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14.1 Introduction

Over the past 50 years, the majority of research on cardiac arrest has focused on
improving the rate of return of spontaneous circulation (ROSC); however, many
interventions improved ROSC without improving long-term survival. The trans-
lation of optimized basic life support and advanced life support interventions into
the best possible outcomes is sine qua non in optimal post-arrest care. There is a
scarcity of data reported from the post-arrest in-hospital phase, and no generally
accepted, evidence-based protocol exists, other than brain protection-oriented
intensive care. For any further improvement in post-arrest care, we first have to
determine the relative contribution of potential, outcome-determining factors [1].

The importance of these factors leads to the addition of a fifth ring, post-
resuscitation care (Fig. 14.1), to the ‘‘Chain of Survival.’’ The idea is not new; the
hospital ring was included by Niemann [2] in 1982, and more recently, by Engdahl
et al. [3].
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14.2 Pharmacological Effects of Corticosteroids

Corticosteroids are a class of chemicals involved in a wide range of physiological
processes, including stress response, immune response, and regulation of inflam-
mation, carbohydrate metabolism, protein catabolism, blood electrolyte levels, and
behavior. The possible effect of exogenously administered steroids on cardiac
arrest outcomes was already hypothesized in 1988. Still, there is no definitive
evidence on their efficacy when given to cardiac arrest patients after ROSC.

The physiological effects of glucocorticoids can be summarized as follows:
1. Anti-inflammatory effects: Glucocorticoids inhibit inflammatory and allergic

reactions by decreasing the production of interleukin (IL)-2 as well as the
proliferation of T-lymphocytes, histamine, and serotonin release, and prosta-
glandin and leukotriene synthesis.

2. Renal effects: Glucocorticoids restore glomerular filtration rate and renal blood
flow to normal following adrenalectomy; in addition, they facilitate free water
excretion (clearance) and uric acid secretion.

3. Vascular effects: In pharmacological doses, cortisol enhances the vasopressor
effect of norepinephrine. In the absence of cortisol, the vasopressor action of
catecholamines is diminished, and hypotension ensues.

4. Stress adaptation: Corticosteroids allow mammals to adapt to various stresses in
order to maintain homeostasis. Stress is associated with the activation of the
hypothalamic–pituitary–adrenal axis.

5. Corticosteroids also have gastric, psychoneural, and antigrowth effects.
6. Metabolic effects: Glucocorticoids stimulate gluconeogenesis through: (a)

increase in protein catabolism and decrease in protein synthesis, resulting in
more amino acids being available to the liver for glyconeogenesis; (b) decrease
in insulin sensitivity and glucose utilization in adipose tissue; and (c) increase
in lipolysis, so as to offer more substrate for gluconeogenesis.

Fig. 14.1 The chain of Survival. Reproduced with permission from Ref. [1]. CPR Cardiopul-
monary resuscitation; ACLS Advanced cardiac life support
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14.3 Retrospective Data on Steroids in Cardiac Arrest

The potential usefulness of steroids in cardiac arrest has been previously assessed
in two retrospective studies. Grafton et al. [4] examined the effect of steroid
treatment on the early neurological outcome and in-hospital survival of 458
consecutive patients admitted after out-of-hospital cardiac arrest. Two hundred
and thirteen patients (47 %) received median doses of 24, 16, and 16 mg of
dexamethasone or its equivalent on days 1, 2, and 3 post-ROSC, respectively; the
reported median duration of treatment was 3.4 days, and 87 % of these patients
received steroid treatment for one week or less. Of those receiving steroids, 128/
213 (60 %) regained consciousness, and of those not receiving steroids, 150/245
(61 %) regained consciousness. There was no reported comparison of patient
baseline characteristics, despite the fact that the use of steroids was nonrandom-
ized. However, findings remained unchanged after using logistic regression to
adjust for differences in potential effect modifiers between the two treatment
groups. These factors were: witnessed or not witnessed cardiac arrest, use of
epinephrine or norepinephrine during resuscitation, and motor examination find-
ings, response of the pupils to light, presence of spontaneous eye movements, and
blood glucose level on hospital admission. According to the authors, these results
could not support any role of steroids in the treatment of global brain ischemia due
to cardiac arrest.

