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Preface

This volume, “Quantum Theory: A Two-Time Success Story,” is part of a number of
new initiatives, started in 2012, to honor and advance the vision of Yakir Aharonov
during the year of his 80th birthday. Starting with a conference held at Chapman
University from August 16–18, 2012, these initiatives also included the launch of a
new Institute for Quantum Studies,1 the dedication of the Aharonov alcove in Chap-
man’s library, and the introduction of a new journal called Quantum Studies: Math-

ematics and Foundations, with Yakir as the chief-editor and administered through
the Institute.2

We all know that quantum mechanics is the most successful scientific theory in
history and resulted in technological advances that drive our economy, such as the
entire computer revolution, electronics, and the nuclear power industry. In addition,
it impacts many other disciplines such as genetics, medicine and mathematics.

However, the foundations of the theory are so non-intuitive that there is no con-
sensus as to the meaning of the theory. This may be impeding the development of
new forms of quantum theory required for its extension to new frontiers such as cos-
mology, gravity, and high energy particle physics. It is to the advancement of those
foundational questions to which this volume is dedicated. As Nobel Laureate David
Gross emphasized in his chapter:

“. . . the deep conceptual mysteries of quantum mechanics are still with us. Over most of
[Yakir’s] eighty years (for which this Festschrift is a celebration), Yakir successfully strug-
gled to better understand these extraordinary aspects and to use them to construct new and
surprising results.”

Indeed, even after a career spanning 6 decades, Yakir’s production of major sci-
entific discoveries has continued to increase and deepen to this very day. Perhaps
Sir Michael Berry said it best at the beginning of his contribution to this Festschrift:

“for Yakir Aharonov on his 80th birthday: still quick, still deep, still subtle”

1The Institute’s website is quantum.chapman.edu.
2The journals’ website is www.birkhauser-science.com/QSMF.
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vi Preface

Sir Michael Berry was paraphrasing his own article which he offered 20 years
ago for Yakir’s 60th birthday, an article which all but launched a new field of math-
ematics.

Yakir’s contributions to physics are too many to mention. The contributors to this
book tended to focus on a few of them which deserve special attention. Originally
discovered and/or inspired by Yakir, they comprise a series of studies which set out a
new interpretation of quantum theory. Elements of this interpretation include topo-
logical phases (the Aharonov-Bohm effect and its generalizations), “weak” mea-
surements and “weak” values, time-symmetric boundary conditions, nonlocal mea-
surements and relativistic causality, “modular” variables, and new axioms for quan-
tum theory, to name a few.

We briefly focus on 2 of these items:

1. Topological phases: In 1959, Aharonov and Bohm discovered the AB effect3

which revolutionized our understanding of the role of potentials in physics and
appears in most modern texts on quantum mechanics. The impact of the AB ef-
fect has been huge and has continued to grow very rapidly. For the first time,
they showed that a particle moving in a field-free region could be affected by a
field in a disjoint region. Such an effect is alien to classical physics; indeed, it is a
defining property of the quantum world. Numerous experiments have verified the
effect, and recent novel techniques allow precise measurements of the shifts in
electron interference patterns that demonstrate the phase (the AB phase) picked
up by a charged particle moving around a solenoid. The AB phase is ubiquitous
in modern physics—including cosmology, particle physics, non-abelian gauge
theories, condensed matter chemical and molecular physics, and laser dynamics.
Generalizations of the AB phase to non-abelian gauge theories, such as the Wil-
son and t’Hooft loops, are important tools for studying the issues of confinement
and spontaneous symmetry breaking. The topological quantum phase explains
charge quantization, the quantum Hall effect, the Josephson junction and many
effects in the new field of mesoscopic physics where tiny electronic circuits ex-
hibit quantum behavior. The AB phase plays a crucial role in electron microscope
holography.

2. Time-symmetry: Aharonov, Bergmann and Lebowitz4 suggested a two vector
time symmetric formulation of quantum mechanics. Aharonov, Albert, and Vaid-
man5 used ABL in conjunction with weak intermediate measurements performed
on pre- and post-selected ensembles to introduce the notion of the “weak values.”
These values can be surprisingly large and have proven to be very useful tools
for analyzing various physical phenomena, for constructing efficient devices for
high precision measurements, etc. Phenomena which were thought to be unmea-
sureable have now been seen using this new approach. As a new paradigm for

3Y. Aharonov, D. Bohm, “Significance of Electromagnetic Potentials in the Quantum Theory,”
Physical Review, 115, 485 (1959).
4Y. Aharonov, P.G. Bergmann, and J.L. Lebowitz, Phys. Rev. 134, B1410 (1964).
5Y. Aharonov, D. Albert, L. Vaidman, Phys. Rev. Lett. 60 (1988).
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the design of sensors, it is being broadly applied to precision Doppler frequency
measurements, gravitational detectors, etc.6 This also led to a new branch of
mathematics, originally referred to as “Super-Fourier” by Sir Michael Berry,
which manifests in super-oscillations and Quantum walks.7

These core themes of Yakir’s life-work also impact perhaps the most controver-
sial—yet the most important—aspect of his research which concerns the issue of
time in quantum mechanics. As Nobel Laureate Sir Anthony Leggett said at the
dedication of the Institute and library alcove at Chapman University:

“. . . throughout all [previous scientific] revolutions in history, I think there’s one assumption
that has not really been seriously challenged and that is precisely that the past can affect the
present and the present can affect the future and not vice versa. Personally, I believe if there
is a really really major revolution in physics in the next 50 or 100 years, then it will involve
the overthrow of that principle. If that happens, I think Yakir Aharonov will be seen to have
played a major role in the preparatory work leading to that revolution.”

A quick readers-note: whenever possible, we, the editors, have added footnotes
to the first page of each chapter in order to refer the reader to relevant on-line videos
of talks given by the respective chapter’s author at the Aharonov-80 conference in
2012 at Chapman University. Finally, we have organized this book into six sections
to allow the reader to more easily find particular subjects which were inspired by
Yakir:

Part I: Quantum Mechanics and Reality
Part II: Building Blocks of Nature
Part III: Time and Cosmology
Part IV: Universe as a Wavefunction
Part V: Nonlocality
Part VI: Weak Values
Part VII: Mathematics of Weak Measurements
Part VIII: Weak Measurement Experiments
Part IX: Yakir Aharonov: Thinking Quantum

Acknowledgements
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6O. Hosten, P. Kwiat, Science, 319, 787 (2008).
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we wish to thank Yakir Aharonov for contributing two chapters to this Festschrift
and for generally inspiring this entire project along with the novel research reported
here and the contributors themselves. To this day, he continues to deepen and enrich
his profound impact on the physics world, as David Albert so eloquently put it:

“. . . I couldn’t think of anybody . . . in their twenties—who were even remotely as brave,
or as open, or as creative, or as experimental, or as overcome with wonder, or as bursting
with life, or as constantly and resolutely expecting the impossible, or (in brief) as young, as
Yakir. But even I could not have imagined at the time that thirty years later he would turn
out to be younger still.”

