
Chapter 8
The Quantum Mechanical Arrows of Time

James B. Hartle

Abstract The familiar textbook quantum mechanics of laboratory measurements
incorporates a quantum mechanical arrow of time—the direction in time in which
state vector reduction operates. This arrow is usually assumed to coincide with the
direction of the thermodynamic arrow of the quasiclassical realm of everyday ex-
perience. But in the more general context of cosmology we seek an explanation of
all observed arrows, and the relations between them, in terms of the conditions that
specify our particular universe. This paper investigates quantum mechanical and
thermodynamic arrows in a time-neutral formulation of quantum mechanics for a
number of model cosmologies in fixed background spacetimes. We find that a gen-
eral universe may not have well defined arrows of either kind. When arrows are
emergent they need not point in the same direction over the whole of spacetime.
Rather they may be local, pointing in different directions in different spacetime re-
gions. Local arrows can therefore be consistent with global time symmetry. [Editors
note: for a video of the talk given by Prof. Hartle at the Aharonov-80 conference in
2012 at Chapman University, see quantum.chapman.edu/talk-15.]

8.1 Introduction

In his 1932 book [1] von Neumann summarized the quantum mechanics of a sub-
system of the universe that is sometimes measured but otherwise isolated. Two laws
of evolution for the quantum state of the subsystem were postulated. The first is the
Schrödinger equation that specifies how the state evolves in time when the subsys-
tem is isolated:

i�
d|ψ̂(t)〉

dt
= H |ψ̂(t)〉 (I). (8.1)
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The second law specifies how the state evolves when an ‘ideal measurement’ is
carried out on the subsystem at time tm. It is

|ψ̂(tm)〉 → s|ψ̂(tm)〉
‖ s|ψ̂(tm)〉 ‖ (II) (8.2)

where s is the projection onto the measurement outcome.1

The Schrödinger equation (I) is time reversible—it can be run both forward and
backward in time. The second law of evolution (II) is not reversible. It operates only
forward in time. That defines the quantum mechanical arrow of time.

It is commonly assumed that the quantum arrow of time coincides with the ther-
modynamic arrow defined by the direction in which total entropy is increasing.
This identification of a fundamental quantum arrow with a classical one must have
seemed natural in a theory which posited separate classical and quantum worlds with
a kind of movable boundary between them. A second law describing an “irreversible
act of amplification” from the quantum world to the classical one in a measurement
was naturally connected with the second law of thermodynamics describing more
general classical irreversible processes.

A thermodynamic arrow of time is not an inevitable feature of a classical world
like ours governed by time-neutral dynamical laws. The fact that presently isolated
subsystems are mostly evolving towards equilibrium in the same direction in time
cannot be a consequence of time-neutral dynamical laws. Rather our thermody-
namic arrow arises because the initial state of our universe is such that the pro-
genitors of today’s isolated subsystems were all far out of equilibrium a long time
ago. As Boltzmann wrote over a century ago: “The second law of thermodynamics
can be proved from the [time-reversible] mechanical theory, if one assumes that the
present state of the universe. . . started to evolve from an improbable [i.e. special]
state” [2]. Our thermodynamic arrow of time is an emergent feature of the particular
initial condition of our universe.

Is the quantum mechanical arrow of time a fundamental property of quantum
mechanics or can it also be seen as an emergent feature of our universe in a more
general formulation of quantum mechanics free from arrows of time? Is a quantum
mechanical arrow of time always codirectional with a thermodynamic arrow? Do
arrows always point in one direction over the whole of spacetime or can they point in
different directions in different spacetime regions? Such questions are the subject of
this essay. To answer them, as Boltzmann noted, we are naturally led to cosmology.

It is almost certain that there will not be a thermodynamic arrow of time that
points consistently in one direction over the whole of spacetime in the vast universes
contemplated by contemporary inflationary cosmology. Rather the thermodynamic
arrow may point in different directions in different regions of spacetime. A simple
example that we will discuss in this paper is illustrated in Fig. 8.1.

