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Domain decomposition methods

In this chapter we will introduce the domain decomposition method (DD, in short).
In its most common version, DD can be used in the framework of any discretization
method for partial differential equations (such as, e.g. finite elements, finite volumes,
finite differences, or spectral element methods) to make their algebraic solution more
efficient on parallel computer platforms. In addition, DDmethods allow the reformula-
tion of any given boundary-value problem on a partition of the computational domain
into subdomains. As such, it provides a very convenient framework for the solution
of heterogeneous or multiphysics problems, i.e. those that are governed by differential
equations of different kinds in different subregions of the computational domain.

The basic idea behind DD methods consists in subdividing the computational do-
main Ω , on which a boundary-value problem is set, into two or more subdomains on
which discretized problems of smaller dimension are to be solved, with the further
potential advantage of using parallel solution algorithms. More in particular, there are
two ways of subdividing the computational domain into subdomains: one with disjoint
subdomains, the others with overlapping subdomains (for an example, see Fig. 18.1).
Correspondingly, different DD algorithms will be set up.
For reference lectures on DD methods we refer to [BGS96, QV99, TW05].
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Fig. 18.1. Two examples of subdivision of the domain Ω , with and without overlap
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18.1 Some classical iterative DD methods

In this section we introduce four different iterative schemes starting from the model
problem: find u :Ω → R such that{

Lu = f inΩ ,

u = 0 on ∂Ω ,
(18.1)

L being a generic second order elliptic operator, whose weak formulation reads

find u ∈V = H1
0 (Ω) : a(u,v) = ( f ,v) ∀v ∈V, (18.2)

being a(·, ·) the bilinear form associated with L.

18.1.1 Schwarz method

Consider a decomposition of the domain Ω in two subdomains Ω1 and Ω2 such that
Ω = Ω 1∪Ω 2, Ω1∩Ω2 = Ω12 �= /0 (see Fig. 18.1) and let Γi = ∂Ωi \ (∂Ω ∩∂Ωi).
Consider the following iterative method. Given u(0)

2 on Γ1, solve the following prob-
lems for k ≥ 1: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

Lu(k)
1 = f inΩ1,

u(k)
1 = u(k−1)

2 on Γ1,

u(k)
1 = 0 on ∂Ω1 \Γ1,

(18.3)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Lu(k)
2 = f inΩ2,

u(k)
2 =

⎧⎨⎩ u(k)
1

u(k−1)
1

on Γ2,

u(k)
2 = 0 on ∂Ω2 \Γ2.

(18.4)

In the case in which one chooses u(k)
1 on Γ2 in (18.4) the method is named multiplica-

tive Schwarz, whereas that in which we choose u(k−1)
1 is named additive Schwarz. The

reason will be clarified in Sect.18.6. We have thus two elliptic boundary-value prob-
lems with Dirichlet conditions for the two subdomains Ω1 and Ω2, and we would like
the two sequences {u(k)

1 } and {u(k)
2 } to converge to the restrictions of the solution u of

problem (18.1), that is

lim
k→∞

u(k)
1 = u|Ω1

and lim
k→∞

u(k)
2 = u|Ω2

.

It can be proven that the Schwarz method applied to problem (18.1) always converges,
with a rate that increases as the measure |Ω12| of the overlapping regionΩ12 increases.
Let us show this result on a simple one-dimensional case.
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Fig. 18.2. Example of a decomposition with overlap in dimension 1 (left). A few iterations of
the multiplicative Schwarz method for problem (18.7) (right)

Example 18.1. Let Ω = (a,b) and let γ1,γ2 ∈ (a,b) be such that a < γ2 < γ1 < b (see
Fig. 18.2). The two problems (18.3) and (18.4) become:⎧⎪⎪⎨⎪⎪⎩

Lu(k)
1 = f , a < x < γ1,

u(k)
1 = u(k−1)

2 , x = γ1,

u(k)
1 = 0, x = a,

(18.5)

⎧⎪⎪⎨⎪⎪⎩
Lu(k)

2 = f , γ2 < x < b,

u(k)
2 = u(k)

1 , x = γ2,

u(k)
2 = 0, x = b.

(18.6)

To show that this scheme converges, let us bound ourselves to the simpler problem{
−u′′(x) = 0, a < x < b,

u(a) = u(b) = 0,
(18.7)

that is the model problem (18.1) with L = −d2/dx2 and f = 0, whose solution clearly

is u = 0 in (a,b). This is not restrictive since at every step the error: u− u(k)
1 in Ω1,

u−u(k)
2 in Ω2, satisfies a problem like (18.5)-(18.6) with null forcing term.

Let k = 1; since (u(1)
1 )′′ = 0, u(1)

1 (x) is a linear function; moreover, it vanishes at x = a

and takes the value u(0)
2 at x = γ1. As we know the value of u(1)

1 at γ2, we can solve
the problem (18.6) which, in its turn, features a linear solution. Then we proceed in a
similar manner. In Fig. 18.2 we show a few iterations: we clearly see that the method
converges, moreover the convergence rate reduces as the length of the interval (γ2,γ1)
gets smaller. �

At each iteration the Schwarz iterative method (18.3)–(18.4) requires the solution
of two subproblems with boundary conditions of the same kind as those of the original
problem: indeed, by starting with a Dirichlet boundary-value problem in Ω we end up
with two subproblems with Dirichlet conditions on the boundary of Ω1 and Ω2.
Should the differential problem (18.1) had been completed by a Neumann boundary
condition on the whole boundary ∂Ω , we would have been led to the solution of a
mixed Dirichlet-Neumann boundary-value problem on either subdomain Ω1 and Ω2.
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18.1.2 Dirichlet-Neumann method

Let us partition the domainΩ in two disjoint subdomains (as in Fig. 18.1): let then Ω1

andΩ2 be two subdomains providing a partition ofΩ , i.e.Ω 1∪Ω 2 =Ω ,Ω 1∩Ω 2 =Γ
and Ω1∩Ω2 = /0. We denote by ni the outward unit normal vector to Ωi and will use
the following notational convention: n = n1 = −n2.

The following result holds (for its proof see [QV99]):

Theorem 18.1 (of equivalence). The solution u of problem (18.1) is such that
u|Ωi

= ui for i = 1,2, where ui is the solution to the problem{
Lui = f in Ωi,

ui = 0 on ∂Ωi \Γ ,
(18.8)

with interface conditions
u1 = u2 (18.9)

and
∂u1
∂nL

=
∂u2
∂nL

(18.10)

on Γ , having denoted with ∂/∂nL the conormal derivative (see (3.34)).

Thanks to this result we could split problem (18.1) by assigning the interface con-
ditions (18.9)-(18.10) the role of “boundary conditions” for the two subproblems on
the interface Γ . In particular, we can set up the following Dirichlet-Neumann (DN)
iterative algorithm : given u(0)

2 on Γ , for k ≥ 1 solve the problems:⎧⎪⎪⎪⎨⎪⎪⎪⎩
Lu(k)

1 = f inΩ1,

u(k)
1 = u(k−1)

2 on Γ ,

u(k)
1 = 0 on ∂Ω1 \Γ ,

(18.11)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Lu(k)

2 = f inΩ2,

∂u(k)
2

∂n
=

∂u(k)
1

∂n
on Γ ,

u(k)
2 = 0 on ∂Ω2 \Γ .

(18.12)

Condition (18.9) has generated a Dirichlet boundary condition on Γ for the subprob-
lem in Ω1 whereas (18.10) has generated a Neumann boundary condition on Γ for the
subproblem in Ω2.
Differently than Schwarz’s method, the DN algorithm yields a Neumann boundary-
value problem on the subdomain Ω2. Theorem 18.1 guarantees that when the two se-
quences {u(k)

1 } and {u(k)
2 } converge, then their limit will be perforce the solution to
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the exact problem (18.1). The DN algorithm is therefore consistent. Its convergence
however is not always guaranteed, as we can see on the following simple example.

Example 18.2. LetΩ = (a,b), γ ∈ (a,b), L =−d2/dx2 and f = 0. At every k≥ 1 the
DN algorithm generates the two subproblems:⎧⎪⎪⎪⎨⎪⎪⎪⎩

−(u(k)
1 )′′ = 0, a < x < γ,

u(k)
1 = 0, x = a,

u(k)
1 = u(k−1)

2 , x = γ,

(18.13)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−(u(k)

2 )′′ = 0, γ < x < b,

(u(k)
2 )′ = (u(k)

1 )′, x = γ,

u(k)
2 = 0, x = b.

(18.14)

Proceeding as done in Example 18.1, we can prove that the two sequences converge
only if γ > (a+b)/2, as shown graphycally in Fig. 18.3.

�

In general, for a problem in arbitrary dimension d > 1, the measure of the "Dirich-
let" subdomain Ω1 must be larger than that of the "Neumann" one Ω2 in order to
guarantee the convergence of (18.11)-(18.12). This however yields a severe constraint
to fulfill, especially if several subdomains will be used.
To overcome such limitation, a variant of the DN algorithm can be set up by replacing
the Dirichlet condition (18.11)2 in the first subdomain by

u(k)
1 = θu(k−1)

2 +(1−θ)u(k−1)
1 on Γ , (18.15)

that is by introducing a relaxation which depends on a positive parameter θ . In such a
way it is always possible to reduce the error between two subsequent iterates.

a bγ
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2

u(1)
2

a+b
2

u(2)
2

a bγ

u(0)
2

u(1)
2

a+b
2

Fig. 18.3. Example of converging (left) and diverging (right) iterations for the DN method in
1D
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In the case displayed in Fig. 18.3 we can easily verify that, by choosing

θopt = − u(k−1)
1

u(k−1)
2 −u(k−1)

1

, (18.16)

the algorithm converges to the exact solution in a single iteration.

More in general, it can be proven that in any dimension d≥ 1, there exists a suitable
value θmax < 1 such that the DN algorithm converges for any possible choice of the
relaxation parameter θ in the interval (0,θmax).

18.1.3 Neumann-Neumann algorithm

Consider again a partition of Ω into two disjoint subdomains and denote by λ the
(unknown) value of the solution u at their interface Γ . Consider the following iterative
algorithm: for any given λ (0) onΓ , for k≥ 0 and i= 1,2 solve the following problems:⎧⎪⎪⎪⎨⎪⎪⎪⎩

−�u(k+1)
i = f inΩi,

u(k+1)
i = λ (k) on Γ ,

u(k+1)
i = 0 on ∂Ωi \Γ ,

(18.17)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−�ψ(k+1)

i = 0 inΩi,

∂ψ(k+1)
i

∂n
= σi

(
∂u(k+1)

1

∂n
− ∂u(k+1)

2

∂n

)
on Γ ,

ψ(k+1)
i = 0 on ∂Ωi \Γ ,

(18.18)

with
λ (k+1) = λ (k) −θ

(
σ1ψ

(k+1)
1|Γ −σ2ψ

(k+1)
2|Γ

)
, (18.19)

where θ is a positive acceleration parameter, while σ1 and σ2 are two positive coef-
ficients such that σ1 +σ2 = 1. This iterative algorithm is named Neumann-Neumann
(NN). Note that in the first stage (18.17) we care about the continuity on Γ of the func-
tions u(k+1)

1 and u(k+1)
2 but not that of their derivatives. The latter are addressed in the

second stage (18.18), (18.19) by means of the correcting functions ψ(k+1)
1 and ψ(k+1)

2 .

18.1.4 Robin-Robin algorithm

At last, we consider the following iterative algorithm, named Robin-Robin (RR). For
every k ≥ 0 solve the following problems:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−�u(k+1)
1 = f inΩ1,

u(k+1)
1 = 0 on ∂Ω1∩∂Ω ,

∂u(k+1)
1

∂n
+ γ1u

(k+1)
1 =

∂u(k)
2

∂n
+ γ1u

(k)
2 on Γ ,

(18.20)
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then

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−�u(k+1)

2 = f inΩ2,

u(k+1)
2 = 0 on ∂Ω2∩∂Ω ,

∂u(k+1)
2

∂n
+ γ2u

(k+1)
2 =

∂u(k+1)
1

∂n
+ γ2u

(k+1)
1 on Γ ,

(18.21)

where u0 is assigned and γ1, γ2 are non-negative acceleration parameters that satisfy

γ1+γ2 > 0. Aiming at the algorithm parallelization, in (18.21) we could use u(k)
1 instead

of u(k+1)
1 , provided in such a case an initial value for u01 is assigned as well.

18.2 Multi-domain formulation of Poisson problem and interface
conditions

In this section, for the sake of exposition, we choose L=−� and consider the Poisson
problemwith homogeneous Dirichlet boundary conditions (3.13). Generalization to an
arbitrary second order elliptic operator with different boundary conditions is in order.

In the case addressed in Sect. 18.1.2 of a domain partitioned into two disjoint sub-
domains, the equivalence Theorem 18.1 allows the followingmultidomain formulation
of problem (18.1), in which ui = u

∣∣
Ωi
, i = 1,2:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�u1 = f inΩ1,

u1 = 0 on ∂Ω1 \Γ ,

−�u2 = f inΩ2,

u2 = 0 on ∂Ω2 \Γ ,

u1 = u2 on Γ ,

∂u1
∂n

=
∂u2
∂n

on Γ .

(18.22)

18.2.1 The Steklov-Poincaré operator

We denote again by λ the unknown value of the solution u of problem (3.13) on the
interface Γ , that is λ = u|Γ . Should we know a priori the value λ on Γ , we could solve
the following two independent boundary-value problems with Dirichlet condition on
Γ (i = 1,2): ⎧⎪⎪⎨⎪⎪⎩

−�wi = f inΩi ,

wi = 0 on ∂Ωi \Γ ,

wi = λ on Γ .

(18.23)
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With the aim of obtaining the value λ on Γ , let us split wi as follows

wi = w∗
i +u0i ,

where w∗
i and u0i represent the solutions of the following problems (i = 1,2):⎧⎪⎪⎨⎪⎪⎩

−�w∗
i = f inΩi ,

w∗
i = 0 on ∂Ωi∩∂Ω ,

w∗
i = 0 on Γ ,

(18.24)

and ⎧⎪⎪⎨⎪⎪⎩
−�u0i = 0 inΩi ,

u0i = 0 on ∂Ωi∩∂Ω ,

u0i = λ on Γ ,

(18.25)

respectively. Note that the functions w∗
i depend solely on the source data f , while u0i

solely on the value λ on Γ , henceforth we can write w∗
i = Gi f and u0i = Hiλ . Both

operators Gi and Hi are linear; Hi is the so-called harmonic extension operator of λ on
the domain Ωi.
By a formal comparison of problem (18.22) with problem (18.23), we infer that the
equality

ui = w∗
i +u0i , i = 1,2 ,

holds iff the condition (18.22)6 on the normal derivatives on Γ is satisfied, that is iff

∂w1

∂n
=

∂w2

∂n
on Γ .

By using the previously introduced notations the latter condition can be reformulated
as

∂
∂n

(G1 f +H1λ ) =
∂
∂n

(G2 f +H2λ )

and therefore (
∂H1

∂n
− ∂H2

∂n

)
λ =

(
∂G2

∂n
− ∂G1

∂n

)
f on Γ .

