) ∈ Uc and {ui , ui+1, ui+2, . . . , ut ,
u0, . . . , ui−1} is already a rainbow path being a part of the rainbow cycle
CL . Note that, the length of P ′ is t + 1. This is a contradiction to
the assumption that t is the maximum length rainbow path in G. Hence
Claim 1 is true.
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Let G ′ = (V ′, E ′), where V ′(G ′) = V (G) and E ′(G ′) = E(G) \ {e ∈
E(G) : color(e) ∈ U}. Clearly, in G ′ there is no edge between V (CL)
to V (CLc), since by Claim 1, every such edge is colored by a color inU .
Consider the induced subgraph of V (CLc) in G ′. Let G ′′ = G ′[V (CLc)].
Let δ′ be the minimum degree of G ′′.
Observation 1. δ′ ≥ ⌈

2δ
5

⌉
.

Proof: Clearly δ′ ≥ δ − |U | = δ − (t + 1) ≥ δ − ⌊
3δ
5

⌋ ≥ ⌈
2δ
5

⌉
.

Consider the following subset U0 of U , defined by U0 = U1 ∪U2, where
U1 = {color(ui , ui+1) : 0 ≤ i ≤ � δ5� − 1} and U2 = {color(ui , ui+1) :
(t + 1)− ⌊

δ
5

⌋ ≤ i ≤ t − 1} ∪ {color(ut , u0)}.
Claim 2. {color(u0, z) : z ∈ F0} ∩U0 = ∅.
Suppose not. Let z ∈ F0 be such that color(u0, z) ∈ U0. Without loss

of generality assume that color(u0, z) ∈ U1. Then consider the path P∗
= (u� δ5�, . . . , ut , u0, z), which is clearly a rainbow path, since the edge
of CL with its color equal to color(u0, z) is not there in this path. Also
the length of P∗ is t + 1 − ⌊

δ
5

⌋
. By Observation 1, G ′′ has minimum

degree at least
⌈
2δ
5

⌉
, and therefore by Lemma 2.1, G ′′ has a rainbow path

of length at least
⌈
δ
5

⌉
, let us call this path P ′′. Clearly concatenating the

path P ′′ with P∗ we get a rainbow path since colors used in P∗ belong to
U whereas the colors used in P ′′ belong to Uc. Moreover, the length of
this rainbow path is at least t + 1, a contradiction, to the assumption that
t is the length of the maximum rainbow path in G.
Now we complete the proof as follows: In view of Claim 2, and Claim

1, we know that |F0| ≤ |U −U0|. But |U −U0| ≤
⌊
3δ
5

⌋− ⌈
2δ
5

⌉ ≤ ⌈
δ
5

⌉
<⌈

2δ
5

⌉
(since we can assume δ ≥ 5: for smaller values of δ, the Theorem

is trivially true). This is a contradiction to the first part of Claim 1.
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b-coloring graphs with girth at least 8

Victor Campos1, Carlos Lima2 and Ana Silva1

Abstract. A b-coloring of a graph is a proper coloring of its vertices such that ev-
ery color class contains a vertex that has neighbors in all other color classes. The
b-chromatic number of a graph is the largest integer b(G) such that the graph has
a b-coloring with b(G) colors. This metric is upper bounded by the largest integer
m(G) for which G has at least m(G) vertices with degree at least m(G)−1. There
are a number of results reporting that graphs with high girth have high b-chromatic
number when compared to m(G). Here, we prove that every graph with girth at
least 8 has b-chromatic number at least m(G)− 1. This proof is constructive and
yields a polynomial time algorithm to find the b-chromatic number of G. Further-
more, we improve known partial results related to reducing the girth requirement
of our proof.

1 Introduction

Let G be a simple graph and consider the traditional definitions of proper
coloring and chromatic number. Suppose that we have a proper coloring
of G and there exists a color c such that every vertex v with color c is
not adjacent to at least one other color (which may depend on v); then we
can change the color of these vertices and thus obtain a proper coloring
with fewer colors. This heuristic can be applied iteratively, but we cannot
expect to reach the chromatic number of G, since the coloring problem is
NP-hard. On the basis of this idea, Irving and Manlove introduced the
notion of b-coloring [6]. Intuitively, a b-coloring is a proper coloring that
cannot be improved by the above heuristic, and the b-chromatic number
measures the worst possible such coloring. More formally, consider a
proper coloring ψ of G. A vertex u is said to be a b-vertex in ψ if u has
a neighbor in each color class different from its own. A b-coloring of G
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2 COPPE, Universidade Federal do Rio de Janeiro, Brazil. Email: anasilva@mat.ufc.br
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is a proper coloring of G such that each color class contains a b-vertex.
A basis of a b-coloring ψ is a subset of b-vertices of ψ containing one
b-vertex of each color class. The b-chromatic number of G is the largest
integer b(G) for which G has a b-coloring with b(G) colors. Comput-
ing the b-chromatic number of a graph G is NP-hard [6], even if G is
bipartite [7] or is a chordal graph [5].
Naturally, a proper coloring of G with χ(G) colors is a b-coloring of

G; hence, χ(G) ≤ b(G). For an upper bound, let m(G) be the largest
integer such that G has at leastm(G) vertices with degree at leastm(G)−
1. Then, b(G) ≤ m(G) [6]. This upper bound is called the m-degree
of G.
The difference between b(G) and m(G) can be arbitrarily large. For

example, the complete bipartite graph Kn,n has b(G) = 2 and m(G) =
n + 1. Let the girth of G, denoted by g(G), be the length of a shortest
cycle of G. Even though deciding if b(G) = m(G) is NP-hard [7],
there seems to exist a relation between the girth of G and how close b(G)
is to m(G). In fact, the following two conjectures have received some
attention.

Conjecture 1.1 ([1]). If G is a d-regular graph with girth at least 5 and
G is not the Petersen graph, then b(G) = d + 1.
Conjecture 1.2 ([5]). If G = (A, B) is a C4-free bipartite graph such
that |A| = m, d(u) = m − 1 for all u ∈ A and d(v) < m − 1 for all
v ∈ B, then b(G) ≥ m − 1.
Note that the d-regular graph in Conjecture 1.1 has girth at least 5 and

m-degree d + 1, while the bipartite graph in Conjecture 1.2 has girth at
least 6 and m-degree m.
Many partial results have been given for Conjecture 1.1 ( [1, 2, 7, 8,

12]). In particular, Shaebani [12] gives a lower bound of
⌊
d+3
2

⌋
for the b-

chromatic number of a d-regular graph with girth at least 5. Concerning
Conjecture 1.2, Lin and Chang [9] proved that the conjecture holds if the
famous Erdős-Faber-Lovász Conjecture [4] also holds.
Motivated by these conjectures and by Silva’s observation that Irving

and Manlove’s result on trees actually holds for any graph with girth at
least 11 [11], we pose the following question, where g,m, b stands for
girth, m-degree and b-chromatic number.

Question g, m, b. What is the minimum value g∗ for which g(G) ≥ g∗
implies b(G) ≥ m(G)− 1?
Observe that the complete bipartite graph implies g∗ ≥ 5. We mention
that the previous best bound on g∗ is obtained by Campos, Farias and
Silva [3] where they prove g∗ ≤ 9. The main result in this paper is
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to prove that g∗ is either 5, 6, 7 or 8. The proof also yields a polynomial
time algorithm to find an optimal b-coloring of a graph G with g(G) ≥ 8.
Theorem 1.3. IfG is a graph with girth at least 8, then b(G)≥m(G)−1.

Improving the best known upper bound for g∗ has a few consequences
for other studied problems. In fact, showing that g∗ ≤ 6 proves Conjec-
ture 1.2. Furthermore, showing that g∗ ≤ 5 improves the lower bound
obtained by Shaebani [12] from

⌊
d+3
2

⌋
to d.

Let C3�C3 denote the Cartesian product of two cycles of length 3.
In [10], Maffray and Silva make the following conjecture.

Conjecture 1.4. Let G be any graph with no K2,3 as subgraph. If G �=
C3�C3, then b(G) ≥ m(G)− 1.
Although this conjecture is false due to a technical error as the graph

C3�C3 together with isolated vertices is a counter-example, we believe
Conjecture 1.4 might be true with a few extra constraints. We propose a
reformulation of this conjecture as follows.

Conjecture 1.5. Let G be any graph with no K2,3 as subgraph. Then
b(G) ≥ m(G)− 1 unless G contains a component isomorphic to C3�C3
and all other components have maximum degree at most 2.

Observe that Conjecture 1.5 implies g∗ ≤ 5. In fact, if g(G) ≥ 5, then
G contains neither a K2,3 nor a C3�C3 as subgraphs.
LetKm denote the class of graphs obtained fromm copies of Km where

any two copies of Km intersect in at most one vertex. The famous Erdős-
Faber-Lovász Conjecture [4] can be stated as follows.

EFL Conjecture. If G ∈ Km , then χ(G) = m.

Let H ∈ Km . Note that each copy of Km in H contains at least one
vertex not contained in any other copy of Km . Let A be a set ofm vertices
obtained by picking one vertex from each copy of Km with this property.
Let G be the graph obtained from H by deleting all edges with no end-
point in A and let B = V (G) \ A. Note that G is bipartite and the bipar-
tition (A, B) satisfies the properties of Conjecture 1.2 with m(G) = m
as long as no vertex in B has degree at least m − 1. Furthermore, if
b(G) = m with A as a basis, then χ(H) = m and EFL is true for H .
Therefore, if g∗ ≤ 6, characterizing the graphs G with g(G) ≥ 6 and
b(G) = m(G)−1 determines the possible counter-examples for the EFL
Conjecture. We find this to be a strong partial result which could lead to
a proof of EFL.
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2 Improving tool lemmas

We say that a vertex u ∈ V (G) is dense if d(u) ≥ m(G) − 1 and we
denote the set of dense vertices of G by D(G). Let W be a subset of
D(G) and u be any vertex in V (G) \ W . If all vertices in W are either
adjacent to u or have a common neighbor v ∈ W with u with d(v) =
m(G) − 1, then we say that W encircles u.A subset W of D(G) of size
m(G) is a good set if:
(a) W does not encircle any vertex, and
(b) Every vertex x ∈ V (G) \W with d(x) ≥ m(G) is adjacent to W .

Lemma 2.1 ([6]). Let G be any graph and W be a subset of D(G) with
m(G) vertices. If W encircles some vertex v ∈ V (G) \W , then W is not
a basis of a b-coloring with m(G) colors.

Lemma 2.2 ([11]). If G is a graph with g(G) ≥ 8, then G does not have
a good set if and only if |D(G)| = m(G) and D(G) encircles a vertex.
Also, a good set can be found in polynomial time, if one exists.

Lemma 2.3 ([11]). Let G be a graph with girth at least 8. If G has no
good set, then b(G) = m(G)− 1.
First, we note that Lemma 2.1 states that a basis for a b-coloring with

m(G) colors cannot encircle any vertex. Therefore, a good set is a possi-
ble basis for a b-coloring with m(G) colors. Indeed, Theorem 1.3 easily
follows from Lemmas 2.2, 2.3 and the one below.

Lemma 2.4. If G has girth at least 8 and W is a good set of G, then
there exists a b-coloring ψ of G with m(G) colors having W as basis.

Using the same framework for the proof of Theorem 1.3, we cannot
improve this result unless we improve the auxiliary results in Lemmas 2.2
and 2.3. This is done next.

Lemma 2.5. Let G be a graph with g(G) ≥ 6. Then G does not have a
good set if, and only if, one of the following holds (below m = m(G)):

1. |D(G)| = m and D(G) encircles a vertex in V (G) \ D(G); or
2. g(G) = 6, |D(G)| = m+1, d(v) = m−1 for all v ∈ D(G) and D(G)
induces a matching in G. Furthermore, D(G) can be partitioned into
stables sets X0 and X1 such that |X0| = |X1| and there are vertices
u0, u1 ∈ V (G) \ D(G) such that ui is adjacent to all vertices in Xi
and to no vertices in X1−i , for i ∈ {0, 1}.

Moreover, a good set can be found in polynomial time, if one exists.
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Lemma 2.6. Let G be a graph with girth at least 7. If G has no good
set, then b(G) = m(G)− 1.
Lemma 2.7. If G is a graph satisfyting property (2) of Lemma 2.5, then
b(G) = m(G)− 1.

3 Comments and open questions

We believe Question g,m, b to be an interesting problem and relate this
question to other studied conjectures in the literature in Section 1. Fur-
thermore we show that proving g∗ ≤ 6 proves Conjecture 1.2 and, at
the end of Section 1, we point out that this could be an important step
in proving the famous Erdős-Faber-Lovász Conjecture. In Section 1 we
also restate a conjecture by Silva andMaffray [10], which, if true, implies
that g∗ = 5.
Then, we prove that g∗ ≤ 8 and improve the partial results used in this

proof to try to build a stepping stone for proving an upper bound of 6 or 7
for g∗ in Section 2. We mention that an equivalent of Lemma 2.4 cannot
be obtained for graphs of girth at most 6 [11].
Recall that the EFL Conjecture implies Conjecture 1.2 [9]. We also

feel it would be interesting to prove a strengthening of this result. Can
we prove g∗ ≤ 6 if we assume that the EFL Conjecture is true?
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The circular chromatic index of k-regular
graphs

Barbora Candráková1 and Edita Máčajová1

Abstract. The circular chromatic index of a graph G is the infimum of all rational
numbers p/q, such that there exists a circular p/q-edge-coloring of the graph
G. A natural problem is to determine the set of possible values of the circular
chromatic indices of k-regular graphs. In this work we construct k-regular graphs
with certain circular chromatic indices of the form k + a/p, in particular graphs
for all a ∈ {1, 2, . . . , �k/2�} and p ≥ 2a2 + a + 1.

1 Introduction

Graphs considered in this paper are finite. The notion graph always refers
to a simple graph. If parallel edges are allowed, the object in question is
called a multigraph.
For a real number r ≥ 1 we define a circular r-edge-coloring of a

graph G as a mapping c : E(G)→ [0, r) satisfying 1 ≤ |c(e)− c( f )| ≤
r−1 for any pair of adjacent edges e and f of G. The circular chromatic
index of the graph G, denoted by χ ′c(G), is the infimum of the set of all
real numbers r such that there exists a circular r-edge-coloring of G.
Which real numbers are the circular chromatic indices of k-regular

graphs? Since χ ′(G) = �χ ′c(G)�, the Vizing’s Theorem implies that
k ≤ χ ′c(G) ≤ k + 1 for any k-regular graph G. Circular edge-colorings
are especially interesting for k-regular graphs with the chromatic index
k + 1, so called k-regular class 2 graphs. While circular edge-colorings
of cubic graphs have been extensively studied (e.g. [1–6]), very little is
known about circular edge-colorings of k-regular graphs with k ≥ 4. Re-

1 Department of Computer Science, Faculty of Mathematics, Physics and Informatics, Comenius
University, 842 48 Bratislava, Slovakia.
Email: candrakova@dcs.fmph.uniba.sk, macajova@dcs.fmph.uniba.sk
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cently, Lukoťka and Mazák [5] have shown that for each given rational
number r , such that 3 < r < 3 + 1/3, there exists an infinite family
of cubic graphs with the circular chromatic index r . On the other hand,
by [1], the circular chromatic number of a bridgeless cubic graph is at
most 3+ 2/3. There are known cubic graphs with the circular chromatic
index r for infinitely many values r , such that 3+1/3 < r < 3+2/3 [5],
but the global situation in this interval is still open.
It has been conjectured [1] that for any k ≥ 2 and an εk > 0 there exists

no graph with k−εk < χ ′c < k. The values of the circular chromatic index
we present in this work belong to the interval (k, k + 1/4).

2 k-Regular graphs with χ ′c = k + a/p

In this section we provide a construction of k-regular graphs with the
circular chromatic index equal to k + a/p for all integers k ≥ 4, a ∈
{1, 2, . . . , �k/2�} and p = (2a + 1)m + an such that m, n ≥ 1.
The colors in a circular r-coloring will be taken modulo r . Assume

that a and b are two colors in a circular r-coloring. The distance of a and
b is denoted by |a−b|r and defined as |a−b|r = min{|a−b|, r−|a−b|}.
Let us consider a circular r-edge-coloring. For any a, b ∈ [0, r), the

r-circular interval [a, b]r is defined as follows:

[a, b]r =
{ [a, b] (a ≤ b),
[a, r) ∪ [0, b] (a > b).

Although our construction aims towards simple graphs, we start with
multigraphs. Let Mk,a,m be a multigraph with vertex set {u1, u2, . . . , um,
v1, v2, . . . , vm, w}. The vertex w is also denoted as v0 or um+1. The
edge set of Mk,a,m consists of k − a parallel uivi -edges denoted by
ei,1, ei,2, . . . , ei,k−a for each i ∈ {1, 2, . . . ,m} and of a parallel vi ui+1-
edges denoted by fi,1, fi,2, . . . , fi,a for each i ∈ {0, 1, . . . ,m}, see Fig-
ure 2.1.
We create the graph Gk,a,m,n from the multigraph Mk,a,m by inserting

so called εk-block between vertices to avoid parallel edges. The εk-block
contains two dangling edges and is k-regular and k-edge-colorable. To
construct this block we take the union of k − 1 perfect matchings of the
complete graph on 2k−4 vertices, which is a (k−1)-regular graph that is
(k− 1)-edge-colorable. We add one dangling edge to each vertex and we
denote the resulting graph by G. Let w1 and w2 be two vertices disjoint
from G joined by an edge. To create εk-block, we adjoin half of the
dangling edges in G to the vertex w1, the other half to the vertex w2, and
add a dangling edge, called the input edge, to w1 and a dangling edge,
called the output edge, to w2, see Figure 2.2. Moreover, as we show in
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Figure 2.1. The multigraph Mk,a,m .

the forthcoming paper, it is possible to divide the dangling edges of G
into those that will be incident with w1 or with w2 in such a way that
the resulting block is k-edge-colorable. We will write ε-block instead of
εk-block when k is fixed.

Figure 2.2. The ε4-block. Figure 2.3. The subgraph Hi .

The ε-block is inserted into every edge in the multigraph Mk,a,m once,
except for the edges fm,1, fm,2, . . . , fm,a where n copies of the ε-block
are inserted into each edge. This way we get the graph Gk,a,m,n that
contains no parallel edges at all. The multigraph Mk,a,m contains edges
ei, j for all i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , k − a} and fb,c for all
b ∈ {0, 1, . . . ,m} and c ∈ {1, 2, . . . , a}. In the graph Gk,a,m,n, we denote
the e-edges incident with the vertex ui as eui, j and with the vertex vi as e

v
i, j .

Similarly, the f -edges incident with ui are denoted as f ui−1, j and incident
with vi are f vi, j . The edges that are incident with ε-blocks inserted into the

edge fm,l are denoted by f 1m,l, f
2
m,l, . . . , f

n+1
m,l in the order as they occur

when proceeding form vm to w.
Let Hi be the subgraph of Gk,a,m,n induced by the vertices ui , vi , by all

ε-blocks lying on ei, j edges for j ∈ {1, 2, . . . , k − a}, as well as by all
the vertices incident with the edges ui and vi for i ∈ {1, 2, . . . ,m}, see
Figure 2.3. Let S be the subgraph induced by the vertices vm, w, and by
all ε-blocks lying on the fm,c edges for c ∈ {1, 2, . . . , a}.
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Let e1 be the input edge and e2 be the output edge of the εk-block. Al-
though the edges e1 and e2 receive the same color in any k-edge-coloring
of εk-block, they can slightly differ in a circular (k+ ε)-edge-coloring ϕ.
We define the color change in the ε-block as |ϕ(e1)− ϕ(e2)|k+ε.
Lemma 2.1. Let k ≥ 4 and let ε < 1/3. The color change in the εk-
block is at most ε in any (k + ε)-edge-coloring. Moreover, there exists a
(k + ε)-edge-coloring of the εk-block with the color change ε.
Theorem 2.2. For each integer k ≥ 4, a ∈ {1, 2, . . . , �k/2�}, and
m, n ≥ 1 there exists a k-regular graph with circular chromatic index
k + a

(2a+1)m+an ·
Proof. Let k, a,m, n be integers that fulfill conditions of the theorem.
Let p = (2a + 1)m + an, ε = a/p, and r = k + ε. First we show that
χ ′c(Gk,a,m,n) = k+a/p. Then we can construct infinitely many k-regular
graphs, which contain Gk,a,m,n as a subgraph, with χ ′c = k + a/p [5].
It is possible to construct a circular (k + a/p)-edge-coloring ψ of

Gk,a,m,n where p = (2a + 1)m + an, which gives us the upper bound
on the circular chromatic index. The ε-blocks are colored in accordance
with Lemma 2.1, hence their maximal color change is used as shown in
our forthcoming paper.
We now derive a lower bound on the circular chromatic index of the

graph Gk,a,m,n. Let us consider the subgraph Hi of the graph Gk,a,m,n. It
can be shown that in any circular (k + ε)-edge-coloring ϕ the f -edges of
Hi can be arranged into pairs in such a way that the colors of the edges in
every pair differ by at most 2ε. Without loss of generality we will assume
that the parallel edges with the same second subscript are the ones that
differ in color by at most 2ε. More precisely, we will assume that the
edges are denoted in such a way that |ϕ( f ui−1,g)−ϕ( f vi,g)| ≤ 2ε for every
g ∈ {1, 2, . . . , a}.
We say that the edges f x0,t , f

x
1,t , . . . , f

x
m−1,t , f

1
m,t , f

2
m,t , . . . , f

n+1
m,t , for

x ∈ {u, v} and t ∈ {1, 2, . . . , a} belong to the same coloring line in the
graph Gk,a,m,n.
We say that the edges f u0,c, f

u
0,c+1, . . . , f

u
0,d form a coloring block in ϕ,

if ϕ( f u0,c+q) ∈ [ϕ( f u0,c)+q− ε, ϕ( f u0,c)+q+ ε], for c, d ∈ {1, 2, . . . , a},
and q ∈ {1, 2, . . . , d − c} and this set cannot be extended. Roughly
speaking, the differences of colors of these edges from ϕ( f u0,1) form a
non-extendable sequence of numbers that are near to consecutive inte-
gers. We assume that all edges f u0,l in the coloring ϕ are divided into r
coloring blocks of sizes n1, n2, . . . , nr such that

∑
ni = a. Let nmax =

max
i∈{1,2,...,r}

{ni }. It can be shown that it is sufficient to consider only the case
when nmax = 1 as the established upper bound is exceeded for greater
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values of nmax . The notion of the coloring block is defined analogously
for all subgraphs Hi and the number and sizes of the coloring blocks are
the same for all i ∈ {1, 2, . . . ,m}.
We define a local change in the subgraph Hi as

a∑
j=1
|ϕ( f vi, j )−ϕ( f ui−1, j )|r ·

We bound the local change by showing that it is at most (a + 1)ε.
Let ϕ be an (k + ε)-edge-coloring of the subgraph Hi . We say that the

q-th coloring line is increasing in Hi if ϕ( f vi,q) ∈ [ϕ( f ui−1,q), ϕ( f ui−1,q)+
ε] and decreasing otherwise.
If there exist both increasing and decreasing coloring lines in Hi then

it can be shown that the local change is at most aε. More interesting situ-
ation happens with the case when all the coloring lines are either increas-
ing or decreasing. We may assume that all coloring lines are increasing
and ϕ(eui, j ) ≤ ϕ(evi, j ) for every j ∈ {1, 2, . . . , k − a}.
Let ϕ(eui,1) = 0 and ϕ( f ui−1,1) < ϕ( f

u
i−1,2) < . . . < ϕ( f

u
i−1,a). Then

there exist integers P1, P2, . . . , Pa from {1, 2, . . . , k − 1} and real num-
bers p1, p2, . . . , pa such that ϕ( f ui−1, j ) = Pj + p j for j ∈ {1, 2, . . . , a}
and 0 ≤ p j ≤ ε. Since each coloring block is of size 1, there exist inte-
gers Q1, Q2, . . . , Qa−1 and real numbers q1, q2, . . . , qa−1 such that, for
j ∈ {1, 2, . . . , a−1} and 0 ≤ q j ≤ ε, Pj+ p j ≤ Q j+q j ≤ Pj+1+ p j+1,
0 ≤ p1 ≤ q1 ≤ p2 ≤ q2 ≤ . . . ≤ pa−1 ≤ qa−1 ≤ pa where Q j+q j is the
color of eui,s for some s. (For the sake of convenience we set Q0 = q0 = 0
and ϕ(eui,1) = Q0 + q0 = 0). Lemma 2.1 implies that Q j + q ′j is
the color of evi,s for some s where 0 ≤ q ′j − q j ≤ ε. Finally, we have
ϕ( f vi, j ) = Pj + p′j for real numbers p

′
j such that Q j−1+ q ′j−1 ≤ Pj + p′j

for j ∈ {1, 2, . . . , a} and Pj + p′j ≤ Q j + q ′j for j ∈ {1, 2, . . . , a − 1}
and 0 ≤ p′1 ≤ q ′1 ≤ p′2 ≤ q ′2 ≤ . . . ≤ p′a−1 ≤ q ′a−1 ≤ p′a ≤ q ′0 + ε.
Clearly, the local change is

∑a
j=1 p

′
j − p j and can be bounded as fol-

lows.∑a
j=1(p

′
j − p j ) =∑a−1

j=1(p
′
j − p j )+ p′a − pa ≤∑a−1

j=1(q
′
j − q j−1)+

p′a − pa ≤ (a − 2)ε + (q ′a−1 − q0) + (p′a − qa−1) ≤ (a − 1)ε + (p′a −
q ′0)+ (q ′0 − q0) ≤ (a − 1)ε + ε + ε = (a + 1)ε.
There are a coloring lines in the graph Gk,a,m,n and we need to change

the color by at least 1 on each of them. We can obtain the change of at
most (a + 1)ε in each Hi . The number of ε-blocks outside Hi subgraphs
is (m + n)a, each with the change of at most ε. Summing up we have
m(a + 1)ε + anε + anε ≥ a and ε ≥ a

m(2a+1)+an ·
Since the lower and the upper bound coincide, the theorem follows.

Corollary 2.3. For each integer k ≥ 3, a ∈ {1, 2, . . . , �k/2�}, and p ≥
2a2 + a + 1 there exists a k-regular graph with circular chromatic index
k + a/p.



338 Barbora Candráková and Edita Máčajová
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Coloring d-Embeddable k-Uniform
Hypergraphs

Carl Georg Heise1, Konstantinos Panagiotou2, Oleg Pikhurko3

and Anusch Taraz4

Abstract. We extend the scenario of the Four Color Theorem in the following
way. LetHd,k be the set of all k-uniform hypergraphs that can be linearly embed-
ded into Rd . We investigate lower and upper bounds on the maximum (weak and
strong) chromatic number of hypergraphs inHd,k . For example, we can prove that
for d ≥ 3 there are hypergraphs inH2d−3,d on n vertices whose weak chromatic
number is �(log n/ log log n), whereas the weak chromatic number for n-vertex
hypergraphs inHd,d is bounded byO(n(d−2)/(d−1)) for d ≥ 3.

Extended Abstract

The Four Color Theorem [1, 2] has been one of the driving forces in
Discrete Mathematics and its theme has inspired many variations. For
example, the chromatic number of graphs that are embedabble into a sur-
face of fixed genus has been intensively studied by Heawood [7], Ringel
and Youngs [11], and many others.
Here, we consider k-uniform hypergraphs that are embeddable into Rd

in such a way that their edges do not intersect (see Definition 1 below).
For k = d = 2 the problem specializes to graph planarity. For k = 2
and d ≥ 3 it is not a very interesting question because for any n ∈ N

1 Zentrum Mathematik, Technische Universität München, Germany. Email: cgh@ma.tum.de. The
author was partially supported by the ENB graduate program TopMath and DFG grant GR 993/10-1.
He gratefully acknowledges the support of the TUM Graduate School’s Thematic Graduate Center
TopMath at the Technische Universität München.

2 Mathematisches Institut, Ludwig-Maximilians-Universität München, Germany.
Email: kpanagio@math.lmu.de. The author was partially supported by the National Science Foun-
dation, Grant DMS-1100215, and the Alexander von Humboldt Foundation.

3 University of Warwick, Coventry, UK. Email: o.pikhurko@warwick.ac.uk. The author was par-
tially supported by the National Science Foundation, Grant DMS-1100215, and the Alexander von
Humboldt Foundation.

4 Zentrum Mathematik, Technische Universität München, Germany. Email: taraz@ma.tum.de. The
author was partially supported by DFG grant TA 309/2-2.



340 Barbora Candráková and Edita Máčajová

the vertices of the complete graph Kn can be embedded into R3 using
arbitrary points on the moment curve t �→ (t, t2, t3).
As a consequence, we focus our attention on hypergraphs, which are

in general not embeddable into any specific dimension. Some proper-
ties of these hypergraphs (or more generally simplicial complexes) have
been investigated (see e.g. [4, 8, 9, 15]), but to our surprise, we have not
been able to find any bounds on their (vertex-)chromatic number. How-
ever, Grünbaum and Sarkaria (see [6, 12]) have differently generalized
the concept of graph colorings to simplicial complexes by coloring faces.
They also bound this face-chromatic number subject to embeddability
constraints.
We now quickly recall and introduce some useful notation. The pair

H = (V, E) is a k-uniform hypergraph if the vertex set V is a finite set
and the edge set E consists of k-element subsets of V .
Let H be a k-uniform hypergraph. A function κ : V (H)→ {1, . . . , c}

is said to be a strong c-coloring if for all e ∈ E(H) the property |κ(e)| =
k holds. The function κ is said to be a weak c-coloring if |κ(e)| > 1 for
all e ∈ E(H). The strong and weak chromatic number of H is denoted by
χ s(H) and χw(H), respectively. For graphs, weak and strong colorings
are equivalent.
We next define what we mean when we say that a hypergraph is em-

bedabble into Rd . Here, aff denotes the affine hull of a set of points and
conv the convex hull.

Definition 1 (d-embeddings). Let H be a k-uniform hypergraph and
d ∈ N. A (linear) embedding of H into Rd is a function ϕ : V (H) →
Rd , where ϕ(A) for A ⊆ V (H) is to be interpreted pointwise, such that
dim affϕ(e) = k−1 for all e ∈ E(H) and convϕ (e1 ∩ e2) = convϕ(e1)∩
convϕ(e2) for all e1, e2 ∈ E(H).

A k-uniform hypergraph H is said to be d-embeddable if there exists
an embedding of H into Rd . Also, we denote by Hd,k the set of all
d-embeddable k-uniform hypergraphs. By Fáry’s theorem (see [5]), we
have that the k = d = 2 case of this notion of embeddability coincides
with the classical concept of planarity.
Our main results are summarized in the Tables 1 and 2, which con-

tain upper or lower bounds for the maximum weak chromatic number of
a d-embeddable k-uniform hypergraph on n vertices. All results which
only follow non-trivially from prior knowledge are indexed with a num-
ber of the theorem in this extended abstract. On the other hand, the triv-
ial entries in the tables are direct consequences of the Menger-Nöbeling
Theorem (see [9, page 295] and [10]) which characterizes for which d
all k-uniform hypergraphs are d-embeddable. The main results for the
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maximum strong chromatic number are Proposition 1 and Theorem 2.

d�k 3 4 5 6 7
1 1 1 1 1 1
2 2 1 1 1 1

3 �
(

log n
log log n

)
〈5〉 1 1 1 1

4 �
(

log n
log log n

)
〈5〉 1 1 1 1

5 �n/2� �
(

log n
log log n

)
〈6〉 1 1 1

6 �n/2� �
(

log n
log log n

)
〈6〉 1 1 1

7 �n/2� �n/3� �
(

log n
log log n

)
〈6〉 1 1

8 �n/2� �n/3� �
(

log n
log log n

)
〈6〉 1 1

Table 1. Currently known lower bounds for the maximumweak chromatic num-
ber of a d-embeddable k-uniform hypergraph on n vertices as n → ∞. The
number in chevrons indicates the theorem number where we prove this bound.

d�k 3 4 5 6 7
1 1 1 1 1 1
2 2 1 1 1 1

3 O(n 12 )〈3〉 O(n 12 )〈3〉 1 1 1

4 �n/2� O(n 23 )〈3〉 O(n 23 )〈3〉 1 1

5 �n/2� O(n 2627 )〈4〉 O(n 34 )〈3〉 O(n 34 )〈3〉 1

6 �n/2� �n/3� O(n 3536 )〈4〉 O(n 45 )〈3〉 O(n 45 )〈3〉
7 �n/2� �n/3� O(n 107108 )〈4〉 O(n 4445 )〈4〉 O(n 56 )〈3〉
8 �n/2� �n/3� �n/4� O(n 134135 )〈4〉 O(n 5354 )〈4〉

Table 2. Currently known upper bounds for the maximumweak chromatic num-
ber of a d-embeddable k-uniform hypergraph on n vertices as n → ∞. The
number in chevrons indicates the theorem number where we prove this bound.

For d, k, n ∈ N we define χ s
d,k(n) = max{χ s(H) : H ∈ Hd,k, |V (H)| =

n} to be the maximum strong chromatic number of a d-embeddable k-
uniform hypergraph on n vertices. The maximum weak chromatic num-
ber χw

d,k(n) is defined analogously.

Proposition 1. For large n, d ≥ 3, and d+1 ≥ k we have that χ s
d,k(n) ≥⌊√

n − d + 3⌋+ d − 3.
Theorem 2. For large n, d ≥ 3, and d ≥ k we have that χ s

d,k(n) = n.
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This bound is shown by constructing a sequence of hypergraphs in
Hd,k , which have strong chromatic number equal to the number of their
vertices. Thus, except for the cases where k = d + 1, the maximum
strong coloring problem was solved. In particular, we have shown that an
unbounded number of colors can be necessary for any strong coloring of
a d-embeddable hypergraph if d > 2.

Theorem 3. Let d ≥ 3. Then one has

χ
w
d,d(n) ≤

⌈(
6ed

(d − 1)!
) 1

d−1
n
d−2
d−1

⌉
= O

((n
d

) d−2
d−1

)
.

Theorem 4. Let d ≥ l ≥ 3. Then one has

χ
w
2d−l,d(n) ≤

⌈
(ed)

1
d−1 n1−

3l−1−d
d−1

⌉
= O

(
n1−

3l−1−d
d−1

)
.

These two results also holds for piecewise linear embeddings (for a def-
inition e.g. see [8]). To prove them, we first limit the number of edges
(relative to the number of vertices) that a hypergraph inHd,d andH2d−l,d
can have. Then, an easy application of the Lovász Local Lemma [3, 14]
yields the existence of a weak c-coloring if c is as high as requested.

Theorem 5. As n→∞ one has χw
3,3(n) = �

(
log n
log log n

)
.

Sketch of proof. We inductively construct a sequence of 3-uniform, 3-
embeddable hypergraphs Hm which are weakly m-chromatic. Each new
Hm consists of several copies of Hm−1 and a few additional vertices (see
Figure 1). The vertices are then arranged on the moment curve and the
embedabbility is proven using a theorem by Shephard [13].

Figure 1. Construction of Hm .

Note that by monotonicity also χw
4,3(n) = �

(
log n
log log n

)
. Furthermore, it is

possible to generalize this result for higher dimensions as follows.
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Theorem 6. Let d ≥ 3. Then, as n → ∞ one has χw
2d−3,d(n) =

�
(

log n
log log n

)
.

Note that in general there are several other notions of embeddability,
the most popular being piecewise linear embeddings and general topo-
logical embeddings. A short and comprehensive introduction is given
in Section 1 in [8]. Since piecewise linear and topological embeddings
are more general than linear embeddings, all lower bounds for chromatic
numbers can easily be transferred. Furthermore, we prove all our results
on upper bounds for piecewise linear embeddings.
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[8] J. MATOUŠEK, M. TANCER and U. WAGNER,Hardness of Embed-
ding Simplicial Complexes in Rd , Journal of the European Mathe-
matical Society 13 (2011), 259–295.

[9] K. MENGER, Dimensionstheorie, Teubner, Leipzig, 1928.



344 Barbora Candráková and Edita Máčajová
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Homomorphisms of signed bipartite
graphs

Reza Naserasr1, Edita Rollová2 and Éric Sopena3

Abstract. We study the homomorphism relation between signed graphs where
the underlying graph G is bipartite. We show that this notion captures the notions
of chromatic number and graph homomorphisms. In particular we will study Had-
wiger’s conjecture in this setting. We show that for small values of the chromatic
number there are natural strengthening of this conjecture but such extensions will
not work for larger chromatic numbers.

1 Homomorphisms

A signature on a graph G is an assignment of negative or positive sign
to the edges. Resigning at a vertex v is to change the sign of all edges
incident to v. Two signatures are equivalent if one can be obtained from
the other by a sequence of resigning. The set of negative edges is nor-
mally denoted by �. A signed graph, denoted (G, �) is a graph G to-
gether with the set of signatures all equivalent to �. A signed minor of
(G, �) is a signed graph obtained from (G, �) by a sequence of deleting
vertices or edges, contracting positive edges and resigning. Given two
signed graphs (G, �) and (H, �1) we say there is a homomorphism of
(G, �) to (H, �1) if there is a signature �′ equivalent to � and a map-
ping φ : V (G) → V (H) such that φ preserves both adjacency and the
sign of an edge with respect to�′. If there is a homomorphism of (G, �)
to (H, �1) we write (G, �)→ (H, �1). This relation is a quasi order on
the class of all signed graphs. Thus we may use terms such as bound and
maximum.
A cycle with only one, equivalently odd number of, negative edges is

called an unbalanced cycle and is denoted by UCk if the length of the
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3 Univ. Bordeaux, LaBRI, UMR5800, F-33400 Talence, France, CNRS, LaBRI, UMR5800,
F-33400 Talence, France. E-mail: sopena@labri.fr
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cycle is k. The following is one of the first theorems in the theory of
signed graph homomorphisms.

Lemma 1.1. There is a homomorphism of UCk to UC
 if and only if
k ≥ 
 and k = 
 (mod 2).
Let G be a graph; the signed graph S(G) = (G∗, �) is obtained by
replacing each edge uv of G by an unbalanced 4-cycle on four vertices
uxuvvyuv, where xuv and yuv are new and distinct vertices. Let (Kk,k,M)
be the signed graph where edges of a perfect matching M are negative.
The following theorem shows how to define χ(G) using only the notion
of homomorphism between signed bipartite graphs.

Theorem 1.2. For every k ≥ 3 and every graph G, χ(G) ≤ k if and only
if S(G)→ (Kk,k,M).

Proof. The main idea is that if S(G)→ (Kk,k,M), then adjacent vertices
of G are mapped to a same side of Kk,k and to distinct vertices.

In a similar way we show below that the problem of the existence of a
homomorphism of a graph G into a graph H is captured by the notion
of homomorphism between signed bipartite graphs. For a comprehensive
study of graph homomorphisms we refer to [3].

Theorem 1.3. For every two graphs G and H , G → H if and only if
S(G)→ S(H).

Proof. The main idea again is to show that a mapping S(G) → S(H)
will map V (G) to V (H) while preserving adjacency of G in H .

2 Minors

We prove the following minor relation between graphs and their corre-
sponding signed bipartite graphs:

Theorem 2.1. For every integer n and every graph G, G has a Kn-minor
if and only if S(G) has a (Kn, �)-minor for some �.

Proof. First assume (Kn, �) is a signed minor of S(G) for some �. We
would like to prove that Kn is a minor of G. This is clear for n = 1, 2. So
we assume n ≥ 3. Thus, in producing (Kn, �) as a signed minor of S(G)
each vertex of degree 2 in S(G) is either deleted or identified with one
of its neighbours as a result of contracting an incident edge. We define
a minor of G as follows: For each edge uv of G, if the corresponding
unbalanced 4-cycle is deleted in the process of producing (Kn, �) as a
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signed minor of S(G), then delete uv. If u and v are identified through
contraction of edges in producing (Kn, �) as a signed minor of S(G),
then contract the edge uv. Otherwise uv remains an edge. The resulting
minor then must be Kn .
For the opposite direction, suppose Kn is a minor of G. Let uv be an

edge of G. If the edge uv is deleted in producing Kn-minor from G, then
delete all the four edges of corresponding unbalanced 4-cycle. If uv is
contracted, then contract two positive edges of the corresponding unbal-
anced 4-cycle in S(G) in such a way that u and v are identified after these
contractions and delete the other two edges of the unbalanced 4-cycle.
Otherwise contract two positive edges of the corresponding unbalanced
4-cycle in such a way that there are two new parallel edges between u and
v, one positive and one negative. Finally delete all isolated vertices. By
allowing multiple edges at the end of this process we get a signed minor
of S(G) which has n vertices and for each pair x and y of vertices two
xy edges, one positive and one negative. For each such pair we delete the
negative edge unless xy ∈ � in which case we delete the positive edge.
The result is (Kn, �) obtained as a signed minor of G.

3 Hadwiger’s conjecture for signed bipartite graphs

Conjecture 3.1 (Hadwiger, [2]). If a graph G has no Kn-minor, then it
is (n − 1)-colorable.
By Theorem 1.2, Hadwiger’s conjecture can be restated as follows:

Conjecture 3.2. Given n≥4, the class C={S(G) | G is Kn-minor-free}
of signed bipartite graphs is bounded by (Kn−1,n−1,M) in the signed
graph homomorphism order.

If the conjecture holds, then the next question would be: what is a natural
superclass of C which is still bounded by (Kn−1,n−1,M)?
Hadwiger’s conjecture is known to be true for n ≤ 6, thus Conjecture 3.2
is also true for n ≤ 6. For n = 4 we have the following generalization.
Theorem 3.3. If G is a bipartite graph with no K4-minor and � is any
signature on G, then (G, �)→ (K3,3,M).

Proof. By adding more edges, if needed, we may assume that G is edge
maximal with respect to being bipartite and having no K4-minor. Obvi-
ously it is enough to prove the theorem for such edge maximal graphs.
As mentioned before, a classical decomposition theorem for edge-

maximal K4-minor-free graphs states that every such graph is built from a
sequence of triangles starting by one triangle and pasting each new trian-
gle to the graph previously built along an edge. To use the decomposition
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theorem we add new edges to G, of green color, until we reach a max-
imal K4-minor-free graph G ′, which obviously is not bipartite anymore.
Let G ′′ be the edge-colored graph obtained from G ′ by coloring original
positive edges of (G, �) in blue, original negative edges of (G, �) in red
and keeping the green color for edges not in G.
We claim that there is no triangle in G ′′ with exactly two green edges.

To see this, suppose that v1v2 and v1v3 are both green and that v2v3 is
an edge of G. Since G is bipartite v2 and v3 are in two different parts
and thus v1 is in a different part with respect to one of them. Without
loss of generality assume v1 and v2 are in different parts. Consider the
graph G + {v1v2}. By the choice of v2 this graph is bipartite and since it
is a subgraph of G ′, it has also no K4-minor but this contradicts the edge
maximality of G.
We now build a new edge-colored graph F from (K3,3,M). The blue

and red edges of F are defined as before and we add green edges between
every pair of vertices non adjacent in (K3,3,M). The edge-colored graph
F has three types of triangles: (i) triangles with three green edges, (ii)
triangles with one green edge and two blue edges, and (iii) triangles with
no two edges of the same color. Furthermore it is not hard to verify
that each red edge only belongs to triangles of type (iii), each blue edge
belongs to triangles of type (ii) or (iii) and each green edge is contained
in triangles of each of the three types.
To prove the theorem we now prove the following stronger statement:

there exists a suitable “resigning” G∗ of G ′′ such that G∗ admits a color-
preserving homomorphism to F . By resigning here we mean exchanging
the colors red and blue on edges of an edge cut, this can be regarded as a
sequence of vertex resigning.
To prove this stronger statement, let T1, . . . , Tk be the sequence of tri-

angles obtained from the decomposition of G ′′ mentioned above. Note
that since G was bipartite, each such triangle contains a green edge. Con-
sider the triangle T1. Either it is one of the three types (i), (ii) or (iii), in
which case we simply map it to F , or it has one green and two red edges.
Let u be the common vertex of these two red edges. After resigning at u
we have a triangle of type (ii) and thus we can map it to F .
By induction, assume now that the graph G ′′i , obtained by pasting the

triangles T1, . . . Ti , i < k, is mapped to F and assume that Ti+1 is pasted
to G ′′i along the edge e. Let v be the vertex of Ti+1 not incident to e. If
Ti+1 is a triangle of one the three types, because of the above mentioned
property of F , we can extend the mapping of G ′′i to G

′′
i+1, where the

colors of the two edges of Ti+1 incident with v are preserved. Otherwise
Ti+1 has exactly two red edges and one green edge. By resigning at v
we get a triangle that has either one or no red edge, thus obtaining a



349 The circular chromatic index of k-regular graphs

triangle of type (ii) or (iii). We now extend the homomorphism thanks to
the properties of F . In this process, resigning a vertex would be done at
most once, when it is added to the already built part of the graph, so our
process is well-defined and the stronger claim is proved.

We note that our proof has an algorithmic feature. Given a signed bi-
partite graph (G, �), where G is a K4-minor-free graph, we can find, in
polynomial time, a homomorphism of (G, �) to (K3,3,M).
Furthermore, we believe that the following stronger statement should

also be true:

Conjecture 3.4. If G is bipartite and (G, �) has no (K4, E(K4)) as a
signed minor, then (G, �)→ (K3,3,M).

For n = 5 it is shown in [4], using the four-color theorem and a result
of [1], that the following holds.

Theorem 3.5. If G is a bipartite planar graph and� is any signature on
G, then (G, �)→ (K4,4,M).

For large values of n (n ≥ 7) Conjecture 3.2 does not extend so nicely.
To show this we use the following signed bipartite graph, Fano. That is
signed graph on K7,7 where vertices on one side are labeled with points
of Fano plane and on the other side with lines of the Fano plane. An edge
is negative if it connects a line to a point of a line.

Theorem 3.6. There exists no value of n for which Fano admits a ho-
momorphism to (Kn,n,M).

A proof can be obtained mainly by counting number of distinct copies
of UC4 containing a given edge. For more details we refer to [4]. The
following then is an immediate corollary.

Corollary 3.7. The class C={(G,�)|G is bipartite and has noH-minor}
is not bounded by (Kn,n,M) (for no values of n) if H is a graph on at
least 15 vertices.

This shows that for n ≥ 15 the reformulation of Hadwiger’s conjecture
given in Conjecture 3.2 cannot be extended to a general minor closed
class of signed bipartite graphs. Even though such an extension was pos-
sible for small values of n.

References

[1] B. GUENIN, Packing T-joins and edge-colouring in planar graphs,
Mathematics of Operations Research, to appear.



350 Reza Naserasr, Edita Rollová and Éric Sopena
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Games



A threshold for the Maker-Breaker clique
game

Tobias Müller1 and Miloš Stojakovi ’c2

Abstract. We study Maker-Breaker k-clique game played on the edge set of the
random graph G(n, p). In this game, two players alternately claim unclaimed
edges of G(n, p), until all the edges are claimed. Maker wins if he claims all the
edges of a k-clique; Breaker wins otherwise. We determine that the threshold for

the graph property that Maker can win is at n−
2

k+1 , for all k > 3, thus proving a
conjecture from [5]. More precisely, we conclude that there exist constants c,C >

0 such that when p > Cn−
2

k+1 the game is Maker’s win a.a.s., and when p <
cn−

2
k+1 it is Breaker’s win a.a.s.

For the triangle game, when k = 3, we give a more precise result, describing the
hitting time of Maker’s win in the random graph process. We show that, with high
probability, Maker can win the triangle game exactly at the time when a copy of K5
with one edge removed appears in the random graph process. As a consequence,
we are able to give an expression for the limiting probability of Maker’s win in the
triangle game played on the edge set of G(n, p).

1 Introduction

Let X be a finite set and let F ⊆ 2X be a family of subsets of X . In
the positional game (X,F), two players take turns in claiming one previ-
ously unclaimed element of X . The set X is called the “board”, and the
members of F are referred to as the “winning sets”. In a Maker-Breaker
positional game, the two players are called Maker and Breaker. Maker
wins the game if he occupies all elements of some winning set; Breaker
wins otherwise. A game (X,F) is said to be aMaker’s win if Maker has
a strategy that ensures his win against any strategy of Breaker; otherwise
it is a Breaker’s win. Note that F alone determines whether the game is
Maker’s win or Breaker’s win.

1 Mathematical Institute, Utrecht University, the Netherlands. Email: tobias@cwi.nl
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A well-studied class of positional games are the games on graphs,
where the board is the set of edges of a graph. The winning sets are
usually representatives of some graph theoretic structure. The first game
studied in this area was the connectivity game, a generalization of the
well-known Shannon switching game, where Maker’s goal is to claim a
spanning connected graph by the end of the game. We denote the game
by (E(Kn), T ). Another important game is the Hamilton cycle game
(E(Kn),H), where H = Hn consists of the edge sets of all Hamilton
cycles of Kn .
In the clique game the winning sets are the edge sets of all k-cliques,

for a fixed integer k ≥ 3. We denote this game with (E(Kn),Kk). Note
that the size of the winning sets is fixed and does not depend on n, which
distinguishes it from the connectivity game and the Hamilton cycle game.
A simple Ramsey argument coupled with the strategy stealing argument
ensures Maker’s win if n is large.
All three games that we introduced are straightforward Maker’s wins

when n is large enough. This is however not the end of the story, as there
are two general approaches to even out the odds, giving Breaker more
power – biased games and random games. Here, we will stick with the
latter.

2 Our results

A way to give Breaker more power in a positional game, introduced by
the second author and Szabó in [5], is to randomly thin out the board
before the game starts, thus eliminating some of the winning sets.
For games on graphs, given a gameF that is Maker’s win when played

on E(Kn), we want to find the threshold probability pF so that, if the
game is played on E(G(n, p)), an almost sure Maker’s win turns into an
almost sure Breaker’s win. Such a threshold pF exists, as “being Maker’s
win” is clearly a monotone increasing graph property.
The threshold probability for the connectivity game was determined to

be log nn in [5], and shown to be sharp. As for the Hamilton cycle game, the
order of magnitude of the threshold was given in [4]. Using a different
approach, it was proven in [3] that the threshold is log n

n and it is sharp.
Finally, as a consequence of a hitting time result, Ben-Shimon et al. [2]
closed this question by giving a very precise description of the low order
terms of the limiting probability.
Moving to the clique game, it was shown in [5] that for every k ≥ 4

and every ε > 0 we have n−
2

k+1−ε ≤ pKk ≤ n−
2

k+1 . Moreover, it was

proved that there exist a constant C > 0 such that for p ≥ Cn−
2

k+1 Maker
wins the k-clique game on G(n, p) a.a.s. The threshold for the triangle
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game was determined to be pK3 = n−
5
9 , showing that the behavior of the

triangle game is different from the k-clique game for k ≥ 4.
Our main result is the following theorem. It gives a lower bound on the

threshold for the k-clique game, when k ≥ 4, which matches the upper
bound from [5] up to the leading constant.

Theorem 2.1. Let k ≥ 4. There exists a constant c > 0 such that for
p ≤ cn−

2
k+1 Breaker wins the Maker-Breaker k-clique game played on

the edge set of G(n, p) a.a.s.

The threshold probability for the k-clique game for k ≥ 4 was con-
jectured to be pKk = n−

2
k+1 in [5]. The previous theorem resolves this

conjecture in the affirmative. Summing up the results of Theorem 2.1 and
Theorem 19 from [5], we now have the following.

Corollary 2.2. Let k ≥ 4 and consider the Maker-Breaker k-clique game
on the edge set of G(n, p). There exist constants c,C > 0 such that the
following hold:

1. If p ≥ Cn−
2

k+1 , then Maker wins a.a.s.;
2. If p ≤ cn−

2
k+1 , then Breaker wins a.a.s.

A result of this type is sometimes called a “semi-sharp threshold” in the
random graphs literature.
Hitting time of Maker’s win. Let V be a set of cardinality n, and

let π be a permutation of the set
(V
2

)
. If by Gi we denote the graph on

the vertex set V whose edges are the first i edges in the permutation π ,

Gi = (V, π−1([i])), then we say that G̃ = {Gi }(
n
2)
i=0 is a graph process.

Given a monotone increasing graph property P and a graph process G̃,
we define the hitting time of P with τ(G̃;P) = min{t : Gt ∈ P}. If π
is chosen uniformly at random from the set of all permutations of the set(V
2

)
, we say that G̃ is a random graph process. Such processes are closely

related to the model of random graph we described above.
Given a positional game, our general goal is to describe the hitting

time of the graph property “Maker’s win” in a typical graph process. For
a game G, byMF we denote the graph property “Maker wins G”. It was
shown in [5] that in the connectivity game (with the technical assumption
that Breaker is the first to play), for a random graph process G̃, we have
τ(G̃;MT ) = τ(G̃; δ2), where δ
 is the graph property “minimum degree
at least 
”. Recently, Ben-Shimon et al. [2] resolved the same question
for the Hamilton cycle game, obtaining τ(G̃;MH) = τ(G̃; δ4). Note
that inequality in one direction for both of these equalities holds trivially.
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Moving on to the clique game, we denote the property “the graph con-
tains K5− e as a subgraph” with GK−5 . We are able to show the following
hitting time result for Maker’s win in the triangle game.

Theorem 2.3. For a random graph process G̃, the hitting time for
Maker’s win in the triangle game is asymptotiaclly almost surely the
same as the hitting time for appearance of K5 − e, i.e., τ(G̃;MK3) =
τ(G̃;GK−5 ) a.a.s.

Using this, we are able to give a precise expression for the probability
for Maker’s win in the triangle game on G(n, p).

Corollary 2.4. Let p = p(n) be an arbitrary sequence of numbers ∈
[0, 1] and let us write x = x(n) = p · n 2

k+1 . Then

lim
n→∞ Pr[Maker makes triangle on G(n, p)]=

⎧⎨⎩
0 if x → 0,

1− e−
c5
3 if x → c∈R,

1 if x →∞.

3 Conclusion and open problems

Random graph intuition. In the 70s, Erdős observed the following
paradigm which is referred to as the random graph intuition in positional
game theory. As it turns out for many games on graphs, the inverse of the
threshold bias bG in the game played on the complete graph is “closely
related” to the probability threshold for the appearance of a member of
G in G(n, p). Another parameter that is often “around” is the threshold
probability pG for Maker’s win when played on G(n, p). As we saw, for
the two games mentioned in the introduction, the connectivity game and
the Hamilton cycle game, all three parameters are equal to log n

n .

In the k-clique game, for k ≥ 4, the threshold bias is bKk = !(n
2

k+1 )
and the threshold probability for Maker’s win is the inverse (up to the
leading constant), pKk = n−

2
k+1 , supporting the random graph intuition.

But, the threshold probability for appearance of a k-clique in G(n, p)
is not at the same place, it is n−

2
k−1 . And in the triangle game there is

even more disagreement, as all three parameters are different – they are,
respectively, n

1
2 , n−

5
9 and n−1. Now, more than thirty years after Chvátal

and Erdős formulated the paradigm, there is still no general result that
would make it more formal. We are curious to the reasons behind the
total agreement between the three thresholds in the connectivity game
and the Hamilton cycle game, partial disagreement in k-clique game for
k ≥ 4, and the total disagreement in the triangle game.
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Random clique game vs. biased clique game. Our Corollary 2.2
gives two constants c > 0 and C > 0, stating that the probability thresh-
old for Maker’s win in the k-clique game on G(n, p) for k ≥ 4 is between
cn−

2
k+1 and Cn−

2
k+1 . In a way, with this result, the game played on the

random graph catches up with the biased k-clique game played on the
complete graph, as a result of Bednarska and �Luczak [1] guarantees the
existence of constants c′ > 0 and C ′ > 0, such that the bias threshold
for this game is between c′n

2
k+1 and C ′n

2
k+1 , for all k ≥ 3. Both pairs of

constants, c,C and c′,C ′, are quite far apart. Also, in both games, the
best known strategy for Maker’s exploits the same derandomized random
strategy approach, proposed in [1].
We know much more for the triangle game on the random graph, as

Corollary 2.4 gives the threshold probability quite accurately, and it turns
out to be a coarse threshold. The reason for such different behavior (com-
pared to k > 3) may lie behind the fact that K3 = C3.
A more precise result for the k-clique game when k ≥ 4? As we

saw, we can say a lot about the threshold probability for the triangle game,
the connectivity game and the Hamilton cycle game when the game is
played on the random graph. We do not know that much about the k-
clique game, when k ≥ 4, and it would be interesting to see what hap-
pens between the bounds given in Corollary 2.2. Also, a graph-theoretic
description of the hitting time of Maker’s win on the random graph pro-
cess would be of great importance, as we know very little about Maker’s
winning strategy at the threshold. What we know is that we cannot hope
for a result analogous to Theorem 2.3 – the reason for Maker’s win can-
not be the appearance of a fixed graph, as we know that Breaker wins
on every typical (fixed) subgraph of the random graph on the probability
threshold. Hence, Maker’s optimal strategy must be of “global nature”,
taking into account a non-constant part of the random graph to win the
game. Having that in mind we propose the following conjecture.

Conjecture 3.1. For every k ≥ 4 there exists a c = c(k) such that for
any fixed ε > 0, if p ≤ (c − ε)n− 2

k+1 , then Breaker wins the k-clique
game on G(n, p) a.a.s, and if p ≥ (c + ε)n− 2

k+1 , then Maker wins a.a.s.
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On the threshold bias
in the oriented cycle game

Dennis Clemens1 and Anita Liebenau2

Abstract. In the Oriented cycle game, the two players, called OMaker and
OBreaker, alternately direct edges of Kn . OMaker directs exactly one edge,
whereas OBreaker is allowed to claim between one and b edges. OMaker wins
if the final tournament contains a directed cycle, otherwise OBreaker wins. It was
shown recently [1] that OMaker has a winning strategy for this game whenever
b ≤ n/2 − 2. We show that OBreaker has a strategy whenever b > 5n/6, and
give a non-trivial upper bound when OBreaker is asked to direct exactly b edges
in each of his moves.

1 Introduction and Results

We study the oriented cycle game, which is a particular orientation game.
Orientation games were studied by Ben-Eliezer, Krivelevich and Sudakov
in [1], and we follow their notation. In orientation games, the board
consists of the edges of the complete graph Kn . In the (p : q) orientation
game, the two players called OMaker and OBreaker, orient previously
undirected edges alternately. OMaker starts, and in each round, OMaker
directs between one and p edges, and then OBreaker directs between one
and q edges. At the end of the game, the final graph is a tournament on n
vertices. OMaker wins the game if this tournament has some predefined
property P . Otherwise, OBreaker wins. We study the (1 : b)-game
and refer to it as the b-biased orientation game. Increasing b can only
help OBreaker, so the game is bias monotone. Therefore, any such game
has a threshold t (n,P) such that OMaker wins the b-biased game when
b ≤ t (n,P) and OBreaker wins the game when b > t (n,P).

1 Department of Mathematics and Computer Science, Freie Universität Berlin, Germany. Email:
d.clemens@fu-berlin.de. Research supported by DFG, project SZ 261/1-1.

2 Department of Mathematics and Computer Science, Freie Universität Berlin, Germany. Email:
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In a variant, OBreaker is required to direct exactly b edges. We refer to
this variant as the strict b-biased orientation game. Playing the exact bias
in every round may be disadvantageous for OBreaker, so the existence of
a threshold as for the monotone rules is not guaranteed in general. We
therefore define t+(n,P) to be the largest value b such that OMaker has
a strategy to win the strict b-biased orientation game, and t−(n,P) to
be the largest integer such that for every b ≤ t−(n,P), OMaker has a
strategy to win the strict b-biased orientation game. Trivially, t (n,P) ≤
t−(n,P) ≤ t+(n,P). The threshold bias t (n,P) was investigated in [1]
for several orientation games. However, the relation between all three
parameters in question is still widely open. It is not even clear whether
t−(n,P) and t+(n,P) need to be distinct values.
We focus on the oriented cycle game, in which OMaker wins if the final

tournament contains a directed cycle. LetP be the property of containing
a directed cycle. The strict version of this game was studied by Bollobás
and Szabó in [2]. They show that t+(n,P) ≥ �(2 − √3)n�. Moreover,
they remark that the proof also works for the monotone rules, which
implies that t (n,P) ≥ �(2 − √3)n�. For an upper bound, it is rather
simple to see that OBreaker wins the b-biased oriented cycle game for
b ≥ n−2, even when the strict rules apply. Therefore, t+(n,P) ≤ n−3.
Bollobás and Szabó conjecture that this upper bound is tight. In [1], Ben-
Eliezer, Krivelevich and Sudakov show that for b ≤ n/2 − 2, OMaker
has a strategy guaranteeing a cycle in the b-biased orientation game, i.e.
t (n,P) ≥ n/2 − 2. We give a strategy for OBreaker in the b-biased
oriented cycle game when b ≥ 5n/6+ 1.
Theorem 1.1. For b ≥ 5n/6 + 1, OBreaker has a strategy to prevent
OMaker from closing a directed cycle in the b-biased orientation game.
In particular, t (n,P) ≤ 5n/6.
Furthermore, we adjust our strategy to the strict rules and show the

following.

