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Foreword to the second English edition

In the present edition the comments to chapters in the main text and
the References were extended and updated. During the past years the
quantum (noncommutative) generalizations of probability, mathemati-
cal statistics and information theory were substantially developed. The-
ory of quantum stochastic processes was elaborated, unifying repeated
and continuous measurement with the dynamics of open quantum sys-
tems. This material is re�ected in the book [178] where the reader can
�nd an extended bibliography. With the emergence of ideas of quantum
computation the powerful impetus got the quantum information theory
which was born more than half-century ago and shaped as an indepen-
dent scienti�c discipline in the 1990-s. This progress enhanced, in partic-
ular, recent development of asymptotic methods of quantum estimation
theory. An introduction to this circle of problems can be found in the
books [152, 170, 179].

The present edition would not be possible without the enthusiasm and
perseverance of Professor Vittorio Giovannetti and Professor Rosario Fazio
to whom the author expresses his warm gratitude. The author is grateful
to Dottoressa Luisa Ferrini, Edizioni della Normale, for her professional
and most ef�cient assistance in preparation of the manuscript.

This book is dedicated to the memory of Academician Kamil A. Valiev
who passed away in the summer 2010.

Alexander Holevo
Moscow, September 2010.



Foreword to the second Russian edition

When this book was �rst published in 1980 (the English edition appeared
in 1982 in North Holland), the author addressed it to a broad audience
of readers, both mathematicians and physicists having intention to make
them acquainted with the new prospects and possibilities which emerge
from the interaction of ideas of the mathematical statistics and the quan-
tum theory. During the past period this approach became even more de-
manded. On one side, its advantages in the questions of foundations
of quantum theory related to quantum measurements became more ap-
parent and widely acknowledged. On the other hand, one should stress
that these theoretical �ndings were not an end in itself: in modern high-
precision physical experiments researchers become able to operate with
single ions, atoms and photons which leads to potentially important ap-
plications, such as quantum communications, computation and cryptog-
raphy. Of great importance is the question of extraction of maximal possi-
ble information from the state of a given quantum system. For example,
in currently discussed proposals for quantum computing information is
written in the states of elementary quantum memory cells, qubits, and
then read off by means of quantum measurement. From the statistical
point of view, measurement gives an estimate for the quantum state – as a
whole, or for some of its parameters. In this way a new interest emerges
to quantum estimation theory, the fundamentals of which are presented
in this book.

One of essential consequences of penetration of the ideas of mathe-
matical statistics into the theory of quantum measurement is the wide use
of the mathematical notion of (non-orthogonal) resolution of the iden-
tity in the system Hilbert space (in the Western literature – POVM, pos-
itive operator-valued measures), describing the statistics of decision pro-
cedures. During the time passed resolutions of the identity became a
standard tool both in mathematical and in physical literature on quantum
measurements. All this, in my opinion, justi�es publication of the sec-
ond Russian edition of the book, moreover as the �rst one became a rare
book.
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The present edition includes Supplement discussing in some detail the
problem of hidden variables in quantum mechanics which continues to
provoke a keen interest. Moreover, the edition is complemented with
Comments re�ecting new results and achievements.

Academician K. A. Valiev
Moscow, April 2003.



Preface

The mathematical language of modern quantum mechanics is operator
theory. Operators play there a role similar to functions in classical me-
chanics, probability theory and statistics. However, while the use of func-
tions in classical theories is founded on premises which seem intuitively
quite clear, in quantum theory the situation with operators is different.

Historically the “matrix mechanics” of Heisenberg and the “wave
mechanics” of Schrödinger which gave rise to the contemporary form
of quantum theory, originated from ingenious attempts to �t mathemat-
ical objects able to re�ect some unusual (from the macroscopic point
of view) features of microparticle behavior – in particular, a peculiar
combination of continuous and discrete properties. The “probabilistic
interpretation” developed later by Born and others elucidated the mean-
ing of operator formalism by postulating rules connecting mathematical
objects with observable quantities. However a good deal of arbitrari-
ness remained in these postulates and the most convincing argument for
quantum-theoretical explanations was still the “striking” coincidence of
theoretical predictions with experimental data. This state of affairs gave
rise to numerous attempts, on one hand, to �nd classical alternatives to
quantum theory which would give an equally satisfactory description of
the experimental data, and on the other hand, to �nd out physical and
philosophical arguments for justifying the inevitability of the new me-
chanics.

Notwithstanding the impressive philosophical achievements in this
�eld there was and still is a need for the structural investigation of quan-
tum theory from a more mathematical point of view aimed at elucidating
the connections between the entities of the physical world and the ele-
ments of operator formalism. The present book is essentially in this line
of research opened by the classical von Neumann’s treatise “Mathemati-
cal Foundations of Quantum Mechanics”. However it differs from most
subsequent investigations by the strong emphasis on the statistical rather
than “logical” essence of quantum theory; it gives an account of recent
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progress in the statistical theory of quantum measurement, stimulated by
the new applications of quantum mechanics, particularly in quantum op-
tics.

The �rst three chapters give an introduction to the foundations of quan-
tum mechanics, addressed to the reader interested in the structure of
quantum theory and its relations with classical probability. In spite of
the mathematical character of the presentation it is not “axiomatic”. Its
purpose is to display the origin of the basic elements of operator formal-
ism resting, as far as possible, upon the classical probabilistic concepts.

The present revision is not an end in itself – it emerged from the so-
lution of concrete problems concerning the quantum limitations to mea-
surement accuracy, arising in applications. So far there has been no gen-
eral approach to such kind of problems. The methods of mathemati-
cal statistics adapted for classical measurements required radial quantum
modi�cation. The last chapters of the book are devoted to the recently
developed quantum estimation theory, which is an analog of the corre-
sponding branch of mathematical statistics.

We now give a more detailed account of the contents of the book. In
Chapter 1 the general concepts of state and measurement are introduced
on the basis of statistical analysis of an experimental situation. From the
very beginning this approach leads to a substantial generalization of the
Dirac-von Neumann concept of an observable. Mathematically it is re-
�ected by the occurrence of arbitrary resolutions of identity in place of or-
thogonal ones (spectral measures) and the repudiation of self-adjointness
as an indispensable attribute of an observable. In this way nonorthog-
onal resolutions of identity like the “overcomplete” system of coherent
states known in physics for rather a long time �nd their proper place in
quantum phenomenology. The new concept of quantum measurement is
central for the whole book.

The notion of statistical model exploited in Chapter 1 is quite general
and may �nd applications different from quantum theory. It gives us a
new insight into the still controversial “hidden variables” problem.

In Chapter 2 the elements of operator theory in Hilbert space are intro-
duced to provide mathematical background for the subsequent material.
As compared to standard presentations relatively much attention is paid
to nonorthogonal resolutions of identity and related questions. A novel
feature is also the introduction of the L 2 spaces of observables associ-
ated with a quantum state and playing a role similar to the Hilbert space of
random variables with �nite second moment in probability theory. These
L 2 spaces give the framework for a calculus of unbounded operators.

Of fundamental importance to quantum theory are groups of symme-
tries. In Chapter 3 elementary quantum mechanics is considered from this
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point of view. An important result of this discussion is the isolation of the
notion of covariant measurement which ties physical quantities with cer-
tain classes of resolutions of identity in the underlying Hilbert space. In
this way we construct quantum measurements canonically corresponding
to such quantities as time, phase of harmonic oscillator, angle of rotation
and joint measurement of coordinate and velocity. Allowing the broader
concept of quantum measurement enables us to resolve old troubles of
quantum theory connected with the non-existence of self-adjoint opera-
tors having the required covariance properties.

Chapter 4 is devoted to a more advanced study of covariant measure-
ments and extreme quantum limits for the accuracy of estimation of phys-
ical parameters. The latter problem becomes important in view of the
progress in experimental physics. We present a uni�ed statistical ap-
proach to “non-standard” uncertainty relations of the “angle-angular mo-
mentum” type. They appear to be related to the quantum analog of
the Hunt-Stein theorem in mathematical statistics. A general conclusion
which can be drawn from Chapter 4 is that the requirements of covariance
and optimality, i.e., extremal quantum accuracy, determine the canoni-
cal measurement of a “shift” parameter, such as angle, coordinate, time,
uniquely up to a “gauge” transformation.

An example of a situation where quantum limitations are important is
provided by optical communication. As it is known, “quantum noise” dis-
torting the signal in the optical range can be much more signi�cant than
the thermal background radiation. As in ordinary communication theory
the problem of signal estimation arises, but now it requires a speci�cally
quantum-theoretic formulation and solution.

Chapter 5 is devoted to the so-called Gaussian states which, in par-
ticular, describe radiation �elds in optical communication theory. The
presentation is intended to make maximal use of the remarkable parallel
with the Gaussian probability distributions. An important role is played
here by quantum characteristic functions.

In Chapter 6 the general inequalities for the measurement mean square
errors are derived, which are quantum analogs of the well-known Cramer-
Rao inequality in mathematical statistics. The best unbiased measure-
ments of the mean-value parameters of a Gaussian state are describ-
ed.

Needless to say, the present book cannot (and is not intended to) re-
place the standard textbooks on quantum mechanics. Most of the impor-
tant topics, such as perturbation theory, are apparently out of its scope.
Nor does it pretend to give a full account of quantum measurements. We
have discussed only those problems which concern measurement statis-
tics and do not require consideration of state changes after measurements.
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The references to the relevant work on “open” quantum systems and
quantum stochastic processes can be found in the comments.

The author’s intention was to write a book accessible to a wide circle
of readers, both mathematicians and physicists. As a result, the presenta-
tion, being in general mathematical, is rather informal and certainly not
“the most economic” from a mathematical point of view. On the other
hand, it neglects some subtleties concerning measurability etc. As a rule
a rigorous treatment can be found in the special papers refered to. The
necessary background for the whole material is knowledge of fundamen-
tals of probability theory. Mathematically the most elementary is Chapter
1 which uses mainly �nite-dimensional linear analysis. The functional
analytic minimum is given in Section 2.1-2.6 of Chapter 2, and a math-
ematically educated reader may just glance over it. On the other hand, a
reader familiar with quantum mechanics can omit the detailed discussion
of such topics as harmonic oscillators and spin in Chapter 3, included
to make the presentation self-contained, and concentrate on less familiar
things.

The Dirac notation is used intensively throughout the book but with
round brackets for the inner product as accepted in mathematical litera-
ture. The angle brackets, associated with the averaging symbol in statis-
tical mechanics, are reserved for the different inner product de�ning the
correlation of a pair of observables. To denote a quantum state as well
as its density operator we use the letter S (not the usual ρ) allied to the
notation P for the classical state (probability distribution).

The author’s thanks are due to Prof. D. P. �Zelobenko and the late Prof.
Yu. M. Shirokov who read the manuscript and made useful comments.

In translating the book the author took the opportunity of improving
the presentation which concerned mainly Chapters 3, 4. Few references
were added. The author is grateful to Prof. Yu. A. Rozanov and Prof.
P. R. Krishnaiah for providing the opportunity of translating this book for
North-Holland Series in Statistics and Probability.



Chapter 1
Statistical models

1.1. States and measurements

Any theoretical model ultimately relies upon experience – the framework
for a model is constituted by the array of experimental data relevant to
the study of the object or phenomenon. Let us consider a very schematic
and general description of an experimental situation and try to trace back
the emergence of the principal components of a theoretical model.

The fundamental reproducibility condition requires at least in principle
the unrestricted possibility of repetition of an experiment. Considering a
sequence of identical and independent realizations of some experimen-
tal situation one always sees that practically the data obtained are not
identically the same but subject to random �uctuations, the magnitude of
which depends on the nature of the experiment and of the object under
investigation.

There exist large classes of phenomena, for example, planetary motion
or constant electric currents, in which these random �uctuations can be
both practically and theoretically ignored. The corresponding theories –
classical celestial mechanics and circuit theory – proceed from the as-
sumption that the parameters describing the object can be measured with
arbitrary accuracy, or, ultimately, with absolute precision. In such cases
the object is said to admit deterministic description. Such a description,
however self-contained it seems to be, is usually only an approximation
to reality, valid in so far as it agrees with the experience.

The fruitfulness of the deterministic point of view in the classical phy-
sics of the 18-19th centuries gave rise to the illusion of its universality.
However, with the penetration of experimental physics into the atomic
domain the inapplicability of the classical deterministic approach and the
relevance of statistical concepts in this domain became more and more
evident. The behavior of atomic and subatomic objects is essentially
probabilistic; an ordinary way to extract information about them is to
observe a large number of identical objects to obtain statistical data. The
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interested reader can �nd about the experimental evidence for statisti-
cal description in microphysics, which is now generally accepted, in any
contemporary tract on quantum physics.

The possibility of statistical description presumes the ful�lment of the
following statistical postulate, incorporating the previous requirement of
reproducibility: the individual results in a sequence of identical, indepen-
dent realizations of an experiment may vary, but the occurrence of one or
another result in a long enough sequence of realizations can be charac-
terized by a de�nite stable frequency. Then, abstracting from the practi-
cal impossibility of performing an in�nite sequence of realizations, one
can adopt that the results of the experiment are theoretically described by
the probabilities of various possible outcomes. More precisely, we must
distinguish an individual realization of the experiment which results in
some concrete outcome from the experiment as a collection of all its pos-
sible individual realizations. In this latter sense, the �nal results of the
experiment are theoretically described by probability distributions. The
deterministic dependence of the experimental results on the initial condi-
tions is replaced by the statistical one: the function of the initial data is
now the output probability distribution.

As an example consider a beam of identical independent particles
which are scattered by an obstacle and then registered by a photographic
plate, so that an individual particle hitting the plate causes a blackening
of the emulsion at the place of the collision. Exposing a beam which con-
sists of a large enough number of particles will result in a photographic
picture giving the visual image of the probability density for the point at
which an individual particle hits the plate. The natural light is the chaotic
�ow of an immense number of speci�c corpuscules – the photons. The
well-known optical diffraction pictures present the images of the proba-
bility density of an individual photon scattered by an aperture.

Of course, the statistical description is by no means subject to atomic
or subatomic phenomena. When investigating a system which consists
of a large number of components (e.g., a gas or a liquid) the experi-
menter has at his disposal only a very restricted set of parameters to vary
(say, pressure, volume or temperature). An immense number of param-
eters, giving a detailed description for the behavior of subsystems of the
system are out of control; their uncontrolled changes may substantially
in�uence the results of measurements. A study of these �uctuations is
essential for understanding the mechanisms of phenomena occurring in
large systems. The statistics of observations is most important in prob-
lems of information transmission, where the �uctuations in the physical
carriers of information are the source of various “noises” distorting the
signal.
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The statistical approach is often appropriate in biometrical research. In
studying the effect of a medicine, a physician can take into account a lim-
ited number of parameters characterizing his patients such as age, blood
group etc. However the effect of the treatment in each individual case will
depend not only on these “integral” parameters, but also on a number of
other internal factors which were not, or could not be taken into account.
In such cases the dependence of the effect on the “input parameters” is
not deterministic and often can be successfully described statistically.

These two examples show that the origin of �uctuations in results of
measurement may be uncertainty in the values of some “hidden vari-
ables” which are beyond the control of the experimenter. The nature
of randomness in atomic and subatomic phenomena is still not so clear,
though the relevance of the statistical approach is con�rmed here by more
than half a century experience of applications of quantum theory. We
shall not touch here the issues concerning the nature of randomness in
microscopic phenomena, but we shall comment on some mathematical
aspects of the relevant “problem of hidden variables” in the Supplement.
The main attention we shall pay here to the consequences of the statistical
postulate irrespective of the nature of the object under consideration. We
shall see that already on this very general level the notions of the state and
the measurement arise, which play a basic role, in particular, in quantum
theory.

In any experiment one can distinguish the two main stages. At the
�rst stage of preparation a de�nite experimental set-up is settled, some
initial conditions or “input data” of the experiment are established. At the
following stage of the experiment the “prepared” object is coupled to a
measuring device, resulting in these or the other output data (Figure 1.1).

Conventionally, one may conceive the object as a “black box” at the “in-
put” of which one can impose some initial conditions S̃. After the object
has been de�nitely prepared, some measurement is performed, resulting
in the output data u. These data may be of arbitrary nature; they may be
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discrete if the measuring device registers the occurrence of some events,
e.g., the presence or absence of some particles; they may be represented
by a scalar or vector quantity, if the measuring device has one or several
scales; at last the result of a measurement may be a picture of a whole
trajectory, as in a bubble chamber. To give a uniform treatment for all
these possibilities we assume that the outcomes of measurement form a
measurable space U with the σ -�eld of measurable subsets A (U ). In
the concrete cases we shall deal with, U will be usually a domain in the
real n-dimensional space Rn with the Borel σ -�eld generated by open
sets (or by multi-dimensional intervals). A measurable subset B ⊂ U
corresponds to the event: the result of the measurement u lies in B.

According to the statistical postulate, a result of an individual mea-
surement can be considered as a realization of a random variable taking
values in U . Let μS̃(du) be the probability distribution of this random
variable. The subscript S̃ re�ects the dependence of the statistics of the
measurement upon the preparation procedure, i.e., the initial conditions
of the experiment, so that

μS̃(B) = Pr{u ∈ B|S̃}, B ∈ A (U )

is the conditional probability of obtaining a result u ∈ B under the initial
condition S̃. The map S̃ → μS̃(du) gives a complete statistical descrip-
tion for the results of the measurement. It should be stressed, however,
that such a description does not contain indications either on a concrete
mechanism of the measurement, or on its consequences for the object.
From this point of view one should not distinguish between the measur-
ing procedures giving the same statistics μS̃ under the same condition S̃
however different their practical implementation may be. Thus the map
S̃ → μS̃ refers to this whole class of measuring procedures.

Similarly the initial conditions S̃1 and S̃2 are indiscernible from the
point of view of the results of measurements if μS̃1

= μS̃2
for any map

S̃ → μS̃ describing a measurement. We shall join the indiscernible
preparation procedures S̃ in the equivalence classes S = [S̃] which will
be called states. Denote by S the set of all possible states. Since the
probability distribution μS̃ is the same for all S̃ from the class S, it is a
function of classes, μS̃ = μS . The map S → μS transforming states
S ∈ S into the probability distributions on the space of outcomes U will
be called a measurement (with values in U ).

The set S and the maps S → μS enjoy an important structural prop-
erty. Let {Sα} be a �nite collection of states. Consider an in�nite se-
quence of individual experiments in each of which the object is prepared
in some of the states Sα, the occurrence of different values of α being
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characterized by a probability distribution {pα}. This may re�ect �uc-
tuations in the values of some parameters in the preparation procedure.
Let one and the same measurement be performed in each individual ex-
periment. Then by the statistical postulate and the elementary properties
of probabilities the occurrence of an outcome u will be described by the
probability distribution μ(du) =∑

α pαμSα
(du). The situation described

above can be considered as a special way of state preparation (mixing)
when the value of the parameter α is not �xed but is chosen according to
the prior distribution {pα}. Denoting such “mixed” state by

S = S({Sα}, {pα}) (1.1.1)

we have for any measurement S → μS

μS(du) =
∑

a

pαμSα
(du). (1.1.2)

Thus, we are led to adopt that for any �nite set of states {Sα} ⊂ S and
any probability distribution {pα} there is uniquely de�ned “mixed” state
S({Sα}, {pα}), which is characterized by (1.1.2). Then it turns out that
the set of the states can be naturally identi�ed with a convex set in a
linear space, such that S({Sα}, {pα}) =∑

α pα Sα. The exact formulation
requires some knowledge in convexity presented in the next section.

1.2. Some facts about convex sets

Let S1, . . . , Sn be the elements of a linear space L, and p1, . . . , pn a set
of real numbers satisfying

p j ≥ 0, j = 1, . . . , n;
n∑

j=1

p j = 1,

i.e., a �nite probability distribution. Then the element

S =
n∑

j=1

p j S j

is called a convex combination of Sj with the coef�cients (weights) {p j }.
The convex hull of a set K ⊂ L is the collection of all convex com-
binations of all �nite subsets {Sj } ⊂ K. A set S is called convex if it
coincides with its convex hull, i.e., if it contains convex combination of
any �nite subset of its elements. For two elements S0, S1, their convex
combinations form the segment [S0, S1]:

{S : S = p0S0 + p1S1; p0, p1 ≥ 0, p0 + p1 = 1}.
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It is easy to see that the set S is convex if and only if together with any
two elements S0, S1, it contains the segment [S0, S1].

An abstract set S is called mixture space if there is a rule by which
to any �nite unordered collection {Sα} of elements of S and any �nite
probability distribution {pα} there corresponds a unique element S({Sα},
{pα}) ∈ S called the mixture of the states Sα with weights pα. It is as-
sumed that mixing the collection consisting of copies of one and the same
element S0 gives again S0, i.e., if Sα ≡ S0 for all α, then S({Sα}, {pα}) =
S0. An example of mixture space is a convex set with the convex combi-
nation as the mixture.

Let F be a map from a mixture space S into a linear space. The map
is called af�ne if for any mixture S({Sα}, {pα})

F(S({Sα}, {pα})) =
∑

α

pα F(Sα).

The set of af�ne maps is nonempty, since the map which sends any S ∈ S
into a constant vector b is af�ne. Clearly, the image of a convex set under
an af�ne map is again convex. In linear space there is a close connection
between af�ne and linear maps: namely, any af�ne map F of a convex set
S ⊂ L has the form F(T ) = A(T )+b, T ∈ S, where A is a linear map
de�ned on L. In particular, any af�ne functional (i.e., map with values
on the real line R) is up to an additive constant a restriction to S of a
linear functional on L.

A mixture space is called separated if for any two S1, S2 ∈ S there is
an af�ne functional ϕ on S such that ϕ(S1) �= ϕ(S2).

An example of a separated mixture space is the set of states of Sec-
tion 1.1. Indeed, for any measurement S → μS and any subset B ∈
A (U ) the functional S → μS(B) is af�ne by (1.1.2). By construction,
for any two states S1 and S2 there exists a measurement S → μS such
that μS1 �≡ μS2 , i.e., μs1(B) �= μS2(B) for some B. The following sim-
ple statement shows that the set of states can be considered as a convex
subset in a linear space, with the convex combinations as mixtures.

Proposition 1.2.1. For any separated mixture space S there is a one-to-
one af�ne map of S onto a convex subset of a linear space.

Proof. Let A(S) be the linear space of all af�ne functional on S and
L = A(S)′ the dual space of all linear functionals on A(S). For each
S ∈ S introduce Ŝ ∈ L, putting

Ŝ(ϕ) = ϕ(S), ϕ ∈ L.
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The map S→ Ŝ is af�ne, since∑
j

p j Ŝ j (ϕ) =
∑

j

p jϕ(Sj ) = ϕ(S({Sj }, {p j }))

= Ŝ({Sj }, {p j })(ϕ),

and it is one-to-one since Ŝ1(ϕ) = Ŝ2(ϕ) implies ϕ(S1) = ϕ(S2) for all
af�ne functionals ϕ. This proves the proposition.

The most simple example of a convex set in an n-dimensional simplex,
which is de�ned as a convex hull of n + 1 points S0, . . . , Sn in a space
of dimension ≥ n, such that vectors S0S1, . . . , S0Sn are linearly indepen-
dent. For n = 1 this is a segment, for n = 2 a triangle, for n = 3 a
tetrahedron (Figure 1.2). The points S0, . . . , Sn are the vertices of the
simplex.

The basic role in the theory of convex sets plays the notion of extreme
point. The point S is an extreme point of a convex set S, if it is not an
interior point of a segment, lying completely in S; that is, it cannot be
represented in the form S = p0S0+ p1S1, where p0, p1 > 0, p0+ p1 = 1;
S0, S1 ∈ S and S0 �= S1. For example, the extreme points of a simplex are
its vertices. In a �nite-dimensional space the following statement holds.

Theorem 1.2.2. Any compact (i.e., bounded and closed) set S coincides
with the convex hull of the set of its extreme points.

In general, there may be several ways to represent a point S of a convex
set S as a convex combination of extreme points. The representation is
unique for any point S ∈ S if and only if S is a simplex.

Theorem 1.2.2, the de�nition and the characteristic property of a sim-
plex can be generalized also to the in�nite-dimensional case, but a care-
ful treatment of these problems would require much more space; on the
other hand, the �nite-dimensional picture presented above will suf�ce for
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understanding the following sections. Therefore we consider only one
in�nite-dimensional example, which we shall substantially need later.

Let P(�) be the collection of all probability distributions on a mea-
surable space �. This set is convex, since any “mixture” of probability
distributions Pj (dω) is again a probability distribution on �

P(A) =
∑

j

p j Pj (A), A ∈ A (�).

To any point ω ∈ � there corresponds the δ-distribution, concentrated at
ω,

δω(A) =
{

1, A 
 ω,

0, A �
 ω.

We shall suppose, without loss of generality, that the σ -�eld A (�) sep-
arates points of �, i.e., for any two ω1, ω2 ∈ � there is A ∈ A (�) such
that ω1 ∈ A; ω2 /∈ A. Then the correspondence ω → δω is one-to-one.
The δ-distributions are precisely the extreme points of P(�). For any
P ∈ P(�)

P(A) =
∫

�

δω(A)P(dω), A ∈ A (�). (1.2.3)

This representation is a continual analog of a �nite convex combination
with respect to extreme points, the role of weights p j is played by the
probability distribution P(dω). The representation (1.2.3) is unique; so
that the convex set P(�) has the property, characteristic of a simplex in
the �nite-dimensional case, and we shall keep this name for P(�).

If the space � consists of n points, � = �n (A (�n) being the Boolean
�eld of subsets of �n), the set

Pn =
{

P = [p1, . . . , pn] : p j ≥ 0,

n∑
j=1

p j = 1

}
is clearly an (n−1)-dimensional simplex with the vertices [1,0,. . . ,0], . . .,
[0, . . . , 0, 1]. It will be convenient for us to represent P by the diagonal
n × n-matrix

P =
⎡⎢⎣p1 0

. . .

0 pn

⎤⎥⎦ .

Then the characteristic properties of P take the form

P ≥ 0, Tr P = 1, (1.2.4)

where Tr denotes the trace, i.e., the sum of diagonal elements of a matrix.
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If X is a random variable on �n with the values x1, . . . , xn , then putting

X =
⎡⎢⎣x1 0

. . .

0 xn

⎤⎥⎦
we get that the expectation of X with respect to the probability distribu-
tion P is equal to

n∑
j=1

p j x j = Tr P X. (1.2.5)

Consider the set On of random variables, satisfying 0 ≤ x j ≤ 1, i.e.,

0 ≤ X ≤ I (1.2.6)

where I is the unit n × n-matrix. Then On is a convex set – a unit hyper-
cube, the extreme points being its vertices, represented by the matrices X
for which x j is either 0 or 1. Such matrices satisfy X2 = X , so that the
extreme points of On are the idempotent (projection) matrices.

This elementary consideration leads naturally to the following con-
struction which is of principal interest in connection with quantum theory.
We can consider (complex) n × n-matrices as operators acting in the n-
dimensional unitary space H of column-vectors ϕ = [ϕ1], ψ = [ψ1], . . .
The inner product of ϕ and ψ is de�ned by: (ϕ|ψ) = ∑

ϕ jψ j . We
shall use Dirac’s notation |ϕ), |ψ), . . . for column-vectors ϕ, ψ, . . . and
(ϕ|, (ψ |, . . . for the Hermitean conjugated row-vectors ϕ∗, ψ∗, . . . The
symbol for the inner product is then simply a graphic junction of symbols
for the factors (ϕ| and |ψ). The “outer” product |ψ)(ϕ| is then the n× n-
matrix with the components [ψ jϕk]. If ψ is the unit vector, (ψ |ψ) = 1,
then Sψ = |ψ)(ψ | is the matrix of the (orthogonal) projection on the
vector ψ .

The �nite-dimensional spectral theorem says that for any Hermitean
n×n-matrix X there is a complete orthonormal system of vectors {e j ; j =
1, . . . , n}, in which X has the diagonal form

X =
n∑

j=1

λ j |e j )(e j |, (1.2.7)

where λ j are the eigenvalues of X , which are real. It follows that e j is an
eigenvector of X corresponding to the eigenvalue λ j .

In (1.2.7) the λ j ’s are not necessarily different. Denote by x1, . . . , xm

(m ≤ n) the distinct eigenvalues of X numbered in the increasing order,
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and by Ek = ∑ |e j )(e j | (the sum extends over all e j belonging to λk)
the matrix of projection onto the invariant subspace of X , correspond-
ing to the eigenvalue λk . Then we have a different form of the spectral
representation

X =
m∑

k=1

xk Ek . (1.2.8)

Consider the set Sn of all Hermitean n× n-matrices S = [s jk] satisfying
the conditions

S ≥ 0, Tr S = 1, (1.2.9)

which have the same form as (1.2.4). By the �nite-dimensional spectral
theorem

S =
n∑

j=1

λ j Sψ j , (1.2.10)

where λ j are the eigenvalues of S, and Sψ j = |ψ j )(ψ j | are the mutu-
ally orthogonal projections on the unit eigenvectors of S. The condition
(1.2.7) implies that the eigenvalues of S ∈ Sn constitute a probability
distribution

λ j ≥ 0,

n∑
j=1

λ j = 1.

In particular, 0 ≤ λ j ≤ 1 and (1.2.10) implies

S − S2 =
n∑

j=1

λ j (1− λ j )Sψ j ≥ 0,

with the sign of equality attained if and only if S = Sψk for some ψk , i.e.,
if S is a one-dimensional projection.

Proposition 1.2.3. The set Sn in convex, its extreme points being pre-
cisely one-dimensional projections.

Proof. The �rst part of the statement follows from the fact that the condi-
tions (1.2.9), de�ning Sn sustain forming convex combinations. To prove
that any one-dimensional projection S is an extreme point of Sn , assume
that

S = p0S0 + p1S1;
p0, p1 > 1, p0 + p1 = 1.
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Taking square of this equality, subtracting and using the inequality S ≥
S2 for S ∈ Sn , we obtain

S − S2 = p0(S0 − S2
0)+ p1(S1 − S2

1)+ p0 p1(S0 − S1)
2

≥ p0 p1(S0 − S1)
2.

Since S is a one-dimensional projection, then S = S2, which implies that
S0 = S1. Therefore S is an extreme point.

To prove the converse consider the spectral representation (1.2.10).
Since Sψ j ∈ Sn and Sψ j �= Sψk for j �= k, then for an extreme point
S of Sn the sum (1.2.10) can have only one nonzero term. Therefore
S = Sψ j for some ψ j , which proves the proposition.

The relation (1.2.10) is one of many possible representations of S as a
convex combination of the extreme points.

We consider also the convex set Xn of all Hermitean n × n-matrices
X , satisfying (1.2.6), and show that the extreme points of this set are the
(orthogonal) projections, i.e., (Hermitean) matrices satisfying X2 = X .
The proof of the statement that every projection is an extreme point is the
same as in Proposition 1.2.3. To prove the converse, write the spectral
decomposition of the matrix X in the form (1.2.8) with 0 ≤ xk ≤ 1
where xk are the distinct eigenvalues of X , Ek is the projection onto the
invariant subspace of X , corresponding to the eigenvalue xk . Since x1 <

· · · < xm , then using in (1.2.8) the Abel transform and taking into account
the equality E1 + · · · + Em = I , we have

X = (1− x1) · 0+
m−1∑
k=1

(xk − xk+1) · E ′k + xm · I,

where E ′k = E1 + · · · + Ek . Since the projections 0, I and E ′k belong
to Xn and the coef�cients are nonnegative and sum to 1, then this is a
convex combination of distinct projections. If X is an extreme point,
then the sum can have only one nonzero term, and the matrix X must be
a projection.

The difference between the sets Pn and Sn (correspondingly, between
On and Xn) is that in the latter case we consider all Hermitean matrices,
satisfying (1.2.9) (correspondingly (1.2.6)), while in the former case only
the diagonal matrices. We could consider as well a commuting family of
matrices which can be simultaneously diagonalized. Therefore the latter
case may be called the “noncommutative” analog to the former; de�ning
the mean value by (1.2.5) one may treat S ∈ Sn as a “noncommutative
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probability distribution”, and a Hermitean matrix X as a “noncommuta-
tive random variable”. We shall see this connection to be deeper than a
pure formal analogy.

We took the complex matrices because of their relevance to quantum
theory, but the real matrices can be treated similarly.

At the end of this section we consider in some detail the structure of
the convex set Sn in the simplest “noncommutative” case, n = 2. Any
matrix S ∈ S2 can be represented as

S = 1

2

[
1+ θ3 θ1 − iθ2

θ1 + iθ2 1− θ3

]
, (1.2.11)

where θ1, θ2, θ3 are the real numbers called the Stokes parameters. The
condition S ≥ 0 is equivalent to the inequality θ2

1 + θ2
2 + θ2

3 ≤ 1. Thus,
S2 as a convex set can be represented by the unit ball in the three-
dimensional real vector space; the extreme points are the matrices for
which the vector [θ1, θ2, θ3] lies on the sphere θ2

1 + θ2
2 + θ2

3 = 1.
If n > 2, then the set Sn is a proper subset of the unit ball in the

(n2 − 1)-dimensional real vector space, and it cannot be represented so
explicitly.

1.3. De�nition of a statistical model

Motivated by consideration in Section 1.1, we de�ne a statistical model1

as a pair (S,M) where S is a convex set and M is a class of af�ne maps
of S into the collections of probability distributions on some measurable
spaces U . The elements of S are called states, and the elements of M
measurements. The problem of theoretical description of an object or a
phenomenon satisfying the statistical postulate can then be described as
a problem of construction of an appropriate statistical model. In more
detail, the construction must �rst give a mathematical description of the
set S of theoretical states and the set M of theoretical measurements and
second, prescribe the rules for correspondence between the real proce-
dures of preparation and measurement and the theoretical objects, i.e., an
injection of the experimental data into the statistical model.

The probability theory and statistics deal with the models in which the
set of the states S has the speci�cally simple structure. The statistical
model of quantum theory is drastically different. We shall consider these
models in detail in the following sections.

1 The concept of statistical model will be considered in the Supplement in greater detail.
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In this chapter we shall often simplify our consideration by using only
the measurements with a �nite number of outcomes. In such a case
the space U is �nite and the probability distribution of the results of the
measurement is described by a �nite collection of real af�ne functionals
{μS(u); u ∈ U } on S, satisfying

μS(u) ≥ 0, u ∈ U ;
∑
u∈U

μS(u) = 1. (1.3.12)

Here μS(u) is the probability of the result u when the state is S. For any
B ⊂ U

μS(B) =
∑
u∈B

μS(u).

Technically this case is much simpler than the continual one, being still
suf�cient to expose the essential features of the theory. In practice such
measurements correspond to the procedures resulting in some classi�ca-
tion of the data. Furthermore, one can easily imagine a �nitely-valued
approximation of a measurement with a continual space of the outcomes
U by making a partition of U into a �nite number of “small” pieces.

A two-valued measurement is called a test. Denoting one of the results
of the test by 0, and the other by 1 we get that any test can be described
by de�ning only one function on S, say μS(1), the probability of getting
1, since μS(0) = 1−μS(1). The probability μS(1) is an af�ne functional
on S satisfying 0 ≤ μS(1) ≤ 1.

Let S → μS(du) be a measurement with an arbitrary space of results
U . Then to any B ∈ A (U ) there corresponds the test S → {μS(B),
μS(B)}, the result of which is 0 if u ∈ B and is 1 if u ∈ B. (B denotes
the complement of the set B). Thus, any measurement can be considered
as a collection of tests (satisfying apparent compatibility conditions).

1.4. The classical statistical model

We have seen in Section 1.1 that the notion of state refers to the initial
conditions of the experiment. Here we shall adopt that these conditions
can be formally described by the points ω of some set �, which will be
called phase space.

To take into account the possibility of variations in the initial data dur-
ing the repetitions of an experiment, or uncertainties in some parameters
in the preparation procedure we shall consider also the probability distri-
butions on �. To do this we must accept that � is a measurable space
with a σ -�eld A (�); we assume that A (�) separates the points of �.

Any probability distribution P on � will be called classical state. It
should be interpreted as a statistical description of the preparation stage.
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To any ω ∈ � corresponds the pure state described by the δ-distribution
δω(A), A ∈ A (�). According to Section 1.2 the collection P(�) of all
classical states is the convex set of the most simple structure, the simplex,
and the pure states are its extreme points.

A measurement with values in U is described by an af�ne map

P → μP(du) (1.4.13)

which transforms the set of classical states P(�) into the set of prob-
ability distribution P(U ). Denote by Mω(du) the probability distribu-
tion of the given measurement with respect to a pure state δω, so that
Mω(du) = μδω

(du), and consider the mixture of the pure states

P(dω) =
∑

α

pαδωα
(dω).

Since (1.4.13) is af�ne, the probability distribution of the results with
respect to this state will be given by

μP(B) =
∫

Mω(B)P(dω), B ∈ A (U ). (1.4.14)

Under some additional assumptions this relation will be valid for any
classical state P . We shall not discuss this question and simply restrict
our attention to measurements P → μP , which have the form (1.4.14)
where Mω(du) is a conditional probability distribution on U 2. While P
describes the uncertainty in the initial conditions of the experiment, the
probability distribution Mω(du) characterizes the disturbance due to the
measuring device. The relation (1.4.14) shows how these two sources
of uncertainty enter into the overall measurement statistics. We shall
denote by M both the conditional probability distribution {Mω(du)} and
the corresponding measurement (1.4.13).

The classical statistical model which we are going to de�ne is based on
the assumption of complete observability, according to which the values
of any parameters of the object can be established with absolute precision.
To give a precise formulation we introduce the following de�nition. The
measurement M = {Mω(du)} is called deterministic if for any ω ∈ �

and B ∈ A (U ) either Mω(B) = 0 or Mω(B) = 1. This means that if
the object is in a pure state, then for any B ∈ A (U ) the result of the

2 This means that for any ω ∈ �, Mω(du) is a probability distribution on U , and for any B ∈A (U ),
Mω(B) is a measurable function of ω.
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measurement u is either in B or not in B with probability 1. This can be
written in the following form

Mω(B)2 = Mω(B), B ∈ A (U ). (1.4.15)

The nature of this condition can be made clear by discussing �nitely-
valued measurements. LetM = {Mω(u); u ∈ U } be such a measurement,
where Mω(u) is the probability of the outcome u if the object is in the
pure state δω. These probabilities satisfy

Mω(u) ≥ 0,
∑

u

Mω(u) = 1; ω ∈ �. (1.4.16)

If M is deterministic measurement, then Mω(u) is equal to either 0 or 1.
Introducing the indicator of a set F ⊂ � as the function 1F(ω), which
is equal to 1 on F and 0 outside F , we have Mω(U ) = 1�(u)

(ω), where
�(u) = {ω : Mω(u) = 1}. It follows from (1.4.16) that the sets �(u) for
different values of u do not intersect, and the union of all �(u) is equal to
�; this is expressed by saying that the sets {�(u)} form a decomposition
of the set �. Therefore for any ω there is a unique u = u(ω) such that
Mω(u(ω)) = 1. For any B ⊂ U

Mω(B) =
∑
u∈B

Mω(u) = 1B(u(ω)). (1.4.17)

The function ω → u(ω) is a random variable on � with values in U ;
the relation (1.4.17) establishes the one-to-one correspondence between
the deterministic measurements and the random variables with values in
U . To make this connection more transparent consider a random variable
X (ω) on � taking values in a �nite subset {x} of the real line R. Let �(x)

be the subset of � on which X (ω) is equal to x , then

X (ω) =
∑

X

x · 1�(x)
(ω) =

∑
x

x Mω(x). (1.4.18)

Thus, to the random variable X there corresponds the unique determinis-
tic measurementM = {Mω(x)} such that X takes a value x if and only if
x is the result of the measurementM.

The case of continuous random variables is technically much more
involved but the conclusion is essentially the same: under some regular-
ity conditions the relation (1.4.17) establishes the one-to-one correspon-
dence between the random variables and the deterministic measurements.

We can now formalize the requirement of the complete observability
by adopting the following de�nition. The classical statistical model is a
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model (P(�), M), where P(�) is the simplex of all probability distribu-
tions on the phase space �, and the class M contains all the deterministic
measurements.

Now consider the convex set M(U ) of all af�ne maps P → μP with
μP having the form (1.4.14).

Proposition 1.4.1. Thedeterministicmeasurementsaretheextreme points
of M(U ), and viceversa.

Proof. Let M = {Mω(B)} be a deterministic measurement and let M =
p0M0 + p1M1; p0, p1 > 0; p0 + p1 = 1, i.e.,

Mω(B) = p0 M0
ω(B)+ p1 M1

ω(B), B ∈ A (U ).

Taking the square of this equality and using the fact that Mω(B) =
Mω(B)2, we get after some algebra

p0 M0
ω(B)[1− M0

ω(B)] + p1 M1
ω(B)[1− M1

ω(B)]
+ p0 p1[M0

ω(B)− M1
ω(B)]2 = 0,

whence, using the inequality M0
ω(B)[1− M0

ω(B)] ≥ 0 and an analogous
inequality for M1, we get M0

ω(B) ≡ M1
ω(B). This means that M is an

extreme point of M(U ).
Conversely, let M = {Mω(B)} be an extreme point of M(U ). Let B1

be a �xed set from A (U ), B2 = B1, its complement. Put

M±
ω (B) = Mω(B)± [Mω(B1)Mω(B ∩ B2)

− Mω(B2)Mω(B ∩ B1)]. (1.4.19)

Then Mω(B) = 1
2 M±

ω (B) + 1
2 M−

ω (B). We shall show that {M±
ω (B)} are

conditional probability distributions on U . For this it is suf�cient to check
that M±

ω (B), B ∈ A (U ), for any ω ∈ � is a probability distribution. It
is clear that M±

ω (B) is a σ -additive function of B ∈ A (U ), since all the
terms in (1.4.19) are measures; moreover, M±

ω (U ) = Mω(U ) = 1. It
remains to check that M±

ω (B) ≥ 0, but this follows from the inequality

M±
ω (B) ≥ Mω(B ∩ B1)[1∓ Mω(B2)]

+ Mω(B ∩ B2)[1± Mω(B1)] ≥ 0.

Since M is an extreme point it follows that M±
ω (B) = Mω(B), B ∈

A (U ), i.e.,

Mω(B1)Mω(B ∩ B2) = Mω(B2)Mω(B ∩ B1).

Putting here B = B1 and taking into account that B1 ∩ B2 = ∅ we get
Mω(B2)Mω(B1) = 0 or Mω(B1)[1 − Mω(B1)] = 0. Thus, {Mω(B)} is a
deterministic measurement.
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Let {M j } be a �nite collection of deterministic measurements from
M(U ) and {p j } be a probability distribution. Then the convex combina-
tion

Mω(B) =
∑

j

p j M j
ω(B), B ∈ A (U )

describes a randomized measurement in which a measurementM j is per-
formed with the probability p j . Physically it can correspond to �uctua-
tions in the measuring device. In the simplest case when both � and U are
�nite, the set M(U ) is a compact convex subset of a �nite-dimensional
space and Theorem 1.2.2 implies that any element of M(U ) can be re-
garded as a randomized measurement. Moreover, in the general case,
under some natural assumptions about � and U it is shown that any con-
ditional probability distribution {Mω(du)} can be presented as a “contin-
ual convex combination” of the deterministic measurements

Mω(B) =
∫

Mα
ω(B)Q(dα), B ∈ A (U ).

This relation describes the randomized measurement, Q(dα) being the
randomizing distribution of the set of deterministic measurements. Thus,
having in mind randomized procedures, we can include in the class of
measurements M of the classical statistical model all the af�ne maps
P → μP from P(�) to P(U ) de�ned by conditional probability distri-
butions {Mω(du)} according to (1.4.14) (for any �xed U ).

At the end of this section we discuss the description of the tests in the
classical statistical model. Any test is uniquely de�ned by the function
X (ω) = Mω(1), ω ∈ �, which satis�es

0 ≤ X (ω) ≤ 1. (1.4.20)

The probability of the outcome 1 with respect to the classical state P is
equal to ∫

X (ω)P(dω).

For a deterministic test, either X (ω) = 0 or X (ω) = 1, so that X (ω) =
1�(1)

(ω). Thus the deterministic test de�nes a dichotomy of the phase
space: � = �(1) ∪�(0), �(1) ∩�(0) = ∅.

If the space � is �nite, � = �n , then the set of the classical tests
(1.4.20) in the n-dimensional unit hypercube On , with the vertices as the
extreme points (see Section 1.2). The probability of the outcome 1 for
the test {Xω} with respect to the state {Pω} is equal to �ω Pω Xω.
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1.5. Reduction of statistical model.
Classical model with a restricted class
of measurements

The assumption of complete observability underlying the classical statis-
tical model is an idealization which is valid in so far as its consequences
agree with the experience. An important fact we are going to discuss is
that weakening in some way the requirement of complete observability
will in general lead to statistical models which may be radically different
from the classical one.

Consider a statistical model (S,M). The states S1, S2 ∈ S, S1 �= S2

are called indiscernible if for any measurement S → μS from the class
M the resulting probability distributions coincide: μS1 ≡ μS2 . There is
no way to distinguish between such states S1, S2, basing on the results
of the measurements, and from the point of view of an observer of the
results, the states S1 and S2 are identical.

If we join the indiscernible states into the equivalence classes [S] and
put μ[S] = μS , we obtain a new statistical model (S′, M′), with S′ being
the set of all equivalence classes [S] and M′ the collection of af�ne maps
of the form [S] → μ[S]. This process will be called here reduction3 of the
initial model (S,M). The new model (S′, M′) is separated in the sense
that there are no indiscernible elements in S′. It was a separated model
which was the ultimate product of the statistical analysis of experiments
in Section 1.1.

Statistically the reduced model (S′, M′) is completely equivalent to
the initial one. However, as we shall see, the new set of states S′ can
be very different from S. Moreover, by choosing an appropriate class of
measurements M we can reduce the classical simplex S = P(�) practi-
cally to the arbitrary convex set S′. In particular, uniqueness of decom-
position into the extreme points need not hold for S′, as the following
elementary example shows.

Consider the “object” with the phase space consisting of four points,
� = �4, so that a state is a vector [P1, . . . , P4] of the three-dimensional
simplex P4. For the measurements we shall take tests, i.e., the vectors
[X1, . . . , X4] from the four-dimensional hypercube O4, satisfying in ad-
dition the equality

X1 + X2 = X3 + X4. (1.5.21)

3 This reduction of the state space of a statistical model (in the Supplement it is called “compression”)
should not be mixed with the notorious “quantum state reduction”, i. e. the state change due to a
measurement.
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The states P = {Pj } and Q = {Q j } are indiscernible by these tests if and
only if (1.5.21) implies ∑

j

Pj X j =
∑

j

Q j X j ,

i.e., the vector [Pj − Q j ] is orthogonal to the hyperplane (1.5.21) in
the four-dimensional space. The orthogonal complement to (1.5.21) is
spanned by the vector e = [1, 1,−1,−1], therefore the states P = {Pj }
and Q = {Q j } are indiscernible if and only if for some real t

P1 = Q1 + t, P3 = Q3 − t,
P2 = Q2 + t, P4 = Q4 − t.

(1.5.22)

If P4 is represented as a tetrahedron in the three-dimensional space (Fig-
ure 1.3), then Pj are the barocentric coordinates of a point in the tetrahe-
dron, and the equations (1.5.22) de�ne the set of parallel lines; a class of
the indiscernible states will be presented by the segment of a line lying in
the tetrahedron. The reduced set of states can therefore be identi�ed with
the projection of the tetrahedron along the direction of the lines onto an
appropriate plane (Figure 1.3), which is a convex quadrangle.

1 2

43

S

S1

Figure 1.3.

This example shows that narrowing the set of possible tests may result in
“sticking together” the states and originating new forms of convex states
in which uniqueness of the decomposition into extreme points need not
hold. Without entering into detail here, we mention that the restrictions
on measurements may re�ect the presence of some empirical symmetry
relations. In the elementary example given above this role is played by
the relation (1.5.21); in quantum mechanics, where the spatially-temporal
description is essential, the symmetries with respect to the kinematical
and dynamic transformations appear to be primarily important.
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We now consider a description of the quantum-mechanical object – the
spin− 1

2 particle. As we shall see later, the states of this object in quantum
theory are described by the 2 × 2-matrices of the form (1.2.11). The set
of this matrices S2 can be represented by the unit ball in the real three-
dimensional space, as shown in Section 1.2. It is instructive to investigate
what kind of a restriction can reduce a classical simplex to this convex
set which in a sense is contrary to the simplex: the whole of its boundary
consists of extreme points and the decomposition into them is highly non-
unique.

We shall consider a schematic description of the Stern-Gerlach exper-
iment which had led to the discovery of spin. The beam of silver atoms
passes between the poles of the magnet creating the inhomogeneous mag-
netic �eldB, increasing in the vertical direction. The particles which have
passed through the �eld are collected by the plate E. From the distribu-
tion of the substance accumulated by the plate E one can infer about the
deviation of the particles under the action of the magnetic �eld B (Fig-
ure 1.4).

While the classical theory predicted continuous scattering in all direction,
i.e., a more or less smooth distribution of the substance accumulated by
the plate, the experiment showed the sharp splitting of the incoming beam
into the two symmetrical beams in the vertical direction. By using other
substances it was also possible to obtain splittings of the beam into more
than two components. The spin of the particle is the integer of half-
integral j such that 2 j + 1 is the number of the splitting components, so
that in the Stern-Gerlach experiment j = 1

2 .
Placing instead of the plate E a screen with an aperture one obtains a

�lter which allows to pass, say, the upper outgoing beam and absorbs the
lower one. The �ltered beam, which is called polarized in the direction B,
does not split under the repeated action of the inhomogeneous �eld with
the same direction B and thus it passes without absorption through the
same �lter which was used for its preparation. However it does split and
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therefore is partially absorbed by the second �lter with the other direction
of the �eld B. It is completely absorbed if the direction of B in the second
�lter is opposite to that of the initial one.

A schematic classical description of the �lter is furnished by a unit vec-
tor θ = [θ1, θ2, θ3], giving the orientation of the �lter, i.e., the direction of
the inhomogeneous magnetic �eld B. All other parameters remain �xed
and therefore can be omitted from the description. Consider the follow-
ing experiment: the beam of a given intensity is �rst prepared by passing
through the �rst �lter θin and then passing through the second �lter θout

after which the intensity of the outgoing beam is measured. The ratio of
this intensity to the half of the incoming intensity then gives the proba-
bility for a particle prepared by the �lter θin to pass through the �lter θout

(It is supposed that the incoming beam is “chaotic”, so that exactly one
half of the incoming beam passes through the �rst �lter.).

The “phase space” � is the set of all possible directions θin, i.e., the
unit sphere S2 in the real three-dimensional space. A classical state is
a probability distribution P(dθ) on S2, describing “partially polarized”
beam. The pure states δθ corresponds to completely polarized beams and
the uniform distribution to the “chaotic”, unpolarized beam.

Denote by Pr{θout|θin} the probability that the particle prepared by the
�lter θin passes through the �lter θout (Figure 1.5). From the rotational
symmetry it is natural to expect that this probability depends on the di-
rections θin, θout only through the angle ϕ between them, or through their
inner product t = θin · θout. Thus Pr{θout|θin} = F(t), −1 ≤ t ≤ 1.

θin

θout

Figure 1.5.

If the directions θin and θout coincide, then Pr{θout|θin} = 1; if they are
opposite, then Pr{θout|θin} = 0. Hence F(1) = 1, F(0) = 0. For any
direction θout the deviated particles go either in the direction θout or in the
opposite direction, whence F(t) + F(−t) = 1, or 1

2 − F(t) = − 1
2 +

F(−t). Thus 1
2 − F(t) is an odd function of t ∈ [−1, 1] taking values

∓ 1
2 at the ends of the interval.
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The simplest continuous function satisfying these conditions is the linear
function F(t) = 1

2(1+ t), i.e.,

Pr{θout|θin} = 1+ θout · θin

2
= cos2 ϕ

2
. (1.5.23)

We shall see later that it is this expression for the probability Pr{θout|θin}
which is given by the quantum theory. This distribution is in agreement
with experimental data.

If we agree that the result of the measurement is 1 if the particle, pre-
pared by the �rst �lter passes through the second �lter θout, and 0 if it is
absorbed, then this measurement can be considered as the test, de�ned
by the function

X (θ) = 1+ θout · θ
2

; θ ∈ S2. (1.5.24)

The probability of the result 1 when the prepared state is P(dθ) is equal
to

μP(1) =
∫

1+ θout · θ
2

P(dθ). (1.5.25)

The set of the measurements M for this model consists of all tests, de�ned
by the functions of the form (1.5.24) with θout ∈ S2.

The two classical states P1, P2 are indiscernible if μP1(1) = μP2(1) for
all tests from M, i.e.,∫

θ0 · θP1(dθ) =
∫

θ0 · θP2(dθ), θ0 ∈ S2,

or
∫

θP1(dθ) = ∫
θP2(dθ). Thus the reduced states are in one-to-one

af�ne correspondence

[P] ↔
∫

θP(dθ) =
[∫

θ1 P(dθ),

∫
θ2 P(dθ),

∫
θ3 P(dθ)

]
with the three-dimensional vectors, representable in the form θP =∫

θP(dθ), where P(dθ) is a probability distribution of the sphere S2,
i.e., with the points of the unit ball. From (1.5.25)

μ[P](1) = 1+ θout · θP

2
. (1.5.26)
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Now considering the components of vectors in the unit ball as Stokes
parameters we can introduce the matrices

S = 1

2

⎡⎢⎣ 1+
∫

θ3 P(dθ)

∫
(θ1 − iθ2)P(dθ)∫

(θ1 + iθ2)P(dθ) 1−
∫

θ3 P(dθ)

⎤⎥⎦ ,

X = 1

2

[
1+ θ ′3 θ ′1 − iθ ′2

θ ′1 + iθ ′2 1− θ ′3

]
,

where [θ ′1, θ ′2, θ ′3] = θout. Then the reduced states are represented by ma-
trices S from S2, the tests by matrices X , and by (1.5.26) the probability
of the result 1 for the test X and the state S is equal to

μS(1) = Tr SX =
∫

X (θ)P(dθ).

In fact, we have constructed a “hidden variables” model for the spin − 1
2

particles. We shall return to this point in Section 1.7 after the introduction
of the general quantum statistical model.

1.6. The statistical model of quantum mechanics

The main subject of our study will be the statistical model, in which states
are described by complex Hermitean matrices S, satisfying

S ≥ 0, Tr S = 1,

and called density matrices. The set of all such matrices Sn is a con-
vex set, its extreme points being the one-dimensional projections Sψ =
|ψ)(ψ |, (ψ |ψ) = 1 (see Section 1.2). The corresponding states are called
pure. In what follows we shall be mainly interested in the in�nite-dimen-
sional analog of the density matrix, but in this chapter we shall content
ourselves with the �nite-dimensional case to demonstrate the main fea-
tures without entering into technical dif�culties associated with in�nite
dimensionality.

Next we must describe the class of quantum-theoretic measurements.
According to the general de�nition any measurement with values in the
space U is described by an af�ne map of the set of states Sn into the
set of probability distributions on U . We shall assume that U is �nite.
In this case the structure of any such map is described by the following
proposition.
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Proposition 1.6.1. The relation

μS(u) = Tr SMu, u ∈ U, (1.6.27)

establishes the one-to-one correspondence between af�ne maps S → μS

of the set of density matrices Sn into the set of probability distributions
on U and the resolutions of identity {Mu; u ∈ U }, i.e., the collections of
Hermitean matrices {Mu}, satisfying

Mu ≥ 0,
∑
u∈U

Mu = I. (1.6.28)

Lemma 1.6.2. Any af�ne functional μ(S) in Sn has the form μ(S) =
Tr SM, where M is a Hermitean matrix.

Proof. The set of all density matrices spans the real linear space L of
all Hermitean matrices. This means that any Hermitean matrix can be
represented as T = ∑

j t j S j , where t j are real numbers, Sj are density
matrices (this follows, e.g., from the spectral representation of T ). Extend
μ from Sn to L putting

μ(T ) =
∑

j

t jμ(Sj ).

We must show that the sum in the right-hand side of this equality does
not depend on the particular representation of T as a linear combination
of density matrices, i.e., that the equality

∑
j t j S j =∑

k t ′k S′k implies∑
j

t jμ(Sj ) =
∑

k

t ′kμ(S′k).

Transferring if necessary some terms into another side, we can make t j ≥
0 and t ′k ≥ 0, at least one of t j and t ′k being strictly positive. Taking the
trace of the resulting equality we get

∑
j t j = ∑

k t ′k = τ > 0, since
Tr Sj = Tr S′k = 1. Introduce the probability distributions p j = t j/τ ,
p′k = t ′k/t . It is suf�cient to show that

∑
j p j S j = ∑

k p′k S′k implies∑
j p jμ(Sj ) = ∑

k p′kμ(S′k), and this is a straightforward consequence
of the af�nity of μ on Sn .

By construction μ(T ) is a real linear function on L. Any such function
of T = [t jk] evidently has the form

μ(T ) =
∑

j,k

t jkm jk = Tr T M,

where M = [m jk] with m jk = mkj , so that M = M∗.



25 Probabilistic and Statistical Aspects of Quantum Theory

Lemma 1.6.3. Let X be a Hermitean matrix; then X ≥ 0 if and only if
Tr SX ≥ 0 for all S ∈ Sn.

Proof. X ≥ 0 means that (ψ |Xψ) ≥ 0 for all (unit) vectors ψ , i.e.,
Tr Sψ X ≥ 0. By Proposition 1.2.3 it is equivalent to Tr SX ≥ 0, S ∈
Sn .

Proof of Proposition 1.6.1. By Lemma 1.6.2 μS(u) = Tr SMu , where
{Mu} is a collection of Hermitean matrices. Positivity of μS(u) and
Lemma 1.6.3 imply that Mu ≥ 0. Finally

∑
u μS(u) = Tr S(

∑
u Mu) = 1

for all S ∈ Sn whence
∑

u Mu = I . Indeed, Tr S(
∑

u Mu − I ) = 0 for
all S ∈ Sn so that by Lemma 1.6.3

∑
u Mu− I ≥ 0 and

∑
u Mu− I ≤ 0.

This proves the proposition.

The collection {Mu} is formally analogous to the conditional probabil-
ity distribution {Mω(u)} which served to describe measurements in the
classical statistical model. We have noticed the particular role played
there by the deterministic measurements. The analog of the correspond-
ing condition (1.4.15) in the quantum case has the form

M2
u = Mu, u ∈ U. (1.6.29)

This means that Mu is a projection matrix. We now show that (1.6.29)
implies

Mu Mv = 0, u �= v, (1.6.30)

i.e., Mu , Mv are mutually orthogonal projections.

Lemma 1.6.4. Let A, B, C be Hermitean matrices satisfying 0 ≤ B ≤ C
and C A = 0. Then B A = 0.

Proof. C A= 0 implies A∗C A= 0, whence 0= A∗C A≥ A∗B A≥ 0 and
A∗B A = 0. This can be written as (

√
B A)∗(

√
B A) = 0 where

√
B

is the positive square root of B ≥ 0. It follows that
√

B A = 0 and
B A = 0.

To derive (1.6.30) we write (1.6.29) as (I − Mu)Mu = 0 and observe
that by (1.6.28) 0 ≤ Mv ≤ I − Mu when u �= v. It remains to apply
Lemma 1.6.4 with A = Mu , B = Mv, C = I − Mu .

Thus, the formal quantum analog of classical deterministic measure-
ments is the orthogonal resolutions of identity {Eu}:

Eu Ev = δuv Eu,
∑

u

Eu = I.
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The corresponding quantum measurements are called simple. Whereas a
classical deterministic measurement de�nes a decomposition of the phase
space � into mutually disjoint sets �(u), a simple quantum measurement
furnishes a decomposition of the unitary vector space H into the direct
sum of mutually orthogonal subspaces H(u) = Eu(H ). Let the out-
comes of a simple measurement {Ex} be real numbers {x}, then one can
introduce the Hermitean operator

X =
∑

x

x Ex . (1.6.31)

This relation establishes one-to-one correspondence between simple
measurements and Hermitean operators in H similar to the correspon-
dence (1.4.18) between deterministic measurements and random vari-
ables in probability theory. Hermitean operators therefore play in quan-
tum theory the same role as random variables in probability theory; they
are also called (quantum) observables. The mean value of the measure-
ment {Ex} is expressed directly in terms of the corresponding observable,∑

x

xμS(x) =
∑

x

x Tr SEx = Tr SX.

In the standard presentations of quantum theory observables are the
primary objects. Equivalently, one can start with the simple measure-
ments described by orthogonal resolutions of identity. We have seen,
however, that the consistent probabilistic treatment of an experimental
situation leads to general resolutions of identity. Elimination of non-
orthogonal resolutions and restriction to simple measurements should be
based on some additional argument; a simple formal analogy with the
probability theory is, apparently, not enough for this purpose. In the prob-
ability theory the exceptional role of the deterministic measurements is
substantiated by the property expressed in Proposition 1.4.1, according to
which the statistics of any measurement can be obtained from statistics of
deterministic measurements by an appropriate randomization. However,
it is important to realize that this fact has no analogy in quantum theory.

Denote by M(U ) the convex set of all resolutions of identity {Mu; u∈
U }.
Proposition 1.6.5. Any orthogonal resolution of identity {Eu; u ∈ U } is
an extreme point of M(U ). The converse is true only if U = {0, 1}; if U
has more than two elements, then there exists an extreme point of M(U ),
which is not an orthogonal resolution of identity.

Proof. The �rst statement is proved in the same way as its classical ana-
log in Proposition 1.4.1. If U = {0, 1}, then any resolution of identity has
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the form {I−X, X}where X satis�es 0 ≤ X ≤ I . As we know from Sec-
tion 1.2 this last convex set has projections as its extreme points, therefore
if the measurement {I − X, X} is an extreme point, then I − X and X are
both projections. This proves the �rst part of the second statement.

Let now U = {1, . . . m}, m > 2. Consider �rst the case n ≡ dim H =
2. One may imagine that the density matrices S ∈ S2 describe the states
of the spin- 1

2 particle (see Section 1.5). Then the state prepared by the
�lter with the direction θ = [θ1, θ2, θ3] is described by the density matrix
(1.2.11). In particular, the density matrix

Sα = 1

2

[
1 e−iα

eiα 1

]
= |ψα)(ψα|;

|ψα) = 1√
2

[
e−iα/2

eiα/2

]
,

(1.6.32)

describes the state prepared by the �lter with the direction θin = [cos α,
sin α, 0]. Consider m directions, corresponding to αu = 2πu/m; u =
1, . . . , m, which divide the coordinate plane θ1, θ2, into m equal angles
(see Figure 1.6), so that

m∑
u=1

exp(iαu) = 0. (1.6.33)

Then the collection

Mu = 2

m
|ψu)(ψu| (ψu = ψαu ), (1.6.34)

(d = 3)

α1

α2

α3

Figure 1.6.
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constitutes a non-orthogonal resolution of identity. Indeed, Mu ≥ 0 and
via (1.6.33), (1.6.32),

∑
u Mu = I .

We shall show that for m = 3 the resolution of identity (1.6.34) is an
extreme point. Indeed, let

Mu = p0 M0
u + p1 M1

u ; p0, p1 > 0,

then M0
u ≤ p−1

0 Mu , M1
u ≤ p−1

1 Mu , whence M j
u = λ

j
u|ψu)(ψu|. The

condition
∑

u M j
u = I together with (1.6.32) leads to equations

3∑
u=1

λ j
u exp

(
i
2πu

3

)
= 0,

3∑
u=1

λ j
u = 2.

The �rst means that λ
j
u are the lengths of the sides of a regular triangle,

so that λ
j
u are all equal to each other; the second equality then implies

λ
j
u = 2

3 . Thus M0
u = M1

u = Mu and {Mu} is an extreme point.
Now let n ≥ 2 and m ≥ 3. Decompose the n-dimensional space Hn

into the direct orthogonal sum of a two-dimensional subspace H2 and
its orthogonal complement Hn−2 and denote by E the projection onto
Hn−2. Let {Mu; u = 1, 2, 3} be the resolution of identity in H2 given by
(1.6.34). Then the collection

M̃1 = M1 ⊕ 0, M̃2 = M2 ⊕ 0, M̃3 = M3 ⊕ E;
M̃u = 0, u ≥ 3,

forms a non-orthogonal resolution of identity in H, which is easily seen
to be an extreme point of M(U ).

Though the construction given above may seem somewhat arti�cial,
these arguments do show that unlike classical statistics, in quantum the-
ory there are no serious reasons to con�ne oneself to the orthogonal res-
olutions of identity. In fact, we shall see later that there is a variety of
physical quantities, measurements of which are naturally described by
the non-orthogonal resolutions of identity.

Based on the foregoing discussion we mean by the statistical model,
of quantum mechanics the model in which states are described by the
density matrices S, and measurements by all af�ne maps S → μS , trans-
forming density matrices into probability distributions.

It is worthwhile to emphasize here again that statistical model is a
mathematical object. The fact that an array of experimental data is satis-
factorily described by the given model (S,M) means that there is an in-
jection of the properly treated data into the model, i.e., to any real prepa-
ration procedure one can ascribe a theoretical state S ∈ S and to any real
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measurement a theoretical measurement M ∈ M. Here we have given
an abstract description of the quantum statistical model; in the following
chapters the rules for correspondence between physical and mathemati-
cal objects will be elaborated. These rules (based mainly on the concepts
of symmetry and covariance) allow to connect at least some theoretical
states and measurements to their physical prototypes.

However in general there is no guarantee that any quantum-theoretic
state or measurement can be physically implemented, even in principle.
Possibility of such implementation requires special study in each par-
ticular case. The relevance and the usefulness of quantum theory are
ultimately con�rmed by the continuing success of its application.

Nevertheless the theoretical concepts of states and measurements re-
�ect the essential features of real physical experiments; any general re-
sult obtained in the framework of quantum theory wittingly applies to
“implementable” states and measurements in so far as quantum theory
gives a correct model for reality. On the other hand, there results could
not be obtained without the reference to the general concepts of state and
measurement.

1.7. On the problem of “hidden variables”

The discussion in Section 1.5 shows that the reduction of a classical
model can lead to convex sets of states, drastically different from the
classical simplex. Here we shall demonstrate that in fact any convex set
of states can be generated by the reduction of a classical model with an
appropriately restricted class of measurements4. For simplicity we as-
sume that the convex set is �nite-dimensional, and consider only �nitely-
valued measurements, but the statement and the proof can be generalized
to much more general cases.

Theorem 1.7.1. Any separated statistical model (S,M), with S being a
compact subset of a �nite-dimensional space, M being a class of �nitely-
valued measurements, is a reduction of a classical model with a restricted
class of measurements.

Proof. We shall take for the phase space of the classical system the set
� of all extreme points of S, which will be denoted by the letter ω. If
S → μS is a U -valued measurement from M, then the function μω(u);

4 For a more detailed discussion see the Supplement.
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ω ∈ �, u ∈ U , is a conditional probability distribution5 on U . Thus
to any measurement M : S → μS there corresponds the conditional
probability distribution M̃ = {μω(u)}, the correspondence being one-to-
one: Theorem 1.2.2 implies that the af�ne functionals coincident on the
extreme points coincide on the whole convex set.

Consider the classical model with the set of states P(�) and the mea-
surements described by the conditional probability distributions of the
form M̃ = {μω(u)}, corresponding to all measurements M of the ini-
tial model. Denote by M̃ the class of such classical measurements. We
shall show that the reduction of the model (P(�), M̃) gives the model
(S,M).

For any probability distribution P on � the vector-valued integral∫
�

ωP(dω) (1.7.35)

can be de�ned in a �nite-dimensional space, containing the set S. If
P =∑

j p jδω j , then ∫
�

ωP(dω) =
∑

j

p jω j , (1.7.36)

so that
∫

ωP(dω) represents a point in S, i.e., a state. In general the
integral (1.7.35) is the limit of �nite convex combinations of the form
(1.7.36), and since S is compact, the limit also belongs to S. The in-
tegral (1.7.35) is a continuous analog of a convex combination of pure
states. Since any af�ne functional on a �nite-dimensional space is evi-
dently continuous then

μS(u) =
∫

�

μω(u)P(dω)

for any measurement S → μS if S = ∫
ωP(dω).

Let now P1 and P2 be two indiscernible classical states on �, so that∫
�

μω(u)P1(dω) =
∫

�

μω(u)P2(dω), u ∈ U,

5 The requirement of measurability with respect to ω is satis�ed since μω(u), ω ∈ �, is the restriction
of the af�ne functional μS(u), S ∈ S to the set of extreme points �, which is known to be a Borel
set for any compact convex set S.
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for all M̃ = {μω(u)}. By the foregoing argument this is equivalent to

μS1(u) = μS2(u), u ∈ U

where Sj =
∫

ωPj (dω); j = 1, 2. Since the initial statistical model is
separated, it follows that

S1 ≡
∫

�

ωP1(dω) =
∫

�

ωP2(dω) ≡ S2.

Thus, to a class of indiscernible classical states [P] there corresponds the
state

∫
ωP(dω) ∈ S where P is arbitrary representative of the class [P].

This correspondence is apparently one-to-one; moreover, it maps af�nely
the set of all classes [P] onto the set S, since for any extreme point ω

of S the class, containing the pure classical state δω corresponds to the
state ω. Indeed since by Theorem 1.2.2 any S ∈ S can be represented
as S = ∑

p jω j , then S = [∑ p jδω j ]. Thus the reduction of the model
(P(�), M̃) results in the set of states S and the class of measurements
M, so that ∫

�

μω(u)P(dω) = μ[P](u), (1.7.37)

for any state S = [P] and measurement S → μS .

The case of quantum statistical model is the most important and we
consider the construction of Theorem 1.7.1 for this case in some detail.
Let �̂n be the unit sphere in the complex n-dimensional space of column-
vectors |ψ),

�̂n = {ψ : (ψ |ψ) = 1}.
The two vectors ψ , ψ ′ correspond to one and the same pure state Sψ =
|ψ)(ψ | if ψ = λψ ′ with |λ| = 1. Denote by �n the set of the corre-
sponding equivalence classes in �̂n . The elements of �n are in one-to-
one correspondence with the pure states in Sn . The set �n will play the
role of the phase space for the classical model we are going to describe.

Let P(dψ) be a probability distribution on �n . Then the integral

SP =
∫

�n

|ψ)(ψ |P(dψ)

de�nes a density matrix SP ∈ Sn . In fact, any density matrix is repre-
sentable in such form. By (1.2.8), S = ∑

λ j Sψ j , so that S = SP with
P = ∑

λ jδψ j . Thus P → SP is an af�ne map of the simplex P(�n)

onto the set of quantum states Sn .
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Let S → μS(u), u ∈ U , be a quantum measurement. By Proposi-
tion 1.6.1 μS(u) = Tr SMu , u ∈ U , where {Mu} is a resolution of identity.
Consider the conditional probability distribution on U :

Mψ(u) ≡ μSψ
(u) = (ψ |Muψ). (1.7.38)

Then for any measurement∫
�n

Mψ(u)P(dψ) = μSP (u), u ∈ U.

Thus the quantum statistical model is the reduction of the classical model
with the phase space �n and the restricted class of measurements de-
scribed by transition probabilities of the form (1.7.38) with {Mu} being
an arbitrary resolution of identity.

Note that in the case n = 2 this construction gives the classical model
for the spin- 1

2 particle discussed in Section 1.5. In this case there exists a
classical description for preparation of pure states in terms of the Stern-
Gerlach �lter. If θ = [θ1, θ2, θ3] ∈ S2 is the direction of a �lter, then
the corresponding density matrix (1.2.11) is a one-dimensional projection
Sψ = |ψ)(ψ |, i.e., a pure state. Therefore we can identify the set of pure
states �2 with the unit sphere S2 and any probability distribution on �2

can be interpreted as a classical state in the experiment, described on the
Figure 1.5.

Whether one can give such “physical” interpretation for the formal
construction of the Theorem 1.7.1 in cases other than spin-1

2 particle de-
pends on the possibility of interpreting an element ψ ∈ �n as “input
data” for some classical preparation procedure. Without going into detail
we mention that for particle with spin j > 1

2 there are state vectors ψ

which can hardly be interpreted in terms only of polarizing �lter as it was
done in Section 1.5 for j = 1

2 .
Nevertheless, Theorem 1.7.1 says that at least on the formal level any

statistical model is equivalent to a “hidden variables” model. The role
of the “variables” plays ω running over the “phase space” �, the at-
tribute “hidden” re�ecting the incomplete observability which is due to
the restrictions onto classical measurements. This statement, of course,
does not mean the possibility of reduction of quantum mechanics to a
form of Newtonian classical mechanics but it sounds contradictory to
the widely known thesis of the impossibility of “hidden variables” de-
scription in quantum theory. This thesis suggested by von Neumann also
concerns only the statistical description of the results of quantum mea-
surements. The original, rather controversial von Neumann’s argument
was later substantially modi�ed and brought up to the statute of fairly
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nontrivial theorems. In fact there is no contradiction at all. To prove
a theorem one has �rst to formalize the notion of a hidden variables
theory. The construction of Theorem 1.7.1 does not ful�l some addi-
tional requirements imposed in the existing “no-go” theorems (see the
Supplement).

Roughly speaking, one usually requires that quantum observables
should be necessarily described by classical random variables in a hidden
variables theory, with preservation of some functional relations of logical
nature. However the statistical analysis of experimental situations carried
out in this chapter suggests that the tenet of observable can be replaced by
the broader and more �exible concept of measurement. The conclusion
of Theorem 1.7.1 is just a natural consequence of this approach, while
the more severe logical restrictions on hidden variables theories seem to
lack statistical motivation.

Anyhow, the introduction of the classical description is achieved in
Theorem 1.7.1 at the price of drastic increase in the dimensionality of the
set of states (from 3 to∞ in the spin- 1

2 case). Apparently it does not sim-
plify the description of the object, introducing a lot of details which are
not re�ected in the measurement statistics. A concise and adequate de-
scription of all relevant statistical information is provided by the quantum
theory.

The considerations of this chapter are of general nature and apply in
fact to any situation in which the validity of the “statistical postulate” is
ensured. So far quantum theory provides a unique example of a non-
classical statistical model for a class of real objects and phenomena. Are
there other �elds in which nonclassical models may appear to be relevant?
In this connection we wish to recall Bohr’s observations concerning the
features or “quantum-mechanical” behavior in the animate nature. Even
without making any speculative hypothesis about possible mechanisms of
these phenomena there is a general reason for expecting “non-classical”
relationships in the animate world. As Bohr himself pointed out any ob-
servation of a living organism is limited in so far as it inevitably presumes
an in�uence upon the organism. In quantum physics the “elementary” of
the observed object is the property which does not allow to neglect the
in�uence of measuring devices. The fundamental property of the living
organism is its “wholeness” which excludes arbitrary intervention into
the course of biological processes. The complete “classical” analysis of
an organism is incompatible with maintaining it alive. A simple junction
of admissible factors may occur to be inadmissible; the order of in�u-
ences may also be important. This shows that a statistical model of a
biological object, if it ever will be created, may well be a non-classical
one, containing in its very structure the information about fundamental



34 Alexander Holevo

limitations on observability of the object. Anyhow the classical model,
which comes back to the Newtonian mechanics, is by no means a unique
possibility in the statistical modelling of non-mechanical objects.

1.8. Comments

Sections 1.1-1.3. In view of the immensity of the literature on basic
quantum physics we have to con�ne ourselves to the few sources which
were used in writing this book. These are Dirac [30], Fock [37], Man-
delstam [95], Bohm [17], Blokhintzev [13]. The last two books follow
the historical development of quantum theory. For this see also the ju-
bilee collections [86, 111] where different contemporary viewpoints are
presented. A thorough discussion of an experimental situation with the
emphasis on its two-staged character is given by Fock [38].

The description of a measurement in quantum mechanics can be real-
ized with a different degree of detail. There are several levels of descrip-
tion, to each of them corresponds a de�nite mathematical object in the
Hilbert space H of the system. Let us stress that the term “measurement”
as it is used in the present book corresponds to the least detailed descrip-
tion which amounts only to the statistics of outcomes of a measurement
procedure for arbitrarily prepared state. Theorem 2.1 of Chapter 2 shows
that this is equivalent to de�ning some resolution of the identity in H.
In the modern literature this level of description is usually denoted as
“generalized observable” or just “observable” (in the last case orthogonal
resolutions of the identity correspond to “standard” or “sharp” observ-
ables). The most detailed description requires a dynamical picture of the
measurement process, i. e. interaction of the system with a measuring de-
vice with subsequent observation of the outcomes, which, in particular,
completely determines the statistics of outcomes. The reverse correspon-
dence: “statistics – measurement process” is highly nonunique. Mea-
surement of one and the same observable can be realized via different
processes. For more detail see [178, Section 4.1.3]

The concept of statistical model originates largely from the recent at-
tempts of foundation of quantum mechanics using the theory of partially-
ordered vector spaces (see Ludwig [90], Hartkämper [49], Neumann
[104]; Davies and Lewis [29], Davies [26–28]), though in fact it can be
traced back to the earlier axiomatics of Mackey [92]. However, Mackey
imposes further axioms aimed to get the “quantum-logic” description,
excluding the appearance of non-orthogonal resolutions of identity. The
de�nition of measurement as an af�ne map of states into the probabil-
ity distributions was suggested by the author [56]. From the viewpoint
adopted here the “state-space” approach to the foundations of quantum
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theory (Gudder [46], Krause [82]) is the most relevant. The connection
between this approach and the theory of partially-ordered vector spaces
is clearly displayed in the paper of Ozawa [106].

