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Finite differences for hyperbolic equations

In this chapter we deal with time-dependent problems of hyperbolic type. For their
origin and an in-depth analysis see e.g. [Sal08, Chap. 4]. We will limit ourselves to
considering the numerical approximation using the finite difference method, which
was historically the first one to be applied to this type of equations. To introduce in
a simple way the basic concepts of the theory, most of our presentation will concern
problems depending on a single space variable. Finite element approximations will be
addressed in Chapter 14, the extension to nonlinear problems in Chapter 15.

13.1 A scalar transport problem

Let us consider the following scalar hyperbolic problem⎧⎨⎩
∂u
∂ t

+a
∂u
∂x

= 0, x ∈ R, t > 0,

u(x,0) = u0(x), x ∈ R,

(13.1)

where a ∈ R \ {0}. The solution of such problem is a wave travelling at velocity a,
given by

u(x, t) = u0(x−at), t ≥ 0.

We consider the curves x(t) in the plane (x, t), solutions of the following ordinary
differential equation ⎧⎨⎩

dx
dt

= a, t > 0,

x(0) = x0,

for varying values of x0 ∈ R.
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340 13 Finite differences for hyperbolic equations

Such curves are called characteristic lines (often simply characteristics) and the solu-
tion along these lines remains constant, for

du
dt

=
∂u
∂ t

+
∂u
∂x

dx
dt

= 0.

In the case of the more general problem⎧⎨⎩
∂u
∂ t

+a
∂u
∂x

+a0u = f , x ∈ R, t > 0,

u(x,0) = u0(x), x ∈ R,

(13.2)

where a,a0, and f are given functions of (x, t), the characteristic lines x(t) are the
solutions of the Cauchy problem⎧⎨⎩

dx
dt

= a(x, t), t > 0,

x(0) = x0.

In such case, the solutions of (13.2) satisfy the following relation

d
dt

u(x(t), t) = f (x(t), t)−a0(x(t), t)u(x(t), t).

Therefore it is possible to extract the solution u by solving an ordinary differential
equation on each characteristic curve (this approach leads to the so-called character-
istic method).
Let us now consider problem (13.1) in a bounded interval. For instance, let us suppose
x ∈ [0,1] and a > 0. As u is constant on the characteristics, from Fig. 13.1 we deduce
that the value of the solution at a point P coincides with the value of u0 at the foot
P0 of the characteristic outgoing from P. Instead, the characteristic outgoing from Q
intersects the straight line x = 0 for t > 0. The point x = 0 is therefore an inflow point
at which we must necessarily assign the value of u. Note that if a < 0, the inflow point
would be x = 1.

By referring to problem (13.1) it is useful to observe that if u0 were a discontinuous
function at x0, then such discontinuity would propagate along the characteristic outgo-

P

Q

P0

x

t

0 1

t

Fig. 13.1. Examples of characteristic lines (straight lines in this case) issuing from P and Q
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ing from x0 (this process can be rigorously formalized from a mathematical viewpoint
by introducing the concept of weak solution for hyperbolic problems). In order to reg-
ularize the discontinuity, one could approximate the initial datum u0 with a sequence
of regular functions uε

0(x),ε > 0. However, this procedure is only effective if the hy-
perbolic problem is linear. The solutions of nonlinear hyperbolic problems can indeed
develop discontinuities also for regular initial data (as we will see in Chapter 15). In
this case the strategy (which also inspires numerical methods) is to regularize the dif-
ferential equation itself, rather than the initial datum. We can consider the following
diffusion-transport equation

∂uε

∂ t
+a

∂uε

∂x
= ε

∂ 2uε

∂x2 , x ∈ R, t > 0,

for small values of ε > 0, which can be regarded as a parabolic regularization of equa-
tion (13.1). If we set uε(x,0) = u0(x), we can prove that

lim
ε→0+

uε(x, t) = u0(x−at), t > 0, x ∈ R.

13.1.1 An a priori estimate

Let us now return to the transport-reaction problem (13.2) on a bounded interval⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂u
∂ t

+a
∂u
∂x

+a0u = f , x ∈ (α ,β ), t > 0,

u(x,0) = u0(x), x ∈ [α ,β ],

u(α , t) = ϕ(t), t > 0,

(13.3)

where a(x), f (x, t) and ϕ(t) are assigned functions; we have made the assumption that
a(x) > 0, so that x = α is the inflow point (where to impose the boundary condition),
while x = β is the outflow point.

By multiplying the first equation of (13.3) by u, integrating in x and using the
formula of integration by parts, we obtain for each t > 0

1
2

d
dt

β∫
α

u2 dx+

β∫
α

(a0−
1
2

ax)u2 dx+
1
2
(au2)(β )− 1

2
(au2)(α) =

β∫
α

f u dx.

By supposing that there exists a μ0 ≥ 0 such that

a0− 1
2 ax ≥ μ0 ∀x ∈ [α ,β ],

we find

1
2

d
dt
‖u(t)‖2

L2(α,β ) + μ0‖u(t)‖2
L2(α,β ) +

1
2
(au2)(β )≤

β∫
α

f u dx+
1
2

a(α)ϕ2(t).
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If f and ϕ are identically zero, then

‖u(t)‖L2(α,β ) ≤ ‖u0‖L2(α,β ) ∀t > 0.

In the case of the more general problem (13.2), if we suppose that μ0 > 0, thanks to
the Cauchy-Schwarz and Young inequalities we have

β∫
α

f u dx≤ ‖ f‖L2(α,β )‖u‖L2(α,β ) ≤
μ0

2
‖u‖2

L2(α,β ) +
1

2μ0
‖ f‖2

L2(α,β ).

Integrating over time we get the following a priori estimate

‖u(t)‖2
L2(α,β ) + μ0

t∫
0

‖u(s)‖2
L2(α,β ) ds+a(β )

t∫
0

u2(β ,s) ds

≤ ‖u0‖2
L2(α,β ) +a(α)

t∫
0

ϕ2(s) ds+
1
μ0

t∫
0

‖ f‖2
L2(α,β ) ds.

An alternative estimate that does not require the differentiability of a(x), but uses,
instead, the hypothesis that a0 ≤ a(x) ≤ a1 for two suitable positive constants a0 and
a1, can be obtained by multiplying the equation by a−1,

a−1 ∂u
∂ t

+
∂u
∂x

= a−1 f .

By multiplying by u and integrating between α and β we obtain, after a few simple
steps,

1
2

d
dt

β∫
α

a−1(x)u2(x, t)dx+
1
2

u2(β , t) =

β∫
α

a−1(x) f (x, t)u(x, t)dx+
1
2

ϕ2(t).

If f = 0 we immediately obtain

‖u(t)‖2
a +

t∫
0

u2(β ,s)ds = ‖u0‖2
a +

t∫
0

ϕ2(s)ds, t > 0.

We have defined

‖v‖a =

⎛⎝ β∫
α

a−1(x)v2(x)dx

⎞⎠
1
2

.