Theorem 1.2. For b ≥ n − c
√
n, where 0 < c < 1 is a constant,

OBreaker has a strategy to prevent OMaker from closing a directed cy-
cle in the strict b-biased orientation game. In particular, t+(n,P) ≤
n − c

√
n − 1.

Theorem 1.2 refutes the above conjecture of Bollobás and Szabó.

2 Outline of the proofs

For both proofs, we need to provide OBreaker with a strategy to prevent
OMaker from closing a directed cycle, no matter how she plays. This is
equivalent to constructing the transitive tournament.
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There are two essential concepts to our proofs, so called UDB’s and
α-structures. Suppose the game is in play, and let G denote the subgraph
of already directed edges (by either player). For a directed edge e ∈ G,
we write e+ for its tail and e− for its head, i.e. e = (e+, e−). For two
disjoint subsets A, B ⊆ V , we call the pair (A, B) a uniformly directed
biclique (or short UDB), if for all a ∈ A, b ∈ B the edge (a, b) ∈ E(G)
is present in G already. Our goal is to create a UDB (A, B) such that
both parts fulfil |A|, |B| ≤ b and A∪ B = V . Suppose both sets A and B
would be independent. OBreaker could then follow the “trivial strategy”
inside A and B respectively (as OBreaker wins on Kb+2). However, while
building such a UDB, OMaker will direct edges inside these sets, and
OBreaker needs to control those. To handle this obstacle, we introduce
α-structures. Let V ′ ⊆ V and E = E(G[V ′]). Then the set E is called
an α-structure in V ′ of size k if there exist edges e1, . . . , ek ∈ E such that

(α1) for every directed path P = (ei1, . . . , eik ): i1 > . . . > ik ;
(α2) for every 1 ≤ i < j ≤ k: (e+j , e

−
i ) ∈ E ;

(α3) and no other edges are present in G[V ′].
In our strategy, the edges e1, . . . , ek will be the edges directed by OMaker
(though not necessarily in that order), and the edges of “type” (α2) are the
ones directed by OBreaker. It is easy to verify that (α1)-(α3) imply that E
does not contain a directed cycle, nor can OMaker close one in her next
move inside V ′. Suppose E = E(G[V ′]) is an α-structure inside some
subset V ′ ⊆ V , and let e = (v,w) be the edge OMaker directed in her
previous move. If v,w ∈ V ′, we provide OBreaker with a procedure α
to add e to the α-structure. This includes providing e with an appropriate
index 
 ∈ [k + 1] (and an index shift of the existing edges e1, . . . , ek)
such that

(i) OBreaker needs to direct at most k new edges { f1, . . . , f
} and
(i i) E ∪ {e, f1, . . . , f
} forms an α-structure in V ′ again.
The details are straight-forward though technical, so we omit them here.
We are now ready to describe the global strategies of OBreaker.

Strategy for Theorem 1.1
The strategy is divided into three stages. In Stage I, OBreaker maintains
a UDB (A, B) such that after each of his moves

• E(G[A]) is an α-structure of size k in V \ B,
• E(G[B]) is an α-structure of size 
 in V \ A,
• |A| − k and |B| − 
 increase by at least 1 in every round,
• k + 
 ≤ |A| − k = |B| − 
 ≤ n

6 .
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Note that property (α3) implies that E(G) ⊆ (A ∪ B) × (A ∪ B). Let
e = (v,w) be the edge OMaker directed in her previous move. Since
(A, B) is aUDB, either {v,w} ⊆ V \ A or {v,w} ⊆ V \B. Let {v,w} ⊆
V \ A. Then OBreaker adds e to the α-structure E(G[A]) by procedure
α. As noted above, this takes him at most k edges to direct. He then
directs all edges (v, b), (w, b) for b ∈ B and thus adds v and w to A.
If v (or w respectively) was already an element of A, OBreaker picks an
arbitrary new vertex v′ ∈ V \ (A ∪ B) (or w′ respectively), and directs
all edges (v, b) for b ∈ B. Furthermore, he picks an arbitrary element
b′ ∈ V \ (A ∪ B) and directs all edges (a, b′) for a ∈ A. This way,
|A| − k and |B| − 
 increase by 1. Furthermore, since |A| − k, |B| − 
,
and k + 
 are bounded by n

6 and since b ≥ 5n
6 + 1, OBreaker can follow

the strategy in Stage I. The analysis for {v,w} ⊆ V \ B is similar. As
soon as |A| − k, |B| − 
 ≥ n/6, OBreaker proceeds to Stage II.
In Stage II, OBreaker stops increasing the values |A| − k and |B| − 
.

He now maintains a UDB (A, B) such that after each of his moves

• EA := E(G[V \ B]) is an α-structure of size k in V \ B,
• for all e+ ∈ e ∈ EA: e+ ∈ A,
• E(G[B]) is an α-structure of size 
 in V \ A,
• |A| − k and |B| − 
 do not decrease,
• i.e. |A| − k = |B| − 
 ≥ n

6 = n − b.

Again, let e = (v,w) be the edge OMaker directed in her previous move
and assume w.l.o.g. that {v,w} ⊆ V \ B. Then OBreaker adds e to the
α-structure E(G[A]) by procedure α. Furthermore, he adds v to A by
directing all edges (v, b) for b ∈ B. If v ∈ A already, OBreaker picks a
new vertex v′ ∈ V \ (A ∪ B) and directs all edges (v′, b) for b ∈ B. This
way, |A| − k does not decrease. Stage II ends when A ∪ B = V . Since
the strategy asks to direct at most |B| + k ≤ V − (|A| − k) ≤ b edges,
OBreaker can follow that strategy.
In the final Stage, the situation is as follows: The vertex set V can be

partitioned into two sets A and B such that

• all edges (a, b) ∈ E(G) are already directed,
• E(G[A]) is an α-structure in V \ B = A,
• E(G[B]) is an α-structure in V \ A = B,
• |A|, |B| ≤ b (since |A|, |B| ≥ n − b and V = A∪̇B).
OBreaker now follows procedure α inside A or B respectively, depending
on the part OMaker plays in. It is evident that OMaker cannot close a
cycle: Since she only plays one edge in every round, since G[V \ (A ∪
B)] = ∅ throughout the whole game, and since (A, B) is a UDB, any
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cycle she could close lies completely inside V \ A or V \ B. But the edge
sets EA := E(G[V \ B]) and EB := E(G[V \ A]) form α-structures
inside V \ B and V \ A respectively, so OMaker cannot close a cycle
inside these sets.

Strategy for Theorem 1.2
In our strategy for Theorem 1.1, we heavily use that OBreaker may direct
fewer than b edges in each round. This way, we have complete control
over the structures that evolve. For the strict game, OBreaker needs to
be a lot more careful where to put the remaining edges, as OMaker could
make use of them to create a directed cycle. Here, we split the strategy
into two stages. Stage I consists of exactly one move in which OBreaker
claims a UDB (A, B) such that |A|, |B| ≥ n − b ∼ √n. Similar to the
proof for the monotone rules, he now plays either inside V \ A, or V \ B,
depending on the placement of OMaker’s directed edge. For the exact
details, we refer the reader to our paper [3].

3 Concluding remarks

The upper bound of 5n/6 in Theorem 1.1 is not tight. As one might
expect, playing almost the full bias from the beginning is advantageous
for OBreaker. However, the upper bound improves only to roughly 0.82n
when optimizing Stage I. Our strategy for OBreaker utterly fails when
b ≤ 2n/3. We therefore conjecture that t (n,P) ≥ 2n/3+ o(n).
Concerning the strict rules, OBreaker has to be a lot more careful

where to put remaining edges, since any additional edge can be used by
OMaker to her advantage. We conjecture that there is a constant ε > 0
such that t+(n,P) ≤ (1− ε)n.
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Building spanning trees quickly
in Maker-Breaker games

Dennis Clemens1, Asaf Ferber2, Roman Glebov3, Dan Hefetz4

and Anita Liebenau5

Abstract. For a tree T on n vertices, we study the Maker-Breaker game, played
on the edge set of the complete graph on n vertices, which Maker wins as soon
as the graph she builds contains a copy of T . We prove that if T has bounded
maximum degree, then Maker can win this game within n + 1 moves. Moreover,
we prove that Maker can build almost every tree on n vertices in n − 1 moves and
provide non-trivial examples of families of trees which Maker can build in n − 1
moves.

1 Introduction

Let X be a finite set and let F ⊆ 2X be a family of subsets. In the Maker-
Breaker game (X,F), two players, called Maker and Breaker, take turns
in claiming a previously unclaimed element of X , with Breaker going
first. The set X is called the board of the game and the members of F
are referred to as the winning sets. Maker wins this game as soon as
she claims all elements of some winning set. If Maker does not fully
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claim any winning set by the time every board element is claimed by
some player, then Breaker wins the game. We say that the game (X,F)
is Maker’s win if Maker has a strategy that ensures her win in this game
(in some number of moves) against any strategy of Breaker, otherwise the
game is Breaker’s win. One can also consider a biased version in which
Maker claims p board elements per move (instead of just 1) and Breaker
claims q board elements per move. We refer to this version as a (p : q)
game. For a more detailed discussion, we refer the reader to [3].
The following game was studied in [8]. Let T be a tree on n vertices.

The board of the tree embedding game (E(Kn), Tn) is the edge set of the
complete graph on n vertices and the minimal (with respect to inclusion)
winning sets are the labeled copies of T in Kn . Several variants of this
game were studied by various researchers (see e.g. [2, 4]).
It was proved in [8] that for any real numbers 0 < α < 0.005 and

0 < ε < 0.05 and a sufficiently large integer n, Maker has a strategy
to win the (1 : q) game (E(Kn), Tn) within n + o(n) moves, for every
q ≤ nα and every tree T with n vertices and maximum degree at most
nε. The bounds on the duration of the game, on Breaker’s bias and on the
maximum degree of the tree to be emdedded, do not seem to be best pos-
sible. Indeed, it was noted in [8] that it would be interesting to improve
each of these bounds, even at the expense of the other two. In this paper
we focus on the duration of the game, while we restrict our attention to
the case of bounded degree trees and to unbiased games (that is, the case
q = 1). The smallest number of moves Maker needs in order to win some
Maker-Breaker game is an important game invariant which has received
a lot of attention in recent years (see e.g. [5–10]).
It is obvious that Maker cannot build any tree on n vertices in less than

n − 1 moves. This trivial lower bound can be attained for some trees.
For example, it was proved in [9] that Maker can build a Hamilton path
of Kn in n − 1 moves. On the other hand it is not hard to see that there
are trees on n vertices which Maker cannot build in less than n moves,
e.g. the complete binary tree on n vertices. In this paper we prove the
following general upper bound which is only one move away from the
aforementioned lower bound.

Theorem 1.1. Let � be a positive integer. Then there exists an integer
n0 = n0(�) such that for every n ≥ n0 and for every tree T = (V, E)
with |V | = n and �(T ) ≤ �, Maker has a strategy to win the game
(E(Kn), Tn) within n + 1 moves.
As mentioned before, it can be shown that there exist trees on n ver-

tices which Maker cannot claim in less than n moves. Nevertheless, the
following theorem suggests that such examples are quite rare.
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Theorem 1.2. Let T be a tree, chosen uniformly at random from the class
of all labeled trees on n vertices. Then asymptotically almost surely, T
is such that Maker has a strategy to win the game (E(Kn), Tn) in n − 1
moves.

Moreover, we construct a non-trivial family of trees for which Maker
wins the tree embedding game within n − 1 moves. We call a path P
inside a tree T a bare path if all its inner vertices have degree 2 in T . Our
result then is the following generalization of Theorem 1.4 from [9].

Theorem 1.3. Let � be a positive integer. Then there exists an integer
m1 = m1(�) and an integer n1 = n1(�,m1) such that the following
holds for every n ≥ n1 and for every tree T = (V, E) such that |V | = n
and �(T ) ≤ �. If T admits a bare path of length m1, such that one of
its endpoints is a leaf of T , then Maker has a strategy to win the game
(E(Kn), Tn) in n − 1 moves.

2 Outline of the proofs

A fast winning strategy. The proof of Theorem 1.1 highly depends on
the existence of a long bare path.
Assume first that there is a bare path P ⊆ T whose length is at least

C1 = C1(�),whereC1 is a large constant depending only on�. Then we
split T into this bare path P and a forest of two subtrees T1 = (V1, E1)
and T2 = (V2, E2). In a first step, we show that Maker can claim a copy
of T1∪T2 within |V1|+ |V2|−2 moves, while ensuring that Breaker does
not claim too many edges that might become dangerous for Maker with
respect to the still necessary embedding of P. To do so, we use a nice
trick and consider the method of potential functions, studied intensively
in [3]. Throughout the first step, Maker consistently increases a set S ⊆
V1 ∪ V2 of embedded vertices, which means that Maker claims a copy
of the induced subgraph (T1 ∪ T2)[S], and she also considers a set U
consisting of all available vertices (i.e. vertices in Kn that are not part of
the embedding) plus two vertices x1, x2 corresponding to the endpoints
of P . For every vertex u she defines its potential φ(u) that measures
those Breaker edges incident to u which might become dangerous in the
proceeding game. Further, she considers a cumulative potential ψ =
eB(U)+∑

u open φ(u),where eB(U) denotes the number of Breaker edges
inside U and where open means that u is already part of the embedding,
while Maker still needs to claim edges incident to u (in order to complete
the embedding of T ). Now Maker’s strategy essentially is based on the
idea to embed T1 ∪ T2 step by step and to ensure in parallel that ψ never
exceeds a given constant C2 = C2(�). In a second step, using eB(U) ≤
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C2 after T1 ∪ T2 is fully embedded, we prove that Maker can claim a
path from x1 to x2 through all remaining available vertices, wasting at
most one move. On the one hand this gives us a strengthening of the fast
winning result in the Hamilton cycle game from [10], on the other hand
this finishes our proof in the first case.
Assume then that the tree T does not admit a bare path of length C1.

We conclude that T contains!(n) leaves and, since its maximum degree
is bounded, T also contains a matching M of size !(n) where each edge
is incident with some leaf of T . In a first step, we introduce a danger
function, calling a vertex dangerous if its Breaker degree exceeds some
large constantC3 = C3(�).With some technical argumentation we prove
that Maker can claim a copy of some subtree T ′′ ⊆ T within |V (T ′′)|−1
moves such that E(T ) \ E(T ′′) is a subset of M of size !(n).Moreover,
she can do it in such a way that, at the time when T ′′ is fully embedded,
there is neither an open nor an available vertex that is dangerous. In a
second step, giving a stronger inductive statement, we prove that Maker
can claim a perfect matching between the available and the open vertices,
wasting at most two moves. This way, we complete our proof in the
second case, but also give a fast winning result for the perfect matching
game on nearly complete bipartite graphs which strengthens the results
from [9].

Building trees in optimal time. Recall that in the case where Maker
wants to claim a tree with a long bare path, she only wastes one move
when she tries to create a path between two designated vertices. A cen-
tral ingredient in the proofs of Theorem 1.2 and Theorem 1.3 is Maker’s
ability to build a Hamilton path with exactly one designated vertex as an
endpoint in optimal time. The latter is proven by taking a closer look at
the Hamilton path game, initiated in [9]. Here, we generalize the known
result and give a Maker strategy consisting of five stages that looks more
carefully at the actions of Breaker throughout the Hamilton path game.
Assume now that T is a tree, chosen uniformly at random from the

class of all labeled trees on n vertices. In order to show that Maker
can win in optimal time, we use a nice mixture of results from general
graph theory and random graph theory, coupled with our methods intro-
duced in the previous proof. By [1] and [11] we at first observe that
asymptotically almost surely the maximum degree is given by �(T ) =
(1 + o(1)) log(n)/ log log(n), while T also contains a large family P of
edge disjoint bare paths, with each path being of size at least C4 = C4(�)
and having a leaf of T as one of its endpoints. Then, in the first two
steps of the game Maker claims a copy of some subtree T ′ ⊆ T within
|V (T ′)|−1 moves such that T \T ′ is a union of!(n) bare paths from P.
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Moreover, again using a danger function, we guarantee that, when T ′ is
embedded, the Breaker degree at every open/available vertex is bounded
by some sufficiently small function f (n). In a third step, using general
graph theory, we partition the set of open vertices and available vertices
into sets of size C4 + 1, each having the property that so far Breaker did
not claim any edge inside and each containing exactly one open vertex.
Finally, Maker plays on each of these sets seperately, always claiming a
Hamilton path with one designated vertex in optimal time. This finalizes
the embedding of T .

3 Concluding remarks and open problems

Building trees in the shortest possible time. As noted in the introduc-
tion, there are trees T on n vertices with bounded maximum degree which
Maker cannot build in n − 1 moves. In this paper we proved that Maker
can build such a tree T in at most n + 1 moves. We do not believe that
there are bounded degree trees that require Maker to waste more than one
move. This leads us to make the following conjecture.

Conjecture 3.1. Let� be a positive integer. Then there exists an integer
n0 = n0(�) such that for every n ≥ n0 and for every tree T = (V, E)
with |V | = n and �(T ) ≤ �, Maker has a strategy to win the game
(E(Kn), Tn) within n moves.

Strong tree embedding games. In the strong game (X,F), two players,
called Red and Blue, take turns in claiming one previously unclaimed
element of X , with Red going first. The winner of the game is the first
player to fully claim some F ∈ F . If neither player is able to fully claim
some F ∈ F by the time every element of X has been claimed by some
player, the game ends in a draw.
Strong games are notoriously hard to analyze. However, the use of

explicit very fast winning strategies for Maker in a weak game for de-
vising an explicit winning strategy for Red in the corresponding strong
game was initiated in [6]. This idea was used to devise such strategies
for the strong perfect matching and Hamilton cycle games [6] and for the
k-vertex-connectivity game [7]. Since it was proved in [8] that Maker
has a strategy to win the weak tree embedding game (E(Kn), Tn) within
n + o(n) moves, it was noted in [7] that one could be hopeful about the
possibility of devising an explicit winning strategy for Red in the corre-
sponding strong game. The first step towards this goal is to find a much
faster strategy for Maker in the weak game (E(Kn), Tn). This was ac-
complished in the current paper.
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Dicots, and a taxonomic ranking
for misère games

Paul Dorbec1, Gabriel Renault1, Aaron Siegel2 and Éric Sopena1

Abstract. We study combinatorial games in misère version. In a general context,
little can be said about misère games. For this reason, several universes were ear-
lier considered for their study, which can be ranked according to their inclusion
ordering. We study in particular a special universe of games called dicots, which
turns out to be the known universe of lowest rank modulo which equivalence in
misère version implies equivalence in normal version. We also prove that mod-
ulo the dicot universe, we can define a canonical form as the reduced form of a
game that can be obtained by getting rid of dominated options and most reversible
options. We finally count the number of dicot equivalence classes of dicot games
born by day 3.

We study combinatorial games in misère version, and in particular a spe-
cial universe (i.e. family) of games called dicots. We first recall basic
definitions, following [1, 3, 4].
A combinatorial game is a finite two-player game with no chance and

perfect information. The players, called Left and Right, alternate moves
until one player has no available move. Under the normal convention,
the last player to move wins the game while under the misère convention,
that player loses the game.
A game can be defined recursively by its sets of options G={GL|GR},

where GL is the set of games reachable in one move by Left (called Left
options), and GR the set of games reachable in one move by Right (called
Right options). The zero game 0 = {·|·}, is the game with no options.
The birthday of a game is defined recursively as birthday(G) = 1 +
maxG′∈GL∪GR birthday(G ′), with 0 being the only game with birthday
0. We say a game G is born on day n if birthday(G) = n, and that
it is born by day n if birthday(G) ≤ n. The games born on day 1 are

1 Univ. Bordeaux, LaBRI, UMR 5800, F-33400 Talence, France CNRS, LaBRI, UMR
5800, F-33400 Talence, France. Email: paul.dorbec@u-bordeaux1.fr, gabriel.renault@labri.fr,
Eric.Sopena@labri.fr

2 Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540.
Email: aaron.n.siegel@gmail.com
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{0|·} = 1, {·|0} = 1 and {0|0} = ∗.
Given two games G = {GL|GR} and H = {LH |RH}, we recursively

define the (disjunctive) sum of G and H as G + H = {GL + H,G +L
H |GR + H,G +R H} (where GL + H is the set of sums of H and an el-
ement of GL), i.e. the game where each player chooses on his turn which
one of G and H to play on. One of the main objectives of combinatorial
game theory is to determine for a game G the outcome of its sum with
any other game.
For both conventions, there are four possible outcomes for a game.

Games for which Left player has a winning strategy whatever Right does
have outcome L (for left). Similarly, N , P and R (for next, previous
and right) denote respectively the outcomes of games for which the first
player, the second player, and Right has a winning strategy. We note
o+(G) the normal outcome of a game G i.e. its outcome under the normal
convention and o−(G) the misère outcome of G. Outcomes are partially
ordered according to Figure 1, with greater games being more advanta-
geous for Left. Note that there is no general relationship between the
normal outcome and the misère outcome of a game.

Figure 1. Partial ordering of outcomes.

Given two games G and H , we say that G is greater than or equal to H in
misère play whenever Left prefers the game G rather than the game H ,
that is G ≥− H if for every game X , o−(G + X) ≥ o−(H + X). We say
that G and H are equivalent in misère play, denoted G ≡− H , when for
every game X , o−(G + X) = o−(H + X) (i.e. G ≥− H and H ≥− G).
Inequality and equivalence are defined similarly in normal convention,
using superscript + instead of −.
General equivalence and comparison are very limited in misère play

(see [5, 10]), this is why Plambeck and Siegel defined in [8, 9] an equiv-
alence relationship under restricted universes, leading to a breakthrough
in the study of misère play games.

Definition 1 ([8,9]). Let U be a universe of games, G and H two games.
We say G is greater than or equal to H modulo U in misère play and write
G ≥− H (mod U) if o−(G + X) ≥ o−(H + X) for every X ∈ U . We
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say G is equivalent to H modulo U in misère play and write G ≡− H
(mod U) if G ≥− H (mod U) and H ≥− G (mod U).
For instance, Plambeck and Siegel [8, 9] considered the universe of all

positions of given games, especially octal games. Other universes have
been considered, including the universes of impartial games I [3,4], dicot
games D [2, 6], dead-ending games E [7], and all games G [10]. These
classes are ordered (ranked) by inclusion as follows:

I ⊂ D ⊂ E ⊂ G.

The canonical form of a game is the simplest game of its equivalence
class. It is therefore natural to consider canonical forms modulo a given
universe. In normal play, impartial games have the same canonical form
when considered modulo the universe of impartial games or modulo the
universe of all games. In misère play, the corresponding canonical forms
are different.
In the following, we focus on the universe of dicots. A game is said

to be dicot either if it is {·|·} or if it has both Left and Right options and
all these options are dicot. Note that the universe of dicots, denoted D is
closed under sum of games and taking option.

Theorem 2. Let G and H be any games. If G ≥−D H , then G ≥+ H .

The dicot universe is the universe of lowest rank known to have this
property.
Modulo the dicot universe, we propose a reduced form of a game that

can be obtained by getting rid of dominated options and most reversible
options.

Theorem 3. Consider two dicot games G and H . If G ≡−D H and both
are in reduced form, then either G and H are the games 0 = {·|·} and
{∗|∗}, or there exists a bijection between the Left (resp. Right) options of
G and of H such that an option and its image are equivalent modulo D.
As a consequence, we can define the canonical form of a game as its

reduced form, except when the game reduces to {∗|∗}, in which case the
canonical form is 0.
Thanks to that result, we are able to count the number of dicot equiva-

lence classes (modulo D) of games born by day 3, improving the bound
of 5041 proposed by Milley in [6].

Theorem 4. The 1046530 dicot games born by day 3 are distributed
among 1214 equivalence classes modulo D.
By comparison, Milley proved in [6] that the number of misère dicot

equivalence classes of dicot games born by day 2 is 9. In normal play,
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there are 50 non-equivalent dicot games born by day 3 (both modulo the
universe of all games or the universe of dicots).
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Avoider-Enforcer star games

Andrzej Grzesik1, Mirjana Mikalački2, Zoltán Lóránt Nagy3,
Alon Naor4, Balázs Patkós5 and Fiona Skerman6

Abstract. We study (1 : b) Avoider-Enforcer games played on the edge set of the
complete graph Kn , on n vertices, where Avoider’s goal is to avoid claiming a copy
of some small fixed graph G. In particular, we give explicit winning strategies for
both players in the k-star game, where G is a K1,k , for constant k ≥ 2 under both
strict and monotone rules. We also give the winning strategies for both players in
another two related monotone games.

1 Introduction

Let V be a finite set and let F ⊆ 2V . Consider a hypergraphH = (V,F)
with vertex set V and edge set F . The set V is called the board and F
the family of losing sets. Two players, Avoider and Enforcer, take turns
in claiming unoccupied vertices of V until all vertices are claimed and
Avoider starts the game. Avoider’s goal in the game is to avoid claiming
all the elements of any losing set in F , while Enforcer’s goal is to force
him to do so before the end of the game. Avoider-Enforcer games can be
played by two different sets of rules [9]. Let a and b be positive integers
called the biases of Avoider, respectively Enforcer. By the first set of
rules, in the (a : b) Avoider-Enforcer game, Avoider claims exactly a
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vertices and Enforcer claims exactly b vertices per move. This set of rules
is called the strict rules, and games played by these rules are referred to
as strict games. By the second set of rules, the monotone rules, Avoider
and Enforcer claim at least a, respectively at least b vertices, per move,
and games played by monotone rules are called monotone games. In any
move of either player, if there are less unclaimed vertices than what a
player should claim in his turn, he must claim all the remaining vertices
and the game is then over. The game is an Enforcer’s win if, at any point
of the game Avoider has claimed all the vertices of at least one losing set
F ∈ F . Otherwise, the game is an Avoider’s win.
One of the main advantages of the monotone rules is that they are bias

monotone. In monotone Avoider-Enforcer games, if the (a : b) game is
an Enforcer’s win, then the (a + 1 : b) and (a : b − 1) games are also
won by Enforcer. Similarly, if the (a : b) game is an Avoider’s win, then
the (a : b + 1) and (a − 1 : b) games are also won by Avoider.
When a = b = 1, we call such games unbiased. Unbiased Avoider-

Enforcer games were studied e.g. in [3] and [11]. In an unbiased game, it
is also interesting to see how fast Enforcer can force Avoider to lose, or
to see how long can Avoider defend himself before losing. These type of
problems were considered in [1, 7].
In [11], Lu proved that Beck’s [2] generalization of the Erdős-Selfridge

criterion [6] gave sufficient conditions for an Avoider’s win in the (1 : 1)
Avoider-Enforcer game. In [10], Hefetz, Krivelevich and Szabó gave a
general winning criterion for Avoider in (a : b) Avoider-Enforcer games
played by both sets of rules. This criterion takes only Avoider’s bias
into account. In [4] a new criterion for Avoider’s win in both strict and
monotone (a : b) games on H is introduced, which depends on both
biases a and b. Note, however, that these criteria are non-constructive
and do not give the strategy of the winning player.
The focus of our research is on (1 : b)Avoider-Enforcer games, played

by both monotone and strict rules on a graph where the board is the set of
edges of the complete graph on n vertices, i.e. V = E(Kn). This type of
game appears frequently in the literature (see, for example [8] and [9]).
We follow the terminology for strict Avoider-Enforcer games intro-

duced by Hefetz, Krivelevich and Szabó in [10]. The upper threshold
bias f +H is the smallest integer such that for every integer b, b > f +H , the
(1 : b) game on H is an Avoider’s win. The lower threshold bias f −H
is the largest integer such that for every integer b, b ≤ f −H , the (1 : b)
game onH is an Enforcer’s win. The inequality f −H ≤ f +H always holds,
but the upper and lower threshold biases can be close to each other in the
case of some games, like for example in Connectivity game [10] or be
far apart. When f −H = f +H we call this number fH and refer to it as the
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threshold bias of the gameH. This threshold bias may not exist for some
games.
For monotone (1 : b) Avoider-Enforcer game on H, there is a unique

monotone threshold bias f monH defined as the largest integer value such
that for every integer b, b ≤ f monH , the game is an Enforcer’s win. The
question that arises is whether f −H ≤ f monH ≤ f +H hold for all (1 : b)
Avoider-Enforcer games. The results from [9] and [10] show that it does
not hold in general.
We are interested in (1 : b) Avoider-Enforcer games where Avoider

wants to avoid claiming a copy of some small fixed graph G. This prob-
lem was studied in [9] for some graphs G. LetKG denote the hypergraph
whose edges are the edge sets of all the copies of G in Kn . In [9] the
authors analysed games where G is K3 and P3 respectively and gave the
thresholds for both the monotone and strict game KP3 and for the mono-
tone game KK3 . They showed that
f monKP3

= (n
2

)−⌊ n2⌋−1, f +KP3
= (n

2

)−2, f −KP3
= !(n 3

2 ) and f monKK3
= !(n 3

2 ).

Bednarska-Bzdȩga in [4] showed that f −KK3
= �(n

1
2 ). Clemens et al.

in [5] showed that in a monotone game where losing sets are the edges

of all P4, the threshold bias is f monKP4
= 1

2

(n
2

)− n
2

(
1√
2
− o(1)

)
. Moreover,

in [9], the authors conjectured that in general f +KG
and f −KG

are not of
the same order and asked about the strategies in games where G is some
fixed graph on more than 4 vertices. Bednarska-Bzdȩga established in [4]
general upper and lower bounds on f +KG

, f −KG
and f monKG

for every fixed
graph G, but these bounds are not tight.

2 Results

In the present paper, we study the game KG where G is a k-star K1,k , for
some fixed k ≥ 2 and denote it by Sk . We call the game k-star game.
In order to state our main result, we have to introduce some functions:

let us define r = r(n, b) by 1 ≤ r ≤ b+1 and (n2) ≡ r mod (b+1). Note
that r is the number of edges that Avoider is allowed to choose from in
his last move when playing the strict (1 : b) game. Let
e+n,k = max

{
b : r(b + 1) < 1

8
nk

(2b)k−2

}
, and

e−n,k = max
{
b′ : ∀b, 14n

k+1
k ≤ b ≤ b′ : r(b + 1) < 1

8
nk

(2b)k−2

}
.

The main result in our paper is the following theorem.

Theorem 2.1. In (1 : b) k-star game Sk , k ≥ 2, we have

(i) f monKSk
= !(n k

k−1 ),
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(ii) e+n,k ≤ f +KSk
= O(n

k
k−1 ) holds for all values of n, and

f +KSk
= !(n k

k−1 ) holds for infinitely many values of n,

(iii) max{ 12n
k+1
k , e−n,k} ≤ f −KSk

= O(n
k+1
k log n) holds for all values of n,

and f −KSk
= !(n k+1

k ) holds for infinitely many values of n.

We also consider two more monotone games similar to the k-star game.
Let the double star Sk,k be a graph on 2k vertices u, u1, . . . , uk−1, v,
v1, . . . , vk−1 such that the edge set of Sk,k is {(uv)} ∪ {(uui) : 1 ≤ i ≤
k − 1} ∪ {(vvi) : 1 ≤ i ≤ k − 1} (see Figure 2.1) and let KSk,k be the
hypergraph of the game.

� � � �

�

�

�

�

�

�

�

�

u v

Figure 2.1. S6,6 on vertices (u, v).

Let the path double star PSk,k be a graph on 2k+1 verticesw, u, u1, . . . ,
uk−1, v, v1, . . . , vk−1 such that E(PSk,k) = {{(u, ui), 1 ≤ i ≤ k − 1} ∪
{(v, vi), 1 ≤ i ≤ k − 1} ∪ (v,w) ∪ (u, w)}, as shown in Figure 2.2, and
let KPSk,k be the hypergraph of the game.

� � � � �

�

�

�

�

�

�

�

�

u w v

Figure 2.2. PS6,6 on vertices (u, v,w).

Theorem 2.2. Let k ≥ 2. In (1 : b) double star Sk,k and path double
star PSk,k games, we have

(i) f monKSk,k
= !(n k

k−1 ),

(ii) f monKPSk,k
= !(n k+1

k ).
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[4] M. BEDNARSKA-BZDȨGA, Degree and Small-graph Avoider-
Forcer games, manuscript.

[5] D. CLEMENS, R. HOD, A. LIEBENAU, D. VU and K. WELLER,
personal communication.
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Planarity, colorability and minor games, SIAM Journal on Discrete
Mathematics 22 (2008), 194–212.

[9] D. HEFETZ, M. KRIVELEVICH, M. STOJAKOVIĆ and T. SZABÓ,
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Fooling-sets and rank in nonzero
characteristic

Mirjam Friesen1 and Dirk Oliver Theis2

Abstract. An n×n matrix M is called a fooling-set matrix of size n, if its diagonal
entries are nonzero, whereas for every k �= 
 we have Mk,
M
,k = 0. Dietzfel-
binger, Hromkovič, and Schnitger (1996) showed that n ≤ (rkM)2, regardless of
over which field the rank is computed, and asked whether the exponent on rkM
can be improved.
We settle this question for nonzero characteristic by constructing a family of ma-
trices for which the bound is asymptotically tight. The construction uses linear
recurring sequences.

1 Introduction

An n × n matrix M over some field K is called a fooling-set matrix of
size n if

Mkk �= 0 for all k (its diagonal entries are all nonzero), and (1.1a)

Mk,
 M
,k = 0 for all k �= 
. (1.1b)

Note that the definition depends only on the zero-nonzero pattern of M .
The word “fooling set” originates from Communication Complexity, but
the concept is used under different names in other contexts.
In Communication Complexity and Combinatorial Optimization, one

is interested in finding a large fooling-set (sub-)matrix contained in a
given matrix A (permutation of rows and columns is allowed), as its size
provides a lower bound to other numerical properties of the matrix. Since
large fooling-set submatrices are typically difficult to identify (the prob-
lem is equivalent to finding a large clique in a graph of a certain type),
one would like to upper-bound the size of a fooling-set matrix one may
possibly hope for in terms of easily computable properties of A.
Dietzfelbinger, Hromkovič, and Schnitger ( [4, Thm. 1.4], or see [10,

Lemma 4.15]; cf. [5, 8]) proved that the rank of a fooling-set matrix of
size n is at least

√
n, i.e.,

n ≤ (rkKM)
2. (1.2)

This inequality gives such an upper bound on the largest fooling-set sub-
matrix in terms of the easily computable rank of A.

1 Faculty of Mathematics, Otto von Guericke University Magdeburg, Germany

2 Faculty of Mathematics and Computer Science, University of Tartu, Estonia.
Email: dirk.oliver.theis@ut.ee
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However, it is an open question whether the exponent on the rank in
the right-hand side of (1.2) can be improved or not. Dietzfelbinger et
al. [4, Open Problem 2] were particularly interested in 0/1-matrices and
K = F2, which corresponds to the Communication Complexity situation
they dealt with.
Klauck and de Wolf [8] have pointed out the importance for Com-

munication Complexity of the question regarding general (i.e., not 0/1)
matrices.
Currently, the examples (attributed to M. Hühne in [4]) of 0/1 fooling-

set matrices M with smallest rank are such that n≈(rkF2M)
log4 6 (log4 6=

1.292 . . . ); for general matrices, Klauck and de Wolf [8] have given ex-
amples with n ≈ (rkQM)log3 6 (log3 6 = 1.63 . . . ).
In our paper, we settle the question for fields K of nonzero character-

istic. We prove that inequality (1.2) is asymptotically tight if the charac-
teristic of K is nonzero. Notably, not only is the exponent on the rank in
inequality (1.2) best possible, but so is the constant (one) in front of the
rank.

Organization of this extended abstract. In the next section we will
explain some of the connections of the fooling-set vs. rank problem with
Combinatorial Optimization and Graph Theory concepts. In Section 3,
we will sketch the proof of our result. In the final section, we point to
some questions which remain open.

2 Some remarks on the importance of fooling-set matrices

While the fooling-set size vs. rank problem is of interest in its own right
as a minimum-rank type problem in Combinatorial Matrix Theory,
fooling-set matrices are connected to other areas of Mathematics and
Computer Science.

In Polytope Theory, given a polytope P , sizes of fooling-set submatri-
ces of appropriately defined matrices provide lower bounds to the number
of facets of any polytope Q which can be mapped onto P by a projec-
tive mapping ([14], cf. [5]). Similarly, in Combinatorial Optimization,
sizes of fooling-set matrices are lower bounds to the minimum sizes of
Linear Programs for combinatorial optimization problems ([14]). For ex-
ample, it is an open question whether Edmond’s matching polytope for
a complete graph on n vertices admits a fooling-set matrix whose size
grows quicker in n than the dimension of the polytope. Such a fooling-
set matrix would yield a fairly spectacular improvement on the currently
known lower bounds of sizes of Linear Programming formulations for the
matching problem. See [5] for bounds based on fooling sets for a number
of combinatorial optimization problems, including bipartite matching.
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In the Polytope Theory / Combinatorial Optimization applications, we
typically have K = Q, and the rank of the large matrix A is known.
However, since the definition of a fooling-set matrix depends only on the
zero-nonzero pattern, changing the field from Q to K′ and replacing the
nonzero rational entries of A by nonzero numbers inK′ may yield a lower
rank and hence a better upper bound on the size of a fooling-set matrix.
In Computational Complexity, fooling-set matrices provide lower
bounds for the communication complexity of Boolean functions (see,
e.g., [1, 4, 8, 10, 12]), and for the number of states of an automaton ac-
cepting a given language (e.g., [6]).
As an example from Communication Complexity where the “fooling-

set method” can be seen to yield a poor lower bound is the inner product
function3

f (x, y) =
n∑
j=1

x j y j , for x, y ∈ Zn
2.

The rank of the associated 2n × 2n-matrix is n, hence, by (1.2), there is
no fooling-set sub-matrix larger than n2.
In Graph Theory, a fooling-set matrix (up to permutation of rows and
columns) can be understood as the incidence matrix of a bipartite graph
containing a perfect cross-free matching. Recall that a matching in a
bipartite graph H is called cross-free if no two matching edges induce
a C4-subgraph of H .
Cross-free matchings are best known as a lower bound on the size of

biclique coverings of graphs (e.g. [3,7]). A biclique covering of a graphG
is a collection of complete bipartite subgraphs of G such that each edge
of G is contained in at least one of these bipartite subgraphs. If a cross-
free matching of size n is contained as a subgraph in G, then at least n
bicliques are needed to cover all edges of G. (For some classes of graphs,
this is a sharp lower bound on the biclique covering number [3, 13]).
In Matrix Theory, the maximum size of a fooling-set sub-matrix is
known under a couple of different names, e.g. as independence number
[2, Lemma 2.4]), or as the intersection number. For some semirings, this
number provides a lower bound for the so-called factorization rank of the
matrix over the semiring.
In each of these areas, fooling-set matrices are used as lower bounds.
Upon embarking on a search for a big fooling-set matrix in a large, com-
plicated matrix A, one is interested in an a priori upper bound on their
sizes and thus the potential usefulness of the lower bound method.

3 Thanks to one of the referees for pointing us to this example.
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3 Fooling-Set Matrices from Linear Recurring Sequences

For a prime number p, we denote by Fp the finite field with p elements.
The following is an accurate statement of our result.

Theorem 3.1. For every prime number p, there is a family of fooling-set
matrices M (t) over Fp of size n(t), t = 1, 2, 3, . . . , such that n(t) → ∞,
and

n(t)

(rkFp M (t))2
−→ 1.

The method used in all the earlier examples (mentioned in the intro-
duction) of fooling-set matrices with small rank was the following: One
conjures up a single, small fooling-set matrix M0 (of size, say, 6), deter-
mines its rank (say, 3), and then uses the tensor-powers of M0 (which are
fooling-set matrices, too). With these numerical values, from M0, one
obtains log3 6 as a lower bound on the exponent on the rank in (1.2).
Our technique is a departure from that approach. As noted above, we

use linear recurring sequences. For every t , we construct an n(t)-periodic
function, which gives us a fooling-set matrix of size n(t).
We now describe that construction. Let p be a prime number and r ≥ 2
an integer. Define the function f : Z → Fp by the recurrence relation

f (k + r) = − f (k)− f (k + 1) for all k ∈ Z (3.1a)

and the initial conditions

f (0) = 1, and f (1) = . . . = f (r − 1) = 0. (3.1b)

Fix an integer n > r . From the sequence, we define an n × n matrix
as follows. For ease of notation, the matrix indices are taken to be in
{0, . . . , n − 1} × {0, . . . , n − 1}. We let

Mk,
 := f (k − 
). (3.2)

It is fairly easy to see that rkM ≤ r .

Lemma 3.2. The rank of M is at most r .

Proof. From (3.1a), for k ≥ r , we deduce the equation Mk,� = −Mk−r,�−
Mk−r+1,�. Hence, each of the rows Mk,�, k ≥ r , is a linear combination
of the first r rows of M .

It can be seen that the rank is, in fact, equal to r : The top-left r × r
sub-matrix is non-singular because it is upper-triangular with nonzeros
along the diagonal.
Next, we reduce the fooling-set property (1.1) to a property of the func-

tion f .
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Lemma 3.3. The matrix M defined in (3.2) is a fooling-set matrix, if
and only if,

f (k) f (−k) = 0 for all k ∈ {1, . . . , n − 1}. (3.3)

Proof. It is clear from (3.1b) and (3.2) that Mj, j = f (0) = 1 for all
j = 0, . . . , n − 1, so it remains to verify (1.1b). Since

Mi, j M j,i = f (i − j) f ( j − i) = f (i − j) f (−(i − j)),

if f (k) f (−k) = 0 for all k = 1, . . . , n − 1, then Mi, j M j,i is zero when-
ever i �= j . This proves (1.1b).

Given appropriate conditions on r and n (depending on p), this condi-
tion on f can indeed be verified:

Lemma 3.4. For all integers t ≥ 1, if we let r := pt + 1 and n :=
r(r − 1)+ 1, then f (k) f (−k) = 0 for all k ∈ Z \ nZ.

Combining the above three lemmas, we can complete the proof of The-
orem 3.1.

Proof of Theorem 3.1. Let p be a prime number. For every integer t ≥ 1,
let r := pt + 1 and n(t) := r(r − 1)+ 1, and define the matrix M (t) := M
over Fp as in (3.2). By Lemma 3.2, the rank of M (t) is at most r , and
from Lemmas 3.3 and 3.4 we conclude that M (t) is a fooling-set matrix.
Hence, we have

1 ≥ n(t)

rkFp(M (t))2
≥ r2 − r + 1

r2
≥ 1− p−t/4 t→∞−−−→ 1,

where the left-most inequality is from (1.2).

To prove Lemma 3.4, we need two more lemmas. The first one states
that in every section { jr, . . . , ( j+1)r−1}, j = 0, 1, . . . , there is a block
of zeros whose length decreases with j .

Lemma 3.5. For j = 0, . . . , r − 2, we have
f ( jr + i) = 0 for i = 1, . . . , r − 1− j . (3.4)

Proof. Equation (3.4) is true for j = 0 by (3.1b). Suppose (3.4) holds for
some j < r−2. Then f (( j+1)r+ i) = 0 for i = 1, . . . , r−1−( j+1),
because, by (3.1a),

f (( j+1)r+i) = f ( jr+i+r) = − f ( jr+i)− f ( jr+(i+1)) = −0−0
holds.
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Every function on Z with values in a finite field which is defined by
a (reversible) linear recurrence relation is periodic (cf. e.g. [11]). The
second lemma establishes that a specific number n is a period of f as
defined in (3.1).

Lemma 3.6. If r = pt+1 for some integer t ≥ 1, then n := r(r−1)+1
is a period of the function f .

This lemma is the difficult part of the proof of Theorem 3.1. Due to the
space limitations, for its proof, we have to refer to the full paper. At this
point, suffice it to say that the argument proceeds by identifying binomial
coefficients among the values of f , and then uses the known periodicity
of the binomial coefficients modulo p.
Lemmas 3.5 and 3.6 allow us to prove Lemma 3.4.

Proof of Lemma 3.4. We need to show f (k) f (−k) = 0 whenever n � k.
By Lemma 3.6, this is equivalent to showing f (k) f (n − k) = 0 for
k = 1, . . . , n − 1. Given such a k, let j, i be such that k = jr + i and
0 ≤ i ≤ r − 1.
If i ≤ r − 1 − j , then f (k) = 0 by Lemma 3.5, and we are done. If,

on the other hand, i > r − 1− j , then

n − k = r2 − r + 1− jr − i = (r − 1− ( j + 1))r + (r − i + 1),
and r − i + 1 ≤ j + 1, so, by Lemma 3.5, we have f (n − k) = 0.

4 Conclusion

Dietzfelbinger et al.’s original question regarding the tightness of in-
equality (1.2) for 0/1-matrices remains open in characteristic p > 2. For
these matrices, it may still be possible that the exponent on the rank in
the inequality (1.2) can be improved.
For characteristic zero, Klauck and de Wolf [8] have given an example

of a fooling-set matrix of size 6 with entries in {0,±1} which has rank 3.
Thus, using the method sketched above (following Theorem 3.1), the ex-
ponent on the rank in inequality (1.2) with K := Q for general (i.e., not
0/1) matrices is at least log3 6 = 1.63 . . . , while the best known bound
for 0/1-matrices is log4 6 = 1.292 . . . .
We would like to point out the possibility that, in characteristic zero,

the minimum achievable rank on the right hand side of inequality (1.2)
may depend not only on the characteristic, but on the field K itself. In-
deed, there are examples of zero-nonzero patterns for which the minimum
rank of a matrix with that zero-nonzero pattern differs between K = Q
and K = R, see e.g. [9]. Hence, for characteristic zero, we ask the fol-
lowing weaker version of Dietzfelbinger et al.’s question.
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Question 4.1. Is there a field K (of characteristic zero) over which the
fooling-set matrix size vs. rank inequality in (1.2) can be improved?

As mentioned in Section 2, another question in characteristic zero
comes from polytope theory. Let P be a polytope. Let A be a matrix
whose rows are indexed by the facets of P and whose columns are in-
dexed by the vertices of P , and which satisfies AF,v = 0, if v ∈ F , and
AF,v �= 0, if v /∈ F . For any fooling-set submatrix of size n of A, the
following inequality follows from (1.2) (cf. [5]):

n ≤ (dim P + 1)2. (4.1)

The following variant of Dietzfelbinger et al.’s question is of pertinence
in Polytope Theory and Combinatorial Optimization (see Section 2).

Question 4.2. Can the fooling-set size vs. dimension inequality (4.1) be
improved (for polytopes)?

To our knowledge, the best known lower bound for the best possible
exponent on the dimension in inequality (4.1) is 1.
Finally, the complexity of the Fooling-Set-Submatrix problem is still

open:

Conjecture 4.3. The Fooling-Set-Submatrix problem
Input: Integers n,m and m × m 0/1-matrix A
Output: “Yes”, if a fooling-set submatrix of size n of A exists,

“No” otherwise.
is NP-hard.
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Krasner near-factorizations
and 1-overlapped factorizations

Tadashi Sakuma1 and Hidehiro Shinohara2

Abstract. Near and/or 1-overlapped factorizations on cyclic groups play impor-
tant roles both in perfect graph theory and ideal clutter theory. Such a factorization
is Krasner if its construction does not need any modulo operation (i.e. every ad-
dition can be thought as the addition of integers). In this paper, we characterize
Krasner near-factorizations and 1-overlapped factorizations, which solves a prob-
lem posed by S. Szabó and A.D. Sands [9].

1 Introduction

In this paper, let G denote an abelian group. For two subsets S1 and S2
of G, let S1 + S2 denote the multiset {a + b | a ∈ S1, b ∈ S2}. If S2 has
only one element g, we use S1+ g instead of S1+{g}. A sum of two sets
S1+ S2 is direct if all elements are distinct. A subset S ⊂ G is symmetric
respect to an element x ∈ G if S+ x = −S− x , where this x is called the
center of A. Especially, a subset S ⊂ G is symmetric if it is symmetric
respect to 0. A subset S ⊂ G is shift-symmetric if there exists an element
g ∈ G such that S = −S+ g. For a set S ⊂ G and an element g ∈ G, let
gS or Sg denote the set {gs | s ∈ S}.
A pair (A, B) of a finite cyclic group Zn with min{|A|, |B|} ≥ 2 is a

factorization if A + B equals Zn , and a near (resp. 1-overlapped) fac-
torization if A + B equals G \ {g} (resp. G ∪ {g}) for some element
g ∈ Zn which is called the uncovered element (resp. the doubly cov-
ered element) of (A, B). For two integers a and b, let [a, b] be the set
{i ∈ Z | a ≤ i ≤ b}. A pair (A, B) of subsets of Z is a factorization of

1 Faculty of Education, Art and Science, Yamagata University, Yamagata, Japan.
Email: sakuma@e.yamagata-u.ac.jp

2 Graduate School of Information Science, Tohoku University, Sendai, Japan.
Email: shinohara@math.is.tohoku.ac.jp
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an interval [a, b] if A + B = [a, b]. Let φn be the natural bijection from
Zn to [0, n− 1], and ψn be the inverse map of φn . Let us use the abbrevi-
ations 0̄ and 1̄ for ψn(0) and ψn(1), respectively. A factorization (resp. a
near factorization and 1-overlapped factorization) (A, B) is called Kras-
ner if 0 ≤ φn(a) + φn(b) ≤ n for all a ∈ A and b ∈ B. Let J be the
n by n all one matrix, and I be the identity matrix. A simple graph is a
normalized partitionable if its clique incidence matrix is a 0-1 solution
of XY = J − I . A square 0-1 matrix is a thin Lehman matrix if it is a so-
lution of XY = J + I . Normalized partitionable graphs and thin Lehman
matrices are rare known methods for constructing minimally imperfect
graphs and minimally non-ideal clutters. (See [1], [6].)
Let ρ(≥ 1) and m1,m2, . . . ,m2ρ(≥ 2) r, s(≥ 2) be integers such that

r = ∏ρ

i=1m2i−1, s =
∏ρ

i=1m2i and n =
∏2ρ

i=1mi . Let μ j = ∏ j−1
i=1 mi

for 1 ≤ j ≤ 2ρ. Define a subset Mi of N by {0, 1, 2, . . . ,mi − 1}μi ,
A′ := M1+M3+· · ·+M2ρ−1 and B ′ := M2+M4+· · ·+M2ρ . It is clear
that (ψn(A′), ψn(B ′)), (ψn+1(A′), ψn+1(B ′)), (ψn−1(A′), ψn−1(B ′)) are
a factorization, a near factorization, and 1-overlapped factorization of
cyclic groups with corresponding orders. Let (A, B) be one of a factor-
ization, a near factorization, or a 1-overlapped factorization of Zn . Then
the following three operations carry each factorization to another factor-
ization of the same kind.

• Shifting: Consider (A + a, B + b) for some a, b ∈ Zn .
• Scaling: Consider (λA, λB) for some λ ∈ Z×n .• Swapping: Consider (−A, B).
We call a factorization (near factorization, 1-overlapped factorization)
constructed by the above method (with shifting, scaling and swapping) a
DBNS factorization (DBNS near factorization, DBNS 1-overlapped fac-
torization) of Zn .
N. G. De Bruijn proved the following theorem.

Theorem 1.1. Let A and B be two subsets of Z. If A + B is direct,
and equals [min A + min B,max A + max B], and is direct, there exist
parameters m1,m2, . . . , mr such that

A=
∑
i :odd
[0,mi−1]

i−1∏
k=1

mk+min A, B=
∑
i :even

[0,mi−1]
i−1∏
k=1

mk+min B,

max A +max B −min A −min B + 1 =
r∏

k=1
mk .

Especially, each Krasner factorization is a DBNS factorization.
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In comparison to the above, S. Szabó and A.D. Sands [9] recently
posed the following problem.

Problem 1.2. Characterize Krasner near factorization.

On the other hand, in 1984, C. Grinstead raised the following conjec-
ture.

Conjecture 1.3 (C. Grinstead (1984)). Every near-factorization of a fi-
nite cyclic group is a DBNS near-factorization.

Certainly, the problem of S. Szabó et al. is corresponding to the most
basic case (sub-conjecture) of the above.

2 Preliminaries

Here, we introduce some theorems which we use in this article.

Theorem 2.1 (D. De Caen and el. [3], H. Shinohara [8]). Let (A, B)
be a near (resp. 1-overlapped) factorization of G. There exist two el-
ements a, b ∈ G such that the uncovered element (resp. the doubly cov-
ered element) of (A + a, B + b) is 0, and that both of A + a and B + b
are symmetric.

A subset S of G is an (a, i, k) arithmetic progression if S = {a + il |
0 ≤ l ≤ k − 1}. A set S ⊂ G is partially (i, k) arithmetic if there
exists an (a, i, k) arithmetic progression S1 and a subset S2 ⊂ G such
that S = S1 + S2.

Theorem 2.2 (K. Kashiwabara et al. [5], T. Sakuma et al. [7]).
Let (A, B) be a near (resp. 1-overlapped) factorization of Zn . If A is
partially (i, k) arithmetic for some i, k, then (A, B) is a DBNS near (resp.
1-overlapped) factorization.

3 Results

In this section, we prove the following theorem, which not only solves
the problem of S. Szabó et al. but also settles positively the most basic
cases of Grinstead’s conjecture and its ideal clutter theoretical analog [7],
at the same time.

Theorem 3.1. Every Krasner near (resp. 1-overlapped) factorization is
a DBNS near (resp. 1-overlapped) factorization.

Lemma 3.2. Let A, B be two sets of Z such that A is shift-symmetric,
min A = min B = 0 and max B < max A. If A + B is direct and
[0,max A] ⊆ A + B, then A + B is an interval.
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Proof of Theorem 3.1. Let (A, B) be a Krasner near factorization of Zn

with uncovered element u. If u is 0 then (φn(A), φn(B)) is a factor-
ization of either [1, n] or [0, n − 1] and hence this (A, B) is a DBNS
near-factorization. Therefore without loss of generality, we can assume
that u does not equal 0. Furthermore, we can assume that 0̄ ∈ A ∩ B,
for otherwise we can use either the Krasner factorization (A − 1̄, B) (if
0̄ �∈ A) or (A, B − 1̄) (if 0̄ �∈ B) as a substitute for the (A, B). From
the assumption 0̄ ∈ A ∩ B, we have φn(A)+ φn(B) ⊂ [0, n − 1]. Thus,
either maxφn(A) or maxφn(B) is strictly less than n/2. Without loss of
generality, we assume maxφn(A) < n/2.
Let a′ and b′ be two elements of Zn such that (A − a′, B − b′) is a

near factorization of Zn whose uncovered element is the identity, and
that both of A − a′ and B − b′ are symmetric. Then the uncovered ele-
ment of (A, B) is a′ + b′. Since a′ and b′ are the centers of symmetry of
A and B respectively, we have 2a′ ∈ A and 2b′ ∈ B. Combining this and
the assumption maxφn(A) < n/2, we also have φn(2a′) = max(φn(A)).
Without loss of generality, we can assume that φn(a′+b′) ≤ n/2, for oth-
erwise we can use the other Krasner near factorization (ψn(maxφn(A))−
A, ψn(maxφn(B))−B)) as a substitute for the (A, B). (Note that shifting
carries (A, B) to (ψn(maxφn(A))−A, ψn(maxφn(B))−B)) by Theorem
2.1).
Suppose that there exists an element b1 such that φn(b1) ≤ 2φn(a′ +

b′) < φn(b1) + φn(2a′). Then, since b′ is the center of B, we have
2b′ − b1 ∈ B and hence (2b′ − b1) + 2a′ ∈ B + A. Furthermore,
since (a′ + b′) − (2b′ − b1) = (b1 + 2a′) − (a′ + b′), we have that
φn(2b′ − b1) < n < φn((2b′ − b1)) + φn(2a′), which contradicts the
assumption that (A, B) is Krasner. Thus, there exists a subset B ′ ⊂
B such that φn(A) + φn(B ′) = [2φn(a′ + b′) + 1, n − 1]. In other
words, (A, B) is a DBNS factorization. If 2φn(a′ + b′) + 1 < n − 1,
then, from Theorem 1.1, φn(A) turns to be partially arithmetic in Z. If
2φn(a′ + b′) + 1 = n − 1, then A ⊂ [0, a′ + b′ − 1] holds. Hence,
combining Lemma 3.2 and Theorem 1.1, we have that A is partially
arithmetic in Z again. Thus, in any case, A is also partially arithmetic
in Zn . Therefore, (A, B) is a DBNS near-factorization from Lemma
2.2. We can prove similarly to the above for the case of 1-overlapped
factorizations.

We also have the following complete descriptions for the DBNS pa-
rameters of the Krasner near factorizations; let (A, B) be a Krasner near
factorization (resp. 1-overlapped factorization) of Zn such that 0 ∈ A,
and that maxφn(A) ≤ maxφn(B)−minφn(B). Then one of the follow-
ing holds;
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• there are 2ρ + 1 integers such that m1(≥ 1), and that mi ≥ 2 for
i ∈ [2, 2ρ − 1], and that mi ≥ 0 for i = 2ρ, 2ρ + 1 which satisfies

A=ψn
(

ρ∑
j=1
[0,m2 j−1−1]

2 j−2∏
k=1

mk

)

B=ψn
(

ρ∑
j=1
[0,m2 j−1]

2 j−1∏
k=1

mk

)
∪ ψn

(
ρ∑
j=1
[0,m2 j−1]

2 j−1∏
k=1

mk+1
)
,

• there is an integer m1 at least 2, and nonnegative integers m2,m3 such
that

A = ψn({0, 2m1 − 1})
B = ψn(([0, 2m1 − 2] + ([0,m2]2(2m1 − 1)
∪ ([m2 + 1,m3 − 1]2(2m1−1)−1))) \ {(2m1 + 1)(2m1−1)−1}).

Although we also specified the parameters for Krasner 1-overlapped fac-
torizations, its details are omitted here due to space limitations.
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Correlation inequality for formal series

Vladimir Blinovsky1

Abstract. We extend the considerations of the paper [1] and prove two correlation
inequalities (statement of lemma below and inequality (8)) for totally ordered set.

First we introduce class of correlation inequalities.
Assume that f1, . . . , fn are nonnegative nondecreasing functions 2X→

R. The expectation of a random variable f : 2X→ R with respect to μ
we denote by 〈 f 〉μ. For a subset δ ∈ [n] define

Eδ =
〈∏
i∈δ

fi

〉
μ

.

Let
σ = {σ1, . . . , σ
}

be a partition of [n] into disjoint subsets. Define
Eσ =


∏
i=1

Eσi .

Let λ1 = |σi |. We have ∑

i=1 λi = n. Let λ(σ) = (λ1, . . . , λ
) and

λ1 ≥ . . . ≥ λ
. For a partition λ of number n define
Eλ =

∑
σ :λ(σ)=λ

Eσ .

We need the following

Lemma 1. Consider the totally odered set 1, . . . , N with probability
measure μ on it and let’s functions fi , i = 1, . . . , n are nonnegative and
monotone nondecreasing. Functional

En( f1, . . . , fn) =
∑
λ0n

cλEλ (1)
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and
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where

cλ = (−1)
+1

∏
i=1
(λi − 1)!

is nonnegative.

In [2] was conjectured that statement of lemma (along with (8)) is true
when probability measure μ on 2X satisfies FKG conditions

μ(A ∩ B)μ(A ∪ B) ≥ μ(A)μ(B) (2)

and functions fi are nonnegative and monotone.
Note that under conditions from the lemma in particular case n = 2

lemma gives Chebyshev inequality

〈 f1 f2〉μ ≥ 〈 f1〉μ〈 f2〉μ .
Hence our proof can be considered as extention of Chebyshev inequality
to multiple variables. For monotone functions fi( j), i = 1, . . . , n; j =
1, . . . , N we put

fi(1) = ai,1, fi( j) = fi( j − 1)+ ai, j , j = 2, . . . , N , ai, j ≥ 0. (3)

Then substituting in the formula

En( f1, . . . , fn) =
∑
λ0n

cλ
∑

σ : λ(σ)=λ


∏
i=1
〈
∏
j∈σi

f j 〉μ (4)

coefficients cλ one can show that to prove lemma it is sufficient to prove
the inequality

∑
{ms }

Fm1,...,mN (μ)

N−1∏
j=0

∑ j+1
s=1 ms∏

i=∑ j
s=1 ms+1

(
j+1∑
t=1

ai,t

)
≥ 0, (5)

where

Fm1,...,mN (μ) = −
N∏
j=1

m j∏
i=1
(i − 1− μ( j)) .

One can check that coefficient before the monomial

N−1∏
j=0

∑ j+1
s=1 ms∏

i=∑ j
s=1 ms+1

ai, j+1
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in the lhs of (5) is

B(m1, . . . ,mN−1)

�= −
∑
{i j }

N−1∏
j=1

(∑ j
s=1ms −∑ j−1

s=1 is
i j

) i j∏
i=1
(i − 1− μ( j))

×
n−∑N−1

s=1 is∏
i=1

(i − 1− μ(N )).