The figure shows a curved two-dimensional slice of a four-dimensional homo-
geneous and isotropic cosmological spacetime embedded in a (Lorentz signatured)

1von Neumann called I and II, 2 and 1 respectively, but today the given convention is more used.
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Fig. 8.1 A bouncing universe. The figure shows the geometry of a two-dimensional slice of a
four-dimensional cosmological bouncing spacetime embedded in a Lorentz signatured three-di-
mensional flat space. Time is up. The universe is spatially closed. It has a large spatial volume at
large negative times, collapses to smaller and smaller volumes until a minimum is reached (the
bounce), and then expands to larger volumes at positive times. For simplicity we have assumed
that the contraction and expansion are time symmetric. DeSitter space is a well known example

three-dimensional flat space. The universe begins at large radii at the bottom, con-
tracts to smaller and smaller radii, bounces at a minimum radius and reexpands
towards the top. DeSitter space is a classic example of such a bouncing spacetime.

Such bouncing geometries are among the classical spacetimes predicted by the
no-boundary quantum state of the universe (NBWF) in simple models using a
framework that includes quantum gravity [3–5]. In addition to predicting the behav-
ior of homogeneous and isotropic classical backgrounds the NBWF also predicts
the behavior of the quantum fluctuations in matter and geometry away from these
symmetries. The key result for the present discussion is the following: The NBWF
predicts that fluctuations are in a state of low excitation (i.e. small) at the bounce. On
either side they grow away from the bounce, become classical, collapse gravitation-
ally, and eventually create a large scale structure of galaxies, stars, and planets. The
thermodynamic arrow of time therefore points in opposite directions on opposite
sides of the bounce. The universe has two spacetime regions with opposing thermo-
dynamic arrows. We can then ask: What are the laws of quantum mechanics for the
quantum fluctuations? Do they have a quantum arrow of time, and which way does
it point in the two regions?

We will answer these questions in the context of a family of generalizations of
textbook quantum theory that are time-neutral—not preferring one time direction
over another and without any built in quantum arrows of time. In a pioneering paper
Aharonov, Bergmann, and Lebovitz [6] showed how to use initial and final condi-
tions to construct such a time-neutral quantum mechanics of measured subsystems.
We will answer these questions, not in this context, but in the more general time-
neutral quantum mechanics of closed systems that are suitable for cosmology [7].

In a time-neutral formulation no arrows of any kind are built in. Arrows of time
of a particular universe emerge from the conditions that specify it. As we have dis-
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cussed, the thermodynamic arrow of time in our universe emerges from a special
initial condition (and a final condition of indifference). We will show that quantum
mechanical arrows of time can emerge in a similar way.

For the simple example illustrated in Fig. 8.1, we will find that in a suitable
generalization of quantum mechanics there is both a quantum and thermodynamic
arrow of time pointing away from the bounce on each side. The overall situation is
time symmetric.

More generally we will conclude that quantum mechanical arrows of time are
not an inevitable feature of quantum mechanics. Quantum mechanics can be formu-
lated without them. The arrows of time that characterize the approximate quantum
mechanics of measured subsystems obeying laws I and II in our universe arise in
particular spacetime regions from the conditions that specify the universe and the
region.

The paper is organized as follows: In Sect. 8.2 we review the work of Aharonov,
Bergmann, and Lebovitz [6]. Section 8.3 introduces a time-neutral quantum me-
chanics of closed systems with initial and final conditions. All arrows of time arise
from asymmetries between these two. Section 8.4 introduces the class of generalized
quantum theories of which the one in Sect. 8.3 is but one example. Section 8.5 con-
structs a time-neutral generalized quantum theory for the quantum fluctuations in a
bouncing universe illustrated in Fig. 8.1. Section 8.6 draws some brief conclusions.

8.2 Time-Neutrality in the Quantum Mechanics of Measured
Subsystems

In a seminal paper Aharonov, Bergmann, and Lebovitz [6] showed how the quan-
tum mechanics of measured subsystems could be formulated without an intrinsic
arrow of time by allowing for final states as well as initial ones. We summarize the
essence of their argument here in a notation that is analogous to that we will use for
cosmology in subsequent sections.

