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2.1	 �Introduction

This chapter describes the mechanical and metabolic costs of meeting the ventilatory 
requirements of exercise in healthy humans. We also deal with whether the respira-
tory muscles fatigue during exercise, what factors contribute to any such respiratory 
muscle fatigue, what the implications of these factors are for blood flow distribution 
and endurance exercise performance, and whether it is possible to overcome these 
potential respiratory limitations.

2.2	 �What Are the Ventilatory Costs of Exercise?

During whole-body exercise the respiratory control system functions to increase 
alveolar ventilation to a level sufficient to regulate arterial blood-gas tensions and 
acid–base balance at or near resting levels while minimizing the mechanical work 
performed by the respiratory muscles. These ventilatory demands are met by 
increases in tidal volume and airflow, requiring increases in negative intrapleural 
pressure. The peak dynamic pressure generated by the inspiratory muscles expressed 
relative to the subjects’ ability to generate pressure at the lung volumes and flow 
rates adopted during maximal exercise is only 40–60  % in moderately fit 
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individuals [1]. In contrast, endurance-trained subjects elevate peak dynamic 
inspiratory muscle pressure to 90 % of capacity or greater [1].

The O2 consumption of the respiratory muscles ( rmOV 2 )  during exercise 
increases progressively relative to minute ventilation ( VE ). However, the relation-
ship is concave upward, i.e., a greater increment in VrmO2  is required to establish a 
given increase in VE  as work rate increases [2]. The VrmO2  during near-maximal 
exercise requires approximately 10 % of VO2max  for moderately fit subjects, whereas 
in highly fit subjects at higher peak work rates and VE , the VrmO2  approaches 15 % 
of VO2max  [3]. Respiratory muscle perfusion naturally plays an important role in 
determining VrmO .2  By measuring the reduction in cardiac output achieved via 
mechanical ventilation, Harms et al. [4] estimated that the respiratory muscle work 
under normal physiological conditions at maximal exercise in fit subjects requires 
approximately 16 % of the cardiac output to be directed to the respiratory muscles to 
support their metabolic requirements (Fig. 2.1). These indirect estimates in humans 
are in agreement with microsphere studies in the exercising pony, which show large 
increases in blood flow to both inspiratory and expiratory muscles amounting to 
approximately 16 % of total cardiac output during maximal exercise [5].

Nevertheless, the quantitation of respiratory muscle blood flow during exercise 
in the human remains controversial. Recent estimates of “trunk and head” blood 
flow based on the difference between cardiac output and flow to the arms plus legs 
(measured with dye dilution via catheterization of the subclavian and femoral veins) 
suggest that the lumped structure of the head, neck, heart, abdomen viscera, kidney, 
respiratory muscles, and gluteal muscles receives about 20 % of the cardiac output 
and 15  % of the VO2  during maximal upright cycling exercise [6]. These data 
would attribute a substantially less than 15 % share of the cardiac output to the 
respiratory muscles. One problem not yet addressed in any study is the identifica-
tion of all muscles – in the chest wall, abdomen, upper back, and shoulders – which 
are actually engaged (both dynamically and as fixators) in producing the hyperpnea 
accompanying heavy exercise.

2.3	 �Do the Respiratory Muscles Fatigue with Exercise?

Muscle fatigue has been defined as “a condition in which there is a loss in the capac-
ity for developing force and/or velocity of a muscle, resulting from muscle activity 
under load and which is reversible by rest” [7]. Respiratory muscle fatigue thus 
defined and its significance to whole-body exercise performance were poorly docu-
mented and had generated little interest before the late 1970s. The seminal paper of 
Roussos and Macklem [8], however, illustrated that the diaphragm under resistive 
load exhibits task failure in a fashion similar to that expected of any other skeletal 
muscle.