Theorem 1.2.2 is due to Minkowski; it was extended to the case of a
compact convex set in a general topological linear space by Krein and
Milman. For the theory of convexity see Rockafellar [121] (�nite-dimen-
sional case), Valentine [134] and Alfsen [4].

For the spectral representation of Hermitean matrices and other topics
from linear algebra see, e.g., Halmos [47] and Maltsev [94].

Section 1.4. Since the publication of the basic treatise of Kolmogorov
[78], a large amount of textbooks on probability theory have appeared.
An accessible introduction to this theory, suf�cient for our purposes, is
given by Gnedenko [43]. In the classical mathematical statistics one
speaks of “strategies” and “decision rules” instead of “measurements”.
Randomized strategies were introduced by Wald [140], the founder of
statistical decision theory (see also Ferguson [34] and Chentzov [22]).

Section 1.5. An elementary quantum-mechanical treatment of the ex-
periments with Stern-Gerlach �lters is given in Feynmann’s lectures [36].
Other hidden-variables models for the spin-1

2 particle were given by
Kochen and Specker [77] and Bell [11].

Section 1.6. Fundamentals of the operator formalism of quantum me-
chanics were given in the classical treatise of Dirac [30]. The ideas of
Dirac’s approach underlie, in particular, the elementary course of Feyn-
mann [35], based substantially on �nite-dimensional spin models. It
seems that Feynmann was one of the �rst to call the probabilists’ attention
to the interesting problems of connections between quantum mechanics
and probability [35].

The �rst mathematically rigorous treatment of foundations of quantum
mechanics, based on the theory of Hilbert space, was given by von Neu-
mann [138]. The notion of density operator was developed in his book,
motivated by initial �ndings of Landau and Weyl. Also the Dirac’s con-
cept of observable was made precise by using self-adjoint operators and
the corresponding spectral theorem. This book was the starting point for
several attempts to axiomatize quantum theory, i.e., to construct a set of
simple, physically meaningful postulates which would imply the Hilbert
space formalism. Ideally, one would like something as ef�cient as Kol-
mogorov’s axioms in probability theory. Mackey [92] formulated a set of
axioms which leads to “propositional calculus” generalizing σ -�elds of
probability theory. The problem is then to characterize mathematically
the “quantum logic” of projections in a Hilbert space. This problem was
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discussed by several authors and was solved by Piron [110]. A detailed
exposition of the quantum-logic approach to the foundations of quan-
tum theory is given in the book of Jauch [71], the mathematical aspects
of this approach are considered by Varadarajan [135]. Unfortunately, in
contrast to Boolean σ -�elds which constitute an inseparable part of the
classical probability calculus, the quantum logics are rather of indepen-
dent mathematical interest, the physical theory dealing directly with op-
erators, not “propositions”. Moreover, only Mackey’s axioms 1-6 which
are very close to the de�nition of a statistical model have an undeniable
probabilistic meaning. Other axioms are introduced so as to get the con-
ventional concept of observable. Being good for probability theory, this
restricts the concept of quantum measurement to the orthogonal resolu-
tions of identity.

The general resolutions of identity (they are also called positive oper-
ator-valued measures in distinction to projection-valued measures which
are orthogonal resolutions of identity) where introduced in quantum mea-
surement theory by Davies and Lewis [29] and Holevo [57]. Davies and
Lewis came to this generalization by considering repeated quantum mea-
surements. The book of Davies [27] contains an account of the corre-
sponding results in which the state changes due to a measurement play
an essential role. The exposition in Section 1.6 follows Holevo [56–60].
This statistical theory of measurement can be generalized to include both
classical and quantum theories as extreme particular cases [64].

Section 1.7. An informal discussion of “no-go” results can be found
in the survey by Wightman [143] (see also the Supplement). A detailed
comparative physical consideration of various hidden-variables theories
is contained in the book of Belinfante [10].

The relations between the atomic physics and the biological sciences
are discussed in Bohr’s philosophical papers [18] (see also Bohm [17]).
The celebrated “complementarity principle” sheds light onto the nature of
limitations in quantum-mechanical experiments, which however deserves
further investigations.



Chapter 2
Mathematics of quantum theory

2.1. Operators in a Hilbert space

In the previous chapter the quantum statistical model was introduced in
its simplest �nite-dimensional form. However to describe many interest-
ing and important properties of quantum-mechanical objects the in�nite-
dimensional generalization of this model is needed, where matrices are
replaced by operators in a Hilbert space.

A Hilbert space is a complex linear space H of vectors ϕ, ψ, . . . with
the inner product (ϕ|ψ), which is complete with respect to the metric
‖ϕ − ψ‖ = √(ϕ − ψ |ϕ − ψ). We shall deal only with separable spaces
which have at most countable complete orthonormal system of vectors,
i.e., a orthonormal basis. For some reasons to be explained later it will
be convenient to take (ϕ|ψ) linear in ψ and conjugate-linear1 in ϕ. A
typical example is the space L 2(a, b) of the Lebesgue square-integrable
functions on (a, b) with the inner product

(ϕ|ψ) =
∫ b

a
ϕ(x)ψ(x) dx .

A map ϕ → ϕ̂ of a Hilbert space H into a Hilbert space Ĥ is called
isometric, if

(ϕ|ψ) = (ϕ̂|ψ̂); ϕ, ψ ∈ H.

Since it implies ‖ϕ‖ ≡ ‖ϕ̂‖, any isometric map is one-to-one. If there
is a linear isometric map of H onto Ĥ, then H and Ĥ are called
isomorphic. For example, L 2(0, 2π) is isomorphic to the space l2 of
square-summable sequences c = [ck] with the inner product (c|c′) =

1 Conjugate-linearity means that coef�cients in a linear combination of vectors transform into their
complex conjugates.
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�∞
k=−∞c̄kc′k . The corresponding map is given by

ck = 1√
2π

∫ 2π

0
f (x)eikx dx; k = 0,±1, . . . ,

the isometric nature of it is ensured by the Parseval relation. From the
point of view of general theory difference between isomorphic Hilbert
spaces is inessential, since any proposition about one of the isomorphic
spaces can be in principle translated into the terms of another. However in
fact the translation may be quite complicated; moreover, an appropriate
choice of a concrete Hilbert space may substantially simplify description
and study of a mathematical object. For example to study the operator of
derivation in L 2(0, 2π) it may be convenient to pass to the space l2 of
the Fourier coef�cients etc.

Our choice of the inner product, linear in the second argument, is re-
lated to the useful Dirac’s notation for the vectors in a Hilbert space. This
notation is widely used by physicists and we shall also adopt it.

By the fundamental Riesz-Frechet lemma any linear continuous (with
respect to the norm ‖ · ‖) functional on H has the form ϕ → (ψ |ϕ)

where ψ is a vector from H (and vice versa). Therefore the vector ψ

can be considered not only as an element of H, but also as an element
of the dual space H ∗ of linear continuous functional on H. Denote ψ ,
treated as an element of H, by |ψ), and treated as an element of H ∗, by
(ψ |. Then |ψ) → (ψ | is an one-to-one conjugate-linear map of H onto
H ∗. In the �nite-dimensional case |ψ) corresponds to the column-vector⎡⎢⎣ψ1

ψ2
...

⎤⎥⎦
and (ψ | to the row-vector [ψ1, ψ2, . . .]. As in the �nite-dimensional case
the symbol for inner product (ϕ|ψ) is the graphic junction of the symbols
(ϕ| and |ψ).

The main convenience of the Dirac’s notation is the possibility of sim-
ple representation of operators in terms of an “outer product”. Recall that
in the �nite-dimensional case the product of a column by a row of the
same dimensionality gives a square matrix. We shall denote by |ϕ1)(ϕ2|
the operator which maps vector |ψ) into the vector |ϕ1)(ϕ2|ψ). Thus the
action of |ϕ1)(ϕ2| on |ψ) is described by a simple graphic junction of the
symbols. Operators of this form have rank 1, i.e., they map onto a one-
dimensional subspace. In particular, the (orthogonal) projection onto the
unit vector ψ can be written as

Sψ = |ψ)(ψ |. (2.1.1)
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Finite linear combinations (or sums, which is the same) of rank-1 op-
erators

T =
∑

j

|ϕ j )(ψ j | (2.1.2)

describe operators of �nite rank. Any �nite collection of the �nite-rank
operators can be considered as acting in a �nite-dimensional sub-
space H̃ ⊂ H, therefore algebraic operations for such a collection re-
duce to those for matrices. The product of two �nite-rank operators is
given by[∑

j

|ϕ j )(ψ j |
]
·
[∑

k

|ϕ̂k)(ψ̂k |
]
=
∑

j,k

|ϕ j )(ψ j |ϕ̂k)(ψ̂k |. (2.1.3)

In the space L 2(a, b) the �nite-rank operators are the integral operators
with degenerated kernels; the operator (2.1.2) is described by the kernel

T (x ′, x) =
∑

j

ϕ j (x ′)ψ j (x). (2.1.4)

Clearly, this class does not include very many operators of interest.
One of the dif�culties with the in�nite-dimensional case is that an opera-
tor may be not de�ned (and not de�neable) on the whole H. An example
is the operator of derivation in L 2(a, b). The most important is the class
of bounded operators, which are naturally de�ned on the whole H. The
operator X is called bounded if

‖Xψ‖ ≤ c‖ψ‖
for some constant c and all ψ ∈ H. Geometrically this means that X
transforms norm bounded sets of H into the norm bounded sets. The
least value of c, equal to

‖X‖ = sup
ψ �=0

‖Xψ‖
‖ψ‖

is called the norm of the operator X .
To any bounded X there corresponds the sesquilinear (linear in ψ ,

conjugate-linear in ϕ) form on H :

X (ϕ, ψ) = (ϕ|Xψ).

This relation establishes one-to-one correspondence between bounded
operators in H and sesquilinear forms, continuous in ϕ, ψ ∈ H. Con-
sider the form X∗(ϕ, ψ) = (ψ |Xϕ). The corresponding operator is
called adjoint to X and is denoted by X∗, so that

(X∗ϕ|ψ) = (ϕ|Xψ); ϕ, ψ ∈ H. (2.1.5)
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The conjugation X → X∗ is a conjugate-linear map, satisfying

(XY )∗ = Y ∗X∗

and preserving the norm

‖X∗‖ = ‖X‖. (2.1.6)

Moreover,
X∗∗ ≡ (X∗)∗ = X.

A reader can check that for the �nite-rank operators[∑
j

|ϕ j )(ψ j |
]∗
=
∑

j

|ψ j )(ϕ j |.

Let U be an isometric operator in H, i.e.,

(Uϕ|Uψ) = (ϕ|ψ); ϕ, ψ ∈ H.

Then U is bounded; by (2.1.5) the last relation can be written as

U ∗U = I,

where I is the unit operator, mapping |ψ) into |ψ), ψ ∈ H. An isometric
operator mapping H onto H is called unitary. The condition of unitarity
is

U ∗U = UU ∗ = I.

A bounded operator X is called Hermitean if the corresponding form
is Hermitean:

(Xϕ|ψ) ≡ (ψ |Xϕ) = (ϕ|Xψ); ϕ, ψ ∈ H (2.1.7)

i.e., X∗ = X . There is a polarization identity which linearly expresses
a Hermitean form through its “diagonal” values for ϕ = ψ ; therefore a
Hermitean operator X is uniquely de�ned by the values (ψ |Xψ), ψ ∈ H.
Thus to establish a linear relation between Hermitean forms or operators
it is suf�cient to check it only for the “diagonal” values, a device we
shall often use. The norm of a Hermitean operator can be shown to be
expressed through the “diagonal” values by

‖X‖ = sup
ψ �=0

|(ψ |Xψ)|
‖ψ‖2

. (2.1.8)
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In �nite-dimensional case this implies that the norm of a Hermitean oper-
ator is equal to the maximal absolute value of its eigenvalues. In general,
[−‖X‖, ‖X‖] is the smallest closed interval, containing the spectrum of
X , though the notion of spectrum in the in�nite-dimensional case is more
complicated (cf. Section 2.3).

Let H1 be a closed subspace of H, then the decomposition into the
direct orthogonal sum holds

H = H1 ⊕H2,

where H2 = {ϕ : (ϕ|ψ) = 0, ψ ∈ H1} is the orthogonal complement to
H1. For any ψ = ψ1 ⊕ ψ2 put Pψ = ψ1. Then

P2 = P, P∗ = P.

Conversely, any operator in H satisfying these two conditions is the
operator of (orthogonal) projection onto the subspace H1 = {ψ : Pψ =
ψ}. We shall call such operators simply projections.

Let H1 be a �nite-dimensional subspace; then the projection of ψ onto
H1 can be written as

|ψ1) =
∑

j

|e j )(e j |ψ), (2.1.9)

where {e j } is any complete orthonormal system in H1. Therefore the
projection onto H1 is the �nite-rank operator

P =
∑

j

|e j )(e j |. (2.1.10)

This relation holds also for in�nite-dimensional closed subspace, how-
ever the question of convergences arises since an in�nite sum is involved.
The norm convergence is apparently not relevant here since ‖|e j )(e j |‖ =
1. Two other types of convergence are useful. A sequence of opera-
tors {Xn} converges to X strongly if limn→∞ ‖Xnψ − Xψ‖ = 0 for any
ψ ∈ H; it converges weakly if limn→∞(ϕ|Xnψ) = (ϕ|Xψ) for any ϕ,
ψ ∈ H. For Hermitean operators this is equivalent to

lim
n→∞(ψ |Xnψ) = (ψ |Xψ), ψ ∈ H.

The connections between the types of convergence are the following

norm
convergence

⇒ strong
convergence

⇒ weak
convergence.
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Let {e j } be an orthonormal system in H and H1 the closed subspace
spanned by {e j }. Since for any ψ the vector series (2.1.9) converges in H,
the operator series (2.1.10) converges strongly and de�nes the projection
operator onto H1. In particular, for any orthonormal basis in H

I =
∑

j

|e j )(e j |. (2.1.11)

This is only an abbreviated form of the vector relation

|ψ) =
∑

j

|e j )(e j |ψ), (2.1.12)

expressing the completeness of the system {e j }.
Using (2.1.11), we have for any bounded operator X

X =
[∑

j

|e j )(e j |
]

X

[∑
k

|ek)(ek |
]

=
∑

j

∑
k

|e j )(e j |Xek)(ek |,
(2.1.13)

where the series are strongly convergent. The numbers (e j |Xek) are
called matrix elements of the operator X ; this relation gives the decom-
position of a bounded operator into the linear combination of operators of
rank 1 – the matrix units {|e j )(ek |}. If X is a �nite-rank operator, then for
an appropriate system {e j } it has only a �nite number of nonzero matrix
elements.

A Hermitean operator X is called positive (denoted X ≥ 0) if

(ψ |Xψ) ≥ 0; ψ ∈ H.

Clearly X∗X ≥ 0 and X X∗ ≥ 0 for any X ; X ≥ Y will mean that
X − Y ≥ 0.

The trace of a positive operator X is de�ned as

Tr X =
∑

j

(e j |Xe j ), (2.1.14)

where {e j } is an orthonormal basis in H. The series consists of non-
negative numbers; as in the �nite-dimensional case, the sum does not
depend on the choice of {e j }, however it can be in�nite. Thus, for X ≥ 0,
0 ≤ Tr X ≤ +∞.

If X is not positive, then the de�nition of trace by (2.1.14) may turn
out to be incorrect; however as we shall see in Section 1.7 there are trace-
class operators for which the trace is unambiguously de�ned by (2.1.14).
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Meanwhile let us notice that this relation gives the correct de�nition for
�nite-rank operators. Indeed for any {e j }∑

j

(e j |ϕ)(ψ |e j ) = (ψ |ϕ), (2.1.15)

whence
Tr |ϕ)(ψ | = (ψ |ϕ), (2.1.16)

so that

Tr

[∑
j

|ϕ j )(ψ j |
]
=
∑

j

(ψ j |ϕ j ). (2.1.17)

By (2.1.14), we obtain the relation for the trace of an integral operator
in L 2(a, b) with degenerated kernel T (x, y):

Tr T =
∫ b

a
T (x, x) dx .

Equalities (2.1.17), (2.1.13) imply the important relations

Tr T ∗ = Tr T , Tr T X = Tr X T, (2.1.18)

which will be generalized to a wider class of operators in Section 2.7.

2.2. Quantum states and measurements

A density operator is a positive Hermitean operator with unit trace:

S ≥ 0, Tr S = 1. (2.2.19)

An example of a density operator is a one-dimensional projection (2.1.1).
As we shall see in Section 2.7 any density operator has the spectral rep-
resentation

S =
∑

j

s j |ψ j )(ψ j | (2.2.20)

analogous to (1.2.10) for the �nite-dimensional case. The series is con-
vergent in the operator norm. From (2.2.19) it follows that the eigenval-
ues {s j } of a density operator satisfy

s j ≥ 0,
∑

j

s j = 1.

Denote by S(H ) the set of all density operators in H ; if {Sj } ⊂
S(H ) and {p j } is a �nite probability distribution then the operator
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∑
p j S j satis�es (2.2.19). Thus S(H ) is a convex set. The density op-

erators represent states in quantum mechanics. It follows from (2.2.20)
that Proposition 1.2.3 can be generalized to the in�nite-dimensional case,
so that the extreme points of S(H ) are the one-dimensional projections.
The corresponding states are called pure.

Now we pass to quantum measurements. Let U be a measurable space
of outcomes of the measurement, e.g., a �nite set or a domain in Rn with
the Borel σ -�eld. Following Section 1.6 we call a quantum measurement
with values in U (U -measurement, for short) an af�ne map S → μS(du)

of the convex set of quantum states S(H ) into the set of all probability
distributions on U . μS(du) is interpreted as the probability distribution of
the results of the measurement in the state S. A generalization of Propo-
sition 1.6.1 will describe quantum measurements in terms of resolution
of identity; by this we mean a collection M = {M(B); B ∈ A(U )} of
Hermitean operators in H, satisfying

(1) M(φ) = 0, M(U ) = I ;
(2) M(B) ≥ 0, B ∈ A (U );
(3) for any at most countable decomposition {B j } of B∈A (U ), M(B)=∑

j M(B j ) holds where the series is weakly convergent.

These conditions formally remind the de�nition of probability measure,
and resolutions of identity are sometimes called probability operator-
valued measures. If U is a �nite set and {Mu; u ∈ U } is a collection of
Hermitean operators satisfying (1.6.28), i.e., a �nite resolution of identity
in the sense of Section 1.6, then the relation

M(B) =
∑
u∈B

Mu, B ⊂ U,

de�nes a operator-valued measure on the Boolean �eld of all subsets of
U , i.e., a resolution of identity in the sense of the de�nition given above,
and conversely.

A particular but very important class constitute orthogonal resolutions
of identity, satisfying the additional requirement

M(B1)M(B2) = 0 if B1 ∩ B2 = ∅.
As in Section 1.6 one can show that this is equivalent to

M(B)2 = M(B), B ∈ A (U ),

that is the measure {M(B)} is projection-valued.
Now we formulate the generalization of Proposition 1.6.1, which will be
proved in Section 2.7.
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Theorem 2.2.1. Let S → μS be a U-measurement. Then there exists a
unique resolution of identity M = {M(B); B ∈ A (U )} in H such that
for any state S

μS(B) = Tr SM(B), B ∈ A (U ). (2.2.21)

Conversely, any resolution of identity de�nes an U-measurement by
(2.2.21).

The relation (2.2.21) will sometimes be symbolically written in the
form

μS(du) = Tr SM(du).

Notice that the right-hand side of (2.2.21) is the trace of a generally non-
positive (and non-Hermitean) operator, which, however, is a trace-class
as it will be shown in Section 2.7. Meanwhile we remark that for a pure
state

μSψ
(B) = (ψ |M(B)ψ),

since Tr |ψ)(ψ |X = (ψ |Xψ) by (2.1.16).
Measurements described by orthogonal resolutions of identity will be

called simple. Any simple measurement is an extreme point of the convex
set M(U ) of all U -measurements, the proof being quite the same as in
Proposition 1.6.5; the converse, of course, is not true.

The most important case is when the results of a measurement are real
numbers. Then the simple measurements are described in terms of ob-
servables, i.e., Hermitean operators in H, which are quantum analogs of
classical random variables. The following section is devoted to a more
detailed study of this connection.

2.3. Spectral representation of bounded operators

In a �nite-dimensional case any Hermitean operator X admits the spectral
representation

X =
∑

k

λk Ek, (2.3.22)

where Ek are the projections onto the invariant subspaces corresponding
to the distinct eigenvalues λk . The collection {Ek} forms an orthogonal
resolution of identity, so that∑

k

Ek = I ; E j Ek = δ jk E j . (2.3.23)

An in�nite-dimensional analog of (2.3.22) holds for compact Hermitean
operators (see Section 2.7). However there are plenty of noncompact
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Hermitean operators. In fact, a Hermitean operator need not have an
eigenvector, as the following example shows.

Consider the operator Q of multiplication by the argument x in the
space L 2(a, b) where (a, b) is a bounded interval. The equation

xψ(x) = ξψ(x) (2.3.24)

has the continual collection of formal solutions

ψξ(x) ∼ δ(x − ξ); a < ξ < b, (2.3.25)

which however do not correspond to any nonzero vectors in H.
Nevertheless any Hermitean operator in a Hilbert space has a spectral

representation in which a continuous analog of the sum (2.3.22) emerges.
To explain the transition from sum to integral introduce the orthogonal
resolution of identity on the real line R, by putting

E(B) =
∑

k:λk∈B

Ek; B ∈ A (R).

(A (R) is the Borel σ -�eld of R). Formally

E(dλ) =
[∑

k

δ(λ− λk)Ek

]
dλ. (2.3.26)

Then the relation (2.3.22) can be rewritten as

X =
∫

λE(dλ). (2.3.27)

Now let E(dλ) be an arbitrary orthogonal resolution of identity on R.
In this section we suppose that it is concentrated on a bounded subset �

of R, so that E(�) = I . Then for any ψ ∈ H the probability distribution
μψ(dλ) = Tr Sψ E(dλ) = (ψ |E(dλ)ψ) will be concentrated on � and
therefore the integral∫

λ(ψ |E(dλ)ψ) =
∫

λμψ(dλ) (2.3.28)

converges. This integral de�nes a continuous Hermitean form on H, to
which corresponds the Hermitean operator X such that

(ψ |Xψ) =
∫

λ(ψ |E(dλ)ψ), ψ ∈ H. (2.3.29)

Thus (2.3.27) holds where the integral is weakly convergent in the sense
that (2.3.29) holds. (In fact, one can show strong convergence).
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Theorem 2.3.1 (Spectral theorem for bounded operators). The rela-
tion (2.3.27) establishes one-to-one correspondence between the Her-
mitean operators X and the orthogonal resolutions of identity in H

concentrated on bounded subsets of R.

The resolution of identity E(dλ) is also called the spectral measure of
the operator X .

Return for a while to operators, corresponding to �nite resolutions of
identity (2.3.26). The relations (2.3.23) imply that for any polynomial
p(λ)

p(X) =
∑

k

p(λk)Ek =
∫

p(λ)E(dλ).

In the general case, approximating integrals by sums, one shows that for
any Hermitean X

p(X) =
∫

p(λ)E(dλ).

Therefore one can de�ne a Hermitean operator f (X) where f is a
bounded measurable function, by the relation

(ψ | f (X)ψ) =
∫

f (λ)(ψ |E(dλ)ψ); ψ ∈ H.

In particular, putting f (x) = 1B(x) we get the expression for the spectral
projections of X

E(B) = 1B(X); B ∈ A (R).

The equality

X2 =
∫

λ2 E(dλ)

implies the important relation

‖Xψ‖2 =
∫

λ2(ψ |E(dλ)ψ).

The correspondence f → f (X) preserves algebraic relations and the
ordering: f (x) ≥ 0, x ∈ R implies f (X) ≥ 0. Thus putting

|X | =
∫
|λ|E(dλ), (2.3.30)

we have ±X ≤ |X | since ±x ≤ |x | for all x ∈ R.
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As an example consider the operator Q in L 2(a, b). We have

Q =
∫ b

a
ξ E(dξ), (2.3.31)

where E(B) = 1B(x). Indeed (2.3.31) means that

(ψ |Qψ) =
∫ b

a
ξμψ(dξ), (2.3.32)

where

μψ(B) = (ψ |E(B)ψ)

=
∫ b

a
1B(x)|ψ(x)|2dx =

∫
B
|ψ(x)|2 dx,

so that μψ(dξ) = |ψ(ξ)|2dξ and (2.3.31) is obvious. Thus the collection
of projections {1B(·); B ∈ A ((a, b))} is the spectral measure of the
operator of multiplication by x .

The operator Q is a typical example of an operator with “continuous
spectrum”. We have seen that it has no eigenvectors in L 2(a, b) though
the equation (2.3.24) has the intuitively clear formal solutions (2.3.25).
In this connection let us discuss Dirac’s notation pertaining to operators
with continuous spectrum. Following Dirac, denote by |ξ) the formal
eigenfunction (2.3.25). The family {|ξ); ξ ∈ (a, b)} is “orthonormal” in
the sense that

(ξ ′|ξ) = δ(ξ − ξ ′),

and satis�es the formal completeness relation∫ b

a
|ξ)(ξ |dξ = I. (2.3.33)

In fact (2.3.33) is just an abbreviated form of the equality∫ b

a
(ψ |ξ)(ξ |ψ)dξ = (ψ |ψ), ψ ∈ H,

which is meaningful if the symbol (ξ |ψ) is interpreted as

(ξ |ψ) =
∫ b

a
δ(x − ξ)ψ(x)dx = ψ(ξ). (2.3.34)

Thus the family {|ξ)} is a formal continual analog of complete or-
thonormal system, the relation (2.3.33) being the analog of the com-
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pleteness relation (2.3.32). The spectral representation of Q in Dirac’s
notation has the form

Q =
∫ b

a
ξ |ξ)(ξ |dξ (2.3.35)

and looks like a direct continual analog of the spectral representation
(1.2.7) for discrete spectrum. In fact (2.3.35) means that

(ψ |Qψ) =
∫ b

a
ξ(ψ |ξ)(ξ |ψ)dξ, ψ ∈ H,

and this is equivalent to (2.3.32). Thus we obtain the relation between
(2.3.31) and (2.3.35) by putting

E(dξ) = |ξ)(ξ |dξ.

Needless to say that this relation cannot be taken literally – the projection-
valued measure E(dξ) is not differentiable (has no operator density) with
respect to Lebesgue measure dξ . However the scalar measures μψ(dξ) =
(ψ |E(dξ)ψ) are differentiable with respect to dξ with

μψ(dξ) = |ψ(ξ)|2dξ = (ψ |ξ)(ξ |ψ)dξ. (2.3.36)

The intuitive maintenance of Dirac’s formalism gives certain advan-
tages in presentation of quantum theory. It can be properly used in the
framework within which it is equivalent to the spectral representation.

2.4. Spectral representation of unbounded operators

For quantum mechanics it is important to have a generalization of the
spectral representation for unbounded operators. Let X be an operator
de�ned on its domain D(X) ⊆ H ; for unbounded operators domain
considerations are essential since, with an immaterial exception, such an
operator cannot be de�ned on the whole H. The operator is called sym-
metric if the corresponding sesquilinear form is Hermitean on D (X),
i.e.,

(Xϕ|ψ) = (ϕ|Xψ); ϕ,ψ ∈ D (X). (2.4.37)

The most important is the concept of a self-adjoint operator. Let the
domain of X be dense in H ; denote by D (X∗) the subspace of vectors ϕ,
for which ψ → (ϕ|Xψ) is a continuous functional of ψ . By the Riesz-
Frechet lemma, (ϕ|Xψ) = (ϕ∗|ψ), where ϕ∗ is de�ned uniquely since ψ

runs over the dense set D (X). Denote by X∗ the operator ϕ → ϕ∗ with
the domain D (X∗). It is called the adjoint to X . Thus

(X∗ϕ|ψ) = (ϕ|Xψ); ψ ∈ D (X), ϕ ∈ D(X∗).
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In particular, X is symmetric if X ⊆ X∗, i.e., D (X) ⊆ D(X∗) and
Xψ = X∗ψ on D (X).

A densely de�ned operator X is called self-adjoint if X = X∗, i.e.,
D (X∗) = D (X) and (2.4.37) holds.

Sometimes symmetric operator X can be extended to a self-adjoint
operator. If this can be done uniquely, then X is called essentially self-
adjoint. A symmetric operator which does not have self-adjoint exten-
sions is called maximal.

The following important examples illustrate these notions. Let Q be
the (unbounded) operator of multiplication by x in L 2(R) with

D (Q) =
{
ψ :

∫ ∞

−∞
x2|ψ(x)|2dx <∞

}
.

For any ϕ, ψ ∈ D (Q) one has

(ϕ|Qψ) =
∫

xϕ(x)ψ(x)dx = (Qϕ|ψ),

so that Q is symmetric. In fact it is self-adjoint; to prove it consider
ϕ ∈ D (Q∗). Then

∫
xϕψ dx is a continuous functional of ψ and by

the Riesz-Frechet lemma
∫

xϕψ dx = ∫
hψ dx where h ∈ L 2(R). It

follows that h = xϕ and
∫ |xϕ(x)|2dx < ∞, so that D (Q∗) = D (Q).

The same operator considered on a smaller dense subspace D ⊂ D (Q)

is easily seen to be essentially self-adjoint.
Next consider the operator P = i−1 d/dx with the domain

D (P) =
{

ψ :
∫ ∞

−∞

∣∣∣∣ d

dx
ψ(x)

∣∣∣∣2 dx <∞
}

.

The Fourier transform

ψ̃(η) = 1√
2π

∫ ∞

−∞
e−iηxψ(x) dx

maps isometrically L 2(R) onto L 2(R), the operator P is transformed
into the operator of multiplication by η with D (P) mapped onto the
subspace {ψ̃ : ∫ |ηψ̂(η)|2 dη < ∞}. From what is proved above for the
multiplication operator it follows that P is also self-adjoint.

The next is an example of a symmetric operator which has no self-
adjoint extension. Let H = L 2(0,∞) and consider the operator P+ =
i−1d/dx with the domain

D (P+) =
{

ψ : ψ(0) = 0,

∫ ∞

0

∣∣∣∣ d

dx
ψ(x)

∣∣∣∣2 dx <∞
}

. (2.4.38)
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Then

(ϕ|P+ψ) = i−1
∫ ∞

0
ϕ(x)

d

dx
ψ(x) dx

= i−1ϕ(0)ψ(0)− i−1
∫ ∞

0

d

dx
ϕ(x)ψ(x) dx

= (P∗+ϕ|ψ), ϕ ∈ D (P∗+),

(2.4.39)

where P∗+ = i−1d/dx with

D (P∗+) =
{

ψ :
∫ ∞

0

∣∣∣∣ d

dx
ψ(x)

∣∣∣∣2 dx <∞
}

.

Then P+ ⊂ P∗+, P+ �= P∗+, since D (P+) �= D (P∗+). The operator P+ is
symmetric but P∗+ is not since if we try to compute (P∗+)∗ by the formula
analogous to (2.4.39), the term i−1ϕ(0)ψ(0) will be nonzero, yielding

(ϕ|P∗+ψ) �= (P∗+ϕ|ψ); ϕ, ψ ∈ D (P∗+).

One can show that P+ is maximal.
Now we pass to the spectral representation of self-adjoint operators.

Consider the integral of the type (2.3.27), where E(dλ) is an arbitrary
orthogonal resolution of identity on R. One cannot expect that the inte-
gral in the right-hand side of (2.3.29) will converge for all ψ ∈ H, but it
certainly converges if ψ belongs to the subspace

D =
{
ψ :

∫ ∞

−∞
λ2(ψ |E(dλ)ψ) <∞

}
. (2.4.40)

One shows that D is dense in H and the Hermitean form (2.3.28) de�nes
a self-adjoint operator X with D (X) = D, so that

(ψ |Xψ) =
∫

λ(ψ |E(dλ)ψ), ψ ∈ D, (2.4.41)

‖Xψ‖2 =
∫

λ2(ψ |E(dλ)ψ), ψ ∈ D. (2.4.42)

The last equality explains why it must be D (X) = D.

Theorem 2.4.1 (Spectral theorem for self-adjoint operators). The re-
lations (2.4.41) and (2.4.40) establish the one-to-one correspondence be-
tween self-adjoint operators and orthogonal resolutions of identity (spec-
tral measures) in H.
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Consider the self-adjoint operator Q of multiplication by x in L 2(R).
The same argument as in Section 2.3 shows that its spectral measure is

E(B) = 1B(x); B ∈ A (R), (2.4.43)

or, formally E(dξ) = |ξ)(ξ |dξ , where |ξ), ξ ∈ R are the formal eigen-
vectors of the operator of multiplication, so that the Dirac’s notation

Q =
∫ ∞

−∞
ξ |ξ)(ξ |dξ.

Consider now the operator P = i−1 d/dx in L 2(R) with the domain
(2.4.39). This operator has the family of formal eigenfunctions

1√
2π

eiηx ; η ∈ R,

satisfying the conditions of orthonormality and completeness of the type
(2.3.33). Denoting the formal eigenvectors by |η); η ∈ R one may expect
the spectral representation

P =
∫ ∞

−∞
η|η)(η|dη.

To give these considerations precise meaning, consider the Fourier trans-
form ψ̃(η) = (η|ψ). In Dirac’s notations the Fourier transform corre-
sponds to the change of the “orthonormal basis” {|ξ)} to {|η)},

(η|ψ) =
∫

(η|ξ)(ξ |ψ) dξ

since

(η|ξ) = 1√
2π

∫
e−iηxδ(ξ − x) dx = 1√

2π
e−iηξ .

Since the operator P is transformed into the operator of multiplication by
η, the spectral measure F(dη) of the operator P is obtained by inverse
Fourier transform of the spectral measure (2.4.43), namely

(ψ |F(B)ψ) = 1

2π

∫ ∞

−∞

∫ ∞

−∞

∫
B

ψ(x)ψ(x ′)eiη(x−x ′) dη dx dx ′. (2.4.44)

Formally this can be written as

(ψ |F(dη)ψ) =
[

1

2π

∫ ∞

−∞

∫ ∞

−∞
ψ(x)ψ(x ′)eiη(x−x ′)dx dx ′

]
dη

= (ψ |η)(η|ψ) dη,

(2.4.45)
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or F(dη) = |η)(η|dη, which is consistent with the formal spectral repre-
sentation of P .

All that was said in Section 2.3 concerning the functions of Hermitean
operators applies with obvious modi�cations to self-adjoint operators.
Consider in particular the function

eiθ X =
∫

eiθλE(dλ). (2.4.46)

One checks that the family {Vθ = exp iθ X ; θ ∈ R} is a group of unitary
operators (unitary group, for short), i.e.,

Vθ1+θ2 = Vθ1 Vθ2, V ∗
θ = V−θ , V0 = I. (2.4.47)

One can also show that the family {Vθ } is strongly continuous in θ , i.e.,
for any ψ ∈ H the relation

ψθ = eiθ Xψ; θ ∈ R, (2.4.48)

de�nes a continuous curve in the Hilbert space H. Moreover, this curve is
differentiable in H if and only if ψ ∈ D (X); in this case {ψθ } ⊂ D (X)

and
dψθ

dθ
= iXψθ. (2.4.49)

The converse statement is known as Stone’s theorem.

Theorem 2.4.2. Any strongly (or weakly) continuous unitary group has
the form Vθ = exp iθ X where X is a uniquely de�ned self-adjoint opera-
tor.

The operator X is called the in�nitesimal generator of the group {Vθ }.
Let us calculate {exp iθ P} in L 2(R). Using (2.4.46) and (2.4.45) we
obtain

(ψ |eiθ Pψ) = 1

2π

∫∫∫
ψ(x)ψ(x ′)eiθηeiη(x−x ′)dη dx dx ′

= (ψ |ψθ),

where ψθ(x) = ψ(x + θ). Thus

eiθ Pψ(x) = ψ(x + θ), θ ∈ R.

Now we pass to the spectral representation of symmetric but not nec-
essarily self-adjoint operators.
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Theorem 2.4.3. For a densely de�ned symmetric operator X there exists
in general non-unique resolution of identity (spectral measure) M(dλ),
such that

D(x) ⊆
{
ψ :

∫
λ2(ψ |M(dλ)ψ) <∞

}
;

(ψ |Xψ) =
∫

λ(ψ |M(dλ)ψ), ψ ∈ D(X);

‖Xψ‖2 =
∫

λ2(ψ |M(dλ)ψ), ψ ∈ D(X).

(2.4.50)

If X is maximal, and ⊆ is changed to = in the �rst relation, then M(dλ)

is unique.

As an example we consider the operator P+ in L 2(0,∞), and show
that its (unique) spectral measure can be represented as

M(dη) = |η+)(η+|dη, (2.4.51)

where |η+) are the formal eigenfunctions (1/
√

2π)eiηx , η ∈ R, which
differ from |η) only in that the argument x varies from 0 to ∞. The
family {|η+)} obviously satis�es the formal completeness relation∫ ∞

−∞
|η+)(η+|dη = I, (2.4.52)

but is not “orthogonal”, since

(η′+|η+) = 1

2π

∫ ∞

0
ei(η−η′)x dx

= 1

2
δ(η − η′)+ 1

2π i
(η − η′)−1.

(2.4.53)

Therefore (2.4.51) is not an orthogonal resolution of identity. Such fami-
lies as {|η+)} are sometimes called “overcomplete”.

The correct version of (2.4.51) can be given by the relation of the type
(2.4.44):

(ψ |M(B)ψ)= 1

2π

∫ ∞

0

∫ ∞

0

∫
B
ψ(x)ψ(x ′)eiη(x−x ′)dxdx ′dη. (2.4.54)

Extending the functions de�ned on (0,∞) by making them equal to
zero on (−∞, 0) we get a natural embedding of L 2(0,∞) into L 2(R).
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M(dη) is the restriction onto L 2(0,∞) of the spectral measure F(dη) of
the operator P , i.e.,

(ψ |M(dη)ψ) = (ψ̃ |F(dη)ψ̃),

where ψ̃ is the extension of ψ ∈ L 2(0,∞). If ψ ∈ D (P+), then
ψ̃ ∈ D (P) with P̃+ψ = Pψ̃ . Therefore

(ψ |P+ψ) = (ψ̃ |Pψ̃) =
∫

η(ψ̃ |F(dη)ψ̃) =
∫

η(ψ |M(dη)ψ),

‖P+ψ‖2 = ‖Pψ̃‖2 =
∫

η2(ψ̃ |F(dη)ψ̃) =
∫

η2(ψ |M(dη)ψ),

which shows that M(dη) satis�es the relations (2.4.50), characterizing
the spectral measure of the operator P+.

2.5. On realization of measurement

We have just seen that a nonorthogonal resolution of identity {M(B)}
in H may arise as a restriction of an orthogonal resolution of identity
{E(B)} in a larger Hilbert space H̃ :

M(B) = Ẽ E(B)Ẽ; B ∈ A (U ), (2.5.55)

where Ẽ is the projection from H̃ onto H. It is easy to see that restrict-
ing in this way any resolution of identity in H̃ one gets a resolution of
identity in H. The converse statement was proved by Naimark.

Theorem 2.5.1. Any resolution of identity {M(B)} in H can be dilated
to an orthogonal resolution of identity in a larger Hilbert space H̃, so
that (2.5.55) will hold.

We shall give the proof of this theorem only for �nite resolutions of
identity since it is technically simple and clearly indicates the idea of the
proof in the general case.

Let L be a linear space; by a pre-inner product we mean a form
(ϕ|ψ); ϕ, ψ ∈ L, possessing all properties of inner product except that
(ϕ|ϕ) may be equal to zero for a nonzero ϕ ∈ L. There is a standard
procedure of constructing a Hilbert space given a pre-inner product on
L : let N = {ψ : (ψ |ψ) = 0}, then (·|·) uniquely de�nes the inner
product on the factor space L /N. The completion of L /N with respect
to this inner product is a Hilbert space which we call completion of L

with respect to the pre-inner product (·|·).



56 Alexander Holevo

Proof of Theorem 2.5.1. LetM = {Mu; u = 1, . . . , m} be a �nite resolu-
tion of identity in H. Let L be the direct sum of m copies of H, so that
the vectors of L are Ψ = [ψu; u = 1, . . . , m]. Then the form

(Ψ|Ψ ′)∼ =
m∑

u=1

(ψu|Muψ
′
u); Ψ,Ψ ′ ∈ L,

is clearly a pre-inner product, positivity following from the fact that Mu ≥
0. Let H̃ be the completion of L with respect to (·|·)∼. The map
ϕ → Ψϕ = [ϕ; u = 1, . . . , m] from H into H̃ is isometric since

(Ψϕ|Ψ ′
ϕ)
∼ =

m∑
u=1

(ϕ|Muϕ
′) = (ϕ|ϕ′); ϕ, ϕ′ ∈ H.

Identifying the image of H under this map with H, we can assume that
H ⊂ H̃. De�ne the operator Ev in L which cuts all the components
of Ψ = [ψu] to zero except for ψv which remains unchanged. Then it is
easy to see that operators {Ev; v = 1, . . . , m} give rise to an orthogonal
resolution of identity in H̃. For ϕ ∈ H

(ϕ|Muϕ) = (Ψϕ|EuΨϕ)
∼

which means that {Eu} is a required dilation of {Mu}. The theorem is
proved.

Basing on Theorem 2.5.1 we shall show that any quantum measure-
ment M in a sense reduces to a simple measurement E over a composite
quantum system which consists of the initial object plus some additional
quantum “degrees of freedom”. For this we shall need the notion of tensor
product of Hilbert spaces, which serves for the description of composite
quantum systems.

Let H1, H2 be Hilbert spaces with the inner products (·|·)1 and (·|·)2.
Consider the linear space L of formal linear combinations of the ele-
ments ψ1 × ψ2 ∈ H1 ×H2. Introduce in L the pre-inner product (·|·)
putting

(ϕ1 × ϕ2|ψ1 × ψ2) = (ϕ1|ψ1)1(ϕ2|ψ2)2 (2.5.56)

and extending it to L by linearity. The completion of L with respect
to this pre-inner product is called the tensor product of Hilbert space H1,
H2 and is denoted by H1⊗H2. The vector of H1⊗H2 corresponding to
the equivalence class of the vector ψ1 ×ψ2 ∈ L is denoted by ψ1 ⊗ψ2.
From (2.5.56) it follows that

(ϕ1 ⊗ ϕ2|ψ1 ⊗ ψ2) = (ϕ1|ψ1)1(ϕ2|ψ2)2. (2.5.57)
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A good illustration of this abstract de�nition is given by the following
example. Let H1 = L 2(Rn) be the space of the square-integrable func-
tions ψ1(x), x ∈ Rn , and H2 = L 2(Rm) that of the functions ψ2(y),
y ∈ Rm . The L /N consists of the �nite sums of the form2

ψ(x, y) =
∑

j

ψ
j

1 (x)ψ
j

2 (y)

with

(ϕ|ψ) =
∫∫

ϕ(x, y)ψ(x, y)dnx dm y,

and H1⊗H2 = L 2(Rn+m) is the space of all square-integrable functions
ϕ(x, y); x ∈ Rn , y ∈ Rm with the same inner product. The vector ψ1⊗ψ2

corresponds to the function ψ1(x)ψ2(y).
Turning back to the general case, consider two orthonormal bases –

{e j
1} in H1 and {ek

2} in H2. Then {e j
1 ⊗ ek

2} forms an orthonormal basis
in H1 ⊗ H2. It follows easily that any vector ϕ ∈ H1 ⊗ H2 can be
represented in the form ϕ = ∑

k ψk
1 ⊗ ek

2 where ψk
1 are some uniquely

de�ned vectors of H1, such that
∑

k ‖ψk
1‖2

1 < ∞. The subspaces H1 ⊗
ek

2 ⊂ H1 ⊗H2 consisting of vectors of the form ψ1 ⊕ ek
2, ψ1 ∈ H1, are

mutually orthogonal. Thus we have a decomposition of H1⊗H2 into the
direct orthogonal sum of subspaces, each of which is isomorphic to H1:

H1 ⊗H2 =
∑

k

⊕[H1 ⊗ ek
2]. (2.5.58)

The tensor product of operators X1⊗X2, where X j is a bounded operator
in H j , is de�ned by the relation

(X1 ⊗ X2)(ψ1 ⊗ ψ2) = X1ψ1 ⊗ X2ψ2

on the vectors of the form ψ1 ⊗ ψ2 and then uniquely extended to the
whole H1 ⊗H2 by linearity and continuity.

Consider the decomposition (2.5.58). Then any bounded operator X
in H1 ⊗H2 can be described by the block matrix [X jk] the elements of
which are bounded operators in H1, as follows

X

(∑
k

ψk
1 ⊗ ek

2

)
=
∑

j

(∑
k

X jkψ
k
1

)
⊗ e j

2 .

2 More precisely, one should speak of the equivalence classes of the Lebesgue measurable functions.
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In particular the operator X1 ⊗ X2 is described by the matrix

[X1(e
j
2 |X2ek

2)2].
Proposition 2.5.2. For any measurement M = {M(B)} in H there are
a Hilbert space H0, a pure state S0 in H0 and a simple measurement
E = {E(B)} in H ⊗H0 such that

μES⊗S0
(B) = μMS (B); B ∈ A (U ), (2.5.59)

for any state S in H. Conversely, any such triplet (H0, S0,E) gives rise
to the unique measurementM in H satisfying (2.5.59).

Here μES⊗S0
(correspondingly μMS ) denotes the probability distribution

of the measurement E (correspondinglyM) with respect to the state S ⊗
S0(S).

Proof. Let E be the orthogonal resolution of identity in H̃ the existence
of which is asserted by Theorem 2.5.1. Extending if necessary H̃ and
E we can assume that H̃ = H ⊕H ⊕ · · · , H being embedded in H̃

so that H = H⊕ [0] ⊕ [0] ⊕ · · · . Then by the discussion preceding the
formulation of the proposition, H̃ = H⊗H0 where H0 = l2 is the space
of square-summable sequences [c j : j = 1, 2, . . .]. Let S0 = Sψ where
ψ = [1, 0, 0, . . .]; then operator S ⊗ S0 is described by the matrix⎡⎣S 0 :

0 0 :
. . . . .

⎤⎦
and it is clear that for any bounded X in H⊗H0 one has Tr(S⊗ S0)X =
Tr SẼ X Ẽ . Substituting X = E(B) and using (2.5.55) we get (2.5.59).

To prove the converse note that the relation

μES⊗S0
(B) = Tr(S ⊗ S0)E(B); B ∈ A (U ),

de�nes an af�ne map S → μES⊗S0
of the set of quantum states into the set

of probability distributions on U . According to Theorem 2.2.1 there is a
measurementM satisfying (2.5.59) and the proposition is proved.

The proposition says that the measurements E and M are statistically
equivalent in the sense that they have the same probability distributions
for any state S.

We call the triple (H0, S0,E) a realization of measurementM. A real-
ization corresponds to a simple measurement over the system H ⊗H0,
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consisting of the initial system H and additional independent degrees of
freedom H0 in the �xed state S0. In classical statistics this would cor-
respond to a randomized procedure in which the additional system can
be regarded as a “roulette” generating random numbers according to the
probability law S0. The role of H0 in quantum case will be more clear
when we shall consider an example (see Section 3.7).

2.6. Uncertainty relations and compatibility

Let M : S → μS(dx) be a measurement with real values, to that μS(dx)

is a probability distribution on the real line R. The most important char-
acteristics of such distribution are the mean value and the variance

ES{M} =
∫

xμS(dx),

DS{M} =
∫

(x − ES{M})2μS(dx).

(2.6.60)

The variance is apparently a measure of the mean square deviation of a
random variable distributed according to μS(dx), from its mean value.
These quantities are well de�ned if, say, μS has a �nite second moment.
In this case we shall say that the measurement M has a �nite second
moment with respect to the state S.

By an observable in quantum mechanics one usually means a self-
adjoint operator in H ; however having in mind Theorem 2.4.3 we shall
extend the use of this term to arbitrary densely de�ned symmetric oper-
ator. By the spectral theorem to any observable X there corresponds a
(generally, non-unique) measurement M(dx), such that X = ∫

x M(dx).
As we shall see, the quantities (2.6.60) are the same for all spectral mea-
sures M(dx) of the operator X ; for a pure state this follows directly from
(2.4.41), (2.4.42) and (2.4.50). Therefore we can call (2.6.60), corre-
spondingly, the mean ES(X) and the variance DS(X) of the observable
X . Sometimes ES(X) will also be denoted X if it cannot cause a confu-
sion. For a pure state S = Sψ with ψ ∈ D (X) we have3

ESψ
(X) = (ψ |Xψ),

DSψ
(X) = ‖(X − ESψ

(X))ψ‖2 = ‖Xψ‖2 − ESψ
(X)2.

(2.6.61)

3 We shall sometimes drop the symbol I from the notation of an operator which is a multiple of
identity, so that X − ES(X) means X − ES(X) · I etc.
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Consider a pair of observables X1, X2 and a state S = Sψ such that
ψ ∈ D (X1) ∩ D (X2) assuming such a ψ �= 0 exists. For any real c

0 ≤ ‖(X1 − X1)ψ − ic(X2 − X2)ψ‖2

= DSψ
(X1)+ 2c Im(X1ψ |X2ψ)+ c2 DSψ

(X2),
(2.6.62)

whence

DSψ
(X1) · DSψ

(X2) ≥ | Im(X1ψ |X2ψ)|2, (2.6.63)

the equality being achieved if and only if for some c

[(X1 − X1)+ ic(X2 − X2)]ψ = 0; (2.6.64)

(weexcludehere thecase DSψ
(X2)=0whenc=∞). If X1,X2 are bounded,

then the right-hand side of (2.6.63) can be rewritten as 1
4 |ESψ

(i[X1,X2])|2,
where

[X1, X2] = X1 X2 − X2 X1 (2.6.65)

is the commutator of the operators X1, X2. The inequality (2.6.63) is
called the uncertainty relation. In Section 2.9 we shall prove a rigorous
and general version of this inequality for arbitrary states and measure-
ments with �nite second moments.

Sometimes it is asserted that the uncertainty relation sets a limitation
to the accuracy of “joint measurement” of the observables X1, X2. In fact
the statistical content of the uncertainty relation is different, and to show
this we shall analyze the notion of “joint measurability”.

In experimental practice it is common to measure several quantities
during one individual experiment. An outcome of such experiment can
be described by a collection of real numbers x1, . . . , xn taking values in
some set �. Thus mathematically the statistics of a joint measurement
must be described by a resolution of identity M(dx1 · · · dxn) on � ⊂
Rn . It is customarily to speak of “simultaneous” measurements of several
quantities. What is relevant for the notion of joint measurement is not the
times at which the data x1, . . . , xn are obtained but the fact that all of
them are obtained in a single individual experiment referred to a de�nite
initial state S. Whether the measurement is in fact “simultaneous” or
“repeated” will, of course, affect the measurement statistics but in any
case it is described by an af�ne map S → μS(dx1 . . . dxn) and hence
according to Theorem 2.2.1 by a resolution of identity M(dx1 · · · dxn).

We call two real-valued measurements, M j (dx j ), x j ∈ R, j = 1, 2,
compatible if there exists a measurement M(dx, dx2) on R1 × R2 = R2

such that

M1(dx1) =
∫

R2

M(dx1 dx2), M2(dx2) =
∫

R1

M(dx1 dx2),
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or, more precisely M1(B1) = M(B1×R2), B1 ∈ A (R1), and analogously
for M2(dx2). The measurement M(dx1 dx2) will be called a joint mea-
surement for M j (dx j ); j = 1, 2, and the latter will be called marginal
measurements for M(dx1 dx2).

Proposition 2.6.1. The simple measurements E j (dx j ); j = 1, 2, are
compatible if and only if

[E1(B1), E2(B2)] = 0; B j ∈ A (R j ); j = 1, 2. (2.6.66)

Proof. To prove suf�ciency de�ne the orthogonal resolution of identity
E on R1 × R2 putting

E(B1 × B2) = E1(B1) · E2(B2),

and extending E onto A (R1 × R2) in a standard way. Then E j are the
marginal measurements for E.

To prove necessity assume that M is a joint measurement for E j , j =
1, 2. Fix Bj ∈ A (R j ) and let B j denote the complement of B j ; j = 1, 2.
Consider the following table

E1(B1)=M(B1 × B2)+M(B1 × B2)

+ + +
E1(B1)=M(B1 × B2)+M(B1 × B2)

‖ ‖ ‖
I = E2(B2) + E2(B2),

where E1(B1)E1(B1) = E2(B2)E2(B2) = 0. Rewriting this in the form

[M(B1 × B2)+ M(B1 × B2)] · [M(B1 × B2)+ M(B1 × B2)]
= [M(B1 × B2)+ M(B1 × B2)] · [M(B1 × B2)+ M(B1 × B2)]
= 0

and applying several times the Hilbert space generalization of Lemma
1.6.4 we obtain that the product of any two operators M(B1×B2), M(B1×
B2), M(B1 × B2), M(B1 × B2) is equal to zero. It follows that

E1(B1)E2(B2) = M(B2 × B2)
2 = E2(B2)E1(B1)

and the proposition is proved.

Now let X j ; j = 1, 2, be observables represented by self-adjoint op-
erators and E j be their spectral measures. The observables are called
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compatible (or jointly measurable) if E j are compatible. We see that this
is the case if and only if the operators X j commute in the sense that their
spectral measures E j satisfy the condition (2.6.66). One can show that
this is equivalent to the condition

[eiθ1 X1, eiθ2 X2] = 0; θ1, θ2 ∈ R, (2.6.67)

on the unitary groups generated by X1, X2. If moreover X1, X2 are
bounded, then this is equivalent to

[X1, X2] = 0.

These considerations extend to an arbitrary family of observables
X1,. . ., Xn , represented by commuting self-adjoint operators. Let
E(dx1,· · · dxn) be the orthogonal resolution of identity presenting the
joint measurement of X1, ...,Xm (E(dx1 · · · dxn)=E1(dx1) · ... · En(dxn),
where E j (dx j ) are the spectral measures for X j ). Then one can develop
a functional calculus of X1, . . . Xn , putting

f (X1, . . . , Xn) =
∫

. . .

∫
f (x1, . . . , xn)E(dx1 · · · dxn)

in a way analogous to the case of a single operator.
Returning to the uncertainty relation (2.6.63) we note that if the right-

hand side of (2.6.63) is nonzero, then X1 and X2 cannot commute. In-
deed, assuming X1, X2 commute we obtain from (2.6.67)

(e−iθ1 X1ψ |eiθ2 X2ψ) ≡ (eiθ1 X1ψ |e−iθ2 X2ψ).

Differentiating with respect to θ1 and θ2 at θ1 = θ2 = 0 we get by (2.4.49)
Im(X1ψ |X2ψ) = 0 contrary to the assumption. Thus X1, X2 are incom-
patible and by Proposition 2.6.1 no joint measurement exists for X1 and
X2. Therefore it is senseless to say that (2.6.63) sets a limitation to the
accuracy of joint measurement. To give the proper statistical interpre-
tation one has to consider two large collections of copies of the object
prepared in the same state S. Then, if the observable X1 is measured
in the �rst collection, and X2 in the second, the product of variance of
such independent measurements will satisfy (2.6.63). Otherwise assume
that one of the variances, say, DS(X1) is known a priori from the de-
scription of the preparation procedure; then the measured value DS(X2)

will again satisfy (2.6.63). The two interpretations are closely connected
since evaluation of DS(X1) by measuring X1 in the �rst collection can be
considered as a preliminary determination of a numerical characteristic
of the state S.

As we shall see later, the uncertainty relation is indeed connected with
a bound for accuracy of joint measurements but the connection is not so
straightforward.
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2.7. Trace-class operators and Hilbert-Schmidt operators4

Consider bounded operators which have the diagonal form in a �xed or-
thonormal basis {e j }

X =
∑

j

x j |e j )(e j |, (2.7.68)

where the series converges strongly. Any property of the sequence of
eigenvalues {x j } corresponds to a property of the operator X . The norm
of X is equal to

‖X‖ = sup
j
|x j |; (2.7.69)

X is Hermitean if and only if x j are all real, positivity of X corresponds
to x j ≥ 0 etc.

To any classical space of sequences there corresponds a space of op-
erators. Taking the Banach space c of all bounded sequences {x j } with
the sup norm (2.7.69) we obtain all bounded diagonal operators with the
operator norm. Restricting to a �nite number of j we get the diagonal
�nite-rank operators. Note that the completion of the space of �nite se-
quences with respect to the sup norm give only the proper subspace c0 of
c consisting of sequences {x j } tending to zero.

Other important space of sequences are l1 and l2, corresponding to the
norms

‖X‖1 =
∑

j

|x j | = Tr |X |,

where |X | = √
X∗X = ∑

j |x j ||e j )(e j | for the operator X of the form
(2.7.68), and

‖X‖2 =
√∑

j

|x j |2 =
√

Tr X∗X .

We are going to describe the noncommutative analogs of these spaces,
which do not require X to be of diagonal form in a �xed basis {e j }.

We shall proceed by completing the space F(H ) of all �nite-rank op-
erators with respect to corresponding norms. The completion of F(H )

with respect to the operator norm ‖ · ‖ is the space of compact (com-
pletely continuous) operators. We shall not discuss the properties of this
important class; what is essential here is that the following analog of the
�nite-dimensional spectral theorem holds: any compact Hermitean oper-
ator X has the spectral representation of the form (2.7.68), where {e j } is

4 The material of Sections 2.7-2.10 will be used essentially only in Chapters 5, 6.
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the orthonormal basis of eigenvectors of X, {x j } are the eigenvalues of
X. The sequence of eigenvalues of a compact Hermitean operator tends
to zero.

Now we are going to de�ne the operator analog of the space l1. If X is
Hermitean, then |X | is de�ned by (2.3.30); for any bounded X put

|X | = √X∗X;
where X∗X is (positive) Hermitean and therefore any continuous function
of it is a well-de�ned Hermitean operator. Since |X |2 = X∗X , then for
all ψ ∈ H

‖|X |ψ‖ = ‖Xψ‖. (2.7.70)

Observing that T ∈ F(H ) implies |T | ∈ F(H ) put

‖T1‖1 = Tr |T |. (2.7.71)

For any �nite-rank operators T , X

|Tr T X | ≤ ‖T ‖1 · ‖X‖. (2.7.72)

Indeed, since |T | is a �nite-rank Hermitean operator, there is an orthonor-
mal basis {e j } of eigenvectors of |T |. From (2.7.70)

‖T e j‖ = ‖|T |e j‖ = (e j ||T |e j ),

so that

|Tr T X | =
∣∣∣∣∣∑

j

(X∗e j |T e j )

∣∣∣∣∣ ≤ ‖X∗‖ ·
∑

j

‖T e j‖ = ‖X‖ · ‖T ‖1.

Putting in (2.7.72) X = E where E is projection onto a �nite-dimen-
sional subspace containing all the vectors ϕ j , ψ j from the representation
T =∑

j |ϕ j )(ψ j | we have T E = T , ‖E‖ = 1, so that

|Tr T | ≤ ‖T ‖1.

This shows that a natural domain of de�nition of trace would be the com-
pletion of F(H ) with respect to the norm ‖ · ‖1. We shall only state the
�nal result.

Theorem 2.7.1. The relation (2.7.71) de�nes the norm on F(H ); the
completion of F(H ) with respect to this norm is the Banach space
T1(H ) of trace-class operators satisfying ‖T ‖1 = Tr |T | < ∞. The
unique continuous extension of the trace onto F1(H ) is given by

Tr T =
∑

j

(e j |T e j ),

where the series converges to one and the same value for any basis {e j }.



65 Probabilistic and Statistical Aspects of Quantum Theory

Any trace-class operator is compact. To show this notice that

‖T ‖ ≤ ‖T ‖1

for T ∈ F(H ) since by (2.7.70) and (2.1.8),

‖T ‖ = ‖|T |‖ = sup
ϕ �=0

(ψ ||T |ψ)

(ψ |ψ)
≤ Tr |T |.

Therefore the completion of F(H ) with respect to ‖ · ‖1 is contained in
the completion with respect to ‖ · ‖.

It follows that any Hermitean trace-class operator has the spectral rep-
resentation

T =
∑

j

t j |e j )(e j |, (2.7.73)

where the sum converges in the norm ‖ · ‖1, since
∑

j |t j | = Tr |T | <∞
and ‖|e j )(e j |‖1 = 1. Also Tr T =∑

j t j .
Putting

T+ =
∑
t j >0

t j |e j )(e j |, T− = −
∑
t j <0

t j |e j )(e j |,

we have
T = T+ − T−, |T | = T+ + T−, (2.7.74)

so that
‖T ‖1 = Tr T+ + Tr T− = ‖T+‖1 + ‖T−‖1.

Any positive operator with �nite trace is trace-class and therefore has
the spectral representation (2.7.73) with t j ≥ 0. In particular (2.2.20)
holds for any density operator.

It is well known that the space of continuous linear functional (the dual
space) for l1 is the space c. The following theorem is the noncommutative
analog of this fact. We denote by B(H ) the Banach space of all bounded
operators with the operator norm ‖ · ‖.
Theorem 2.7.2. If T is trace-class, X is a bounded operator, then T X
and X T are trace-class operators and (2.1.18), (2.7.72) hold for all such
T and X. For any X ∈ B(H ) the correspondence

T → Tr T X; T ∈ T1(H ) (2.7.75)

de�nes a continuous linear functional on T1(H ) with the norm equal to
‖X‖. Conversely any continuous linear function of T1(H ) has this form.
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Thus [T1(H )]∗ = B(H ). Supplying with the subscript h the cor-
responding real Banach spaces of Hermitean operators we have also
[T1

h(H )]∗ = Bh(H ). The real linear functional (2.7.75) is positive,
i.e., Tr T X ≥ 0 for all T ∈ T1

h(H ), T ≥ 0, if and only if X ≥ 0. This
can be proved as in Lemma 1.6.3. It follows that T ≥ 0 and X ≤ Y imply
Tr T X ≤ Tr T Y .

Proof of Theorem 2.2.1. Now we have tools for this proof. Let S →
μS be a measurement. Consider the real linear span of the set of states
S(H ). Any linear combination T = ∑

t j S j of density operators is
apparently a Hermitean trace-class operator. Conversely, let T ∈ T1

h(H );
then by (2.7.74)

T = t+S+ − t−S−,

where t± = Tr T±, S± = (t±)−1 ·T± are density operators. Thus the linear
span of S(H ) is the space T1

h(H ) of Hermitean trace-class operators.
Fix a measurable set B and consider af�ne functional S → μS(B) on

S(H ). We construct a linear extension of it onto T1
h(H ) by putting

μ(T ) =
∑

j

t jμS j (B),

if T =∑
j t j S j . Correctness of this extension can be veri�ed as in �nite-

dimensional case (see Lemma 1.6.2). This functional is continuous since

|μ(T )| ≤ μ(T+)+ μ(T−) = t+μ(S+)+ t−μ(S−)

≤ t+ + t− = Tr |T | = ‖T ‖1.

Therefore by the second part of Theorem 2.7.2 there exists a bounded
M(B) such that μ(T ) = Tr T M(B), in particular μS(B) = Tr SM(B).
From 0 ≤ μS(B) ≤ 1, S ∈ S(H ), it follows that 0 ≤ M(B) ≤ I ,
and from μS(∅) = 0, μS(U ) = I ; S ∈ S(H ), if follows that M(∅) =
0, M(U ) = I . The proof of these facts is the same as in the �nite-
dimensional case and is based on the analog of Lemma 1.6.3.

To prove the σ -additivity (property (3) of resolution of identity in Sec-
tion 2.2) note that for any S the probability distribution is σ -additive in
B. Putting S = Sψ we have

(ψ |M(B)ψ) =
∑

j

(ψ |M(B j )ψ)

for any decomposition {B j } of B, and this means precisely the prop-
erty (3).
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Conversely let {M(B)} be a resolution of identity in H. Then the re-
lation (2.2.21) de�nes a family of af�ne functionals on S(H ) and one
needs only to check σ -additivity of μS , i.e., to prove that property (3)
implies

Tr SM(B) =
∑

j

Tr SM(B j ) (2.7.76)

for any density operator S. By the spectral representation (2.2.20) of S

Tr SM(B) =
∑

j

s j (ψ j |M(B)ψ j ), (2.7.77)

where the right-hand side is the trace of SM(B) calculated in the basis
{ψ j } by the formula of Theorem 2.7.1. On the other hand by the σ -
additivity of {M(B)} we have

(ψ j |M(B)ψ j ) =
∑

k

(ψ j |M(Bk)ψ j ).

Multiplying it by s j , summing and changing the order of summation
which is possible due to nonnegativity of summands, we obtain (2.7.76).
The theorem is proved.

We can now also establish a useful relation∫
f (x)μS(dx) = Tr S f (X), (2.7.78)

where f is a bounded measurable function, X is a self-adjoint operator
with the spectral measure E(dx), μS(dx) = Tr SE(dx) and f (X) =∫

f (x)E(dx). Indeed using (2.7.77) we get∫
f (x)μS(dx) =

∑
j

s j

∫
f (x)(ψ j |E(dx)ψ j )

=
∑

j

s j (ψ j | f (X)ψ j ) = Tr S f (X),

due to boundedness of f .
We now turn to the noncommutative analog of the l2 space. Introduce

the inner product in F(H )

(T1, T2) = Tr T ∗1 T2, (2.7.79)

with the norm ‖T ‖2 =
√

Tr T ∗T .
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Theorem 2.7.3. The completion of F(H ) with respect to the inner prod-
uct (2.7.79) is the Hilbert space T2(H ). The elements of this space,
called Hilbert-Schmidt operators, are bounded operators T satisfying
Tr T ∗T ≡ ∑

j ‖T e j‖2 < ∞ for an orthonormal basis in H . For any
T1, T2 ∈ T2(H ) the product T1 · T2 is trace-class operator and the inner
product of T1 and T2 is equal to Tr T ∗1 T2. The noncommutative analog of
the Cauchy inequality holds

‖T1 · T2‖1 ≤ ‖T1‖2 · ‖T2‖2. (2.7.80)

The product of a bounded X and a Hilbert-Schmidt operator T (in any
order) is again Hilbert-Schmidt with

‖T X‖2 = ‖X T ‖2 ≤ ‖X‖ · ‖T ‖2. (2.7.81)

The spaces of operators introduced above are related by following di-
agram

F(H ) ⊂ T1(H ) ⊂ T2(H ) ⊂ (compact operators).

To prove the last inclusion it is suf�cient to show that

‖T ‖ ≤ ‖T ‖2,

since this implies that the completion of F(H ) with respect to ‖ · ‖2 is
contained in the completion with respect to ‖ · ‖. But

‖T ‖2 = ‖|T |‖2 = sup
ψ �=0

‖|T |ψ‖2

‖ψ‖2
= sup

ψ �=0

‖T ψ‖2

‖ψ‖2
≤ Tr T ∗T

and the result follows. In particular, any Hermitean Hilbert-Schmidt op-
erator has the spectral representation of the form (2.7.73) with

‖T ‖2 =
√∑

j

|t j |2 <∞.

Furthermore ‖T ‖2 ≤ ‖T ‖1, since

Tr T ∗T = Tr |T |2 =
∑

j

τ 2
j ≤

(∑
j

τ j

)2

= (Tr |T |)2.

It follows that any trace-class operator is Hilbert-Schmidt.
Finally let us consider Hilbert-Schmidt operators in L 2(a, b). Let for

simplicity T be a Hermitean operator with the spectral representation
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(2.7.73) satisfying
∑

j t2
j < ∞. Its eigenfunctions {e j (x)} form an or-

thonormal basis in L 2(a, b). Consider the kernel

T (x ′, x) =
∑

j

t j e j (x ′)e j (x).

Since
∫

ē j (x)ek(x)dx = δ jk and
∑

t2
j < ∞ this series converges in

L 2((a, b)× (a, b)) and de�nes a square-integrable function of two vari-
ables x , x ′, satisfying∫ b

a

∫ b

a
|T (x, x ′)|2dx dx ′ =

∑
j

t2
j ≡ Tr T 2.

For any ψ ∈ L 2(a, b)

T ψ(x ′) =
∫ b

a
T (x ′, x)ψ(x)dx, (2.7.82)

as one sees, e.g., calculating the form (ϕ|T ψ) in the basis {e j }. If T is
trace-class, the

∑ |t j | < ∞ and the function T (x, x) = ∑
t j |e j (x)|2 is

integrable with ∫ b

a
T (x, x)dx = Tr T . (2.7.83)

In Dirac’s notation the kernel T (x ′, x) is expressed by the symbol
(x ′|T |x) and may be regarded as a formal analog of the matrix elements
for the continual “basis” {|x)}; using the completeness relation (2.3.33)
one obtains formally

T =
∫∫

|x ′)(x ′|T |x)(x |dx ′dx,

whence one gets Dirac’s version of (2.7.82):

(x ′|T ψ) =
∫

(x ′|T |x)(x |ψ)dx .

If T is Hilbert-Schmidt, then as we have seen the kernel (x ′|T |x) is
a square-integrable function of x , x ′, and these manipulations have a
straightforward mathematical substantiation.

2.8. L 2 spaces associated with a quantum state

Many important quantum observables are represented by unbounded op-
erators. Unboundedness is a source of serious technical dif�culties in the
noncommutative theory. For example, the de�nition of sum of random
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variables presents no dif�culties in probability theory, while the sum of
incompatible quantum observables may not be well de�ned. That we
have restricted only to pure states in the uncertainty relation (2.6.63) is
also due to dif�culties connected with unboundedness. We are going now
to elaborate a technique which will allow us to operate freely enough with
unbounded observables, in particular to calculate their �rst two moments
with respect to a state de�ned by an arbitrary density operator S.

We shall introduce a noncommutative analog of the Hilbert space of
random variables with �nite second moment, which is an important con-
cept in ordinary probability theory. This Hilbert space of “square-sum-
mable” observables turns out to be a convenient tool also in quantum
theory; in particular there is no problem with the summation of such ob-
servables.

Let S be a �xed density operator and X , Y bounded operators in H.
Put

X ◦ Y = 1
2(XY + Y X). (2.8.84)

Assuming X , Y being Hermitean introduce the pre-inner product in
Bh(H )

〈Y, X〉S = Tr S(Y ◦ X) ≡ Re Tr SY X, (2.8.85)

with
〈X, X〉S = Tr SX2.

The completion of Bh(H ) with respect to 〈·, ·〉S is a real Hilbert space
denoted by L 2

h(S). The elements of L 2
h(S) can be represented, generally,

by unbounded operators in H in the following way.
A symmetric operator X is called square-summable with respect

to the density operator S having the spectral representation (2.2.20) if∑
j s j‖Xψ j‖2 < ∞ (so that ψ j ∈ D(X) if s j �= 0). Two such operators

X1, X2 are equivalent if X1ψ j = X2ψ j for s j �= 0. For square-summable
X , Y put

〈Y, X〉S =
∑

j

s j
1

2
[(Yψ j |Xψ j )+ (Xψ j |Yψ j )]

≡ Re
∑

j

s j (Yψ j |Xψ j ),
(2.8.86)

the series being convergent by the Cauchy inequality. If X and Y are
bounded, then they are square-summable and the sum (2.8.86) is equal to
(2.8.85), since it is just the trace calculated in the basis {ψ j }.
Theorem 2.8.1. The elements of L 2

h(S) can be naturally identi�ed with
the equivalence classes of square-summable operators with the inner
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product de�ned by (2.8.86); namely, if {Xn} is a Cauchy sequence with
respect to the pre-inner product (2.8.85) in Bh(H ), then there is a
square-summable X such that limn〈Xn − X, Xn − X〉 = 0, and con-
versely any square-summable operator is a limit of a Cauchy sequence
{Xn} ⊂ B(H ).

The proof of this theorem is omitted. In what follows we shall denote
by the same letter X both a square-summable operator and a correspond-
ing element of L 2

h(S).
Using the notion of Hilbert-Schmidt operator we can give an alterna-

tive description of square-summable operators. Consider the operator

√
S =

∑
j

√
s j |ψ j )(ψ j |,

which is apparently Hilbert-Schmidt since Tr(
√

S)2 < ∞. Introducing
the notation R(T ) for the range of an operator T , we have

R(
√

S) =
{

ψ : ψ =
∑

j

√
s j c jψ j ,

∑
j

|c j |2 <∞
}

.

Proposition 2.8.2. Operator X with D (X) 
 ψ j for s j �= 0 is square-
summable if and only if X extends to R(

√
S) so that X

√
S is Hilbert-

Schmidt. Moreover

〈Y, X〉S = Tr 1
2 [(Y

√
S)∗(X

√
S)+ (X

√
S)∗(Y

√
S)]

= Re Tr(Y
√

S)∗(X
√

S).
(2.8.87)

Proof. If X is a square-summable, then the extension is given by

X

(∑
j

√
s j c jψ j

)
=
∑

j

√
s j c j Xψ j ,

∑
j

|c j |2 <∞,

the series converging strongly by the square-summability. The operator
X
√

S is Hilbert-Schmidt since

Tr(X
√

S)∗(X
√

S) =
∑

j

‖X
√

Sψ j‖2 =
∑

j

s j‖Xψ j‖2 <∞.

The relation (2.8.87) follows from (2.8.86) in the same way. The converse
statement is obvious.
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We now give one more useful formula for the inner product. Since
by Theorem 2.7.3 a product of Hilbert-Schmidt operators is a trace-class
operator, the expression

X ◦ S ≡ 1
2 [(X

√
S) · √S +√S · (X

√
S)∗]

de�nes a trace-class operator in H. Using (2.1.18) we obtain

〈Y, X〉S = Tr(X ◦ S)Y, (2.8.88)

for a bounded Y and X ∈ L 2
h(S).

The speci�c feature of the noncommutative case is the existence of an
additional skew-symmetric form in L 2

h(S) related to the commutator of
operators. If X , Y are Hermitean, then i[Y, X ] is also Hermitean. There-
fore the relation

[Y, X ]S = i Tr S[Y, X ] = 2 Im Tr SXY (2.8.89)

de�nes a real bilinear form on Bh(H ). It can be extended to L 2
h(S) by

the equivalent relations

[Y, X ]S = 2 Im
∑

j

s j (Xψ j |Yψ j ) = 2 Im Tr(X
√

S)∗(Y
√

S),

analogous to (2.8.86), (2.8.87). If X ∈ L 2
h(S), then the relation

[X, S] ≡ (X
√

S) · √S −√S · (X
√

S)∗

determines a trace-class operator. Using again (2.1.18) we obtain for
bounded Y

[Y, X ]S = i Tr[X, S] · Y. (2.8.90)

The form is skew-symmetric, i.e.,

[X, Y ]S = −[Y, X ]S; X, Y ∈ L 2
h(S).

If follows that
[X, X ]S = 0, X ∈ L 2

h(S). (2.8.91)

From (2.8.90) with Y = I and (2.1.18) we obtain also

[I, X ]S = 0, X ∈ L 2
h(S). (2.8.92)

We shall also use the complexi�cation of L 2
h(S). Any bounded X can

be uniquely presented in the form X = X1 + iX2 where X1, X2 are
Hermitean. Namely, one obtains

X1 = 1

2
(X + X∗), X2 = 1

2i
(X − X∗).
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Put
〈Y, X〉S = Tr S(Y ∗ ◦ X) = Tr(S ◦ X) · Y ∗ (2.8.93)

for X , Y ∈ B(H ). Then it is easy to see that

〈X, X〉S = 〈X1, X1〉S + 〈X2, X2〉S. (2.8.94)

Denote by L 2(S) the completion of B(H ) with respect to the pre-inner
product (2.8.93). Then any X ∈ L 2(S) still can be written in the form
X = X1 + iX2 with X1, X2 ∈ L 2

h(S), so that (2.8.94) holds. This is
expressed by saying that L 2(S) is the complexi�cation of L 2

h(S), and is
written as

L 2(S) = L 2
h(S)⊕ iL 2

h(S).

The real bilinear skew-symmetric form (2.8.89) extends to the complex
sesquilinear skew-Hermitean form, which is given on B(H ) by the rela-
tions

[Y, X ]S = i Tr S[Y ∗, X ] = i Tr[X, S] · Y ∗. (2.8.95)

Other two useful complex pre-inner products on B(H ) are

〈Y, X〉+S = Tr SXY ∗, 〈Y, X〉−S = Tr SY ∗X. (2.8.96)

Since 〈Y, X〉S = 1
2 [〈Y, X〉+S + 〈Y, X〉−S ], then 〈X, X〉±S ≤ 2〈X, X〉S .

Therefore denoting by L 2±(S) the completions of B(H ) with respect
to the pre-inner products (2.8.96) we have L 2(S) ⊆ L 2±(S). Obviously

〈X, Y 〉S ± i

2
[X, Y ]S = 〈X, Y 〉±S ;

[X, Y ]S = i(〈X, Y 〉−S − 〈X, Y 〉+S ); X, Y ∈ L 2(S).