In this way we have obtained an equation for the unknown λ on the interfaceΓ , named
Steklov-Poincaré equation, that can be rewritten in compact form as

Sλ = χ on Γ . (18.26)

S is the Steklov-Poincaré pseudo-differential operator; its formal definition is

Sμ =
∂
∂n

H1μ− ∂
∂n

H2μ =
2

∑
i=1

∂
∂ni

Hiμ =
2

∑
i=1

Siμ , (18.27)
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Fig. 18.4. Harmonic extensions in one dimension

while χ is a linear functional which depends on f

χ =
∂
∂n

G2 f −
∂
∂n

G1 f = −
2

∑
i=1

∂
∂ni

Gi f . (18.28)

The operator

Si : μ → Siμ =
∂
∂ni

(
Hiμ

)∣∣∣
Γ
, i = 1,2, (18.29)

is called local Steklov-Poincaré operator. Note that S, S1 and S2 operate between the
trace space

Λ = {μ | ∃v ∈V : μ = v
∣∣
Γ } (18.30)

(that is H1/2
00 (Γ ), see [QV99]), and its dual Λ ′, whereas χ ∈Λ ′.

Example 18.3. With the aim of providing a practical (elementary) example of operator
S, let us consider a simple one-dimensional problem. Let Ω = (a,b) ⊂ R as shown in
Fig. 18.4 and Lu = −u′′. By subdividing Ω in two disjoint subdomains, the interface
Γ reduces to a single point γ ∈ (a,b), and the Steklov-Poincaré operator S becomes

Sλ =
(
dH1

dx
− dH2

dx

)
λ =

(
1
l1

+
1
l2

)
λ ,

with l1 = γ−a and l2 = b− γ . �

18.2.2 Equivalence between Dirichlet-Neumann and Richardson methods

The Dirichlet-Neumann (DN) method introduced in Sect. 18.1.2 can be reinterpreted
as a (preconditioned) Richardson method for the solution of the Steklov-Poincaré in-
terface equation. To check this statement, consider again, for the sake of simplicity, a
domain Ω partitioned into two disjoint subdomains Ω1 and Ω2 with interface Γ .
Then we re-write the DN algorithm (18.11), (18.12), (18.15) in the case of the operator
L = −Δ : for a given λ 0, for k ≥ 1 solve:⎧⎪⎪⎪⎨⎪⎪⎪⎩

−�u(k)
1 = f1 inΩ1,

u(k)
1 = λ (k−1) on Γ ,

u(k)
1 = 0 on ∂Ω1 \Γ ,

(18.31)
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−�u(k)
2 = f2 inΩ2,

∂u(k)
2

∂n2
=

∂u(k)
1

∂n2
on Γ ,

u(k)
2 = 0 on ∂Ω2 \Γ ,

(18.32)

λ (k) = θu(k)
2 |Γ +(1−θ)λ (k−1). (18.33)

The following result holds:

Theorem 18.2. The Dirichlet-Neumann iterative algorithm (18.31)–(18.33) is
equivalent to the preconditioned Richardson algorithm

PDN(λ (k) −λ (k−1)) = θ(χ−Sλ (k−1)). (18.34)

The preconditioning operator is PDN = S2.

Proof. The solution u(k)
1 of (18.31) can be written as

u(k)
1 = H1λ (k−1) +G1 f1. (18.35)

Since G2 f2 satisfies the differential problem{
−�(G2 f2) = f2 inΩ2,

G2 f2 = 0 on ∂Ω2,

thanks to (18.32) the function u(k)
2 −G2 f2 satisfies the differential problem⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−�(u(k)
2 −G2 f2) = 0 inΩ2,

∂
∂n2

(u(k)
2 −G2 f2) = −∂u(k)

1

∂n
+

∂
∂n

(G2 f2) on Γ ,

u(k)
2 −G2 f2 = 0 on ∂Ω2 \Γ .

(18.36)

In particular u(k)
2 |Γ = (u(k)

2 −G2 f2)|Γ . Since the operator Si (18.29) maps a Dirichlet

data to a Neumann data on Γ , its inverse S−1
i transforms a Neumann data in a Dirichlet

one on Γ .
Otherwise said, S−1

2 η = w2|Γ , where w2 is the solution of⎧⎪⎪⎪⎨⎪⎪⎪⎩
−�w2 = 0 inΩ2,

∂w2

∂n
= η on Γ ,

w2 = 0 on ∂Ω2 \Γ .

(18.37)
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Setting now

η = −∂u(k)
1

∂n
+

∂
∂n

(G2 f2),

and comparing (18.36) with (18.37), we conclude that

u(k)
2 |Γ = (u(k)

2 −G2 f2)|Γ = S−1
2

(
−∂u(k)

1

∂n
+

∂
∂n

(G2 f2)

)
.

On the other hand, owing to (18.35) and to the definition (18.28) of χ , we obtain

u(k)
2 |Γ = S−1

2

(
− ∂
∂n

(H1λ (k−1))− ∂
∂n

(G1 f1)+
∂
∂n

(G2 f2)
)

= S−1
2 (−S1λ (k−1) +χ).

Using (18.33) we can therefore write

λ (k) = θ
[
S−1
2 (−S1λ (k−1) +χ)

]
+(1−θ)λ (k−1),

that is
λ (k)−λ (k−1) = θ

[
S−1
2 (−S1λ (k−1) +χ)−λ (k−1)

]
.

Since −S1 = S2−S, we finally obtain

λ (k)−λ (k−1) = θ
[
S−1
2 ((S2−S)λ (k−1) +χ)−λ (k−1)

]
= θS−1

2 (χ−Sλ (k−1)),

that is (18.34). The preconditioned DN operator is therefore S−1
2 S = I+S−1

2 S1. �
Using an argument similar to that used for the proof of Theorem 18.2, also the

Neumann-Neumann (NN) algorithm (18.17)–(18.19) can be interpreted as a precon-
ditioned Richardson algorithm

PNN(λ (k) −λ (k−1)) = θ(χ−Sλ (k−1)) ,

this time the preconditioner being PNN = (D1S
−1
1 D1 +D2S

−1
2 D2)−1 where Di is a di-

agonal matrix whose entries are equal to σi. Note that the preconditioned operator
becomes (if Di = I) S−1

2 S1 +2I+(S−1
2 S1)−1.

Consider at last the Robin-Robin iterative algorithm (18.20)–(18.21). Denoting by
μ(k)
i ∈Λ the approximation at step k of the trace of u(k)

i on the interface Γ , i = 1,2, it
can be proven that (18.20)–(18.21) is equivalent to the following alternating direction
(ADI) algorithm:

(γ1iΛ +S1)μ
(k)
1 = χ +(γ1iΛ +S2)μ

(k−1)
2 ,

(γ2iΛ +S2)μ
(k)
2 = χ +(γ2iΛ +S1)μ

(k−1)
1 ,
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where iΛ : Λ → Λ ′ here denotes the Riesz isomorphism between the Hilbert space Λ
and its dual Λ ′ (see (2.5)).
Should, for a convenient choice of the two parameters γ1 and γ2, the algorithm converge
to two limit functions μ1 and μ2, then μ1 = μ2 =λ , the latter function being the solution
to the Steklov-Poincaré equation (18.26).
The RR preconditioner reads PRR = (γ1 + γ2)−1(γ1iΛ +S1)(γ2iΛ +S2).

Remark 18.1. In the Dirichlet-Neumann algorithm, the value λ of the solution u at
the interface Γ is the principal unknown. Once it has been determined, we can use it
as Dirichlet data to recover the original solution in the whole domain. Alternatively,
one could use the normal derivative η = ∂u

∂n on Γ as principal unknown (or, for a more
general partial differential operator, the conormal derivative - or flux). By proceeding
as above, we can show that η satisfies the new Steklov-Poincaré equation

(S−1
1 +S−1

2 )η = T1 f1 +T2 f2 onΓ (18.38)

where for i = 1,2, Ti fi is the solution of the following Neumann problem⎧⎪⎪⎨⎪⎪⎩
−�(Ti fi) = fi inΩi,
∂
∂ni

(Ti fi) = 0 onΓ ,

Ti fi = 0 on∂Ω\Γ .

(18.39)

The so-called FETI algorithms (see Sect. 18.5.4) are examples of iterative algo-
rithms designed for the solution of problems like (18.38). The FETI preconditioner is
PFETI = S1 +S2, hence the preconditioned FETI operator is (S1 +S2)(S−1

1 +S−1
2 ).

•

18.3 Multidomain formulation of the finite element approximation
of the Poisson problem

What seen thus far can be regarded as propedeutical to numerical solution of boundary-
value problems. In this section we will see how the previous ideas can be reshaped in
the framework of a numerical discretization method. Although we will only address
the case of finite element discretization, this is however not restrictive. We refer, e.g.,
to [CHQZ07] and [TW05] for the case of spectral or spectral element discretizations
and to [Woh01] for discretization based on DG and mortar methods.

Consider the Poisson problem (3.13), its weak formulation (3.18) and its Galerkin
finite element approximation (4.40) on a triangulation Th. Recall that Vh =

◦
X

r

h=
{
vh ∈

Xr
h : vh|∂Ω = 0

}
is the space of finite element functions of degree r vanishing on ∂Ω ,

whose basis is {ϕ j}Nh
j=1 (see Sect. 4.5.1).

For the finite element nodes in the domain Ω we consider the following partition:
let {x(1)

j , 1 ≤ j ≤ N1} be the nodes located in the subdomain Ω1, {x(2)
j , 1 ≤ j ≤ N2}

those inΩ2 and, finally, {x(Γ )
j , 1≤ j≤NΓ } those lying on the interface Γ . Let us split
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the basis functions accordingly: ϕ(1)
j will denote those associated to the nodes x(1)

j ,

ϕ(2)
j those associated with the nodes x(2)

j , and ϕ(Γ )
j those associated with the nodes

x(Γ )
j lying on the interface. This yields

ϕ(α)
j (x(β )

j ) = δi jδαβ , 1≤ i≤ Nα , ≤ j ≤ Nβ , (18.40)

with α ,β = 1,2,Γ ; δi j is the Kronecker symbol.
By letting vh in (4.40) to coincide with a test function, (4.40) can be given the following
equivalent formulation: find uh ∈Vh such that⎧⎪⎪⎪⎨⎪⎪⎪⎩

a(uh,ϕ
(1)
i ) = F(ϕ(1)

i ) ∀i = 1, . . . ,N1 ,

a(uh,ϕ
(2)
j ) = F(ϕ(2)

j ) ∀ j = 1, . . . ,N2 ,

a(uh,ϕ
(Γ )
k ) = F(ϕ(Γ )

k ) ∀k = 1, . . . ,NΓ ,

(18.41)

having set F(v) =
∫
Ω f vdΩ . Let now

ai(v,w) =
∫
Ωi

∇v ·∇wdΩ ∀v,w ∈V, i = 1,2

be the restriction of the bilinear form a(., .) to the subdomainΩi and defineVi,h = {v∈
H1(Ωi) | v = 0 on ∂Ωi \Γ } (i = 1,2). Similarly we set Fi(v) =

∫
Ωi

f vdΩ and denote

by u(i)
h = uh|Ωi

the restriction of uh to the subdomainΩi, with i = 1,2. Problem (18.41)

can be rewritten in the equivalent form: find u(1)
h ∈V1,h, u

(2)
h ∈V2,h such that⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a1(u
(1)
h ,ϕ(1)

i ) = F1(ϕ
(1)
i ) ∀i = 1, . . . ,N1,

a2(u
(2)
h ,ϕ(2)

j ) = F2(ϕ
(2)
j ) ∀ j = 1, . . . ,N2

a1(u
(1)
h ,ϕ(Γ )

k |Ω1)+a2(u
(2)
h ,ϕ(Γ )

k |Ω2)

= F1(ϕ
(Γ )
k |Ω1)+F2(ϕ

(Γ )
k |Ω2) ∀k = 1, . . . ,NΓ .

(18.42)

The interface continuity condition (18.22)5 is automatically satisfied thanks to the con-
tinuity of the functions u(i)

h . Moreover, equations (18.42)1-(18.42)3 correspond to the
finite element discretization of equations (18.22)1-(18.22)6, respectively. In particular,
the third of equations (18.42) must be regarded as the discrete counterpart of condition
(18.22)6 expressing the continuity of normal derivatives on Γ .
Let us expand the solution uh with respect to the basis functions Vh

uh(x) =
N1

∑
j=1

uh(x
(1)
j )ϕ(1)

j (x)+
N2

∑
j=1

uh(x
(2)
j )ϕ(2)

j (x)+
NΓ

∑
j=1

uh(x
(Γ )
j )ϕ(Γ )

j (x). (18.43)

From now on, the nodal values uh(x
(α)
j ), for α = 1,2,Γ and j = 1, . . . ,Nα , which are

the expansion coefficients, will be indicated with the shorthand notation u(α)
j .
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Using (18.43), we can rewrite (18.42) as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N1

∑
j=1

u(1)
j a1(ϕ

(1)
j ,ϕ(1)

i )+
NΓ

∑
j=1

u(Γ )
j a1(ϕ

(Γ )
j ,ϕ(1)

i ) = F1(ϕ
(1)
i ) ∀i = 1, . . . ,N1,

N2

∑
j=1

u(2)
j a2(ϕ

(2)
j ,ϕ(2)

i )+
NΓ

∑
j=1

u(Γ )
j a2(ϕ

(Γ )
j ,ϕ(2)

i ) = F2(ϕ
(2)
i ) ∀i = 1, . . . ,N2,

NΓ

∑
j=1

u(Γ )
j

[
a1(ϕ

(Γ )
j ,ϕ(Γ )

i )+a2(ϕ
(Γ )
j ,ϕ(Γ )

i )
]

+
N1

∑
j=1

u(1)
j a1(ϕ

(1)
j ,ϕ(Γ )

i )+
N2

∑
j=1

u(2)
j a2(ϕ

(2)
j ,ϕ(Γ )

i )

= F1(ϕ
(Γ )
i |Ω1)+F2(ϕ

(Γ )
i |Ω2) ∀i = 1, . . . ,NΓ .

