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13.1 Mitochondria and Cardiac Resuscitation

Sudden cardiac arrest is a major public health problem with ~ 360,000 cases
assessed every year by Emergency Medical Services in the United States yielding
a survival rate to hospital discharge that averages only 9.5 % [1]; a percentage that
has improved very little over the past decade. Restoration of cardiac activity
requires reperfusion by external means (i.e., CPR) of a myocardium that has been
ischemic for a variable period of time. Reperfusion is obligatory to deliver the
oxygen required for mitochondria to restore capability to regenerate ATP (i.e.,
bioenergetic function) and thus create the conditions required for resumption of an
electrically organized and mechanically competent cardiac activity. Yet, reperfu-
sion also triggers injury that largely involves generation of reactive oxygen species
[2] and mitochondrial calcium overload [3, 4]. This injury further compromises
mitochondrial bioenergetic function and thus the conditions required for successful
cardiac resuscitation [5].

Current resuscitation methods focus almost exclusively on means to generate
blood flow and terminate ventricular fibrillation (VF) but lack therapies directed at
protecting mitochondria. In this chapter, basic concepts of mitochondrial function
are discussed along with experimental evidence pointing to mitochondrial
involvement and interventions to protect their function in helping to restore
cardiac activity and lessen post-resuscitation myocardial dysfunction.
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13.2 Mitochondrial Function and Dysfunction
13.2.1 Bioenergetic Function

Mitochondria are highly abundant in myocardial tissue encompassing ~ 35 % of
the cardiomyocyte volume, and are “strategically” located to power contractile
activity adopting a “crystal-like” structure with one mitochondrion per sarcomere
[6]. Transfer of energy contained in nutrients to molecules of ATP starts with the
reduction of nicotinamide adenine dinucleotide (NAD") to NADH and flavin
adenine dinucleotide (FAD) to FADH, in the mitochondrial matrix. NADH and
FADH, transfer their electrons down a redox potential through complexes I, II, III,
and IV of the electron transport chain to oxygen; the final electron acceptor.
Complexes I, III, and IV are also proton pumps and translocate H* against their
electrochemical gradient from the mitochondrial matrix to the inter-mitochondrial
membrane space creating a proton motive force that powers the enzyme F,F;
ATPsynthase to regenerate ATP from ADP and inorganic phosphate (Fig. 13.1).
The newly synthesized ATP is then exchanged for ADP across the inner-mito-
chondrial membrane by the adenine nucleotide translocator (ANT). The newly
synthesized and translocated ATP is used to phosphorylate creatine which is then
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Fig. 13.1 Schematic rendition of key mitochondrial components involved in ATP synthesis via
oxidative phosphorylation. OMM, outer mitochondrial membrane; /MM, inner-mitochondrial
membrane; /, 11, 111, and 1V, electron transport complexes of the respiratory chain; e, electrons;
Q, coenzyme Q; C, cytochrome c; ANT, adenine nucleotide translocator; NADH, reduced
nicotinamide adenine dinucleotide; FADH,, reduced flavin adenine dinucleotide
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Fig. 13.2 Schematic rendition of mitochondrial ATP synthesis and translocation to the cytosol
through the creatine phosphate shuttle. CK, creatine kinase; pCr, phosphocreatine; Cr, creatine

exported outside mitochondria to regenerate ATP being used in various energy
requiring processes (Fig. 13.2). Measuring the amount of creatine phosphate rel-
ative to total creatine is indeed a useful indirect measurement of mitochondrial
function.

13.2.2 Cell Death Signaling and Cytochrome c Release as Marker
of Mitochondrial Injury

In addition to its bioenergetic function, mitochondria also participate in processes
leading to cell death via necrosis or apoptosis. Various distinctive mechanisms
have been identified including opening of the so-called mitochondrial permeability
transition pore (leading to collapse of the proton motive force and uncoupling of
respiration) [7] and release of various pro-apoptotic proteins, including cyto-
chrome c, apoptosis-inducing factor, Smac/DIABLO, endonuclease G, and a serine
protease Omi/HtrA2 [8, 9]. Of these proteins, cytochrome ¢ has been the most
widely studied, including work in our laboratory [10, 11].