Yakir, we dedicate this book to you with love and friendship and look forward to
another 80 years.

Daniele C. Struppa
Jeffrey M. Tollaksen

Orange, California
April 26, 2013
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Part I
Quantum Mechanics and Reality



Chapter 1
A Century of Quantum Mechanics

David Gross

Abstract Approximately one hundred years after its formulation, quantum me-
chanics is the most successful of all the frameworks discovered to describe physical
reality. In this paper I review its successes; namely that it works, that it makes sense
and that it is hard to modify. Finally, I discuss where, at the frontiers of knowledge,
our present quantum mechanical framework might breakdown. [Editors note: For
a video of the talk given by Prof. Gross at the Aharonov-80 conference in 2012 at
Chapman University, see quantum.chapman.edu/talk-1.]

One hundred years ago, twenty-four physicists met at the Hotel Metropole in Brus-
sels; they were invited by Ernst Solvay to participate in a new kind of scientific
congress. One of the first international scientific meetings, the Solvay conferences,
were characterized by a highly restricted invitation list and an unusual mixture of
short talks and long discussions. Solvay played a unique and important role in the
development of twentieth century physics—most notably in the quantum revolution
whose birth overlapped the initiation of these meetings. In the interim 100 years,
quantum mechanics made great leaps and bounds (in addition to quantum field the-
ory which grew out of quantum mechanics and relativity and on which I will mainly
focus my paper). Yet the deep conceptual mysteries of quantum mechanics are still
with us. Over most of his eighty years (for which this Festschrift is a celebration),
Yakir successfully struggled to better understand these extraordinary aspects and to
use them to construct new and surprising results.

Quantum mechanics emerged in the period between 1900, when Planck first
quantized the energy of radiating oscillators, and 1925–1926 with Heisenberg,
Schrodinger, Born and Dirac’s formulation of the principles of quantum mechanics,

D.G. is Permanent Member and holder of the Frederick W. Gluck Chair in Theoretical Physics at
the Kavli Institute for Theoretical Physics, Professor of Physics.
D.G. is 2004 Nobel Prize Winner in Physics.

This talk was first presented by Prof. Gross at the 25th Solvay Conference on Physics,
“The Theory of the Quantum World,” held in Brussels, October 19–22, 2011.

D. Gross (B)
Department of Physics, University of California, Santa Barbara, USA
e-mail: gross@kitp.ucsb.edu

D.C. Struppa, J.M. Tollaksen (eds.), Quantum Theory: A Two-Time Success Story,
DOI 10.1007/978-88-470-5217-8_1, © Springer-Verlag Italia 2014
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4 D. Gross

and thus is approximately one century old. The development of quantum mechan-
ics and its application to atomic theory and the structure of matter dominated the
first five Solvay conferences, culminating in the most famous 1927 Solvay meeting,
where the meaning of quantum reality was heatedly debated between the pioneers
and the revolutionaries of quantum mechanics.

The first Solvay conference, one hundred years ago to the month, addressed the
central problem of physics at that time: Was the quantum structure of nature truly
unavoidable? Lorentz’s opening address at the first Solvay conference reverberates
with the anguish that this master of classical physics felt at the first glimpses of the
quantum world:

Modern research has encountered more and more serious difficulties when at-tempting to
represent the movement of smaller particles of matter and the connection between these
particles and phenomena that occur in the ether. At the moment, we are far from being
completely satisfied that, with the kinetic theory of gases gradually extended to fluids and
electron systems, physicists could give an answer in ten or twenty years. Instead, we now
feel that we reached an impasse; the old theories have been shown to be powerless to pierce
the darkness surrounding us on all sides.

We Face no Such Crisis Today Quantum mechanics is the most successful of
all the frameworks that we have discovered to describe physical reality. It works, it
makes sense, and it is hard to modify. The order of this list of successes is in the
order of importance that most physicists demand of a physical theory: It works, it
makes sense, and it is hard to modify. I shall start with the second point.

Quantum mechanics does make sense, although the transition, a hundred years
ago, from classical to quantum reality was not easy. It took time to learn how to
get out of phase space and to live in Hilbert space. Some of the boldest pioneers of
quantum theory (notably Einstein) resisted the replacement of classical determinism
with a theory that often can only make probabilistic predictions. Even harder to get
used to was the idea that in quantum mechanics one can describe a system in many
different and incompatible ways, and that there is no unique exhaustive description.
The freedom one has to choose among different, incompatible, frameworks does
not influence reality—one gets the same answers for the same questions, no matter
which framework one uses. That is why one can simply “shut up and calculate.”
Most of us do that most of the time. Different, incompatible aspects cannot both en-
ter a single description. If one errs by mixing incompatible descriptions or histories,
we produce paradoxes.

By now, especially with the consistent (or decoherent) histories approach, ini-
tiated by R. Griffiths, and further developed by Gell-Mann, Hartle, Omnes, Zurek
and others, we have a completely coherent and consistent formulation of quantum
mechanics that corresponds to what we actually do in predicting and describing ex-
periments and observations in the real world. For most of us there are no problems.

Nonetheless, there are dissenting views. Experimentalists continue to test the
predictions of quantum theory, and some theorists continue to question the founda-
tions. Most interesting to me is the growing understanding as to how the classical
framework emerges from quantum mechanics, especially interesting as our experi-
mental friends continue to astonish us with their ability to control and manipulate
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quantum systems while preserving their quantum coherence. How can we explain
measurements without invoking the absurd collapse of the wave function? How does
classical physics emerge from quantum reality?