Consider a subsystem of the universe whose states are vectors in a Hilbert space
Hsub. Alternatives at a moment of time can be reduced to a set of yes/no questions.
For instance asking for the position of a particle is equivalent to taking an exhaustive
set of position intervals and asking whether the particle is in the first interval (yes or
no), then the second interval (yes or no), etc. In the Heisenberg picture such yes/no
alternatives at a time t are represented by an exhaustive set of exclusive projection
operators {sα(t)}. For instance, the these might be projections onto an exhaustive set
of ranges of position as discussed above. These operators satisfy

sα(t)sα′(t) = δαα′sα(t),
∑

α

sα(t) = I. (8.3)

showing that they are projections, that they are exclusive, and that they are ex-
haustive. The projection operators representing the same alternative at two different
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times t1 and t2 are connected by the Heisenberg equations of motion

sα(t2) = e
+ih(t2−t1)

� sα(t1)e
−ih(t2−t1)

� , (8.4)

where h is the Hamiltonian of the subsystem in isolation.
Suppose a sequence of ideal measurements2 is carried out on the subsystem by

another subsystem at a sequence of times t1, t2, . . . tn. The measurements are de-
scribed by a sequence of sets of projections {sk

αk
(tk)}, k = 1,2, . . . n. The upper

index allows for the contingency that the measurements might be of different quan-
tities at different times—a measurement of position at time t1, of momentum at time
t2, etc.

Suppose that the subsystem is in a (Heisenberg picture) state |ψi〉 in H . Then
the joint probability for a history of outcomes α1, α2, . . . αn is [8, 9]

p(αn, . . . , α1) = ‖sn
αn

(tn) . . . s1
α1

(t1)|ψi〉‖2. (8.5)

It is easy to work out that this compact formula for the joint probability for a
sequence of ideal measurement outcomes follows from the two laws of evolution
(8.1) and (8.2)—evolve, reduce, evolve, reduce, evolve. . . . The formula can be made
more compact by defining α ≡ (α1, α2, . . . αn) and

cα ≡ sn
αn

(tn) . . . s1
α1

(t1). (8.6)

Then

p(α) = ‖cα|ψi〉‖2 = ‖sn
αn

(tn) . . . s1
α1

(t1)|ψi〉‖2. (8.7)

A quantum mechanical arrow of time is manifest in (8.5) and (8.7). On one end
of the chain of projections there is the state, and on the other end there is noth-
ing.3 Aharonov, Bergmann, and Lebovitz noticed that if one added a final state ψf

corresponding to post-selection then the formula for the probabilities becomes

p(α) = N |〈ψf |cα|ψi〉|2, N ≡ |〈ψf |ψi〉|−2. (8.8)

These formulae are symmetric in the initial and final states, in particular one can
write (8.8) as

p(α) = N |〈ψf |cα|ψi〉|2 = N |〈ψi |c†
α|ψf 〉|2. (8.9)

That is, the probabilities are the same when the order of the projections is reversed
and the notion of initial and final interchanged.

2An ideal measurement, sometimes called a projective measurement, is one that disturbs the sub-
system as little as possible so that after the measurement its (Schrödinger picture) state is given by
(8.2).
3The quantum mechanical arrow of time does not arise from the time-ordering of the projections.
That could be reversed by a CPT transformation since field theory is invariant under CPT . But
there would still be the state on one end and nothing on the other.
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From this perspective, the quantum mechanical arrow of time arises from not
specifying a final state. As Aharonov and Rohrlich say [10], “By imposing an initial
and not a final condition we have already sent the arrow of time flying.”

