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Marked protection provided by therapeutic hypothermia after traumatic
ischemic-hypoxic damage has been deeply studied, contributing to satisfactory
clinic effects. Several physical methods to induce therapeutic hypothermia have
been established, and briefly can be divided into two categories: invasive and non
invasive. Recently, pharmacological hypothermia is drawing increasing attention
as a neuroprotective alternative approach worthy of further clinical development.
This chapter reviews the hypothermic effect of several classes of hypothermia-
inducing drugs: the cannabinoids, opioid receptor activators, transient receptor
potential vanilloid, neurotensins, thyroxine derivatives, dopamine receptor ago-
nists, and cholecystokinin. Recent findings have extended our knowledge of the
thermoregulatory mechanisms of the above drugs. A better understanding of the
roles of the hypothermia-inducing drugs in neuroprotection may have broad
clinical implications. Till date, there is few data that uniquely elicit that phar-
macologically induced hypothermia is the sole or specific mechanism on neuro-
protection. However, some mechanisms underlying the protection of hypothermia
are overlapped with the current evidence on the intrinsic effects of the above drugs.
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15.1 Cannabinoids

There are two main receptors within the cannabinoid system: cannabinoid
receptors 1 and 2. In the brain, the cannabinoid receptor 1, one of the most
abundant Gi/o-protein-coupled receptors, was found in the hypothalamus
responsible for regulation of temperature [1–6]. At the cellular level, cannabinoid
receptor 1 is also abundant in the plasma membranes of the axon and axonal
terminals, where it typically mediates the release of neurotransmitters [5].
Numerous evidences suggest that cannabinoid 1 receptors participate in the pre-
vention of neurodegenerative disease or protection from ischemic insults [7–10].
The neuroprotective effects of cannabinoid agonists were related either to specific
mechanisms played by these agonists or by a cannabinoid-induced hypothermia
[11]. Among them, however, cannabinoid-induced hypothermia was the primary
mechanism which was principally triggered by activation of cannabinoid receptor
1. Several neurological neurotransmitters were demonstrated to be involved, such
as the release of GABA (Gamma-amino Butyric Acid, GABA) [12, 13] and the
dopamine [14]. As cannabinoid-induced regulation of body temperature is, how-
ever, dose-dependent, further evidence is necessary to establish optimal applica-
tion standards for the cannabinoid-based hypothermic treatment [15].

It is well documented that cannabinoids may have therapeutic potential in
disorders resulting from cerebral ischemia, including stroke, and may protect
neurons from injury through a variety of mechanisms [9]. The beneficial mecha-
nisms were related to the decrease of inflammatory factors [16], reduction of
apoptotic cell death, maintenance of mitochondrial integrity and functionality [17],
activation of extracellular signal-regulated kinases, increase of S-100 protein, and
mitigation of glutamatergic excitotoxicity, TNF-alpha release and iNOS expres-
sion [18, 19]. These effects are achieved through two parallel CB1-dependent and -
independent mechanisms [20, 21].

15.2 Opioid Receptor Agonists

The opioid system was reported to be involved in thermoregulation. Indeed, naloxone
has been reported to antagonize the hypothermic effects played by morphine [22–24].
The main subtype of opioid receptors involved in thermoregulation and hypothermia
induction is the kappa-receptor, while the mu-receptor is related to hyperthermia. The
magnitude of hypothermic effects produced by kappa- opioid agonists is related to the
degree of their selectivity for the kappa-receptor [25]. The kappa-opioid receptor is
primarily located outside the brain; thus peripheral application of kappa-receptor
agonists could produce dose-dependent hypothermia [26, 27].