Thanks to the lower and upper bounds of a−1, the latter is equivalent to the norm of
L2(α ,β ). On the other hand, if f 
= 0, we can proceed as follows

‖u(t)‖2
a +

t∫
0

u2(β ,s) ds≤ ‖u0‖2
a +

t∫
0

ϕ2(s) ds+
t∫

0

‖ f‖2
a ds+

t∫
0

‖u(s)‖2
ads,
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having used the Cauchy-Schwarz inequality.
By now applying Gronwall’s lemma (see Lemma 2.2) we obtain, for each t > 0,

‖u(t)‖2
a +

t∫
0

u2(β ,s) ds≤ et

⎛⎝‖u0‖2
a +

t∫
0

ϕ2(s)ds+
t∫

0

‖ f‖2
a ds

⎞⎠ . (13.4)

13.2 Systems of linear hyperbolic equations

Let us consider a linear system of the form⎧⎨⎩
∂u
∂ t

+A
∂u
∂x

= 0, x ∈ R, t > 0,

u(0,x) = u0(x), x ∈ R,

(13.5)

where u : [0,∞)×R→ Rp, A : R→ Rp×p is a given matrix, and u0 : R→ Rp is the
initial datum.

Let us first consider the case where the coefficients of A are constant (i.e. indepen-
dent of both x and t). System (13.5) is called hyperbolic if A can be diagonalized and
has real eigenvalues. In such case, there exists a non-singular matrix T : R→ Rp×p

such that

A = TΛT−1,

where Λ = diag(λ1, ...,λp), with λi ∈ R for i = 1, . . . , p, is the diagonal matrix of the
eigenvalues of A while T = [ω1,ω2, . . . ,ωp] is the matrix whose column vectors are
the right eigenvectors of A, that is

Aωk = λkω
k, k = 1, . . . , p.

Through this similarity transformation it is possible to rewrite system (13.5) in the
form

∂w
∂ t

+Λ
∂w
∂x

= 0, (13.6)

where w = T−1u are called characteristic variables. In this way we obtain p indepen-
dent equations of the form

∂wk

∂ t
+λk

∂wk

∂x
= 0, k = 1, . . . , p,

analogous in all to the equation of problem (13.1) (provided that we suppose a0 and f
null). The solution wk is therefore constant along each characteristic curve x = x(t),
solution of the Cauchy problem⎧⎨⎩

dx
dt

= λk, t > 0,

x(0) = x0.

(13.7)
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Since the λk are constant, the characteristic curves are in fact the lines x(t) = x0 +
λkt and the solutions read wk(x, t) = ψk(x−λkt), where ψk is a function of a single
variable determined by the initial conditions. In the case of problem (13.5), we have
that ψk(x) = wk(x,0), thus the solution u = Tw will be of the form

u(x, t) =
p

∑
k=1

wk(x−λkt,0)ωk.

The latter is composed by p travelling, non-interacting waves.
Since a strictly hyperbolic system admits p different characteristic lines each point
(x, t) of the plane (x, t), u(x, t) will only depend on the initial datum at the points x−
λkt, for k = 1, . . . , p. For this reason, the set of the p points that form the feet of the
characteristics outgoing from (x, t), that is

D(x, t) = {x ∈ R |x = x−λkt , k = 1, ..., p}, (13.8)

is called domain of dependence of the solution u at the point (x, t).
In case we consider a bounded interval (α ,β ) instead of the whole real line, the

sign of λk, k = 1, . . . , p, denotes the inflow point for each of the characteristic variables.
The function ψk in the case of a problem set on a bounded interval will be determined
not only by the initial conditions, but also by the boundary conditions at the inflow of
each characteristic variable. Having considered a point (x, t) with x∈ (α ,β ) and t > 0,
if x−λkt ∈ (α ,β ) then wk(x, t) is determined by the initial condition, in particular we
have wk(x, t) = wk(x−λkt,0). Conversely, if x−λkt /∈ (α ,β ) then the value of wk(x, t)
will depend on the boundary condition (see Fig. 13.2):

if λk > 0 , wk(x, t) = wk(α ,
x−α

λk
),

if λk < 0 , wk(x, t) = wk(β ,
x−β

λk
).

(x  −   )/ 1 α λ k

(x ,t )11

(x ,t )2 2

λkx−     t2 2
α

t

x
β

kλ1 βt=(x  −   )/ 

kλx−     t2 2

2(x ,t )2

1 1(x ,t )

t

α
x

0 0 β

t=

Fig. 13.2. The value of wk at a point in the plane (x, t) depends either on the boundary condition
or on the initial condition, depending on the value of x−λkt. Both signs of λk, the positive (right)
and negative (left), are shown
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As a consequence, the number of positive eigenvalues determines the number of bound-
ary conditions to be assigned at x = α , while at x = β we will need to assign as many
conditions as the number of negative eigenvalues.

In the case where the coefficients of the matrix A in (13.5) are functions of x and
t, we denote respectively by

L =

⎡⎢⎢⎣
lT1
...

lTp

⎤⎥⎥⎦ and R = [r1 . . .rp]

the matrices containing the left resp. right eigenvectors of A, whose elements satisfy
the relations

Ark = λkrk, lTk A = λklTk ,

that is
AR = RΛ , LA = ΛL.

Without loss of generality, we can suppose that LR = I. Let us now suppose that there
exists a vector function w satisfying the relations

∂w
∂u

= R−1, that is
∂uk

∂w
= rk, k = 1, . . . , p.

Proceeding as we did initially, we obtain

R−1 ∂u
∂ t

+ΛR−1 ∂u
∂x

= 0,

hence the new diagonal system (13.6). By reintroducing the characteristic curves (13.7)
(the latter will no longer be straight lines as the eigenvalues λk vary for different values
of x and t), w is constant along them. The components of w are therefore still called
characteristic variables. As R−1 = L (thanks to the normalization relation) we obtain

∂wk

∂u
· rm = lk · rm = δkm, k,m = 1, . . . , p.

The functions wk, k = 1, . . . , p are called Riemann invariants of the hyperbolic system.

13.2.1 The wave equation

Let us consider the following second order hyperbolic equation

∂ 2u
∂ t2 − γ2 ∂ 2u

∂x2 = f , x ∈ (α ,β ), t > 0. (13.9)

Let

u(x,0) = u0(x) and
∂u
∂ t

(x,0) = v0(x), x ∈ (α ,β ),
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be the initial data and let us suppose, moreover, that u is identically null at the boundary

u(α , t) = 0 and u(β , t) = 0, t > 0. (13.10)

In this case, u can represent the vertical displacement of a vibrating elastic chord with
lenght β −α , fixed at the endpoints, and γ is a coefficient that depends on the specific
mass of the chord and on its tension. The chord is subject to a vertical force whose
density is f . The functions u0(x) and v0(x) describe the initial displacement and the
velocity of the chord.

For simplicity of notation, we denote by ut the derivative ∂u
∂ t , by ux the derivative

∂u
∂x and we use similar notations for the second derivatives.

Let us now suppose that f is null. From equation (13.9) we deduce that the kinetic
energy of the system is preserved, that is (see Exercise 1)

‖ut(t)‖2
L2(α,β ) + γ2 ‖ux(t)‖2

L2(α,β ) = ‖v0‖2
L2(α,β ) + γ2 ‖u0x‖2

L2(α,β ). (13.11)

With the change of variables

ω1 = ux, ω2 = ut ,

the wave equation (13.9) becomes the following first-order system

∂ω

∂ t
+A

∂ω

∂x
= f, x ∈ (α ,β ), t > 0, (13.12)

where

ω =
[

ω1

ω2

]
, A =

[
0 −1
−γ2 0

]
, f =

[
0
f

]
,

whose initial conditions are ω1(x,0) = u′0(x) and ω2(x,0) = v0(x).
Since the eigenvalues of A are distinct real numbers ±γ (representing the wave prop-
agation rates), system (13.12) is hyperbolic.
Note that, also in this case, to regular initial data correspond regular solutions, while
discontinuities in the initial data will propagate along the characteristic lines dx

dt =±γ .

