
Chapter 10
Many Worlds, the Born Rule, and Self-Locating
Uncertainty

Sean M. Carroll and Charles T. Sebens

Abstract We provide a derivation of the Born Rule in the context of the Everett
(Many-Worlds) approach to quantum mechanics. Our argument is based on the idea
of self-locating uncertainty: in the period between the wave function branching via
decoherence and an observer registering the outcome of the measurement, that ob-
server can know the state of the universe precisely without knowing which branch
they are on. We show that there is a uniquely rational way to apportion credence
in such cases, which leads directly to the Born Rule. [Editors note: for a video of
the talk given by Prof. Carroll at the Aharonov-80 conference in 2012 at Chapman
University, see quantum.chapman.edu/talk-14.]

10.1 Introduction

A longstanding puzzle in the Many-Worlds or Everett approach to quantum me-
chanics1 (EQM) is the origin of the Born Rule: the probability of finding a post-
measurement system in an eigenstate |a〉 of an observable A, given that the system
is prepared in state |ψ〉, is given by |〈a|ψ〉|2. Here we summarize and discuss the
resolution of this problem that we recently developed [3], in which the Born Rule is
argued to be the uniquely rational way of dealing with the self-locating uncertainty
that inevitably accompanies branching of the wave function. A similar approach has
been advocated by Vaidman [4]; our formal manipulations closely parallel those of
Zurek [5].

Ours is certainly not the first attempt to derive the Born Rule within EQM. One
approach is to show that, in the limit of many observations, branches that do not
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obey the Born Rule have vanishing measure [6–8]. A more recent twist is to use
decision theory to argue that a rational agent should act as if the Born Rule is true
[9–12]. Another approach is to argue that the Born Rule is the only well-defined
probability measure consistent with the symmetries of quantum mechanics [5, 13].

While all of these ideas have some degree of merit, they don’t seem to have
succeeded in convincing a majority of experts in the field. Our purpose here is not
to criticize other approaches (there may be many valid ways to derive a correct
answer), but to provide a simple and hopefully transparent alternative derivation that
is physics-oriented while offering a clear answer to the question of how probabilities
arise in EQM, a deterministic theory.

The main idea we use is that of self-locating uncertainty [14]: the condition of
an observer who knows that the environment they experience occurs multiple times
in the universe, but doesn’t know which example they are actually experiencing.
We argue that such a predicament inevitably occurs in EQM, during the “post-
measurement/pre-observation” period between when the wave function branches
and when the observer registers the affect of the branching. A naive analysis might
indicate that, in such a situation, each branch should be given equal likelihood; here
we demonstrate that a more careful treatment leads us inevitably to the Born Rule
for probabilities.

10.2 Everettian Quantum Mechanics

In EQM, the quantum state is described by a vector |Ψ 〉 in a Hilbert space H, evolv-
ing under the influence of a self-adjoint Hamiltonian H according to Schrödinger’s
equation

H |Ψ 〉 = i�∂t |Ψ 〉. (10.1)

This smooth unitary evolution is supposed to account for absolutely all the quan-
tum dynamics; there is no separate rule governing “wave function collapse.” Rather,
we model the observer as well as the system as part of the quantum state, and uni-
tary evolution causes the state of the universe to split into multiple non-interacting
branches, each associated with a possible measurement outcome.

Consider an example in which the “system” is a single qubit initially in a state
|ψ〉 = (1/

√
2)(|↑〉 + |↓〉), where the arrow denotes the value of the spin along the

z-axis. The observer is initially uncorrelated with the spin, in a ready state |O0〉. The
measurement process is described via the following form of unitary evolution:

|Ψ 〉 = 1√
2
|O0〉 (|↑〉 + |↓〉) (10.2)

→ 1√
2

(|O↑〉|↑〉 + |O↓〉|↓〉) . (10.3)