(6)

Thus to prove (5) and complete the proof of lemma it is sufficient to prove
the inequality

B(m1, . . . ,mN−1) ≥ 0. (7)

We prove this inequality by induction on m j . This proves lemma.
Next we consider the set of formal series P[[t]], whose coefficients

are monotone nondecreasing nonnegative functions on 2X . Then p(A) =
p1(A)t + p2(A)t2 + . . . ∈ P[[t]]. In [2] was formulated the following
Conjecture 1. For FKG probability measure μ the following inequality
is true

1−
∏
A∈2X

(1− p(A))μ(A) ≥ 0. (8)

The inequality (8) is understood as non negativeness of coefficients of
formal series obtained by series expansion of the product on the left-
hand side of this inequality.
We will prove, that inequality (8) follows from inequalities

En( f1, . . . , fn) ≥ 0 (9)

for all n and hence it is sufficient to prove last inequalities and then in-
equality (8) follows under the same conditions on μ.
We make some transformations of the expression in the lhs of (8). We

have

1−
∏
A∈2X

(1− p(A))μ(A) = 1− exp {〈ln(1− p)〉μ
}

= 1− exp
{
−

∞∑
i=1

1

i
〈pi 〉μ

}
=

∞∑
j=1

(−1) j+1
j !

( ∞∑
i=1

1

i
〈pi 〉μ

) j

=
∞∑
j=1

(−1) j+1
j !

∑
{qs }:∑ qs= j

(
j

q1, . . . , q j

)∑
{is }

∏ j
s=1〈pis 〉qsμ

(i1)q1(i2)q2 . . . (i j )q j
.
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Next remind that the number of partitions of n with given set {qi } of
occurrence of i is equal to

n!∏
i(i !)qi qi !

.

Continuing the last chain of identities and using last formula we obtain

1−
∏
A∈2X

(1− p(A))μ(A)

=
∞∑
n=1

1

n!
∑
λ0n

∑
σ : λ(σ)=λ

(−1)
∑

i qi+1 n!
∏
((i − 1)!)qi∏
i(i !)qi qi !

∏
i

〈pi 〉qiμ

=
∞∑
n=1

1

n!
∑
λ0n
(−1)
(λ)+1

∏
i

(λi − 1)!
∑

σ : λ(σ)=λ
Eσ (p, . . . , p)

=
∞∑
n=1

1

n!
∑
λ0n

cλEλ(p, . . . , p)

=
∞∑
n=1

1

n!En(p, . . . , p) .

(10)

Hence now to prove the conjecture 3 we need to show that

En(p, . . . , p) ≥ 0. (11)

But the coefficients of the formal series En(p, . . . p) are the sums of
En(pi1, . . . , pin ) for multisets {i1, . . . , in}. This completes the proof that
inequality (8) follows from inequalities (9) under the same conditions
on μ.
Thus because we prove lemma, we prove inequality (8) for totally or-

dered lattice and this is our main result.

Remark. To extend lemma to the conditions (2) one can try to find proper
expansion for the monotone functions fi which extend expansion (3) to
the case of poset 2X .
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Covariants of spherical !-orbits for types
E6, E7, E8

Witold Kraśkiewicz1 and Jerzy Weyman2

Abstract. We calculate the rings of covariants for spherical orbits in the class
of representations of reductive algebraic groups associated to various gradings on
simple Lie algebras of type E6, E7 and E8.

1 Introduction

Let Xn be a Dynkin diagram with a distinguished node x ∈ Xn and let
g be a complex semisimple Lie algebra corresponding to Xn . Then g =
h⊕⊕β∈�gβ where h is the Cartan subalgebra and � is a root system of
type Xn . Choose a basis for � and let α be a simple root corresponding
to x . For a root β ∈ �, let the rank of β be the multiplicity of α in
decomposition of β in the basis of simple roots. For i �= 0, let gi be the
sum of gβ with β of rank i and let g0 be the sum of h and the sum of
gβ with β of rank 0. In this way, x defines grading of g with g0 being
a Lie subalgebra of g. Let G0 be the adjoint group corresponding to g0.
The group G = G0 ×C∗ acts on g1 with finitely many orbits. Moreover,
V. Kac proved in [1] that almost all actions of reductive algebraic groups
with finitely many orbits can be obtained in such a way. The orbits of G
in g1 where parameterized by E.B. Vinberg ( [5, 6]) using combinatorics
of root subsystems of �. We call them !–orbits.
Systematic study of algebraic–geometric properties of orbits connected

with exceptional roots systems was undertaken by authors in a series of
papers [2–4]. In the following, we use previous results to describe the
action of G on the ring of regular functions on spherical !-orbits.

2 Methodology

LetO be an orbit of the action of G on g1. Its closureO is an affine alge-
braic variety and the group G acts on the ring C[O] of regular functions

1 Faculty of Mathematics and Computer Science, Nicholas Copernicus University, Toruń, Poland.
Email: wkras@mat.umk.pl

2 Department of Mathematics, Northeastern University, Boston, USA. Email: j.weyman@neu.edu
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in a standard way. Let B ⊂ G be a Borel subgroup. B-invariant regular
functions on O are called covariants of O. The orbit is spherical if and
only if it contains dense B-orbit, or equivalently if the action of G on
C[O] is multiplicity free.
Let M = MO be the set of dominant weights λ of G such that the

irreducible representation V (λ,G) of highest weight λ occurs in C[O].
The setM is in fact a monoid with respect to usual addition of weights.
Assume that the orbit O is spherical. For λ ∈ M, we write λ[d]

to indicate the degree d of the homogeneous component of C[O] that
contains the only copy of V (λ,G). In that way we obtain a grading
M = ⊕∞d=0Md and

Cd[O] = ⊕λ∈Md V (λ,G), d = 0, 1, 2, . . . . (2.1)

The ring of covariants of O is isomorphic to the monoid ring C[M]. We
use standard notation eλ for a weight λ ∈ M regarded as an element of
C[M].
Let Xn be a Dynkin diagram of type E6, E7 or E8 and let O be a

!-orbit of type Xn . The key result of [2–4] is an explicit construction
of a desingularisation S of O which is a vector bundle over a homo-
geneous space X of G. Using that desingularisation and a geometric
technique described in [7] algebraic properties of the variety O were de-
rived. In particular Hilbert–Poincaré series HO(t) = ∑∞

n=0 p(n)t
n =∑∞

n=0 dim Cn[O]tn was calculated. It is of the form

HO(t) = N (t)

(1− t)c
= N (t) ·

∞∑
n=0

(
n + c − 1
c − 1

)
tn,

where N (t) is a polynomial given in [2–4] and c = dimO. It follows that
p(n) is a polynomial function of n of degree ≤ c − 1.
On the other handCn[O] = H 0(X, Symn(S∗)) and it can be computed

by Bott algorithm, at least for small n. Assume that we know s covariants
of O with lineary independent weights λi [di ], i = 1, 2, . . . , s, and we
want to show that in fact the ring of covariants is generated by them. For
k = (k1, k2, . . . , ks) ∈ Ns , let

W (k1, k2, . . . , ks) = dimV (k1λ1 + k2λ2 + · · · + ksλs,G) (2.2)

and let

q(n) =
∑

(k1,k2,...,ks )
k1d1+k2d2+···+ksds=n

W (k1, k2, . . . , ks), n = 0, 1, 2, . . . . (2.3)
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In order to prove the statement, it is enough to show that

N (t) = (1− t)c
∞∑
n=0

q(n)tn. (2.4)

It follows from Weyl character formula that W (k) is polynomial in k of
degree less or equal to

δ(λ1, λ2, . . . , λs)=| �+\{α∈�+ : (λ1, α)=(λ2, α)= . . . (λs, α)=0} | .
Let P ⊂ Rs be a polytope with vertices

Ai =
(
0, . . . , 0,

1

di
, 0, . . . , 0

)
, i = 1, 2, . . . , s.

Then (2.3) is equivalent to

q(n) =
∑

k∈nP∩Ns

W (k1, k2, . . . , ks). (2.5)

Recall that a function g : N → R is quasi–polynomial of period d if
there exist d polynomials G0(t),G1(t), . . . ,Gd−1(t) ∈ R[t] such that
g(n) = Gn mod d(n) for every natural n. It is known that if P ⊂ Rs is a
rational polytope and f = f (x1, x2, . . . , xs) is a polynomial function on
Rs then f (n) =∑

x∈nP∩Ns f (x1, x2, . . . , xs) is quasi–polynomial in n of
degree ≤ deg( f ) + dim(P). Moreover, if d is common denominator of
all coordinates of vertices of P then d is a period of f .
Let d = lcm(d1, d2, . . . , ds). Then the equation (2.4) is equivalent to

N (t) ≡ (1− t)c
∞∑
n=0

q(n)tn (mod t L), (2.6)

where L = d ·(δ(λ1, λ2, . . . , λs)+s). The condition (2.6) can be checked
by computer calculation (in Maple).
The approach can be modified to cover cases of generators with rela-

tion since they are of very special form. It turns out that we can divide a
set of generators ofM into two groups

λ1[d1], λ2[d2], . . . , λs[ds]
and

μ1[e1], μ2[e2], . . . , μt [et ]
in such a way that
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1. λi ’s are linearly independent; letM0 be a monoid spanned by them;
2. the setsM0 andMi = μi +M0, i = 1, 2 . . . , t , are disjoint and

M =M0 ∪M1 ∪ · · · ∪Mt

(i.e. minimal relations express sums of two not necessarily different μi ’s
as a positive combination of λi ’s possibly plus another μ j ).
For i = 1, 2, . . . , t , let
Wi(k1, k2, . . . , ks) = dimV (μi + k1λ1 + k2λ2 + · · · + ksλs,G) ,

and let

q(n) =
∑

k∈nP∩Ns

W (k1, k2, . . . , ks)+
t∑

i=1

∑
k∈(n−ei )P∩Ns

Wi(k1, k2, . . . , ks).

Denote e = max(e1, e2, . . . , et). For n ≥ e, q(n) is quasi-polynomial
and in order to prove that λ1, . . . , λs;μ1, . . . μt generate the ring of co-
variants, it is enough to check (2.6) with L substituted with L ′ = e + d ·
(δ(λ1, λ2, . . . , λs)+ s).

3 Results

There are 15 spherical !-orbits of type E6, 33 of type E7 and 42 of type
E8. For each of them we have found explicit generators and relations of
the monoidM.
As a corollary, we obtained the following result.

Theorem 3.1. Let O be a spherical !-orbit of type E6, E7 or E8. Then
the ring of covariants of O is either a polynomial ring or a quotient of a
polynomial ring by the ideal generated by 2 × 2 minors of a symmetric
matrix of dimension 2× 2 or 3× 3.
Example 3.2. Let α = α2 in a root system of type E7 (in Bourbaki enu-
meration of simple roots). Then G = GL(7) and g1 =∧3 C7. There are
5 spherical orbits of that type denoted by O1,O2,O3,O4 and O6 in [3]
of dimension 13, 20, 21, 25 and 28, respectively. Let

λ1 = (1, 1, 1, 0, 0, 0, 0)[1], λ2 = (2, 1, 1, 1, 1, 0, 0)[2],
λ3 = (3, 1, 1, 1, 1, 1, 1)[3], λ4 = (2, 2, 2, 1, 1, 1, 0)[3],
λ5 = (3, 3, 2, 2, 1, 1, 0)[4], λ6 = (3, 3, 3, 3, 1, 1, 1)[5],
λ7 = (5, 5, 3, 3, 3, 1, 1)[7];
μ1 = (3, 2, 2, 2, 1, 1, 1)[4], μ2 = (4, 3, 2, 2, 2, 1, 1)[5],
μ3 = (4, 4, 3, 3, 2, 1, 1)[6];

The monoids M for the first four orbits are freely generated and their
generators are given in the following table.
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O1 λ1;
O2 λ1, λ2;
O3 λ1, λ2, λ3;
O4 λ1, λ2, λ4, λ5;

The monoidM for O6 is generated by λ1, ..λ7 and μ1, .., μ3 with rela-
tions

2μ1=λ3 + λ6 [8], μ1 + μ2=λ3 + μ3 [9], 2μ2=λ3 + λ7 [10],
μ1 + μ3=μ2 + λ6 [10], μ2 + μ3=μ1 + λ7 [11], 2μ3=λ6 + λ7 [12].
The ring of covariants ofO6 is isomorphic to a quotient of the polynomial
ring C[eλ1, ..eλ7, eμ1, .., eμ3] by the ideal generated by 2 × 2 minors of
the matrix ⎡⎣ eλ3 eμ1 eμ2

eμ1 eλ6 eμ3

eμ2 eμ3 eλ7

⎤⎦ .
The case of (E8, α2) is analogous: G = GL(8) and g1 = ∧3 C8. There
are also 5 spherical orbits and their rings of covariants are isomorphic to
the rings of corresponding orbits of type (E7, α2) (the orbits are degener-
ate in a sense of [2, Section 4]).

Example 3.3. For (E7, α5) we have G = SL(3) × SL(5) × C∗, g1 =
C3⊗∧2 C5. The monoidM for the orbitO8 of dimension 19 is generated
by

λ1 = (1, 0, 0 | 1, 1, 0, 0, 0)[1], λ2 = (2, 0, 0 | 1, 1, 1, 1, 0)[2],
λ3 = (1, 1, 0 | 2, 1, 1, 0, 0)[2], λ4 = (1, 1, 1 | 2, 2, 2, 0, 0)[3],
λ5 = (1, 1, 1 | 3, 1, 1, 1, 0)[3], λ6 = (2, 2, 0 | 3, 3, 1, 1, 0)[4];
μ1 = (2, 1, 0 | 2, 2, 1, 1, 0)[3], μ2 = (2, 1, 1 | 3, 2, 2, 1, 0)[4],
μ3 = (2, 2, 1 | 4, 3, 2, 1, 0)[5]

with relations

2μ1 = λ2 + λ6 [6], μ1 + μ2 = μ3 + λ2 [7],
2μ2 = λ2 + λ4 + λ5 [8], μ1 + μ3 = μ2 + λ6 [8],
μ2 + μ3 = μ1 + λ4 + λ5 [9], 2μ3 = λ4 + λ5 + λ6 [10].

The ring of covariants is a quotient of the ring of polynomials in
eλ1, ..., eλ6 and eμ1, ..., eλ3 by the ideal generated by 2 × 2 minors of
the matrix ⎡⎣ eλ2 eμ2 eμ1

eμ2 eλ4eλ5 eμ3

eμ1 eμ3 eλ7

⎤⎦ .
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Partition regularity of nonlinear
polynomials: a nonstandard approach

Lorenzo Luperi Baglini1

Abstract. While the linear partition regular polynomials have been characterized
by Richard Rado in the 1930’s, very few results are known in the nonlinear case.
Our aim is to prove that, on N, there are at least two interesting classes of partition
regular nonlinear polynomials.
Our approach is based on the study of ultrafilters on N from the point of view of
Nonstandard Analysis. A particularity of this technique is that the proofs of the
main results can be carried out by almost elementary algebraic considerations.

Our aim is to expose a few results regarding the partition regularity of
nonlinear polynomials, which have been presented in [1]. We recall the
following definitions:

Definition. A polynomial P(x1, ..., xn) is

• partition regular (onN) if for every natural number r , for every parti-

tion N =
r⋃
i=1

Ai , there is an index j ≤ r and nonzero natural numbers

a1, ..., an ∈ A j such that P(a1, ..., an) = 0;
• injectively partition regular (on N) if for every natural number r ,

for every partition N =
r⋃
i=1

Ai , there is an index j ≤ r and mu-

tually distinct nonzero natural numbers a1, ..., an ∈ A j such that
P(a1, ..., an) = 0.

The problem of determining which polynomials are partition regular has
been studied since Issai Schur’s work [2], and the linear case was settled
by Richard Rado in [3]:

Theorem (Rado). Let P(x1, ..., xn) =∑n
i=1 ai xi be a linear polynomial

with nonzero coefficients. The following conditions are equivalent:
1. P(x1, ..., xn) is partition regular on N;
2. there is a nonempy subset J of {1, ..., n} such that ∑

j∈J
a j = 0.

In his work, Rado also characterized the partition regular finite systems of
linear equations and, since then, one of the main streams of the research

1 University of Vienna, Universitätsring 1, 1010 Vienna, Austria. Email: lorelupe@gmail.com
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in this field has been the study of infinite systems of linear equations (for a
general background on many notions related to this subject see, e.g., [4]).
One other possible direction is the study of the partition regularity for
nonlinear polynomials, which is the problem that we want to face.
As far as we know, perhaps the most interesting known result in the
context of partition regularity of nonlinear polynomials is the following
(see [5]):

Theorem (Hindman). For every natural numbers n,m ≥ 1, with n +
m ≥ 3, the nonlinear polynomial

n∑
i=1

xi −
m∏
j=1

y j

is injectively partition regular.

Our main results generalize the previous Theorem.
Our first result states that, if we start with a partition regular linear

polynomial P(x1, ..., xn), a finite set of variables Y = {y1, ..., ym} and we
multiply each variable xi for some of the variables in Y then we obtain
a partition regular polynomial. To precisely state this result we need the
following definition:

Definition. Let m be a positive natural number, and {y1, ..., ym} a set of
mutually distinct variables. For every finite set F ⊆ {1, ..,m}, we denote
by QF(y1, ..., ym) the monomial

QF(y1, ..., ym) =
⎧⎨⎩

∏
j∈F

y j , if F �= ∅;
1, if F = ∅.

Theorem (1). Let n ≥ 2 be a natural number, R(x1, ..., xn) =
n∑
i=1

ai xi

a partition regular polynomial, and m a positive natural number. Then,
for every F1, ..., Fn ⊆ {1, ..,m} (with the request that, when n = 2,
F1 ∪ F2 �= ∅), the polynomial

P(x1, ..., xn, y1, ..., ym) =
n∑
i=1

ai xi QFi (y1, ..., ym)

is injectively partition regular.

E.g., as a consequence of Theorem (1) we have that the polynomial

P(x1, x2, x3, x4, y1, y2, y3) = 2x1 + 3x2y1y2 − 5x3y1 + x4y2y3
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is injectively partition regular. We observe that the exposed Theorem of
Hindman is a particular case of our result. A particularity of the poly-
nomials considered in Theorem (1) is that the degree of each of their
variables is one; to state a result that ensures the partition regularity for
many polynomials having variables with degree greater than one we need
to introduce a few definitions:

Definition 1) Let

P(x1, ..., xn) :
k∑
i=1

ai Mi(x1, ..., xn)

be a polynomial, and let M1(x1, ..., xn), ...,Mk(x1, ..., xn) be the distinct
monic monomials of P(x1, ..., xn). We say that {v1, ..., vk} ⊆ V (P)
is a set of exclusive variables for P(x1, ..., xn) if, for every i, j ≤ k,
dMi (v j ) ≥ 1⇔ i = j , where dMi (v j ) denotes the degree of the variable
v j in the monomial Mi .
In this case we say that the variable vi is exclusive for the monomial
Mi(x1, ..., xn) in P(x1, ..., xn).

2) We say that P(x1, ..., xn) satisfies Rado’s Condition if there is a
nonempty subset F of the set of coefficients of P(x1, ..., xn) such that∑

c∈F c = 0.

Definition. Let P(x1, ..., xn) =
k∑
i=1

ai Mi(x1, ..., xn) be a polynomial,

and let M1(x1, ..., xn), ...,Mk(x1, ..., xn) be the monic monomials of
P(x1, ..., xn). Then

• NL(P)={x ∈ V (P) | d(x) ≥ 2} is the set of nonlinear variables of
P(x1, ..., xn);

• for every i ≤ k, li = max{d(x)− di(x) | x ∈ NL(P)}.

Theorem (2). Let

P(x1, ..., xn) =
k∑
i=1

ai Mi(x1, ..., xn)

be a polynomial, and let M1(x1, ..., xn),...,Mk(x1, ..., xn) be the monic
monomials of P(x1, ..., xn). Suppose that k ≥ 3, that P(x1, ..., xn) sat-
isfies Rado’s Condition and that, for every index i ≤ k, in the monomial
Mi(x1, ..., xn) there are at least mi = max{1, li } exclusive variables with
degree equal to 1.
Then P(x1, ..., xn) is injectively partition regular.
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E.g., in conseque of Theorem (2) we get that the polynomial

P(x, y, z, t1, t2, t3, t4, t5, t6) = t1t2x
2 + t3t4y

2 − t5t6z
2

is injectively partition regular.
The technique we use to prove our main results is based on an approach

to combinatorics by means of nonstandard analysis (with something in
common with, e.g., [6–8]): the idea behind this approach is that, as it is
well-known, problems talking about partition regularity of properties on
N can be reformulated in terms of ultrafilters and it can be showed that
some properties of ultrafilters can be translated, and studied, in terms of
sets of hyperintegers. This can be obtained by associating, in particular
hyperextensions ∗N of N, to every ultrafilter U its monad μ(U):

μ(U) = {α ∈∗ N | α ∈∗ A for every A ∈ U},
and then proving that some of the properties of U can be deduced by
properties of μ(U).
From the point of view of the partition regularity of polyomials, this

approach works as follows: first of all, we recall that, given a polynomial
P(x1, ..., xn), we have that P(x1, ..., xn) is partition regular if and only
if there exists an ultrafilter U such that for every set A in U there are
elements a1, ..., an ∈ A such that P(a1, ..., an) = 0. Then we reformulate
this property in terms of monads of ultrafilters, giving one of the basic
results that we use to prove Theorems (1) and (2) (as usual, we denote by
βN the space of ultrafilters on N):

Theorem (3). Let P(x1, ..., xn) be a polynomial, and U ∈ βN an ultra-
filter. Then the following two conditions are equivalent:

1. for every set A in U there are elements a1, ..., an ∈ A such that
P(a1, ..., an) = 0;

2. there are elements α1, ..., αn in μ(U) such that P(α1, ..., αn) = 0.
The interesting fact is that, whenever it is given an ultrafilter U and el-
ements α1, ..., αn in μ(U) for which there is a polynomial P(x1, ..., xn)
such that P(α1, ..., αn) = 0, we automatically know that the polynomial
is partition regular.
Usually, the ultrafilters that we use to prove our results are (or are

related to) idempotent ultrafilters which, we recall, are defined as follows:

Definition. An ultrafilter U ∈ βN is called idempotent if U ⊕ U = U ,
where ⊕ denotes the usual sum of ultrafilters, defined as follows:

∀U,V ∈ βN,

∀A ∈ ℘(N), A ∈ U ⊕ V ⇔ {n ∈ N | {m ∈ N | n + m ∈ A} ∈ V} ∈ U;
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similarly, an ultrafilter U is called a multiplicative idempotent if U1U =
U , where 1 denotes the usual product of ultrafilters, defined as follows:

∀U,V ∈ βN,

∀A ∈ ℘(N), A ∈ U ⊕ V ⇔ {n ∈ N | {m ∈ N | n · m ∈ A} ∈ V} ∈ U .

The last general result about ultrafilters that we need to apply the tech-
nique to the problem of the partition regularity of nonlinear polynomials
regards the existence of particular ultrafilters on βN:

Theorem (4). There is a multiplicative idempotent ultrafilter U such that,
for every linear partition regular polynomial P(x1, ..., xn), for every set
A in U there are elements a1, ..., an ∈ A such that P(a1, ..., an) = 0.
Theorems (1) and (2) can be proved by easy algebraical considerations

on the elements in the monads of the ultrafilter given by Theorem (4) in
particular hyperextensions of N, called ω-hyperextensions (or iterated-
hyperexensions). These hyperextensions are constructed by considering
an universe U containing N and a star map ∗ : U → U satisfying the
transfer property. Since ∗ : U → U, this map can be iterated: the ω-
hyperextension of N (denoted by •N) is

•N =
⋃
n∈N

Sn(N),

where S0(N) = N and Sn+1(N) =∗(Sn(N)). As a consequence of the
elementary chain condition, it is easy to prove that •N is elementarily
equivalent to N.
The particularity of these hyperextensions is that the possibility of it-

erating the map ∗ translates in a few interesting algebraical properties of
the monads, in particular of the monads of idempotent ultrafilters. In fact
we have the following useful facts regarding the monads in •N:

Theorem (5). If U ∈ βN is an ultrafilter and μ(U) is the monad of U in
•N, then we have the following three properties:

1. if α ∈ μ(U) then ∗α ∈ μ(U);
2. U is idempotent if and only if, for every α, β in μ(U)∩∗N, α+∗β ∈
μ(U);

3. U is a multiplicative idempotent if and only if, for every α, β in
μ(U)∩∗N, α·∗β ∈ μ(U).

The nonstandard technique to prove results in combinatorics that we just
described has been applied in [9], [10] to obtain a few results in combi-
natorics.
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As an example of application of this nonstandard approach, we conclude
by proving that the nonlinear polynomial

P(x, y, z, w) = x + y − zw

is injectively partition regular: by Theorems (3) and (4) it follows that
there is a multiplicative idempotent ultrafilter U and elements α, β, γ ∈
μ(U) with α + β − γ = 0. Then

P(α ·∗ α, β ·∗ α, γ,∗ γ ) = α ·∗ α + β ·∗ α − γ ·∗ α = 0
and, by Theorem (5), α·∗α, β·∗α, γ and ∗α are in μ(U). So we can
conclude by applying Theorem (3).
The proofs of Theorems (1) and (2) can be carried out by similar con-

siderations.
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Random subgraphs make identification
affordable

Florent Foucaud1, Guillem Perarnau1 and Oriol Serra1

Abstract. An identifying code of a graph is a dominating set which uniquely
determines all the vertices by their neighborhood within the code. Whereas graphs
with large minimum degree have small domination number, this is not true for the
identifying code number.
We show that every graph G with n vertices, maximum degree � = ω(1) and

minimum degree δ ≥ c log�, for some constant c > 0, contains a large spanning
subgraph which admits an identifying code of size O(n log�/δ). The result is
best possible both in terms of code size and in number of edges deleted. The proof
is based on the study of random subgraphs of G using standard concentration tools
and the local lemma.

1 Introduction

Consider any graph parameter that is not monotone with respect to graph
inclusion. Given a graph G, a natural problem in this context is to study
the minimum value of this parameter over all spanning subgraphs of G.
In particular, how many edge deletions are sufficient in order to obtain
from G a graph with optimal value of the parameter? Herein, we study
this question with respect to the identifying code number of a graph, a
well-studied non-monotone parameter.
An identifying code of a graph is a subset of vertices which is a dom-

inating set C such that each vertex is uniquely determined by its neigh-
borhood within C . More formally, each vertex x of V (G) \C has at least
one neighbor in C (x is dominated) and for each pair u, v of vertices of
G, N [u] ∩ C �= N [v] ∩ C ; u, v are separated. The minimum size of an
identifying code in a graph G, denoted by γ ID(G), is the identifying code
number of G. Identifying codes were introduced in [5], motivated by

1 Universitat Politècnica de Catalunya, BarcelonaTech, C/ Jordi Girona 1-3, 08034 Barcelona, Spain.
Email: florent.foucaud@ma4.upc.edu, guillem.perarnau@ma4.upc.edu, oserra@ma4.upc.edu
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several applications. Generally speaking, if the graph models a facility
or a computer network, identifying codes can be used to detect dangers
in facilities [9] or failures in networks [5]. In this context, deleting edges
to the underlying graph is particularly meaningful since it may represent
the sealing of a door in a facility network, and the removal of a wire in a
computer network.
Note that some graphs may not admit an identifying code, in particular

when they have pairs of twin vertices (i.e. which have the same closed
neighborhood). However any twin-free graph is easily seen to admit an
identifying code (e.g. its vertex set). The identifying code number of a
graph G on n vertices satisfies log2(n + 1) ≤ γ ID(G) ≤ n.
There are very dense graphs that have a huge identifying code number;

sparse graphs, such as trees and planar graphs, also have a linear identi-
fying code number [10]. On the other hand, one can also find sparse and
dense graphs with identifying code number O(log n) [4, 8].
It shall be observed from the previous facts that the identifying code

number is not a monotone function with respect to the addition (or dele-
tion) of edges. This motivates the following question:

Given any sufficiently dense graph, can we delete a small number of
edges to get a spanning subgraph with a small identifying code? If the
answer is positive, how many edges are sufficient (and necessary)?

In other words, we would like to study the minimum size of an identifying
code among all spanning subgraphs of a given graph, and to determine
the largest spanning subgraph with an asymptotically optimal identifying
code.
Despite being dense, the random graph G(n, p) (for 0 < p < 1) has a

logarithmic size identifying code, as with high probability,

γ ID(G(n, p)) = (1+ o(1))
2 log n

log (1/q)
,

where q = p2 + (1 − p)2 [4]. This suggests that in a dense graph,
the lack of structure implies the existence of a small identifying code
number. Hence, introducing some randomness to the structure of a dense
graph having large identifying code number might decrease this number.
Indeed, this intuition is used in this work.
By studying the behavior of a random subgraph of a graph with large

minimum degree (see for example [1, 6]), we prove the following:

Theorem 1.1. For any graph G on n vertices (n large enough) with max-
imum degree � = ω(1) and minimum degree δ ≥ 66 log�, there exists
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a subset of edges F ⊂ E(G) of size

|F | = O(n log�) ,

such that

γ ID(G \ F) = O

(
n log�

δ

)
.

In particular, when the minimum degree is linear, δ = !(n), this shows
that it is enough to delete O(n log n) edges to get a logarithmic size iden-
tifying code. The next theorem shows that Theorem 1.1 cannot be im-
proved much.

Theorem 1.2. For any d ≥ 2, there exists a d–regular graph Gd
n on n

vertices with the following properties.
1. For any M ≥ 0, there exists a constant c > 0 such that for any set

of edges F ⊂ E(Gd
n) satisfying γ

ID(Gn \ F) ≤ M n log d
d , |F | ≥ cn log d.

2. For any spanning subgraph H of Gd
n , γ

ID(H) = �
(
n log d
d

)
.

When δ = Poly(�), Theorem 1.2 shows that Theorem 1.1 is tight, that
is, we cannot hope for having a smaller identifying code by deleting any
set of edges. Moreover, if � is bounded or δ ≤ c′ log�, for some small
constant c′ > 0, there is no way to improve the size of the identifying
code of G by deleting edges.

2 Methods and proofs

The complete proofs can be found in [3].
The proof of Theorem 1.1 focuses on the study of the random spanning

subgraph G(B, f ) of G, where B ⊆ V and f : V (G) → R+ ∪ {0} is a
function. Edges non incident to B are always present in G(B, f ), while
each incident edge uv appears in G(B, f ) independently with probabil-
ity 1− puv, where puv depends on f (u), f (v) and the degree of u and v
in B, dB(u) and dB(v) respectively. The next lemma gives an exponen-
tial upper-bound on the probability that two vertices of G(B, f ) are not
separated by B.

Lemma 2.1. Given a graph G and a subset B ⊆ V (G), consider the
random subgraph G(B, f ). For every pair u, v of distinct vertices with
dB(u) ≥ dB(v),

Pr
(
NG(B, f )[u] ∩ B = NG(B, f )[v] ∩ B

)
< e−3 f (u)/16 .

The proof of Theorem 1.1 is structured in the following steps:
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1. Select a set C ⊆ V at random, where each vertex is selected inde-
pendently with probability p. Using the Chernoff inequality, estimate
the probability of the event AC that C is small enough for our pur-
poses. From C , construct the spanning subgraph G(C, f ) of G, with
f (u) = min(66 log�, dB(u)).

2. Use Lovász Local Lemma and Lemma 2.1 to lower-bound the proba-
bility that the following events (whose disjunction we call ALL) hold
jointly: 1. in G(C, f ), each pair of vertices that are at distance at
most 2 from each other are separated by C ; 2. for each such pair and
each neighbor of this pair in G, its degree within C in G is close to
its expected value d(v)p. Show that with nonzero probability, AC and
ALL hold jointly.

3. Find a dominating set D with |D| = O(|C|); if ALL holds, C ∪ D is
an identifying code.

4. Show that, if AC and ALL hold, the expected number of deleted edges
is small.

To prove Theorem 1.2, we first study the complete graph on n vertices.
We combine the following two lemmata to get as a direct corollary Propo-
sition 2.4.

Lemma 2.2. For any M ≥ 0, there exists a constant c0 > 0 such that
any graph G with γ ID(G) ≤ M log n contains at least c0n log n many
edges.

Lemma 2.3. Let G be a graph and G its complement. If G and G are
twin-free,

1

2
≤ γ

ID(G)

γ ID(G)
≤ 2 .

Proposition 2.4. Let Kn be the complete graph on n vertices. For any
M ≥ 0, there exists a constant c > 0 such that for any set of edges
F ⊂ E(Kn) satisfying γ ID(Kn \ F) ≤ M log n, |F | ≥ cn log n.

Now, consider the graph Gd
n to be the disjoint union of cliques of order

d + 1. Since each clique is a connected component, an asymptotically
optimal identifying code for Gd

n must be also asymptotically optimal for
each component. By Proposition 2.4, we must delete at least �(d log d)
edges from each clique to get an identifying code of size O(log d) in each
component. Thus one must delete at least �(n log d) edges from Gd

n to

get an identifying code of size O
(
n log d
d

)
, thus, proving Theorem 1.2.
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3 Concluding remarks

1. In [2], the notion of a watching system has been introduced as a relax-
ation of identifying codes: in a watching system, code vertices (“watch-
ers”) are allowed to identify any subset of their closed neighborhood, and
several watchers can be placed in one vertex. Hence, for any spanning
subgraph G ′ of G and denoting by w(G) the minimum size of a watch-
ing system of G, we have w(G) ≤ w(G ′) ≤ γ ID(G ′). In particular, the
watching number is a monotone parameter with respect to graph inclu-
sion. From Theorem 1.1 we have:

Corollary 3.1. Under the hypothesis of Theorem 1.1,

w(G) = O

(
n log�

δ

)
.

2. Using Lemma 2.3, Theorem 1.1 can be adapted to the case where
we want to add edges rather than deleting them.
3. Given a graph property P , the resilience of G with respect to P

is the minimum number of edges one has to delete to obtain a graph
not satisfying P . The resilience of monotone properties is well studied,
in particular, in the context of random graphs [11]. Our result can be
understood in terms of the resilience of the property P , G does not admit
an small identifying code. For any graph G satisfying the hypothesis of
Theorem 1.1 and Theorem 1.2, the resilience with respect to P is at most
O(n log�), and this upper bound is attained.
4. The proof of Theorem 1.1 just provides an exponentially small lower

bound on the probability that we can find the desired object. However, if
we assume that � = n, this probability can be shown to be 1− o(1). In
such a case our proof provides a randomized algorithmwhich constructs a
good spanning subgraph and a small identifying code meeting the bounds
on Theorem 1.1.
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On two-point configurations in subsets
of pseudo-random sets

Elad Aigner-Horev1 and Hiê.p Hàn2

Abstract. We prove a transference type result for pseudo-random subsets of
ZN that is analogous to the well-known Fürstenberg-Sárközy theorem. More pre-
cisely, let k ≥ 2 be an integer and let β and γ be real numbers satisfying

γ + (γ − β)/(2k+1 − 3) > 1.
Let � ⊆ ZN be a set with size at least N

γ and linear bias at most Nβ . Then, every

A ⊆ � with relative density |A|/|�| ≥ (log log N )− 12 log log log log log N contains
a pair of the form {x, x + dk } for some nonzero integer d.
For instance, for squares, i.e., k = 2, and assuming the best possible pseudo-

randomness β = γ/2 our result applies as soon as γ > 10/11.
Our approach uses techniques of Green as seen in [6] relying on a Fourier

restriction type result also due to Green.

1 Introduction

A classical result in additive combinatorics, proved independently by
Sárközy [10] and Fürstenberg [4], states that subsets of the first N in-
tegers with positive density contains a pair which differ by a perfect k-th
power, i.e., a pair {x, x + dk} for some d > 0. As a quantitative version
it is known due to [1, 9] that this conclusion already holds for sets A of
density

|A|/N ≥ (log N )−c log log log log N for some c > 0 (1.1)

In this note we consider the problem of extending (1.1) to hold for sub-
sets of vanishing relative density of sparse pseudo-random subsets of
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ZN . This type of extensions are commonly called transference results
in which an extremal problem known for dense objects is transferred or
carried over to sparse objects taken from a well-behaved universe like a
random or a pseudo-random set. We refer to [2, 3, 6–8, 11] for further
information.
Qualitative transference of (1.1) to sparse random sets were first con-

sidered in [7]. Later on, Nguyen [8] proved that with high probability
every relatively dense subset of random sets R ⊂ [N ] of size �(N 1−1/k)
contains the configuration {x, x + dk}, for some nonzero d. Up to a
multiplicative constant this density attained for the random host is best
possible.
It is also interesting to note that Tao and Ziegler proved that the poly-

nomial Szemerédi theorem also holds in the primes. Their proof re-
lies heavily on pseudo-random properties of the primes, thus, can be
seen in the scheme mentioned above. For a classical notion of pseudo-
randomness defined by small non-trivial Fourier coefficients, however,
nothing is known concerning extensions of (1.1) and our Theorem 1.1
shall give the first nontrivial bound for this setting.

Our main result. Before stating the result we require some notation. For
the purposes of Fourier analysis we endow ZN with the counting measure
and, consequently, endow its dual group ẐN with the uniform measure.
As a result, given a function f :ZN→C the Fourier transform of f is de-
fined to be the function f̂ : ẐN→C given by f̂ (ξ)=∑

x∈Z f (x)e(−ξ x)
where e(x) = e2π i x/N . We write ‖ f ‖u = sup̂0�=ξ∈ẐN

| f̂ (ξ)| to denote
magnitude of the second largest Fourier coefficient of f , and call ‖ f ‖u
the linear bias of f . Given f, g : ZN → C, the convolution of f and g
is given by f ∗ g(x) =∑

y∈ZN
f (y)g(x − y).

We identify a set with its characteristic function, i.e., if A ⊆ ZN then A
also denotes a 0, 1-function with A(x) = 1 if and only if x ∈ A. Finally,
let Qk = {xk : x ≤ N 1/k, x is integer } denote the set of kth powers. Our
main result reads as follows.

Theorem 1.1. Let k ≥ 2 be an integer and let γ > β > 0 be reals with
γ + (γ −β)/(2k+1−3) > 1. Then there is an n0 such that for all N > n0
the following holds. Let � ⊆ ZN satisfy

|�| ≥ N γ and ‖�‖u ≤ Nβ,

and let α = α(N ) ≥ (log log N )− 1
2 log log log log log N . Then, every subset

A ⊆ � satisfying |A| ≥ α|�| contains a pair {x, x + d} ⊆ A where
d ∈ Qk .
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It is worth to note that the proof of Theorem 1.1 does not merely guar-
antee one desired configuration but many. Indeed, the number of such
configurations found in the subset A is at least η|�|2|Qk |N−1, where
η = η(α) > 0 if α �= 0. Up to η(α) this bound is clearly best possible.
Moreover, let us emphasise that in Theorem 1.1 we can handle subsets of
� whose relative density is vanishing as N goes to infinity. This is due to
the fact that we are transferring the quantitative version of the dense case
of the Fürstenberg-Sárközy theorem, namely (1.1).
Due to Parseval’s equality the the parameter β in Theorem 1.1 control-

ling the pseudo-randomness of � satisfies β ≥ γ/2. That is, one may
think of β = γ/2 as though � is “as pseudo-random as possible”. In this
case, i.e., β = γ/2, we have that Theorem 1.1 is applicable as long as
γ > 1− 1

2k+2−5 .

2 Sketch of the proof of Theorem 1.1

Our approach follows that of Green [6]. Given α = α(N ) we introduce
functions η, δ, and ε depending on N so that α � η� δ � ε > 0.Given
the set A ⊆ � and a set of frequencies ∅ �= S ⊂ ẐN we know that there
is a & = &(N ) ∈ [ε/2, ε] such that the Bohr set B = B(S, &) is a regular
(see, e.g. [12], chapter 4.4). Define the function a : ZN → R given by
a(x) = N

|�||B|(A ∗ B)(x) which can be shown to have certain attributes
seen in characteristic functions of dense sets; that is ‖a‖
1 ≥ αN and
‖a‖∞ ≤ 3, provided |�|‖�‖−1u > 2(ε/(20|S|1/2))−|S|.
Applying(1.1) combined with a Varnavides type argumentthen yields

a lower bound on the of number of desired configurations “in a”

�(a, Qk) =
∑

x,d∈ZN

a(x)a(x + d)Qk(d) ≥ ηN |Qk |. (2.1)

Due to the convolution property and assuming that A ⊆ � contains less
than ηN 1+1/k pairs of the form {x, xk}, we have

�(a, Qk) <
N

|�|2
∑
ξ∈ẐN

| Â(ξ)|2|Q̂k(ξ)|
∣∣∣∣∣ |B̂(ξ)|2|B|2 − 1

∣∣∣∣∣+ η2N 1+1/k (2.2)

from which we then derive a contradiction to (2.1).
To this end, we split the sum into two sums; one ranging over ξ ∈

S = Specδ(A) = {ξ ∈ ẐN : | Â(ξ)| ≥ δ|�|} and another ranging over
ξ �∈ S. It can be shown that

∣∣∣ |B̂(ξ)|2|B|2 − 1
∣∣∣ ≤ 2ε for all ξ ∈ S and |S| ≤

(2/δ)(2−2β)/(γ−β) from which we conclude that for the first sum ranging
over S is at most 2&|S|| Â(0)|2|Q̂k(0)| ≤ η|�|2|Qk |/4.
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Handling the sum over ẐN \ S, however, is more complicated. In fact,
its proof is a central part of the proof of Theorem 1.1 but due to space
limitation we omit it here. Nevertheless, we mention that the main tools
in the proof are Waring’s theorem and a restriction type result due to
Green [5] which is similar to that used in [6]. It is a close adaption of the
restriction theorem due to Stein-Tomas [13]. We omit the details.
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On the giant component of random
hyperbolic graphs

Michel Bode1, Nikolaos Fountoulakis1 and Tobias Müller2

1 Introduction

The theory of geometric random graphs was initiated by Gilbert [2] al-
ready in 1961 in the context of what is called continuum percolation.
In 1972, Hafner [4] focused on the typical properties of large but finite
random geometric graphs. Here N points are sampled within a certain re-
gion ofRd following a certain distribution and any two of them are joined
when their Euclidean distance is smaller than some threshold which, in
general, is a function of N . In the last two decades, this class of random
graphs has been studied extensively – see the monograph of Penrose [6].
However, what structural characteristics emerge when one considers

these points distributed on a curved space where distances are measured
through some (non-Euclidean) metric? Such a model was introduced by
Krioukov et al. [5] and some typical properties of these random graphs
were studied with the use of non-rigorous methods.

1.1 Random geometric graphs on a hyperbolic space

The most common representations of the hyperbolic space is the upper-
half plane representation {z : 2z > 0} as well as the Poincaré unit
disc which is simply the open disc of radius one, that is, {(u, v) ∈ R2 :
1−u2−v2 > 0}. Both spaces are equipped with the hyperbolic metric; in
the former case this is 1

(ζ y)2
dy2 whereas in the latter this is 4

ζ 2
du2+dv2
(1−u2−v2)2 ,

where ζ is some positive real number. It can be shown that the (Gaussian)
curvature in both cases is equal to−ζ 2.We will denote byH2

ζ the class of
these spaces.
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In this paper, following the definitions in [5], we shall be using the
native representation of H2

ζ . Under this representation, the ground space
of H2

ζ is R2 and every point x ∈ R2 whose polar coordinates are (r, θ)
has hyperbolic distance from the origin O equal to r . Also, a circle of
radius r around the origin has length equal to 2π

ζ
sinh(ζr) and area equal

to 2π
ζ 2
(cosh(ζr)− 1).

Let N = νeζ R/2, where ν is a positive real number that controls the
average degree of the random graph. We create a random graph by select-
ing randomly N points from the disc of radius R centred at the origin O,
which we denote by DR . If such a random point u has polar coordinates
(r, θ), then θ is uniformly distributed in (0, 2π], whereas the probabil-
ity density function of r , which we denote by ρ(r), is determined by a
parameter α > 0 and is equal to

ρ(r) = α sinhαr

coshαR − 1 . (1.1)

When α = ζ , then this is the uniform distribution. This set of points
will be the vertex set of the random graph and we denote it by VN . The
random graph G(N ; ζ, α) is formed when we join two vertices, if they
are within (hyperbolic) distance R.
Krioukov et al. [5] focus on the degree distribution of G(N ; ζ, α),

showing that when 0 < ζ/α < 2 this follows a power law with ex-
ponent 2α/ζ + 1. They also discuss clustering on a smooth version of
the above model. Their results have been verified rigorously by Gugel-
mann et al. [3]. When 1 < ζ/α < 2, the exponent is between 2 and 3,
as is the case in a number of networks that emerge in applications such
as computer networks, social networks and biological networks (see for
example [1]). Krioukov et al. [5] introduce this model as a geometric
framework for the study of complex networks. In fact, they view the de-
gree distribution as well as the existence of clustering at a local level as
“natural reflections of the underlying hyperbolic geometry”.

1.2 Component structure of G(N ; ζ, α)
This paper focuses on the component structure of G(N ; ζ, α) and, in par-
ticular, on the size of its largest component. We also denote by |L1| the
size of a largest connected component of G(N ; ζ, α).
In this contribution, we show that when ζ/α crosses 1 a “phase transi-

tion” occurs. More specifically, if ζ/α < 1, then asymptotically almost
surely (a.a.s.), that is, with probability 1 − o(1) as N → ∞, |L1| is
bounded by a sublinear function, whereas if ζ/α > 1, then |L1| is linear.
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Theorem 1.1. Let ζ, α be positive real numbers. The following hold:

• If ζ/α > 1, then there exists c = c(ζ, α, ν) > 0 such that a.a.s.
|L1| > cN .

• If ζ/α < 1, then a.a.s. |L1| < CR2N ζ/α, where C = C(ζ, α) > 0.

Furthermore, one can show that when ζ/α > 2, then G(N ; ζ, α) is a.a.s.
connected. We now proceed with a brief sketch of the proof of each part
of the above theorem.

2 The supercritical regime

For any given point v ∈ DR , we let tv = R − rv, where rv denotes the
radius of v – we call this the type of point v. We define a partition of
DR into homocentric bands Bi , for i = 1, . . . , T , where T = T (N ) is
a suitably defined function of N . More specifically, the central band B0
consists of all points in DR whose type is larger than R/2, that is, their
radius is less than R/2. Note that any two vertices in B0 are connected
by an edge as their hyperbolic distance is less than R. In other words,
the subgraph of G(N ; ζ, α) induced by the vertices in B0 is the complete
graph. To define the remaining bands, we define a decreasing sequence
of positive real numbers t0 > t1 > · · · , where t0 := R/2 and for i ≥ 1
we have

ti − 2

ζ
ln

(
8π

ν
ln ti

)
= λti−1, (2.1)

where λ := 2
ζ

(
α − ζ

2

)
< 1 (as ζ/α > 1) and

Bi = {v ∈ DR : ti ≤ tv < ti−1} .
We define T as the largest i such that e−α(ti−1−ti ) < 1/2 and ti > e. Let
N0 denote the set of vertices that belong to the set B0. In turn, for i > 0
we letNi denote the set of vertices in Bi that have at least one neighbour
in Ni−1. Since B0 is a clique, the subgraph of G(N ; ζ, α) that is induced
by ∪Ti=0Ni is connected and has size

∑T
i=0 |Ni |.

We establish bounds on the sizes of the sets Ni , for i = 1, . . . , T .
In particular, we show that the number of vertices in Ni stochastically
dominates the number of vertices that are contained in a subset of Bi that
has arc !i , where the sequence of !i satisfies for i ≥ 1

!i ≥ !i−1
(
1− exp

(
− ν

4π

(
e−αti−1 − e−αti−2

)
θ(i)

))
, !0 := 2π

and θ(i) := e
ζ
2 (ti−1+ti ) (here t−1 := R). We denote this number by N ′i . A

concentration argument shows that a.a.s. N ′i ≥ 1
2 N

!i
2π

(
e−αti − e−αti−1

)
.
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As e−α(ti−1−ti ) < 1/2, it follows that(
e−αti−1 − e−αti−2

)
θ(i) = e−αti−1

(
1− e−α(ti−2−ti−1)

)
θ(i)

>
1

2
e−αti−1+

ζ
2 (ti−1+ti ) = 4π

ν
ln ti ,

whereby

!i ≥ !i−1
(
1− 1

ti

)
(2.1)
> !i−1

(
1− 1

λi t0

)
.

It then follows that for some c = c(ζ, α, ν) > 0 a.a.s.

T∑
i=0

N ′i ≥ N
(
e−αtT − e−αt0

) T∏
i=0

(
1− 1

λi t0

)
> cN .

The stochastic domination implies this part of the theorem.

3 The subcritical regime

A first moment argument shows that all vertices have type at most ζ2α R+
ω(N ), where ω(N ) is a function such that ω(N ) → ∞ as N → ∞.
Hence, since ζ/α < 1, it follows that all vertices have types which are
smaller than and bounded away from R/2. We consider a vertex v which
has this type and we analyse a breadth exploration process through which
we bound the total angle of the component which v belongs to. We define
the total angle of the component of v to be the largest relative angle
between any two of its vertices – if the component has only one vertex,
then this is equal to zero. We denote this angle by !(v). We show that
the assumption that the type of v is ζ

2α R+ω(N ) gives a stochastic upper
bound on the total angle of the component of any vertex in VN . Our
bound is as follows.

Lemma 3.1. Let v ∈ VN be a vertex having tv = ζ

2α R + ω(N ). There
exists a constant C ′ = C ′(ζ, α, ν) > 0 such that with probability 1 −
o
(

1
N1−ζ/α

)
we have

!(v) ≤ C ′
R2N ζ/α

N
.

The breadth exploration process is a process that is somewhat similar to
the breadth-first search algorithm. More specifically, starting from vertex
v with type as in the above lemma, we expose the vertex of the largest
type among those vertices that are within distance R from v in clockwise
direction. Subsequently, we continue this procedure until a vertex of type
K is reached, where K is a large constant. We repeat this in anticlockwise
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direction. This completes the first phase of the process. Thereafter, we
bound the contribution that comes from vertices of type smaller than K .
If these have also vertices within distance R that have not been covered
previously, then we start the first phase again. We show that the num-
ber of repetitions of this phase is bounded in probability. A first moment
argument shows that the probability that there is a vertex v with !(v)
larger than the bound of the above lemma is o(1). The result provides a
bound on the total angle of each component. This needs to be comple-
mented by a result which associates the total angle of a component with
the number of vertices. We show that a.a.s. there is no component with
total angle at most C ′R2N ζ/α/N that has more than CR2N ζ/α vertices,
where C = C(ζ, α, ν) > 0 is another constant. This completes the proof
of Theorem 1.1.

4 Conclusions - Further directions

This contribution focuses on the size of the largest component of random
geometric graphs on the hyperbolic plane. We show that when the ratio
ζ/α crosses 1 a giant component emerges. But is this component unique?
What is the size of the largest component in each case? Moreover, our
results do not cover the critical case ζ/α = 1, that is, when the points are
uniformly distributed on DR . This is a natural direction that goes along
the lines of the theory of random geometric graphs on Euclidean spaces.
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Discontinuous bootstrap percolation
in power-law random graphs

Hamed Amini1, Nikolaos Fountoulakis2

and Konstantinos Panagiotou3

1 Introduction

Bootstrap percolation was introduced by Chalupa, Leath and Reich [6]
during the 1970’s in the context of magnetic disordered systems and has
been re-discovered since then by several authors mainly due to its con-
nections with various physical models. A bootstrap percolation process
with activation threshold an integer r ≥ 2 on a graph G = G(V, E)
is a deterministic process which evolves in rounds. Every vertex has
two states: it is either infected or uninfected. Initially, there is a subset
A0 ⊆ V which consists of infected vertices, whereas every other vertex
is uninfected. Subsequently, in each round, if an uninfected vertex has at
least r of its neighbours infected, then it also becomes infected and re-
mains so forever. This is repeated until no more vertices become infected.
We denote the final infected set by A f . Our general assumption will be
that the initial set of infected vertices A0 is chosen randomly among all
subsets of vertices of a certain size.
These processes have been studied on a variety of graphs, such as trees,

grids, hypercubes, as well as on several distributions of random graphs.
A short survey regarding applications of bootstrap percolation processes
can be found in [1].
During the last decade, there has been significant experimental evi-

dence on the structural characteristics of networks that arise in applica-
tions such as the Internet, the World Wide Web as well as social networks
or even biological networks. One of the fundamental features is their
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degree distribution, which is most cases appears to follow a power law
with exponent between 2 and 3 (see for example the article of Albert and
Barabási [2]). The theme of this contribution is the study of the evolution
of bootstrap percolation processes on random graphs which exhibit this
characteristic. We show that this boosts the evolution of the process, re-
sulting in large infected sets starting from a small set of infected vertices.

2 Models and results

The random graph model that we consider is asymptotically equivalent
to a model considered by Chung and Lu [7], and is a special case of
the so-called inhomogeneous random graph, which was introduced by
Söderberg [9] and was studied in detail by Bollobás, Janson and Riordan
in [5].

2.1 Inhomogeneous random graphs – The Chung-Lu model

In order to define the model we consider for any n ∈ N the vertex
set [n] := {1, . . . , n}. Each vertex i is assigned a positive weight wi(n),
and we will write w = w(n) = (w1(n), . . . , wn(n)). We assume in the
remainder that the weights are deterministic, and we will suppress the de-
pendence on n, whenever this is obvious from the context. However, note
that the weights could be random variables; we will not consider this case
here, although it is very likely that under suitable technical assumptions
our results generalize to this case as well. For any S ⊆ [n], set

WS(w) :=
∑
i∈S
wi .

In our random graph model, the event of including the edge {i, j} in the
resulting graph is independent of the events of including all other edges,
and its probability equals

pi j (w) = min
{
wiw j

W[n](w)
, 1

}
. (2.1)

We will refer to this model as the Chung-Lu model, and we shall write
CL(w) for a random graph in which each possible edge {i, j} is included
independently with probability as in (2.1).

2.2 Power-law degree distributions

Following van der Hofstad [10], we write for any n ∈ N and any sequence
of weights w = (w1(n), . . . , wn(n))

Fn(x) = n−1
n∑
i=1
1[wi(n) < x], ∀x ∈ [0,∞)
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for the empirical distribution function of the weight of a vertex chosen
uniformly at random. We will assume that Fn satisfies the following two
conditions.

Definition 2.1. We say that (Fn)n≥1 is regular, if it has the following two
properties.

• [Weak convergence of weight] There is a distribution function
F : [0,∞) → [0, 1] such that for all x at which F is continuous
limn→∞ Fn(x) = F(x);

• [Convergence of average weight] Let Wn be a random variable with
distribution function Fn , and let WF be a random variable with distri-
bution function F . Then we have limn→∞ E[Wn] = E[WF ].

The regularity of (Fn)n≥1 guarantees two important properties. Firstly,
the weight of a random vertex is approximately distributed as a random
variable that follows a certain distribution. Secondly, this variable has
finite mean and therefore the resulting graph has bounded average degree.
Apart from regularity, our focus will be on weight sequences that give rise
to power-law degree distributions.

Definition 2.2. We say that a regular sequence (Fn)n≥1 is of power law
with exponent β, if there are 0 < γ1 < γ2, x0 > 0 and 0 < ζ ≤ 1/(β − 1)
such that for all x0 ≤ x ≤ nζ

γ1x
−β+1 ≤ 1− Fn(x) ≤ γ2x−β+1,

and Fn(x) = 0 for x < x0, but Fn(x) = 1 for x > nζ .

We consider the random graph CL(w) where the weight sequence
w = w(n) gives rise to a regular sequence of empirical distribution func-
tions that are of power law with exponent β. We assume that a random
set of a(n) vertices is initially infected. We say that an event occurs
asymptotically almost surely (a.a.s.), if it occurs with probability→ 1 as
n →∞, in the product space of the random graph and the choice of the
initially infected vertices.

2.3 Results

We determine explicitly a critical function which we denote by ac(n) such
that when we infect randomly a(n) vertices in [n], then the following
threshold phenomenon occurs. If a(n) ) ac(n), then a.a.s. the infection
spreads no further thanA0, but when a(n)� ac(n), then a linear number
of vertices become eventually infected. We remark that ac(n) = o(n).
We define the function ψr (x) for x ≥ 0 to be equal to the probability
that a Poisson-distributed random variable with parameter x is at least r .
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Also, for a random variable X with finite expected value and distribu-
tion function F , we (informally) say that X∗ follows the F-size-biased
distribution function, if the distribution of X∗ is weighted by the value
of X .

Theorem 2.3. For any β ∈ (2, 3) and any integer r ≥ 2, we let ac(n) =
n
r(1−ζ )+ζ(β−1)−1

r for all n ∈ N. Let a : N → N be a function such that
a(n) → ∞, as n → ∞, but a(n) = o(n). Let also ζ ≤ 1

β−1 . If we ini-
tially infect uniformly at random a(n) vertices in [n], then the following
holds:

• if a(n)) ac(n), then a.a.s. A f = A0;
• if a(n)� ac(n) and also

r−1
2r−β+1 < ζ ≤ 1

β−1 , then

|A f |
n

p→ E
[
ψr (U ŷ)

]
, as n→∞,

where U is a random variable with F as its distribution function and
ŷ is the smallest positive solution of

y = E [ψr (Wy)] ,

with W being a random variable whose law follows the F-size-biased
distribution function.

When 0 < ζ ≤ r−1
2r−β+1 the second part of the above statement holds with

a+c (n) = n1−ζ
r−β+2
r−1 instead of ac(n).

Note that the above theorem implies that when the maximum weight
of the sequence is n1/(β−1), then the threshold function becomes equal to
n
β−2
β−1 and does not depend on r .
This result is in sharp contrast with the behaviour of the bootstrap per-

colation process in G(n, p) random graphs, where every edge on a set of
n vertices is included independently with probability p. Recently, Jan-
son, �Luczak, Turova and Vallier [8] (see Theorem 5.2 there) showed that
when p = d/n, with d > 0 fixed, if |A0| = o(n), then typically no evo-
lution occurs. In other words, the density of the initially infected vertices
must be positive in order for the density of infected vertices to grow. We
note that similar behavior to the case of G(n, p) has been observed in
the case of random regular graphs [4], and in random graphs with given
vertex degrees constructed through the configuration model, studied by
the first author in [3], when the sum of the square of degrees scales lin-
early with n, the size of the graph. The later case includes random graphs
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with power-law degree sequence with exponent β > 3. Our results imply
that the two regimes 2 < β < 3 and β > 3 have completely different
behaviors.
The next theorem complements the above theorem, as it gives a law

of large numbers for the size A f when a positive fraction of vertices are
initially infected.

Theorem 2.4. Let 2 < β < 3 and r ≥ 2. If a(n) = pn, where p ∈ (0, 1)
is fixed, then

|A f |
n

p→ (1− p)E
[
ψr (U ŷ)

]+ p, as n→∞,

where U is a random variable having F as its distribution function with
ŷ being the smallest positive solution of

y = (1− p)E [ψr (Wy)]+ p

and W is a random variable whose law follows the F-size-biased distri-
bution function.

References

[1] J. ADLER and U. LEV, Bootstrap percolation: visualizations and
applications Brazilian Journal of Physics, 33 (3) (2003), 641–644.
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On a conjecture of Graham and Häggkvist
for random trees

Michael Drmota1 and Anna Lladó2

Abstract. A conjecture of Graham and Häggkvist says that every tree with m
edges decomposes the complete bipartite graph Km,m . By establishing some prop-
erties of random trees with the use of singularity analysis of generating functions,
we prove that asymptotically almost surely a tree with m edges decomposes the
complete bipartite graph K2m,2m .

1 Introduction

Given two graphs H and G we say that H decomposes G if G is the
edge–disjoint union of isomorphic copies of H . The following is a well–
known conjecture of Ringel.

Conjecture 1.1 (Ringel [12]). Every tree with m edges decomposes the
complete graph K2m+1.
The conjecture has been verified by a number of particular classes of

trees, see the dynamic survey of Gallian [5]. By using the polynomial
method, the conjecture was verified by Kézdy [7] for the more general
class of so–called stunted trees. As mentioned by the author, this class is
still small among the set of all trees.
The following bipartite version of the conjecture was formulated by

Graham and Häggkvist.

Conjecture 1.2 (Graham and Häggkvist [6]). Every tree with m edges
decomposes the complete bipartite graph Km,m .

Again the conjecture has been verified by a number of cases; see e.g.
[9]. Approximate versions of the two conjectures have been also proved
[6, 8–10]. However, to our knowledge, there are no results stating that

1 Institute of Discrete Mathematics and Geometry, Vienna University of Technology, Vienna, Aus-
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438 Michael Drmota and Anna Lladó

every tree decomposes Kcm+1 or Kcm,cm for some absolute constant c of
reasonable size. The purpose of this paper is to show such a result for
almost all trees.
Let T denote the class of (unlabelled) trees and let Tm be the class of

trees withm edges. By a random tree withm edges wemean a tree chosen
from Tm with the uniform distribution. We say that a random tree satisfies
a property P asymptotically almost surely (a.a.s) if the probability that a
random tree with m edges satisfies P tends to one with m →∞.
Theorem 1.3. Asymptotically almost surely a tree with m edges decom-
poses K2m,2m .