(2.8.97)

Proposition 2.8.3. The forms 〈·, ·〉S and [·, ·]S are related by the follow-
ing equivalent inequalities:

(1) 〈X, X〉S ≥ i

2
[X, X ]S; X ∈ L 2(S);

(2) 〈X, X〉S ≥ − i

2
[X, X ]S; X ∈ L 2(S);

(3) 〈X1, X1〉S + 〈X2, X2〉S ≥ [X1, X2]S; X1, X2 ∈ L 2
h(S);

(4) 〈X1, X1〉S · 〈X2, X2〉S ≥ 1
4 [X1, X2]2S; X1, X2 ∈ L 2

h(S).

Proof. The inequalities (1), (2) follow from

〈X, X〉S ± i

2
[X, X ]S = 〈X, X〉±S ≥ 0, X ∈ L 2(S).
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They are equivalent since 〈X, X〉+S = 〈X∗, X∗〉−S , X ∈ B(H ). Let
X ∈ L 2(S), then X = X1 + iX2 with X j ∈ L 2

h(S) whence taking into
account (2.8.91) and (2.8.96) we get

0 ≤ 〈X, X〉−S = 〈X1, X1〉S + 〈X2, X2〉S − [X1, X2]S.
It follows that (1) is equivalent to (3). Inserting in (3) t X1 in place of X1

we obtain

t2〈X1, X1〉S − t[X1, X2]S + 〈X2, X2〉S ≥ 0, t ∈ R,

which is equivalent to (4).
It follows from (1), (2) that for any X1, . . . , Xn ∈ L 2

h(S)

[〈X j , Xk〉S] ≥ ± i

2
[[X j , Xk]S], (2.8.98)

where on the left is a real symmetric n×n-matrix, and on the right is± 1
2 i

by a real skew-symmetric (n× n)-matrix, both sides being considered as
Hermitean (n × n)-matrices.

Later we shall need the complex extension of inequality (4):

〈X1, X1〉S〈X2, X2〉S ≥ 1
4 |[X1, X2]S|2; X1, X2 ∈ L 2(S). (2.8.99)

To prove it we �rst remark that (3) implies

〈X1, X1〉S + 〈X2, X2〉S ≥ Re[X1, X2]S for X1, X2 ∈ L 2(S).

Then as in the proof of Proposition 2.8.3

〈X1, X1〉S〈X2, X2〉S ≥ 1
4(Re[X1 X2]S)2.

Replacing X1 by λX1 with λ=[X1, X2]S · |[X1, X2]S|−1 we get (2.8.99).

2.9. Uncertainty relations for measurements
with �nite second moments

In probability theory the elements of L 2 space are random variables with
�nite second moment. In the noncommutative case there is a correspon-
dence between the elements of L 2

h(S) and the real-valued measurements
with �nite second moment.

Let �rst X be an observable with �nite second moment with respect to
S which is represented by a densely de�ned symmetric operator. Then
X ∈ L 2

h(S) since the quantity∑
j

s j‖Xψ j‖2 =
∑

j

s j

∫
λ2(ψ j |M(dλ)ψ j ) =

∫
λ2μS(dλ)
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is �nite. We have used Theorem 2.4.3 in the �rst equality and positiveness
and (2.7.77) in the second. In the same way we can prove

ES(X) = 〈I, X〉S, (2.9.100)

DS(X) = 〈X − ES(X), X − ES(X)〉S. (2.9.101)

If X is bounded, we get from (2.7.78)

ES(X) = Tr SX, (2.9.102)

DS(X) = Tr S(X − ES(X))2, (2.9.103)

which agrees with (2.9.100), (2.9.101).
Let X1, X2 be observables with �nite second moment with respect to

S. Applying the inequality (4) of Proposition 2.8.3 to X1 − ES(X1) and
X2− ES(X2) and taking into account (2.8.92) we obtain a generalization
of the uncertainty relation (2.6.63) in the form

DS(X1) · DS(X2) ≥ 1
4 [X1, X2]2S. (2.9.104)

Now let M = {M(dx)} be an arbitrary real-valued measurement such
that ∫

x2μS(dx) <∞
with μS(dx) = Tr SM(dX). We shall de�ne an integral

XM =
∫

x M(dx),

converging in L 2
h(S), so that the mean and the variance of the measure-

mentM de�ned in (2.6.60) are evaluated through XM by the relations

ES{M} = 〈I, XM〉, (2.9.105)

DS{M} ≥ 〈XM − ES{M}, XM − ES{M}〉S, (2.9.106)

resembling (2.9.100), (2.9.101).
We proceed to de�ne the integral of the type (2.9.104) �rst for simple

real-valued function
f (x) =

∑
j

f j1B j (x)

by the relation ∫
f (x)M(dx) =

∑
j

f j M(B j ).



76 Alexander Holevo

Then the inequality holds:[∫
f (x)M(dx)

]2

≤
∫

f (x)2 M(dx). (2.9.107)

Indeed for the simple f this means[∑
j

f j M(B j )

]2

≤
∑

j

f 2
j M(B j ),

and follows directly from

∑
j

[
f j −

∑
k

fk M(Bk)

]
M(B j )

[
f j −

∑
k

fk M(Bk)

]
≥ 0.

Multiplying (2.9.107) by S, taking trace and using (2.8.85) we get〈∫
f (x)M(dx),

∫
f (x)M(dx)

〉
S

≤
∫

f (x)2μS(dx). (2.9.108)

Now let f be square-integrable with respect to μS(dx) and { fn} be a
sequence of simple functions such that∫

( fn(x)− f (x))2μS(dx)→ 0.

Applying (2.9.108) to the simple functions fn − fm we see that{∫
fn(x)M(dx)

}
is a Cauchy sequence of bounded operators in L 2

h(S). Therefore it has
the limit in L 2

h(S) which we denote as
∫

f (x)M(dx). Moreover, the
inequality (2.9.108) extends to any f , square-integrable with respect to
μS(dx).

If we proceed with complex-valued functions f and the inner products
〈·, ·〉±S , the integral

∫
f (x)M(dx) will be an element of L 2±(S) and the

inequality (2.9.108) will change to〈∫
f (x)M(dx),

∫
f (x)M(dx)

〉±
S

≤
∫
| f (x)|2μS(dx). (2.9.109)
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Therefore we have proved

Proposition 2.9.1. For any real-(complex)-valued f ∈ L 2(μS) the in-
tegral

∫
f (x)M(dx) is de�ned as the limit in L 2

h(S) (correspondingly
in L 2±(S)) of the sequence {∫ fn(x)M(dx)}, where { fn} is any sequence
of simple functions converging to f in L 2(μS). For any real f ∈ L 2(μS)

the inequality (2.9.108) holds; for any f ∈ L 2(μS) the inequality
(2.9.109) holds.

To prove (2.9.106) we have only to put f (x) = x−ES{M} in (2.9.108).
The relation (2.9.105) follows from the more general relation∫

f (x)μS(dx) =
〈
I,
∫

f (x)M(dx)

〉
S

,

which is obvious for simple f ’s and extends to f ∈ L 2(μs) by a standard
limiting argument.

From (2.9.106) and Proposition 2.8.3(4) we obtain the most general
form of the uncertainty relation

DS{M1} · DS{M2} ≥ 1
4 [XM1, XM2]2,

which holds for any measurements M1, M2 with �nite second moment.
In contrast to (2.6.63) and (2.9.104) it applies also to joint measurements
when M1(dx1) and M2(dx2) are marginal measurements with respect to
some M(dx1, dx2).

2.10. Matrix representation of square-summable operators.
The commutation operator of a state

Elements of a L 2 space can be naturally represented by in�nite matrices.
Assume �rst for simplicity that the state S is exact. This means that the
density operator is nondegenerated, i.e., has all eigenvalues s j > 0. Then
the family of the matrix units

E jk = |ψ j )(ψk |
where {ψ j } is the orthonormal basis of eigenvectors of S in H form an
orthogonal basis in L 2±(S), L 2(S) with

〈E jk, E jk〉+S = s j , 〈E jk, E jk〉−S = sk,

〈E jk, E jk〉S = 1
2(s j + sk).
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We shall prove it only for L 2(S). For any X ∈ L 2(S) we have

〈E jk, X〉S = 1
2(s j + sk)(ψ j |Xψk)

by (2.8.86). It follows that 〈E jk, E j ′k′ 〉S = δ j j ′ · δkk′ . The completeness
of the system {E jk} follows from the fact that 〈E jk, X〉S = 0 for all j , k
implies Xψk = 0 for all k, i.e., X = 0 in L 2(S).

Therefore an arbitrary square-summable operator X is represented by
the series

X =
∑

jk

x jk E jk =
∑

jk

|ψ j )(ψ j |Xψk)(ψk |, (2.10.110)

where

x jk = (ψ j |Xψk) = 〈E jk, X〉S
〈E jk, E jk〉S ,

and the series converges in L 2(S). This is an extension of the matrix
representation (2.1.13) to unbounded operators.

Consider now the real space L 2
h(S). The representation (2.10.110)

holds for X ∈ L 2
h(s) but E jk do not belong to L 2

h(S) unless j = k and
x jk are in general complex numbers. Introducing

C jk = 1

2
(E jk + Ekj )

∗, Sjk = 1

2i
(E jk − E∗jk),

one checks that {C jk, j ≤ k; Sjk , j < k} form an orthogonal basis in
L 2

h(S) and for X ∈ L 2
h(S)

X =
∑
j≤k

α jkC jk +
∑
j<k

β jk S jk,

with real α jk , β jk .
Now let S be an arbitrary density operator. We shall denote by J0 the

set of indices j for which s j = 0 and by J1 the remaining set. Then S can
be represented by the diagonal block matrix⎡⎢⎢⎢⎢⎢⎣

s1 0
. . .

s j 0
. . .

0

0 0

⎤⎥⎥⎥⎥⎥⎦ .

Consider �rst L 2+(S). Since 〈E jk, E jk〉+S = 0 for j ∈ J0, then the or-
thogonal basis in L 2+(S) consists of operators {E jk ; j ∈ J1, k ∈ J0∪ J1}.
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Therefore any element of L 2+(S) can be represented by the block matrix
of the form

X =
[

X11 X10

∼ ∼
]

,

where the blocks X11, X10 corresponding to the rows with the indices
j ∈ J1 are determined by X and the remaining blocks denoted by wavy
lines are arbitrary (and can be made zero). Similarly, the elements of
L 2−(S) can be represented by the matrices of the form

X =
[

X11 ∼
X01 ∼

]
.

Turning to the matrix representation of the elements of L 2(S) we observe
that 〈E jk, E jk〉S = 0 if and only if j , k ∈ J0, so that the basis in L 2(S)

consists of {E jk ; ( j, k) /∈ J0 × J0}. Therefore the elements of L 2(S) are
represented by matrices

X =
[

X11 X10

X01 ∼
]

.

For X ∈ L 2
h(S) the matrix is Hermitean so that X∗11 = X11, X∗10 = X01.

Especially simple is the case of the pure state S = |ψ1)(ψ1|. Then the
elements of L 2+(S) can be represented by in�nite row vectors

X =
[

x11x12 · · ·
∼

]
,

∑
j

|x1 j |2 <∞.

If we take the inessential part of the matrix equal to zero, then we have
X = |ψ1)(ψ |, ψ ∈ H so that L 2+(S) is naturally isomorphic to the
space H ∗ of continuous linear functionals on H. Similarly the elements
of L 2(S) are represented by

X =
⎡⎢⎣x11

x21 ∼
...

⎤⎥⎦
i.e., we can take X = |ψ)(ψ1|, ψ ∈ H, so that L 2−(S) naturally isomor-
phic to H. For the elements of L 2(S) we have representation

X =
⎡⎢⎣x11 x12 · · ·

x21 ∼
...

⎤⎥⎦ , (2.10.111)
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i.e., X = |ψ1)(ϕ| + |ψ)(ψ1|, ϕ, ψ ∈ H. Elements of L 2
h(S) are repre-

sented by Hermitean matrices of the form (2.10.111), i.e.,

X = |ψ1)(ψ | + |ψ)(ψ1|, ψ ∈ H. (2.10.112)

We are now going to introduce an important notion of commutation op-
erator of a state which will be very useful in the statistical theory of
Chapters 5, 6. It follows from Proposition 2.8.3 that the form [·, ·]S is
continuous on L 2(S). Therefore it can be represented as

[Y, X ]S = 〈Y, D · X〉S, (2.10.113)

where D is a (complex)-linear bounded operator in L 2(S). It is called the
commutation operator of S. Since [·, ·]S is skew-Hermitean, the operator
D is skew-Hermitean, i.e. D∗ = −D. The inequalities (1) and (2) of
Proposition 2.8.3 then can be written as

1± i

2
D ≥ 0 in L 2(S). (2.10.114)

It follows that(
1+ 1

4
D2

)
=
(

1+ i

2
D

)(
1− i

2
D

)
≥ 0.

Since the forms 〈·, ·〉S and [·, ·]S are real on the real subspace L 2
h(S),

this subspace is invariant under the operator D. Considered as an operator
in L 2

h(S) it is a (real)-linear bounded skew-symmetric operator satisfying
1+ 1

4D
2 ≥ 0. The equation (2.8.92) implies

D · I = 0. (2.10.115)

To describe the action of the operator D more explicitly we �rst ob-
serve that for bounded X , Y (2.10.113) implies via (2.8.88) and (2.8.90)

i Tr[X, S]Y ∗ = Tr((D · X) ◦ S)Y ∗.

If follows that Z = D · X ∈ L 2(S) is the solution of the equation

Z ◦ S = i[X, S]. (2.10.116)

It is convenient to solve this equation using the matrix representation
(2.10.110). Applying both sides of (2.10.116) to ψk and taking the inner
product with ψ j we obtain

1
2(sk + s j )(ψ j |Zψk) = i(sk − s j )(ψ j |Xψk),
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whence we get the matrix elements of Z = D · X

(ψ j |Zψk) = 2i(sk − s j )

(sk + s j )
(ψ j |Xψk).

Therefore the action of D is expressed by multiplication of matrix ele-
ments x jk = (ψ j |Xψk) of X by 2i(sk − s j )(sk + s j )

−1:

D([x jk]) =
[

2i(sk − s j )

(sk + s j )
x jk

]
. (2.10.117)

The basis {E jk} is thus the basis of eigenvectors of D in L 2(S). There-
fore for any function f the action of the operator f (D) is described by
the relation

f (D)([x jk]) =
[

f

(
2i(sk − s j )

(sk + s j )

)
x jk

)]
.

In particular we shall need the following functions(
1+ i

2
D

)
([x jk]) =

[
2s j

sk + s j
x jk

]
,(

1− i

2
D

)
([x jk]) =

[
2sk

sk + s j
x jk

]
,(

1+ 1

4
D2

)
([x jk]) =

[
2sks j

(sk + s j )2
x jk

]
.

(2.10.118)

From these relations follows

Proposition 2.10.1. The state S is exact if and only if any of operators
1± 1

2 iD, 1+ 1
4D

2 is nondegenerated.

Assuming the condition of the proposition to hold we have the relation(
1± i

2
D

)−1

=
(

1+ 1

4
D2

)−1 (
1∓ i

2
D

)
. (2.10.119)

2.11. Comments

Section 2.1. For systematic exposition of the operator theory in a Hilbert
space see Stone [129], Akhiezer and Glazman [2], Riesz and Sz-Nagy
[119]. A modernized course of functional analysis adapted for applica-
tions in mathematical physics is given by Reed and Simon [118]. Rich
complementary material can be found in Halmos [48]. In mathematical
texts the outer product sometimes is denoted by a less expressive symbol
ϕ̄ ⊗ ψ .



82 Alexander Holevo

Section 2.2. Introduced �rst in a somewhat implicit form by Carleman
the general resolutions of identity (on R) were extensively studied by
Naimark [100, 101]. Theorem 2.2.1 is proved in [59].

Section 2.3-2.4. Proofs of the spectral theorems for Hermitean and self-
adjoint operators can be found in the aforementioned textbooks. They are
related to the names of Hilbert, von Neumann, Stone, Riesz and others.
The spectral theorem for symmetric operators is due to Naimark [100]
(see also Akhiezer and Glazman [2]). The formal Dirac’s expansions over
continuous systems of “eigenvectors” can be founded in the framework
of rigged Hilbert spaces (see Gelfand and Vilenkin [40] and Bogoljubov,
Logunov and Todorov [16]).

Section 2.5. Theorem 2.5.1 was proved by Naimark [101]. Our argu-
ment patterns more modern proofs (cf. Akhiezer and Glazman [2]). For
tensor products of Hilbert space see e.g. Reed and Simon [118].

The concept of realization and its relations to Naimark’s theorem and
to randomized procedures of mathematical statistics were discussed in
author’s papers [57, 59, 64]. A different opportunity for emergence of
nonorthogonal resolutions of identity (in physical language “overcom-
plete systems”) is related to the so called indirect measurements (Man-
delstam [95], Gordon and Louisell [44]). Under an indirect measurement
the object H interacts with the “measuring apparatus” H1 which is ini-
tially in some state S1; then a simple measurement over H1 is performed.
One can readily see that the statistics of such indirect measurement is also
described by the generally nonorthogonal resolution of identity in H (cf.
Kraus [80]).

We do not touch the important question of a mechanism which trans-
fers information from a microscopic level in the process of measurement.
This should be described quantum-mechanically as an interaction be-
tween the object and the measuring apparatus. A fruitful point of view is
to consider the apparatus as a “macroscopic system”, i.e., a system with
a very large number of degrees of freedom. The interaction is then prop-
erly treated in the framework of quantum statistical mechanics and the
phenomenological description of measurements can be recovered (see
Daneri, Loinger and Prosperi [25]). One further step is to assume that
the apparatus is a system with in�nitely many degrees of freedom. Such
systems are described by algebras of observables for which there exist
the so called disjoint, i.e., “macroscopically distinguishable” states. In-
teraction with the object drives the apparatus in one of the disjoint states
labelled by the different values u of the result of the measurement. In
the paper of Hepp [54] a number of interesting models of measurement
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processes are considered which convincingly corroborate this point of
view.

Section 2.6. The formal uncertainty relation D(X)D(Y ) ≥ 1
4 [X, Y ]2

for arbitrary X , Y was established by Robertson [120], who general-
ized the Heisenberg uncertainty relation for position and momentum ob-
servables (see Section 3.3). Proposition 2.6.1 is proved in Davies’ book
[27]. The problem of compatibility and joint measurement has been dis-
cussed from various points of views by von Neumann [138], Urbanik
[133], Varadarajan [135] and many others. For the functional calcu-
lus of several commuting self-adjoint operators see Riesz and Sz.-Nagy
[119].

Section 2.7. Trace-class and Hilbert-Schmidt operators are considered
in Schatten [122], Gelfand and Vilenkin [40], Reed and Simon [118].

Section 2.8. The L 2(S) spaces were introduced by Holevo [63,65] for a
normal state of a von Neumann algebra where Theorem 2.8.1 was proved.
The notion of square-summable operator appeared �rst in Holevo [59]
and Kraus and Shröter [81].

Section 2.9. The rigorous uncertainty relation for a self-adjoint operator
was obtained by Kraus and Schröter [81]. The construction of the integral∫

f (x)M(dx) is given in Holevo [65].

Section 2.10. The matrix representation of unbounded operators meets
well-known dif�culties (see e.g.Akhiezer and Glazman [2]). The con-
tents of this section show that if only “second moments” of the operator
are concerned, then a satisfactory matrix representation exists. The com-
mutation operator was introduced by Holevo [63, 65] for a normal state
on a von Neumann algebra. There is a simple relation between the com-
mutation operator D and the modular operator � of the Tomita-Takesaki
theory [132]; namely � = (1 + 1

2 iD)(1 − 1
2 iD)−1. For an exact S on

B(H ) this follows from (2.10.118) and the fact that � · X = SX S−1.



Chapter 3

Symmetry groups
in quantum mechanics

3.1. Statistical model and Galilean relativity

The spatially-temporal structure which we are going to introduce is a
distinctive feature in the description of mechanical objects. In classical
mechanics the motion of point masses is described in a frame of refer-
ence which consists of a spatial Cartesian coordinate system and a clock.
The distinguished class is formed by the so called inertial frames which
are characterized by the property that a free point mass performs uniform
rectilinear motion with respect to such a frame. It follows that the co-
ordinates (ξ, τ) and (ξ′, τ′) of a point mass in any two inertial frames of
reference are related by the Galilei transformation

ξ′ = Rξ+ x+ vτ, τ′ + τ + t, (3.1.1)

where R is an orthogonal matrix (rotation) which describes the orienta-
tion of the new spatial axes with respect to the old ones, x is the vector of
the spatial shift of the origin, v is the relative velocity, and τ is the time
shift showing the difference between the readings of the two clocks.

All transformations of the form (3.1.1) constitute the Galilean group
which contains the subgroup of kinematical transformations

ξ′ = Rξ+ x+ vτ, τ′ = τ, (3.1.2)

and the Euclidean group of spatial transformations

ξ′ = Rξ+ x.
The fundamental Galilean relativity principle says that the laws of me-
chanics are the same in all inertial frames or, mathematically, the equa-
tions of motion are invariant under all transformations of the form (3.1.1).
Of course, this refers only to a free object; if the motion occurs in a �eld
of a force, then the full Galilean relativity should be replaced by a re-
stricted one which takes into account symmetry properties of the �eld.



86 Alexander Holevo

For example, equations of motion in a time-independent �eld must be
invariant with respect to all transformations

ξ′ = ξ+ vτ, τ′ = τ+ t.

If the �eld is rotationally invariant, then the rotations ξ′ = Rξ should be
added etc.

Turning to quantum mechanics, we adopt that Galilean relativity holds
also for microobjects. But we cannot take the formulation of the principle
literally since the notion of point mass becomes meaningless. Given now
are not coordinates (ξ, τ) of point masses but the totality of statistical
results of various measurements. Therefore an appropriate preliminary
formulation of the Galilean relativity principle is: the statistics of any
experiment is the same in any inertial frame of reference.

To give a more precise formulation consider a device which prepares
a state S of the object. Then a measurement M is performed with the
resulting probability distribution μMS . Both the preparing and the mea-
suring devices are macroscopic objects and we can associate with them
the frame of reference (ξ, τ) (Figure 3.1). Assume now that the frame
(ξ, τ) is transformed by means of a Galilean transformation g into the
new frame (ξ′, τ′), the whole experimental set-up being the same in this
new frame. Preparation of the state S with the subsequent change in
the position of the preparing device can be considered as a new way of
preparation which results in the new state gS; in the same way the mea-
surement M accomplished after the transformation g can be considered
as a new measurement gM. Since the whole experimental set-up remains
relatively unchanged we must have

μ
gM
gS = μMS , (3.1.3)

for all states S and measurementsM.

ξ1 ξ1

ξ2 ξ2

ξ3 ξ3τ τ

S

~ ~

~

~

μS
M

M

Figure 3.1.
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Assuming full equivalence of all inertial frames of reference we must
adopt that S → gS is a one-to-one map of the set of states S onto S
(and correspondingly for M → gM). We do not require for the present
that S = S(H ); all that we need is that the statistical model (S,M)

is separated. If follows then that the map S → gS is af�ne; let S =∑
j p j S j , then

μ
gM
gS = μMS =

∑
j

p jμ
M
S j
=
∑

j

p jμ
gM
gS j

.

Since the measurements gM constitute all M, gS =∑
j p j (gSj ) what is

asserted. An af�ne one-to-one map of the set of states S onto S is called
an automorphism of S.

It is natural to assume that a successive application of transformations
g1, g2 is equivalent to the transformation g1g2, so that

g1(g2S) = (g1g2)S,

g1(g2M) = (g1g2)M.
(3.1.4)

This means, �rst, that the group G = {g} acts as a group of automor-
phisms of the set of states S and, second, as a group of one-to-one
transformations of the set of measurements M. Moreover the actions are
connected by the requirement (3.1.3). This constitutes the mathematical
formulation of the relativity principle.

By group G we have meant the Galilean group and the statistical model
was one of quantum theory. However, the group could be any other sym-
metry group, i.e., a group of transformations of an appropriate set. In
particular, if the Galilean group is replaced by the Poincaré group the
Galilean relativity cedes to Einstein relativity.

So far we have not used the speci�city of the quantum statistical model.
The following theorem going back to Wigner, reveals the structure of
automorphisms of the set S(H ).

Theorem 3.1.1. Any automorphism of the set of quantum states S(H )

has the form
S → V SV ∗, (3.1.5)

where V is a unitary or anti-unitary operator in the Hilbert space H.

(An operator V from H onto H is called anti-unitary if it is conjugate-
linear and satis�es (V ϕ|V ψ) = (ϕ|ψ).)

It is important to note that the map (3.1.5) determines the operator V
only up to a scalar factor of unit modulus: V can be multiplied by an
ω ∈ C, |ω| = 1, without changing the state V SV ∗. Now let G act as
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a group of automorphisms of S(H ). By Theorem 3.1.1 for any g ∈ G
there is a unitary or anti-unitary operator Vg in H such that gS = Vg SV ∗

g .
Moreover, by (3.1.4)

Vg2 Vg1 SV ∗
g1

V ∗
g2
= Vg2g1 SV ∗

g2g1
; g1, g2 ∈ G,

for all S ∈ S(H ). It follows that there is a complex-valued function
ω(g1, g2), with |ω(g1, g2)| ≡ 1 such that

Vg2 Vg1 = ω(g2, g2)Vg2g1; g1g2 ∈ G. (3.1.6)

The groups we shall consider are continuous groups in the sense that
they have a natural topological structure de�ning the notions of neigh-
borhood, convergence etc. We shall assume that the map g → Vg is
continuous1 in the sense that g′ → g implies (ϕ|Vgψ) → (ϕ|Vgψ) for
all ϕ, ψ ∈ H. We shall always put Ve = I , where e is the unit of the
group G. Assume at last that the group G is connected, i.e., any two ele-
ments of G can be connected by a continuous curve lying in G. Then all
operators Vg are unitary – otherwise it would be possible to pass continu-
ously from the unitary operator Ve = I to an anti-unitary operator, which
is clearly impossible.

A family of unitary operators g → Vg; g ∈ G in a Hilbert space H,
satisfying (3.1.6) is called projective unitary representation of G in H. If
ω ≡ 1 it is called simply unitary. We shall consider only representations
which are continuous in the aforementioned sense.

One of the principal problems of the theory of group representations is
classi�cation of all representations of a given group. Having such a clas-
si�cation for a symmetry group G one can describe all theoretically pos-
sible quantum objects with this type of symmetry. Of special importance
are irreducible representations g → Vg, characterized by the property
that the only invariant closed subspaces of all operators {Vg; g ∈ G} are
[0] and H. This means that the representation has no proper subrepresen-
tations and in this sense is minimal. Under certain regularity assumptions
any representation can be decomposed into a discrete or continuous sum
(integral) of irreducible representations.

According to Wigner an irreducible representation of a symmetry group
describes a “elementary system” with this type of symmetry. We may call
it also “elementary object”, but one should take care of the far-reaching

1 It is not a serious restriction: there is a theorem that Borel measurability of all functions (ϕ|V(·)ψ),
ϕ, ψ ∈H, together with (3.1.6) implies continuity.
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associations with “elementary particles” of quantum physics and remem-
ber that elementary system or object is essentially a mathematical con-
cept. A complete answer to the question – what is an elementary particle
– presumes a solution of the most profound problems of contemporary
physics. Meanwhile the term “particle” is used loosely in different con-
texts, and we shall follow this custom calling by particle an elementary
quantum object in the above-de�ned sense.

Equations for free quantum particles are in fact a suitable way for de-
scription of irreducible representations of the corresponding symmetry
group. In particular, Galilean relativity implies full kinematical and dy-
namical description of a nonrelativistic quantum particle, including the
basic Schrödinger equation. In this chapter we shall try to explain this
point by elementary means, paying the main attention to the question –
how symmetry properties allow one to relate physical parameters such as
coordinate, velocity, time, angle etc. to certain quantum measurements,
i.e., resolutions of identity in the Hilbert space of the representation.

3.2. One-parameter shift groups and uncertainty relations

Assume that the apparatus preparing a quantum state is shifted along the
axis ξ by the distance x , which is described by the Galilei transformation
ξ ′ = ξ − x (see the left side of Figure 3.2). If S was the basic state, the
new state will be Sx = Vx SV ∗

x where x → Vx , x ∈ R, is a projective
unitary representation of the additive group of the real line R.

Similarly, consider the transformations of the reference frame where
the position of the apparatus is not changed but the time count is shifted
according to the relation τ ′ = τ + t . This means simply that the prepara-
tion procedure is the same but begins t units of time earlier as compared
to the initial one. Then the new prepared state St will be related to the ba-
sic one by the formula St = Vt SV ∗

t , where t → Vt , is again a projective
unitary representation2 of R.

2 Thus St is similar to S−x rather than to Sx . With this choice St gives the temporal evolution of the
state S.
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These are the two most important examples when representations of R
arise. We shall consider them here from a general point of view, postpon-
ing the applications to spatial and temporal shifts to the corresponding
sections. However the results of this section are best visualized by hav-
ing in mind the case of spatial shifts. Let us recall that by representation
we always mean a continuous representation.

Proposition 3.2.1. Any projective unitary representation θ → Ṽθ , θ ∈
R, of the additive group of R reduces to a unitary one; i.e., there exists a
unitary representation θ → Vθ , θ ∈ R, such that Vθ = αθ Ṽθ , |αθ | ≡ 1.

The family {Vθ } satis�es

Vθ1 Vθ2 = Vθ1+θ2; θ1, θ2 ∈ R

and therefore constitutes an one-parameter group of unitary operators.
By Stone’s theorem of Section 2.4,

Vθ = exp(iθ A), θ ∈ R,

where A is a self-adjoint operator in H. Therefore the action of the one-
parameter automorphism group on quantum states is described by

S → Sθ = eiθ A Se−iθ A. (3.2.7)

In what follows we shall restrict for simplicity to pure states. If S =
|ψ)(ψ | with ψ ∈ D (A), then Sθ = |ψθ)(ψθ | with ψθ = exp(iθ A)ψ ∈
D (A).

We shall supply with the subscript θ the quantities referring to the state
Sθ , so that Eθ (X) = (ψθ |Xψθ) is the mean value of an observable X with
respect to the state Sθ . Proceeding formally, we get

d

dθ
Eθ (x) =

(
dψθ

dθ

∣∣∣∣Xψθ

)
+
(

ψθ |X dψθ

dθ

)
.

This is easily veri�ed if X is bounded. Then by the equation (2.4.49)

d

dθ
Eθ (X) = 2 Im(Aψθ |Xψθ). (3.2.8)

Using the uncertainty relation (2.6.63) we get an important Mandelstam-
Tamm inequality

Dθ (X) · Dθ (A) ≥ 1

4

∣∣∣∣ d

dθ
Eθ (X)

∣∣∣∣2 . (3.2.9)
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We shall obtain a rigorous version of this inequality for arbitrary states
and measurements with �nite second moments in Section 6.3.

The importance of this result lies in the fact that it gives a principal
lower bound for accuracy of quantum measurements, which substantially
generalizes the uncertainty relation. To explain this point we must for-
mulate the quantum estimation problem. Assume that an apparatus pre-
pares the basic state S which is completely known. Then the appara-
tus is transformed according to a change of the shift parameter θ . The
new prepared state will be the state Sθ of (3.2.7). The actual value θ is
supposed to be unknown and the problem is to estimate this value sta-
tistically by making a measurement over the object. The measurement
must be R-valued and for simplicity we restrict here to observables. Any
observable X presents a statistical estimate of parameter θ . The qual-
ity of the estimate X can be measured by the mean-square deviation
Eθ ((X − θ)2) = Dθ (X) + (Eθ (X) − θ)2. Then the inequality (3.2.9)
sets the lower bound

Eθ ((X − θ)2) ≥ b(θ)2 + [1+ b′(θ)]2
4Dθ (A)

, (3.2.10)

where b(θ) = Eθ (X)− θ is the bias of the estimate X .
This way of reasoning is characteristic for statistical thinking and is

new only in the context of quantum theory. From this point of view,
to any physical parameter corresponds a variety of measurements which
differ at least by their accuracy. However the class of all estimates is too
general – the inequality (3.2.10) holds for observables X which in fact
may have nothing to do with the parameter θ . One has to require some
properties for observables X to relate them with the parameter θ . Follow-
ing statistical terminology we call an estimate X unbiased if b(θ) = 0
or

Eθ (X) = θ, θ ∈ R. (3.2.11)

Unbiasedness means that there is no systematic error in the measurement
results. For unbiased estimates the inequality (3.2.10) takes the form

Dθ (X) ≥ [4Dθ (A)]−1. (3.2.12)

Note that Dθ (A) ≡ DS(A) since A commutes with the unitary group
{exp(iθ A)}. Thus for any unbiased estimate of the shift parameter θ the
variance is bounded from below by the quantity inversely proportional to
the uncertainty of the observable A in the basic state S. Later we shall
apply (3.2.12) to estimation of spatial and temporal shifts and now we are
going to discuss the connection of (3.2.12) with traditional forms of the
uncertainty relation.
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An observable represented by the self-adjoint operator B is called
canonically conjugate to A if the corresponding unitary groups satisfy
the Weyl canonical commutation relation (CCR)

eiχ Beiθ A = eiθχeiθ Aeiχ B; θ, χ ∈ R. (3.2.13)

Obviously this is equivalent for A to be canonically conjugate to −B.
Differentiating with respect to θ and χ the identity

(e−iχ Bψ |eiθ Aψ) = eiθχ (e−iθ Aψ |eiχ Bψ),

which follows form (3.2.13), we get with the help of (2.4.49)

2 Im(Aψ |Bψ) = (ψ |ψ); ψ ∈ D (A) ∩ D (B). (3.2.14)

If A and B were bounded this would imply the Heisenberg CCR

[A, B] = iI. (3.2.15)

However as we shall see both canonically conjugate observables are nec-
essarily unbounded. Therefore (3.2.15) involves domain troubles, and
one can expect (3.2.15) to hold only on a dense domain. Moreover
(3.2.13) and (3.2.15) are not strictly equivalent since there are pairs of
operators satisfying (3.2.15) on a dense domain which do not satisfy
(3.2.13). The Weyl CCR refers to physically more primary objects which
are unitary groups describing transformations of states.

Substituting (3.2.14) into (2.6.63) we get the Heisenberg uncertainty
relation

DS(A) · DS(B) ≥ 1
4 . (3.2.16)

Let us show that this follows also from (3.2.12). Then (3.2.12) can be
regarded as a generalization of the Heisenberg uncertainty relation to sit-
uations where the canonically conjugate observable B may not exist.

We shall deduce (3.2.16) from (3.2.12) by showing that the canonically
conjugate observable B (provided it exists) is, up to a constant, unbiased
estimate of the shift parameter θ . Rewriting (3.2.13) in the form

e−iθ Aeiχ Beiθ A = eiχ(B+θ), (3.2.17)

and denoting G(dλ) the spectral measure of B we get by (2.4.46)∫
eiχλ(eiθ Aψ |G(dλ)eiθ Aψ) =

∫
eiχ(λ+θ)(ψ |G(dλ)ψ)
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for all λ ∈ R and all unit vectors ψ ∈ H. Both sides of this equality
are the Fourier transforms of probability distributions. By the uniqueness
property of the Fourier transform this is equivalent to

(eiθ Aψ |G(�)eiθ Aψ) = (ψ |G(�−θ )ψ), (3.2.18)

for all Borel sets � ⊂ R, where �−θ = {λ − θ : λ ∈ �} is the shift of
the set � by −θ . Since it holds for all ψ ∈ H, then

e−iθ AG(�)eiθ A = G(�−θ ); θ ∈ R, � ∈ A (R). (3.2.19)

A resolution of identity satisfying this relation is called covariant with
respect to the representation θ → exp(iθ A) of R. Appropriately gen-
eralized, the covariance property will appear to be very important in the
statistical analysis of quantum systems. Denoting by μGθ (dλ) the proba-
bility distribution of the measurement G = {G(dλ)} with respect to the
state Sθ = |ψθ)(ψθ | we get from (3.2.18)

μGθ (�) = μG0 (�−θ ); θ ∈ R, � ∈ A (R). (3.2.20)

This means that the transformation of the preparing apparatus by the shift
θ is re�ected by the corresponding shift in the measurement probability
distribution. This is an appealing reason to associate a resolution of iden-
tity satisfying (3.2.19) with a measurement of the shift parameter θ .

The covariance property implies

Eθ (B) =
∫ ∞

−∞
λμG

θ (dλ) =
∫ ∞

−∞
(λ+ θ)μG

0 (dλ) = E0(B)+ θ,

so that B is up to a constant an unbiased estimate of θ . Moreover the
variance Dθ (B) does not depend on θ and is equal to D0(B) ≡ DS(B).
Substituting X = B − E0(B), which is strictly unbiased, into (3.2.12)
yields (3.2.16) as it was asserted.

3.3. Kinematics of a quantum particle in one dimension

In the case of one-dimensional motion a frame of reference is described
by the pair of variables (ξ, τ ) where ξ is the spatial coordinate and τ is
the temporal coordinate. Consider the Galilei transformation

ξ ′ = ξ − x − vτ, τ ′ = τ. (3.3.21)

It corresponds to the change in the position of the preparing apparatus
when it is shifted along the basic axis ξ by the distance x and is mov-
ing with the velocity v relative to its initial position (see the left side of
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Figure 3.3). Any such transformation is described by the pair of real
parameters g = (x, v) with the law of composition given by

(x1, v1)(x2, v2) = (x1 + x2, v1 + v2).

Therefore the group of kinematical transformations in one dimension is
the additive group of the plane R2.

According to the general scheme presented in Section 3.1 we shall look
for projective unitary representations (x, v)→ Wx,v of R2. First we show
that choosing an appropriately multiplier of Xx,v we can always reduce
(3.1.6) to

Wx1,v1 Wx2,v2 = exp

[
− iμ

2
(x1v2 − x2v1)

]
Wx1+x2,v1+v2 . (3.3.22)

This is sometimes called the Weyl-Segal CCR.
Put Vx = Wx,0, Uv = W0,v. The automorphisms

S → Vx SV ∗
x , S → Uv, SU ∗

v

describe changes of states correspondingly under the spatial and the ve-
locity shifts. By Proposition 3.2.1 we can assume that {Vx} and {Uv} form
one-parameter groups of unitary operators:

Vx1 Vx2 = Vx1+x2, Uv1 Vv2 = Uv1+v2 .

Consider the transformation which consists of the spatial shift by the
distance x and change of the velocity from 0 to v. This can be accom-
plished in the two different ways

(x, v) = (x, 0)(0, v) = (0, v)(x, 0),
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but the resulting state should not depend on the choice so that

S → UvVx SV ∗
x U ∗

v = VxUv SU ∗
v V ∗

x

for any S. It follows that

UvVx = eiη(x,v)VxUv, (3.3.23)

where η(·, ·) is a real continuous function. For x = 0 or v = 0 (3.3.23)
implies 1≡ exp iη(0,v)≡ exp iη(x,0) so we can put η(x,0) ≡ η(v,0) ≡
0, since V0 = U0 = I . Multiplying (3.3.23) by Uv′ we get

η(x, v + v′) = η(x, v)+ η(x, v′)(mod 2π).

The only continuous solution of this equation satisfying η(x, 0) = 0
is η(x, v) = η(x) · v. In the same way η(x + x ′, v) = η(x, v) +
η(x ′, v)(mod 2π) whence η(x, v) = μxv with a real constant μ. We
thus get

UvVx = eiμxvVxUv. (3.3.24)

Since Wx,v is VxUv, up to an arbitrary factor of unit modulus, we can
choose

Wx,v = eiμxv/2VxUv. (3.3.25)

Then {Wx,v} is easily seen to satisfy (3.3.22). The operators Wx,v are
sometimes called displacement operators.

Assume now that the representation (x, v) → Wx,v is irreducible.
Then if μ = 0, (3.3.24) implies [Vx , Uv] ≡ 0, and one easily shows
that the only possibility is the “trivial” one-dimensional representation
(x, v)→ exp i(αx +βv) with α, β ∈ R. Thus, the following proposition
holds.

Proposition 3.3.1. Any projective unitary representation of the group of
kinematical transformations (3.3.21) can be described by a family of uni-
tary operators {Wx,v} satisfying (3.3.22). If the representation is irre-
ducible and dim H > 1, then μ �= 0.

As we shall see later, the parameter μ corresponds to the mass of the
object so that only the case μ > 0 is physically relevant.

By Stone’s theorem, in the Hilbert space of the representation H there
are self-adjoint operators P and Q such that

Vx = e−ix P , x ∈ R, (3.3.26)

Uv = eiμvQ, v ∈ R. (3.3.27)
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The relation (3.3.24) (which is equivalent to (3.3.22)) is just the Weyl
CCR (3.2.13) for A = −P , B = Q saying the Q and P are canonically
conjugate observables.

The spectral measures of Q and P determined from the spectral repre-
sentations

Q =
∫

ξ E(dξ), μ−1 P =
∫

ηF(dη),

describe quantum measurements satisfying the covariance condition

V ∗
x E(B)Vx = E(B−x), B ∈ A (R),

U ∗
v F(B)Uv = F(B−v), B ∈ A (R),

(3.3.28)

which follow from (3.2.19). We shall use the �rst of these relations to
explain the kinematical meaning of the observable Q.

Consider the family of the states

Sx = e−ix P Seix P , x ∈ R,

corresponding to different values of the coordinate parameter x . This
parameter describes the position of the preparing apparatus and in this
sense it re�ects an information on the position of the microobject. If the
measurement of the observable Q is performed, then by (3.2.20) applied
to A = −P , B = Q, the resulting probability distributions satisfy

μE
x (B) = μE

0 (B−x); x ∈ R, B ∈ A (R).

This means that the spatial shift of the preparing apparatus is re�ected
by the corresponding shift of the resulting probability distribution (Fig-
ure 3.2). Therefore the observable Q and its spectral measure E =
{E(dξ)} are naturally associated with a measurement of coordinate pa-
rameter x .

The property which makes this association possible is the covariance
property (3.3.28) with respect to the representation of the spatial shifts
group. As we shall see in Chapter 4 there is a variety of covariant mea-
surements: a parameter x can be measured in different ways with differ-
ent accuracy. According to (3.2.12) the accuracy of measurement of the
coordinate parameter x is bounded from below:

Dx(X) ≥ [4Dx(P)]−1

for any unbiased estimate X of x . We shall show that there is a way to
single out the observable Q as an optimal estimate of x . We shall call
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Q the canonical coordinate observable, as is usually done in physical
literature.

In the same way the observable μ−1 P can be associated with measur-
ing the relative velocity parameter v in the family of states

Sv = eiμvQ Se−iμvQ, v ∈ R.

Therefore we shall call μ−1 P the canonical velocity observable3.
Since Q and P are canonically conjugate, they satisfy (3.2.14):

2 Im(Qψ |Pψ) = (ψ |ψ), ψ ∈ D (Q) ∩ D (P),

and the Heisenberg uncertainty relation

DS(Q) · DS(P) ≥ 1
4 . (3.3.29)

In physics it is more convenient to use, instead of the velocity observ-
able, the momentum observable which is de�ned as

p = m · (velocity observable) = �P,

where m is the “classical mass”, � = m/μ is the quantity proportional to
Planck’s constant. The meaning of these coef�cients will be explained in
Section 3.7. Redenoting q ≡ Q we write (3.3.29) in the form

DS(q) · DS(p) ≥ �2

4
, (3.3.30)

which is usually formally derived from the Heisenberg CCR

[q, p] = i�. (3.3.31)

3.4. Uniqueness theorem. The Schrödinger
and the momentum representations

The CCR (3.3.22) is of fundamental importance in quantum theory. A
concrete family of unitary operators {Wx,v} in a Hilbert space H satisfy-
ing (3.3.22) is called a representation of the CCR. According to our con-
vention we always mean continuous representations such that (ϕ|Wx,vψ)

are continuous functions of (x, v). A complete description of such rep-
resentations is given by the famous uniqueness theorem due to von Neu-
mann and Stone. The proof of the theorem is postponed until Section 5.3.

3 For the charged particle the velocity observable has a different form, but we shall not touch this
question (see, e.g., Jauch [71]).
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Theorem 3.4.1 (Uniqueness). Any two irreducible representations

(x, v)→ W ( j)
x,v; j = 1, 2,

of the CCR are unitarily equivalent: there is a linear isometric map U of
H2 onto H1, where H j is the space of jth representation, such that

W (2)
x,v = U ∗W (1)

x,vU ; (x, v) ∈ R2.

Moreover any representation of the CCR is a discrete orthogonal sum of
irreducible representations.

This implies that any representation of the CCR is unitarily equivalent
to the representation of the form

(x, v)→
⎡⎢⎣ W (0)

x,v 0
. . .

0 W (0)
x,v

⎤⎥⎦ ,

where (x, v)→ W (0)
x,v is a �xed irreducible representation. Thus the CCR

gives an essentially unique description of the kinematics of quantum ob-
ject with the given value of μ. To describe all representations it is suf�-
cient to give only one irreducible representation.

Consider the space H = L 2(R) of the complex square-integrable
functions on the real line R and the family of unitary operators in H

acting on ψ ∈ H by the relation

Wx,vψ(ξ) = exp
[
iμv

(
ξ − x

2

)]
ψ(ξ − x). (3.4.32)

One easily checks that (x, v) → Wx,v is a representation of the CCR. It
is an irreducible representation. To explain it consider the one-parameter
unitary groups Vx = Wx,0 and Uv = W0,v acting on ψ by the formulas

Vxψ(ξ) = ψ(ξ − x), (3.4.33)

Uvψ(ξ) = eiμvξψ(ξ). (3.4.34)

Assume that L ⊂ H is an invariant closed subspace of {Wx,v; (x, v) ∈
R2}. Then it is invariant under (3.4.34). It follows that there is a measur-
able subset B ⊂ R such that L = {ψ : ψ(ξ) = 0, ξ ∈ B}. But such a
subspace can be invariant under all shifts (3.4.33) only if either B or the
complement of B has zero Lebesgue measure. This corresponds to either
L = H or L = [0] so that the representation is irreducible.
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The representation (3.4.32) of the CCR in L 2(R) is called the Schrö-
dinger representation. From (3.4.34) and (3.3.27) we get the canonical
observables in this representation

Qψ(ξ) = ξψ(ξ), ψ ∈ D (Q), (3.4.35)

and from (3.4.33) and (3.3.26)

Pψ(ξ) = i−1 d

dξ
ψ(ξ), ψ ∈ D (P). (3.4.36)

Apparently D (Q) ∩ D (P) contains the dense subspace S (R) of the
in�nitely differentiable functions which tend to zero together with all
derivatives faster than any degree of ξ as |ξ | → ∞.

Fix x and v and consider the family of unitary operators {Wθx,θv; θ ∈
R}. From (3.3.22) it follows that this is a one-parameter unitary group.
From (3.4.32)

d

dθ
Wθx,θvψ(ξ)

∣∣∣∣
θ=0

= μvξψ(ξ)− x i−1 d

dξ
ψ(ξ)

= (μvQ − x P)ψ(ξ)

for ψ , say, from S (R). It follows that

Wx,v = exp[i(μvQ − x P)], (3.4.37)

where μvQ − x P means the self-adjoint extension of the sum de�ned,
e.g., on S (R).

Since by (3.4.35) Q is just the operator of multiplication by ξ in
L 2(R), then by Section 2.4 Q is “diagonal” in the Schrödinger repre-
sentation, i.e., in Dirac’s notations

Q =
∫

ξ |ξ)(ξ |dξ,

where |ξ) can be regarded as “vector” of an “unphysical state” in which
the object has a precisely determined coordinate ξ . The probability dis-
tribution of the coordinate observable Q = q with respect to a state
S = |ψ)(ψ | is, according to (2.3.36), |ψ(ξ)|2dξ . The more this distribu-
tion is concentrated at the point q̄, i.e., the smaller is DS(q), the more the
quantum object resembles a classical point mass (a particle).

On the other hand, the momentum operator p = �P = �i−1d/dξ has
the formal eigenfunctions exp(iξη); η ∈ R (see Section 2.4), correspond-
ing to “unphysical states” in which the object has strictly determined ve-
locity η/μ and momentum �η. From the Heisenberg uncertainty rela-
tion (3.3.30) it follows that the more de�nite is the momentum, i.e., the
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smaller DS(p), the less de�nite is the spatial localisation of the object.
In the states with DS(p) ≈ 0 the object thus resembles a classical wave.
Therefore, depending on preparation of the basic state, a quantum object
may display features both of a classical wave and a classical particle.

Consider the Fourier transform

ψ̃(η) = 1√
2π�

∫
e−iξη/�ψ(ξ)dξ, (3.4.38)

modi�ed by the factor �−1, which maps isometrically H = L 2(R) onto

H̃ = L 2(R). De�ning the operators W̃x,v in H̃ by W̃xvψ̃ = W̃x,vψ

one calculates using (3.3.22) and (3.4.38)

W̃x,vψ̃(η) = exp

[
− ix

�

(
η − mv

2

)]
ψ̃(η − mv). (3.4.39)

The family (x, v)→ W̃x,v forms a different representation of the CCR in
the space H̃ which is called the momentum representation. The formula
(3.4.38) describes the transform from the Schrödinger representation to
the momentum representation and gives explicitly their unitary equiva-
lence. In momentum representation

p̃ψ̃(η) ≡ p̃ψ(η) = ηψ̃(η), q̃ψ̃(η) = �i
d

dη
ψ̃(η),

so it “diagonalizes” the momentum observable.

3.5. Minimum-uncertainty states. The completeness relation

Pure states Sψ for which the equality holds in the uncertainty relation
(3.3.29) are called minimum-uncertainty states. According to (2.6.64)
this is the case if and only if for a real c

[(Q − Q)+ ic(P − P)]ψ = 0. (3.5.40)

For each c > 0 this equation has a solution ψ ∈ L 2(R) which is unique
up to a coef�cient. Indeed in the Schrödinger representation (3.5.40)
reads [

(ξ − Q)+ c

(
d

dξ
− iP

)]
(ξ |ψ) = 0, (3.5.41)

whence, using the normalization
∫ |(ξ |ψ)|2dξ = 1,

(ξ |ψ) = k
4
√

πc
exp

[
iPξ − (ξ − Q)2

2c

]
,
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with |k| = 1, c > 0. Choosing k = exp(−iQ P/2), putting c = 2σ 2 and
denoting the resulting unit vector by |P, Q; σ 2), we have

(ξ |P, Q; σ 2) = 1
4
√

2πσ 2
exp

[
iP

(
ξ − Q

2

)
− (ξ − Q)2

2σ 2

]
. (3.5.42)

The meaning of P , Q and σ 2 is clear: P and Q are the mean values of P
and Q in the state Sψ and

σ 2 = DS(Q) = [4DS(P)]−1.

The minimum-uncertainty states are sometimes called “wave packets”;
under a special reparametrization they will appear also as “coherent states”
in Section 3.10. Of special importance is the ground state with P = Q =
0 corresponding to the vector

(ξ |0, 0; σ 2) = 1
4
√

2πσ 2
exp

(
− ξ 2

4σ 2

)
. (3.5.43)

The vector |P , Q; σ 2) is obtained from it through the action of the dis-
placement operator

|P, Q; σ 2) = WQ,P/μ|0, 0; σ 2), (3.5.44)

as follows from (3.4.32) and (3.5.42).
We shall show that for any �xed σ 2 the family of vectors {|P, Q; σ 2);

(P, Q) ∈ R2} satis�es the completeness relation∫∫
|P, Q; σ 2)(σ 2; Q, P|dP dQ

2π
= I. (3.5.45)

In contrast to the formal completeness relations (2.3.33) and (2.4.52) this
relation has strict mathematical meaning, the integral being understood
in the sense of weak convergence, since |P, Q; σ 2) are usual vectors of
the Hilbert space. However these vectors are not orthogonal for different
values of P, Q; moreover they are linearly dependent. This is expressed
by saying that they form an overcomplete system.

The completeness relation (3.5.45) follows from the so called orthog-
onality relation for an irreducible representation of the CCR. Such rela-
tions have a very general nature (cf. Section 4.8), but we give an elemen-
tary proof of them for the particular case of interest.



102 Alexander Holevo

Proposition 3.5.1. Let (x, v) → Wx,v be an irreducible representation
of the CCR in H. Then the matrix elements (ψ |Wx,vϕ) are Lebesgue
square-integrable functions of (x, v). If {e j } is an orthonormal basis in
H then the functions

{√μ/2π(e j |Wx,vek)}
form an orthonormal basis in the space L 2(R2) of complex square inte-
grable functions of (x, v) so that the orthogonality relations hold:

μ

2π

∫∫
(e j |Wx,vek)(el |Wx,vem)dx dv = δ jlδkm . (3.5.46)

Proof. By Theorem 3.4.1 we can deal with the Schrödinger representa-
tion. By (3.4.32)

1√
2π

(ϕ|Wx,vψ)= 1√
2π

e−ixy/2
∫

ϕ(ξ)eiyξψ(ξ − x)dξ

= 1

2π
e−ixy/2

∫∫
ϕ(ξ)ψ̃(η)eiηξ e−i(ηx−yξ)dξ dη,

(3.5.47)

for all ϕ, ψ ∈ H, where ψ̃(η) is now the Fourier transform of ψ(ξ) and
y = μv. Since ϕ, ψ̃ are square-integrable, then ϕ(ξ) ψ̃(η) exp(iηξ) is a
square-integrable function of (ξ, η). Therefore the integral in (3.5.47) has
the meaning as Fourier transform F of a square-integrable function and
so the function (ϕ|Wx,vψ) is a square-integrable function of (x, v). If {e j }
is an orthonormal basis in L 2(R), then the functions e j (ξ)ẽk(η) exp(iηξ)

form an orthonormal basis in L 2(R2). Since the Fourier transform F

is isometric, then the functions F[e j (ξ)ẽk(η) exp(iηξ)] also form an or-
thonormal basis in L 2(R2). Therefore the functions

(2π)−1/2(e j |Wx,y/μek) = exp(ixy/2) ·F[e j (ξ)ẽk(η) exp(iηξ)]
form an orthonormal basis in the space L 2(R2) of the variables x , y =
μv, whence (3.5.46) follows.

From (3.5.46) we get

μ

2π

∫∫
(ϕ1|Wx,vψ1)(ϕ2|Wx,vψ2)dx dv = (ϕ1|ϕ2)(ψ1|ψ2) (3.5.48)

for arbitrary ϕ j , ψ j ∈ H ; j = 1, 2. Putting ψ1 = ψ2 = ψ with
(ψ |ψ) = 1, we obtain

μ

2π

∫∫
(ϕ2|Wx,vψ)(ψ |Wx,vϕ1)dx dv = (ϕ2|ϕ2).
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Since ϕ1, ϕ2 are arbitrary, this means that

μ

2π

∫∫
Wx,v|ψ)(ψ |W ∗

x,vdx dv = I, (3.5.49)

where the integral converges weakly. Thus for any unit vector ψ the fam-
ily {Wx,v|ψ); (x, v) ∈ R2} satis�es the completeness relation (3.5.49).
Putting |ψ) = |0, 0; σ 2) we get (3.5.45).

3.6. Joint measurements of coordinate and velocity

As follows from the uncertainty relation (3.3.29) the observables of co-
ordinate Q and velocity μ−1 P are incompatible. This means that there is
no measurement M(dx dv) such that the measurements E(dx) and F(dv)

described by the spectral measures of Q and μ−1 P are marginal with re-
spect to M(dx dv), i.e.,

E(dx) =
∫

M(dx, dv), F(dv) =
∫

M(dx dv).

However if one concludes that quantum theory unconditionally forbids
joint measurements of coordinate and velocity, one meets serious dif�-
culties. Experimentally velocity is often measured through the propor-
tional quantity, the momentum P . A physicist considering classical me-
chanics as the limit of quantum theory as � → 0, encounters a troubling
discontinuity at � = 0; for all � �= 0, however small, there is no joint
measurement for q, p, and for � = 0 they are trivially jointly measur-
able. More sharply, if one properly considers classical mechanics only
as approximation of the more basic quantum theory, one has to conclude
the impossibility of joint measurements of coordinate and momentum for
macroscopic objects as well. Indeed, consider a simpli�ed “macroscopic
object” consisting of an arbitrary large number N of identical quantum
particles, the canonical observables q j , p j of which satisfy the Heisen-
berg CCR for N degrees of freedom

[q j , pk] = i�δ jk, [q j , qk] = [p j , pk] = 0. (3.6.50)

Then the “macroscopic observable” – coordinate of the center of mass
q = N−1 ∑ q j and the total momentum p = ∑

p j – satisfy the same
Heisenberg CCR (3.3.31) as the “microscopic observables” q j , p j . Since
� = 0 (though it is extremely small if expressed in the classical units,
� ≈ 10−27 g cm2 s−1) one has to acknowledge the impossibility of joint
measurements of the “macroscopic observables” q and p.
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This is in apparent contradiction with the experimental evidence of
classical mechanics. Moreover, there are experiments with quantum par-
ticles giving the data which can be interpreted as the joint measurements
of coordinate and velocity. For example, from the trace of a charged
particle in a bubble chamber it is possible to estimate both coordinate
and momentum of the particle. In fact, even if only the momentum is
measured, there is information about the localization of the particle: the
experimenter knows at least that the particle is within the measuring ap-
paratus. Adjoining this information to the results of the measurement one
can interpret them as “joint measurement” of coordinate and momentum.
Anyhow, joint measurements of coordinate and velocity actually do exist,
so the problem is to �nd for them a proper quantum theoretical descrip-
tion.

This problem can be given a natural solution in the framework of the
concept of measurement developed in Chapters 1-2. According to it, a
joint measurement of a pair of parameters x and v must be described by a
resolution of identity M(dx dv) in H, with the joint probability distribu-
tion of the results given by μS(dx dv) = Tr SM(dx dv). To single out the
resolutions of identity which actually correspond to joint measurements
of the coordinate and the velocity, we shall make use of the covariance
argument similar to one used in Section 3.3 for the explanation of the
kinematical meaning of the observables Q and P .

Assume that a state S is prepared by an apparatus to which a frame
of reference is related. If the apparatus is shifted to the distance x and
moves with the velocity v relative to its basic position, then the prepared
state will be

Sx,v = Wx,v SV ∗
x,v.

The parameters x and v are thus the physical quantities which contain
an information about the state of the microobject insofar as it is prepared
by the apparatus the position of which is characterized by x and v. Let
M(dx dv) be a resolution of identity describing a joint measurement of
x and v; it is then natural to require that the probability distribution of
the measurement with respect to the “shifted” state Sx,v be just the initial
probability distribution shifted by the same vector (x, v), i.e.,

μSx,v
(B) = μS(B−x,−v); B ∈ A (R2),

where B−x,−v = {(ξ − x, η − v) : (ξ, η) ∈ B} (Figure 3.3).
This equality should hold for all S, whence

W ∗
x,v M(B)Wx,v = M(B−x,−v); B ∈ A (R2). (3.6.51)

The measurements M(dx dv) satisfying this condition will be called co-
variant with respect to the representation (x, v) → Wx,v of the group of
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kinematical transformations. The condition (3.6.51) is analogous to the
condition (3.2.19) for an one-parameter shift group.

In Chapter 4 we shall describe all resolutions of identity satisfying the
condition (3.6.51); among them there are no orthogonal ones. This is
another expression of the fact that there are no joint measurements of co-
ordinate and velocity in the conventional sense. The generating example
of the covariant measurement is given by

M(dx dv) = Wx,v|ψ)(ψ |W ∗
x,v

μ dx dv

2π
, (3.6.52)

where ψ is a unit vector of H. This means that for a Borel B we de�ne

(ϕ|M(B)ϕ) =
∫∫

B
(ϕ|Wx,vψ)(ψ |Wx,vϕ)

μ dx dv

2π
, ϕ ∈ H,

the integral converging by Proposition 3.5.1. All properties of the res-
olution of identity are satis�ed: that M(B) ≥ 0 is obvious; the weak
σ -additivity follows from the property of the integral, and the normaliza-
tion M(R2) = I is equivalent to the completeness relation (3.5.49). That
(3.6.52) satis�es (3.6.51) follows from the CCR (3.3.22). The probability
distribution of the measurement with respect to the state S is

μS(dx dv) = (ψ |W ∗
x,v SVx,vψ)

μ dx dv

2π
. (3.6.53)

To visualize this construction we give an idealized description of a
procedure which can be considered as realization of the measurement
(3.6.52) in the sense of Section 2.5. In addition to H with the canonical
pair Q, P in H consider the identical space H0 and a canonical pair Q0,
P0 in H0. In the tensor product H⊗H0 consider the operators

P̃ = P ⊗ I0 + I ⊗ P0, Q̃ = Q ⊗ I0 − I ⊗ Q0, (3.6.54)

where I0 is the unit operator in H0. These operators are in�nitesimal
generators of the unitary groups

eiξ Q̃ = eiξ Q ⊗ e−iξ Q0, eiηP ⊗ eiηP0, (3.6.55)

which commute by the Weyl CCR (3.3.24), and therefore P̃ , Q̃ are com-
muting self-adjoint operators in the sense of Section 2.6. It follows that
Q̃ and μ−1 P̃ are compatible and admit the joint measurement E(dx dv).

For de�niteness we may take the Schrödinger representation Q = ξ1,
P = i−1d/dξ1 in H = L 2(R1), and Q0 = ξ2, P0 = i−1d/dξ2 in H0 =
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L 2(R2). Consider a “particle” with two degrees of freedom moving in
the plane ξ1, ξ2. Then the Hilbert space of the particle will be H ⊗H0 =
L 2(R2). Introducing the new coordinate system ξ ′1, ξ ′2 rotated through the
angle −π/4 relative to the initial one (Figure 3.4), we �nd the canonical
observables corresponding to the new coordinate axes

P ′
ξ ′2
= i−1 ∂

∂ξ ′2
= (i

√
2)−1

(
∂

∂ξ1
+ ∂

∂ξ2

)
= √2

−1
(Pξ1 + Pξ2),

Qξ ′1 = ξ ′1 =
√

2
−1

(ξ1 − ξ2) =
√

2
−1

(Qξ1 − Qξ2),

so that P̃ = √
2Pξ ′2 , Q̃ = √

2Qξ ′1 . The observables Pξ ′2 and Qξ ′1 corre-
spond to the mutually orthogonal axes and apparently are jointly measur-
able.

ξ2
ξ2

ξ1

ξ1
'

'

π
4

Figure 3.4.

Let the auxiliary degree of freedom ξ2 be described by the state S0 =
|ψ̄)(ψ̄ |, where the vector ψ̄ is given in the Schrödinger representation by
the function ψ(ξ2) = (ξ2|ψ̄), which is complex conjugate to ψ(ξ) =
(ξ |ψ). Here ψ is the vector de�ning the covariant measurement by
(3.6.52).

Proposition 3.6.1. The triple (H0, S0, E), where E is the joint measure-
ment of Q̃ and μ−1 P̃, de�ned by (3.6.54) is a realization of the measure-
mentM given by (3.6.52) in the sense that

μES⊗S0
(dx dv) = μMS (dx dv)

for all states S in H.

We postpone the proof of this statement until Section 5.3 where the
necessary mathematical tools are developed.
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Now the quantitative answer to the question – what is the best accuracy
for a joint measurement of the coordinate x and the velocity v admitted
by quantum theory – can be given. We shall restrict to covariant mea-
surements (3.6.52) having �nite second moments and zero mean values
with respect to the state S. Then as at the end of Section 3.2 we can show
that the measurements are unbiased

Ex{M} ≡
∫∫

x̂μMSx,v
(dx̂ dv̂) = x0 + x,

Ev{M} ≡
∫∫

v̂μMSx,v
(dx̂ dv̂) = v0 + v.

Moreover, the marginal variances

Dx{M} ≡
∫∫

(x̂ − Ex{M})2μSx,v
(dx̂ dv̂),

Dv{M} ≡
∫∫

(v̂ − Ev{M})2μSx,v
(dx̂ dv̂)

are all the same for all values of x , v and so they are equal to the marginal
variances with respect to the basic state S.

As the measure of accuracy of joint measurement we take

R {M} = gx Dx{M} + gv Dv{M}, (3.6.56)

where gx , gv are positive constants, de�ning the relative scaling of the
variances. By Proposition 3.6.1

Dx{M} = DS(Q)+ DS0(Q0), Dv{M} = μ−2[DS(P)+ DS0(P0)].
By the inequality a + b ≥ 2

√
ab and the uncertainty relation (3.3.29)

gx DS0(Q0)+ gvμ
−2 DS0 ≥ 2

√
gx gvμ−2 DS0(Q0)DS0(P0)

≥ μ−1√gx gv

with the equality achieved if and only if

DS0(Q0) = 1

2μ

√
gv

gx
, DS0(P0) = μ

2

√
gx

gv
, (3.6.57)

i.e., if and only if S0 is the minimum-uncertainty state |0, 0; σ 2)(σ 2; 0, 0|
with σ 2 equal to DS0(Q0) from (3.6.57).

It follows that

min
M

R {M} = gx DS(Q)+ gv DS(μ
−1 P)+ μ−1√gx gv, (3.6.58)
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with the minimum achieved for the unique optimal covariant measure-
ment

M∗(dx dv) = |μv, x; σ 2)(σ 2; x, μv|μ dx dv

2π
, (3.6.59)

with σ 2 = (2μ)−1√gx/gv. We call it the canonical measurement. Here
we have used (3.6.52) and (3.5.44). In Section 4.8 we shall extend (3.6.58)
to all covariant measurements of (x, v) with �nite second moments. This
result shows clearly the place of the minimum-uncertainty states in the
problem of joint measurements of coordinate and velocity.

Putting μ = m/�, p = �P , consider the classical limit with � → 0,
m = const., DS(p) = const.. The optimal measurement is furnished
by measuring the observables q ⊗ I0 − I ⊗ q0, m−1(p ⊗ I0 + I ⊗ p0),
differing from q, m−1 p by the terms −q0, m−1 p0, the variances of which
by (3.6.57) are proportional to � and thus tend to zero. Moreover, by
(3.6.58) the best quantum accuracy

min
M

R {M} = gx DS(q)+ gv Ds(m
−1 p)+ �m−1√gx gv

tends to the classical expression gx DS(q) + gv DS(m−1 p) for the joint
measurement of coordinate and velocity. Thus in the classical limit the
optimal quantum measurement passes smoothly into the classical mea-
surement of the observables q and m−1 p and the unphysical discontinuity
is eliminated.

3.7. Dynamics of a quantum particle in one dimension

The purpose of this section is to show that the Galilean relativity deter-
mines not only quantum kinematics but also all possible dynamics, i.e.,
temporal evolutions of quantum objects. In this approach the “correspon-
dence principle”, establishing a connection between some classical and
quantum quantities, which was �rst introduced as an empirical rule, turns
out to be a logical consequence of the Galilean covariance of the theories.

To include temporal evolution one needs to consider the full Galilean
group of the transformations

ξ ′ = ξ + x + vτ, τ ′ = τ + t.

Any such transformation is characterized by the three parameters (x,v,t),
the law of composition of transformations being given by

(x1, v1, t1)(x2, v2, t2) = (x1 + x2 + v1t2, v1 + v2, t1 + t2).
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According to the general scheme of Section 3.1 one looks for irreducible
projective unitary representations (x, v, t)→Wx,v,t of the Galilean group.
As Bargmann and Wigner showed, the relation (3.1.6) for the Galilean
group can be always reduced to the form

Wx1,v1,t1 Wx2,v2,t2 = exp

[
− iμ

2
(x1v2 − x2v1 + t2v1v2)

]
×Wx1+x2+v1t2,v1+v2,t1+t2 .

(3.7.60)

The restriction of this relation to the subgroup of the kinematical
transformations (x, v, 0) gives the CCR (3.3.22) for the operators Wx,v ≡
W−x,−v,0. Since we already know the description of the representations
of a kinematical group, we can use (3.7.60) to study the relation between
kinematics and dynamics, i.e., between {Wx,v} and the one-parameter
unitary group of time evolution {Vt} ≡ {W0,0,t}. From (3.7.60) it fol-
lows that

V ∗
t Wx,vVt = Wx−vt,v.

Putting here x = 0 and v = 0 we get the two basic relations

V ∗
t UvVt = W−vt,v, (3.7.61)

V ∗
t Vx Vt = Vx . (3.7.62)

According to Stone’s theorem, Vt = exp(−it H), where H is a self-
adjoint operator called the Hamiltonian. We shall give arguments show-
ing that (3.7.61) and (3.7.62) determine the form of H , namely, (3.7.61)
implies

H = P2

2μ
+ v(Q), (3.7.63)

where v(·) is a real-valued function, and the additional restriction (3.7.62)
leads to the unique, up to an additive constant, form of the Hamiltonian

H = P2

2μ
. (3.7.64)

Introduce the time-varying observables

Q(t) = V ∗
t QVt , P(t) = V ∗

t PVt .

Then differentiating (3.7.61) with respect to v and using (3.4.34), (3.4.37)
and (2.4.49) we get

Q(t) = Q + tμ−1 P. (3.7.65)
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Similarly differentiating (3.7.62) with respect to x and using (3.4.33) we
get

P(t) = P. (3.7.66)

In what follows we shall proceed partly heuristically since the complete
proofs would take too much place here. Differentiating (3.7.65) with
respect to t we get

[H, Q] = μ−1 P.

This is an inhomogeneous linear equation; its solution H is the sum of
a particular solution H0 and the general solution v of the corresponding
homogeneous linear equation [v, Q] = 0. Since the representation is
irreducible, then the general solution of this equation is v = v(Q), as
follows from consideration in the Schrödinger representation. To show
that H0 = P2/2μ is a particular solution of the inhomogeneous equation
we need the identities

i[ f (Q), P] = − f ′(Q), i[Q, f (P)] = − f ′(P). (3.7.67)

The �rst identity follows from the fact that in the Schrödinger represen-
tation [ f (x)d/dx − d/dx f (x)]ψ(x) = − f ′(x)ψ(x), the second one is
obtained similarly in the momentum representation. Putting in it f (P) =
P2/2μ we get i[Q, P2/2μ] = −P/μ as required. Thus we have for-
mally deduced (3.7.63) from (3.7.61). Differentiating (3.7.66) with re-
spect to t we get [H, P] = 0, whence by (3.7.67) v′(Q) = 0 and (3.7.64)
follows up to a constant.

Thus the full Galilean relativity determines essentially uniquely the
Hamiltonian of a free quantum particle; if an external �eld is involved,
then the spatial homogeneity requirement (3.7.62) should be omitted and
the restricted Galilean relativity (3.7.61) gives the general form (3.7.63)
of the Hamiltonian for a particle in the external �eld.

To explain the nature of the constant μ and other terms constituting
the Hamiltonian consider a quantum state Sψ for which the coordinate
probability distribution |ψ(ξ)|2dξ is sharply peaked near the mean value
E(Q). Therefore the quantum object in the state Sψ behaves as a “par-
ticle” localized near the point E(Q). Supplying the expectations which
refer to the time t with the corresponding index we obtain from (3.7.65)
by averaging and differentiating

d

dt
Et(Q) = Et(μ

−1 P). (3.7.68)

This means that the classical velocity of the particle is Et(μ
−1 P) as is to

be expected from the kinematical meaning of the observable μ−1 P (see
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Section 3.3). Since the object displays itself as a classical particle, its
“classical mass” m can be measured; the classical momentum which is
de�ned as the product of the mass by the velocity is m(d/dt)Et(Q) =
Et(�P), where � = m/μ. Therefore p = �P in the classical limit
corresponds to the momentum observable. Differentiating formally the
last equation we get

m
d2

dt2
Et(Q) = �Et(i[H, P]).

Taking into account (3.7.67) and (3.7.63) we obtain i[H,P]= i[v(Q),P]=
−v′(Q), whence redenoting Q = q

m
d2

dt2
Et(q) = −Et(�v′(q)).

This is the Newton equation for the classical object with mass m and
the potential energy V (q) = �v(q). Putting E = �H we can rewrite
(3.7.63) in the form

E = p2

2m
+ V (q),

completely corresponding to the classical expression representing the to-
tal energy as the sum of the kinetic energy p2/2m and the potential energy
V (q). Therefore E = �H corresponds to the energy observable.

The main concern of quantum mechanics is the temporal evolution
of observed quantities such as probabilities or expectation values. An
expectation value Et(X) referring to the time t can be written in the two
equivalent forms ES(X (t)) = ESt (X), where X (t) = V ∗

t X Vt and St =
Vt SV ∗

t . The description in which states are kept �xed and observables
are time-varying as in the conventional form of classical mechanics, is
called the Heisenberg picture. The dual description corresponding to the
second form of Et(X) is called the Schrödinger picture and is widely
used in quantum mechanics.

If the initial state is pure, S = |ψ)(ψ |, then St = |ψt)(ψt | is also pure
with ψt = Vtψ . Assuming ψ ∈ D (H) we have by (2.4.49)

�i
dψt

dt
= Eψt ; ψ0 = ψ.

This is the general dynamical equation determining the temporal evolu-
tion of state vectors. Taking into account (3.7.63) we get in the Schrö-
dinger representation

i
∂ψt(x)

∂t
= − �

2m

∂2ψt(x)

∂x2
+ V (x)

�
ψt(x). (3.7.69)
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The ratio � = m/μ essentially involved in this equation can be measured
in experiments in which the object displays non-classical (wave) proper-
ties. The constant � turns out to be � = h/2π where h is the Planck’s
constant. Existence of the universal constant � means that there is a nat-
ural unit of mass; the constant � is just the coef�cient relating it with
the classical unit of mass. If the mass is measured in natural units, then
� = 1; we shall often use this convention.

3.8. Time observable.
The “time-energy” uncertainty relation

The Stone-von Neumann uniqueness theorem implies that any pair of
canonically conjugate observables is essentially the canonical Schrödinger
pair (3.4.35), (3.4.36). In particular both operators are necessarily un-
bounded from above and below. From (3.7.63) it follows that if as usual
the potential v(·) is bounded from below, the energy observable is also
bounded from below. Therefore the energy observable cannot have a
canonically conjugate observable represented by a self-adjoint operator.
For the reason to be explained below this means the nonexistence of a
self-adjoint operator representing time observable. However time mea-
surements are quite common experimentally, and a theoretical represen-
tation for them in quantum mechanics should exist. We shall show a way
to resolve the dif�culty using the broader concept of measurement.

Consider the family of states

St = e−it H Seit H , t ∈ R, (3.8.70)

corresponding to different values of the time evolution parameter t . The
parameter t describes the backward time shift in the state preparation.
Motivated by the consideration of coordinate measurements in Section3.3
consider the covariance condition

V ∗
t M(B)Vt = M(B−t); t ∈ R, B ∈ A (R), (3.8.71)

for a measurement M = {M(dt)} with Vt = exp(−it H). Denoting by
μMt the measurement probability distribution with respect to the state St

we get
μMt (B) = μM0 (B−t); t ∈ R, B ∈ A (R).

This means that a time shift in the preparation procedure causes the same
shift in the resulting probability distribution. For this reason any M sat-
isfying (3.8.71) if it at all exists can be associated with a measurement of
the time parameter t .
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If the Hamiltonian H is bounded from below, then there are no simple
measurements M = {M(dt)} satisfying (3.8.71), for otherwise (3.8.71)
would be just (3.2.19) for A = −H , G = M and −H would have
the canonically conjugate observable B = ∫

t M(dt). This expresses
appropriately the non-existence of a self-adjoint time observable. How-
ever there are measurements represented by non-orthogonal resolutions
of identity which satisfy the covariance condition (3.8.71).

It is convenient to consider (3.8.71) in the “energy representation” in
which the energy observable E is “diagonal”. For de�niteness we shall
�rst consider the case of a free particle in one dimension. Since for a free
particle E = p2/2m, then in the momentum representation (3.4.38) the
energy operator is multiplication by ε = η2/2m. We have

(ψ̃ |ψ̃) ≡
∫ ∞

−∞
|ψ̃(η)|2dη

=
√

m

2

[∫ ∞

0
|ψ̃(
√

2mε)|2 dε√
ε
+
∫ ∞

0
|ψ̃(−√2mε)|2 dε√

ε

]

=
∫ ∞

0
|ψε|2dε,

(3.8.72)

where

ψε = 4

√
m

2ε

[
ψ̃(
√

2mε)

ψ̃(−√2mε)

]
, (3.8.73)

and |ψε|2 = ψ∗εψε is the squared norm of the two-dimensional vector
ψε ∈ C2. The relation (3.8.73) describes the transformation from the
momentum representation to the energy representation in which the en-
ergy operator is multiplication by ε and the time evolution group {Vt} is
just multiplication by {exp(−itε/�)}. The space of energy representation
is thus the space L 2

K
(0,∞) of the functions with values in K = C2 with

the norm given by (3.8.72). One could write down the representation of
the CCR in L 2

K
(0,∞) but we shall not need it.

In L 2
K
(0,∞) consider the operator

T = i�
d

dε

with the domain

D (T ) =
{

ψε : ψ0 = 0,

∫ ∞

0

∣∣∣∣ d

dε
ψε

∣∣∣∣2 dε <∞
}

.
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Similar to the operator P+ in L 2(0,∞) (see Section 2.4) this is the max-
imal symmetric operator. Analogously to (2.4.54) the spectral measure
of T is the nonorthogonal resolution of identityM(dτ) de�ned by

(ψ |M(dτ)ψ) =
[∫ ∞

0

∫ ∞

0
ψ∗εψε′e

i(ε′−ε)τ/�dε dε′
]

dτ

2π�
(3.8.74)

or formally in Dirac’s notations

(ε|M(dτ)|ε′) = ei(ε′−ε)τ/�
dτ

2π�
.

The covariance property (3.8.71) of M(dτ) follows directly from this def-
inition.