13.3 The finite difference method

Out of simplicity we will now consider problem (13.1). To solve the latter numerically,
we can use spatio-temporal discretizations based on the finite difference method. In
this case, the half-plane {t > 0} is discretized choosing a temporal step Δ t, a spatial
discretization step h and defining the gridpoints (x j, tn) in the following way

x j = jh, j ∈ Z, tn = nΔ t, n ∈ N.

Set

λ = Δ t/h,
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and let us define

x j+1/2 = x j +h/2.

We seek discrete solutions un
j which approximate u(x j, tn) for each j and n.

The hyperbolic initial value problems are often discretized in time using explicit
methods. Of course, this imposes restrictions on the values of λ that implicit methods
generally do not have. For instance, let us consider problem (13.1). Any explicit finite
difference method can be written in the form

un+1
j = un

j −λ (Hn
j+1/2−Hn

j−1/2), (13.13)

where Hn
j+1/2 = H(un

j ,u
n
j+1) for a suitable function H(·, ·) called numerical flux.

The numerical scheme (13.13) is basically the outcome of the following consid-
eration. Suppose that a is constant and let us write equation (13.1) in conservation
form

∂u
∂ t

+
∂ (au)

∂x
= 0,

au being the flux associated to the equation. By integrating in space, we obtain

x j+1/2∫
x j−1/2

∂u
∂ t

dx+[au]
x j+1/2
x j−1/2 = 0, j ∈ Z,

that is

∂
∂ t

Uj +
(au)(x j+ 1

2
)− (au)(x j− 1

2
)

h
= 0, where Uj = h−1

x
j+ 1

2∫
x

j− 1
2

u(x) dx.

Equation (13.13) can now be interpreted as an approximation where the temporal deriv-
ative is discretized using the forward Euler finite difference scheme, Uj is replaced by
u j and Hj+1/2 is a suitable approximation of (au)(x j+ 1

2
).

13.3.1 Discretization of the scalar equation

In the context of explicit methods, numerical methods are distinguished by how the
numerical flux H is chosen. In particular, we cite the following methods:

• forward/centered Euler (FE/C)

un+1
j = un

j −
λ
2

a(un
j+1−un

j−1), (13.14)

that takes the form (13.13) provided we define

Hj+1/2 =
1
2

a(u j+1 +u j). (13.15)
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• Lax-Friedrichs (LF)

un+1
j =

1
2
(un

j+1 +un
j−1)−

λ
2

a(un
j+1−un

j−1), (13.16)

also of the form (13.13) with

Hj+1/2 =
1
2
[a(u j+1 +u j)−λ−1(u j+1−u j)]. (13.17)

• Lax-Wendroff (LW)

un+1
j = un

j −
λ
2

a(un
j+1−un

j−1)+
λ 2

2
a2(un

j+1−2un
j +un

j−1), (13.18)

that can be rewritten in the form (13.13) provided that we take

Hj+1/2 =
1
2
[a(u j+1 +u j)−λa2(u j+1−u j)]. (13.19)

• Upwind (or forward/decentered Euler) (U)

un+1
j = un

j −
λ
2

a(un
j+1−un

j−1)+
λ
2
|a|(un

j+1−2un
j +un

j−1), (13.20)

corresponding to the form (13.13) provided that we choose

Hj+1/2 =
1
2
[a(u j+1 +u j)−|a|(u j+1−u j)]. (13.21)

The LF method represents a modification of the FE/C method consisting in replacing
the nodal value un

j in (13.14) with the average of the previous nodal value un
j−1 and of

the following one, un
j+1.

The LW method derives from the Taylor expansion in time

un+1 = un +(∂tu)nΔ t +(∂ttu)n Δ t2

2
+O(Δ t3),

where (∂tu)n denotes the partial derivative of u at time tn. Then, using equation (13.1),
we replace ∂tu by−a∂xu, and ∂ttu by a2∂xxu. Neglecting the remainderO(Δ t3) and ap-
proximating the spatial derivatives with centered finite differences, we get to (13.18).
Finally, the U method is obtained by discretizing the convective term a∂xu of the equa-
tion with the upwind finite difference, as seen in Chapter 12, Sect. 12.6.

All of the previously introduced schemes are explicit. An example of implicit
method is the following:

• Backward/centered Euler (BE/C)

un+1
j +

λ
2

a(un+1
j+1−un+1

j−1) = un
j . (13.22)

Naturally, the implicit schemes can also be rewritten in a general form that is similar
to (13.13) where Hn is replaced by Hn+1. In the specific case, the numerical flux will
again be defined by (13.15).
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The advantage of formulation (13.13) is that it can be extended easily to the case
of more general hyperbolic problems.
In particular, we will examine the case of linear systems in Sect. 13.3.2. The extension
to the case of nonlinear hyperbolic equations will instead be considered in Sect. 15.2.
Finally, we point out the following schemes for approximating the wave equation
(13.9), again in the case f = 0:

• Leap-Frog
un+1

j −2un
j +un−1

j = (γλ )2(un
j+1−2un

j +un
j−1). (13.23)

• Newmark

un+1
j −2un

j +un−1
j =

(γλ )2

4

(
wn−1

j +2wn
j +wn+1

j

)
, (13.24)

where wn
j = un

j+1−2un
j +un

j−1.

13.3.2 Discretization of linear hyperbolic systems

Let us consider the linear system (13.5). Generalizing (13.13), a numerical scheme for
a finite difference approximation can be written in the form

un+1
j = un

j −λ (Hn
j+1/2−Hn

j−1/2),

where un
j is the vector approximating u(x j, tn). Now, H j+1/2 is a vector numerical

flux. Its formal expression can be easily derived by generalizing the scalar case and
replacing a, a2, and |a| in (13.15), (13.17), (13.19), (13.21) respectively with A, A2,
and |A|, where

|A|= T|Λ |T−1,

|Λ |= diag(|λ1|, ..., |λp|) and T is the matrix of eigenvectors of A.
For instance, transforming system (13.5) in p independent transport equations and

approximating each of these with an upwind scheme for scalar equations, we obtain
the following upwind numerical scheme for the initial system

un+1
j = un

j −
λ
2

A(un
j+1−un

j−1)+
λ
2
|A|(un

j+1−2un
j +un

j−1).

The numerical flux of such scheme is

H j+ 1
2

=
1
2
[A(u j+1 +u j)−|A|(u j+1−u j)].

The Lax-Wendroff method becomes

un+1
j = un

j −
1
2

λA(un
j+1−un

j−1)+
1
2

λ 2A2(un
j+1−2un

j +un
j−1)

and its numerical flux is

H j+ 1
2

=
1
2
[A(u j+1 +u j)−λA2(u j+1−u j)].
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13.3.3 Boundary treatment

In case we want to discretize the hyperbolic equation (13.3) on a bounded interval, we
will obviously need to use the inflow node x = α to impose the boundary condition,
say un+1

0 = ϕ(tn+1), while at all other nodes x j, 1≤ j≤m (including the outflow node
xm = β ) we will write the finite difference scheme.