The proof of Theorem 1.3 combines a structural analysis of random
trees with combinatorial techniques for graph decompositions. In the
following two sections we discuss the results and tools used in this proof.

2 Stable sets of random trees

The first property we use in the proof of Theorem 1.3 concerns the num-
ber of leaves in a random tree. Robinson and Schwenk [13] proved that
the average number of leaves in an (unlabelled) random tree withm edges
is asymptotically cm with c ≈ 0.438. Drmota and Gittenberger [2]
showed that the distribution of the number of leaves in a random tree
with m edges is asymptotically normal with variance c2m for some pos-
itive constant c2. Thus, asymptotically almost surely a random tree with
m edges has more than 2m/5 leaves.
The second property we use deals with the size of a stable set in the

base tree of T (the tree obtained from T by deleting its leaves.) Unfor-
tunately this is not a parameter whose analysis can be explicitly found in
the literature. We prove the following result.

Theorem 2.1. The stable sets A, B of the base tree of a random tree with
m edges satisfy a.a.s.

||A| − |B|| ≤ εm,
for every fixed ε > 0.

The proof of Theorem 2.1 is based on the use of generating functions.
We first consider the case of rooted trees. Let

t (x, w0, w1) =
∑

m,k0,k1

tm,k0,k1x
m+1wk0

0 w
k1
1 , (2.1)

where tm,k0,k1 denotes the number of rooted trees with m edges and k0 in-
ner vertices (including the root if the tree has at least one edge even if the
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root has degree one) with even distance to the root and k1 inner vertices
with odd distance to the root. Then, by using the recursive description of
a tree as a collection of trees hanging from a root (iterated twice to get
the proper alignment of stable sets), one can obtain an explicit expression
for (2.1).
Recall that we are interested in the difference |A| − |B| which we

can do by setting w0 = w and w1 = w−1. Hence, if T (x, w) =∑
m,
 Tm,
x

m+1w
 denotes the generating function, where Tm,
 denotes
the number of rooted trees with m edges and |A| − |B| = 
 (where 
 is
some – possibly negative – integer and the root is contained in A even
if the root has degree one) then an epxlicit expression for T (x, w) =
t (x, w,w−1) is also obtained.
As usual we denote by an = [xn] a(x) the n-th coefficient of a power

series a(x) =∑
n≥0 anx

n . With the help of this notation it follows that

Ew|A|−|B| = [x
m+1] T (x, w)
[xm+1] T (x, 1) .

This magnitude can be determined asymptotically if w is close to 1 with
the help of standard singularity analysis tools.
From a version of Hwang’s Quasi-Power-Theorem (see [1]), one can

deduce that the variable Z = |A| − |B| follows a normal distribution
which in our case has zero mean and variance linear in m from which

Pr (||A| − |B|| ≥ εm) ≤ Ce−cε
2m

for some positive constants c and C and for sufficiently small ε > 0. Of
course this is precisely the statement that we want to prove for unlabelled
trees. We translate the above analysis to unrooted unlabeled trees via
Otter’s bijection (see [11] or [1]). Unfortunately we cannot prove some-
thing like a central limit theorem for |A| − |B| in this case, but it is still
possible to keep track of the second moment which, by using Chebyshev
inequality, provides a proof of Theorem 2.1.

3 The embedding

The general approach to show that a tree T decomposes a complete graph
or a complete bipartite graph consists in showing that T cyclically de-
composes the corresponding graphs. We next recall the basic principle
behind this approach in slightly different terminology.
A rainbow embedding of a graph H into an oriented arc–colored graph

X is an injective homomorphism f of some orientation #H of H in X such
that no two arcs of f ( #H) have the same color.
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Let X = Cay(G, S) be a Cayley digraph of an abelian group G with
respect to an antisymmetric subset S ⊂ G (that is, S∩−S = ∅). We con-
sider X as an arc–colored oriented graph, by giving to each arc (x, x+s),
x ∈ G, s ∈ S, the color s. Suppose that H admits a rainbow embedding
f in X . For each a ∈ G the translation x → x + a, x ∈ G, is an
automorphism of X which preserves the colors and has no fixed points.
Therefore, each translation sends f ( #H) to an isomorphic copy which is
edge disjoint from it. Thus the sets of translations for all a ∈ G give rise
to n := |G| edge–disjoint copies of #H in X . By ignoring orientations and
colors, we thus have n edge disjoint copies of H in the underlying graph
of X .
We will use the above approach with the Cayley graph X = Cay(Zm×

Z4,Zm × {1}). We note that the underlying graph of X is isomorphic to
K2m,2m . The strategy of the proof is to show first that the base tree T0 of a
random tree with m edges admits a rainbow embedding f into X in such
a way that f (T0) ⊂ Zm × {1, 2}. This can actually be achieved greedily
as shown in the proof of next Lemma.

Lemma 3.1. Let m be a positive integer. Let T be a tree with n < 3m/5
edges and stable sets A, B. If ||A| − |B|| ≤ m/10 then there is a rain-
bow embedding f of T into X = Cay(Zm × Z4,Zm × {1}) such that
f (V (T )) ⊂ (Zm × {1}) ∪ (Zm × {2}).

The second step involves a proper embedding of the leaves of T . For
this we use Häggkvist [6, Corolary 2.8] to get:

Lemma 3.2. Let T be a tree with m edges. If the base tree T0 of T
admits a rainbow embedding f in X = Cay(Zm × Z4,Zm × {1}) such
that f (V (T0)) ⊂ (Zm × {1}) ∪ (Zm × {2}) then T decomposes K2m,2m .

The proof of Theorem 1.3 follows now directly from Lemma 3.1 and
Lemma 3.2 and the results on random trees from Section 2.

Proof. As it has been mentioned in Section 2, a random tree T with m
edges has a.a.s. more than 2m/5 leaves. Furthermore, by Theorem 2.1,
the cardinalities of the stable sets of the base tree of T differ less than
m/10 in absolute value a.a.s. By Lemma 3.1, the base tree of T admits
a.a.s. a rainbow embedding in Cay(Zm × Z4,Zm × {1}) in such a way
that the image of the embedding sits in Zm × {1, 2}. In that case, Lemma
3.2 ensures that the tree T decomposes K2m,2m .
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Sharp threshold functions via a coupling
method

Katarzyna Rybarczyk1

Abstract. We will present a new method used to establish threshold functions in
the random intersection graph model. The method relies on a coupling of a ran-
dom intersection graph with a random graph similar to an Erdős and Rényi random
graph. Formerly a simple version of the technique was used in the case of homoge-
neous random intersection graphs. Now it is considerably modified and extended
in order to be applied in the general case. By means of the method we are able to
establish threshold functions for the general random intersection graph model for
monotone properties. Moreover the new approach allows to sharpen considerably
the best known results concerning threshold functions for homogeneous random
intersection graph. We outline the main results obtained in [10].

1 Introduction

Various comparison methods such as equivalence or contiguity have
shown to be very helpful in the analysis of the structure of random graph
models. For example one may consider a random graph with independent
edges instead of the model considered in the seminal papers of Erdős and
Rényi [3, 4]. In some cases, when the models are neither equivalent nor
contiguous the comparison by coupling still may simplify the arguments.
This is so in the case of finding threshold functions for random intersec-
tion graphs.
The first random intersection graphmodel was introduced byKaroński,

Scheinerman, and Singer–Cohen [7]. Several generalisations of the
model have been proposed, mainly in order to adapt it to use in some
particular purpose. We consider the G (n,m, p) model studied for ex-
ample in [1, 2, 8]. In a random intersection graph G (n,m, p) there is
a set of n vertices V = {v1, . . . , vn}, an auxiliary set of m = m(n)
features W = {w1, . . . , wm(n)}, and a vector p(n) = (p1, . . . , pm(n))
such that pi ∈ (0, 1), for each 1 ≤ i ≤ m. Each vertex v ∈ V adds
a feature wi ∈ W to its feature set W (v) with probability pi indepen-
dently of all other properties and features. Any two vertices v, v′ ∈ V

1 Faculty of Mathematics and Computer Science, Adam Mickiewicz University, 60–769 Poznań,
Poland. Email: kryba@amu.edu.pl
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are connected by an edge in G (n,m, p) if W (v) and W (v′) intersect. If
p(n) = (p, . . . , p) for some p ∈ (0; 1) then G (n,m, p) is a random
intersection graph defined in [7]. We denote it by G (n,m, p).
For m = nα with α > 6, G (n,m, p) is equivalent to a random graph

with independent edges (see [5]) but in some cases the models differ (see
[7]). However, even in the case when there is a large correlation between
appearance of edges in G (n,m, p) (as well as in G (n,m, p)), interesting
results may be obtained by coupling with an auxiliary graph with almost
independent edges. It is shown in [10] that the coupling may be used to
obtain sharp results on threshold functions for G (n,m, p) for monotone
properties. This extends results obtained in [9].
Let G2(n, p̂2) be a random graph with the vertex set V in which each

edge appears independently with probability p̂2. Similarly let H3(n, p̂3)
be a random hypergraph in which each 3–element subset of the set of
vertices V is added to the hyperedge set independently with probability
p̂3. Define G3(n, p̂3) to be a graph with the vertex set V and an edge
set consisting of those two element subsets of V which are subsets of at
least one hyperedge of H3(n, p̂3). For the family G of all graphs with the
vertex set V , we call A ⊆ G a property if it is closed under isomorphism.
Moreover A is increasing if G ∈ A implies G ′ ∈ A for all G ′ ∈ G such
that E(G) ⊆ E(G ′) and decreasing if G \A is increasing.
Let p = (p1, . . . , pm) be such that pi ∈ (0, 1), for all 1 ≤ i ≤ m.

Moreover for all 1 ≤ i ≤ m, let Xi be the number of vertices which
contain wi in the feature set and Ii1, Ii2 and Ii odd be indicator random
variables of the events {Xi = 1}, {Xi = 2} and {Xi is odd}, respectively.
Define

S1 = E

(
m∑
i=1
(Xi − Ii1)

)
=

m∑
i=1

npi
(
1− (1− pi)

n−1) ;
S2 = E

(
m∑
i=1
(Xi − Iiodd)

)
=

m∑
i=1

npi

(
1− 1− (1− 2pi)n

2npi

)
;

S3 = E

(
m∑
i=1
(Iiodd − Ii1)

)

=
m∑
i=1

npi

(
1− (1− 2pi)n

2npi
− (1− pi)

n−1
)
;

S1,2 = E

(
m∑
i=1

2Ii2

)
=

m∑
i=1

n(n − 1)p2i (1− pi)
n−2,

(1.1)
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The following theorem is the main tool of the presented coupling tech-
nique. It is an extension of the result obtained in [9].

Theorem 1.1. Let S1, S2 and S3 be given by (1.1). For some function ω
tending to infinity let

p̂ = S2 − ω√S2 − 2S22n−2
2
(n
2

) ;

p̂2 =

⎧⎪⎨⎪⎩
S1−3S3−ω√S1−2S21n−2

2(n2)
, for S3 �√

S1 and ω2 ) S3/
√
S1;

S1−ω√S1−2S21n−2
2(n2)

, for S3 = O(
√
S1);

p̂3 =
{
S3−ω√S1−6S23n−3

(n3)
, for S3 �√

S1 and ω2 ) S3/
√
S1;

0, for S3 = O(
√
S1).

If S1 →∞ and S1 = o
(
n2
)
then for any increasing property A.

lim inf
n→∞ Pr

{
G2

(
n, p̂

) ∈ A
}≤ lim sup

n→∞
Pr {G (n,m, p) ∈ A} ,

lim inf
n→∞ Pr

{
G2

(
n, p̂2

) ∪ G3
(
n, p̂3

)∈A}≤ lim sup
n→∞

Pr {G (n,m, p)∈A} .

We use Theorem 1.1 to establish threshold functions for G (n,m, p) for k-
connectivity (denoted Ck), a Hamilton cycle containment (denoted HC),
and a perfect matching containment (denoted PM).

Theorem 1.2. Let max1≤i≤m pi = o((ln n)−1) and S1 and S1,2 be given
by (1.1).

(i) If S1 = n(ln n + cn), then

lim
n→∞Pr {G (n,m, p) ∈ C1} =

⎧⎪⎨⎪⎩
0 for cn →−∞;
e−e−c for cn → c ∈ (−∞;∞);
1 for cn →∞

(ii) Let k be a positive integer and an = S1,2
S1
. If

S1 = n(ln n + (k − 1) ln ln n + cn),

then

lim
n→∞Pr {G (n,m, p) ∈ Ck}=

{
0 for cn→−∞ and an→a∈(0;1];
1 for cn →∞.
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Theorem 1.3. Let max1≤i≤m pi = o((ln n)−1) and S1 be given by (1.1).
If S1 = n(ln n + cn) then

lim
n→∞Pr {G(2n,m, p(2n)) ∈ PM}=

⎧⎪⎨⎪⎩
0 for c2n→−∞;
e−e−c for c2n → c ∈ (−∞;∞);
1 for c2n →∞.

Theorem 1.4. Let max1≤i≤m pi = o((ln n)−1), S1 and S1,2 be given by
(1.1) and an = S1,2

S1
. If S1 = n(ln n + ln ln n + cn), then

lim
n→∞Pr {G (n,m, p) ∈ HC} =

{
0 for cn→−∞ and an → a∈(0; 1];
1 for cn→∞.

Even simple corollaries of Theorems 1.2–1.4 give sharp threshold func-
tions for G (n,m, p). However the method of the proof is strong enough
to enable to improve the best known results concerning G (n,m, p) even
more.

Theorem 1.5. Let m � ln2 n and

p(1− (1− p)n−1) =
ln n + ln

(
max

{
1, ln

(
npe−np ln n
1−e−np

)})
+ cn

m
.

Then

lim
n→∞Pr {G (n,m, p) ∈ HC} =

{
0 for cn →−∞;
1 for cn →∞.

Theorem 1.6. Let m � ln2 n, k be a positive integer, and

an = (np)k−1
((

e−np ln n
1− e−np

)k−1
+ e−np ln n
1− e−np

)

If

p(1− (1− p)n−1) = ln n + ln (max {1, an})+ cn
m

,

then

lim
n→∞Pr {G (n,m, p) ∈ Ck} =

{
0 for cn →−∞;
1 for cn →∞.
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In the proof we modify and extend the techniques used in [9]. First of all,
to get the general result, we couple G (n,m, p)with a sum of independent
random graphs G2

(
n, p̂2

)
andG3

(
n, p̂3

)
. Edges inG2

(
n, p̂2

)∪G3
(
n, p̂3

)
are not fully independent, therefore we prove some additional facts about
it. Moreover we need sharp bounds on the minimum degree threshold
function for G (n,m, p). Due to edge correlation, estimation of mo-
ments of the random variable counting vertices with a given degree in
G (n,m, p) is complicated. Therefore we suggest a different approach to
resolve the problem. We divide G (n,m, p) into subgraphs and use cou-
pling to relate construction of those subgraphs with a coupon collector
process. Finally the solution of a coupon collector problem combined
with the method of moments provides the answer.
Concluding, we provide a general method to establish bounds on

threshold functions for many properties for G (n,m, p). By means of the
method we are able to obtain sharp thresholds for k–connectivity, perfect
matching containment and hamiltonicity for the general model. Last but
not least we considerably improve known results concerning G (n,m, p).
In general, the coupling technique provides a very elegant method to get
bounds on threshold functions for random intersection graphs for a large
class of properties. The full proofs are presented in [10].
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[7] M. KAROŃSKI, E. R. SCHEINERMAN and K. B. SINGER-COHEN,
On random intersection graphs: The subgraph problem, Combina-
torics, Probability and Computing 8 (1999), 131–159.



448 Katarzyna Rybarczyk

[8] S. NIKOLETSEAS, C. RAPTOPOULOS andP. SPIRAKIS, Large in-
dependent sets in general random intersection graphs, Theoretical
Computer Science 406 (2008), 215–224.

[9] K. RYBARCZYK, Sharp Threshold Functions for Random Inter-
section Graphs via a Coupling Method, The Electronic Journal of
Combinatorics 18 (2011), R36.

[10] K. RYBARCZYK, The coupling method for inhomogeneous random
intersection graphs, submitted (2013+).



Analytic description of the phase
transition of inhomogeneous multigraphs

Élie de Panafieu1 and Vlady Ravelomanana1

A random graph from the G(n, p) model has n vertices and each pair of
vertices is linked with probability p. In [6], Erdös and Rényi located the
density of edges at which the first connected component with more than
one cycle - called a complex component - appears. Using analytic tools,
Janson, Knuth, �Luczak and Pittel derived in [11] more precise informa-
tions on the structure of a random graph or multigraph near the birth of
the first complex component. Söderberg introduced in [13] a model of
inhomogeneous random graphs, extended by Bollobás, Janson and Ri-
ordan [3]. This model generalizes G(n, p) in the following way: each
vertex receives a type among a set of q types, and the probability that a
vertex of type i and one of type j are linked is the coefficient (i, j) of a
symmetric matrix R of dimension q × q. Among other results, they lo-
cated the birth of the complex component. We combine here the accuracy
of the approach of [11] with the generality of the inhomogeneous random
graph model.
Phase transitions for Boolean Satisfiability (SAT) and for Constraint

Satisfaction Problems (CSP) are fundamental problems arising in differ-
ent communities [1,5,9]. Several polynomial SAT and CSP problems can
be encoded into the inhomogeneous (multi)graph model, and their prob-
ability of satisfiability linked to the phase transition corresponding to the
birth of the complex component. In this paper, we derive a complete pic-
ture of the finite size scaling and the critical exponents associated to the
birth of the complex component of inhomogeneous multigraphs, using
analytic methods. Equivalent results can be obtained for graphs. As ap-
plications, we present a new proof of an already known result from [12]
on the probability of 2-coloriability, and new results on the probability of
satisfiability of quantified 2-XOR-formulas [4].

1 Univ. Paris Diderot, Sorbonne Paris Cité, LIAFA, UMR 7089, 75013, Paris, France.
Email: depanafieuelie@gmail.com, vlad@liafa.jussien.fr
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1 Model

We consider a family of labelled multigraphs - loops and multiple edges
are allowed - with colored vertices and weighted edges, close to the in-
homogeneous random graph model [13]. Let R be a symmetric square
matrix of dimension q × q with non-negative coefficients and σ a fixed
positive constant. Let {c1, . . . , cq} be a set of q distinct colors. A multi-
graph M is a (R, σ )-multigraph if each vertex x of M is colored with
color c(x) ∈ {c1, . . . , cq} and each edge e = (x, y) of M is weighted
with Rc(x), c(y).
Following [11], the compensation factor κ(M) of a multigraph M with

n vertices is defined as
∏n

x=1(2
mxx

∏n
y=x mxy!)−1 where mxy is the num-

ber of edges binding x to y in M and m = ∑n
x=1

∑n
y=x mxy is the total

number of edges. For a multigraph M with m edges, the number of se-
quences of couples of vertices (x1, y1), . . . , (xm, ym) that lead to M is
exactly 2m m! κ(M).
Given a (R, σ )-multigraph M , we define its weight ω(M) as

ω(M) = κ(M) × σ'cc(M) ×
∏

(x, y)∈{edges ofM}
Rc(x), c(y) ,

where 'cc(M) denotes the number of connected components of M . The
parameter σ is not present in [13], but classic in statistic physics, for
instance in the random cluster model. Finally, gR, σ (n, m) denotes the
sum of the weights of the (R, σ )-multigraphs built with n vertices and m
edges

gR, σ (n, m) =
∑

|G|=n, ‖G‖=m
ω(G).

An edge-weighted multigraph is vertex-transitive if its automorphism
group is transitive and also preserve the weights – see for instance Godsil
and Gordon [10]. Intuitively, the vertex-transitive property means that,
using only the topology of the multigraph, no vertex can be distinguished
from another.
Let G be a multigraph with q vertices and weighted edges (loops are

also allowed). The weighted adjacency matrix R = R(G) of G is built
as follows: R is a q × q matrix with entry Ri, j equal to the total weight
of the edges between vertex i and vertex j . For simplicity, we say that
a matrix R is transitive if the weighted multigraph associated is vertex-
transitive. Due to size constraints, we only detail the results correspond-
ing to transitive matrices R, although general theorems have also been
derived and will be part of a longer version of the paper.
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2 Main theorem

The asymptotic growth of gR,σ (n,m) with respect to n is different
whether m/n stays at a fixed distance below 1/2 or is close to it. We
call this rupture the phase transition of inhomogeneous multigraphs. The
evolution of the probability of satisfiability of several SAT and CSP prob-
lems can be explained by this phase transition: two examples are pre-
sented in the next section.

Theorem 2.1. Let R be a transitive matrix with greatest eigenvalue δ
and σ a positive fixed constant. Let c be the number of connected com-
ponents in the multigraph associated to R. Let χ(X) be the polyno-
mial

∏
λ∈Spect(R)\δ

(
1− λ

δ
X
)
. For any small fixed ε > 0, as n is large

and m is such that 2mn < 1− ε, then

gR, σ (n, m) ∼ δ
m(σq)n−m

χ( 2mn )
σ/2

(
1− 2m

n

) 1−cσ
2

√
1− m

n

n2m

2mm! .

As n is large and m = n
2 (1+ μn−1/3) with μ bounded,

gR, σ (n, m) ∼ δ
m(σq)n−m

χ(1)σ/2
n(cσ−1)/6

n2m

2mm! φcσ (μ)

where φσ (μ) is equal to
√
2π

∑
k
e(σ )k σ

k A(3k + σ
2 , μ), e

(σ )
k is the (2k)-th

coefficient of

(∑
n

(6n)!z2n
(2n)!(3n)!2n(3!)n

)σ
and A(y, μ)= e−μ3/6

3(y+1)/3
∑
k

(32/3μ/2)k

k!�((y+1−2k)/3) .

Proof. Let δ denote the greatest eigenvalue of R. We can assume it to
be equal to 1 without loss of generality, replacing R by 1

δ
R and g(n,m)

by δmg(n,m). We can also assume that the number c of connected com-
ponents of the multigraph encoded by R is 1: the (R, σ )-multigraphs
are in a one-to-one mapping with the (S, cσ)-multigraphs where S is the
adjacency matrix of one of the connected components.
Since R is symmetric, there exist an orthogonal matrix Q and a diag-

onal matrix � such that R = Q�QT . Furthermore, the vector #1 is an
eigenvector for the greatest eigenvalue 1. We choose �1,1 = 1.
A R-Cayley tree is a R-rooted non-planar labelled tree. Let Ti(z) de-

note its generating function when the color of the root is i and #T (z) =
( T1(z) ··· Tq (z) )T . The generating function of the R-unrooted trees and R-
unicyclic graphs are denoted by U(z) and V (z). A R-path of trees is a
colored path that links two vertices (that may not be distinct) of color i
and j . Each internal vertex of the path is the root of a colored R-Cayley
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tree. Its generating function is Pi, j (z). Using the analytic combina-
torics tools (a good reference is [8]), the combinatorial specification of
R-Cayley trees translates into the following equations:

#T (z)=T (z)#1 V (z)=− 1
2 log(1− T (z))− 1

2 log(χ(T (z)))

U(z)=q(T (z)− 1
2T (z)

2) Pi, j (z)= 1
q(1−T (z)) +

∑q
l=2 Qi,l Q j,l

�l,l
1−�l,l T (z)

Remark that at the first order, U(z), V (z) and Pi, j (z) behave as their
non-colored counterparts T (z) − 1

2T (z)
2, − 1

2 log(1 − T (z)) and 1
1−T (z) .

Furthermore, the first order of Pi, j (z) is independent of i and j .
When 2m

n < 1 − ε, with high probability a graph with n vertices and
m edges contains only trees and unicyclic components (see [7]). There-
fore, gR, σ (n,m) ∼ n![zn] (σU(z))n−m

(n−m)! eσV (z). The Large Powers Theorem
of [8] ends the proof.
Let us remind that the excess of a graph is the difference between the

number of edges and of vertices. The complex part of a graph is the
set of its connected components that have positive excess. Deleting the
vertices of degree one and fusioning the vertices of degree two, each
graph can be reduced to a simpler graph with same excess, called its
kernel, with minimum degree at least three. Reciprocally, any such graph
can be developed by replacing edges by paths and adding trees to the
vertices.
When m = n

2 (1 + μn−1/3), [11] proved that the proportion of multi-
graphs with non-cubic kernel is negligible. This holds true for inhomo-
geneous graphs. The setKk of the cubic multigraphs of excess k is finite.
The sum of their compensation factors with a weight σ for each con-
nected component is (2k)!e(σ )k as defined in the theorem. The generating
function of the R-developed cubic graphs of fixed excess k is

Kk,σ (z) =
∑
K∈Kk

∑
#c∈[1,q]2k

κ(K )σ 'cc(K )
1

(2k)!(
∏
i∈K

Tci (z))
∏

(i, j)∈K
Pci ,c j (z).

Replacing Pi, j (z) by its first order term, we obtain that near its dominant

singularity, Kk,σ (z) ∼ e(σ )k T (z)2k

qk(1−T (z))3k . The number of (R, σ )-multigraphs
with n vertices, m edges and kernel of excess k is

g(n,m, k) ∼ n![zn](σU(z))
n−m+k

(n − m + k)! e
σV (z)Kk,σ (z).

The asymptotic is derived using the same tools as in Theorem 11 of [2]
or Lemma 3 of [11]. Finally, g(n,m) =∑

k≥1 g(n,m, k). When R is not
transitive, but the multigraph encoded by R is connected, a similar result
holds.
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3 Examples of application of the main theorem

The asymptotic probability for a multigraph with a large number n of
vertices and m edges to be bipartite evolves from 1 to 0 when the quo-
tient m/n increases from 0 to 1/2. This phase transition can be precisely
described using our main theorem. The bipartite multigraphs are in a
one-to-one mapping with the

((
0 1
1 0

)
, 12

)
-multigraphs. Since the sum of

the compensator factors of the multigraphs with n vertices andm edges is
n2m

m!2m , the probability for a multigraph to be bipartite is
2mm!
n2m

g( 0 1
1 0

)
, 12
(n,m),

given by the Theorem 2.1. This result has already been derived by Pittel
and Yeum [12] when m is around n/2.
In [4], the authors analyse 2-QXOR-SAT formulas. Those are quan-

tified conjunctions of m XOR-clauses with β universal and n existential
variables

∀x1 . . . xβ ∃y1 . . . yn
m∧
i=1

(
y fi,1 ⊕ y fi,2 = ( ei (1) ··· ei (β) ) · ( x1 ··· xβ )T

)
where each ei is a β-tuple of bits and ( a1 ··· ak ) · ( b1 ··· bk )T =⊕k

i=1 ai ∧
bi . A clause ϕ is characterized by a triplet (yϕ,1, yϕ,2, eϕ). The authors
study how the probability of satisfiability PSAT(n,m) evolves with the
number m of clauses when the number n of existential variables is large,
and locate the value of m at which the phase transition occurs.
We consider clauses ϕ such that eϕ is in a certain fixed multiset E

of beta-tuples of bits. We call the formulas that contain only those
clauses the E-formulas. Let x be an integer in [1, 2β] and [x]2 denote the
binary decomposition of x − 1, interpreted as a β-tuple of bits. To a mul-
tiset E of β-tuples of bits, we associate a square symmetric transitive ma-
trix R(E) of dimension 2β×2β such that R(E)x,y is the number of occurences
of [x]2 ⊕ [y]2 in E : R(E)x,y = #{e ∈ E | [x]2 ⊕ [y]2 = e}. Using similar
idees as in [4], a one-to-one mapping is built between the satisfiable E-
formulas with n existential variables and m clauses and the (R(E), 2−β)-
multigraphs with n vertices and m edges. Therefore, PSAT(n,m) is equal
to 2mm!

n2m |E |m gR(E),2−β (n,m) and its asymptotic is derived by the theorem 2.1,
using the parameters q, σ = q−1, δ, c and χ(X) of the matrix R(E).
In [4], the authors located the phase transition and described it qualita-
tively - coarse or sharp - while our result is more precise and quantifies
the evolution of PSAT(n,m) from the subcritical to the critical range ofm.
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[3] B. BOLLOBÁS, S. JANSON and O. RIORDAN, The phase transition
in inhomogeneous random graphs, Random Struct. Algorithms 31
(1) (2007), 3–122.
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On the Bruhat-Chevalley order
on fixed-point-free involutions

Mahir Bilen Can1, Yonah Cherniavsky2 and Tim Twelbeck3

1 Introduction

The purpose of this paper is twofold. First is to prove that the Bruhat-
Chevalley ordering restricted to fixed-point-free involutions is a lexico-
graphically shellable poset. Second is to prove that the Deodhar-Sriniva-
san poset is a graded subposet of the Bruhat-Chevalley poset structure on
fixed-point-free involutions.
In this work we are concerned with the interaction between two well

known subgroups of the special linear group SL2n , namely a Borel sub-
group and a symplectic subgroup. Without loss of generality, we choose
the Borel subgroup B to be the group of invertible upper triangular ma-
trices, and define the symplectic group, Sp2n as the subgroup of fixed
elements of the involutory automorphism θ : SL2n → SL2n , θ(g) =
J (g−1)� J−1, where J denotes the skew form J =

(
0 ω0
−ω0 0

)
, and ω0 is

the n × n, 0/1 matrix with 1’s on its main anti-diaonal.
It is clear that B acts by left-multiplication on SL2n/Sp2n . We in-

vestigate the covering relations of the poset F2n of inclusion relations
among the B-orbit closures. To further motivate our discussion and help
the reader to place our work appropriately we look at a related situation.
It is well known that the symmetric group of permutation matrices, Sm
parameterizes the orbits of the Borel group of upper triangular matrices
B ⊂ SLm in the flag variety SLm/B. For u ∈ Sm , let u̇ denote the
right coset in SLm/B represented by u. The classical Bruhat-Chevalley
ordering is defined by u ≤Sm v ⇐⇒ B · u̇ ⊆ B · v̇ for u, v ∈ Sm .

1 Yale University, New Haven, USA. Email: mahir.can@yale.edu

2 Ariel University, Israel. Email: yonahch@ariel.ac.il

3 Tulane University, New Orleans, USA. Email: ttwelbec@tulane.edu

The full-text paper can be found in [6].
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A permutation u ∈ Sm is said to be an involution, if u2 = id, or
equivalently, its permutation matrix is a symmetric matrix. We denote
by Im the set of all involutions in Sm , and consider it as a subposet
of the Bruhat-Chevalley poset (Sm,≤Sm ). Let m be an even number,
m = 2n. An element x ∈ I2n is called fixed-point-free, if the matrix
of x has no non-zero diagonal entries. In [15], Example 10.4, Richard-
son and Springer show that there exists a poset isomorphism between
F2n and a subposet of fixed-point-free involutions in I2n . Unfortunately,
F2n does not form an interval in I2n , hence it does not immediately in-
herit nice properties therein. Let ≤ denote the restriction of the Bruhat-
Chevalley ordering on F2n . Our first main result is that (F2n,≤) is “EL-
shellable,” which is a property that well known to be true for many other
related posets. See [3–5, 8, 11, 12]. See [10], also. Notice that there
are several versions of lexicographic shellability and EL-shellability is
the strongest one. In [13] it is shown that F2n is CL-shellable. So,
our result is a strengthening of this result of [13] in the special case
of the poset F2n . Recall that a finite graded poset P with a maximum
and a minimum element is called EL-shellable, if there exists a map
f = fΓ : C(P) → Γ between the set of covering relations C(P) of P
into a totally ordered set Γ satisfying: 1) In every interval [x, y] ⊆ P
of length k > 0 there exists a unique saturated chain c : x0 = x <
x1 < · · · < xk−1 < xk = y such that the entries of the sequence
f (c) = ( f (x0, x1), f (x1, x2), . . . , f (xk−1, xk)) is weakly increasing. 2)
The sequence f (c) of the unique chain c from (1) is the smallest among
all sequences of the form ( f (x0, x ′1), f (x

′
1, x

′
2), . . . , f (x

′
k−1, xk)), where

x0 ≤ x ′1 ≤ · · · ≤ x ′k−1 ≤ xk . Recall that the order complex of a poset P is
the abstract simplicial complex �(P) whose simplexes are the chains in
P . For a lexicographically shellable poset the order complex is shellable,
in particular it implies that �(P) is Cohen-Macaulay [2]. These, of
course, are among the most desirable properties of a topological space.
One of the reasons the EL-shellability of F2n is not considered before is
that there is a closely related EL-shellable partial order studied by Deod-
har and Srinivasan in [7] which we denote here as ≤DS . By some authors
the Deodhar-Srinivasan’s ordering is thought to be the same as Bruhat-
Chevalley ordering on F2n . A careful inspection of the Hasse diagrams
of (F2n,≤) and (F̃2n,≤DS) reveals that these two posets are “almost” the
same but different. Our second main result is that the rank functions of
these posets are the same, and furthermore, the latter is a graded subposet
of the former.
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2 Preliminaries

We denote the set {1, . . . ,m} by [m]. In this work, all posets are assumed
to be finite and assumed to have a minimal and a maximal element, de-
noted by 0̂ and 1̂, respectively. Recall that in a poset P , an element y is
said to cover another element x , if x < y and if x ≤ z ≤ y for some
z ∈ P , then either z = x or z = y. In this case, we write y → x . Given
P , we denote by C(P) the set of all covering relations of P . An (increas-
ing) chain in P is a sequence of distinct elements such that x = x1 <
x2 < · · · < xn−1 < xn = y. A chain in a poset P is called saturated (or,
maximal), if it is of the form x = x1 ← x2 ← · · · ← xn−1 ← xn = y.
Recall also that a poset is called graded if all maximal chains between
any two comparable elements x ≤ y have the same length. This amounts
to the existence of an integer valued function 
P : P → N satisfying 1)

P(0̂) = 0, 2) 
P(y) = 
P(x)+ 1 whenever y covers x in P . 
P is called
the length function of P .
Let Symn denote the affine space of symmetric matrices and let Sym0n

denote its closed subset consisting of symmetric matrices with determi-
nant 1. Similarly, let Skew2n denote the affine space of skew-symmetric
matrices, and let Skew02n denote its closed subset consisting of elements
with determinant 1. Let X denote any of the spaces Symn, Sym0n, Skew2n ,
or Skew02n . Then the special linear group of appropriate rank acts on X
via g · A = (g−1)�Ag−1. Define SOn := {g ∈ SLn : gg� = idn}. The
symmetric spaces SL2n/Sp2n and SLn/SOn can be canonically identified
with the spaces Skew02n and Sym

0
n , respectively (for details see [9]). Re-

call that an n × n partial permutation matrix (or, a rook matrix) is a 0/1
matrix with at most one 1 in each row and each column. The set of all
n × n rook matrices is denoted by Rn . In [14], Renner shows that Rn
parameterizes the B × B-orbits on the monoid of n × n matrices. It is
known that the partial ordering on Rn induced from the containment re-
lations among the B × B-orbit closures is a lexicographically shellable
poset (see [4]). On the other hand, for the purposes of this paper, it is
more natural for us to look at the inclusion poset of B� × B-orbit clo-
sures in Rn , which we denote by (Rn,≤Rook). A symmetric rook matrix
is called a partial involution. The set of all partial involutions in Rn is
denoted by P In . It is known that each Borel orbit in Symn contains a
unique element of P In . A rook matrix is called a partial fixed-point-free
involution, if it is symmetric and does not have any non-zero entry on
its main diagonal. We denote by PF2n the set of all partial fixed-point-
free involutions. It is known that PF2n parameterizes the Borel orbits in
Skew2n .
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Containment relations among the closures of Borel orbits in Skew2n
define a partial ordering on PF2n . We denote its opposite by≤Skew. Sim-
ilarly, on P In we have the opposite of the partial ordering induced from
the containment relations among the Borel orbit closures in Symn . We
denote this opposite partial ordering by ≤Sym . In [11], Incitti, studying
the restriction of the partial order ≤Sym on In , finds an EL-labeling for
In . Let us mention that in a recent preprint, Can and Twelbeck, using
an extension of Incitti’s edge-labeling show that P In is EL-shellable.
See [5].
There is a combinatorial method for deciding when two elements

x and y from (Rn,≤Rook) (respectively, from (P In,≤Sym), or from
(PF2n,≤Skew)) are comparable with respect to ≤Rook (respectively, with
respect to≤Sym , or≤Skew). Denote by Rk(x) the matrix whose i, j-th en-
try is the rank of the upper left i × j submatrix of x . We call Rk(x), the
rank-control matrix of x . Let A = (ai, j ) and B = (bi, j ) be two matrices
of the same size with real number entries. We write A ≤ B if ai, j ≤ bi, j
for all i and j . Then x ≤Rook y ⇐⇒ Rk(y) ≤ Rk(x). The same crite-
rion holds for the posets ≤Sym and ≤Skew. Now, suppose x is an m × m
matrix with the rank-control matrix Rk(x) = (ri, j )mi, j=1. Set r0,i = 0 for
i = 0, . . . ,m, and define ρ≤(x) = #{(i, j) : 1 ≤ i ≤ j ≤ 2n and ri, j =
ri−1, j−1}, ρ<(x) = #{(i, j) : 1 ≤ i < j ≤ 2n and ri, j = ri−1, j−1}. Then
the length function 
PF2n of the poset PF2n is equal to the restriction of
ρ< to PF2n . Furthermore, y covers x if and only if Rk(y) � Rk(x) and

PF2n (y)− 
PF2n (x) = 1. Similarly, 
P I2n is the restriction of ρ≤ to P I2n ,
and that y covers x if and only if Rk(y)� Rk(x) and 
I2n (y)−
I2n (x)= 1.
For details, see [1].

3 Results

It turns out that the intersection PF2n ∩ I2n is equal to F2n , and further-
more, (F2n,≤Sym) and (F2n,≤Skew) are isomorphic. The relationships
between the posets P I2n, PF2n ,I2n and F2n are as follows.
Let w0 ∈ P I2n denote the “longest permutation,” namely, the 2n × 2n

anti-diagonal permutation matrix, and let j2n ∈ F2n denote the 2n × 2n
fixed-point-free involution having non-zero entries at the positions

(1, 2), (2, 1), (3, 4), (4, 3), . . . , (2n − 1, 2n), (2n, 2n − 1), only .

In other words, j2n is the fixed-point-free involution with the only non-
zero entries along its super-diagonals. Then I2n is an interval in P I2n with
the smallest element id2n and the largest element w0. Similarly, F2n is an
interval in PF2n with the smallest element j2n and the largest elementw0.
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Consider F2n as a subposet of I2n and let x, y ∈ F2n be two elements
such that x ≤ y. It turns out there exits a saturated chain in I2n from x
to y consisting of fixed-point-free involutions only. With the help of this
observation, we prove

Theorem 3.1. F2n is an EL-shellable poset.

Sketch of the proof. Recall that F2n is a connected graded subposet
of I2n . Therefore, its covering relations are among the covering relations
of I2n described in [11]. Let x and y be two fixed-point-free involutions.
We know the existence of a saturated chain between x and y that is en-
tirely contained in F2n . Since lexicographic ordering is a total order on
maximal chains, there exists a unique largest such chain, say c. The idea
of the proof is showing that c is the unique decreasing chain. Once this is
done, by switching the order of our totally ordered set Z2, we obtain the
lexicographically smallest chain, which is the unique increasing chain.
As an important consequence of Theorem 3.1, we further show that

Theorem 3.2. The order complex �(F2n) triangulates a ball
of dimension n(n − 1)− 2.
As it is mentioned in the introduction, the posets (F̃2n,≤DS) and

(F2n,≤) are different. Indeed, for 2n = 6 the Hasse diagrams of these
two posets differ by an edge. Contrary to this observation, we have the
following

Theorem 3.3. The length functions of (F2n,≤) and (F̃2n,≤DS) are the
same. Covering relations of the poset F̃2n are among the covering rela-
tions of F2n .
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A geometric approach to combinatorial
fixed-point theorems: extended abstract

Elyot Grant1 and Will Ma2

Abstract. We develop a geometric framework that unifies several different com-
binatorial fixed-point theorems related to Tucker’s lemma and Sperner’s lemma,
showing them to be different geometric manifestations of the same topological
phenomena. In doing so, we obtain (1) new Tucker-like and Sperner-like fixed-
point theorems involving an exponential-sized label set; (2) a generalization of
Fan’s parity proof of Tucker’s Lemma to a much broader class of label sets; and
(3) direct proofs of several Sperner-like lemmas from Tucker’s lemma via explicit
geometric embeddings.

1 Introduction

Combinatorial fixed-point theorems such as the Sperner and Tucker lem-
mas have generated a wealth of interest in recent decades, in part due
to the discovery of important new applications in economics and theo-
retical computer science (see [2, 12, 15]). Extensive research has exam-
ined the construction of direct proofs of the implications among these
and other similar theorems (and generalizations), yielding many different
proofs via a variety of methods (see [4, 6, 8]). Some of this work has
succeeded in connecting fixed-point theorems in the (Brouwer, Sperner)-
family to the seemingly unrelated antipodality theorems in the (Borsuk-
Ulam, Tucker)-family; for example, Su has shown that it is possible to
prove the Brouwer fixed-point theorem directly from the Borsuk-Ulam
theorem via an explicit topological construction [13], and Živalcević [16]
has shown how Ky Fan’s [3] generalization of Tucker’s lemma implies
Sperner’s lemma. However, the construction of a direct proof that
Tucker’s lemma implies Sperner’s lemma appears to remain an open
question [11].
To shed some light on this question, we investigate the Tucker and

Sperner lemmas from a geometric viewpoint. Cast in this light, it be-
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Email: elyot@mit.edu

2 Operations Research Center, Massachusetts Institute of Technology. Email: willma@mit.edu

The full version of this paper is available on arXiv.org as [7].
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comes apparent that the Tucker and Sperner lemmas are actually mem-
bers of a much larger family of combinatorial fixed-point theorems shar-
ing a common topological structure, but having different geometric mani-
festations. Our approach hence unifies many known combinatorial fixed-
point theorems, and yields a new Tucker-type lemma and a new Sperner-
type lemma, both with an exponential number of labels. In doing so, we
generalize the technique in [3] to obtain a framework that proves our new
Tucker-like theorem without any topological fixed-point theorems. As a
bonus, our framework also permits us to prove some of the Sperner-like
theorems directly from Tucker’s lemma via explicit geometric embed-
dings. Moreover, we derive some insight into why Sperner’s lemma may
be difficult to prove directly from Tucker’s lemma—the analogy between
Borsuk-Ulam and Tucker results is geometrically different from the anal-
ogy between Brouwer and Sperner results, and alternate Sperner-like the-
orems provide a more direct analogy.

ACKNOWLEDGEMENTS. We thank Rob Freund for helpful discussions,
and referee 2 for several useful comments. Both authors were partially
supported by NSERC PGS-D awards. The second author was supported
in part by NSF grant CCF-1115849 and ONR grants N00014-11-1-0053
and N00014-11-1-0056.

Combinatorial fixed-point theorems

We omit definitions of standard terminology and notation; details can be
found in the full version of the paper, or a standard text such as that of
Matoušek [10]. We shall use the following conventions for embeddings:
Bn is defined as {x ∈ Rn, ||x ||2 ≤ 1}; �n−1 is defined as conv{ei : 1 ≤
i ≤ n}; ♦n is defined as conv{±ei }; �n is defined as conv{(x1, . . . , xn) :
xi ∈ {−1, 1}}; here, conv(S) is the convex hull of the set S.
We define the vertices V (T ) of a triangulation T to be the set of all

0-simplices in T . A label function λ is a mapping from V (T ) to a fi-
nite label set L . In the case of the Tucker and Sperner lemmas, the sets
{1, . . . , n + 1} or {1,−1, . . . , n,−n} are typically used for L . However,
in our paper, we will instead represent these labels as the sets of extreme
points ext(�n) = {e1, . . . , en+1} and ext(♦n) = {e1,−e1 . . . , en,−en}.
Cast in this framework, we shall state Sperner’s lemma as follows:

Theorem 1.1 (Sperner’s lemma). Let T be a triangulation of �n . Let
λ : V (T ) → ext(�n) be a label function with the property that for all
x = (x1, . . . , xn+1) ∈ V (T ), for all 1 ≤ i ≤ n + 1, if xi = 0, then
λ(x) �= ei (such a λ is sometimes called a proper colouring). Then T
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contains a panchromatic simplex—that is, a simplex σ such that {λ(v) :
v ∈ V (σ )} = {e1, . . . , en+1}.
We can establish results similar to Sperner’s lemma in other geometric

spaces as long as we have suitable analogies of the notions of proper
colouring and panchromatic simplex. The following are immediate:

Proposition 1.2. Let σ be a simplex and let λ : V (σ ) → ext(♦n) be a
label function. Define a complementary edge to be two vertices v1, v2 ∈
V (σ ) with λ(v1) = −λ(v2). Then conv{λ(v) : v ∈ V (σ )} intersects the
interior of ♦n if and only if σ contains a complementary edge.

Proposition 1.3. Let σ be a simplex and let λ : V (σ ) → ext(�n) be
a label function. We say σ is a neutral simplex if for all 1 ≤ i ≤ n,
there exist vertices v1, v2 ∈ V (σ ) such that λi(v1) = −1, λi(v2) = +1,
where λi(v) is the i th coordinate of λ(v). Then conv{λ(v) : v ∈ V (σ )}
intersects the interior of �n if and only if σ is a neutral simplex.

Two Sperner-like theorems can immediately be derived by imposing
the right labelling constraints:

Theorem 1.4 (Octahedral Sperner with octahedral labels). Let T be a
triangulation of ♦n . Let λ : V (T ) → ext(♦n) be a label function such
that for all boundary vertices x = (x1, . . . , xn) ∈ V (T ) ∩ ∂(♦n), for
all 1 ≤ i ≤ n, if xi ≥ 0 (respectively, if xi ≤ 0), then λ(x) �= −ei
(respectively, λ(x) �= ei ). Then T contains a complementary edge.

Theorem 1.5 (Cubical Sperner with cubical labels). Let T be a trian-
gulation of�n . Let λ : V (T )→ ext(�n) be a label function such that for
all vertices x = (x1, . . . , xn) ∈ V (T ), for all 1 ≤ i ≤ n, if xi ∈ {−1, 1},
then λ(x)i = xi . Then T contains a neutral simplex.

Theorem 1.4 is a special case of a theorem originally conjectured by
Atanassov and proven by De Loera et al. [1, 9]. Theorem 1.5 is implied
by a result of Kuhn [8], in which the vertices of a triangulation of �n are
labelled using only (n+1) labels. Allowing the domain and codomain to
differ yields several additional fixed-point theorems, such as the follow-
ing:

Theorem 1.6 (Cubical Sperner with octahedral labels). Let T be a
triangulation of�n . Let λ : V (T )→ ext(♦n) be a label function with the
property that for all vertices x = (x1, . . . , xn) ∈ V (T ), for all 1 ≤ i ≤ n,
if xi ∈ {−1, 1}, then λi(x) �= −xiei . Then T contains a complementary
edge.
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Theorem 1.7 (Octahedral Sperner with cubical labels). Let T be a
triangulation of ♦n . Let λ : V (T )→ ext(�n) be a label function with the
property that for all vertices x ∈ V (T ), for all v ∈ ext(�n), if vT x = 1,
then λ(x) �= −v. Then T contains a neutral simplex.

Theorem 1.6 is due to Freund [4]. Theorem 1.7 appears to be novel,
though it is related to a general result of Freund [5] that claims a con-
clusion too strong to hold here (details in full paper). Although the com-
binatorial methods of Freund and of Kuhn appear insufficient to prove
Theorem 1.7, it can be proven using standard techniques via Brouwer’s
fixed-point theorem (see full version).
To state Tucker-like theorems, we require a notion of antipodality:

Definition 1.8. Let T be a topological triangulation of Bn with X =⋃
σ∈T σ . T is said to be antipodally symmetric on the boundary if, for all

simplices σ ∈ ∂(T ), the reflected simplex −σ also lies in ∂(T ).
Tucker’s lemma [14] can then be stated as follows:

Theorem 1.9 (Tucker’s lemma). Let T be a triangulation of Bn that
is antipodally symmetric on the boundary of the domain X . Let λ :
V (T ) → ext(♦n) be a label function such that λ(v) = −λ(−v) for all
v ∈ ∂(X). Then T contains a complementary edge.

We can establish similar theorems using labels from other codomains
homeomorphic to Bn . By extending Ky Fan’s theorem [3] to a broader
class of label sets, we establish a combinatorial proof of the following in
the full version:

Theorem 1.10 (Tucker’s lemma with cubical labels). Let T be a trian-
gulation of Bn that is antipodally symmetric on the boundary of the
domain X . Let λ : V (T ) → ext(�n) be a label function such that
λ(v) = −λ(−v) for all v ∈ ∂(X). Then T contains a neutral simplex.

2 Geometric proofs of Sperner-like theorems

We now describe a technique that enables us to explicitly construct ge-
ometric reductions between some of combinatorial fixed-point theorems
discussed above. We illustrate our technique through an example:

Theorem 2.1. Tucker’s theorem implies Theorem 1.4 (octahedral Sperner
with octahedral labels).

Proof sketch. Let T be a triangulation of ♦n with label function λ :
V (T )→ ext(♦n) satisfying the conditions of Theorem 1.4. Let X = 2♦n
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be a dilated copy of the n-dimensional octahedron, so that ♦n lies en-
tirely within the interior of X . Our key idea is to extend the triangulation
T and label function λ to a triangulation T ∗ of X and a label function
λ∗ : V (T ∗)→ ext(♦n) so that the following properties hold:

1. T ⊂ T ∗, and λ∗(v) = λ(v) for each vertex v in V (T ).
2. T ∗ is antipodally symmetric on the boundary, and λ∗(v) = −λ∗(−v)
for each v ∈ V (T ∗) ∩ ∂(X).

3. There are no complementary edges in T ∗ \ T .
If we can construct such a T ∗ and λ∗, then Theorem 1.4 immediately
follows from Tucker’s lemma, since T ∗ must contain a complementary
edge if property (2) is true, and this complementary edge must then lie
in T by properties (1) and (3). Further details are provided in the full
version.

A similar argument can also be used to show that Tucker’s theorem im-
plies Theorem 1.6 (Cubical Sperner with octahedral labels). Indeed, we
can also use this technique to show the equivalence of Theorem 1.6 and
Theorem 1.4. Unfortunately, this style of geometric argument relies cru-
cially on a labelling scheme in which negations are permitted. Accord-
ingly, it appears that additional insight is required in order for it to be
possible to use a geometric construction of this nature to directly prove
Sperner’s lemma from a Tucker-like theorem.
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Proof of a conjecture of Thomassen
on Hamilton cycles in highly connected
tournaments

Daniela Kühn1, John Lapinskas1, Deryk Osthus1 and Viresh Patel1

Abstract. A conjecture of Thomassen from 1982 states that for every k there is an
f (k) so that every strongly f (k)-connected tournament contains k edge-disjoint
Hamilton cycles. A classical theorem of Camion, that every strongly connected
tournament contains a Hamilton cycle, implies that f (1) = 1. So far, even the
existence of f (2) was open. In this paper, we prove Thomassen’s conjecture by
showing that f (k) = O(k2 log2 k). This is best possible up to the logarithmic
factor. As a tool, we show that every strongly 104k log k-connected tournament is
k-linked (which improves a previous exponential bound). The proof of the latter is
based on a fundamental result of Ajtai, Komlós and Szemerédi on asymptotically
optimal sorting networks.

Main result. A tournament is an orientation of a complete graph and a
Hamilton cycle in a tournament T is a (consistently oriented) cycle which
contains all the vertices of T . T is strongly connected if, for every pair
of vertices x and y of T , there are directed paths from x to y and from
y to x . T is strongly k-connected if |T | > k and T remains strongly
connected after the removal of any k − 1 vertices.
Hamilton cycles in tournaments have a long and rich history. For in-

stance, one of the most basic results about tournaments is Camion’s theo-
rem, which states that every strongly connected tournament has a Hamil-
ton cycle [7]. This is strengthened by Moon’s theorem [16], which im-
plies that such a tournament is also pancyclic, i.e. contains cycles of all
possible lengths. Many related results have been proved; the monograph
by Bang-Jensen and Gutin [4] gives an overview which also includes
many recent results.
In 1982, Thomassen [18] made a very natural conjecture on how to

guarantee not just one Hamilton cycle, but many edge-disjoint ones: he
conjectured that for every k there is an f (k) so that every strongly f (k)-
connected tournament contains k edge-disjoint Hamilton cycles (see also
the recent surveys [3, 13]). This turned out to be surprisingly difficult:
not even the existence of f (2) was known so far. Our main result shows
that f (k) = O(k2 log2 k).

1 School of Mathematics, University of Birmingham, Birmingham B15 2TT, United Kingdom.
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Theorem 1 ([12]). There exists C > 0 such that for all k ∈ N with k ≥ 2
every strongly Ck2 log2 k-connected tournament contains k edge-disjoint
Hamilton cycles.
We also have a construction which shows that f (k) ≥ (k − 1)2/4, and

so our bound on the connectivity is asymptotically close to best possible.
Thomassen [18] observed that f (2) > 2 and conjectured that f (2) = 3.
He also observed that one cannot weaken the assumption in Theorem 1
by replacing strong connectivity with strong edge-connectivity.
We have made no attempt to optimize the value of the constant C in

Theorem 1: one can take C := 1012 for k ≥ 20. Rather than proving The-
orem 1 directly, we deduce it as an immediate consequence of two further
results, which are both of independent interest: we show that every suffi-
ciently highly connected tournament is highly linked (see Theorem 3) and
that every highly linked tournament contains many edge-disjoint Hamil-
ton cycles (see Theorem 2).

Linkedness in tournaments. Given sets A, B of size k in a strongly k-
connected digraph D, Menger’s theorem implies that D contains k vertex-
disjoint paths from A to B. A k-linked digraph is one in which we can
even specify the initial and final vertex of each such path. More precisely
a digraph D is k-linked if |D| ≥ 2k and whenever x1, . . . , xk, y1, . . . , yk
are 2k distinct vertices of D, there exist vertex-disjoint paths P1, . . . , Pk
such that Pi is a path from xi to yi .

Theorem 2 ([12]). There exists C ′ > 0 such that for all k ∈ N with k ≥
2 every C ′k2 log k-linked tournament contains k edge-disjoint Hamilton
cycles.
Similarly as for Theorem 1, the bound in Theorem 2 is asymptotically

close to best possible. Moreover, one can take C ′ := 107 for all k ≥ 20.
(As mentioned earlier, we have made no attempt to optimise the value of
this constant.)
It is not clear from the definition that every (very) highly connected

tournament is also highly linked. In fact, for general digraphs this is far
from true: Thomassen [20] showed that for all k there are strongly k-
connected digraphs which are not even 2-linked. On the other hand, he
showed that there is an (exponential) function g(k) so that every strongly
g(k)-connected tournament is k-linked [19]. Theorem 3 below shows that
we can take g(k) to be almost linear in k. Note that Theorem 3 together
with the construction mentioned earlier (showing that f (k) ≥ (k−1)2/4)
shows that Theorem 2 is asymptotically best possible up to logarithmic
terms.
Theorem 3 ( [12]). For all k ∈ N with k ≥ 2 every tournament that is
strongly 104k log k-connected is k-linked.
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For small k, the constant 104 can easily be improved. The proof of
Theorem 3 is based on a fundamental result of Ajtai, Komlós and Sze-
merédi [1,2] on the existence of asymptotically optimal sorting networks.
Though their result is asymptotically optimal, it is not clear whether this
is the case for Theorem 3. In fact, for the case of (undirected) graphs, a
deep result of Bollobás and Thomason [6] states that every 22k-connected
graph is k-linked (this was improved to 10k by Thomas andWollan [17]).
Thus one might believe that a similar relation also holds in the case of
tournaments:

Conjecture 4 ( [12]). There exists C > 0 such that for all k ∈ N every
strongly Ck-connected tournament is k-linked.

Similarly, we believe that the logarithmic terms can also be removed
in Theorems 1 and 2:

Conjecture 5 ([12]).

(i) There exists C ′ > 0 such that for all k ∈ N every C ′k2-linked tour-
nament contains k edge-disjoint Hamilton cycles.

(ii) There exists C ′′ > 0 such that for all k ∈ N every strongly C ′′k2-
connected tournament contains k edge-disjoint Hamilton cycles.

Note that Conjectures 4 and 5(i) together imply Conjecture 5(ii).

Algorithmic aspects. Both Hamiltonicity and linkedness in tournaments
have also been studied from an algorithmic perspective. Camion’s the-
orem implies that the Hamilton cycle problem (though NP-complete in
general) is solvable in polynomial time for tournaments. Chudnovsky,
Scott and Seymour [8] solved a long-standing problem of Bang-Jensen
and Thomassen [5] by showing that the linkedness problem is also solv-
able in polynomial time for tournaments. More precisely, for a given
tournament on n vertices, one can determine in time polynomial in n
whether it is k-linked and if yes, one can produce a corresponding set
of k paths (also in polynomial time). Fortune, Hopcroft and Wyllie [10]
showed that for general digraphs, the problem is NP-complete even for
k = 2.
We can use the result in [8] to obtain an algorithmic version of The-

orem 2. More precisely, given a C ′k2 log k-linked tournament on n ver-
tices, one can find k edge-disjoint Hamilton cycles in time polynomial in
n (where k is fixed).
Note that this immediately results in an algorithmic version of Theo-

rem 1.

Related results and spanning regular subgraphs. Our construction
showing that f (k) ≥ (k − 1)2/4 actually suggests that the ‘bottleneck’
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to finding k edge-disjoint Hamilton cycles is the existence of a k-regular
subdigraph. Indeed, the construction shows that if the connectivity of
a tournament T is significantly lower than in Theorem 1, then T may
not even contain a spanning k-regular subdigraph. There are other results
which exhibit this phenomenon: if T is itself regular, then Kelly’s conjec-
ture from 1968 states that T itself has a Hamilton decomposition. Kelly’s
conjecture was proved very recently (for large tournaments) by Kühn and
Osthus [14].
Erdős raised a ‘probabilistic’ version of Kelly’s conjecture: for a tour-

nament T , let δ0(T ) denote the minimum of the minimum out-degree and
the minimum in-degree. He conjectured that for almost all tournaments
T , the maximum number of edge-disjoint Hamilton cycles in T is ex-
actly δ0(T ). In particular, this would imply that with high probability,
δ0(T ) is also the degree of a densest spanning regular subdigraph in a
random tournament T . This conjecture of Erdős was proved by Kühn
and Osthus [15], based on the main result in [14].
It would be interesting to obtain further conditions which relate the

degree of the densest spanning regular subdigraph of a tournament T to
the number of edge-disjoint Hamilton cycles in T . For undirected graphs,
one such conjecture was made in [11]: it states that for any graph G
satisfying the conditions of Dirac’s theorem, the number of edge-disjoint
Hamilton cycles in G is exactly half the degree of a densest spanning
even-regular subgraph of G. An approximate version of this conjecture
was proved by Ferber, Krivelevich and Sudakov [9], see e.g. [11, 15] for
some related results.
The methods used in the current paper are quite different from those

used e.g. in the above results. A crucial ingredient is the construction of
highly structured dominating sets.

1 Sketch of the proof of Theorem 2

In this section, we give an outline of the proof of Theorem 2. An impor-
tant idea is the notion of a ‘covering edge’. Let T be a tournament, let
x ∈ V (T ), and suppose C is a cycle in T covering T − x . If yz ∈ E(C)
and yx, xz ∈ E(T ), then we can replace yz by yxz in C to turn C into
a Hamilton cycle. We call yz a covering edge for x . More generally, if
S ⊆ V (T ) and C is a cycle in T spanning V (T )− S, then if C contains
a covering edge for each x ∈ S then we can turn C into a Hamilton cycle
by using all these covering edges. Note that this idea still works if C
covers some part of S.
The following consequence of the Gallai-Milgram theorem is another

important tool: suppose that G is an oriented graph on n vertices with
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δ(G) ≥ n − 
. Then the vertices of G can be covered with 
 vertex-
disjoint paths. We use this as follows: suppose we are given a highly
linked tournament T and have already found i edge-disjoint Hamilton
cycles in T . Then the Gallai-Milgram theorem implies that we can cover
the vertices of the remaining oriented graph by a set of 2i + 1 vertex-
disjoint paths. Very roughly, the aim is to link together these paths using
the high linkedness of the original tournament T .
As above, suppose that we have already found i edge-disjoint Hamil-

ton cycles in a highly linked tournament T . Let T ′ be the oriented sub-
graph of T obtained by removing the edges of these Hamilton cycles. Set
t = 2i + 1 and suppose that we also have the following ‘linked domi-
nating structure’, L ⊆ T ′, which is found at the outset of the proof using
the assumption that T is highly linked. L consists of the vertices and
edges of:

• small disjoint transitive out-dominating sets A1, . . . , At ;
• small disjoint transitive in-dominating sets B1, . . . , Bt ;
• a set of short vertex-disjoint paths P1, . . . , Pt , where each P
 is a path
from the sink of B
 to the source of A
.