Cytochrome ¢ is a 14-kDa hemoprotein that normally resides in the outer
surface of the inner-mitochondrial membrane bound to cardiolipin [12]. Cyto-
chrome ¢ plays a crucial role in oxidative phosphorylation enabling transfer of
electrons from complex III to complex IV (Fig. 13.1). However, cytochrome ¢ can
also translocate to the cytosol under various pathological conditions including
(among others) oxidative stress [13], calcium overload [14], and injury by hypoxia
and reoxygenation [15, 16]. In the cytosol, cytochrome ¢ forms an oligomeric
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complex with 2-deoxy-ATP and the apoptotic protease activating factor-1 [17].
This complex recruits procaspase-9 forming what is known as the apoptosome
leading to cleavage and release of active caspase-9, which in turn cleaves and
activates caspases-3, -6, and -7 [18-20]; the effectors of apoptosis.

Cytochrome ¢ can also leave the cell and reach the bloodstream through
mechanisms apparently unrelated to cell necrosis [21, 22]. In patients, elevated
levels of circulating cytochrome ¢ have been reported associated with conditions
able to injure mitochondria such as cancer [23, 24], chemotherapy [21, 25], acute
myocardial infarction [26], reperfusion after coronary intervention [27], possibly
cardiomyopathies [28], fulminant hepatitis [29], the systemic inflammatory
response syndrome [30], and influenza-associated encephalopathy [31, 32].

In a rat model of VF and CPR, we reported the release of cytochrome c to the
cytosol in left ventricular tissue with activation of the mitochondrial apoptotic
pathway through formation of the apoptosome as described earlier [10, 11].
However, in this model, activation of the mitochondrial apoptotic pathway did not
cause cell death or was responsible for the severe myocardial dysfunction that
characteristically occurs post-resuscitation [11]. In the same rat model, cyto-
chrome c reached the bloodstream and progressively increased during CPR and the
post-resuscitation period attaining levels that were inversely related to survival
[10]. Thus, in rats that survived, plasma cytochrome c increased modestly to levels
<2 pg/ml returning to baseline within 48-96 h. In rats that did not survive, plasma
cytochrome c increased at a much faster rate and attained levels substantially
higher than 2 pg/ml before demise, which was characteristically the consequence
of hemodynamic deterioration.

Based on these findings, we have postulated that plasma cytochrome ¢ could
serve as biomarker of mitochondrial injury severity and be useful not only to
prognosticate outcome but also to assess therapies designed to attenuate or reverse
mitochondrial injury.

13.3 Mitochondrial Protection by Inhibition of the Sodium-
Hydrogen Exchanger Isoform-1

Our laboratory had investigated for more than a decade the potential beneficial
effects of inhibiting the sodium-hydrogen exchanger isoform-1 (NHE-1) during
cardiac resuscitation, showing protective mitochondrial effects leading to func-
tional myocardial effects that would be clinically relevant [5, 33—43].

13.3.1 Underlying Pathophysiology
The benefit associated with NHE-1 inhibition is linked to the pathophysiological

process of cell injury triggered by the intense and sustained intracellular myocardial
acidosis that develops during cardiac arrest after cessation of coronary blood flow
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[44-46]. Intracellular acidosis activates the sarcolemmal NHE-1 bringing Na™ into
the cell in exchange for H" [47]. During the ensuing resuscitation effort, reperfusion
of the ischemic myocardium washes-out H* that have accumulated in the extra-
cellular space during no-flow ischemia intensifying the sarcolemmal Na*-H*
exchange [33, 47, 48]. Na™ may also enter the cell through Na* channels and the
Na*-HCO;~ co-transporter. The Na™ entering the cell is not extruded as it normally
would because of concomitant reduction of the Na*-K* ATPase activity [49], such
that progressive and prominent increases in cytosolic Na* occur.

The cytosolic Na* excess drives sarcolemmal Ca”* influx through reverse mode
operation of the sarcolemmal Na*—Ca®* exchanger leading to cytosolic Ca>*
overload [50] and subsequent mitochondrial Ca®* entry; a process which is reg-
ulated by the Ca®* uniporter for influx and the Na*~Ca** exchanger for efflux [51].
Mitochondria can buffer large amounts of Ca®* in its matrix up to a limit when free
mitochondrial Ca®* rises, the mitochondrial Na*—Ca®* exchanger becomes satu-
rated, and mitochondrial Ca** overload ensues [51] worsening cell injury in part
by compromising its capability to sustain oxidative phosphorylation [52] and by
promoting the release of pro-apoptotic factors [53].