However, schemes using a centered discretization of the space derivative require a
particular treatment at xm. Indeed, they would require the value um+1, which is unavail-
able as it relates to the point with coordinates β + h, outside the integration interval.
The problem can be solved in various ways. An option is to use only the upwind decen-
tered discretization on the last node, as such discretization does not require knowing
the datum in xm+1; this approach however is only a first-order one. Alternatively, the
value un+1

m can be obtained through extrapolation from the values available at the inter-
nal nodes. An example could be an extrapolation along the characteristic lines applied
to a scheme for which λa≤ 1; this provides un+1

m = un
m−1λa+un

m(1−λa).
A further option consists in applying the centered finite difference scheme to the

outflow node xm as well, and use, in place of un
m+1, an approximation based on a con-

stant extrapolation (un
m+1 = un

m), or on a linear one (un
m+1 = 2un

m−un
m−1).

This matter becomes more problematic in the case of hyperbolic systems, where
we must resort to compatibility equations. To shed more light on these aspects and
to analyze their possible instabilities deriving from the numerical boundary treatment,
the reader can refer to Strickwerda [Str89], [QV94, Chap. 14] and [LeV07].

13.4 Analysis of the finite difference methods

We analyze the consistency, stability and convergence properties of the finite differ-
ence methods we introduced previously.

13.4.1 Consistency and convergence

For a given numerical scheme, the local truncation error is the error generated by ex-
pecting the exact solution to verify the numerical scheme itself.

For instance, in the case of scheme (13.14), having denoted by u the solution of the
exact problem (13.1), we can define the truncation error at the point (x j, tn) as follows

τn
j =

u(x j, tn+1)−u(x j, tn)
Δ t

+a
u(x j+1, tn)−u(x j−1, tn)

2h
.

If the truncation error

τ(Δ t,h) = max
j,n
|τn

j |

tends to zero when Δ t and h tend to zero, independently, then the numerical scheme
will be said to be consistent.
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Moreover, we will say that a numerical scheme is accurate to order p in time and
to order q in space (for suitable integers p and q), if for a sufficiently regular solution
of the exact problem we have

τ(Δ t,h) =O(Δ t p +hq).

Using Taylor expansions suitably, we can then see that the truncation error of the pre-
viously introduced methods is:

• Euler (forward or backward) / centered: O(Δ t +h2);
• Upwind: O(Δ t +h) ;

• Lax-Friedrichs: O( h2

Δ t +Δ t +h2) ;
• Lax-Wendroff: O(Δ t2 +h2 +h2Δ t).

Finally, we will say that a scheme is convergent (in the maximum norm) if

lim
Δ t,h→0

(max
j,n
|u(x j, t

n)−un
j |) = 0.

Obviously, we can also consider weaker norms, such as ‖ ·‖Δ ,1 and ‖ ·‖Δ ,2, which we
will introduce in (13.26).

13.4.2 Stability

We will say that a numerical method for a linear hyperbolic problem is stable if for
each instant T there exists a constant CT > 0 (possibly depending on T ) such that for
each h > 0, there exists δ0 > 0 (possibly dependent on h) such that for each 0 < Δ t < δ0

we have
‖un‖Δ ≤CT‖u0‖Δ , (13.25)

for each n such that nΔ t ≤ T , and for each initial datum u0. Note that CT should not
depend on Δ t and h. Often (always, in the case of explicit methods) we will have
stability only if the temporal step is sufficiently small with respect to the spatial one,
that is for δ0 = δ0(h).

The notation ‖ · ‖Δ denotes a suitable discrete norm, for instance

‖v‖Δ ,p =

(
h

∞

∑
j=−∞

|v j|p
) 1

p

for p = 1,2, ‖v‖Δ ,∞ = sup
j
|v j|. (13.26)

Note how ‖v‖Δ ,p represents an approximation of the Lp(R) norm, for p = 1,2 or +∞.
The implicit backward/centered Euler scheme (13.22) is stable in the norm ‖ ·‖Δ ,2

for any choice of the parameters Δ t and h (see Exercise 2).
A scheme is called strongly stable with respect to the norm ‖ · ‖Δ if

‖un‖Δ ≤ ‖un−1‖Δ , (13.27)

for each n such that nΔ t ≤ T , and for each initial datum u0, which implies that (13.25)
is verified with CT = 1.
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Fig. 13.3. Geometric interpretation of the CFL condition for a system with p = 2, where ri =
x̄−λi(t− t̄) i = 1,2. The CFL condition is satisfied on the left, and violated on the right

Remark 13.1. In the context of hyperbolic problems, one often wants long-time solu-
tions (solutions with T � 1). Such cases usually require a strongly stable scheme, as
this guarantees that the numerical solution is bounded for each value of T . •

As we will see, a necessary condition for the stability of an explicit numerical
scheme of the form (13.13) is that the temporal and spatial discretization steps satisfy

|aλ | ≤ 1, or Δ t ≤ h
|a| , (13.28)

called CFL condition (from Courant, Friedrichs and Lewy). The number aλ is com-
monly called CFL number and is a physically dimensionless quantity (a being a ve-
locity).

The geometrical interpretation of the CFL stability condition is the following. In a
finite difference scheme, the value of un+1

j generally depends on the values un
j+i of un at

the three points x j+i, i =−1,0,1. Proceeding backwards, we deduce that the solution
un+1

j will only depend on the initial data at the points x j+i, for i =−(n+1), ...,(n+1)
(see Fig. 13.3).

Calling numerical domain of dependence DΔ t(x j, tn) the domain of dependence of
un

j , which will therefore be called numerical dependence domain of un
j , the former will

verify

DΔ t(x j, t
n)⊂ {x ∈ R : |x− x j| ≤ nh =

tn

λ
}.

Consequently, for each given point (x, t) we have

DΔ t(x, t)⊂ {x ∈ R : |x− x| ≤ t
λ
}.

In particular, taking the limit for Δ t → 0, and fixing λ , the numerical dependency
domain becomes

D0(x, t) = {x ∈ R : |x− x| ≤ t
λ
}.

The condition (13.28) is then equivalent to the inclusion

D(x, t)⊂ D0(x, t), (13.29)
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where D(x, t) is the dependency domain of the exact solution defined in (13.8). Note
that in the scalar case, p = 1 and λ1 = a.

Remark 13.2. The CFL condition establishes, in particular, that there is no explicit
finite different scheme for hyperbolic initial value problems that is unconditionally
stable and consistent. Indeed, suppose the CFL condition is violated. Then there exists
at least a point x∗ in the dependency domain that does not belong to the numerical
dependency domain. Then changing the initial datum to x∗ will only modify the exact
solution and not the numerical one. This implies non-convergence of the method and
therefore also instability. Indeed, for a consistent method, the Lax-Richtmyer equiv-
alence theorem states that stability is a necessary and sufficient condition for its con-
vergence. •

Remark 13.3. In the case where a = a(x, t) is no longer constant in (13.1), the CFL
condition becomes

Δ t ≤ h
sup

x∈R, t>0
|a(x, t)| .

If the spatial discretization step varies, we have

Δ t ≤min
k

hk

sup
x∈(xk,xk+1), t>0

|a(x, t)| ,

with hk = xk+1− xk. •

Referring to the hyperbolic system (13.5), the CFL stability condition, in analogy to
(13.28), will be∣∣∣∣λk

Δ t
h

∣∣∣∣≤ 1, k = 1, . . . , p, or, equivalently, Δ t ≤ h
maxk |λk|

,

where {λk, k = 1 . . . , p} are the eigenvalues of A.
This condition, as well, can be written in the form (13.29). The latter expresses the

requirement that each line of the form x = x− λk(t − t), k = 1, . . . , p, must intersect
the horizontal line t = t−Δ t at points x(k) which lie within the numerical dependency
domain.