Here, we define A
 to be a transitive out-dominating set if T [A
] is transi-
tive and if every vertex of V (T )\ A
 receives an edge from A
. Transitive
in-dominating sets are similarly defined.
Since δ(T ′ −V (L)) ≥ n−1−2i = n− t , the Gallai-Milgram theorem

implies that we can cover the vertices of T ′ −V (L) with t vertex-disjoint
paths Q1, . . . , Qt . Now, using the dominating sets in our ‘linked domi-
nating structure’, we can extend Q1, . . . , Qt into L , and if this is done in
the right way, then we can link up all the paths Q1, . . . , Qt and P1, . . . , Pt
into a single cycle C which covers all vertices outside V (L) (and some
of the vertices inside V (L)). In our construction, we will ensure that the
paths P
 contain a set of covering edges for V (L). So C also contains
covering edges for V (L), and so we can transform C into a Hamilton
cycle as discussed earlier.
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Proof of the 1-factorization
and Hamilton decomposition conjectures

Béla Csaba1, Daniela Kühn2, Allan Lo2, Deryk Osthus2

and Andrew Treglown3

Abstract. We prove the following results (via a unified approach) for all suffi-
ciently large n:
(i) [1-factorization conjecture] Suppose that n is even and D ≥ 2�n/4�− 1.

Then every D-regular graph G on n vertices has a decomposition into
perfect matchings. Equivalently, χ ′(G) = D.

(ii) [Hamilton decomposition conjecture] Suppose that D ≥ �n/2�. Then ev-
ery D-regular graph G on n vertices has a decomposition into Hamilton
cycles and at most one perfect matching.

(iii) [Optimal packings of Hamilton cycles] Suppose that G is a graph on n
vertices with minimum degree δ ≥ n/2. Then G contains at least (n −
2)/8 edge-disjoint Hamilton cycles.

According to Dirac, (i) was first raised in the 1950’s. (ii) and (iii) answer questions
of Nash-Williams from 1970. All of the above bounds are best possible.

1 Introduction
In a sequence of four papers [5, 6, 11, 12], we provide a unified approach
towards proving three long-standing conjectures for all sufficiently large
graphs. Firstly, the 1-factorization conjecture, which can be formulated
as an edge-colouring problem; secondly, the Hamilton decomposition
conjecture, which provides a far-reaching generalization of Walecki’s
result [15] that every complete graph of odd order has a Hamilton de-
composition and thirdly, a best possible result on packing edge-disjoint
Hamilton cycles in Dirac graphs. The latter two were raised by Nash-
Williams [17–19] in 1970. A key tool is the recent result of Kühn and
Osthus [13] that every dense even-regular robustly expanding graph has
a Hamilton decomposition.

1.1 The 1-factorization conjecture
Vizing’s theorem states that for any graph G of maximum degree �, its
edge-chromatic number χ ′(G) is either � or � + 1. In general, it is a
very difficult problem to determine which graphs G attain the (trivial)
lower bound � – much of the recent book [22] is devoted to the subject.
For regular graphs G, χ ′(G) = �(G) is equivalent to the existence of a
1-factorization: a 1-factorization of a graph G consists of a set of edge-
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disjoint perfect matchings covering all edges of G. The long-standing 1-
factorization conjecture states that every regular graph of sufficiently high
degree has a 1-factorization. It was first stated explicitly by Chetwynd
and Hilton [1, 3] (who also proved partial results). However, they state
that according to Dirac, it was already discussed in the 1950’s.
Theorem 1.1. There exists an n0 ∈ N such that the following holds. Let
n, D ∈ N be such that n ≥ n0 is even and D ≥ 2�n/4� − 1. Then every
D-regular graph G on n vertices has a 1-factorization. Equivalently,
χ ′(G) = D.
The bound on the degree in Theorem 1.1 is best possible. To see this,

suppose first that n=2 (mod 4). Consider the graph which is the disjoint
union of two cliques of order n/2 (which is odd). If n=0 (mod 4), con-
sider the graph obtained from the disjoint union of cliques of orders n/2−
1 and n/2+1 (both odd) by deleting a Hamilton cycle in the larger clique.
Note that Theorem 1.1 implies that for every regular graph G on an

even number of vertices, either G or its complement has a 1-factorization.
Also, Theorem 1.1 has an interpretation in terms of scheduling round-
robin tournaments (where n players play all of each other in n−1 rounds):
one can schedule the first half of the rounds arbitrarily before one needs
to plan the remainder of the tournament.
The best previous result towards Theorem 1.1 is due to Perkovic and

Reed [20], who proved an approximate version, i.e. they assumed that
D ≥ n/2 + εn. This was generalized by Vaughan [23] to multigraphs
of bounded multiplicity. Indeed, he proved an approximate version of
the following multigraph version of the 1-factorization conjecture which
was raised by Plantholt and Tipnis [21]: Let G be a regular multigraph
of even order n with multiplicity at most r . If the degree of G is at least
rn/2 then G is 1-factorizable.
In 1986, Chetwynd and Hilton [2] made the following ‘overfull sub-

graph’ conjecture, which also generalizes the 1-factorization conjecture.
Roughly speaking, this says that a dense graph satisfies χ ′(G) = �(G)
unless there is a trivial obstruction in the form of a dense subgraph H on
an odd number of vertices. Formally, we say that a subgraph H of G is
overfull if e(H) > �(G)�|H |/2� (note this requires |H | to be odd).
Conjecture 1.2. A graph G on n vertices with �(G) ≥ n/3 satisfies
χ ′(G) = �(G) if and only if G contains no overfull subgraph.
This conjecture is still wide open – partial results are discussed in

[22], which also discusses further results and questions related to the
1-factorization conjecture.

1.2 The Hamilton decomposition conjecture
Rather than asking for a 1-factorization, Nash-Williams [17,19] raised the
more difficult problem of finding a Hamilton decomposition in an even-
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regular graph. Here, a Hamilton decomposition of a graph G consists
of a set of edge-disjoint Hamilton cycles covering all edges of G. A
natural extension of this to regular graphs G of odd degree is to ask for
a decomposition into Hamilton cycles and one perfect matching (i.e. one
perfect matching M in G together with a Hamilton decomposition of
G − M). The following result solves the problem of Nash-Williams for
all large graphs.
Theorem 1.3. There exists an n0 ∈ N such that the following holds. Let
n, D ∈ N be such that n ≥ n0 and D ≥ �n/2�. Then every D-regular
graph G on n vertices has a decomposition into Hamilton cycles and at
most one perfect matching.
Again, the bound on the degree in Theorem 1.3 is best possible. Previ-

ous results include the following: Nash-Williams [16] showed that the de-
gree bound in Theorem 1.3 ensures a single Hamilton cycle. Jackson [8]
showed that one can ensure close to D/2 − n/6 edge-disjoint Hamilton
cycles. Christofides, Kühn and Osthus [4] obtained an approximate de-
composition under the assumption that D ≥ n/2 + εn. Under the same
assumption, Kühn and Osthus [14] obtained an exact decomposition (as
a consequence of their main result in [13] on Hamilton decompositions
of robustly expanding graphs).
Note that Theorem 1.3 does not quite imply Theorem 1.1, as the degree

threshold in the former result is slightly higher.
A natural question is whether one can extend Theorem 1.3 to sparser

(quasi)-random graphs. Indeed, for random regular graphs of bounded
degree this was proved by Kim and Wormald [9] and for (quasi-)random
regular graphs of linear degree this was proved in [14] as a consequence
of the main result in [13]. However, the intermediate range remains open.

1.3 Packing Hamilton cycles in graphs of large minimum degree
Although Dirac’s theorem is best possible in the sense that the minimum
degree condition δ ≥ n/2 is best possible, the conclusion can be strength-
ened considerably: a remarkable result of Nash-Williams [18] states that
every graph G on n vertices with minimum degree δ(G) ≥ n/2 contains
�5n/224� edge-disjoint Hamilton cycles. He raised the question of find-
ing the best possible bound, which we answer below for all large graphs.

Theorem 1.4. There exists an n0 ∈ N such that the following holds. Sup-
pose that G is a graph on n ≥ n0 vertices with minimum degree δ ≥ n/2.
Then G contains at least (n − 2)/8 edge-disjoint Hamilton cycles.
The following construction (which is based on a construction of Babai,

see [17]) shows that the bound is best possible for n = 8k + 2, where
k ∈ N. Consider the graph G consisting of one empty vertex class A of
size 4k, one vertex class B of size 4k + 2 containing a perfect matching
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and no other edges, and all possible edges between A and B. Thus G has
order n = 8k + 2 and minimum degree 4k + 1 = n/2. Any Hamilton
cycle in G must contain at least two edges of the perfect matching in B,
so G contains at most �|B|/4� = k = (n − 2)/8 edge-disjoint Hamilton
cycles.
A more general question is to ask for the number of edge-disjoint

Hamilton cycles one can guarantee in a graph G of minimum degree
δ. This number has been determined exactly by Kühn, Lapinskas and
Osthus [10] unless G is close to one of the extremal graphs for Dirac’s
theorem (i.e. unless G is close to the complete balanced bipartite graph
or close to the union of two disjoint copies of a clique). In particu-
lar, the number of edge-disjoint Hamilton cycles one can guarantee is
known exactly whenever δ ≥ n/2 + εn. This improves earlier results
of Christofides, Kühn and Osthus [4] as well as Hartke and Seacrest [7].
Actually, our proof of Theorem 1.4 also settles the cases when G is close
to the extremal graphs for Dirac’s theorem. So altogether this solves the
problem for all values of δ.

2 Overview of the proofs of Theorems 1.1 and 1.3

The proofs develop methods established by Kühn and Osthus [13], who
proved a generalization of Kelly’s conjecture that every regular tourna-
ment has a Hamilton decomposition (for large tournaments). For all three
of our main results, we split the argument according to the structure of
the graph G under consideration:
(i) G is close to the complete balanced bipartite graph Kn/2,n/2;
(ii) G is close to the union of two disjoint copies of a clique Kn/2;
(iii) G is a ‘robust expander’.
Informally, a graph G is a robust expander if for every set S ⊆ V (G)
which is not too large or too small, its neighbourhood is substantially
larger than |S|, even if we delete a small proportion of the edges of G. In
other words, G is an expander graph which is ‘locally resilient’. The main
result of [13] states that every dense regular robust expander has a Hamil-
ton decomposition. This immediately implies Theorems 1.1 and 1.3 in
Case (iii).
Suppose we are going to prove Theorem 1.3 in the case when D is

even. So our aim is to decompose G into D/2 edge-disjoint Hamilton
cycles. As mentioned above, we may assume that G is in either Case (i)
or Case (ii). In [6], we find an approximate Hamilton decomposition of
G in both cases, i.e. a set of edge-disjoint Hamilton cycles covering al-
most all edges of G. However, one does not have any control over the
‘leftover’ graph H , which makes a complete decomposition seem infea-
sible. This problem was overcome in [13] by introducing the concept of
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a ‘robustly decomposable graph’ Grob. Roughly speaking, this is a sparse
regular graph with the following property: given any very sparse regular
graph H with V (H) = V (Grob) which is edge-disjoint from Grob, one
can guarantee that Grob ∪ H has a Hamilton decomposition. This leads
to a natural (and very general) strategy to obtain a decomposition of G:

(1) find a (sparse) robustly decomposable graph Grob in G and let G ′
denote the leftover;

(2) find an approximate Hamilton decomposition ofG ′ and let H denote
the (very sparse) leftover;

(3) find a Hamilton decomposition of Grob ∪ H .

It is of course far from clear that one can always find such a graph Grob,
especially in Case (ii) where G is close to being disconnected. In [5], we
find Grob for Case (i). In [11,12], we find Grob for Case (ii).
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Regular hypergraphs: asymptotic counting
and loose Hamilton cycles

Andrzej Dudek1, Alan Frieze2, Andrzej Ruciński3 and Matas Šileikis4

Abstract. We present results from two papers by the authors on analysis of d-
regular k-uniform hypergraphs, when k is fixed and the number n of vertices tends
to infinity. The first result is approximate enumeration of such hypergraphs, pro-
vided d = d(n) = o(nκ ), where κ = κ(k) = 1 for all k ≥ 4, while κ(3) = 1/2.
The second result is that a random d-regular hypergraph contains as a dense sub-
graph the uniform random hypergraph (a generalization of the Erdős-Rényi uni-
form graph), and, in view of known results, contains a loose Hamilton cycle with
probability tending to one.

1. Regular k-graphs and k-multigraphs. We consider k-uniform hy-
pergraphs (or k-graphs, for short) on the vertex set V =[n] :={1, . . . , n},
that is, families of k-element subsets of V . A k-graph H is d-regular, if
the degree of every vertex v∈V , degH (v) :=deg(v) := | {e∈H : v∈e} |
equals d.
Let H(k)(n, d) be the class of all d-regular k-graphs on [n]. Note that

each H ∈ H(k)(n, d) has M := nd/k edges (throughout, we implic-
itly assume that k divides nd). Let H(k)(n, d) be a k-graph chosen from
H(k)(n, d) uniformly at random. We treat d as a function of n (possibly
constant) and studyH(k)(n, d) as well as H(k)(n, d) as n tends to infinity.
By a k-multigraph on the vertex set [n] we mean a multiset of k-

element multisubsets of [n]. An edge is called a loop if it contains more
than one copy of some vertex and otherwise it is called a proper edge. A
k-multigraph is simple, if it is a k-graph.
A standard tool to study regular (hyper)graphs is the so called config-

uration model of a random k-multigraph (see [10] for k = 2; its general-
ization to every k is straightforward). We use a slightly different model
yielding the same distribution of k-multigraphs. Let S ⊂ [n]nd be the
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family of all sequences in which every value i ∈ [n] occurs precisely d
times. Let Y = (Y1, . . . ,Ynd) be a sequence chosen from S uniformly at
random, and define H(k)∗ (n, d) as a k-multigraph with the edge set

{Yki+1 . . .Yki+k : i = 0, . . . , nd − 1} .
2. The switching. The essential tool in both papers presented here is
the so called switching technique, introduced by McKay [8] for asymp-
totic enumeration of regular graphs. McKay and Wormald [9] improved
McKay’s result by applying a more advanced version of switching, which
we extend to hypergraphs as follows.
Let us view sequences S as ordered k-multigraphs (that is, k-multi-

graphs with an ordering of edges). Let El ⊂ S be the family of sequences
with no multiple edges and exactly l loops, but no loops with less than
k − 1 distinct vertices. Thus, every loop in such a k-multigraph has only
one multiple vertex, which has multiplicity two.
The switching is an operation which maps a sequence x ∈ El to y ∈

El−1 as follows. Choose a loop f and two proper edges e1, e2. Select
a vertex v ∈ e1 \ e2 as well as a vertex w ∈ e2 \ e1. Suppose that u
is the multiple vertex of f . Swap v with one copy of u and w with the
other. The effect of this is that edges f, e1, e2 in x are replaced with the
following three edges in y

f \ {u, u} ∪ {v,w}, e1 \ {v} ∪ {u} , e2 \ {w} ∪ {u} .
3. Counting Regular Hypergraphs. In [5] we approximately count
d-regular k-graphs. Since |S| = (nd)!/(d!)n and every every simple
k-graph is given by exactly M!(k!)M sequences in S, the number of d-
regular k-graphs is precisely

|H(k)(n, d)| = (nd)!
M!(k!)M(d!)n P

(
H(k)
∗ (n, d) is simple

)
.

Therefore the problem of asymptotic enumeration reduces to a the analy-
sis of the probability. For graphs, that is, k = 2, this has been well studied
(see [10]). For general k but fixed d, Cooper, Frieze, Molloy and Reed [1]
showed that the probability converges to exp {−(k − 1)(d − 1)/2}. In [5]
we extend this to the following formula. Let κ(k) = 1, if k ≥ 4 and
κ(3) = 1/2.
Theorem 1. For k ≥ 3 and 1 ≤ d = o(nκ(k)) we have

P
(
H(k)
∗ (n, d) is simple

) = exp{−(k − 1)(d − 1)
2

+ O

(
d2

n
+

√
d

n

)}
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The proof of Theorem 1 is simplified by the fact (shown in [5]) that a ran-
domly chosen sequenceY ∈ S with probability tending to one belongs to
El with a reasonably small l. This allows us to reduce the analysis of the
probability to estimating the ratios |El |/|El−1|. This is done by bounding
the number of ways one can apply switching to a sequence. The proof
works because, as it turns out, the number of possible switchings de-
pends essentially on the number of loops, but not on the structure of the
sequence.

4. Hamilton Cycles in Regular Hypergraphs. Let us recall that for
integer m ∈ [0, (nk)], H(k)(n,m) is the random graph chosen uniformly at
random among k-graph on [n] with precisely m edges.
Our main result in [6] is that we can couple H(k)(n, d) and H(k)(n,m)

so that the latter is a subgraph of the former with probability tending to
one.

Theorem 2. For every k ≥ 3, there are positive constants c and C
such that if d ≥ C log n, d = o(n1/2) and m = �cM� = �cnd/k�,
then one can define a joint distribution of random graphs H(k)(n, d) and
H(k)(n,m) in such a way that

P
(
H(k)(n,m) ⊂ H(k)(n, d)

)→ 1, n→∞.

The idea of the proof is as follows. Sincem is a fraction of M , we are able
to coupleH(k)(n,m) withH(k)∗ (n, d) (treated as an ordered k-multigraph)
in such a way that with probability tending to oneH(k)(n,m) is contained
in an initial segment of H(k)∗ (n, d), which we colour red. Then we swap
all red loops ofH(k)∗ (n, d) with randomly selected non-red (green) proper
edges. Finally, we destroy the green loops ofH(k)∗ (n, d) one by one apply-
ing a randomly chosen switching which involves green edges only. This
does not destroy the previously embedded copy ofH(k)(n,m). Moreover,
it transforms H(k)∗ (n, d) into a k-graph H̃(k)(n, d), which is distributed
approximately as H(k)(n, d), that is, almost uniformly. Theorem 2 then
follows by a (maximal) coupling of H̃(k)(n, d) and H(k)(n, d).
A loose Hamilton cycle on a vertex set V is a set of edges e1, . . . , es

such that for some cyclic order of V each ei consists of k consecutive
vertices and |ei ∩ ei+1| = 1 for i = 1, . . . , s, with es+1 = e1. For k = 2
this coincides with the standard notion of a Hamilton cycle.
Asymptotic hamiltonicity for graphs has been intensely investigated

since 1978 and rather recently was established in full generality for every
d ≥ 3, both fixed and growing with n (see [2] and references in it).
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As for general k, this has been known for some simpler models of
random k-graphs. From results of Frieze [7], Dudek and Frieze [3] as
well as Dudek, Frieze, Loh and Speiss [4], it follows that H(k)(n,m)
contains a loose Hamilton cycle when the expected degree of a vertex
grows faster than log n. This, combined with Theorem 2, implies the
following fact.

Corollary 3. Suppose that d = o(n1/2). If k = 3 and d ≥ C log n for
large constant C or k ≥ 4 and log n = o(d), then

P
(
H(k)(n, d) contains a loose Hamilton cycle

)→ 1, n→∞.
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Dynamic concentration
of the triangle-free process

Tom Bohman1 and Peter Keevash2

Abstract. The triangle-free process begins with an empty graph on n vertices and
iteratively adds edges chosen uniformly at random subject to the constraint that no
triangle is formed. We determine the asymptotic number of edges in the maximal
triangle-free graph at which the triangle-free process terminates. We also bound
the independence number of this graph, which gives an improved lower bound
on Ramsey numbers: we show R(3, t) > (1/4 − o(1))t2/ log t , which is within
a 4 + o(1) factor of the best known upper bound. Furthermore, we determine
which bounded size subgraphs are likely to appear in the maximal triangle-free
graph produced by the triangle-free process: they are precisely those triangle-free
graphs with maximal average density at most 2.

1 Introduction

Constrained random graph processes provide an interesting class of ran-
dom graph models and a natural source for constructions in graph theory.
Although the dependencies introduced by the constraints make such pro-
cesses difficult to analyse, the evidence to date suggests that they are par-
ticularly useful for producing graphs of interest for certain extremal prob-
lems. Here we consider the triangle-free random graph process, which
is defined by sequentially adding edges, starting with the empty graph,
chosen uniformly at random subject to the constraint that no triangle is
formed.
This process was introduced by Bollobás and Erdős (see [7]), and first

analysed by Erdős, Suen and Winkler [10], using a differential equations
method introduced by Ruciński and Wormald [17] for the analysis of the
constrained graph process known as the ‘d-process’. One motivation for
their work was that their analysis of the triangle-free process led to the
best lower bound on the Ramsey number R(3, t) known at that time. The
Ramsey number R(s, t) is the least number n such that any graph on

1 Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
Email: tbohman@math.cmu.edu. Research supported in part by NSF grants DMS-1001638 and
DMS-1100215.

2 School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London
E1 4NS, UK. Email: p.keevash@qmul.ac.uk. Research supported in part by ERC grant 239696 and
EPSRC grant EP/G056730/1.



490 Tom Bohman and Peter Keevash

n vertices contains a complete graph with s vertices or an independent
set with t vertices. In general, very little is known about these num-
bers, even approximately. The upper bound R(3, t) = O(t2/ log t) was
obtained by Ajtai, Komlós and Szemerédi [1], but for many years the
best known lower bound, due to Erdős [9], was �(t2/ log2 t). The or-
der of magnitude was finally determined by Kim [13], who showed that
R(3, t) = �(t2/ log t). He employed a semi-random construction that is
loosely related to the triangle-free process, thus leaving open the question
of whether the triangle-free process itself achieves this bound; this was
conjectured by Spencer [19] and proved by Bohman [3]. There is now
a large literature on the general H -free process, obtained by replacing
‘triangle’ by any fixed graph H in the definition; see [6,8,15,16,22–25].
However, the theory is still in its early stages: we conjectured that our
lower bound for H strictly 2-balanced, given in [6], gives the correct or-
der of magnitude for the length of the process, but so far this has only
been proved for some special graphs.
In this paper we specialise to the triangle-free process, where we can

now give an asymptotically optimal analysis. Our improvement on pre-
vious analyses of this process exploits the self-correcting nature of key
statistics of the process.
Let G be the maximal triangle-free graph at which the triangle-free

process terminates.

Theorem 1.1. Whp every vertex of G has degree (1+ o(1))
√
1
2n log n.

We also obtain the following bound on the size of any independent set
in G.

Theorem 1.2. Whp G has independence number at most
(1+ o(1))

√
2n log n.

An immediate consequence is the following new lower bound on Ramsey
numbers. The best known upper bound is R(3, t) < (1 + o(1)) t2

log t , due
to Shearer [18].

Theorem 1.3. R(3, t) >
(
1
4 − o(1)

)
t2

log t .

These results are predicted by a simple heuristic: the graph G(i) after i
steps of the triangle-free process should resemble the Erdős-Rényi ran-
dom graph Gn,p with i = n2 p/2, with the exception that Gn,p has many
triangles while G(i) has none. We also show that this heuristic extends to
all small subgraph counts; in particular, we answer the question of which
subgraphs appear in G. Suppose H is a graph with at least 3 vertices.
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The average density of H is d(H) = |EH |
|VH | . The maximum average den-

sity m(H) of H is the maximum of d(H ′) over nonempty subgraphs H ′
of H .

Theorem 1.4. Let H be a triangle-free graph with at least 3 vertices.

(i) If m(H) ≤ 2 then P(H ⊆ G) = 1− o(1).
(ii) If m(H) > 2 then P(H ⊆ G) = o(1).

Thus, the small subgraphs that are likely to appear in G are exactly
the same as the triangle-free subgraphs that appear in the corresponding
Gn,p.

2 Overview of the proof

We are guided by the heuristic that G(i) resembles Gn,p with i = n2 p/2.
We introduce a continuous time that scales as t = in−3/2. Note that
p = 2tn−1/2. We define Q(i) to be the number of open ordered pairs
in G(i). This variable is crucial to our understanding of the process: we
have Q(0) = n2 − n, and the process ends when Q(i) = 0. How do
we expect Q(i) to evolve? If G(i) resembles Gn,p then for any pair uv

we should have P(uv ∈ O(i)) ≈ (
1− p2

)n−2 ≈ e−np2 = e−4t2 . We set
q(t) = e−4t2n2 and expect to have Q(i) ≈ q(t) for most of the evolution
of the process. This is exactly what we prove.

2.1 Strategy

We use dynamic concentration inequalities for a carefully chosen ensem-
ble of random variables associated with the process. We show V (i) ≈
v(t) for all variables V in the ensemble, for some smooth function v(t),
which we refer to as the scaling of V . Here V (i) denotes the value of
V after i steps of the process. For each V we define a tracking vari-
able T V (i) and show that DV (i) = V (i) − T V (i) satisfies |DV (i)| <
eV (t)v(t), for some error functions eV (t). We use T V (i) rather than v(t)
so that we can isolate variations in V from variations in other variables
that have an impact on V .
The improvement to earlier analysis of the process comes from ‘self-

correction’, i.e. the mean-reverting properties of the system of variables.
We take eV (t) = fV (t) + 2gV (t), where we think of fV (t) as the ‘main
error term’ and gV (t) as the ‘martingale deviation term’. We usually have
gV ) fV , but there are some exceptions when t is small and hence fV (t)
is too small. We require gV (t)v(t) to be ‘approximately non-increasing’
in t , in that gV (t ′)v(t ′) = O(gV (t)v(t)) for all t ′ ≥ t . We define the
critical window WV (i) = [( fV (t) + gV (t))v(t), ( fV (t) + 2gV (t))v(t)].
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We prove the trend hypothesis: ZV (i) := |DV (i)| − eV (t)v(t) is a su-
permartingale when |DV (i)| ∈ WV (i). The trend hypothesis will follow
from the variation equation for eV (t), which balances the changes in
DV (i) and eV (t)v(t). Since errors can transfer from one variable to an-
other, each variation equation is a differential inequality that can involve
many of the error functions.
We track the process up to the time tmax = 1

2

√
(1/2− ε) log n. If the

tracking fails, then there is some i∗ ≤ imax and a variable V such that
DV (i) enters WV (i ′) from below at some step i ′ < i∗, stays in WV (i) for
i ′ ≤ i ≤ i∗ then goes above WV (i∗) at step i∗. During this time ZV (i)
is a supermartingale, with ZV (i ′) ≤ −gV (t ′)v(t ′) and ZV (i∗) ≥ 0, so
we have an increase of at least gV (t ′)v(t ′) against the drift of the super-
martingale. We can estimate the probability of this event using Freed-
man’s martingale inequality [11], provided that we have good estimates
on VarV (t) = Var(ZV (i) | Fi−1) and NV (t) = |ZV (i + 1)− ZV (i)|;
we refer to this as the boundedness hypothesis. Thus it suffices to verify
the trend and boundedness hypotheses for all variables.

2.2 Variables

All definitions are with respect to the graph G(i). Sometimes we use
a variable name to also denote the set that it counts, e.g. Q(i) is the
number of ordered open pairs, and also denotes the set of ordered open
pairs. We usually omit (i) and (t) from our notation, e.g. Q means
Q(i) and q means q(t). We use capital letters for variable names and
the corresponding lower case letter for the scaling. We express scal-
ings using the (approximate) edge density and open pair density, namely
p = 2in−2 = 2tn−1/2 and q̂ = e−4t2 .
The next most important variable in our analysis, after the variable Q

defined above, is the variable Yuv which, for a fixed pair of vertices uv,
is the number of vertices w such that uw is an open pair and vw is an
edge. It is natural that Yuv should play an important role in this analysis,
as when the pair uv is added as an edge, the number of open edges that
become closed is exactly Yuv + Yvu . The motivation for introducing the
ensembles of variables defined below is as follows: control of the global
variables is needed to get good control of Q, control of the stacking vari-
ables is needed to get good control of Yuv, and controllable variables play
a crucial role in our analysis of the stacking variables.
The global variables consist of Q, R and S, where Q = 2|O(i)| is the

number of ordered open pairs, R is the number of ordered triples with
3 open pairs, and S is the number of ordered triples abc where ab is an
edge and ac, bc are open pairs.
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The stacking variables are built from four basic building blocks: Xu
is the number of vertices ω such that uω is open, Yu is the number of
vertices ω such that uω is an edge, Xuv is the number of vertices w such
that uw and vw are open pairs, Yuv is the number of vertices w such that
uw is an open pair and vw is an edge. We defer the exact definition to the
full version of the paper, but roughly speaking, the idea is that the relative
errors in these variables decrease as the number of steps increases, so that
after a large constant number of steps they are essentially global.
Finally, we formulate a very general condition under which we have

some control on a variable. Suppose � is a graph, J is a spanning sub-
graph of � and A ⊆ V�. We refer to (A, J, �) as an extension. Suppose
that φ : A → [n] is an injective mapping. We define the extension
variables Xφ,J,�(i) to be the number of injective maps f : V� → [n]
such that f restricts to φ on A, f (e) ∈ E(i) for every e ∈ EJ not con-
tained in A, and f (e) ∈ O(i) for every e ∈ E� \ EJ not contained in
A. We introduce the abbreviations V = Xφ,J,�, n(V ) = |V�| − |A|,
e(V ) = eJ − eJ [A], and o(V ) = (e� − eJ )− (e�[A] − eJ [A]). The scaling
is v = xA,J,� = nn(V ) pe(V )q̂o(V ). We expect V ≈ v, provided there is no
subextension that is ‘sparse’, in that it has scaling much smaller than 1.
Given A ⊆ B ⊆ B ′ ⊆ V� we define SB

′
B = SB

′
B (J, �) to equal

n|B
′|−|B| peJ [B′]−eJ [B] q̂(e�[B′]−eJ [B′])−(e�[B]−eJ [B]).

Let t ′ ≥ 1. We say that V is controllable at time t ′ if J �= � (i.e. at
least one pair is open) and for 1 ≤ t ≤ t ′ and A � B ⊆ V� we have
SBA (J, �) ≥ nδ, where δ > 0 is a fixed global parameter that is suffi-
ciently small given ε. (This condition is essentially identical to the con-
dition needed to prove concentration of subgraphs counts in Gn,p using
Kim-Vu polynomial concentration [14].)

3 Concluding remarks

We have determined R(3, t) to within a factor of 4+ o(1), so we should
perhaps hazard a guess for its asymptotics: we are tempted to believe
the construction rather than the bound, i.e. that R(3, t) ∼ t2/4 log t . We
should note that we only have an upper bound on the independence num-
ber of the graph G produced by the triangle-free process. So, formally
speaking, the triangle-free process could produce a graph that gives a bet-
ter lower bound on R(3, t). But we believe that this is not the case; that
is, we conjecture that the bound on the independence number in Theorem
1.2 is asymptotically best possible.
Our method for establishing self-correction builds on ideas used re-

cently by Bohman, Frieze and Lubetzky [5] for an analysis of the triangle-
removal process (see also [4] for a simpler context). Furthermore, the
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results of this paper have also been obtained independently and simulta-
neously by Fiz Pontiveros, Griffiths and Morris; their proof also exploits
self-correction, but is different to ours in some important ways.
Another natural direction for future research is to provide an asymp-

totically optimal analysis in greater generality for the H -free process. No
doubt the technical challenges will be formidable, given the difficulties
that arise in the case of triangles. But on an optimistic note, it is encour-
aging that one can build on two different proofs of this case.
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[10] P. ERDŐS, S. SUEN and P. WINKLER, On the size of a random
maximal graph, Random Structures Algorithms 6 (1995), 309–318.

[11] D. A. FREEDMAN, On tail probabilities for martingales, Ann.
Probability 3 (1975), 100–118.

[12] S. GERKE and T. MAKAI, No dense subgraphs appear in the
triangle-free graph process, Electron. J. Combin. 18 (2011), R168.

[13] J. H. KIM, The Ramsey number R(3, t) has order of magnitude
t2/ log t , Random Structures Algorithms 7 (1995), 173–207.

[14] J. H. KIM and V. H. VU, Concentration of multivariate polynomi-
als and its applications, Combinatorica 20 (2000) 417–434.



495 Dynamic concentration of the triangle-free process

[15] D. OSTHUS and A. TARAZ, Random maximal H -free graphs, Ran-
dom Structures Algorithms 18 (2001), 61–82.

[16] M. PICOLLELLI, The final size of the C4-free process, Combin.
Probab. Comput. 20 (2011), 939–955.
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Subcubic triangle-free graphs have
fractional chromatic number at most 14/5

Zdeněk Dvořák1, Jean-Sébastien Sereni2 and Jan Volec3

Abstract. We show that every subcubic triangle-free graph has fractional chro-
matic number at most 14/5, thus confirming a conjecture of Heckman and Thomas
[A new proof of the independence ratio of triangle-free cubic graphs. Discrete
Math. 233 (2001), 233–237].

1 Introduction

One of the most celebrated results in Graph Theory is the Four-Color
Theorem (4CT), which states that every planar graph is 4-colorable. It
was proved by Appel and Hacken [3, 4] in 1977 and, about twenty years
later, Robertson, Sanders, Seymour and Thomas [17] found a new (and
much simpler) proof. However, both of the proofs require a computer
assistance, and finding a fully human-checkable proof is still one of the
main open problems in Graph Theory. An immediate corollary of the
4CT implies that every n-vertex planar graph contains an independent set
of size n/4 (this statement is sometimes called the Erdős-Vizing conjec-
ture). Although this seems to be an easier problem than the 4CT itself,
no proof without the 4CT is known. The best known result that does
not use the 4CT is due to Albertson [1], who showed the existence of an
independent set of size 2n/9.
An intermediate step between the 4CT and the Erdős-Vizing conjecture

is the fractional version of the 4CT— every planar graph is fractionally 4-
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colorable. In fact, fractional colorings were introduced in 1973 [12] as an
approach for either disproving, or giving more evidence to the 4CT. For a
real number k, a graph G is fractionally k-colorable, if for every assign-
ment of weights to its vertices there is an independent set that contains
at least (1/k)-fraction of the total weight. In particular, every fraction-
ally k-colorable graph on n vertices contains an independent set of size at
least n/k. The existence of independent sets of certain ratios in subcubic
graphs, i.e., graphs with maximum degree at most 3, led Heckman and
Thomas to pose the following two conjectures.

Conjecture 1.1 (Heckman and Thomas [10]). Every subcubic triangle-
free graph is fractionally 14/5-colorable.

Conjecture 1.2 (Heckman and Thomas [11]). Every subcubic triangle-
free planar graph is fractionally 8/3-colorable.

Note that a graph is called triangle-free if it does not contain a triangle
as a subgraph. Here we want to announce the confirmation of Conjec-
ture 1.1. The manuscript of our result is available on arXiv [5].
Unlike for general planar graphs, colorings of triangle-free planar

graphs are well understood. Already in 1959, Grötzsch [8] proved that
every triangle-free planar graph is 3-colorable. Therefore, such a graph
on n vertices has to contain an independent set of size n/3. In 1976, Al-
bertson, Bollobás and Tucker [2] conjectured that a triangle-free planar
graph also has to contain an independent set of size strictly larger than
n/3.
Their conjecture was confirmed in 1993 by Steinberg and Tovey [19],

even in a stronger sense: such a graph admits a 3-coloring where at least
�n/3� + 1 vertices have the same color. On the other hand, Jones [13]
found an infinite family of triangle-free planar graphs with maximum de-
gree four and no independent set of size �n/3� + 2. However, if the
maximum degree is at most three, then Albertson et al. [2] conjectured
that an independent set of size much larger than n/3 exists. Specifically,
they asked whether there is a constant s ∈ (

1
3 ,

3
8

]
, such that every subcu-

bic triangle-free planar graph contains an independent set of size sn. We
note that for s > 3/8 the statement would not be true.
The strongest possible variant of this conjecture, i.e., for s = 3/8,

was finally confirmed by Heckman and Thomas [11]. However, for s =
5/14, it was implied by a much earlier result of Staton [18], who actu-
ally showed that every subcubic triangle-free (but not necessarily planar)
graph contains an independent set of size 5n/14. Jones [14] then found a
simpler proof of this result; an even simpler one is due to Heckman and
Thomas [10]. On the other hand, Fajtlowicz [6] observed that one cannot
prove anything larger than 5n/14. As we already mentioned, our main re-
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sult is the strengthening of Staton’s theorem to the fractional (weighted)
version.
This conjecture attracted a considerable amount of attention and it

spawned a number of interesting works in the last few years. In 2009,
Hatami and Zhu [9] showed that for every graph that satisfies the as-
sumptions of Conjecture 1.1, the fractional chromatic number is at most
3 − 3/64 ≈ 2.953. (The fractional chromatic number of a graph is the
smallest number k such that the graph is fractionally k-colorable.) The
result of Hatami and Zhu is the first to establish that the fractional chro-
matic number of every subcubic triangle-free graph is smaller than 3. In
2012, Lu and Peng [16] improved the bound to 3− 3/43 ≈ 2.930. There
are also two very recent improvements on the upper bound. The first one
is due to Ferguson, Kaiser and Král’ [7], who showed that the fractional
chromatic number is at most 32/11 ≈ 2.909. The other one is due to
Liu [15], who improved the upper bound to 43/15 ≈ 2.867.

2 Main result

We start with another definition of a fractional coloring that will be used
to state our main result. It is equivalent to the one mentioned in the
previous section by Linear Programming Duality.
Let G be a graph. A fractional k-coloring is an assignment of mea-

surable subsets of the interval [0, 1] to the vertices of G such that each
vertex is assigned a subset of measure 1/k and the subsets assigned to
adjacent vertices are disjoint. The fractional chromatic number of G is
the infimum over all positive real numbers k such that G admits a frac-
tional k-coloring. Note that for finite graphs, such a real k always exists,
the infimum is in fact a minimum, and its value is always rational. We let
χ f (G) be this minimum.
A demand function f is a function from V (G) to [0, 1] with rational

values. Let μ be the Lebesgue measure on real numbers. An f -coloring
of G is an assignment ϕ of measurable subsets of [0, 1] to the vertices of
G such that μ(ϕ(v)) ≥ f (v) for every v ∈ V (G) and such that ϕ(u) ∩
ϕ(v) = ∅ whenever u and v are two adjacent vertices of G. Note that
for a rational number r , the graph G has fractional chromatic number at
most r if and only if it has an fr -coloring for the function fr that assigns
1/r to every vertex of G.
A graph H is dangerous if H is either a 5-cycle or the graph K ′4 ob-

tained from K4 by subdividing both edges of its perfect matching twice,
see Figure 2.1. The vertices of degree two of a dangerous graph are called
special. Let G be a subcubic graph and let B be a subset of its vertices.
Let H be a dangerous induced subgraph of G. A special vertex v of H



500 Zdeněk Dvořák, Jean-Sébastien Sereni and Jan Volec

Figure 2.1. Dangerous graphs.

is B-safe if either v ∈ B or v has degree three in G. If G is a sub-
cubic graph, a set B ⊆ V (G) is called a nail if every vertex in B has
degree at most two and every dangerous induced subgraph of G contains
at least two B-safe special vertices. For a subcubic graph G and its nail
B, let f GB be the demand function defined as follows: if v ∈ B, then
f GB (v) = (7− degG(v))/14; otherwise f GB (v) = (8− degG(v))/14.
In order to show that every subcubic triangle-free graph has fractional

chromatic number at most 14/5, we show the following stronger state-
ment.

Theorem 2.1. If G is a subcubic triangle-free graph and B ⊆ V (G) is
a nail, then G has an f GB -coloring.

We point out that the motivation for the formulation of Theorem 2.1 as
well as for some parts of its proof comes from the work of Heckman and
Thomas [10], in which an analogous strengthening is used to prove the
existence of an independent set of size 5n/14.

3 Conclusion

In order to prove Theorem 2.1, we used several equivalent definitions
of fractional colorings. As a consequence, unlike the result of Heckman
and Thomas [10], our proof is not constructive and the following question
remains open.

Problem 3.1. Does there exist a polynomial-time algorithm to find a
fractional 14/5-coloring of a given input subcubic triangle-free graph?
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Henneberg steps for triangle
representations

Nieke Aerts1 and Stefan Felsner2

Abstract. Which plane graphs admit a straight line representation such that all
faces have the shape of a triangle? In previous work we have studied necessary
and sufficient conditions based on flat angle assignments, i.e., selections of angles
of the graph that have size π in the representation. A flat angle assignment that
fullfills these conditions is called good. The complexity for checking whether a
graph has a good flat angle assignment remains unknown.
In this paper we deal with extensions of good flat angle assignments. We show

that if G has a good flat angle assignment and G+ is obtained via a planar Hen-
neberg step of type 2, then G+ also admits a good flat angle assignment. A similar
result holds for certain combinations of Henneberg type 1 steps followed by a type
2 step. As a consequence we obtain a large class of pseudo-triangulations that ad-
mit drawings such that all faces have the shape of a triangle. In particular, every
3-connected, plane generic circuit admits a good flat angle assignment.

1 Introduction

In this paper we study a representation of planar graphs in the classical
setting, i.e., vertices are presented as points in the Euclidean plane and
edges as straight line segments. We are interested in the class of planar
graphs that admit a representation in which all faces are triangles. Note
that in such a representation each face f has exactly deg( f )− 3 incident
vertices that have an angle of size π in f . Conversely each vertex has at
most one angle of size π . In [2] we have studied necessary and sufficient
conditions based on flat angle assignments, i.e., selections of angles of
the graph that have size π in the representation. Flat angle assignments
that fullfill these conditions are called good. The complexity for checking
whether a graph has a good flat angle assignment remains unknown.
A pseudo-triangle is a simple polygon with precisely three convex an-

gles, all other vertices of the polygon admit a concave angle at the inte-

1 Institut für Mathematik, Technische Universität Berlin, Germany. Email: aerts@math.tu-berlin.de

2 Institut für Mathematik, Technische Universität Berlin, Germany.
Email: felsner@math.tu-berlin.de

The full version of this paper can be found online [1].
Partially supported by DFG grant FE-340/7-2 and ESF EuroGIGA project GraDR.
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Figure 1.1. (a) A pseudo-triangulation that does not induce an SLTR, (b) a
Laman graph that has an SLTR but can not be constructed using only the two
steps we give in Section 2, (c) a planar Laman graph that has no SLTR for this
embedding, (d) a planar Laman graph that has no SLTR.

rior of the polygon. A pseudo-triangulation (PT) is a planar graph with a
drawing such that all faces are pseudo-triangles. An example of a PT is
given in Figure 1.1 (a).
A pseudo-triangulation is pointed if each vertex has an angle of size

> π . A pointed pseudotriangulation with n vertices must have exactly
2n−3 edges. Indeed pointed pseudotriangulations have the Laman prop-
erty: they have 2n − 3 edges, and subgraphs induced by k vertices have
at most 2k − 3 edges. Laman graphs, and hence also pointed pseudotri-
angulations, are minimally rigid graphs. A detailed survey on pseudo-
triangulations has been given by Rote et al. [8].
Pseudotriangulations induce an assignment of big angles to vertices.

This assignment is closely related to a flat angle assignment.
A Straight Line Triangle Representation (SLTR) of a graph G is a

plane drawing of G such that all edges are straight line segments and
all faces are triangles (e.g. Figure 1.1 (b)). Throughout this paper G =
(V, E) will be a plane, internally 3-connected graph. Three vertices
which are the corners of the outer face in an SLT Representation of the
graph are given and we call these vertices suspensions. A plane graph G
with suspensions s1, s2, s3 is said to be internally 3-connected when the
addition of a new vertex v∞ in the outer face, that is made adjacent to the
three suspension vertices, yields a 3-connected plane graph.
A flat angle assignment (FAA) of a graph is a mapping from a subset

U of the non-suspension vertices to faces such that, the vertex is incident
to the face and,
[Cv] Every vertex of U is assigned to at most one face,
[C f ] For every face f , precisely | f | − 3 vertices are assigned to f .
An FAA is called good (GFAA) when it induces an SLTR. In [2] we have
shown that an FAA is good if and only if it induces a contact family of
pseudosegments � which has the following property:
[CP] Every subset S of � with |S| ≥ 2 has at least three free points.
Informally, pseudosegments arise from merging the edges that are in-
cident to an assigned angle of a vertex, the vertex will be an interior
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point of the pseudosegment. Since a vertex is assigned at most once, the
pseudosegments do not cross. The pseudosegments will be stretched to
straight line segments to obtain an SLTR. Let p be an endpoint of a pseu-
dosegment in S ⊆ �. If p is a suspension vertex, then p is a free point
for S. When p is not a suspension then it is a free point for S if: p is
incident to the unbounded region of S, it has at least one neighbor not in
S and it is not an interior point for a pseudosegment in S.
The drawback of this characterization is that we are not aware of an

efficient way to test whether a given graph has an FAA that is good.
A combinatorial pseudo-triangulation (CPT) is an assignment of the

labels big and small to the angles around each vertex. Each vertex has
at most one angle labeled big and each inner face has precisely three
incident angles labeled small, the outer face has all angles labeled big.
For an interior angle labeled big, let the incident vertex be assigned to
the incident face, and a vertex is not assigned if it has no angle labeled
big. Three vertices of the outer face are chosen to be the suspensions,
the other vertices are assigned to the outer face. Hence a CPT induces an
FAA and the similarly an FAA induces a CPT.
A CPT does not always induce a PT, Orden et al. have shown that

the generalized Laman condition is necessary and sufficient for a CPT to
induce a PT [7].

Lemma 1.1 (Generalized Laman Condition). Let G be the graph of a
pseudo-triangulation of a planar point set in general position. Every
subset of x not assigned vertices plus y assigned vertices of G, with x +
y ≥ 2 spans a subgraph with at most 3x + 2y − 3 edges.
Proposition 1.2. A GFAA of an internally 3-connected plane graph sat-
isfies the generalized Laman Condition.

An FAA that is not good may also satisfy the generalized Laman Con-
dition (e.g. Figure 1.1 (a)), therefore this condition is necessary but not
sufficient. Every Laman graph can be constructed from an edge by Hen-
neberg steps [6, 9]. A graph G = (V, E), with |E | = 2|V | − 3 that has
an SLTR, has a CPT that induces a PT by Prop. 1.2 and by the result
of Haas et al. it must be a Laman graph. Therefore it must have a Hen-
neberg construction. In the next section we will investigate how to use
this construction such that a GFAA can be extended along the steps.

2 Construction steps

It has been shown that planar Laman graphs admit a planar Henneberg
construction [5]. Since we consider plane graphs (with a given set of
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suspension vertices), we consider the Henneberg steps in a plane setting.
Recall that the graph must be internally 3-connected.

Henneberg type 2 step
Given a graph G and a GFAA ψ of G. A Henneberg Type 2 step (HEN2)
subdivides an edge uv and connects the new vertex x to a third vertex w
(see Figure 2.1). The face f , incident to uv and w is splitted into fu (the
face incident to u) and fv. The other face incident to uv is denoted with
fx . The resulting graph is denoted G+. We will construct an assignment
ψ+ for G+ and proof that ψ+ is a GFAA.
There are three vertices not assigned to f under ψ , we will call them

corners of f . We consider two cases, firstly fu is incident to all corners
of f , secondly, fu is incident to precisely two corners of f . Note that
if w is a corner of f it will be a corner for both fu and fv. The vertices
different from u, v,w, x , that are assigned to f under ψ , will be assigned
in the trivial way under ψ+, i.e., such a vertex is assigned to fu resp. fv,
if in G+ it is incident to fu resp. fv.

Case 1: fu is incident to all corners of f . If u or w is assigned to f
under ψ , it is assigned to fu under ψ+. The vertex v is assigned to fx
and x to fu under ψ+.

Case 2: fu is incident to precisely two corners of f . If u orw is assigned
to f under ψ , it is assigned to fu under ψ+, if v was assigned to f it
is assigned to fv under ψ+ and x is assigned to fx .

This yields an assignment ψ+ for G+.

Figure 2.1. Updating the assignment after a HEN2 step. The white vertex and
dashed edge represent the step.

Theorem 2.1. Given a 3-connected, plane graph G with a GFAA ψ . Let
G+ be the result of a HEN2 step applied to G and let ψ+ be the updated
assignment. Then ψ+ is a GFAA and G+ admits an SLTR.

Proof. It is easy to see that ψ+ satisfies Cv and C f and hence is an FAA.
We consider the induced families of pseudosegments, � and �+ of ψ

and ψ+ respectively. Since ψ is a Good FAA, we know that every subset
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S of � has at least three free points or S has cardinality at most one. Let
S ⊆ �+ of cardinality at least two, and for every pseudosegment p of
�+ which is not a pseudosegment of � consider p ∈ S and show that S
has at least three free points by using that there is an equivalent set under
� which has at least three free points.
In both cases there are three pseudosegments that have changed, we

will only discuss Case 1 here. Let sx resp. sv be the pseudosegment that
has x resp. v as interior point and let sw the pseudosegment containing
the edge vw.

- If sx ∈ S then replace sx by the pseudosegment s ′x of � that has u
and v as interior points.

- If sv ∈ S then replace sv by the pseudosegment s ′v of � that ends in
v and contains all the edges, except vx , of sv.

- If sw ∈ S then delete sw.
Now we have a set S′ ∈ �, thus S′ has three free points unless |S′| = 1.
- If sx ∈ S then sx contributes the same free points to S as s ′x to S′.
- If sv ∈ S then if v was a free point for S′, x is for S. Hence sv
contributes the same number of free points to S as s ′v to S′.

- If sw ∈ S then if |S′| = 1, sw contributes at least one free point to
S and it covers no other points, thus S has three free points, or, if
|S′| > 1 then S′ has at least three free points, adding sw does not
cover any of them and therefore S has at least three free points.

We conclude that in Case 1 every set S of cardinality at least two has
at least three free points. The argumentation for Case 2 is similar and it
follows that ψ+ is a GFAA.

A graph G = (V, E) is a generic circuit if |E | = 2|V | − 2 and sub-
graphs induced by k vertices have at most 2k − 3 edges. The generic
circuit with the least number of vertices is K4.

Theorem 2.2. Every 3-connected, plane, generic circuit admits an SLTR.

Proof. A 3-connected, generic circuit can be constructed with HEN2 steps
from K4 (Berg and Jordán [3]) and K4 admits an SLTR. Every plane 3-
connected generic circuit can be constructed with HEN2 steps from K4
such that all intermediate graphs are plane. By Theorem 2.1 we have that
every 3-connected, plane generic circuit admits an SLTR.

Henneberg combination step
For connectivity reasons single HEN1 steps are not compatible with SLTRs.
However certain sequences of HEN1 steps followed by a HEN2 step allow
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for the extension of a GFAA. Next we will describe such a combination
step denoted HEN1n2.
Let f be a face with n + 1 vertices. The first HEN1 step stacks a new

vertex v0 over an edge of f . The vertices v0, . . . , vn−1 are introduced by
the n HEN1 steps in such a way that v0, . . . , vn−1 is a path and each vertex
of f is a neighbor of some vi . The final HEN2 step subdivides an edge
which is incident to some vi (not vn−1) and connects the new vertex vn to
vn−1. Of course the construction has to maintain planarity.

Theorem 2.3. Given a 3-connected, plane graph G with a GFAA ψ . Let
Gn be the result of a HEN1n2 step applied to G and ψn be the updated
assignment. Then ψn is a GFAA and Gn admits an SLTR.

Due to the lack of space we have left out the algorithm that decides
how to update the assignment, this and the proof of Theorem 2.3 can be
found in the full version.

3 Conclusion and open problems

We have given two construction steps such that a GFAA can be extended
along these steps and the extended assignment is also a GFAA. However,
this does not define the class of Laman graphs that have an SLTR. There-
fore the problem: Is the recognition of graphs that have an SLTR (GFAA)
in P? is still open, even for graphs in which all non-suspension vertices
have to be assigned.

The class of 3-connected quadrangulations is well-defined, e.g.
Brinkmann et al. give a characterization using two expansion steps [4].
Adding a diagonal edge in the outer face of a plane, 3-connected quad-
rangulation yields a Laman graph. One of the expansion steps (denoted
P3 in [4]) is a Henneberg Combination step, hence a GFAA can be ex-
tended along this step. It would be interesting to know if a GFAA could
also be extended along the other expansion step (denoted P1 in [4]).
Adding an edge in a plane graph that has a GFAA requires only mi-

nor changes to the GFAA of the original graph to obtain a GFAA for the
resulting graph. An interesting question arises: Does every graph that ad-
mits an SLTR in which not every non-suspension vertex admits a straight
angle, have a spanning Laman subgraph that admits an SLTR?
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Cycle-continuous mappings – order
structure

Robert Šámal1

Abstract. Given two graphs, a mapping between their edge-sets is cycle-contin-
uous, if the preimage of every cycle is a cycle. Answering a question of DeVos,
Nešetřil, and Raspaud, we prove that there exists an infinite set of graphs with no
cycle-continuous mapping between them. Further extending this result, we show
that every countable poset can be represented by graphs and existence of cycle-
continuous mappings between them.

1 Introduction

Many questions at the core of graph theory can be formulated as questions
about cycles or more generally about flows on graphs. Examples are
the cycle double cover conjecture, the Berge-Fulkerson conjecture, and
Tutte’s 3-flow, 4-flow, and 5-flow conjectures. For a detailed treatment of
this area the reader may refer to [7] or [8].
As an approach to these problems Jaeger [4] and DeVos, Nešetřil, and

Raspaud [2] defined a notion of graph morphism continuous with respect
to group-valued flows. In this paper we restrict ourselves to the case of
Z2-flows, that is to cycles. Thus, the following is the principal notion we
study in this paper:
Given graphs (parallel edges or loops allowed) G and H , a mapping

f : E(G) → E(H) is called cycle-continuous, if for every cycle C ⊆
E(H), the preimage f −1(C) is a cycle in G. We emphasize, that by a
cycle we understand (as is common in this area) a set of edges such that
every vertex is adjacent with an even number of them. For shortness we
sometimes call cycle-continuous mappings just cc mappings.
The fact that f is a cc mapping from G to H is denoted by f : G cc−→

H . If we just need to say that there exists a cc mapping from G to H ,
we write G

cc−→ H . With the definition covered, we mention the main
conjecture describing the properties of cc mappings.

1 Computer Science Institute, Charles University. Email: samal@iuuk.mff.cuni.cz. Supported by
grant GA ČR P201/10/P337 and by grant LL1201 ERC CZ of the Czech Ministry of Education,
Youth and Sports.
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Conjecture 1.1 (Jaeger). For every bridgeless graph G we have G
cc−→

Pt, where Pt denotes the Petersen graph.

If true, this would imply many conjectures in the area. To illustrate
this, suppose we want to find a 5-tuple of cycles in a graph G covering
each of its edges twice (this is conjectured to exist by 5-Cycle double
cover conjecture). Further, suppose f : G cc−→ Pt. We can use C1, . . . , C5
— a 5-tuple of cycles in the Petersen graph double-covering its edges—
and then it is easy to check that f −1(C1), . . . , f −1(C5) have the same
property in G.
DeVos et al. [2] study this notion further and ask the following question

about the structure of cycle-continuous mappings. We say that graphs G,
G ′ are cc-incomparable if there is no cc mapping between them, that is
G �cc−→ G ′ and G ′ �cc−→ G.

Question 1.2 ([2]). Is there an infinite set G of bridgeless graphs such
that every two of them are cc-incomparable?

DeVos et al. [2] also show that arbitrary large sets of cc-incomparable
graphs exist. Their proof is based on the notion of critical snarks and on
Lemma 3.1; these will be crucial also for our proof. We will show, that
the answer to Conjecture 1.2 is positive, even in a stronger form. Thus,
the following are our main results.

Theorem 1.3. There is an infinite set G of cubic bridgeless graphs such
that every two of them are cc-incomparable.

Theorem 1.4. Every countable (finite or infinite) poset can be repre-
sented by a set of graphs and existence of cycle-continuous mappings
between them.

2 Properties of cycle-continuous mappings

2.1 Properties of a 2-join

In this and the next section we will describe two common constructions
of snarks (i.e., 3-regular bridgeless graphs, that are not 3-edge-colorable).
While the constructions are known (see, e.g., [8]), the relation to cycle-
continuous mappings has not been investigated elsewhere, and is crucial
to our result. The first construction can be informally described as adding
a “gadget” on an edge of a graph. Formally, let G1, G2 be graphs, and
let ei = xi yi be an edge of Gi . We delete edge ei from Gi (for i = 1, 2),
and connect the two graphs by adding two new edges x1x2 and y1y2.
The resulting graph will be called the 2-join of the graphs G1, G2 (some
authors call this a 2-sum); it will be denoted by G1 ⊕2 G2. We note that
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the resulting graph depends on our choice of the edges xi yi , but for our
purposes this coarse description will suffice.

Lemma 2.1. For every graphs G1, G2 we have Gi
cc−→ G1 ⊕2 G2 for

i ∈ {1, 2}.
Lemma 2.2. Let G1, G2 be any graphs. Let K be an edge-transitive
graph. Then G1 ⊕2 G2

cc−→ K if and only if G1
cc−→ K and G2

cc−→ K .

As an immediate corollary we get the following classical result about
snarks and 2-joins:

Corollary 2.3. If G1, G2 are bridgeless cubic. Then G1⊕2G2 is a snark
whenever at least one of G1, G2 is a snark.

Another easy corollary of Lemma 2.2 is that minimal counterexample
(if it exists) to Conjecture 1.1 does not contain a nontrivial 2-edge-cut.

Corollary 2.4. LetG1, G2 be cubic bridgeless graphs. IfG1⊕2G2 �cc−→ Pt
then Gi �cc−→ Pt for some i ∈ {1, 2}.
2.2 Properties of a 3-join

A 3-join (also called 3-sum) is a method to create new snarks – ones that
contain nontrivial 3-edge cuts. One way to view this is that we replace a
vertex in a graph by a “gadget” created from another graph. To be more
precise, we consider graphs G1 and G2, delete a vertex ui of each Gi ,
and add a matching between neighbors of former vertices u1 and u2. The
resulting (cubic) graph in general depends on our choice of ui ’s, and of
the matching. We use G1⊕3G2 to denote (any of) the resulting graph(s);
we call in the 3-join of G1 and G2. Connecting edges of the 3-join are
the three edges we added to connect G1 and G2.

Lemma 2.5. For any graphs G1, G2 we have Gi
cc−→ G1⊕3G2 for i =

1, 2. We shall call the cycle-continuous mapping from Gi to G1⊕3G2 a
natural inclusion.

Lemma 2.6. Let G1, G2 be any graphs. Let K be a cyclically 4-edge-
connected cubic graph that is 2-transitive. Then G1⊕3G2

cc−→ K if and
only if G1

cc−→ K and G2
cc−→ K .

As an immediate corollary we get the following classical result about
snarks and 3-joins:

Corollary 2.7. Let G1, G2 be cubic bridgeless graphs. Then G1⊕3G2 is
a snark, iff at least one of G1, G2 is a snark.
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As another easy application, we observe that minimal counterexample
(if it exists) to Conjecture 1.1 does not contain a nontrivial 3-edge-cut.

Corollary 2.8. LetG1, G2 be cubic bridgeless graphs. IfG1⊕3G2 �cc−→ Pt
then Gi �cc−→ Pt for some i ∈ {1, 2}.
The above notwithstanding, we proceed to study the structure of cycle-

continuous mapping in graphs with 3-edge-cuts, for two reasons: first
we believe, it provides insights that might be useful in further progress
towards solving Conjecture 1.1, second, we find it has an independent
interest.

Lemma 2.9. Let G1, G2 be cc-incomparable snarks. Then G1⊕3G2 �cc−→
Gi for each i ∈ {1, 2}.

3 The proof

3.1 Critical snarks

For our construction we will need the following notion of criticality of
snarks. It appears in Neděla et al. [5] and in DeVos et al. [2]; see also [1],
where these graphs are called flow-critical snarks.
Recall a graphG is a snark if G �cc−→ K 3

2 , where K
3
2 is a graph formed by

two vertices and three parallel edges. We say G is a critical snark if for
every edge e of G we have G−e cc−→ K 3

2 . (Equivalently [1], G/e
cc−→ K 3

2 .)
The following lemma is the basis of our control over cycle-continuous

mappings between graphs in our construction.

Lemma 3.1 ([2]). LetG, H be cyclically 4-edge-connected cubic graphs,
both of which are critical snarks, suppose that |E(G)| = |E(H)|. Then
G

cc−→ H iff G ∼= H . Moreover, every cycle-continuous mapping is a
bijection that is induced by an isomorphism of G and H .

Lemma 3.2. There are two snarks B1, B2 with 18 vertices, that are crit-
ical and nonisomorphic. Moreover, none of B1, B2 is vertex transitive.

Proof. It is well-known that the two Blanuša snarks on 18 vertices satisfy
these requirements.

3.2 Tree of snarks

Let G = {G1, . . . ,Gn} be a family of critical snarks of the same size,
so that for i �= j graphs Gi and G j are not isomorphic (equivalently:

Gi �cc−→ G j and G j �cc−→ Gi ).
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Let T be a tree with a vertex coloring (not necessarily proper) c :
V (T )→ [n]. We denote by T (G) a family of graphs that can be obtained
by replacing each v ∈ V (T ) by a copy of Gc(v) and performing a 3-join
on each edge; see Fig. 3.1 for an illustration. There are in general many
graphs that can be constructed in this way, depending on which vertices
one chooses for the 3-join operations.