Here, |O↑〉 and |O↓〉 represent states in which the observer has measured spin-up
and spin-down, respectively. The wave function has not collapsed, but the observer
is now described by a superposition of different measurement outcomes.
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The first challenge for such an approach is obvious: in the real world, it never
feels like we are in a superposition of measurement outcomes. We see the spin up
or down, Schrödinger’s Cat alive or dead—never a superposition of different pos-
sibilities. Everett’s insight was that, if a measurement of a spin that was originally
in either of the eigenstates |↑〉 or |↓〉 leaves the observer with the impression of
a definite measurement outcome, then the linearity of quantum mechanics implies
that a superposition of such states should lead to two definite experiences. The wave
function in Eq. (10.3) represents two agents seeing two different outcomes, not one
agent somehow experiencing an indeterminate outcome.

This story becomes more plausible once decoherence is understood as a crucial
part of quantum mechanics. In a realistic situation, the observer and system do not
constitute the entire universe; there is also an environment, generally with many
more degrees of freedom. Initially the environment, like the observer, is in a state
|ω0〉 that is unentangled with the system under consideration. But if the system and
the environment are allowed to interact—as is practically inevitable if the system is
a macroscopic object like Schrödinger’s Cat, constantly radiating and breathing (or
failing to) and so forth—then entanglement with the environment quickly ensues
(typically before entanglement with the observer):

|Ψ 〉 = 1√
2
|O0〉 (|↑〉 + |↓〉) |ω0〉

→ 1√
2
|O0〉

(|↑〉|ω↑〉 + |↓〉|ω↓〉) . (10.4)

In a generic situation, the entangled environment states will be nearly orthogonal:
〈ω↑|ω↓〉 ≈ 0. In that case, the component describing the up spin will no longer be
able to interfere with the component describing the down spin. We say that decoher-
ence has occurred, and the wave function has branched. Decoherence helps explain
how EQM is a theory of distinct causally well-isolated “worlds.”2

A popular objection to EQM is that it is ontologically extravagant—an incredi-
ble number of unobservable worlds are invoked to help explain observations within
the single world to which we have access. This objection is misplaced. Any viable
version of quantum mechanics involves a Hilbert space H of very high dimensional-
ity. The holographic principle suggests that the dimensionality of the Hilbert space
describing our observable universe is at least exp(10120) [15], and there is good rea-
son to believe it is infinite [16]. In EQM, the size of Hilbert space remains fixed, but
the state vector describes an increasing number of distinct worlds as it evolves. The
potential for describing many worlds was always there; the objection that there are
too many universes is really an objection that Hilbert space is too big, which would
apply equally well to any approach to quantum mechanics which includes a state
vector. A proper measure of ontological extravagance relies on the number of types
of fundamental entities proposed by the theory (like the wave function) and laws

2EQM is time-symmetric, but branching occurs toward the future, and not toward the past, because
the low-entropy early universe was relatively free of entanglements between subsystems.
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that govern them, not the number of large scale structures (like quantum worlds)
which emerge from them. EQM, which requires only a vector in a Hilbert space and
a single evolution law, is ontologically quite restrained.

A more pressing concern is that the formalism of EQM offers little guidance to
the preferred basis problem—why do we collapse onto certain states and not others?
We do not address this question in this paper, but there has been significant progress
in understanding the origin of “pointer states” which arise from decoherence and
are robust under macroscopic perturbations [17, 18]. Philosophically, there has been
progress made in understanding how the many worlds of quantum mechanics can be
emergent, arising dynamically from unitary evolution and not requiring the addition
of new laws to govern their creation [19].

Our concern here is with the origin of the Born Rule. In an equation such as
(10.4), it is unclear what role the coefficients multiplying each branch should play
for an observer living within the wave function. We will argue that they play a
crucial role in justifying a probability calculus that leads us to the Born Rule. Along
the way, we will see how probability can arise in a deterministic theory as agents
evolve from perfect knowledge to self-locating uncertainty.