Theorem 13.1. If the CFL condition (13.28) is satisfied, the upwind, Lax-
Friedrichs and Lax-Wendroff schemes are strongly stable in the norm ‖ · ‖Δ ,1.

Proof. To prove the stability of the upwind scheme (13.20) we rewrite it in the fol-
lowing form (having supposed a > 0)

un+1
j = un

j −λa(un
j −un

j−1).
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Then

‖un+1‖Δ ,1 ≤ h∑
j

|(1−λa)un
j |+h∑

j

|λaun
j−1|.

Under the hypothesis (13.28) both values λa and 1−λa are non-negative. Hence,

‖un+1‖Δ ,1 ≤ h(1−λa)∑
j
|un

j |+hλa∑
j
|un

j−1|= ‖un‖Δ ,1,

that is, inequality (13.25) holds with CT = 1. The scheme is therefore strongly stable
with respect to the norm ‖ · ‖Δ = ‖ · ‖Δ ,1.

For the Lax-Friedrichs scheme, always under the CFL condition (13.28), we derive
from (13.16) that

un+1
j =

1
2
(1−λa)un

j+1 +
1
2
(1+λa)un

j−1,

so

‖un+1‖Δ ,1 ≤ 1
2

h

[
∑

j

∣∣(1−λa)un
j+1

∣∣+∑
j

∣∣(1+λa)un
j−1

∣∣]
≤ 1

2
(1−λa)‖un‖Δ ,1 +

1
2
(1+λa)‖un‖Δ ,1 = ‖un‖Δ ,1.

For the Lax-Wendroff scheme, the proof is analogous (see e.g. [QV94, Chap. 14] or
[Str89]). �
Finally, we can prove that if the CFL condition is verified, the upwind scheme satisfies

‖un‖Δ ,∞ ≤ ‖u0‖Δ ,∞ ∀n≥ 0, (13.30)

i.e. it is strongly stable in the norm ‖·‖Δ ,∞. Relation (13.30) is called discrete maximum
principle (see Exercise 4).

Theorem 13.2. The backward Euler scheme BE/C is strongly stable in the norm
|| · ||Δ ,2, with no restriction on Δ t. The forward Euler scheme FE/C, instead, is
never strongly stable. However, it is stable with constant CT = eT/2 provided that
we assume that Δ t satisfies the following condition (more restrictive than the
CFL condition)

Δ t ≤
(

h
a

)2

. (13.31)

Proof. We observe that

(B−A)B =
1
2
(B2−A2 +(B−A)2) ∀A,B ∈ R. (13.32)
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As a matter of fact

(B−A)B = (B−A)2 +(B−A)A =
1
2
((B−A)2 +(B−A)(B+A)).

Multiplying (13.22) by un+1
j we find

(un+1
j )2 +(un+1

j −un
j)

2 = (un
j)

2−λa(un+1
j+1−un+1

j−1)u
n+1
j .

Observing that

∑
j∈Z

(un+1
j+1−un+1

j−1)u
n+1
j = 0 (13.33)

(telescopic sum), we immediately obtain that ||un+1||2Δ ,2 ≤ ||un||2Δ ,2, which is the result
sought for the BE/C scheme.

Let us now move to the FE/C scheme and multiply (13.14) by un
j . Observing that

(B−A)A =
1
2
(B2−A2− (B−A)2) ∀A,B ∈ R, (13.34)

we find

(un+1
j )2 = (un

j)
2 +(un+1

j −un
j)

2−λa(un
j+1−un

j−1)u
n
j .

On the other hand, we obtain once again from (13.14) that

un+1
j −un

j =−λa
2

(un
j+1−un

j−1)

and therefore

(un+1
j )2 = (un

j)
2 +
(

λa
2

)2

(un
j+1−un

j−1)
2−λa(un

j+1−un
j−1)u

n
j .

Now summing on j and observing that the last addendum yields a telescopic sum
(hence it does not provide any contribution) we obtain, after multiplying by h,

‖un+1‖2
Δ ,2 = ‖un‖2

Δ ,2 +
(

λa
2

)2

h ∑
j∈Z

(un
j+1−un

j−1)
2,

from which we infer that there is no value of Δ t for which the method is strongly stable.
However, as

(un
j+1−un

j−1)
2 ≤ 2

[
(un

j+1)
2 +(un

j−1)
2] ,

we find that, under the hypothesis (13.31),

‖un+1‖2
Δ ,2 ≤ (1+λ 2a2)‖un‖2

Δ ,2 ≤ (1+Δ t)‖un‖2
Δ ,2.
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By recursion, we find

‖un‖2
Δ ,2 ≤ (1+Δ t)n‖u0‖2

Δ ,2 ≤ eT‖u0‖2
Δ ,2,

where we have used the inequality

(1+Δ t)n ≤ enΔ t ≤ eT ∀n such that tn ≤ T.

We conclude that

‖un‖Δ ,2 ≤ eT/2‖u0‖Δ ,2,

which is the stability result sought for the FE/C scheme. �

13.4.3 Von Neumann analysis and amplification coefficients

Von Neumann’s analysis is useful to investigate the stability of a scheme in the norm
|| · ||Δ ,2. To this purpose, we assume that the function u0(x) is 2π-periodic and thus it
can be written as a Fourier series as follows

u0(x) =
∞

∑
k=−∞

αkeikx, (13.35)

where

αk =
1

2π

2π∫
0

u0(x) e−ikx dx

is the k-th Fourier coefficient. Hence,

u0
j = u0(x j) =

∞

∑
k=−∞

αkeik jh, j = 0,±1,±2, · · ·

It can be verified that applying any of the difference schemes seen in Sect. 13.3.1 we
get the following relation

un
j =

∞

∑
k=−∞

αkeik jhγn
k , j = 0,±1,±2, . . . , n≥ 1. (13.36)

The number γk ∈ C is called amplification coefficient of the k-th frequency (or har-
monic), and characterizes the scheme under exam. For instance, in the case of the
forward centered Euler method (FE/C) we find

u1
j =

∞

∑
k=−∞

αkeik jh
(

1− aΔ t
2h

(eikh− e−ikh)
)

=
∞

∑
k=−∞

αkeik jh
(

1− aΔ t
h

isin(kh)
)

.
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Table 13.1. Amplification coefficient for the different numerical schemes in Sect. 13.3.1. We
recall that λ = Δ t/h

Scheme γk

Forward/centered Euler 1− iaλ sin(kh)
Backward/centered Euler (1+ iaλ sin(kh))−1

Upwind 1−|a|λ (1− e−ikh)
Lax-Friedrichs coskh− iaλ sin(kh)
Lax-Wendroff 1− iaλ sin(kh)−a2λ 2(1− cos(kh))

Hence,

γk = 1− aΔ t
h

isin(kh) and thus |γk|=
{

1+
(

aΔ t
h

sin(kh)
)2
} 1

2

.

As there exist values of k for which |γk| > 1, there is no value of Δ t and h for which
the scheme is strongly stable.

Proceeding in a similar way for the other schemes, we find the coefficients reported
in Table 13.1.

We will now see how the von Neumann analysis can be applied to study the sta-
bility of a numerical scheme with respect to the ‖ ·‖Δ ,2 norm and to ascertain its dissi-
pation and dispersion properties.