Quantum mechanics is more powerful and richer than classical mechanics, for,
after all, classical physics is just a limiting, special case of quantum physics. In
re-cent years we have also become aware of the increased computational power
of quantum mechanical states. Entanglement, the strange new feature of quantum
states, can be efficiently used to amplify computation, and has motivated an inten-
sive effort to develop a quantum computer. This goal might take many decades to
realize, but meanwhile the effort has provided enormous stimulation to atomic and
condensed matter physics.

The dream of a quantum computer is only conceivable because of the enormous
advances made in recent years towards greater control and understanding of matter,
down to the scale of individual atoms: mesoscopics, atomic traps, quantum optics,
and spintronics. A new field is developing that might be called quantum engineer-
ing, with enormous potential for both technological innovation and for use as a
marvelous tool for the experimental exploration, and the simulation, of fascinating
states of quantum matter. These tools enable not only the study of the static phases
of complicated many body systems, but also of their dynamics and non-equilibrium
behavior.

Quantum Mechanics Works It works not just for simple systems such as single
atoms and molecules, but also for collections of 1023 atoms, sometimes strongly
interacting, over an enormous range of energies. It explains not just the anomalies in
the classical description of blackbody radiation and the specific heat of solids at low
temperatures (that stimulated early developments), but also the detailed properties
of ordinary matter, such as conductors, insulators, semiconductors as well as more
exotic materials.

The quantum theory of matter (many-body theory) and the quantum theory of
fields share many common features; indeed they are essentially the same thing.
Thus, critical developments in condensed matter physics and in elementary parti-
cle physics towards the end of the twentieth century often occurred in parallel. In
these developments, symmetry principles played a fundamental role. But if the se-
cret of nature is symmetry, much of the texture of the world is due to mechanisms
of symmetry breaking. Magnetism and chiral symmetry breaking are two important
examples of the spontaneous breaking of a global symmetry.

One of the most important quantum phenomenon—that of superconductivity—
was discovered by Onnes 100 years ago and discussed at the first Solvay conference.
Parenthetically, Rutherford’s discovery of the nucleus of atoms, made also in 1911,
was not discussed, although Rutherford attended! It took almost half a century (until
1957) for Bardeen, Cooper and Schrieffer to come up with a full understanding of
this first example of the spontaneous breaking of a local symmetry, which later
played a fundamental role in the understanding of the weak nuclear force—the so-
called Higgs mechanism—with the final confirmation coming from the LHC. Even
today, unconventional superconductors are still a great mystery at the frontiers of
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the understanding of quantum states of matter. It now appears that there are new
forms of matter—labeled not by symmetry but by topology. The important question,
“What are the possible quantum phases of matter?” remains wide open.

Quantum Mechanics Works It works at distances that are a billion times smaller
than the size of the atom, well within the nucleus and its constituent quarks. It works
for energies that are a trillion times larger than atomic energies. From the beginning
it was clear that quantum mechanics fit together seamlessly with special relativity
and with Maxwell’s theory of the electromagnetic field, despite a few technical dif-
ficulties that took some time to resolve. The resulting edifice, the quantum theory of
fields, re-solved the perplexing duality of particles and waves, and, in what I regard
as one of the most amazing successes of theoretical physics, predicted anti-matter,
the first examples of which were soon discovered.

Quantum field theory has been tested with extraordinary precision. Much of the
incredible precision that physics is able occasionally to achieve rests on quantum
features of nature, such as the identity of indistinguishable particles and the exis-
tence of discrete sharp states. I cannot refrain from noting one of the most amazing
of these precision tests, that of the measurement of the anomalous magnetic moment
of the electron:

ae = (ge − 2)/2 = .00115965218085 + /− .00000000000076,

a test of Quantum Electrodynamics (QED) to almost one part in 1012, sensitive to all
the components of the standard model, but especially QED (the comparison involves
5 loop quantum effects). Quantum field theory works and has been tested over an
incredible range of physical phenomena—from the edge of the galaxy (1027 cm)
to the nano-nano centimeter scale, over forty-five orders of magnitude. In fact, we
know of no reason why the framework of quantum field theory could not continue
to be adequate until we reach the Planck scale (10−33 cm), where quantum effects
of gravity become important.

Quantum Mechanics Works It provides the explanation, not only of the struc-
ture of atoms and molecules, but also of the structure of the nucleus, and the nature
of the strong and weak nuclear forces. In a reductionist sense, the standard model of
elementary particles (with 3 families of quarks and leptons, charged under 3 gauge
groups that generate three forces) is an amazing theory, powerful enough to en-
compass almost all of the known forces that act on the known particles of nature
(with the exception of dark matter and the right-handed partner of the neutrino).
The standard model is so extraordinarily successful that we currently strain, so far
unsuccessfully, to find deviations.

Finally, Quantum Mechanics is Hard to Modify Our present fundamental
framework, quantum field theory, appears under no threat from observation or exper-
iment, and seems to be completely adequate for the understanding of macroscopic
and microscopic physics, from the edge of the universe to the nano-nano meter
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scale. It is very difficult to construct consistent alternatives to this framework that
agree with observation. But no framework, no theory, is likely to survive untouched
forever. Where might our present quantum mechanical framework breakdown and
how?

Hints from observation and from experiment point to physics beyond the stan-
dard model. The existence of dark matter, the non-vanishing neutrino masses and
the many unanswered questions regarding quark and lepton masses and their mixing
require non-standard-model physics; but the necessary modifications do not neces-
sarily force us to abandon the framework of quantum field theory. More hints come
from trying to extend our standard theory to new regimes of energy and distance
and from challenging our concepts with thought experiments.

The extrapolation of the standard model to high energy, or equivalently short dis-
tance, suggests that the atomic and nuclear forces are unified at very high energy.
Such unification does not necessarily suggest a breakdown of the framework of
quantum field theory; we can construct grand unified gauge theories. However, the
fact that the implied unification scale is so close to the Planck scale, where the quan-
tum nature of gravity becomes essential, is an important hint that the grand synthesis
must include quantum gravity. Traditional quantum field theory appears to be at a
loss to consistently describe gravity, due to the uncontrollable quantum fluctuations
of the metric at the Planck scale. In the search for a unified theory of standard model
forces, we have been led to string theory, which also automatically includes gravity
and yields a consistent extension and quantization of classical Einstein gravity.