Figure 3.1. Illustration of the “tree-snark” construction.

More precisely, for each v ∈ V (T ) we fix a bijection rv from NT (v)

to an independent set Av in Gc(v), we also specify an ordering of edges
going out of vertices of Av. Next, we split each vertex w in Av into three
degree 1 vertices; these will be denoted by w1, w2, w3. For each edge uv
of T we identify vertices ru(v)i with rv(u)i for i = 1, 2, 3. Finally, we
suppress all vertices of degree 2.
If H is a graph in T (G) and v a vertex of T , we let Hv denote a “copy”

of Gc(v): subgraph of H consisting of a copy of Gc(v) − Av together
with the incident edges and neighboring vertices in H . Further, we let
ιv denote the natural inclusion of Gc(v) into H , which maps bijectively
on Hv.
We define H̄v to be the graph H with all edges outside of Hv con-

tracted. In other words, H̄v is truly an isomorphic copy of Gc(v). Further,
Hu,v will denote the three edges in the intersection Hu ∩ Hv.
The following theorem is the key to our construction.

Theorem 3.3. Let T1, T2 be two trees and let ci : V (Ti)→ [n] be arbi-
trary colorings. Let G be as above.
Suppose Hi ∈ Ti(G) for i = 1, 2. Every cc mapping g : H1 cc−→ H2

is guided by a homomorphism f : T1 → T2 of reflexive colored graphs:
There is a mapping f : V (T1)→ V (T2) such that

• c2( f (v)) = c1(v) ( f respects colors), and
• if uv is an edge of T1, then f (u) f (v) is an edge of T2 or f (u) = f (v).
In the first case, g maps Hu,v to Hf (u), f (v). In the second one, Hu,v is
mapped to some Hf (u),v′ .

Moreover, g induces a mapping (H̄1)v to (H̄2) f (v) that is cycle-contin-
uous.



518 Robert Šámal

As a corollary we obtain our first result, that already answers Ques-
tion 1.2.

Corollary 3.4. There is an infinite set of cc-incomparable graphs.

Proof. Let Tn be a path with vertices {0, 1, . . . , n} colored as 1(2)n−11.
We let G = {B1, B2}, where as in Lemma 3.2, Bi ’s denote the Blanuša
snarks on 18 vertices. We fix vertices a, b of B2 so that no automorphism
of B2 sends a to b. For all vertices v ∈ V (Tn) of degree 2 we create rv
so, that rv(v − 1) = a and rv(v + 1) = b. We do not specify A0 nor An ,
neither the order of edges adjacent to a or b. We let Hn denote any of
Tn(G).
Consider Hm , Hn , suppose that g : Hm

cc−→ Hn is cc mapping. Let
f : V (Tm) → V (Tn) be the mapping guaranteed by Theorem 3.3. As
f respects colors, we have { f (0), f (m)} ⊆ {0, n}. Next, define Gi =
(Hm)i , and G ′j = (Hn) j . By Theorem 3.3 again, g is cc mapping Gi

cc−→
G ′f (i). As Gi and G ′f (i) are isomorphic to B2, Lemma 3.2 implies that
f (i+1) = f (i)+1. It follows that m = n, which finishes the proof.

3.3 Representing posets by cycle-continuous mappings

Question 1.2 should be understood as a question about how complicated
is the structure of cc mappings. Next, we provide even further indication,
that the structure is complicated indeed.

Corollary 3.5. Every countable (finite or infinite) poset can be repre-
sented by a set of graphs and existence of cc mappings between them.

Proof. (Sketch) We use the result of Hubička and Nešetřil [3], claiming
that arbitrary countable posets can be represented by finite directed paths
and existence of homomorphisms between them.
Thus, we only need to find a mapping m that to directed paths assigns

cubic bridgeless graphs, so that P1 hom P2 iff m(P1)
cc−→ m(P2). We

choose vertices a, b in the Blanuša snark B2 so that no automorphism
of B2 maps a to b. Then we replace each directed edge by a copy of B2
“from a to b” and perform a 3-join operation in-between each pair of
adjacent edges. Formally, let P be a path with edges (from one end to the
other) e1, . . . , em . We let t (i) be the index of the edge at the tail of ei –
that is t (i) is either i − 1 (if ei goes forward with respect to our labeling)
or i + 1. Note that t (i) may be undefined for i ∈ {1,m}. Similarly, we
define h(i) to be the index of the edge adjacent to ei at its head. We will
use the construction from Section 3.2. Our tree T will be a path with
vertices 1, . . . , m all colored by 1, our set of snarks will consist just of
the second Blanuša snark, G = {G1 = B2}. We define ri(t (i)) = a,
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and ri(h(i)) = b, whenever t (i) (h(i), resp.) are defined. We choose an
ordering of edges going out of a, and b; we keep this fixed for all vertices
of all paths. Then we let m(P) be the graph in T (G) determined by the
above described choices. (The rest of the proof is omitted in the extended
abstract.)

4 Concluding remarks

While being a resolution to Question 1.2, none of the family of examples
we gave does violate Conjecture 1.1:

Theorem 4.1. If H ∈ T (G) and for every G ∈ G we have G
cc−→ Pt then

H
cc−→ Pt.

Still, the presented results illustrate the complexity of cc mappings. To
better understand their structure, we suggest the following questions:

Question 4.2. Does the poset of cubic cyclically 4-edge-connected
graphs and cc mappings between them have infinite antichains? Does
it contain every countable poset as a subposet? How about cyclically
5-edge-connected graphs?

For the next question, recall that in a poset (X,≤) an interval (a, b) is
the set {x ∈ X : a < x < b} (we must have a < b for this definition to
make sense, otherwise we call (a, b) degenerate interval).

Question 4.3. In the poset of graphs and cc mappings between them,
is every non-degenerate interval nonempty? Does every non-degenerate
interval contain infinite antichain? Does every non-degenerate interval
contain every countable poset?

Note, that if Conjecture 1.1 is true, then (Pt, K2) is an empty but non-
degenerated interval. Is there some other?
We also briefly note the more general definition of flow-continuous

mappings, that extends the notion of cycle-continuous mappings: a map-
ping f : E(G) → E(H) is called M-flow-continuous (for an abelian
group M) if for every M-flow ϕ on H , the composition ϕ◦ f is an M-flow
on G. For detailed discussion, see [2] or [6]. We only mention here, that
cycle-continuous mappings are exactlyZ2-flow-continuous ones, and that
Corollaries 3.4 and 3.5 extend trivially to Z-flow-continuous mappings.
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On the structure of graphs with given
odd girth and large minimum degree

Silvia Messuti1 and Mathias Schacht1

Abstract. We study the structure of graphs with high minimum degree conditions
and given odd girth. For example, the classical work of Andrásfai, Erdős, and Sós
implies that every n-vertex graph with odd girth 2k+1 and minimum degree bigger
than 2n

2k+1 must be bipartite. We consider graphs with a weaker condition on the
minimum degree. Generalizing results of Häggkvist and of Häggkvist and Jin for
the cases k = 2 and 3, we show that every n-vertex graph with odd girth 2k + 1
and minimum degree bigger than 3n4k is homomorphic to the cycle of length 2k+1.
This is best possible in the sense that there are graphs with minimum degree 3n4k
and odd girth 2k + 1 which are not homomorphic to the cycle of length 2k + 1.
Similar results were obtained by Brandt and Ribe-Baumann.

1 Introduction

We consider finite and simple graphs without loops and for any nota-
tion not defined here we refer to the standard textbooks. In particular,
we denote by Kr the complete graph on r vertices, by Cr a cycle of
length r , where the length of a cycle or of a path denotes its number
of edges. A homomorphism from a graph G into a graph H is a mapping
ϕ : V (G)→ V (H) with the property that {ϕ(u), ϕ(w)} ∈ E(H) when-
ever {u, w} ∈ E(G). We say that G is homomorphic to H if there exists a
homomorphism from G into H . Furthermore, a graph G is a blow-up of a
graph H , if there exists a surjective homomorphism ϕ from G into H , but
for any supergraph of G on the same vertex set the mapping ϕ is not a ho-
momorphism into H anymore. In particular, a graph G is homomorphic
to H if and only if it is a subgraph of a suitable blow-up of H . Moreover,
we say a blow-up G of H is balanced if the homomorphism ϕ signifying

1 Fachbereich Mathematik, Universität Hamburg, Bundesstraße 55, D-20146 Hamburg, Germany.
Email: silvia.messuti@math.uni-hamburg.de, schacht@math.uni-hamburg.de

Research supported through the Heisenberg-Programme of the DFG.
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that G is a blow-up has the additional property that |ϕ−1(u)| = |ϕ−1(u′)|
for all vertices u and u′ of H .
Homomorphisms can be used to capture structural properties of graphs.

For example, a graph is k-colourable if and only if it is homomorphic to
Kk . Many results in extremal graph theory establish relationships be-
tween the minimum degree of a graph and the existence of a given sub-
graph. The following theorem of Andrásfai, Erdős and Sós [2] is a clas-
sical result of that type.

Theorem 1.1 (Andrásfai, Erdős & Sós). For every integer r ≥ 3 and
for every n-vertex graph G the following holds. If G has minimum de-
gree δ(G) > 3r−7

3r−4n and G contains no copy of Kr , then G is (r − 1)-
colourable.

In the special case r = 3, Theorem 1.1 states that every triangle-free
n-vertex graph with minimum degree greater than 2n/5 is bipartite, i.e.,
it is homomorphic to K2. Several extensions of this result and related
questions were studied. One line of research (see, e.g., [4, 7, 9, 10]) con-
cerned the question for which minimum degree condition a triangle-free
graph G is homomorphic to a graph H of bounded size, which is triangle-
free itself. In particular, Häggkvist [7] showed that triangle-free graphs
G = (V, E) with δ(G) > 3|V |/8 are homomorphic to C5. In other
words, such a graph G is a subgraph of suitable blow-up of C5. This
can be viewed as an extension of Theorem 1.1 for r = 3, since bal-
anced blow-ups of C5 show that the degree condition δ(G) > 2|V |/5 is
sharp there. Strengthening the assumption of triangle-freeness to graphs
of higher odd girth, allows us to consider graphs with a more relaxed min-
imum degree condition. In this direction Häggkvist and Jin [8] showed
that graphs G = (V, E) which contain no odd cycle of length three and
five and with minimum degree δ(G) > |V |/4 are homomorphic to C7.
We generalize those results to arbitrary odd girth. We say a graph G

has odd girth at least g, if the shortest cycle with odd length has length at
least g.

Theorem 1.2. For every integer k ≥ 2 and for every n-vertex graph G
the following holds. If G has minimum degree δ(G) > 3n

4k and G has odd
girth at least 2k + 1, then G is homomorphic to C2k+1.

Note that the degree condition given in Theorem 1.2 is best possible as
the following example shows. For an even integer r ≥ 6 we denote by
Mr the so-called Möbius ladder (see, e.g., [6]), i.e., the graph obtained
by adding all diagonals to a cycle of length r , where a diagonal con-
nects vertices of distance r/2 in the cycle. One may check that M4k has
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odd girth 2k + 1, but it is not homomorphic to C2k+1. Moreover, M4k

is 3-regular and, consequently, balanced blow-ups of M4k show that the
degree condition in Theorem 1.2 is best possible when n is divisible by
4k.
We also remark that Theorem 1.2 implies that every graph with odd

girth at least 2k + 1 and minimum degree bigger than 3n
4k contains an

independent set of size at least kn
2k+1 . This answers affirmatively a ques-

tion of Albertson, Chan, and Haas [1]. Similar results were obtained by
Brandt and Ribe-Baumann.

2 Sketch of the proof

In the proof of Theorem 1.2 we consider an edge-maximal graph and
show that it is either a bipartite graph or a blow-up of a (2k+1)-cycle. We
say that a graph G with odd girth at least 2k+1 is edge-maximal if adding
any edge to G yields an odd cycle of length at most 2k−1. We denote by
Gn,k all edge-maximal n-vertex graphs satisfying the assumptions of the
main theorem, i.e., for integers k ≥ 2 and n we set

Gn,k = {G = (V, E) : |V | = n , δ(G) > 3n
4k ,

and G is edge-maximal with odd girth 2k + 1} .
The proof of the theorem relies on two lemmas, Lemmas 2.1 and 2.3
below, which state that certain configurations cannot occur in such edge-
maximal graphs.

Lemma 2.1. Let  denote the graph obtained from C6 by adding one
diagonal. For all k ≥ 2 and n, every G ∈ Gn,k does not contain an
induced copy of  .

Proof (sketch). Suppose, contrary to the assertion, that G = (V, E) con-
tains  in an induced way. Since G is edge-maximal, the non-existence
of a diagonal must be forced by the existence of an even path which,
together with the missing diagonal, would yield an odd cycle of length
at most 2k − 1. One can show that such a path must have length ex-
actly 2k−2 and that it must be edge-disjoint from . Since there are two
missing diagonals and since one can show that the related paths are also
disjoint, the resulting configuration ′ has 4k vertices. Finally one shows
that no vertex in G can be joined to four vertices of  ′, which leads to a
contradiction to the minimum degree condition of G.

We remark that the above lemma can also be deduced from [8, Lemma 2],
where is shown that G ∈ Gn,k cannot contain a cycle of length 4k with
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two consecutive diagonals. The next lemma states that graphs G ∈ Gn,k
contain no graph from the following family, which can be viewed as tetra-
hedra with three faces formed by cycles of length 2k + 1.
Definition 2.2. For k ≥ 2 we denote by Tk those subdivisions T of K4
satisfying

(i) three triangles of K4 are subdivided into cycles of length 2k + 1
(ii) two of the three edges contained in two of those triangles are subdi-

vided into paths of length at least two.

We remark that in similar context “odd subdivisions” of K4 appeared
in [5].

Lemma 2.3. For all integers k ≥ 2 and n and for every G ∈ Gn,k we
have that G does not contain any T ∈ Tk as a (not necessarily induced)
subgraph.

Proof (sketch). Similarly to the previous lemma, one can show that if
such a T ∈ Tk is contained in G, then we get a contradiction to the
minimum degree condition. In fact, (i) in Definition 2.2 implies that all
four triangles of K4 must be subdivided into a cycle of odd length in T .
Since all these cycles must have length at least 2k + 1 it follows that T
consists of at least 4k vertices. Then some case analysis shows that any
vertex in G can be joined to at most three vertices in T , contradicting the
assumption on the minimum degree of G.

In the proof of the main theorem, we assume that G is not bipartite and
show that G is a blow-up of a (2k + 1)-cycle. In particular, we show that
if a vertex of G is not contained in a maximal blow-up, then it gives rise
to one of the forbidden configurations of Lemmas 2.1 and 2.3.

Proof of Theorem 1.2 (sketch). Suppose G is not bipartite. The edge-
maximality of G implies that it contains a cycle of length C2k+1. Let
B be a vertex-maximal blow-up of a (2k + 1)-cycle contained in G with
vertex classes A0, . . . , A2k . We show B = G. Suppose that there exists
a vertex x ∈ V \V (B). Owing to the odd girth assumption on G, the
vertex x can have neighbours in at most two of the vertex classes of B
and if there are two such classes, then within B each vertex in one class
has distance two from the vertices in the other class.
Suppose first that x has neighbours in two classes Ai−1 and Ai+1. If we

are able to prove that x is adjacent to all the vertices in the two classes,
then x can be included in Ai . If this is not the case, then by symmetry
we may assume that there exists some vertex bi−1 ∈ Ai−1 which is not
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a neighbour of x . Fix vertices ai−2 ∈ Ai−2 and ai ∈ Ai arbitrarily and
let ai−1 ∈ Ai−1 and ai+1 ∈ Ai+1 be neighbours of x . This fixes a cy-
cle of length six in G, namely xai+1aibi−1ai−2ai−1x , with one diagonal
{ai−1, ai }. Due to Lemma 2.1, there must be at least one more diago-
nal and one can easily show that this diagonal must be {bi−1, x}, since
{ai+1, ai−2} is a “shortcut” in the blow-up which would create a cycle of
length 2k − 1 in G.
Suppose that all neighbours of x in B are in Ai . Let ai ∈ Ai be a

neighbour of x and fix a cycle a0a1 . . . a2k in B containing ai . Due to the
edge-maximality, the non-existence of the edges {x, ai−2} and {x, ai+2} is
forced by two paths which, together with the missing edges, would create
short odd cycles. One can check that such paths have length exactly 2k−2
and, together with the fixed cycle, they form a graph T ∈ Tk , contradict-
ing Lemma 2.3. Since G is connected due to its edge-maximality, this
concludes the proof of Theorem 1.2.

3 Conluding remarks

Extremal case in Theorem 1.2. A more careful analysis yields that the
unique n-vertex graph with odd girth at least 2k+1 and minimum degree
exactly 3n

4k , which is not homomorphic to C2k+1, is the balanced blow-up
of the Möbius ladder M4k . In fact, the proofs of Lemmas 2.1 and 2.3 can
be adjusted such that they either exclude the existence of  resp. T in G
or they yield M4k ⊆ G. In the former case, one can repeat the proof of
Theorem 1.2 based on those lemmas and obtains that G is homomorphic
to C2k+1. In the latter case, one uses the degree assumption to deduce that
G is isomorphic to a balanced blow-up of M4k .
Open questions. It would be interesting to study the situation, when we
further relax the degree condition in Theorem 1.2. It seems plausible that
if G has odd girth at least 2k + 1 and δ(G) ≥ ( 34k − ε)n for sufficiently
small ε > 0, then the graph G is homomorphic to M4k . In fact, this could
be true until δ(G) > 4n

6k−1 . At this point blow-ups of the (6k − 1)-cycle
with all chords connecting two vertices of distance 2k in the cycle added
show that this is best possible. For k = 2 such a result was proved in [4]
and for k = 3 it appeared in [3].
For 
 ≥ 2 and k ≥ 3 let F
,k be the graph obtained from a cycle of

length (2k−1)(
−1)+2 by adding all chords which connect vertices with
distance of the form j (2k−1)+1 in the cycle for some j = 1, . . . , �(
−
1)/2�. Note that F2,k = C2k+1 and F3,k = M4k . For every 
 ≥ 2 the
graph F
,k is 
-regular, has odd girth 2k+1, and it has chromatic number
three. Moreover, F
+1,k is not homomorphic to F
,k , but contains it as a
subgraph.
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A possible generalization of the known results would be the following:
if an n-vertex graph G has odd girth at least 2k + 1 and minimum degree
bigger than 
n

(2k−1)(
−1)+2 , then it is homomorphic to F
−1,k . This is known
to be false for k = 2 and 
 > 10, since such a graph G may contain a
copy of the Grötzsch graph which (due to having chromatic number four)
is not homomorphically embeddable into any F
,k . In some sense this is
the only exception for k = 2 and 
 > 10, since adding the condition
χ(G) ≤ 3 makes the statement true for k = 2 (see, e.g., [4]). It is not
known what happens for k > 2.
This discussion motivates the following extension of a result of �Luczak

for triangle-free graphs from [10]. For fixed k the density of F
,k tends
to 1

2k−1 as 
 → ∞. Is it true that every n-vertex graph with odd girth
at least 2k + 1 and minimum degree at least ( 1

2k−1 + ε)n can be mapped
homomorphically into a graph H which also has odd girth at least 2k+ 1
and V (H) is bounded by a constant C = C(ε) independent of n? In [10]
�Luczak proved this for k = 2.
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On the order of cages
with a given girth pair

Julian Salas1,2 and Camino Balbuena1

1 Cages with a given girth pair

The cage problem asks for the construction of regular simple graphs with
specified degree k, girth g and minimum order n(k; g), (see [5] for a
complete survey). This problem was first considered by Tutte [10]. In
1963, Erdös and Sachs [4] proved that (k; g)-cages exist for any given
values of k and g.
Counting the numbers of vertices in the distance partition with respect

to a vertex when g is odd, and with respect to an edge when g is even,
yields the lower bound n0(k; g) on the order of a (k; g)-cage. For k ≥ 3
and g ≥ 5 the order n(k; g) of a cage is bounded by

n(k; g) ≥ n0(k; g) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1+ k

(g−3)/2∑
i=0

(k − 1)i g odd

2
(g−2)/2∑
i=0

(k − 1)i g even

(1.1)

This bound is called the Moore bound, it is known that the order of a
(k; g)-cage n(k; g) = n0(k; g) only for g = 6, 8, 12 and k = q + 1 with
q a prime power; and for g = 5 and k = 3, 7, 57 (cf. [1, 3]). Therefore
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Biggs and Ito [2] defined the excess of a cage to be the number n(k; g)−
n0(k; g) and proved the following theorem.
Theorem 1.1 ([2]). [2] Let G be a a (k; g)-cage of girth g = 2m ≤ 6
and excess e. If e ≤ k − 2 then G is bipartite and its diameter is m + 1.
By allowing a girth pair g < h (one even and the other odd), in [6],

Harary and Kovács introduced the concept of a (k; g, h)-cage as the
smallest k-regular graph with girth pair g, h. They obtained the bound
n(k; g, h) ≤ 2n(k; h) that relates the order of a cage with girth pair with
the order of a cage, and showed that n(k; h − 1, h) ≤ n(k; h), i.e. in
general the bound n(k; g, h) ≤ 2n(k; h) is not the best and stated the
following conjecture.

Conjecture 1.2 ([6]). n(k; g, h) ≤ n(k; h), for all k, g ≥ 3.
Xu, Wang, Wang [11] proved the strict inequality, n(k; h − 1, h) <

n(k; h). Kovács proved that the the Möbius ladder of order 2(h − 1) is
the unique minimal (3; 4, h)-graph [7]. Campbell [8] studied the size of
smallest cubic graphs with girth pair (6, b) and constructed the cages for
the exact values (3; 6, 7), (3; 6, 9) and (3; 6, 11).
We obtain that the conjecture n(k;g, h)<n(k;h) holds for all (k; g, h)-

cages when g is odd. For g even, we settle the conjecture for cages of
small excess, i.e. such that n(k; g) − n0(k; g) ≤ k − 1, also we prove
that n(k; g, h) < n(k; h) for h sufficiently large, in both cases, for g
even and g odd, under the assumption that (k; g)-cages are bipartite for
g even. Notice that the cages of even girth and small excess are known
to be bipartite [2], furthermore it is conjectured that all cages with even
girth are bipartite [9, 12].

2 Notation

For any graph of girth g ≥ 4 even, uv ∈ E(G) and 0 ≤ l ≤ g
2 − 1, let us

denote the sets

Bluv={x ∈ V (G) : d(x, u)= l and d(x, v) = l + 1} and Bluv=
l⋃

i=0
Biuv.

Observe that B0uv = {u} = B
0
uv and B1uv = N (u) − v while B1uv =

(N (u) − v) ∪ {u}. Moreover, note that Bluv �= Blvu and B
l
uv �= B

l
vu .

Denote T l
uv = G[Bluv ∪ B

l
vu] and observe that if l ≤ g

2 − 2, where g
is the girth of G, then T l

uv is the tree rooted in the edge uv of depth l.
When l = g

2 − 1 the subgraph T l
uv may not be a tree, it can contain edges

between vertices in Bluv and vertices in B
l
vu .
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We will denote the set of cycles in G by C(G) = {α : α is a cycle in G}.
Let G be a (k; g)-cage of even girth g = 2m. The excess e of G

with respect to an edge uv ∈ E(G) is the cardinality of the set X =
V (G) \ Tm−1

uv . Note that the order of Tm−1
uv is the same for every edge

uv ∈ E(G). Thus, e = |X | = n(k; g)− n0(k; g).

3 Constructions for g odd

Deleting from G the sets B
(
h−g−1
2 −1)

uv ∪ B
(
h−g+1
2 −1)

vu and completing the de-
grees of the remaining vertices we obtain Theorem 3.2. In order to keep
cycles of length h after the deletion we proved the following lemma.

Lemma 3.1. Let G be a (k; h)-cage with k ≥ 3 and even girth h ≥ 6.

Then G contains a cycle β of length h such that V (β) ∩ B
h
4−1
uv = ∅ or

V (β) ∩ B
h
4−1
vu = ∅.

Theorem 3.2. Let h ≥ 6 even and k ≥ 3. Suppose that there is a bipar-
tite (k; h)-cage. If g ≥ 5 is an odd number such that h

2 + 1 ≤ g < h,
then

n(k; g, h) ≤ n(k; h)− 2
h−g−3
2∑

i=0
(k − 1)i − (k − 1) h−g−12 .

Theorem 3.3. Let h ≥ 6 even and k ≥ 3. Suppose that there is a
bipartite (k; h)-cage. If g is an odd number such that g < h, then
n(k; g, h) < n(k; h).

4 Constructions for g even and h odd

First of all we introduce a construction that we will use later for breaking
short odd cycles while preserving the regularity and the even girth.

Definition 4.1. Let G, H be two vertex-disjoint graphs, uv ∈ E(G) and
st ∈ E(H). We will define a new graph Guv�st H , that we will call the
insertion of (G, uv) into (H, st) by letting:

• V (Guv�st H) = V (G) ∪ V (H)
• E(Guv�st H) = (E(G) \ {uv}) ∪ (E(H) \ {st}) ∪ {us, vt}.
See Figure 4.1, for an example illustrating this definition.
The first basic result with respect to g even and h odd is the follow-

ing theorem, the bound is proved inserting a graph (G, uv) into a copy
(G ′, u′v′), and performing some edge operations in order to obtain cycles
of length 2g − 1.
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Figure 4.1. The insertion Guv�st H .

Theorem 4.2. Let k ≥ 3 and g ≥ 6 even. Then n(k; g, 2g − 1) ≤
2n(k; g) provided that there is a bipartite (k; g)-cage.
To prove the corresponding result for n(k; g, g + r) we will use the

following remark.

Remark 4.3. Let G, H be graphs with girths g, h, respectively, such that
g ≤ h, and let Guv�st H be the insertion of (G, uv) into (H, st). Then
the set of cycles in Guv�st H is:

C(Guv�st H) = (C(G) \ {α ∈ C(G) : uv ∈ E(α)})
∪ (C(H) \ {β ∈ C(H) : st ∈ E(β)})
∪ {γ = P1vt P2su : P1 is a uv-path in G − uv

and P2 is a ts-path in H − st}.
This means that if there were cycles of lengths c1 and c2 in graphs G and
H that used the edges uv and st , respectively, they are removed in the
new graph Guv�st H and new cycles of length c1 + c2 are created.

Theorem 4.4. Let k ≥ 3, g even such that 6 ≤ g and r an odd number
such that 1 ≤ r ≤ g − 3. Then n(k; g, g + r) ≤ 4n(k; g), provided that
there is a bipartite (k; g)-cage.
By applying the insertion to the graph obtained in Theorem 4.4 on

specific edges, we obtain the following lemma.

Lemma 4.5. Let k ≥ 3, g ≥ 6 even and suppose that there is a bipartite
(k; g)-cage. Then n(k; g,mg + r) ≤ 4n(k; g) + k(m − 1)n(k; g), for
m ≥ 1 and r any odd number such that 1 ≤ r ≤ g−1. In particular when
r = g−1, from Theorem 4.2, we have n(k; g, (m+1)g−1) ≤ 2mn(k; g).
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Theorem 4.6. Suppose there is a bipartite (k; g)-cage with degree k ≥ 3
and even girth g ≥ 6. Then n(k; g, h) < n(k, h), for h sufficiently large.

So, we have proved Conjecture 1.2 for even girth g in general but
asymptotically. For specific values of k and g, the Conjecture 1.2 can
be completely settled, as we will show next.

Corollary 4.7. For every (k; g)-cage of even girth g, degree k ≥ 3 and
excess e ≤ k − 2, we have n(k + 1; g, h) < n(k + 1; h).
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Directed and multi-directed animals
on the King’s lattice

Axel Bacher1

Abstract. We define the directed King’s lattice to be the square lattice with diago-

nal (next nearest neighbor) bonds and with the preferred directions .
We enumerate directed animals on this lattice using a bijection with Viennot’s
heaps of pieces. We also define and enumerate a superclass of directed animals,
the elements of which are called multi-directed animals. This follows Bousquet-
Mélou and Rechnitzer’s work on the directed triangular and square lattices. Our
final results show that directed and multi-directed animals asymptotically behave
similarly to the ones on the triangular and square lattices.

1 Introduction

An animal on a lattice is a finite and connected set of vertices. The enu-
meration of animals (up to a translation) is a longstanding problem in sta-
tistical physics and combinatorics. The problem, however, is extremely
difficult, and little progress has been made [12,16]. A more realistic goal,
therefore, is to enumerate natural subclasses of animals.
The class of directed animals is one of the most classical of these sub-

classes. Directed animals have been enumerated in a variety of lattices;
let us cite, non-exhaustively, the square and triangular lattices [2,9,11,14,
18], Bousquet-Mélou and Conway’s lattices Ln [4, 8], and the “strange”
or n-decorated lattices [3, 7] (Figure 1.1). Unsolved lattices include, no-
tably, the honeycomb lattice [13].
The class of multi-directed animals is a superclass of directed ani-

mals, first introduced by Klarner [15] on the square and triangular lat-
tices. Bousquet-Mélou and Rechnitzer [5] clarified Klarner’s definition
and introduced a variant class on the square lattice. Moreover, they gave
closed expressions for the generating function of multi-directed animals
and showed that it is not D-finite.
The goal of this paper is to enumerate directed and multi-directed ani-

mals on a new lattice. We call King’s lattice the square lattice with added

1 LIPN, Université Paris Nord. Email: bacher@lipn.univ-paris13.fr
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diagonal bonds, or next nearest neighbor bonds. We also consider the

preferred orientations (Figure 1.1, right). Directed animals
on the King’s lattice are a superclass of directed animals on Bousquet-
Mélou and Conway’s lattice L3, which has arcs [4].

Figure 1.1. Directed animals on a selection of lattices. From left to right: the
square lattice, the triangular lattice, the lattice L3, and the King’s lattice.

Several techniques have been used to enumerate directed animals on the
various lattices. Among them are direct bijections with other combinato-
rial objects [11], comparison with gas models [1, 3, 9, 17] and the use of
Viennot’s theory of heaps of pieces [2, 5, 8, 20, 21]. In this paper, we use
the last method; we show that directed animals on the King’s lattice are
in bijection with heaps of segments, already defined in [6].

2 Animals on the King’s lattice and heaps of segments

2.1 Definitions

Definition 2.1. We call segment a closed real interval of the form [i, j],
where i and j are integers such that j > i . Two segments are called
concurrent if they intersect, even by a point. A heap of segments is a finite
sequence of segments, considered up to commutation of non-concurrent
segments.

The heaps of segments described here are the same as in [6], except
that the segment reduced to a point is not allowed. More information on
heaps of pieces in general can be found in [20]. Graphically, a heap is
built by dropping segments in succession; a segment either falls on the
ground or on another segment concurrent to it. Examples are shown in
Figures 2.1 and 2.2.

2.2 Directed animals and pyramids of segments

Let A be an animal; we say that a site t of A is connected to another site s
if there exists a directed path (i.e. respecting the preferred directions of
the lattice) from s to t visiting only sites of A. We say that the animal A
is directed of source s if every site t of A is connected to s. The source s
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is not unique; it may be any of the bottommost sites of A (see Figure 2.1,
left). By convention, we call source of A the leftmost bottom site.
In Figure 2.1 is illustrated a bijection between directed animals and

pyramids of segments (or heaps with only one segment lying on the
ground). This bijection works identically to the classical bijection be-
tween directed animals on the square lattice and strict pyramids of dimers
[2, 20].

Figure 2.1. Left: a directed animal on the King’s lattice (represented, for clarity,
as a polyomino on the dual lattice) with its source circled. Right: the pyramid of
segments obtained by replacing each maximal sequence of 
 consecutive sites
by a segment of length 
.

2.3 Multi-directed animals and connected heaps of segments

Let A be an animal. For any abscissa i , we denote by b(i) the ordinate
of the bottommost site of A at abscissa i (or b(i) = +∞ if there is no
site of A at abscissa i). We call source of A a site that realizes a local
minimum of b and keystone of A a site that realizes a local maximum. In
case several consecutive sites realize a minimum or maximum, the source
or keystone is the leftmost one (Figure 2.2, left). This is a purely arbitrary
choice that does not alter the definition.

Definition 2.2. Let A be an animal. The animal A is said multi-directed
if it satisfies the two conditions:

– for every site t of A, there exists a source s such that t is connected
to s;

– for every keystone t of A, there exist two sources s
 and sr , to the left
and to the right of t respectively, such that t is connected to both s

and sr . Moreover, the directed paths connecting t to s
 and sr do not
go through a keystone at the same height as t .

As a directed animal has only one source and no keystone, every di-
rected animal is multi-directed. Multi-directed animals are in bijection
with connected heaps of segments (or heaps without an empty column).
A multi-directed animal and its corresponding heap are depicted in Fig-
ure 2.2.
Definition 2.2 can be adapted in the directed square and triangular lat-

tices; the animals thus defined are in bijection with connected heaps of
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Figure 2.2. Left: a multi-directed animal with four sources (circled) and three
keystones (boxed). The directed paths connecting one keystone, denoted by t ,
to the sources s
 and sr are shown. Right: the corresponding connected heap of
segments, with has four minimal pieces (one for each source of the animal).

dimers. Bousquet-Mélou and Rechnitzer also defined multi-directed ani-
mals in bijection with connected heaps of dimers in [5], in a slightly dif-
ferent way. Our definition of multi-directed animals has the advantages
of being more intrinsic and of having a vertical symmetry.

3 Enumeration of directed animals

In this section, we use the bijection with pyramids of segments to enumer-
ate directed animals on the King’s lattice. We call half-animal a directed
animal with no site on the left side of its source. The associated pyramids
are called half-pyramids. We adapt Bétéma and Penaud’s methods [2] to
decompose the pyramids of segments, which yields the following result.

Theorem 3.1. The generating functions S(t) and D(t) of half-animals
and animals are:

S(t) = 1− 3t −√1− 6t + t2

4t
; D(t) = 1

4

(
1+ t√

1− 6t + t2
− 1

)
.

The decomposition of the half-pyramids is sketched in Figure 3.1. In-
terestingly, the generating function S(t) is already known in combina-
torics. Its coefficients are the little Schröder numbers, A001003 in the
OEIS [19]. The coefficients of D(t) also appear as A047781. This is re-
mindful of the triangular lattice, where the half-animals are enumerated
by the Catalan numbers [2].

4 Enumeration of multi-directed animals

In this section, we enumerate multi-directed animals, or, equivalently,
connected heaps of segments. To do this, we adapt the Nordic decompo-
sition, invented by Viennot to enumerate connected heaps of dimers [21].
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Figure 3.1. Sketch of the two cases in the decomposition of half-pyramids.
The generating function of the possible heaps P1 and P2 is 1 + S(t), while the
generating function of the possible heaps P ′1 is S(t). This shows the identity
S = t (1+ S)2 + t S(1+ S), from which we derive the value of S(t).

Theorem 4.1. Let M=M(t) be the generating function of multi-directed
animals. Let S = S(t), D = D(t) be the power series defined in The-
orem 3.1, R = S + t (1 + S) and Q = 2(1 − t)S − t . The generating
function M is given by:

M = D

1−∑
k≥0

S(1+ S)k
QRk

1− QRk

.

5 Asymptotic results

Finally, we derive asymptotic results from Theorems 3.1 and 4.1.

Theorem 5.1. Let Dn and Mn be the number of directed and multi-di-
rected animals of area n, respectively. As n tends to infinity, we have:

Dn ∼ κ
(
3+√8)nn−1/2; Mn ∼ λμn ,

with μ = 6.475.... The average width of directed animals grows like√n,
while the average width of multi-directed animals grows like n. Finally,
the series M(t) is not D-finite.

The results on directed animals are a straightforward application of
singularity analysis [10, Theorem VI.4]. The results on multi-directed
animals are more involved. Similar results already exist on the square and
triangular lattices, including the non-D-finiteness of the series M(t) [5].
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animaux dirigés et séries en variables partiellement commutatives,
ArXiv Mathematics e-prints, 2001. arXiv:math/0106210.



540 Axel Bacher
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Results and conjectures on the number
of standard strong marked tableaux

Susanna Fishel1 and Matjaž Konvalinka2

Abstract. Standard strong marked tableaux play a role for k-Schur functions
similar to the role standard Young tableaux play for Schur functions. We discuss
results and conjectures toward an analogue of the hook length formula.

1 Introduction

In 1988, Macdonald [5] introduced a new class of polynomials and con-
jectured that they expand positively in terms of Schur functions. This
conjecture, proved by Haiman [2], has led to an enormous amount of
work, including the development of the k-Schur functions. These were
defined in [3] and led to a refinement of the Macdonald conjecture. The
k-Schur functions have since been found to arise in other contexts; for
example, as the Schubert cells of the cohomology of affine Grassman-
nian permutations, and they are related to the quantum cohomology of
the affine permutations.
One of the intriguing features of standard Young tableaux is the hook-

length formula, which enumerates them. It has many different proofs and
generalizations, see e.g. [6, Chapter 7] and [1].
In this extended abstract, we partially succeed in finding an analogue of

the hook-length formula for standard strong marked tableaux (or starred
tableaux for short), which are a natural generalization of standard Young
tableaux in the context of k-Schur functions. For a fixed n, the shape of
a starred tableau is necessarily an n-core, a partition for which all hook-
lengths are different from n. In [4, Proposition 9.17], a formula is given
for the number of starred tableaux for n = 3, which can be rewritten as
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m!/∏i, j∈λ
hi j<3

hi j , where m is the number of boxes of λ with hook-length <

3. This is reminiscent of the classical hook-length formula. The authors
left the enumeration for n > 3 as an open problem.
The main result (Theorem 3.1) of this extended abstract implies that for

each n, there exist (n − 1)! rational numbers (which we call correction
factors) so that the number of starred tableaux of shape λ for any n-core
λ can be easily computed. In fact, Theorem 3.1 gives a t-analogue of this
result. The theorem is “incomplete” in the sense that we were not able
to find explicit formulas for the (weighted) correction factors. We have,
however, been able to state some of their properties (some conjecturally),
the most interesting of them being the unimodality conjecture (Conjec-
ture 3.4). Another result of interest is a new, alternative description of
strong marked covers via simple triangular arrays of integers which we
call residue tables and quotient tables (Theorem 4.2). We think these
tables are of great importance in the theory of k-Schur functions.

2 Preliminaries

Here we introduce notation and review some constructions. Please see [6]
for the definitions of integer partitions, ribbons, hook lengths, the hook-
length formula, standard and semistandard Young tableaux, etc., which
we omit in this extended abstract.

2.1 Cores and bounded partitions

Let n be a positive integer. An n-core is a partition λ such that hλi j �= n
for all (i, j) ∈ λ. Core partitions were introduced to describe when two
ordinary irreducible representations of the symmetric group belong to
the same block. There is a simple bijection between (k + 1)-cores and k-
bounded partitions. Given a (k+1)-core λ, let πi be the number of boxes
in row i of λ with hook-length ≤ k. The resulting π = (π1, . . . , π
) is
a k-bounded partition, we denote it b(λ). Conversely, given a k-bounded
partition π , move from the last row of π upwards, and in row i , shift
the πi boxes of the diagram of π to the right until their hook-lengths are
≤ k. The resulting (k+1)-core is denoted c(π). In this extended abstract,
n = k + 1.
Example 2.1. The reader can check that for k = 5 and λ = 953211,
b(λ) = 432211, and c(π) = 75221 for k = 6 and π = 54221.
Of particular importance are k-bounded partitions π for whichmi(π)≤

k−i for all i = 1, . . . , k. We call such partitions k-irreducible partitions,
see [3]. The number of k-irreducible partitions is k!.
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2.2 Strong marked and starred tableaux

The Frame-Thrall-Robinson hook-length formula shows how to compute
fλ, the number of standard Young tableaux of shape λ: we have fλ =|λ|!∏
(i, j)∈λ hλi j

. There exists a well-known weighted version of this formula,

see e.g. [6, Corollary 7.21.5]. Our goal is to find an analogue of this form
in the setting of k-bounded partitions and k-Schur functions.
The strong n-core poset Cn is the subposet of Y induced by the set of

all n-core partitions. That is, its vertices are n-core partitions and λ ≤ μ
in Cn if λ ⊆ μ. The cover relations are trickier to describe in Cn than in
Y , see e.g. [4, Proposition 9.5]
The rank of an n-core is the number of boxes of its diagram with hook-

length< n. If λ�μ and μ/λ consists of m ribbons, we say that μ covers
λ in the strong order with multiplicity m. A strong marked cover is a
triple (λ, μ, c) such that λ � μ and that c is the content of the head of
one of the ribbons. We call c the marking of the strong marked cover.
A strong marked horizontal strip of size r and shape μ/λ is a sequence
(ν(i), ν(i+1), ci)r−1i=0 of strong marked covers such that ci < ci+1, ν(0) = λ,
ν(r) = μ. If λ is an n-core, a strong marked tableau T of shape λ is a
sequence of strong marked horizontal strips of shapes μ(i+1)/μ(i), i =
0, . . . ,m − 1, such that μ(0) = ∅ and μ(m) = λ. The weight of T is
the composition (r1, . . . , rm), where ri is the size of the strong marked
horizontal strip μ(i)/μ(i−1). If all strong marked horizontal strips are of
size 1, we call T a standard strong marked tableau or a starred tableau
for short. For a k-bounded partition π , denote the number of starred
tableaux of shape c(π) by F (k)π . The next figure illustrates F (3)211 = 6.

If λ is a k-bounded partition that is also a k+ 1-core (λ1+ 
(λ) ≤ k+ 1),
then strong marked covers on the interval [∅, λ] are equivalent to the cov-
ers in the Young lattice, strong marked tableaux of shape λ are equivalent
to semistandard Young tableaux of shape λ, and starred tableaux of shape
λ are equivalent to standard Young tableaux of shape λ.

3 Main results and conjectures

For a starred tableau T , define the descent set of T , D(T ), as the set of all
i for which the marked box at i is strictly above the marked box at i + 1.
Define the major index of T , maj(T ), by

∑
i∈D(T ) i . For a k-bounded
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partition π , define the polynomial F (k)π (t) =
∑

T t
maj(T ), where the sum

is over all starred tableaux of shape c(π). Clearly F (k)π = F (k)π (1).

Theorem 3.1. Let π be k-bounded, π = 〈ka1+1·w1, . . . , 1ak+k·wk 〉 for 0 ≤
ai < i . If σ = 〈ka1, . . . , 1ak 〉 and ( j) = 1+ · · · + t j−1, then

F (k)π (t) =
t
∑k

i=1 wi(
i
2)(k−i+1)(|π|)! F (k)σ (t)

(|σ |)! ∏k
j=1 ( j)

∑k
i=1 wi min{i, j,k+1−i,k+1− j}

.

The theorem implies that in order to compute F (k)π (t) (and, by plugging in
t = 1, F (k)π ) for all k-bounded partitions π , it suffices to compute F (k)σ (t)
(resp., F (k)σ ) only for k-irreducible partitions σ .

Example 3.2. For k = 3, we have, among other formulas,

F (3)
3w121+2w211+3w3 (t) =

t2w2+3w3+1 · (3w3 + 4w2 + 3w1 + 3)!
(2)w1+2w2+w3 · (3)w1+w2+w3+1 .

For a k-bounded partition π , let H (k)π (t) =
∏

(hi j ), where the product is
over all boxes (i, j) of the (k + 1)-core c(π) with hook-lengths at most
k, and let H (k)π = H (k)π (1) be the product of all hook-lengths ≤ k of c(π).
Furthermore, if b j is the number of boxes in the j-column of c(π) with
hook-length at most k, write b(k)π =∑

j

(b j
2

)
.

Let C (k)σ (t) = F (k)σ (t)H
(k)
σ (t)/(t

b(k)σ (|σ |)!C (k)σ (t)) be the weighted cor-
rection factors of a k-irreducible partition σ . By (and in the notation of)
Theorem 3.1, we can express F (k)π (t) (for all k-bounded partitions π) in
another way which is reminiscent of the classical hook-length formula:

F (k)π (t) =
tb
(k)
σ +∑k

i=1 wi(
i
2)(k+1−i)(|π|)!C (k)σ (t)

H (k)σ (t) ·∏k
j=1 ( j)

∑k
i=1 wi min{i, j,k+1−i,k+1− j}

.

For k ≤ 3, all weighted correction factors are 1. For k = 4, all but four
of the 24 weighted correction factors are 1, and the ones different from
1 are 1+2t+t2+t3

(2)(3) , 1+t+2t2+t3
(2)(3) , 1+2t+2t2+2t3+t4

(3)2
, 1+t+3t2+t3+t4

(3)2
for partitions

2211, 321, 3211 and 32211.
For a k-bounded partition π , denote by ∂k(π) the boxes of c(π) with

hook-length ≤ k. If ∂k(π) is not connected, we say that π splits into k-
bounded partitions (π i)mi=1, where the connected components of ∂k(π) are
horizontal translates of ∂k(π i). It turns out that C (k)π (t) =

∏m
i=1 C

(k)
π i
(t).

Conjecture 3.3. For a k-irreducible partition π , the weighted correction
factor is 1 if and only if π splits into π1, . . . , π l , where each π i is a
k-bounded partition that is also a (k + 1)-core.
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Conjecture 3.4. For a k-irreducible partition σ , we can write 1−C (k)σ (t)
as P1(t)

P2(t)
, where P1(t) is a unimodal polynomial with non-negative integer

coefficients and P2(t) =∏k−1
i=1 ( j)w j for some integers w j ≥ 0.

4 Strong covers and k-bounded partitions

Our proof of Theorem 3.1, omitted in the extended abstract, closely fol-
lows one of the possible proofs (via quasisymmetric functions) of the
classical (non-weighted and weighted) hook-length formula, see e.g. [6,
Section 7.21]. Note, however, that the truly elegant proofs (e.g. [1]) are
via induction. In this section, we show the first steps toward such a proof.
In the process, we present a new description of strong marked covers
in terms of bounded partitions (previous descriptions included cores—
at least implicitly, via k-conjugation—affine permutations and abacuses).
See the definition of residue and quotient tables below, and Theorem 4.2.
Identify π = 〈k p1, . . . , 1pk 〉 with p = (p1, . . . , pk). Given i, j,m,

0 ≤ m < i ≤ j ≤ k, define pi, j,m as follows: pi, j,mi−1 = pi−1+m, pi, j,mi =
pi − m for i �= j , pi, j,mj = p j − m − 1 for i �= j , pi,i,mi = pi − 2m − 1,
pi, j,mj+1 = p j+1+m+1, pi, j,mh = ph for h �= i−1, i, j, j+1. See Example
4.3.
Define upper-triangular arrays R = (ri j )1≤i≤ j≤k (residue table), Q =

(qi j )1≤i≤ j≤k (quotient table) by

• r j j = p j mod j , ri j = (pi + ri+1, j )mod i for i < j ,
• q j j = p j div j , qi j = (pi + ri+1, j ) div i for j < i .

Example 4.1. Take k = 4, p = (1, 3, 2, 5). ThenR =
0000
111
20
1

, Q =
1222
121
01
1

.

Theorem 4.2. Take p = (p1, . . . , pk) and 1 ≤ i ≤ j ≤ k. If ri j <
ri+1, j , . . . , r j j , then p covers pi, j,ri j in the strong order with multiplicity
qi j + · · · + q j j . Furthermore, these are precisely all strong covers.

Example 4.3. For k = 4, p = (1, 3, 2, 5), we have ri j < ri+1, j , . . . , r j j
for all (i, j) �= (1, 4), (2, 4). Therefore p covers, for example, p1,2,0 =
(1, 2, 3, 5) with multiplicity 3, and p2,3,1=(2,2,0,7) with multiplicity 2.
For a k-bounded partition π , we clearly have F (k)π = ∑

τ mτπF
(k)
τ ,

where the sum is over all k-bounded τ that are covered by π , and mτπ is
the multiplicity of the cover. Therefore the theorem can be used to prove
Theorem 3.1 for t = 1 for small values of k by induction: all we have to
do is check k! equalities. The authors did that for k ≤ 8.
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On independent transversals in matroidal
Latin rectangles

Ron Aharoni1, Daniel Kotlar2 and Ran Ziv2

A Latin rectangle is an m×n matrix in which the entries of each row and
each column are all distinct numbers. In a row-Latin rectangle only the
rows are required to consist of distinct entries. A partial transversal in a
Latin rectangle is a set of distinct numbers such that no two of them are in
the same row or column. A well-known conjecture of Ryser, Brualdi and
Stein [2,8] asserts that every n×n Latin rectangle has a partial transversal
of size n − 1. Woolbright [9], and independently and Brouwer, de Vries
and Wieringa [1], proved the existence of a partial transversal of size
n−√n and Shor and Hatami [5,7] improved the bound to n−O(log2 n).
Chappell [3], and later on the current authors [6], generalized the no-

tion of a Latin rectangle, or Latin square, to matroids, by replacing “dis-
tinct” with “independent”. Thus, a matroidal Latin rectangle is an m × n
array over the ground set of a matroid M, whose rows and columns
are independent sets. A matroidal row-Latin rectangle is defined anal-
ogously. An independent partial transversal is an independent set whose
elements belong to different rows and columns.
Chappell [3] proved that every (2n − 1)× n matroidal row-Latin rect-

angle has an independent partial transversal of size n. This generalized
an earlier result of Drisko [4]. Drisko gave an example where (2n − 2)
rows are not enough to ensure an independent transversal of size n.
We suggest dealing with the more general problem of finding a rain-

bow set in the intersection of two matroids: given two matroidsM and
N on the same ground set S, an independent matching is a subset of S in
M ∩N . A partial rainbow set for a family of sets F is a set of represen-
tatives for some sub-family of F . We conjecture that any n independent
matchings, each of size n, have a partial rainbow independent matching
of size n − 1.

1 Department of Mathematics, Technion, Haifa 32000, Israel. Email: ra@tx.technion.ac.il
2 Computer Science Department, Tel-Hai College, Upper Galilee 12210, Israel.
Email: dannykot@telhai.ac.il, vaksler@cs.bgu.ac.il
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In the current paper we present the results for two matroids M and
N , defined on the same ground set S. The first theorem generalizes the
result mentioned above of Woolbright [9] and Brouwer, de Vries and
Wieringa [1]:

Theorem 1. Any n independent matchings, each of size n, have a partial
rainbow independent matching of size n −√n.
The next theorem generalizes the results mentioned above of Drisko

[4] and Chappell [3]:

Theorem 2. Any 2n − 1 independent matchings, each of size n, have a
partial rainbow independent matching of size n.

In both proofs we assume that a maximal rainbow matching has size
smaller than the one we claim to exist, and we generate a larger rainbow
matching using the notion of colorful alternating path. In the process
of constructing the path we use some new basis exchange properties of
matroids.
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Multivariate Lagrange inversion formula
and the cycle lemma

Axel Bacher1 and Gilles Schaeffer2

Abstract. We give a multitype extension of the cycle lemma of (Dvoretzky and
Motzkin 1947). This allows us to obtain a combinatorial proof of the multivariate
Lagrange inversion formula that generalizes the celebrated proof of (Raney 1963)
in the univariate case, and its extension in (Chottin 1981) to the two variable case.
Until now, only the alternative approach of (Joyal 1981) and (Labelle 1981)

via labelled arborescences and endofunctions had been successfully extended to
the multivariate case in (Gessel 1983), (Goulden and Kulkarni 1996), (Bousquet
et al. 2003), and the extension of the cycle lemma to more than 2 variables was
elusive.
The cycle lemma has found a lot of applications in combinatorics, so we expect

our multivariate extension to be quite fruitful: as a first application we mention
economical linear time exact random sampling for multispecies trees.

1 Introduction

For any power series g(x) with g(0) �= 0, there exists a unique power
series f (t) solution of the equation f = tg( f ). The Lagrange inver-
sion formula says that the nth coefficient of f (t) is 1

n [xn−1]g(x)n. This
formula is now known as a fundamental tool to derive tree enumeration
results. The two simpler and most classical examples are:

– if g(x) = exp(x) then f (t) is the exponential generating function of
Cayley trees, so that the number of rooted Cayley trees with n nodes

is equal to 1
n

[
xn−1
(n−1)!

]
exp(nx) = nn−2;

– if g(x) = (1 + x)2 then f (t) is the ordinary generating function of
binary trees, so that the number of rooted binary trees with n nodes is
equal to 1

n [xn−1](1+ x)2n = 1
n

( 2n
n−1

) = 1
n+1

(2n
n

)
.

These examples are in a sense generic: the bijection between doubly
rooted Cayley trees and endofunctions underlies Labelle’s proof of the
Lagrange inversion formula [11], while the cyclic lemma used in [7] to
count ballot numbers underlies Raney’s proof [16].

1 Université Paris Nord. Email: bacher@lipn.univ-paris13.fr

2 CNRS / École Polytechnique. Email: gilles.schaeffer@lix.polytechnique.fr
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Our interest is in the multivariate extension of the Lagrange inversion
formula. Fix an integer k ≥ 1. Let bold letters denote k-dimensional
vectors; write xn = xn11 · · · xnkk and xn−1 = xn1−11 · · · xnk−1k . Let h(x)
and g1(x), . . . , gk(x) be power series in x such that for i = 1, . . . , k,
gi(0) �= 0. Again there is a unique familly of power series f(t) solution
of the system of equations fi = ti gi( fi) for i = 1, . . . , k and the multi-
variate Lagrange inversion formula admits the two equivalent following
formulations (among several others):

[tn]h(f(t)) = [xn−1]h(x)g(x)n det
(
δi, j − xi

g j (x)
∂g j (x)
∂xi

)
(1.1)

= 1

n1 · · · nk [x
n−1]

∑
T

∂T (h, g
n1
1 , . . . , g

nk
k ) (1.2)

where the sum is over oriented 0-rooted Cayley trees (non-plane trees
with arcs going toward 0) with vertices {0, . . . , k} and the derivative ∂G
with respect to a directed graph G with vertex set V = {0, . . . , k} and
edge set E is defined as

∂G( f0(x), . . . , fk(x)) =
k∏
j=0

(( ∏
(i, j)∈E

∂

∂xi

)
f j (x)

)
.

Several variants of (1.1) are given in [8] but (1.2) appeared more recently,
implicitely in [9] and explicitely in [1]. As far as we know all combina-
torial proofs of the multivariate Lagrange inversion extend Joyal and La-
belle’s approach [10, 11]: [8] proves another variant of (1.1), [3, 9] prove
(1.2). A completely different approach was recently proposed in [2].
Chottin [4,5] instead proposed a remarkable extension of Raney’s strat-

egy to prove the two variable Lagrange inversion formula. Yet he failed
to move to three variables and the problem of proving the multivariate
Lagrange inversion formula with the cycle lemma was considered as dif-
ficult. Apart from the theoretical interest of such a proof, an extension of
the cycle lemma is desirable in view of its numerous applications, to tree
and map enumeration [12, Chapter 11], [13, Chapter 9], probability [14],
and random sampling [6]. We present such an extension in this paper.

2 Generalized cycle lemma

Following [5] and the modern accounts of Raney’s proof, our combi-
natorial construction is in terms of encodings of rooted plane trees by
sequences of nodes. To deal with the multivariate case, we introduce
colored trees.
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A colored tree is a plane, rooted tree in which all edges have a color in
the set {1, . . . , k}. A colored bush is a colored tree that can have “pend-
ing” edges with no node attached. We call such edges free edges; an edge
is occupied if a node is attached to it.
Let 
 be an integer with 0 ≤ 
 ≤ k. An 
-bush is a colored bush such

that occupied edges have color more than 
 and free edges have color at
most 
. In particular, a k-bush only has a single node, while a 0-bush is
a colored tree. Therefore, 
-bushes can be seen as intermediate objects
between colored nodes and colored trees.

Definition 2.1. Let 0 ≤ 
 ≤ k. We denote by S
 the set of tuples of
the form S = (S0, . . . , S
, e1, . . . , ek), where S0, . . . , S
 are sequences of

-bushes and ei is an edge of color i in S (refered to as a marked edge),
satisfying the following conditions.

1. The sequence S0 has only one element; for i = 1, . . . , 
, the number
of elements of the sequence Si is equal to the number of edges of
color i in S.

2. Let T be the graph with vertices 0, . . . , 
 and an arc i → j if the
edge e j is in the sequence Si . The graph T is a 0-rooted Cayley tree.

According to the previous remark, the objects of S
 may also be seen as
intermediates between two objects. If k = 
, then S0, . . . , Sk are simply
sequences of nodes. If 
 = 0, the unique element of the sequence S0 is a
colored tree.

Theorem 2.2 (generalized cycle lemma). There is a bijection between
the sets S
 and S
−1 that works by attaching the elements of the sequence
S
 to the edges of color 
.

The actual description of the bijection is given in Section 3; an example
is given in Figure 2.1. Observe that for 
 = k = 1, the statement is
equivalent to the standard Cycle Lemma: there is a bijection between p-
uples of rooted plane trees with one pointed node (represented here as a
unique tree with an extra node of degree p at the root) and pairs formed
of a node of degree p having a marked free edge and a sequence of nodes
such that the number of nodes in the sequence equals the total number of
free edges.
Iterating the bijection yields a bijection between S0 and Sk . Given a

Cayley tree T with vertices {0, . . . , k}, the generating function of the as-
sociated subset of Sk is hgn11 · · · gnkk with the proper derivatives to mark
edges (taking a derivative of g

n j
j with respect to xi amounts to marking

an edge of color i in the sequence Sj ). It can thus be seen that the for-
mula (1.2) is a corollary of the generalized Cycle Lemma.
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Figure 2.1. An example with k = 3, a tree of S0 and the corresponding elements
of S1, S2 and S3 (from left to right), with their associated Cayley trees (bottom).
Marked edges are represented as double lines.

3 The bijection

We now describe without proof our bijection between the sets S
 and
S
−1, for 1 ≤ 
 ≤ k, illustrated in Figure 2.1. This bijection uses Prüfer
codes of Cayley trees [15]. The Prüfer code of a 0-rooted Cayley tree T
with vertices 0, . . . , s is a sequence p1, . . . , ps with ps = 0; there exists
a permutation σ such that the parent vertex of j in T is pσ( j) for j =
1, . . . , s. Moreover, every sequence corresponds to a unique tree.
Let S = (S0, . . . , S
, e1, . . . , ek) be an element of S
; let T be the as-

sociated Cayley tree. In the following, we call 
-edge an edge of color 
.
Since we are dealing with plane trees, there is a natural order on the set
of 
-edges of S given by depth-first traversals of the 
-bushes.
Let r be the number of 
-edges in the sequences S0, . . . , S
−1. Since T

is a Cayley tree, it does not contain the arc 
→ 
, which means that the
marked edge e
 is not in the sequence S
. Thus, we have r ≥ 1. Let u be
the root of the first element of S
. By Definition 2.1, the sequence S
 has
exactly r more elements than it has 
-edges. We combine the elements of
S
 using the Cycle Lemma; we denote by b1, . . . , br the resulting 
− 1-
bushes, so that the node u is in b1.

First case: the vertex 
 is a leaf of T . In this case, we attach the bushes
b1, . . . , br to the remaining free 
-edges in order, with a cyclic permuta-
tion chosen so that the bush b1 is attached to the marked edge e
.

Second case: the vertex 
 is not a leaf of T . In the Cayley tree T , all
arcs going toward 
 correspond to marked edges in the sequence S
. Let
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m1, . . . ,ms be the 
 − 1-bushes that we just formed containing at least
one marked edge.
We break up the Cayley tree T in the following manner. For i =

1, . . . , s, let Ti be the forest composed of the colors of the marked edges
in mi and their descendants in T . Let T0 be the tree composed of the
remaining vertices of T with the vertex 
 deleted; in other words, the
vertices of T0 are exactly the non-descendants of 
. We also assume that
the order of the mi ’s was chosen so that the Ti ’s are ordered according to
their lowest label.
Now, attach the bushes b1, . . . , br to the free 
-edges in order, with a

cyclic permutation chosen so that bs is attached to the marked edge e
.
For j = 1, . . . , s, let p j = i if m j is attached to an edge in the sequence
with an index in Ti . As the edge e
 is in the sequence corresponding to
the parent of 
 in T , which is in T0, we have ps = 0.
We can therefore regard the sequence p1, . . . , ps as the Prüfer code of

a 0-rooted Cayley tree T̃ with labels {0, . . . , s}. Let σ be the permutation
associated to this tree and swap the bushes m1, . . . ,ms according to the
permutation σ .

Let S′0, . . . , S
′

−1 be the sequences resulting from this procedure. As

no free 
-edges remain, every element of the sequences S′0, . . . , S
′

−1

is an 
 − 1-bush. Finally, let e′
 be the parent edge of the node u de-
fined at the beginning. Let T ′ be the graph associated with the marked
edges e1, . . . , e
−1. In the first case above, this is the tree T with the
leaf 
 deleted; in the second, it is a compound of the tree T0 and the
forests T1, . . . , Ts , arranged according to the tree T̃ ; it is therefore a Cay-
ley tree. This shows that the tuple (S′0, . . . , S

′

−1, e1, . . . , e

′

, . . . , ek) is an

element of S
−1.