To this purpose, we prove the following result:

Theorem 13.3. If there exist a number β ≥ 0 and a positive integer m such that,

for suitable choices of Δ t and h, we have |γk| ≤ (1+βΔ t)
1
m for each k, then the

scheme is stable with respect to the norm ‖ · ‖Δ ,2 with stability constant CT =
eβT/m. In particular, if we can take β = 0 (and therefore |γk| ≤ 1 ∀k) then the
scheme is strongly stable with respect to the same norm.

Proof. We will suppose that problem (13.1) is formulated on the interval [0,2π]. In
such interval, let us consider N +1 equidistant nodes,

x j = jh, j = 0, . . . ,N, with h =
2π
N

,

(N being an even positive integer) where to satisfy the numerical scheme (13.13). More-
over, we will suppose for simplicity that the initial datum u0 is periodic. As the nu-
merical scheme only depends on the values of u0 at the nodes x j, we can replace u0 by
the Fourier polynomial of order N/2,

ũ0(x) =

N
2 −1

∑
k=−N

2

αkeikx (13.37)
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which interpolates it at the nodes. Note that ũ0 is a periodic function with period 2π .
We will have, thanks to (13.36),

u0
j = u0(x j) =

N
2 −1

∑
k=−N

2

αkeik jh, un
j =

N
2 −1

∑
k=−N

2

αkγn
k eik jh.

We note that

‖un‖2
Δ ,2 = h

N−1

∑
j=0

N
2 −1

∑
k,m=−N

2

αkαm(γkγm)nei(k−m) jh.

As

h
N−1

∑
j=0

ei(k−m) jh = 2πδkm, −N
2
≤ k,m≤ N

2
−1,

(see e.g. [QSS07, Lemma 10.2]) we find

‖un‖2
Δ ,2 = 2π

N
2 −1

∑
k=−N

2

|αk|2|γk|2n.

Thanks to the assumption made on |γk| we have

‖un‖2
Δ ,2 ≤ (1+βΔ t)

2n
m 2π

N
2 −1

∑
k=−N

2

|αk|2 = (1+βΔ t)
2n
m ‖u0‖2

Δ ,2 ∀n≥ 0.

As 1+βΔ t ≤ eβΔ t , we deduce that

‖un‖Δ ,2 ≤ e
βΔ tn

m ‖u0‖Δ ,2 = e
βT
m ‖u0‖Δ ,2 ∀n such that nΔ t ≤ T.

This proves the theorem. �
Remark 13.4. Should strong stability be required, the condition |γk| ≤ 1 indicated in
Theorem 13.3 is also necessary. •

In the case of the upwind scheme (13.20), as

|γk|2 = [1−|a|λ (1− coskh)]2 +a2λ 2 sin2 kh, k ∈ Z,

we obtain

|γk| ≤ 1 if Δ t ≤ h
|a| , k ∈ Z, (13.38)

that is, the CFL condition guarantees strong stability in the || · ||Δ ,2 norm.
Proceeding in a similar way, we can verify that (13.38) also holds for the Lax-

Friedrichs scheme.
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The centered backward Euler scheme BE/C instead is unconditionally strongly
stable in the norm ‖ ·‖Δ ,2, as |γk| ≤ 1 for each k and for each possible choice of Δ t and
h, as we previously obtained in Theorem 13.2 by following a different procedure.

In the case of the centered forward Euler method FE/C we have

|γk|2 = 1+
a2Δ t2

h2 sin2(kh)≤ 1+
a2Δ t2

h2 , k ∈ Z.

If β > 0 is a constant such that

Δ t ≤ β
h2

a2 (13.39)

then |γk| ≤ (1+βΔ t)1/2. Hence, applying Theorem 13.3 (with m = 2) we deduce that
the FE/C scheme is stable, albeit with a more restrictive CFL condition, as previously
obtained following a different path in Theorem 13.2.

We can find a strong stability condition for the centered forward Euler method
applied to the transport-reaction equation

∂u
∂ t

+a
∂u
∂x

+a0u = 0, (13.40)

with a0 > 0. In this case we have for each k ∈ Z

|γk|2 = 1−2a0Δ t +Δ t2a2
0 +λ 2 sin2(kh)≤ 1−2a0Δ t +Δ t2a2

0 +
(

aΔ t
h

)2

,

and thus the scheme is strongly stable in the ||.||Δ ,2 norm under the condition

Δ t <
2a0

a2
0 +h−2a2

. (13.41)

Example 13.1. In order to verify numerically the stability condition (13.41), we have
considered equation (13.40) in the interval (0,1) with periodic boundary conditions.
We have chosen a = a0 = 1 and the initial datum u0 equal to 2 in the interval (1/3,2/3)
and 0 elsewhere. As the initial datum is a square wave, its Fourier expansion has all its
αk coefficients not null. On the right of Fig. 13.4, we report ‖un‖Δ ,2 in the time interval
(0,2.5) for two values of Δ t, one larger and one smaller than the critical value Δ t∗ =
2/(1+h−2), provided by (13.41). Note that for Δ t < Δ t∗ the norm is decreasing, while,
in the opposite case, after an initial decrease it grows exponentially. Fig. 13.5 shows
the result for a0 = 0 obtained with FE/C using the same initial datum. In the figure
on the left, we display the behaviour of ‖un‖Δ ,2 for different values of h and using
Δ t = 10h2, that is varying the time step based on the restriction provided by inequality
(13.39) and taking β = 10. Note how the norm of the solution remains bounded for
decreasing values of h. On the right-hand side of the same figure, we illustrate the result
obtained for the same values of h taking as condition Δ t = 0.1h, which corresponds to
a constant CFL number equal to 0.1. In this case, the discrete norm of the numerical
solution blows up as h decreases, as expected. �
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Fig. 13.4. The figure on the right displays the behaviour of ‖un‖Δ ,2, where un is the solution of
equation (13.40) (with a = a0 = 1) obtained using the FE/C method, for two values of Δ t, one
smaller and one greater than the critical value Δ t∗. On the left, the initial datum used
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Fig. 13.5. Behaviour of ‖un‖Δ ,2 where un is the solution obtained using the FE/C method for
a0 = 0 and for different values of h. On the left, the case where Δ t satisfies the stability condition
(13.39). On the right, the results obtained by maintaining the CFL number constant and equal
to 0.1, violating condition (13.39)

13.4.4 Dissipation and dispersion

Besides allowing to enquire about the stability of a numerical scheme, the analysis
of the amplification coefficients is also useful to study its dissipation and dispersion
properties.
To clarify the matter better, let us consider the exact solution of problem (13.1); for
such solution, we have the following relation

u(x, tn) = u0(x−anΔ t), n≥ 0, x ∈ R,

with tn = nΔ t. In particular, using (13.35) we obtain

u(x j, t
n) =

∞

∑
k=−∞

αkeik jh(gk)n with gk = e−iakΔ t . (13.42)

Comparing (13.42) with (13.36) we can note that the amplification coefficient γk

(generated by the specific numerical scheme) is the correspondent of gk.
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We observe that |gk| = 1 for each k ∈ Z, while |γk| ≤ 1 in order to guarantee the
strong stability of the scheme. Thus, γk is a dissipative coefficient. The smaller |γk| is,
the larger will be the reduction of the amplitude αk and, consequently, the larger will
be the dissipation of the numerical scheme.
The ratio εa(k) = |γk|

|gk| is called amplification error (or dissipation error) of the k-th
harmonic associated to the numerical scheme (and in our case it coincides with the
amplification coefficient).
Having set

φk = kh,

as kΔ t = λφk we obtain
gk = e−iaλφk . (13.43)

The real number φk, here expressed in radians, is called phase angle of the k-th har-
monic. We rewrite γk in the following way

γk = |γk|e−iωΔ t = |γk|e−i ω
k λφk ,

and comparing such relation to (13.43), we can deduce that the ratio ω
k represents the

propagation rate of the numerical scheme, relatively to the k-th harmonic. The ratio

εd(k) =
ω
ka

=
ωh
φka

between the numerical propagation and the propagation a of the exact solution is called
dispersion error εd relative to the k-th harmonic.