String theory was originally thought to break with traditional quantum field the-
ory in important ways, but recently we have realized that string theory and quantum
field theory are not mutually exclusive. Quantum field theory, in the old fashioned
sense, is not sufficient to contain gravity. But it is part of a bigger framework that
includes extended objects, strings, membranes, and higher dimensional “branes”.
The formulation in terms of strings is often best understood—thus “string theory”.
String theory always describes dynamical space-time-gravity. On the other hand,
some string theory quantum states can be usefully described in terms of quantum
field theory. This insight has been inspired by the remarkable duality between su-
persymmetric gauge theory in four dimensions (or more generally conformal field
theory) and string theory in an AdS background. Even the theoretical framework we
use for the standard model, consisting of quantum gauge theory with fundamental
fermions and a few scalars has (many of us believe) a dual description) in terms
of a string theory with highly curved extra dimensions. A close cousin of Quantum
Chromodynamics, endowed with extra (super) symmetry, is undoubtedly identical
to string theory in AdS space. So string theory and quantum field theory are part of
a larger quantum mechanical framework, whose structure and extent are still being
explored.

Finally, there are indications that once again we might be forced to modify our
most fundamental of physical concepts, that of space and time. Many of us are more
and more convinced that space is an emergent, not fundamental, concept. We have
many examples of interesting quantum mechanical states, for which we can think of
some (or all) of the spatial dimensions as emergent. Together with emergent space,
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we have the emergent dynamics of space and thus emergent gravity. But it is hard to
imagine how time could be emergent? How would we formulate quantum mechanics
without time as a primary concept? Were time to be emergent, our understanding of
quantum mechanics would have to change.

To describe nature and to make predictions, we need more than just the frame-
work of quantum mechanics, or of quantum field theory, or of quantum string theory.
We need a particular dynamical principle, a Hamiltonian that determines the time
development, and we also need an initial state. So what picks the dynamics? Quan-
tum field theory offers little guide, except symmetry. String theory, in which all
parameters are dynamical, appeared at first to offer the hope of providing a unique
answer. But this hope appears to be a mirage. String “theory” does not provide such
a principle; rather it consists of a set of tricks to find consistent quantum states, of-
ten constructed in a perturbative semiclassical expansion. And there are many such
quantum states, an infinite number in fact, perhaps 10500 that resemble our uni-
verse. Some believe that this is the complete story, and that all of these universes
might exist somewhere in a multiverse, and that to make predictions we must resort
to arguing that our patch of the multiverse is particularly suited for our existence.

Since a theory of quantum gravity is a dynamical theory of space-time, we must
finally come to grips with quantum cosmology. Here it makes no sense to separate
the observer and the observed, and we are faced with many puzzling conceptual
issues. What picks the initial condition? The final condition? In addition, we are
challenged by astrophysics. In the last hundred years, we have learned much about
the universe, including a detailed description of most of its history. The outstanding
mysteries that remain—the dynamics of inflation, the mystery of the big bang and
the accelerated expansion—represent serious challenges to our theoretical frame-
work.

So what is the whole picture? We are faced today not with a crisis but with
confusion at the frontiers of knowledge. Fundamental physics today is in a state
more analogous to the one that prevailed in 1891, rather than in 1911. In 1891, with
all the successes of classical physics—mechanics, electrodynamics, kinetic theory
and statistical mechanics—physics appeared in fine shape. Who could have dreamed
of the conceptual revolutions that lay in store?

We are unlikely to come to a resolution during this meeting. The most we can
hope for is that our discussions will clarify the issues and most importantly stimulate
the advances that are necessary. In any case it should be lots of fun.



Chapter 2
Realism and the Physical World

A.J. Leggett

Abstract I consider the extent to which the applicability of the concept of classical
realism is constrained, irrespective of the validity or not of the quantum formalism,
by existing experiments both in the EPR-Bell setup, including recent experiments
testing “nonlocal realistic” theories, and in the area of “macroscopic quantum co-
herence”. Unless we are willing to sacrifice one or more other intuitively plausible
notions such as the conventional “arrow of time”, it appears impossible, in either
context, to maintain the classical notion of realism. [Editors note: For a video of
the talk given by Prof. Leggett at the Aharonov-80 conference in 2012 at Chapman
University, see quantum.chapman.edu/talk-16.]

Ever since the earliest days of quantum mechanics (QM), it has been appreciated
that there are major difficulties in reconciling the account it gives of the behavior of
the microscopic world of atoms and electrons with the classic notion of “realism,”
which crudely speaking is the postulate that physical objects have definite proper-
ties, and occupy definite states, independently of whether or not they are observed.
This was, of course, explicitly realized by Nils Bohr, whose solution was to pos-
tulate that microscopic objects (such as electrons, photons, and atoms) are simply
not the kind of thing that can possess properties independently of the macroscopic
apparatus used to observe them; thus, for example, in the standard Young’s slits
experimental setup, an electron which is inspected to see which of the two slits in
the intermediate screen it passed through is simply not the same object as an elec-
tron which passed through uninspected, and thus it is not at all surprising that the
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diffraction pattern (or lack of it) which is produced on the final screen differs in the
two cases. If one accepts, as Bohr seems to, a division of the world into the “mi-
croscopic” regime of atoms and electrons and the “macroscopic” level of measuring
apparatus, which is postulated to behave classically, then this picture seems inter-
nally consistent, and it certainly seems to have satisfied a generation of physicists
and even of philosophers.

However, as pointed out by Schrödinger in 1935 in his famous “Cat” paper [1],
there is no good reason to accept this division of the world into a microscopic regime
where QM reigns and a macroscopic one governed by classical physics; QM is a
very “totalitarian” theory, and if it applies to individual atoms and electrons, then
it should prima facie equally apply to the macroscopic objects made up of them,
including any devices which we have set up as measuring apparatus. Thus, we are
forced to conclude, with Schrödinger, that under appropriate circumstances the de-
scription of a macroscopic object (measuring apparatus, cat . . . ) is inconsistent with
the hypothesis that it is in a definite macroscopic state (in the case of the cat, is
either “dead” or “alive”).