8.3 A Time-Neutral Formulation of the Quantum Mechanics
of Closed Systems

8.3.1 A Model Quantum Universe

Cosmology provides not only the most general context for a discussion of arrows
of time but also the most relevant one. That is because the observed arrows oper-
ate on cosmological scales and can be explained by cosmological conditions. For
instance, as far as we know, the thermodynamic arrow of time extends over the
whole of the visible universe and holds from the time of the big bang to the distant
future. The evidence of the observations is that the universe was more ordered ear-
lier than now and that disorder has been increasing ever since [11, 12]. That is the
thermodynamic arrow of time. Similarly the electromagnetic arrow—the retarda-
tion of electromagnetic radiation—arises because the early universe has very little
free electromagnetic radiation that today would be at readily accessible wavelengths
[13]. The psychological arrow of time can be seen to follow from the other two [13].

To keep the discussion manageable, we consider a closed quantum system in the
approximation that gross quantum fluctuations in the geometry of spacetime can be
neglected.4 closed system can then be thought of as a large (say � 20,000 Mpc),
perhaps expanding, box of particles and fields in a fixed, flat, background spacetime
(Fig. 8.2). Everything is contained within the box, in particular galaxies, planets, ob-
servers and observed, measured subsystems, and any apparatus that measures them.
This is the most general physical context for prediction.

8.3.2 Time-Neutral Decoherent Histories Quantum Theory

The quantum mechanics of this model universe is formulated in a Hilbert space H
that is vastly larger than the Hilbert space of any isolated subsystem it contains.
However, the kinematics of the prediction of probabilities for histories bears many
similarities to the quantum mechanics of measured subsystems as presented in the
previous section.

The most general objective of a quantum mechanics of the universe is the pre-
diction of the probabilities for sets of alternative coarse-grained time histories of its

4For the further generalizations that are needed for quantum spacetime see e.g. [14, 15]. For dis-
cussions of the arrows of time in contexts that include quantum spacetime see [5] and the earlier
references therein especially [16].
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Fig. 8.2 A simple model of a closed quantum system is a universe of quantum matter fields inside
a large closed box (say, 20,000 Mpc on a side) with fixed flat spacetime inside. Everything is a
physical system inside the box—galaxies, stars, planets, human beings, observers and observed,
measured and measuring. The most general objectives for prediction are the probabilities of the
individual members of decoherent sets of alternative coarse grained histories that describe what
goes on in the box. That includes histories describing any measurements that take place there.
There is no observation or other intervention from outside

contents. Alternatives at one moment of time are described by an exhaustive set of
exclusive projection operators {Pα(t)} acting in H . These satisfy [cf. (8.3)]

Pα(t)Pα′(t) = δαα′Pα(t),
∑

α

Pα(t) = I. (8.10)

A set of alternative coarse-grained histories is specified by a sequence of such
sets at a series of times t1, t2, . . . tn. An individual history corresponds to a particular
sequence of events α ≡ (α1, α2, . . . , αn) and is represented by the corresponding
chain of projections:

Cα ≡ P n
αn

(tn) . . . P 1
α1

(t1). (8.11)

An immediate consequence of this and (8.10) is that
∑

α

Cα = I, (8.12)

showing that the set of histories is exhaustive.
This description of histories is analogous to those in the quantum mechanics of

measured subsystems [cf. (8.6)]. However, there are at least two crucial differences.
First, there is no posited separate classical world. It’s all quantum. Second, the al-
ternatives represented by the P ’s are not restricted to measurement outcomes. They
might, for example, refer to the orbit to the Moon when no one is looking at it, or to
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Fig. 8.3 The two-slit experiment. An electron gun at left emits an electron which is detected at
a point y on a screen after passing through another screen with two slits. Because of quantum
interference, it is not possible to assign probabilities to the alternative histories in which the elec-
tron arrives at y having gone through the upper or lower slit. The probability to arrive at y should
be the sum of the probabilities of the two histories. But in quantum mechanics probabilities are
squares of amplitudes and |ψL(y) + ψU(y)|2 �= |ψL(y)|2 + |ψU(y)|2. In a different physical situ-
ation where the electron interacts with apparatus that measures which slit it passed through, then
quantum interference is destroyed and consistent probabilities can be assigned to these histories

the magnitude of density fluctuations in the early universe when there were neither
observers nor apparatus to measure them. Laboratory measurements can of course
be described in terms of correlations between two particular kinds of subsystems
of the universe—one being measured the other doing the measuring. But laboratory
measurements play no central role in formulating the theory, and are just a small
part of what it can predict.5