Let ψ ∈ D (T ), then by (2.6.61) the mean and the variance of T in the
state Sψ are, correspondingly

ESψ
(T ) = �i

∫ ∞

0
ψ∗ε

d

dε
ψεdε,

DSψ
(T ) = �2

∫ ∞

0

∣∣∣∣ d

dε
ψε

∣∣∣∣2 dε − ESψ
(T )2,

and D (T ) = {ψ : DSψ
(T ) <∞}. Going back to momentum representa-

tion by (3.8.72) we get

ESψ
(T ) = m�i

∫ ∞

−∞
sgn η

ψ̃(η)√|η|
d

dη

ψ̃(η)√|η| dη,

DSψ
(T ) = (m�)2

∫ ∞

−∞

∣∣∣∣∣ d

dη

ψ̃(η)√|η|

∣∣∣∣∣
2

dη

|η| − ESψ
(T )2.

It follows that

T =m�i sgn η
1√|η|

d

dη

1√|η| = m sgn p|p|−1/2q|p|−1/2=mp−1 ◦ q,

D (T ) =
⎧⎨⎩ψ̃(η) :

∫ ∞

−∞

∣∣∣∣∣ d

dη

ψ̃(η)√|η|

∣∣∣∣∣
2

dη

|η| <∞
⎫⎬⎭ .

In general, assume that the energy operator is the multiplication by
the independent variable ε in the space L 2

K
(0,∞) where K is a Hilbert

space; this means that the representation space consists of K-valued func-
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tions ψ(·) on (0,∞) satisfying
∫∞

0 |ψε|2dε < ∞ where | · | is the norm
in K. Then the operator

T = �i
d

dε
;

D (T ) =
{
ψε : ψ0 = 0,

∫ ∞

0
|ψε|2dε <∞

} (3.8.75)

is maximal symmetric in L 2
K
(0,∞). Its spectral measure satisfying the

covariance condition (3.8.71) can be constructed analogously to (3.8.74).
We call (3.8.75) the canonical time observable in the energy represen-
tation. Whether it is possible to give an expression for T in momentum
or Schrödinger representation depends on the possibility of an explicit
diagonalization procedure for the energy operator. For example, for the
three-dimensional free particle one obtains T = m

∑3
j=1

p j

|p|2 ◦ q j .
Let us return to the problem of estimation of the time evolution param-

eter t in the family (3.8.70). Assume that we are interested in measuring a
distinguished moment in the history of the quantum object, this moment
having the property that shifting in time the preparation of the basic state
leads to the same shift of the distinguished moment. Typical quantities
of such kind are “arrival times” or “passage times” T̃ related to our time
observable T as T̃ = const.−T . Then the inequality (3.2.12) implies
that the variance of any unbiased estimate X of such a time quantity is
bounded from below by the quantity inversely proportional to the energy
uncertainty Dt(E) ≡ DS(E)

Dt(X) ≥ [4Dt(H)]−1 = �2[4Dt(E)]−1. (3.8.76)

As we have seen the set of unbiased estimates of t is not empty, since
it contains the observable T − ES(T ). Indeed, by Section 3.2 an estimate
corresponding to a covariant measurement is unbiased up to a constant.
Thus (3.8.76) implies the uncertainty relation of the type (3.3.30)

DS(T ) · DS(E) ≥ �2/4.

Another interesting example of an unbiased estimate of the time evo-
lution parameter of a free quantum particle of mass m is given by T̂ =
(m/ p̄) · q, where the mean momentum p̄ = ES(p) is assumed to be
non-zero. By (3.7.68)

d

dt
Et(T̂ ) = m

p̄

d

dt
Et(q) = 1

p̄
Et(p) = 1,

since the mean momentum of a free particle is conserved. To explain the
meaning of this estimate let the basic state S be the minimum-uncertainty
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state described in the momentum representation by the function

ψ̃(η) = (2πσ 2
p)
−1/4 exp

[
−(η − p̄)2

4σ 2
p

]
. (3.8.77)

Then physically (3.8.70) describes the “wave packet moving with the ve-
locity p̄/m”. Apparently (3.8.77) does not belong to the domain of the
time operator T (since in particular ψ̃(0) �= 0) and therefore DS(T ) =
∞. However it does not mean that the “arrival time of the wave packet”
cannot be measured with �nite variance; one can use T̂ which corre-
sponds to measuring t by measuring the coordinate of the “wave packet”
and dividing it by the known velocity p̄/m. The variance of this mea-
surement is �nite for (3.8.77) and grows as t2σ 2

p/ p̄2 with t →∞, while
for a covariant measurement the variance would be constant.

Finally we want to show that there is a modi�ed form of “canonical
conjugateness” between the energy and time observables. Obviously, on
a dense domain the Heisenberg type CCR [T, H ] = i�I holds. Moreover
there is a kind of the Weyl CCR. Consider the energy shift operators in
L 2

K
(0,∞)

Peψε =
{

ψε−e; ε ≥ e,

0; ε < e

(see Figure 3.5). Apparently P∗e Pe = I , Pe P∗e ≤ I , e > 0. The family
{Pe; e ≥ 0} constitutes a semigroup of isometric operators in L 2

K
(0,∞).

Using (3.8.74) one gets

Pe =
∫

eieτ/�M(dτ),

where M(dτ) is the spectral measure of T = i�d/dε and formally Pe =
exp(ieT/�). The fact that Pe are not unitary is strictly connected to the
non-self-adjointness of T . From the de�nition of Pe we obtain the rela-
tions

V ∗
t PeVt = eiet/�Pe

P∗e Vt Pe = e−iet/�Vt ; t ∈ R, 0 ≤ e,
(3.8.78)

which are algebraically similar to (3.2.17).
Also there is the time representation in which the observable T is di-

agonal. Just as the momentum representation is obtained via the Fourier
transform from the Schrödinger representation, the time representation
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ψε ψε ψεPε

ψεPε

e0 e 0ε

*

Figure 3.5.

can be de�ned through the Fourier transform of the energy representa-
tion

ψ̃(t) = 1√
2π�

∫ ∞

0
eiεt/�ψε dε.

The Hilbert space which is obtained in this way from L 2(0,∞) is called
the Hardy class H 2 for the half-plane. A reader may elaborate the time
representation of the CCR for the case of a free particle.

3.9. Quantum oscillator and phase measurement

The relation (3.7.63) gives a formal expression for the Hamiltonian H ;
to de�ne quantum dynamics, i.e., the group of unitary operators Vt =
exp(−it H), t ∈ R, the operator H needs to be essentially self-adjoint.
Proving this property for various potentials V (·) is one of the main math-
ematical problems of quantum mechanics. The other one is spectral anal-
ysis of the Hamiltonian. These problems have been intensively studied;
some indications to the literature can be found at the end of this chapter.
They are not in the scope of our book and we restrict ourselves to one
example which is both very simple and important.

Consider the energy operator

E = 1

2m
(p2 + m2ω2q2), (3.9.79)

which corresponds to the classical expression for the energy of a har-
monic oscillator with the mass m and the angular frequency ω. Putting
m = 1 to simplify formulas we get the formal Hamiltonian

H = 1

2�

(
−�2 d2

dξ 2
+ ω2ξ 2

)
(3.9.80)
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in the Schrödinger representation. Since H is the sum of two noncom-
muting unbounded operators, the question arises whether (3.9.80) de�nes
an essentially self-adjoint operator.

The expression (3.9.80) is de�ned at least on S (R), which is an in-
variant subspace of p, q and any polynomial in p and q. Introducing on
S (R) the operators

a = 1√
2�ω

(ωq + i p), a∗ = 1√
2�ω

(ωq − i p),

we have (ϕ|aψ) = (a∗ϕ|ψ) for ϕ, ψ ∈ S (R). Later we shall extend a
and a∗ so that a∗ will be the adjoint of a in the sense of Section 2.4. The
relations for a, a∗ are the same as those de�ning the complex amplitude
of the classical oscillator.

The Heisenberg CCR (3.3.31) in terms of a, a∗ takes the form

[a, a∗] = I. (3.9.81)

This equation holds at least on S (R). The energy operator takes the form

E = �ω(a∗a + 1
2). (3.9.82)

Following Dirac we construct the complete orthonormal system of eigen-
vectors of the operator

N = a∗a (3.9.83)

and hence obtain the self-adjoint extensions of N and E .
Consider the vector of the oscillator ground state |0) ≡ |0, 0; �/2ω)

which according to (3.5.43) is represented by the function

(ξ |0) =
(

π�
ω

)−1/4

exp

(
−ωξ 2

2�

)
in the Schrödinger representation. From (3.5.41) it follows that (ωq +
ip)|0) = 0 whence

a|0) = 0, N |0) = 0,

so that |0) is eigenvector of N with zero eigenvalue. De�ne

|n) = 1√
n!(a

∗)n|0); n = 0, 1, . . . (3.9.84)

Then by (3.9.81)

a|n) = √n|n − 1), a∗|n) = √n + 1|n + 1). (3.9.85)



119 Probabilistic and Statistical Aspects of Quantum Theory

It follows that
N |n) = n|n); n = 0, 1, . . . ,

so that |n) is an eigenvector of N with the eigenvalue n.
In the Schrödinger representation

(ξ |n)= 1√
n!

[
1√
2�ω

]n(
ωξ − �

d

dξ

)n (
π�
ω

)−1/4

exp

(
−ωξ 2

2�

)

=
√

ω

π�
1

2nn!Hn

(√
ω

�
ξ

)
exp

(
−ωξ 2

2�

)
,

(3.9.86)

where Hn(·) are the Hermite polynomials. It is known that the functions
(3.9.86) form a complete orthonormal system in L 2(R) so that

∞∑
n=0

|n)(n| = I. (3.9.87)

Therefore any vector ψ can be represented as

|ψ) =
∞∑

n=0

|n)(n|ψ),

where (n|ψ); n = 0, 1, . . ., is a square-summable sequence of complex
numbers. Therefore states and observables can be represented by ma-
trices acting in l2. In particular, the CCR (3.3.22) can be written in the
matrix form. This is called the Fock representation. The isometric trans-
formations from the Schrödinger representation to the Fock representa-
tion and viceversa are give by

(n|ψ) =
∫

(n|ξ)(ξ |ψ)dξ, (ξ |ψ) =
∑

n

(ξ |n)(n|ψ),

where the kernel (ξ |n) = (n|ξ) is de�ned by (3.9.86).
The self-adjoint extension of N is now given by

D (N ) =
{

ψ :
∞∑

n=0

n2|(n|ψ)|2 <∞
}

,

N |ψ) =
∞∑

n=0

n|n)(n|ψ); ψ ∈ D (N ),



120 Alexander Holevo

as follows from spectral Theorem 2.4.1. This can be shown to be the
unique self-adjoint extension of the operator (3.9.83) de�ned on S (R).
De�ning

D (a) = D (a∗) =
{

ψ :
∞∑

n=0

n|(ψ |n)|2 <∞
}

,

we have (a)∗ = a∗, (a∗)∗ = a and N = a∗a.
According to (3.9.82) we obtain the self-adjoint extension of the en-

ergy operator E . Obviously the system |n); n = 0, 1, . . . forms the basis
of eigenvectors of E with

E |n) = �ω

(
n + 1

2

)
|n); n = 0, 1, . . .

This relation shows that the spectrum of the oscillator energy consists of
discrete series (n + 1

2)�ω; n = 0, 1, . . . Physicists call the variable n
number of quanta, so that |n) describes the n-quanta state. The operator
N presents the observable number of quanta. Since according to (3.9.84)
a diminishes the “number of quanta” by one, it is called the annihilation
operator (of a quantum). For similar reason a∗ is called the creation
operator.

Since the Hamiltonian H = �−1 E is diagonal in the Fock represen-
tation, dynamics of a quantum oscillator is described very simply in this
representation, namely

Vt |ψ) =
∞∑

n=0

e−iω(n+1/2)t |n)(n|ψ). (3.9.88)

The n-quanta states are thus the stationary, i.e., time-invariant states. In
the Heisenberg picture the quantum dynamics takes the form which is
similar to classical equations. Introducing time-varying operators

a(t) = V ∗
t aVt , a(t)∗ = V ∗

t a∗Vt ,

we obtain using (3.9.84) and (3.9.87)

a(t) = e−iωt a, a(t)∗ = eiωt a∗. (3.9.89)

Expressing p, q back through a, a∗ by the relations

p = √2�ω
a − a∗

2i
, q =

√
2�
ω

a + a∗

2
, (3.9.90)
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we obtain for p(t) = V ∗
t pVt , q(t) = V ∗

t qVt

p(t)= p cos ωt − ωq sin ωt, q(t)=q cos ωt + pω−1 sin ωt; (3.9.91)

these relations are formally the same as the solutions of the equations of
motion for the classical harmonic oscillator.

The oscillator dynamics is periodical in the sense that Vt+2π/ω = Vt for
all t as follows from (3.9.88). Therefore the transformation (3.8.70) of a
state S corresponding to the time shift t is equivalent to the transformation

Sθ = eiθ N Se−iθ N , (3.9.92)

where θ = (−ωt)(mod 2π) varies in [0, 2π). Since the eigenvalues of
N are integers, then exp(iθ N ) = exp i(θ + 2πk)N so that θ → Vθ =
exp(iθ N ) is a unitary representation of the additive group of [0, 2π) mod-
ulo 2π . This group T is the same as the group of rotations of the unit
circle. We shall call θ in (3.9.92) the phase parameter.

To elucidate what measurements should be associated with the phase
parameter consider the covariance condition

V ∗
θ M(B)Vθ = M(B−θ ); θ ∈ [0, 2π),

where Vθ = exp(iθ N ), and B−θ is the shift (mod 2π) of the set B ⊂
[0, 2π). A resolution of identity satisfying this condition is given by the
symbolic matrix elements in the Fock representation

(n|M(dθ)|n′) = ei(n−n′)θ dθ

2π
. (3.9.93)

As we shall show in Chapter 4 this measurement can be singled out from
all covariant measurements of the phase parameter by an optimality re-
quirement. We call (3.9.93) the canonical phase measurement in the Fock
representation.

We shall also show that there is no simple covariant measurement of θ .
Thus there is no phase observable in the conventional sense. To show that
the resolution of identity (3.9.93) is not orthogonal consider the operators

P =
∫ 2π

0
eiθ M(dθ), P∗ =

∫ 2π

0
e−iθ M(dθ). (3.9.94)

From (3.9.93), taking into account that

(2π)−1
∫ 2π

0
exp i(n − n′)θ dθ = δnn′
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we get the matrix representation

P =
∞∑

n=1

|n − 1)(n|, P∗ =
∞∑

n=1

|n)(n − 1|. (3.9.95)

It follows that

P P∗ = I, P∗P = I − |0)(0|,
so that P∗ is isometric but not unitary as it would be if (3.9.93) were an
orthogonal resolution of identity.

From (3.9.85) and (3.9.95) one gets the relations

a = P|a|, a∗ = |a|P∗,
where |a| = √a∗a = √N , which are the noncommutative analog of the
de�nition of phase for the classical oscillator: a = |a| exp iθ . Also from
(3.9.95) follow the relations between the unitary group {Vθ ; 0 ≤ θ < 2π}
and the discrete semigroup of isometric operators {(P∗)n; n = 0, 1, . . .}

V ∗
θ (P∗n)nVθ = e−inθ (P∗)n; PnVθ (P∗)n = einθ Vθ ;

0 ≤ θ < 2π, n = 0, 1, . . . ,
(3.9.96)

which are analogous to the time-energy relations (3.8.78). Thus, though
there is no strict canonical conjugateness between phase and number of
quanta, a weakened form of the conjugateness expressed by the last equa-
tion holds.

Similarly to the time representation one can introduce the phase repre-
sentation in the space of the functions of the form

ψ(θ) =
∞∑

n=0

e−inθ (n|ψ); 0 ≤ θ < 2π.

The Hilbert space obtained in this way from l2 is called the Hardy class
H 2 for the unit circle. The operator P∗ acts as multiplication by exp(−iθ)

in this space. The displacement operators Wx,v and thus the representa-
tion of the CCR can be constructed in this space but we shall not pursue
this matter.

3.10. The coherent-state representation

An important role in the theory of quantum oscillator and related topics
is played by the minimum-uncertainty states which are reparametrized
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by introducing complex variable ζ = (2�ω)−12(ωQ + i�P). Putting
Wζ = WQ,�P and taking into account that � = μ−1 since m = 1 we
rewrite the CCR (3.3.22) in the form

Wζ1 Wζ2 = ei Im ζ1 ζ̄2 Wζ1+ζ2 . (3.10.97)

Then denoting |ζ ) = |P, Q; �/2ω) we can rewrite (3.5.44) as

|ζ ) = Wζ |0), (3.10.98)

where |0) is the vector of the oscillator ground state. The states |ζ )(ζ |
are called the oscillator coherent states, the explanation of the name to be
found in quantum optics where they are especially useful.

Rewriting (3.5.41) in the complex form we get

a|ζ ) = ζ |ζ ), ζ ∈ C, (3.10.99)

so that {|ζ )} forms a continual system of eigenvectors of the annihilation
operator a. Distinct from eigenvectors of a self-adjoint operator they are
not orthogonal; namely, (3.10.98) and (3.10.97) imply

(ζ1|ζ2) = exp[− 1
2(|ζ1|2 + |ζ2|2 − 2ζ̄1ζ2)]. (3.10.100)

The completeness relation (3.5.45) takes the form∫
C

|ζ )(ζ |d
2ζ

2π
= I, (3.10.101)

where d2ζ = 1
2 dP dQ. Applying this to a vector ψ ∈ H we obtain

|ψ) =
∫

C

|ζ )(ζ |ψ)
d2ζ

π
.

This formula establishes the one-to-one correspondence between the vec-
tors ψ of the Hilbert space of an irreducible representation of CCR and
the functions ψ(ζ ) = (ζ |ψ) of the complex variable. Since by (3.10.101)

(ψ |ϕ) =
∫

C

(ψ |ζ )(ζ |ϕ)
d2ζ

2π
,

the spaceH is isometrically embedded into the space L 2(C) of complex-
valued square-integrable functions of ζ . The image of H is a proper
subspace of L 2(C) which we are going to describe.



124 Alexander Holevo

Putting ζ2 = 0 in (3.10.100) we obtain that the oscillator ground state
vector gives rise to the function (ζ |0) = exp(−|ζ |2/2). Therefore by
(3.10.99) the functions representing n-quanta state vectors (3.9.83) are

(ζ |n) = 1√
n!(ζ |(a

∗)n|0) = ζ̄ n

√
n!e

−|ζ |2/2; n = 0, 1, . . . (3.10.102)

Since ψ ∈ H is uniquely presented as

|ψ) =
∞∑

n=0

cn|n),

∞∑
n=0

|cn|2 = (ψ |ψ) <∞,

then the function ψ(ζ ) = (ζ |ψ) has the form

ψ(ζ ) = f (ζ ) exp(−|ζ |2/2), (3.10.103)

where f (ζ ) = ∑
c̄nζ

n/
√

n! is a holomorphic function of ζ ∈ C. More-
over

∫ | f (ζ )|2 exp(−|ζ |2)d2ζ < ∞. Thus the image of H is the Hilbert
space E 2(C) of the complex-valued functions (3.10.103) with the inner
product

(ψ1|ψ2) =
∫

C
ψ1(ζ )ψ2(ζ )

d2ζ

π
=
∫

C

f1(ζ ) f2(ζ )e−|ζ |
2 d2ζ

π
. (3.10.104)

Any bounded operator X in E 2(C) is an integral operator with the ker-
nel (ζ1|X |ζ2) since by (3.10.101)

(ζ1|Xψ) =
∫

C

(ζ1|X |ζ2)(ζ2|ψ)
d2ζ2

π
.

In particular the displacement operator Wζ has the kernel

(ζ1|Wζ |ζ2) = exp[− 1
2(|ζ1|2 + |ζ |2 + |ζ2|2)+ ζ̄1ζ2 + ζ̄1ζ − ζ̄ ζ2],

as follows from (3.10.97) and (3.10.100). This de�nes the representa-
tion of the CCR in E 2(C), which is sometimes called the coherent-state
representation. The transformations from this representation to the Fock
representation and viceversa are given by the kernel (3.10.102); those to
the Schrödinger representation by the kernel

(ξ |ζ ) = (π�/ω)−1/4 exp

[
−
(√

ω

2�
ξ − ζ

)2 /
2− |ζ |2/2

]
,

which can be derived from (3.5.42).
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The coherent-state representation diagonalizes the creation operator a∗
since in E 2(C) it is just the operator of multiplication by ζ̄ : (ζ |a∗ψ) =
ζ̄ (ζ |ψ). The annihilation operator a is ∂/∂ζ̄ + 1

2ζ . Let us show that the
nonorthogonal resolution of identity

M(d2ζ ) = |ζ )(ζ |d
2ζ

π

is in a sense a spectral measure of a∗. Applying formally to (3.10.101)
operators a∗ and a we obtain

a∗ =
∫

C

ζ̄ M(d2ζ ), a =
∫

C

ζ M(d2ζ ).

To give these relations precise meaning we remark that for ψ ∈ D (a∗)

‖a∗ψ‖2 =
∫
|ζ |2|(ψ |ζ )|2 d2ζ

π
.

Indeed, by (3.10.104) and (3.10.99)

‖a∗ψ‖2 =
∫
|(a∗ψ |ζ )|2 d2ζ

π
=
∫
|ζ |2|(ψ |ζ ) 2 d2

π
ζ.

Thus

D (a∗) =
{
ψ :

∫
|ζ |2|(ψ |ζ )|2 d2ξ

π
<∞

}
.

For ψ ∈ D (a∗) the integral
∫ |ζ |2(ψ |M(d2ζ )ψ) is convergent and so are

the integrals (ϕ|a∗ψ) = ∫
ζ̄ (ϕ|M(d2ζ )ψ), (ϕ|aψ) = ∫

ζ(ϕ|M(d2ζ )ψ).
To sum up, the operators a∗ and M(d2ζ ) are connected by the relations

D (a∗) =
{
ψ :

∫
|ζ |2(ψ |M(d2ζ )ψ) <∞

}
;

‖a∗ψ‖2 =
∫
|ζ |2(ψ |M(d2ζ )ψ), ψ ∈ D (a∗);

(ϕ|a∗ψ) =
∫

ζ̄ (ϕ|M(d2ζ )ψ), ϕ, ψ ∈ D (a∗),

(3.10.105)

which are similar to those connecting a maximal symmetric operator with
its spectral measure (Section 2.4). Applying to (3.10.101) the operator am

from the left and the operator (a∗)n from the right we obtain

am(a∗)n =
∫

C

ζ m ζ̄ n M(d2ζ ).
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The order of the operators a and a∗ in this formula is important since they
do not commute. An operator expression in which all a∗ follow all a is
called normally ordered. The above relation can be generalized to

F(a, a∗) =
∫

F(ζ, ζ̄ )M(d2ζ ),

where F(ζ, ζ̄ ) is a function representable by a power series in ζ , ζ̄ which
converges rapidly enough and F(a, a∗) means the normally ordered ex-
pression.

One may wonder what is the property of the creation operator a∗ which
enables the spectral representation (3.10.105). Recall that a bounded op-
erator X in H is called normal if [X, X∗] = 0; this is equivalent to
‖Xψ‖ = ‖X∗ψ‖, ψ ∈ H. A densely de�ned (unbounded) operator X
is normal if D (X) = D (X∗) and ‖Xψ‖ = ‖X∗ψ‖, ψ ∈ D (X). For
a normal operator X there is a unique orthogonal resolution of identity
E(d2ζ ) on C such that

D (X) =
{
ψ :

∫
|ζ |2(ψ |E(d2ζ )ψ) <∞

}
;

‖Xψ‖2 =
∫
|ζ |2(ψ |E(d2ζ )ψ); ψ ∈ D (X);

(ϕ|Xψ) =
∫

ζ(ϕ|E(d2ζ )ψ); ϕ, ψ ∈ D (X).

Loosely speaking, normal operators are diagonalizable but may have a
complex spectrum.

A densely de�ned operator Y in H is called subnormal if it can be
extended to a normal operator X in a Hilbert space H̃ ⊃ H, i.e., Yψ =
Xψ , ψ ∈ D (Y ) ⊂ D (X). The operator Y is subnormal if and only if
there is a resolution of identity M(d2ζ ) such that

D (Y ) ⊆
{
ψ :

∫
|ζ |2(ψ |M(d2ζ )ψ) <∞

}
;

‖Yψ‖2 =
∫
|ζ |2(ψ |M(d2ζ )ψ); ψ ∈ D (Y );

(ϕ|Yψ) =
∫

ζ(ϕ|M(d2ζ )ψ); ϕ,ψ ∈ D (Y ).

(3.10.106)

Indeed if X is a normal extension of Y with the spectral measure E(d2ξ),
then the resolution of identity

M(d2ζ ) = Ẽ E(d2ζ )Ẽ,
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where Ẽ is the projection from H̃ onto H, satis�es (3.10.106). Con-
versely let M(d2ζ ) be a resolution of identity satisfying (3.10.106), and
let E(d2ζ ) be its Naimark extension (see Section 2.5) in a Hilbert
space H̃. Then X = ∫

ζ E(d2ζ ) (with the corresponding domain) is a
normal operator satisfying

‖Xψ‖2 =
∫
|ζ |2(ψ |E(d2ζ )ψ) =

∫
|ζ |2(ψ |M(d2ζ )ψ) = ‖Yψ‖2

for ψ ∈ D (Y ). From the last relation in (3.10.106) it follows that
Ẽ Xψ = Yψ , ψ ∈ D (Y ). Therefore by the second relation ‖Xψ‖2 =
‖Yψ‖2 = ‖Ẽ Xψ‖2 whence Xψ = Ẽ Xψ = Yψ , ψ ∈ D (Y ), and X is
an extension of Y .

Any densely de�ned symmetric operator is subnormal since by The-
orem 2.4.3 it admits a spectral representation (3.10.106) with M(d2ζ )

concentrated on R. In particular the operator (3.8.75) in L 2
K
(0,∞) rep-

resenting the time observable is subnormal; its normal extension is the
self-adjoint operator �i d/dε in L 2

K
(R). An example of a bounded sub-

normal operator is the operator P∗ given by (3.9.95). Its normal extension
is the unitary operator

∑∞
n=−∞ |n)(n−1| in the Hilbert space H̃ spanned

by the orthonormal basis {|n); n = 0, ±1, . . .} which is composed of the
basis in the Fock space H, corresponding to nonnegative n and by addi-
tional orthonormal vectors, corresponding to negative values of n. Since
(3.10.105) is (3.10.106) for the creation operator a∗ it follows that a∗ is
subnormal. To construct its normal extension consider the commuting
extension (3.6.54) of the canonical pair Q, P . In terms of a, a∗ it is

ã = a ⊗ I0 + I ⊗ a∗0 , ã∗ = a∗ ⊗ I0 + I ⊗ a0,

where ã, ã∗ are normal. Let |0)00(0| be the ground state in H0. Identify-
ing H with the subspace of H̃ = H ⊗ H̃0 consisting of vectors of the
form |ψ) ⊗ |0)0, ψ ∈ H, we have H ⊆ H̃. The operator ã∗ is then an
extension of a∗ since

ã∗[|ψ)⊗ |0)0] = a∗|ψ)⊗ |0)0 + |ψ)⊗ a0|0)0 = a∗|ψ).

We have seen that to different physical quantities including those
which are not represented by self-adjoint operators correspond different
representations in which the quantity has the especially simple “diagonal”
form. All these representations are unitary equivalent; moreover transfor-
mations from one representation to another are given by explicit kernels.
The choice of the representation plays a secondary role simplifying cal-
culations; in fact any calculation can be translated from the language of
one representation to another as well as performed in abstract form in-
volving only the CCR (3.3.22).
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3.11. Representations of the rotation group
and angular momenta

In the case of the three-dimensional Cartesian space one looks for irre-
ducible representations of the Galilean group of transformations (3.1.1).
We shall restrict ourselves to kinematical aspects of a quantum particle
in three dimensions and consider the transformations

ξ′ = Rξ+ x+ vτ. (3.11.107)

The parameters of the kinematical group are the spatial shift x, the rel-
ative velocity v and the rotation matrix R and we look for irreducible
representations (x, v,R) → Wx,v,R of the group. An essentially new ele-
ment as compared to the one-dimensional case is rotation and we �rst put
x = 0, v = 0 and consider the representations R → WR of the rotation
group.

By Euler’s theorem any rotation R is a rotation Rn,ϕ around an axis n
through an angle ϕ. Here n is the unit vector in the direction of the axis.
For a �xed n the family {Rn,ϕ} constitutes the one-parameter group and
the operators Vϕ = WRn,ϕ form a unitary representation of this group. By
Stone’s theorem

Vϕ = exp(−iϕLn),

where Ln is a self-adjoint operator. Let {e j } be a Cartesian frame so that
n = n1e1+ n2e2+ n2e3 with

∑
n2

j = 1. For small values of ϕ the matrix
of the rotation Rn,ϕ is approximately

Rn,ϕ ≈ I − ϕ
∑

j

n jD j , (3.11.108)

where

I =
⎡⎣1 0 0

0 1 0
0 0 1

⎤⎦ , D1 =
⎡⎣0 0 0

0 0 1
0 −1 0

⎤⎦ ,

D2 =
⎡⎣0 0 −1

0 0 0
1 0 0

⎤⎦ , D3 =
⎡⎣ 0 1 0
−1 0 0

0 0 0

⎤⎦
in the frame {e j }. The matrices D1, D2, D3 satisfying the commutation
relations

[D1,D2] = −D3, [D2,D3] = −D1, [D3,D1] = −D2 (3.11.109)
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constitute what is called the Lie algebra of the rotation group. Let L j ≡
Le j be the in�nitesimal generator of the one-parameter group of rotations
around the coordinate axis e j ; j = 1, 2, 3. From the general represen-
tation theory it follows that the operators iL j ; j = 1, 2, 3 constitute a
representation of the Lie algebra, i.e.,

[L1, L2] = iL3, [L2, L3] = iL1, [L3, L1] = iL2. (3.11.110)

Moreover

Ln =
3∑

j=1

n j L j , (3.11.111)

so that

WRn,ϕ = exp

[
−i

3∑
j=1

ϕ j L j

]
, (3.11.112)

where ϕ j = ϕn j ; j = 1, 2, 3.
A usual procedure for �nding representations of the group is �rst to

�nd representations of the Lie algebra, i.e., concrete operators L j ; j =
1, 2, 3, satisfying (3.11.110), which is a simpler problem, and then to
construct the representations of the group by formula (3.11.112). In this
way it is found that for any �nite dimension d ≥ 2 there exists exactly
one irreducible representation J1, J2, J3 of the Lie algebra and the cor-
responding irreducible projective unitary representation of the rotation
group

R→ U (R) = exp

[
−i

3∑
j=1

ϕ j J j

]
(3.11.113)

in d-dimensional Hilbert space. We shall describe this representation in
some detail in the simplest case d = 2.

Introducing σ j = 2Jj we can rewrite the commutation relations
(3.11.110) in the form

[σ1, σ2] = 2iσ3, [σ2, σ3] = 2iσ1, [σ3, σ1] = 2iσ2.

The solution of these equation is unique to a factor and is given by matri-
ces

σ1 =
[

0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
,

which are called the Pauli matrices. They satisfy

σ1σ2 = iσ3, σ2σ3 = iσ1, σ3σ1 = iσ2. (3.11.114)
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Any Hermitean (2×2)-matrix can be represented as a unique linear com-
bination of the unit matrix and the Pauli matrices. In particular, for a
density matrix

S = 1
2(I + θ1σ1 + θ2σ2 + θ3σ3),

where θ j are the Stokes parameters introduced in Section 1.2. The re-
lations (3.11.114) make the calculations with matrices presented in this
form very convenient. In particular the exponents (3.11.113) are given by

U (R) = exp

(
− i

2

3∑
j=1

ϕ jσ j

)

= I · cos
ϕ

2
− i

3∑
j=1

ϕ jσ jϕ
−1 sin

ϕ

2
,

ϕ =
√

ϕ2
1 + ϕ2

2 + ϕ2
3 .

(3.11.115)

The representation is essentially projective since, e.g., for ϕ1 = 2π , ϕ2 =
ϕ3 = 0 relation (3.11.115) gives −I and not I .

For any other value of d there is an orthonormal basis in the repre-
sentation space in which, say, J3 has the diagonal form. Namely, the
eigenvalues of J3 are− j , − j + 1, . . . j − 1, j , where 2 j + 1 = d, so that

J3 =
j∑

n=− j

m|m)(m|, (3.11.116)

where |m) are the eigenvectors. That the differences of the eigenvalues
are integral numbers should be expected; indeed the rotation through the
angle 2π results in the initial position and therefore exp(−2π iJ3) = γ I ,
where γ = exp(iα) with α real. It follows that the eigenvalues of J3 have
the form α′ + n where n are integers. The expression for U (R) in this
basis will appear later in Section 4.10. The irreducible representations
of the rotation group are conventionally indexed by the number j , taking
values 0, 1

2 , 1, 3
2 , . . . (to j = 0 corresponds the trivial one-dimensional

representation).
We can now describe irreducible representations of the kinematical

group. Let K = Cd be d-dimensional complex space and L 2
K
(R3) the

space of vector-functions ψ(ξ) on R3 with values in K with the �nite
squared norm given by

‖ψ‖2 =
∫∫∫

‖ψ(ξ)‖2dξ1 dξ2 dξ3.
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The relation

Wx,v,Rψ(ξ) = exp[iμv · (ξ− x/2)]U (R)ψ(R−1(ξ− x)) (3.11.117)

where U (R) act in the space K, i.e., on components of the vector ψ(ξ)

at each point ξ, de�nes a projective unitary representation of the kine-
matical group called the Schrödinger representation. Remark that if we
leave aside rotations, i.e., put R = I we obtain an obvious generalization
of the Schrödinger representation (3.4.32) for the one-dimensional case.
The irreducibility then easily follows from the irreducibility of (3.4.32)
and {U (R)}. Any (continuous) projective unitary representation of the
kinematical group is unitary equivalent to the Schrödinger representation
with some values of μ and d. The type of the representation is there-
fore completely determined by the pair of “quantum numbers”: the mass
m = �μ and the number j = (d − 1)/2 called spin of the object.

To explain the meaning of the number j recall that it is the largest
eigenvalue of the operator J3. We now consider the kinematical meaning
of the operators Lk , Jk . Let �rst j = 0. Then putting x = 0, v = 0 in
(3.11.117) we obtain the representation R→ WR of the rotation group in
L 2(R) with

WRψ(ξ) = ψ(R−1ξ).

To obtain the expression for Lk in the Schrödinger representation con-
sider the in�nitesimal rotations (3.11.108). Taking n1 = 0, n2 = 0,
n3 = 1 which corresponds to rotations around e3 we get

Vϕψ(ξ1, ξ2, ξ3) ≈ ψ(ξ1 + ϕξ2,−ξ2 − ϕξ1, ξ3)

≈
[

1− ϕ

(
ξ1

∂

∂ξ2
− ξ2

∂

∂ξ1

)]
ψ(ξ1, ξ2, ξ3),

whence

L3 = i−1

(
ξ1

∂

∂ξ2
− ξ2

∂

∂ξ1

)
(3.11.118)

at least on S (R), or l3 = q1 p2 − q2 p1, where l3 = �L3 and q j = ξ j

are the position observables, p j = �i−1∂/∂ξ j are the momentum observ-
ables in the Schrödinger representation. For l1 = �L1 and l2 = �L2

similar relations hold with the circular permutation of the indices. Intro-
ducing vector notations l = [l1, l2, l3] etc. we can write them in the form
l = q × p, which is the same as the expression for the vector of angular
momentum in classical mechanics. The operators l1, l2, l3 are therefore
called the orbital angular momentum observables about the correspond-
ing axes.
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Returning to the case of arbitrary spin we remark that the operators Jk

arise from representation of the rotation group in the same way as Lk and
satisfy the same commutation relations. One may loosely imagine sk =
�Jk as “internal” angular momenta of the quantum object. They are called
the spin angular momentum observables. The in�nitesimal generators of
the representation of rotation group obtained from (3.11.117) are Lk+ Jk ;
this is interpreted by saying that the total angular momentum is the vector
sum of the orbital and the spin angular momenta.

If the spatial degrees of freedom are irrelevant, then the object is de-
scribed by the (2 j + 1)-dimensional Hilbert space K with the represen-
tation R→ U (R) of the rotation group in K. In particular for j = 1

2 we
arrive at the statistical model of the spin-1

2 particle described in Section
1.5. Let us con�rm the expression (1.5.23) for Pr{θout|θin} by calculation
based on the representation theory. Let S = |in)(in| be the density opera-
tor in the two-dimensional space describing the state of the particle after
it has passed the �rst �lter and X = |out)(out| be the test corresponding
to the second �lter. If ϕ is the angle between the directions of the two �l-
ters, then up to an irrelevant factor the vector |out) is U (Rn,ϕ)|in), where
n is an appropriate axis. Taking (in| = [1, 0] we obtain from (3.11.115)

Pr{θout|θin} = Tr SX = |(in|out)|2 = cos2 ϕ

2
,

as required.
Quantum mechanics makes possible the explanation of the Stern-Ger-

lach phenomenon. In the absence of the magnetic �eld there are no priv-
ileged directions and any state in K corresponds to one and the same
energy value ε0 determined by spatial degrees of freedom. Introduc-
tion of the magnetic �eld breaks the symmetry; the Hamiltonian describ-
ing the spin degrees of freedom in the presence of the magnetic �eld
B = [B1, B2, B3] can be shown to be

H = −λ(σ1 B1 + σ2 B2 + σ2 B3).

As expected it is invariant under rotations around the direction of B. We
can take B = [0, 0, B], then H = −λBσ3 and therefore H has two
eigenvalues ±λB. Thus instead of states with equal energy ε0 there are
two states with the energies ε0 ± λB. Particles with the different energy
values are de�ected diversely by the anisotropic magnetic �eld which
results in splitting of the beam in the Stern-Gerlach experiment.

This explanation gives an extremely simpli�ed idea of how the quan-
tum mechanics can explain the structure of energy spectra based on sym-
metry properties. Consideration of more complicated models requires
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more knowledge in the representation theory and approximate methods
of quantum mechanics and is out of the scope of our book.

3.12. Measuring the angle of rotation

If the apparatus preparing quantum state S is turned around an axis through
an angle ϕ the new state will be

Sϕ = e−iϕL SeiϕL , (3.12.119)

where L is the in�nitesimal generator of the group Vϕ = exp(−iϕL), ϕ ∈
R, constituting the unitary representation of the group of rotations around
the given axis. Since rotations through angles differing by 2πk result in
the same position of the apparatus, we may assume that the parameter ϕ

– the angle of rotation – varies in [0, 2π) and the relevant shifts group
is the group T as for the phase parameter. Having in mind to describe
measurements of the angle of rotation consider the covariance condition

V ∗
ϕ M(B)Vϕ = M(B−ϕ); ϕ ∈ [0, 2π), B ∈ A ([0, 2π))

(3.12.120)
where {M(B)} is a measurement with values in the interval [0, 2π), B−ϕ

is the shift of the set B modulo 2π . We are going to describe a canonical
solution of this relation.

Consider �rst the case of zero spin. Passing to the spherical coordinates

ξ1 = ρ sin θ cos ϕ, ξ2 = ρ sin θ sin ϕ, ξ3 = ρ cos θ;
ρ ≥ 0, 0 ≤ ϕ < 2π, 0 ≤ θ < π,

and letting ψ(ξ) = ψ(ϕ, θ, ρ) we get

‖ψ‖2 =
∫∫∫

|ψ(ϕ, θ, ρ)|2dϕ(sin θ dθ)(ρ2 dρ).

It follows that H = Hϕ ⊗ Hθ ⊗ Hρ , where Hϕ = L 2([0, 2π)) and
Hθ , Hρ are Hilbert spaces of functions of θ and ρ correspondingly. The
operator Vϕ′ act only on the variable ϕ

Vϕ′ψ(ϕ, θ, ρ) = ψ(ϕ − ϕ′, θ, ρ), (3.12.121)

therefore we can restrict our considerations to Hϕ = L 2([0, 2π)). We
may call it the angular representation. Consider in Hϕ the operator � of
multiplication by ϕ. According to Section 2.3 this is a Hermitean operator
with the spectral representation of the type (2.3.31)

� =
∫ 2π

0
ϕE(dϕ),
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with the orthogonal spectral measure

E(B) = 1B(ϕ); B ∈ A ([0, 2π)), (3.12.122)

or, symbolically, E(dϕ) = |ϕ)(ϕ|dϕ. A straightforward veri�cation
shows that {E(B)} satis�es the covariance requirement (3.12.120). As
we shall show in Chapter 4 the measurement (3.12.122) can be singled
out from all covariant measurements of the angle of rotation by an op-
timality property. We call it the canonical measurement of the angle of
rotation and � the canonical angle observable. Returning to Cartesian
coordinates and taking e3 for the rotation axis we can write (3.12.122) in
the form

E(B) = 1K (B)(ξ1, ξ2, ξ3),

where K (B) is the wedge in the coordinate space de�ned by

K (B) = {[ξ1, ξ2, ξ3] : ξ1 = ρ cos ϕ, ξ2 = ρ sin ϕ; 0 ≤ ρ; ϕ ∈ B}.
It is instructive to pass to the angular momentum representation which

diagonalizes the operator L . In Hϕ = L 2([0, 2π)) consider the orthonor-
mal basis {|m); m = 0,±1, . . .} of functions (2π)−1/2 exp(imϕ). Then
the action of operators Vϕ′ according to (3.12.121) is given by

Vϕ|m) = e−imϕ′ |m). (3.12.123)

It follows that L is the diagonal operator

L|m) = m|m); m = 0,±1, . . .

with D (L) = {ψ : |∑m m2|(ψ |m)|2 < ∞}. The angle measurement
(3.12.122) is given by the matrix elements

(m|E(B)|m ′) =
∫

B
ei(m′−m)ϕ dϕ

2π
; B ∈ A ([0, 2π)),

or symbolically

(m|E(dϕ)|m ′) = ei(m′−m)ϕ dϕ

2π
; m, m ′ = 0,±1, . . . (3.12.124)

This is analogous to the expression (3.9.93) for the canonical phase mea-
surement, the role of N is now played by −L . Mathematically the differ-
ence is that the eigenvalues of N are nonnegative integral numbers while
for L they extend to all integers. This stipulates the fact that the canoni-
cal phase measurement is not simple contrary to the measurement of the
angle.
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Returning to Hϕ we �nd that L is the operator i−1d/dϕ (which agrees
with (3.11.118)) with D (L) = {ψ : ψ(0) = ψ(2π),

∫ |ψ ′(ϕ)|2dϕ <

∞}. Therefore L and � satisfy the Heisenberg type commutation rela-
tion [�, L] = iI . However in spite of boundedness of � this holds not
on D (L) but on the smaller subspace D0(L) = {ψ : ψ(0) = ψ(2π) = 0,∫ |ψ ′(ϕ)|2dϕ < ∞} since D (L) is not an invariant subspace of �. In-
troducing the unitary operator U = exp i� = ∫

exp(iϕ)E(dϕ) we obtain
from (3.12.124)

U =
∞∑

m=−∞
|m)(m − 1|, (3.12.125)

so that U is the analog of P∗ for the phase. Introducing the discrete
group of unitary operators U m ; m = 0, ±1, . . . we get from (3.12.123)
the relations

V ∗
ϕ U m Vϕ = eimϕU m, U m VϕU−m = eimϕVϕ;

0 ≤ ϕ < 2π; m = 0,±1, . . . ,
(3.12.126)

expressing a form of conjugateness between the angle and the angular
momentum.

We now turn to the case of non-zero spin j and restrict ourselves to
the case where only spin degrees of freedom are involved. This is so if,
e.g., all the components of the vector ψ(ξ) in (3.11.117) are spherically
invariant functions of ξ . Thus we adopt that states are described by den-
sity matrices in (2 j + 1)-dimensional space K. The rotation through an
angle ϕ results in the state change

Sϕ = e−iϕ J Seiϕ J , (3.12.127)

where J is the spin angular momentum about the axis of rotation. Put
Vϕ′ = exp(−iϕ′ J ) and consider the covariance condition (3.12.120).

Let {|m); m = − j , − j + 1, . . . , j} be the orthonormal basis in which
J has the diagonal form (3.11.116), then Vϕ′ acts on |m) as in (3.12.123)
with the only difference that m varies now in the �nite range. The relation

(m|M(dϕ)|m ′) = ei(m−m′)ϕ dϕ

2π
; m, m ′ = − j,− j + 1, . . . , j

(3.12.128)
de�nes a covariant measurement of the angle of rotation which we call the
canonical angle measurement for the spin degrees of freedom. Contrary
to the case of spatial degrees of freedom considered above this measure-
ment is not simple. To see it introduce the operators

E± =
∫ 2π

0
e±iϕ M(dϕ). (3.12.129)
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If M(dϕ) were an orthogonal resolution of identity, then E± would be
mutually adjoint unitary operators. From (3.12.128) we get

E+ =
j∑

m=− j+1

|m)(m − 1|, E− =
j∑

m=− j+1

|m − 1)(m|, (3.12.130)

so that E+ is analogous to the operator U = exp(i�) for the spatial
degrees of freedom. However

E−E+ = I − | j)( j |, E+E− = I − | − j)(− j |, (3.12.131)

so that E± are not unitary, nor even isometric. From (3.12.123) and
(3.12.130) we get the analog of the relations (3.12.126)

V ∗
ϕ Em

+Vϕ = eimϕ Em
+, V ∗

ϕ Em
−Vϕ = e−imϕ Em

−;
0 ≤ ϕ < 2π, m = − j,− j + 1, . . . , j.

(3.12.132)

Taking m = 1 and differentiating with respect to ϕ we obtain the useful
commutation relations

[E+, J ] = −E+, [E−, J ] = E−. (3.12.133)

3.13. Comments

Section 3.1. The importance of symmetry groups in quantum mechan-
ics is well known (see, e.g., Weyl [141], Wigner [145]). The idea of
classifying quantum systems according to representations of a symme-
try group belongs to Wigner [144], who applied it �rst to the relativistic
quantum mechanics corresponding to the Poincaré (or inhomogeneous
Lorentz) group; in this connection see also Bogoljubov, Logunov and
Todorov [16], Gelfand, Minlos and Shapiro [41], Shirokov [124] and
Varadarajan [136]. The classi�cation of nonrelativistic quantum “par-
ticles” according to the representations of the Galilei group was given by
Inönu and Wigner [70] and Bargmann [6]. In the last paper the general
theory of projective unitary representations was developed. The decom-
position of arbitrary continuous representation into unitary ones takes
place for the type I groups [75]. A good introduction to the advanced ap-
plications of the group methods in the theory of elementary particles can
be found in Bogoljubov’s lectures [15]. Of special importance to quan-
tum mechanics are dynamical symmetries, i.e., symmetries of the Hamil-
tonian related to conservation laws, see, e.g., Malkin and Man’ko [93].

Proofs and discussion of the Wigner theorem and its generalizations
can be found in Bargmann [8], Hunziker [68], Kadison [74], Varadarajan
[135], Davies [27].
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There is an approach to description of unstable quantum particles us-
ing Galilei and Poincaré semigroups, which differ from corresponding
groups in that they include only positive time shifts (cf. in particular
Zwanziger [149], Lanz, Lugiato and Ramella [84]). The restriction to
positive time shifts has the motivation that a preparation procedure can-
not be arbitrarily delayed without interfering with a subsequent measure-
ment.

Section 3.2. For the proof of Proposition 3.2.1 see, e.g., Bargmann [6]
and Varadarajan [136]. A survey of the results concerning the Weyl CCR
and its relations to (3.2.20) can be found in Putnam [116].

The Mandelstam-Tamm inequality was derived in [96] for the case of
the time parameter t . To obtain the time-energy uncertainty relation the
authors introduce “standard time” �t de�ned by

Et+�t(X)− Et(X) = (�t)−1
∫ t+�t

t
Dτ (X)dτ.

Integrating the inequality then gives �t ·�H ≥ 1
2 where �H=√Dt(H).

However Krylov and Fock [83] pointed out that the resulting inequality
cannot be considered as an analog of the Heisenberg coordinate-momen-
tum uncertainty relation; in the de�nition of �t the quantities Eτ (X),
Dτ (X); t ≤ τ ≤ t + �t cannot be obtained from a single “statisti-
cal ensemble” since measuring X at a time t changes the state and vio-
lates the Hamiltonian evolution. This discussion gives an idea of what
kind of problems the traditional quantum measurement theory is faced
with. The statistical approach from the point of view of quantum esti-
mation theory seems to be free from these dif�culties. This approach
was �rst suggested by Helstrom [52, 53] who independently rederived
the Mandelstam-Tamm inequality in the context of quantum estimation
theory. The more general presentation given here follows Holevo [66].

Section 3.3. Proposition 3.3.1 is a particular case of the theorem de-
scribing the general form of a multiplier ω(g1, g2) on the additive group
of Rd (see Bargmann [6], Jauch [71] and Varadarajan [136]). The kine-
matical meaning of the observables P , Q is discussed in Jauch [71].

Section 3.4. The original proof of the uniqueness theorem was given in
von Neumann’s paper [138]. This can also be considered as a particular
case of Mackey’s imprimitivity theorem [91] (see Jauch [71]).

Section3.5. Minimum-uncertaintystateswere �rst introduced by Schrö-
dinger; the completeness relation was obtained by Bargmann [7] and
Glauber [42].
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Section 3.6. The problem of joint measurement has been considered
from different points of view by von Neumann [138], Urbanik [133],
Gordon and Louisell [44], She and Heffner [123], Prugove�cki [115],
Davies [27] and others. The present treatment follows Holevo [58, 61]
and Helstrom [53].

Section 3.7. The equation initially discovered by Schrödinger corre-
sponds to the eigenvalue problem Hψ = λψ . Schrödinger came to it
attempting to write the equation for the de Broglie stationary “waves of
matter”. The correspondence principle was introduced as a formal “pos-
tulate” prescribing quantum analogs for classical quantities. The fact
that it follows from the more fundamental Galilean relativity was real-
ized later (Inönu and Wigner [70], Bargmann [6]). This section follows
closely to Jauch [71].

We shall mention here very brie�y two interesting connections between
quantum mechanics and the probabilistic theory of stochastic processes.
Replacing formally it by t transforms the Schrödinger equation into the
parabolic equation of stochastic diffusion processes theory, the group {Vt}
of unitary operators being replaced by a contraction semigroup. There is
the important Feynmann-Kac formula relating quantum dynamics with
a stochastic diffusion process. Nelson [102, 103], who gave it a simple
proof based on the Trotter product formula, considered the stochastic dif-
fusion process as a hidden variables model for quantum dynamics. Use of
the Feynmann-Kac formula just as an analytic tool opens interesting pos-
sibilities both for quantum mechanics and for stochastic processes (see
Simon [128]).

The other connection reveals in the recent work on quantum stochastic
processes allowing to describe the irreversible (in particular, Markovian)
evolution of “open” quantum systems. For this see in particular Davies
[27], Accardi, Frigerio and Lewis [1] and Gorini et al. [45].

Section 3.8. Dif�culties with the de�nition of time observable were dis-
cussed in great detail by Allcock [3], where a reader can �nd other refer-
ences. Attempts to use the expressions like i� d/dε go back to Pauli [107]
however there was no room for them in the conventional form of quan-
tum measurement theory. The presentation here follows Holevo [66]
where the case of three dimensional free particle was also treated. For
other approaches to the time-energy uncertainty relation see Ekstein and
Siegert [32], Wigner [146] and Malkin and Man’ko [93].

Section 3.9. Concerning mathematical problems of quantum mechanics
see, e.g., Reed and Simon [118]. The quantum oscillator is considered
in almost all textbooks on quantum mechanics; we follow the original
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presentation of Dirac (see also Louisell [88] for interesting formal algebra
with creation-annihilation operators).

A correct approach to phase of quantum oscillator via the operator P∗
was suggested by Sussking and Glogower [131] (see also Carruthers and
Nieto [20], Volkin [137]). The canonical phase measurement appeared in
Holevo [67]. For Hardy classes see, e.g., Halmos [48].

The phase observable, similarly to the time observable is an “eternal”
topic in foundations of quantum mechanics. One of the most known
more recent suggestions – the Pegg-Barnett “selfadjoint phase opera-
tor” [193] – is interesting in that it gives a concrete example of approx-
imation of the nonorthogonal resolution of the identity (3.9.93) in the
in�nite-dimensional Hilbert space by orthogonal ones. The fact that or-
thogonal resolutions of the identity are weakly dense in the set of all
resolutions of the identity in the in�nite-dimensional Hilbert space was
observed already in Naimark’s paper [100] (for more detail see [178],
§2.1.3.)

Consider the Hilbert space H with the basis {|n); n = 0, 1, . . . }, and
its �nite-dimensional subspaces HN , generated by the vectors {|n); n =
0, 1, . . . , N }. In HN the orthonormal basis of Pegg-Barnett “phase vec-
tors” is introduced

|θN ,k) = 1√
N + 1

N∑
n=0

einθN ,k |n), θN ,k = 2πk

N + 1
; k = 0, 1, . . . , N ,

with the corresponding orthogonal resolution of the identity

MN (B) =
∑

θN ,k∈B

|θN ,k)(θN ,k |.

One can then de�ne selfadjoint “phase operator”

�N =
N∑

k=0

θN ,k |θN ,k)(θN ,k |

in HN or better, the unitary operator ei�N = ∑N
k=0 eiθN ,k |θN ,k)(θN ,k |. If

|ψ) is arbitrary vector in H with �nitely many nonzero coef�cients (n|ψ),
then for N large enough

μ
(N )
Sψ

(B) = (ψ |MN (B)|ψ) =
∑

θN ,k∈B

|(θN ,k |ψ)|2

=
∑

θN ,k∈B

1

N + 1

∣∣∣∣∣ N∑
n=0

e−inθN ,k (n|ψ)

∣∣∣∣∣
2
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are probability measures which weakly converge to the distribution of the
canonical phase measurement (3.9.93):

μSψ
(B) = (ψ |M(B)|ψ) = 1

2π

∫
B

∣∣∣∣∣ ∞∑
n=0

e−inθ (n|ψ)

∣∣∣∣∣
2

dθ

in the pure state Sψ = |ψ)(ψ |. Recall that weak convergence of probabil-
ity measures means convergence of integrals of all bounded continuous
functions. Similar statement holds also for mixed states.

Section 3.10. The coherent-state representation for many degrees of
freedom was considered by Bargmann [7], Glauber [42], Klauder and
Sudarshan [76]. For the free �eld (in�nitely many degrees of freedom)
an analogous representation was studied by Berezin [12].

Bounded subnormal operators were introduced by Halmos [48]. See
also Sz.-Nagy [119].

Section 3.11. On the representations of the rotation group in quantum
mechanics see Wigner [145], Jauch [71] and Mackey [92]. For a system-
atic study of the rotation group see Gelfand, Minlos and Shapiro [41] and
�Zelobenko [148].

Section 3.12. A consideration of the canonical angle observable for the
spin-zero case in the angular representation was given by Judge [73],
Susskind and Glogower [131] (see also Carruthers and Nieto [20] and the
references quoted therein). For the treatment in the angular momentum
representation in the case of spin degrees of freedom see Helstrom [52]
and Holevo [67].



Chapter 4
Covariant measurements and optimality

4.1. Parametric symmetry groups
and covariant measurements

All symmetry groups considered in the previous chapter were parametric
groups (Lie groups) of transformations. This means that a parametric set
� = {θ}, i.e., a continuous manifold in a �nite-dimensional space is
given and elements of the group G = {g} act as continuous one-to-one
mappings of the set � onto itself, g : θ → gθ . Moreover the group G is
itself parametrized in such a way that the group product g1g2 is at least
locally continuous in g1, g2.

The examples are the additive group R considered as the shift group for
the real line � = R, the group T of shifts (mod 2π) of the interval � =
[0, 2π) and the rotation group in the three dimensional Euclidean space
R3. In the last case it is natural to consider the action of the group only
on directions, i.e., unit vectors in R3. Then the rotation group becomes a
group of transformations of the unit sphere � = S2.

Let G be a parametric group of transformations of a set � and g → Vg

be a (continuous) projective unitary representation of G in a Hilbert space
H. Let M(dθ) be a measurement with values in �, i.e., a resolution
of identity in H on the σ -�eld A (�) of Borel subsets of �1. The
measurement M(dθ) is covariant with respect to representation g → Vg

if
V ∗

g M(B)Vg = M(Bg−1), g ∈ G, (4.1.1)

for any B ∈ A (�), where

Bg = {θ : θ = gθ ′, θ ′ ∈ B}
is the image of the set B under the transformation g. The notion of
covariant measurement was introduced in the previous chapter for con-

1 Since � is a continuous manifold it is itself a Borel subset in a �nite-dimensional space.
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crete symmetry groups. Here we wish to study it from a general point of
view.

The importance of this notion for quantum theory lies in the fact that
it establishes a correspondence between physical parameters and certain
classes of quantum measurements. Indeed, assume that θ is a parameter
(in general, multidimensional) describing some aspects of the preparation
procedure and S the basic state corresponding to the value θ0. Then the
transformation g results in the preparation of the new state Sθ = Vg SV ∗

g ,

where θ = gθ0. If the measurement M(dθ̂ ) is then made, the probability
distribution of the results θ̂ of the measurement will be

Pr{θ̂ ∈ B|θ} = Tr Sθ M(B), B ∈ A (�).

If M(dθ̂ ) possesses the covariance property (4.1.1), then

Tr Sθ M(B) = Tr SV ∗
g M(B)Vg = Tr SM(Bg−1)

whence replacing B by Bg

Pr{θ̂ ∈ Bg|gθ0} = Pr{θ̂ ∈ B|θ0}.
Thus the change of the value of θ is properly re�ected by the change
in the resulting probability distribution, and therefore any resolution of
identity M(dθ) satisfying (4.1.1) corresponds to a theoretically admissi-
ble measurement of the parameter θ .

A mathematical problem which naturally arises is to describe all co-
variant measurements of the given parameter θ . We shall give its gen-
eral solution in Section 4.2 and 4.8. Then we shall look for “optimal”
measurements having the best theoretically possible accuracy among all
covariant measurements of the parameter θ . In this way we shall �nd that
the “canonical” measurements for various parameters introduced in the
previous chapter are just the typical representatives in the family of the
optimal covariant measurements.

We shall need some general knowledge of parametric groups of trans-
formations. The group G acts transitively on � if any point θ0 can be
transformed into any other point θ by some g ∈ G. In what follows we
assume that a parametric group G acts transitively on �. Then the contin-
uous mapping g → gθ0 = θ(g) maps G onto the whole �. This mapping
is one-to-one if and only if the stationary subgroup G0 of transformations
leaving the point θ0 invariant is trivial, i.e., reduces to the identical trans-
formation. For an example consider the shift group of R and �x a point
θ0 ∈ R. Any point θ ∈ R can be obtained from θ0 by a shift: θ = θ0 + x .
The mapping x → θ0 + x = θ(x) is obviously one-to-one. The same is
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true for the group T acting on [0, 2π). Consider now the rotation group
acting on S2. Fix the “pole” n0 ∈ S2. Any direction n can be obtained
from n0 by a rotation R : n = Rn0; the mapping R → Rn0 = n(R) is
not one-to-one since n(R) = n(R R0) where R0 is any rotation about the
axis n0.

A measure μ(dg) on the σ -�eld A (G) of Borel subsets of G is called
left-(right-)invariant if

μ(g A) = μ(A) (correspondingly μ(Ag) = μ(A)), g ∈ G,

where g A = {g′ : g′ = g′′, g′′ ∈ A} and Ag = {g′ : g′ = g′′g, g′′ ∈ A}
A ∈ A (G).

It is known that any parametric group possesses a left-invariant mea-
sure. If there exists an invariant (i.e., both left- and right-) invariant mea-
sure, then the group is called unimodular. The invariant measure is in
general not �nite, i.e., μ(G) ≤ +∞. If the group is compact (i.e., is
a bounded closed manifold in a �nite-dimensional space), then any left-
or right-invariant measure is invariant. Moreover it is �nite and we shall
normalize it by μ(G) = 1. We shall deal only with unimodular groups.

Now we are interested in measures ν on A (�) with are invariant in
the sense that

ν(Bg) = ν(B); g ∈ G, B ∈ A (�).

If G0 is also unimodular, then such ν exists. If moreover G0 is compact,
which we assume, then ν can be explicitly constructed from μ by the
relation

ν(B) = μ(θ−1(B)),

where θ−1(B) = {g : gθ0 ∈ B} is the pre-image of the Borel set B ∈
A (�). In other words, ν is de�ned by the requirement that∫

G
f (gθ0)μ(dg) =

∫
�

f (θ)ν(dθ) (4.1.2)

holds for any integrable function f on �. The compactness of G0 ensures
the �niteness of the measure ν (otherwise it may be identically in�nite as
the simple example G = R2, � = R, G0 = R shows). The invariance
of ν follows from the left invariance of μ. Right invariance of μ implies
that ν is the same for any choice of θ0, since if θ1 = g1θ0, then

ν(B) = μ({g : gθ0 ∈ B})
= μ({gg1 : gg1θ0 ∈ B}) = μ({g : gθ1 ∈ B}).
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An example of invariant measure is the Lebesgue measure on R. For the
rotation group acting on S2 the invariant measure ν on S2 is up to a factor
the Euclidean area on the unit sphere. The expression for the invariant
measure μ on the rotation group will appear in Section 4.10.

4.2. Structure of covariant measurements

The following simple result will be useful in the study of covariant mea-
surements.

Proposition 4.2.1. Let M(dθ) be a measurement covariant with respect
to a projective unitary representation g → Vg of the parametric group G
of transformations of the set �. For any density operator S in the Hilbert
space of the representation and for any Borel B ∈ A(�)∫

G
Tr Vg SV ∗

g M(B)μ(dg) = ν(B). (4.2.3)

Proof. By (4.1.1) we get∫
G

Tr Vg SV ∗
g M(B)μ(dg) =

∫
G

Tr SM(Bg−1)μ(dg)

=
∫

G

∫
�

1B(gθ0)μS(dθ0)μ(dg),

where μS(dθ) = Tr SM(dθ). Using (4.2.3) and the fact that ν does not
depend on the choice of θ0 we obtain that it is equal to∫

�

μS(dθ0)

∫
G
1B(gθ0)μ(dg) = ν(B). (4.2.4)

We shall also need a Radon-Nikodym theorem for operator-valued
measures. The following proposition the proof of which is standard will
suf�ce.

Proposition 4.2.2. Let {M(B); B ∈ A (�)} be an additive operator-
valued set function dominated by the scalar measure {m(B); B ∈ A (�)}
in the sense that

|(ϕ|M(B)ψ)| ≤ m(B)‖ϕ‖ ‖ψ‖, B ∈ A (�),

for all ϕ, ψ ∈H. Then there exists an operator-valued function P(·) de-
�ned uniquely for m-almost all θ ∈ � (i.e., for all θ with possible ex-
ception of a set of zero m measure), satisfying ‖P(θ)‖ ≤ 1 and such
that

(ϕ|M(B)ψ) =
∫

B
(ϕ|P(θ)ψ)m(dθ), B ∈ A (�),
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for all ϕ, ψ ∈ H. If M(B) ≥ 0 for all B ∈ A (�), then P(θ) ≥ 0 for
m-almost all θ .

The function P(θ) is called the operator density of M(dθ) with respect
to m(dθ). We shall write simply M(B) = ∫

B P(θ)m(dθ) or M(dθ) =
P(θ)m(dθ) having in mind the weak convergence of the integral.

To avoid certain technical dif�culties we now restrict to �nite-dimen-
sional representations g → Vg.

Theorem 4.2.3. Let P0 be a Hermitean positive operator in the represen-
tation space, commuting with the operators {Vg; g ∈ G0} and satisfying∫

G
Vg P0V ∗

g μ(dg) = I. (4.2.5)

Then putting
P(gθ0) = Vg P0V ∗

g , (4.2.6)

we get an operator-valued function of θ such that

M(B) =
∫

B
P(θ)ν(dθ), B ∈ A (�), (4.2.7)

is a measurement, covariant with respect to the representation g → Vg.
Conversely for any covariant measurement M(dθ) there is a unique

operator P0 satisfying the above conditions such that M(B) is expressed
through P0 by (4.2.6) and (4.2.7).

Proof. By the condition [P0, Vg] = 0, g ∈ G0, we have P(g1θ0) =
P(g2θ0) if g1θ0 = g2θ0 and therefore the relation (4.2.6) de�nes unam-
biguously an operator-valued function of θ ∈ �. Positivity of P0 implies
M(B) ≥ 0 and σ -additivity is a property of the de�nite integral (4.2.7).
Using (4.1.2) we have∫

�

P(θ)ν(dθ) =
∫

G
Vg P0V ∗

g μ(dg) = I (4.2.8)

by (4.2.4) whence M(�) = I .
To prove the converse statement let d = dim H.
Putting S = d−1 I in (4.2.3) we get Tr M(B) = d−1ν(B), B ∈ A (�).

It follows that (ϕ|M(B)ϕ) ≤ d−1ν(B) for any unit vector ϕ ∈ H . By
positivity of M(B) and the Cauchy inequality

|(ϕ|M(B)ψ)| ≤ √
(ϕ|M(B)ϕ)(ψ |M(B)ψ) ≤ d−1ν(B)
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for unit ϕ, ψ ∈ H, so that {M(B)} is dominated by {d−1ν(B)}. By
Proposition 4.2.2 there is density P(θ) which is uniquely de�ned and
positive for ν-almost all θ , such that

M(B) =
∫

B
P(θ)ν(dθ). (4.2.9)

From the covariance relation (4.1.1)∫
B

V ∗
g P(θ)Vgν(dθ) =

∫
Bg−1

P(θ)ν(dθ)

=
∫

B
P(g−1θ)ν(dθ),

whence by uniqueness of the operator density

V ∗
g P(θ)Vg = P(g−1θ), g ∈ G,

for ν-almost all θ . A measure-theoretic argument shows that the density
P(θ) can be de�ned in such a way that this equality will hold for all
θ ∈ �. Then putting P0 = P(θ0) we get (4.2.6) and (4.2.7); the relation
(4.2.4) follows from the normalization M(�) = I .

The relation (4.2.7) sets up the af�ne one-to-one correspondence be-
tween the two convex sets: the set of all covariant measurements M(dθ)

and the set P of Hermitean operators satisfying the conditions of the the-
orem.

Note that taking ν(B) small enough, which is possible in the para-
metric case, we can make ‖M(B)‖ < 1 and then M(B) cannot be a
projection. Thus in the case of a �nite-dimensional representation of a
parametric symmetry group there are no simple covariant measurements.

4.3. The covariant quantum estimation problem

Let θ be a parameter (in general, multidimensional) describing certain
aspects of the preparation procedure. Then to each value θ from the ad-
missible set � corresponds a quantum state Sθ in H. Assume that there is
a symmetry group G acting transitively on �, which has a representation
g → Vg in H. The family of states {Sθ } is called covariant with respect
to the representation if

Sgθ = Vg Sθ V ∗
g ; θ ∈ �, g ∈ G.
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Fix “the initial value” θ0; then it follows that the basic state Sθ0 = S
satis�es: S = Vg SV ∗

g , g ∈ G0, so that we can write

Sθ = Vg SV ∗
g , (θ = gθ0). (4.3.10)

Assume now that the object is prepared in one of the states Sθ , but the
actual value of θ is unknown and the problem is to estimate the value as
accurately as possible based on measurements admitted by quantum the-
ory. This is an obvious generalization of the quantum estimation problem
for the shift parameter discussed in Section 3.2. We shall consider it fol-
lowing the ideas of statistical estimation adapted to quantum theory.

Let us �x a deviation function Wθ (θ̂ ) which is interpreted as a measure
of deviation of an observed value θ̂ from the actual value θ . We assume
here that it is a continuous function of the arguments satisfying Wθ (θ̂ ) ≥
Wθ (θ). We shall also assume that it is invariant

Wgθ (gθ̂ ) = Wθ (θ̂ ); g ∈ G; θ, θ̂ ∈ �.

For all concrete parametric groups considered here there are some “natu-
ral” deviation functions such as the quadratic deviation (θ − θ̂ )2 for R.

The mean deviation of the measurementM = {M(dθ̂ )} with respect to
the actual value θ is

Rθ {M} =
∫

Wθ (θ̂ )μθ(dθ̂ ), (4.3.11)

where μθ(dθ̂ ) = Tr Sθ M(dθ̂ ) is the probability distribution of the mea-
surementM with respect to the state Sθ . Having in mind to �nd the most
accurate measurement of the parameter θ one would like to minimize
(4.3.11) for all values of θ . However this is in general impossible, as is
well known from the classical mathematical statistics: what is good for
one value of θ may be bad for another. To introduce a reasonable concept
of optimality one has to compromise by forming a single functional of
the quantities Rθ {M}, θ ∈ �, which would serve as an integral measure
of accuracy.

Following the classical estimation theory one can form two different
functionals. In Bayes’ approach one averages Rθ {M} with respect to
a prior distribution π(dθ). The measurement minimizing the resulting
Bayes mean deviation

Rπ {M} =
∫

Rθ {M}π(dθ)

is called Bayesian. The quantity Rπ {M} represents the total mean devia-
tion in the situation where θ is itself a random parameter with the known
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distribution π(dθ). In particular if � is compact and “nothing is known
in advance” about θ one may take for π(dθ) the “uniform distribution”,
i.e., the normalized invariant measure ν(dθ).

In minimax approach the maximal mean deviation

R̂{M} = max
θ

Rθ {M}

is subject to minimization. The minimizing measurement is called min-
imax. We shall also call optimal measurements minimizing this of the
other measure of accuracy.

Restricting ourselves here to the case of compact � and G we shall
show that for a covariant family of states the minima of both Bayes’ and
maximal mean deviations coincide and are achieved on a covariant mea-
surement. This is an analogue of the Hunt-Stein theorem in mathematical
statistics.

The mean deviation (4.3.11) and therefore the Bayes’ mean deviation
are af�ne functionals of measurement M. If � is compact and Wθ (θ̂ )

is continuous, as assumed, then a Bayesian measurement exists. For the
proof of this assertion and for the detailed discussion of the integrability
questions in the proof of the following theorem the reader is referred to
the comments at the end of this chapter.

Theorem 4.3.1. In the quantum covariant statistical estimation problem
described above the minima of the Bayes’ mean deviation Rν{M} and the

maximal mean deviation R̂{M} for all �-measurements are achieved on
a covariant measurement. Moreover, for a covariant measurementM

Rν{M} = R̂{M} = Rθ {M}, θ ∈ �. (4.3.12)

Proof. Introduce the measurementMg by putting

Mg(B) = V ∗
g M(Bg)Vg, B ∈ A (�),

and note that M is covariant if and only if Mg = M, g ∈ G. From the
assumed covariance of the family {Sθ } and invariance of Wθ (θ̂ ) we get by
(4.3.11)

Rθ {Mg} = Rgθ {M}. (4.3.13)

In particular for a covariant measurement the mean deviation Rθ {M} does
not depend on θ so that (4.3.12) holds.

Consider the Bayes’ mean deviation

Rν{M} =
∫

Rθ {M}ν(dθ).
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Using (4.3.13) we get Rν{M} = Rν{Mg}. Introduce the “averaged” mea-
surementM by

M(B) =
∫

G
Mg−1(B)μ(dg).

The integral is easily de�ned in the sense of the weak convergence and
can be veri�ed to determine a covariant measurement. Using (4.3.11) and
changing the order of integration we get

Rν{M} =
∫

Rν{Mg−1}μ(dg) = Rν{M}

and therefore
max

θ
Rθ {M} ≥ Rν{M} = Rν{M}.

SinceM is covariant, then using (4.3.12)

Rν{M} = Rθ {M} = max
θ

Rθ {M}.

Thus for an arbitrary measurement M we have constructed a covariant
measurement M with the same value of the Bayes’ mean deviation and
possibly smaller value of the maximal mean deviation. Therefore the
minima of both functionals are achieved on a covariant measurement.

The relation (4.3.12) shows that the “naive” approach of minimizing
the mean deviation for all values of θ simultaneously makes sense if one
restricts to covariant measurements. Moreover it is equivalent both to
Bayes’ and minimax approaches and reduces to the minimization of the
mean deviation

Rθ0
{M} =

∫
Wθ0(θ)μθ0(dθ)

for some particular value θ0.
Consider this problem assuming dim H < ∞. Then we are in the

conditions of Theorem 4.2.3 and the functional Rθ0
{M} takes the form

Rθ0
{M} =

∫
Wθ0(θ) Tr V ∗

g SVg P0ν(dθ)

= Tr Ŵ0 P0,

where

Ŵ0 =
∫

�

Wθ0(θ)V ∗
g SVgν(dθ) =

∫
G

Wθ0(gθ0)V ∗
g SVgμ(dg) (4.3.14)
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is an operator commuting with all {Vg; g ∈ G0}. Based on an analogy
with mathematical statistics we can call Ŵ0 the operator of posterior de-
viation. Thus one has to �nd

min Tr Ŵ0 P0 (4.3.15)

over all Hermitean P0 ∈ P. This problem will be effectively solved for
concrete symmetry groups in the following sections.

Finally we shall brie�y discuss the noncommutative analog of the clas-
sical maximum-likelihood approach. Formally it corresponds to Bayes’
approach with the uniform prior distribution and the “deviation function”

Wθ0(θ) =
{

0, θ �= θ0,

−∞, θ = θ0.

More precisely de�ne the delta-function on � by the relation∫
δθ0(θ) f (θ)ν(dθ) = f (θ0) (4.3.16)

for continuous f (θ). Then minus Bayes’ mean deviation corresponding
to Wθ (θ̂ )= −δθ (θ̂) is equal to∫

�

Tr Sθ M(dθ). (4.3.17)

The precise de�nition of such “trace-integrals” is an interesting mathe-
matical problem which will not be discussed here. Note, however, that if
� is compact and dim H < ∞ this can be done rather easily. Then as
in the proof of Theorem 4.2.3 one can show that M(dθ) is differentiable
with respect to m(dθ) = Tr M(dθ) so that M(dθ) = P(θ)m(dθ) and
(4.3.17) can be de�ned as∫

�

(Tr Sθ P(θ))m(dθ). (4.3.18)

The measurement maximizing this functional is called the maximum-
likelihood measurement. As in Theorem 4.3.1 one can show that for a
covariant family of states {Sθ } the maximum is achieved on a covari-
ant measurement. For a covariant measurement (4.2.9) the functional
(4.3.18) takes the form Tr S P0. Thus to �nd the covariant maximum-
likelihood measurement one has to solve the problem to �nd

max Tr S P0, P0 ∈ P,

which has the same nature as (4.3.15).
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4.4. Measurements of angular parameters

We are going to apply the estimation theory developed in the previous
section to one-parameter symmetry groups. The simplest example in es-
timation is of the angle of rotation by measurements over the spin degrees
of freedom. According to Section 3.12 the family of states obtained from
the basic state S by rotations through the angles ϕ, 0 ≤ ϕ < 2π , is
represented by

Sϕ = e−iϕ J Seiϕ J ; 0 ≤ ϕ < 2π, (4.4.19)

where J is the operator of spin angular momentum, corresponding to the
axis of rotation, which has the diagonal form (3.11.116) in the basis of
eigenvectors {|m)}. The index m varies from− j to j where j is the value
of spin.

The relevant symmetry group G is the group of rotations about the axis
or the group T of shifts (mod 2π) of the interval � = [0, 2π). Operators
Vϕ = exp(−iϕ J ) constitute a �nite dimensional unitary representation of
the group. The stationary subgroup G0 is trivial in this case and according
to Theorem 4.2.3 any covariant measurement of the angle of rotation has
the form

M(dϕ) = e−iϕ J P0eiϕ J dϕ

2π
,

where P0 is a positive operator satisfying (4.2.5), i.e.,

(2π)−1
∫ 2π

0
e−iϕ J P0eiϕ J dϕ = I.

In the basis {|m)}

(m|M(dϕ)|m ′) = ei(m′−m)ϕ pmm′
dϕ

2π
, (4.4.20)

where pmm′ = (m|P0|m ′) and (4.2.5) reduced to pmm = 1. Thus any co-
variant measurement of the angle of rotation for spin degrees of freedom
is given by the matrix elements (4.4.20) where the matrix [pmm′ ], with m,
m ′ varying from − j to j , belongs to the convex set

P = {[pmm′ ] : [pmm′ ] ≥ 0, pmm = 1}.
We now turn to the covariant estimation problem, restricting to the case

of pure states

Sϕ = e−iϕ J |ψ)(ψ |eiϕ J ; 0 ≤ ϕ < 2π. (4.4.21)
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We shall look for optimal covariant measurement which minimizes the
mean deviation for, say, ϕ0 = 0. According to Theorem 4.3.1 it is also
optimal in both Bayes’ and minimax senses.

Put γm = (m|ψ)/|(m|ψ)| if (m|ψ) �= 0; otherwise let γm be an arbi-
trary complex number of unit modulus.