10.3 Self-Locating Uncertainty

Modern theories of cosmology often invoke “large universes”—ones in which any
given local situation (such as a particular observer, in a particular macroscopic quan-
tum state, with particular data about their surroundings) is likely to occur multiple
times [20–22]. The setting could be something as dramatic as an inflationary mul-
tiverse, or as relatively pedestrian as an homogeneous cosmology with sufficiently
large spatial sections. If the likely number of such duplicate observers is infinite,
we face the cosmological measure problem. Even if it is finite, however, any one
such observer finds themselves in a situation of self-locating uncertainty. They can
know everything there is to know about the state of the universe and an arbitrary
amount about their local environment, but still not be able to determine which such
instantiation of that data they are experiencing.

This situation has been extensively studied in the philosophical literature (see
e.g. [23–25]), often in the case of hypothetical exact duplications of existing persons
rather than large universes. One intuitively obvious principle for assigning probabil-
ities in the face of such uncertainty is “indifference,” roughly: if all you know is
that you are one of N occurrences of a particular set of observer data, you should
assign equal credence (a.k.a. “degree of belief” or just “probability”) 1/N to each
possibility. Elga [26] has given convincing arguments in favor of indifference in the
case of identical classical observers. Crucially, this result is not simply postulated as
the simplest approach to the problem, but rather derived from seemingly innocuous
principles of rational reasoning.

In EQM, self-locating uncertainty is inevitable: not with respect to different loca-
tions in space, but with respect to different branches of the wave function. Consider
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again the branching process described in Eq. (10.4), but now we include an explicit
measuring apparatus A (which might represent an electron microscope, a Geiger
counter, or other piece of experimental equipment). Imagine that we preserve quan-
tum coherence in the system long enough to perform a measurement with the ap-
paratus, which then (as a macroscopic object) rapidly becomes entangled with the
environment and causes decoherence. Only then does the observer record the out-
come of the measurement (normalizations have been omitted for convenience):

|Ψ 〉 = |O0〉 (|↑〉 + |↓〉) |A0〉|ω0〉 (10.5)

→ |O0〉
(|↑〉|A↑〉 + |↓〉|A↓〉) |ω0〉 (10.6)

→ |O0〉
(|↑〉|A↑〉|ω↑〉 + |↓〉|A↓〉|ω↓〉) (10.7)

= |O0〉|↑〉|A↑〉|ω↑〉 + |O0〉|↓〉|A↓〉|ω↓〉 (10.8)

→ |O↑〉|↑〉|A↑〉|ω↑〉 + |O↓〉|↓〉|A↓〉|ω↓〉. (10.9)

Each line represents unitary time evolution except for (10.8), in which we have
merely distributed the observer state for clarity. That is the moment we describe as
post-measurement/pre-observation. At that step, the wave function has branched—
decoherence has occurred, as indicated by the different environment states. The ob-
server is still described by a unique state |O0〉, but there are two copies, one in each
branch. Such an observer (who by construction doesn’t yet know the outcome of the
measurement) is in a state of self-locating uncertainty.

A particularly clear example of such uncertainty would be a real-world version
of the Schrödinger’s Cat experiment. An actual cat interacts strongly with its en-
vironment and would not persist in a coherent superposition of alive and dead for
very long; the wave function would branch long before a human experimenter opens
the box. But in fact such uncertainty is generic. The timescale for decoherence for a
macroscopic apparatus is extremely short, generally much less than 10−20 sec. Even
if we imagine an experimenter looking directly at a quantum system, the state of
the experimenter’s eyeballs would decohere that quickly. The timescale over which
human perception occurs, however, is tens of milliseconds or longer. Even the most
agile experimenter will experience some period of self-locating uncertainty in which
they don’t know which of several branches they are on, even if it is too brief for them
to notice. Although the experimenter may not be quick-thinking enough to reason
during this period, there are facts about what probabilities they ought to assign be-
fore they get the measurement data.