A time-neutral decoherent histories quantum mechanics of our model universe
with both initial and final conditions was formulated by Gell-Mann and the author
in [7]. The formula for the probabilities for histories is

p(α) = NT r(ρf CαρiC
†
α), N−1 ≡ T r(ρf ρi). (8.13)

Here, ρi and ρf are density matrices representing initial and final conditions. There
is a clear analogy with (8.8). This expression is time-neutral because initial and final
density matrices can be interchanged and the order of times in the Cα’s reversed
using the cyclic property of the trace.

However, (8.13) does not supply probabilities for all sets of alternative histo-
ries. The resulting probabilities might not be consistent with the usual sum rules of
probability theory. Generally probabilities cannot be assigned to interfering alterna-
tives in quantum theory. The two-slit experiment described in Fig. 8.3 is a simple
example.

5Indeed, the quantum mechanics of measured subsystems in Sect. 8.2 is an approximation appro-
priate for measurement situations to the more general quantum mechanics of closed systems. See,
e.g. [17] Sect. II.10.
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In decoherent (or consistent) histories quantum theory probabilities are assigned
only a set of alternative histories if the quantum interference between members of
the set is negligible as a consequence of the initial and final conditions and the
dynamics. The measure of quantum interference is provided by the decoherence
functional:

D(α,α′) = NT r(ρf CαρiCα′ †) (8.14)

where N−1 = T r(ρf ρi). A set decoheres when the off diagonal elements of D are
negligible. The diagonal elements then give probabilities (8.13) that are consistent
with all the rules of probability theory.6 Like (8.13), the decoherence functional
(8.14) is time neutral.

In the quantum mechanics of closed systems decoherence replaces ‘measured’
as the criterion for when a set of histories can be consistently assigned probabilities.
Measured histories decohere, but histories do not have to be of measurement out-
comes in order to decohere. Decoherence is a more precise, more general, and more
objective criterion than ‘measured’ and certainly more useful in cosmology.

8.3.3 Emergent Arrows of Time

As already mentioned, the expressions both for probabilities (8.13) and interference
(8.14) are time-neutral. There is thus no distinction between ‘initial’ and ‘final’ that
is not conventional. This formulation of quantum theory for our model universe is
therefore free from any built in arrow of time.

If there is no arrow of time in the basic formulation of quantum theory, then the
observed arrows of time observed in our particular universe can only arise from dif-
ferences between the ρf and ρi that characterize it. We will then say that arrows of
time emerge for our particular universe from ρf and ρi . We will discuss only quan-
tum arrows and thermodynamic arrows, since, as already mentioned, other arrows
are connected to these.

Our observations of the universe from laboratory to cosmological scales are con-
sistent (so far) with one special condition that might be a pure state ρi = |Ψ 〉〈Ψ |
and a second condition of indifference7 ρf ∝ I . It is conventional to call the spe-
cial condition ‘initial’, as we have done here, the second one ‘final’, and define the
direction of increasing time from initial to final.

With these initial and final conditions the formula for the decoherence functional
defining quantum mechanics in the box becomes

D(α,α′) = T r(CαρiC
†
α′). (8.15)

6For more complete expositions of decoherent histories quantum theory than the brief synopsis
given here the reader can consult the classic expositions [18–20], a short tutorial in [21], or a
review in [22].
7For some discussions of the observable information about the final condition, see, e.g. [7, 23–25].
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In particular the probabilities for the histories in a decoherent set are:

p(αn, . . . , α1) = ‖Cα|Ψ 〉‖2 = ‖P n
αn

(tn) . . . P 1
α1

(t1)|Ψ 〉‖2. (8.16)

This has a state on one end of the chain and nothing on the other. Thus, for ρi =
|Ψ 〉〈Ψ | and ρf ∝ I a quantum mechanical arrow of time emerges [cf. (8.7)]. It is not
an arrow that is associated just with histories of measurement situations but more
generally with any set of alternative histories of the universe.