One year later, an article published in JAMA [5], concluded that ‘‘The routine
clinical practice of administering glucocorticoids after global brain ischemia is not
justified.’’ This was a retrospective analysis of prospectively collected data aimed
at evaluating the efficacy of thiopental in global cerebral ischemia. The study
included 262 initially comatose, cardiac arrest survivors, who made no purposeful
response to pain after ROSC. These patients were divided into four groups which
received either no glucocorticoids, or glucocorticoids at low doses (i.e., equivalent
to 1–20 mg of dexamethasone), or glucocorticoids at medium doses (i.e., equiv-
alent to 20–50 mg of dexamethasone), or glucocorticoids at high doses (i.e.,
equivalent to[70 mg of dexamethasone) within the first 8 h following ROSC. The
paper did not report a comparison of the baseline characteristics of the four patient
groups. Also, the glucocorticoid doses administered within 8–24 h post-ROSC
were unknown. Furthermore, the extent of the protocolized use of post-ROSC
hyperventilation (titrated to a PaCO2 of 25–35 mmHg) was not compared among
the four groups; hyperventilation may adversely affect cerebral blood flow and
neurological outcome [6]. Finally, cardiac arrest due to noncardiac causes (an
independent predictor of poor outcome [7]) was more frequent in the steroid-
treated patients. In that study, neurological outcome was scored using a
modification of the Glasgow–Pittsburgh Cerebral Performance Category Scale.
Steroid-treated groups versus the ‘‘no steroid’’ group had no significant
improvement in overall survival or neurological recovery [5].
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14.4 Defining the Postcardiac Arrest Syndrome

ROSC after prolonged, complete, whole-body ischemia is an unnatural
pathophysiological state created by successful cardiopulmonary resuscitation
(CPR). In the early 1970s, Negovsky recognized that the pathology caused by
complete, whole-body ischemia and reperfusion was unique in that it had a clearly
definable cause, time course, and constellation of pathophysiological processes
[8–10]. Negovsky named this state ‘‘post-resuscitation disease.’’ Although
appropriate at the time, the term ‘‘resuscitation’’ is now used more broadly to
include treatment of various shock states in which circulation has not ceased.
Moreover, the term ‘‘post-resuscitation’’ implies that the act of resuscitation has
ended. Negovsky stated that ‘‘a second, more complex phase of resuscitation
begins when patients regain spontaneous circulation after cardiac arrest (Fig. 14.2)
[8].’’ Therefore, the term ‘‘postcardiac arrest syndrome’’ seems more appropriate.

The high mortality rate of patients who initially achieve ROSC after cardiac
arrest can be attributed to a unique pathophysiological process that involves
multiple organs. Although prolonged, whole-body ischemia initially causes global
tissue and organ injury, additional damage occurs during and after reperfusion [11,
12]. The unique features of postcardiac arrest pathophysiology are often super-
imposed on the disease or injury that caused the cardiac arrest, as well as
underlying comorbidities. Therapies that focus on individual organs may com-
promise other injured organ systems. The four key components of postcardiac
arrest syndrome are (1) postcardiac arrest brain injury, (2) postcardiac arrest
myocardial dysfunction, (3) ischemia/reperfusion-triggered, systemic inflamma-
tory response, and (4) persistent underlying pathology [13].

Fig. 14.2 The phases of the
postcardiac arrest syndrome.
Reproduced with permission
from Ref. [13]
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14.5 Postischemic Myocardial Dysfunction and Corticosteroids

Postcardiac arrest myocardial dysfunction contributes to the low survival rate after
in-hospital and out-of-hospital cardiac arrest [14–16]. Laboratory and clinical
evidence, however, indicates that this phenomenon is both responsive to therapy
and reversible [16–21]. Immediately after ROSC, heart rate and blood pressure are
extremely variable. It is important to recognize that normal or elevated heart rate
and blood pressure immediately after ROSC can be caused by a transient increase
in local myocardial and circulating catecholamine concentrations [22, 23]. Using
an experimental model of coronary microembolization, Hori et al. [24] demon-
strated that after a rapid (i.e., 5–10 min lasting) recovery from the immediate,
microembolization-induced ischemic myocardial dysfunction, a progressive and
more prolonged (i.e., lasting for approximately 4 days) contractile dysfunction
develops in the presence of an unchanged regional myocardial blood flow [25].
This perfusion–contraction mismatch was associated with a local inflammatory
response characterized by leukocyte infiltration [25]. In subsequent studies, a
causal role for tumor necrosis factor (TNF) and sphingosine in this progressive
contractile dysfunction was demonstrated [26, 27]. Interestingly, high-dose (i.e.,
30 mg/kg) methylprednisolone, even when given after microembolization,
prevented the progressive contractile dysfunction [28].

Glucocorticoids have been used for their anti-inflammatory action in the
treatment of a wide variety of diseases [29]. More specifically, glucocorticoids
attenuate leukocyte/endothelium interactions [30–33], as well as the generation
and release of inflammatory cytokines and mediators [34–38]. Cardioprotective
effects of glucocorticoids in the acute setting of myocardial ischemia/reperfusion
have been shown experimentally with regard to structural and functional
myocardial damage [39–45].