Naively, the combination of indifference over indistinguishable circumstances
and self-locating uncertainty when wave functions branch is a disaster for EQM,
rather than a way forward. Consider a case in which the amplitudes are unequal for
two branches:

|Ψ 〉 =
√

1

3
|O0〉|↑〉|ω↑〉 +

√
2

3
|O0〉|↓〉|ω↓〉. (10.10)

The conditions of the two observers would seem to be indistinguishable from the
inside; there is no way they can “feel” the influence of the amplitudes multiplying
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their branches of the wave function. Therefore, one might be tempted to conclude
that Elga’s principle of indifference implies that probabilities in EQM should be cal-
culated by branch-counting rather than by the Born Rule—every branch should be
given equal weight, regardless of its amplitude. In this case, Eq. (10.10), that means
assigning equal 50/50 probability to up and down even though the branch weights
are unequal. This would be empirically disastrous, as real quantum measurements
don’t work that way. We will now proceed to show why such reasoning is incor-
rect, and in fact a proper treatment of self-locating uncertainty leads directly to the
empirically desirable conclusion.3

10.4 The Epistemic Separability Principle

We base our derivation of the Born Rule on what we call the Epistemic Separability
Principle (ESP), roughly: the outcome of experiments performed by an observer on
a specific system shouldn’t depend on the physical state of other parts of the uni-
verse (for a more careful discussion see [3]). If I set out to measure the z-component
of a spin in my laboratory, the probability of a particular outcome should be inde-
pendent of the quantum state of some other spin in a laboratory on an alien planet
around a distant star in the Andromeda galaxy. An essentially equivalent assump-
tion is made by Elga in his discussion of classical self-locating uncertainty [26].4

The ESP applies in both quantum and classical contexts. In classical contexts, the
ESP is compatible with Elga’s indifference principle (see [3]). In quantum contexts,
it mandates the Born rule. In EQM, the ESP amounts to the idea that the state of the
environment shouldn’t affect predictions that are purely about the observer/system
Hilbert space.

Consider a Hilbert space that describes an observer, a system, and an environ-
ment:

H = HO ⊗HS ⊗HE. (10.11)

We consider general states of the universe, described by a state vector

|Ψ 〉 =
∑

a,i,μ

Ψa,i,μ|ψa〉|φi〉|ωμ〉, (10.12)

where {ψa}, {φi}, and {ωμ} are bases for the observer, system, and environment re-
spectively, all of which are orthonormal: 〈ψa|ψb〉 = δab etc. Consider unitary trans-

3Page has recently argued that the prospect of classical self-locating uncertainty in large universes
poses a crisis for quantum mechanics, as the Born Rule becomes insufficient for calculating the
probability of measurement outcomes [8, 27–30]. Our approach provides a unified treatment of
classical and quantum self-locating uncertainties, defusing the would-be crisis.
4The ESP is implicit in Elga’s discussion of his TOSS & DUPLICATION thought experiment,
where he notes that the outcome of an additional coin toss should not affect the credence we assign
to being either an original or a duplicated person with identical experiences.
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formations that act only on the environment, which we can write as

T = IOS ⊗ UE, (10.13)

where UE is a unitary matrix that acts on HE . Then we can formulate the ESP
in the context of EQM as the statement that probabilities in the observer/system
subspace are unchanged by such transformations (here s is a possible outcome of a
measurement of the system S):

P(O measures s|Ψ ) = P(O measures s|T [Ψ ]). (10.14)

In [3] we also offer a version of this principle using density matrices rather than
directly in terms of transformations on states; roughly, the outcome of an experiment
depends only on the reduced density matrix of the observer/system subspace. The
two formulations are equivalent if we are comparing states with identical Hilbert
spaces for the environment.

A key motivation behind EQM is that no additional assumptions should be added
to the basic structure of the Hilbert space and unitary evolution. While the ESP
might seem like an additional assumption, we believe it simply reflects the structure
of a quantum theory in which the space of states can be factorized. Note that we
are not assuming the absence of interactions between the system and environment
(which would make decoherence impossible); only that changing the environment
without changing the observer or system should leave experimental predictions un-
altered.