It is worth stating the “cat” (“measurement,” or better “realization”) paradox a
little more formally. At the microscopic level, the formalism of QM assigns proba-
bility amplitudes to various possible behaviors of the system (e.g., in a Young’s slits
experiment, to passage through each of the two slits in the intermediate screen). In
view of the experimentally observed phenomenon of interference at the final screen
(the total diffraction pattern is not the sum of the two patterns which would result
from passage through one slit, the other being blocked), we can prima facie draw,
in a situation in which the assigned amplitude at each slit is nonzero, the (negative)
conclusion that it is incorrect to say that each electron of the ensemble in question
passed either through the upper or through the lower slit. The same conclusion can
be drawn for other microscopic-level examples when we have simultaneous nonzero
amplitudes for different behaviors and see the effects of interference between them,
e.g. oscillations in the Ko − K̄o system. Now, when we extrapolate the QM formal-
ism to the macroscopic level of cats and detectors, it is unarguable that in suitable
circumstances (such as those postulated by Schrödinger in his original paper) it
assigns simultaneous nonzero amplitudes to two or more macroscopically distinct
states. Of course, it is generally agreed that, as a result of the decoherence predicted,
under any normally realistic conditions, by the QM formalism itself, it is no longer
possible to see the effects of interference between the two or more “branches” of
the superposition. However, the quantum formalism is exactly the same at the mi-
croscopic and the macroscopic level; if, therefore, a given interpretation is excluded
in the former case, it cannot become permitted in the latter! The above formulation
shows clearly that the phenomenon of decoherence, while it may no doubt be an
essential ingredient in any future resolution of the realization paradox, cannot by
itself constitute such a resolution.

In the rest of this essay, I shall not be concerned with the numerous attempts
to resolve the Cat paradox within the assumption of the universal validity of QM
which have appeared in the literature over the last 70 years. Rather, I shall use the
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paradox as a motivation for the question: Irrespective of the validity or not of QM,
what can we say from experiment about the validity, or not, of the concept of realism
as applied to the physical world? And what can we expect to be able to say in the
foreseeable future?

Two cautions before we start: First, we will never, by any finite sense of experi-
ments, be able to establish unequivocally the truth either of realism or of any specific
alternative to it (e.g. QM). This is a matter of simple logic: the fact that theory T pre-
dicts experimental consequence E, and that experiment finds E, does not establish
that T is correct. (The contrary assertion is known to logicians as the fallacy of “af-
firmation of the consequent”: that so many papers in experimental physics appear
to commit this fallacy probably signals that there is an extra unspoken assumption
in the authors’ minds, namely something like “E is so surprising that it is highly
unlikely that it would be predicted by any theory other than T.” Depending on con-
text, such an implicit argument may no doubt be somewhat persuasive, but it is
hardly logically conclusive.) On the other hand, it may be possible to establish un-
equivocally, by experiment, the falsity of a set of propositions (the fact that theory
T predicts experimental consequence E, and that “not-E” is found, does logically
establish the falsity of T).

Secondly, I deliberately said in the last sentence “a set of propositions.” I know
of no set of experiments, and can imagine none, which could establish that the hy-
pothesis of realism taken in isolation is false. Indeed, the Bohm-de Broglie “pilot
wave” (or “hidden variable”) interpretation of the QM formalism reproduces all the
standard experimental predictions of that formalism, yet claims to maintain the con-
cept of realism; thus, even if we should find that the experiments continue forever to
verify the predictions of QM, realism per se would not be refuted. (Whether the ad-
ditional assumptions which have to be made in the Bohm-de Broglie interpretation
effectively devalue the concept of “realism” to the point where it is as it were no
longer recognizable, is a matter of opinion.) Thus, we shall never attempt to test re-
alism alone, but always in conjunction with one or more other prima facie plausible
assumptions about the world.

The best known set of experiments which examine the question of realism are
those which stem from the theoretical work of Einstein, Podolsky and Rosen [2]
and of Bell [3], and are usually known as “EPR-Bell” experiments. They refer to
measurements made on a pair of systems which have interacted in the past but are
now separated to a distance such that, according to the postulates of special relativ-
ity, the outcome of a measurement as one system cannot be causally influenced by
the choice of what to measure on the other. A schematic diagram of an idealized
EPR-Bell experiment is shown in Fig. 2.1. The essential points are: (1) The atomic
source emits photons in pairs: while in real life most of the pairs are not emitted
back-to-back, we concentrate on the subensemble which is. (2) At each “station”
(S1 or S2) a randomly activated device makes a choice to switch the corresponding
photon into one of two different measuring devices, which will measure different
properties (e.g. the deviceMa consists of a polarizer Pa with transmission axis set in
direction a (and the non-transmitted photons reflected), plus detectorsD(+)a , D

(−)
a to



12 A.J. Leggett

Fig. 2.1 (a) Schematic diagram of an EPR-Bell experiment. (b) Details of the “measurement
device”Ma . The devicesMa′ ,Mb ,Mb′ are similar mutatis mutandis

register the transmitted and the reflected photons respectively (see Fig. 2.1); the de-
vice Ma′ is similar except that the transmission axis of the polarizer is set in direc-
tion a′.) (3) The spatial dimensions are such that the “event” of detection at station
S2 is spacelike separated from the “event” of switching (choice of measurement) at
S1 (and vice versa). (4) The detectors are 100 % efficient. No existing experiment
satisfies (at least to my knowledge) all of the above conditions simultaneously, but
it is useful to consider this idealized version as a basis for discussion.

Let us first set up a notation to describe the data obtained in this experiment.
Suppose that a given photon 1 is switched into the measuring device Ma, and the
“transmission” counter D(+)a clicks: then we define the variable A to take the value
+1 for that photon. If the “reflection” counter D(−)a clicks, we define A to take
the value −1. We take it as an experimental fact (of course easily verified) that for
each photon switched into Ma either D(+)a or D(−)a clicks (but not both); hence for
each photon switched into Ma, either A = +1 or A = −1. Similarly, for photons
1 switched into device Ma′ , we define the variable A′ to take the value +1(−1)
accordingly as the counter D(+)a′ D

(−)
a′ clicks. A similar definition is made for the

variables B and B ′ measured on photon 2 at station S2. Note carefully that if, for
example, photon 1 is switched into deviceMa′ , then while the variable A′ is defined
for this photon the variable A is not (and vice versa). In this way, one can of course
obtain the mean value 〈A〉 of A, for the subensemble of photons 1 which is switched
intoMa (let’s denote averages taken on this subensemble by 〈A〉a); similarly we can
measure 〈A′〉a′ , 〈B〉b′ , etc. More interestingly, we can measure the correlation

〈AB〉ab ≡ N++ +N−− −N+− −N−+
N++ +N−− +N+− +N−+

(2.1)
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where N++ is the number of pairs for which both A and B were measured to be
+1, etc. Note that this correlation (average) is defined on a particular subensemble,
namely that set of pairs for which photon 1 was switched intoMa and photon 2 into
Mb. Although this essay is not concerned with QM as such, we note as an aside that
theory gives unambiguous predictions for the quantity 〈AB〉ab for any given type of
atomic source: for instance, if the pair of atomic transitions involved in the emission
of the photon pair is of the “0+” type (no change of atomic angular momentum or
parity) then a simple argument shows that the prediction is

〈AB〉ab = cos(2θab) (2.2)

where θab is the angle between the polarizer settings a and b at S1 and S2 respec-
tively.