(18.44)
Let us introduce the following arrays:

(A11)i j = a1(ϕ
(1)
j ,ϕ(1)

i ), (A1Γ )i j = a1(ϕ
(Γ )
j ,ϕ(1)

i ),

(A22)i j = a2(ϕ
(2)
j ,ϕ(2)

i ), (A2Γ )i j = a2(ϕ
(Γ )
j ,ϕ(2)

i ),(
A1
ΓΓ

)
i j = a1(ϕ

(Γ )
j ,ϕ(Γ )

i ),
(
A2
ΓΓ

)
i j = a2(ϕ

(Γ )
j ,ϕ(Γ )

i ),

(AΓ 1)i j = a1(ϕ
(1)
j ,ϕ(Γ )

i ), (AΓ 2)i j = a2(ϕ
(2)
j ,ϕ(Γ )

i ),

(f1)i = F1(ϕ
(1)
i ), (f2)i = F2(ϕ

(2)
i ),(

fΓ1
)
i = F1(ϕ

(Γ )
i ),

(
fΓ2

)
i = F2(ϕ

(Γ )
i ,ϕ(1)

i ),

then set

u = (u1,u2,λ)T ,with u1 =
(
u(1)
j

)
, u2 =

(
u(2)
j

)
and λ =

(
u(Γ )
j

)
. (18.45)

Problem (18.44) can be casted in the following algebraic form⎧⎪⎪⎪⎨⎪⎪⎪⎩
A11u1 +A1Γλ = f1,

A22u2 +A2Γλ = f2,

AΓ 1u1 +AΓ 2u2 +
(
A(1)
ΓΓ +A(2)

ΓΓ

)
λ = fΓ1 + fΓ2 ,

(18.46)

or, equivalently,

Au = f, that is

⎡⎣ A11 0 A1Γ
0 A22 A2Γ

AΓ 1 AΓ 2 AΓΓ

⎤⎦⎡⎣ u1

u2

λ

⎤⎦ =

⎡⎣ f1
f2
fΓ

⎤⎦ , (18.47)

having set AΓΓ =
(
A(1)
ΓΓ +A(2)

ΓΓ

)
and fΓ = fΓ1 + fΓ2 . (18.47) is nothing but a blockwise

representation of the finite element system (4.46), the blocks being determined by the
partition (18.45) of the vector of unknowns.
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More precisely, the first and second equations of (18.46) are discretizations of the given
Poisson problems in Ω1 and Ω2, respectively for the interior values u1 and u2, with
Dirichlet data vanishing on ∂Ωi \Γ and equal to the common value λ on Γ .
Alternatively, by setting (from the third equation of (18.46))

AΓ1u1 +A(1)
ΓΓλ− f1Γ = −(AΓ2u2 +A(2)

ΓΓλ− f2Γ ) ≡ η, (18.48)

the first and third equations of (18.46) provide a discretization of the Poisson problem
in Ω1 with vanishing Dirichlet data on ∂Ω1 \Γ and with Neumann data η on Γ .

Similar considerations apply to the second and third equations of (18.46): they
represent the discretization of a Poisson problem in Ω2 with zero Dirichlet data in
∂Ω2 \Γ and Neumann data equal to η on Γ .

18.3.1 The Schur complement

Consider now the Steklov-Poincaré interface equation (18.26) and look for its finite
element counterpart. Since λ represents the unknown value of u onΓ , its finite element
correspondent is the vector λ of the values of uh at the interface nodes.

By gaussian elimination operated on system (18.47), we can obtain a new reduced
system on the sole unknown λ.

Matrices A11 and A22 are invertible since they are associated with two homoge-
neous Dirichlet boundary-value problems for the Laplace operator, hence

u1 = A−1
11 (f1−A1Γλ) and u2 = A−1

22 (f2−A2Γλ) . (18.49)

From the third equation in (18.46), we obtain[(
A(1)
ΓΓ −AΓ 1A

−1
11 A1Γ

)
+

(
A(2)
ΓΓ −AΓ 2A

−1
22 A2Γ

)]
λ

= fΓ −AΓ 1A
−1
11 f1−AΓ 2A

−1
22 f2 = (f(1)Γ −AΓ1A

−1
11 f1)+(f(2)Γ −AΓ2A

−1
22 f2).

(18.50)

Using the following definitions:

Σ = Σ1 +Σ2, Σi = A(i)
ΓΓ −AΓ iA

−1
ii AiΓ , i = 1,2, (18.51)

and
χΓ = χ

(1)
Γ +χ

(2)
Γ , χ

(i)
Γ = f(i)Γ −AΓiAiifi, (18.52)

(18.50) becomes
Σλ = χΓ . (18.53)

Since Σ and χΓ approximate S and χ , respectively, (18.53) can be considered as a fi-
nite element approximation to the Steklov-Poincaré equation (18.26). Matrix Σ is the
so-called Schur complement of A with respect to u1 and u2, whereas matrices Σi are
the Schur complements related to the subdomains Ωi (i = 1,2).
Once system (18.53) is solved w.r.t the unknown λ, by virtue of (18.49) we can com-
pute u1 and u2. This computation amounts to solve numerically two Poisson problems
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on the two subdomainsΩ1 andΩ2, with Dirichlet boundary conditions u(i)
h |Γ = λh (i=

1,2) on the interface Γ .

The Schur complement Σ inherits some of the properties of its generating matrix
A, as stated by the following result:

Lemma 18.1. Matrix Σ satisfies the following properties:

1. if A is singular, so is Σ ;
2. if A (respectively, Aii) is symmetric, then Σ (respectively, Σi) is symmetric too;
3. if A is positive definite, so is Σ .

Recall that the condition number of the finite element stiffness matrix A satisfies
K2(A) �Ch−2 (see (4.50)). As of Σ , it can be proven that

K2(Σ) �Ch−1. (18.54)

In the specific case under consideration, A (and therefore Σ , thanks to Lemma
18.1) is symmetric and positive definite. It is therefore convenient to use the conjugate
gradient method (with a suitable preconditioner) for the solution of system (18.53). At
every iteration, the computation of the residue will involve the finite element solution
of two independent Dirichlet boundary-value problems on the subdomains Ωi.

By employing a similar procedure we can derive instead of (18.53) an interface
equation for the flux η introduced in (18.48). From (18.47) and (18.48) we derive⎡⎣ A11 A1Γ

AΓ 1 A(1)
ΓΓ

⎤⎦⎡⎣ u1

λ

⎤⎦ =

⎡⎣ f1

f(1)Γ +η

⎤⎦ . (18.55)

By eliminating u1 from the first row and replacing it in the second one we obtain

Σ1λ = χ
(1)
Γ +η, that is λ = Σ−1

1 (χ(1)
Γ +η). (18.56)

Proceeding in a similar way we obtain

Σ2λ = χ
(2)
Γ −η, that is λ = Σ−1

2 (χ(2)
Γ −η). (18.57)

By equating the last two equations (whose common value is λ) we finally obtain the
Schur-complement equation for the flux η:

Tη = ψΓ , with T = Σ−1
1 +Σ−1

2 , ψΓ = Σ−1
2 χ

(2)
Γ −Σ−1

1 χ
(1)
Γ . (18.58)

This algebraic equation can be regarded as a direct discretization of the Steklov-Poincaré
problem for the flux (18.38).
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18.3.2 The discrete Steklov-Poincaré operator

In this section we will find the discrete operator associated with the Schur complement.
With this aim, besides the space Vi,h previously introduced, we will need the one V 0

i,h

generated by the functions {ϕ(i)
j } exclusively associated to the internal nodes of the

subdomain Ωi, and the space Λh generated by the set of functions {ϕ(Γ )
j |Γ

}. We have

Λh = {μh | ∃vh ∈Vh : vh
∣∣
Γ = μh}, whence Λh represents a finite element subspace of

the trace functions space Λ introduced in (18.30).
Consider now the following problem: find Hi,hηh ∈Vi,h, with Hi,hηh = ηh on Γ , such
that ∫

Ωi

∇(Hi,hηh) ·∇vh dΩi = 0 ∀vh ∈V 0
i,h. (18.59)

Clearly, Hi,hηh represents a finite element approximation of the harmonic extension
Hiηh, and the operator Hi,h : ηh → Hi,hηh can be regarded as an approximation of Hi.
By expanding Hi,hηh in terms of the basis functions

Hi,hηh =
Ni

∑
j=1

u(i)
j ϕ(i)

j +
NΓ

∑
k=1

ηkϕ
(Γ )
k |Ωi

,

we can rewrite (18.59) in matrix form

Aiiu(i) = −AiΓη. (18.60)

The following result, called the uniform discrete extension theorem, holds:

Theorem 18.3. There exist two constants Ĉ1,Ĉ2 > 0, independent of h, such t hat

Ĉ1‖ηh‖Λ ≤ ‖Hi,hηh‖H1(Ωi) ≤ Ĉ2‖ηh‖Λ ∀ηh ∈Λh i = 1,2. (18.61)

Consequently, there exist two constants K1,K2 > 0, independent of h, such that

K1‖H1,hηh‖H1(Ω1) ≤ ‖H2,hηh‖H1(Ω2) ≤ K2‖H1,hηh‖H1(Ω1) ∀ηh ∈Λh. (18.62)

For the proof see, e.g., [QV99].

Now for i= 1,2 the (local) discrete Steklov-Poincaré operator is defined as follows:
Si,h :Λh →Λ ′

h,

〈Si,hηh,μh〉 =
∫
Ωi

∇(Hi,hηh) ·∇(Hi,hμh)dΩi ∀ηh,μh ∈Λh, (18.63)

then we define the (global) discrete Steklov-Poincaré operator as Sh = S1,h +S2,h.
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Lemma 18.2. The local discrete Steklov-Poincaré operator can be expressed in
terms of the local Schur complement as

〈Si,hηh,μh〉 = μTΣiη ∀ηh,μh ∈Λh , i = 1,2, (18.64)

where

ηh =
NΓ

∑
k=1

ηkϕ
(Γ )
k |Γ , μh =

NΓ

∑
k=1

μkϕ
(Γ )
k |Γ

and
η = (η1, . . . ,ηNΓ )T , μ = (μ1, . . . ,μNΓ )T .

Therefore the global discrete Steklov-Poincaré operator Sh = S1,h +S2,h satisfies
the relation

〈Shηh,μh〉 = μTΣ η ∀ηh,μh ∈Λh. (18.65)

Proof. For i = 1,2 we have

〈Si,hηh,μh〉= ai(Hi,hηh,Hi,hμh)

= ai
( NΓ

∑
j=1

u jϕ
(i)
j +

NΓ

∑
k=1

ηkϕ
(Γ )
k |Ωi

,
NΓ

∑
l=1

wlϕ
(i)
l +

NΓ

∑
m=1

μmϕ
(Γ )
m |Ωi

)

=
NΓ

∑
j,l=1

wlai(ϕ
(i)
j ,ϕ(i)

l )u j +
NΓ

∑
j,m=1

μmai(ϕ
(i)
j ,ϕ(Γ )

m |Ωi
)u j

+
NΓ

∑
k,l=1

wlai(ϕ
(Γ )
k |Ωi

,ϕ(i)
l )ηk +

NΓ

∑
k,m=1

μmai(ϕ
(Γ )
k |Ωi

,ϕ(Γ )
m |Ωi

)ηk

= wTAiiu+μTAΓ iu+wTAiΓη +μTA(i)
ΓΓη.

Thanks to (18.60) we obtain

〈Si,hηh,μh〉=−wTAiΓη−μTAΓ iA
−1
ii AiΓη +wTAiΓη +μTA(i)

ΓΓη

= μT
(
A(i)
ΓΓ −AΓ iA

−1
ii AiΓ

)
η

= μTΣiη. �

From Theorem 18.3 and thanks to the representation (18.63), we deduce that there
exist two constants K̂1, K̂2 > 0, independent of h, such that

K̂1〈S1,hμh,μh〉 ≤ 〈S2,hμh,μh〉 ≤ K̂2〈S1,hμh,μh〉 ∀μh ∈Λh. (18.66)
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Thanks to (18.64) we can infer that there exist two constants K̃1, K̃2 > 0, independent
of h, such that

K̃1
(
μTΣ1μ

)
≤ μTΣ2μ ≤ K̃2

(
μTΣ1μ

)
∀μ ∈ RNΓ . (18.67)

This amounts to say that the two matrices Σ1 and Σ2 are spectrally equivalent, that is
their spectral condition number features the same asymptotic behaviour w.r.t h. Hence-
forth, both Σ1 and Σ2 provide an optimal preconditioner of the Schur complement Σ ,
that is there exists a constant C, independent of h, such that

K2(Σ−1
i Σ) ≤C, i = 1,2. (18.68)

As we will see in Sect. 18.3.3, this property allows us to prove that the discrete version
of the Dirichlet-Neumann algorithm converges with a rate independent of h. A similar
result holds for the discrete Neumann-Neumann and Robin-Robin algorithms.

18.3.3 Equivalence between the Dirichlet-Neumann algorithm and
a preconditioned Richardson algorithm in the discrete case

Let us now prove the analogue of the equivalence theorem 18.2 in the algebraic case.
The finite element approximation of the Dirichlet problem (18.31) has the following
algebraic form

A11u
(k)
1 = f1−A1Γλ(k−1), (18.69)

whereas that of the Neumann problem (18.32) reads[
A22 A2Γ

AΓ 2 A(2)
ΓΓ

][
u(k)
2

λ(k−1/2)

]
=

[
f2

fΓ −AΓ 1u
(k)
1 −A(1)

ΓΓλ(k−1)

]
. (18.70)

In its turn, (18.33) becomes

λ(k) = θλ(k−1/2) +(1−θ)λ(k−1). (18.71)

By eliminating u(k)
2 from (18.70) we obtain(

A(2)
ΓΓ −AΓ 2A

−1
22 A2Γ

)
λ(k−1/2) = fΓ −AΓ 1u

(k)
1 −A(1)

ΓΓλ(k−1)−AΓ 2A
−1
22 f2.

By the definition (18.51) of Σ2 and by (18.69), one has

Σ2λ
(k−1/2) = fΓ −AΓ 1A

−1
11 f1−AΓ 2A

−1
22 f2−

(
A(1)
ΓΓ −AΓ 1A

−1
11 A1Γ

)
λ(k−1),

that is, owing to the definition (18.51) of Σ1 and to (18.52),

λ(k−1/2) = Σ−1
2

(
χΓ −Σ1λ

(k−1)
)

.

Now, by virtue of (18.71) we deduce

λ(k) = θΣ−1
2

(
χΓ −Σ1λ

(k−1)
)

+(1−θ)λ(k−1),
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that is, since −Σ1 = −Σ +Σ2,

λ(k) = θΣ−1
2

(
χΓ −Σλ(k−1) +Σ2λ

(k−1)
)

+(1−θ)λ(k−1)

whence
Σ2(λ(k)−λ(k−1)) = θ(χΓ −Σλ(k−1)).

The latter is nothing but a Richardson iteration on the system (18.53) using the local
Schur complement Σ2 as preconditioner.

Remark 18.2. The Richardson preconditioner induced by the Dirichlet-Neumann al-
gorithm is in fact the local Schur complement associated to that subdomain on which
we solve a Neumann problem. So, in the so-called Neumann-Dirichlet algorithm, in
which at every iteration we solve a Dirichlet problem inΩ2 and a Neumann one inΩ1,
the preconditioner of the associated Richardson algorithm would be Σ1 and not Σ2. •

Remark 18.3. An analogous result can be proven for the discrete version of the
Neumann-Neumann algorithm introduced in Sect. 18.1.3. Precisely, the Neumann-
Neumann algorithm is equivalent to the Richardson algorithm applied to system
(18.53) with a preconditioner whose inverse is given byP−1

h =σ1Σ−1
1 +σ2Σ−1

2 ,σ1 and
σ2 being the coefficients used for the (discrete) interface equation which corresponds
to (18.19). Moreover we can prove that there exists a constant C > 0, independent of
h, such that

K2((σ1Σ−1
1 +σ2Σ−1

2 )Σ) ≤C .

Proceeding in a similar way we can show that the discrete version of the Robin-Robin
algorithm (18.20)-(18.21) is also equivalent to a Richardson algorithm for (18.53),
using this time as preconditioner the matrix (γ1 + γ2)−1(γ1I+Σ1)(γ2I+Σ2). •

Let us recall that a matrix Ph is an optimal preconditioner for Σ if the condition
number of P−1

h Σ is bounded uniformely w.r.t the dimension N of the matrix Σ (and
therefore from h in the case in which Σ arises from a finite element discretization).