10.5 Deriving the Born Rule

Consider a specific example where we have an observer, a spin with equal ampli-
tudes to be up or down, and an environment (again omitting the overall normaliza-
tion):

|Ψ 〉 = |O〉|↑〉|ω1〉 + |O〉|↓〉|ω2〉. (10.15)

Like Eq. (10.8), this is a state in which the observer has yet to observe the outcome
and thus ought to be uncertain which branch they are on. The environment states are
assumed to be orthonormal (by decoherence), and without loss of generality we can
take them to be the first two elements of an orthonormal basis {|ωμ〉}.

We can write any environment unitary UE in the form

UE =
∑

μ

|ω̃μ〉〈ωμ|, (10.16)

where the states |ω̃μ〉 are another set of orthonormal vectors. We decompose the
environment into a tensor product of two subsystems, one of which we will label
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as a “coin” (although it could be of arbitrary dimension) and the other includes
everything else:

HE = HC ⊗HÊ . (10.17)

Then we can construct an orthonormal basis {|ω̃μ〉} for the environment HE in
which the first two basis vectors take the form

|ω̃1〉 = |H 〉 ⊗ |Ω〉, (10.18)

|ω̃2〉 = |T 〉 ⊗ |Ω〉, (10.19)

where |H 〉 (heads) and |T 〉 (tails) are two orthonormal vectors in HC , and |Ω〉 ∈
HÊ .

Now we can construct two specific environment unitaries:

U
(1)
E =

∑

μ

|ω̃μ〉〈ωμ|, (10.20)

U
(2)
E = |ω̃2〉〈ω1| + |ω̃1〉〈ω2| +

∑

μ>2

|ω̃μ〉〈ωμ|. (10.21)

Acting on our state (10.15) we get

|Ψ1〉 ≡ (
IOS ⊗ U

(1)
E

)|Ψ 〉
= |O〉|↑〉|H 〉|Ω〉 + |O〉|↓〉|T 〉|Ω〉 (10.22)

and

|Ψ2〉 ≡ (
IOS ⊗ U

(2)
E

)|Ψ 〉
= |O〉|↑〉|T 〉|Ω〉 + |O〉|↓〉|H 〉|Ω〉. (10.23)

In the |Ψ1〉, the spin and the “coin” have become entangled so that the coin is heads
if the particle was spin up, in |Ψ2〉 the coin is heads if the particle was spin down.

By the ESP, Eq. (10.14), the probability that the observer will measure spin up or
spin down is equal in all of these states, since they are related by unitary transfor-
mations on the environment:

P(↑|Ψ ) = P(↑|Ψ1) = P(↑|Ψ2), (10.24)

P(↓|Ψ ) = P(↓|Ψ1) = P(↓|Ψ2). (10.25)

However, we can also consider the coin to be “the system,” and the spin as part of
the environment. In that case, the two environments are related by a unitary trans-
formation on the spin:

US = |↑〉〈↓| + |↓〉〈↑|. (10.26)
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Therefore, by analogous logic, the probability of the observer measuring heads or
tails is equal in the two states |Ψ1〉 and |Ψ2〉:

P(H |Ψ1) = P(H |Ψ2), (10.27)

P(T |Ψ1) = P(T |Ψ2). (10.28)

Looking at the specific states in (10.22) and (10.23), we notice that the branch of
the wave function in which the coin is heads is the same as the one where the spin
is up in |Ψ1〉, but the one where the spin is down in |Ψ2〉. So, in |Ψ1〉 the particle is
spin up if and only if the coin is heads, and in |Ψ2〉 the particle is spin down if and
only if the coin is heads. (See Fig. 10.1.) We therefore have

P(↑|Ψ1) = P(H |Ψ1), (10.29)

P(↓|Ψ2) = P(H |Ψ2). (10.30)