13.3.2 Relevance to Cardiac Resuscitation

The relevance of this mechanism of injury and potential therapeutic target is
highlighted by preclinical work at the Resuscitation Institute using various animal
models and other capabilities at the cellular and subcellular levels over more than a
decade, strongly supporting a role of NHE-1 inhibition for resuscitation from
cardiac arrest [5, 33-43].

Effects during VF' Initial observations were made in an isolated rat model of VF
and simulated resuscitation using the NHE-1 inhibitor cariporide [33, 34]. In these
studies, infusion of the NHE-1 inhibitor cariporide during simulated resuscitation
markedly attenuated left ventricular pressure increases suggesting that NHE-1
inhibition could help preserve left ventricular distensibility during cardiac resus-
citation. Post-resuscitation, hearts treated with cariporide had their end-diastolic
pressure—volume curves preserved suggesting a beneficial effect preventing post-
resuscitation diastolic dysfunction. These observations were followed by work in a
clinically more relevant swine model of VF and CPR, showing that cariporide
given as bolus dose immediately before starting chest compression could also
preserve left ventricular distensibility during CPR in the intact animal, evidenced
by preservation of wall thickness and cavity size. Preservation of left ventricular
distensibility enabled chest compression to sustain the generation of coronary
perfusion pressures at stable levels in contrast to controls animals in which the
coronary perfusion pressure progressively declined. As a result, higher resuscit-
ability was observed in animals treated with cariporide (2/8 vs. 8/8; p < 0.05) [36].

We hypothesized that the observed hemodynamic benefits in the swine model
could reflect the ability of chest compression to generate a greater cardiac output
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for a given compression depth as a result of preservation of left ventricular
distensibility. In other words, a more distensible left ventricle would allow a larger
volume of blood to fill the cavity before compression resulting in more blood
ejected by the ensuing compression. To test this hypothesis, we conducted studies
on an intact rat model of VF and CPR and measured cardiac output and regional
organ blood flow using fluorescent microspheres while varying the depth of
compression [38].

Two series of 14 experiments each were conducted in which rats were subjected
to 10 min of untreated VF followed by 8 min of chest compression before
attempting defibrillation. Compression depth was adjusted to maintain an aortic
diastolic pressure between 26 and 28 mmHg in the first series and between 36 and
38 mmHg in the second series. Within each series, rats were randomized to receive
cariporide (3 mg/kg) or NaCl 0.9 % (control) before starting chest compression.
In rats that received cariporide, higher cardiac output and higher regional organ
blood flow (including heart and brain) were generated for a given compression
depth. In other words, cariporide causes a very favorable leftward shift of the flow-
depth relationship as a result of maintaining left ventricular distensibility.

Because pressure is a function of flow and resistance, we further reasoned that
administration of a vasopressor agent could potentiate the hemodynamic effect of
shifting the flow-depth relationship to the left resulting in an even higher systemic
and coronary perfusion pressure. This was indeed the case as we demonstrated in
the same rat model of VF and closed-chest resuscitation [37]. These studies
involved two series of 16 experiments each using epinephrine in one series and
vasopressin in the other. Within each series, rats were randomized to receive
cariporide or NaCl control immediately before starting chest compression with the
vasopressor agents given during chest compression. A significantly higher coro-
nary perfusion pressure was generated when either vasopressor agent was given in
rats that had received cariporide. The effect was not mediated through a vascular
effect as the vasoconstrictive effects of epinephrine or vasopressin were not
enhanced by cariporide [37]. A similar effect was subsequently demonstrated
associated with the administration of epinephrine in our pig model of VF and
closed-chest resuscitation [39]. These effects on coronary perfusion pressure are
important; if translated clinically they could be highly relevant because only a
small increase in coronary perfusion pressure is required to have a dramatic effect
on resuscitability [54].