More recently, nerve stimulation techniques have been used to provide objective 
evidence of exercise-induced respiratory muscle fatigue. In subjects with a wide 
range of fitness performing sustained exercise for more than 8–10 min at intensities 
greater than 80–85 % of VO2max ,  reductions of 15–30 % in the transdiaphragmatic 
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pressure response to supramaximal stimulation of the phrenic nerves were consis-
tently obtained across a wide range of lung volumes and stimulation frequencies 
(1–100 Hz), and persisted for 1–2 h after exercise [9, 10]. These findings of dia-
phragmatic fatigue obtained at end-exercise have been confirmed using phrenic 
nerve stimulation “during” exercise, showing that significant fatigue occurs early 
during sustained, heavy exercise [11]. Like the diaphragm, the abdominal muscles 
are also susceptible to peripheral fatigue after sustained, heavy exercise 
(>90 %  VO2max),  as demonstrated by 15–25 % reductions in the gastric pressure 
response to stimulation of the thoracic nerves [12].
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Fig. 2.1  Distribution of cardiac output at VO2max . Left panel: distribution of total cardiac output 
among legs, respiratory muscles, and other metabolically active tissues (skin, heart, brain, kidneys, 
and liver) at VO2max . Respiratory muscle blood flow at VO2max  was assumed to be equal to the 
fall in cardiac output obtained with respiratory muscle unloading at VO2max  and extrapolated to 
zero work of breathing. Right panel: total cardiac output and leg blood flow were measured under 
control conditions (normal work of breathing), with respiratory muscle unloading (low work of 
breathing) and with respiratory muscle loading (high work of breathing). Total blood flow was 
significantly lower with unloading and unchanged with loading, whereas leg blood flow and vas-
cular conductance were significantly increased with unloading and decreased with loading (Data 
from Harms et al. [4, 26])
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2.4	 �What Are the Factors Contributing to Respiratory 
Muscle Fatigue?

There appear to be two general causes of exercise-induced diaphragmatic fatigue, 
namely, one cause attributable to the force production by the diaphragm itself and a 
second due to the effects of whole-body exercise, per se. Babcock et al. [13] exam-
ined the role that diaphragmatic pressure generation played in the fatigue process 
independent of the whole-body “exercise effect.” Subjects who demonstrated 
exercise-induced diaphragmatic fatigue were required to mimic at rest the essential 
mechanical components of breathing during exercise as well as the diaphragmatic 
pressure production for an identical time period as produced during exercise at 
95 % of VO2max.  This mimicking protocol caused a less than 10 % decline in evoked 
diaphragmatic pressure. Furthermore, sustained force outputs of the diaphragm that 
were 1.5–2 times those normally experienced during exhaustive exercise were 
required to cause diaphragmatic fatigue when the subject was in the resting state 
and increased ventilation voluntarily. These data show that the influence of whole-
body exercise on diaphragmatic fatigue is substantial. We believe that this whole-
body exercise effect is likely due to less blood flow availability to the diaphragm 
during exercise (vs. hyperpnea during the resting state) in the face of high blood 
flow demands by the locomotor muscles.

A second study showed that greatly reducing the force output of the diaphragm 
during exhaustive prolonged exercise prevented exercise-induced diaphragmatic 
fatigue [14]. Thus, while the force output of the diaphragm experienced during 
exercise was insufficient to cause fatigue in the absence of locomotor muscle force 
output, it was critical to the development of diaphragmatic fatigue in the presence 
of whole-body exercise. These findings were consistent with the additional observa-
tion that the effect of exhaustive high-intensity whole-body exercise, per se, did not 
elicit fatigue in non-exercising muscles of the hand [13].

Based on the evidence summarized above, we postulate that the development of 
diaphragmatic fatigue during exercise is a function of the relationship between the 
magnitude of diaphragmatic work and the adequacy of its blood supply: the less 
blood flow is available, the less diaphragmatic work is required to produce fatigue. 
In healthy subjects of varying fitness levels [15], an imbalance of muscle force out-
put versus blood flow and/or O2 transport availability to the diaphragm which favors 
fatigue appears to occur during exhaustive endurance exercise only when either the 
relative intensity of the exercise exceeds 85 % of VO2max  [9] or arterial hypoxemia 
is present [16].

2.5	 �What Are the Consequences of Respiratory Muscle 
Fatigue?