With further assumptions on ρi we also recover the thermodynamic arrow. Sup-
pose the usual entropy of chemistry and physics8 is low for ρi . It will be maximal
for ρf ∝ I . It will therefore tend to increase from the time of the initial condition
to that of the final one. That is the simplest characterization of the thermodynamic
arrow.

However if both ρi and ρf are non-trivial then there is generally no clear defini-
tion of either a global thermodynamic or quantum mechanical arrow. For instance
when ρi and ρf have comparable low entropies classical analyses [7, 27] suggests
that the entropy could first rise and after a time decrease leading to a thermodynamic
arrow that is local in time first pointing one way and then another.9

There is no clear meaning to a local quantum mechanical arrow but also no phys-
ical need for one. With non-trivial initial and final ρ’s there is no notion of a single
state at a moment of time from which either the future or the past could be predicted
[7]. The theory is fully four-dimensional.10

8.4 Generalized Quantum Theory

The time-neutral formulation of quantum mechanics in the previous section is as
notable for its simplicity as it is for its freedom from a built in quantum arrow
of time. Formulating quantum theory has been reduced to just two specifications:
(1) The sets of possible alternative coarse-grained histories {Cα}, and (2) a deco-
herence functional (8.14) that measures the quantum interference between histories
and specified their probabilities when the set decoheres.

8Entropy depends on coarse graining. The usual entropy is defined in terms of a coarse graining
expressed in the variables that occur in the deterministic equations of classical physics like the
Navier-Stokes equation. For more on its construction and its relation to the quasiclassical realms
that are features of our universe see, e.g. [26].
9There will also generally not be a notion of state at a moment of time. However there might be a
way of expressing the probabilities in terms of two state vectors similarly to [28].
10Advanced civilizations with large laboratories and enough money could in principle reverse the
thermodynamic arrow of time over a region of spacetime in a universe like ours by pre- and post-
selection of quantum states. If they selected initial states at one time indifferently, and states at a
later time distributed according to a low entropy set of probabilities, they would have effectively
have reversed both the quantum mechanical and thermodynamic arrows (e.g. [17], Fig. 8).
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The decoherence functional of time-neutral quantum mechanics (8.14) is a gen-
eralization of that for usual quantum mechanics (8.15). But it is not the only gen-
eralization. The essential features of quantum mechanics are captured by any com-
plex valued decoherence functional D(α,α′) that satisfies the following conditions
[14, 29]:

i. Hermiticity: D(α,α′) = D∗(α′, α),
ii. Normalization:

∑
αα′ D(α,α′) = 1,

iii. Positivity: D(α,α) ≥ 0,

and, most importantly, consistency with the principle of superposition. This means
the following: Partitioning a set of histories {Cα} into bigger sets {Cᾱ} is an oper-
ation of coarse graining. Every history Cα is in one and only one of the sets Cᾱ a
fact that we indicate schematically by α ∈ ᾱ. Then consistency with the principle of
superposition means11:

iv. Principle of superposition:

D(ᾱ, ᾱ′) =
∑

α∈ᾱ

∑

α′∈ᾱ′
D(α,α′).

Given a decoherence functional satisfying i-iv, the central formula of quantum
mechanics which specifies both which sets of histories {Cα} decohere and their
probabilities p(α) is:

D(α,α′) ≈ δαα′p(α). (8.17)

Interference between histories vanishes when the decoherence functional is diagonal
and the diagonal elements are the probabilities of the histories in a decoherent set.
These probabilities satisfy all the usual rules of probability theory as a consequence
of i–iv.

The decoherence functional of usual quantum mechanics (8.15) satisfies i–iv. All
the other ways of satisfying these conditions give generalizations of usual quantum
theory—generalized quantum theories. The decoherence functional (8.14) of the
time-neutral formulation is one example. We will see another in the next section.