Effects on post-resuscitation arrhythmias and refibrillation: Another prominent
effect elicited by cariporide was the suppression of ventricular ectopic activity and
refibrillation that typically occurs early after return of cardiac activity [34, 36, 39,
55]. This effect was associated with preservation of the action potential duration
[36]; an effect that would facilitate preservation of the impulse wavelength and
thus reducing the risk of reentry [55]. This is also an important effect, which if
translated clinically could help stabilize initially resuscitated victim of out-of-
hospital cardiac arrest and avert re-arrest episodes during initial post-resuscitation
period while enroute to a hospital.
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Effects on post-resuscitation myocardial function: Variable degrees of systolic
dysfunction occur after resuscitation from cardiac arrest despite full restoration of
coronary blood flow. This phenomenon, known as myocardial stunning, is
reversible but reversibility may take hours or days and contingent on severity
compromise hemodynamic function and survival. Myocardial stunning is
amenable to inotropic stimulation [56, 57] and use of dobutamine has been shown
to facilitate hemodynamic stabilization post-resuscitation [58]. Diastolic
dysfunction also occurs in the post-resuscitation period and is linked to the same
pathophysiological abnormalities responsible for decreases in distensibility;
namely increases in diastolic Ca®" overload and energy deficit precluding full
relaxation of cardiomyocytes. Administration of NHE-1 inhibitors during CPR in
our animal models also attenuated post-resuscitation left ventricular systolic and
diastolic dysfunction [41, 55].

13.3.3 Mechanism of the Resuscitation Effects

We also investigated the underlying mechanism of the benefit associated with use
of NHE-1 inhibitors. In a rat model of VF and closed-chest resuscitation, we
examined the effects of NHE-1 inhibition and of Na* channel blockade (inter-
ventions collectively referred to as “Na*-limiting interventions”) on intracellular
Na*, mitochondrial Ca2+, cardiac function, and plasma levels of cardiac troponin I
(cTnl) [40]. For these studies, hearts were removed at specific time events; namely
(i) at baseline, (ii) at 15 min of untreated VF, (iii) at 15 min of VF with chest
compression provided during the last 5 min of VF, and (iv) at 60-min post-
resuscitation. Rats from the last two time events were randomized to receive an
Na*-limiting intervention immediately before starting chest compression or
vehicle control. The Na*-limiting interventions included a newly developed NHE-
1 inhibitor AVE4454 (1 mg/kg), lidocaine (5 mg/kg), and the combination of
AVE4454 and lidocaine.

Limiting sarcolemmal Na* entry attenuated increases in cytosolic Na* and
mitochondrial Ca®* overload during chest compression and the post-resuscitation
phase. Attenuation of cytosolic Na* and mitochondrial Ca®* increases was
accompanied by preservation of left ventricular distensibility during chest com-
pression, less post-resuscitation myocardial dysfunction, and lower levels of cTnl.
In similar studies, attenuation of post-resuscitation myocardial dysfunction by
NHE-1 inhibitors was associated with lesser increases in plasma cytochrome c in
inverse relationship with left ventricular function [43].

We also used an open-chest pig model of electrically induced VF and extra-
corporeal circulation to study the myocardial energy effects of inhibiting NHE-1
under conditions of controlled coronary perfusion pressure [41]. For this study, VF
was induced by epicardial delivery of an alternating current and left untreated for
8 min. After this interval, extracorporeal circulation was started and the systemic
(extracorporeal) blood flow adjusted to maintain a coronary perfusion pressure at
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10 mmHg for 10 min before attempting defibrillation. The target coronary
perfusion pressure was chosen to mimic the low coronary perfusion pressure
generated by closed-chest resuscitation. Two groups of eight pigs each were
randomized to receive the NHE-1 inhibitor zoniporide (3 mg/kg) or vehicle
control as a right atrial bolus immediately before starting extracorporeal
circulation. Like in previous studies using the NHE-1 inhibitor cariporide [36],
zoniporide also prevented reductions in left ventricular distensibility during the
interval of VF and extracorporeal circulation, which in control pigs was charac-
terized by progressive reductions in cavity size and progressive thickening of the
left ventricular wall. Importantly, these effects occurred without changes in
coronary blood flow or coronary vascular resistance indicating that the favorable
myocardial effects of NHE-1 inhibition during resuscitation are not likely to be
mediated through increases in blood flow and oxygen availability.

Myocardial tissue measurements indicated that administration of zoniporide
prevented progressive loss of oxidative phosphorylation during the interval of
simulated resuscitation. This effect was supported by a higher creatine phosphate-
to-creatine (pCr/Cr) ratio, higher ATP/ADP ratio, and lesser increases in adenosine
in animals treated with zoniporide. These measurements are consistent with
regeneration of ADP into ATP by mitochondria instead of downstream degrada-
tion to adenosine, with the newly formed ATP being used to regenerate creatinine
phosphate; all indicative of preserved mitochondrial bioenergetic function.