The amplification (or dissipation) error and the dispersion error for the numerical
schemes analyzed up to now are function of the phase angle φk and of the CFL number
aλ , as reported in Fig. 13.6. For symmetry reasons we have considered the interval
0 ≤ φk ≤ π and we have used degrees instead of radians on the x-axis to indicate φk.
Note how the forward/centered Euler scheme gives a curve of the amplification factor
with values above one for all the CFL schemes we have considered, in accordance with
the fact that such scheme is never strongly stable.

Example 13.2. In Fig. 13.7 we compare the numerical results obtained by solving
equation (13.1) with a = 1 and initial datum u0. The solutions are composed by a
packet of two sinusoidal waves of equal length l centered at the origin (x = 0). In
the figures on the left l = 20h, while in the right ones we have l = 8h. As k = 2π

l ,
we have φk = 2π

l h and therefore the values of the phase angle of the wave packet are
φk = π/20 on the left and φk = π/8 on the right. The numerical solution has been
computed for the value 0.75 of the CFL number, using the different (stable) schemes
illustrated previously. We can note how the dissipative effect is very strong at high
frequencies (φk = π/4) and in particular for the first-order upwind, backward/centered
Euler and Lax-Friedrichs methods.

In order to appreciate the dispersion effects, the solution for φk = π/4 after 8 time
steps is reported in Fig. 13.8. We can note how the Lax-Wendroff method is the least
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Fig. 13.6. Amplification and dispersion errors for different numerical schemes in terms of the
phase angle φk = kh and for different values of the CFL number

dissipative. Moreover, by observing attentively the position of the numerical wave
crests with respect to those of the numerical solution, we can verify that the Lax-
Friedrichs method features a positive dispersion error. Indeed, the numerical wave
anticipates the exact one. The upwind method is also weakly dispersive for a CFL
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Fig. 13.7. Numerical solution of the convective transport equation of a sine wave packet with
different wavelengths (l = 20h left, l = 8h right) obtained with different numerical schemes.
The numerical solution for t = 1 is displayed by the solid line, while the exact solution at the
same time instant is displayed by the dashed line

number equal to 0.75, while the dispersion of the Lax-Friedrichs and backward Euler
methods is evident (even after only 8 time steps!). �
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Fig. 13.8. Numerical solution of the convective transport of a packet of sinusoidal waves. The
solid line represents the solution after 8 time steps. The etched line represents the corresponding
exact solution at the same time level

13.5 Equivalent equations

To each numerical scheme, we can associate a family of differential equations, called
equivalent equations.

13.5.1 The upwind scheme case

Let us first focus on the upwind scheme. Suppose there exists a regular function v(x, t)
satisfying the difference equation (13.20) at each point (x, t) ∈ R×R+ (and not only
at the grid nodes (x j, tn)!). We can then write (in the case where a > 0)

v(x, t +Δ t)− v(x, t)
Δ t

+a
v(x, t)− v(x−h, t)

h
= 0. (13.44)
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Using the Taylor expansions with respect to x and t relative to the point (x, t) and
supposing that v is of class C4 with respect to x and t, we can write

v(x, t +Δ t)− v(x, t)
Δ t

= vt +
Δ t
2

vtt +
Δ t2

6
vttt +O(Δ t3),

a
v(x, t)− v(x−h, t)

h
= avx−

ah
2

vxx +
ah2

6
vxxx +O(h3),

where the right-hand side derivatives are all evaluated at (x, t). Thanks to (13.44) we
deduce that, at each point (x, t), the function v satisfies the relation

vt +avx = RU +O(Δ t3 +h3), (13.45)

with

RU =
1
2
(ahvxx−Δ t vtt)−

1
6
(ah2vxxx +Δ t2vttt).

Formally differentiating such equation in t, we find

vtt +avxt = RU
t +O(Δ t3 +h3).

Instead, differentiating it in x, we have

vxt +avxx = RU
x +O(Δ t3 +h3). (13.46)

Hence
vtt = a2vxx +RU

t −aRU
x +O(Δ t3 +h3), (13.47)

which allows to obtain from (13.45)

vt +avx = μvxx−
1
6
(ah2vxxx +Δ t2vttt)−

Δ t
2

(RU
t −aRU

x )+O(Δ t3 +h3), (13.48)

having set

μ =
1
2

ah(1− (aλ )) (13.49)

and, as usual, λ = Δ t/h. Now, differentiating (13.47) with respect to t formally, and
(13.46) with respect to x, we find

vttt = a2vxxt +RU
tt −aRU

xt +O(Δ t3 +h3)

= −a3vxxx +a2RU
xx +RU

tt −aRU
xt +O(Δ t3 +h3).

(13.50)

Moreover, we have that

RU
t =

1
2

ahvxxt −
Δ t
2

vttt −
ah2

6
vxxxt −

Δ t2

6
vtttt ,

RU
x =

1
2

ahvxxx−
Δ t
2

vttx−
ah2

6
vxxxx−

Δ t2

6
vtttx.

(13.51)
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Using relations (13.50) and (13.51) in (13.48) we obtain

vt +avx = μvxx−
ah2

6

(
1− a2Δ t2

h2 − 3aΔ t
2h

)
vxxx

+
Δ t
4

(
Δ t vttt −ahvxxt −aΔ t vttx

)
︸ ︷︷ ︸

(A)

+
Δ t
12

(Δ t2vtttt −aΔ t2vtttx +ah2vxxxt −a2h2vxxxx)

− a2Δ t2

6
RU

xx−
Δ t2

6
RU

tt +a
Δ t2

6
RU

xt +O(Δ t3 +h3).