Moreover, the existence of subtypes of the different receptors may well explain
the different effects of one single drug on thermoregulation [28]. Anatomical,
histochemical, and pharmacological evidence suggests that the opioid system
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probably interacts with the dopaminergic, adrenergic, serotonergic, cholinergic,
and other transmitter systems [25–28]. Thus, it can be hypothesized that the opioid
system interacts with other neurotransmitter systems known to be involved in
thermoregulation. However, studies carried out so far do not present a clear picture
of these interrelationships in terms of thermoregulation. In view of the recent
findings that several neuropeptides play marked effects on body temperature,
exploration of opioid interactions with these systems should prove to be a fruitful
approach to deepen the understanding of the opioid system and its function in the
thermoregulation.

Kappa-receptor agonists, have been demonstrated effective in preventing brain
swelling in parallel with reducing infarction after an ischemic insult [29, 30], but
the use of opioid receptor agonist is limited to the early phase of cerebral edema
[31, 32]. This was related mainly to the attenuation of ischemia-evoked nitric
oxide production [33], the reduction of Na(+)-K(+)-ATPase activity [34], and a
significant prolonged neuron survival [35–37].

15.3 Transient Receptor Potential Vanilloid

Studies have demonstrated that many pathophysiological processes were mediated
by transient receptor potential (TRP) channels, including pain, respiratory reflex
hypersensitivity, cardiac hypertrophy, thermoregulation, and ischemic cell death.
The superfamily of mammalian TRP channels consists of around 30 proteins
which can be divided into six subfamilies: ankyrin (TRPA), canonical, melastatin
(TRPM), mucolipin, polycystin, and vanilloid (TRPV). Till date, nine of the
proteins are found highly sensitive to temperature and are referred to as the
thermo-TRP channels, which include the heat-activated TRPV1 as well as the
cold-activated TRPA1 and TRPM8 [38–41].

No consensus in the literature was achieved on the hypothermic response to
systemically administered TRPV1 agonists. Most evidence is in support of the
central mediation hypothesis: (1) the TRPV1 channel was demonstrated to be
widely distributed in the hypothalamus; [42–44], (2) TRPV1 agonist was able to
cross the blood–brain barrier; [45, 46], (3) the primary action mode after appli-
cation of TRPV1 agonist lies on the glutamatergic preoptic anterior hypothalamus
neurons; [43, 47], (4) a reduced or low hypothermic response to TRPV1 agonist
was observed in rats with decreased hypothalamic sensitivity [48]. Moreover,
several authors also suggested a contribution of a peripheral action of TRPV1
agonists to the hypothermic response.

However, there was no definite data illustrating that TRPV1-induced hypo-
thermia could directly contribute to the beneficial neurologic outcomes in rat
models of ischemia.
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15.4 Neurotensin

At least three subtypes of receptors are involved in pathophysiologic processes of
neurotensin: neurotensin-1 and neurotensin-2 receptor, both members of the hepta-
helical transmembrane domain G protein-coupled receptor superfamily; and neu-
rotensin-3 receptor, which is identical to gp95/sortilin, with only a single trans-
membrane domain [29–31].

Neurotensin is abundant in the preoptic area of the hypothalamus [49]. Early in
the 1980s, neurotensin was first reported to elicit hypothermic effect by acting on
the hypothamalus in rodents [50, 51]. Neurotensin-induced hypothermia is thought
to be caused by a downward shift of the physiological temperature set point
(‘‘regulated hypothermia’’). Previous results using neurotensin analogs or peptide
nucleic acids suggested that neurotensin receptor 1 was implicated in neurotensin-
induced hypothermia, but the nonspecificity of these molecules aroused some
doubt. Neurotensin normally does not cross the blood–brain barrier and is quickly
metabolized when administered systemically. In terms of wide clinic application,
many neurotensin analogs emerge as new options with the ability to penetrate the
blood–brain barrier and prolong the hypothermia duration.

Previously, several neurotensin receptor 1 agonists were demonstrated to
induce hypothermia in a dose-dependent manner without causing shivering or
altering physiological parameters. These analogs ultimately reduced cerebral
infarct volumes and improved neurologic outcomes [52–54]. The specific mech-
anisms involved would be increase in bcl-2 expression, decrease in caspase-3
activation, and suppression of cell death [53, 54].