These changes were accompanied with prominent amelioration of myocardial
lactate increases, attaining levels which were inversely proportional to the pCr/Cr
ratio at 8 min of VF and extracorporeal circulation, suggesting a shift away from
anaerobic metabolism consequent to preservation of mitochondrial bioenergetic
function in pigs treated with zoniporide.

These energy effects are consistent with NHE-1 inhibition protecting mito-
chondrial bioenergetic function—probably as a result of limiting mitochondrial
Ca”* overload—and supportive of the concept that left ventricular distensibility
during resuscitation is likely to be preserved by activating mitochondrial mecha-
nisms capable of maintaining bioenergetic function.

13.3.4 Barriers to Clinical Translation

Unfortunately, efforts by pharmaceutical companies to develop NHE-1 inhibitors
for clinical use have been modest at best and targeted only myocardial infarction
[59-61] and myocardial protection during coronary artery bypass surgery (CABG)
[60, 62]. Although the studies in acute myocardial infarction were inconclusive—
with only one of three studies showing myocardial benefits [5S9]—studies in
patients undergoing CABG—best represented by the EXPEDITION trial [62]—
demonstrated a prominent myocardial protective effect providing proof-of-concept
and lending support for NHE-1 inhibition in this clinical setting. The EXPEDI-
TION trial compared cariporide with placebo in 5,761 high risk patients
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undergoing CABG. Cariporide—given intravenously before surgery and after
surgery for 48 h—reduced the incidence of postoperative myocardial infarction
from 18.9 % in the placebo group to 14.4 % in the treatment group (p < 0.001).
Unfortunately and unexpectedly, patients who received cariporide had higher
incidence of occlusive strokes. In subsequent analysis, the risk of stroke was linked
to an enhanced platelet aggregation effect related to a very high dose of cariporide
used in the study. However, the effect was unrelated to the mode of action and was
not observed with other NHE-1 inhibitors.

Experts in the field have attributed the inconclusive findings of NHE-1 inhi-
bition for acute myocardial infarction to the diminishing efficacy of NHE-1
inhibition when given only at the time of reperfusion after an extended period of
coronary occlusion [63, 64]; a concept that is also supported by studies in a porcine
model of coronary occlusion and reperfusion [65]. Likewise, the benefit observed
in the CABG population can be explained by the administration of NHE-1
inhibitors before the anticipated episodes of myocardial ischemia [62]. In contrast
to acute myocardial infarction and CABG, cardiac arrest is characterized by rapid
development of intense myocardial ischemia (and other organs including the brain)
but without infarction thus enabling to intervene on tissues suffering potentially
reversible injury.

13.3.5 Alternative Strategies

Pending clinical development of NHE-1 inhibitors, we examined alternative
mitochondrial protective strategies using compounds that are clinically available
for other uses hypothesizing that mitochondrial protection through non-genomic
activation of protective pathways such as Akt or the use of antioxidants could be
beneficial. Applying this paradigm with first examined whether erythropoietin
administered at the start of CPR could be as effective as an NHE-1 inhibitor.
Studies in rat models of VF and CPR demonstrated a similar effect on left
ventricular distensibility and an effect favoring reversal of post-resuscitation
myocardial dysfunction in the presence of dobutamine [58, 66]. In these studies,
use of erythropoietin was associated with activation of Akt and PKCe¢ in
myocardial tissue and preservation of activity of complex IV of the electron
transport chain. These effects, consistent with activation of mitochondrial
protective mechanisms, were also associated with an inverse relationship between
plasma cytochrome ¢ and left ventricular function. However, in a more recent
study using a swine model of VF and resuscitation by ECC, we could not
reproduce the beneficial effects on myocardial distensibility observed in rats.
Moreover, no effects on myocardial energy metabolism or mitochondrial
protective pathways could be demonstrated despite a modest favorable effect on
post-resuscitation left ventricular systolic function [67].
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Examination of other potential interventions in our rat model, including vitamin
C [68] and estrogens (Unpublished) was not only ineffective but also associated
with decreased resuscitability and survival.

13.4 Conclusions

Our experience using various animal models of VF and resuscitation over the last
15 years indicates that mitochondria play a key role in resuscitation from cardiac
arrest and that therapies aimed at protecting mitochondrial bioenergetic function
have the potential for facilitating initial resuscitation and subsequent survival.
Based on our work we continue to look forward to the clinical development of
NHE-1 inhibitors for reducing mitochondrial Ca** overload as the most promising
experimental pharmacological intervention for cardiac resuscitation.
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