We can therefore summarize by saying that for the solution of system Σλ = χΓ ,
we can make use of the following preconditioners, all of them being optimal:

Ph =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Σ2 for the Dirichlet-Neumann algorithm,

Σ1 for the Neumann-Dirichlet algorithm,

(σ1Σ−1
1 +σ2Σ−1

2 )−1 for the Neumann-Neumann algorithm,

(γ1 + γ2)−1(γ1I+Σ1)(γ2I+Σ2) for the Robin-Robin algorithm.
(18.72)

When solving the flux equation (18.58), the FETI preconditioner reads Ph = (Σ1 +
Σ2)−1, yelding the preconditioned matrix (Σ1+Σ2)(Σ−1

1 +Σ−1
2 ). For all these precon-

ditioners, optimality follows from the spectral equivalence (18.67), hence K2(P−1
h Σ)

is bounded independently of h.
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From the convergence theory of Richardson method we know that if both Σ and Ph
are symmetric and positive definite, one has ‖λn−λ‖Σ ≤ ρn‖λ0−λ‖Σ , n≥ 0, being
‖v‖Σ = (vTΣv)1/2. The optimal convergence rate is given by

ρ =
K2(P−1

h Σ)−1

K2(P−1
h Σ)+1

,

and is therefore independent of h.

18.4 Generalization to the case of many subdomains

To generalize the previous DD algorithms to the case in which the domain Ω is parti-
tioned into an arbitrary number M > 2 of subdomains we proceed as follows.
Let Ωi, i = 1, . . . ,M, denote a family of disjoint subdomains such that ∪Ω i = Ω , and
denote Γi = ∂Ωi \∂Ω and Γ = ∪Γi (the skeleton).

Let us consider the Poisson problem (3.13). In the current case the equivalence
Theorem 18.1 generalizes as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−�ui = f inΩi,

ui = uk on Γik, ∀k ∈ A(i),

∂ui
∂ni

=
∂uk
∂ni

on Γik, ∀k ∈ A(i),

ui = 0 on ∂Ωi∩∂Ω ,

(18.73)

for i = 1, . . . ,M, being Γik = ∂Ωi∩∂Ωk �= /0 , A(i) the set of indices k such that Ωk is
adjacent to Ωi; as usual, ni denotes the outward unit normal vetor to Ωi.

Assume now that (3.13) has been approximated by the finite element method. Fol-
lowing the ideas presented in Sect. 18.3 and denoting by u = (uI ,uΓ )T the vector of
unknowns split in two subvectors, the one (uI) related with the internal nodes, and that
(uΓ ) related with the nodes lying on the skeletonΓ , the finite element algebraic system
can be reformulated in blockwise form as follows[

AII AIΓ
AΓ I AΓΓ

][
uI

uΓ

]
=

[
fI
fΓ

]
, (18.74)

being AΓ I = AT
IΓ . Matrix AIΓ is banded, while AII has the block diagonal form

AII =

⎡⎢⎢⎢⎢⎢⎢⎣

AΩ1,Ω1 0 . . . 0

0
. . .

...

...
. . . 0

0 . . . 0 AΩM ,ΩM

⎤⎥⎥⎥⎥⎥⎥⎦ . (18.75)
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We are using the following notations:

(AΩi,Ωi)l j = ai(ϕ j,ϕl), 1≤ l, j ≤ Ni,

(A(i)
ΓΓ )sr = ai(ψr,ψs), 1≤ r,s≤ NΓi ,

(AΩi,Γ )lr = ai(ψr,ϕl), 1≤ r ≤ NΓi , 1≤ l ≤ Ni,

where Ni is the number of nodes internal to Ωi, NΓi that of the nodes sitting on the
interface Γi, ϕ j and ψr the basis functions associated with the internal and interface
nodes, respectively.

Let us remark that on every subdomain Ωi the matrix

Ai =
[

AΩi,Ωi AΩi,Γ

AΓ ,Ωi A(i)
ΓΓ

]
(18.76)

represents the local finite element stiffness matrix associated to a Neumann problem
on Ωi. Since AII is non-singular, from (18.74) we can formally derive

uI = A−1
II (fI −AIΓ uΓ ). (18.77)

By eliminating the unknown uI from system (18.74), it follows

AΓΓ uΓ = fΓ −AΓ IA
−1
II (fI −AIΓ uΓ ),

that is (
AII AIΓ
0 Σ

)(
uI
uΓ

)
=

(
fI
χΓ

)
(18.78)

having set
Σ = AΓΓ −AΓ IA

−1
II AIΓ and χΓ = fΓ −AΓ IA

−1
II fI .

Denoting, as usual, λ = uΓ , (18.78) yields

Σλ = χΓ . (18.79)

This is the Schur complement system in the multidomain case. It can be regarded as a
finite element approximation of the interface Steklov-Poincaré problem in the case of
M subdomains.

The local Schur complements are defined as

Σi = A(i)
ΓΓ −AΓ ,ΩiA

−1
Ωi,Ωi

AΩi,Γ , i = 1, . . . M, (18.80)

hence
Σ = RT

Γ1Σ1RΓ1 + . . .+RT
ΓMΣMRΓM (18.81)

where RΓi is a restriction operator, that is a rectangular matrix of zeros and ones that
map values on Γ onto those on Γi, i = 1, . . . ,M. Note that the r.h.s. of (18.79) can be
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written as a sum of local contributions,

χΓ =
M

∑
i=1

RT
Γi

(
f(i)Γ −AΓ ,ΩiA

−1
Ωi,Ωi

f(i)I

)
(18.82)

A general algorithm to solve the finite element Poisson problem in Ω could be
formulated as follows:

1. compute the solution of (18.79) to obtain the value of λ on the skeleton Γ ;
2. then solve (18.77); since AII is block-diagonal, this step yields the solution of M

independent subproblems of reduced dimension, AΩi,Ωiu
i
I = gi, i= 1, . . . ,M, which

can therefore be carried out in parallel.

About the condition number of Σ , the following estimate can be proven: there exists a
constant C > 0, independent of h and Hmin,Hmax, such that

K2(Σ) ≤C
Hmax

hH2
min

, (18.83)

Hmax being the maximum diameter of the subdomains and Hmin the minimum one.

Remark 18.4 (Approximation of the inverse of A). The inverse of the block matrix
A in (18.74) admits the following LDU factorization

A−1 =
[

I −A−1
II AIΓ

0 I

][
A−1
II 0
0 Σ−1

][
I 0

−AΓ IA
−1
II I

]
(18.84)

Should we have suitable preconditioners BII of AII and P of Σ , an approximation of
A−1 would be given by

P−1
A =

[
I −B−1

II AIΓ
0 I

][
B−1
II 0
0 P−1

][
I 0

−AΓ IB
−1
II I

]
. (18.85)

An application of P−1
A to a given vector involves B−1

II in two matrix-vector multiplies
and P−1 in only one matrix-vector multiply (see [TW05, Sect. 4.3]). •
Remark 18.5 (Saddle-point systems). In case of a saddle-point (block) matrix like
the one in (16.58), an LDU factorization can be obtained as follows

K =
[

A BT

B −C

]
=

[
IA 0

BA−1 IC

][
A 0
0 S

][
IA A−1BT

0 IC

]
(18.86)

where S=−C−BA−1BT is the Schur complement computedwith respect to the second
variable (e.g. P in the case of system (16.58)).
An inverse of K is obtained as

K−1 =
[

A−1 0
0 0

]
+QS−1QT , Q =

[
−A−1BT

I

]
, (18.87)

being IA and IC two identity matrices having the size of A and C, respectively. A pre-
conditioner for K can be constructed by replacing in (18.87) A−1 and S−1 by suitable
domain decomposition preconditioners of A and S, respectively.
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This observation stands at the ground of the design of the so-called FETI-DP andBDDC
preconditioners, see Sects. 18.5.5 and 18.5.6. •

18.4.1 Some numerical results

Consider the Poisson problem (3.13) on the domain Ω = (0,1)2 whose finite element
approximation was given in (4.40).
Let us partitionΩ intoM disjoint squaresΩi whose sidelength isH, such that∪M

i=1Ωi =
Ω . An example with four subdomains is displayed in Fig. 18.5 (left).

In Table 18.1 we report the numerical values of K2(Σ) for the problem at hand, for
several values of the finite element grid-size h; it grows linearly with 1/h andwith 1/H,
as predicted by the formula (18.83). In Fig. 18.5 (right) we display the pattern of the
Schur complement matrix Σ in the particular case of h= 1/8 andH = 1/2. The matrix
has a blockwise structure that accounts for the interfaces Γ1, Γ2, Γ3 and Γ4, plus the
contribution arising from the crosspointΓc. Since Σ is a densematrix, when solving the
linear system (18.79) the explicit computation of its entries is not convenient. Instead,
we can use the following Algorithm 18.1 to compute the matrix-vector product ΣxΓ ,
for any vector xΓ (and therefore the residue at every step of an iterative algorithm).
We have denoted by RΓi the rectangular matrix associated to the restriction operator
RΓi : Γ → Γi = ∂Ωi \∂Ω , while x← y indicates the algebraic operation x = x+y.

Table 18.1. Condition number of the Schur complement Σ

K2(Σ) H = 1/2 H = 1/4 H = 1/8

h = 1/8 9.77 14.83 25.27
h = 1/16 21.49 35.25 58.60
h = 1/32 44.09 75.10 137.73
h = 1/64 91.98 155.19 290.43
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Γc
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Γ
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Fig. 18.5. Example of partition of Ω = (0,1)2 into four squared subdomains (left). Pattern of
the Schur complement Σ (right) corresponding to the domain partition displayed on the left
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Algorithm 18.1 (Schur complement multiplication by a vector)

Given xΓ , compute yΓ = ΣxΓ as follows:

a. Set yΓ = 0

b. For i = 1, . . . ,M Do in parallel:

c. xi = RΓixΓ

d. zi = AΩi,Γixi

e. zi ← A−1
Ωi,Ωi

zi

f. sum up in the local vector yΓi ← AΓi,Γixi−AΓi,Ωi
zi

g. sum up in the global vector yΓ ← RT
ΓiyΓi

h. EndFor

Since no communication is required among the subdomains, this is a fully parallel
algorithm.
Before using for the first time the Schur complement, a start-up phase, described in
Algorithm 18.2, is requested. Note that this is an off-line procedure.

Algorithm 18.2 (Start-up phase for the solution of the Schur complement system)

Given xΓ , compute yΓ = ΣxΓ as follows:

a. For i = 1, . . . ,M Do in parallel:

b. Compute the entries of Ai

c. Reorder Ai as in (18.76) then extract the submatrices

AΩi,Ωi
, AΩi,Γi , AΓi,Ωi

and A(i)
Γ ,Γ

d. Compute the (either LU or Cholesky) factorization of AΩi,Ωi

e. EndFor

18.5 DD preconditioners in case of many subdomains

Before introducing the preconditioners for the Schur complement in the case in which
Ω is partitioned in many subdomains we recall the following definition:

Definition 18.1. A preconditioner Ph of Σ is said to be scalable if the condition
number of the preconditioned matrix P−1

h Σ is independent of the number of sub-
domains.

Iterative methods using scalable preconditioners allow henceforth to achieve con-
vergence rates independent of the subdomain number. This is a very desirable property
in those cases where a large number of subdomains is used.
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Let Ri be a restriction operator which, to any vector vh of nodal values on the
global domain Ω , associates its restriction to the subdomain Ωi

Ri : vh|Ω → vih|Ωi∪Γi
.

Let moreover
RT
i : vih|Ωi∪Γi

→ vh|Ω

be the prolongation (or extension-by-zero) operator. In algebraic form Ri can be rep-
resented by a matrix that coincides with the identity matrix in correspondence with the
subdomain Ωi

Ri =

⎡⎢⎢⎣
0 . . . 0 1 0 . . . 0

...
. . .

...
. . .

...
. . .

...
0 . . . 0 1 0 . . . 0

⎤⎥⎥⎦ .

︸ ︷︷ ︸
Ωi

Similarly we can define the restriction and prolongation operators RΓi and RT
Γi , respec-

tively, that act on the vector of interface nodal values (as done in (18.81)). In order to
find a preconditioner for Σ the strategy consists of combining the contributions of lo-
cal subdomain preconditioners with that of a global contribution referring to a coarse
grid whose elements are the subdomains themselves. Without the latter coarse grid
term the preconditioner could not be scalable since it would lack any mechanism for
global communication of information across the domain in each iteration step. This
idea can be formalized through the following relation that provides the inverse of the
preconditioner

(Ph)−1 =
M

∑
i=1

RT
ΓiP

−1
i,h RΓi +RT

ΓP
−1
H RΓ .

We have denoted by H the maximum value of the diameters Hi of the subdomains Ωi;
moreover, Pi,h is either the local Schur complement Σi, or (more frequently) a suitable
preconditioner of Σi, while RΓ and PH refer to operators that act on the global scale
(that of the coarse grid).

Many different choices are possible for the local Schur complement preconditioner
Pi,h; they will give rise to different condition numbers of the preconditioned matrix
P−1
h Σ .

18.5.1 Jacobi preconditioner

Let {e1, . . . ,em} be the set of edges and {v1, . . . ,vn} that of vertices of a partition of Ω
into subdomains (see Fig. 18.6 for an example).
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Ω

Ωi

v1 v2

v3 v4

e1

e2 e3

e4

e5
e6 e7

e8
e9 e10

e11 e12

Fig. 18.6. A decomposition into 9 subdomains (left) with a fine triangulation in small triangles
and a coarse triangulation in large quadrilaterals (the 9 subdomains ) (right)

The Schur complement Σ features the following blockwise representation

Σ =

⎡⎣ Σee Σev

ΣT
ev Σvv

⎤⎦ ,

having set

Σee =

⎡⎢⎣ Σe1e1 . . . Σe1em
...

. . .
...

Σeme1 . . . Σemem

⎤⎥⎦ , Σev =

⎡⎢⎢⎣
Σe1v1 . . . Σe1vn

...
. . .

...
Σemv1 . . . Σemvn

⎤⎥⎥⎦
and

Σvv =

⎡⎢⎢⎢⎢⎢⎣
Σv1v1 0 . . . 0

0
. . .

...
...

. . . 0

0 . . . 0 Σvnvn

⎤⎥⎥⎥⎥⎥⎦ .

In 3D there should be a further block row and column due to the presence of faces.
The Jacobi preconditioner of the Schur complement Σ is a block diagonal matrix

defined by

PJ
h =

[
Σ̂ee 0
0 Σvv

]
where Σ̂ee is either Σee or a suitable approximation of it. This preconditioner does not
account for the interaction between the basis functions associated with edges and those
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associated with vertices. The matrix Σ̂ee is also diagonal

Σ̂ee =

⎡⎢⎢⎢⎢⎢⎣
Σ̂e1e1 0 . . . 0

0
. . .

...
...

. . . 0

0 . . . 0 Σ̂emem

⎤⎥⎥⎥⎥⎥⎦ .

Here Σ̂ekek denotes Σekek or a suitable approximation of it.

The preconditioner PJ
h can also be expressed in terms of restriction and prolonga-

tion operators as follows

(
PJ
h

)−1 =
m

∑
k=1

RT
ek Σ̂

−1
ekekRek +RT

v Σ
−1
vv Rv , (18.88)

where Rek and Rv denote edge and vertices restriction operators, respectively.

Regarding the condition number of the preconditioned Schur complement, there
exists a constant C > 0, indipendent of both h and H, such that

K2
(
(PJ

h )−1Σ
)
≤CH−2

(
1+ log

H
h

)2

.