Theorem 4.4.1. The covariant measurement

(m|M∗(dϕ)|m ′) = ei(m′−m)ϕγm γ̄m′
dϕ

2π
(4.4.22)

is the optimal measurement of angle of rotation ϕ in the family of states
(4.4.21) for any deviation function of the form Wϕ(ϕ̂) = W (ϕ−ϕ̂), where
W (·) is an even 2π -periodic function on R, satisfying∫ 2π

0
W (ϕ) cos kϕ dϕ ≤ 0; k = 1, 2, . . . (4.4.23)

Proof. Any function W (·) satisfying the conditions of the theorem can
be represented by Fourier series

W (ϕ) = w0 −
∞∑

k=1

wk cos kϕ,

with wk ≥ 0; k = 1, 2, . . . Using (4.4.20) we obtain the probability
distribution of the covariant measurementM with respect to the state S =
|ψ)(ψ |

μ0(dϕ) =
[∑

m,m′
ei(m′−m)ϕ pmm′(m

′|ψ)(ψ |m)

]
dϕ

2π
(4.4.24)

where the sum extends over − j ≤ m, m ′ ≤ j . By (4.3.11) and (4.4.24)

R0{M} = w0 −
∞∑

k=1

wk

∫ 2π

0
cos kϕ

∑
m,m′

ei(m′−m)ϕ pmm′(m
′|ψ)(ψ |m)

dϕ

2π
.

The factor multiplying wk is equal to

1

2

∑
m,m′:

|m−m′|=k

(ψ |m)pmm′(m
′|ψ).

By the positive de�niteness

|pmm′ | ≤ √pmm · pm′m′ = 1, (4.4.25)
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so that
1

2

∑
m,m′:

|m−m′|=k

(ψ |m)pmm(m ′|ψ) ≤ 1

2

∑
m,m′:

|m−m′|=k

|(ψ |m)| |(m ′|ψ)|,

with the equality achieved if and only if pmm′ = γm γ̄m′ . It follows that
R0{M} ≥ R0{M∗}, where

R0{M∗} = w0 − 1

2

∞∑
k=1

wk

∑
m,m′

|m−m′|=k

|(ψ |m)| · |(m ′|ψ)|. (4.4.26)

Several comments are in order. The examples of the deviation func-
tions admitted by the conditions of the theorem are (see Figure 4.1)

4 sin2 ϕ

2
= 2− 2 cos ϕ,

min{ϕ, 2π − ϕ} = π

2
− 4

π

∞∑
k=0

cos(2k + 1)ϕ

(2k + 1)2
,

∣∣∣sin
ϕ

2

∣∣∣ = 2

π
− 4

π

∞∑
k=1

cos kϕ

4k2 − 1
.

The quadratic (mod 2π) deviation min{(ϕ − ϕ̂)2, (2π − ϕ + ϕ̂)2} does
not satisfy (4.4.23). Formally the condition (4.4.23) is satis�ed by the
periodic delta-function

−δ(ϕ(mod 2π)) = − 1

2π
− 1

π

∞∑
k=1

cos kϕ,

which corresponds to the maximum-likelihood approach. In fact the
proof extends to arbitrary periodic generalized functions with wk ≥ 0
since the value of k in the series de�ning R0{M} cannot exceed 2 j , so
that the series contains only a �nite number of nonzero terms. Thus
(4.4.22) is also the covariant maximum-likelihood measurement for the
family (4.4.21).

It is not dif�cult to give an alternative abstract characterization of the
functions satisfying (4.4.23). Note that w0−W (ϕ), ϕ ∈ R, is the Fourier
transform of an even measure (concentrated at the integral points) and
therefore is positive de�nite. It follows that a 2π -periodic function W (·)
satis�es (4.4.23) if and only if∑

j,k

W (ϕ j − ϕk)c̄ j ck ≤ 0

for any complex c j , such that
∑

j c j = 0 and any ϕk ∈ R.
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π 2π ϕ

ϕ

0

4 sin2
2

ϕ

2
min (ϕ, 2π - ϕ) |sin   |

Figure 4.1.

The theorem shows that the optimal measurement is rather insensitive
to the choice of the deviation functions – a property which is desirable
from the physical point of view.

If the basic state is such that arg(m|ψ) is the same for all values of
m, in particular, if (m|ψ) ≥ 0 for all m, then γm = const. and the op-
timal covariant measurement is just the canonical measurement of the
angle of rotation in the angular momentum representation de�ned by
(3.12.128). However if arg(m|ψ) varies with m, then the canonical mea-
surement is no longer optimal and its accuracy is worse then the best
possible (4.4.26). The optimal measurement takes into account the prior
information contained in the variations of phase of the complex number
(m|ψ) determined by the basic state S = |ψ)(ψ |.

Note that transforming the basis {|m)} to |m)′ = γm |m) we reduce
the optimal measurement (4.4.22) to the canonical form. The canonical
measurement is thus a tantamount representative in the family of opti-
mal covariant measurements which are obtained one from another by the
aforementioned “gauge” transformations.

The conclusion of this section apply to the phase measurements (see
Section 3.9) and the angle measurements for spatial degrees of freedom
(see Section 3.12) with the only essential modi�cation that the index m
should vary not from − j to j but from 0 to ∞ in the case of phase and
from −∞ to∞ in the second case. The representation of covariant mea-
surements has the same form (4.4.20) with m, m ′ varying in the corre-
sponding ranges and Theorem 4.4.1 extends to these cases taking care of
convergence of the series. However in obtaining (4.4.20) we cannot refer
to Theorem 4.2.3 since the representation space is not �nite-dimensional
in these cases. The results will follow from the more general theory for
arbitrary representation of the group T to be discussed in Section 4.6.

4.5. Uncertainty relations for angular quantities

To establish the uncertainty relations for such quantities as angle and
phase we must �rst introduce a proper measure of uncertainty. The fact
that the angular quantities vary periodically from 0 to 2π makes us reject
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the variance which serves as the measure of uncertainty for quantities
running freely on the whole real line like coordinate and time. In fact
the angular values ϕ = 0 and ϕ = 2π must be considered as “identical”
and the values ϕ ≈ 0, ϕ ≈ 2π as “close” to each other. If we con-
sider an angular distribution μ(dϕ) which is symmetric with respect to
ϕ = π and concentrated at the ends of the interval [0, 2π), then its vari-
ance D(ϕ) = ∫ 2π

0 (ϕ − E(ϕ))2μ(dϕ) will be ≈ π2 while any reasonable
measure of uncertainty should be almost zero.

Consider the complex random variable exp(iϕ) whose range is the unit
circle. Its variance is equal to

D(eiϕ) =
∫ 2π

0
|eiϕ − E(eiϕ)|2μ(dϕ) = 1− |E(eiϕ)|2,

where E(eiϕ) = ∫ 2π

0 eiϕμ(dϕ), μ being the angular probability distribu-
tion. We adopt the following measure of uncertainty

�(ϕ) = D(eiϕ)

|E(eiϕ)|2 ≡ |E(eiϕ)|−2 − 1. (4.5.27)

Note that |E(eiϕ)| is the distance of the center of mass of the distribu-
tion of exp(iϕ) concentrated on the unit circle from the center of the cir-
cle. Therefore �(ϕ) = 0 for the δ-distributions (complete certainty) and
�(ϕ) = ∞ for the uniform distribution (complete uncertainty) as is de-
sirable.

Let μ(dϕ) = (ψ |M(dϕ)ψ) be the probability distribution of the mea-
surement M = {M(dϕ)} with respect to the pure state S = |ψ)(ψ |. We
denote the corresponding uncertainty by �S{M}. Since the state S will
be mostly kept �xed we shall omit it from the notations. Then for any
covariant measurement of the angle ϕ

�{M} ≥ �∗(ϕ) =
[∑

m

|(ψ |m)‖(m − 1|ψ)|
]−2

− 1, (4.5.28)

with the equality achieved for the optimal measurement (4.4.22). In-
deed calculating the expectation of exp(iϕ) with respect to the distribu-
tion (4.4.24) we �nd

E(eiϕ) =
∑

m

(ψ |m)pm,m−1(m − 1|ψ),

whence by (4.4.25)

|E(eiϕ)| ≤
∑

m

|(ψ |m)‖(m − 1|ψ)|,
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and (4.5.28) follows by using (4.5.27). Note that the range of m is arbi-
trary here so that the result applies to the angular measurements for both
spin and spatial degrees of freedom and to phase measurements.

Note that for a covariant measurement M the uncertainty �{M} is
the same for all the states Sϕ obtained from S using (4.4.21). Thus the
optimal covariant measurement for the family (4.4.21) is the minimum-
uncertainty measurement for the states of the family. For the canonical
measurement pmm′ = 1 and E(eiϕ) = ∑

(ψ |m)(m − 1|ψ). Thus it is
optimal if and only if∣∣∣∑(ψ |m)(m − 1|ψ)

∣∣∣ =∑
|(ψ |m)(m − 1|ψ)|

which holds if and only if arg(ψ |m)(m − 1|ψ) ≡ ϕ0 does not depend
on m. This means that Arg(m|ψ) = −mϕ0 + const., i.e., the state
belongs to the family (4.4.21) generated from the basic state satisfying
arg(m|ψ) = const. Otherwise there is a covariant measurement having
smaller uncertainty than the canonical one. The quantity �∗(ϕ) in the
right-hand side of (4.5.28) thus represents the intrinsic minimal uncer-
tainty of the angle ϕ in the pure state S = |ψ)(ψ |. We now are going to
establish the uncertainty relation “angle-angular momentum”,

�∗(ϕ) · D(J ) > 1
4 , (4.5.29)

for an arbitrary pure state S = |ψ)(ψ |.
Performing the “gauge” transformation |m)′ = γm |m) with γm =

(m|ψ)/|(m|ψ)| we have (m|ϕ) ≥ 0. Thus we can take (m|ψ) ≥ 0.
Then∑

m

|(ψ |m)(m − 1|ψ)| =
∑

m

(ψ |m)(m − 1|ψ) = (ψ |E+ψ) ≡ E+,

where E+ is given by (3.12.130) and X denotes the mean value of X with
respect to the state |ψ)(ψ |. Therefore by (4.5.28)

�∗(ϕ) = 1− |E+|2
|E+|2

= 1− (C
2 + S

2
)

C
2 + S

2 ,

where C and S are the “cosine” and “sine” operators C = 1
2(E+ + E−),

S = 1
2 i(E+ − E−). From (3.12.131)

C2 + S2 = I − 1
2 [| − j)(− j | + | j)( j |].
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Using the fact that E+ = C − iS and D(C) = C2−C
2
, D(S) = S2− S

2

we therefore get

�∗(ϕ) = [D(C)+ D(S)+ 1
2(| − j)(− j | + | j)( j |)] · (C2 + S

2
)−1.

From (3.12.133) we obtain

[C, J ] = iS, [S, J ] = −iC.

By the uncertainty relation (2.6.63) with the right-hand side written in the
commutator form (2.6.65) we obtain

D(C) · D(J ) ≥ 1
4 S

2
, D(S) · D(J ) ≥ 1

4C
2
. (4.5.30)

Therefore

�∗(ϕ) ≥ 1
4 D(J )−1 + 1

2 [|(ψ | − j)|2 + |(ψ | j)|2] · (C2 + S
2
)−1.

Since (C
2 + S

2
)−1 = |E+|−2 = �∗(ϕ)+ 1, we get

�∗(ϕ) ≥ [1− 1
2 [|(ψ | − j)|2 + |(ψ | j)|2]]−1

· [ 1
4 D(J )−1 + 1

2 [|(ψ | − j)|2 + |(ψ | j)|2]]. (4.5.31)

Omitting the nonnegative term 1
2 [|(ψ | − j)|2 + |(ψ | j)|2] we get the in-

equality �∗(ϕ) ≥ [4D(J )]−1.
Let us show that the equality is never achieved here. If this would be

the case, then (ψ | − j) = (ψ | j) = 0 since we have omitted these terms
in (4.5.31), and (4.5.30) turn into equalities. According to (2.6.64) this is
the case if and only if

[(C − C)+ iα(J − J )]ψ = 0, [(S − S)+ iβ(J − J )]ψ = 0

for some real α and β (we exclude the case D(J ) = 0). Denoting z =
β−iα we have (E−−E−)ψ = z(J− J )ψ whence (m+1|ψ) = cm(m|ψ)

where cm = zm + E− − z J . Since (− j |ψ) = 0 we obtain by induction
(m|ψ) = 0 for all m which is impossible for a unit vector ψ . Thus the
strict inequality in (4.5.29) is proved.

In the same way we can prove the uncertainty relation for the phase
θ of a harmonic oscillator (see Section 3.9). It follows from (4.5.28) for
any covariant measurement M of θ and for any pure state S = |ψ)(ψ |

�{M} ≥ �∗(θ) =
[ ∞∑

n=0

|(ψ |n)(n − 1|ψ)|
]−2

− 1.
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Using the operators P∗, P given by (3.9.95) in place of E+, E− and the
corresponding cosine and sine operators we get

�∗(θ) ≥ [1− 1
2 |(ψ |0)|2]−1 · [ 1

4 D(N )−1 + 1
2 |(ψ |0)|2],

where N is the number of quanta operator, and the “phase-number of
quanta” uncertainty relation

�∗(θ)D(N ) ≥ 1
4 .

Finally, for covariant angle measurements in the case of spatial degrees
of freedom (see Section 3.12) we have the inequality (4.5.28) with m run-
ning from−∞ to∞ and the uncertainty relation (4.5.29) with J replaced
by the operator of orbital angular momentum L . This is obtained by using
the operators U , U ∗ given by (3.12.125) in place of E+, E−.

In Section 6.3 we shall derive a general inequality for the uncertainty
of angular parameter valid for arbitrary states.

4.6. Covariant measurements of angular parameter
in the case of arbitrary representation of the group T

In this section we shall considerably generalize the results of Section
4.4. This will also help us to study the covariant measurements of a shift
parameter in R. Let ϕ → Vϕ , 0 ≤ ϕ ≤ 2π , be a projective unitary
representation of the group T. Since the value ϕ = 2π corresponds to
the identical state automorphism, we must have V2π = exp(ia0) with a0

real. Putting V2πk+ϕ = V k
2π ·Vϕ we get a projective unitary representation

of the additive group of R. According to Proposition 3.2.1 it reduces
to the unitary representation ϕ → exp(−iϕ A), where A is self-adjoint.
The condition V2π = exp(ia0) implies that the spectrum of A consists of
eigenvalues of the form m = k + a, where k are integral numbers, i.e., A
has the spectral representation

A =
∑

m

m Em, (4.6.32)

where Em is the projection onto the invariant subspace Hm corresponding
to the eigenvalue m. The space H is the direct orthogonal sum of these
subspace Hm

H =
⊕

m

Hm, (4.6.33)

which means that for any ψ ∈ H

ψ =
∑

m

ψm, ‖ψ‖2 =
∑

m

‖ψm‖2, (4.6.34)
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where ψm = Emψ is the component of the vector ψ in the subspace Hm .
We shall write brie�y ψ = [ψm]. Then

exp(iϕ A)ψ = [exp(imϕ)ψm].
We shall study measurements M(dϕ) with values in [0, 2π) which are

covariant with respect to the representation of the group T. Assuming
that dim Hm ≡ 1 we obtain in particular the case of spin angular mea-
surements considered in Section 4.4 if m = − j,− j + 1, . . . , j , the case
of phase measurements if m = 0, 1, . . . and the case of spatial angular
measurement if m = 0,±1, . . .

By a kernel we shall mean here a matrix [Kmm′ ] where Kmm′ is a
bounded operator from Hm′ to Hm . To a bounded operator K in H

we ascribe the kernel [Em K Em′ ]. In particular, the unit operator has the
kernel [δmm′Em]. The kernel is positive de�nite, [Kmm′ ] ≥ 0 if∑

m,m′
(ψm |Kmm′ψm′) ≥ 0

for any ψ = [ψm]. Obviously a positive operator has a positive de�nite
kernel.

Theorem 4.6.1. A measurement covariant with respect to the represen-
tation of the group T is determined by the kernels

M(B) =
[

Kmm′

∫
B

ei(m′−m)ϕ dϕ

2π

]
; B ∈ A ([0, 2π)),

where [Kmm′ ] is a positive de�nite kernel satisfying Kmm = Em.

Proof. Applying (4.2.3) to the representation ϕ → exp(−iϕ A) we have∫ 2π

0
Tr e−iϕ A Seiϕ A M(B)dϕ = mes B,

where mes denotes the Lebesgue measure on [0, 2π). Take for S a density
operator Sm acting in Hm , i.e., Sm Em=Em Sm = Sm . Then

exp(−iϕ A)Sm exp(iϕ A) = Sm

and denoting by Trm the trace in the space Hm we have

Trm Sm Mmm(B) = (2π)−1 mes B,

where Mmm′(B) = Em M(B)Em′ . Since it holds for arbitrary Sm in Hm
we have

Mmm(B) = Em
mes B

2π
. (4.6.35)
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From positivity of M(B) and the Cauchy inequality

|(ψm |Mmm′(B)ψm′)| ≤ mes B

2π
‖ψm‖ · ‖ψm′‖,

for all ψm , ψm′ . By Proposition 4.2.2

Mmm′(B) =
∫

B
Pmm′(ϕ)

dϕ

2π
,

where Pmm′(·) is the operator density satisfying ‖Pmm′(ϕ)‖ ≤ 1. Since
Mmm′(B) maps Hm′ into Hm so does Pmm′(ϕ). From (4.6.35) Pmm(ϕ) ≡
Em ; positivity of M(B) implies that the kernel [Pmm′(ϕ)] is positive def-
inite for almost all ϕ. As in the proof of Theorem 4.2.3 the covariance of
the measurement {M(B)} implies

Pmm′(ϕ) = ei(m′−m)ϕ Pmm′(0)

for the proper de�nition of the densities Pmm′(·). Putting Kmm′ = Pmm′(0)

we get the assertion of the theorem.

Conversely, any kernel [Kmm′ ] satisfying the conditions of the theorem
de�nes the corresponding covariant measurement, but we shall not prove
it here.

Consider now the covariant estimation problem for the family of states

Sϕ = e−iϕ A Seiϕ A, 0 ≤ ϕ < 2π, (4.6.36)

where S = |ψ)(ψ | is a pure state. Assume that the deviation function
W (ϕ − ϕ̂) is continuous and satis�es (4.4.23), then

W (ϕ) = w0 −
∞∑

k=1

wk cos kϕ ≡
∞∑

k=−∞
vkeikϕ,

where vk ≤ 0 for k �= 0 and
∑ |vk | < ∞. Let M be a covariant mea-

surement de�ned according to Theorem 4.6.1 by the kernel [Kmm′ ]. Then
arguing as in the proof of Theorem 4.4.1 we get

R0{M} =
∑
m,m′

vm−m′(ψm |Kmm′ψm′)

≥
∑
m,m′

vm−m′‖ψm‖ · ‖ψm′‖,

where ψm are the components of the vector ψ . The equality here is
achieved for the positive de�nite kernel

Kmm′ = |ψm)(ψm′ |
‖ψm‖ · ‖ψm′‖ . (4.6.37)
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Similar argument can be given for the deviation function W (ϕ̂ − ϕ) =
−δ((ϕ̂ − ϕ) (mod 2π)) for which vm ≡ −(2π)−1, if we suppose addi-
tionally that

∑ ‖ψm‖ <∞.
The operator-valued measure corresponding to the kernel (4.6.37)

M0(dϕ) =
[ |ψm)(ψm′ |
‖ψm‖ · ‖ψm′‖ei(m′−m)ϕ

]
dϕ

2π

is not a measurement unless dim Hm ≡ 1, for otherwise

E0 ≡
∫

M0(dϕ) =
∑

m

|ψm)(ψm |
(ψm |ψm)

�= I.

The operator E0 is the projection onto the subspace H0 generated by the
components ψm of the basic vector ψ . Therefore the measure M0(dϕ)

can be extended to a resolution of identity in H by the formula

M∗(dϕ) = M0(dϕ)⊕ M1(dϕ), (4.6.38)

where M1(dϕ) is arbitrary resolution of identity in the orthogonal com-
plement to the subspace H0. Since the states Sϕ are concentrated on H0,
the measurement probability distribution is given by

μϕ(dϕ̂) ≡ Tr Sϕ M∗(dϕ̂) = (e−iϕ Aψ |M0(dϕ̂)e−iϕ Aψ)

=
∣∣∣∣∣∑

n

‖ψm‖eim(ϕ̂−ϕ)

∣∣∣∣∣
2

dϕ̂

2π
,

so that the additional term M1(dϕ) has no in�uence on the statistics of
measurement and on the value of mean deviation. In particular, we can
take

M1(dϕ) = (I − E0)μ(dϕ),

where μ is a probability distribution. Of courseM∗ will be covariant only
if so inM1, which holds for the uniform distribution μ.

If dim Hm is the same for all m, then the subspaces Hm are mutually
isomorphic. Let for each pair m, m ′Umm′ be an isometric map of Hm′
onto Hm and the system {Umm′ } be consistent in the sense that Umm =
Em , Umm′Um′m′′ = Umm′′ . Then the kernel [Umm′ ] satis�es the conditions
of Theorem 4.6.1. Consider the corresponding covariant measurement

M(dϕ) = [Umm′e
i(m′−m)ϕ] dϕ

2π
.
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If we agree that the maps Umm′ “identify” Hm′ and Hm we obtain the
“canonical” covariant measurement

M(dϕ) = [Emei(m′−m)ϕ] dϕ

2π
. (4.6.39)

Of course it depends on the way of identifying of the subspaces {Hm}.
The measurement (4.6.39) will be optimal for the family (4.6.36) if

and only if

(ψm |Umm′ |ψm′) ≡ (ψm |ψm′) = ‖ψm‖ ‖ψm′‖.
This holds if and only if ψm = αme under the given identi�cation of
{Hm}, where αm ≥ 0 and e is a �xed vector in Hm . Otherwise there is a
covariant measurement which has smaller mean deviation.

4.7. Covariant measurements of a shift parameter

The most important examples of shift parameters on R are the coordinate
x and the time t . We shall �rst consider covariant measurements of the
shift parameters from a general point of view.

Consider a projective unitary representation of the shift group of R.
According to Proposition 3.2.1 it reduces to the unitary representation

θ → e−iθ A, (4.7.40)

where A is a self-adjoint operator in H. There is a form of the spectral
theorem which says that A can be represented as the operator of mul-
tiplication by an independent variable in a direct orthogonal integral of
Hilbert spaces. We shall describe this construction in the particular case
when A has purely Lebesgue spectrum.

In this section we shall proceed rather heuristically considering the sit-
uation as a continuous analog of the discrete one discussed in the previous
section, since a rigorous treatment would take too much place here.

Let � be an interval of the real line with the Lebesgue measure on it
and let for almost all λ ∈ � a Hilbert space Hλ be given. The inner
product and the norm in Hλ will be denoted (·|·)λ and ‖ · ‖λ. The direct
orthogonal integral of the Hilbert spaces Hλ with respect to the Lebesgue
measure

H =
∫

�

⊕
Hλ dλ (4.7.41)

is the space of functions ψ = [ψλ], where ψλ ∈ Hλ, satisfying

‖ψ‖2 ≡
∫

�

‖ψλ‖2
λdλ <∞. (4.7.42)
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ψλ is called component of vector ψ in Hλ. The inner product in H is
de�ned by

(ϕ|ψ) =
∫

�

(ϕλ|ψλ)λ dλ. (4.7.43)

We assume that the representation space H decomposes into a direct
orthogonal integral (4.7.41) such that A acts in (4.7.41) as multiplication
by λ:

Aψ = [λψλ]; ψ = [ψλ].
If follows that exp(iθ A)ψ = [exp(iθλ)ψλ]. The relations (4.7.41) and
(4.7.42) are continuous analogs of (4.6.33) and (4.6.34).

A kernel [K (λ, λ′)] is a function de�ned for almost all λ, λ′ ∈ � such
that K (λ, λ′) is a bounded operator from Hλ, to Hλ. An operator K in
H is determined by the kernel [K (λ, λ′)] if for any ψ ∈ H

Kψ =
[∫

�

K (λ, λ′)ψλ′ dλ′
]

. (4.7.44)

This correspondence can be given a strict mathematical sense if K is,
say, Hilbert-Schmidt (cf. Section 2.7); for a Hermitean Hilbert-Schmidt
operator K =∑

κ j |ψ j )(ψ j | the kernel is K (λ, λ′) =∑
κ j |ψ j

λ )λλ′(ψ
j
λ′ |

where ψ
j
λ is the component of ψ j in Hλ. Thus K j (λ, λ′) = |ψ j

λ )λλ′ ·(ψ j
λ′ |

is an operator from Hλ′ to Hλ acting according to the formula

K j (λ, λ′)ψλ′ = ψ
j
λ (ψ

j
λ′ |ψλ′)λ′ .

However we shall use the correspondence between the kernels and the
operators formally in a broader context; in particular the unit operator
in H will be described by the kernel [δ(λ − λ′)Iλ] where Iλ is the unit
operator in Hλ.

The kernel is called positive de�nite if∫∫
(ψλ|K (λ, λ′)ψλ′)λdλ dλ′ ≥ 0; ψ = [ψλ]. (4.7.45)

This corresponds to positivity of the operator determined by (4.7.44).
Substituting f (λ)ψλ in place of ψλ, where f is an arbitrary scalar func-
tion we get that (4.7.45) holds if and only if for any ψ = [ψλ] the scalar
kernel [(ψλ|K (λ, λ′)ψλ′)λ] is positive de�nite. Then by the Cauchy in-
equality

|(ψλ|K (λ, λ′)ψλ′)λ|2 ≤ (ψλ|K (λ, λ)ψλ)λ(ψλ′ |K (λ′, λ′)ψλ′)λ′ (4.7.46)

for almost all λ, λ′ ∈ �, if K (λ, λ) is properly de�ned (cf. the remark
before (2.7.83)).
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The general form of a measurement covariant with respect to the rep-
resentation (4.7.40) is given by the continuous analog of Theorem 4.6.1:

M(B) =
[

K (λ, λ′)
∫

B
ei(λ′−λ)θ dθ

2π

]
; B ∈ A (R), (4.7.47)

where [K (λ, λ′)] is a positive de�nite kernel satisfying K (λ, λ) = Iλ. It
is easy to check at the formal level that (4.7.47) is a resolution of identity:
M(dθ) ≥ 0 due to the positive de�niteness of the kernel

[K (λ, λ′) exp i(λ′ − λ)θ ]
and ∫

M(dθ) = [δ(λ− λ′)Iλ] = I.

Assume now that dim Hλ is the same for almost all λ ∈ �. Let
{U (λ, λ′)} be a consistent family of isometric maps of Hλ′ onto Hλ. Then
[U (λ, λ′)] is a kernel determining by (4.7.47) a covariant measurement.
If we agree that {U (λ, λ′)} identi�es the spaces Hλ we obtain the “canon-
ical” covariant measurement

M(dθ) = [Iλei(λ′−λ)θ ] dθ

2π
.

Let S = |ψ)(ψ | be a pure state with ψ = [ψλ]. Then denoting by
�ψ(λ) = ∫∞

−∞ exp(iλθ)(ψ |M(dθ)ψ) the characteristic function of the
measurement probability distribution with respect to the state S we get
using (4.7.47)

�ψ(λ) =
∫

(ψμ|K (μ,μ− λ)ψμ−λ)dμ. (4.7.48)

The integral converges, since by (4.7.46) and the condition K (λ, λ) = Iλ

|(ψμ|K (μ, μ− λ)ψμ−λ)| ≤ ‖ψμ‖μ‖ψμ−λ‖μ−λ, (4.7.49)

and both functions in the right-hand side are square-integrable. If we
suppose additionally that ∫

�

‖ψλ‖λdλ <∞, (4.7.50)

then the characteristic function is integrable by (4.7.49) and the measure-
ment probability distribution has the continuous density

pψ(θ) ≡ 1

2π

∫
e−iθλ�ψ(λ)dλ

= 1

2π

∫∫
(ψλ|K (λ, λ′)ψλ′)λei(λ′−λ)θdλ dλ′.
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This agrees with the expression for M(dθ)/dθ which follows formally
from (4.7.47).

We now turn to the covariant estimation problem for the shift parame-
ter θ in the family

Sθ = e−iθ A Seiθ A; θ ∈ R,

where S = |ψ)(ψ | is a pure state. Since the symmetry group is non-
compact we cannot apply Theorem 4.3.1. Moreover since the “uniform
distribution” dθ is in�nite there is no covariant Bayes formulation. One
can prove the noncompact analog of Theorem 4.3.1 for the minimax ap-
proach, but we shall instead proceed with minimizing the mean deviation

Rθ {M} =
∫ ∞

−∞
W (θ̂ − θ)μθ(dθ̂ )

restricting essentially to covariant measurements. Due to covariance this
quantity does not depend on θ and we have to minimize

R0{M} =
∫ ∞

−∞
W (θ)μ0(dθ).

Similarly to Theorem 4.4.1 we assume that the deviation function is a
real continuous negatively de�nite function, i.e.,

W (θ) = −
∫

eiθλW̃ (dλ),

where W̃ (dλ) is an even �nite measure on R. An example is given by
W (θ − θ̂ ) = − exp[−(θ − θ̂ )2]. Then for the covariant measurement
(4.7.47)

R0{M} = −
∫

�ψ(λ)W̃ (dλ).

By the inequality (4.7.49)

Re �ψ(λ) ≤ �∗(λ) ≡
∫
‖ψμ‖μ‖ψμ−λ‖μ−λdμ,

so that

R0{M} ≥ −
∫∫

‖ψμ‖μ‖ψμ−λ‖μ−λdμW̃ (dλ) = R0{M0},

where

M0(dθ) =
[ |ψλ)λλ′(ψλ′ |
‖ψλ‖λ · ‖ψλ′‖λ′

ei(λ′−λ)θ

]
dθ

2π
. (4.7.51)
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As in Section 4.6 the optimal operator-valued measure M0(dθ) is not, in
general, a resolution of identity since

∫
M0(dθ) ≡ E0 is equal to the unit

operator if and only if dim Hλ ≡ 1 for almost all λ ∈ �. However it can
be extended to a resolution of identity by adding an arbitrary resolution
of identity in the orthogonal complement to the subspace H0 = E0(H ):

M∗(dθ) = M0(dθ)⊕ M1(dθ). (4.7.52)

The term M1(dθ) has no in�uence on the measurement statistics with re-
spect to the states Sθ , which is determined by the probability distributions

μθ(dθ̂ ) =
∣∣∣∣∫

�

‖ψλ‖λeiλ(θ̂−θ)dλ

∣∣∣∣2 dθ̂

2π
,

following from (4.7.51). However, it may affect the covariance prop-
erty of the measurement (4.7.52). In any case M∗(dθ) is “essentially
covariant”, i.e., satis�es the covariance condition on the subspace H0, on
which the family {Sθ } is concentrated. Thus, essentially, the measurement
(4.7.52) is optimal for any deviation function of the required form.

The same is true for the maximum-likelihood approach. Assume that
the basis state S = |ψ)(ψ | satis�es (4.7.50) so that the density pψ(dθ̂ ) is
continuous. Then the formal Bayes functional with the deviation function
W (θ) = −δ(θ) and the prior distribution π(dθ) = dθ reduces to

−pψ(0) = −
∫

�ψ(λ)dλ

= −
∫∫

(ψλ|K (λ, λ′)ψλ′)λdλ dλ′.

It has to be minimized over positive de�nite kernels[K (λ,λ′)] satisfying
K (λ,λ) = Iλ. The solution of this problem is apparently given by the
same formulas (4.7.51) and (4.7.52)).

Consider now the case of quadratic deviation

W (θ̂ − θ) = (θ̂ − θ)2,

which corresponds to the estimation problem formulated in Section 3.2.
It is natural to restrict to measurements for which

R0{M} =
∫

θ2μS(dθ)

is �nite. As is known from a course of probability the �niteness of the
second moment is equivalent to the existence of the second derivative of
the characteristic function at zero point, and∫

θ2μS(dθ) = − d2

dλ2
�ψ(λ)

∣∣∣∣
λ=0

= − d2

dλ2
Re �ψ(λ)

∣∣∣∣
λ=0

.
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Assume that the basic state satis�es
∫ |d/dλ‖ψλ‖λ|2dλ < ∞ and more-

over ψλ = 0 at the ends of the interval � (if the interval extends to
in�nity this is automatically satis�ed). Then the characteristic function
�∗

ψ(λ) for the measurement (4.7.52) is twice differentiable at zero point
with

d2

dλ2
�∗

ψ(λ)

∣∣∣∣
λ=0

= d2

dλ2

∫
�

‖ψμ‖μ‖ψμ−λ‖μ−λdμ

= −
∫

�

∣∣∣∣ d

dλ
‖ψλ‖λ

∣∣∣∣2 dλ,

where we have used the assumed properties of [ψλ]. Consider the func-
tions Re �ψ(λ) and �∗

ψ(λ). They satisfy Re �ψ(λ)≤�∗
ψ(λ), Re �ψ(0)=

�∗
ψ(0) and are twice differentiable at λ = 0. It follows that

(d2/dλ2)�∗
ψ(0) ≥ (d2/dλ2) Re �ψ(0)

so that R0{M} ≥ R0{M∗}. Thus the formulas (4.7.51) and (4.7.52) de-
termine the measurement which is optimal in the sense of mean-square
deviation.

A measurement M = {M(dθ)} with �nite second moment is an un-
biased measurement of the parameter θ if Eθ {M} = θ , θ ∈ R, where
the subscript θ refers to the state Sθ . As in Section 3.2 any covariant
measurement satis�es Eθ {M} = E0{M} + θ and so is unbiased up to a
constant. Assuming that E0{M} = 0 we have Dθ {M} = R0{M}, θ ∈ R.
We therefore have obtained a bound for the variance of a covariant mea-
surement

D{M} ≥ D∗(θ) ≡
∫

�

∣∣∣∣ d

dλ
‖ψλ‖λ

∣∣∣∣2 dλ (4.7.53)

which is achieved on the optimal measurement determined by (4.7.51)
and (4.7.52). The quantity D∗(θ) is the intrinsic minimal uncertainty
of the shift parameter θ ∈ R in the pure state S = |ψ)(ψ |. This is
analogical to the quantity �∗(ϕ) of (4.5.28) giving the uncertainty of an
angular parameter. Observing that∫

�

∣∣∣∣ d

dλ
‖ψλ‖λ

∣∣∣∣2 dλ ≥ 1

4

[∫
�

(λ− c)2‖ψλ‖2
λdλ

]−1

,

(this is just the Heisenberg uncertainty relation (3.3.29) in the momentum
representation for the state function ψ(λ) = ‖ψλ‖λ, λ ∈ � and ψ(λ) =
0, λ∈̄�), we obtain the uncertainty relation

D∗(θ) · D(A) ≥ 1
4 ,
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which agrees with (3.2.12). A more general result will be established
rigorously in Section 6.3.

As a �rst application we consider the covariant measurement of the
coordinate parameter x in the family

Sx = e−ix P |ψ)(ψ |eix P; x ∈ R.

The role of A is played by momentum operator P (we take � = 1), which
is diagonal in the momentum representation

ψ = [ψ̃(η)], ‖ψ‖2 =
∫ ∞

−∞
|ψ̃(η)|2dη;

Pψ = [ηψ̃(η)].
The representation space H = L 2(R) is the direct orthogonal integral
of the one-dimensional spaces Hη, η ∈ � ≡ R. The optimal covariant
measurement is given by the kernel

M∗(dx) = [γηγ̄η′e
i(η′−η)x ] dx

2π
, (4.7.54)

which is the continuous analog of (4.4.22). Here γη = ψ̃(η)/|ψ̃(η)|. If
arg ψ̃(η) = const. for almost all η, we get

M∗(dx) = [ei(η′−η)x ] dx

2π
, (4.7.55)

which is just a symbolic form of (2.4.45) to within the notations for the
arguments. Thus the canonical measurement (4.7.55) is the spectral mea-
sure of the self-adjoint operator i d/dη representing the canonical coor-
dinate observable Q in the momentum representation. Otherwise the op-
timal covariant measurement is given by (4.7.54) which is the spectral
measure of the self-adjoint operator γηi(d/dη)γ̄η. This gives the covari-
ant estimate of coordinate x in the family {Sx} with the minimal variance

D∗(x) =
∫ ∞

−∞

(
d

dη
|ψ̃(η)|

)2

dη.

The measurements (4.7.54) corresponding to different ψ are obtained one
from another by “gauge” transformations ψ̃(η)→ γηψ̃(η) with |γη| ≡ 1.

The second example is the covariant measurements of time parameter
t in the family

St = e−it E |ψ)(ψ |eit E , t ∈ R.
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We assume that the energy operator E has purely Lebesgue spectrum oc-
cupying � = (0,∞). Namely the Hilbert space is the direct orthogonal
integral

H =
∫ ∞

0

⊕
Hε dε,

and E acts as multiplication by ε : Eψ = [εψε] where ψε is the compo-
nent of ψ in Hε. The optimal covariant time measurement is given by
the formula

M∗(dt) =
[ |ψε)ε · ε′(ψε′ |
‖ψε‖ε · ‖ψε′‖ε′ e

i(ε′−ε)t

]
dt

2π
⊕ M1(dt). (4.7.56)

If H = L 2
K
(0,∞) as in Section 3.8, then we can take Hε = K, ε ∈

(0,∞). This gives a special way of identi�cation of Hε, ε ∈ (0,∞) to
which corresponds the canonical measurement

M(dt) = [ei(ε′−ε)t ] dt

2π
,

where we have omitted the unit operator in K from the squared brackets.
This is just a symbolic form of the general relation analogous to (3.8.74),
representing the (nonorthogonal) spectral measure of the canonical time
observable T = i d/dε. On the other hand, the �rst, essential, term in the
optimal time measurement (4.7.56) is the spectral measure of the operator

|ψε)ε

‖ψε‖ε i
d

dε

ε(ψε|
‖ψε‖ε

differing from T by the factors involving the basic state.

4.8. The case of irreducible representation

We now pass to quantum estimation problems with multidimensional pa-
rameter θ . Representations of symmetry groups in these problems will
be irreducible due to either noncommutativity of the group or essential
projectivity of the representation. On the other hand, the irreducibility
considerably simpli�es the description of the covariant measurements.

Let g → Vg be an irreducible representation of the group G in the
Hilbert space H. Assume �rst that G is compact; then by a general the-
orem of the representation theory d = dim H < ∞. For an irreducible
representation the following orthogonality relations hold∫

(ψ1|Vgϕ1)(ϕ2|V ∗
g ψ2)μ(dg) = c(ϕ2|ϕ1)(ψ1|ψ2), (4.8.57)
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where the factor c, depending on the normalization of the invariant mea-
sure μ, is equal to d−1 if μ(G) = 1.

Since any operator T in a �nite-dimensional space is the �nite-rank
operator T =∑

i |ϕi
1)(ϕ

i
2|, (4.8.57) and (2.1.17) imply∫

(ψ1|VgT V ∗
g ψ2)μ(dg) = d−1(ψ1|ψ2) Tr T, ψ j ∈ H,

or ∫
VgT V ∗

g μ(dg) = d−1 Tr T · I. (4.8.58)

In particular, if S is a density operator, then∫
Vg SV ∗

g μ(dg) = d−1 I. (4.8.59)

Taking trace here we get the identity Tr Vg SV ∗
g ≡ Tr S = 1, which con-

�rms the correctness of the choice c = d−1. If we take c = 1 this would
correspond to normalization

μ(G) = dim H = d. (4.8.60)

Turning to Theorem 4.2.3 which gives a description of covariant mea-
surements we see that for an irreducible representation the condition
(4.2.4) due to (4.8.59) reduces to Tr P0 = d; together with positivity
of P0 this means that S0 = d−1 P0 is a density operator. We thus obtain:

Proposition 4.8.1. Let g → Vg be an irreducible representation of a
compact group G of transformations of the set �. The relation

M(dθ) = d · Vg S0V ∗
g ν(dθ) (θ = gθ0), (4.8.61)

establishes the one-to-one af�ne correspondence between the covariant
measurements M(dθ) and the density operators S0, commuting with
{Vg; g ∈ G0}.

In particular, if G0 is trivial, then S0 may be an arbitrary density oper-
ator and the extreme points of the set of covariant measurements corre-
spond precisely to pure states S0 = |ψ0)(ψ0|:

M(dθ) = d · Vg|ψ0)(ψ0|V ∗
g ν(dθ).

Consider now the covariant estimation problem for the family of states
(4.3.10). According to Section 4.3 it reduces to solving the problem
(4.3.15) where Ŵ0 is the operator of posterior deviation expressed
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through the data of the estimation problem by the formula (4.3.14). This
has a simple solution in the irreducible case. The set P consists now of
the operators P0 commuting with {Vg; g ∈ G0} and satisfying

P0 ≥ 0, Tr P0 = d.

Let ŵmin be the least eigenvalue of Ŵ0, and Êmin be the projection onto
the corresponding invariant subspace. Then Ŵ0 ≥ ŵmin · I whence

Tr Ŵ0 P0 ≥ ŵmin Tr P0 = ŵmind.

The equality is achieved if

P0 = Êmin
d

dmin
, (4.8.62)

where dmin is the dimensionality of the invariant subspace. Since Ŵ0

commutes with {Vg; g ∈ G0}, so does Êmin and the operator (4.8.62)
satis�es all the required conditions. We thus get

Proposition 4.8.2. Let g → Vg be an irreducible representation of a
compact group G acting on the set �. The optimal covariant measure-
ment of the parameter θ is given by the relation

M∗(dθ) = d

dmin
Vg ÊminV ∗

g v(dθ) (θ = gθ0),

where Êmin is the projection onto the invariant subspace of the opera-
tor of posterior deviation (4.3.14), corresponding to the least eigenvalue
ŵmin, and dmin is the dimensionality of the subspace. The minimal mean
deviation is equal to ŵmind.

An analogous result holds for the maximum-likelihood approach: the
covariant maximum-likelihood measurement of the parameter θ in the
family {Sθ } is

M(dθ) = d

dmax
Vg EmaxV ∗

g ν(dθ) (θ = gθ0),

where Emax is the projection onto the invariant subspace corresponding
to the greatest eigenvalue of the density operator S = Sθ0 , dmax is its
dimensionality.

These results are suf�cient for the concrete estimation problems to be
considered in the following two paragraphs. We conclude this section
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with a discussion of non-compact groups which has an application to
joint measurements of coordinate and velocity considered in Section 3.6.

The orthogonality relations (4.8.57) hold for irreducible representa-
tions of an arbitrary parametric group under the condition of square-in-
tegrability of the matrix elements (ψ1|Vgψ2), g ∈ G, for all ψ j ∈ H.
Normalizing μ in such a way that c = 1 we obtain∫

Vg SV ∗
g μ(dg) = I (4.8.63)

for an arbitrary density operator S, where the integral converges weakly.
Using this fact we shall generalize Proposition 4.8.1. We now assume
that the invariant measures μ and ν are normalized so that (4.8.63) holds
(for a compact group this corresponds to (4.8.60)).

Theorem 4.8.3. The relation

M(B) =
∫

B
Vg S0V ∗

g ν(dθ), B ∈ A (�) (θ = gθ0), (4.8.64)

establishes the one-to-one af�ne correspondence between the measure-
ments {M(B)} covariant with respect to an irreducible square-integrable
representation g → Vg of the group G acting on the set � and the density
operators S0 commuting with {Vg; g ∈ G0}. The integral is understood
in the sense of weak convergence.2

We shall �rst prove two lemmas involving properties of trace-class op-
erators from Section 2.7.

Lemma 4.8.4. Let M be a Hermitean positive operator and {Tn} be
a monotonely non-decreasing sequence of Hermitean operators weakly
converging to the unit operator. Then Tr Tn M ↑ Tr M; in particular
supn Tr Tn M <∞ implies that M is a trace-class operator.

Proof. Let {e j } be a basis in H, then

Tr Tn M = Tr
√

MTn

√
M =

∑
j

(
√

Me j |Tn

√
Me j ).

By the properties of {Tn} we have

(
√

Me j |Tn

√
Me j ) ↑ (

√
Me j |

√
Me j ) = (e j |Me j ).

2 Moreover if ν(B) < ∞, then this converges as the Bochner’s integral of a function with values in
the Banach space of trace-class operators, see Dunford and Schwartz [31].
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By the monotone convergence theorem∑
j

(
√

Me j |Tn

√
Me j ) ↑

∑
j

(e j |Me j ) = Tr M.

Lemma 4.8.5. Let{M(B)}be a covariant measurement.Then Tr M(B)=
ν(B). In particular if ν(B) <∞, then M(B) is trace-class.

Proof. Let {Bn} be a non-decreasing sequence of compact subsets, cov-
ering �. Consider

Tn =
∫

Bn

Vg SV ∗
g μ(dg), (4.8.65)

where S is a density operator. By positivity of the integrand Tn ≥ 0 and

Tr Tn ≤
∫

Bn

Tr Vg SV ∗
g μ(dg) = μ(Bn) <∞

so that Tn is trace-class. Since Bn ⊆ Bn+1 we have Tn ≤ Tn+1. Moreover
Tn → I weakly by (4.8.63). The sequence {Tn} satis�es Lemma 4.8.4,
so that Tr M(B) = limn Tr Tn M(B). But according to (4.2.3)

lim
n

Tr Tn M(B) = lim
n

∫
Bn

Tr Vg SV ∗
g M(B)μ(dg) = ν(B),

which proves the lemma.

Proof of Theorem 4.8.3. Let S0 be a density operator satisfying the con-
ditions of the theorem. De�ning M(B) by the weakly converging integral
(4.8.64) we get a resolution of identity. Indeed M(B) ≥ 0 since the inte-
grand is positive. The weak σ -additivity is a property of the integral. The
normalization M(�) = I follows from (4.8.63) and the covariance is a
straightforward calculation.

Conversely, let {M(B)} be a covariant measurement. Then by Lemma
4.8.5 it satis�es the condition of Proposition 4.2.2, which is established
as in the proof of Theorem 4.2.3. Therefore

M(B) =
∫

B
P(θ)ν(dθ),

where P(θ) isanoperator-valueddensity, positive and satisfying‖P(θ)‖≤
1 for ν-almost all θ . As in Theorem 4.2.3 covariance implies P(θ) =
Vg P(θ0)V ∗

g , θ = gθ0, for the proper de�nition of the density. By (4.8.63)
P(θ0) must have the unit trace, i.e., it must be a density operator. The
theorem is proved.
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As an example consider the group G of shifts (ξ, η)→ (ξ + x, η+ v)

of the plane � = R2. The stationary subgroup G0 is trivial in this case. It
follows from the uniqueness theorem of Section 3.4 that any (continuous)
irreducible projective unitary representation (x, v) → Wx,v of the group
is unitary equivalent to the Schrödinger representation with μ �= 0. Then
by Proposition 3.5.1 it is square-integrable; the orthogonality relations
hold with c = 1 corresponding to the invariant measure μ dx dv/2π .
Theorem 4.8.3 implies the any measurement M(dx dv), covariant with
respect to the representation (x, v)→ Wx,v has the form

M(dx dv) = Wx,v S0W ∗
x,v

μ dx dv

2π
.

Thus (3.6.52) describes precisely the extreme points of the convex set of
covariant measurements.

Turning to the optimality question we note that R{M} = gx Dx{M} +
gv Dv{M} is an af�ne functional of a measurementM, which is �nite ifM
has �nite second moments; by a general theorem of convex analysis (see
comments to this chapter) it achieves its minimum at an extreme point of
the convex set of covariant measurements M(dx dv) having �nite second
moments. Together with (3.6.58) this leads to

Proposition 4.8.6. The canonical measurement (3.6.59) is the optimal
covariant joint measurement of coordinate and velocity, minimizing the
measure of accuracy R{M}.

4.9. Estimation of pure state

Let H be a Hilbert space of �nite dimensionality n. Denote by � the
unit sphere in H ; the elements of � are the vectors |θ) ∈ H satisfying
(θ |θ) = 1. The set � can be parametrized as follows: let {e j } be a basis
in H, then

|θ) =
n∑

j=1

θ j |e j ),

where θ j = (e j |θ); j = 1, . . . , n, are complex numbers satisfying

n∑
j=1

|θ j |2 =
n∑

j=1

[(Re θ j )
2 + (Im θ j )

2] = 1. (4.9.66)

To any θ ∈ � corresponds a pure state

Sθ = |θ)(θ |. (4.9.67)
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The parametrization of pure states is not one-to-one, since vectors differ-
ing by a complex factor of unit modulus describe the same pure state, but
this is not important here.

Assume that a quantum object described by the Hilbert space H is
prepared in a pure state of which “nothing is known” and the problem is to
estimate the state as accurately as possible using measurements admitted
by quantum theory. In other words we need to estimate the parameter θ

in the family (4.9.67).
Consider the group G of all unitary operators U in H. Since the unit

vector is transformed by U into a unit vector, this is a compact group of
transformations of the set �. The normalized invariant measure ν(dθ)

on � is up to a factor the Euclidean area on the real 2n-dimensional unit
sphere (4.9.66). Considering the action of the unitary operators in H as
the representation of G we see that the family (4.9.67) is covariant

U SθU ∗ = |Uθ)(Uθ | = SUθ .

The representation U → U is apparently irreducible.
Let us describe measurements, covariant with respect to this repre-

sentation. Fix θ0 = e1, and consider the stationary subgroup G0 of θ0.
Clearly it consists of unitary operators of the form

U0 =
[
λ 0
0 U ′

0

]
,

where |λ| = 1 and U ′
0 is a unitary operator in the orthogonal complement

to |θ0). A Hermitean operator S0 commutes with all U0 ∈ G0 if and only
if

S0 = α|θ0)(θ0| + β I,

where α, β are real, i.e.,

S0 =

⎡⎢⎢⎢⎣
α + β 0

β

β

0
. . .

⎤⎥⎥⎥⎦ .

If S0 is a density operator: S0 ≥ 0 and Tr S0 = 1, then α + β ≥ 0, β ≥ 0
and nβ + α = 1, i.e.,

β = (1− α)/n; −(n − 1)−1 ≤ α ≤ 1.

By Proposition 4.8.1 any covariant measurement of parameter θ has the
form

M(dθ) = U [αn|θ0)(θ0| + (1− α)I ]U ∗ν(dθ), (θ = Uθ0),
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where α is a real number running over the segment −(n−1)−1 ≤ α ≤ 1.
It follows that the set of covariant measurements, as a convex set, is a
segment. An extreme point of this set corresponding to α = 1 is

M∗(dθ) = nU |θ0)(θ0|U ∗ν(dθ) = n|θ)(θ|ν(dθ). (4.9.68)

This is apparently the maximum-likelihood measurement for the family
(4.9.67). Another important measurement corresponding to α = 0 is

M∗(dθ) = I · ν(dθ).

This resolution of identity describes simple guessing, when the result of
measurement is chosen at random with respect to the uniform distribution
ν(dθ).

The simplest invariant deviation function on � is

δ = 1− |(θ|θ̂)|2;
we shall consider more general deviation functions

Wθ(θ̂) = W (δ). (4.9.69)

Proposition 4.9.1. The covariant measurement (4.9.68) is optimal for a
deviation function of the form (4.9.69) where W (·) is an arbitrary mono-
tonely nondecreasing function, which is not identically constant.

Proof. Since the mean deviation is an af�ne functional of measurement
it is suf�cient to show that

R{M∗} < R{M∗},
i.e., that ∫

Wθ0
(θ)n|(θ0|θ)|2ν(dθ) <

∫
Wθ0

(θ)ν(dθ).

Denoting r = |(θ0|θ)| rewrite it in the form

n
∫

W (1− r2)r2ν(dθ) <

∫
W (1− r2)ν(dθ).

By Lemma 4.9.2 proven below this is equivalent to

n
∫ 1

0
W (1− r2)r2d(1− r2)n−1 >

∫ 1

0
W (1− r2)d(1− r2)n−1,
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or ∫ 1

0
W (1− r2)[(n − 1)(1− r2)n−2 − n(1− r2)n−1]dr2 < 0.

Passing to the new variable δ = 1− r2 we have∫ 1

0
W (δ)d(δn−1 − δn) < 0.

Integrating by parts we obtain the relation∫ 1

0
(δn−1 − δn)dW (δ) > 0,

which apparently holds for a nonconstant nondecreasing W (·), since
δn−1 − δn > 0 for 0 < δ < 1.

To demonstrate the gain due to the optimal measurement we give
the values of mean deviation in case of the simplest deviation function
W (δ) = δ;

R{M∗} = n
∫ 1

0
δ(1− δ)dδn−1 = n − 1

n + 1
,

R{M∗} =
∫ 1

0
δ dδn−1 = n − 1

n
.

The ratio R{M∗}/R{M∗} = n/(n + 1) is minimal and equal to 2
3 for the

two-dimensional Hilbert space and increases to 1 as n →∞. Thus in an
in�nite-dimensional Hilbert space there is no better may to estimate the
unknown pure state than simple guessing.

Lemma 4.9.2. For any function F(r)∫
�

F(|θ0|θ)|)ν(dθ) = −
∫ 1

0
F(r)d(1− r2)n−1.

Proof. Choose a basis {e j } such that e1 = θ0 and denote (e j |θ) = α j +
iβ j . Then

� =
{

α j , β j :
n∑

j=1

(α2
j + β2

j ) = 1

}

and r =
√

α2
1 + β2

1 . We shall prove the lemma if we prove that∫
α2

1+β2
1≥ρ2

ν(dθ) = (1− ρ2)n−1. (4.9.70)
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Consider the auxiliary integral

Fm(ρ, R) =
∫
· · ·

∫
x2

1+x2
2≥ρ2

x2
1+···+x2

m≤R2

dx1 · · · dxm .

The area of the unit sphere is then (∂ Fn(0, R)/∂ R)|R=1; therefore the
normalized area of the �gure cut of the unit sphere by the inequality x2

1 +
x2

2 ≥ ρ2 is given by the expression

∂ Fm(ρ, R)

∂ R

∣∣∣∣
R=1

: ∂ Fm(0, R)

∂ R

∣∣∣∣
R=1

.

But this normalized area is the left-hand side of (4.9.70) if m = 2n. We
have

Fm(ρ, R) =
∫
· · ·

∫ {∫∫
ρ2≤x2

1+x2
2≤R2−x2

3−···−x2
m

dx1 dx2

}
dx3 · · · dxm

=
∫
· · ·

∫
π(R2 − ρ2 − x2

3 − · · · − x2
m)dx3 · · · dxm,

the integration being performed over the domain where the integrand is
nonnegative, i.e., x2

3+· · ·+x2
m ≤ R2−ρ2. Denoting by Sn−2(r) = crm−3

the area of the sphere x2
3 + · · · + x2

m = r2, we have

Fm(ρ, R) = cπ
∫ √R2−ρ2

0
(R2 − ρ2 − r2)Sm−2(r)dr = c1(R2 − ρ2)n/2,

whence (∂/∂ R)Fm(ρ, R)|R=1 = c2(1− ρ2)(m−2)/2, so that

∂ F2n(ρ, R)

∂ R

∣∣∣∣
R=1

: ∂ F2n(0, R)

∂ R

∣∣∣∣
R=1

= (1− ρ2)n−1,

and (4.9.70) is proved.

4.10. Measuring parameters of orientation

Here we shall consider the estimation of orientation of a quantum object
by measurements involving only spin degrees of freedom. We �rst as-
sume the prepared basic state S to be invariant under rotations about the
given symmetry axis n0:

S =
j∑

m=− j

sm |m)(m|,
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where j is the spin of the object, {|m)} are the eigenvectors of the spin
angular momentum J0 corresponding to the axis n0 (see Section 3.11).
If the preparing apparatus is then rotated so that the symmetry axis is
transformed into n = gn0, where g is the element of the rotation group,
the new state will be Sn = Vg SV ∗

g , where g → Vg is the irreducible
projective unitary representation of the rotation group in the (2 j + 1)-
dimensional Hilbert space spanned by {|m)}.

We thus have the covariant family of quantum states

Sn = Vg SV ∗
g (n = gn0), n ∈ S2,

where S2 is the unit sphere in R3.
Orientation of the object is now described by the unit vector n pointing

in the direction of the symmetry axis. Assume that the actual direction
n is unknown and the problem is to estimate it basing on quantum mea-
surement M(dn).

We shall adopt the deviation function

Wn(n̂) = |n− n̂|2 = 2(1− n · n̂), (4.10.71)

which is apparently invariant. As the prior distribution in the Bayes’
approach we shall take the normalized invariant measure ν(dn) on S2.

According to Proposition 4.8.1 any covariant measurement of the di-
rection n is given by the formula

M(dn) = (2 j + 1)Vg S0V ∗
g ν(dn) (n = gn0),

where S0 is a density operator commuting with {Vg; g ∈ G0}. Since
G0 consists of rotations about the axis n0, this is equivalent for S0 to
have the diagonal form in the basis {|m)}. To �nd the optimal covariant
measurement we need to calculate the operator of posterior deviation

Ŵ0 = 2
∫

G
(1− n0 · gn0)V ∗

g SVgμ(dg),

where μ(dg) is the normalized invariant measure on the rotation group.
It is shown at the end of this section that

Ŵ0 = 2

2 j + 1

[
I − Tr S J0

j ( j + 1)
J0

]
. (4.10.72)

According to Proposition 4.8.2 we need to know the least eigenvalue
and the corresponding eigenvector of (4.10.72). Since J0 has the known
spectral representation (3.11.116) we �nd the eigenvalue ŵmin = 2(1 −
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| J̄0|( j + 1)−1), where J̄0 = Tr S J0 and the corresponding eigenvector | j)
if J̄0 > 0 or | − j) if J̄0 < 0.

Denoting |m, n) ≡ Vg|m), where n = gn0, we see from Proposition
4.8.2 that the optimal covariant measurement of direction of the symmetry
axis n is

M∗(dn) = (2 j + 1)Vg| ± j)(± j |V ∗
g ν(dn)

= (2 j + 1)| ± j; n)(± j; n|ν(dn) (n = gn0),

where the sign ± corresponds to the sign of J̄0. The minimal mean devi-
ation is equal to ŵmin = 2(1− | J̄0|( j + 1)−1). Note that simple guessing
which is described by the resolution of identity M∗(dn) = I ·ν(dn) gives
the mean deviation R {M∗} = Tr Ŵ0 = 2 so that

R {M∗}
R {M∗} = 1− | J̄0|

j + 1
.

This shows that the gain due to the optimal measurement increases with
the value of ratio | J̄0|( j + 1)−1 and vanishes if J̄0 = 0.

According to Section 4.3 the measurement M∗(dn) is optimal in both
Bayes and minimax senses. The maximum-likelihood approach would
give, in general, a different result. As follows from the remark after
Proposition 4.8.2 the covariant maximum-likelihood measurement coin-
cides with M∗(dn) only if the vector | ± j) corresponds to the greatest
eigenvalue of the basic density operator S.

Consider now the problem of estimation of orientation without assum-
ing rotational symmetry of the basic state S. The orientation is then
described by �xing a Cartesian frame θ = {n1, n2, n3} in R3 bound to
the preparing apparatus. Let θ0 = {n0

1, n
0
2, n

0
3} be a �xed basic frame.

Rotation g is uniquely de�ned by the transformed frame θ = gθ0 ≡
{gn0

1, gn0
2, gn0

3}. Thus the set � of all frames can be identi�ed with the
rotation group G, and the relevant covariant family of states in Sθ =
Vg SV ∗

g , θ = gθ0, where g runs over the rotation group.

The deviation of the frame θ̂ = {n̂1, n̂2, n̂3} from the frame θ will be
taken in the form

Wθ (θ̂ ) =
3∑

i=1

|ni − n̂i |2 = 2
3∑

i=1

(1− ni · n̂i ). (4.10.73)

The corresponding operator of posterior deviation

Ŵ0 = 2
3∑

i=1

∫
[1− n0

i · gn0
i ]V ∗

g SVgμ(dg)
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using (4.10.72) is equal to

Ŵ0= 2

2 j+1

3∑
i=1

[
I − J̄i

j ( j+1)
Ji

]
= 2

2 j + 1

⎡⎢⎢⎢⎢⎢⎢⎣3−

√√√√ 3∑
i=1

J̄ 2
i

j ( j + 1)

3∑
i=1

αi Ji

⎤⎥⎥⎥⎥⎥⎥⎦,

where Ji is the spin angular momentum corresponding to the axis n0
i ,

J̄i = Tr S Ji and αi = J̄i (
∑

i J̄ 2
i )−1/2. The operator

∑
i αi Ji repre-

sents spin angular momentum corresponding to the axis n̄ = α1n0
1 +

α2n0
2 + α3n0

3. It follows from Section 3.11 that its maximal eigenvalue
is equal to j ; the corresponding eigenvector is apparently | j; n̄). Then
from Proposition 4.8.2 the optimal covariant measurement of orientation
θ = {n1, n2, n3} is given by

M∗(dθ) = (2 j + 1)Vg| j; n̄)(n̄; j |V ∗
g ν(dθ) (θ = gθ0).

The minimal mean deviation is equal to 2[3−
√∑

i J̄ 2
i ( j+1)−1], so that

the gain due to the optimal measurement is

R {M∗}
R {M∗} = 1− 1

3

√√√√ 3∑
i=1

J̄ 2
i

j + 1
,

and has the same nature as in the previous problem.
To prove (4.10.72) we calculate the matrix elements of Ŵ0 in the basis

{|m)}. For this we need the matrix elements of the representation opera-
tors {Vg}. Let 0 ≤ θ ≤ π , 0 ≤ ψ < 2π , 0 ≤ ϕ < 2π be the Euler angles
describing the rotation g. Then

μ(dg) = (8π2)−1d(cos θ)dψ dϕ.

Moreover

(n|Vg|m) = e−imψ−inϕ P j
mn(cos θ),

P j
mn(t) = K (1− t)α/2(1+ t)β/2 Pαβ

s (t),

where Pαβ
s are the Jacobi polynomials, α = |n − m|, β = |n + m|,

s = j − 1
2(α+β) (see Comments). Integrating by ϕ and ψ and using the
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relation 1− n0 · gn0 = 1− cos θ we get

(m|Ŵ0|m ′) = δmm′
j∑

n=− j

(n|S|n)

∫ 1

−1
(1− t)|P j

mn(t)|2dt.

It remains to calculate∫ 1

−1
(1−t)|P j

mn(t)|2dt = K 2
∫ 1

−1
(1−t)α+1(1+t)β |Pαβ

s (t)|2dt, (4.10.74)

where the constant K is de�ned by the normalization

K 2 ·
∫ 1

−1
(1− t)α(1+ t)β |Pαβ

s (t)|2dt = 2(2 j + 1)−1.

Using recurrent formulas for the Jacobi polynomials, we obtain

(1− t)Pαβ
s (t) =

[
1+ α2 − β2

4 j ( j + 1)

]
Pαβ

s (t)+ APαβ

s+1(t)+ B Pαβ

s−1(t),

where A and B are constants. Since {Pαβ
s ; s = 0, 1, . . .} is an orthogonal

system on the interval (−1, 1) with the weight (1−t)α(1+t)β then by the
normalization, the integral is equal to the factor of Pαβ

s in the right-hand
side of (4.10.74) multiplied by 2(2 j + 1)−1, i.e.,

2

2 j + 1

[
1+ α2 − β2

4 j ( j + 1)

]
= 2

2 j + 1

[
1− nm

j ( j + 1)

]
.

It follows that

Ŵ0 =
∑
m,m′

|m)(m|Ŵ0|m ′)(m ′|

= 2

2 j + 1

[
I − 1

j ( j + 1)

j∑
n=− j

n(n|S|n)

j∑
m=− j

m|m)(m|
]

which is the required formula (4.10.72).

4.11. Comments

Section 4.1. The classical treatise on continuous groups is Pontrjagin’s
book [113]. A detailed exposition of the compact parametric groups and
their representations addressed both to mathematicians and physicists is
presented in the book of �Zelobenko [148]. Kirillov [75] gives a concen-
trated account of the general representation theory and related topics of
functional analysis.
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The notion of covariant measurement extends onto general resolutions
of identity the important notion of imprimitivity system (which is in the
present terminology just simple covariant measurement) introduced by
Murray and von Neumann and studied by Mackey [91]. Presentations
of Mackey’s results with applications of quantum theory can be found in
Varadarajan [136] and Jauch [71]. The covariant measurements arise also
from the “covariant instruments” of Davies [26].

Section 4.2. The results of this section are due to Davies [26] and Ho-
levo [59, 64, 67]. Concerning operator-valued integration and the corre-
sponding Radon-Nikodym theorem see, e.g., Dunford and Schwarz [31].

Section 4.3. Mathematical statistics (see, e.g., Cramer [23], Ferguson
[34]) presents a natural framework for statistical measurement theory of
classical systems. If the unknown parameter θ is �nitely-valued, then one
speaks of “hypotheses testing”; if it is continuous one speaks of “estima-
tion”.

A possibility of fruitful application of the ideas of mathematical statis-
tics to quantum measurement problems was �rst demonstrated by Hel-
strom in the paper [50] devoted to optimal discrimination between two
quantum states. In Holevo [57, 58] the general resolutions of identity
were introduced as the noncommutative analog of classical randomized
procedures to develop quantum statistical decision theory. A detailed
physical account of quantum estimation and hypotheses testing theory is
presented in Helstrom’s book [53]. Mathematical consideration of the
general Bayes’ problem including existence questions and the relevant
integration theory can be found in the author’s work [59, 64]. The non-
commutative Hunt-Stein theorem appeared in [67]. Quantum maximum-
likelihood approach was developed in [59]. For relations with the classi-
cal maximum-likelihood see [64].

Section 4.4. Optimal angular measurements (4.4.22) were derived by
Helstrom [52] from the maximum-likelihood principle. He also showed
that they are Bayesian if the deviation function is 4 sin2(ϕ− ϕ̂)/2. Theo-
rem 4.4.1 was proved by Holevo [67].

Section 4.5. There were several attempts to extend uncertainty relations
to angular quantities. Some of them use a variational measure of un-
certainty as in Judge [73], others are content with the uncertainty rela-
tions (4.5.30) for C and S operators, see Louisell [87], Carruthers and
Nieto [20]. The inequality based on the covariant uncertainty (4.5.27)
which is one of the type used in classical statistics of angular observa-
tions (see e.g., Mardia [98]) seems to be rather new.
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Section 4.6. The results of this and the next section are generalized nat-
urally to the case of parameter with values in arbitrary Abelian locally
compact group, see §2.3 of [178].

Section 4.7. Concerning the direct orthogonal integral of Hilbert spaces
see, e.g., Gelfand and Vilenkin [40]. The material of this section is taken
from Holevo [66], where the coordinate measurements for the three-
dimensional non-relativistic particle and for the photon are also dis-
cussed. The study of Newton and Wigner [105] (see also Wightman
[142], Varadarajan [136]) shows that a relativistic zero-mass object such
as photon is “nonlocalizable” in the sense that it has no coordinate ob-
servable, i.e., spectral measure satisfying the appropriate covariance con-
dition. Jauch and Piron [72] pointed out that this disagrees with experi-
mental evidence for photon localizability and discussed two possibilities
to describe it theoretically. The �rst one, which was ultimately adopted
by the authors, uses a nonadditive projection-valued set function, see also
Amrein [5]. The alternative approach using a covariant non-orthogonal
resolution of identity was developed by Holevo [66], where a rigorous
uncertainty relation for photon coordinates was also obtained.

Section 4.8. The covariant measurements in the case of irreducible rep-
resentation were studied by Holevo [59, 64, 67].

The well-known theorem of Bauer [9] says that an af�ne upper semi-
continuous functional on a compact convex subset of a locally convex
Hausdorff topological space attains its minimum at an extreme point of
the subset. The applicability of this theorem to the functional R{M} =
gx D(x){M} + gv D(v){M} follows from Theorem 7.1 of [64].

Section 4.9. The pure state estimation problem was discussed by Hel-
strom [52, 53] who observed that (4.9.68) is the maximum-likelihood
measurement. The results of this section were obtained by the author.
The “full model” in which the multidimensional parameter is the quan-
tum state itself deserves special attention both for its importance for ap-
plications and for special mathematical properties. One considers the
analog of the sample of repeated independent observations S⊗n

θ = Sθ ⊗
· · · ⊗ Sθ , where Sθ is an unknown state in d-dimensional Hilbert space
H. The case of unknown pure state Sθ = |θ)(θ | is the most studied one,
with special attention paid to qubit state (i. e. d = 2). For the devia-
tion functions of the type (4.9.69) the optimal resolution of the identity is
found in the symmetrized tensor product of n copies of the space H and
has the form M∗(dθ) = S⊗n

θ νn(dθ), where νn(dθ) is unitarily invariant
measure on the variety of pure states. These estimates are consistent as
n → ∞. The asymptotic theory for the full model in the case of pure
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states based on Rao-Cramér type inequalities was developed in [165],
while [172], [182] used the large deviations approach.

A fundamental distinction of the quantum estimation theory appears
in consideration of the asymptotic properties of estimates in a sample of
independent identical systems. In the paper [177], devoted to asymptotic
estimation of the shift parameter, it was pointed out that statistical infor-
mation in quantum models with independent observations can be strictly
superadditive. This property, similar to superadditivity of the Shannon
information in quantum information theory (see Section 5.1 in [179]),
means that statistical information for a composite system with indepen-
dent components can be strictly greater than sum of informations from
the subsystems. This property has a deep physical meaning: it is due to
the existence of entangled measurements in the composite system and as
such is dual to Einstein-Podolsky-Rosen correlations for entangled quan-
tum states (see Section 2.4 of the Supplement). This superadditivity was
established for the full model [165, 172, 188].

The full model clearly displays another feature of quantum estima-
tion problem: the complexity sharply increases with passage from pure
to mixed states. (Note that in the classical statistics estimation of pure
states is trivial since pure classical states are just distributions degener-
ated at different points.) The estimation problem for an arbitrary state can
be split into two: �rst, estimation of the spectrum i. e. eigenvalues of the
density matrix and second, estimation of the eigenvectors. Estimation of
the spectrum requires new ideas: in [182] a solution based on represen-
tation theory for the permutation group of n elements was proposed. A
consistent and asymptotically ef�cient estimate is provided by lengths of
the rows of the Young diagram related to an irreducible representation of
the permutation group.

The noncommutative analog of the famous Le Cam’s Local Asymp-
totic Normality for the problem of estimation of an arbitrary mixed state
of a �nite dimensional quantum system was established by Guta and
Kahn following the work of Hayashi and Matsumoto (see [170] and ref-
erences therein). The proofs involve diverse mathematical tools, notably
representation theory for SU(d) and its tensor degrees as well as for the
symmetric group. It is remarkable that while the permutation symme-
try is present already in the classical estimation problem with i.i.d. ob-
servation, it is only the quantum case which requires the full power of
advanced representation theory.

Section 4.10. The material of this section is taken from Holevo [67].
The vectors | j; n); are the “coherent state vectors” for the represen-
tation of the rotation group introduced by Radcliffe [117] and Perelo-
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mov [108,109]. The formula for the matrix elements of the representation
is derived, e.g., in Wigner [145] or in Gelfand, Minlos and Shapiro [41].



Chapter 5
Gaussian states

5.1. Quasiclassical states of the quantum oscillator

Consider a quantum degree of freedom, e.g., an oscillator, described by
the canonical observables q = Q, p = �P . The ground state |0)(0| is
the minimum-uncertainty state in which Q and P have zero mean values.
The state

|P, Q)(Q, P| = WQ,�P |0)(0|W ∗
Q,�P

(5.1.1)

(where to simplify notations we put |P, Q) ≡ |P, Q; �/2ω), ω being the
oscillator frequency) can be regarded as the result of an external in�uence
onto the object in ground state, shifting the mean values of the canonical
observables but leaving their uncertainties unchanged.

Let us now assume that the in�uence has random nature, i.e., the
parameters P and Q are random variables with probability distribution
μ(dP dQ). From the point of view of an experimenter who observes the
given quantum object but not the source of in�uence, determining the
values P , Q in an individual experiment, the object’s state is statistically
described by the density operator

S =
∫
|α, β)(β, α|μ(dα dβ), (5.1.2)

where we changed P , Q to α, β. This represents averaging of (5.1.1) with
respect to the distribution of P and Q. The mean value of any real-valued
measurementM is then the average of the means EP,Q{M} corresponding
to the states (5.1.1):

ES{M} =
∫

Eα,β{M}μ(dα dβ).

In particular the mean values of the canonical observables are equal to
those of the classical probability distribution μ

ES(P) =
∫

αμ(dα dβ), ES(Q) =
∫

βμ(dα dβ).
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The states represented by (5.1.2) are called quasiclassical; the rela-
tion (5.1.2) de�nes a map from the simplex of probability distributions
μ into the convex set of quantum states. This map can be shown to be
one-to-one; it follows that there are quantum states which cannot be rep-
resented in the quasiclassical form (5.1.2) with a probability distribution
μ. Otherwise the set of quantum states would be simplex.

Assume that be object is in�uenced by a large number k of indepen-
dent identical sources, so that the resulting in�uence is characterized by
parameters

P =
k∑

j=1

P j , Q =
k∑

j=1

Q j ,

where (P j , Q j ) are independent identically distributed pairs of random
variables. Then by the classical central limit theorem the distribution
μ(dα dβ) of (P, Q) will be approximately Gaussian as k → ∞. The
resulting state is a particular case of quantum Gaussian states to be dis-
cussed in this chapter.

Introducing the complex variable ζ = (2�ω)−1/2(ωβ + i�α) so that
|α, β) = |ζ ) is the vector of coherent state (see Section 3.10), consider
the special quasiclassical Gaussian state

S = 1

π N

∫
|ζ )(ζ |e−|ζ |2/N d2ζ. (5.1.3)

The real parameter N is equal to the mean value of the number of quanta
N . To show this we calculate the matrix elements of S in the basis {|n)}
of the eigenvectors of N . We have

(n|S|m) = 1

π N

∫
(n|ζ )(ζ |m)e−|ζ |

2/N d2ζ.

Using (3.10.102) and denoting ζ = reiϕ we get

(n|S|m) = 1

π N

∫ 2π

0
ei(n−m)ϕdϕ

∫ ∞

0
r dr · rn+me−r2(N+1)/N

= δnm
1

N + 1

(
N

N + 1

)n

.

It follows that the density operator S is diagonal in the Fock representa-
tion, namely

S = 1

N + 1

∞∑
n=0

(
N

N + 1

)n

|n)(n|. (5.1.4)
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Calculating the mean value of number of quanta we get

1

N + 1

∞∑
n=0

n

(
N

N + 1

)n

= N ,

as required.
The basic role in statistical physics is played by the so called Gibbs

states. If the energy of the object can take discrete series of values {En},
then the Gibbs state is de�ned as the mixture of the states Sn correspond-
ing to de�nite values of the energy, the weight of the state Sn in the mix-
ture being proportional to exp(−En/kT ). Here T is the absolute temper-
ature, k is Boltzmann’s constant. A common belief strongly supported by
numerous model considerations is that the Gibbs state is the equilibrium
state to which the object is driven by in�nitely long interaction with sur-
rounding media at the temperature T . Since for the harmonic oscillator
En = �ω(n+ 1

2), we see that (5.1.4) is the Gibbs state at the temperature
T , if we put

N = 1

e�ω/kT − 1
.

For this reason one says that the state (5.1.4) or (5.1.3) describes “thermal
noise” of the quantum harmonic oscillator in thermal equilibrium with the
media at the temperature T . The mean values of canonical observables
are zero for this state since the Gaussian distribution in (5.1.3) has zero
mean.

If the oscillator which was initially in the equilibrium state S suffers an
external in�uence described by the displacement operator WQ,�P ≡ Wā ,
where a = (2�ω)−1/2(ωQ + i�P), then the new state is

Sā = Wā SW ∗
ā . (5.1.5)

Taking into account (3.10.97) we get

Sā = 1

π N

∫
|ζ )(ζ |e−|ζ−ā|2/N d2ζ, (5.1.6)

so that the mean values of the canonical observables are

ES(Q) ≡ Q = √
2�/ω Re a, ES(P) ≡ P = √

2ω/� Im ā.

The states of the form (5.1.6) and their analogs for many degrees of free-
dom are widely used in quantum optics for the description of radiation
�elds, both chaotic as natural light and coherent as those generated by
lasers. The free electromagnetic �eld is known to be mathematically
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equivalent to an in�nite collection of harmonic oscillators. For our pur-
poses it is suf�cient to consider a �nite collection of oscillators with fre-
quencies ω j ; j = 1, . . . , s. Let Pj , Q j ; j = 1, . . . s, be the canonical ob-
servables of this “cut-off radiation �eld”. Then the thermal background
radiation in the absence of external sources is described by the density
operator

S =
⊗

j

S( j), (5.1.7)

where S( j) is the equilibrium state (5.1.3) for the j th oscillator with the
mean number of quanta equal to N j = (exp(�ω j/kT )− 1)−1. In�uence
of a source results in a change of the state of the radiation �eld. If the
simplest model of the in�uence (5.1.5) is adopted, then the resulting state
will be described by the density operator

Sā =
⊗

j

S( j)
ā j

, (5.1.8)

where S( j)
ā j

is the state of the form (5.1.6) for the j th oscillator. The mul-
tidimensional complex parameter ā = [ā j ] characterizes the source of
in�uence. Thus the state (5.1.8) describes “signal plus noise”.

The states of the type (5.1.7), (5.1.8) possess certain attractive ana-
lytical properties which are interesting both for studying physical models
and also from a mathematical point of view. Since these properties are es-
sentially due to the “Gaussian” character of the states, it is convenient to
look upon them from a more general point of view and abstract from the
concrete representation (5.1.7), (5.1.8) characteristic for the states of the
radiation �eld. In this chapter we introduce and study a general class of
quantum Gaussian states displaying remarkable analogies with the clas-
sical Gaussian probability distributions.