2.5.1	 �Effects on Exercise Performance

Experiments that have deliberately fatigued the respiratory muscles prior to exercise 
using either voluntary hyperpnea [17, 18] or resistive loading [19, 20] have noted a 
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decrease [17, 18, 20] or no change [19] in time-to-exhaustion during subsequent 
short-term, heavy exercise; the influence of fatigue upon more prolonged exercise 
remains untested. On balance, these findings suggest that there is potential for respi-
ratory muscle fatigue to impair short-duration, high-intensity exercise performance. 
A potential limitation of pre-fatigue studies, however, is that the number and type of 
motor units recruited during loaded breathing may be substantially different than 
during subsequent exercise. There may also be an effect of prior fatigue on the 
breathing pattern during subsequent exercise, such that any changes in exercise per-
formance could be due to changes in exertional dyspnea. Furthermore, it is difficult 
to determine the contribution of subject expectation because it is impossible to pla-
cebo the pre-fatigue condition.

Several studies have noted increases in exercise capacity with partial unloading 
of the respiratory muscles using either low-density gas mixtures [21] or propor-
tional assist mechanical ventilation [22]. For example, mechanical unloading of the 
respiratory muscles by over 50 % of their total inspiratory and expiratory work dur-
ing heavy exercise (>90 % of VO2max)  prevented diaphragmatic fatigue [14] and 
resulted in a statistically significant 14 % increase in exercise time-to-exhaustion in 
trained male cyclists, with reductions in oxygen uptake and the rate of rise in per-
ceptions of respiratory and limb discomfort [22] (Fig. 2.2). Other studies have not 
found a significant effect of respiratory muscle unloading on exercise capacity in 
less fit subjects [23–25], although these studies were conducted at lower relative 
exercise intensities, and the respiratory muscle unloading did not affect oxygen 
uptake. Collectively, these findings suggest that the work of breathing normally 
encountered during heavy sustained exercise has a significant influence on exercise 
performance.

2.5.2  �Cardiorespiratory Interactions

2.5.2.1	 �Respiratory Muscle Metaboreflex
Perhaps the most likely aspect of respiratory muscle work limiting exercise per-
formance is a reflex effect from fatiguing respiratory muscles which increases 
sympathetic vasoconstrictor outflow and compromises perfusion of limb muscle 
during prolonged exercise, thereby limiting its ability to perform work. Harms 
et al. [26] used a proportional assist ventilator to decrease the work of breathing 
in endurance-trained cyclists exercising at greater than 80  % of VO2max.  An 
increase in limb blood flow was observed commensurate with a 50–60 % decrease 
in the work of breathing. Conversely, when the work of breathing was increased 
by a comparable amount, limb blood flow and vascular conductance fell (Fig. 2.1). 
It seems likely that the local reductions in vascular conductance were sympatheti-
cally mediated because these changes correlated inversely with changes in norepi-
nephrine spillover across the limb. When the study was repeated at an exercise 
intensity of only 50–75 % of VO2max,  changes in limb blood flow, vascular con-
ductance, and norepinephrine spillover did not occur, even though changes in 
respiratory muscle work were still sufficient to alter oxygen uptake and cardiac 
output [27].
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What caused these sympathetically mediated changes in limb vascular conduc-
tance when respiratory muscle work was altered during maximal exercise? We pos-
tulate that reflex mechanisms of sympathoexcitation are triggered by metaboreceptors 
in the diaphragm and expiratory muscles that begin to accumulate metabolic end 
products during heavy exercise when cardiac output is insufficient to adequately 
meet the high metabolic requirements of both respiratory and limb musculature. 
Evidence in support of this postulate is fourfold. First, diaphragmatic fatigue caused 
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Fig. 2.2  Effects of 
respiratory muscle unloading 
via mechanical ventilation 
upon endurance exercise 
capacity at a workload 
requiring ~90 % of VO2max  
in trained male cyclists 
(n = 7). Group mean data are 
shown for minutes 1–5 of 
exercise and at exhaustion. 
Absolute time-to-exhaustion 
under control conditions 
averaged 9.1 ± 2.6 min. 
Unloading normal work of 
breathing by 50 % from 
control increased time-to-
exhaustion in 76 % of trials 
by a mean ± SD of 
1.3 ± 0.4 min (14 ± 5 %). 
Respiratory muscle unloading 
caused reductions in oxygen 
uptake and the rate of rise in 
perceptions of limb and 
respiratory discomfort 
throughout the duration of 
exercise. * Significantly 
different from control, 
p < 0.05 (Data from Harms 
et al. [22])
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a time-dependent increase in multiunit activity in small diameter phrenic afferents 
in anesthetized cats [28, 29] and in single-unit activity in group IV afferents in anes-
thetized rats [30]. Second, electrical or pharmacological stimulation of thin-fiber 
phrenic afferents in anesthetized animals using capsaicin, bradykinin or lactic acid 
injections, or diaphragm muscle ischemia elicited increases in efferent sympathetic 
nerve activity and/or vascular resistance in several vascular beds, including the limb 
musculature and renal and coronary vasculature [31–33]. Third, in the resting or 
mildly exercising canine, infusing lactic acid into the phrenic artery and diaphragm 
caused vasoconstriction and reduced blood flow in the contracting limb muscle, and 
this vasoconstrictive effect was prevented via adrenergic blockade [34]. Finally, in 
a series of studies in humans, high-intensity contractions of the diaphragm [35] or 
expiratory muscles [36] against airway resistance to the point of task failure and/or 
fatigue caused a time-dependent increase in muscle sympathetic nerve activity 
(MSNA) in the resting leg, despite a corresponding increase in systemic blood pres-
sure. This time-dependent increase in MSNA was accompanied by a significant 
decrease in limb vascular conductance and limb blood flow along with an increase 
in mean arterial pressure and heart rate [37] (Fig. 2.3). A similar time-dependent 
increase in ulnar nerve MSNA elicited via voluntary increases in inspiratory muscle 
work has recently been shown during cycling exercise [38].