Comparing with (10.27) we immediately get

P(↑|Ψ1) = P(↓|Ψ2), (10.31)

and comparing that with (10.24) and (10.25) reveals

P(↑|Ψ ) = P(↓|Ψ ) = 1/2. (10.32)

This is, of course, the result we expect from the Born Rule: when the components
of the wave function have equal amplitudes, they get assigned equal probabilities.
This shouldn’t be surprising, as it is also what we would expect from naive branch-
counting. However, notice that the equality of the amplitudes was crucially impor-
tant, rather than merely incidental; had they not been equal, we would have been
unable to fruitfully compare results from different unitary transformations on the
environment.

It is therefore crucial to consider branches with unequal amplitudes. Here our
logic follows that of Zurek [5]. Start with a state where one branch has an amplitude
greater than the other by a factor of

√
2:

|Ψ 〉 = |O〉|↑〉|ω1〉 + √
2|O〉|↓〉|ω2〉. (10.33)

We can change to a new environment basis {|ω̂μ〉}, defined by

|ω1〉 = |ω̂1〉

|ω2〉 = 1√
2
|ω̂2〉 + 1√

2
|ω̂3〉

|ω3〉 = 1√
2
|ω̂2〉 − 1√

2
|ω̂3〉

|ωμ〉 = |ω̂μ〉, μ > 3.

(10.34)
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Fig. 10.1 A schematic representation of the setup behind our derivation of the Born Rule. The
states |Ψ1〉 and |Ψ2〉 are on the left and right, respectively. Factors denote the observer, the spin,
the coin, and the rest of the environment. Thin diagonal lines connecting the spin and coin rep-
resent entanglement within different branches of the wave function. The horizontal/vertical boxes
made from dotted/dashed lines show two different ways of carving out the “Observer+System”
subsystem from the “Environment.” The ESP implies that the probability of the system being in a
particular state is independent of the state of the environment. Applying that rule to both the spin
and coin systems implies the Born Rule as the uniquely rational way of assigning credences

Then our state is

|Ψ 〉 = |O〉|↑〉|ω̂1〉 + |O〉|↓〉|ω̂2〉 + |O〉|↓〉|ω̂3〉. (10.35)

This reduces the problem of two branches with unequal amplitudes to that of three
branches with equal amplitudes.

Following our previous logic, we construct a new orthonormal environment ba-
sis involving both a coin and a playing card, the latter of which has basis vectors
{|♥〉, |♦〉, |♠〉, |♣〉}. In terms of these we write a third set of environment basis vec-
tors {|ω̃μ〉} as:

|ω̃1〉 = |H 〉 ⊗ |♥〉 ⊗ |Ω〉, (10.36)

|ω̃2〉 = |T 〉 ⊗ |♥〉 ⊗ |Ω〉 (10.37)

|ω̃3〉 = |H 〉 ⊗ |♦〉 ⊗ |Ω〉, (10.38)

|ω̃4〉 = |T 〉 ⊗ |♦〉 ⊗ |Ω〉 (10.39)

|ω̃5〉 = |H 〉 ⊗ |♣〉 ⊗ |Ω〉 (10.40)

. . . (10.41)

Again we construct environment unitaries

U
(1)
E =

∑

μ

|ω̃μ〉〈ω̂μ|, (10.42)

U
(2)
E = |ω̃4〉〈ω̂1| + |ω̃1〉〈ω̂2| + |ω̃5〉〈ω̂3| + |ω̃2〉〈ω̂4| + |ω̃3〉〈ω̂5| +

∑

μ>5

|ω̃μ〉〈ω̂μ|.