5.2. The CCR for many degrees of freedom

Let us rearrange the CCR (3.3.22) for one degree of freedom by intro-
ducing two-component vectors z = [x, y] and the skew-symmetric form

�(z, z′) = xy′ − x ′y.

By putting V (z) = W−x,y/μ, the CCR takes the form

V (z)V (z′) = ei�(z,z′)/2V (z + z′). (5.2.9)

In the case of s degrees of freedom we act in the same way. Let xk , yk

be a pair of real numbers; we put zk = [xk, yk] and z = [z1, . . . , zs].
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Thus z will denote real 2s-dimensional vectors. Introduce the bilinear
skew-symmetric form

�(z, z′) =
s∑

k=1

(xk y′k − x ′k yk).

As in the case s = 1 we call the representation of the CCR (with s degrees
of freedom) any continuous family of unitary operators z → V (z) in a
Hilbert space H satisfying (5.2.9).

The canonical observables Pk , Qk ; k = 1, . . . , s, arise from {V (z)} in
the following way. Since � is skew-symmetric,

�(z, z) ≡ 0, (5.2.10)

and therefore by (5.2.9) the family {V (t z), t ∈ R} for a �xed z is a group
of unitary operators. By Stone’s theorem

V (t z) = eit R(z), (5.2.11)

where R(z) is a self-adjoint operator. From (5.2.9), (5.2.11)

eit R(z)eit ′R(z′) = eit t ′�(z,z′)/2eiR(t z+t ′z′)

= eit t ′�(z,z′)eit ′R(z′)eit R(z).
(5.2.12)

Differentiation with respect to t and t ′ at the point t = t ′ = 0 gives
formally

[R(z), R(z′)] = −i�(z, z′)I. (5.2.13)

A rigorous version of this commutation relation will be obtained in Sec-
tion 5.4. Let ek be the vector z = [z1, . . . , zs] such that z j = 0 for j �= k
and zk = [1, 0], and hk be the similar vector with zk = [0, 1]. Putting
R(ek) = Pk , R(hk) = Qk and observing that

�(ek, hl) = δkl, �(ek, el) = �(hk, hl) = 0, (5.2.14)

we get
[Pk, Ql] = −iδkl, [Pk, Pl] = [Qk, Ql] = 0,

i.e., the Heisenberg commutation relations (3.6.50) for s degrees of free-
dom.

From (5.2.12) formally R(z + z′) = R(z)+ R(z′) so that

R(z) =
∑

k

(xk Pk + yk Qk),
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since z =∑
k(xkek+ ykhk). This relation can be given precise meaning if

the right-hand side is understood as the (unique) self-adjoint extension of
the sum de�ned on a common dense domain (we shall not go into detail
here). Therefore we can write

V (z) = exp

[
i

s∑
k=1

(xk Pk + yk Qk)

]
.

Operators R(z) will also be called the canonical observables.
It is useful to look at this construction from the “coordinate-free” point

of view. Let Z be an arbitrary real linear space and �(z, z′) a bilinear
skew-symmetric form on Z . We assume that it is nondegenerate, i.e., if
�(z, z′) = 0 for all z ∈ Z , then z′ = 0. The pair (Z , �) is called a sym-
plectic space. For any symplectic space we can de�ne a representation
of the CCR as the family of unitary operators {V (z), z ∈ Z} satisfying
(5.2.9) for all z, z′ ∈ Z (and an appropriate continuity condition). Then
the canonical observables {R(z), z ∈ Z} can be de�ned as in (5.2.11).

This approach allows Z to have in�nite dimensionality. However since
we agreed to con�ne ourselves to a �nite number of degrees of freedom,
we assume from now on that Z is �nite-dimensional. It follows that the
dimensionality is necessarily even: dim Z = 2s. To see it introduce an
inner product α on Z and denote the resulting Euclidean space by (Z , α).
Let D be the associated operator of the form � in (Z , α), i.e.,

�(z, z′) = α(z, D z′); z, z′ ∈ Z . (5.2.15)

By the properties of the form � the operator D is a nondegenerate skew-
symmetric (D ∗ = −D ) operator in (Z , α). By a theorem in linear
algebra there is an orthonormal basis ẽ1, h̃1; ẽ2, h̃2; . . . in (Z , α) in which
D has the matrix of the form⎡⎢⎢⎢⎢⎢⎣

0 d1 0
−d1 0

0 d2

0 −d2 0
. . .

⎤⎥⎥⎥⎥⎥⎦ , d j > 0. (5.2.16)

In particular, since D is nondegenerate, Z needs to have even dimension-
ality.

A basis {e j , h j ; j = 1, . . . , s} in (Z , �) is called symplectic if it sat-
is�es (5.2.14). In a symplectic basis the form � has the canonical coor-
dinate representation �(z, z′) =∑

(x j y′j − x ′j y j ), where z =∑
(x j e j +
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y j h j ), z′ = ∑
(x ′j e j + y′j h j ). Thus symplectic bases in a symplectic

space play the same role as orthonormal bases in an Euclidean space. For
any symplectic basis the observables Pj = R(e j ), Q j = R(h j ) satisfy
the Heisenberg commutation relations.

A particular symplectic basis {e j , h j } in the space of real 2s-dimen-
sional vectors was described before (5.2.14). In any symplectic space
there are plenty of symplectic bases. Indeed, let α be an arbitrary inner
product on Z ; then the basis e j = d−1/2

j ẽ j , h j = d−1/2h̃ j ; j = 1, . . . , s is

symplectic by (5.2.15) and (5.2.16). Summing up and denoting a j = d−1
j

we have

Proposition 5.2.1. A �nite-dimensional symplectic space (Z ,�) has nec-
essarily even dimensionality 2s. For any inner product α there is a sym-
plectic basis {e j , h j ; j=1, . . . , s} in (Z , �) in which α has the diagonal
matrix of the form⎡⎢⎢⎢⎢⎢⎣

a1 0 0
0 a1

0 a2 0
0 a2

. . .

⎤⎥⎥⎥⎥⎥⎦ , a j > 0.

Transition from one symplectic basis to another is described by a sym-
plectic operator T , satisfying

�(T z, T z′) = �(z, z′); z, z′ ∈ Z . (5.2.17)

For any symplectic operator | det T | = 1. Indeed, let α be an inner prod-
uct in Z ; then (5.2.17) reads

α(T z, D T z′) = α(z, D z′); z, z′ ∈ Z ,

i.e., T ∗D T = D, where T ∗ is the operator adjoint to T in the Euclidean
space (Z , α). Since det T ∗ = det T and det D �= 0, (det T )2 = 1.

Let z = ∑
(x j e j + y j h j ) be the coordinate representation of vector z

in a symplectic basis. Introduce the Lebesgue measure in Z putting

d2s z = dx1 dy1 · · · dxs dys .

It follows that the measure is invariant under the symplectic transforma-
tions and the de�nition does not depend on the particular choice of a
symplectic basis.

As an illustration consider the simplest case of dim Z = 2 (one degree
of freedom). Let {e, h} be a symplectic basis in (Z , �), i.e., �(e, h) = 1
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h

h'

e

e'

Figure 5.1.

and x , y be the components of vector z. Let us choose a Cartesian frame
on the plane and take the unit vectors of the frame for e and h (Figure 5.1).
The fact that e and h are orthogonal and have unit length at this picture
does not re�ect any geometrical property of symplectic basis, and is just
a matter of arbitrariness. However, this can be interpreted by introducing
the inner product α(z, z′) = xx ′+ yy′ in Z which is related to the basis as
in Proposition 5.2.1. From what was said above it follows that a different
pair of vectors {e′, h′} constitutes a symplectic basis if and only if the area
of the oriented parallelogram with the sides e′, h′ is equal to +1.

5.3. Proof of the Stone-von Neumann uniqueness theorem.
The Weyl transform

Let z → V (z) be a representation of the CCR, f (z) a complex Lebesgue
integrable function on a symplectic space (Z , �). The integral

V ( f ) = (2π)−s
∫

f (z)V (−z)d2s z (5.3.18)

is well de�ned in the sense of weak convergence1. The correspondence
f → V ( f ) is often called the Weyl transform. The following properties
follow easily from the de�nition and the CCR (5.2.9):

(1) V ( f (z))∗ = V ( f (−z));
(2) V ( f1)V ( f2) = V ( f1 × f2),

1 Moreover it converges as the Bochner’s integral of a function with values in the Banach space of
all bounded operators.
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where

f1 × f2(z) = (2π)−s
∫

f1(w) f2(z − w)ei�(w,z)/2d2sw

(3) V ( f (z))V (w) = V ( f (z + w)ei�(w,z)/2),

V (w)∗V ( f (z))V (w) = V ( f (z)ei�(w,z)).

Moreover the correspondence f → V ( f ) is one-to-one: V ( f ) = 0
implies f (z) = 0 for almost all z ∈ Z . Indeed, from (3)∫

ei�(w,z) f (z)(ϕ|V (−z)ψ)d2s z = 0; w ∈ Z; ϕ, ψ ∈ H,

whence by the uniqueness property of the usual Fourier transform
f (z)(ϕ|V (−z)ψ) = 0 so that f (z) = 0 for almost all z ∈ Z .

It follows that if z → Vj (z), j = 1, 2 are two representations of the
CCR, then the correspondence V1( f ) ↔ V2( f ) is one-to-one. Accord-
ing to the properties (1) and (2), this correspondence preserves algebraic
operations and the Hermitean conjugation. In fact there is the stronger
Stone-von Neumann uniqueness theorem (for �nite number degrees of
freedom);

Theorem 5.3.1. Any two (continuous) irreducible representation of the
CCR are unitary equivalent. Any representation is the direct orthogonal
sum of irreducible representations.

Proof. Introducing the inner product

j (z, z′) =
s∑

k=1

(xk x ′k + yk y′k)

in Z where [xk, yk], [x ′k, y′k] are the components of the vectors z, z′ in a
�xed symplectic basis, consider the function

f0(z) = e− j (z,z)/4.

Put P = V ( f0). Since f0(z) > 0, P �= 0. Using the properties (2) and
(3) we obtain after some calculation the important identity

PV (w)P = f0(w)P; w ∈ Z . (5.3.19)

It follows that P2 = P . Moreover since f0 is real, P∗ = P by (1). Thus
P is a projection onto a subspace M of the representation space H.
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If ϕ,ψ ∈ M, then using (5.2.9) and (5.3.19)

(V (z)ϕ|V (w)ψ) = (V (z)Pϕ|V (w)Pψ)

= ei�(w,z)/2(ϕ|PV (w − z)Pψ)

= ei�(w,z)/2 f0(w − z)(ϕ|ψ).

(5.3.20)

Let {eα} be an orthonormal basis in M. Then (5.3.20) implies that the
subspaces Mα = [V (z)eα] generated by the vectors of the form V (z)Eα,
z ∈ Z , are orthogonal for different α. By construction Mα are invariant
subspaces of the representation operators V (z), z ∈ Z . Therefore if the
representation is irreducible then dim M = 1. The converse is also true:
if the representation z → V (z) is reducible, then H = H1 ⊕H2 where
H j are invariant subspaces; then applying the above construction to H j
instead of H we would get the projections Pj in H j with P = P1 ⊕ P2

so that dim M > 1.
Now from (5.3.19)

PV (z)eα = PV (z)Peα = f0(z)eα;

so that P is an operator of rank 1 in Mα

Pψ = c(ψ)eα, ψ ∈ Mα,

therefore z → V (z) acts irreducibly in Mα. Let us prove that H =⊕
α Mα. Denote by H0 the orthogonal complement of

⊕
α Mα in H.

Then H0 is an invariant subspace of {V (z)}; moreover PH0 = 0. It
follows that H0 = 0. Otherwise applying the whole construction to H0
instead of H we would obtain P = 0 which contradicts f0 �≡ 0. This
proves that any representation is the direct orthogonal sum of irreducible
representations acting in the subspace Mα.

Let z → Vj (z) be irreducible representations of the CCR in Hilbert
spaces H j , j = 1, 2. Then Pj = Vj ( f0) is the one-dimensional pro-
jection onto the unit vector e j ∈ H j and H j = [V (z)e j ]. De�ne the
operator U from H2 to H1 putting U V2(z)e2 = V1(z)e1. Then U maps
a dense set in H2 onto a dense set in H1, preserving the values of inner
products, since by (5.3.20)

(V1(z)e1|V1(w)e1) = exp

[
1

2
i�(w, z)

]
f0(z − w)

= (V2(z)e2|V2(w)e2).
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Therefore it can be extended by continuity to an isometric map from H2
onto H1. By construction

U ∗V1(z)U = V2(z); z ∈ Z ,

and the theorem is proved.

We now restrict to irreducible representations. The following multi-
dimensional analog of Proposition 3.5.1 is proved in the same way as for
s = 1.

Proposition 5.3.2. Let z → V (z) be irreducible representation of the
CCR in a Hilbert space H. Then the matrix elements (ϕ|V (z)ψ) are
square-integrable functions of z. If {e j } is an orthonormal basis in H,
then the functions {(2π)−1/2(e j |V (z)ek)} form an orthonormal basis in
the space L 2(Z) of complex square-integrable functions on Z.

Let T be a trace-class operator in the representation space. De�ne

Fz[T ] = Tr T V (z); z ∈ Z . (5.3.21)

As we shall see, the “noncommutative Fourier transform” T → Fz[T ]
is inverse to the Weyl transform (5.3.18). The following properties result
from the CCR and general properties of trace (see Section 2.7):

(1) F0[T ] = Tr T ; |Fz[T ]| ≤ ‖T ‖1;
(2) Fz[T ∗] = F−z[T ];
(3) Fz[T V (w)] = Fz+w[T ] · ei�(z,w)/2,

Fz[V (w)∗T V (w)] = Fz[T ] · ei�(z,w).

The transform (5.3.21) satis�es the following “noncommutative Parceval
relation”.

Theorem 5.3.3. The map T → Fz[T ] extends uniquely to an isometric
map from the Hilbert space T 2(H ) of Hilbert-Schmidt operators in H

onto L 2(Z), so that

Tr T ∗1 T2 = (2π)−s
∫

Fz[T1]Fz[T2]d2s z; Tj ∈ T 2(H ). (5.3.22)

Proof. If we prove that for any Hermitean trace-class operator

Tr T 2 = (2π)−s
∫
|Fz[T ]|2d2s z,
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then (5.3.22) for trace-class operators will follow by polarization and lin-
earity. Let {t j } be the eigenvalues of T , {e j } the corresponding eigenvec-
tors. Then by Theorem 2.7.1 the trace of T V (z) is equal to

Fz[T ] =
∑

j

t j (e j |V (z)e j ), (5.3.23)

where
∑ |t j | < ∞. Using Proposition 5.3.2 we see that the series con-

verges in L 2(Z) and

(2π)−s
∫
|Fz[T ]|2d2s z =

∑
j

t2
j |(e j |e j )|2 = Tr T 2.

Thus T → Fz[T ] maps isometrically the set of trace-class operators,
which is a dense subspace of the Hilbert space T2(H ) into the Hilbert
space L 2(Z). Since the functions Fz[|e j )(ek |] = (ek |V (z)e j ) form a
basis in L 2(Z), the range of this map is dense in L 2(Z). Therefore
the map T → Fz[T ] uniquely extends by continuity to the isometric
map of T2(H ) onto L 2(Z) so that (5.3.22) holds for Hilbert-Schmidt
operators.

Corollary 5.3.4. The state S in pure if and only if

(2π)−s
∫
|Fz[S]|2d2s z = 1.

Proof. By Theorem 5.3.3

(2π)−s
∫
|Fz[S]|2d2s z = Tr S2 =

∑
j

s2
j ,

where s j are the eigenvalues of the density operator S. But s j ≥ 0,∑
s j = 1 whence

∑
s2

j ≤ 1 with the sign of equality achieved if one
and only if one of s j is equal to 1, and the others are zero. This means
that S is a one-dimensional projection, i.e., a density operator of a pure
state.

Corollary 5.3.5. For any Hilbert-Schmidt operator T

T = (2π)−s
∫

Fz[T ]V (−z)d2s z, (5.3.24)

where the integral converges weakly.
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Proof. Putting T1 = |ϕ)(ψ | in (5.3.22) and taking into account that

(ψ |V (z)ϕ) = (ϕ|V (z)∗ψ) = (ϕ|V (−z)ψ)

we get

(2π)−s
∫

Fz[T ](ϕ|V (−z)ψ)d2s z = Tr |ψ)(ϕ|T = (ϕ|T ψ), (5.3.25)

which is just the detailed form of (5.3.24). The “inversion formula”
(5.3.24) relates the transforms T → f (z) = Fz[T ] and f → T = V ( f )

showing that they are mutually inverse:

T = V (Fz[T ]).
In particular the map T → Fz[T ] in one-to-one.

The inversion formula enables us to obtain the expression for the kernel
of an operator T in any irreducible representation through the function
Fz[T ]. As an example we consider the Schrödinger representation for
one degree of freedom, and prove the following relation for the kernel of
a Hilbert-Schmidt operator T in L 2(R):

(ξ |T |ξ ′) = (2π)−1
∫

Fξ−ξ ′,y[T ]e−i(ξ+ξ ′)y/2dy, (5.3.26)

where
Fx,y[T ] = Tr T V (x, y) ≡ Tr T W−x,y/μ.

Indeed from (3.4.32)

(ϕ|V (−x,−y)ψ) =
∫

(ϕ|ξ)e−iy(ξ−x/2)(ξ − x |ψ)dξ (5.3.27)

for any ϕ, ψ ∈ H. Therefore by (5.3.25)∫∫
(ϕ|ξ)(ξ |T |ξ ′)(ξ ′|ψ)dξ dξ ′

= (2π)−1
∫∫∫

Fx,y[T ](ϕ|ξ)e−iy(ξ−x/2)(ξ − x |ψ)dx dy dξ

with all the functions being square-integrable so that it is possible to per-
form integration in arbitrary order. Putting ξ ′ = ξ − x and using arbi-
trariness of ϕ, ψ we get (5.3.26).
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In the same way using (5.3.21) and (2.7.83) we obtain

Fx,y[T ] =
∫

(ξ + x |T |ξ)eiy(ξ+x/2)dξ.

Using this relation and (3.5.42) we get the Weyl transform of the density
operator (5.1.1):

Fx,y[|P, Q)(P, Q|]
= exp

[
i(x P + yQ)− 1

4

(
�
ω

x2 + ω

�
y2

)]
.

(5.3.28)

We now also have tools for

Proof of Proposition 3.6.1. Consider the classical characteristic function
of the probability distribution of the measurement E(dx dv) with respect
to the state S ⊗ S0. According to (2.7.78) it is∫∫

ei(ξ x+ημv)μES⊗S0
(dx dv) = Tr S ⊗ S0ei(ξ Q+ηP).

Using (3.6.54) we get

ei(ξ Q+ηP) = ei(ξ Q+ηP) ⊗ ei(−ξ Q0+ηP0),

so that the characteristic function is equal to

Tr Sei(ξ Q+ηP) · (ψ |ei(−ξ Q0+ηP0)ψ).

Using (3.4.32), (3.4.37) we can reduce the second factor to the form

(ψ |W−η,−ξ/μψ) =
∫

ψ(λ)e−iξ(λ+η/2)ψ(λ+ η)dλ

= (ψ |W−η,ξ/μψ) = Tr Sψei(ξ Q0+ηP0).

Since
Tr Sei(ηP+ξ Q) = Fη,ξ [S],

the characteristic function of the probability distribution μES⊗S0
(dx dv) is

equal to
Fη,ξ [S] ·Fη,ξ [Sψ ].

Since by Theorem 5.3.3 both factors are Lebesgue square-integrable their
product is an integrable function. Therefore the inverse Fourier transform

μ

(2π)2

∫∫
e−i(ξ x+ημv)Fη,ξ [S] ·Fη,ξ [Sψ ]dη dξ
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is de�ned, giving the probability density of μES⊗S0
. Using property (3) of

the “noncommutative Fourier transform” we get

ei(ξ x+ημv)Fη,ξ [Sψ ] = Fη,ξ [Wx,v Sψ W ∗
x,v].

By the “Parceval relation” (5.3.22) the probability density of μES⊗S0
is

μ

(2π)2

∫∫
Fη,ξ [S] ·Fη,ξ [Wx,v Sψ W ∗

x,v]dη dξ

= μ

2π
Tr SWx,v Sψ W ∗

x,v = (ψ |W ∗
x,v SWx,vψ)

μ

2π
,

and thus it is the same as the probability density (5.6.58) of the measure-
mentM. This proves the proposition.

5.4. Characteristic function and moments of state

Consider the transform Fz[T ] of a Hermitean trace-class operator T . If
T ≥ 0, then Fz[T ] possesses the following property of �-positive de�-
niteness: for any n; z1, . . . zn ∈ Z and c1, . . . cn ∈ C

n∑
j,k=1

c j c̄kFz j−zk
[T ] exp

[
1

2
i�(z j , zk)

]
≥ 0. (5.4.29)

Indeed by (5.2.9) and (5.3.22) this is nothing but

Tr T

[∑
k

ck V (zk)

]∗ [∑
j

c j V (z j )

]

which is always nonnegative, if T ≥ 0.
We call the transform Fz[S] of a density operator S the characteristic

function of S, having in mind the analogy with characteristic function of
classical probability distribution. The following is the noncommutative
analog of the Bochner-Khinchin theorem.

Theorem 5.4.1. For F(z) to be characteristic function of a quantum
state the following conditions are necessary and suf�cient:
(1) F(0) = 1, F(z) is continuous at z = 0;
(2) F(z) is �-positive de�nite.

Proof. Let S be a density operator; then F0[S] = Tr S = 1. The condi-
tion (2) follows from positivity of S. To prove continuity note that

Fz[S] =
∑

j

s j (e j |V (x)e j ),
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where s j are the eigenvalues and e j the eigenvectors of S. By the assumed
continuity of the representation z → V (z) each term in the series is a
continuous function of z; moreover the series converges uniformly since
|(e j |V (z)e j )| ≤ 1 and

∑
s j <∞. Thus F(z) is continuous for all z ∈ Z ,

and the necessity is proved.
Turning to suf�ciency we �rst show that continuity at z = 0 and

�-positive de�niteness imply uniform continuity of F(z) for all z (in
analogy with ordinary characteristic functions). For this take n = 3 in
(5.4.29) and the values of z equal to 0, z1, z2. Then (5.4.29) signi�es
positive de�niteness of the Hermitean form in c1, c2, c3 with the matrix⎡⎣ 1 F(−z1) F(−z2)

F(z1) 1 F(z1 − z2)ei�(z1,z2)/2

F(z2) F(z2 − z1)ei�(z2,z1)/2 1

⎤⎦ .

By Sylvester’s criterion

1−F(z1)F(−z1) ≥ 0,

1+ 2 Re F(z1)F(z2)F(z2 − z1)e
i�(z1,z2)/2

− |F(z2)|2 − |F(z1)|2 − |F(z1 − z2)|2 ≥ 0.

The �rst inequality implies

F(−z) = F(z) (5.4.30)

and
|F(z)|2 ≤ 1. (5.4.31)

Rearranging the second inequality we get

|F(z2)−F(z1)|2
≤ 1− |F(z2 − z1)|2 − 2 Re F(z1)F(z2)[1−F(z2 − z1)e

i�(z2,z1)/2].
Using (5.4.30), (5.4.31) we obtain the �nal inequality

|F(z2)−F(z1)|2 ≤ 4|1−F(z2 − z1)e
i�(z2,z1)/2|,

which proves the assertion.
We now construct a Hilbert space and a density operator in it for which

F(z) is the characteristic function. Consider the operator V̂0(z) acting on
a function ψ(w), w ∈ Z , by the formula

V̂0(z)ψ(w) = exp

[
−1

2
i�(z, w)

]
ψ(z + w).
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It is easy to check that the operators {V̂0(z); z ∈ Z} satisfy the CCR
(5.2.9). We are now going to de�ne the inner product with respect to
which these operators will be unitary. Consider the linear space Ĥ0 of
functions on Z of the form

ψ(w) =
[∑

k

ck V (zk)

]
1(w) ≡

∑
k

ck exp

[
−1

2
i�(zk, w)

]
, w ∈ Z ,

where 1(w) is the function which is identically equal to one. Introduce
in Ĥ0 the sesquilinear form

(ψ(1)|ψ(2)) =
∑

j,k

c(2)
j c̄(1)

k F(z(2)
j − z(1)

k ) exp

[
1

2
i�(z(2)

j , z(1)
k )

]
,

where ψ(α) = [∑ j c(α)
j V (z(α)

j )]1; α = 1, 2. By �-positive de�niteness

(ψ |ψ) ≥ 0, ψ ∈ Ĥ0,

so that (·|·) is pre-inner product on Ĥ0. Moreover

(V̂0(z)ψ1|V̂0(z)ψ2) = (ψ1|ψ2); ψ1, ψ2 ∈ Ĥ0 (5.4.32)

for all z ∈ Z .
Denote by Ĥ the completion of Ĥ0 with respect to this pre-inner

product. By (5.4.32) the operators V̂0(z) extend uniquely by continuity
to unitary operators V̂ (z) in Ĥ. Thus z → V (z) is a representation of
the CCR in Ĥ, if we prove its continuity. For this it is suf�cient to check
continuity of the functions (ψ(1)|V̂ (·)ψ(2)) = (ψ(1)|V̂0(·)ψ(2)) for ψ(α)

lying in Ĥ0. But for such ψ’s

(ψ(1)|V̂0(z)ψ
(2))

=
∑

j,k

c(z)
j c̄(1)

k exp

[
1

2
i�(z(2)

j + z, z(1)zk − z)

]
F(z(2)

j + z − z(1)
k ),

and the required continuity follows from continuity of F(z).
From the de�nitions of V̂ (z) and the inner product

(1|V̂ (z)1) = F(z). (5.4.33)

By Theorem (5.3.18) the constructed representation z → V̂ (z) is uni-
tarily equivalent to the direct orthogonal sum of copies of an irreducible
representation z → V (z) in a Hilbert space H :

V̂ (z) = U−1

⎡⎢⎣V (z) 0
V (z)

0
. . .

⎤⎥⎦U.
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The operator U maps isometrically Ĥ onto H ⊕H ⊕ · · · . Put

U1 = ψ1 ⊕ ψ2 ⊕ · · · (5.4.34)

and de�ne S =∑
j |ψ j )(ψ j | in H. Apparently S ≥ 0 and

Tr S =
∑

j

(ψ j |ψ j ) = (U1|U1) = (1|1) = 1.

Thus S is a density operator. From (5.4.33) and (5.4.34) we get

F(z) = (1|V̂ (z)1) =
∑

j

(ψ j |V (z)ψ j ) = Tr SV (z),

so that F(z)is the characteristic function of S. The theorem is proved.

There is an interesting peculiarity which has no analogy in probabil-
ity theory. Since any trace-class operator is Hilbert-Schmidt, Fz[S] is
square-integrable by Theorem 5.3.3. This means that continuity and �-
positive de�niteness imply square integrability of F(z). Notice that if
the square integrability is postulated the proof of suf�ciency becomes
much simpler. Indeed, basing on Theorem 5.3.3 introduce the Hilbert-
Schmidt operator S = V (F ). The conditions (1) and (2) imply S ≥ 0
and Tr S = 1 so that S is a density operator and F(z) = Fz[S] by the
inversion formula.

Moments of a probability distribution are easily expressed through the
derivatives of its characteristic function. An analogous relation exists in
the noncommutative theory. Let

R(z) =
∫

λEz(dλ)

be the spectral representation of the canonical observable R(z). Consider
its probability distribution

μz
S(B) = Tr SEz(B); B ∈ A (R),

with respect to a state S. The function Ft z[S], t ∈ R, is a classical
characteristic function of μz

S(dλ) since by (2.7.78)

Ft z[S] = Tr Seit R(z) =
∫

eitλμz
S(dλ).

Assume that nth absolute moment of the distribution μz
S is �nite; then it

is well known from probability theory that the function Ft z[S] is n times
differentiable and the nth moment of μz

s is equal to

mn(z) = i−n dn

dtn
Ft z[S]

∣∣∣∣
t=0

. (5.4.35)
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If n is even, them, conversely, the existence of the nth derivative at t = 0
implies the �niteness of the nth moment.

From (5.4.35) it is clear that mn(z) is a homogeneous polynomial in z
of degree n. The main interest for us is the mean value of the state

m1(z) ≡ m(z) = ES(R(z)) =
∫

λμz
S(dλ),

which is linear in z and the second moment m2(z) =
∫

λ2μz
S(dλ), which

is a quadratic form in z. Introducing the corresponding real symmetric
bilinear form

m2(z, z′) = − ∂2

∂t∂s
Ft z+sz′ [S]

∣∣∣∣
t=s=0

we can de�ne the correlation function of the state as

α(z, z′) = m2(z, z′)− m(z)m(z′), (5.4.36)

so that

α(z, z) = DS(R(z)) =
∫

(λ− m(z))2μz
S(dλ).

We call S the state with �nite second moments if m2(z) < ∞ for all
z ∈ Z . Recall that L 2

h(S) is the real Hilbert space of the operators
which are square-summable with respect to S. Then according to Section
2.9 m2(z) < ∞ implies R(z) ∈ L 2

h(S) and the relation (2.9.100) and
(2.9.101) show that

m(z) = 〈I, R(z)〉S, α(z, z) = 〈R(z)− m(z), R(z)− m(z)〉S.
By polarization the correlation function is equal to

α(z, z′) = 〈R(z)− m(z), R(z′)− m(z′)〉S. (5.4.37)

Now we turn to a rigorous version of the Heisenberg commutation
relation (5.2.13) which reads

[R(z), R(z′)]S = �(z, z′); z, z′ ∈ Z . (5.4.38)

To prove it we need

Lemma 5.4.2. Let M(dλ) be a measurement with �nite second moments
and XM =

∫
λM(dλ) is de�ned as in Section 2.9. Consider the family of

bounded operators

Vt =
∫

eitλM(dλ)
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as a function of t with values in L 2±(S). Then

XM = i−1 d

dt
Vt

∣∣∣∣
t=0

,

the derivative being taken in L 2±(S).

Proof. We need to show that

Vt − I

it
→ X M in L 2

±(S) as t → 0.

By the inequality (2.9.109) it is suf�cient to prove that

eiλt − 1

it
→ λ in L 2(μS).

The pointwise convergence is evident; moreover∣∣∣∣λ− eiλt − 1

it

∣∣∣∣2 ≤ 4λ2,

since ∣∣∣∣eiλt − 1

it

∣∣∣∣ = ∣∣∣∣sin λt/2

t/2

∣∣∣∣ ≤ λ.

By the �niteness of second moment
∫
λ2μS(dλ)<∞, and by the Lebesgue

dominated convergence theorem∫ ∣∣∣∣λ− eiλt − 1

it

∣∣∣∣2 μS(dλ)→ 0,

what is required.

The lemma implies that if m2(z) <∞, then

R(z) = i−1 d

dt
V (t z)

∣∣∣∣
t=0

in L 2
±(S). (5.4.39)

Multiplying (5.2.12) by S, taking trace and using V (z)∗ = v(−z), we get

〈V (−t z), V (sz′)〉−S = eits�(z,z′)〈V (−t z), V (sz′)〉+S .

Differentiating with the help of (5.4.39), we obtain

−〈R(z), R(z′)〉−S = i�(z, z′)− 〈R(z), R(z′)〉+S .
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Taking into account the second relation in (2.8.97) we obtain (5.4.38).
Taking into account (2.8.92) we can also write

[R(z)− m(z), R(z′)− m(z′)]S = �(z, z′). (5.4.40)

Proposition 2.8.3 together with (5.4.37) and (5.4.40) implies that the
correlation function of a state with �nite second moments satis�es the
equivalent inequalities

α(z, z)α(z′, z′) ≥ 1
4�(z, z′)2,

α(z, z)+ α(z′, z′) ≥ �(z, z′); z, z′ ∈ Z .
(5.4.41)

The �rst of these is just the rigorous Heisenberg uncertainty relation for
the canonical observables R(z), R(z′). Moreover it follows from (2.8.98)
that

[α(z j , zk)± 1
2 i�(z j , zk)] ≥ 0 (5.4.42)

for any n and z1, . . . zn ∈ Z .

Lemma 5.4.3. Let S be density operator of a state with �nite second
moments, then

Fz[S R(z1)] = [− 1
2�(z, z1)− i∇z1]Fz[S],

Fz[R(z1)S] = [ 1
2�(z, z1)− i∇z1]Fz[S],

Fz[S ◦ R(z1)] = −i∇z1Fz[S], (5.4.43)

Fz[[R(z1), S]] = �(z, z1)Fz[S], (5.4.44)

where ∇z1 is the derivative along the direction z1:

∇z1F(z) = d

dt
F(z + t z1)

∣∣∣∣
t=0

.

Proof. Since R(z1) ∈ L 2(S), the operators S R(z1), . . . in the left-hand
sides are trace-class by Proposition 2.8.2 and have square-integrable
transforms Fz[S R(z1)], . . . It is suf�cient to check the �rst relation. We
have

Fz[S R(z1)] = Tr(S R(z1))V (z)

= 〈V (−z), R(z1)〉0S.
According to (5.4.39)

Fz[S R(z1)] = i−1 d

dt
〈V (−z), V (t z1)〉−S

∣∣∣∣
t=0

= i−1 d

dt
Tr SV (t z1)V (z)

∣∣∣∣
t=0

.
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Taking into account the CCR we get

Fz[S R(z1)] = i−1 d

dt
Fz+t z1

[S]eit�(z1,z)/2

∣∣∣∣
t=0

,

as required.

It is not dif�cult to extend these formulas to a wider class of operators
S but we shall not do it.

5.5. Structure of general Gaussian states

Let us calculate the characteristic function of the quasiclassical state
(5.1.2). Using (5.3.28) we get

Fx,y[S] = exp

[
−1

4

(
�
ω

x2 + ω

�
y2

)]∫
exp[i(αx + βy)]μ(dα dβ)

= F0(x, y) · μ̄(x, y),

(5.5.45)

where F0(x, y) is the characteristic function of the ground state |0)(0|,
and μ̃(x, y) is the classical characteristic function of the probability dis-
tribution μ. Consider the quasiclassical Gaussian state (5.1.7). Returning
to real variables by letting

ζ = (2�ω)−1/2(ωβ + i�α), ā = (2�ω)−1/2(ωQ + i�P),

we can write its density operator in the form

SP,Q =
1

2π N

∫∫
|α, β)(β, α|

× exp

{
− 1

2N

[
�
ω

(α − P)2 + ω

�
(β − Q)2

]}
dα dβ.

(5.5.46)

The characteristic function of the Gaussian distribution is

μ̄(x, y) = exp

[
i(Px + Qy)− N

2

(
ω

�
x2 + �

ω
y2

)]

so that by (5.5.45)

Fx,y[SP,Q] = exp[i(Px + Qy)− 1
2(σ

2
P x2 + σ 2

Q y2)], (5.5.47)
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where

σ 2
P =

ω

�

(
N + 1

2

)
, σ 2

Q =
�
ω

(
N + 1

2

)
with N = σPσQ − 1

2 .
For many degrees of freedom the characteristic function of the state

(5.1.8) is apparently the product of the factors of the type (5.5.46):∏
k

exp

[
i(Pk xk + Qk yk)− 1

2
(σ 2

Pk x2
k + σ 2

Qk y2
k )

]
. (5.5.48)

We thus see that the characteristic function of the quantum state (5.5.46)
has the same analytic form as the characteristic function of a Gaussian
distribution though the variances are not arbitrary positive numbers but
are subject to the uncertainty relation σ 2

Pσ 2
Q ≥ 1

4 .
Basing on this analogy we introduce the following general de�nition.

Let z → V (z) be an irreducible representation of the CCR on a sym-
plectic space (Z , �). The state S in the representation space H is called
Gaussian if its characteristic function has the form

Fz[S] = exp[im(z)− 1
2α(z, z)], (5.5.49)

where m(z) is a linear functional, α(z, z′) is a bilinear symmetric form on
Z . The function (5.5.49) is in�nitely differentiable and therefore all mo-
ments of the Gaussian state are �nite. The relations (5.4.35) and (5.4.36)
imply that m(z) is the mean value and α(z, z′) is the correlation function
of S as anticipated in the notation.

Theorem 5.5.1. For (5.5.49) to be the characteristic function of a quan-
tum state it is necessary and suf�cient that α(z, z′) satisfy one of the
equivalent relations (5.4.41), (5.4.42).

Proof. The necessity follows from the fact that α is the correlation func-
tion of a quantum state. To prove suf�ciency it is enough to check �-
positive de�niteness of the function (5.5.49), i.e.,∑

j,k

c j c̄k exp

[
im(z j )− im(zk)− 1

2
α(z j − zk, z j − zk)

+1

2
i�(z j , zk)

]
≥ 0

for any z j ∈ Z , c j ∈ C. Putting b j = c j exp[im(z j )− 1
2α(z j , z j )] rewrite

it in the form ∑
j,k

b j b̄k exp

[
α(z j , zk)+ 1

2
i�(z j , zk)

]
≥ 0.
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Note that the matrix

[α(z j , zk)+ 1
2 i�(z j , zk)]

is positive de�nite by (5.4.42); and referring to a result of Schur which
says that positive de�niteness of a matrix [a jk] implies positive de�nite-
ness of [exp a jk] the theorem is proved.

Denote by Sm the Gaussian state with the mean m(z) and �xed cor-
relation function α(z, z′). We shall show that Sm can be regarded as a
result of an “in�uence” on the state S = S0 described by a unitary dis-
placement operator. Since the form � is nondegenerate, there exists the
unique vector m� ∈ Z such that

m(z) = �(m�, z), z ∈ Z

(this is easily seen in the coordinate representation). Then

Sm = V (m�)∗SV (m�).

For this it is suf�cient to check that characteristic functions of both sides
are equal. Using property (3) of the transform T → Fz[T ] (see Section
5.3), we have

Fz[V (m�)∗SV (m�)] = Fz[S]ei�(m�,z) = Fz[Sm],
as required.

Consider now the Euclidean space (Z , α). By the Riesz-Frechet lemma
there is a unique mα ∈ Z satisfying

m(z) = α(mα, z), z ∈ Z

(in the �nite-dimensional case this is easily seen in the coordinate repre-
sentation). Introduce D as the associated operator of the form �, i.e.,
the operator satisfying (5.2.15) where α is the correlation function. Then
mα = −D m� so that

Sm = V (D −1mα)SV (D −1mα)
∗. (5.5.50)

The condition (5.4.41) for the correlation function sets certain restric-
tion onto the operator D. Putting z′ = − 1

2D z in (5.4.41) we get

I + 1
4D 2 ≥ 0 in (Z , α). (5.5.51)
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Let {e j , h j } be the symplectic basis in which D has the matrix (5.2.15).
From (5.5.51)

a j ≡ d−1
j ≥ 1

2 .

Since
α(z, z) =

∑
j

a j (x2
j + y2

j ),

where [x j , y j ] are the components of the vector z in this basis, the char-
acteristic function of the state Sm takes the form∏

j

exp
[
i(P

′
j x j + Q

′
j y j )− a j

2
(x2

j + y2
j )
]
. (5.5.52)

Here we put

P
′
j = ESm (P ′j ), Q

′
j = ESm (Q′

j ), a j = DSm (Q′
j ) = DSm (P ′j ),

where P ′j = R(e j ), Q′
j = R(h j ).

Note that if we start with a coordinate form of the CCR related to some
�xed set of canonical observables Pk , Qk as in Section 5.2, then the sym-
plectic basis in which the characteristic function of a Gaussian state has
the simplest form (5.5.52) may be arbitrary. The new canonical observ-
ables P ′j , Q′

j need not coincide with Pk , Qk and are in general related to
them through a linear transformation preserving the Heisenberg commu-
tation relations (such transformations are called canonical). For example,
the characteristic function (5.5.48) is reduced to the form (5.5.52) by the
symplectic transformation

x j → (σP j/σQ j )
1/2x j = (ω j/�)1/2x j ,

y j → (σQ j/σP j )
1/2 y j = (�/ω j )

1/2 y j ,

to which corresponds the canonical transformation

P ′j = (�/ω j )
1/2 Pj , Q′

j = (ω j/�)1/2 Q j .

Then the characteristic function Tr S exp i[∑ j (P ′j x j + Q′
j y j )] will have

the form (5.5.52) with a j = σP jσQ j = N j + 1
2 . In general the transfor-

mation can be much more complicated.
The fact that the characteristic function (5.5.49) can be always decom-

posed into the factors corresponding to mutually commuting pairs of the
canonical observables {P ′j , Q′

j }means that the space H of the irreducible
representation z → V (z) can be represented as the tensor product

H =
⊗

j

H ′
j , (5.5.53)
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so that V (z) = ⊗
j Vj (z j , y j ) with Vj (x j , y j ) = exp i(P ′j x j + Q′

j y j )

acting irreducibly in H ′
j ; moreover

Sm

⊗
j

S′j ,

where S′j are the Gaussian states in H ′
j with characteristic functions of

the simplest form

exp
[
i(P

′
j x j + Q

′
j y j )− a j

2
(x2

j + y2
j )
]
.

We emphasize again that the decomposition (5.5.53) is de�ned by the
Gaussian state itself (more de�nitely, by its correlation function) and need
not be the same as the “natural” decomposition related to initial canonical
observables.

Finally let us calculate the eigenvalues of Sm . Since the transformation
(5.5.50) does not alter the eigenvalues of S we can take m(z) ≡ 0. By
(5.1.4) the zero-mean density operator S′j for the j th degree of freedom
has the eigenvalues

1

N j + 1

(
N j

N j + 1

)n

; n = 0, 1, . . . , (5.5.54)

where N j = σP jσQ j − 1
2 = a j − 1

2 . The tensor product of such states
will have for eigenvalues the numbers

s∏
j=1

1

N j + 1

(
N j

N j + 1

)n j

;

corresponding to all combinations of n j = 0, 1, . . . In particular the max-
imal eigenvalue is equal to

s∏
j=1

1

N j + 1
=

s∏
j=1

1

a j + 1
2

.

The state is pure if and only if this value is equal to 1. Since a j ≥ 1
2 , this

can hold only if all a j = 1
2 or

det 1
2D = 1.
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5.6. A characteristic property of Gaussian states

Let z → V (z) be an irreducible representation of the CCR in H and S
be a state in H. Consider the Hilbert space L 2(S) associated with the
state S.

Lemma 5.6.1. The linear span of the operators {V (z), z ∈ Z} is dense
in L 2(S).

Proof. Let X ∈ L 2(S) satisfy

〈V (z), X〉S = 0, z ∈ Z . (5.6.55)

Since L 2(S) is the complexi�cation of L 2
h(S), then X = X1 + iX2 with

X j ∈ L 2
h(S). Therefore we can use (2.8.88) to obtain

Tr(X ◦ S)V (z) = 0, z ∈ Z .

Thus Fz[X ◦ S] = 0; and by the inversion formula X ◦ S = 0. Therefore
using again (2.8.88) we obtain for any bounded Y

〈Y, X〉S = Tr Y ∗(S ◦ X) = 0

so that X = 0 in L 2(S) and the lemma is proved.

Assume now that the state S has �nite second moments so that R(z) ∈
L 2

h(S) for all z ∈ Z . Denote by R the subspace of L 2
h(S) generated by

the operators
c + R(z); c ∈ R, z ∈ Z .

If R0 is the one-dimensional subspace of R consisting of multiples of the
unit operator, then R = R0 ⊕R1 where R1 is the subspace of operators

R(z)− m(z), z ∈ Z ,

where m(z) is the mean of the state S. This follows from the fact that

〈R(z)− m(z), I 〉S = m(z)− m(z) ≡ 0.

By (5.4.37)
z → R(z)− m(z) (5.6.56)

is an isometric map of the Euclidean space (Z , α) onto the subspace
R1 ⊂ L 2

h(S). Consider the commutation operator D of S de�ned
by (2.10.113) and denote by D1 its restriction onto the subspace R1, so
that

[Y, X ]S = 〈Y, D1 X〉S; X, Y ∈ R1.
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Now let D be the operator de�ned through the correlation function α of
the state according to (5.2.15). Then the relation (5.4.40) can be written
in the form

α(z, D z′) = 〈R(z)− m(z), D(R(z′)− m(z′))〉S; z, z′ ∈ Z .

This means that the operator D corresponds to D1 under the isometric
map (5.6.56), i.e.,

R(D z)− m(D z) = D1(R(z)− m(z)). (5.6.57)

Theorem 5.6.2. A state S with �nite second moments is Gaussian if and
only if R (or R1) is an invariant subspace of the commutation opera-
tor D.

Proof. Observing that D(R0) = [0] by (2.10.115) we see that invariance
of R1 is equivalent to invariance of R.

Let S be a Gaussian state. We shall show that D = D1 on R1 and thus
R1 is an invariant subspace of D. Taking into account (5.6.57) we have
to show that

D(R(z)− m(z)) = R(D z)− m(D z), z ∈ Z . (5.6.58)

By the de�nition of commutation operator and the fact that DI = 0 this
is equivalent to the identity

[X, R(z)]S = 〈X, R(D z)− m(D z)〉S, X ∈ L 2(S). (5.6.59)

By Lemma 5.5.1 we need to check this only for X = V (−w), w ∈ Z .
But (5.4.44) with (2.8.90) implies

[V (−w), R(z)]S = i�(w, z)Fw[S],
and (5.4.43) with (2.8.88) implies

〈V (−w), R(z)〉S = −i∇zFw[S].
We thus need to check that the characteristic function of a Gaussian state
Fw[S] given by (5.5.49) satis�es

i�(w, z)Fw[S] = −[i∇D z + m(D z)]Fw[S], (5.6.60)

and this is con�rmed by a straightforward computation.
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To prove the converse assume that D(R1) ⊂ R1. Then D(R(z) −
m(z)) = R(D1z)−m(D1z) where D1 is a linear operator in Z . Denoting
by α the correlation function of the state S we have

α(z, D1w) = 〈R(z)− m(z), D(R(w)− m(w))〉S
= [R(z)− m(z), R(w)− m(w)]S = �(z, w),

so that D1 = D where D is de�ned by (5.2.15). Thus (5.6.58) holds and
therefore the characteristic function of the state S satis�es the differential
equation (5.6.60). Since D is nondegenerate we can substitute D −1z for
z in (5.6.60) to obtain

−α(w, z)Fw[S] = [∇z − im(z)]Fw[S]. (5.6.61)

Let {z j } be an orthonormal basis in the Euclidean space (Z , α) and w j

be the components of the vector w in this basis. Then the coordinate form
of (5.6.61) reads[

∂

∂w j
− im(z j )

]
Fw[S] = −w jFw[S], j = 1, . . . , 2s.

The unique solution of this equation satisfying F0[S] = 1 is

exp

[
i
∑

j

w j m(z j )− 1

2

∑
j

w2
j

]
= exp

[
im(w)− 1

2
α(w, w)

]
.

The theorem is proved.

Consider the relation (5.6.59) for bounded X . Then using (2.8.88) and
(2.8.90) we obtain a useful identity

i[R(z), Sm] = (R(D z)− m(D z)) ◦ Sm (5.6.62)

for the density operator of Gaussian state with mean m(z) and correlation
function α(z, z′) = �(z, D −1z′).

Let {Sθ} be the family of Gaussian states with the �xed correlation
function α and the mean value of the form

m(z) =
n∑

j=1

θ j m j (z),

where θ = [θ1, . . . , θn] ∈ Rn , and m j (z) are �xed linear functionals on
Z . Introduce m j ∈ Z de�ned by the Riesz-Frechet lemma according to

m j (z) = α(m j , z), z ∈ Z .
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Proposition 5.6.3. The family {Sθ} is differentiable2 as a function of θ

with values in the Banach space T1(H ) of trace-class operators and

∂Sθ

∂θ j
= i[R(D −1m j ), Sθ] = (R(m j )− m(m j )) ◦ Sθ . (5.6.63)

Proof. Using (5.5.50) we can write

Sθ = V

(
n∑

j=1

θ jD
−1m j

)
S0V

(
n∑

j=1

θ jD
−1m j

)∗
.

Giving an increment t to the parameter θ j we get

Sθ+tδ j
= eit R(D−1m j )Sθe−it R(D−1m j ),

where δ j is the vector with the j th component being the unit, the others
being zero. Thus putting St = Sθ+tδ j we obtain the one-parameter family
{St ; t ∈ R} of the form (3.2.7), the in�nitesimal generator R(D −1m j ) of
the corresponding unitary group {exp it R(D −1m j ); t ∈ R} belonging to
L 2

h(S). Therefore the family {St} satis�es the conditions of Proposition
6.3.1 which will be proved in the next chapter. This implies the differen-
tiability of {St} and the expression (6.3.19) for the derivative which gives
the �rst equality in (5.6.63). The second follows from (5.6.62).

Let us illustrate these results by applying them to the quasi-classical
Gaussian state (5.5.46) with the characteristic function (5.5.47), the role
of the parameters [θ j ] being played by P , Q. Then z is two-dimensional
vector with components x , y so that

�(z, z′) = xy′ − x ′y.

The mean value and the correlation function are

m(z) = Px + Qy, α(z, z) = σ 2
P x2 + σ 2

Q y2,

whence m(z) = Pα(m P , z)+ Qα(m Q, z) with

m P = σ−2
P [1, 0], m Q = σ−1

Q [0, 1].

2 By differentiability of a function with values in a Banach space we always mean strong (i.e., norm)
differentiability.
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Therefore

R(m P)− m(m P) = σ−2
P (P − P),

R(m Q)− m(m Q) = σ−2
Q (Q − Q).

Moreover

D =
[

0 −σ−2
Q

σ−2
P 0

]
,

and the relations (5.6.63) become

∂SP,Q

∂ P
= i[Q, SP,Q] = σ−2

P (P − P) ◦ SP,Q,

∂SP,Q

∂ Q
= −i[P, SP,Q] = σ−2

Q (Q − Q) ◦ SP,Q .

(5.6.64)

Since R(z) = Px + Qy, the relation (5.6.58) is equivalent to

D(P) = −σ−2
Q (Q − Q), D(Q) = σ−2

P (P − P). (5.6.65)

5.7. Comments

Section 5.1. The relation (5.1.2) gives the so called Glauber’s P-rep-
resentation [42] (see also Klauder and Sudarshan [76]). Quantization of
the electromagnetic �eld, i.e., representation of the �eld by an in�nite
collection of quantum oscillators is due to Dirac [30]; it is presented in
Louisell [88], Klauder and Sudarshan [76] and Helstrom [53] in the form
convenient for applications in quantum optics. There one can �nd also a
discussion of states of the radiation �eld.

Section 5.2. The coordinate-free approach to the CCR was developed
by Segal [127] (for a �nite number of degrees of freedom see Castler
[21]). For symplectic spaces and skew-symmetric forms see, e.g., Maltzev
[94].

Section 5.3. The Stone-von Neumann uniqueness theorem is essentially
�nite-dimensional: it does not hold for an in�nite number of degrees of
freedom (see, e.g., Segal [127]). To this fact are related some of the “di-
vergences” of the quantum �eld theory. A thorough consideration of the
problems of this theory can be found in Wightman [143] and Bogoljubov,
Logunov and Todorov [16]. The Weyl transform introduced in [141] was
studied by Loupias and Miracle-Sole [89], Pool [114] and Holevo [55]
among others. The Weyl transform reveals most distinctly both similar-
ity and disparateness between quantum and classical mechanics (see, e.g.,
Shirokov [125]).
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Section 5.4. The characteristic function of a state was introduced for
quantum �elds by Segal [126] who generalized a particular construction
of Moyal [99].

The fact that the characteristic function determines the density opera-
tor uniquely underlies the method of homodyne tomography in quantum
optics [184]. In the case of one mode

TrSei(Px+Qy) = TrSeir R(φ) =
∫

eir t pφ(t)dt,

where R(φ) = P sin φ + Q cos φ is the so called �eld quadrature cor-
responding to the phase φ. For each �xed value of φ measurement of
the quadrature R(φ) can be accomplished via optical homodyning: the
�eld of the mode with given frequency is combined with intense refer-
ence �eld (so called local oscillator) from the auxiliary laser of the same
frequency by means of a balanced 50:50 beam splitter and then the differ-
ence of the intensities of the outgoing �elds is measured. In the limit of
in�nite intensity this difference turns out to be proportional to the quadra-
ture R(φ) [200]. The value of φ is determined by the parameters of the
local oscillator. Knowledge of the probability densities pφ(t) for all val-
ues φ ∈ [0, π ] is equivalent to knowledge of the characteristic function
of the state and hence, of the density operator (pφ(t) is just the Radon
transform of the Wigner function of the state which explains the use of
the term “tomography”). Corresponding transformations can be obtained
from the inversion formulas, see [161]. By making measurements of the
distribution of quadratures for suf�ciently many values of φ one can ob-
tain consistent estimates of the density operator. Let us stress that in this
case one deals with measurements of the incompatible observables R(φ)

performed on different subensembles of the whole statistical ensemble.
For consideration of the mathematical aspects of this problem as a non-

parametric inverse statistical problem see [166].

Section 5.5. The general de�nition of the Gaussian state (for a �eld)
was given by Manuceau and Verbeure [97] under the name of quasi-
free states, though particular Gaussian states appeared earlier in various
sources (see, e.g., Glauber [42] and Louisell [88]). There is a noncom-
mutative central limit theorem (Cushen and Hudson [24]) in which the
Gaussian states appear as limit law.

For a proof of the Schur’s result see, e.g., Polya and Szegö [112, Sec-
tion VII, Problem 36].

Section 5.6. The characteristic property of Gaussian states was estab-
lished by Holevo [65].



Chapter 6
Unbiased measurements

6.1. Quantum communication channel

Consider the idealized scheme of information transmission presented at
Figure 6.1. In the absence of signal the physical carrier of information C

(say, electromagnetic �eld) is in a state S. Usually it is adopted that S is
the equilibrium (Gibbs) state at the given temperature. Transmission of a
signal is accomplished through an in�uence of the communication source
S onto the system C, which forces a de�nite change in its state. If there
are parameters of the source S which can be varied, then the resulting
state Sθ will depend on the values of these parameters θ .

Figure 6.1.

If the information carrier is described classically, then its states are
probability distributions Pθ (dω) on the phase space � of the system
C. Such information channels are considered in the classical informa-
tion theory. On the other hand if the information carrier is a quantum-
mechanical system, then its states are described by density operators Sθ

in the corresponding Hilbert space and one speaks of a quantum com-
munication channel. The advent of coherent light sources such as laser
opened a possibility for the creation of communication systems working
in the optical range of frequencies. While for the radio frequencies the
“energy quantum” �ω is quite small as compared to the mean energy of
the thermal �uctuations kT and the radiation �eld can be described classi-
cally, at the optical frequencies quantum �uctuations become signi�cant
and a consistent description of the information carrier – the radiation �eld
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– requires quantum theory. Assuming the simpli�ed picture of the �eld
as a �nite collection of quantum oscillators (which is usually justi�ed
here) we see that in the absence of signal the �eld is described by the
quasiclassical Gaussian state (5.1.7) with zero mean, and the in�uence of
the source is re�ected by the appearance of non-zero mean ā which plays
the role of the transmitted signal. This is the quantum analog of the con-
ventional information-theoretic model of the signal distorted by additive
Gaussian noise.

The �nal element of the communication system is receiver R destined
for obtaining an estimate θ̂ of the actual value θ of the transmitted signal,
basing on observations over the system C. Abstracting from details of
realization of the estimation procedure, we can say that the receiver per-
forms a measurement of the parameter θ in the family of states {Sθ }. Of
principal importance are the problems of optimal reception of the signal
and the theoretical bounds to accuracy of measurements.

In Chapter 4 we have considered this kind of problems for measure-
ments of kinematical parameters of quantum states, using Bayes’ and
minimax approaches. Here we develop a different approach which is
based on the notion of unbiasedness. This approach does not assume ex-
istence and knowledge of the prior distribution and is applicable to an
arbitrary family of states without any symmetry. The most complete re-
sults are obtained in this way for Gaussian states.

Let {Sθ} be a family of quantum states where the parameter

θ = [θ1, . . . , θn]
runs over a domain � ⊂ Rn , and M(dnθ), with dnθ = dθ1 . . . dθn be a
measurement with values in �. Throughout this section we shall assume
that the second moments are �nite:∫

θ̂2
j μθ (d

n θ̂ ) <∞; j = 1, . . . , n, (6.1.1)

where μθ is the measurement probability distribution with respect to the
state Sθ:

μθ(B) = Tr SθM(B), B ∈ A (�).

The measurement is called unbiased if∫
θ̂ jμθ(d

n θ̂ ) = θ j ; j = 1, . . . , n, (6.1.2)

for all θ ∈ �. This means that there is no systematic deviation in the
results of the measurement. Differentiating this equation formally we
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obtain ∫
θ̂ j

∂μθ

∂θk
(dn θ̂ ) = δ jk; j, k = 1, . . . , n. (6.1.3)

The precise meaning of this relation will be established later. What we
shall need in the most part of this section is the set of conditions (6.1.1)-
(6.1.3) satis�ed at a �xed point θ ∈ �. We shall refer to it as local
unbiasedness at the point θ.

For the deviation function we shall use a quadratic form

Wθ(θ̂) =
∑

j,k

g jk(θ j − θ̂ j )(θk − θ̂k),

where G = [g jk] is a real nondegenerate positive de�nite weight ma-
trix. The accuracy of an unbiased measurement M = {M(dnθ)} is then
described by the total mean-square deviation

Σθ{M} =
∫

Wθ(θ̂)μθ(d
n θ̂ ).

For one-dimensional parameter, G is a positive number and Σθ{M} =
G Dθ{M} where Dθ{M} is the variance of M with respect to the state Sθ .
In the general case, introducing the covariance matrix of the unbiased
measurement

Bθ{M} =
[∫

(θ̂ j − θ j )(θ̂k − θk)μθ(d
n θ̂ )

]
≡ [b jk{M}], (6.1.4)

we have
Σθ{M} = TrGBθ{M} =

∑
j,k

g jkb jk{M},

where Tr denotes the trace of an (n × n)-matrix. Thus for n > 1 the
weight matrix enters essentially in the mean deviation.

If the measurement minimizes Σθ{M} it is called the best (unbiased
or locally unbiased) measurement of the parameter θ. If there exists a
measurement minimizing Σθ{M} simultaneously for all θ ∈ Θ it is called
the uniformly best. In this chapter we shall obtain some general lower
bounds for the mean-square deviation and apply them to estimation of
the mean value of Gaussian states.

6.2. A lower bound for the variance in one-dimensional case

Let {Sθ } be a family of states parametrized by a one-dimensional param-
eter θ . The bound which will be established here is a noncommutative
analog of the well-known Cramér-Rao inequality in mathematical statis-
tics.
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Concerning the family {Sθ } we assume:

(1) the family {Sθ } is differentiable as a function of θ with values in the
Banach space of trace-class operators.

Using this condition we can write for any bounded X

d

dθ
Eθ (X) = Tr

d

dθ
Sθ · X, (6.2.5)

where (d/dθ)Sθ is the derivative of the family. The possibility of in-
terchanging the differentiation and the trace follows from the inequality
(2.7.72) as generalized in Theorem 2.7.2. We further assume:

(2) the linear functional of X de�ned by (6.2.5) can be extended to a
linear continuous functional on the Hilbert space L 2

h(Sθ ); that is∣∣∣∣Tr
d

dθ
Sθ · X

∣∣∣∣2 ≤ c Tr Sθ X2, X ∈ Bh(H ),

where c is a constant.

By the Riesz-Frechet lemma there is Lθ∈L 2
h(Sθ ) such that Tr(d/dθ)Sθ ·

X = 〈Lθ , X〉θ for all bounded X , where 〈·, ·〉θ ≡ 〈·, ·〉Sθ
. By (2.8.88) this

is equivalent to

d

dθ
Sθ = Sθ ◦ Lθ ≡ 1

2
(Sθ Lθ + Lθ Sθ ). (6.2.6)

An operator Lθ ∈ L 2
h(Sθ ) satisfying (6.2.6) is called the symmetric log-

arithmic derivative of the family {Sθ } at the point θ . For future use we
note that

〈I, Lθ 〉θ = Eθ (Lθ ) = d

dθ
Eθ (I ) = 0. (6.2.7)

Consider a measurement M(dθ) with the probability distribution
μθ(dθ̂ ) = Tr Sθ M(dθ̂ ). As we have agreed in Section 6.1 we assume
that it has �nite second moment; moreover we assume that

d

dθ

∫
θ̂μθ (dθ̂ ) =

∫
θ̂

dμθ

dθ
(dθ̂ ), (6.2.8)

where dμθ/dθ is the real σ -additive set function (of �nite total variation)
de�ned by the relation

dμθ

dθ
(B) = Tr

d

dθ
Sθ M(B), B ∈ A (�).
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Proposition 6.2.1. Let the family {Sθ } satisfy the condition (1) and (2)

and a measurementM = {M(dθ̂ )} satisfy (6.2.8) at a point θ . Then

Dθ {M}Dθ (Lθ ) ≥
[

d

dθ
Eθ{M}

]2

. (6.2.9)

Proof. From (6.2.5) and the de�nition of Lθ

d

dθ
Eθ (X) = 〈Lθ , X〉θ

for all bounded X . We �rst extend this relation to measurements M =
{M(dθ)} with �nite second moments. Putting X = M(B) we get

dμθ

dθ
(B) = 〈Lθ , M(B)〉θ . (6.2.10)

Consider the operator

XM =
∫

θ̂ M(dθ̂ ) ∈ L 2
h(Sθ ),

de�ned as in Section 2.8. Since the integral is the limit in L 2
h(Sθ ) of �nite

integral sums, then from (6.2.10)

〈XM, Lθ 〉θ =
〈∫

θ̂ M(dθ̂ ), Lθ

〉
θ

=
∫

θ̂〈M(dθ̂ ), Lθ 〉θ =
∫

θ̂
dμθ

dθ
(dθ̂ ).

(6.2.11)

Using (6.2.8) we get

〈Lθ , XM〉θ = d

dθ
Eθ {M}. (6.2.12)

Now by (2.9.106)

Dθ {M} ≥ 〈XM − Eθ {M}, XM − Eθ {M}〉θ .
Using the Cauchy inequality and (6.2.7) we get

〈XM − Eθ {M}, XM − Eθ {M}〉θ · 〈Lθ , Lθ 〉θ
≥ 〈XM − Eθ {M}, Lθ 〉2θ = 〈XM, Lθ 〉2θ .

Substituting (6.2.12) we obtain the inequality (6.2.9).
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For an unbiased measurementM (6.2.9) gives

Dθ {M} ≥ Dθ (Lθ )
−1. (6.2.13)

The above proof shows that in fact all that is needed for (6.2.13) is the
relation (6.1.3) which takes the form∫

θ̂
dμθ

dθ
(dθ̂ ) = 1

or, due to (6.2.11)
〈Lθ , XM〉θ = 1. (6.2.14)

We thus have

Corollary 6.2.2. The inequality (6.2.13) holds for any family {Sθ } sat-
isfying the conditions (1) and (2) and any measurement M = {M(dθ̂ )}
satisfying (6.2.14), in particular for measurements, locally unbiased at
the point θ .

The quantity Jθ = Dθ (Lθ ) appearing in the right-hand side of (6.2.13)
is the noncommutative analog of the Fisher information in mathematical
statistics. It is a measure of information about the parameter θ contained
in the family {Sθ }.

In what follows we shall directly use the conditions of the type (6.2.14)
which are both easy to check and relevant for the inequalities we need.
However for completeness we shall give a suf�cient condition for (6.2.8)
which allows to deduce local unbiasedness from unbiasedness by differ-
entiation.

Proposition 6.2.3. Let the family {Sθ } satisfy the condition (1) in an in-
terval of values of θ and −T ≤ dSθ/dθ ≤ T , where T is a positive
trace-class operator. Let a measurement M = {M(dθ̂ )} be such that∫ |θ̂ |μ(dθ̂ ) < ∞ where μ(dθ̂ ) = Tr T M(dθ̂ ). Then (6.2.8) holds, for
any θ in the interval.

Proof. By the Lagrange formula for �nite increment

μθ+�θ(B)− μθ(B)

�θ
= d

dθ
μθ+h�θ(B)

= Tr
d

dθ
Sθ+h�θ M(B), 0 < h < 1,

whence∣∣∣∣μθ+�θ(B)− μθ(B)

�θ

∣∣∣∣ ≤ Tr T M(B) = μ(B), B ∈ A (�),
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and thus |d/dθμθ(B)| ≤ μ(B). Therefore the integral
∫

θ̂ (dμθ/dθ)(dθ̂ )

is well de�ned and converges. For a �nite c,∫
|θ̂ |≤c

θ̂
dμθ

dθ
(dθ̂ ) = Tr

d

dθ

∫
|θ̂ |≤c

θ̂ M(dθ̂ )

= d

dθ

∫
|θ̂ |≤c

θ̂μθ (dθ̂ ).

On the other hand∣∣∣∣ 1

�θ

[∫
|θ̂ |>c

θ̂μθ+�θ(dθ̂ )−
∫
|θ̂ |>c

θ̂μθ (dθ̂ )

]
−
∫
|θ̂ |>c

θ̂
dμθ

dθ
(dθ̂ )

∣∣∣∣
≤ 2

∫
|θ̂ |>c

|θ̂ |μ(dθ).

Thus the left-hand side converges uniformly to zero as c → ∞ which
implies (6.2.8).

Finally we shall apply the results of this section to estimation of pa-
rameter Q in the family of the quasiclassical Gaussian states (5.5.46)
(the parameter P is assumed to be �xed). By Proposition 5.6.3 this fam-
ily satis�es the conditions (1) and (2) with the symmetric logarithmic
derivative

L Q = σ−1
Q (Q − Q)

found from the second of the relations (5.6.64). Therefore DQ(L Q) =
σ−2

Q and the inequality (6.2.13) gives

DQ{M} ≥ σ 2
Q =

�
ω

(
N + 1

2

)
(6.2.15)

for any locally unbiased measurement of the parameter Q.
Apparently this bound is attained (for any value of Q) by the simple

measurement E(dQ) corresponding to the coordinate observable Q. Us-
ing Dirac’s notation we can write

E(dQ) = |Q)(Q|dQ, (6.2.16)

where |Q) are formal eigenvectors of the operator Q. Since E(dQ) is the
spectral measure of Q, XE = Q and the condition (6.2.14) is satis�ed
since

〈L Q, Q〉Q = σ−2
Q 〈Q − Q, Q〉Q = σ−2

Q 〈Q − Q, Q − Q〉Q = 1.

Thus the canonical coordinate observable Q gives the uniformly best lo-
cally unbiased measurement of the coordinate parameter Q in the family
{SP,Q} of quasiclassical Gaussian states. Similar result holds for the mo-
mentum parameter P .



226 Alexander Holevo

6.3. The case of shift parameter

Here we shall prove the inequality

Dθ {M}Dθ (A) ≥ 1

4

∣∣∣∣ d

dθ
Eθ {M}

∣∣∣∣2 (6.3.17)

for the variance of measurements of the shift parameters θ in the family

Sθ = eiAθ Se−iAθ . (6.3.18)

This is generalization of the Mandelstam-Tamm inequality (3.2.9) which
is connected with uncertainty relations for shift parameters, and we wish
to compare it with the noncommutative Cramér-Rao inequality (6.2.9)
originating from analogies with mathematical statistics.

First we establish the condition ensuring the properties (1) and (2) of
Section 6.2 for the family (6.3.18).

Proposition 6.3.1. Let the in�nitesimal generator A of the unitary group
{Vθ = exp iθ A; θ ∈ R} be square-summable with respect to the basic
state S. Then it is square-summable with respect to Sθ , θ ∈ R. The
family {Sθ } satis�es the condition (1) and its derivative is given by

d

dθ
Sθ = i[A, Sθ ], (6.3.19)

where the commutator is de�ned as in Section 2.8. Moreover {Sθ } satis-
�es condition (2) and its symmetric logarithmic derivative is equal to

Lθ = eiθ AD(A)e−iθ A,

where D is the commutation operator of the basic state S.

Proof. We �rst prove that A ∈ L 2
h(S) implies A ∈ L 2

h(Sθ ). As it was
observed before the formulation of Stone’s theorem in Section 2.4, ψ ∈
D (A) implies Vθψ ∈ D (A). Moreover since Vθ is a function of A,
AVθψ = Vθ Aψ . Therefore D (A) ⊃ R(

√
S) implies

D (A) ⊃ R (Vθ

√
SV ∗

θ ) = R (
√

Sθ )

and the operator A
√

Sθ = AVθ

√
SV ∗

θ = Vθ A
√

SV ∗
θ is Hilbert-Schmidt.

It remains to refer to Proposition 2.8.2.
Put now Sθ = Tθ Rθ , where Tθ = Vθ

√
Sθ , Rθ = √

Sθ V ∗
θ . We shall

show that the families {Tθ }, {Rθ } are differentiable as functions of θ with
values in the Hilbert space T2(H ), and

d

dθ
Tθ = iATθ ,

dRθ

dθ
= −iRθ A. (6.3.20)
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We restrict to {Tθ } since consideration of {Rθ } is similar. We have∥∥∥∥Tθ+�θ − Tθ

�θ
− iATθ

∥∥∥∥
2

= ‖F�θ(A)ATθ‖2,

where the function

F�θ(x) = (�θ · x)−1(ei�θ ·x − 1− i�θ · x)

has the properties

|F�θ(x)| ≤ const.;
lim

�θ→0
F�θ(x) = 0, x ∈ R.

By using the spectral representation of F�θ(A) one can show that

‖F�θ(A)‖ ≤ const.; (6.3.21)

lim
�θ→0

F�θ(A)ψ = 0, ψ ∈ H. (6.3.22)

Let us show now that ‖F�θ(A)ATθ‖2 → 0 as �θ → 0. Since Q =
ATθ ∈ T2(H ), Q can be approximated by �nite-rank operators Q̃. From
(6.3.22) it follows that ‖F�θ(A)Q̃‖2 → 0 as �θ → 0. On the other hand
by the inequality (2.7.81)

‖F�θ(A) · (Q − Q̃)‖2 ≤ ‖F�θ(A)‖ · ‖Q − Q̃‖2,

which can be made arbitrarily small using (6.3.21). This proves the �rst
relation in (6.3.20).

The relation (6.3.19) now follows from the simple fact that if Sθ =
Tθ · Rθ where {Tθ }, {Rθ } are differentiable as functions with values in
T2(H ), then {Sθ } is differentiable as function with values in T1(H ) and

d

dθ
Sθ = dTθ

dθ
Rθ + Tθ

dRθ

dθ
.

In fact

Sθ+�θ − Sθ

�θ
= Tθ+�θ − Tθ

�θ
Rθ+�θ + Tθ

Rθ+�θ − Rθ

�θ
.

We have

(�θ)−1(Tθ+�θ − Tθ )→ dTθ

dθ
, (�θ)−1(Rθ+�θ − Rθ )→ dRθ

dθ
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in T2(H ): the family {Rθ }, being differentiable, is continuous so that
Rθ+�θ → Rθ in T2(H ). Passing to the limit as �θ → 0 and us-
ing (2.7.80) we see that {Sθ } satis�es condition (1) and the expression
(6.3.19) for dSθ/dθ follows.

Consider the expectation Eθ (X) of bounded observable X . Using
(6.2.5), (6.3.19) and (2.8.90) we obtain

d

dθ
Eθ (X) = [X, A]θ , (6.3.23)

where [·, ·]θ ≡ [·, ·]Sθ
. It follows that the family {Sθ } satis�es condition

(2) of Section 6.2 since∣∣∣∣Tr
dSθ

dθ
X

∣∣∣∣2 = |[A, X ]θ |2 ≤ 4〈A, A〉θ 〈X, X〉θ

by the inequality (4) of Proposition 2.8.3.
Comparing (6.2.6) and (6.3.19) we get

Sθ ◦ Lθ = i[A, Sθ ], (6.3.24)

or, which is the same
〈X, Lθ 〉θ = [X, A]θ

for all X ∈ L 2
h(Sθ ). By the de�nition (2.10.113) of the commutation

operator this means that
Lθ = Dθ (A), (6.3.25)

where Dθ is the commutation operator of Sθ . From (6.3.24) and (6.3.18)

S ◦ (e−iθ A Lθeiθ A) = i[A, S],
whence Dθ (A) = eiθ AD(A)e−iθ A and we get the desired relation for
Lθ .

Proposition 6.3.2. Under the condition of Proposition 6.3.1 the inequal-
ity (6.3.17) holds for any measurement M = {M(dθ)} with �nite second
moment satisfying (6.2.8).

Proof. Putting X = M(B) in (6.3.23) we get

d

dθ
μθ(B) = [M(B), A]θ , B ∈ A (�).

Then we can extend (6.3.23) onto measurementsM satisfying the condi-
tions of the proposition:

d

dθ
Eθ {M} = [XM, A]θ . (6.3.26)
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Indeed by (6.2.8)
d

dθ
Eθ {M} =

∫
θ̂

dμθ

dθ
(dθ̂ ).

Arguing as in the proof of Proposition 6.2.1 we get∫
θ̂

dμθ

dθ
(dθ̂ ) =

∫
θ̂ [M(dθ̂ ), A]θ = [XM, A]θ ,

as required. Combining (2.9.104) with (2.9.106) we get

Dθ {M}Dθ (A) ≥ 1

4
[XM, A]2θ .

Substituting (6.3.26) into the right-hand side of this inequality we get
(6.3.17).

IfM is locally unbiased, then (6.3.17) takes the form

Dθ {M} ≥ [4Dθ (A)]−1. (6.3.27)

This generalizes the uncertainty relation for covariant measurements of
the shift parameter displayed in Section 4.7. Thus under the condition of
Proposition 6.3.1 there are two different bounds for the variance of a lo-
cally unbiased measurementM of the shift parameter θ : the “uncertainty
relation” (6.3.27) and the “Cramér-Rao inequality” (6.2.13).

We shall show that the last inequality is in general more informative
(i.e., provides a greater lower bound) than (6.3.27) and that the two
bounds coincide in the case of pure state family {Sθ }. First of all we
remark that both bounds in fact do not depend on θ . While this is clear
for (6.3.27), for (6.2.13) this follows from the expression for Lθ obtained
in Proposition 6.3.1 and (6.3.18). Therefore we can assume θ = 0. Using
(6.3.25), (6.2.7) and (2.10.115) we get

1

4
Ds(L0) = 1

4
〈D(A), D(A)〉S

= 1

4
〈D(A − A), D(A − A)〉S = −1

4
〈(A − A), D2(A − A)〉S,

where A = ES(A). Since 1+ 1
4D

2 ≥ 0,

1

4
DS(L0) ≤ 〈A − A, A − A〉S = DS(A),

which proves that (6.2.13) is at least as good as (6.3.27). The equality
holds if an only if (

I + 1

4
D2

)
(A − A) = 0. (6.3.28)
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To explain the meaning of this condition consider the matrix representa-
tion of the operator A ∈ L 2(S), as described by (2.10.110). According
to the last relation in (2.10.118) the operator I + 1

4D
2 acts multiplying

the matrix element in the j th row and the k th column by 4s j sk(s j + sk)
−1,

where {s j } are the eigenvalues of S. Therefore (I + 1
4D

2)X = 0 if and
only if SX S = 0, so that (6.3.28) is equivalent to

S AS = A · S2.

This is apparently satis�ed if S is a pure state.
Let us return to the example considered at the end of Section 6.2. Ac-

cording to the results of Section 5.6 the Gaussian states {SP,Q} satisfy

SP,Q = e−iQ P SeiQ P ,

where S = SP,0. Applying (6.3.27) with A = −P we get only

D Q{M} ≥ (2σP)−2,

as compared to the bound σ 2
Q of (6.2.15). By the Heisenberg uncertainty

relation σ 2
Q ≥ (2σP)−2 and the equality holds only for the pure minimum-

uncertainty state.
Being less informative, the bound (6.3.27) may still be useful since

it is expressed strictly in terms of the in�nitesimal operator A and does
not require knowledge of the symmetric logarithmic derivative. But if
the latter is available, as in the Gaussian case, then the more informative
bound (6.2.13) should be used.

Although (6.3.17) applies as well to the angular parameter ϕ in the
family {Sϕ} de�ned by (4.6.36), it is not the inequality which should be
used in this case. As we have already seen in Section 4.5 the variance
Dϕ{M} need to be replaced by the uncertainty de�ned by (6.5.45). More-
over the unbiasedness condition must be also modi�ed. One easily sees
that a covariant measurement M = {M(dϕ)} of an angular quantity is
necessarily biased. To �nd the substitute for the unbiasedness condition
we introduce the bounded operator

UM =
∫ 2π

0
eiϕ M(dϕ).

Then denoting Eϕ(U ) = Tr SϕU we have

Eϕ(UM) = eiϕ E0(UM),
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as a consequence of the covariance property ofM. It follows that

i−1 d

dϕ
ln Eϕ(UM) = 1. (6.3.29)

This replaces the local unbiasedness property in the angular case.
We now prove the inequality

�ϕ{M} · Dϕ(A) ≥ 1

4

∣∣∣∣ d

dϕ
ln Eϕ(UM)

∣∣∣∣2 (6.3.30)

under the same assumption of square-summability of the operator A in
the family (4.6.36), for any measurementM = {M(dϕ)}.

From (6.3.23), (d/dϕ)Eϕ(UM) = [A, UM]ϕ , so that

d

dϕ
ln Eϕ(UM) = [A, UM]ϕ Eϕ(UM)−1.