Should the conjugate gradient method be used to solve the preconditioned Schur
complement system (18.79) with preconditioner PJ

h , the number of iterations neces-
sary to converge (within a prescribed tolerance) would be proportional to H−1. The
presence of H indicates that the Jacobi preconditioner is not scalable.

Moreover, we notice that the presence of the logarithmic term log(H/h) introduces
a relation between the size of the subdomains and the size of the computational grid
Th. This generates a propagation of information among subdomains characterized by
a finite (rather than infinite) speed of propagation. Note that the ratio H/h measures
the maximum number of elements across any subdomain.

18.5.2 Bramble-Pasciak-Schatz preconditioner

With the aim of accelerating the speed of propagation of information among subdo-
mains we can devise a mechanism of global coupling among subdomains. As already
anticipated, the family of subdomains can be regarded as a coarse grid, say TH , of the
original domain. For instance, in Fig. 18.6 TH is made of 9 (macro) elements and 4
internal nodes. It identifies a stiffness matrix of piecewise bilinear elements, say AH ,
of dimension 4× 4 which guarantees a global coupling inΩ . We can now introduce a
restriction operator that, for simplicity, we indicate RH :Γh →ΓH . More precisely, this
operator transforms a vector of nodal values on the skeleton Γh into a vector of nodal
values on the internal vertices of the coarse grid (4 in the case at hand). Its transpose
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RT
H is an extension operator. The matrix PBPS

h , whose inverse is

(PBPS
h )−1 =

m

∑
k=1

RT
ek Σ̂

−1
ekekRek +RT

HA−1
H RH , (18.89)

is named Bramble-Pasciak-Schatz preconditioner. The main difference with Jacobi
preconditioner (18.88) is due to the presence of the global (coarse-grid) stiffness matrix
AH instead of the diagonal vertex matrix Σvv. The following results hold:

K2
(
(PBPS

h )−1Σ
)
≤C

(
1+ log

H
h

)2

in 2D,

K2
(
(PBPS

h )−1Σ
)
≤C

H
h

in 3D.

Note that the factor H−2 does not show up anymore. The number of iterations of the
conjugate gradient method with preconditioner PBPS

h is now proportional to log(H/h)
in 2D and to (H/h)1/2 in 3D.

18.5.3 Neumann-Neumann preconditioner

Although the Bramble-Pasciak-Schatz preconditioner has better properties than Ja-
cobi’s, yet in 3D the condition number of the preconditioned Schur complement still
contains a linear dependence on H/h.

In this respect, a further improvement is achievable using the so-called Neumann-
Neumann preconditioner, whose inverse has the following expression

(PNN
h )−1 =

M

∑
i=1

RT
ΓiDiΣ ∗

i DiRΓi . (18.90)

As before, RΓi denotes the restriction from the nodal values on the whole skeleton Γ
to those on the local interface Γi, whereas Σ ∗

i is either Σ−1
i (should the local inverse

exist) or an approximation of Σ−1
i , e.g. the pseudo-inverse Σ+

i of Σi. The matrix Di is
a diagonal matrix of positive weights d j > 0, for j = 1, . . . ,n, n being the number of
nodes on Γi. For instance, d j coincides with the inverse of the number of subdomains
that share the j− th node. If we still consider the 4 internal vertices of Fig. 18.6, we
will have d j = 1/4, for j = 1, . . . ,4.
For the preconditioner (18.90) the following estimate (similar to that of Jacobi pre-
conditioner) holds: there exists a constant C > 0, indipendent of both h and H, such
that

K2
(
(PNN

h )−1Σ
)
≤CH−2

(
1+ log

H
h

)2

.

The last (logarithmic) factor drops out in case the subdomains partition features no
cross points.
The presence of Di and RΓi in (18.90) only entails matrix-matrix multiplications. On
the other hand, if Σ ∗

i = Σ−1
i , applying Σ−1

i to a given vector can be reconducted to the
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use of local inverses. As a matter of fact, let q be a vector whose components are the
nodal values on the local interface Γi; then

Σ−1
i q = [0, I]A−1

i [0, I]Tq.

In particular, [0, I]Tq = [0,q]T , and the matrix-vector product⎡⎢⎢⎢⎢⎣
internal
nodes

boundary nodes

⎤⎥⎥⎥⎥⎦
︸ ︷︷ ︸

A−1
i

⎡⎢⎢⎢⎢⎣
0

...
0
q

⎤⎥⎥⎥⎥⎦

corresponds to the solution on Ωi of the Neumann boundary-value problem⎧⎨⎩
−�wi = 0 inΩi,

∂wi

∂n
= q on Γi.

(18.91)

Algorithm 18.3 (Neumann-Neumann preconditioner)

Given a vector rΓ , compute zΓ = (PNN
h )−1rΓ as follows:

a. Set zΓ = 0

b. For i = 1, . . . ,M Do in parallel:

c. restrict the residue on Ωi: ri = RΓirΓ

d. compute zi = [0, I]A−1
i [0,ri]T

e. Sum up the global residue: zΓ ← RT
Γizi

f. EndFor

Also in this case a start-up phase is required, consisting in the preparation for the
solution of linear systems with local stiffness matrices Ai. Note that in the case of the
model problem (3.13), Ai is singular if Ωi is an internal subdomain, that is if ∂Ωi \
∂Ω = /0. One of the following strategies should be adopted:

1. compute a (either LU or Cholesky) factorization of Ai + εI, for a given ε > 0 suf-
ficiently small;

2. compute a factorization of Ai +
1
H2Mi, where Mi is the mass matrix whose entries

are
(Mi)k, j =

∫
Ωi

ϕkϕ j dΩi;

3. compute the singular-value decomposition of Ai.
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Table 18.2. Condition number of the preconditioned matrix (PNN
h )−1Σ

K2((PNN
h )−1Σ) H = 1/2 H = 1/4 H = 1/8 H = 1/16

h = 1/16 2.55 15.20 47.60 —
h = 1/32 3.45 20.67 76.46 194.65
h = 1/64 4.53 26.25 105.38 316.54
h = 1/128 5.79 31.95 134.02 438.02

The matrix Σ ∗
i is defined accordingly. In our numerical results we have adopted the

third approach.
The convergence history of the preconditioned conjugate gradient method with

preconditioner PNN
h in the case h = 1/32 is displayed in Fig. 18.7. In Table 18.2 we

report the values of the condition number of (PNN
h )−1Σ for several values of H.

As already pointed out, the Neumann-Neumann preconditioner of the Schur com-
plement matrix is not scalable. A substantial improvement of (18.90) can be achieved
by adding a coarse grid correction mechanism, yielding the following new precondi-
tioned Schur complement matrix (see, e.g., [TW05, Sect. 6.2.1])(

PBNN
h

)−1Σ = P0 +(I−P0)((PNN
h )−1Σ)(I−P0), (18.92)

in which we have used the shorthand notation P0 = R̄T
0 Σ

−1
0 R̄0Σ , Σ0 = R̄0Σ R̄T

0 , and R̄0

denotes restriction from Γ onto the coarse level skeleton.
The matrix PBNN

h is called balanced Neumann-Neumann preconditioner.
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Fig. 18.7. Convergence history for the preconditioned conjugate gradient method with precon-
ditioner PNN

h when h = 1/32
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It can be proven that there exists a constantC > 0, independent of h and H, such that

K2
(
(PBNN

h )−1Σ
)
≤C

(
1+ log

H
h

)2

both in 2D and 3D. The balanced Neumann-Neumann preconditioner therefore guar-
antees optimal scalability up to a light logarithmic dependence on H and h.
The coarse grid matrix Σ0 that is a constituent of ΣH can be built up using the Algo-
rithm 18.4:

Algorithm 18.4 (construction of the coarse matrix for preconditioner PBNN
h )

a. Build the restriction operator R̄0 that returns, for every subdomain,
the weighted sum of the values at all the nodes at the boundary
of that subdomain
For every node the corresponding weight is given by the inverse of
the number of subdomains sharing that node

b. Build up the matrix Σ0 = R̄0Σ R̄T
0

Step a. of this Algorithm is computationally very cheap, whereas step b. requires
several (e.g., �) matrix-vector products involving the Schur complement matrix Σ .
Since Σ is never built explicitly, this involves the finite element solution of �×M
Dirichlet boundary value problems to generate AH . Observe moreover that the restric-
tion operator introduced at step a. implicitly defines a coarse space whose functions
are piecewise constant on every Γi. For this reason the balanced Neumann-Neumann
preconditioner is especially convenient when either the finite element grid or the sub-
domain partition (or both) are unstructured, as in Fig. 18.8). An algorithm that im-
plements the BNN preconditioner within a conjugate gradient method to solve the
interface problem (18.79) is reported in [TW05, Sect. 6.2.2].
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Fig. 18.8. Example of an unstructured subdomain partition in 8 subdomains for a finite element
grid which is either structured (left) or unstructured (right)
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Table 18.3. Condition number of (PBNN
h )−1Σ for several values of H

K2((PBNN
h )−1Σ) H = 1/2 H = 1/4 H = 1/8 H = 1/16

h = 1/16 1.67 1.48 1.27 —
h = 1/32 2.17 2.03 1.47 1.29
h = 1/64 2.78 2.76 2.08 1.55
h = 1/128 3.51 3.67 2.81 2.07

By a comparison of the results obtained using the Neumann-Neumann precondi-
tioner (with and without balancing), the following conclusions can be drawn:

• although featuring a better condition number than A, Σ is still ill-conditioned. The
use of a suitable preconditioner is therefore mandatory;

• the Neumann-Neumann preconditioner can be satisfactorily used for partitions fea-
turing a moderate number of subdomains;

• the balancing Neumann-Neumann preconditioner is almost optimally scalable and
therefore recommandable for partitions with a large number of subdomains.

18.5.4 FETI (Finite Element Tearing & Interconnecting) methods

In this section we will denote by Hi = diam(Ωi),Wi =Wh(∂Ωi) (the space of traces
of finite element functions on the boundaries ∂Ωi), and by W = ∏M

i=1Wi the product
space of such trace spaces.

At a later stage we will need two further finite element trace spaces, Ŵ ⊂ W a
subspace of continuous traces across the skeleton Γ , and W̃ , a possible intermediate
space Ŵ ⊂ W̃ ⊂W that will fulfill a smaller number of continuity constraints.

We will consider the variable coefficient elliptic problem{
−div(ρ∇u) = f in Ω ,

u = 0 on ∂Ω ,
(18.93)

where ρ is piecewise constant, ρ = ρi ∈ R+ in Ωi.
Finally, we will denote byΩih the nodes inΩi, ∂Ωih the nodes on ∂Ωi, ∂Ωh the nodes
on ∂Ω , and Γh the nodes on Γ . See Fig. 18.9.

Let us introduce the following scaling counting functions: ∀x ∈ Γh∪∂Ωh

δi(x) =

⎧⎪⎪⎨⎪⎪⎩
1 x ∈ ∂Ωih∩ (∂Ωh \Γh),

∑
j∈Nx

ργ
j (x)/ρ

γ
i (x) x ∈ ∂Ωih∩Γh,

0 elsewhere

(18.94)

where γ ∈ [1/2,+∞) and Nx is the set of indices of the subregions having x on their
boundary. Then we set

δ †
i (x) (= pseudo inverses ) =

{
δ−1
i (x) if δi(x) �= 0,

0 if δi(x) = 0.
(18.95)
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Fig. 18.9. Finite element sets of nodes ∂Ωh, Γh, Ωih, and ∂Ωih

Based on the finite element approximation of (18.93), let us consider the local Schur
complements (18.80), which are positive semi-definite matrices. In this section we will
indicate the interface nodal values on ∂Ωi as ui, and we set u = (u1, . . . ,uM), the local
load vectors on ∂Ωi as χi and we set χΔ = (χ1, . . . ,χM). Finally, we set

ΣΔ = diag(Σ1, . . . ,ΣM) =

⎡⎢⎢⎢⎢⎢⎢⎣
Σ1 0 · · · 0

... Σ2

...

. . .
0 0 · · · ΣM

⎤⎥⎥⎥⎥⎥⎥⎦,

a block diagonal matrix.
The original FEM problem, when reduced to the interface Γ , reads{

Find u ∈W such that J(u) =
1
2
〈ΣΔu,u〉−〈χΔ ,u〉 → min,

BΓ u = 0.
(18.96)

BΓ is not unique, so that we should impose continuity when u belongs to more than
one subdomain; BΓ is made of {0,−1,1}, since it enforces continuity constraints at
interfaces’ nodes. Here, we are using the same notationW to denote the finite element
space trace and that of their nodal values at points of Γh.
In 2D, there is a little choice on how to write the constraint of continuity at a point
sitting on an edge, there are many options for a vertex point. For the edge node we only
need to choose the sign, whereas for a vertex node, e.g. one common to 4 subdomains,
a minimum set of three constraints can be chosen in many different ways to assure
continuity at the node in question. See, e.g., Fig. 18.10.
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Fig. 18.10. Continuity constraints enforced by 3 (non-redundant) conditions on the left, by 6
(redundant) conditions on the right

Problem (18.96) admits a unique solution iff Ker{ΣΔ}∩Ker{BΓ } = 0, that is if ΣΔ is
invertible on Ker(BΓ ).

We can reformulate (18.96) using Lagrange multipliers:{
Find (u,λ) ∈W ×U such that ΣΔu+BT

Γλ = χΔ ,

BΓ u = 0.
(18.97)

Because of the inf-sup (LBB) condition (see Chap. 16), the componentλ of the solution
to (18.97) is unique up to an additive vector ofKer(BT

Γ ), so we chooseU = range(BΓ ).
Let R = diag(R(1), . . . ,R(M)) be made of null-space elements of ΣΔ . (E.g. R(i) corre-
sponds to the rigid body motions of Ωi, in case of linear elasticity operator.)
R is a full column rank matrix. The solution of the first equation of (18.97) exists iff
χΔ −BT

Γλ ∈ range(ΣΔ ), a limitation that will be resolved by introducing a suitable
projection operator P. Then,

u = Σ †
Δ (χΔ −BT

Γλ)+Rα if χΔ −BT
Γλ ⊥ Ker(ΣΔ ),

where α is an arbitrary vector and Σ †
Δ is a pseudoinverse of ΣΔ . (Even though there are

several pseudo-inverses of a given matrix, the following algorithm will be invariant to
the specific choice.) It is convenient to choose a symmetric Σ †

Δ , e.g. that of Moore-
Penrose, see [QSS07].
Substituting u into the second equation of (18.97) yields

BΓ Σ †
ΔB

T
Γλ = BΓ Σ †

ΔχΔ +BΓRα. (18.98)

Let us set F = BΓ Σ †
ΔB

T
Γ and d = BΓ Σ †

ΔχΔ . Then choose PT to be a suitable projection
matrix, e.g. PT = I−G(GTG)−1GT , with G = BΓR. Then{

PTFλ = PTd,

GTλ = e (= RTχΔ ).
(18.99)

More in general, one can introduce a s.p.d. matrix Q, and set

PT = I−G(GTQG)−1GTQ.
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The operator PT is the projection fromU onto the space of Lagrange multipliers that
are Q-orthogonal to range(G), while P = I−QG(GTQG)−1GT is a projection from
U onto Ker(GT ) (it is indeed the orthogonal projection with respect to the Q−1-inner
product (λ,μ)Q−1 = (λ,Q−1μ) ).
Upon multiplication of (18.98) by H = (GTQG)−1GTQ we find

α = H(d−Fλ),

which fully determines the primal variables in terms of λ.
If the differential operator has constant coefficients, choosing Q = I suffices. In case
of jumps in the coefficients, Q is typically chosen as a scaling diagonal matrix and can
be regarded as a scaling from the left of matrix BΓ by Q1/2.