(10.43)
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Acting on our state (10.35) we get

|Ψ1〉 = |O〉|↑〉|H 〉|♥〉|Ω〉 + |O〉|↓〉|T 〉|♥〉|Ω〉 + |O〉|↓〉|H 〉|♦〉|Ω〉 (10.44)

and

|Ψ2〉 = |O〉|↑〉|T 〉|♦〉|Ω〉 + |O〉|↓〉|H 〉|♥〉|Ω〉 + |O〉|↓〉|H 〉|♣〉|Ω〉 (10.45)

From the form of |Ψ2〉, in particular the first term in the superposition, it is easy to
see that

P(↑ |Ψ2) = P(T |Ψ2) = P(♦|Ψ2). (10.46)

From treating different combinations of spin/coin/card as parts of the environment,
we also derive

P(↑ |Ψ1) = P(↑ |Ψ2), (10.47)

P(T |Ψ1) = P(T |Ψ2), (10.48)

P(♦|Ψ1) = P(♦|Ψ2). (10.49)

From Eqs. (10.46)–(10.49), we can safely conclude that each of the three branches
represented in (10.44) have equal probability, one-third each. Since |Ψ1〉 is related
to the original |Ψ 〉 by a unitary transformation on the environment, the ESP implies

P(↑ |Ψ ) = 1

2
P(↓ |Ψ ) = 1

3
. (10.50)

This is precisely the Born Rule prediction for this particular case of unequal ampli-
tudes. The spin-down component of the original state was greater than the spin-up
component by a factor of

√
2, and ends up with twice the probability. Other possi-

bilities follow by straightforward extension of the above method. Admittedly, this
reasoning only strictly applies when the ratio of different amplitudes is the square
root of a rational number; however, since this is a dense set, it seems reasonable to
conclude that the Born Rule is established.

This route to the Born Rule has a simple physical interpretation. Take the wave
function and write it as a sum over orthonormal basis vectors with equal amplitudes
for each term in the sum (so that may terms may contribute to a single branch). Then
the Born Rule is simply a matter of counting—every term in that sum contributes
an equal probability.

10.6 Discussion

We have proposed that self-locating uncertainty is generic in the process of quantum
measurement, and that a proper treatment of such uncertainty leads us directly to the
Born Rule [3]. In spirit our approach is similar to that of Vaidman [4], although we
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have carried the program through in more explicit detail. The result has the virtue of
being relatively physically transparent. The wave function of the universe branches,
and initially you don’t know which branch you are on; close investigation reveals
that the only rational way to apportion credence to the different possibilities is to
use the Born Rule.

Formally, our derivation bears a close resemblance to the envariance program
of Zurek [5], although we believe there are some conceptual advantages. Most im-
portantly, while envariance helps us understand why the Born Rule is a sensible
prescription if one thinks of EQM as a probabilistic theory at all, our emphasis on
self-locating uncertainty provides a direct explanation for how such probabilities
can arise in a perfectly deterministic theory. In a fundamentally stochastic theory,
one thinks of probability as the answer to a question of the form “how likely is it
that this particular outcome will occur?” That philosophy fails in EQM, where it is
clear that every outcome with nonvanishing support in the wave function will occur
(in some branch) with probability one. The Born Rule does not tell you the proba-
bility that you will end up as “the observer who measures spin up” (for example);
rather, you know with certainty that you will evolve into multiple observers with
different eventual experiences. In our approach, the question is not about which ob-
server you will end up as; it is how the various future selves into which you will
evolve should apportion their credences. Since every one of them should use the
Born Rule, it is justified to talk as if future measurement outcomes simply occur
with the corresponding probability. It is the journey from perfect knowledge to in-
evitable self-locating uncertainty that is the basis of probability talk in quantum
mechanics.

Another advantage of our approach is that it provides a unified framework in
which to discuss classical and quantum self-locating uncertainty. This has become
an important issue in modern cosmology, in which models of the universe very often
predict “large” spacetimes with multiple copies of various observers. Our formal-
ism only provides unambiguous guidance in cases where the number of classical
observers is finite, so it does not directly address the cosmological measure problem
as it appears in models of eternal inflation—but it seems reasonable that getting the
finite case right is an important step towards understanding the infinite case.
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