8.5 Bouncing Universe Models

The universe of quantum matter fields in a closed box that has been at the center of
our discussion so far is a much oversimplified model for cosmology. It’s chief defi-
ciency is that it ignores gravity. A better, still manageable, kind of model describes
quantum matter fields moving in a fixed, classical, cosmological background such

11The is just the usual superposition of amplitudes applied to a quantity D that is bilinear in am-
plitudes.
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as the bouncing universe shown in Fig. 8.1. What kind of decoherence functional
should we assume for such a model to study classical and quantum arrows of time?
A model problem in quantum cosmology suggests the answer.

In [3, 4] both spacetime geometry and matter fields were treated quantum me-
chanically. Probabilities for different homogeneous and isotropic classical back-
ground spacetimes and the behavior of quantum matter fields in them were predicted
from the no-boundary quantum state of the universe [30, 31] in a simple minisuper-
space model. There were two key results that are relevant for the present discussion:
(1) Some bouncing classical background spacetimes like that in Fig. 8.1 were pre-
dicted with non-zero probability.12 (2) The predicted matter fields were small and
simple at the bounce where the spatial volume is the least, and not at one or the
other of the infinite volume ends of the spacetime [5]. That suggests that the quan-
tum mechanics of matter fields in such spacetimes should not have initial and final
density matrices but rather one density matrix ρ0 at the bounce. We now produce a
generalized quantum theory with this property.

Before starting on quantum mechanics it is worthwhile to consider the thermo-
dynamic arrow of time in this model.13 As discussed above, the matter field fluctua-
tions are small near the bounce. They will therefore grow in the two time directions
away from the bounce. Eventually fluctuations may grow large enough to collapse
and dissipate giving rise to a large scale structure of galaxies, stars, planets, biota,
IGUSes, civilizations, etc on both sides of the bounce.14 The thermodynamic arrow
of time is thus bidirectional in this model—pointing away from the bounce on both
sides.

Generalized quantum mechanics for quantum fields in a bouncing universe can
be constructed by specifying first the histories and then a decoherence functional
obeying properties i-iv in the previous section. There will be many ways of doing
this such as simply generalizing the time-neutral formulation of Sect. 8.3.2 with
initial and final density matrices at the large ends of the expansion. But motivated by
the quantum cosmology model described above, we are looking for a decoherence
functional with a density matrix at the bounce.15

To specify the histories we arbitrarily label the two sides of the bounce as A

and B as in Fig. 8.4. A given history will generally have a part on the A side and
a part on the B side—generally different. On each side the parts of histories can
be represented by chains of projections—{CA

α } and {CB
β }. We make the convention

12Backgrounds that are not time symmetric were also predicted, but for simplicity we are focusing
on time symmetric ones.
13See [5] for a more detailed discussion within quantum cosmology and also [32, 33] for not
unrelated ones outside of quantum cosmology.
14This large scale structure will generally not be the same on both sides of the bounce. Individual
histories do not have to be time-symmetric. It is the ensemble of possible histories predicted by
quantum mechanics that is time symmetric [5, 16].
15We should stress that we are not deriving this decoherence functional from the more general
quantum cosmological model that includes quantum spacetime, but using that as a motivation to
posit a particular kind of model.
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Fig. 8.4 A bouncing universe like that described in Fig. 8.1 divided into two sides A and B at
the minimum volume three surface (the bounce). When the quantum mechanics of matter fields is
described by a decoherence functional (8.19) each side has a coincident quantum and thermody-
namic arrow. But the arrows point in opposite directions on opposite sides of the bounce. This is
an example whose quantum mechanics is globally time neutral but with local arrows of time

that the projections in the chains are time-ordered away from the bounce. We have
separately [cf. (8.12)]

∑

α

CA
α = I,

∑

β

CB
β = I. (8.18)

The following decoherence functional then suggests itself

D(β,α;β ′, α′) = T r
(
CB

β

√
ρ0C

A†
α CA

α′
√

ρ0C
B†
β ′

)
. (8.19)