To determine the precise mechanisms responsible for these time-dependent 
increases in MSNA and vascular responses, additional experiments were conducted 
to differentiate the potential effect of diaphragmatic fatigue from associated changes 
in lung volume, intrathoracic pressure, mechanical deformation of muscle, and cen-
tral respiratory motor output, all of which accompanied the fatiguing voluntary 
respiratory efforts carried out to task failure. These potential excitatory effects on 
MSNA were ruled out by showing no effect of non-fatiguing voluntary increases in 
central respiratory motor output per se and a vasodilatory effect of increasing tidal 
volume by itself [35, 36]. Furthermore, the increase in MSNA was gradual and time 
dependent and was not evident at the initiation of the fatiguing trial despite marked 
increases in effort, diaphragmatic force production, and negativity of intrathoracic 
pressure. A more recent study using multiple trials of gradually increasing inspira-
tory effort showed that limb vasoconstriction only occurred when the rhythmic con-
tractions of the diaphragm were of sufficient force and frequency to cause fatigue 
[39]. Thus, the apparent threshold for activation of MSNA from rhythmic respira-
tory muscle contractions was surpassed, not at a specific intensity of muscle force 
output, but only by respiratory muscle fatigue or at least a regimen of rhythmic 
muscular contractions that was likely sufficient to cause significant accumulation of 
muscle metabolites.