The original one-level FETI method is a CG method in the space V applied to

PTFλ = PTd , λ ∈ λ0 +V (18.100)

with an initial λ0 such that GTλ0 = e. Here

V = {λ ∈U : 〈λ,Bz〉 = 0, z = Ker(ΣΔ )}

is the so-called space of admissible increments, Ker(GT ) = range(P) and

V ′ = {μ ∈U : 〈μ,Bz〉Q = 0,z ∈ Ker(ΣΔ )} = range(PT ).

The above simplest version of FETI with no preconditioner (or only a diagonal
preconditioner) in the subdomain is scalable with the number of subdomains, but the
condition number grows polynomially with the number of elements per subdomain.
The original, most basic FETI preconditioner is

P−1
h = BΓ ΣΔB

T
Γ =

M

∑
i=1

B(i)ΣiB
(i)T . (18.101)

It is called a Dirichlet preconditioner since its application to a given vector involves
the solution ofM independent Dirichlet problems, one in every subdomain. The coarse
space in FETI consists of the nullspace on each substructure.

To keep the search directions of the resulting preconditioned CG method in the
spaceV , the application of P−1

h is followed by an application of the projection P. Thus,
the so-called Dirichlet variant of the FETI method is the CG algorithm applied to the
modified equation

PP−1
h PTFλ = PP−1

h PTd , λ ∈ λ0 +V. (18.102)

Since, for λ ∈ V , PP−1
h PTFλ = PP−1

h PTPTFPλ, the matrix on the left of (18.102)
can be regarded as the product of two symmetric matrices. In case BΓ has full row
rank, i.e. the constraints are linearly independent and there are no redundant Lagrange
multipliers, a better preconditioner can be defined as follows

P̂−1
h = (BΓD

−1BT
Γ )−1BΓD

−1ΣΔD
−1BT

Γ (BΓD
−1BT

Γ )−1 (18.103)
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where D is a block diagonal matrix D = diag(D(1), . . . ,D(M)) and each block D(i) is a
diagonal matrix whose elements are δ †

i (x) (see (18.95)) corresponding to the point x
of ∂Ωi,h.
Since BΓD−1BT

Γ is block-diagonal, its inverse can be easily computed by inverting
small blocks whose size is nx, the number of Lagrange multipliers used to enforce
continuity at point x.
The matrix D, that operates on elements of the product spaceW , can be regarded as a
scaling from the right of BΓ by D−1/2. With this choice

K2(PP̂−1
h PTF) ≤C(1+ log(H/h))2, (18.104)

where K2(·) is the spectral condition number andC is a constant independent of h, H,
γ and the values of the ρi.

18.5.5 FETI-DP (Dual Primal FETI) methods

The FETI-DP method is a domain decomposition method introduced in [FLT+01]
that enforces equality of the solution at subdomains interfaces by Lagrange multipliers
except at subdomains corners, which remain primal variables. The first mathematical
analysis of the method was provided by Mandel and Tezaur [MT01]. The method was
further improved by enforcing the equality of averages across the edges or faces on
subdomain interfaces [FLP00], [KWD02]. This is important for parallel scalability.

Let us consider a 2D case for simplicity. As anticipated at the beginning of
Sect. 18.5.4, this idea is implemented by introducing an additional space W̃ such that
Ŵ ⊂ W̃ ⊂W for which we have continuity of the primal variables at subdomain ver-
tices, and also common values of the averages over all edges of the interface. However,
for simplicity we will confine ourselves to the case of primal variables associated to
subdomain vertices only. This space can be written as the sum of two subspaces

W̃ = ŴΠ ⊕W̃Δ (18.105)

where ŴΠ ⊂ Ŵ is the space of continuous interface functions that vanish at all nodal
points of Γh except at the subdomain vertices. ŴΠ is given in terms of the vertex vari-
ables and the averages of the values over the individual edges of the set of interface
nodes Γh. W̃Δ is the direct sum of local subspaces W̃Δ ,i:

W̃Δ =
M

∏
i=1

W̃Δ ,i (18.106)

where W̃Δ ,i ⊂Wi consists of local functions on ∂Ωi that vanish at the vertces ofΩi and
have zero average on each individual edge.

According to this space splitting, the continuous degrees of freedom associated
with the subdomain vertices and with the subspace ŴΠ are called primal (Π ), while
those (that are potentially discontinuous across Γ ) that are associated with the sub-
spaces W̃Δ ,i and with the interior of the subdomain edges are called dual (Δ ).
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The subspace ŴΠ , together with the interior subspace, defines the subsystemwhich
is fully assembled, factored, and stored in each iteration step.

At this stage, all unknowns of the first subspace as well as the interior variables
are eliminated to obtain a new Schur complement Σ̃Δ . More precisely, we proceed as
follows.
Let Ã denote the stiffness matrix obtained by restricting diag(A1, . . . ,AM) (see (18.76))
from∏M

i=1W
h(Ωi) toW̃ h(Ω) (these spaces now refer to subdomains, not to their bound-

aries). Then Ã is no longer block diagonal because of the coupling that now exists
between subdomains sharing a common vertex. According to the previous space de-
composition, Ã can be split as follows

Ã =

⎡⎢⎢⎣
AII AIΠ AIΔ

AT
IΠ AΠΠ AΠΔ

AT
IΔ AT

ΠΔ AΔΔ

⎤⎥⎥⎦ .

Here the subscript I refers to the internal degrees of freedom of the subdomains, Π
to those associated to the subdomains vertices, and Δ to those of the interior of the
subdomains edges, see Fig. 18.11, right. The matrices AII and AΔΔ are block diagonal
(one block per subdomain). Any non-zero entry of AIΔ represents a coupling between
degrees of freedom associated with the same subdomain. Upon eliminating the vari-
ables of the I and Π sets, a Schur complement associated with the variables of the Δ
sets (interior and edges) is obtained as follows

Σ̃ = AΔΔ −
[
AT
IΔA

T
ΠΔ

][ AII AIΠ
AT
IΠ AΠΠ

]−1 [
AIΔ
AΠΔ

]
. (18.107)

Correspondingly we obtain a reduced right hand side χ̃Δ . By indicating with uΔ ∈ W̃Δ
the vector of degrees of freedom associated with the edges, similarly to what done in
(18.96) for FETI, the finite element problem can be reformulated as a minimization

Fig. 18.11. Degrees of freedom of the spaceW for one-level FETI (left) and those of the space
W̃ for one-level FETI-DP (right) in the case of primal vertices only
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problem with constraints given by the requirement of continuity across all of Γ{
Find uΔ ∈ W̃Δ : J(uΔ ) =

1
2
〈Σ̃uΔ ,uΔ 〉−〈χ̃Δ ,uΔ 〉 → min,

BΔuΔ = 0.
(18.108)

The matrix BΔ is made of {0,−1,1} as it was for BΓ . Note however that this time
the constraints associated with the vertex nodes are dropped since they are assigned to
the primal set. Note also that since all the constraints refer to edge points, no distinc-
tion needs to be made between redundant and non-redundant constraints and Lagrange
multipliers.
A saddle point formulation of (18.108), similar to (18.97), can be obtained by intro-
ducing a set of Lagrange multipliers λ ∈V = range(BΔ ). Indeed, since Ã is s.p.d., so
is Σ̃ : by eliminating the subvectors uΔ we obtain the reduced system

FΔλ = dΔ , (18.109)

where FΔ = BΔ Σ̃−1BT
Δ and dΔ = BΔ Σ̃−1χ̃Δ .

Note that once λ is found, uΔ = Σ̃−1(χ̃Δ −BT
Δλ)∈ W̃Δ , while the interior variables uI

and the vertex variables uΠ are obtained by back-solving the system associated with Ã.
A preconditioner for F is introduced as done in (18.103) for FETI (in case of non-

redundant Lagrange multipliers)

P−1
Δ = (BΔD

−1
Δ BT

Δ )−1BΔD
−1
Δ SΔΔD

−1
Δ BT

Δ (BΔD
−1
Δ BT

Δ )−1. (18.110)

Here DΔ is a block diagonal scaling matrix with blocks D(i)
Δ : each of their diagonal

elements corresponds to a Lagrange multiplier that enforces continuity between the
nodal values of some wi ∈Wi and wj ∈Wj at some point x ∈ Γh and it is given by
δ †
j (x). Moreover, ΣΔΔ = diag(Σ1,ΔΔ , . . . ,ΣM,ΔΔ ) with Σi,ΔΔ being the restriction of

the local Schur complement Σi to W̃Δ ,i ⊂Wi.
When using the conjugate gradient method for the preconditioned system

P−1
Δ FΔλ = P−1

Δ dΔ ,

in contrast with one level FETI methods we can use an arbitrary initial guess λ0.
For an efficient implementation of this algorithm see [TW05, Sect. 6.4.1]. Also in this
case we have a condition number that scales polylogarithmically, that is

K2(P−1
Δ FΔ ) ≤C(1+ log(H/h))2,

where C is independent of h,H,γ and the values of the ρi. For a comprehensive pre-
sentation and analysis, see [KWD02] and [TW05].
For a conclusive comparative remark between FETI and FETI-DPmethods, by follow-
ing [TW05] we can note that FETI-DP algorithms do not require the characterization
of the kernels of local Neumann problems (as required by one-level methods), because
the enforcement of the additional constraints in each iteration always makes the local
problems nonsingular and at the same time provides an underlying coarse global prob-
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lem. FETI-DP methods do not require the introduction of a scaling matrix Q, which
enters in the construction of a coarse solver for one-level FETI algorithms.
Finally, it is worth noticing that one-level FETI methods are projected conjugate gra-
dient algorithms that cannot start from an arbitrary initial guess. In contrast, FETI-DP
methods are standard preconditioned conjugate algorithms and can therefore employ
an arbitrary initial guess λ0.

18.5.6 BDDC (Balancing Domain Decomposition with Constraints) methods

This method was introduced by Dohrmann [Doh03] as a simpler primal alternative to
the FETI-DP domain decomposition method. The name BDDCwas coined by Mandel
and Dohrmann because it can be understood as further development of the balancing
domain decomposition method [Man93] with the coarse, global component of a BDDC
algorithm expressed interms of a set of primal constraints.

In contrast to the original Neumann-Neumann and one-levet FETI methods, FETI-
DP and BDDC algorithms do not require the solution of any singular linear systems of
equations (those associated with a pure Neumann problem). In fact, any given choice
of the primal set of variables determines a FETI-DP method and an associated BDDC
method. This pair defines a duality, and features the same spectrum of eigenvalues (up
to the eigenvalues 0 and 1) (see [LW06]). The choice of the primal constraints is of
course a crucial question in order to obtain an efficient FETI-DP or BDDC algorithm.

BDDC is used as a preconditioner for the conjugate gradient method. A specific
version of BDDC is characterized by the choice of coarse degrees of freedom, which
can be values at the corners of the subdomains, or averages over the edges of the
interface between the subdomains. One application of the BDDC preconditioner then
combines the solution of local problems on each subdomain with the solution of a
global coarse problem with the coarse degrees of freedom as the unknowns. The local
problems on different subdomains are completely independent of each other, so the
method is suitable for parallel computing.
A BDDC preconditioner reads

P−1
BDDC = R̃T

DΓ Σ̃−1R̃DΓ ,

where R̃Γ : Ŵ → W̃ is a restriction matrix, R̃DΓ is a scaled variant of R̃Γ with scale
factor δ †

i (featuring the same sparsity pattern of R̃Γ ). This scaling is chosen in such a
way that R̃Γ R̃T

DΓ is a projection (then it coincides with its square).
Theoretical analysis of BDDC preconditioner (and its spectral analogy with FETI-

DP preconditioner) was first provided in [MDT05] and later in [LW06] and [BS07].

18.6 Schwarz iterative methods

Schwarz method, in its original form described in Sect. 18.1.1, was proposed by
H. Schwarz [Sch69] as an iterative scheme to prove existence of solutions to ellip-
tic equations set in domains whose shape inhibits a direct application of Fourier series.
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Fig. 18.12. Two examples for which the Schwarz method in its classical form applies

Two elementary examples are displayed in Fig. 18.12. This method is still used in
some quarters as solution method for elliptic equations in arbitrarily shaped domains.
However, nowadays it is mostly used in a somehow different version, that of DD pre-
conditioner of conjugate gradient (or, more generally, Krylov) iterations for the solu-
tion of algebraic systems arising from finite element (or other kind of) discretizations
of boundary-value problems.

As seen in Sect. 18.1.1, the distinctive feature of Schwarz method is that it is based
on an overlapping subdivision of the original domain. Let us still denote {Ωm} these
subdomains.

To start with, in the following subsection we will show how the Schwarz method
can be formulated as an iterative algorithm to solve the algebraic system associated
with the finite element discretization of problem (18.1).

18.6.1 Algebraic form of Schwarz method for finite element discretizations

Consider as usual a finite element triangulation Th of the domain Ω . Then assume that
Ω is decomposed in two overlapping subdomains, Ω1 and Ω2, as shown in Fig. 18.1
(left).

Denote with Nh the total number of nodes of the triangulation that are internal toΩ
(i.e., they don’t sit on its boundary), and with N1 and N2, respectively, those internal
to Ω1 and Ω2, as done in Sect. 18.3. Note that Nh ≤ N1 +N2 and that equality holds
only if the overlap reduces to a single layer of elements. Indeed, if we denote with
I = {1, . . . ,Nh} the set of indices of the nodes ofΩ , and with I1 and I2 those associated
with the internal nodes ofΩ1 andΩ2, respectively, one has I = I1∪ I2, while I1∩ I2 �= /0
unless the overlap consists of a single layer of elements.

Let us order the nodes in such a way that the first block corresponds to those in
Ω1 \Ω2, the second to those in Ω1 ∩Ω2, and the third to those in Ω2 \Ω1. The stiff-
ness matrix A of the finite element discretization contains two submatrices, A1 and A2,
corresponding to the local stiffness matrices in Ω1 e Ω2, respectively (see Fig. 18.13).
They are related to A as follows

A1 = R1AR
T
1 ∈ RN1×N1 and A2 = R2AR

T
2 ∈ RN2×N2 , (18.111)
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A
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Nh
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Fig. 18.13. The submatrices A1 and A2 of the stiffness matrix A

being Ri and RT
i , for i = 1,2, the restriction and prolongation operators, respectively.

The matrix representation of the latter is

RT
1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 . . . 0

...
. . .

...
0 . . . 1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ RNh×N1 , RT

2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

1 . . . 0

...
. . .

...
0 . . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ RNh×N2 . (18.112)

If v is a vector of RNh , then R1v is a vector of RN1 whose components coincide with
the first N1 components of v. Should v instead be a vector of RN1 , then RT

1 v would be
a vector of dimension Nh whose last Nh−N1 components are all zero.