The class of theories about the physical world with whose predictions the ex-
perimental data are most commonly compared is that of “objective local theories”
(OLT’s) [4]. This class is defined by the conjunction of three postulates, which may
be labeled crudely as

(1) locality
(2) induction
(3) realism.

Locality (often denoted “Einstein locality” in the literature) is the postulate that an
event (in the sense of special relativity) cannot be causally affected by any past
events which lie outside its past light cone (i.e. which cannot transmit information
to the spacetime point of the event in question by any signal whose velocity is less
than or equal to that of light). This is, of course, a fundamental postulate of the
theory of special relativity as the latter is usually formulated.

Induction is, crudely speaking, the postulate that “causality propagates only for-
ward in time,” that is, that an event cannot be affected by any future events, whether
or not the latter lie inside its light cone. Since within the framework of special rela-
tivity this postulate can be derived as a consequence of locality and “transitivity of
causality,” it is often not listed separately; however, since we wish to examine the
implications of the experimental data with a minimum of a priori assumptions, it
is convenient to list it explicitly. In the present context, its significance is that the
statistical properties of the complete ensemble of emitted pairs are determined only
by conditions at the source. In particular, the photons of the “ab” subensemble do
not know in advance that they will be switched intoMa andMb respectively, so the
statistical properties of this subensemble cannot be affected by this fact and so must
be identical to those of the ensemble of all pairs.

Let’s move then to the trickiest, and in the present context most interesting, in-
gredient in an OLT, namely “realism” (or “objectivity”). A crude definition of this
concept would be that “each photon of a given pair possesses (a complete set of)
properties in its own right.” In other words, each photon 1 (say) carries with it infor-
mation which is sufficient to decide, either deterministically or statistically, how it
will behave both if switched into Ma and if switched into Ma′ . It is natural to think
of the information in question as embodied in a set of “hidden” variables, thus OLT’s
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are often loosely known as “hidden-variable” theories, but this is not essential to the
argument to be developed below. If one phrases the concept of realism in this way,
so that the properties of interest are possessed by microscopic objects (photons, as
in other variants of the experiment atoms, etc.), it is natural to add to the word “re-
alism” the adjective “microscopic.” Thus, it is microscopic realism, in conjunction
with locality and induction, which is tested by the Bell-EPR experiments.

There is however an interesting alternative formulation of postulates (3), which is
usually called the hypothesis of “macroscopic counterfactual definiteness” (MCFD).
To explain it, let us imagine that a given photon 1 was actually switched into Ma′ ,
thereby realizing a value of A′. Given the “random” nature of the switching process,
it could equally well have been switched into Ma, and would then have realized a
value of A. The postulate of macroscopic counterfactual definiteness then states that
the value of A which “would have” been realized is definite. That is, it can be treated
as a “fact” about the physical world. It is fairly clear that microscopic realism im-
plies macroscopic counterfactual definiteness (if the photon carried with it sufficient
“instructions” to determine the value of A, then we can say that this value “would
have” occurred), but the converse is not true: it is entirely conceivable that prop-
erties are indeterminate at the microscopic level but become determinate when as
it were amplified, as in a photodetector, to some level of “macroscopicness”; in-
deed, many people hold (in the opinion of the present author incorrectly) that the
formalism of QM itself somehow achieves this result. In any case, it is clear that the
hypothesis of MCFD is somewhat weaker than that of microscopic realism, so that
any experiment which excludes the former must automatically exclude the latter. It
is also worth noticing that the postulate of MCFD is insensitive to whether the way
in which the instructions carried by the photon decide the value of A is deterministic
or only statistical.

It is well known that any theory satisfying the conjunction of postulates (1)–
(3) (with either form of (3)) must predict values of the experimentally measured
correlations 〈AB〉ab, which satisfy the celebrated “CHSH” inequality, derived by
Clauser et al. [5] by extending the result of Bell:

〈AB〉ab + 〈AB ′〉ab′ + 〈A′B〉a′b − 〈A′B ′〉a′b′ ≤ 2 (2.3)

A simple proof (one of many) goes as follows:

1. By postulate (3) (in either form) the values of A and A′ simultaneously exist for
each photon 1, and similarly values of B and B ′ exist for each photon 2.

2. By postulate (1), the value of A cannot be affected by whether it was B or B ′
which was chosen for the measurement in S2 and vice versa.

3. Therefore, the quantities AB,AB ′,A′B,A′B ′ exist for each photon pair, with
A,A′,B,B ′ each taking the same value ±1 in each of the combinations in which
it occurs.

4. By trivial algebra it then follows that for each pair AB+AB ′ +A′B−A′B ′ ≤ 2.
5. If 〈AB〉all indicates the average over the complete ensemble of pairs emitted by

the photon source, then (4) leads directly to the result

〈AB〉all + 〈AB ′〉all + 〈A′B〉all − 〈A′B ′〉all ≤ 2
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6. Finally, by postulate (2), 〈AB〉ab is identical to 〈AB〉all , etc., and thus we obtain
the CHSH inequality, Eq. (2.3).

Thus, if an ideal EPR-Bell experiment were to produce results which violate the
inequality (2.3) (in particular, were it to reproduce the QM prediction (2), which vio-
lates (3) for (e.g.) settings such that a ·b = a′ ·b = a ·b′ = π/8, a′ ·b′ = 3π/8), then
we should know for sure that one of the postulates (1)–(3) cannot hold in the real
world. Unfortunately, there is at present no single experiment which satisfies all of
the defining criteria for an “ideal” experiment; there are always various “loopholes”
(imperfect detector efficiencies, lack of adequate spatial separation, questionable
“randomness” in the switching process, etc.). However, while no existing experi-
ment has blocked all existing loopholes simultaneously, with one exception each of
them individually has been blocked in at least one experiment, so that it would seem
to require a very peculiar conspiracy of nature to allow an OLT to be maintained.
The exception is what is sometimes called the “collapse locality” loophole: if one
postpones the “event” of realization of a particular outcome at each of the stations
to a sufficiently late stage (perhaps long after the detector has, in our usual way
of thinking, produced a macroscopic output) then the “events” at the two stations
would not have fulfilled the condition of spacelike separation in any existing ex-
periment, and indeed to fulfill it would require conditions which border on science
fiction: cf. for example Ref. [6]. For the purposes of the present discussion, let me
from now on assume that such an “ideal” (loophole-free) Bell-EPR experiment will
someday be done, will turn out consistently with the QM prediction (2) and will
thereby definitively invalidate the whole class of OLT’s. What are the implications?