15.5 Thyroxine Derivatives

Thyroxine is the principal secretion form of thyroid hormone (TH), constituting
95 % of all TH found in human circulation. When deiodinated and decarboxylated,
thyroxine is transformed into 3-iodothyonamine (T1AM) and thyronamine
(T0AM). It was reported that when injected peripherally, T1AM and T0AM
rapidly induced hypothermia through a mechanism independent of gene tran-
scription. T1AM and T0AM are agonists of trace amine associated receptor 1
(TAAR1), a G-protein coupled receptor activated by phenylethylamine, tyramine,
methamphetamine, and its congeners. Although T1AM and T0AM can dose-
dependently couple TAAR1 to the production of cAMP, it is not yet clear whether
TAAR1 is an endogenous receptor for these molecules [55].

There has been data demonstrating that T1AM and T0AM are potent neuro-
protectants in neurologic ischemia disease. Hypothermia induced by T1AM and
T0AM may partially underlie neuroprotection [55].
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15.6 Dopamine Receptor Agonists

Dopamine (DA) is one of the major neurotransmitters in the mammalian central
nervous system (CNS). The receptors for DA have been classified into three
subtypes: the D1, D2, and D3 receptor subtype [56]. There were data suggesting
that hypothermia in mammals are centrally mediated by D2 receptor mechanism,
and this centrally mediated D2 receptor mechanism may be modulated by the D1
receptor [57]. Furthermore, the dopamine D1 receptor agonist was also reported to
produce hypothermia that was antagonized by D1 receptor antagonists, but not by
the dopamine D2/3 receptor antagonists. This supports the evidence that activation
of dopamine D1 receptors may play a determinant role in inducing hypothermia in
rats [58]. Further evidence finally demonstrated that hypothermia did not result
from a selective stimulation of the D3 receptor [59].

There is lack of evidence, however, that D1 or 2 receptor agonist-induced
hypothermia would provide protective effects in neurologic ischemic diseases.

15.7 Cholecystokinin

It was first reported in 1981 that centrally administrated cholecystokinin was able to
produce hypothermia in rats [38, 60, 61]. Specific mechanisms of cholecystokinin-
induced hypothermia after peripheral or central application, however, remain
unclear [39, 40, 60]. Hypothermia may either be produced by different mechanisms,
such as inhibition of central nervous system function without specific relation to
central body temperature control, interruption of afferent or efferent nervous
pathways, or a decrease of regulated level of body temperature. The central action
of cholecystokinin was not supported by the long latency of the thermoregulatory
response observed after central administration of cholecystokinin [39, 40, 60]. An
alternative explanation for the cholecystokinin-induced hypothermia after periph-
eral injection could be a direct skin vasodilatation. Besides, a nervous afferent
mechanism, such as the vagal afferentation shown to be an important way of
influencing central regulation of food intake could also play relevant roles on
specific thermoregulatory sites [41]. The hypothermic action of the peptide in
mammals seems to depend on cholecystokinin-1 receptors, since administration of
cholecystokinin-1 receptor antagonists attenuated these hypothermic effects, while
the cholecystokinin-2 receptor antagonist had no effect on this response [42–45].

Although the concept of pharmacological hypothermia induced by cholecysto-
kinin was not widely raised, there are some data revealing that cholecystokinin to
some extent plays a vital role in protecting from brain ischemia disease. Yasui M et al.
demonstrated that in rats subjected to stroke, cholecystokinin prevented the dys-
function of CA1 pyramidal neurons [46]. Moreover, in a rat model of global ischemia
after cardiac arrest, cholecystokinin octapeptide indeed induced hypothermia, and
improved post-resuscitation myocardial dysfunction and overall neurological per-
formance after intravenous injection of CCK8 at a dose of 200 lg/kg [47].
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