(13.52)

Let us now focus on the third derivatives of v contained in the term (A). Thanks to
(13.50), (13.46) and (13.47), respectively, we find:

vttt =−a3vxxx + r1,

vxxt =−avxxx + r2,

vttx = a2vxxx + r3,

where r1, r2 and r3 are terms containing derivatives of v of order no less than four, as
well as terms of orderO(Δ t3 +h3). (Note that it follows from the definition of RU that
its derivatives of order two are expressed through derivatives of v of order no less than
four.) Regrouping the coefficients that multiply vxxx, we therefore deduce from (13.52)
that

vt +avx = μvxx +νvxxx +R4(v)+O(Δ t3 +h3), (13.53)

having set

ν =−ah2

6
(1−3aλ +2(aλ )2), (13.54)

and having indicated with R4(v) the set of terms containing the derivatives of v of order
at least four.
We can conclude that the function v satisfies, respectively, the equations:

vt +avx = 0 (13.55)

if we neglect the terms containing derivatives of order above the first;

vt +avx = μvxx (13.56)

if we neglect the terms containing derivatives of order above the second;

vt +avx = μvxx +νvxxx (13.57)

if we neglect the derivatives of order above the third. The coefficients μ and ν are
in (13.49) and (13.54). Equations (13.55), (13.56) and (13.57) are called equivalent
equations (at the first, second resp. third order) relative to the upwind scheme.
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13.5.2 The Lax-Friedrichs and Lax-Wendroff case

Proceeding in a similar way, we can derive the equivalent equations of any numerical
scheme. For instance, in the case of the Lax-Friedrichs scheme, having denoted by v a
hypothetic function that verifies equation (13.16) at each point (x, t), having observed
that

1
2

(
v(x+h, t)+ v(x−h, t)

)
= v+

h2

2
vxx +O(h4),

1
2

(
v(x+h, t)− v(x−h, t)

)
= hvx +

h3

6
vxxx +O(h4),

we obtain

vt +avx = RLF +O
( h4

Δ t
+Δ t3

)
, (13.58)

having set

RLF =
h2

2Δ t
(vxx−λ 2vtt)−

ah2

6
(vxxx +

λ 2

a
vttt).

Proceeding as we did previously, tedious computation allows us to deduce from (13.58)
the equivalent equations (13.55)–(13.57), in this case having

μ =
h2

2Δ t
(1− (aλ )2), ν =

ah2

3
(1− (aλ )2).

In the case of the Lax-Wendroff scheme, the equivalent equations are characterized by
the following parameters

μ = 0, ν =
ah2

6
((aλ )2−1).

13.5.3 On the meaning of coefficients in equivalent equations

In general, in the equivalent equations the term μvxx represents a dissipation, while
νvxxx represents a dispersion. We can provide a heuristic proof of this by examining
the solution to the problem{

vt +avx = μvxx +νvxxx, x ∈ R, t > 0,

v(x,0) = eikx, k ∈ Z.
(13.59)

By applying the Fourier transform we find, if μ = ν = 0,

v(x, t) = eik(x−at),

while for μ and ν arbitrary real numbers (with μ > 0) we have

v(x, t) = e−μk2t eik[x−(a+νk2)t].

Comparing these two relations, we see that for growing μ the modulus of the solu-
tion gets smaller. Such effect becomes more remarkable as the frequency k increases
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(a phenomenon we have already registered in the previous section, albeit with partly
different arguments).

The term μvxx in (13.59) therefore has a dissipative effect on the solution. In turn,
ν modifies the propagation rate of the solution, increasing it in the ν > 0 case, and
decreasing it if ν < 0. Also in this case, the effect is more notable at high frequencies.
Hence, the third derivative term νvxxx introduces a dispersive effect.

In general, in the equivalent equation, even-order spatial derivatives represent dif-
fusive terms, while odd-order derivatives represent dispersive terms. For first-order
schemes (such as the upwind scheme) the dispersive effect is often barely visible, as
it is disguised by the dissipative one. Taking Δ t and h of the same order, from (13.56)
and (13.57) we evince that ν � μ for h→ 0, as ν = O(h2) and μ = O(h). In particular,
if the CFL number is 1

2 , the third-order equivalent equation of the upwind method fea-
tures a null dispersion, in accordance with the numerical results seen in the previous
section.

Conversely, the dispersive effect is evident for the Lax-Friedrichs scheme, as well
as for the Lax-Wendroff scheme which, being of second order, does not feature a dis-
sipative term of type μvxx. However, being stable, the latter cannot avoid being dissi-
pative. Indeed, the fourth-order equivalent equation for the Lax-Wendroff scheme is

vt +avx =
ah2

6
[(aλ )2−1]vxxx−

ah3

6
aλ [1− (aλ )2]vxxxx,

where the last term is dissipative if |aλ | < 1, as one can easily verify by applying
the Fourier transform. We then recover, also for the Lax-Wendroff scheme, the CFL
condition.

13.5.4 Equivalent equations and error analysis

The technique applied to obtain the equivalent equation denotes a strong analogy with
the so-called backward analysis that we encounter during the numerical solution of
linear systems, where the computed (not exact) solution is interpreted as the exact
solution of a perturbed linear system (see [QSS07, Chap. 3]). As a matter of fact, the
perturbed system plays a similar role to that of the equivalent equation.

Moreover, we observe that an error analysis of a numerical scheme can be carried
out by using the equivalent equation associated to it. Indeed, by generically denoting
by r = μvxx +νvxxx the right-hand side of the equivalent equation, by comparison with
(13.1) we obtain the error equation

et +aex = r,

where e = v− u. Multiplying such equation by e and integrating in space and time
(between 0 and t) we obtain

‖e(t)‖L2(R) ≤C(t)

(
‖e(0)‖L2(R) +

√∫ t

0
‖r(s)‖2

L2(R)ds

)
, t > 0
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having used the a priori estimate (13.4). We can assume e(0) = 0 and therefore ob-
serve that ‖e(t)‖L2(R) tends to zero (for h and Δ t tending to zero) with order 1 for the
upwind or Lax-Friedrichs schemes, and with order 2 for the Lax-Wendroff scheme
(having supposed v to be sufficiently regular).

13.6 Exercises

1. Verify that the solution to the problem (13.9)–(13.10) (with f = 0) satisfies identity
(13.11).
[Solution: Multiplying (13.9) by ut and integrating in space we obtain

0 =

β∫
α

uttut dx−
β∫

α

γ2uxxut dx =
1
2

β∫
α

[(ut)2]t dx+

β∫
α

γ2uxuxt dx− [γ2uxut ]
β
α .

(13.60)
As

β∫
α

uttut dx =
1
2

β∫
α

[(ut)2]t dx and

β∫
α

γ2uxuxt dx =
1
2

β∫
α

γ2[(ux)2]t dx,

integrating (13.60) in time we have

β∫
α

u2
t (t) dx+

β∫
α

γ2u2
x(t) dx−

β∫
α

v2
0 dx−

β∫
α

u2
0x dx = 0. (13.61)

Hence (13.11) immediately follows from the latter relation.]

2. Verify that the solution provided by the backward/centered Euler scheme (13.22)
is unconditionally stable; more precisely,

‖u‖Δ ,2 ≤ ‖u0‖Δ ,2 ∀Δ t, h > 0.

[Solution: Note that, thanks to (13.32),

(un+1
j −un

j)u
n+1
j ≥ 1

2

(
|un+1

j |2−|un
j |2
)

∀ j, n.

Then, multiplying (13.22) by un+1
j , summing over the index j and using (13.33) we

find

∑
j
|un+1

j |2 ≤∑
j
|un

j |2 ∀n≥ 0,

from which the result follows.]
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3. Prove (13.30)
[Solution: We note that, in the case where a > 0, the upwind scheme can be rewritten
in the form

un+1
j = (1−aλ )un

j +aλun
j−1.

Under hypothesis (13.28) both coefficients aλ and 1−aλ are non-negative, hence

min(un
j ,u

n
j−1)≤ un+1

j ≤max(un
j ,u

n
j−1).

Then

inf
l∈Z
{u0

l } ≤ un
j ≤ sup

l∈Z
{u0

l } ∀ j ∈ Z, ∀n≥ 0,

from which (13.30) follows.]

4. Study the accuracy of the Lax-Friedrichs scheme (13.16) for the solution of problem
(13.1).

5. Study the accuracy of the Lax-Wendroff scheme (13.18) for the solution of problem
(13.1).
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