Using (2.8.99) we get

1

4
|[A, UM]ϕ|2 ≤ 〈A − A, A − A〉ϕ〈UM −UM, UM −UM〉ϕ,

where A = Eϕ(A) etc. Applying (2.9.109):

〈UM −UM, UM −UM〉ϕ ≤
∫
|eiϕ̂ −UM|2μϕ(dϕ̂)

≡ �ϕ{M} · |Eϕ(UM)|2.

Summing up we arrive to (6.3.30).
If now the measurement M satis�es (6.3.29) (in particular if M is co-

variant), then we obtain the modi�cation of (6.3.27) to the angular pa-
rameter

�ϕ{M} ≥ [4Dϕ(A)]−1.

Arguing as in Section 6.2 we can improve this bound to

�ϕ{M} ≥ Dϕ(Lϕ)
−1

where Lϕ is the symmetric logarithmic derivative of the family (4.6.36).
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6.4. Estimation of force by measurements over a trial object

Consider a quantum object of mass m under the action of constant force
F . Since the potential energy is equal to V (x) = −Fx the Hamiltonian
of the object is

H = 1

�

(
p2

2m
− Fq

)
.

Writing the dynamical equation (3.7.69) in the momentum representation
(3.4.38) we get

i
∂ψ̃t(η)

∂t
= −η2ψ̃t(η)

2m�
− iF

∂ψ̃t(η)

∂η
.

This is a linear �rst order partial differential equation and its solution is
easily found to be

ψ̃t(η) ≡ Vt ψ̃0(η) = ψ̃0(η − Ft)

· exp

(
− iη2t

2m�
+ iηFt2

2m�
− iF2t3

6m�

)
.

Using the relation (3.4.39) we can write the operator of time evolution
Vt = exp[−(it/�)(p2/2m − Fq)] in the form

Vt = WFt2/2m,Ft/m V 0
t · exp

(
iF2t3

12m�

)
. (6.4.31)

Here

WFt2/2m,Ft/m = exp
i

�

(
Ftq − Ft2

2m
p

)
(6.4.32)

is the displacement operator corresponding to the kinematical transfor-
mation

(x, v)→
(

x + Ft2

2m
, v + Ft

m

)
;

V 0
t = exp(−ip2/2m�) is the operator of free evolution and the last expo-

nent is an inessential scalar factor of unit modulus.
The relation (6.4.31) has simple physical meaning. In classical me-

chanics the motion in the �eld of constant force F is described by the
relations

p(t) = p + Ft, q(t) = q + p

m
t + Ft2

2m
. (6.4.33)
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The transformation (p, q) → (p(t), q(t)) can be composed of the kine-
matical displacement (p, q)→ (p+Ft, q+Ft2/2m) and the free evolu-
tion (p, q)→ (p, q+(p/m)t). The relation (6.4.31) is the quantum ana-
log of this fact expressed in the Schrödinger picture. Introducing time-
dependent observables p(t) = V ∗

t pVt , q(t) = V ∗
t qVt one can derive

from (6.4.31) the quantum relations (6.4.33) in the Heisenberg picture.
Summing up, we can say that if the object prepared initially in the

state S, was exposed to the action of force F during the time t , then the
resulting state will be

Vt St V
∗

t = WFt2/2m,Ft/m S0
t W ∗

Ft2/2m,Ft/m,

where S0
t = V 0

t S(V 0
t )∗ is the basic state which would result if the force

were absent. Denoting the resulting state by SF and using (6.4.32) we
can write

SF = eiF A S0
t e−iF A, (6.4.34)

where
A = t

�

(
q − p

2m
t
)

. (6.4.35)

We now turn to the question – what is the extremal accuracy with
which the value of F can be estimated by quantum measurements after
the time t . The foregoing discussion reduces this question to estimation
of the shift parameter F in the family (6.4.34), so that we can apply the
results of Section 6.3.

If the operator (6.4.35) has �nite second moment with respect to S0
t ,

then the variance of any locally unbiased measurement M of the force
F satis�es (6.3.27). Let us express the quantity DF(A) which enters
into (6.3.27) through the variances corresponding to the initial state S.
Passage from Schrödinger to Heisenberg picture gives

DF(A) ≡ DS0
t
(A) = t2

�2
DS

(
q0(t)− p0(t)

2m
t

)
, (6.4.36)

where q0(t) = (V 0
t )∗qV 0

t , p0(t) = (V 0
t )∗ pV 0

t are the time-dependent
canonical observables for the free motion. From (3.7.66) and (3.7.65)

p0(t) = p, q0(t) = q + p

m
t. (6.4.37)

Substituting it into (6.4.36) we obtain the inequality for the variance of a
locally unbiased measurementM of the force F

DF{M} ≥ �2

4t2 DS

(
q + p

2m
t
) , (6.4.38)
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which holds under the assumption that p and q have �nite second mo-
ments with respect to the initial state S.

Assuming further that q and p are uncorrelated, i.e.,

〈q − ES(q), p − ES(p)〉S = 0 (6.4.39)

for the initial state S we get from (6.4.38)

DF{M} ≥ �2

4t2

[
DS(q)+ t2

4m2
DS(p)

]−1

. (6.4.40)

By the Heisenberg uncertainty relation, the right-hand side can not ex-
ceed the value �m/2t3 which is achieved for DS(p) = �m/t , Ds(q) =
�t/4m. Thus under the most unfavorable conditions the bound becomes

DF{M} ≥ �m

2t3
(6.4.41)

However if the initial state is properly prepared, the extremal quantum
accuracy of the force measurements can be made arbitrarily high for a
�xed t . To show this we introduce the observables of the form

B = α
2mq

t2
+ β

p

t
, α + β = 1,

which are canonically conjugate in the sense of Section 3.2 to A as fol-
lows easily from the expressions for A and B, which are just linear com-
binations of p and q, and from the CCR. Then as it was shown in Section
3.2, B corresponds to a covariant measurement of parameter F and there-
fore it is up to a constant an unbiased estimate of F . A strictly unbiased
estimate is obtained by subtracting from p and q their basic mean values
which according to (6.4.37) are

ES0
t
(p) = ES(p), ES0

t
(q) = ES(q)+ t

m
ES(p).

Using (6.4.37) and (6.4.39) we obtain the variance of B, which is the
same for all values of F

DS0
t
(B) = DS

(
α · 2m

(
q + t

m
p

)
t−1 + βpt−1

)
= 4m2

t4
DS(q)α2 + 1

t2
DS(p)(2α + β)2.

The minimum of this quantity under the restriction α+β = 1 is achieved
for

α = −DS(p)

[
4m2

t2
DS(q)+ DS(p)

]−1
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which corresponds to the unbiased estimate1

B∗ = t−1

[
DS(p)−1 + t2

4m2
DS(q)−1

]−1

·
⎡⎢⎣ p − ES(p)

DS(p)
− t

2m

q − p

m
t − ES(q)

DS(q)

⎤⎥⎦ ,

(6.4.42)

having the variance

DS0
t
(B∗) = t−2

[
DS(p)−1 + t2

4m2
DS(q)−1

]−1

= DS(q) · DS(p)

t2

[
DS(q)+ t2

4m2
DS(q)

] .
(6.4.43)

As it should be expected this quantity satis�es (6.4.40); moreover the
equality is achieved if the initial state S is a minimum-uncertainty state.

The variance of the estimate B∗ tends to zero if either DS(p) or DS(q)

tends to zero. First let DS(p) ≈ 0, i.e., the initial state has the sharply
determined momentum ES(p), then (6.4.42) implies that B∗ ≈ [p −
ES(p)]t−1. In this case measuring observable [p − ES(p)]t−1 gives al-
most de�nitely the value of the force F . This agrees with semiclassical
consideration based on the formula F · t = �p from the Newtonian me-
chanics.

If on the contrary DS(q) ≈ 0, then (6.4.42) gives

B∗ ≈ 2m

t2

(
q − p

t

m
− ES(q)

)
. (6.4.44)

Assume for a moment that p, q are the classical canonical variables. Then
q − pt/m is just the value of coordinate starting from which at t = 0 the
free object will reach the coordinate q at the moment t . To measure the
quantity like (6.4.43) one may in principle perform the joint measurement
of p and q with arbitrary accuracy and substitute the results in the cor-
responding expression to obtain a �nal result. Comparison with (6.4.43)

1 A reader familiar with mathematical statistics can readily see that the same expression (6.4.42)
with p, q replaced by p(t), q(t) describes the best linear unbiased estimate of F in the classical
estimation problem using observations p(t), q(t) given by (6.4.33) with p, q regarded as usual
random variables.
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and (6.4.42) shows that DS0
t
(L0)

−1 ≡ D0(L0)
−1 = DS0

t
(B∗) so that the

estimate B∗ = L0/D0(L0) attains the lower bound in (6.2.13), which
now can be written as

DF{M} ≥ t−2

[
DS(p)−1 + t2

4m2
DS(q)−1

]−1

.

This bound is more informative than (6.4.40), but it is valid only for Gaus-
sian states.

6.5. A bound for the measurement covariance matrix
based on symmetric logarithmic derivatives

Consider a family of states {Sθ } where θ = [θ1, . . . θn] is a multidimen-
sional parameter running over a domain �. For example, this can be
the family of Gaussian states {SP,Q} with the two-dimensional param-
eter [P, Q]. We shall adopt the following multidimensional analog of
conditions (1) and (2) of Section 6.2.

(1) The family {Sθ } is differentiable as a function of θ1, . . . θn with values
in the Banach space of trace-class operators.

(2) The linear functionals

∂

∂θ j
Eθ (X) = Tr

∂Sθ

∂θ j
X, X ∈ Bh(H )

can be extended to continuous linear functionals on the Hilbert space
L 2

h(Sθ), i.e., there is a constant c such that∣∣∣∣Tr
∂

∂θ j
Sθ · X

∣∣∣∣2 ≤ c Tr SθX2; X ∈ Bh(H ), j = 1, . . . , n.

As in the one-dimensional case these conditions ensure the existence of
the symmetric logarithmic derivatives L j

θ
; j = 1, . . . , n, which can be

de�ned as the elements of L 2
h(Sθ ) satisfying

∂Sθ

∂θ j
= Sθ ◦ L j

θ
. (6.5.45)

Since all our considerations will refer to a �xed point θ we shall simplify
notations by omitting the subscript θ. We thus write S for Sθ, 〈·, ·〉S for
〈·, ·〉Sθ etc. The symmetric logarithmic derivatives will be denoted L j ;
j = 1, . . . , n.



237 Probabilistic and Statistical Aspects of Quantum Theory

We are interested in measurementsM = {M(dnθ)} of the multidimen-
sional parameter θ = [θ1, . . . , θn]. From the very beginning we restrict
our attention to measurements which are locally unbiased at the given
point θ, i.e., satisfy (6.1.1)-(6.1.3) with

∂μθ

∂θk
(B) = Tr

∂Sθ

∂θk
M(B); B ∈ A (�).

By �niteness of the second moments the integrals

X j
M =

∫
θ̂ j M(dn θ̂ )

are de�ned as elements of L 2
h(S). Arguing as in (6.2.11) we get an alter-

native formulation of the condition (6.1.3)

〈X j
M , Lk〉S = δ jk .

Since as in (6.2.7)

〈I, L j 〉S = ∂

∂θ j
Eθ (I ) = 0,

this is equivalent to
〈L j , Xk〉S = δ jk, (6.5.46)

where we have introduced the new variables

X j = X j
M − θ j =

∫
(θ̂ j − θ j )M(dn θ̂ ). (6.5.47)

Introducing the Gram matrix of the system {L j } in L 2
h(S)

J = [〈L j , Lk〉S],
we call it the information matrix. If there exists a locally unbiased mea-
surement, then J is nondegenerate and the covariance matrix (6.1.4) of
any locally unbiased measurement satis�es the multidimensional analog
of the inequality (6.2.13):

B{M} ≥ J−1. (6.5.48)

This means that for any row-vector v = [v1, . . . , vn]
vB{M}v∗ ≥ vJ−1v∗,
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where v∗ is the Hermitean conjugate column-vector. Since both matrices
in (6.5.48) are real, we can con�ne ourselves to real vectors v.

To prove (6.5.48) we �rst note that the covariance matrix B{M} satis-
�es

B{M} ≥ [〈X j , Xk〉S], (6.5.49)

where {X j } are de�ned by (6.5.47). This follows from (2.9.108) by tak-
ing f (θ̂) = ∑

v j (θ̂ j − θ j ) with {v j } being arbitrary real numbers. The
remaining follows from

Lemma 6.5.1. Let X j , L j ; j = 1, . . . , n be a pair of systems of vectors
in a linear space L, satisfying

〈L j , Xk〉 = δ jk; j, k = 1, . . . , n,

where 〈·, ·〉 is a pre-inner product on L. Then the Gram matrices of both
systems ΓX = [〈X j , Xk〉] and ΓL = [〈L j , Lk〉] are nondegenerated and
satisfy ΓX ≥ Γ −1

L .

Proof. Introducing vectors X =∑
u j X j , Y =∑

v j L j we have 〈X, Y 〉=
vu∗. The Cauchy inequality for 〈·, ·〉 gives

uΓXu∗ · vΓLv∗ = 〈X, X〉〈Y, Y 〉 ≥ (vu∗)2.

Putting v = u�−1
L we see that ΓX , ΓL cannot be degenerate. Putting

v = uΓ −1
L we get uΓXu∗ ≥ uΓ −1

L u
∗ and the lemma is proved.

Combining (6.5.49) with Lemma 6.5.1 gives the inequality (6.5.48).
This inequality provides at once a simple lower bound for the total

mean square deviation Σ{M} = TrGB{M} with the weight matrix G:

Σ{M} ≥ TrGJ−1. (6.5.50)

For the Gaussian family {SP,Q} the symmetric logarithmic derivatives
obtained through (5.6.64) are

L Q = σ−1
Q (Q − Q), L P = σ−2

P (P − P), (6.5.51)

so that

J =
[
σ−2

P 0
0 σ−2

Q

]
. (6.5.52)

The matrix inequality (6.5.48) then gives the two scalar inequalities

D(P){M} ≥ σ 2
P , D(Q){M} ≥ σ 2

Q,
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where

D(P){M} =
∫

(α − P)2μP,Q(dα dβ),

D(Q){M} =
∫

(β − Q)2μP,Q(dα, dβ)

are the marginal variances of the locally unbiased measurement M =
{M(dαdβ)} with the probability distribution

μP,Q(dα dβ) = Tr SP,Q M(dα dβ).

The inequality (6.5.50) gives

gP D(P){M} + gQ D(Q){M} ≥ gPσ 2
P + gQσ 2

Q (6.5.53)

for arbitrary positive weights gP , gQ . We shall see in the next section that
this bound is never achieved; a more informative bound will be obtained
which takes into account the impossibility of an errorless joint measure-
ment of P and Q.

6.6. A bound based on right logarithmic derivatives

As distinct from the classical mathematical statistics, in the noncommu-
tative theory there are several analogs of the Cramér-Rao inequality using
different de�nitions of logarithmic derivative. Let the family {Sθ } satisfy
condition (1) of Section 6.5; instead of (2) we assume

(2′) There is a constant c such that∣∣∣∣Tr
∂

∂θ j
Sθ · X

∣∣∣∣2 ≤ c Tr Sθ X X∗; X ∈ B(H ), j = 1, . . . , n.

This means that the complex linear functionals

∂

∂θ j
Eθ (X) = Tr

∂

∂θ j
Sθ · X

on B(H ) can be extended to continuous linear functions on the complex
Hilbert space L 2+(Sθ ). By the Riesz-Frechet lemma there exist unique
elements L̃ j

θ ∈ L 2+(Sθ ) such that

Tr
∂

∂θ j
Sθ · X = 〈L̃ j

θ , X〉+Sθ
, X ∈ B(H ),
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or equivalently

∂

∂θ j
Sθ = (L̃ j

θ
)∗Sθ or

∂

∂θ j
Sθ = Sθ L̃ j

θ
. (6.6.54)

The operators L̃ j ≡ L̃ j
θ

are called the right logarithmic derivatives of the
family {Sθ}. They satisfy

〈I, L̃ j 〉+S = 0, j = 1, . . . , n.

The right information matrix is de�ned by the relation

J̃θ = J̃ = [〈L̃ j , L̃k〉+S ].
LetM = {M(dnθ)} be a locally unbiased measurement of the multidi-

mensional parameter θ = [θ1, . . . , θn] which we assume to exist. In the
same way as in (6.5.46) we get

〈L̃ j , Xk〉+S = δ jk .

Instead of (6.5.49) we get applying the inequality (2.9.109)

B{M} ≥ [〈X j , Xk〉±S ]. (6.6.55)

Then applying Lemma 6.5.1 to the systems of vectors {L̃ j }, {X j } in the
complex Hilbert space L 2+(S) we get a different inequality for the mea-
surement covariance matrix

B{M} ≥ J̃−1
. (6.6.56)

It is important here that unlike J in (6.5.48) the matrix J̃ is complex Her-
mitean, so writing (6.6.56) in the scalar form

vB{M}v∗ ≥ vJ̃
−1

v∗

one should consider all complex vectors v, since con�nement to real vec-
tors would produce a less informative matrix inequality which does not

take into account the imaginary part of J̃
−1

.
We are going to apply (6.6.56) to the Gaussian family {SP,Q} but �rst

we shall �nd an important general relation between the symmetric and
the right logarithmic derivatives.

Note that condition (2′) implies condition (2) of Section 6.6.58 since
〈X, X〉±S ≤ 2〈X, X〉S as it was mentioned in Section 2.8. Therefore con-
dition (2′) ensures the existence of both logarithmic derivatives. By the
de�nitions of the logarithmic derivatives

〈L j , X〉S = 〈L̃ j , X〉+S (6.6.57)
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for all bounded X . Using the �rst relation in (2.8.97) and the de�nition
of the commutation operator we have

〈Y, X〉+S = 〈Y, X〉S + 1

2
i[Y, X ]S

=
〈
Y,

(
I + 1

2
iD

)
X

〉
S

.

(6.6.58)

It follows that (
I + 1

2
iD

)
L̃ j = L j . (6.6.59)

If the operator (I + 1
2 iD) is nondegenerated which is the case if the state

S = Sθ is exact, then by Proposition 2.10.1 we get

L̃ j =
(

I + 1

2
iD

)−1

L j (6.6.60)

and

J̃ =
[〈

L j ,

(
I + 1

2
iD

)−1

Lk

〉
S

]
. (6.6.61)

What is needed for (6.6.56) is the matrix J̃
−1

. It can be readily calcu-
lated in the particular case where the subspace L of L 2(S) generated by
the symmetric logarithmic derivatives {L j } is an invariant subspace of
the commutation operator D:

D(L ) ⊂ L. (6.6.62)

Then I = 1
2 iD is a Hermitean operator for which L is a �nite-dimen-

sional invariant subspace. Therefore we can consider I + 1
2 iD as an op-

erator acting in L and (I + 1
2 iD)−1 in (6.6.61) as its inverse in L. Then

J̃ is the matrix of the quadratic form of the operator (I + 1
2 iD)−1 in the

basis {L j } and it is known from linear algebra that

J̃
−1 = J−1

[〈
L j ,

(
I + 1

2
iD

)
Lk

〉
S

]
J−1,

since J = [〈L j , Lk〉S] is the Gram matrix of the basis {L j } in L. Intro-
ducing the real skew-symmetric matrix

D = [〈L j , DLk〉S] = [[L j , Lk]S],
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we �nd the desired expression

J̃
−1 = J−1

[
J + 1

2
iD
]
J−1 = J−1 + 1

2
iJ−1DJ−1. (6.6.63)

Consider now the example of the two-parameter Gaussian family
{SP,Q}. Using the relations (6.6.59), (6.5.51) and (5.6.65) we �nd

L̃ Q = (4σ 2
Pσ 2

Q − 1)−1[4σ 2
P(Q − Q)− 2i(P − P)],

L̃ P = (4σ 2
Pσ 2

Q − 1)−1[4σ 2
Q(P − P)− 2i(Q − Q)], (6.6.64)

assuming that 4σ 2
Pσ 2

P �= 1. This excludes the case where SP,Q are pure
states. Then by (5.5.54) all eigenvalues of the density operator SP,Q are
positive, i.e., SP,Q is exact. Thus assuming 4σ 2

Pσ 2
Q �= 1 we just guarantee

that the operator I + 1
2 iD is nondegenerated for all P , Q. From (6.6.64)

the right information matrix J̃ can be derived but there is a simpler way
based on (6.6.63). Indeed the subspace L generated by the symmetric
logarithmic derivatives L Q = σ−2

Q (Q − Q) and L p = σ−2
P (P − P) is

just R1 for the state SP,Q as de�ned in Section 5.6. By Theorem 6.6.1 it
is an invariant subspace of the commutation operator D (this is also seen
directly from (5.6.65)). Therefore (6.6.63) can be used. The matrix J is
given by (6.5.52); since

[P, Q]S = 1, [Q, Q]S = [P, P]S = 0

by (5.4.38) with R(z) = Px + Qy, �(z, z′) = xy′ − x ′y, then

J−1DJ−1 =
[

0 1
−1 0

]
.

Thus according to (6.6.63)

J̃
−1 =

[
σ 2

P i/2
−i/2 σ 2

Q

]
.

Choosing for v in the scalar inequality following (6.6.56) the complex
vector [√gP , i

√
gQ]we get the bound for the total mean-square deviation

of a locally unbiased measurement

gP D(P){M} + gQ D(Q){M} ≥ gPσ 2
P + gQσ 2

Q +√gP gQ, (6.6.65)

which is apparently better than (6.5.53). This bound is the same as the
bound (3.6.58) for the covariant measurement. As we know from Section
3.6 it is achieved by the canonical measurement

M(dP, dQ) = |P, Q; σ 2)(σ 2; Q, P|dP dQ

2π
, (6.6.66)
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with σ 2 = 1
2

√
gP/gQ . According to Proposition 3.6.1 a realization of

this measurement is accomplished by the pair of compatible observables

P̃ = P ⊗ I0 + I ⊗ P0, Q̃ = Q ⊗ I0 − I ⊗ Q0

in the space H ⊗H0 where the auxiliary degree of freedom P0, Q0 is de-
scribed by the zero-mean minimum-uncertainty state |0, 0; σ 2)(σ 2; 0, 0|.
As we shall show in Section 6.8 this measurement is locally unbiased.
Thus it is the uniformly best locally unbiased measurement of the param-
eters P , Q in the Gaussian family {SP,Q}.

The bounds given by the inequalities (6.5.48) and (6.6.56) are in gen-
eral incompatible. We have just seen that for the two-parameter Gaussian
family {SP,Q} the bound (6.6.56) is more informative than (6.5.48); we
now show that for an arbitrary one-parameter family {Sθ } the inequality
(6.5.48) is always at least as informative as (6.6.56), i.e.,

〈L , L〉S ≤ 〈L̃, L̃〉+S .

For this use matrix representation of the logarithmic derivatives in the ba-
sis {ψ j } of the eigenvectors of S = Sθ . Multiplying (6.5.45) and (6.6.54)
by (ψ j | and |ψk) we get

(ψ j |Lψk) = 2(s j + sk)
−1

(
ψ j

∣∣∣∣dSθ

dθ
ψk

)
,

(ψ j |L̃ψk) = s−1
j

(
ψ j

∣∣∣∣dSθ

dθ
ψk

)
.

It follows that

〈L , L〉S = 2
∑

j,k

p jk(s j + sk)
−1,

〈L̃, L̃〉+S =
∑

j,k

p jks−1
j =

∑
j,k

p jk

2
(s−1

j + s−1
k ),

where p jk = |ψ j |(dSθ/dθ)ψk)|2 ≥ 0. Since 2(s j+sk)
−1 ≤ 1

2(s
−1
j +s−1

k ),
the required inequality is established.

In the same way the left logarithmic derivative can be introduced. The

corresponding left information matrix is easily found to be J̃
T

where T

means transposition of a matrix. Remark that

J̃
−1 = Re J̃

−1 + i Im J̃
−1

, (J̃
−1

)T = Re J̃
−1 − i Im J̃

−1
,
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where Re J̃
−1

is real symmetric, Im J̃
−1

is real skew-symmetric. Since
B{M} is real and symmetric, (6.6.56) implies

B{M} ≥ Re J̃
−1 ± i Im J̃

−1
.

This shows in particular that the bounds obtained from the right or left
logarithmic derivatives are essentially the same.

In the example of a Gaussian family we were able to obtain the bound
(6.6.65) for the mean-square deviation by choosing arti�cially the vector
v. We now show how to obtain from (6.6.56) a general lower bound for
�{M} with arbitrary weight matrix G. According to the last inequality
we can write

�{M} ≥ min{TrGB : B is real symmetric,

B ≥ Re J̃
−1 ± i Im J̃

−1}. (6.6.67)

To obtain an explicit form of the minimum we use the following device.
IfM is a matrix which is similar to a diagonal matrix, i.e.,

M = T
⎡⎢⎣μ1 0

. . .

0 μn

⎤⎥⎦T−1,

then one can develop a functional calculus ofM; in particular we put

abs M = T
⎡⎢⎣|μ1| 0

. . .

0 |μn|

⎤⎥⎦T−1.

In general absM �= |M| ≡ √M∗M; the equality holds ifM is Hermitean.
The product of two Hermitean matrices GR, one of which, say G, is

positive de�nite and nondegenerate, is similar to a diagonal matrix. In-

deed GR = √
G(
√
GR
√
G)
√
G
−1

and the matrix
√
GR
√
G, being Her-

mitean, is similar to a diagonal matrix. From the de�nitions it follows
that

abs (GR) = √G|√GR
√

G|√G
−1

. (6.6.68)

Lemma 6.6.1. Let R be a complex Hermitean matrix; then

min{TrGX : X ≥ ±R} = Tr abs (GR),

and the minimum is achieved for X = G−1abs (GR).
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Proof. Since X ≥ ±R, then

√
GX
√
G ≥ ±√GR√G and

e∗
√
GX
√
Ge ≥ |e∗√GR√Ge|

for any column-vector e. Let {e j } be the basis of eigenvectors of the
Hermitean matrix

√
GR
√
G and {μ j } be its eigenvalues. Then

TrGX = Tr
√
GX
√
G =

∑
j

e∗j
√
GX
√
Ge j ≥

∑
j

|μ j |

= Tr |√GR√G| = Tr abs (GR).

Substituting X = G−1abs (GR) gives the lower bound and we need only
to check that G−1 abs (GR) ≥ ±R. Using (6.6.68) we can rewrite the

left-hand side as
√
G
−1|√GR√G|√G−1

. Then the required inequal-
ity reduces to the inequality |Y| ≥ ±Y for the Hermitean matrix Y =√
GR
√
G, which follows from the properties of the functional calculus

of Hermitean matrices (cf. Section 2.3).

Assume now that G is real and R is pure imaginary, i.e., R = iQ
where Q is real skew-symmetric. Then the minimizing matrix X is a
real matrix. Indeed by (6.6.68) and the de�nition of |Y| we get X =√
G−1

√√
GQTGQ

√
G
√
G−1. This expression involves square roots of

real positive matrices which are again real matrices. It follows that the
result of Lemma 6.6.1 can be applied to calculation of the minimum in
(6.6.67) giving

Σ{M} ≥ TrGRe J̃
−1 + Tr abs (iG Im J̃

−1
). (6.6.69)

If the condition (6.6.62) is satis�ed, then from (6.6.63) we obtain

Re J̃
−1 = J−1, Im J̃

−1 = 1

2
J−1DJ−1,

so that

Σ{M} ≥ TrGJ−1 + 1

2
Tr abs (iGJ−1DJ−1). (6.6.70)

We leave to the reader to show that application of (6.6.70) to the Gaussian
family {SP,Q} gives the bound (6.6.65).
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6.7. A general bound for the total mean-square deviation

We have obtained the two essentially different bounds for the total mean-
square deviation. Here we shall derive a general inequality which implies
the bounds based on both de�nitions of logarithmic derivative.

We assume that the family {Sθ} satis�es the conditions (1) and (2) of
Section 6.5 at the �xed point θ. LetM = {M(dnθ)} be a measurement of
the parameter θ = [θ1, . . . , θn], locally unbiased at the point θ. Introduc-
ing as in Section 6.5

X j =
∫

(θ̂1 − θ j )M(dn θ̂ ) ≡ X j
M − θ j (6.7.71)

we have the local unbiasedness condition expressed in the form

〈L j , Xk〉S = δ jk; j, k = 1, . . . , n. (6.7.72)

where S as usual denotes Sθ.
The covariance matrix of a measurement with �nite second moments

satis�es the inequality (6.6.55), which using (2.8.97) can be written in
the form

B{M} ≥ [〈X j , Xk〉S] ± 1

2
i[[X j , Xk]S]. (6.7.73)

Putting
κ jk = b jk{M} − 〈X j , Xk〉S (6.7.74)

we can write (6.7.73) in the form

[κ jk] ≥ ±1

2
i[[X j , Xk]S]. (6.7.75)

The total mean-square deviation is then

Σ{M} ≡
∑

j,k

g jkb jk{M}

=
∑

j,k

g jk[κ jk + 〈X j , Xk〉S].
(6.7.76)

MeasurementM enters into this expression through the variables X j ∈
L 2

h(S) and the real symmetric matrix [κ jk] = K. We shall obtain the
lower bound for the total mean-square deviation by taking minimum of
(6.7.76) with respect to all {X j } and [κ jk] satisfying the necessary restric-
tions (6.7.72) and (6.7.75). This bound may not be attainable; this will
be the case only if the minimizing arguments {X∗j }, [κ∗jk] can be obtained
from some measurementM by the relations (6.7.71) and (6.7.74).
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To �nd the minimum it is convenient to reparametrize the variables
{X j } and [κ jk] according to the following lemma. In what follows we
shall use the complex Hilbert space L 2(S) = L 2

h(S) ⊕ iL 2
h(S). By

complex extension of a real linear operator A in L 2
h(S) we mean the

operator in L 2(S) de�ned by the relation A(X1 + iX2) = AX1 + iAX2.
If A is a bounded real symmetric operator in L 2

h(S), then its complex
extension is Hermitean in L 2(S) etc.

Lemma 6.7.1. The elements X j ∈ L 2
h(S); j = 1, . . . , n and the real

symmetric (n × n)-matrix [κ jk] satisfy (6.7.75) if and only if there are
Y j ∈ L 2

h(S); j = 1, . . . , n and a bounded real symmetric operator F in
L 2

h(S) such that

(1) X j = FY j ; j = 1, . . . , n;
(2) κ jk = 〈Y j , F(I − F)Yk〉S; j, k = 1, . . . , n;
(3) the complex extension of F satis�es

F ≥ F

(
I ± 1

2
iD

)
F.

Proof. Let {X j } and [κ jk] satisfy (6.7.75), and let L be the subspace
of L 2

h(S) generated by X j ; j = 1, . . . , n. De�ne the real symmetric
operator K in L by

〈X j , KXk〉S = κ jk; j, k = 1, . . . , n.

Then (6.7.75) can be written in the form

〈Y, KY 〉S ≥ ±1

2
i〈Y, DY 〉, Y ∈ L ⊕ iL. (6.7.77)

De�ne a bounded real symmetric operator F in L 2(S) by

F =
{

(I + K)−1, on L,

0, on L 2
n(S)$L.

Letting Y j = (I + K)X j we have X j = FY j and

κ jk = 〈X j , KXk〉S = 〈Y j , FKFYk〉S
= 〈Y, F(I − F)Yk〉S,

so that the conditions (1) and (2) of Lemma 6.7.1 are satis�ed and it
remains to check condition (3). Since the range of the operator F con-
structed above is L we can put Y = FX , X ∈ L 2(S), in (6.7.77). Adding
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to both sides of the resulting inequality the term 〈FX, FX〉S we get〈
X, F

(
I ± 1

2
iD

)
FX

〉
S

≤ 〈X, F (I + K)FX〉S
= 〈X, FX〉S,

what was required.
Conversely let {Y j } and F satisfy the conditions of the lemma. De�ning

{X j }, [κ jk] by (1), (2) we can write the relation (6.7.75) in the form

[〈Y j , F(I − F)Yk〉S] ≥ ±1

2
i[[FY j , FYk]S]

= ±1

2
i[〈Y j , FDFYk〉S],

which we need to prove. For this the following inequality will suf�ce

F(I −F ) ≥ ±1

2
iFDF,

which follows from (3), and the lemma is proved.

Expressing (6.7.76) in terms of the new variables we get

Σ{M} =
∑

j,k

g jk〈Y j , FYk〉S, (6.7.78)

and the condition (6.7.72) takes the form

〈L j , FYk〉S = δ jk . (6.7.79)

The problem now is to minimize (6.7.78) with respect to all {Y j ∈L 2
h(S);

j = 1, . . . , n} satisfying (6.7.79) and all operators F in L 2
h(S) satisfying

condition (3) of Lemma 6.7.1.
We shall proceed �rst keeping F �xed and minimizing with respect to

{Y j }. For this we remark that F is a positive operator, moreover

0 ≤ F ≤ I. (6.7.80)

Indeed adding the two inequalities corresponding to the different signs
in condition (3) we get F ≥ F2 or F(I − F) ≥ 0 which is equivalent
to (6.7.80). Therefore the bilinear symmetric form 〈X, FY 〉S is positive-
de�nite and de�nes a pre-inner product on L 2

h(S). By Lemma 6.5.1 and
the assumed existence of a locally unbiased measurement the matrix

F = [〈L j , FLk〉S]
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is nondegenerate and satis�es the following matrix inequality

[〈Y j , FYk〉S] ≥ [〈L j , FLk〉S]−1 = F−1.

The equality is achieved here if⎡⎢⎣Y1
...

Yn

⎤⎥⎦ = F−1

⎡⎢⎣L1
...

Ln

⎤⎥⎦ .

Thus we come to the inequality

Σ{M} ≥ infTrGF−1 (6.7.81)

where the in�mum is takes over all bounded real symmetric operators
F in L 2

h(S) satisfying condition (3) of Lemma 6.7.1. Denote by F∗ the
solution of the minimization problem in the right-hand side of (6.7.81)
(if it exists) and put F∗ = [〈L j , F∗Lk〉]. The variables of the original
minimization problem are then expressed through F∗ by the relations⎡⎢⎣X∗1

...

X∗n

⎤⎥⎦=F−1
∗

⎡⎢⎣F∗L1
...

F∗Ln

⎤⎥⎦ , K∗ = F−1
∗ [〈L j , F∗(I − F∗)Lk〉SF−1

∗ .

(6.7.82)
An explicit solution for F∗ was found only in particular cases, one of
which will be demonstrated at the end of this section. Now we are going
to show that (6.7.81) is in general more informative than the two previ-
ously obtained inequalities.

Using the second inequality in (6.7.80) we obtain

F = [〈L j , FLk〉S] ≤ [〈L j , Lk〉S] = J.
Therefore F−1 ≥ J−1 and we get the inequality (6.5.51), corresponding
to symmetric logarithmic derivative. To derive (6.6.69) we �rst note that
condition (3) of Lemma 6.7.1 can be written in the form

0 ≤
(

I ± 1

2
iD

)
F

(
I ± 1

2
iD

)
≤
(

I ± 1

2
iD

)
. (6.7.83)

Indeed, multiplying the inequality of condition (3) by
√

I ± 1
2 iD from

the left and the right we get(√
I ± 1

2
iDF

√
I ± 1

2
iD

)2

≤
√

I ± 1

2
iDF

√
I ± 1

2
iD,
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whence 0 ≤
√

I ± 1
2 iDF

√
I ± 1

2 iD ≤ I as in (6.7.80). Framing this

again with
√

I ± 1
2 iD we get (6.7.83). Assume now that the condition

(2′) of Section 6.6 holds providing the existence of the right logarithmic
derivatives. Then using (6.6.59)

F =
[〈(

I + 1

2
iD

)
L̃ j , F

(
I + 1

2
iD

)
L̃k

〉
S

]
.

By (6.7.83) and (6.6.58)

F ≤
[〈

L̃ j ,

(
I + 1

2
iD

)
L̃k

〉
S

]
= [〈L̃ j , L̃k〉+S ] = J̃,

so that
F−1 ≥ J̃−1 = Re J̃

−1 + i Im J̃
−1

.

Since F−1 is real symmetric, this implies that F−1 ≥ Re J̃
−1 + i Im J̃

−1
.

Therefore the bound of the inequality (6.7.81) is greater or equal to the
bound of the inequality (6.6.67), which is the same as (6.6.69).

We now show that if the subspace L generated by the symmetric log-
arithmic derivatives L j ; j = 1, . . . , n, is an invariant subspace of the
commutation operator D of the state S, then (6.7.81) gives the bound
(6.6.70). For this we need the proposition which will be used also in the
sequel.

Proposition 6.7.2. Let M be a closed invariant subspace of the operator
D, containing the vectors L j ; j = 1, . . . , n. Then the value of in�mum
in (6.7.81) remains unchanged if F and D are considered as operators
acting in M instead of L 2

h(S).

Proof. Denote by DM the restriction of the operator D onto M. We need
to show that to any bounded real symmetric operator F satisfying condi-
tion (3) of Lemma 6.7.1 corresponds an operator FM in M satisfying

FM

(
I ± 1

2
iDM

)
FM ≤ FM, (6.7.84)

and such that
〈L j , FLk〉S = 〈L j , FMLk〉S, (6.7.85)

and conversely.
Let F satisfy condition (3) which we take in the form (6.7.83). Let

E be the projection onto M, then by the assumption it commutes with
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D. Multiplying (6.7.83) from the left and the right by E and denoting
FM = EFE we get

0 ≤
(

I ± 1

2
iDM

)
FM

(
I ± 1

2
iDM

)
≤ I ± 1

2
iDM, (6.7.86)

which is equivalent to (6.7.84). The relation (6.7.85) holds since E L j =
L j ; j = 1, . . . , n.

Conversely if FM is a bounded real symmetric operator in M satis-
fying (6.7.84) or (6.7.86) then extending it by zero onto the orthogonal
complement of M we get the operator F with the required properties.

Returning to the case where the subspace L generated by {L j } is an
invariant subspace of D we see that we can deal with operators F as acting
in L. Since the Gram matrix of the basis L j ; j = 1, . . . , n in L is J then
the operators F and I ± 1

2 iD are represented in this basis by the matrices
J−1F, J−1(J± 1

2 iD). Therefore the condition (6.7.84) in the matrix form
is

FJ−1

(
J ± 1

2
iD
)
J−1F ≤ F,

whence

F−1 ≥ J−1 ± 1

2
iJ−1DJ−1,

since F is nondegenerate. Thus (6.7.81) is equivalent to

Σ{M} ≥ min

{
TrGF−1 : F−1 is real symmetric

and F−1 ≥ J−1 ± 1

2
iJ−1DJ−1

}
.

But this is just (6.6.67) with J̃ given by (6.6.63). We thus come again to
(6.6.70). According to Lemma 6.6.1 the optimal matrix F∗ is given by

F−1
∗ = J−1 + 1

2
G−1 abs(iGJ−1DJ−1).

Using (6.7.82) and taking into account the relation⎡⎢⎣F∗L1
...

F∗Ln

⎤⎥⎦ = F∗J−1

⎡⎢⎣L1
...

Ln

⎤⎥⎦ ,
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which connects the operator F∗ with its matrix, we get⎡⎢⎣X∗1
...

X∗n

⎤⎥⎦ = J−1

⎡⎢⎣L1
...

Ln

⎤⎥⎦ , K∗ = 1

2
G−1 abs(iGJ−1DJ−1). (6.7.87)

If there exists a measurementM∗ such that these {X∗j } and K∗ = [κ jk] are
obtained from M∗ by the formulas (6.7.71) and (6.7.74), then this is the
best locally unbiased measurement at the point θ . As we shall see later
such situation takes place in the Gaussian case.

6.8. Linear measurements

In the examples considered in Sections 6.5, 6.6 we have found the best
locally unbiased measurements of the mean-value parameters P and Q
in the Gaussian states {SP,Q} for one degree of freedom. In the case of
one-dimensional parameter the inequality (6.2.13) based on the symmet-
ric logarithmic derivative was used, in the two-parameter case we have
to use the inequality (6.6.56) based on the right logarithmic derivative.
The common feature for both cases is that the observables describing the
optimal measurement are linear functions of the canonical observables P
and Q.

Now we are going to generalize these results to arbitrary Gaussian
states for the CCR with a �nite number of degrees of freedom. We shall
show that the best locally unbiased measurement of linear mean-value pa-
rameters in a family of Gaussian states can be found in the class of linear
measurements to be de�ned below. Roughly speaking a linear measure-
ment corresponds to a vector observable linearly expressed through the
canonical observables but with the account for possible incompatibility
of the components. With the last essential supplement the theorem to be
proved in Section 6.9 can be regarded as the noncommutative analog of
the classical result of mathematical statistics which says that the best un-
biased estimates of linear mean-value parameters of Gaussian probability
distributions are linear functions of observations.

Let (Z , �) be a symplectic space and z→V (z) be an irreducible rep-
resentation of the CCR in H. A measurementM = {M(dnθ)} of a param-
eter θ = [θ1, . . . , θn] is called linear if for any state S with �nite second
moments in H :

(1) M has �nite second moments with respect to S so that the elements
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of the covariance matrix

b jk{M} =
∫

(θ j − θ j )(θk − θ k)μS(d
nθ),(

θ j =
∫

θ jμS(d
nθ)

)
are well de�ned.

(2) The elements X j
M = ∫

θ j M(dnθ) of L 2
h(S) are in the subspace of

canonical observables, i.e.,

X j
M = R(z j ); j = 1, . . . , n,

for some z j ∈ Z .
(3) The numbers κk j = b jk{M} − α(z j , zk), where α is the correlation

function of S, do not depend on the choice of S.

The variables {R(z j )} and [κ jk] are called the parameters of the linear
measurement. They are restricted by the inequality

[κ jk] ≥ ±1

2
i[�(z j , zk)], (6.8.88)

which follows from (6.7.75) by putting X j = R(z j )− θ j .

Proposition 6.8.1. Let z j ; j = 1, . . . , n, be arbitrary elements of Z,
[κ jk] be a real symmetric (n×n)-matrix satisfying (6.8.88). Then a linear
measurement with the parameters {R(z j )}, [κ jk] exists.

We shall prove this proposition under the simplifying assumption that
{z j } form a basis in Z .

Proof. In addition to the representation z → V (z) in H consider an
irreducible representation z → V0(z) in the space H0 of the different
CCR corresponding to the symplectic space (Z ,−�). This means that
{V0(z)} satisfy

V0(z)V0(z
′) = e−i�(z,z′)/2V0(z + z′). (6.8.89)

For any states S, S0 with �nite second moments

[R0(z), R0(z
′)]S0 = −[R(z), R(z′)]S

according to (5.4.38).
Consider the family of the operators Ṽ (z) = V (z) ⊗ V0(z), z ∈ Z , in

the Hilbert tensor product H ⊗ H0. By (5.2.9) and (6.8.89), z → Ṽ (z)
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is a unitary representation of the additive group of Z , i.e.Ṽ (z)Ṽ (z′) =
Ṽ (z + z′); z, z′ ∈ Z . Applying Stone’s theorem to the one-parameter
unitary groups {V (t z j ); t ∈ R} we get

Ṽ (t z j ) = eit R̃(z j ), (6.8.90)

where

R̃(z j ) = R(z j )⊗ I + I ⊗ R0(z j ); j = 1, . . . , n. (6.8.91)

Since the operators (6.8.90) commute for different j , then by Section 2.6
the operators (6.8.91) represent compatible observables so that

R̃(z j ) =
∫

θ j E(dnθ); j = 1, . . . , n,

where E = {E(dnθ)} is the orthogonal resolution of identity representing
the joint measurement of R̃(z j ); j = 1, . . . , n.

Let S0 be a state with �nite second moments in H0 satisfying

ES0(R0(z j )) = 0;
〈R0(z j ), R0(zk)〉S0 = κ jk; j, k = 1, . . . , n.

(6.8.92)

Under the simplifying assumption such a state always exists. Indeed if
{z j } is basis in Z , then we can uniquely de�ne a bilinear symmetric form
κ(·, ·) on Z by requiring κ(z j , zk) = kk j . The condition (6.8.88) ensures
that the form κ(·, ·) satis�es the condition (5.4.42) and by Theorem 5.5.1
κ(·, ·) is the correlation function of a Gaussian state. Taking for S0 the
Gaussian state with zero mean and the correlation function κ(·, ·) we get
(6.8.92).

Consider the triple (H0, S0,E). Using Proposition 2.5.2 there is a mea-
surementM = {M(dnθ)} in H such that

μS(B) = μMS⊗S0
(B); B ∈ A (Rn), (6.8.93)

where μS(dnθ) = Tr SM(dnθ) is the probability distribution of M with
respect to the state S. In other words M is the measurement having a
realization (H0, S0,E). We now show that M is a linear measurement
with the parameters {R(z j )} and [κ jk].

We need the simple relation

〈X1 ⊗ Y1, X2 ⊗ Y2〉S⊗S0 = 〈X1, X2〉S〈Y1, Y2〉S0

X j ∈ L 2(S), Y j ∈ L 2(S0)
(6.8.94)
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which follows from the corresponding relation for bounded X j , Y j by
taking L 2 limits. Since by (2.9.100) ES⊗S0(R̃(z j )) = 〈R̃(z j ), I 〉S⊗S0 ,
then using (6.8.91) and (6.8.94) we get

ES⊗S0(R̃(z j )) = ES(R(z j ))+ ES0(R0(z j )) = θ j

since ES0(R0(z j )) = 0 by (6.8.92). In the same way we get for the
measurement covariance matrix

b jk{M} = 〈R(z j )− θ j , R(zk)− θ k〉S + 〈R0(z j ), R0(zk)〉S0 .

The �rst term is just the correlation function α(z j , zk), thus we see that
the difference b jk{M} − α(z j , zk) according to the second relation in
(6.8.92) is κ jk as required.

It remains to show that X j
M = R(z j ). Since the relation (6.8.93) is

linear in S, then

Tr T M(B) = Tr(T ⊗ S0)E(B)

for arbitrary trace-class operator T . Putting T = Y S where Y is a
bounded operator and S is a density operator, we get

〈M(B), Y 〉S = 〈E(B), Y ⊗ I 〉S⊗S0 .

It follows that for any simple function f (·)〈∫
f (θ)M(dθ), Y

〉
S

=
〈∫

f (θ)E(dθ), Y ⊗ I

〉
S⊗S0

.

Taking the L 2 limits and using (6.8.94) we get

〈X j
M, Y 〉S =

〈∫
θ j E(dnθ), Y ⊗ I

〉
S⊗S0

= 〈R̃(z j ), Y ⊗ I 〉S⊗S0

= 〈R(z j ), Y 〉S + 〈R0(z j ), I 〉S0 = 〈R(z j ), Y 〉S,
since S0 has zero mean. Since this holds for all bounded Y , then X j

M =
R(z j ) in L 2

h(S), and the proposition is proved.

Returning to the case of one degree of freedom we see that the canon-
ical measurement (6.6.66) is a linear measurement with the parameters

X P
M = P, X Q

M = Q;
κQ Q ≡ DS0(Q0) = 1

2

√
gP/gQ, κP P ≡ DS0(P0) = 1

2

√
gQ/gP ,

κP Q = κQ P = 0,
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as follows from the realization of this measurement and the relations
(6.8.92). The local unbiasedness conditions

〈L P , X P
M〉 = 〈L Q, X Q

M〉 = 1;
〈L P , X Q

M〉 = 〈L Q, X P
M〉 = 0

easily follow by taking into account the expression (6.5.51) for the sym-
metric logarithmic derivative (the inner product 〈·, ·〉 corresponds here to
the state SP,Q).

Consider now the simple measurement (6.2.16) of the single observ-
able Q. Clearly X Q

E = ∫
θ E(dθ) = Q and by (2.9.101) κQ Q = 0.

Therefore E is a linear measurement with parameters

X Q
E = Q, κQ Q = 0.

In this case Z Q does not form a basis in Z and the construction of Propo-
sition 6.8.1 does not go without modi�cations. We can see the reason
for this by observing that the measurement of Q can be considered as
a vaguely de�ned limit of the joint measurement of Q̃ and P̃ in the re-
alization of (6.6.66) with κQ Q → 0, κP P → ∞. This corresponds to
gP/gQ → 0, i.e., we ultimately neglect the contribution due to mea-
surement of P into the total measure of accuracy. The limit state with
DS0(Q0) = 0 does not exist, and this makes necessary a modi�cation in
the proof of Proposition 6.8.1.

A kinematical implementation of the linear measurement (6.6.66) was
given in Section 3.6 where Q, P were the position and momentum ob-
servables of a particle in one dimension. In the quantum communication
theory the canonical observables P , Q arise from the representation of
the quantum radiation �eld as a superposition of harmonic components

E(t) ∼ q cos ωt + pω−1 sin ωt,

corresponding to various frequencies ω. We shall give an explanation of
the measurement (6.6.66) in this context. Consider the planar monochro-
matic wave E(t) propagating along the axis z as in Figure 6.2. Since E(t)
is orthogonal to the direction z we can decompose it into orthogonal axes
x , y to obtain

Ex(t) ∼ qx cos ωt + pxω
−1 sin ωt,

Ey(t) ∼ qy cos ωt + pyω
−1 sin ωt.

Let E(t) = Ex(t) and assume that Ey(t) is described by the ground os-
cillator state S0; physically this means that the wave is polarized in the
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direction x and the y-degree of freedom presents only the inevitable “vac-
uum” �uctuations. Introducing the new axes x ′, y′ as shown in Figure 6.2,
we have

Ex ′(t) ∼ (qx + qy) cos ωt + (px + py)ω
−1 sin ωt,

Ey′(t) ∼ (qx − qy) cos ωt + (px − py)ω
−1 sin ωt.

The components Ex ′(t) and Ey′(t) corresponding to the mutually or-
thogonal axes can be separated by a double-refracting �lter; the result
is achieved by the joint measurement of the amplitudes

p̃ = px + py, q̃ = qx − qy.

Turning to the general linear measurement (6.8.91) we remark that per-
forming a linear transformation one can reduce the set of observables
(6.8.91) to a set of pairs P̃ , Q̃ in the realization of (6.6.66). Therefore
any linear measurement over an optical �eld can be implemented by us-
ing a �nite number of certain optical devices (see Comments).

6.9. Mean-value estimation for Gaussian states

Consider the family of Gaussian states {Sθ; θ = [θ1, . . . , θn] ∈ Rn} with
the �xed correlation function α(·, ·) and the mean value of the form

m(z) =
n∑

j=1

θ j m j (z), (6.9.95)
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where m j (·) are known linear functionals on the symplectic space (Z , �)

and θ j are unknown real parameters subject to statistical estimation
through the observation of the quantum system. For example Sθ can
be the state of radiation �eld representing the mixture of the background
radiation and the signal, in which the amplitudes θ j of the components
m j (·) need to be estimated. We assume that m j (·) are linearly indepen-
dent.

Theorem 6.9.1. The uniformly best locally unbiased measurement of the
mean-value parameter θ of Gaussian states {Sθ} exists and is in the class
of linear measurements.

Proof. According to Proposition 5.6.3 the family {Sθ} satis�es conditions
(1) and (2) of Section 6.5 and the symmetric logarithmic derivatives are
given by

L j = R(m j )− m(m j ); j = 1, . . . , n, (6.9.96)

where m j ∈ Z are determined by

m j (z) = α(m j , z), z ∈ Z .

We now �x the point θ and consider the bound (6.7.81). Due to the
characteristic property of Gaussian states expressed in Theorem 5.6.2, the
subspace R1 ⊂ L 2(Sθ) consisting of observables R(z) − m(z), z ∈ Z ,
is an invariant subspace of the commutation operator D of Sθ. Since R1

apparently contains the vectors (6.9.96), Proposition 6.7.2 applies, and
we can consider F in (6.7.81) as an operator in R1. Denote by F the
operator in Z corresponding to F under the isometric map (5.6.56) so
that

F(R(z)− m(z)) = R(Fz)− m(Fz).

Then (6.7.81) can be written as

Σθ{M} ≥ infTrGF−1 ≡ Σ∗, (6.9.97)

where now
F = [α(m j , Fmk)], (6.9.98)

and the in�mum in (6.9.97) is taken over F corresponding by (6.9.98)
to real symmetric operators F in Z , such that their complex extensions
satisfy

0 ≤
(

I + 1

2
iD

)
F

(
I + 1

2
iD

)
≤
(

I + 1

2
iD

)
(6.9.99)
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in the complexi�cation of the Euclidean space (Z , α). Here D is the
complex extension of the operator de�ned by (5.2.15), where α is the
correlation function of Sθ.

Let us show that the in�mum in (6.9.97) is achieved. The set of the
operators F in the �nite-dimensional space Z satisfying (6.9.99) is ap-
parently closed. It is bounded since by (6.7.80) 0 ≤ F ≤ I . Thus this set
is compact. The function F → TrGF−1 is the composition of the con-
tinuous map F → F given by (6.9.98) and the function F→ TrGF−1.
The last function is the supremum of the family of continuous functions
F→ TrG(F + εI)−1, ε > 0, and thus is lower semicontinuous. There-
fore the function F → TrGF−1 is lower semicontinuous and by a gen-
eralization of the Weierstrass theorem it attains the minimum on the com-
pact set.

Let F∗ be the operator in Z which furnishes the minimum in (6.9.97)
and F∗ be the corresponding matrix. Then according to (6.7.82) and
(6.9.96) the optimal arguments X∗j are given by

X∗j = R(z∗j )− m(z∗j ); j = 1, . . . , n (6.9.100)

where ⎡⎢⎣z∗1
...

z∗n

⎤⎥⎦ = F−1
∗

⎡⎢⎣F∗m1
...

F∗mn

⎤⎥⎦ .

By de�nition the system {z∗j } is biorthogonal to the vectors {m j } repre-
senting the mean-value components in (Z , α):

α(mk, z∗j ) ≡ mk(z
∗
j ) = δ jk . (6.9.101)

The elements {X∗j } and the matrix

K∗ ≡ [κ∗jk] = F−1
∗ [α(m j , F∗(I −F∗)mk)]F−1

∗

satisfy the inequality (6.7.75). Taking into account that by (6.9.100) and
(5.4.38)

[X∗j , X∗k ]S = [R(z∗j )− m(z∗j ), R(z∗k)− m(z∗k)]S
= �(z∗j , z∗k),

we can rewrite (6.7.75) in the form

[κ∗jk] ≥ +
1

2
i[�(z∗j , z∗k)].
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By Proposition 6.8.1 there is a linear measurementM∗ = {M∗(dnθ)}with
the parameters {R(z∗j )} and [κ∗jk]. It is locally unbiased since by (6.9.101)

〈L j , Xk
M∗〉S = 〈R(m j )− m(m j ), R(z∗k)〉S

= α(m j , z∗k) = δ jk,

and its total mean-square deviation attains the minimal value Σ∗ allowed
by (6.9.97). Therefore M∗ is the best locally unbiased measurement at
the point θ. Since the parameters of the linear measurement M∗ do not
depend on θ, it is the uniformly best, and the theorem is proved.

An explicit solution for F∗ can be obtained in particular cases. Con-
sider the subspace ZL ⊂ Z spanned by the vectors m j ; j = 1, . . . , n
(it corresponds to the subspace L ⊂ L 2

h(S) under the isometric map
z ↔ R(z)−m(z)), and assume that it is an invariant subspace of the op-
erator D. In particular this trivially holds if n = dim Z so that ZL = Z .
Then L is an invariant subspace of the commutation operator D. There-
fore we can apply the solution (6.7.87) to obtain the linear measurement
with the parameters⎡⎢⎣R(z∗1)

...

R(z∗n)

⎤⎥⎦ = J−1

⎡⎢⎣R(m1)
...

R(mn)

⎤⎥⎦ ; K∗ = 1

2
G−1 abs(iGJ−1DJ−1),

where now

J ≡ [〈L j , Lk〉S] = [α(m j , mk)],
D ≡ [[L j , Lk]S] = [�(m j , mk)].

Recalling the proof of Proposition 6.8.1 we can loosely describe the re-
alization of the best measurement M∗ as the joint measurement of the
compatible observables

R̃ j = R(z∗j )⊗ I0 + I ⊗ R0
j ,

where R0
j are the auxiliary canonical observables in the space H0 with

the state S0 satisfying

ES0(R0
j ) = 0, [〈R0

j , R0
k 〉S0] = K∗.

If we put formally � ≡ 0 we obtain the solution of the corresponding
classical problem which is just the measurement of the now compatible
observables R(z∗j ); j = 1, . . . , n. This solution is independent of the
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weight matrix G. In the general noncommutative case ZL need not be
an invariant subspace of the optimal operator F∗, and both {z∗j } and K∗
may depend on the weight matrix G in the de�nition of the mean-square
deviation.

Theorem 6.9.1 also allows us to establish a useful property of Gaus-
sian states which characterizes them as “the least informative” or “the
least favorable” from the point of view of an experimenter. Let {S̃θ} be
a different family of states having the same �rst and second moments
as the Gaussian family {Sθ} and arbitrary in other respects. Denote by
α(·, ·) their common correlation function. Let M = {M(dnθ)} be a lin-
ear locally unbiased measurement with the parameters {R(z j )} and [κ jk].
Then its total mean-square deviation with respect to the state S̃θ is equal
to

Σ̃θ{M} =
n∑

j,k=1

g jk[κ jk + α(z j , zk)],

by (6.7.76) and by the conditions (1) and (2) in the de�nition of linear
measurement. Since κ jk do not depend on the choice of state by condition
(3), and α(·, ·) is the same for S̃θ and Sθ , then Σ̃θ{M} = Σθ{M} where
Σθ{M} refers to the Gaussian state Sθ . Since the minimum of Σθ{M} is
achieved on a linear measurement and is equal to Σ∗ from (6.9.97), then
the same is true for Σ̃θ{M}. It follows that

min
M

Σ̃θ{M} ≤ Σ∗,

where the minimum is taken over all locally unbiased measurements and

max
{Sθ }

min
M

Σ̃θ{M} = Σ∗,

with the maximum attained for the Gaussian family {Sθ }.
Thus under the given prior information about the �rst and second mo-

ments the Gaussian states give the greatest mean-square deviation in mea-
surements of the mean-value parameters. Choosing the best linear mea-
surement corresponds to the experimental strategy which minimizes the
total mean-square deviation proceeding from the prudent assumption that
the choice of Nature may happen to be the least favorable as regards to
the measurement accuracy.

6.10. Comments

Section 6.1. A brief account of the mathematical Shannon-Kolmogorov
theory of classical communication channels can be found in Kolmogo-
rov’s report [79]. The need for consideration of quantum limitations in
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optical channels was recognized by Gabor [39]. Mathematical models
for quantum communication channels were considered by Holevo [56],
Ingarden [69] and Davies [28]. For information-theoretic considerations
see Holevo [60] and Lindblad [85]. Concerning the general notion of
quantum communication channel and its capacities see [179], also [178],
Section 3.2.

Section 6.2, 6.3. For the classical Cramér-Rao inequality see Cramer
[23]. A thorough geometrical study of the Cramér-Rao inequality can be
found in Chentzov [22]. Proposition 6.2.1 is the rigorous version of the
result of Helstrom [52, 53]. The results of Section 6.3 appeared partially
in Holevo [66].

In the quantum case estimation problems with multidimensional pa-
rameter differ from those with one-dimensional parameter rather in rad-
ical way. This happens due to the noncommutativity of the algebra of
quantum observables re�ecting existence of incompatible observables
which in principle cannot be measured in one experiment. This sets the
new restrictions for the components of a multidimensional parameter that
are absent in the classical case and leads to inherent non-uniqueness of
the logarithmic derivatives and the corresponding Rao-Cramér inequality.

As it is well known, in the classical mathematical statistics the Fisher
information generates Riemannian metric on the variety of probability
distributions which is essentially unique monotone invariant in the cate-
gory of statistical (Markov) morphisms [158], [22]. This metric has natu-
ral quantum analogs, but the uniqueness no longer holds. The expression

d(S1, S2) =
√

2(1− ‖√S1

√
S2‖1)

de�nes metric on the convex set S(H) of the density operators. In the
more general context of von Neumann algebras such a metric called the
Bures metric was studied in detail by Araki, Uhlmann and others. If {Sθ }
is a family satisfying the conditions 1) and 2) on p. 274, then as �θ → θ ,
one has

d(Sθ , Sθ+�θ)
2 ≈ 1

4

k∑
i, j=1

〈Li
θ , L j

θ 〉θ�θi�θ j . (∗∗)

Thus the Bures metric is locally equivalent to Riemannian metric deter-
mined by the quantum analog of the Fisher information matrix. Moro-
zova and Chentsov [158] described metrics in S(H), dimH < ∞, that
are monotone invariant in the category of Markov morphisms. In this
class the Riemannian metric de�ned in (**) is the minimal one while the
metric related to the right or left logarithmic derivative is maximal. A
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different example is provided by Bogoljubov-Kubo-Mori metric which
plays an important role in quantum statistical mechanics. Investigations
in this direction were continued in [185, 190], and an exhaustive descrip-
tion of monotone invariant Riemannian metrics on the set of density oper-
ators was obtained. The signi�cance of these results for quantum estima-
tion theory needs further elucidation. In this connection we mention a re-
sult from [173] showing that the Bogoljubov-Kubo-Mori metric appears
in the large deviations theory in the bound for superef�cient estimates.
The noncommutative analog of the Sanov theorem giving an expression
for the asymptotic of the error of the optimal discrimination between two
quantum states in terms of the relative entropy was obtained in [175,189].

From a general point of view, the studies in the classical geomet-
rostatistics (the term introduced by Kolmogorov) related to the names
of Chentsov, Amari, Barndorff-Nielsen and others [151, 158] lead quite
naturally to the investigations of differential geometric structure in the
more complex state spaces such as quantum state (density operators)
space [152, 196].

Section 6.4. The problem is motivated by the work of Braginskij and
Vorontzov [19] who discussed the related detection problem and obtained
(6.4.41) as a bound for the detection threshold.

Section 6.5, 6.6. The inequality (6.5.48) is the rigorous version of Hel-
strom’s result [51, 53]. The inequality (6.6.56) is that of Yuen and Lax
[147]. The optimal property of the canonical measurement was estab-
lished by Holevo [61] and Yuen and Lax [147].

The inequality of Lemma 6.6.1, due to Belavkin and Grishanin, is ad-
duced in the work of Stratonovich [130].

Section 6.7-6.9. The material is taken from Holevo [59,62–65]. Lemma
6.7.1 appeared in the paper [62] devoted to the Gaussian Bayes problem.
The linear measurements were introduced under the name of canonical
measurements in [56].

An arbitrary quantum optical system performing a Bogoljubov-type
transformation is equivalent to scheme composed of linear devices such
as multiport interferometers and few basic nonlinear “squeezing” de-
vices, such as parametric frequency converter [156]. One should add that
an arbitrary Gaussian state can be represented as a response of such sys-
tem to vacuum or thermal equilibrium states, while any canonical mea-
surement as a set of homodyne and heterodyne measurements at the out-
put of such a scheme. In quantum optics an approximate joint measure-
ment of the quadratures q, p is realized by optical heterodyning. Then
the �eld of the measured mode is combined with intense reference �eld
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of a frequency slightly different from the mode frequency. Measuring the
intensities of the two �elds at the output of the beam splitter of nearly
unit transmissivity, in the limit of in�nite local oscillator intensity turns
out to be equivalent to the joint measurement of q̃, p̃ [200].

In particular, by computing the quantity φ̃ = arctan( p̃/q̃) one obtains
an estimate for the phase. This is statistically equivalent to a covari-
ant phase measurement in the sense of Section 6.8 which is of course
non-optimal since it carries redundant information about the amplitude.
(For more detail on the heterodyne phase measurement see Section 3.5.2
[157].) In the work [199] adaptive homodyne measurement of phase was
considered which uses a feedback and electro-optical modulator for the
control of the phase of the local oscillator, under which the phase quadra-
ture R(φ) is measured preferentially. For comparison of the different
phase measurements in [199] the criterion V = minψ �ψ was used,
where �ψ is the measure of uncertainty (4.7.2), and the minimum is
taken over all pure states with the mean number of quanta less than or
equal to N . For N % 1 the canonical (i.e. optimal) distribution of the
phase one has V ≈ π2/N 2, while the heterodyne measurement gives
only V ≈ 1/4N . A special choice of the feedback allows to achieve
V ≈ ln N/4N 2 which approaches the quality of the canonical measure-
ment, however the problem of its practical realization remains open.

Explicit solutions for F∗ in various particular cases are given in [63,
64]. For applications to concrete spatially-temporal signal models see the
book of Helstrom [53].

The Gaussian state is known to have the greatest quantum entropy
−Tr S ln S among all states with the �xed �rst and second moments (see,
e.g., Louisell [88]). This gives an alternative corroboration of the prop-
erty of Gaussian states of being “the least informative”.



Supplement1

Statistical structure of quantum theory
and hidden variables

1. Introduction

By the end of XVIII century scientists developed the picture of the ma-
terial world as a huge mechanism, the evolution of which is subject to a
rigid dynamical laws and in principle can be predicted with arbitrary de-
tail and accuracy. This system of conceptions which acquired the name
“determinism” was progressive for that time and was based on a tri-
umphant success of the Newtonian mechanics which allowed to give a
rational explanation to a number of earlier inexplicable physical facts.

However, the development of natural sciences was leading to increase
of the role of statistical concepts. The study of random phenomena started
in XVII century with the simplest models of uncertainty emerging in haz-
ard games. The notion of probability introduced in connection with such
models was very successfully exploited in the second part of XIX century
by creators of statistical mechanics. The laws of heat (thermodynamics)
acquired explanation through statistical behavior of models of matter as
a huge ensemble of identical interacting particles – molecules. Neverthe-
less by the beginning of XX century determinism continued to dominate
at the foundations of natural sciences. The Nature was considered as fun-
damentally deterministic, and observed stochasticity was regarded as a
secondary phenomenon re�ecting incompleteness of our knowledge of
the real state of the Nature.

Creation of basics of statistical physics marked a triumph of the an-
cient idea of atomism. But deeper study of the elementary components
of the matter has led to a paradoxical conclusion – these components
cannot be considered as particles in the proper, classical sense of the
word. Depending on the conditions of observation, they can display

1 This Supplement is self-contained and can be read independently of the main content of the book.
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either corpuscular or wave properties. An electron interacting with va-
por in Wilson chamber leaves a trace which is interpreted as a trajectory
of a material particle. On the other hand, a beam of electrons passing
through a crystal is diffracted making speci�c interference pattern simi-
lar to one produced by the light passing through a system of suf�ciently
small holes.

Attempts of theoretical explanation of such an unusual, “dualistic” be-
havior of microobjects has led in the beginning of XX century to the
creation of quantum mechanics – the most revolutionary scienti�c the-
ory of the recent age. Historically Heisenberg’s “matrix mechanics” and
Schrödinger’s “wave mechanics” arose as result of ingenious insights in
search of mathematical objects capable to combine discreteness and con-
tinuity in microprocesses. Soon after Born suggested statistical inter-
pretation which organically �t the mathematical apparatus of quantum
mechanics but excluded its deterministic explanation. A deep physico-
philosophical analysis of the content of quantum mechanics developed
by Bohr and Heisenberg has led to a conclusion that it represents a rad-
ically new type of theoretical model of the reality re�ecting in its very
structure the wholeness of the system in question and a complementarity
between different aspects of its description. According to Bohr, the no-
tion of complementarity is used to characterize the relation between the
data obtained under different experimental conditions and may be inter-
preted only on the basis of mutually exclusive concepts. One might say
that the quantum theory gives a “holographic” image of realities of the
microworld. However nothing prevents from combining different projec-
tions of a three-dimensional object into one picture (remember the por-
traits of Picasso presenting the same person enface and in pro�le). But
“elementarity” of the microobjects excludes a possibility of combining
complementary measuring procedures which presuppose their own spe-
ci�c organization in space and time. For example, it makes no sense to
speak about trajectory of electron diffracting on a crystal since any at-
tempt to trace the trajectory changes the conditions of the experiment
such that the interference becomes impossible.

From this point of view statistical nature of quantum mechanics be-
comes closely related to complementarity. The quantities that are mea-
sured in complementary conditions “cannot simultaneously be ascribed
de�nite values. In this way, the statistical character of the formalism
is displayed as a natural generalization of the description of classical
physics” [155]. Thus the statistical nature of microprocesses acquires
in quantum mechanics a primary importance. Not only “God does not
play dice”, but there is a fundamental source of uncertainty in the Nature
which cannot be imitated by any classical mechanism of randomness. Of
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course, the outcomes of any particular experiment are just a realization
of a random variable, but the whole totality of experiments relevant to a
given quantum system cannot be given a classical description. The clas-
sical method of description reducing in fact to listing the properties of the
object turns out to be applicable to the objects of the surrounding macro-
scopical world to the extent that quantum uncertainties are negligible at
the scale of this world.

In the dramatic discussion developed in 1930-s the main opponent of
Bohr and other creators of the “orthodox” interpretation of quantum me-
chanics was Einstein whose views were shared by de Broglie, Schrö-
dinger and some other scientists taking active part in establishing the ba-
sic principles of quantum theory. Einstein promoted the idea of incom-
pleteness of quantum mechanics according to which its statistical nature
is due to �uctuations of some “hidden variables” yet to be taken into
account, and is to be replaced by a deterministic description in a future
complete theory.

From that point of view an electron has an individual trajectory whether
it is observed or not. The trajectory appears random since we do not know
deeper principles governing the electron’s motion. Having found these
hidden principles, we recover determinism. Such a viewpoint might be
appealing from the viewpoint of naive realism. However up to now all
efforts to �nd alternative “deeper” interpretation of quantum mechanics
turned out futile; moreover each such an effort led ultimately to strength-
ening of positions of the statistical interpretation shared by a majority of
working physicists.

The hidden variable issue raised in this discussion can be thus formu-
lated as the question: is it possible in principle to reduce the mathematical
model of quantum mechanics to this or another form of classical proba-
bilistic description? One should admit that the very analytical apparatus
for describing uncertainty in quantum mechanics is so different from the
language of probability theory that an idea of a mathematical proof of
impossibility of introduction of hidden variables, which would stop once
and forever all the controversy, appears naturally.

States and observables are described in quantum mechanics by ma-
trices (operators) Ŝ, X̂ ; in probability theory the (statistical) states are
described by probability distributions S(dω) and the observable quanti-
ties – by functions X (ω) on the phase space � = {ω} of the classical
system. Thus the question is about possibility or impossibility of estab-
lishing a correspondence S→ Ŝ, X→ X̂ between classical and quantum
states and observables, which would reproduce statistical prediction of
quantum mechanics and, of course, satisfy certain important, physically
motivated restrictions.



268 Alexander Holevo

The �rst attempt of an impossibility proof was made in the famous
von Neumann’s book “Mathematical Foundations of Quantum Mechan-
ics” which appeared in 1932. For some this was considered as a de-
cisive argument against the hidden variables. However later it was un-
derstood that this argument does not solve the problem because it is
based on a formal assumption lacking a physical motivation. During the
last �fty years the issue was considerably clari�ed and even was made
available for an experimental test. These investigations concerning ba-
sic understanding of the nature of physical reality are a substantial argu-
ment in favor of the viewpoint according to which introduction of phys-
ically meaningful hidden variables in quantum theory is not possible in
principle.

In this essay we attempt to give a simple and self-consistent presenta-
tion of the hidden variable issue in a historical perspective.

In the �rst part we shall analyze general properties of description of
any statistical experiment and outline the mathematical structures that
arise from this description. These are convexity in the state space which
is due to possibility of mixing ensembles, and partial order of observables
re�ecting the degree of informativity in measurement outcomes. Preser-
vation of these structures is a minimal necessary condition for any hidden
variables theory, due to their very universality. This general consideration
of a statistical experiment will also allow us to distill the mathematical
essence of the fundamental notion of complementarity.

The second part starts with the discussion of most important impossi-
bility results for hidden variables. A number of such attempts, starting
from von Neumann’s theorem, descended from the belief rooted in the
orthodox interpretation that it is the complementarity which is the main
obstacle for a classical description in quantum mechanics. An important
conclusion of our discussion is that complementarity excludes classical
description only under additional assumption of one-to-one correspon-
dence between quantum and classical entities. The “technical” condition
of injectivity of the correspondence S → Ŝ, X → X̂ present in some
modi�cations of von Neumann’s theorem was recognized as the special
property of “noncontextuality” of classical description. Thus a physically
acceptable proof of impossibility can not be based on complementarity
alone and requires appeal to other properties of quantum mechanical de-
scription. Such a property turns out to be the quantum nonseparability
which is discussed in the last section. The argument based on the cele-
brated Bell’s inequality shows impossibility of a classical description for
a composite quantum system respecting separation into subsystems and
hence, also the Einstein locality principle.
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2. The structure of statistical theories

2.1. Axiomatic approaches in quantum mechanics

The story of von Neumann’s theorem shows well that the hidden vari-
ables issue does not reduce to a merely mathematical problem. As far as
the matter concerns interrelation between quantum mechanics and prob-
ability theory, the decisive role should be played by the choice of basic
properties characterizing these structures. Therefore before proceeding
to a mathematical consideration of the hidden variable issue we must
carefully analyze and select basic postulates for both theories.

Here it is pertinent to remind that the problem of “mathematical for-
mulation of the axioms of physics” was raised by Hilbert in his famous
speech at the II-nd Mathematical Congress in 1900. Namely the ques-
tion was about “axiomatic construction of those physical disciplines, in
which mathematics already plays an outstanding role: these are in the �rst
place probability theory and mechanics.” Notably, in one place with the
logical foundation of probability theory Hilbert put “development of the
method of average values in mathematical physics, in particular, kinetic
theory of gases,” in this way pointing towards the most profound prob-
lems of mathematical physics, the investigation of which later led to the
mathematical methods in statistical mechanics and theory of dynamical
systems.

As it is well known, search for a mathematical basis for probability
theory was completed with the publication in 1933 of the Kolmogorov’s
axiomatic system, giving a set of formally simple and intuitively appeal-
ing statements underlying the whole mathematical structure of the theory.
Quantum mechanics could not be mentioned by Hilbert for the simple
reason that the very physical notion of quantum did not yet exist – the fa-
mous Planck’s report was made four months later in the same year 1900.
The cornerstone for mathematization of quantum theory became the al-
ready mentioned monograph of von Neumann, who started investigations
in this �eld in 1926-1927 while being Hilbert’s collaborator [176].

Von Neumann’s works initiated investigations in axiomatics of quan-
tum theory. Considerable progress and clari�cation was achieved towards
1960-1970 along the following three mainstreams.

Algebraic approach [33, 127] takes as a basis the “algebra of observ-
ables” of the physical system. This approach turned out to be most pro-
ductive from a mathematical viewpoint: together with group representa-
tions it served as a source for the modern highly re�ned structural the-
ory of operator algebras. Physical applications of this approach concern
mainly systems with in�nite degrees of freedom – quantum �elds and
matter.
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The quantum logic approach [71, 135, 153, 192] starts with the “lat-
tice of propositions”, i.e. observables taking only two values (0 and 1).
Efforts in this direction culminated with construction of a certain axiom
system characterizing the lattice of orthoprojections in a Hilbert space,
i.e. “propositions” related to a quantum mechanical system. Introduc-
tion of certain algebraic structure (essentially the structure of Jordan al-
gebra) in both approaches requires ultimately certain assumptions whose
physical motivation is not so clear. In 1950-s American mathematician
Mackey made an attempt to present the notions of quantum mechanics
starting from some primary properties of statistical description of a phys-
ical system [92]. Although un�nished, this attempt had great in�uence
on subsequent investigations.

In 1970-s the third approach to foundations of quantum mechanics ap-
peared in which the notion of state plays a primary or equal role as com-
pared to observables or measurements [27, 64, 171, 186]. The main com-
ponent of the corresponding mathematical scheme is the convex set of
states of the physical system. This approach, sometimes denoted as “con-
vex” or “operational,” could be also called “statistical” because it repre-
sents a far reaching development of statistical interpretation of quantum
mechanics. In particular, it will be shown below that the “statistical ide-
ology” provides also a natural basis for a discussion of hidden variables
issue.

Notwithstanding apparent achievements, there is still no �nal form for
a quantum axiomatics. Therefore the main attention in the �rst part of this
essay will be paid to those basic assumptions which in this or the other
form underlie any reasonable statistical theory. However �rst we must
discuss the classical picture of statistical experiment which will serve a
starting point for further discussion.

2.2. The classical picture of statistical experiment

In any experiment one can conventionally distinguish the two main
stages. During the �rst stage of preparation a de�nite experimental ar-
rangement is set to establish the “input data” of system or object under
the experiment. At the subsequent stage of measurement the thus pre-
pared system or object interacts with this or another measuring device,
resulting in certain “output data” – the outcome of the measurement.

One of the most basic features of a scienti�c experiment is its repro-
ducibility i.e. possibility of potentially inde�nite independent repetitions
of a given measurement in given conditions. Consider a sequence of
such repetitions of certain experiment. As a rule, the outcomes of indi-
vidual experiments will not be strictly the same and will be subject to
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some random �uctuations the magnitude of which depend of the nature
of the experiment and the system under investigation. Thus, although
the outcomes of an experiments are conditioned by both preparation and
measurement, this dependence usually is not deterministic but has statis-
tical character. For classical systems described in terms of phase space,
this can be expressed in the language of probability theory.