We conclude with some comments. We use Cayley trees and Prüfer
codes in a manner that may seem needlessly complicated; however, in the
first stage, we see how important the condition that the graph T contains
no edge 
 → 
 is, which is implied by the fact that T is a Cayley tree.
The construction aims at ensuring that the graph T ′ describing the marked
edges e1, . . . , e
−1 remains a Cayley tree.
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grange à deux variables, Discrete Math. 13 (3) (1975), 215–224.
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[11] G. LABELLE, Une nouvelle démonstration combinatoire des for-
mules d’inversion de Lagrange, Adv. in Math. 42 (3) (1981), 217–
247.

[12] M. LOTHAIRE, “Combinatorics on Words”, Cambridge University
Press, 2nd edition, 1999.

[13] M. LOTHAIRE, “Applied Combinatorics on Words”, Cambridge
University Press, 2005.

[14] J. PITMAN, Enumerations of trees and forests related to branch-
ing processes and random walks, In: “Microsurveys in Discrete
Probability”, D. Aldous and J. Propp (eds.), volume 41 of DIMACS
Ser. Discrete Math. Theoret. Comput. Sci., Amer. Math. Soc., Prov-
idence, RI, 1998.
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Simplifying inclusion - exclusion formulas

Xavier Goaoc1, Jiří Matoušek2, Pavel Paták3, Zuzana Safernová4

and Martin Tancer5

Abstract. LetF = {F1, F2, . . . , Fn} be a family of n sets on a ground set S, such
as a family of balls in Rd . For every finite measure μ on S, such that the sets of F
are measurable, the classical inclusion-exclusion formula asserts that μ(F1 ∪ F2 ∪
· · ·∪ Fn) =∑

I :∅�=I⊆[n](−1)|I |+1μ
(⋂

i∈I Fi
)
; that is, the measure of the union

is expressed using measures of various intersections. The number of terms in this
formula is exponential in n, and a significant amount of research, originating in
applied areas, has been devoted to constructing simpler formulas for particular
families F . We provide an upper bound valid for an arbitrary F : we show that
every system F of n sets with m nonempty fields in the Venn diagram admits an

inclusion-exclusion formula with mO(log2 n) terms and with ±1 coefficients, and
that such a formula can be computed in mO(log2 n) expected time.

1 Introduction

One of the basic topics in introductory courses of discrete mathematics
is the inclusion-exclusion principle (also called the sieve formula), which
allows one to compute the number of elements of a union F1∪F2∪· · ·∪Fn
of n sets from the knowledge of the sizes of all intersections of the Fi ’s.
We will consider a slightly more general setting, where we have a

ground set S and a (finite) measure μ on S; then the inclusion-exclusion

1 Université de Lorraine, Villers-lès-Nancy, F-54600, France. CNRS, Villers-lès-Nancy, F-54600,
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2 Department of Applied Mathematics, Charles University, Malostranské nám. 25, 118 00 Praha 1,
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land. Supported by the ERC Advanced Grant No. 267165. Partially supported by the Charles
University Grant GAUK 421511 and by Grant GRADR Eurogiga GIG/11/E023. E-mail: ma-
tousek@kam.mff.cuni.cz
3 Department of Algebra, Charles University, Sokolovská 83, 186 75 Praha 8, Czech Republic.
Partially supported by the Charles University Grant GAUK 421511 and SVV-2012-265317. E-Mail:
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principle asserts that for every collection F1, F2, . . . , Fn of μ-measurable
sets, we have

μ

( n⋃
i=1

Fi

)
=

∑
I :∅�=I⊆[n]

(−1)|I |+1μ
(⋂
i∈I

Fi

)
. (1.1)

(Here, as usual, [n] = {1, 2, . . . , n} and |I | denotes the cardinality of the
set I .) This principle not only plays a fundamental role in various areas
of mathematics such as probability theory or combinatorics, but it also
has important algorithmic applications, e.g., the best known algorithms
for several NP-hard problems including graph k-coloring [2], travelling
salesman problem on bounded-degree graphs [3], dominating set [11], or
partial dominating set and set splitting [8].

The inclusion-exclusion principle involves a number of summands that
is exponential in n, the number of sets. In general this cannot be avoided
if one wants an exact formula valid for every familyF={F1, F2, . . . ,Fn}.
Yet, since this is a serious obstacle to efficient uses of inclusion-exclu-
sion, much effort has been devoted to finding “smaller” formulas. These
efforts essentially organize along two lines of research.
The first approach gives up on exactness and tries to approximate ef-

ficiently the measure of the union using the measure of only some of the
intersections. See, e.g., classical Bonferroni inequalities [4]. We give a
short overview of this line in the full version of this paper [7].
The second line of research looks for “small” inclusion-exclusion for-

mulas valid for specific families of sets. To illustrate the type of simplifi-
cations afforded by fixing the sets, consider the family F = {F1, F2, F3}
of Figure 1.1. As F1∩F3 = F1∩F2∩F3, Formula (1.1) can be simplified
to

μ (F1 ∪ F2 ∪ F3) = μ(F1)+μ(F2)+μ(F3)−μ(F1∩ F2)−μ(F2∩ F3).

Figure 1.1. Three subsets of R2 admitting a simpler inclusion-exclusion for-
mula. The ground set F1∪F2∪F3 splits into six nonempty regions recognizable
by the filling pattern.
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More generally, let us consider a family F = {F1, F2, . . . , Fn}, and let us
say that a coefficient vector

α = (αI )∅�=I⊆[n] ∈ R2n−1

is an IE-vector for F if we have

μ

( n⋃
i=1

Fi

)
=

∑
I : ∅�=I⊆[n]

αIμ

(⋂
i∈I

Fi

)
(1.2)

for every finite measure μ on the ground set of F (with all the Fi ’s mea-
surable). Given F , we would like to find an IE-vector for F , such that
both the number of nonzero coefficients is small, and the coefficients
themselves are not too large. We learned this idea from from [1] and
refer to the monograph of Dohmen [5] for an overview of this line of
research.
Given a specific family F = {F1, F2, . . . , Fn} of sets, how small can

we expect an inclusion-exclusion formula to be? To formalize the prob-
lem, we should specify howF is given. Let us consider the Venn diagram
of F . For each nonempty index set τ ⊆ [n], we define the region of τ ,
denoted by reg(τ ), as the set of all points that belong to the sets Fi with
i ∈ τ and no others (see Figure 1.1);

reg(τ ) =
(⋂
i∈τ

Fi

)
\
(⋃
i �∈τ

Fi

)
.

The Venn diagram of F is then the collection of all subsets of [n] with
non-empty regions; that is,

V = V(F) := {τ ⊆ [n] : reg(τ ) �= ∅}.
We regard the Venn diagram as a set system on the ground set [n]; it is a
“dual” of the set system F .
As far as inclusion-exclusion formulas are concerned, all points in a

single region are equivalent; it only matters which of the regions are
nonempty. Thus, in order to simplify our formulations, we can assume
that F is standardized, meaning that the ground set equals the union of
the Fi ’s and each nonempty region has exactly one point. From an al-
gorithmic point of view, this amounts to a preprocessing step for F , in
which the part of the ground set S in each nonempty region is contracted
to a single point.
Let F = {F1, F2, . . . , Fn} be a family of sets and let m denote the

size of V (which equals the size of the ground set for F standardized).
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A linear-algebraic argument shows that every (finite) family F has an
inclusion-exclusion formula with at most m terms [7, Corollary 2.4].
However, the coefficients might be exponentially large (see [7, Exam-
ple 2.5]). This requires computing the measure of the intersections with
enormous precision to obtain meaningful results. Thus, we prefer inclu-
sion-exclusion formulas where not only the number of terms is small, but
the coefficients are also small.
Our main result is the following general upper bound; to our knowl-

edge, it is the first upper bound applicable for an arbitrary family.

Theorem 1.1. Let n andm be integers and let k = �2e lnm��1+ln n
lnm �.

Then for every family F of n sets with Venn diagram of size m, there
is an IE-vector α for F that has at most

∑k
i=1

(n
i

) ≤ mO(ln2 n) nonzero
coefficients, and in which all nonzero coefficients are ±1’s. Such an α

can be computed in mO(ln2 n) expected time if F is standardized.

The bound in this theorem is quasi-polynomial, but not polynomial, in
m and n. We do not know if a polynomial bound can be achieved with
±1 coefficients but in the full version we show that inclusion-exclusion
formulas of linear size are impossible in general. Specifically, we show
[7, Theorem 1.2] that for infinitely many values of n, there are families
of n sets on n points, for which every IE-vector has 
1-norm at least
(n/2)3/2.
We only sketch proofs of the theorems above. In particular, we skip

proofs of auxiliary lemmas. They are proved in the full version [7].

2 Sketch of a proof of Theorem 1.1

We consider a family F = {F1, F2, . . . , Fn} of sets on a ground set S,
and assume that the Fi are all distinct. Besides the Venn diagram V , we
associate yet another set system with F , namely, the nerve N of F :

N = N (F) :=
{
σ ⊆ [n] : σ �= ∅,

⋂
i∈σ

Fi �= ∅
}
.

So both of N and V have ground set [n], and we have V ⊆ N .
Let us enumerate the elements of V as V = {τ1, τ2, . . . , τm} in such a

way that |τi |≤|τ j | for i< j , and let us enumerate N ={σ1, σ2, . . . , σ|N |}
so that the sets of V come first, i.e., σi = τi for i = 1, 2, . . . ,m.
In the introduction, we were indexing IE-vectors for F by all possible

subsets I ⊆ [n]. But if I is not in the nerve, the corresponding intersec-
tion is empty, and thus w.l.o.g. we may assume that its coefficient is zero.
Thus, from now on, we will index IE-vectors x as (x1, . . . , x|N |), where
x j is the coefficient of μ(

⋂
i∈σ j Fi).
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Abstract tubes. An (abstract) simplicial complex with vertex set [n] is
a hereditary system of nonempty subsets of [n].6 An abstract tube is a
pair (F,K), where F = {F1, F2, . . . , Fn} is a family of sets and K is
a simplicial complex with vertex set [n], such that for every nonempty
region τ of the Venn diagram of F , the subcomplex induced on K by τ ,
K[τ ] := {ϑ ∈ K : ϑ ⊆ τ }, is contractible.7
As first noted by Naiman and Wynn [9, 10], if (F,K) is an abstract

tube, then

μ

(
n⋃
i=1

Fi

)
=

∑
I∈K
(−1)|I |+1μ

(⋂
i∈I

Fi

)
. (2.1)

Moreover, truncating the sum yields upper and lower bounds in the spirit
of the Bonferroni inequalities ( [10]; also see [5, Theorem 3.1.9]).
Small abstract tubes have been identified for families of balls [1,9,10]

or halfspaces [10] inRd , and similar structures were found for families of
pseudodisks [6]. We establish Theorem 1.1 by proving that for every fam-
ily of sets there exists an abstract tube with “small” size that, in addition,
can be computed efficiently. We will use the following sufficient con-
dition guaranteeing that (F,K) is an abstract tube; it is a reformulation
of [5, Theorem 4.2.5]. Let MNF(K) denote the system of all inclusion-
minimal non-faces of K, i.e., of all nonempty sets I ⊆ [n] with I �∈ K
but with I ′ ∈ K for every proper subset I ′ ⊂ I .

Proposition 2.1. Let F = {F1, F2, . . . , Fn} be a family of sets with Venn
diagram V and let K be a simplicial complex with vertex set [n]. If no set
of V can be expressed as a union of sets in MNF(K), then (F,K) is an
abstract tube.

Abstract tubes from selectors. Let F = {F1, F2, . . . , Fn} be a family
of sets, and let V be the Venn diagram of F . A selector for V is a map
w : V → [n] such that w(τ) ∈ τ for every τ ∈ V . We observe that
each selector for V provides an abstract tube for F (which satisfies the
sufficient condition of Proposition 2.1).

Lemma 2.2. Let F = {F1, F2, . . . , Fn}, V = V(F), and let w be a
selector for V . We define the simplicial complex Kw = {σ ∈ N (F) : for
all nonempty ϑ ⊆ σ there is τ ∈ V such that w(τ) ∈ ϑ ⊆ τ }. Then
(F,Kw) is an abstract tube.

6 We emphasize that we exclude an empty set from the definition of a simplicial complex. This is
non-standard definition; however, it is convenient for our purposes.

7 By contractiblewemean contractibility in the sense of topology; roughly speaking, the topological
space defined by K[τ ] can be continuously shrunk to a point.
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Large simplices in random Kw. Let ρ be a permutation of [n]. We
define a selector wρ for V by taking w(τ) as the smallest element of τ in
the linear ordering ≺ on [n] given by ρ(1) ≺ ρ(2) ≺ · · · ≺ ρ(n).
For better readability we write Kρ instead of Kwρ . We want to show

that for random ρ, Kρ is unlikely to contain too large simplices, and thus
leads to a small inclusion-exclusion formula.

Let � denote the incidence matrix of V , that is, the 0-1 matrix with m
rows and n columns where �i j = 1 if and only if j ∈ τi (if the origi-
nal system F was standardized, then � is the transposition of the usual
incidence matrix of F). We also denote by �ρ the matrix obtained by
applying the permutation ρ to the columns of �: the ρ(i)th column of �ρ
is the i th column of � and represents the incidences between permuted
[n] and V . The lemma below says that if Kρ contains a large simplex,
then �ρ contains a particular substructure.
We say that a row R of �ρ is compatible with a subset I ⊆ [n] if R

contains 1’s in all columns with index in I and 0’s in all columns with
index smaller than min(I ).

Lemma 2.3. If ρ(τ) = {i1, i2, . . . , ik} for a simplex τ in Kρ , with i1 <
i2 < . . . < ik , then for every s ∈ {1, 2, . . . , k} the matrix �ρ contains a
row compatible with {is, is+1, . . . , ik}.
Sketch of a proof of Theorem 1.1. Let n and m ≥ 3 be integers. Let
F = {F1, F2, . . . , Fn} be a family of n sets whose Venn diagram V has
sizem. We argue that if ρ is a permutation of [n] chosen uniformly at ran-
dom, the probability that all compatibility conditions of Lemma 2.3 are
satisfied for some {i1, . . . , ik} is at most 12 for k := �2e lnm��1+ ln n

lnm �.
In particular, there exists a permutation ρ∗ such that Kρ∗ contains no
simplex of size k (or larger). Lemma 2.2 concludes the proof of Equa-
tion (2.1).
In order to actually compute a suitable coefficient vector, we choose a

random permutation ρ and compute Kρ .
The choice of a random permutation ρ takes O(n ln n) time and n ran-

dom bits. Accepting or rejecting a new simplex by brute-force testing
takes O(mn) time. The expected number of times we have to start over
with a new permutation ρ is O(1). Altogether, the expected running time
of this algorithm is O

((n
k

)
mn

) = mO(ln2 n).
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[3] A. BJÖRKLUND, T. HUSFELDT, P. KASKI and M. KOIVISTO, The
travelling salesman problem in bounded degree graphs, In: “Au-
tomata, Languages and Programming”, Part I, volume 5125 of Lec-
ture Notes in Comput. Sci., Springer, Berlin, 2008, 198–209.

[4] C. E. BONFERRONI, Teoria statistica delle classi e calcolo delle
probabilità, Pubbl. d. R. Ist. Super. di Sci. Econom. e Commerciali
di Firenze 8 (1936), 1–62.

[5] K. DOHMEN, “Improved Bonferroni Inequalities via Abstract
Tubes”, volume 1826 of Lecture Notes in Mathematics, Springer-
Verlag, Berlin, 2003.

[6] H. EDELSBRUNNER and E. A. RAMOS, Inclusion-exclusion com-
plexes for pseudodisk collections, Discrete Comput. Geom. 17
(1997), 287–306.
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Majority and plurality problems

Dániel Gerbner1, Gyula O. H. Katona1, Dömötör Pålvölgyi2

and Balázs Patkós1

Abstract. Given a set of n balls each colored with a color, a ball is said to be
majority, k-majority, plurality if its color class has size larger than half of the
number of balls, has size at least k, has size larger than any other color class;
respectively. We address the problem of finding the minimum number of queries
(a comparison of a pair of balls if they have the same color or not) that is needed
to decide whether a majority, k-majority or plurality ball exists and if so then show
one such ball. We consider both adaptive and non-adaptive strategies and in certain
cases, we also address weighted versions of the problems.

1 Introduction

Two very much investigated problems in combinatorial search theory are
the so-called majority and plurality problems. In this context, we are
given n balls in an urn, each colored with one color. A majority ball is
one such that its color class has size strictly larger than n/2. A plurality
ball is one such that its color class is strictly larger than any other color
class. The aim is either to decide whether there exists a majority/plurality
ball or even to show one (if there exists one). Note that if the number
of colors is two, then the majority and the plurality problems coincide.
Although there are other models (e.g. [6]), in the original settings a query
is a pair of balls and the answer to the query tells us whether the two balls
have the same color or not. Throughout the paper we consider queries of
this sort.
We distinguish two types of algorithms for each problem we consider.

An algorithm is adaptive if the i th query might depend on the answers
received for the first i − 1 queries. A non-adaptive algorithm is simply
a set of queries that should be answered at the same time. Clearly, any
non-adaptive algorithm can be viewed as an adaptive one and therefore
for any kind of combinatorial search problem, the minimum number of
queries required in an adaptive algorithm is not more than the minimum
number of queries required in a non-adaptive algorithm.

1 Hungarian Academy of Sciences, Alfréd Rényi Institute, of Mathematics, P.O.B. 127, Budapest
H-1364, Hungary.
Email: gerbner.daniel@renyi.mta.hu, ohkatona@renyi.hu, patkos.balazs@nenyi.mta.hu

2 Eötvös Loránd University, Department of Computer Science, Pázmány Péter sétány 1/C, Budapest
H-1117, Hungary. Email: dom@cs.elte.hu



568 Dániel Gerbner, Gyula O. H. Katona, Dömötör Pålvölgyi and Balázs Patkós

The first results concerning plurality and majority problems are due to
Fisher and Salzberg [7] and Saks and Werman [8]. In [7] it is proved that
if the number of possible colors is unknown, then the minimum number
of queries in an adaptive search for a majority ball is �3n/2�−2, while [8]
contains the result that if the number of colors is two, then the minimum
number of queries needed to find a majority ball is n − b(n), where b(n)
is the number of 1’s in the binary representation of n. The latter result
was later reproved in a simpler way by Alonso, Reingold, and Schott [3]
and Wiener [10].
The adaptive version of the plurality problem was first considered by

Aigner, De Marco, and Montangero in [2], where they showed that for
any fixed positive integer c, if the number of possible colors is at most
c, then the minimum number of queries needed in an adaptive search
for a plurality ball is of linear order, and the constants depend on c.
Non-adaptive and other versions of the plurality problem were consid-
ered in [1].
Non-adaptive strategies were also studied by Chung, Graham, Mao

and Yao [4, 5]. They showed a linear upper bound for the majority prob-
lem in case the existence of a majority color is assumed. They mention
a quadratic lower bound without this extra assumption. We precisely de-
termine the minimum number of queries needed. They also obtain lower
and upper bounds on the plurality problem in the non-adaptive case. We
improve those bounds and find the correct asymptotics of the minimum
number of queries.

1.1 Preliminaries and notation and main results

To state our results we introduce some notations. Mc(n) denotes the
minimum number of queries that is needed to determine if there exists
a majority color and if so, then to show one ball of that color and Pc(n)
denotes the minimum number of queries that is needed to determine if
there exists a plurality color and if so, then to show one ball of that color.
In both cases the subscript c stands for the number of possible colors.
The corresponding non-adaptive parameters are denoted by M∗

c (n) and
P∗c (n). A ball is said to be k-majority if its color class contains at least
k balls. Mc(n, k) denotes the minimum number of queries that is needed
to determine if there exists a k-majority color and if so, then to show one
ball of that color and M∗

c (n, k) denotes the parameter of the non-adaptive
variant.
We also consider weighted problems. Let S = {w(1), . . . , w(n)} be a

multiset of positive numbers, where w(i) is considered to be the weight
of the i th ball. For all weighted problems considered in the paper, we
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assume that the weights are known to all participants. The total weight
w = w(S) of the balls is∑n

i=1w(i). The weight w(T ) of a subset T ⊆[n] is∑i∈T w(i). A color is majority if its color class C satisfiesw(C) >
w/2 and k-majority if w(C) ≥ k holds. A color is said to be plurality if
the weight w(C) of its color class C is strictly greater than the weights
of all the other color classes. The appropriate parameters are denoted by
Mc(S),Mc(S, k),M∗

c (S),M
∗
c (S, k) and Pc(S), P

∗
c (S).

For a set Q of queries we define the query graph GQ to be the graph
where the vertices correspond to balls and two vertices are joined by an
edge if and only if there exists a query in Q that asks for the comparison
of the two corresponding balls. Our main results are the following two
theorems.

Theorem 1.1. Suppose n ≥ c > 2. Then M∗
c (n) = ��n/2�n/2�.

Theorem 1.2. For any pair of integers n and c, the following holds:⌈
1

2

(
n − 1− n − 1

c − 1
)
n

⌉
≤ P∗c (n) ≤

c − 2
2(c − 1)n

2 + n.

2 Sketches of proofs and additional results

Instead of proving Theorem 1.1 directly, let us address the more general,
weighted k-majority model. The next theorem characterizes the query
graphs that solve the weighted k-majority problem provided some extra
assumptions are satisfied. For simplicity, we will assume that the vertex
set of the query graph is [n]. Given a multiset S = {w1, w2, ..., wn} of
weights let F = {F ⊂ [n] : w(F) ≥ k} be the family of the k-majority
sets. Let F0 denote the subfamily of minimal sets in F .

Theorem 2.1. Suppose there are no 1-element sets in F . Then

(i) If each member of F0 induces a connected subgraph of the query
graph GQ , then GQ solves the weighted k-majority problem.

(ii) If 2w([n]) < (k + 1)(c+ 1)− 2, c > 2 and GQ solves the weighted
k-majority problem, then each member of F0 induces a connected
subgraph of GQ .

(iii) Considering the non-weighted version, suppose k is an integer. If
n ≤ ck − k − c + 2, c > 2 and GQ solves the k-majority problem,
then each member ofF , i.e. any set with at least k elements, induces
a connected subgraph of GQ .

Corollary 2.2. Suppose c > 2, n > k > n/2 and n > 1. Then a query
graph GQ solves the k-majority problem if and only if GQ is (n− k+ 1)-
connected.
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Theorem 1.1 can be easily deduced from Corollary 2.2. Let us note
here that the upper bound of Theorem 1.1 holds also in the weighted case,
but such general lower bound cannot be found without extra assumptions
on the multiset S of weights. Indeed, if w1 >

∑n
i=2wi , holds, then

without any query one knows that the ball with weight w1 is a majority
ball.
Let us now turn our attention to adaptive majority problems. We will

only address problems where the number of colors is two. Let μ(n) de-
note the largest integer l such that 2l divides n.

Proposition 2.3. Let k > n/2. Then

M2(n, k) ≥ n − 1− μ
(

n∑
i=k

(
n

i

))
.

Proposition 2.4. Let k > n/2. Then
(i) Let us fix an arbitrary ball. The number Fix2(n, k) of questions

needed to determine if the fixed ball is a k-majority ball is at least
n − 1− μ(∑n

i=k
(n−1
i−1

)
).

(ii) M2(n, k) ≥ n − 2− μ(∑n
i=k

(n−1
i−1

)
).

Let us now consider the weighted (adaptive) majority problem with two
colors. Suppose there are p �= 0 ways to partition the multiset S into two
parts of equal weight. Then

Proposition 2.5.

(i) At least n − 1− μ(p) questions are needed.
(ii) In case p is even, n − 2 questions are enough.
Note that this means M2(S) = n − 1 iff μ(p) = 0. If μ(p) = 1, then
M2(S) = n − 2, but the opposite direction is not true.
Another possible assumption about the multiset S of weights is that

“every element matters”, i.e. for every s ∈ S there exists a coloring of
S \ {s} with two colors (red and blue) such that the majority color is
different if we extend this coloring by giving s color red or blue. We
say that a multiset S of weights is non-slavery if the above condition is
satisfied.

Proposition 2.6. For every non-slavery multiset S of weights the
inequality M2(S) ≥ �n/2� holds.
We now adress plurality problems. The lower bound of Theorem 1.2

immediately follows from the following lemma.
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Lemma 2.7. If Q is a set of queries that solve the problem, then the
minimum degree in GQ is larger than n − 1 − � n−1c−1 �. Furthermore, if
n − 1 ≡ 1 mod c − 1, then the minimum degree in GQ is larger than
n − 1− � n−1c−1 �.
To obtain the upper bound of Theorem 1.2 it is enough to show a graph

Gc,n with c−2
2(c−1)n

2 + n edges such that no matter what colors the balls
have, we are able to solve the problem after receiving the answers to
queries corresponding to edges of Gc,n . Let Gc,n be the (c − 1)-partite
Turán graph on n vertices with a spanning cycle added to each partite set
V1, . . . , Vc−1.

One can improve the upper bound of Theorem 1.2 for c = 3.
Theorem 2.8.

(i) P∗3 (2k) = k(k + 1),
(ii) 1

2(k + 1)(2k + 1) ≤ P∗3 (2k + 1) ≤ 1
2(k + 1)(2k + 1)+ k − 1.

Finally, we turn our attention to the non-adaptive weighted plurality prob-
lem, i.e. determining P∗c (S) for a multiset S of weights. Theorem 1.2
shows that in general we cannot hope for anything better than the number
of edges of the balanced complete (c − 1)-partite graph on n vertices.
Our last theorem states that for any multiset of weights the number of
edges of the balanced complete c-partite graph on n vertices and a linear
number of additional queries can solve the problem.

Theorem 2.9. For any multiset S of n weights the inequality P∗c (S) ≤
c−1
2c n

2 + n − c holds.
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Combinatorial bounds on relational
complexity

David Hartman1, Jan Hubička1 and Jaroslav Nešetřil1

1 Introduction

An ultrahomogeneous structure is a (finite or countable) relational struc-
ture for which every partial isomorphism between finite substructures can
be extended to a global isomorphism. This very strong symmetry condi-
tion implies that there are just a few ultrahomogeneous structures. For
example, by [14], there are just countably many ultrahomogeneous undi-
rected graphs. The classification program is one of the celebrated lines
of research in the model theory, see [4, 15]. Various measures were in-
troduced in order to modify a structure to an ultrahomogeneous one. A
particularly interesting measure is the minimal arity of added relations
(i.e. the minimal arity of an extension or lift) which suffice to produce
an ultrahomogeneous structure. If these added relations are not changing
the automorphism group then the problem is called the relational com-
plexity and this is the subject of this paper. In the context of permutation
groups, the relational complexity was defined in [5] and was recently
popularized by Cherlin [2, 3]. We determine the relational complexity of
one of the most natural class of structures (the class of structures defined
by forbidden homomorphisms). This class has a (countably) universal
structure [6]. As a consequence of our main result (Theorem 3.1) we
strengthen this by determining its relational complexity. Although for-
mulated in the context of model theory this result has a combinatorial
character. Full details will appear in [9].

2 Preliminaries

A relational structure (or simply structure) A is a pair (A, (RiA : i ∈
I )), where RiA ⊆ Aδi (i.e., RiA is a δi -ary relation on A). The family
(δi : i ∈ I ) is called the type �. The type is assumed to be fixed and
understood from the context thorough this paper. The class of all (count-
able) relational structures of type � will be denoted by Rel(�). If the
set A is finite we call A a finite structure. We consider only countable

1 Czech Republic Computer Science Institute of Charles University, Prague 4.
Email: hartman@kam.mff.cuni.cz, hubicka@kam.mff.cuni.cz, nesetril@kam.mff.cuni.cz
The Computer Science Institute of Charles University (IUUK) is supported by grant ERC-CZ LL-
1201 of the Czech Ministry of Education and CE-ITI P202/16/6061 of GAČR
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or finite structures. We see relational structures as a generalization of di-
graphs and adopt standard graph theoretic terms (such as isomorphism,
homomorphism or connected structures).
Let �′ = (δ′i ; i ∈ I ′) be a type containing type �. (That is I ⊆ I ′ and

δ′i = δi for i ∈ I .) Then every structure X ∈ Rel(�′) may be viewed as a
structure A = (A, (RiA; i ∈ I )) ∈ Rel(�) together with some additional
relations for i ∈ I ′ \ I . We will thus also write X = (A, (RiA; i ∈
I ), (RiX; i ∈ I ′ \ I )).
We call X a lift of A. Note that a lift is also in the model-theoretic

setting called an expansion (as we are expanding our relational language).
For a class K of relational structures, we denote by Age(K) the class

of all finite structures isomorphic to an (induced) substructure of some
A ∈ K and call it the age of K. For a structure A, the age of A, Age(A),
is Age({A}).
The classical result of Fraı̈ssé characterize ultrahomogeneous struc-

tures in terms of their age and it can be seen as “zero instance” of prob-
lems considered in this paper. Ages of ultrahomogeneous have amalga-
mation property and there is 1-1 correspondence in between ultrahomo-
geneous structures and their ages. See e.g. [10] for details.

3 Relational complexity

Let A be a relational structure and let Aut(A) be the automorphism
group of A. A k-ary relation ρ ⊆ Ak is an invariant of Aut(A) if
(α(x1), . . . , α(xk)) ∈ ρ for all α ∈ Aut(A) and all (x1, . . . , xk) ∈ ρ. Let
Invk(A) denote the set of all k-ary invariants of Aut(A) and let Inv(A) =⋃

k≥1 Invk(A), Inv≤k =
⋃
1≤k′≤k Invk′(A).

It easily follows that lift (A, (RiA : i ∈ I ), Inv(A)) (possibly of infinite
type) is an ultrahomogeneous structure for every structure A = (A, (RiA :
i ∈ I )). For a structure A the relational complexity, rc(A), of a A is the
least k such that (A, (RiA : i ∈ I ), Inv≤k (A)) is ultrahomogeneous, if
such a k exist. If no such k exists, we say that the relational complexity
of A is not finite and write rc(A) = ∞. Note that if rc(A) is less than the
arity of some relation in �, then rc(A) may be lower than the relational
complexity of Aut(A) as defined in [2].
By Fraı̈ssé Theorem the amalgamation property can be seen as the

critical property of ageK such that there exists structureU, Age(U) = K,
satisfying rc(A) = 0. We seek, for given n, the structural properties of
age K such that there exists structure U, Age(U) = K, rc(A) = n.
Relational complexity is not interesting for rigid structures (with trivial

automorphism group), where it is always 1. Such a structure exists for
almost every age. We thus restrict our attention to ω-categorical struc-
tures. Recall that structure is ω-categorical if and only if it has only
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finitely many orbits on n-tuples, for every n, and thus also there are only
finitely many invariant relations of arity n, see [10]. Moreover count-
able ω-categorical structure U contains as an induced substructure every
countable structure A, Age(A) ⊆ Age(U), see [1]. We say that U is uni-
versal for the class of all structures of age at most Age(A) (also called
structures younger than U).
There is no 1-1 correspondence in between ω-categorical structures

and their ages. Consider Rado graph R, graph R′ created as a disjoint
union of two Rado graphs, and graph R′′ created from R′ by adding a
vertex of degree 1 connected to one of vertices of R′. It is not difficult
to see that all three graphs are ω-categorical and their age is the class
of finite graphs. The relational complexities are different: rc(R) = 0,
rc(R′) = 2, and rc(R′′) = 1.
Relational complexity of a structure differs from the minimal arity of

lifted relation needed to turn the structure into an ultrahomogeneous one
(studied i.e. in [11]). R′ can be homogenized by adding unary relation
distinguishing vertices of the first copy of Rado graph; this lift is however
not invariant.
Among all ω-categorical structures with a given age we can turn our

attention to the “most ultrahomogeneous like” in the following sense.
Structure A with Age(A) = K is existentially complete if for every struc-
ture B, such that Age(B) = K and the identity mapping (of A) is an
embedding A→ B, every existential statement ψ which is defined in A
and true in B is also true in A. By [6] for every age K defined by forbid-
den monomorphisms with ω-categorical universal structure there is also
up to isomorphism unique ω-categorical, existentially complete, and ω-
saturated universal structure. This in fact holds more generally. In such
cases, for a given ageK, the canonical universal structure of ageK is the
unique ω-categorical, existentially complete, and ω-saturated structure U
such that Age(U) = K. Given an age K we can thus ask:
I. What is the minimal relational complexity of an ω-categorical struc-
ture U such that Age(U) = K?

II. What is the relational complexity of the canonical universal struc-
ture of age K?

We consider universal structures for class Forbh(F) where F is a family
of connected structures. Forbh(F) denotes the class of all structuresA for
which there is no homomorphism F→ A, F ∈ F . Classes Forbh(F) are
among the most natural ones where the existence of a universal structure
is guaranteed for every finite F , see [6]. For such F we can fully answer
the questions above.
For a structure A = (A, (RiA, i ∈ I )), the Gaifman graph is the graph

GA with vertices A and all those edges which are a subset of a tuple of a
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relation of A, i.e., G = (A, E), where the neighborhood of {x, y} ∈ E
if and only if x �= y and there exists a tuple #v ∈ RiA, i ∈ I , such that
x, y ∈ #v. For a structure A and a subset of its vertices B ⊆ A, the
neighborhood of set B is the set of all vertices of A \ B connected in GA
by an edge to a vertex of B. We denote by GA \ B the graph created from
GA by removing the vertices in B.
A g-cut in A is a subset C of A that is a vertex cut of GA. A g-cut C is

minimal g-separating in A if there exists structures A1 �= A2 induced by
A on two connected components of GA \C such that C is the intersection
of the neighborhood of A1 and the neighborhood of A2 in A.
A family of structures is called minimal if and only if all structures in

F are cores and there is no homomorphism between two structures in F .
Theorem 3.1. Let F be a finite minimal family of finite connected
relational structures and U an ω-categorical universal structure for
Forbh(F). Denote by n the size of the largest minimal g-separating g-cut
in F . Then (a) rc(U) ≥ n; (b) if U is the canonical universal structure
for Forbh(F), then rc(U) = n.

In the rest of the paper we outline the bounds given by this theorem.

3.1 Upper bounds on relational complexity

It appears that relational complexity is closely related to the homogeniza-
tion method of constructing universal structures as used in [7]. The main
result of [7] is in fact a variant of Fraı̈ssé Theorem with the amalgamation
reduced to so-called local failure of amalgamation.
Amalgamation failure of a given age K is a triple (A,B,C) such that

A,B,C ∈ K, the identity mapping (of C) is an embedding C → A
and C → B, and there is no amalgamation of A and B over C in K.
(i.e. (A,B,C) shows that K has no amalgamation property). Amal-
gamation failure is minimal if there is no another amalgamation fail-
ure (A′,B′,C′) such that identity mappings are embeddings A′ → A,
B′ → B and C′ → C. By techniques of [7] we can show:

Theorem 3.2. Let U be the canonical universal structure for age K and
S the set of isomorphism types of minimal amalgamation failures of U. If
S is finite then rc(U) is bounded from above by the largest size of C such
that (A,B,C) ∈ S.
In the special case of K = Age(Forbh(F)) one can prove a stronger

result. This is a consequence of [12].

Theorem 3.3. Let F be a (finite or infinite) family of connected struc-
tures such that there exists U, the canonical universal structure for
Age(Forbh(F)). Then rc(U) is bounded from above by the size of the
largest minimal g-separating g-cut in F .
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Examples. Theorem 3.3 can be easily applied to many families F . For
example:
1. Let F be family of relational trees and U the canonical universal struc-
ture for Forbh(F) (if it exists). By Theorem 3.3 rc(U) ≤ 1. In fact U can
be seen as a “blown up” core of a homomorphism dual D (given by [8]
even for some infinite families F) where each vertex is replaced by in-
finitely many vertices and each edge by a random bipartite graph. In this
case the bound given by Theorem 3.2 is not tight even for F consisting
of an oriented path on 4 vertices.
2. Let FCn contain a single odd graph cycle on n vertices. The relational
complexity the canonical universal structure for Forbh(FCn ) is at most 2.
3. Let Fodd be class of all odd graph cycles. The canonical universal
structure for Forbh(Fodd) is the random bipartite graph B. By Theorem
3.3 rc(B) ≤ 2.
3.2 Lower bounds on relational complexity

We obtain the following bound:
Theorem 3.4. Let F be a finite minimal family of finite connected struc-
tures and U the ω-categorical universal structure for Forbh(F). Then
rc(U) is bounded from bellow by the size of largest minimal g-separating
g-cut in F .
We use of the following result proved by a special Ramsey-type con-

struction. This is not a technical finesse but this is in a way necessary. It
has been shown by [16,17] that Ramsey classes are related to ultrahomo-
geneous structures. This connection has been elaborated in the context of
topological dynamics in [13].
Theorem 3.5 ( [11]). LetF be a finite minimal family of finite connected
relational structures and K a lift of class Forbh(F) adding finitely many
new relations of arity at most r . If K contains ultrahomogeneous lift U
that is universal for K then the size of minimal g-separating g-cuts of
F ∈ F is bounded by r .
Examples. The complexity of a ω-categorical graph universal for
Forbh(FCn ), n ≥ 5, (of graphs without odd cycles of length at most n)
is at least 2. Combining with Theorem 3.3 we know that relational com-
plexity of the canonical universal structure for the class Forbh(FCn ) is 2.
On the other hand, however, this does not hold for the class Fodd . There
exists universal bipartite graphs of relational complexity 1. Finiteness
and minimality assumptions are thus needed in Theorem 3.4.
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A combinatorial approach to colourful
simplicial depth

Antoine Deza1, Frédéric Meunier2 and Pauline Sarrabezolles2

Abstract. The colourful simplicial depth conjecture states that any point in the
convex hull of each of d + 1 sets, or colours, of d + 1 points in general position
in Rd is contained in at least d2 + 1 simplices with one vertex from each set.
We verify the conjecture in dimension 4 and strengthen the known lower bounds
in higher dimensions. These results are obtained using a combinatorial gener-
alization of colourful point configurations called octahedral systems, which was
suggested by Imre Bárány. We present properties of octahedral systems gener-
alizing earlier results on colourful point configurations and exhibit an octahedral
system which cannot arise from a colourful point configuration. The number of
octahedral systems is also given.

1 Colourful simplicial depth

Given three blue points, three red points, and three green points in the
plane such that the convex hull of each of those three monochromatic
sets contains the origin 0, there exists a blue point, a red point, and a
green point forming a triangle containing 0.
Generally, a colourful point configuration in Rd is a collection of d+1

sets of points, or colours, S1, . . . ,Sd+1. A colourful simplex is defined
as the convex hull of a subset S of

⋃d+1
i=1 Si with |S ∩ Si | ≤ 1 for i =

1, . . . , d + 1. The Colourful Carathéodory Theorem proven by Bárány
in 1982 states that, if the origin 0 is in the convex hull of each set of a
colourful point configuration, there is a colourful simplex containing 0.

Theorem 1.1 (Colourful Carathéodory’s theorem [1]). Let S1,...,Sd+1
be a colourful point configuration. If 0 ∈ ⋂d+1

i=1 conv(Si), then there is a
subset S of

⋃d+1
i=1 Si with |S ∩ Si | ≤ 1 for i = 1, . . . , d + 1, containing 0

in its convex hull.

Assuming that all points are in general position, we define μ(d) to be
the minimum number of colourful simplices containing 0 over all colour-
ful point configurations with 0 ∈ ⋂d+1

i=1 conv(Si). It has been recently

1 McMaster University, Advanced Optimization Laboratory, Hamilton, Ontario, Canada.
Email: deza@mcmaster.ca

2 Université Paris Est, CERMICS, Cité Descartes, 77455 Marne-la-Vallée, Cedex 2, France.
Email:frederic.meunier@enpc.fr, pauline.sarrabezolles@enpc.fr
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investigated by Bárány and Matoušek [3], by Stephen and Thomas [4]
and by Deza, Stephen and Xie [7]. In particular, it has been proven that
μ(d) ≤ d2 + 1 [2] and, in the same paper, this inequality is conjectured
to be an equality. This conjecture has been proven for d = 1, 2, 3. It is

known that μ(d) ≥
⌈
(d+1)2
2

⌉
for d ≥ 1, see [7].

This quantity μ(d) has been used to obtain a lower bound for the mini-
mum number of simplices containing 0 drawn from a set of points in Rd .
We refer to [5] for a recent breakthrough on this number by Gromov.
Our main result is Theorem 1.2 which improves the known lower

bounds of μ(d). The proof uses a combinatorial generalization of the
colourful point configurations, called octahedral systems, defined in Sec-
tion 2.

Theorem 1.2.

μ(d) ≥ 1

2
d2 + 7

2
d − 8 for d ≥ 4

Furthermore, we show that μ(4) = 17 proving the conjecture for d = 4.

2 Combinatorial approach: octahedral systems

An n-uniform hypergraph is said to be n-partite if its vertex set is the
disjoint union of n sets V1, . . . , Vn and each edge intersects each Vi at
exactly one vertex. Such a hypergraph is an (n+1)-tuple (V1, . . . , Vn, E)
where E is the set of edges. We consider the following combinatorial
generalization suggested by Bárány to study μ(d). An octahedral system
� is an n-uniform n-partite hypergraph (V1, . . . , Vn, E) with |Vi | ≥ 2 for
i = 1, . . . , n and satisfying the following parity condition: the number
of edges of � induced by X ⊆ ⋃n

i=1 Vi is even if |X ∩ Vi | = 2 for
i = 1, . . . , n.
The Octahedral Lemma [6] states that, given a colourful point con-

figuration S1, . . . ,Sd+1 and a subset X ⊆ ⋃d+1
i=1 Si of points such that|X ∩ Si | = 2 for i = 1, . . . , d + 1, there is an even number of colour-

ful simplices generated by points of X and containing the origin 0. It
shows that the hypergraph � = (V1, . . . , Vd+1, E), with Vi = Si for
i = 1, . . . , d + 1, and where the edges in E correspond to the colourful
simplices containing 0, is an octahedral system.
An octahedral system arising from a colourful point configuration

S1, . . . ,Sd+1 such that 0 ∈ ⋂d+1
i=1 conv(Si) is without isolated vertex, i.e.

each vertex belongs to at least one edge. Indeed, an improved version
of the Colourful Carathéodory Theorem, given by Bárány [1], states that,
any point of such a colourful point configuration is the vertex of at least



581 A combinatorial approach to colourful simplicial depth

one colourful simplex containing 0. Such a colourful point configuration
and its corresponding octahedral system are shown in Figure 2.1.

Figure 2.1. An octahedral system arising from a colourful configuration in R2.

Theorem 2.1 provides a bound for the number of edges of an octahedral
system without isolated vertex.

Theorem 2.1. Any octahedral system without isolated vertex and with
|V1| = . . . = |Vn| = m has at least 12m

2+ 5
2m−11 edges, for 4 ≤ m ≤ n.

This theorem is proven by induction on the size
∑n

i=1 |Vi | of octahe-
dral systems. Troughout the induction, either a vertex and its incident
edges can be deleted, resulting in a smaller octahedral system without
isolated vertex, or the number of edges can be estimated via combinato-
rial arguments. Theorem 1.2 is the special case of Theorem 2.1 where
m = n = d + 1.
We exhibit octahedral systems without isolated vertex with exactly∑n
i=1(|Vi | − 2)+ 2 edges, proving that the lower bound of Theorem 2.1

cannot be improved beyond n(m − 2)+ 2 for m ≤ n.

3 Additional properties of octahedral systems

Proposition 3.1 generalizes a parity property given in [2], Proposition 3.2
generalizes the bound μ(d) ≥ d + 1 due to the improved version of
Colourful Carathéodory’s Theorem by Bárány [1], and Proposition 3.3
improves the result of Theorem 2.1 for m = n = 5 refining the same
arguments.

Proposition 3.1. An octahedral system � = (V1, . . . , Vn, E) with even
|Vi | for i = 1, . . . , n has an even number of edges.
Proposition 3.2. A non-trivial octahedral system � = (V1, . . . , Vn, E)
has at least mini |Vi | edges, and this bound is tight.
Proposition 3.3. An octahedral system without isolated vertex � =
(V1, . . . , V5, E) with |V1| = . . . = |V5| = 5 has at least 17 edges.
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Proposition 3.3 gives μ(4) = 17, since μ(d) ≤ d2 + 1. It shows that
the conjecture μ(d) = d2 + 1 holds for d = 4.
Theorem 3.4 determines the number of distinct octahedral systems,

solving an open question raised in [6].

Theorem 3.4. Given n disjoint finite vertex sets V1, . . . , Vn , the number
of octahedral systems on V1, . . . , Vn is 2"

n
i=1|Vi |−"n

i=1(|Vi |−1).

The proof uses the fact that the octahedral systems form the kernel
of some linear map between F2-vector spaces. Thus the octahedral sys-
tems form a F2-vector space, whose dimension is computed via the rank-
nullity theorem.

Figure 3.1. A non realisable (3, 3, 3)-octahedral system with 9 edges

Finally, we provide an octahedral system without isolated vertex that can-
not arise from a colourful point configuration S1, . . . ,Sd+1 inRd , answer-
ing Question 6 of [6], see Figure 3.1.
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Complexity and approximation
of the smallest k-enclosing ball problem

Vladimir Shenmaier1

Abstract. Given an n-point set in Euclidean space Rd and an integer k, consider
the problem of finding the smallest ball enclosing at least k of the points. In
the case of a fixed dimension the problem is polynomial-time solvable but in the
general case, when d is not fixed, the complexity status of the problem was not
yet known. We prove that the problem is strongly NP-hard and describe an idea
of PTAS.

The Smallest k-Enclosing Ball problem is considered:

Problem Sk-EB Given a set X of n points in Euclidean space Rd and
an integer k. Find the smallest ball enclosing at least k of the points.

The problem has a lot of interesting interpretations of life, due to sim-
plicity of the formulation. One of them is in the area of military affairs:
given coordinates of n purposes, hit k of them in one gulp with a mini-
mum charge.

Related work

The earliest reference of a special case of this problem occurs in the mid-
dle of the 19th century [9]. In the case of a fixed dimension, particularly
Euclidean plane (the most studied case), the problem is polynomially
solvable [2]. However, the running time of the best known algorithms
depends exponentially on dimension [4, 6]. In the general case, when d
is not fixed (belongs to a problem instance), the complexity status of the
problem was not yet known. Agarwal et al. [1] study a very related prob-
lem “smallest enclosing ball with outliers” and present an approximation
scheme (PTAS) for high dimensions based on coresets.

1 Sobolev Institute of Mathematics, Novosibirsk, Russia. Email: shenmaier@mail.ru. This research
is supported by RFBR (projects 12-01-00093, 12-01-33028 and 13-01-91370ST), Presidium RAS
(project 227) and IM SBRAS (project 7B).
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Our results

We prove that the problem is strongly NP-hard and unless P = NP there
is no fully polynomial-time approximation scheme (FPTAS) (that does
not follow from the strong NP-hardness when solution values are not
integer). Also we describe a straightforward idea of PTAS that computes
a (1+ ε)-approximation in O(n1/ε2+1d) time for any ε > 0.

1 Hardness results

We formulate a special case of Sk-EB in the form of the problem of veri-
fication of properties on a set of Boolean vectors:

Special Case Given a set X of n Boolean points, X ⊆ {0, 1}d , an integer
k ∈ [1, n], and a real value R > 0. Determine wether there is a Euclidean
ball of radius R enclosing at least k of the points.

Using ideas from the work of [7], we give a reduction to this special
case from the following strongly NP-complete problem [8]:

Clique in Regular Graph Given a regular graph G and an integer k.
Determine wether there is a complete k-vertex subgraph of G.

Theorem 1.1. Clique in Regular Graph can be reduced to Special Case
in polynomial time.

Reduction. Let G be a regular graph on n vertices and m edges, and� be
the degree of the vertices ofG. Define a set X as the set ofm-dimensional
rows of the incidence matrix of G. Observe that any two points x and y
of X have a distance

√
2�− 2 if the corresponding vertices are adjacent,

and
√
2� otherwise.

For any k-point set K in Rd , define an average of K as c(K ) =∑
x∈K x /k, and for any y ∈ Rd , define a value f (y, K ) = ∑

x∈K ‖x −
y‖2.
Lemma 1.2. f (y, K ) = f (c(K ), K )+ k ‖y − c(K )‖2.
Proof. Indeed, f (y, K ) =∑

x∈K ‖x− c(K )‖2−
∑

x∈K 2 〈x− c(K ), y−
c(K )〉+∑

x∈K ‖y−c(K )‖2, where 〈. , .〉 is scalar product of vectors. The
first term in this expression is equal to f (c(K ), K ), the latest is equal to
k ‖y−c(K )‖2, and the second is equal to zero, since ∑

x∈K
x=k c(K ).

For any k-point set K in Rd , define a value g(K ) = ∑
x∈K

∑
y∈K ‖x −

y‖2.
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Lemma 1.3. g(K ) = 2k f (c(K ), K ).
Proof. This follows from Lemma 1.2.

Lemma 1.4. Let R be the radius of the smallest ball enclosing at least k
of the points of X , and A = (1− 1/k)(�− 1). Then R2 ≤ A, if there is
a k-clique in the graph G, and R2 ≥ A + 2/k2 otherwise.
Proof. Suppose that a k-clique exists. Consider the point c(K ), where
K is the set of points corresponding to the vertices of the clique. Using
Lemma 1.3, we have f (c(K ), K ) = g(K )/2k = (k2− k)(2�−2)/2k =
k A. By symmetry, distances from c(K ) to all the points of K are the
same. It follows that the squares of these distances are equal to the value
f (c(K ), K )/k = A. Thus, the ball of radius

√
A centered at the point

c(K ) covers all the points of K .

Suppose that there is no k-clique. Let c be the center of the small-
est ball enclosing k points of X , and K be the k-point subset it covers.
Then R is equal to the maximal distance between c and the points of K .
Since the maximum of squares of distances is at least its average, we have
R2 ≥ f (c, K )/k. On the other hand, from Lemma 1.2 it follows that
f (c, K ) ≥ f (c(K ), K ). Therefore, R2 ≥ f (c(K ), K )/k = g(K )/2k2.
But any of k2 − k summands in the definition of g(K ) corresponding to
the pairs of distinct points is either 2� or 2�−2. And, by the assumption
of nonexistence of k-clique, at least two of them equals 2�. Therefore,
g(K ) ≥ (k2−k)(2�−2)+4, and then R2 ≥ (1−1/k)(�−1)+2/k2 =
A + 2/k2.

Proof of Theorem 1.1. Lemma 1.4 implies that existence of a k-clique in
graph G is equivalent to existence of a ball of radius

√
A enclosing k

points of X . This completes the proof of Theorem 1.1.

Corollary 1.5. The Smallest k-Enclosing Ball problem is strongly NP-
hard.

In the case of optimization problems with integer-valued solutions the
strong NP-hardness implies that there is no fully polynomial-time ap-
proximation scheme (FPTAS) [5, 10]. Unfortunately, the radius of the
smallest k-enclosing ball is not integer in general, and so that fact needs
proof.

Theorem 1.6. For the Smallest k-Enclosing Ball problem, there is no
fully polynomial-time approximation scheme (FPTAS) unless P = NP.
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Proof. By Lemma 1.4, if there is a k-clique in a graph G then the ra-
dius of the smallest ball enclosing k of the points of X is bounded by√
A, and otherwise it is at least

√
A + 2/k2 > √

A (1 + 1/2Ak2) >√
A (1 + 1/2n3). It follows that there is no polynomial-time algorithm

that computes a (1+1/2n3)-approximation unless P = NP. On the other
hand, for an arbitrary polynomial p(n), any FPTAS allows to compute a
(1+ 1/p(n))-approximation in polynomial time. Therefore, existence of
FPTAS is impossible.

2 Approximation scheme

We describe an idea of a polynomial-time approximation scheme (PTAS)
for Sk-EB based on the simple gradient descent type algorithm [3] for the
Small Enclosing Ball problem:

Problem SEB Given a set X of n points in Euclidean space Rd . Find the
smallest ball enclosing all the points.

Observe that this is a special case of Sk-EB: k = n. The following
approximation algorithm is considered in [3]:

Algorithm for SEB Let i be an arbitrary positive integer.
Step 1: Choose any point c1 ∈ K .
Step j, j = 2, 3, . . . , i: Take a point p j ∈ K , which is furthest
away from c j−1, and define c j = c j−1 + (p j − c j−1)/j .
Output: The ball of radius R(ci , K )=maxx∈K ‖x − ci‖ centered in ci .
Observe that the points p1, p2, . . . , pi , where p1 = c1, are not nec-

essary distinct. And the point ci is equal to the average of the points
p1, . . . , pi : ci =∑i

j=1 p j /i .
Proposition 2.1 ([3]). Let c∗ and R∗ be the center and the radius of the
smallest ball enclosing all the points of K . Then ‖ci − c∗‖ ≤ R∗/

√
i .

Proposition 2.1 and the triangle inequality imply that the ball of radius
R(ci , K ) centered in ci is a (1 + 1/

√
i )-approximation for the problem

SEB. In fact, the above algorithm is a fully polynomial-time approxima-
tion scheme (FPTAS) that computes a (1 + ε)-approximate solution of
SEB in O(nd/ε2) time for any ε > 0.

Describe an algorithm for the original problem Sk-EB. Let c∗ and R∗
be the center and the radius of the smallest ball enclosing at least k of the
points. Clearly, this ball is an optimal solution of the problem SEB on
the k-point set K ∗ the ball covers. Then by Proposition 2.1, the average
of some points p1, . . . , pi ∈ K ∗ is at distance R∗/

√
i from the point c∗.
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Initially, we have no any information about the points p1, . . . , pi (and
about the whole set K ∗), but we know that these points are in the set X .
The idea of the algorithm is brute-force searching for all the sequences
of length i in the set X to find that sequence p1, . . . , pi , whose average
is close to c∗.

Algorithm for Sk-EB Let i be an arbitrary positive integer and t i :
{1, . . . , ni } → Xi be a enumeration of all the sequences of length i in
the set X .
Step s, s = 1, . . . , ni: Consider the sequence t i(s), say t i(s) =
p1, . . . , pi . Define a point ci(s) = ∑i

j=1 p j /i , find a set Ki(s) of the
k points of X nearest to ci(s), and obtain the radius R(ci(s), K i(s)) =
maxx∈Ki (s) ‖x − ci(s)‖.
Output: The ball of radius Ri centered in ci corresponding to the min-
imal radius R(ci(s), K i(s)) obtained at steps s = 1, . . . , ni .

Theorem 2.2. Let R∗ be the radius of the smallest ball enclosing k of the
points of X . Then Ri/R∗ ≤ 1+ 1/√i .

Proof. As mentioned above, an optimal solution of the problem Sk-EB
is also optimal for the problem SEB on the k-point set K ∗ this solution
covers. Suppose that points p1, . . . , pi are chosen at steps 1, . . . , i of
the algorithm for SEB on the set K ∗, ci = ∑i

j=1 p j /i and R(ci , K ∗) =
maxx∈K ∗ ‖x − ci‖. By Proposition 2.1 and the triangle inequality, it fol-
lows that R(ci , K ∗)/R∗ ≤ 1+ 1/

√
i .

On the other hand, the sequence p1, . . . , pi is equal to some sequence
t i(s) in the algorithm for Sk-EB. Then ci(s) = ci and R(ci(s), K i(s)) =
R(ci , Ki(s)) ≤ R(ci , K ∗) since the set K i(s) consists of the nearest
points to ci . Therefore, Ri ≤ R(ci , K ∗) and we have Ri/R∗ ≤ 1 +
1/
√
i .

Estimate the running time of the algorithm. Since a choice of the k
points of X nearest to ci(s) takes at most O(n) operations (e.g. using
the algorithm for the kth smallest number from n [11]), and all the oper-
ations over d-dimensional points take a time O(d), the running time of
the algorithm for Sk-EB is bounded by O(ni+1d).
Observe that for any ε > 0, we can take the parameter i = 1/ε2

to compute a (1 + ε)-approximation for Sk-EB. In this case the run-
ning time is bounded by O(n1/ε

2+1d). Thus, this algorithm is actually
a polynomial-time approximation scheme (PTAS) for the Smallest k-
Enclosing Ball problem.
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Testing uniformity of stationary
distribution

Sourav Chakraborty1, Akshay Kamath1 and Rameshwar Pratap1

Abstract. In this paper, we prove that for a regular directed graph whether the
uniform distribution on the vertices of the graph is a stationary distribution, de-
pends on a local property of the graph, namely if (u, v) is an directed edge then
outdegree (u) is equal to indegree (v). This result also has an application to the
problem of testing, whether the stationary distribution obtained by random walk
on a directed graph is uniform or “far” from being uniform. We reduce this prob-
lem to testing Eulerianity in the orientation model.

1 Introduction

Markov chains are one of the most important and most studied structures
in Theoretical Computer Science. The most important characteristics of
a Markov chain are its stationary distribution and its mixing time. In
particular, one often wants to know if a given distribution is a station-
ary distribution of a given Markov chain. In this paper, we focus on the
Markov chain obtained by a random walk on a directed graph. Stationary
distribution of a Markov chain is a global property of the graph, hence
whether a particular distribution is a stationary distribution of a Markov
chain depends on the global structure of that Markov chain. We prove
that contrary to normal perception, if the graph is regular then whether
the uniform distribution on the vertices of the graph is a stationary distri-
bution depends on a local property of the graph. The following theorem,
which is the main result of this paper, is a statement about that local prop-
erty. (See [3] for full version of this paper.)

Theorem 1.1. If
−→
G = (V,

−→
E ) is a digraph such that the total degree

(that is Indegree(v)+ Outdegree(v)) for every vertex v ∈ V is the same,
then the uniform distribution on the vertices of

−→
G is a stationary distri-

bution (for the Markov chain generated by a random walk on
−→
G ) if and

only if the graph have the following properties:
1. For all v ∈ V , Indegree(v) �= 0 and Outdegree(v) �= 0,
2. For every edge (u, v) ∈ −→E , Outdegree(u) = Indegree(v).

1 Chennai Mathematical Institute, Chennai, India. Email: sourav@cmi.ac.in, adkamath@cmi.ac.in,
rameshwar@cmi.ac.in
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2 Preliminaries
2.1 Graph notations

Throughout this paper, we will be dealing with directed graphs (possi-
bly with multiple edges between any two vertices) in which each edge
is directed only in one direction. We will call them oriented graphs.
We will denote the oriented graph by

−→
G = (V,−→E ) and the underlying

undirected graph (that is when the direction on the edges are removed)
by G = (V, E). For a vertex v ∈ V , the in-degree and the out-degree
of v in

−→
G are denoted by d−(v) and d+(v) respectively. An oriented

graph
−→
G = (V,−→E ) is called a degree-� oriented graph if for all v ∈ V ,

d−(v) + d+(v) = �. In this paper, we will be focusing on degree-�
oriented graphs.

2.2 Markov chains

A Markov chain is a stochastic process on a set of states given by a tran-
sition matrix. Let S be the set of states with |S| = n. Then, the transition
matrix T is a n × n matrix with entries from positive real; the rows and
columns are indexed by the states; the u, v-th entry Tu,v of the matrix
denotes the probability of transition from state u to state v. Since T is
stochastic,

∑
v Tu,v must be 1. A distribution μ : S→ R+ on the vertices

is said to be stationary if for all vertices v,∑
v

μ(u)Tu,v = μ(v).

If
−→
G is an oriented graph then a random walk on

−→
G defines a Markov

chain, where, the states are the vertices of the graph; the probability to
traverse an edge is given by the quantity pu,v = 1

d+(u) ; and hence, the tran-
sition probability Tu,v from vertex u to vertex v is pu,v times the number
of edges between u and v. The uniform distribution on the vertices of−→
G is a stationary distribution for this Markov chain if and only if for all
v ∈ V , ∑

u:(u,v)∈−→E
pu,v = 1 =

∑
w:(v,w)∈−→E

pv,w.

3 Structure of graphs with uniform stationary distribution
The following Theorem is a rephrasing of Theorem 1.1.

Theorem 3.1. Let
−→
G = (V,−→E ) be a degree-� oriented graph, then the

uniform distribution on the vertices of
−→
G is a stationary distribution (for
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the Markov chain generated by a random walk on
−→
G ) if and only if for

all v ∈ V , both d−(v), d+(v) �= 0 and for all (u, v) ∈ −→E ,
d+(u) = d−(v)

Proof. First of all, note that the uniform distribution is a stationary dis-
tribution for

−→
G , iff for all v ∈ V∑

u:(u,v)∈−→E
pu,v = 1 =

∑
w:(v,w)∈−→E

pv,w,

where pu,v is the transition probability (defined in subsection 2.2) from

vertex u to vertex v. Thus, if the graph
−→
G has the property that for all

(u, v) ∈ −→E , d+(u) = d−(v), then note that∑
u:(u,v)∈−→E

pu,v =
∑

u:(u,v)∈−→E

1

d+(u)
=

∑
u:(u,v)∈−→E

1

d−(v)
= 1,

the last equality holds because the summation is over all the edges enter-
ing v (which is non-empty) and thus have d−(v) number of items in the
summation.
Similarly, we can also prove that

∑
w:(v,w)∈−→E pv,w = 1. Thus, we have

proved this direction.
Now let us prove the other direction, that is, let us assume that the uni-

form distribution is a stationary distribution for the Markov chain. Note
that, if the uniform distribution is a stationary distribution then there is a
path from u to v if and only if u and v are in the same strongly connected
component of

−→
G . This is because the uniform distribution is a stationary

distribution if and only if for every cut C = V1∪V2 where V2 = (V \V1),
we have ∑

(u,v)∈−→E , and u∈V1,v∈V2
pu,v =

∑
(u,v)∈−→E , and u∈V2,v∈V1

pu,v.