Of the three defining postulates (1)–(3) of the class of OLT’s, the most impervi-
ous to challenge would seem at first sight to be (2), in the sense that once we give
up our “common-sense” notions concerning the “arrow of time” it seems very diffi-
cult to continue to do physics at all in the mold to which we have been accustomed.
Actually, in the present writer’s opinion it is entirely possible, indeed probable, that
the next major revolution in physics will force us to do just that, but unfortunately it
is in the nature of scientific revolutions that their content is difficult or impossible to
forecast, so speculation along these lines seems pointless at the present time. We are
then left with postulates (1) and (3), and it is an amusing sociological observation
that while popular writers on the subject of the EPR-Bell experiments almost with-
out exception choose to give up (1) (locality), professional physicists usually opt to
sacrifice realism. Is there any experimental way of deciding the question?

A partial answer comes from a very recent experiment and the associated theory.
Consider the standard “ideal” setup of Fig. 2.1, and relax postulate (1) by allow-
ing arbitrary nonlocal effects in the detection process. On the other hand, we will
in some sense strengthen postulate (3), in the following sense: we require that the
ensemble of pairs of photons emitted by the source is a disjoint union of subensem-
bles in each of which each photon of the pair has a definite polarization, a statement
which is operationally defined by the requirement that the photon obeys Malus’s law,
i.e. for any given photon there exists a (complex) unit polarization vector e such that
when it is presented with a polarizer set with (complex) transmission “axis” c, the
probability of transmission is |e∗·c|2. (In such a theory the transmission/rejection of
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any individual photon is determined inter alia by nonlocal effects, but the statistics
for the ensemble of photons, obtained by averaging over these effects and others, is
required to satisfy Malus’s law.) Using the elementary inequalities, applicable for
variables A, B taking values ±1

−1 + |〈A〉 + 〈B〉| ≤ 〈AB〉 ≤ 1 − |〈A〉 − 〈B〉|
it is straightforward to show [7] that such a theory, called a “crypto-nonlocal hidden-
variable (CNLHV) theory” must predict inequalities for the experimental correla-
tions which are violated by the QM predictions. These inequalities are however of
a different nature from the Bell-CHSH inequalities, and a test of them requires a
set of measurements with elliptically polarized analyzers which had not been pre-
viously done. Recently, the experimental group in Vienna carried out just such an
experiment [8], finding agreement with the predictions of QM and violation of the
CNLHV predictions by several standard deviations. Actually, to obtain this viola-
tion it was necessary for the authors of Ref. [8] to assume that the experimental
correlations, while a function of the relative angle a · b of the polarizer settings, are
independent of the “center-of-mass” variable, i.e. invariant under simultaneous rota-
tion of a and b through the same angle, something which is certainly plausible but is
not directly tested. However, in very recent work both these authors [9] and the Sin-
gapore group [10] have generalized the CNLHV inequalities and conducted further
experiments so as to eliminate this loophole; once again the data are consistent with
the QM predictions and violate those of the CNLHV class of theories, in the Vienna
case by more than 80 standard deviations. While those experiments are subject to
some of the same “loopholes” as the standard EPR-Bell ones, the outcome makes it
extremely plausible that CNLHV theories cannot describe the physical world. What
is the significance of this result? Can we regard it as establishing (subject, of course,
to the above reservations concerning induction) that it is indeed realism rather than
locality which has to be sacrificed? It is certainly suggestive in this respect; on the
other hand, a critic might argue that by formulating our “realistic” postulate in a
way which requires the realism to refer to the properties of individual photons of
the pair rather than to the pair as a whole, we have in effect smuggled the concept
of locality back in again. Perhaps the lesson is that while the concept of “local real-
ism” is clear-cut, to try to analyze it in terms of its two prima facie components may
not in the end be a particularly meaningful exercise. Certainly, in QM itself the two
concepts, or rather their absence, in some sense appear blended, in that once one has
the (non-realistic) concept of a quantum superposition then the idea of applying it to
the coupled state of two spatially remote objects is an entirely natural development.

I now turn to a different class of experiments, which attempts to examine the
question of realism at a level much closer to our own everyday consciousness than
that of electrons and atoms. Since I wrote a review [11] of this area of research
in 2002 and not much has changed qualitatively since then, I will be rather brief.
The experiments of this type done to date look, explicitly or implicitly, for evi-
dence that the predictions of the QM formalism continue to work when the states
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involved are quantum superpositions of two or more states which are in some in-
tuitively reasonable sense “macroscopically” distinct; in most cases, the evidence
for this conclusion comes from the time-dependent behavior, in particular from
the “Ramsey-fringe” effects which are the characteristic signature of a quantum
superposition. The systems in question range from fullerenes and other complex
molecules to magnetic biomolecules, quantum-optical systems and superconduct-
ing devices such as SQUIDs; for details see Ref. [11]. It should be emphasized that
from the point of view of the “logic” of realism this class of experiments is less
advanced than the EPR-Bell ones, in the following sense: In the EPR-Bell case the
existing experiments not only establish that the QM predictions are correct, but also
(modulo the “loopholes”, see above) refute those of the class of OLT’s (and, now, of
CNLHV theories). In the case of the present class of experiments (sometimes called
“macroscopic quantum coherence” (MQC) experiments), what has been established
so far is that if the raw data are interpreted according to the QM formalism, then
the states generated must be coherent quantum superpositions of macroscopically
distinct states rather than classical mixtures of such states (the latter description
would be entirely consistent with a picture in which each system of the ensemble
has reached a definite state). One might then go on to argue as follows: “The notion
of QM superpositions at any given level is inconsistent with the assumption of re-
alism at that level: we see evidence for QM superposition at the level of SQUIDs
(etc.): therefore, realism is false at the level of SQUIDs.” As pointed out above, this
argument, while perhaps plausible, is logically unsound; in order to exclude realism
at the level of SQUIDs, we need to do an experiment which goes beyond the existing
ones (just as in the EPR-Bell case, it was necessary to do more than simply verify
that the QM predictions were correct for a few randomly chosen polarizer settings).
Such an experiment was proposed by Garg and the present author in Ref. [12], and
I believe that a number of experimental groups are currently working towards it.