Denote by ω the complete set of variables characterizing the classical
system or object. The space of all possible concrete values of ω makes
the phase space of the object.

Preparation of any physical state of the object is made by certain de-
vice which, due to its imperfection or peculiarities of its construction may
not be able to ensure exact reproduction of the values of all parameters
for different individual representatives of this same object. Moreover, the
object may be characterized by such an immense number of variables that
there is no way to arrange complete control of all of them. It is assumed,
however, that the variations of the values of ω being prepared are charac-
terized by certain stability described by a probability distribution P . This
probability distribution ascribing to an elementary phase space volume
dω its probability P(dω) is called the state of the object.

Thus, this de�nition of state is essentially statistical one re�ecting the
possibility of �uctuations of the object’s parameters. Its real content is
that if one considers an ensemble, i.e. very large (potentially unbounded)
collection of independent representatives of a given object, then the frac-
tion (frequency) of those representatives for which the value of ω lies in
a subset B ⊂ � is close to its theoretical value P(B).

Consider two ensembles corresponding to the states P1 and P2 con-
sisting of N representatives each and let us form the new ensemble by
taking pN representatives of the �rst ensemble and (1 − p)N represen-
tatives of the second one, where 0 ≤ p ≤ 1. In accordance with the
frequency interpretation the new ensemble will be described by the state
pP1+(1− p)P2, which is called the mixture of the states P1 and P2 in the
proportion p : (1− p). Mixtures

∑
j p j Pj of arbitrary �nite collections

of states are introduced similarly. Moreover, one can consider continu-
ous mixtures

∫
p(dα)Pα where p(dα) is a probability distribution. Such

mixtures may describe states prepared by a device with �uctuating pa-
rameter α. If the states are represented as elements (points) of a certain
set, then arbitrary mixtures of P1 and P2 �ll out the segment connecting
the points P1 and P2. Such a set, which contains the segment connecting
arbitrary two points of the set, is called convex. Thus the set of classi-
cal states which we shall denote S(�) is convex. A point in a convex
set is called extreme if it is not an internal point of a segment belong-
ing entirely to S(�). Extreme points describe pure states which can not
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be represented as a mixture of other states. In the classical picture the
pure states are just degenerate probability distributions concentrated at
the points ω of the phase space.

To make this clear consider the simplest case where � consists of �nite
number of points: � = {ω1, . . . , ωN }. In this case state P is given by the
�nite probability distribution [p1, . . . , pN ], where p j ≥ 0,

∑
j p j = 1.

Pure states are the degenerate distributions [1,0, . . . ,0], . . . ,[0, . . . ,0,1].
An important theorem (proved by Caratheodory in the �nite-dimen-

sional case and by Krein and Milman in in�nite dimensions) says that in
a compact convex set an arbitrary point can be represented as a mixture
of extreme points. If such a representation is unique, then this special
convex set is called simplex. In particular, this is the case in the ex-
ample above. In the case of arbitrary phase space � one should admit
continuous mixtures of states. Thus in the classical picture of statistical
experiments the state space S(�) makes simplex in which every state
is a unique mixture of pure states, corresponding to exact values of all
system’s parameters.

The second, conclusive, stage of the experiment consists of measure-
ment of a certain quantity X . Classically, in the ideal case the mea-
surement does not introduce any changes in the system, i.e. amounts
to an observation. In such a case observable X is described by a function
which assigns to every possible ω ∈ � its objective value X (ω). Having
thus observed X , one can compute outcomes of observations of quan-
tities f (X), where f is a function, without direct observation of these
quantities.

Let for simplicity observable X take �nite number of real values {x j }.
Then

X (ω) =
∑

i

xi Ei (ω), (2.1)

where Ei (ω) is the indicator function of the subset �i ⊂ � on which
X (ω) takes the value xi , i.e. the function equal to 1 on �i and 0 outside
�i . The subsets �i are disjoint and form a decomposition of the space
�, while the family of their indicator functions E = {Ei (ω)} makes an
orthogonal resolution of identity:∑

i

Ei (ω) = 1; Ei (ω)E j (ω) = 0 for i �= j; Ei (ω)2 = Ei (ω)

for all ω ∈ �. Now consider observable f (X (ω)), where f is a real
function. Clearly,

f (X (ω)) =
∑

i

f (xi )Ei (ω). (2.2)
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Even if all xi were different, some of the values f (xi ) may coincide.
Therefore, to enable treatment of (2.1) and (2.2) on equal footing, it is
convenient to admit from the very beginning that some of xi may coin-
cide. Then observation (measurement without errors) will be described
by the resolution of identity E , and to any observable X there correspond
a variety of methods of observation, differing by detail of decomposition
of the phase space �.

From the point of view of statistics, the resolution of the identity E =
{Ei (ω)} bears all essential information about the measurement: probabil-
ity of the i−th outcome in the state P is equal to

μE
P(i) = P(�i ) =

∫
�

P(dω)Ei (ω). (2.3)

Operationally, E decomposes initial statistical ensemble into subensem-
bles characterized by the properties ω ∈ �i .

Hence the mean value of the observable (2.1) in the state P (the ex-
pectation) is equal to MP{X} =

∫
�

P(dω)X (ω).
The measurements described by the orthogonal resolutions of the iden-

tity are deterministic in the sense that they sharply classify representatives
of an ensemble. A nondeterministic (unsharp, fuzzy) measurement pro-
vides probabilities Mi (ω) for i-th outcomes for ensemble representative
characterized by the phase space point ω, so that∑

i

Mi (ω) = 1, Mi (ω) ≥ 0.

The collection of operators M = {Mi (ω)} is a resolution of the identity in
�, which is in general, nonorthogonal in the sense that Mi (ω)M j (ω) �≡ 0
for i �= j . Moreover, Mi (ω)2 ≤ Mi (ω). Probability of the i-th outcome
in the state P for such a measurement is equal to

μM
P (i) =

∫
�

P(dω)Mi (ω). (2.4)

This formula shows how the uncertainty of the outcome in the classical
picture arises from two sources: from the uncertainty in the state prepa-
ration P and in the measurement procedure M .

The resolution of the identity M gives just the probabilities of the out-
comes for an unsharp measurement, but knowing these probabilities, one
can model statistical realization of the measurement involving generator
of random numbers. Assume that there is such a device allowing to ob-
tain values of random variable λ uniformly distributed in [0, 1] (say, a
properly calibrated roulette). Let us describe deterministic measurement
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E = {Ei (ω, λ)} over the system which consists of the given object and
a generator of random numbers, which is statistically equivalent to the
measurement M = {Mi (ω)} in the sense that for any state P probabil-
ities of all outcomes for the measurements M and E are the same. For
this decompose the phase space of the composite system �×� into the

subsets �′
i =

{
(ω, λ) :∑i−1

k=1 Mk(ω) < λ ≤∑i
k=1 Mk(ω)

}
and denote

by Ei (ω, λ) the indicator function of the subset �′
i .

By the construction we have∫
dλEi (ω, λ) = Mi (ω).

Indeed, for a given ω the integral is simply the integral with respect to dλ

from
∑i−1

k=1 Mk(ω) to
∑i

k=1 Mk(ω), i.e. Mk(ω). Integrating this identity
with respect to P(dω) we get

μM
P (i) =

∫
�

P(dω)Mi (ω)

=
∫

�

∫
�

P(dω)dλEi (ω, λ) = μM
P×dλ(i),

(2.5)

which means the statistical equivalence of the measurements M and E .

The procedure of obtaining the outcome by using a generator of ran-
dom numbers, introduced into statistics by Wald, is called randomiza-
tion [22] and the corresponding measurements can be also called ran-
domized.

From the viewpoint of the statistics, the results of experiment consist-
ing of preparation of the state P and subsequent measurement M are
completely described by the probability distribution of measurement out-
comes μM

P = {
μM

P (i)
}
. Notice that the correspondence P → μM

P has
the characteristic property of af�nity: if the state P is mixture of states
P1 and P2 in the proportion p : (1 − p) then the probability distribution
μM

P is mixture of the probability distributions μM
P1

and μM
P2

in the same
proportion, μM

pP1+(1−p)P2
= pμM

P1
+ (1− p)μM

P2
.

2.3. The main features of statistical description

Having in mind the passage to quantum mechanics, let us try to formulate
axiomatically the main features of statistical description of an experiment
without using assumption of classicality, i.e. without introducing a phase
space.

Axiom 2.1. Let there be given a set S whose elements are called states
and a set M whose elements are called measurements. With a measure-
ment M ∈M is associated the space U of its possible outcomes. For any
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pair S ∈ S, M ∈ M there is a probability distribution μM
S on U called

the probability distribution of the measurement M in the state S.

Intuitively S represents a more or less detailed description of the prepa-
ration of a “statistical ensemble” and M – a measurement in this ensem-
ble. An attempt to interpret these notions by introducing a phase space
leads in fact to “hidden variables”, but we shall discuss this later. Here
S and M are considered as primary notions. For any (measurable) subset
B ⊂ U the quantity μM

S (B) is interpreted as theoretical value for the frac-
tion of representatives of the ensemble prepared in the state S for which
the outcome of the measurement M lies in the subset B.

The �rst axiom thus formalizes the requirement of reproducibility of
the individual experiments and the stability of frequencies. The follow-
ing axiom says that mixing of ensembles is an admissible way of state
preparation.

Axiom 2.2. For arbitrary states S1, S2 and an arbitrary number p, 0 <

p < 1, there exists the state S called mixture of the states S1 and S2 in
the proportion p : (1 − p) such that μM

S = pμM
S1
+ (1 − p)μM

S2
for all

measurements M ∈M.

An outcome of a measurement can be the data obtained from one or
several measuring devices as well as any other method of representing
the information – for example, a picture on a computer display. Quite
often the information obtained as a result of a measurement should be
processed in this or another way. The result of such a processing can be
regarded as an outcome of a complex measuring procedure including the
given transformation. If M1 is a measurement with the values in U1 and
M2 – a measurement with the values in U2, such that there is a (measur-
able) function f : U2 → U1 satisfying the relation

μ
M1
S (B) = μ

M2
S ( f −1(B)); B ⊂ U1,

for all S ∈ S then this means that the outcomes of the measurement
M1 are obtained from the outcomes of measurement M2 by a functional
transformation f . (Recall that f −1(B) denotes the inverse image of B
i.e. the set of all such u2 ∈ U2, that f (u2) ∈ B). In this case we say that
M1 is subordinated to the measurement M2. If U1 and U2 are �nite sets,
this means that

μ
M1
S (u1) =

∑
u2: f (u2)=u1

μ
M2
S (u2),

i.e. subordination means coarse-graining of the measurement outcomes.

Axiom 2.3. For any measurement M , the set M contains all the mea-
surements subordinated to M .
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A pair of sets (S,M) satisfying the axioms 2.1 - 2.3 will be called
statistical model. The statistical model is said to be separated if

Axiom 2.4. From μM
S1
= μM

S2
for all M ∈ M it follows that S1 = S2 and

from μ
M1
S = μ

M2
S for all S ∈ S it follows that M1 = M2.

For a separated model both the operation of mixing in S and the
coarse-graining in M are uniquely de�ned. Then the set of states S ob-
tains a convex structure while the set of measurements M – a structure of
partial order.

To illustrate the general notion of statistical model, let us come back
to the classical picture where statistical states of an object are described
by probability distributions on a phase space � so that S = S(�). If
we consider measurements without errors, which correspond to random
variables (see the relation (2.1)), then M consists of the orthogonal res-
olutions of the identity on �. Then the probabilities of measurement
outcomes in a given state are determined by the formula (2.3). If, on the
other hand, we include measurements with random errors, then M will
consist of all, not only orthogonal, resolutions of the identity on �, and
the probabilities of measurement outcomes will be determined by the for-
mula (2.4). In this way arise the two basic classical models which differ
in the structure of the set M. The �rst is the Kolmogorov model while the
second may be called the Wald model. Both these models are separated.

2.4. Statistical model of quantum mechanics

In the previous section we have seen that quite general properties of sta-
tistical description lead to emergence of the two main mathematical struc-
tures: convexity (mixing) in the state space and subordination in the set
of measurements. Importance of these structures in the context of quan-
tum mechanics was stressed already in the book of von Neumann. Let us
consider this in more detail.

In quantum mechanics to a system is related a complex Hilbert space
H. For simplicity we take it �nite-dimensional. Then H consists of col-

umn vectors |ψ〉 =
[

ψ1
...
ψn

]
, where ψ j are complex numbers. Denoting

〈ψ | = [
ψ̄1 . . . ψ̄n

]
the Hermitian conjugate row-vector, we can write

the inner product in H in the form 〈ϕ|ψ〉. Any ensemble of quantum sys-
tems de�ning a quantum state is described by a density matrix Ŝ = [

si j
]

satisfying
Ŝ ≥ 0, TrŜ = 1.

The �rst relation means that the matrix Ŝ is Hermitian positive semidef-
inite while TrŜ = ∑

i sii denotes the trace of the matrix. If the ensem-
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bles described by the density matrices Ŝ1, Ŝ2 are mixed in the propor-
tion p : (1 − p) then the mixed ensemble is described by the matrix
pŜ1+(1− p)Ŝ2 which is again a density matrix. Thus the set S = S(H)

of all density matrices is convex, the convex combinations describing
mixing of the ensembles. The extreme points of the convex set S(H)

– pure quantum states – are given by the density matrices of the form
Ŝψ = |ψ〉〈ψ |, with ψ a unit vector, 〈ψ |ψ〉 = 1. It is dif�cult to describe
the set S(H) in pictorial way, except for the case n = 2, when it turns
out to be isomorphic to the unit ball in the real 3-dimensional space. Any
density matrix can be represented as a mixture of extreme points

Ŝ =
∑

j

p j Ŝψ j ; p j ≥ 0,
∑

j

p j = 1,

but contrary to the classical picture such a representation is highly
nonunique.

A real-valued quantum observable is described by a Hermitian matrix
X̂ = [

xi j
]

with its eigenvalues x j as possible outcomes. Let us write the

spectral decomposition of the matrix X̂ :

X̂ =
n∑

j=1

x j Ê j , (2.6)

where E j is the orthogonal projector onto the subspace of eigenvectors
corresponding to the eigenvalue x j . The family Ê = {Ê j } forms an or-
thogonal resolution of identity in H:

n∑
j=1

Ê j = Î ; Ê j Êk = 0 if j �= k; Ê2
j = Ê j ,

where Î is the unit matrix. The space H is then decomposed into the
direct orthogonal sum of the subspaces Ê j (H).

According to the rules of linear algebra, one has for a real function f

f (X̂) =
n∑

j=1

f (x j )Ê j . (2.7)

The numbers f (x j ) are not all necessarily different, so that some terms in
(2.7) may be joined in groups. Similarly to the classical picture, it is con-
venient from the beginning to consider representations of an observable
in a form (2.6) where x j are not necessarily different. Then the reso-
lution of the identity E may be de�ned not uniquely and can be more or
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less “detailed”. The spectral representation gives the unique least detailed
resolution of the identity. By making more and more detailed decompo-
sitions we �nally arrive to a “maximal” decomposition which is de�ned
by a basis of eigenvectors of X̂ . Such a maximal resolution of the identity
will be nonunique if X̂ has eigenvalues of multiplicity greater than 1.

By the statistical postulate, measurement of the observable X̂ in the
state Ŝ gives the outcome x j with the probability

μÊS (x j ) = TrŜ Ê j . (2.8)

This and (2.6) imply that the mean value of X̂ in the state Ŝ is equal to
TrŜ X̂ . For a pure state Ŝψ this is equal to 〈ψ |X̂ψ〉.

Thus the standard form of quantum mechanics is described by the sta-
tistical model (S(H), M(H)) , where M(H) is the collection of all res-
olutions of the identity in H corresponding to measurements of quantum
observables. The reader have probably noticed the analogy between the
relations (2.1), (2.2), (2.3) of the Kolmogorov model and the relations
(2.6), (2.7), (2.8). It is also natural to consider the quantum analog of the
Wald model in which the measurements are described by arbitrary (non-
orthogonal) resolutions of the identity in H, i.e. the families of matrices
M̂ = {M̂ j } satisfying ∑

j

M̂ j = Î , M̂ j ≥ 0.

While the mathematical apparatus of quantum mechanics contained all
the necessary prerequisites for that, the role of non-orthogonal resolu-
tions of the identity was recognized only in 1970-s with the advances
in the statistical approach. Formally this extension of the notion of quan-
tum observable is similar to introduction of randomized procedures in the
classical picture. From this point of view the orthogonal resolutions of
the identity are similar to the classical deterministic procedures. However
this analogy is not complete in one crucial respect: while in the classi-
cal picture the measurement procedures that are optimal in the sense of
the ultimate accuracy and maximal informativity are usually determinis-
tic, in quantum mechanics the statistically and informationally optimal
measurement procedures are often described by non-orthogonal resolu-
tions of the identity. As it was shown in Section 2, a classical random-
ized measurement can be reduced to observation over a composite sys-
tem including both the object and the generator of random numbers. It
is intuitively clear that such a procedure cannot bring more information
about the state of the classical object than direct observation of the sys-
tem. However in quantum statistics, paradoxically, the use of a “quan-
tum roulette” allows in several cases to improve the data concerning the
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state of the system. The profound reason for this is the “nonseparabil-
ity” of quantum-mechanical description and the speci�c “entanglement”
between the parts of a composite system to be discussed below. It is
noteworthy that the recognition of this remarkable fact was stimulated by
formulation and solution of applied problems in quantum communication
theory (see Chapters 3, 4 of the main text).

Since the main objective of our further discussion will be the problem
of hidden variables which arose in the standard framework of quantum
mechanics, we shall proceed within this framework. However the main
conclusions apply also to the extended statistical model which uses arbi-
trary resolutions of the identity for the description of quantum measure-
ments.

2.5. Compatibility and complementarity

Subordination of observables de�nes partial order in the set of measure-
ments M which has a direct statistical meaning: if M1 is subordinated to
M2, then M2 is a more detailed, informative measurement than M1. If M1

and M2 are mutually subordinated then they are equivalent from the point
of view of statistical information. An example is given by measurements
performed with one device with differently calibrated scales U1, U2.

Clearly, most important are the maximal elements of the set M which
describe the most informative measurements admitted in the given statis-
tical model. Mathematically, existence of such maximal measurements
may be a nontrivial problem. We simply assume that every measurement
in M is subordinated to a maximal one. In general, there can be many
inequivalent maximal measurements. Uniqueness of the maximal mea-
surement up to equivalence turns out to be a characteristic property of the
classical model.

To explain this we introduce the important de�nition: the measure-
ments M1, M2 are called compatible if they are both subordinated to some
measurement M . In other words, outcomes of compatible measurements
can be obtained as a result of post-processings in a single-measurement
experiment M . Assume now that a separable statistical model (S,M) is
such that all the measurements are compatible. Then the maximal mea-
surement M∗ is unique up to equivalence. Let M∗ : S → μ∗S be a
representative and let � be the set of its outcomes. Since every measure-
ment M is subordinated to M∗, there is a function fM : � → U, where
U is the set of outcomes for M such that

μM
S (B) = μ∗S( f −1

M (B)), B ⊆ U.

Due to assumed separatedness of the model the map S → μ∗S is one-to-
one af�ne correspondence between the set S and a convex subset of the
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simplex S(�), so that states can be identi�ed with probability distribu-
tions on the set � and μM

S is the distribution of the observable fM in the
classical state μ∗S.

Thus a separated statistical model in which all the measurements are
compatible essentially reduces to the classical picture, the role of the
phase space is played by the set of outcomes of the maximal measure-
ment. In this connection it is useful to observe that Kolmogorov’s exten-
sion theorem [78] may be interpreted as a statement about existence of
the maximal measurement for an in�nite projective family of mutually
compatible measurements.

On the other hand, if M contains incompatible measurements then the
maximal measurement cannot be unique. Let us return to the model of
quantum mechanics. Let Ê and F̂ be the measurements described by
orthogonal resolutions of the identity {Ê j }, {F̂j } which commute in the
sense that

Ê j F̂k = F̂k Ê j for all j, k. (2.9)

Then the relation Ĝ jk = Ê j F̂k de�nes a measurement with respect to
which Ê and F̂ are subordinated since Ê j = ∑

k Ĝ jk, F̂k = ∑
j Ĝ jk .

The condition (2.9) is not only suf�cient but also necessary for the com-
patibility of Ê and F̂. Observables X̂ and Ŷ are called compatible if there
exist compatible measurements for them and this turns out to be equiva-
lent to the condition X̂ Ŷ = Ŷ X̂ . In this way one derives the de�nition of
compatibility from the standard formulation of quantum mechanics.

Since there are many incompatible observables described by noncom-
muting matrices, there are many inequivalent maximal measurements de-
�ned by different orthonormal bases in the space H. These are the or-
thogonal resolutions of the identity which can not be further split into
more detailed ones. In the in�nite dimensional space the situation is
more complicated since “continuous” maximal orthogonal resolutions of
the identity appear. Notice however, that even in �nite dimensional case
there exist continuous maximal nonorthogonal resolutions of the identity.
They arise as “overcomplete” systems of vectors obtained by projecting
to H of the maximal orthogonal resolutions of the identity in some larger
Hilbert space H′. A typical example of an overcomplete system is the
system of coherent vectors well known in quantum optics. In many cases
the maximal information about quantum state is carried by the measure-
ments described by such overcomplete systems (see Chapters 3, 4 of the
main text).

There exist physical systems which are in a sense intermediate between
classical and quantum such as systems with superselection rules. Let us
call center of the statistical model (S,M) the collection of all measure-
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ments compatible with all measurements in M. With the center one can
associate its spectrum re�ecting the classical properties of the statistical
model. For a classical model the center coincides with the phase space.
If the center is trivial i.e. consists only of the constants, as it is the case
for quantum mechanics, then the model is irreducible. In general one
can expect a decomposition of rather arbitrary statistical model into di-
rect sum or integral of irreducible models. Such a structural theory is
completely elaborated in the framework of algebraic approach and there
are its generalizations to general convex sets of states [4].

Understanding the phenomenon of incompatibility was a decisive step
in the creation of the “orthodox” interpretation of quantum mechanics.
Incompatibility of measurements in quantum mechanics stems from the
fact that physical measurements are performed with the macroscopic ex-
perimental setups, each one assuming complex speci�c organization of
the space-time environment. Apparently two different ways of such orga-
nization can be mutually exclusive. “In quantum physics evidence about
atomic objects obtained by different experimental arrangements exhibits
a novel kind of peculiar complementary relationship” [155, page 4]. The
classical mechanics relies upon idealization admitting theoretical com-
patibility of all measurement procedures which is justi�ed in so far as it
deals with macroscopic objects the interactions of which with the mea-
surement devices can be as weak as one desires.

The surrounding world which is accessible to direct human’s percep-
tion is macroscopic “by the de�nition”. Therefore is it so dif�cult to
give an accessible image for complementarity. However Niels Bohr ad-
vocated the idea that the principle of complementarity is quite general
and especially important for biology and for subtle humanitarian rela-
tions which are so dif�cult to model mathematically. “The integrity of
living organisms and the characteristics of conscious individuals and hu-
man cultures present features of wholeness, the account of which implies
a typical complementary mode of description” [155, page 7]. Never-
theless so far quantum theory remains a unique case of a mathematical
theory of a segment of the reality which, in its domain, gives an exact
quantitative expression of the dialectic principle of complementarity.

2.6. Classical and nonclassical models

Consider statistical model (S,M) which is “classical” in the sense that
the states and the measurements are described in terms of some phase
space as in Section 2. However we do not require that the state space S
contains all the probability distributions as well as the set M – measure-
ments of all observables; so we admit that S and M can be de�ned by
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some apriori restrictions (like those arising from complementarity). For
this reason the model (S,M) need not be separated: there can be differ-
ent probability distributions P1, P2 such that μM

P1
= μM

P2
for all M ∈ M,

i.e. indistinguishable from the point of view of all the measurement
statistics. Similarly, there can be indistinguishable measurements. By
identifying such indistinguishable states and measurements into equiva-
lence classes, we obtain the new, already separated, statistical model.

The description of states and measurements in this new model is “com-
pressed” just to the extent suf�cient to preserve the measurements statis-
tics in the initial classical model. As we have seen in Chapter 1, “gluing”
the classical states geometrically amounts to projection of the state space
S onto a subset Ŝ in less dimensions. Then even if the initial model
admits all possible probability distributions on � so that S is just the
simplex S (�) , its projection Ŝ in the compressed model can be rather
arbitrary convex set. Its form is determined by the set M, i.e. by the
restrictions upon the classical measurements.

In statistical mechanics an important role is played by reduced descrip-
tion related to the probabilistic notion of partial observability. Assume
that in the whole variety of variables related to a classical object with the
phase space � one can observe only the random variables X1, . . . , Xn,

as well as measurable functions of them. In this case M consists of the
measurements of observables of the form f (X1, . . . , Xn). Then the clas-
sical states P1, P2 are indistinguishable if the corresponding expectations
coincide: MP1 f (X1, . . . , Xn) = MP2 f (X1, . . . , Xn) for all measurable
functions f (this means that the restrictions of P1, P2 onto σ−subalgebra
B generated by X1, . . . , Xn coincide). Then the equivalence classes are
represented by probability distributions P(dx1 . . . dxn) on the space �̂ of
the values of the variables X1, . . . , Xn, which can thus be taken for the
phase space of the reduced description. One has Ŝ = S(�̂) i.e. the sim-
plex S(�) is projected onto the simplex S(�̂) and the classical nature of
the description is preserved. In this case the simplex is projected “along
its faces” and the geometrical picture is preserved. Thus the reduced de-
scription is an important particular case of the state space compression.

Just to present a different picture consider the following modi�cation
of partial observability: assume that one can observe only the variables of
the form f1(X1), . . . , fn(Xn), where f1, . . . , fn are arbitrary functions.
Then the classical states P1, P2 will be indistinguishable if

MP1 fi (Xi ) = MP2 fi (Xi )

for all measurable functions fi ; i = 1, . . . , n (i.e. the restrictions of
P1, P2 onto σ−subalgebras B1, . . . ,Bn generated by corresponding ran-
dom variables X1, . . . , Xn coincide). Then the equivalence classes are
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represented by collections P̂ = (P1(dx1), . . . Pn(dxn)) of probability
distributions on the spaces of values of the variables X1, . . . , Xn. In that
case Ŝ is a direct product of n simplexes; in particular, if X1, . . . , Xn are
two-valued then P̂ runs through n−dimensional hypercube. Thus intro-
ducing apriori restrictions can radically change the convex structure of
the compressed state space.

As we have seen in Chapter 1, for any suf�ciently regular separated
statistical model (Ŝ, M̂) there is a classical model for which (Ŝ, M̂) is
the compression in the sense described above. Does this mean a possi-
bility of introducing hidden variables, in particular, for quantum mechan-
ics? To answer this question we should analyze the requirements which
has to be satis�ed by a hidden variable model. Such requirements can
be conventionally split into two classes. The �rst class is constituted by
the “minimal” requirements which refer only to the general properties
of statistical description for a single system. These will be considered
in the �rst place since almost all attempts of mathematical proofs of non-
existence pretended to appeal only to such general requirements. We shall
see that in fact they were based on additional assumptions lacking physi-
cal motivation. Moreover, we shall demonstrate the classical description
for a single quantum system satisfying all the general requirements of
statistical description.

Another class is constituted by requirements which refer to compos-
ite quantum systems and it is these requirements that present the main
obstacle for a hidden variable theory.

3. The problem of hidden variables

3.1. “No-go” proofs and the minimal statistical
requirements on hidden variables

A hidden variable theory pretends to give an explanation of the random-
ness of the experimental results through �uctuations of the values of cer-
tain variables ω describing the “real” properties of the object. Therefore
attempts of the “no-go” proofs usually started with associating probabil-
ity distributions S(dω) with quantum states Ŝ and random variables X (ω)

with quantum observables X̂ , where ω ∈ � – a hypothetical phase space.
Thus it was usually assumed that there are one-to-one correspondences
Ŝ ↔ S and X̂ ↔ X.

However the discussion of the compressed statistical description in the
previous section leads to an idea that a hidden variable theory should
admit “gluing” statistically equivalent states and observables. Therefore
we accept from the beginning that a classical description of a quantum
system consists of the phase space � and a pair of mappings: S→ Ŝ from
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the simplex S (�) onto the set of quantum states Ŝ and X → X̂ from
the set of classical observables O (�) onto the set of quantum observa-
bles Ô.

The domain of de�nition of the �rst mapping need not be the whole
S (�) as well as that of the other – the whole O (�) . Thus the classi-
cal description brings into correspondence some classical states S(dω)

with the density operators Ŝ and some classical observables X (ω) with
Hermitian operators X̂ in the Hilbert space H. One and the same quan-
tum state Ŝ can be described by several different probability distributions
S(dω) interpreted as different ways of preparation of the quantum en-
semble Ŝ, and one and the same quantum observable X̂ can be described
by different functions X (ω) interpreted as different ways of observation
of X̂ . To denote possible non-uniqueness of the classical description Bell
used the term “contextuality”. The contextuality in the description of a
quantum state displays in particular in the fact that one and the same den-
sity operator Ŝ, depending on the context of a preparation procedure, can
be obtained as completely different mixtures of pure states. Similarly,
one and the same projector P̂ , depending on the context of a measure-
ment procedure, can arise as a result of coarse-graining from different
orthonormal bases.

Now let us consider requirements which where imposed on hidden
variable theories. In view of the preceding discussion the following as-
sumptions are the restrictions to be stated explicitly:

(S.0) the mapping S → Ŝ is one-to-one;
(X.0) the mapping X → X̂ is one-to-one.

These assumptions which may seem “technical” from a mathematical
viewpoint are in fact of crucial importance. At the same time their phys-
ical motivation may be questioned.

The requirement that all the statistical predictions of the hidden vari-
able theory coincide in all respects with the quantum mechanical ones
can be expressed as equality between the expectations:

(E.1) TrŜ X̂ = ∫
�

S(dω)X (ω) for all X, S.

If this requirement does not hold, then there is a disagreement between
statistical predictions of the theories which in principle can be detected
experimentally. This would lead to physical questions which are beyond
the scope of the present mathematical consideration.

The next group of requirements concerns the properties of the map-
ping X → X̂ . The relation (2.7) shows that the outcomes of observ-
able f (X̂) can be obtained from the outcomes of X̂ by mere compu-
tation xi → f (xi ). But in a hidden variable theory a measurement of
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X̂ is reduced to observation of some X (ω). The subsequent computa-
tion x → f (x) is equivalent to a direct observation of f (X (ω)). Thus
in the hidden variable theory observation of f (X) represents a way of
measuring the quantum observable f (X̂). This motivates the following
functional condition:

(X.1) if X → X̂ then f (X)→ f (X̂).

This is closely related to the following two conditions:

(X.2) if X → X̂ then any value X (ω) belongs to the spectrum {xi } of
quantum observable X̂ .

The meaning of this spectral condition is clear: a hidden variable descrip-
tion should preserve “objective values” of observables.

(X.3) for any pair of compatible quantum observables X̂ , Ŷ there ex-
ist the corresponding classical observables X, Y such that X →
X̂ , Y → Ŷ and X + Y → X̂ + Ŷ .

Compatibility of quantum observables means that there is a measuring
device which produces the outcomes of measurement of both X̂ and Ŷ .

Complementing this with a summator we obtain a device for measuring
X̂ + Ŷ . The �nite sum rule (X.3) re�ects this possibility in the hidden
variable theory. It can be replaced with the following �nite product rule:

(X.4) for any pair of compatible quantum observables X̂ , Ŷ there ex-
ist the corresponding classical observables X, Y such that X →
X̂ , Y → Ŷ and XY → X̂ Ŷ .

Lemma 3.1. The functional condition (X.1) implies the �nite sum rule
(X.3) and the �nite product rule (X.4). Under (X.0), the condition (X.1)
implies also the spectral condition (X.2).

Proof. If X̂ ,Ŷ are compatible then there exists Ẑ such that X̂= f (Ẑ),Ŷ =
g(Ẑ). Let Z → Ẑ be the corresponding classical observable, then by
(X.1) X = f (Z) → X̂ and Y = g(Z) → Ŷ . Therefore X + Y =
( f + g)(Z) → ( f + g)(Ẑ) = X̂ + Ŷ . This proves (X.3), and (X.4) is
proved similarly.

Let the correspondence X → X̂ be one-to-one so that we can write
X ↔ X̂ . Consider the function f0(x) ≡ 0. Applying (X.1) to this func-
tion, we have 0 ↔ 0̂, where 0̂ is the zero operator and 0 is the classical
observable identically equal to zero. Let P(x) be the characteristic poly-
nomial of an Hermitian operator X̂ , so that P(X̂) = 0̂. If X ↔ X̂ then by
(X.1) P(X) ↔ P(X̂) hence P(X (ω)) ≡ 0 i.e. any value X (ω) belongs
to the spectrum of quantum observable X̂ .
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The conditions (E.1) and (X.1) imply the following ampli�cation of
the property of statistical correspondence:

(E.2) TrŜ f (X̂) = ∫
�

S(dω) f (X (ω)) for all X, S, f.

Notice that while (E.2) trivially implies (E.1), the condition (X.1) follows
only under some additional assumption. A subset S0 ⊆ S (�) will be
called separating if the equality∫

�

S(dω)X1(ω) =
∫

�

S(dω)X2(ω) for all S ∈ S0

implies X1 = X2. If the set of probability distributions which correspond
to all possible quantum states in the given classical description (let us
denote it S0) is separating then the condition (E.1) implies (X.0) and
(E.2) implies (X.1). Indeed, let Y → f (X̂) then by (E.2)∫

�

S(dω)Y (ω) = TrŜ f (X̂) =
∫

�

S(dω) f (X (ω)) for all S ∈ S0

whence f (X) = Y → f (X̂).

Finally let us discuss the linearity condition:

(X.5) ̂(λX + μY ) = λX̂ + μŶ for all X, Y and real λ, μ .

This mathematically innocent condition is not justi�ed physically as it
was mentioned already in the von Neumann’s book [138]. If X̂ and Ŷ
are incompatible then measurements of observables X̂ ,Ŷ and X̂ + Ŷ may
have nothing in common apart from equality of the mean values. This
last relation was used by von Neumann to motivate the condition (X.5).
Let us analyze the corresponding argument as given in2: “In quantum
mechanics the mean values satisfy the relation 〈X̂ + Ŷ 〉 = 〈X̂〉 + 〈Ŷ 〉.
Therefore in a hidden variable model it should hold∫

�

S(dω)(X + Y )(ω) =
∫

�

S(dω)X (ω)+
∫

�

S(dω)Y (ω). (3.10)

Since to different density matrices Ŝ correspond different probability dis-
tributions S(dω), it is natural to require that

(X + Y )(ω) = X (ω)+ Y (ω) (3.11)

2 A.I. Akhiezer, R.V. Polovin, Why it is impossible to introduce hidden variables in quantum me-
chanics? UFN 107(3) (1972) 463-487.
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for arbitrary classical observables X, Y which may correspond to com-
muting as well as noncommuting operators X̂ , Ŷ .”

However (3.11) follows from (3.10) only under additional assumption
that the set of classical states S0 in the hidden variable theory is separat-
ing. Is such an assumption “natural”? A very simple (and generic) exam-
ple of nonseparating set is the subset of probability distributions S(dω)

on a product �′ × �′′ which have the form S(dω) = S′(dω′)P(dω′′),
where S′(dω′) is arbitrary distribution on �′ and P(dω′′) is a �xed distri-
bution on �′′. This is just the case in the explicit hidden variable models.
The distribution P(dω′′) plays a role of the equilibrium state of the “hid-
den” subsystem which provides stochasticity to the measurement out-
comes [10].

Under the condition of one-to-one correspondence (X.0) the conditions
(X.1)-(X.5) turn into the requirements which were used in the “no-go”
proofs for hidden variables. Let us give here the most signi�cant results
in this direction in the formulation adapted to the proposed general clas-
si�cation.

The �rst statement is close to what is called the von Neumann theorem.

Proposition 3.2. There is no classical description satisfying the condi-
tions (X.0), (X.2), (X.5).

From the discussion above we see that this can be also formulated as
follows: there is no classical description with separating set of classical
states, satisfying the condition (E.2).

Proof. Assume that a classical description with the properties (X.0),
(X.2), (X.5) exists. By (X.0) there is unique X such that X → X̂ . Fix
a point ω0 of the phase space and consider the functional on operators
given by F(X̂) = X (ω0). By (X.5) this functional is linear. In the �nite
dimensional case we are considering, it is almost obvious that every such
functional has the form F(X̂) = TrP̂ X̂ , where P̂ ∈ Ô. Let X̂ run over
all possible projections in H so that its eigenvalues are xi = 0, 1. Then
by (X.2) the quantity X (ω0) = TrP̂ X̂ assumes only the values 0, 1 which
is apparently impossible for any choice of P̂ .

Of historical interest is the following remark of Wigner to his article
on hidden variables [198]: “The discussion of Von Neumann, most com-
monly quoted, is that contained in his book, Sections 4.1 and 4.2. As
an old friend of Von Neumann, and in order to preserve historical accu-
racy, the present writer may be permitted the observation that the proof
contained in this book was not the one which was principally responsi-
ble for Von Neumann’s conviction of the inadequacy of hidden variable
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theories. . . ”3 However independently of the meaning given to these ar-
guments by von Neumann, published in his monographs they were con-
sidered as decisive argument against hidden variables for the years until
1950-s with the appearance of papers of Bohm (1952) and Wiener and
Siegel (1953), which contained explicit (although not completely trans-
parent) constructions of hidden variable models. On the other hand, sev-
eral improvements of the von Neumann “no-go theorem” appeared. The
situation was radically clari�ed with the works of Bell (1966) and also
Kochen and Specker (see [11, 77]).

In the year 1957 Gleason [168] proved the following quite nontrivial
theorem which gave an answer to a question of Mackey:

Let F(Ê) be a probability measure on projections in the Hilbert space
H of dimensionality ≥ 3, i.e. the real function satisfying the conditions:
1)F(Ê) ≥ 0; 2) for any orthogonal resolution of the identity {Êi } it
holds

∑
i F(Êi ) = 1. Then F(Ê) = TrŜ Ê, where Ŝ is a density operator

in H.
This implies

Proposition 3.3. If dimH ≥3 then there is no classical description sat-
isfying the conditions (X.0), (X.2), (X.3).

Indeed, if such a description exists then the function F(Ê) = E(ω0),
where E ↔ Ê , satis�es the conditions of Gleason’s theorem. Then
F(Ê) = TrŜ Ê and we come to the contradiction as in the proof of Propo-
sition 1.

The proof of Gleason’s theorem remains dif�cult even after a number
of subsequent simpli�cations. Gleason himself did not apply his the-
orem to the hidden variable problem. This possibility was noticed by
Bell. Moreover he extracted the geometrical idea behind Gleason’s proof
which is essential from the viewpoint of hidden variables issue and gave
a short direct proof of the following statement which in our presentation
follows from Proposition 3.3 and the Lemma 3.1:

Proposition 3.4. If dimH ≥3 then there is no classical description sat-
isfying the conditions (X.0) and (X.1).

Similar result was independently and in a quite different way obtained
by Kochen and Specker [77] who gave an explicit construction of 117
(later more “economical” constructions were designed) unit vectors in
three-dimensional space on which one cannot de�ne a measure with the

3 This unpublished argument of von Neumann will be considered in the next section.
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properties 1), 2) from Gleason’s theorem and assuming only the values
0 or 1. In other words, the geometry of this system is such that the con-
ditions de�ning such a measure become self-contradictory. Later it was
observed that the proof of Bell in fact amounts to construction of a certain
system of 13 vectors [10].

The case dimH =2 corresponding to spin-1/2 particle is special. In
the papers of Bell and of Kochen-Specker explicit hidden variable con-
structions were given for this case. One more construction follows from
the general model which will be given in the next section. These con-
structions clearly demonstrate insuf�ciency of the “no-go” proofs of the
type of Proposition 3.2.

Notice that the Propositions 3.3 and 3.4 do not use at all the condi-
tion of statistical correspondence (E.1) which in fact should be central
for a hidden variable theory. These results do not concern statistics and
speak only of impossibility of the one-to-one correspondence between
the “quantum logic” of projections and the Boolean algebra of classical
events preserving the algebraic relations between the compatible vari-
ables. The key condition here is (X.0) as it was understood in the work
of Bell.

These mathematical results do not contradict explicit hidden variable
models such as Bohm’s model and Wiener-Siegel model: the assumption
which is not ful�lled in these models is the condition (X.0) of one-to-
one correspondence. We already noticed that a reasonable assumption
would be to admit that one and the same quantum observable can be mea-
sured in many different ways (which in particular is re�ected in possible
nonuniqueness of the resolution of the identity entering the representation
(2.6)). Propositions 3.3, 3.4 imply that in a hidden variable theory satis-
fying functional conditions of the type (X.1)-(X.4) such a nonuniqueness
is unavoidable.

A different approach to “no-go” proofs is related to the ideas of Wigner
and Blokhintsev on the impossibility of de�ning a joint distribution for
incompatible quantum observables and is based on the analysis of the
properties of the mapping S → Ŝ.

Consider the classical state S and the corresponding quantum state Ŝ.

Then the classical ensemble de�ned by the probability distribution S(dω)

replaces the quantum ensemble representing Ŝ. The mixture pS1 + (1−
p)S2 of the classical ensembles represents the quantum ensemble pŜ1 +
(1− p)Ŝ2. This leads to the following af�nity condition:

(S.1) for S1 → Ŝ1, S2 → Ŝ2 and a real p, satisfying 0 < p < 1 it holds
pS1 + (1− p)S2 → pŜ1 + (1− p)Ŝ2.
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Proposition 3.5. There is no classical description satisfying the condi-
tions (E.2), (S.0), (S.1).

Proof. Assume that such a description exists and consider two arbitrary
quantum observables X̂ , Ŷ . Let X, Y be some corresponding classical
observables. Due to the condition (S.0), there is one-to-one af�ne corre-
spondence S ↔ Ŝ and the formula

μŜ (B) = S (ω : (X (ω), Y (ω)) ∈ B)

de�nes a probability distribution on the plane R2. Due to (S.1) the map-
ping Ŝ → μŜ is af�ne and hence de�nes a generalized quantum mea-
surement with outcomes (x, y) . By using the condition (E.2) we obtain
that distributions of observables X̂ , Ŷ are marginals of the distribution
μŜ (dx, dy) . Hence we come to an absurd conclusion that any two quan-
tum observables X̂ , Ŷ are compatible.

This argument follows essentially the paper of Srinivas [195], where it
is stressed that the key condition here is (S.0). Any quantum state Ŝ can
be represented in many different ways as the mixture of pure states. If
a hidden variable theory satisfying the conditions (E.2), (S.1) is possible
then it should necessarily admit such a nonuniqueness. In this respect the
condition (S.0) is similar to (X.0).

Thus among the requirements which were proposed for hidden variable
theories one should distinguish (E.1), (X.1), (S.1) (as well as the related
conditions (E.2), (X.2)-(X.4)) which have sound statistical motivation.
Essentially, these conditions require that the classical description should
preserve the main structural properties of statistical model expressed by
the axioms (A.1)-(A.3). The “no-go” theorems in fact do not forbid such
theories. A mathematically and physically motivated conclusion is that a
classical description satisfying these requirements should have necessar-
ily non-unique nature admitting possibility of compression in transition
to quantum theory.

3.2. A hidden variable model for a single quantum system

In the work of Kochen and Specker [77] the authors gave a “trivial” hid-
den variable model satisfying the statistical condition (E.1) but not pre-
serving the structure of functional dependences in quantum mechanics.
The idea was straightforward and amounts to introducing a personal “hid-
den variable” for each observable X̂ producing stochasticity in outcomes
of measurement of X̂ . The totality of all such hidden variables is then
the phase space variable ω of the model. The purpose of this construc-
tion was to demonstrate insuf�ciency of the statistical condition (E.1) and
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the power of the functional condition (X.1). However we will show that
basing on a similar idea one can construct a hidden variable model satis-
fying all the minimal requirements (E.1), (X.1), (S.1). The key feature is
of course the non-uniqueness of the classical description.

Denote by �′ the set of all pure quantum states, so that for any ω′ ∈
�′ there is a unit vector ψω′ ∈ H such that Trω′ X̂ = 〈ψω′ |X̂ψω′ 〉. Every
quantum state can be written as a mixture of pure states

Ŝ =
∫

�′
ω′S′(dω′), (3.12)

where S′(dω′) is a probability distribution on �′, and this representation
is of course not unique. The relation (3.12) de�nes af�ne mapping S′ →
Ŝ of the simplex S(�′) onto the convex set Ŝ.

Let Ê ={Êi } be an orthogonal resolution of the identity inH describing
a quantum measurement. It suf�ces to restrict to the maximal measure-
ments for which Êi are projections onto the vectors ei of an orthonormal
basis. Put

Mi (ω
′) = Trω′ Êi = |〈ψω′ |ei 〉|2 , (3.13)

then M̂ = {
Mi (ω

′)
}

will be a classical randomized measurement on �′.
The relations (3.12), (3.13) imply

TrŜ Êi =
∫

�′
S′(dω′)Mi (ω

′). (3.14)

Thus we succeeded to build a classical model in which states are de-
scribed by probability distributions on the “phase space” �′ and the (max-
imal) quantum measurements – by randomized classical measurements
M, with the statistical correspondence condition (3.14) ful�lled. The
quantum theory is the compressed description of this model in the sense
of Section 2.6 (cf. also Theorem 1.7.1).

The next step is to realize every classical randomized measurement
(3.13) with the help of randomizing probability space

(
�Ê, dλÊ

)
for ex-

ample as it is described at the end of Section 2.2. One can say that to ev-
ery maximal quantum measurement corresponds a “roulette”

(
�Ê, dλÊ

)
which models stochasticity of the measurement outcomes in any pure
state ω′. If the state Ŝ is mixed, then the probability distribution of the
measurement outcomes is given by the corresponding mixture

TrŜ Êi =
∫

�′

∫
�Ê

S′(dω′)dλÊEi
(
ω′, λÊ

)
, (3.15)

as it is seen from (3.14) and (2.5). To embrace the totality of the maximal
quantum measurements, let us introduce the product of probability spaces
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(
�′′, P ′′

) = ∏
Ê

(
�Ê, dλÊ

)
. Thus every ω′′ ∈ �′′ is a collection ω′′ =∏

Ê λÊ of independent “roulettes” corresponding to all possible maximal
quantum measurements so that P(dω′′) =∏

Ê dλÊ.
Now de�ne the phase space of the sought classical description as � =

�′ × �′′, so that ω = (
ω′, ω′′

)
. The classical states will be given by the

probability distributions on � having the form S(dω) = S′(dω′)P(dω′′),
where S′ is an arbitrary probability distribution on �′. The mapping S →
Ŝ is de�ned as

Ŝ =
∫

�

ω′S′(dω) =
∫

�′
ω′S′(dω′). (3.16)

To every maximal quantum measurement Ê corresponds uniquely the
deterministic classical measurement E = {Ei (ω)}, where Ei (ω) =
Ei

(
ω′, λÊ

)
, and λÊ = πÊ(ω

′′) is the coordinate projection of the point
ω′′. From (3.15) it follows that

TrŜ Êi =
∫

�

S(dω)Ei (ω). (3.17)

It remains to establish correspondence between quantum observables and
random variables on �. Let X̂ be a quantum observable and Ê ={Êi } -
one of the corresponding maximal measurements, so that X̂ = ∑

i xi Êi .

Let E = {Ei (ω)} be the corresponding classical deterministic measure-
ment. Consider the random variable X (ω) = ∑

i xi Ei (ω). Since Ê is in
general nonunique, we obtain a collection of random variables X (ω) →
X̂ corresponding to different Ê. It is important that X (ω) depends on ω′′
only via the coordinate projection λÊ = πÊ(ω

′′). If X (ω) �= const this
allows to reconstruct E uniquely given X (ω). The values xi are also re-
constructed by X. Then from E one recovers Ê and hence X̂ =∑

i xi Êi .

Therefore the mapping X → X̂ is well de�ned for X (ω) �= const. In
case X (ω) ≡ λ we have xi ≡ λ, hence X̂ =λ Î so the mapping is unam-
biguously de�ned also in this case.

From (3.17) it follows that the statistical correspondence (E.1) holds.
The mapping S → Ŝ is af�ne, so that (S.1) also holds. Let us check the
functional condition (X.1). If X is a random variable, X → X̂ , and f a
function, then f (X (ω)) =∑

i f (xi )Ei (ω). Without loss of generality we
can assume both X and f nonconstant. Then Ê and hence X̂ is recovered
from X uniquely, so that f̂ (X) =∑

i f (xi )Êi = f (X̂).

Notice that in the case dim H =2 every nontrivial resolution of the
identity in H is maximal, therefore our construction in this case satis�es
even the uniqueness condition (X.0). This explains the restriction dim
H ≥3 in Propositions 3.3, 3.4.
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In brief, the proposed classical description is constructed so as to make
distinguishable all the mixtures giving the same quantum state as well as
all the measurements giving the same quantum observable. The corre-
spondence S → Ŝ is one-to-one only for the pure states Ŝ and the cor-
respondence X → X̂ – only for the maximal observables with simple
spectrum.

Certainly this model does not pretend to replace the mathematical ap-
paratus of quantum mechanics. It is also extremely wasteful from the
viewpoint of representing the measurement statistics as it contains a lot
of irrelevant “detail”. However it is relevant in making explicit the struc-
tural properties of quantum theory which can be preserved in classical
description and in showing that “no-go” proof for hidden variables can-
not be based solely on the minimal statistical requirements (E.1), (S.1),
(X.1). Complementarity does not prevent from a classical description as
soon as the classical-quantum correspondence is not required to be one-
to-one. Similar conclusions hold for rather arbitrary separated statistical
model since the minimal statistical requirements concern only the com-
mon properties of quantum mechanical description. Thus consideration
of the hidden variable hypothesis should involve more speci�c properties
of the quantum mechanical description.

3.3. Hidden variables and evolutions of quantum system

Here we discuss the question: can a classical description reproduce tem-
poral quantum evolutions including a) the reversible dynamics as deter-
mined by the Schrödinger equation; b) state changes (reductions) due to
repeated quantum measurements.

The quantum dynamics of a single system is translated into the classi-
cal description proposed in the previous section without great dif�culties.
The complex unit state vector ψ de�nes the coordinates

[
ψ j , ψ̄ j

]
on the

variety of pure states �′, and the Schrödinger equation dψ

dt = −i Hψ with
the Hamiltonian H generates a �ow

{
T ′t
}

on �′ which can be written in
the coordinates

[
ψ j , ψ̄ j

]
as a classical Hamiltonian system

dψ j

dt
= −i

∂

∂ψ̄ j
�
(
ψ, ψ̄

)
,

dψ̄ j

dt
= i

∂

∂ψ j
�
(
ψ, ψ̄

) ; j = 1, . . . , n,

with the Hamiltonian function �
(
ψ, ψ̄

) = (ψ |Hψ) . Putting T ′′t ω′′ =
ω′′, we obtain a �ow Tt = T ′t × T ′′t de�ning the dynamics of the corre-
sponding classical model.
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The question of describing repeated measurements and reductions is
more complicated. A genuine hidden variable model should completely
reduce measurements to observations and in this way resolve the enig-
matic “measurement problem”. A lot of attention was paid to this prob-
lem in physical and philosophical literature (see, e.g. [71, 138, 171, 186,
198]) while our remarks will be rather sketchy.

First we describe repeated measurements in quantum mechanics. Let
a measurement Ê ={Êi } and then a measurement F̂ ={F̂j } be performed
over a quantum system in the initial state Ŝ. The formula (2.8) is insuf�-
cient in this case and an additional assumption is required. The “repeata-
bility hypothesis” of von Neumann leads to the following expression for
the joint probability distribution of the repeated quantum measurements

μ
Ê,F̂
Ŝ

(i, j) = TrŜ Êi F̂j Êi . (3.18)

If Ê and F̂ are compatible, then these probabilities do not depend on
the order of measurements and are equal to the probabilities for the joint

measurement TrŜ Êi F̂j . If Ê = F̂ then μ
Ê,F̂
Ŝ

(i, j) = 0 for i �= j, which
explains the term “repeatability hypothesis” . In the general case of in-

compatible measurements μ
Ê,F̂
Ŝ

�= μ
F̂,Ê
Ŝ

, re�ecting impossibility to give
an objective meaning to the joint probability distribution. Notice also that
for a given observable X̂ the distribution (3.18) in general depends on the
choice of its measurement Ê.

The relation (3.18) can be directly generalized to the case of arbitrary
number of repeated measurements. For example, for three measurements

μ
Ê,F̂,Ĝ
Ŝ

(i, j, k) = TrŜ Êi F̂j Ĝk F̂j Êi . (3.19)

The unpublished von Neumann’s argument mentioned in the remark of
Wigner was just about the possibility of reproducing the statistics of re-
peated quantum measurements. That remark concerns the case of spin-
1/2 particle which is described by two-dimensional Hilbert space H and
the spin components are 2× 2−matrices.

“. . . Rather, Von Neumann often discussed the measurement of the
spin component of a spin-J particle in various directions. Clearly, the
probabilities for the two possible outcomes of a single such measurement
can be easily accounted for by hidden variables (see, e.g., the rest of the
present section or the more speci�c discussion on page 448 of Bell’s ar-
ticle, Reference 2). However, Von Neumann felt that this is not the case
for many consecutive measurements of the spin component in various
different directions. The outcome of the �rst such measurement restricts
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the range of values which the hidden parameters must have had before
that �rst measurement was undertaken. The restriction will be present
also after the measurement so that the probability distribution of the hid-
den variables characterizing the spin will be different for particles for
which the measurement gave a positive result from that of the particles
for which the measurement gave a negative result. The range of the hid-
den variables will be further restricted in the particles for which a second
measurement of the spin component, in a different direction, also gave a
positive result. A great number of consecutive measurements will select
particles the hidden variables of which are all so closely alike that the
spin component has, with a high probability, a de�nite sign in all direc-
tions. However, according to quantum mechanical theory, no such state is
possible. Schrödinger raised the objection against this argument that the
measurement of a spin component in one direction, while possibly spec-
ifying some hidden variables, may restore a random distribution of some
other hidden variables. It is this writer’s impression that Von Neumann
did not accept Schrödinger’s objection. His point was that the objection
presupposed hidden variables in the apparatus used for the measurement.
Von Neumann’s argument needs to assume only two apparata, with per-
pendicular magnetic �elds, and a succession of measurements alternating
between the two apparata. Eventually, even the hidden variables of both
apparata will be �xed by the outcomes of many subsequent measurements
of the spin component in their respective directions so that the whole sys-
tem’s hidden variables will be �xed. Von Neumann did not publish this
apparent refutation of Schrödinger’s objection.”

Let us see how one should change the state in a hidden variable model
of Section 2.2 to reproduce the outcomes of the repeated measurements.
For simplicity we restrict to pure states and maximal measurements. If in
the state ω′ one performs the measurement Ê and then the measurement
F̂ then according to (3.18) the probability of the outcome (i, j) is equal to

μ
Ê,F̂
ω′ (i, j) = |〈ψω′ |ei 〉|2

∣∣〈ei | f j 〉
∣∣2 ,

where {ei } ,
{

f j
}

are the bases determining the measurements Ê, F̂. One
can see that such values of the probabilities will be ensured if after the
�rst measurement the initial point ω = (

ω′, ω′′
)

of the phase space will

go into the point (Êi , ω
′′) under the condition that the outcome of the �rst

measurement was i , i.e. if λÊ = πÊ(ω
′′) satis�es the inequality

i−1∑
k=1

|〈ψω′ |ei 〉|2 < λÊ ≤
i∑

k=1

|〈ψω′ |ei 〉|2 .
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The change of the component ω′ is thus a controlled Markov process. We
also have to describe the change ω′′ → ω̃′′. If the second measurement
is the same as the �rst one, then (3.18) implies that its outcome should
coincide with the outcome of the �rst measurement. To ensure this it
should be πÊ(ω̃

′′) = πÊ(ω
′′) i.e. the “roulette” corresponding to the

measurement Ê should preserve its state after the �rst measurement. It
is not important what then happens with the other “roulettes” unless they
preserve the uniform distribution.

Consider, however, three repeated measurements Ê, F̂, Ê. According
to (3.19) the probability of the outcome (i, j, k) is equal to

μ
Ê,F̂,Ê
ω′ (i, j, k) = |〈ψω′ |ei 〉|2

∣∣〈ei | f j 〉
∣∣2 ∣∣〈 f j |ek〉

∣∣2 .

In order to obtain such an expression in the classical model, it is nec-
essary that after the second measurement the probability distribution of
the “roulette” corresponding to the measurement Ê should be completely
renewed, i.e. πÊ(ω

′′) should become a random variable independent
of the previous values. Since Ê is arbitrary, this leads to the follow-
ing rule of state change for the roulettes: after a measurement F̂ the
states of all the roulettes λÊ = πÊ(ω

′′) with Ê �= F̂ are completely
renewed while λF̂ = πF̂(ω

′′) preserves its value. This completely cor-
responds to the Schrödinger’s remark. One can check that such a pre-
scription allows to reproduce probabilities for all possible repeated max-
imal measurements. To include not necessarily maximal measurements
one has to extend further the collection of “roulettes” in the classical
descriptions.

The hidden variable ω have the two components, the �rst of which ω′
can be considered as the characteristic of the system itself. The question
– to what corresponds ω′′ – properly to the system or to the measuring
devices is very interesting although it does not give direct arguments con-
tradicting to Schrödinger’s prescription. On one hand it appears natural
to consider λÊ = πÊ(ω

′′) as parameters of the measuring device Ê. In-
teraction of Ê with the system �xes the parameters of the device and λÊ
does not change after the repeated measurement Ê. On the other hand, the
totality of all possible measurements Ê which can be performed over the
system and the corresponding collection of the parameters ω′′ = ∏

Ê λÊ
can be regarded as the characteristic of the whole system, taking into ac-
count that measurement F̂ affects all the parameters λÊ, Ê �= F̂. Here it
is appropriate to remind of Bohr’s saying that in quantum physics “the
interaction between the measuring instruments and the objects forms an
integral part of the phenomena” [155, page 4]. Anyhow we have seen that
there exists a way to de�ne the stochastic rule of state change of a classi-
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cal system which allows to reproduce probabilities of repeated quantum
measurements.

In the case of spin-1/2 system this was observed by Clauser [159] in
a discussion which followed the publication of Wigner’s paper. Having
considered the Bell’s model, Clauser proposed a simple rule for state
change due to measurement which in fact uses Schrödinger’s prescrip-
tion and reproduces probabilities of all repeated measurements. In his
answer Wigner raised the following objection which is applicable also
to our model: a hidden variable model should give explanation for state
changes in “mechanistic” i.e. deterministic but not in stochastic terms.
A permanent �ow of randomness which is necessary for partial renewal
of the distribution of ω′′ after each measurement is in the con�ict with
Liouville type theorem concerning conservation of the phase volume. To
describe such a permanent renewal, a radical increase of dimensionality
is required. Let us explain this on the simplest example of a sequence of
independent random variables {Xi } with values in R. To describe it as a
dynamical system with an invariant measure one has to pass to the tra-
jectory space RZ. The stochastic renewal of the state of one dimensional
system can be represented as a mechanical evolution only in the in�nite
dimensional space of sequences.

The comment of Wigner is concluded with explanation that “all
schemes of hidden parameters which either Von Neumann himself, or
anyone else whom he knew, could think of and which reproduced the
probabilities of outcomes of several successive measurements of the spin
directions, had some feature which made it unattractive, in fact unreason-
able” and “this was the true reason for his (von Neumann’s) conviction
of the inadequacy of the theories of hidden variables”.

Thus the requirement of reproducing the results of repeated measure-
ments in a hidden variable theory seems to lead to unappealing construc-
tions which evoke negative emotions both from physicists and mathe-
maticians. However no de�nite results which would close search in this
direction were obtained. After publication of Bell’s works the edge of
investigations shifted to a different aspect of the hidden variable problem
related to the description of composite systems4.

3.4. Composite systems, EPR paradox and the Bell inequality

The most important physical applications of the mathematical apparatus
of quantum mechanics concern the special features of interactions of

4 Recently there was a revival of interest to noncontextual hidden variables due to discovery of tests
for noncontextuality, including experimental work (see [169, 183] and the references therein).
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microobjects which have no place in the classical physics. Nevertheless
the �rst step in the quantum mechanical description interaction follows
the classical pattern. Namely, one starts from a collection of noninter-
acting “single” components and then the interaction is described in terms
of this composite system. Thus speaking about interaction one deals not
so much with a model for single system, but rather with a category of
these models equipped with the operation of product de�ning the rule
for making a composite system. In classical mechanics one considers
(symplectic) phase spaces with the operation of Cartesian product, while
in quantum mechanics – the Hilbert spaces with the operation of tensor
product.

In our discussion of this operation, for simplicity, we will not take into
account additional complications related to possible indistinguishability
of particles. One calls by tensor product of the vector ψ1 ∈ H1 with
the components [ψ i

1] and the vector ψ2 ∈ H2 with the components [ψ j
2 ]

the vector ψ1 ⊗ ψ2 with the components [ψ i
1ψ

j
2 ] which is conveniently

represented by the matrix. The space H1 ⊗ H2 consists of all possible
linear combinations (superpositions) of vectors of the form ψ1 ⊗ ψ2, i.e.
of all complex matrices [ψ i j ] . Consider a pure state of the composite
system de�ned by a unit vector ψ ∈ H1 ⊗H2. There is a lot of vectors
which cannot be written in the form ψ1 ⊗ ψ2 corresponding to the case
where the �rst and the second components are in the uniquely de�ned
pure states. Most of the vectors ψ are superpositions of such vectors.
For a superposition it is not possible to separate uniquely the �rst and
the second components of the composite system. These unfactorizable
entangled states represent a holistic entity in which the components ex-
ists, as one is accustomed to say, virtually. This re�ects the property of
quantum nonseparability.

At a �rst glance it looks unclear how such a merging of the components
could happen before the interaction of the subsystems. The explanation is
that preparation of an entangled pure state of a composite system assumes
preliminary interaction between the components. Indeed, any vector ψ

can be obtained from factorizable one ψ1 ⊗ ψ2 by action of a unitary
operator U in H1 ⊗ H2 so that ψ = U (ψ1 ⊗ ψ2). Then the prepara-
tion consists of the interaction described by the operator U. As distinct
from the classical mechanics where state preparation can be described
in purely kinematical terms, preparation of many quantum mechanical
states requires a dynamical interaction.

Consider from this point of view the hidden variable model of Sec-
tion 2.2. Since the set of pure states of the composite system �′ is larger
than Cartesian product �′

1 × �′
2, where �′

j is the set of pure states of
the j−th component, the phase space of the classical description of the
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composite system will be larger than the product of phase spaces for the
components: �1 × �2 � �. Therefore this classical description is not a
correspondence between the categories of classical and quantum system
preserving the operation of forming the composite systems.

Moreover, it appears that there is no way to establish such a corre-
spondence. In any classical description of a composite quantum system
the variables corresponding to observables of the components are nec-
essarily entangled in the way unusual for classical subsystems. To give
exact formulation, notice that observables corresponding to the �rst and
the second components have the form X̂ = X̂1 ⊗ Î2, Ŷ = Î1 ⊗ Ŷ2,
where X̂1 is operator in H1, Ŷ2 operator in H2 and Î j are the unit oper-
ators in H j . Certainly X̂ Ŷ = Ŷ X̂ so that X̂ , Ŷ are compatible, but they
have even stronger property of algebraic independence: if f (X̂) = g(Ŷ )

then f (X̂) = g(Ŷ ) = cÎ (such a property is not satis�ed e.g.by the com-
muting variables X̂ and X̂ 2 with X̂2 �= cÎ ).

Proposition 3.6. There is no classical description for a composite quan-
tum system in the space H1⊗H2 satisfying (E.1), (X.2) and the following
separability condition:

(X.6) for any observables X̂1, . . . , X̂n of the �rst subsystem and Ŷ1, . . . ,

Ŷm of the second subsystem there are random variables X1, . . . , Xn;
Y1, . . . , Ym such that Xi → X̂i , Y j → Ŷ j and Xi Y j → X̂i Ŷ j .

It will be shown that there is no such a description already for n = m = 2.

Notice that the conditions (X.0) or (S.0) of one-to-one correspondence
are not required here. The proposition means that while for any pair X̂ , Ŷ ,
where X̂ (respectively Ŷ ) refers to the �rst (respectively to the second)
system, it is always possible to �nd X, Y such that X → X̂ , Y → Ŷ and
XY → X̂ Ŷ (this follows from the possibility to satisfy the product rule
(X.4)), it is impossible to do it in the way that Y would be the same for
all choices of X̂ and X – the same for all Ŷ . The expression X̂ Ŷ enters
into the correlation 〈

X̂ Ŷ
〉
= TrŜ X̂ Ŷ (3.20)

of the outcomes of joint measurements of X̂ and Ŷ . Thus to reproduce
the quantum mechanical correlations between the subsystems, a hidden
variable theory should possess the following strange property: the ob-
servation method for an observable of the second subsystem Ŷ should
necessarily depend on which X̂ is observed over the �rst subsystem.

Proof. The proof is based on Clauser-Horne-Shimony-Holt inequality
which is a version of the famous Bell inequality [160]. Assume that one
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can satisfy the condition (X.6) with n = m = 2 and let us prove that for
all observables X̂1, X̂2 of the �rst component and all observables Ŷ1, Ŷ2

of the second, with the outcomes in [−1, 1] , the correlations (3.20) sat-
isfy ∣∣∣〈X̂1Ŷ1

〉
+
〈
X̂1Ŷ2

〉
+
〈
X̂2Ŷ1

〉
−
〈
X̂2Ŷ2

〉∣∣∣ ≤ 2. (3.21)

By the assumptions (E.1), (X.6) it is suf�cient to prove this for correla-
tions of classical random variables X1 (ω) , X2 (ω) , Y1 (ω) , Y2 (ω) given
by

〈XY 〉 =
∫

�

S (dω) X (ω) Y (ω) .

But taking into account the spectral condition (X.2) one has |X j | ≤
1, |Yk | ≤ 1; j, k = 1, 2, which implies

|X1Y1+X1Y2+X2Y1−X2Y2|≤|Y1+Y2|+|Y1−Y2|≤2 max{|Y1|,|Y2|}≤2,

hence −2 ≤ X1Y1 + X1Y2 + X2Y1 − X2Y2 ≤ 2, whence, taking the
expectation, one obtains the required inequality.

It remains to show that in any composite quantum system one can �nd
observables X̂1, X̂2; Ŷ1, Ŷ2 and the state Ŝ violating the inequality (3.21).
For this consider �rst the system of two distinguishable spin-1/2 particles
so that H1 and H2 are two-dimensional. Denote by X̂(&a) the spin observ-
able in the direction &a = (

ax , ay, az
)

for the �rst particle and by Ŷ (&b) –
the spin observable in the direction &b for the second particle. In the basis

| ↑〉 =
[

1
0

]
, | ↓〉 =

[
0
1

]
one has

X̂(&a) =
[

az ax − iay

ax + iay −az

]
,

and similarly for Ŷ (&b). Consider the entangled pure state Ŝψ of the com-
posite system given by the vector

|ψ〉 = 1√
2

[| ↑〉 ⊗ | ↓〉 − | ↓〉 ⊗ | ↑〉]. (3.22)

A simple calculation shows that

〈ψ |σ(&a)⊗ σ(&b)|ψ〉 = −&a · &b. (3.23)

If one chooses the four vectors &a j , &bk, ( j, k = 1, 2) as shown on Fig. 6.3,
then the correlations between X̂(&a j ) and Ŷ (&bk) give the value 2

√
2 for

the left side of (3.21), which breaks the inequality.
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Figure 6.3. Choice of &a j and &bk .

For an arbitrary composite quantum system H1⊗H2 one can always take
the two-dimensional subspaces of H1 and H2 to build this construction
which proves the Proposition in the general case.

The underlying case of two spatially separated particles has quite im-
portant physical consequences. This was realized already in 1935 after
publication of the paper of Einstein, Podolsky and Rosen (EPR) [162] in
the subsequent discussion on completeness of quantum mechanics (con-
sidering entangled state of two spin-1/2 particles was proposed later by
Bohm). EPR believed that their argument shows “incompleteness” of
quantum mechanical description. The argument of Bell shifts the accent
substantially: if the quantum mechanical description is correct then any
attempt to “complete” it with hidden variables leads necessarily to con-
tradiction with the physical principle of locality. Assume that H1 and H2

describe spin degrees of freedom of two spin-1/2 particles located in spa-
tially separated domains. Quantum mechanics implies existence of states
for such a system in which the spins are entangled as in (3.22). More-
over, such a state in principle can be realized experimentally as a product
of decay of a spin-zero system.

Now assume that a joint measurement is performed for the spin of the
�rst particle in the direction &a and the spin of the second particle in the di-
rection &b. After a long series of independent repetitions the experimenter
computes statistical estimates for the correlation between X̂(&a) and Ŷ (&b).

Consider the following three statements:

I the correct values for the correlations are given by the quantum me-
chanical formula (3.20);

II there is a classical description of the composite quantum system sat-
isfying the spectral condition i.e. preserving the “objective values”
of observables;
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III “the real factual situation of the system S1 is independent of what
is done with the system S2, which is spatially separated from the
former”.

The last property is the Einstein locality [162] or separability [163] re-
lated to the principle “no instantaneous action at a distance”. Notice that
the property (III) has an unambiguous meaning only in the classical pic-
ture i.e. under the condition (II). The classical description satisfying the
requirement (III) is called a local hidden variable theory or “local real-
ism”. The Bell argument shows that the properties (I)-(III) are incom-
patible i.e. a local hidden variable theory reproducing the statistical
predictions of quantum mechanics does not exist. This can be considered
as modern interpretation of the “EPR paradox” .

Moreover, the Bell type inequalities in principle open a possibility
for experimental test: quantum mechanics versus local hidden variable
theory. A practical implementation of such experiments is however ag-
gravated by several possible loopholes and requires great efforts. The
famous Aspect’s experiment performed in 1981-1982 showed the agree-
ment with quantum mechanical formula for correlations. After that there
was a continuing series of experiments with similar conclusions while
a couple of them claimed possible agreement with the Bell inequality
[160, 194]. However the question is not closed because of the high price
of rejecting the “realistic” description of the Nature [163].

We are not speaking of defenders of the naive realism who would be
happy with a pictorial image of the microworld as something similar to
the world directly accessible to the human perception where mechanis-
tic idealizations like a material point still have sense. They continue at-
tempts to �nd a gap in the argument leading to the conclusion that any
local hidden variable theory cannot reproduce the statistical predictions
of quantum theory concerning correlations between the parts of a com-
posite quantum system. It should be noticed that while the Bell inequality
as such is elementary, the logic of its application in the hidden variable
problem is far from trivial; any critique of Bell’s argument with its sub-
sequent re�nements, however it might seem sophisticated, sooner or later
was found based on a misunderstanding. A critical survey of recent dis-
cussions and different opinions is given in the article [164] where in par-
ticular a proof is given of a Bell inequality taking into account �niteness
of the sample and possibility of arbitrary local correlations between the
subsequent experiments.

What is really disturbing is the apparent impossibility of a peaceful co-
existence of quantum mechanics and “local realistic” theory such as gen-
eral relativity (which was in fact the motivation of Einstein’s concern).
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Admitting a local hidden variable theory would mean that quantum me-
chanics is limited at least in some of its most basic predictions which
would be quite an extraordinary development. Some compromise has to
be found if one believes in the possibility of uni�ed quantum theory of
interactions including gravitation.

On the other hand, macroscopic or at least mesoscopic manifestations
of the entanglement are critically important for the future technological
implementations of the new quantum information processing protocols
including quantum computation.

Therefore much attention is paid to close possible logical loopholes in
the actual Bell-test experiments. The most signi�cant one is the detection
loophole which still exists after almost 40 years of experimental research.
Soon after appearance of Bell’s work it was recognized that the inequal-
ity can be violated in local hidden variable models with post-selection
with a positive probability of failure for the particle detection if the “no
detection” outcomes are just neglected. A simple explicit local hidden
variable model for such correlation experiment with two spin-1/2 parti-
cles was demonstrated by N. Gisin and B. Gisin [167] implying in partic-
ular that experiments with the detector ef�ciency below 75% cannot be
considered as decisive. Therefore researchers continue to improve exper-
imental techniques and search for the more sensitive inequalities [187].
Nowadays theoretical study of the Bell-type inequalities providing quan-
titative boarders between “classical” and “quantum” is one of the topics
in the modern quantum information theory with applications to quan-
tum cryptography, entanglement detection, multipartite interactive proof
systems, communication complexity etc., see [181] and the references
therein. However these exciting subjects are already beyond the scope of
the present essay.
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S. AGMON, Spectral Properties of Schrödinger Operators and Scattering

Theory, 1975.

M. F. ATIYAH, Geometry of Yang-Mills Fields, 1979.
KAC M., Integration in Function Spaces and some of its Applications,

1983 (out of print).



323 Monographs

J. MOSER, Integrable Hamiltonian Systems and Spectral Theory, 1983.
T. KATO, Abstract Differential Equations and Nonlinear Mixed Prob-

lems, 1988.
W. H. FLEMING, Controlled Markov Processes and Viscosity Solution of

Nonlinear Evolution Equations, 1988.

V. I. ARNOLD, The Theory of Singularities and its Applications, 1991.
J. P. OSTRIKER, Development of Larger-Scale Structure in the Universe,

1993.

S. P. NOVIKOV, Solitons and Geometry, 1994.

L. A. CAFFARELLI, The Obstacle Problem, 1999.


	Title Page
	Copyright Page 
	Table of Contents
	Foreword to the second English edition
	Foreword to the second Russian edition
	Preface
	Chapter 1 Statistical models
	1.1 States and measurements
	1.2 Some facts about convex sets
	1.3 Definition of a statistical model
	1.4 The classical statistical model
	1.5 Reduction of statistical model. Classical model with a restricted class of measurements
	1.6 The statistical model of quantum mechanics
	1.7 On the problem of “hidden variables”
	1.8 Comments

	Chapter 2 Mathematics of quantum theory
	2.1 Operators in a Hilbert space
	2.2 Quantum states and measurements
	2.3 Spectral representation of bounded operators
	2.4 Spectral representation of unbounded operators
	2.5 On realization of measurement
	2.6 Uncertainty relations and compatibility
	2.7 Trace-class operators and Hilbert-Schmidt operators
	2.8 L 2 spaces associated with a quantum state
	2.9 Uncertainty relations for measurements with finite second moments
	2.10 Matrix representation of square-summable operators. The commutation operator of a state
	2.11 Comments 

	Chapter 3 Symmetry groups in quantum mechanics
	3.1 Statistical model and Galilean relativity
	3.2 One-parameter shift groups and uncertainty relations
	3.3 Kinematics of a quantum particle in one dimension
	3.4 Uniqueness theorem. The Schrodinger and the momentum representations
	3.5 Minimum-uncertainty states. The completeness relation
	3.6 Joint measurements of coordinate and velocity
	3.7 Dynamics of a quantum particle in one dimension
	3.8 Time observable. The “time-energy” uncertainty relation
	3.9 Quantum oscillator and phase measurement
	3.10 The coherent-state representation
	3.11 Representations of the rotation group and angular momenta
	3.12 Measuring the angle of rotation
	3.13 Comments

	Chapter4 Covariant measurements and optimality
	4.1 Parametric symmetry groups and covariant measurements
	4.2 Structure of covariant measurements
	4.3 The covariant quantum estimation problem
	4.4 Measurements of angular parameters
	4.5 Uncertainty relations for angular quantities
	4.6 Covariant measurements of angular parameter in the case of arbitrary representation of the group T
	4.7 Covariant measurements of a shift parameter
	4.8 The case of irreducible representation
	4.9 Estimation of pure state
	4.10 Measuring parameters of orientation
	4.11 Comments

	Chapter5 Gaussian states
	5.1 Quasiclassical states of the quantum oscillator
	5.2 The CCR for many degrees of freedom
	5.3. Proof of the Stone-von Neumann uniqueness theorem. The Weyl transform
	5.4 Characteristic function and moments of state
	5.5 Structure of general Gaussian states
	5.6 A characteristic property of Gaussian states
	5.7 Comments 

	Chapter 6Unbiased measurements
	6.1 Quantum communication channel
	6.2 A lower bound for the variance in one-dimensional case
	6.3 The case of shift parameter
	6.4 Estimation of force by measurements over a trial object 
	6.5 A bound for the measurement covariance matrix based on symmetric logarithmic derivatives
	6.6 A bound based on right logarithmic derivatives
	6.7 A general bound for the total mean-square deviation
	6.8 Linear measurements
	6.9 Mean-value estimation for Gaussian states
	6.10 Comments

	Supplement Statistical structure of quantum theory and hidden variables
	1 Introduction
	2 The structure of statistical theories
	2.1 Axiomatic approaches in quantum mechanics
	2.2 The classical picture of statistical experiment
	2.3 The main features of statistical description
	2.4 Statistical model of quantum mechanics
	2.5 Compatibility and complementarity
	2.6 Classical and nonclassical models

	3 The problem of hidden variables
	3.1 “No-go” proofs and the minimal statistical requirements on hidden variables
	3.2 A hidden variable model for a single quantum system
	3.3 Hidden variables and evolutions of quantum system
	3.4 Composite systems, EPR paradox and the Bell inequality


	References 
	Index
	MONOGRAPHS


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