In other words, if a stationary distribution is uniform then it implies that
every connected component in the undirected graph is strongly connected
in the directed graph.
Let v0, v1, v2, . . . , vt be a sequence of vertices such that the following

conditions are satisfied. We call such a sequence as “degree-alternating”
sequence of vertices.
– For all i ≥ 0, (vi+1, vi) ∈ −→E
– For all i ≥ 0, d+(v2i+1) = min

{
d+(w) : (w, v2i ) ∈ −→E

}
and

– For all i > 0, d+(v2i ) = max
{
d+(w) : (w, v2i−1) ∈ −→E

}
.
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Claim 3.2. Let {vi } be a “degree-alternating” sequence of vertices. If
we define a new sequence {S} of positive integers as: for all k ≥ 0,
s2k = d−(v2k) and s2k+1 = d+(v2k+1), then this sequence of positive
integers is a non-increasing sequence. Moreover, if vi and vi+1 are two
consecutive vertices in the sequence such that d−(vi+1) �= d+(vi) then
si+1 < si .

Using this claim, we would finish the proof of Theorem 3.1. (Due to
limitation of space we are unable to give the proof of this claim in this
abstract.) Let there be one vertex w ∈ V such that d+(u) �= d−(w) for
some edge (u, w) ∈ −→E . Let w′ be the vertex such that (w′, w) ∈ −→E and
d+(w′) = min{d+(u) : (u, w) ∈ −→E }.
Since we have already argued that in the graph every connected com-

ponent has to be strongly connected, we can create an infinite sequence
of vertices such that w and w′ appears consecutively and infinitely often.
Now by Claim 3.2, it means that the sequence {S} is a non-increasing
sequence that decreases infinitely many times. But this cannot happen as
all the numbers in the sequence {S} represent in-degree or out-degree of
vertices and hence, are always finite integers and can never be negative.
Thus, if one vertex w ∈ V such that d+(u) �= d−(w) for some edge
(u, w) ∈ −→E , then we hit a contradiction.
Thus, for all edges (u, v) ∈ −→E , d+(u) = d−(v).

From Theorem 3.1 we can also obtain the following corollary. Both The-
orem and Corollary has an application to property testing. We briefly
present this application in the next section.

Corollary 3.3. Let
−→
G = (V,

−→
E ) be a connected degree-� oriented

graph. Then the uniform distribution of vertices is a stationary distribu-
tion for the random walk markov chain on

−→
G , if and only if the following

conditions apply:
1. If G = (V, E) is non-bipartite, then the graph −→G is Eulerian.
2. If G is bipartite with bipartition V1 ∪ V2 = V then |V1| = |V2| and
in-degree of all vertices in one partition will be same and it will be equal
to out-degree of all vertices in other partition.

4 Application to property testing

In property testing, the goal is to look at a very small fraction of the input
and tell whether the input has a certain property or it is “far” from sat-
isfying the property. Here “far” means that one has to change at least ε
fraction of the input to make the input satisfy the property. Theorem 1.1
also has an application to the problem of testing whether a given distri-
bution is uniform or “far” from being uniform. More precisely, if the
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distribution is the stationary distribution of the lazy random walk2 on a
directed graph and the graph is given as an input, then how many bits
of the input graph do one need to query in order to decide whether the
distribution is uniform or “far” from it? We consider this problem in the
orientation model (see [2]). In the orientation model, the underlying
graph G = (V, E) is known in advance. Each edge in E is oriented (that
is directed in exactly one direction). The orientation of the edges has to
be queried. The graph is said to be “ε-far” from satisfying the property
P if one has to reorient at least ε fraction of the edges to make the graph
have the property.
We reduced this problem to testing Eulerianity in the orientation model.

And using result from [1] on query complexity of testing Eulerianity, we
obtain bounds on the query complexity for testing whether the stationary
distribution is uniform. We briefly discuss this as follows:

Given a degree-� oriented graph
−→
G = (V,−→E ), we say that the graph

has the property P if for all (u, v) ∈ −→E , we have d+(u) = d−(v).
Since the underlying undirected graph is known in advance, we have

the connected components. If the graph
−→
G is “ε-far” from satisfying the

property P , then there is at least one connected component of −→G that
is also “ε-far” from satisfying the property P . Thus, we can do testing
connected-component wise and w.l.o.g., we can assume that the graph

−→
G

is connected.
From Corollary 3.3, if

−→
G is non-bipartite then we have to test whether−→

G is Eulerian. Since we can determine whether graph is bipartite or not
just by looking at the underlying undirected graph, if

−→
G is non-bipartite

then we use the Eulerianity testing algorithm from [1].

Now let
−→
G be bipartite. Let the bipartition be VL and VR . If |VL | �=

|VR| then the graph surely does not satisfies property P . From Corol-
lary 3.3, if |VL | = |VR| then the graph must have the property that the
out-degree of all vertices in VL must be equal to the in-degree of all ver-
tices in VR and vice versa. Let v be a vertex in VL and d−(v) = k1 and
d+(v) = k2. Now consider any bipartite directed graph

−→
G∗ = (V,−→E∗)

with bipartition VL and VR that satisfies the following conditions:

– The underlying undirected graphs of
−→
G and

−→
G∗ are exactly same

– ∀v ∈ VL , d
−−→
G ∗(v) = k2, d

+−→
G ∗(v) = k1 and ∀v ∈ VR , d

−−→
G ∗(v) = k1,

d+−→
G ∗(v) = k2.

2 A lazy random walk always converges to a unique stationary distribution.
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Now consider the graph
−→
G⊕ = (V,−→E +−→E∗) obtained by superimposing−→

G and
−→
G∗. Clearly, if

−→
G has the property P then

−→
G⊕ is Eulerian, and

farness from having property P is also true by following lemma:

Lemma 4.1. If
−→
G is “ε-far” from having propertyP then

−→
G⊕ is “ ε2 -far”

from being Eulerian.

Now, all we have to test is whether the new graph
−→
G⊕ is Eulerian or

“ ε2 -far” from being Eulerian. Note that every query to
−→
G⊕ can be simu-

lated by a single query to G. Thus, we can now use the Eulerian testing
algorithm from [1].

5 Conclusion

The result holds only for graphs where the in-degree plus out-degree of
all the vertices are the same. It would be interesting to see if one can
make a similar statement for general graphs.
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On a covering problem in the hypercube

Lale Özkahya1 and Brendon Stanton2

Abstract. In this paper, we address a particular variation of the Turán problem
for the hypercube. Alon, Krech and Szabó (2007) asked “In an n-dimensional
hypercube, Qn , and for 
 < d < n, what is the size of a smallest set, S, of Q
’s so
that every Qd contains at least one member of S?” Likewise, they asked a similar
Ramsey type question: “What is the largest number of colors that we can use to
color the copies of Q
 in Qn such that each Qd has all the colors represented on
the copies of Q
’s.” We find upper and lower bounds for each of these questions
and provide constructions of the set S above for some specific cases.

1 Introduction

For graphs Q and P , let ex(Q, P) denote the generalized Turán number,
i.e., the maximum number of edges in a P-free subgraph of Q. The n-
dimensional hypercube, Qn , is the graph whose vertex set is {0, 1}n and
whose edge set is the set of pairs that differ in exactly one coordinate. For
a graph G, we use n(G) and e(G) to denote the number of vertices and
the number of edges of G, respectively.
In 1984, Erdős [9] conjectured that

lim
n→∞

ex(Qn,C4)

e(Qn)
= 1

2
.

Note that this limit exists, because the function above is non-increasing
for n and bounded. The best upper bound ex(Qn,C4)/e(Qn) ≤ 0.6068
was recently obtained by Balogh, Hu, Lidický and Liu [2] by improving
the bound 0.62256 given by Thomason andWagner [17]. Brass, Harborth
and Nienborg [4] showed that the lower bound is 1

2(1 + 1/
√
n), when

n = 4r for integer r , and 1
2(1+ 0.9/

√
n), when n ≥ 9.

Erdős [9] also asked whether o(e(Qn)) edges in a subgraph of Qn

would be sufficient for the existence of a cycle C2k for k > 2. The value

1 Department of Mathematics, Hacettepe University, 06800 Beytepe Ankara Turkey. Email:
ozkahya@illinoisalumni.org

2 Department of Mathematics, Iowa State University, Ames, Iowa 50011 USA. Email: bren-
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of ex(Qn,C6)/e(Qn) is between 1/3 and 0.3755 given by Conder [7] and
Balogh et al. [2], respectively. On the other hand, nothing is known for
the cycle of length 10. Except C10, the question of Erdős is answered
positively by showing that ex(Qn,C2k) = o(e(Qn)) for k ≥ 4 in [5, 8]
and [11].
A generalization of Erdős’ conjecture above is the problem of de-

termining ex(Qn,Qd) for d ≥ 3. As for d = 2, the exact value of
ex(Qn,Q3) is still not known. The best lower bound for ex(Qn,Q3)/e(Qn)

has been 1− (5/8)0.25 ≈ 0.11086 due to Graham, Harary, Livingston and
Stout [12] until Offner [15] improved it to 0.1165. The best upper bound
is ex(Qn, Q3)/e(Qn) ≤ 0.25 due to Alon, Krech and Szabó [1]. They
also gave the best bounds for ex(Qn, Qd), d ≥ 4, as

�

(
log d

d2d

)
= 1− ex(Qn, Qd)

e(Qn)
≤

4
(d+1)2 if d is odd,
4

d(d+2) if d is even.
(1.1)

These Turán problems are also asked when vertices are removed instead
of edges and most of these problems are also still open. In a recent paper,
Bollobás, Leader andMalvenuto [3] discuss open problems on the vertex-
version and their relation to Turán problems on hypergraphs.
Here, we present results on a similar dual version of the hypercube

Turán problem that is asked by Alon, Krech and Szabó in [1]. For 
 < d,
we call a collection of Q
’s a (d, 
)-covering set if removing this col-
lection leaves Qn Qd-free. Let f (
)(n, d) denote the minimum size of
a (d, 
)-covering set of Qn . Determining this function when 
 = 1
is equivalent to the determination of ex(Qn, Qd), since ex(Qn, Qd) +
f (1)(n, d) = e(Qn) and the best bounds for f (1)(n, d) are given in [1]
as (1.1). In [1], also the Ramsey version of this problem is asked as
follows. For 
 < d, a coloring of the copies of Q
’s is called d, 
-
polychromatic if each Qd has all the colors represented on the copies of
Q
’s. Let pc(
)(n, d) be the largest number of colors for which there ex-
ists a d, 
-polychromatic coloring of Qn . Trivially, pc(
)(n, d)≤

(d



)
2d−
.

We define c(
)(n, d) as

c(
)(n, d) = f (
)(n, d)

2n−

(n



) . (1.2)

One can observe that

c(
)(n, d) ≤ 1

pc(
)(n, d)
, (1.3)

since any color class used in a d, 
-polychromatic coloring is a (d, 
)-
covering set of Qn . Note that the following limits exist, since c(
)(n, d)
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is non-decreasing, pc(
)(n, d) is non-increasing and both are bounded.

c(
)d = lim
n→∞ c

(
)(n, d), p(
)d = lim
n→∞ pc(
)(n, d).

We obtain bounds on p(
)d as follows.

Theorem 1.1. For integers n > d > 
, let 0 < r ≤ 
 + 1 such that
r = d + 1 (mod 
+ 1). Then

e
+1
(
d + 1

+ 1

)
+1
≥

(
d + 1

+ 1

)
≥ p(
)d

≥
⌈
d + 1

+ 1

⌉r ⌊d + 1

+ 1

⌋
+1−r
≈

(
d + 1

+ 1

)
+1
.

(1.4)

Note that a trivial lower bound on f (
)(n, d) is given by dividing the
number of Qd’s in Qn to the number of Qd’s a single Q
 can cover at
most. Thus, by (1.2), for all n,

c(
)(n, d) ≥
⌈
2n−d

(n
d

)(n−

n−d

) ⌉
· 1

2n−

(n



) = (
2d−


(
d




))−1
. (1.5)

By (1.5), we have the lower bound in the following corollary. The upper
bound in Corollary 1.2 is implied by (1.3) and Theorem 1.1.

Corollary 1.2. For integers n > d > 
 and r = d − 
 (mod 
+ 1),(
2d−


(
d




))−1
≤ c(
)d ≤

⌈
d + 1

+ 1

⌉−r ⌊d + 1

+ 1

⌋−(
+1−r)
.

The determination of the exact values of p
d and c


d remains open. When

d and 
 have a bounded difference from n, we obtain the upper bound in
Theorem 1.3, which is a constant factor of the lower bound in (1.5).

Theorem 1.3. Let n − d and n − 
 be fixed finite integers, where d > 
.
Then, for sufficiently large n,

c(
)(n, d) ≤
⌈
r log (n − 
)
log ( rr

rr−r !)

⌉
1+ o(1)

2d−

(d
l

) ,
where r = n − d.

Finally, we show an exact result for c(
)(n, d) when d = n − 1.
Theorem 1.4. For integers n − 1 > 
,

c(
)(n, n − 1) =
⌈
2n
n−


⌉
2n−


(n



) .
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A classification of positive posets using
isotropy groups of Dynkin diagrams

Marcin Ga̧siorek1 and Daniel Simson1

Abstract. We continue our study of positive one-peak posets (presented in our
talk in EuroComb 2011). Here we present a more general approach to the clas-
sification of arbitrary positive posets J . In particular we show that the Coxeter
spectral classification of positive posets can be effectively solved using the right
action ∗ : Mn(Z)×Gl(n,Z)D → Mn(Z), A �→ A ∗ B := Btr · A · B, of isotropy
groups Gl(n,Z)D of simply-laced Dynkin diagrams D. By applying recent results
of the second named author in [SIAM J. Discrete Math. 27(2013)] we are able to
show that, given two connected positive posets I and J with at most 8 points: (i)
the incidence matrices CI and CJ of I and J are Z-congruent if and only if the
Coxeter spectra of I and J coincide, and (ii) the matrix CI is Z-congruent with its
transpose CtrI .

1 Preliminaries and main results
We continue our Coxeter spectral study of positive posets we started in
[3–5] in relation with a Coxeter spectral classification of loop-free edge-
bipartite graphs developed in [12–14] and combinatorial properties of
root systems of simply-laced Dynkin diagrams, that is, the graphs:

We mainly study some of the Coxeter spectral analysis problems stated
in [13] for loop-free edge-bipartite graphs D and in [15] for finite posets.
We use the terminology and notation introduced there. In particular, by
N we denote the set of non-negative integers, by Z the ring of integers,
and by Q ⊆ R ⊆ C the rational, the real and the complex number field,
respectively. We view Zn , with n ≥ 1, as a free abelian group, and we
denote by e1, . . . , en the standard Z-basis of Zn . We denote by Mn(Z)
the Z-algebra of all square n by n matrices, by E ∈ Mn(Z) the identity
matrix, and by Gl(n,Z) := {A ∈ Mn(Z), det A ∈ {−1, 1}} the general

1 Nicolaus Copernicus University, Toruń, Poland.
Email: mgasiorek@mat.umk.pl, simson@mat.umk.pl
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Z-linear group. By a finite poset I ≡ (I,7) we mean a partially or-
dered set I , with respect to a partial order relation 7. We say that I is
a one-peak poset if it has a unique maximal element ∗. Every poset I
is uniquely determined by its incidence matrix CI ∈ Mm(Z), m = |I |,
that is, the integer square matrix

CI = [ci j ]i, j∈I ∈ Mm(Z) ≡ MI (Z)

with ci j = 1, for i 7 j, and ci j = 0, for i �7 j.
The matrix GI := 1

2(CI + Ctr
I ) ∈ MI (Q) is called the symmetric

Gram matrix of a poset I . A poset I is said to be positive (resp. non-
negative), if the symmetric Gram matrix is positive definite (resp. posi-
tive semi-definite), see [15].
Following the main idea of the Coxeter spectral analysis of loop-free

edge-bipartite graphs (signed graphs [17]) presented in [13,14], we study
finite posets I by means of the Coxeter spectrum speccI ⊆ C, that
is, the set speccI of all m = |I | eigenvalues of the Coxeter matrix
CoxI := −CI · C−trI ∈ Mm(Z) ≡ MI (Z) of I , or equivalently, the set
speccI of all m = |I | roots of the Coxeter polynomial coxI (t) :=
det(t · E − CoxI ) ∈ Z[t], introduced in [11].
We study finite posets I , J , up to two Z-congruences ∼Z and ≈Z,

where I ∼Z J iff the symmetric Gram matrices GI and GJ are Z-
congruent, and I ≈Z J iff the incidence matrices CI and CJ are Z-
congruent, that is, CJ = CI ∗ B := Btr ·CI · B, for some B ∈ Gl(m,Z).
We recall from [11, 15] that if I is non-negative, the Coxeter spectrum
speccI lies on the unit circle S

1 := {z ∈ C; |z| = 1} and all points
z ∈ speccI are roots of unity. Moreover, non-negative I is positive if
and only if 1 /∈ speccI . By [10, 11, 15], if I ≈Z J then I ∼Z J and
speccI = speccJ , but the converse implication does not hold in general.
One of the main questions of the Coxeter spectral analysis of connected

positive posets is if the congruence I ≈Z J holds if and only if speccI =
speccJ . We have proved in [3–5] that this is the case for positive one-
peak posets. It is done by computing a complete list of positive one-peak
posets and then a case by case inspection.
In the present notes we give an alternative proof of this fact for positive

one-peak posets. Moreover, we show that this is also the case for a class
of arbitrary (not necessarily one-peak) positive posets I and J . Here we
do it by a reduction to a combinatorial problem for Gl(m,Z)D-orbits in
the set MorD ⊂ Gl(m,Z) of matrix morsifications of a simply-laced
Dynkin diagram D, where Gl(m,Z)D is the isotropy group of D studied
in [13,14]. Our main results are the following theorems.
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Theorem 1.1. Assume that I and J are connected finite posets.

(a) I is positive if and only if I ∼Z DI , where DI is a simply-laced
Dynkin diagram uniquely determined by I .

(b) If I and J are positive, with |I | ≤ 8 and |J | ≤ 8, then the congru-
ence I ≈Z J holds if and only if speccI = speccJ .

(c) If I is positive and m := |I | ≤ 8 then there exists a Z-invertible
matrix B ∈ Mm(Z) such that Ctr

I = Btr · CI · B and B2 = E .

Outline of proof of (a). The “only if” part follows by applying definitions.
The “if” part is a consequence of the inflation algorithm I �→ DI [13,
Algorithm 3.5] (see also [8,15]) that reduces (in a finite number of steps)
a positive connected poset I to a simply-laced Dynkin diagram D := DI
such that GD = Btr · GI · B, for some B ∈ Gl(m,Z) and GD is the
symmetric Gram matrix of the Dynkin diagram D, viewed as a poset
with a fixed orientation of edges.
The proof of (b) and (c) is outlined in the following section. Its main

idea is similar to that one used in the proof of [13, Theorem 2.7].

Our Coxeter spectral study of finite posets, edge-bipartite graphs and
matrix morsifications is inspired by their important application in the rep-
resentation theory of posets, finite groups, finite-dimensional algebras
over a field K , and cluster K -algebras, see [1, 8, 13, 14]. We also use
ideas of the spectral graph theory, a graph coloring technique, and alge-
braic methods in graph theory, see [2].

2 Outline of the proof via matrix morsifications

In the proof of Theorem 1.1, given a simply-laced Dynkin diagram D,
with n ≥ 2 vertices, we use the isotropy group of D

Gl(n,Z)D = {B ∈ Gl(n,Z); GD ∗ B = GD} ⊆ Mn(Z)

and its action ∗ : Mn(Q)×Gl(n,Z)D → Mn(Q), (A, B) �→ A ∗ B :=
Btr · A · B onMn(Q) and onMn(Z). By [14], the matrix Weyl groupWD

of D is a subgroup of Gl(n,Z)D. Our main aim in this section is to show
that the proof of Theorem 1.1 reduces to a computation of some prop-
erties of Gl(n,Z)D-orbits on the set MorD of matrix morsifications for
simply-laced Dynkin diagrams D. Here we mainly apply the technique
and results given in [9], and [12,13].
Following [10]- [14], an integral (resp. rational)matrix morsification

of D with n ≥ 2 vertices and the symmetric Gram matrix GD ∈ Mn(Q),
is a non-singular matrix A ∈ Mn(Z)

(
resp. A ∈ Mn(Q)

)
such that A +

Atr = 2 · GD and the Z-invertible Coxeter matrix CoxA := −A · A−tr
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has integer coefficients. ByMorD ⊆ M̂orD ⊆ Mn(Q)we denote the sets
of all integral and all rational morsifications of D. By [14], the map

∗ : M̂orD×Gl(n,Z)D→M̂orD, (A, B) �→ A ∗ B := Btr · A · B,
is an action of the isotropy group Gl(n,Z)D of D, and the subsetMorD ⊆
M̂orD is Gl(n,Z)D-invariant. Moreover, for A ∈ M̂orD, det A ∈ Q, the
Coxeter number cA ≥ 2 (i.e., a minimal integer r ≥ 2 such that CoxrA =
E), and the Coxeter polynomial coxA(t) := det(t · E −CoxA) ∈ Z[t] of
A are Gl(n,Z)D-invariant.
Given a positive finite poset I , with n = |I | and DI the unique simply-

laced Dynkin diagram such that I ∼Z DI as in Theorem 1.1 (a), we fix
a matrix MI ∈ Gl(n,Z) defining the congruence DI ∼Z I , that is, the
equality GDI = Mtr

I · GI · MI holds. By [13,14], the matrix CI ∗ MI :=
Mtr

I · CI · MI lies in MorDI and we have detCI ∗ MI = detCI = 1,
coxCI ∗MI (t) = coxCI (t), and the Coxeter numbers cI and cCI ∗MI of I and
of the morsification CI ∗ MI coincide.
Assume that I and J are connected positive posets such that speccI =

speccJ . Then n = |I | = |J |, CI ∗ MI ∈ MorDI , CJ ∗ MJ ∈ MorDJ ,
coxCI ∗MI (t) = coxI (t) = coxJ (t) = coxCJ ∗MJ (t) and detCI ∗ MI =
detCI = 1 = detCJ = detC j ∗ MJ . Hence we conclude, as in [13], that
DI = DJ .
Now we show that I ≈Z J . We set D := DI = DJ and we

use the isotropy group Gl(n,Z)D of the Dynkin diagram D. Consider
the right action of Gl(n,Z)D on M̂orD. Denote by F(t) ∈ Z[t] the
Coxeter polynomial F(t) := coxI (t) = coxJ (t) = coxCI ∗MI (t) =
coxCJ ∗MJ (t). By rather lengthy computer calculation, we compute the set
M̂orD, the Coxeter polynomials coxA(t), with A ∈ M̂orD, the isotropy
group Gl(n,Z)D, and we show that there exists a matrix AF ∈MorFD :={A ∈ MorD; coxA(t) = F(t)}, such thatMorFD = AF ∗ Gl(n,Z)D if D
has at most 8 vertices (see Section 3).
Since the matrices CI ∗MI and CJ ∗MJ lie inMorFD = AF ∗Gl(n,Z)D

then there exists a matrix B ∈ Gl(n,Z)D such that CI ∗ MI = Btr ·
(CJ ∗ MJ ) · B, that is, CI ∗ MI = (CJ ∗ MJ ) ∗ B. It follows that
CI = CJ ∗ (MJ BM

−1
I ), that is, I ≈Z J . Hence we conclude that the

implications in (b) of Theorem 1.1 hold.
To prove (c), we note that Ctr

I = CJ , where J = I op is the poset
opposite to I . Since coxI op(t) = coxI (t), then (b) applies and there is
a Z-invertible matrix B such that Ctr

I = Btr · CI · B. It remains to
show that the matrix B can be chosen such that B2 = E . Fortunately,
the technique presented earlier allows us to reduce the problem to an
analogous problem for matrix morsifications of D = DI . However, a
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complete proof is rather lengthy and combinatorial (it is similar to that
one in [14], see also [3]- [6]). Details will be presented in a subsequent
paper.

3 Our calculation technique and concluding remarks

In this section we give few concluding remarks on the proof of Theorem
1.1 and algorithmic techniques used to calculate the isotropy groups of
Dynkin diagrams, see also [7].

Remark 3.1. Our technique discussed in Section 2 gives an alternative
proof of the classification of one-peak positive posets presented in [4],
where a complete list of such a posets I with |I | ≤ 8 is given. We recall
a complete list of one-peak positive posets of type E6, see [3, 4].

Remark 3.2. By applying our technique, we have computed a complete
list of all (not necessarily one-peak) posets of type E6, consisting of 43
posets: 16 posets with one maximal element, 18 posets with two maximal
elements and 9 posets with three maximal elements. The last part of this
list looks as follows:

Remark 3.3. Our approach requires a numeric computation of the
isotropy group Gl(n,Z)D of any Dynkin diagram D with n vertices.
This is a challenging computational task as the number of matrices in
the Gl(n,Z)D grows quickly.
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It is difficult not only to compute the Gl(n,Z)D group but also to choose
a good storage schema of such a big set of data. Here we present the
results of our calculations. We will discuss the technical details in the
subsequent paper.

To prove Theorem 1.1 we compute the set M̂orD ⊂ Mn(Q) of all
rational morsifications of Dynkin diagram D with at n ≤ 8 vertices (see
[14, Note added in proof]) and the isotropy group Gl(n,Z)D. As a result
of computations we prove the following key part of our technique.

Corollary 3.4. If D is a Dynkin diagram with n ≤ 8 vertices, then there
exists a matrix AF ∈MorFD := {A ∈MorD; coxA(t) = F(t)} ⊆ Mn(Z)
such thatMorFD = AF ∗ Gl(n,Z)D.
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Enumeration and classification
of self-orthogonal partial Latin rectangles
by using the polynomial method

Raúl M. Falcón1

The current paper deals with the enumeration and classification of the
set SOPLRr,n of self-orthogonal r × r partial Latin rectangles based on n
symbols. It can be identified with the set of zeros of the zero-dimensional
ideal Ir,n = 〈 xi jk ·

(
1− xi jk

)
, xi jk · xi ′ jk, xi jk · xi j ′k, xi jk · xi jk′ : i ∈

[r], j ∈ [s], k ∈ [n], i ′ ∈ [r] \ [i], j ′ ∈ [s] \ [ j], k ′ ∈ [n] \ [k] 〉 ∪
〈 xi jp · xklp · x jiq · xlkq : i, j, k, l ∈ [r], p, q ∈ [n], (i, j) �= (k, l) 〉 ⊆
Q[x111, . . . , xrrn]. Moreover, |SOPLRr,n|= dimQ(Q[x111, ..., xrrn]/Ir,n).
In particular, we obtain the following data:

|SOPLRr,n |
r

n 1 2 3 4 5
1 2 5 24 147 1,050
2 3 21 407 13,701 660,447
3 4 73 5,086 850,567 256,344,232
4 5 209 47,373 35,805,129 *
5 6 501 333,236 1,035,763,371 *
6 7 1,045 1,826,659 21,134,413,357 *
7 8 1,961 8,103,642 314,221,824,351 *
8 9 3,393 30,148,121 * *
9 10 5,509 96,972,688 * *

Given s ∈ [n] ∪ {0}, let σr,s be the number of partial Latin rectangles of
SOPLRr,n which contain exactly s symbols in their cells. In particular,
|SOPLRr,n| = ∑n

s=0
(n
s

) · σr,s . If Ps,P denote the main class of P ∈
SOPLRr,s , then σr,s = ∑

P∈Pr,s;s |Ps,P | =∑
P∈Pr,s;s

2·r !·s!
|Is(P,P)| + |Is(P,Pt )| ,

where given two partial Latin rectangles P, Q ∈ SOPLRr,s , the set
Is(P, Q) denotes the set of isotopisms which transform P into Q, which
can be identified with the set of zeros of IIs(P,Q) = 〈 1−

∑
j∈[r] xi j : i ∈[r] 〉 + 〈 1 −∑

j∈[n] yi j : i ∈ [s] 〉 + 〈 1 −
∑

i∈[r] xi j : j ∈ [r] 〉 + 〈 1 −

1 School of Building Engineering. University of Seville.
Department of Applied Mathematics I.
Avda. Reina Mercedes 4 A, 41012 - Seville (Spain). Email: rafalgan@us.es
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∑
i∈[n] yi j : j ∈ [s] 〉+ 〈 xi j · (1− xi j ) : i, j ∈[r] 〉+ 〈 yi j · (1− yi j ) : i, j ∈

[s] 〉+ 〈 xik · x jl · (ypi j qkl − 1) : i, j, k, l ∈ [r], such that pi j , qkl ∈ [s] 〉+〈 xik · x jl : i, j, k, l ∈ [r], such that (pi j = ∅ and qkl ∈ [s]) or (pi j ∈ [s]
and qkl = ∅) 〉. It is then verified that:
i) |SOPLR1,n| = n + 1.
ii) |SOPLR2,n| = n4 − 2n3 + 5n2 + 1.
ii) |SOPLR3,n| = n9 − 15n8 + 122n7 − 604n6 + 1973n5 − 4201n4 +
5640n3 − 4240n2 + 1347n + 1.



Polynomial graph invariants
from homomorphism numbers

Delia Garijo1, Andrew J. Goodall2 and Jaroslav Nešetřil2

The number of homomorphisms hom(G, Kk) from a graph G to the com-
plete graph Kk is the value of the chromatic polynomial of G at a positive
integer k. This motivates the following:

Definition. A sequence of graphs (Hk), k=(k1, . . . , kh)∈Nh , is strongly
polynomial if for every graph G there is a polynomial p(G; x1, . . . , xh)
such that hom(G, Hk) = p(G; k1, . . . , kh) for every k ∈ Nh .

Many important graph polynomials p(G) are determined by strongly
polynomial sequences of graphs (Hk): e.g. the Tutte polynomial, the
Averbouch-Godlin-Makowsky polynomial (which includes the matching
polynomial) and the Tittmann-Averbouch-Godlin polynomial (which in-
cludes the independence polynomial).
We give a new construction of strongly polynomial sequences, which

among other things offers a natural generalization of the above polyno-
mials. We start with a simple graph H given as a spanning subgraph of
the closure of a rooted tree T . For each k= (ks : s∈V (T )) ∈ N|V (T )| we
use the tree T to recursively construct a graph T k(H), in which, for each
s ∈ V (T ), we create ks isomorphic copies of the subtree Ts of T rooted at
s, all pendant from the same vertex as Ts , while propagating adjacencies
of H in the closure of T to these copies of Ts .

Theorem 1. The sequence (T k(H)) is strongly polynomial.

Define β(H) to be the minimum value of |V (T )| such that H is a
subgraph of the closure of T k(T ). For example, β(K1,
) = 2, β(P2
) =

1 University of Seville, Seville, Spain. Email: dgarijo@us.es. Partially supported by JA-FQM164.

2 IUUK, Charles University, Prague, Czech Republic. Email: andrew@iuuk.mff.cuni.cz, ne-
setril@iuuk.mff.cuni.cz. Supported by CE-ITI P202/12/G061, and by Project ERCCZ LL1201
Cores.



612 Delia Garijo, Andrew J. Goodall and Jaroslav Nešetřil

2
, β(P2
−1) = 
, and β(K
) = 
. We have tree-depth td(H) ≤ β(H)
and β(H) = |V (H)| if H has no involutive automorphisms.

Theorem 2. Let H be a family of simple graphs such that {β(H) : H ∈
H} is bounded. ThenH can be partitioned into a finite number of subse-
quences of strongly polynomial sequences of graphs.



An Erdó́s–Ko–Rado theorem for matchings
in the complete graph

Vikram Kamat1 and Neeldhara Misra1

We consider the following higher-order analog of the Erdős–Ko–Rado
theorem [1]. For positive integers r and n with r ≤ n, let Mr

n be the
family of all matchings of size r in the complete graph K2n . For any
edge e ∈ E(K2n), the family Mr

n(e), which consists of all sets in Mr
n

containing e is called the star centered at e. We prove the following result:

Theorem 1. For r < n, if A ⊆ Mr
n is an intersecting family of r-

matchings, then |A| ≤ φ(n, r) with equality holding if and only if A =
Mr

n(e) for some e ∈ E .

We note that the case r = n is settled (as part of a stronger theorem for
uniform set partitions) by Meagher and Moura [3]. To prove Theorem 1,
we use an analog of Katona’s cycle method [2]. As in Katona’s original
proof of the Erdős–Ko–Rado theorem, the main challenge is to come
up with a class of objects over which to carry out the double counting
argument. We use the notion of Baranyai partitions to construct these
objects.
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A constrained path decomposition
of cubic graphs and the path number
of cacti

Fábio Botler1 and Yoshiko Wakabayashi1

Kotzig (1957) proved that a cubic graph has a perfect matching if and
only if it has a 3-path decomposition (that is, a partition of the edge set
into paths of length 3). This result was generalized by Jaeger, Payan,
and Kouider (1983), who proved that a (2k + 1)-regular graph with a
perfect matching can be decomposed into bistars. (A bistar is a graph
obtained from two disjoint stars by joining their centers with an edge.) In
another direction, Heinrich, Liu and Yu (1999) proved that a 3m-regular
graph G admits a balanced 3-path decomposition if and only if G con-
tains an m-factor.
We generalize the result of Kotzig by proving the following result.

Theorem 1. A cubic n-vertex graph G has a matching of size k if and
only if G has a minimum path decomposition into paths of length 2, 3
or 4, with 2k − n

2 paths of length 3.

The path number of a graph G, denoted by pn(G), is the minimum
number of edge-disjoint paths needed to partition the edge set of G. Ac-
cording to Lovász (1968), Erdős asked about this parameter, and Gallai
conjectured that pn(G) ≤ (n + 1)/2 for every n-vertex connected graph.
This parameter is not known for most of the graphs. Lovász (1968)

proved that pn(G) = n/2 for an n-vertex graph G without even degree
vertices. We present here a formula for the path number of cacti, which
generalizes the path number of trees. We recall that a cactus is a con-
nected graph in which any two simple cycles have at most one vertex in
common.
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Theorem 2. LetG be a union of vertex-disjoint cacti. Let o be the number
of odd-degree vertices of G, let c
 be the number of cycles of G that
cointain exactly one vertex of degree greater than 2, and let ci be the
number of cycles of G that contain no vertex of degree greater than 2.
Then the path number of G is given by

pn(G) = o/2+ c
 + 2ci .



On push chromatic number of planar
graphs and planar p-cliques

Sagnik Sen1

An oriented graph #G is a directed graph without cycles of length 1 or 2.
Pushing a vertex v of an oriented graph #G is to change the orientation of
all its arcs (replacing the arc #xy by #yx) incident to v. If we can obtain #G2

by pushing some vertices of #G1 then, the two graphs are in an equivalence
relation called push relation. A push graph [ #G] is an equivalance class
of oriented graphs ( #G is an element of the class) with respect to push
relation. A homomorphism of an oriented graph #G1 to another oriented
graph #G2 is a mapping f from V ( #G1) to V ( #G2) such that, if #uv is an arc
of #G1, then #f (u) f (v) is an arc of #G2. The Push chromatic number χp( #G)
of an oriented graph #G is the minimum order of an oriented graph #H such
that, some element of [ #G] admits homomorphism to some element of
[ #H ]. Push graph and the notion of homomorphim and chromatic number
of push graph has been introduced in [1]. We define a push clique or
simply p-clique to be an oriented graph #G such that χp( #G) = |V ( #G)|.
Theorem 1.

(i) For an oriented planar graph #H , 9 ≤ χp( #H) ≤ 40.
(ii) For a girth 4, oriented planar graph #H , 6 ≤ χp( #H) ≤ 20.
(iii) For a girth 5, oriented planar graph #H , 4 ≤ χp( #H) ≤ 8.
(iv) For a girth 6, oriented planar graph #H , 4 ≤ χp( #H) ≤ 7.
(v) For a girth 8, oriented planar graph #H , χp( #H) = 4.
Theorem 2. The maximum order of a planar p-clique is 8.
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Firefighting with general weights

Vitor Costa1, Simone Dantas1, Mitre C. Dourado2,
Lucia D. Penso3 and Dieter Rautenbach3

At the 25th Manitoba Conference on Combinatorial Mathematics and
Computing in Winnipeg 1995 Hartnell introduced the firefighter game
modelling the containment of the spreading of an undesired property
within a network. An initial configuration of the game consists of a pair
(G, r) where G is a finite, simple, and undirected graph and r is a burned
vertex of G. The game proceeds in rounds. In each round, first at most
one vertex of G that is not burned is defended and then all vertices of
G that are neither burned nor defended and have a burned neighbor are
burned. Once a vertex is burned or defended, it remains so for the rest of
the game. The game ends with the first round, in which no further vertex
is burned. All vertices of G that are not burned at the end of the game are
saved.
Here we study a generalization for weighted graphs, where the weights

can be positive as well as negative. The objective of the player is to
maximize the total weight of the saved vertices of positive weight minus
the total weight of the burned vertices of negative weight, that is, the
player should save vertices of positive weight and let vertices of negative
weight burn. Allowing negative weights drastically changes the character
of the game.
Our contributions are two hardness results and two greedy approxima-

tion algorithms for trees. We prove that weighted firefighter is hard al-
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ready for binary trees, which stands in contrast to the fact that unweighted
firefighter is easy for binary trees. Furthermore, we show that weighted
firefighter remains hard even if we allow arbitrarily many defended ver-
tices per round. Our two greedy algorithms achieve approximation fac-
tors of 13 and

1
2 .



Nowhere-zero flows on signed regular
graphs

Eckhard Steffen1 and Michael Schubert1

A signed graph (G, σ ) is a graph G together with a function σ : E(G)→
{±1}, which is called a signature of G. The set Nσ = {e : σ(e) = −1}
is the set of negative edges of (G, σ ) and E(G) − Nσ the set of positive
edges. We study flows on signed graphs, and Fc((G, σ )) (F((G, σ )))
denotes the circular (integer) flow number of (G, σ ).
Bouchet [1] conjectured that F((G, σ )) ≤ 6 for every flow-admissible

signed graph. This conjecture is equivalent to its restriction on cubic
graphs. We prove this conjecture for flow-admissible cubic graphs that
have three 1-factors such that any two of them induce a hamiltonian cir-
cuit of G. In particular, every flow-admissible uniquely 3-edge-colorable
cubic graph has a nowhere-zero 6-flow.
For a graph G and X ⊆ E(G) let �X (G) be the set of signatures σ of

G, for which (G, σ ) is flow-admissible and Nσ ⊆ X . Define SX (G) =
{r : there is a signature σ ∈ �X (G) such that Fc((G, σ )) = r} to be the
X-flow spectrum of G. The E(G)-flow spectrum is the flow spectrum of
G and it is denoted by S(G). If we restrict our studies on integer-valued
flows, then SX (G) denotes the integer X-flow spectrum of G.
We study the integer flow spectrum of signed cubic graphs G. There

are cubic graphs whose integer flow spectrum does not contain 5 or 6.
But we show, that {3, 4} ⊆ S(G), for every bridgeless cubic graph G �=
K 3
2 , where K

3
2 is the unique cubic graph on two vertices. We construct

an infinite family of bridgeless cubic graphs with integer flow spectrum
{3, 4, 6}.
We further study the flow spectrum of (2t + 1)-regular graphs (t ≥ 1).

In [2] is proven that a (2t + 1)-regular graph G is bipartite if and only if
Fc((G,∅)) = 2+ 1

t . Furthermore, if G is not bipartite, then Fc((G,∅)) ≥
2+ 2

2t−1 . We extend this kind of result to signed (2t + 1)-regular graphs.
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Let r ≥ 2 be a real number and G be a graph. A set X ⊆ E(G) is
r-minimal if (1) there is a signature σ of G such that Fc((G, σ )) = r
and Nσ = X , and (2) Fc((G, σ ′)) �= r for every signature σ ′ of G with
Nσ ′ ⊂ X .
We show for (2t + 1)-regular graphs G, which have a t-factor: A set

X ⊆ E(G) is (2+ 1
t )-minimal if and only if X is a minimal set such that

G − X is bipartite.
Furthermore, if X ⊆ E(G) is a (2 + 1

t )-minimal set and r ∈ SX (G),
then r = 2+ 1

t or r ≥ 2+ 2
2t−1 .
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New transience bounds for long walks
in weighted digraphs

Bernadette Charron-Bost1, Matthias Függer2 and Thomas Nowak1

Fix two nodes i and j in an edge-weighted diagraph and form the follow-
ing sequence: Let a(n) be the maximum weight of walks from i to j of
length n; if no such walk exists, a(n) = −∞. It is known that, if G is
strongly connected, the sequence a(n) is always eventually periodic with
linear defect, i.e., after the transient, a(n + p) = a(n) + p · λ. In fact,
the ratio λ is the largest mean weight of cycles in G. We call these cycles
critical. Periodicity stems from the fact that the weights of critical cycles
eventually dominate the maximum weight walks.
In this paper, we show two new asymptotically tight upper bounds on

transients in weighted digraphs, taking into account the graph param-
eters cyclicity and girth. The previously best bound of Hartmann and
Arguelles (Math. Oper. Res. 24, 1999) is, in general, incomparable with
both our bounds. The significant benefit of our two new bounds is that
each of them turns out to be linear in the number of nodes in various
classes of weighted digraphs, whereas Hartmann and Arguelles’ bound
is intrinsically at least quadratic. In particular, our bounds are linear for
(bi-directional) trees.
We hence prove the following two upper bounds on the transient in

strongly connected digraphs with N nodes. They both contain the (un-
weighted) index of convergence ind(G), i.e., the transient of G when
choosing all weights to be equal. The term ‖G‖ denotes the difference of
the maximum and minimum weight of edges in G. The mean weight of
critical cycles is denoted by λ, and λnc denotes the largest mean weight
of cycles that have no node on critical cycles. Denote by Gc the subgraph
induced by the critical cycles.
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Theorem 1 (Repetitive bound). Denoting by ĝ the maximum girth of
strongly connected components of Gc, the transient between any two
nodes is at most

max

{
‖G‖ · (3N − 2+ ind(G))

λ− λnc , (ĝ − 1)+ 2 ĝ · (N − 1)
}
.

Theorem 2 (Explorative bound). Denoting by γ̂ and ˆind the maximum
cyclicity and maximum index of strongly connected components of Gc,
respectively, the transient between any two nodes is at most

max

{
‖G‖ · (3N − 2+ ind(G))

λ− λnc , (γ̂ − 1)+ 2 γ̂ · (N − 1)+ ˆind
}
.



Complexity of determining the irregular
chromatic index of a graph

Julien Bensmail1

An edge colouring φ of a graph G is locally irregular if each colour
class of φ induces a graph whose every adjacent vertices have distinct
degrees. The least number χ ′irr (G) of colours used by a locally irregular
edge colouring ofG (if any) is referred to as the irregular chromatic index
of G.
Locally irregular edge colouring was introduced as another type of

edge colouring permitting to distinguish the adjacent vertices of a graph.
This notion is thus related to several other notions of this field, like vertex-
colouring edge-weighting [1] and detectable colouring of graphs [2]. In
particular, it was shown that a locally irregular edge colouring is also a
vertex-colouring edge-weighting or detectable colouring in some situa-
tions [3]. As for these two types of edge colouring, it is conjectured that
three colours suffice to obtain a locally irregular edge colouring of any
graph whose irregular chromatic index is defined [3].
We here focus on the complexity of the following decision problem.

k-LIEC = {A graph G : is it true that χ ′irr (G) ≤ k?}

The problem 1-LIEC is in P, while the relevance of studying k-LIEC for
any k ≥ 3 depends on the correctness of the conjecture mentioned above.
We show that 2-LIEC is NP-hard, even when restricted to planar graphs
with maximum degree at most 6. This result is proved by reduction from
1-IN-3 SAT.
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Matematica, cultura e società 2003 (2004). ISBN 88-7642-129-7
Ricordando Franco Conti, 2004. ISBN 88-7642-137-8
N.V. KRYLOV, Probabilistic Methods of Investigating Interior Smooth-
ness of Harmonic Functions Associated with Degenerate Elliptic Opera-
tors, 2004. ISBN 978-88-7642-261-1
Phase Space Analysis of Partial Differential Equations. Proceedings,
vol. I, 2004 (2005). ISBN 978-88-7642-263-1
Phase Space Analysis of Partial Differential Equations. Proceedings,
vol. II, 2004 (2005). ISBN 978-88-7642-263-1


	Cover
	Title Page
	Copyright Page
	Table of Contents
	Foreword
	Invited Speakers
	Erdős problems
	A problem of Erdős and Sós on 3-graphs
	1 Introduction
	2 Sketch of the proof
	References

	An analogue of the Erdős-Ko-Rado theorem for multisets
	1 Introduction
	1.1 Definitions, notation
	1.2 History
	1.3 Conjectures
	1.4 Results

	2 Concluding remarks
	References

	Polynomial gap extensions of the Erdős–Pósa theorem
	1 Introduction
	2 Excluding packings of planar graphs
	References

	The Erdős-Pósa property for long circuits
	1 Introduction
	2 Proof of Theorem 1.1
	References


	Hypergraphs
	A hypergraph Turán theorem via Lagrangians of intersecting families
	1 Introduction
	2 Lagrangians of intersecting 3-graphs
	3 An application to a hypergraph Turán problem
	3.1 Stability

	4 Concluding remarks and open problems
	References

	Tight minimum degree conditions forcing perfect matchings in uniform hypergraphs
	1 Introduction
	2 Overview of the proof of Theorem 1.1
	Almost perfect matchings
	Absorbing sets
	The auxiliary graph G

	References

	Fractional and integer matchings in uniform hypergraphs
	Large matchings in hypergraphs with many edges
	Large matchings in hypergraphs with large degrees
	Large fractional matchings
	References


	Cubic graphs
	On cubic bridgeless graphs whose edge-set cannot be covered by four perfect matchings
	1 Introduction
	2 Aninfinite family of snarks with excessive index 5
	3 Shortest cycle cover
	4 Open problems
	References

	Relating ordinary and total domination in cubic graphs of large girth
	References

	Snarks with large oddness and small number of vertices
	1 Introduction
	2 Oddness and resistance ratios
	3 Lower bounds on oddness ratio
	4 Constructions
	References

	Non-trivial snarks with given circular chromatic index
	1 Introduction
	2 Balanced schemes
	References


	Graphs
	The graph formulation of the union-closed sets conjecture
	References

	The union-closed sets conjecture almost holds for almost all random bipartite graphs
	1 Introduction
	2 Discussion of averaging
	3 Sketch of the proof of Theorem 2.2
	References

	The robust component structure of dense regular graphs
	1 Introduction
	2 Two applications to longest cycles in regular graphs
	3 Sketch of the proof of Theorems 1.2 and 2.2
	3.1 Sketch proof of Theorem 1.2
	3.2 Sketch proof of Theorem 2.2
	References


	The (∆, D) and (∆, N) problemsin double-step digraphs with unilateral diameter
	1 Preliminaries
	1.1 Double-step digraphs
	1.2 Unilateral distance

	2 The unilateral diameter of double-step digraphs with step a=1
	3 The(∆, D*) and (∆,N)* problems for double-step digraphs with unilateral diameter
	3.1 The (∆, D*) problem
	3.2 The (∆, N)* problem
	References


	Critical groups of generalized de Bruijn and Kautz graphs and circulant matrices over finite fields
	1 Introduction
	2 Preliminaries
	2.1 Generalized de Bruijn and Kautz graphs
	2.2 Invertible circulant matrices

	3 Main results
	References

	Two notions of unit distance graphs
	1 Introduction
	2 Results
	References

	An interlacing approach for bounding the sum of Laplacian eigenvalues of graphs
	1 Introduction
	2 New results
	2.1 A generalization of Grone’s result
	2.2 A generalization of a bound by Grone and Merris
	References


	On the structure of the group of balanced labelings on graphs
	1 Abstract
	2 Introduction
	3 Results
	4 Conclusions
	References

	The price of connectivity for feedback vertex set
	1 Introduction
	2 The proof of Theorem 1.3
	References

	A local flow algorithm in bounded degree networks
	1 Introduction
	2 Model and results
	3 Applications on neighborhood distributions
	3.1 Connection with the Aldous–Lyons Conjecture

	References

	The maximum time of 2-neighbour bootstrap percolation: algorithmic aspects
	1 Introduction
	2 Results
	References

	A multipartite Hajnal-Szemerédi theorem
	1 Introduction
	2 New results
	3 Rough outline of the proofs
	4 Future directions
	References

	Directed cycle double covers: hexagon graphs
	References

	Finding an Odd K3,3
	1 Introduction
	2 Statement of the theorem
	3 The proof technique
	References

	Zero-error source-channel coding with entanglement
	1 Introduction
	1.1 Classical source-channel coding
	1.2 Source-channel coding with entanglement

	2 Our results
	2.1 The entangled chromatic number and Szegedy’s number
	2.2 Classical versus entangled source-channel coding rates
	References



	Ramsey Theory
	Ramsey numbers for bipartite graphs with small bandwidth
	1 Introduction and Results
	2 Sketch of the proof of Theorem1.3
	References

	Polynomial bounds on geometric Ramsey numbers of ladder graphs
	1 Introduction and basic definitions
	2 Ladder graphs
	2.1 Convex position
	2.2 General geometric position

	3 Generalisation to pathwidth-2 outerplanar triangulations
	References


	Geometry and Surfaces
	Arrangements of pseudocircles and circles
	1 Introduction
	2 A smallest circleable arrangement
	3 Circleability and convexibility complexity
	4 A folklore conjecture
	References

	Extended abstract for structure results for multiple tilings in 3D
	Open Questions
	References

	On the nonexistence of k-reptile simplices in R3 and R4
	1 Introduction
	2 Angles in simplices and Coxeter diagrams
	3 A simple proof of Theorem 1.1
	References

	Homogeneous selections from hyperplanes
	1 The main result
	2 Proof of Theorem 1.2
	References

	Conic theta functions and their relations to theta functions
	References

	The Carathéodory number of the P3 convexity of chordal graphs
	1 Introduction
	2 Results
	References

	Locally-maximal embeddings of graphs in orientable surfaces
	1 Introduction
	2 Fundamentals
	3 Constructions
	4 Algorithms
	References

	A characterization of triangulations of closed surfaces
	1 Introduction
	2 Motivation & contribution
	3 Preliminaries
	4 Proof of the theorem
	References

	Quasi-perfect linear codes from singular plane cubics
	1 Introduction
	2 Complete caps from bicovering arcs
	3 Small complete caps from cubic curves
	References

	Boxicity and cubicity of product graphs
	1 Introduction
	1.1 Notational note

	2 OurResults
	2.1 Strong products
	2.2 Cartesian products
	2.3 Direct products

	References


	Planarity
	Planar graphs with ∆ ≥ 8 are(∆ + 1)-edge-choosable
	1 Introduction
	2 Method
	3 Conclusion
	References

	Planar emulators conjecture is nearly true for cubic graphs
	1 Introduction
	2 Cubic planar-emulable graphs
	3 Conclusions
	References

	Random planar graphs with minimum degree two and three
	1 Main results
	2 Results for maps
	References

	Degenerated induced subgraphs of planar graphs
	1 Introduction
	2 Sketch of the proof
	References

	Strong chromatic index of planar graphs with large girth
	1 Introduction
	2 On planar graphs with large girth
	References

	On homomorphisms of planar signed graphs to signed projective cubes
	1 Preliminaries
	2 An extension of the Four-Color Theorem
	References

	Classification of k-nets embedded in a plane
	1 Introduction
	2 k-nets embedded in PG(2,K)
	3 3-nets embedded in PG(2,K)
	References

	An improved lower bound on the maximum number of non-crossing spanning trees
	1 Introduction
	2 The lower bound
	3 Non-crossing forests of points in convex position
	4 The upper bound
	References

	On the structure of graphs with large minimum bisection
	1 Introduction and results
	2 Trees
	3 Planar graphs
	4 Concluding remarks and open questions
	References


	Colorings
	Coloring intersection graphs of arcwise connected sets in the plane
	1 Introduction
	2 Preliminaries
	3 Proof sketch of Theorem 2.1
	References

	A characterization of edge-reflection positive partition functions of vertex-coloring models
	1 Introduction
	2 Partition functions of edge and vertex-coloring models
	3 A sketch of the proof of Theorem 2.4
	References

	Adjacent vertex-distinguishing edge coloring of graphs
	1 Introduction
	2 Method
	3 Conclusion and perspectives
	References

	Rainbow path and minimum degree in properly edge colored graphs
	1 Introduction
	1.1 Our results
	1.2 Preliminaries

	2 Proof of the main results
	References

	b-coloring graphs with girth at least 8
	1 Introduction
	2 Improving tool lemmas
	3 Comments and open questions
	References

	The circular chromatic index of k-regular graphs
	1 Introduction
	2 k-Regular graphs with χc' = k + a/p
	References

	Coloring d-Embeddable k-Uniform Hypergraphs
	Extended Abstract
	References

	Homomorphisms of signed bipartite graphs
	1 Homomorphisms
	2 Minors
	3 Hadwiger’s conjecture for signed bipartite graphs
	References


	Games
	A threshold for the Maker-Breaker clique game
	1 Introduction
	2 Our results
	3 Conclusion and open problems
	References

	On the threshold bias in the oriented cycle game
	1 Introduction and Results
	2 Outline of the proofs
	Strategy for Theorem 1.1
	Strategy for Theorem 1.2

	3 Concluding remarks
	References

	Building spanning trees quickly in Maker-Breaker games
	1 Introduction
	2 Outline of the proofs
	3 Concluding remarks and open problems
	References

	Dicots, and a taxonomic ranking for misère games
	References

	Avoider-Enforcer star games
	1 Introduction
	2 Results
	References


	Algebra and Polynomials
	Fooling-sets and rank in nonzero characteristic
	1 Introduction
	2 Some remarks on the importance of fooling-set matrices
	3 Fooling-Set Matrices from Linear Recurring Sequences
	4 Conclusion
	References

	Krasner near-factorizations and 1-overlapped factorizations
	1 Introduction
	2 Preliminaries
	3 Results
	References

	Correlation inequality for formal series
	References

	Covariants of spherical Θ-orbits for types E6, E7, E8
	1 Introduction
	2 Methodology
	References

	Partition regularity of nonlinear polynomials: a nonstandard approach
	References


	Randomness
	Random subgraphs make identification affordable
	1 Introduction
	2 Methods and proofs
	3 Concluding remarks
	References

	On two-point configurations in subsets of pseudo-random sets
	1 Introduction
	2 Sketch of the proof of Theorem 1.1
	References

	On the giant component of random hyperbolic graphs
	1 Introduction
	1.1 Random geometric graphs on a hyperbolic space
	1.2 Component structure of G(N; ζ, α)

	2 The supercritical regime
	3 The subcritical regime
	4 Conclusions - Further directions
	References

	Discontinuous bootstrap percolation in power-law random graphs
	1 Introduction
	2 Models and results
	2.1 Inhomogeneous random graphs – The Chung-Lu model
	2.2 Power-law degree distributions
	2.3 Results
	References


	On a conjecture of Graham and Häggkvist for random trees
	1 Introduction
	2 Stable sets of random trees
	3 The embedding
	References

	Sharp threshold functions via a coupling method
	1 Introduction
	References

	Analytic description of the phase transition of inhomogeneous multigraphs
	1 Model
	2 Main theorem
	3 Examples of application of the main theorem
	References


	Fixed-point
	On the Bruhat-Chevalley order on fixed-point-free involutions
	1 Introduction
	2 Preliminaries
	3 Results
	References

	A geometric approach to combinatorial fixed-point theorems: extended abstract
	1 Introduction
	Combinatorial fixed-point theorems

	2 Geometric proofs of Sperner-like theorems
	References


	Hamiltonicity
	Proof of a conjecture of Thomassen on Hamilton cycles in highly connected tournaments
	1 Sketch of the proof of Theorem 2
	References

	Proof of the 1-factorization and Hamilton decomposition conjectures
	1 Introduction
	1.1 The 1-factorization conjecture
	1.2 The Hamilton decomposition conjecture
	1.3 Packing Hamilton cycles in graphs of large minimum degree

	2 Overview of the proofs of Theorems 1.1 and 1.3
	References

	Regular hypergraphs: asymptotic counting and loose Hamilton cycles
	References


	Triangles
	Dynamic concentration of the triangle-free process
	1 Introduction
	2 Overview of the proof
	2.1 Strategy
	2.2 Variables

	3 Concluding remarks
	References

	Subcubic triangle-free graphs have fractional chromatic number at most 14/5
	1 Introduction
	2 Main result
	3 Conclusion
	References

	Henneberg steps for triangle representations
	1 Introduction
	2 Construction steps
	Henneberg type 2 step
	Henneberg combination step

	3 Conclusion and open problems
	References


	Cycles and Girth of Graphs
	Cycle-continuous mappings – order structure
	1 Introduction
	2 Properties of cycle-continuous mappings
	2.1 Properties of a 2-join
	2.2 Properties of a 3-join

	3 The proof
	3.1 Critical snarks
	3.2 Tree of snarks
	3.3 Representing posets by cycle-continuous mappings

	4 Concluding remarks
	References

	On the structure of graphs with given odd girth and large minimum degree
	1 Introduction
	2 Sketch of the proof
	3 Conluding remarks
	References

	On the order of cages with a given girth pair
	1 Cages with a given girth pair
	2 Notation
	3 Constructions for g odd
	4 Constructions for g even and h odd
	References


	Enumerations, Lattices and Tableaux
	Directed and multi-directed animals on the King’s lattice
	1 Introduction
	2 Animals on the King’s lattice and heaps of segments
	2.1 Definitions
	2.2 Directed animals and pyramids of segments
	2.3 Multi-directed animals and connected heaps of segments

	3 Enumeration of directed animals
	4 Enumeration of multi-directed animals
	5 Asymptotic results
	References

	Results and conjectures on the number of standard strong marked tableaux
	1 Introduction
	2 Preliminaries
	2.1 Cores and bounded partitions
	2.2 Strong marked and starred tableaux

	3 Main results and conjectures
	4 Strong covers and k-bounded partitions
	References

	On independent transversals in matroidal Latin rectangles
	References

	Multivariate Lagrange inversion formula and the cycle lemma
	1 Introduction
	2 Generalized cycle lemma
	3 The bijection
	References


	Combinatorics and algorithms
	Simplifying inclusion - exclusion formulas
	1 Introduction
	2 Sketch of a proof of Theorem 1.1
	References

	Majority and plurality problems
	1 Introduction
	1.1 Preliminaries and notation and main results

	2 Sketches of proofs and additional results
	References

	Combinatorial bounds on relational complexity
	1 Introduction
	2 Preliminaries
	3 Relational complexity
	3.1 Upper bounds on relational complexity
	3.2 Lower bounds on relational complexity

	References

	A combinatorial approach to colourful simplicial depth
	1 Colourful simplicial depth
	2 Combinatorial approach: octahedral systems
	3 Additional properties of octahedral systems
	References

	Complexity and approximation of the smallest k-enclosing ball problem
	1 Hardness results
	2 Approximation scheme
	References

	Testing uniformity of stationary distribution
	1 Introduction
	2 Preliminaries
	2.1 Graph notations
	2.2 Markov chains

	3 Structure of graphs with uniform stationary distribution
	4 Application to property testing
	5 Conclusion
	References

	On a covering problem in the hypercube
	1 Introduction
	References

	A classification of positive posets using isotropy groups of Dynkin diagrams
	1 Preliminaries and main results
	2 Outline of the proof via matrix morsifications
	3 Our calculation technique and concluding remarks
	References


	Posters
	Enumeration and classification of self-orthogonal partial Latin rectangles by using the polynomial method
	Polynomial graph invariants from homomorphism numbers
	An Erdős–Ko–Rado theorem for matchings in the complete graph
	References

	A constrained path decomposition of cubic graphs and the path number of cacti
	On push chromatic number of planar graphs and planar p-cliques
	References

	Firefighting with general weights
	Nowhere-zero flows on signed regular graphs
	References

	New transience bounds for long walks in weighted digraphs
	Complexity of determining the irregular chromatic index of a graph
	References

	CRM Series Publications by the Ennio De Giorgi Mathematical Research Center Pisa
	Published volumes
	Volumes published earlier




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFA1B:2005
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<


    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
    /FRA <>



    /HUN <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>


    /SKY <>

    /SUO <>
    /SVE <>
    /TUR <>

    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0034002e00350032003600330029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