By using these definitions, an iteration of the multiplicative Schwarz method ap-
plied to system Au = f can be expressed as follows:

u(k+1/2) = u(k) +RT
1 A

−1
1 R1(f−Au(k)), (18.113)

u(k+1) = u(k+1/2) +RT
2 A

−1
2 R2(f−Au(k+1/2)). (18.114)

Equivalently, by setting
Pi = RT

i A
−1
i RiA , i = 1,2, (18.115)

we have
u(k+1/2) = (I−P1)u(k) +P1u,

u(k+1) = (I−P2)u(k+1/2) +P2u = (I−P2)(I−P1)u(k) +(P1 +P2−P2P1)u.

Similarly, an iteration of the additive Schwarz method reads

u(k+1) = u(k) +(RT
1 A

−1
1 R1 +RT

2 A
−1
2 R2)(f−Au(k)), (18.116)

that is
u(k+1) = (I−P1−P2)u(k) +(P1 +P2)u. (18.117)
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Introducing the matrices

Qi = RT
i A

−1
i Ri = PiA

−1, i = 1,2,

from (18.113) and (18.114) we derive the following recursive formula for the multi-
plicative Schwarz method

u(k+1) = u(k) +Q1(f−Au(k))+Q2[f−A(u(k) +Q1(f−Au(k)))]

= u(k) +(Q1 +Q2−Q2AQ1)(f−Au(k)),

whereas for the additive Schwarz method we obtain from (18.116) that

u(k+1) = u(k) +(Q1 +Q2)(f−Au(k)). (18.118)

This last formula can easily be extended to the case of a decomposition ofΩ intoM≥ 2
overlapping subdomains {Ωi} (see Fig. 18.14 for an example). In this case we have

u(k+1) = u(k) +
( M

∑
i=1

Qi

)
(f−Au(k)). (18.119)

18.6.2 Schwarz preconditioners

Denoting with

Pas =
( M

∑
i=1

Qi

)−1
, (18.120)

from (18.119) it follows that an iteration of the additive Schwarz method corresponds
to an iteration of the preconditioned Richardson method applied to the solution of the
linear systemAu= f usingPas as preconditioner. For this reason thematrixPas is named
additive Schwarz preconditioner.

In case of disjoint subdomains (no overlap), Pas coincides with the block Jacobi
preconditioner

PJ =

⎡⎢⎣ A1 0

. . .
0 AM

⎤⎥⎦ , P−1
J =

⎡⎢⎢⎣
A−1
1 0

. . .
0 A−1

M

⎤⎥⎥⎦ (18.121)

in which we have removed the off-diagonal blocks of A.
Equivalently, one iteration of the additive Schwarz method corresponds to an iter-

ation by the Richardson method on the preconditioned linear system Qau = ga, with
ga = P−1

as f, and the preconditioned matrix Qa is

Qa = P−1
as A =

M

∑
i=1

Pi.
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By proceeding similarly, using the multiplicative Schwarz method would yield the
following preconditioned matrix

QM = P−1
ms A = I− (I−PM) . . . (I−P1).

Lemma 18.3. Matrices Pi defined in (18.115) are symmetric and non-negative
w.r.t the following scalar product induced by A

(w,v)A = (Aw,v) ∀w,v ∈ RNh .

Proof. For i = 1,2, we have

(Piw,v)A = (APiw,v) = (RT
i A

−1
i RiAw,Av) = (Aw,RT

i A
−1
i RiAv)

= (w,Piv)A ∀v,w ∈ RNh .

Moreover, ∀v ∈ RNh ,

(Piv,v)A = (APiv,v) = (RT
i A

−1
i RiAv,Av) = (A−1

i RiAv,RiAv) ≥ 0. �

Lemma 18.4. The preconditioned matrix Qa of the additive Schwarz method is
symmetric and positive definite w.r.t the scalar product induced by A.

Proof. Let us first prove the symmetry: for all u,v ∈ RNh , since A and Pi are both
symmetric, we obtain

(Qau,v)A = (AQau,v) = (Qau,Av) =∑
i
(Piu,Av)

=∑
i
(Piu,v)A =∑

i
(u,Piv)A = (u,Qav)A.

Concerning the positivity, choosing in the former identities u = v, we obtain

(Qav,v)A =∑
i
(Piv,v)A =∑

i
(RT

i A
−1
i RiAv,Av) =∑

i
(A−1

i qi,qi) ≥ 0,

having set qi = RiAv. It follows that (Qav,v)A = 0 iff qi = 0 for every i, that is iff
Av = 0. Since A is positive definite, this holds iff v = 0. �

Owing to the previous properties we can deduce that a more efficient iterative
method can be generated by replacing the preconditioned Richardson iterations with
the preconditioned conjugate gradient iterations, yet using the same additive Schwarz
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preconditioner Pas. Unfortunately, this preconditioner is not scalable. In fact, the con-
dition number of the preconditioned matrix Qa can only be bounded as

K2(P−1
as A) ≤C

1
δH

, (18.122)

beingC a constant independent of h, H and δ ; here δ is a characteristic linear measure
of the overlapping regions and, as usual,H =maxi=1,...,M{diam(Ωi)}. This is due to the
fact that the exchange of information only occurs among neighbooring subdomains, as
the application of (Pas)−1 involves only local solvers. This limitation can be overcome
by introducing, also in the current context, a global coarse solver defined on the whole
domainΩ and apt at guaranteing a global communication among all of the subdomains.
This leads to devise two-level domain decomposition strategies, see Sect. 18.6.3.

Let us address some algorithmic aspects. Let us subdivide the domain Ω in M
subdomains {Ωi}Mi=1 such that ∪M

i=1Ω i =Ω . Neighbooring subdomains share an over-
lapping region of size at least equal to δ = ξh, for a suitable ξ ∈N. In particular, ξ = 1
corresponds to the case of minimum overlap, that is the overlapping strip reduces to a
single layer of finite elements. The following algorithm can be used.

Algorithm 18.5 (introduction of overlapping subdomains)

a. Build a triangulation Th of the computational domain Ω
b. Subdivide Th in M disjoint subdomains {Ω̂i}Mi=1 such that ∪M

i=1Ω̂ i = Ω
c. Extend every subdomain Ω̂i by adding all the strips of finite elements

of Th within a distance δ from Ω̂i. These extended subdomains identify
the family of overlapping subdomains Ωi

In Fig. 18.14 a rectangular two-dimensional domain is subdivided into 9 disjoint
subdomains Ω̂i (on the left); also shown is one of the extended (overlapping) subdo-
mains (on the right).

To apply the Schwarz preconditioner (18.120) we can proceed as indicated in Al-
gorithm 18.5. We recall thatNi is the number of internal nodes ofΩi, RT

i and Ri are the
prolongation and restriction matrices, respectively, introduced in (18.112) and Ai are

Ω̂1

Ω̂2

Ω̂3

Ω̂4

Ω̂5

Ω̂6

Ω̂7

Ω̂8

Ω̂9

Ω5

Fig. 18.14. Partition of a rectangular region Ω in 9 disjoint subregions Ω̂i (on the left), and an
example of an extended subdomain Ω5 (on the right)



572 18 Domain decomposition methods

0 10 20 30 40 50 60 70 80

0

5

10

15

20

25

nz = 27

Fig. 18.15. The sparsity pattern of the matrix Ri for a partition of the domain in 4 subdomains

the local stiffness matrices introduced in (18.111). In Fig. 18.15 we display an example
of sparsity pattern of Ri.

Algorithm 18.6 (start-up phase for the application of Pas)

a. Build on every subdomanin Ωi the matrices Ri and RT
i

b. Build the stiffness matrix A corresponding to the
finite element discretization on the grid Th

c. On every Ωi build the local submatrices Ai = RiART
i

d. On every Ωi set up the code for the solution of a linear system with
matrix Ai.
For instance, compute a suitable (exact or incomplete) LU or
Cholesky factorization of Ai

A few general comments on Algorithm 18.5 and Algorithm 18.6 are in order:

• steps a. and b. of algorithm 18.5 can be carried out in reverse order, that is we
could first subdivide the computational domain into subdomains (based, for in-
stance, on physical considerations), then set up a triangulation;

• depending upon the general code structure, steps b. and c. of the algorithm 18.6
could be glued together with the scope of optimizing memory requirements and
CPU time.

In other circumstances we could interchange steps b. and c., that is the local stiff-
ness matrices Ai can be built at first (using the single processors), then assembled to
construct the global stiffness matrix A.
Indeed, a crucial factor for an efficient use of a parallel computer platform is keeping
data locality since in most cases the time necessary for moving data among processors
can be higher than that needed for computation.
Other codes (e.g. AztecOO, Trilinos, IFPACK) instead move from the global stiffness
matrix distributed rowise and deduce the local stiffness matrices Ai without performing
matrix-matrix products but simply using the column indices. In MATLAB, however,
it seems more convenient to build A at first, next the restriction matrices Ri, and finally
to carry out matrix multiplications RiART

i to generate the Ai.



18.6 Schwarz iterative methods 573

Table 18.4. Condition number of P−1
as A for several values of h and H

K2(P−1
as A) H = 1/2 H = 1/4 H = 1/8 H = 1/16

h = 1/16 15.95 27.09 52.08 –
h = 1/32 31.69 54.52 104.85 207.67
h = 1/64 63.98 109.22 210.07 416.09
h = 1/128 127.99 218.48 420.04 832.57

In Table 18.4 we analyze the case of a decomposition with minimum overlap (δ =
h), considering several values for the numberM of subdomains. The subdomainsΩi are
overlapping squares of area H2. Note that the theoretical estimate (18.122) is satisfied
by our results.

18.6.3 Two-level Schwarz preconditioners

As anticipated in Sect. 18.6.2, the main limitation of Schwarz methods is to propagate
information only among neighbooring subdomains. As for the Neumann-Neumann
method, a possible remedy consists of introducing a coarse grid mechanism that allows
for a sudden information diffusion on the whole domain Ω . The idea is still that of
considering the subdomains as macro-elements of a new coarse grid TH and to build a
corresponding stiffness matrix AH . The matrix

QH = RT
HA

−1
H RH ,

where RH is the restriction operator from the fine to the coarse grid, represents the
coarse level correction for the new two-level preconditioner. More precisely, set-
ting for notational convenience Q0 = QH , the two-level preconditioner Pcas is defined
through its inverse as

P−1
cas =

M

∑
i=0

Qi. (18.123)

The following result can be proven in 2D: there exists a constant C > 0, independent
of both h and H, such that

K2(P−1
casA) ≤C(1+

H
δ

).

The ratio H/δ measures the relative overlap between neighboring overlapping subdo-
mains. For “generous” overlap, that is if δ is a fraction of H, the preconditioner Pcas
is scalable. Consequently, conjugate gradient iterations on the original finite element
system using the preconditioner Pcas converges with a rate independent of h and H
(and therefore of the number of subdomains). Moreover, thanks to the additive struc-
ture (18.123), the preconditioning step is fully parallel as it involves the solution of M
independent systems, one per each local matrix Ai.



574 18 Domain decomposition methods

In 3D, we would get a bound with a factorH/h, unless the elliptic differential operator
has constant coefficients (or variable coefficients which don’t vary too much).

The use of Pcas involves the same kind of operations required by Pas, plus those of
the following algorithm.

Algorithm 18.7 (start-up phase for the use of PcasPcasPcas)

a. Execute Algorithm 18.6

b. Define a coarse level triangulation TH whose elements are of the
order of H, then set n0 = dim(V0). Suppose that Th be nested in TH . (See
Fig. 18.16 for an example.)

c. Build the restriction matrix R0 ∈ Rn0×Nh whose elements are

R0(i, j) = Φi(x j),

where Φi is the basis function associated to the node i of the coarse
grid, while by x j we indicate the coordinates of the j − th node on
the fine grid

d. Build the coarse matrix AH. This can be done by discretizing the
original problem on the coarse grid TH, that is by computing

AH(i, j) = a(Φ j,Φi) =
∫
Ω

d

∑
�=1

∂Φi

∂x�

∂Φ j

∂x�
,

or, otherwise, by setting

AH = RHART
H .

For a computational domain with a simple shape (like the one we are considering)
one typically generates the coarse grid TH first, and then, by multiple refinements, the
fine grid Th. In other cases, when the domain has a complex shape and/or a non struc-

Fig. 18.16. On the left, example of a coarse grid for a 2D domain, based on a structured mesh.
The triangles of the fine grid has thin edges; thick edges identify the boundaries of the coarse
grid elements. On the right, a similar construction is displayed, this time for an unstructured fine
grid
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tured fine grid Th is already available, the generation of a coarse grid might be difficult
or computationally expensive. A first option would be to generate TH by successive
derefinements of the fine grid, in which case the nodes of the coarse grid will represent
a subset of those of the fine grid. This approach, however, might not be very efficient
in 3D.
Alternatively, one could generate the two (not necessarily nested) grids Th and TH in-
dependently, then generate the corresponding restriction and prolongation operators
from the fine to the coarse grid, RH and RT

H .

The final implementation of Pcas could therefore be made as follows:

Algorithm 18.8 (Pcas solve)

For any given vector r, the computation of z = P−1
cas r can be carried out as

follows:

a. Set z = 0

b. For i = 1, . . . ,M Do in parallel:

c. restrict the residue on Ωi: ri = Rir

d. compute zi : Aizi = ri

e. add to the global residue: z← RT
i zi

f. EndFor

g. Compute the coarse grid contribution zH : AHzH = RHr

h. Add to the global residue: z← RT
HzH

In Table 18.5 we report the condition number of P−1
casA in the case of a minimum

overlap δ = h. Note that the condition number is almost the same on each NW-SE
diagonal (i.e. for fixed values of the ratio H/δ ).

An alternative approach to the coarse grid correction can be devised as follows.
Suppose that the coefficients of the restriction matrix be given by

R̂H(i, j) =

{
1 if the j− th node is in Ωi,

0 otherwise,

Table 18.5. Condition number of P−1
casA for several values of h and H

K2(P−1
casA) H = 1/4 H = 1/8 H = 1/16 H = 1/32

h = 1/32 7.03 4.94 — —
h = 1/64 12.73 7.59 4.98 —
h = 1/128 23.62 13.17 7.66 4.99
h = 1/256 45.33 24.34 13.28 —
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Table 18.6. Condition number of P−1
aggreA for several values of h and H

P−1
aggreA H = 1/4 H = 1/8 H = 1/16

h = 1/16 13.37 8.87 —
h = 1/32 26.93 17.71 9.82
h = 1/64 54.33 35.21 19.70
h = 1/128 109.39 70.22 39.07

then we set ÂH = R̂HAR̂T
H . This procedure is named aggregation because the elements

of ÂH are obtained by simply summing up the entries of A. Note that we don’t need
to construct a coarse grid in this case. The corresponding preconditioner, denoted by
Paggre, has an inverse that reads

P−1
aggre = R̂T

HÂ
−1
H R̂H +Pas.

It can be proven that

K2(P−1
aggreA) ≤C

(
1+

H
δ

)
.

In Table 18.6 we report several numerical values of the condition number for different
values of h and H.

IfH/δ =constant, this two-level preconditioner is either optimal and scalable, that
is the condition number of the preconditioned stiffness matrix is independent of both
h and H.

We can conclude this section with the following practical indications:

• for decompositions with a small number of subdomains, the single level Schwarz
preconditioner Pas is very efficient;

• when the number M of subdomains gets large, using two-level preconditioners
becomes crucial; aggregation techniques can be adopted, in alternative to the use
of a coarse grid in those cases in which the generation of the latter is difficult.