The inflammation of early myocardial ischemia is characterized by leukocyte
infiltration [46, 47], a process involving the expression of L-selectin, CD11/CD18-
complex, and adhesion molecules [48, 49]. Glucocorticoids suppress the expres-
sion of L-selectin and CD11/CD18 on leukocytes [32, 33], and the expression of
endothelial leukocyte adhesion molecule-1 and the intercellular adhesion mole-
cule-1 [30]. Glucocorticoids have previously been shown to inhibit the expression
of mRNA of TNF in immunologically activated, rat, peritoneal mast cells [37], to
suppress the production of TNF in the serum and the myocardium of lipopoly-
saccharide-stimulated rats [38], and to abolish the release of TNF into the serum of
humans during cardiac surgery [36]. Glucocorticoids also attenuate the infiltration
of TNF–producing macrophages/monocytes after coronary microembolization in
pigs [50].

In the past, glucocorticoids have been used clinically for the treatment of acute
myocardial infarction [51–53], but such treatment was abandoned because of their
potentially deleterious, long-term effects on scar stability and aneurysm formation
[54, 55]. However, results from chronically instrumented dogs suggest that anti-
inflammatory treatment by a single dose of glucocorticoids in the presence of
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small, patchy microembolization-induced infarcts exerts no adverse effects [28].
Furthermore, a more recent meta-analysis of human data from 11 controlled trials
suggested a possible mortality benefit for corticosteroid treatment of myocardial
infarction [56].

14.6 Postcardiac Arrest Systemic Inflammatory Response
and Corticosteroids

The American Heart Association Guidelines 2010 for Cardiopulmonary Resusci-
tation and Emergency Cardiovascular Care state that the postcardiac arrest syn-
drome has similarities to septic shock [57, 58]. However, the efficacy of
corticosteroids remains controversial in patients with sepsis [59–61]. The mech-
anisms underlying the postcardiac arrest syndrome involve a whole-body ischemia
and reperfusion that triggers a systemic inflammatory response [58, 62].
Altogether, the high levels of circulating cytokines, the presence of endotoxin in
plasma, and the dysregulated production of cytokines found in cardiac arrest
patients resemble the immunological profile found in patients with sepsis [58].

The postcardiac arrest syndrome seems to be causally related to an early
systemic inflammatory response, leading to an inflammatory imbalance [62, 63],
and is also associated with an ‘‘endotoxin tolerance,’’ as observed in severe sepsis
[64]. Additional disturbances include activation of the coagulation cascade
[65, 66], platelet activation with formation of thromboxane A2 [67], and an
alteration of soluble E-selectin and P-selectin [63] have been described.

The postcardiac arrest syndrome can be temporally subdivided into four phases
(Fig. 14.2) [62]: (1) Within the first 24-h post-arrest, a microcirculatory
dysfunction from the multifocal hypoxia leads to rapid release of toxic enzymes
and free radicals into the cerebrospinal fluid and blood; (2) over the next 1–3 days,
cardiac and systemic functions improve, but intestinal permeability increases,
predisposing the patient to sepsis and the multiple organ dysfunction syndrome;
(3) during the subsequent days, a serious infection may occur causing rapid
clinical deterioration; and (4) the patient either dies of a secondary complication or
the primary disease that caused the cardiac arrest, or undergoes a frequently
prolonged, partial or complete recovery.

The Surviving Sepsis Campaign guidelines 2012 for the management of severe
sepsis and septic shock suggest stress-dose hydrocortisone therapy (daily dose:
200 mg) only for patients who are poorly responsive to fluid and vasopressor
therapy [68]. However, in cardiac arrest patients, treatment-refractory shock is a
common post-ROSC complication [69]. Furthermore, post-resuscitation shock is
frequently partly due to a post-arrest adrenal insufficiency or dysfunction [58, 62,
70], which in turn constitutes an independent predictor of mortality at 1 week after
resuscitation [71]. In light of these facts, in our recently published, single-center
(sample size: 100 patients), randomized, double-blind, placebo-controlled study of
vasopressor-requiring, in-hospital cardiac arrest [69], we administered 40 mg of
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methylprednisolone during CPR, and stress-dose hydrocortisone (300 mg/day for a
maximum of 7 days followed by gradual taper) to patients fulfilling a clearly
defined criterion for post-resuscitation shock. Our CPR intervention also included
vasopressin (dose range: 20–100 IU) and epinephrine. The control group received
standard, epinephrine-based CPR according to the contemporary guidelines for
resuscitation. Intervention group results showed a combination of improved post-
arrest hemodynamics and central venous oxygen saturation, post-arrest cytokine
levels and organ/system function, and survival to hospital discharge (Fig. 14.3).
Survival to hospital discharge was improved in the total intervention group
(Fig. 14.3a) as well as in the subgroup of patients with post-resuscitation shock
(Fig. 14.3b). Furthermore, multivariate Cox regression analysis showed that the
assignment to the intervention group and completion of a full post-arrest course of
hydrocortisone was associated with a hazard ratio of 0.15 (95 % confidence
interval: 0.06–0.38, P \ 0.001) for in-hospital death during follow-up. These
results were consistent with a steroid-associated benefit in cardiac arrest. However,
the combined nature of our intervention precluded a precise determination of the
relative contribution of the steroids to the positive outcomes of the intervention
group.