Collectively, the MSNA and blood flow data in humans and animals studied at 
rest and during exercise suggest that significant respiratory muscle metabolite accu-
mulation will evoke a metaboreflex effect, which increases sympathetic vasocon-
strictor outflow to limb locomotor muscle (Fig.  2.4), and perhaps explain the 
observed effects of changes in respiratory muscle work on limb vascular conduc-
tance, blood flow, and fatigue during maximal exercise [26, 40].
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Fig. 2.3  Upper panel (a): effects of fatiguing the diaphragm on muscle sympathetic nerve activity 
(MSNA) in the resting leg in one representative subject during eupnea and diaphragmatic breathing 
at 60 % of maximum inspiratory mouth pressure (MIP) with a TITTOT = 0.7 and fb = 15 breaths/min. 
Note that the frequency and amplitude of MSNA were unchanged at the onset of increased dia-
phragmatic force output but increased thereafter in a time-dependent manner. Lower panel (b): 
beat-by-beat velocity of femoral artery blood flow (VTI velocity time integral) in the resting leg in 
one representative subject during eupnea and fatiguing diaphragmatic work at 60 % MIP with a 
TITTOT = 0.7 and fb = 15 breaths/min and during recovery. Femoral artery diameter was unchanged 
during the experiment; therefore, any changes in measured blood velocity reflected those in blood 
flow. Note that leg blood flow decreased and leg vascular resistance increased during fatiguing dia-
phragmatic work, despite an increase in MAP (Data from St. Croix et al. [35] and Sheel et al. [37])
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2.5.2.2  �Intrathoracic Pressures and Cardiac Output
In exercising humans and dogs, reducing the negativity of inspiratory intrapleural 
pressure reduces right ventricular preload and stroke volume in health [4]. On the 
other hand, increasing expiratory threshold pressure reduces stroke volume – pre-
sumably because left ventricular afterload is increased – thereby reducing transven-
tricular pressure differences which would slow the rate of ventricular filling during 
diastole [41, 42]. Further, increasing abdominal versus intrathoracic pressure with 
predominantly diaphragm versus ribcage inspirations, respectively, has marked 
cyclical effects on femoral venous return from the limbs at rest and even during mild-
intensity leg exercise [43]. Understanding how the cardiovascular effects of isolated 
alterations in pressures during various phases of the respiratory cycle translate into 
the complex effects of breathing during whole-body exercise will be a formidable 
task – especially in the elite athlete ventilating in excess of 150 l/min who experi-
ences expiratory flow limitation, positive expiratory pressures which often exceed 
the critical closing pressure of the airways, and hyperinflation with inspiratory pres-
sures that are approaching the limits of the dynamic capacity of the inspiratory mus-
cles [1]. Equally intriguing and clinically relevant is why reducing the magnitude of 
negative pressure on inspiration increases stroke volume and cardiac output in a 
dose-dependent manner in heart failure animals [44] and humans [45] during exer-
cise – effects which are in the opposite direction to those in the healthy subject.

Respiratory muscle metaboreflex

Sympathetic efferent discharge
Limb Vasoconstriction in heavy
exercise
Limb Fatigue

Performance

Reflex activating metabolites
Group III/IV phrenic afferent discharge

Fig. 2.4  Schematic representation of the proposed respiratory muscle metaboreflex from the dia-
phragm and expiratory muscles activated by fatiguing contractions of these muscles and eliciting 
increased sympathetic discharge and limb vasoconstriction during heavy exercise with conse-
quences of enhanced rate of development of limb fatigue and reduced exercise performance (see 
text) (From Dempsey et al. [63])
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2.6	 �Can These Respiratory Limitations Be Overcome?

Evidence from studies that have specifically trained the respiratory muscles of 
healthy subjects using strength (resistive/threshold) or endurance (hyperpnea) train-
ing suggests it might be possible to overcome the aforementioned respiratory limi-
tations on exercise. Early studies produced contradictory findings, primarily due to 
poor research designs and inappropriate outcome measures [46]. More recent evi-
dence from adequately controlled studies suggests that there might be small but 
significant effects on exercise performance during constant load tests, time trials, 
and intermittent tests [47–50].