18.7 An abstract convergence result

The analysis of overlapping and non-overlapping domain decomposition precondition-
ers is based on the following abstract theory, due to P.L. Lions, J. Bramble, M. Dryja,
O. Wildlund.

Let Vh be a Hilbert space of finite dimension. In our applications, Vh is one of the
finite element spaces or spectral element spaces. Let Vh be decomposed as follows:

Vh = V0 +V1 + · · ·+VM.

Let F ∈V ′ and a : V ×V →R be a symmetric, continuous and coercive bilinear form.



18.8 Interface conditions for other differential problems 577

Consider the problem

find uh ∈Vh : a(uh,vh) = F(vh) ∀vh ∈Vh. (18.124)

Let Pi : Vh →Vi be a projection operator defined by

bi(Piuh,vh) = a(uh,vh) ∀vh ∈Vi

with bi : Vi×Vi → R being a local symmetric, continuous and coercive bilinear form
on each subspace Vi. Assume that the following properties hold:

a. stable subspace decomposition:
∃C0 > 0 such that every uh ∈Vh admits a decomposition uh = ∑M

i=0 ui with ui ∈Vi

and
M

∑
i=0

bi(ui,ui) ≤C2
0a(uh,uh);

b. strengthened Cauchy-Schwarz inequality:
∃εi j ∈ [0,1], i, j = 0, . . . ,M such that

a(ui,ui) ≤ εi j
√

a(ui,ui)
√

a(u j,u j) ∀ui ∈Vi,u j ∈Vj;

c. local stability:
∃ω ≥ 1 such that ∀i = 0, . . . ,M

a(ui,ui) ≤ ωbi(ui,ui) ∀ui ∈ Range(Pi) ⊂Vi.

Then, ∀uh ∈Vh,

C−2
0 a(uh,uh) ≤ a(Pasuh,uh) ≤ ω(ρ(E)+1)a(uh,uh) (18.125)

where ρ(E) is the spectral radius of the matrix E = (εi j), and Pas = P0 + · · ·+PM is
the domain decomposition preconditioner.
From inequality (18.125) the following bound holds for the preconditioned system

K(B−1A) ≤C2
0ω(ρ(E)+1)

where K(·) denotes the spectral condition number, A the matrix associated with the
original system (18.124), B the matrix associated to the operator Pas. For the proof, see
e.g. [TW05].

18.8 Interface conditions for other differential problems

Theorem 18.1 in Sect. 18.1.2 allows a second order elliptic problem (18.1) to be refor-
mulated in a DD version thanks to suitable interface conditions (18.9) and (18.10). On
the other hand, as we have extensively discussed, such reformulation sets the ground
for several iterative algorithms on disjoint DD partitions. They comprise Dirichlet-
Neumann, Neumann-Neumann, Robin-Robin algorithms and, more generally, all of
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Ω Ω1

Ω2

Γout

Γin
Γ

n

Fig. 18.17. Domain partition and interface splitting for the advection problem (18.126)

the preconditioned iterative algorithms of the Schur complement system (18.53) using
suitable DD preconditioners.
In this section we consider other kind of boundary-value problems and formulate the
associated interface conditions. Table 18.7 displays the interface conditions for these
problems. For more details, analysis and investigation of associated iterative DD al-
gorithms, the interested reader can consult [QV99].

Here we limit ourselves to provide a few additional insights in the case of advection
and Stokes equations.

Advection (transport) problems. Consider the differential problem

Lu = ∇ · (bu)+a0u = f inΩ , (18.126)

supplemented by suitable conditions on the boundary ∂Ω . Consider a partition of the
computational domain Ω into two disjoint subdomains whose interface is Γ . Let us
partition the latter as follows (see Fig. 18.17): Γ = Γin∪Γout , where

Γin = {x ∈ Γ | b(x) ·n(x) > 0 } and Γout = Γ \Γin.

Example 18.4. The Dirichlet-Neumann method for the problem at hand could be gen-
eralized as follows: being given two functions u(0)

1 , u(0)
2 on Γ , ∀k ≥ 0 solve:⎧⎨⎩ Lu(k+1)

1 = f inΩ1,

(b ·n)u(k+1)
1 = (b ·n)u(k)

2 on Γout ,⎧⎨⎩ Lu(k+1)
2 = f inΩ2,

(b ·n)u(k+1)
2 = θ(b ·n)u(k)

1 +(1−θ)(b ·n)u(k)
2 on Γin.
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where θ > 0 denotes a suitable relaxation parameter. The adaptation to the case of a

finite element discretization is straightforward. �
Stokes problem. The Stokes equations (16.11) feature two fields of variables: fluid
velocity and fluid pressure. When considering a DD partition, at subdomain interface
only the velocity field is requested to be continuous. Pressure needs not necessarily be
continuous, since in the weak formulation of the Stokes equations it is "only" requested
to be in L2. Moreover, on the interface Γ the continuity of the normal Cauchy stress
ν ∂u

∂n − pn needs only be satisfied in weak (natural) form.

Example 18.5. A Dirichlet-Neumann algorithm for the Stokes problem would entail
at each iteration the solution of the following subproblems (we use the short-hand
notation S to indicate the Stokes operator):⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

S(u(k+1)
2 , p(k+1)

2 ) = f inΩ2,

ν
∂u(k+1)

2

∂n
− p(k+1)

2 = ν
∂u(k)

1

∂n
− p(k)

1 on Γ ,

u(k+1)
2 = 0 on ∂Ω2 \Γ ,

(18.127)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
S(u(k+1)

1 , p(k+1)
1 ) = f inΩ1,

u(k+1)
1 = θu(k+1)

2 +(1−θ)u(k)
1 on Γ ,

u(k+1)
1 = 0 on ∂Ω1 \Γ .

(18.128)

Should the boundary conditions of the original problem be prescribed on the ve-
locity field, e.g. u = 0, pressure p would be defined only up to an additive constant,
which could be fixed by, e.g., imposing the constraint

∫
Ω pdΩ = 0.

To fulfill this constraint we can proceed as follows. When solving the Neumann prob-
lem (18.127) on the subdomain Ω2, both the velocity u(k+1)

2 and the pressure p(k+1)
2

are univocally determined. When solving the Dirichlet problem (18.128) on Ω1, the
pressure is defined only up to an additive constant; we fix it by imposing the additional
equation ∫

Ω1

p(k+1)
1 dΩ1 = −

∫
Ω2

p(k+1)
2 dΩ2.

Should the four sequences {u(k)
1 }, {u(k)

2 }, {p(k)
1 } and {p(k)

2 } converge, the null average
condition on the pressure would be automatically verified. �
Example 18.6. Suppose now that the Schwarz iterative method is used on an overlap-
ping subdomain decomposition of the domain like that on Fig. 18.1, left. At every step
we have to solve two Dirichlet problems for the Stokes equations:⎧⎪⎪⎪⎨⎪⎪⎪⎩

S(u(k+1)
1 , p(k+1)

1 ) = f inΩ1,

u(k+1)
1 = u(k)

2 on Γ1,

u(k+1)
1 = 0 on ∂Ω1 \Γ1,

(18.129)
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S(u(k+1)

2 , p(k+1)
2 ) = f inΩ2,

u(k+1)
2 = u(k+1)

1 on Γ2,

u(k+1)
2 = 0 on ∂Ω2 \Γ2.

(18.130)

No continuity is required on the pressure field at subdomain boundaries.
The constraint on the fluid velocity to be divergence free on the whole domain

Ω requires special care. Indeed, after solving (18.129), we have divu(k+1)
1 = 0 in Ω1,

hence, thanks to the Green formula,∫
∂Ω1

u(k+1)
1 ·ndγ = 0.

This relation implies a similar relation for u(k)
2 in (18.129)2; indeed

0 =
∫
∂Ω1

u(k+1)
1 ·ndγ =

∫
Γ1
u(k+1)
1 ·ndγ =

∫
Γ1
u(k)
2 ·ndγ. (18.131)

At the very first iteration we can select u(0)
2 in such a way that the compatibility

condition (18.131) be satisfied, however this control is lost, a priori, in the course
of the subsequent iterations. For the same reason, the solution of (18.130) yields the
compatibility condition ∫

Γ2
u(k+1)
1 ·ndγ = 0. (18.132)

Fortunately, Schwarz method automatically guarantees that this condition holds.
Indeed, inΓ12 =Ω1∩Ω2 we have divu(k+1)

1 = 0, moreover onΓ12\(Γ1∪Γ2), u(k+1)
1 = 0

because of the given homogeneous Dirichlet boundary conditions. Thus

0 =
∫
∂Γ12

u(k+1)
1 ·ndγ =

∫
Γ1
u(k+1)
1 ·ndγ +

∫
Γ2
u(k+1)
1 ·ndγ.

The first integral on the right hand side vanishes because of (18.131), therefore (18.132)
is satisfied. �

18.9 Exercises

1. Consider the one-dimensional advection-transport-reaction problem{
−(α ux)x +

(
β u

)
x + γu = f in Ω = (a,b)

u(a) = 0, α ux(b)−β u(b) = g,
(18.133)

with α and γ ∈ L∞(a,b), β ∈W1,∞(a,b) and f ∈ L2(a,b).

a) Write the addititive Schwarz iterativemethod, then themultiplicative one, on the
two overlapping intervals Ω1 = (a,γ2) and Ω2 = (γ1,b), with a < γ1 < γ2 < b.
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Table 18.7. Interface continuity conditions for several kind of differential operators; D stands
for Dirichlet condition, N for Neumann

Operator Problem D N

Laplace −�u = f , u
∂u
∂n

−∇ · (σ(u)) = f,
Elasticity with

σk j = μ̂(Dku j +Djuk)+ λ̂divuδk j , u σ(u) ·n
u in-plane membrane displacement

Transport-diffusion −∑k j Dk(Ak jD ju)+div(bu)+a0u = f u

∂u
∂nL

= ∑k ak jD ju ·nk

Transport div(bu)+a0u = f b ·nu

−divT(u, p)+(u∗ ·∇)u = f,
divu = 0,

Incompressible with
viscous flows Tk j = ν(Dku j +Djuk)− pδk j, u T(u, p) ·n

u∗ =

⎧⎨⎩
0 (Stokes equations)
u∞ (Oseen equations)
u (Navier-Stokes equations)

αu−divT̂(u,σ) = f,
Compressible ασ +divu = g,
viscous flows with u T̂(u,σ) ·n

T̂k j = ν(Dku j +Djuk)
−βσδk j +

(
g− 2ν

d

)
divuδk j,

ρ = fluid density = logσ

Compressible αu+β∇σ = f,
inviscid flows ασ +divu = 0 u ·n σ

Maxwell
(harmonic regime)

rot
(

1
μ
rotE

)
−α2εE+ iασE = f n×E n×

(
1
μ
rotE

)
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b) Interpret these methods as suitable Richardson algorithms to solve the given
differential problem.

c) In case we approximate (18.133) by the finite element method, write the corre-
sponding additive Schwarz preconditioner, with and without coarse-grid com-
ponent. Then provide an estimate of the condition number of the preconditioned
matrix, in both cases.

2. Consider the one-dimensional diffusion-transport-reaction problem{
−(α ux)x +

(
β u

)
x +δu = f in Ω = (a,b)

α ux(a)−β u(a) = g, ux(b) = 0,
(18.134)

with α and γ ∈ L∞(a,b), α(x)≥ α0 > 0, β ∈W1,∞(a,b), f ∈ L2(a,b) and g a given
real number.

a) Consider two disjoined subdomains of Ω , Ω1 = (a,γ) and Ω2 = (γ,b), with
a < γ < b. Formulate problem (18.134) using the Steklov-Poincaré operator,
both in differential and variational form. Analyze the properties of this operator
starting from those of the bilinear form associated with problem (18.134).

b) Apply the Dirichlet-Neumann method to problem (18.134) using the same do-
main partition introduced at point a).

c) In case of finite element approximation, derive the expression of the Dirichlet-
Neumann preconditioner of the Schur complement matrix.

3. Consider the one-dimensional Poisson problem{
−uxx(x) = f (x) in Ω = (0,1)

u(0) = 0, ux(1) = 0,
(18.135)

with f ∈ L2(Ω).

a) If Th indicates a partition of the interval Ω with step-size h, write the Galerkin-
finite element approximation of problem (18.135).

b) Consider now a partition ofΩ into the subintervalsΩ1 = (0,γ) andΩ2 = (γ,1),
being 0 < γ < 1 a node of the partition Th (See Fig. 18.18). Write the algebraic
blockwise form of the Galerkin-finite element stiffness matrix relative to this
subdomain partition.

c) Derive the discrete Steklov-Poincaré interface equation which corresponds to
the DD formulation at point b). Which is the dimension of the Schur comple-
ment?

d) Consider now two overlapping subdomains Ω1 = (0,γ2) and Ω2 = (γ1,1), with
0 < γ1 < γ2 < 1, the overlap being reduced to a single finite element of the

0 1γ
Fig. 18.18. Subdomain partition Th of the interval (0,1)
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Fig. 18.19. Overlapping decomposition of the interval (0,1)

0 1γ

Fig. 18.20. Coarse-grid partition made of two macro elements for the construction of matrix AH
and Lagrangian characteristic function associated with the node γ

partition Th (see Fig. 18.19). Provide the algebraic formulation of the additive
Schwarz iterative method.

e) Provide the general expression of the two-level additive Shwarz preconditioner,
by assuming as coarse matrix AH that associated with only two elements, as
displayed in Fig. 18.20.

4. Consider the diffusion-transport-reaction problem⎧⎪⎪⎪⎨⎪⎪⎪⎩
Lu = −∇ · (α∇u)+∇ · (βu)+ γu = f in Ω = (0,2)× (0,1),

u = 0 on ΓD,

α
∂u
∂n

+δu = 0 on ΓR,

(18.136)

with α = α(x), β = β(x), γ = γ(x), δ = δ (x) and f = f (x) being given functions,

and ∂Ω = ΓD∪Γ R, with
◦
ΓD ∩

◦
ΓR= /0.

LetΩ in (18.136) be partitioned into two disjoined subdomainsΩ1 = (0,1)×(0,1)
and Ω2 = (1,2)× (0,1).

a) Formulate problem (18.136) in terms of the Steklov-Poincaré operator, both in
differential and variational form.

b) Apply the Dirichlet-Neumann method to problem (18.136) using the same de-
composition introduced before.

c) Prove the equivalence between the Dirichlet-Neumann method at point b) and a
suitable preconditioned Richardson operator, after setting α = 1, β = 0, γ = 1
and ΓR = /0 in (18.136). Do the same for the Neumann-Neumann method.
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5. Consider the two-dimensional diffusion-transport-reaction problem{
Lu = −∇ · (μ ∇u)+b ·∇u+σu = f in Ω = (a,c)× (d,e),

u = 0 on ∂Ω .
(18.137)

Consider a decomposition ofΩ made of the overlapping subdomainsΩ3 = (a, f )×
(d,e) andΩ4 = (g,c)×(d,e), with g< f . On such a decomposition, write for prob-
lem (18.137) the Schwarzmethod in bothmultiplicative and additive versions. Then
interpret these methods as suitable preconditioned Richardson iterative algorithms.
Finally, comment on the convergence properties of these methods.
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