It is not difficult to verify that this satisfies requirements i–iv.
The generalized quantum theory defined by (8.19) is time neutral. The deco-

herence functional D is symmetric under interchanging A and B . It is perhaps the
simplest generalized quantum theory with this property.16

Familiar results emerge if we consider histories just on one side, say B . The ap-
propriate decoherence functional DB results from coarse-graining (summing) over
alternatives on the A side. Using (8.18) we find

DB(β,β ′) = T r(Cβρ0C
†
β ′). (8.20)

But this is just the expression (8.15). There will thus be a quantum mechanical
arrow of time on side B and a coincident thermodynamic arrow. Similar results are
obtained by following histories on side A and ignoring those on side B .

16It is not, however, the only one. For instance initial and final conditions represented by density
matrices ρi and ρf at the large ends could have been incorporated in addition to ρ0 in analogy with
(8.14).
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Thus the generalized quantum theory defined by the decoherence functional
(8.19) exhibits local thermodynamic and quantum mechanical arrows that are
codirectional on either side but point in opposite directions on opposite sides of
the bounce. There are no global arrows—either quantum mechanical or thermo-
dynamic—pointing consistently in one direction over the whole of the spacetime.

If we live in a bouncing universe questions naturally arise as to how much present
events on our side are influenced by what occurred before the bounce and what we
can infer about events on the far side from observations on our side. The answers
to such questions are contained in the joint probabilities p(β,α) for correlations
between histories on the far side of the bounce and histories on the far side.

We can anticipate that it will be difficult to find causal correlations between the
two sides because the thermodynamic arrow points in opposite directions on oppo-
site sides of the bounce [5]. The two sides are in each other’s pasts as determined by
the thermodynamic arrow. There is as much chance of events on the far side of the
bounce influencing us, as we have of influencing events in our past by actions taken
now.

In the simple case where the density matrix ρ0 in (8.19) is pure, mutual influence
is impossible. To see this write

ρ0 = |Ψ 〉〈Ψ | = √
ρ0. (8.21)

Then

D(β,α;β ′, α′) = 〈Ψ |CB†
β ′ CB

β |Ψ 〉〈Ψ |CA†
α′ CA

α |Ψ 〉. (8.22)

The immediate consequence is that the joint probabilities of a decoherent set of
histories factor

p(β,α) = pB(β)pA(α), (8.23)

and there is no correlation between events on one side and the events on the other.
The far side might as well not exist.

8.6 Conclusions

Cosmology is the natural context for understanding the origin of the arrows of time
our universe. Arrows operate over cosmological distances and can be explained by
cosmological conditions.

No arrows of time need be built into a fundamental formulation of quantum me-
chanics of closed systems like the universe. Rather quantum mechanics can be for-
mulated time-neutrally. The observed arrows of time are then emergent features of
the asymmetries between conditions that specify our particular universe among the
possibilities that the time-neutral theory allows. This general perspective allows a
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discussion of the different ways arrows to time can be exhibited by different uni-
verses specified by different conditions. In particular it allows a discussion of the
connections between arrows that follow from those conditions.

This essay exhibited a number of cosmological models with different possibilities
for the quantum mechanical and thermodynamic arrows in the framework of time-
neutral generalized quantum theory in fixed background spacetimes. From these
examples we can conclude that a given universe may not exhibit well defined arrows
of either kind. Further, when arrows do emerge they need not consistently point
in one direction over the whole of spacetime. Rather they may point in different
directions in different regions of spacetime as the bouncing universe model cleanly
illustrates. Local arrows can be consistent with global time-symmetry [5, 33].

In some examples there was a local thermodynamic arrow defined by the di-
rection of local entropy increase but no obvious quantum mechanical arrow. In all
examples, where both arrows were available locally they coincided in direction. (Of
course, a few examples do not make a general result.)

From this perspective, other features of quantum mechanics such as states on
spacelike surfaces, their unitary evolution and their reduction may also emerge
only locally in a more general framework for quantum theory that is fully four-
dimensional and time neutral [14].
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