Another pilot (sample size: 100 patients), randomized, unblinded study of out-
of-hospital cardiac arrest [72], showed improved rates of ROSC in its intervention
group patients, who received a single dose of 100 mg of hydrocortisone during
CPR. Interestingly, and consistently with prior findings [70], patients of the study’s
control arm with a serum cortisol level of more than 20 lg/dL had a ROSC rate of
43 %, as opposed to a ROSC rate of 25 % that was observed in controls with a
serum cortisol level of less than 20 lg/dL.

14.7 Corticosteroids and Neuroprotection

To date, there is no published data showing that peri-arrest glucocorticoids are
neuroptotective [73]. In the peri-arrest period, there is a multifactorial disruption
of the blood–brain barrier (BBB), involving the enhanced production of nitric
oxide, inflammatory cytokines, and vascular endothelial growth factor [74].
According to recent evidence, several of these mechanisms could constitute
potential targets of corticosteroid treatment. Corticosteroids promote BBB integ-
rity through their interaction with astrocytic cells, which results in upregulation of
the endothelial tight junction proteins such as occludin and claudin-5 [75]. Glu-
cocorticoids regulate the expression of leukocyte adhesion molecule genes in
endothelial cells [76], and suppress the production of the pro-inflammatory cyto-
kines [34–38, 77]. Methylprednisolone attenuates axonal changes (e.g., myelin
fragmentation and presence of edematous vesicles), caused by experimental
cerebral edema [78]. In addition, 17-beta estradiol suppresses the expression of
inducible nitric oxide synthase and neuronal nitric oxide synthase, thus attenuating
the BBB disruption after experimental, hypovolemic cardiac arrest [79]. However,
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during the course of ischemic insults, insensitivity to glucocorticoids ensues, due
to proteasome-induced degradation of the glucocorticoid receptor [80, 81]. This
suggests that the inhibition of the proteasomal degradation pathway may constitute
a prerequisite for the glucocorticoid-associated preservation of BBB integrity
[80, 81]. Consequently, in cardiac arrest, it is still highly uncertain whether peri-
arrest and/or post-arrest hydrocortisone can directly confer neuroprotection.

14.8 Conclusions

Preceding retrospective studies with inherent methodological limitations do not
support the use of low-dose corticosteroids during and after CPR. However, more
recent laboratory data and clinical results are consistent with a possible, low-dose
corticosteroid-associated, benefit in cardiac arrest, especially in patients with post-
resuscitation shock. Such potential benefit can be explained mainly by the
hemodynamic and anti-inflammatory effects of hydrocortisone, as a direct
neuroprotective effect seems rather unlikely. Controversies and unclear mecha-
nisms of hydrocortisone action and possible efficacy should be addressed by a
large, multicenter, randomized, placebo-controlled evaluation of stress-dose
hydrocortisone in cardiac arrest.
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Fig. 14.3 Main results of patient follow-up. Reproduced with permission from Ref. [69]. Study
group denotes intervention group. a, b Probability of survival to day 60 postrandomization, which
was identical to survival to hospital discharge, in all 100 patients (a) and in the 42 patients with
post-resuscitation shock (b). Parentheses, survivors/total number of patients. c Organ failure-free
days in patients who completed a full course of hydrocortisone (n ¼ 12) or saline-placebo
(n ¼ 6) according to protocol. Bars, mean; Error-bars, standard deviation; *, P ¼ 0:001; �,
P \ 0:001. d Plasma-cytokines in post-resuscitation shock. Parentheses, number of controls
versus number of study-group patients; Symbols, mean; Error-bars, standard deviation; *,
P ¼ 0:04; �, P ¼ 0:003; §, P ¼ 0:02; #, P ¼ 0:01; �, P ¼ 0:06. e, f Central-venous oxygen
saturation (e) and mean arterial pressure (f) in post-resuscitation shock. Dots, mean; Error-bars,
standard deviation. *, P ¼ 0:03; �, P \ 0:001; §, P ¼ 0:006; #, P ¼ 0:005; �, P ¼ 0:01; **,
P ¼ 0:002; ��, P ¼ 0:04

b
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