The mechanisms by which respiratory muscle training might improve exercise 
performance are not entirely clear. Increases in respiratory muscle strength, velocity 
of shortening, and endurance have been consistently observed with respiratory mus-
cle training in healthy subjects [51]. The functional significance of such improve-
ments in respiratory muscle function would presumably be to prevent or delay the 
respiratory muscle fatigue that is known to occur during heavy sustained exercise 
(see above). Changes in respiratory muscle fiber size, subtype ratio, and myofiber 
contractile properties induced by respiratory muscle training may reduce the force 
contribution from each active myofiber or the number of myofibers at a given sub-
maximal level of ventilation. In conjunction, a stronger type I fiber may allow indi-
viduals to delay the recruitment of less efficient type II fibers. Fatigue-resistant 
respiratory muscles may cause reductions in the rate of carbohydrate breakdown, 
lactate accumulation, and intracellular pH in these muscles, contributing to an over-
all improvement in cellular homeostasis. Fewer metabolic stimuli in the respiratory 
muscles would be expected to attenuate reflex activity from type III/IV receptors of 
these muscles and thereby reduce sympathetic vasoconstrictor activity in the limbs. 
The concomitant increase in limb blood flow would increase oxygen delivery to the 
limbs and potentially reduce both limb muscle fatigue and peripheral effort sensa-
tions. There is evidence that respiratory muscle training reduces exercise-induced 
respiratory muscle fatigue [52], increases the oxidative and/or lactate transport 
capacity of the inspiratory muscles [53], alleviates calf muscle fatigue during plan-
tar flexion exercise [54], and increases the threshold for activation of the respiratory 
muscle metaboreflex [55]. However, direct evidence for a benefit of respiratory 
muscle training on blood flow redistribution during dynamic whole-body exercise is 
not yet available. In addition to the potential effects of respiratory muscle training 
on exercise-induced respiratory muscle fatigue and its associated vasoconstrictive 
effects on the locomotor muscle vasculature, there might also be perceptual bene-
fits. Attenuation of sensory input to the central nervous system may be expected to 
occur in line with a decrease in inhibitory feedback from fatiguing respiratory mus-
cles, an alteration in breathing pattern (e.g., reduce operating lung volumes), a delay 
in the recruitment of accessory respiratory muscles, an alteration in the motor 
recruitment within a given respiratory muscle, or a reduction in the fraction of maxi-
mum tension generated with each breath [56, 57].

To what extent should exercise performance be affected by respiratory muscle 
training? Several studies have noted increases in time-to-exhaustion with partial 
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unloading of the respiratory muscles of healthy subjects [21, 22]. For example, 
mechanical unloading of the respiratory muscles by over 50 % of their total inspira-
tory and expiratory work during heavy exercise prevented diaphragmatic fatigue 
[14] and resulted in at most a 14 % improvement in endurance capacity in trained 
cyclists (Fig. 2.2) with no change in circulating lactate, a reduction in oxygen uptake 
and cardiac output, a decrease in the rate of rise of both respiratory and limb dis-
comfort, and variable effects on ventilation [22]. Although some respiratory muscle 
training studies have reported huge improvements (25–50 %) in exercise capacity 
[47, 48], it seems inconceivable that the effects could surpass those seen with sub-
stantial mechanical unloading – unless respiratory muscle training imparts some 
additional influences on locomotor muscles that are not realized via substantial 
respiratory muscle unloading and the prevention of diaphragmatic fatigue. A poten-
tial reason why previous studies have found greater improvements in exercise 
capacity with respiratory muscle training may be due to a large intraindividual vari-
ance in exercise performance coupled with a failure to use carefully matched and 
designed placebo groups.

If respiratory muscle training were to attenuate exercise-induced respiratory 
muscle fatigue, it is likely that the benefit would only occur in near-maximal exer-
cise conditions. Increases in time-to-exhaustion with respiratory muscle unloading 
have been noted in healthy, fit subjects only at exercise intensities greater than 85 % 
of VO2max  [21, 22]. Interestingly, exercise-induced diaphragmatic fatigue also only 
occurred consistently at exercise intensities greater than 85 % of VO2max  [9], and 
the effects of respiratory muscle unloading on limb vascular resistance during exer-
cise only occurred when the intensity exceeded 80 % of maximum [26, 27]. On the 
other hand, there are several examples where respiratory muscle work exerts signifi-
cant cardiovascular effects, even during submaximal exercise. In patients with con-
gestive heart failure [58] or those with chronic obstructive pulmonary disease [59], 
sustained exercise at only 50–60 % of maximum caused fatigue of limb locomotor 
muscles [60]. In rodent models of heart failure (vs. healthy controls), microsphere 
distribution studies showed a reduced limb blood flow and enhanced diaphragm 
blood flow during exercise [61]. In human chronic heart failure patients, respiratory 
muscle unloading [45] was shown to increase limb vascular conductance and limb 
blood flow and enhance exercise performance. These effects reflect the combination 
of increased respiratory muscle work with limited cardiac output in chronic heart 
failure. Finally, even the healthy person exercising submaximally in hypoxic envi-
ronments undergoes hyperventilation and increased work of breathing; under these 
conditions, unloading the respiratory muscles significantly reduces the rate of 
development of limb fatigue and improves endurance performance [62].
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