The general structure of the experiment is conceptually very similar to that of
the EPR-Bell experiments. One deals with a single system, e.g., a SQUID ring in an
appropriate external magnetic flux, which possesses a dichotomic variable Q(t) (in
practice the value of the circulating current in the ring), i.e. one which can take only
one of two discrete values which we label by convention +1 and −1 respectively.
We verify in a preliminary experiment that measurement ofQ(t) does indeed always
produce the value ±1. We then note that for this simple “2-state” system, if it is
ideally isolated from its environment (a term which in this context includes any
internal dissipative mechanism), QM predicts, independently of the density matrix
of the system (or more accurately of the “time ensemble” formed by a sequence
of experiments starting from the same initial conditions) 2-time correlations of the
form

〈Q(t) Q(t ′)〉 = cos�(t − t ′) (2.4)

where � is a tunneling frequency between the two states Q= ±1. The formal sim-
ilarity of Eq. (2.4) to Eq. (2.2) above suggests that it might be possible to devise
a CHSH-type inequality for this system, with the different times of measurement
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playing the role of the different polarizer settings, and we shall now see that this is
so.

The class of theories whose predictions we propose to compare with those of QM
and with experiment go under the name of “macrorealism.” Similarly to the case of
OLT’s, this class of theories is defined by the conjunction of three postulates:

(1) macroscopic realism per se
(2) noninvasive measurability
(3) induction.

The third postulate needs no special comment; it plays essentially the same role as
in the EPR-Bell case, assuring us that the outcome of a measurement on the system
cannot be affected by what will or will not be measured on it later. The assumption
of macroscopic realism simply says that: a macroscopic object which has available
to it two or more macroscopically distinct states is at “almost all” times in one of
these states (the “almost all” is necessary because one has to allow, in such a theory,
for transits between the states; however, this complication can be taken into account
in the analysis, see Ref. [12]). In the present context, the postulate the postulate of
macroscopic realism is equivalent to the statement that Q(t) possesses either the
value +1 or the value −1 at (almost) all times t , irrespective of whether or not it is
actually measured (we saw above that when measured, it certainly realizes one or
other of these two values).

In the present case, in contrast to the EPR-Bell experiments, all measurements
are made on a single system, so there is no question of invoking locality. Instead,
one uses in a rather similar role the postulate of “noninvasive measurability.” This
postulate (which is emphatically not a QM one!) states that it is possible, at least
in principle, to perform a measurement of Q(t) in such a way that neither the state
of the system at time t nor its subsequent behavior is influenced by the measure-
ment. Given the generally very invasive nature of most measurement procedures
on macroscopic solid-state systems such as SQUIIDs, this postulate might at first
sight seem rather unlikely to be fulfilled in a real-life situation. However, we can
make it a lot more plausible by invoking an “ideal negative result” procedure: We
arrange our measuring apparatus so that if Q(t) is (say) +1 it is triggered, while if
Q(t)= −1 nothing happens. We then do a series of runs in which Q is measured at
some time to; these runs on which Q(to) is measured to be +1 we throw away, the
rest we keep. We then “invert” the measuring setup, so that a value of Q(t) equal
to −1 triggers it while Q(t) = +1 does not; this time we keep the runs on which
Q(to) is measured to be +1 and throw the rest away. In this way we can construct
the 2-time correlations which we are giving to require in the argument below. (Note
that it is only the first measurement of any pair which needs to be noninvasive.) Con-
ceptually, the postulate of noninvasive measurability seems a very natural corollary
to that of macroscopic realism: would there be any sense in affirming that the sys-
tem “really has” the value Q = +1 at some time t , if a measuring device which
is activated only when Q = −1 could nevertheless affect its behavior? Of course,
in real life it may well be difficult to guarantee that “nothing happens” in the lit-
eral sense, and one may have to be content with replacing it by the statement that
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whatever happens when Q(t) has the “negative” value is reliably calculable. (On a
possible procedure for setting up an ideal-negative-result measurement, and further
discussion, see Ref. [13].)

Given the three postulates above, the argument for a CHSH inequality of the form

〈Q(t1) Q(t2)〉t1t2 + 〈Q(t2) Q(t3)〉t2t3 + 〈Q(t3) Q(t4)〉t3t4 − 〈Q(t1) Q(t4)〉t1t4 ≤ 2

(2.5)

(where the subscript 〈 〉ti tj indicates that the averages are taken, as they must be, on
the subensemble on which measurements are made at times ti and tj (only)) goes
through analogously to the EPR-Bell case: postulates (1) and (2) justify the state-
ment that provided the first measurement of any pair is conducted in an ideally non-
invasive way, Q(ti) has for each run a definite value which is unaffected, according
to postulate (3), by what will or will not be measured subsequently. Thus, for each
run the quantitiesQ(ti) Q(tj ) exist, withQ(ti) having the same value for any tj . The
trivial algebra of step (4) of the proof of the original CHSH theorem goes through, so
Eq. (2.5) is satisfied provided the averages are replaced by 〈Q(ti) Q(tj )〉all , where
“all” indicates that they are taken over all runs. Finally, postulates (2) and (3) to-
gether justify the replacement of 〈Q(ti) Q(tj )〉all by the experimentally measured
correlation 〈Q(ti) Q(tj )〉ti tj , giving the inequality (2.5).

I will not discuss here the rather delicate question of exactly how “macroscop-
ically distinct” are the two circulating-current states realized in a typical SQUID
ring; this is at least partly a matter of subjective definition, and in the present con-
text it is sufficient to note that by any reasonable definition these two states differ
in the behavior of, at a minimum, several million electrons. Rather, I would like to
close by asking the question: If the proposed experiment is done, and comes out ac-
cording to QM (hence in violation of the inequality (2.5)), what will we have learned
over and above what is already known from the EPR-Bell experiments?

To answer this question, it is essential to appreciate that the hypothesis of macro-
scopic counterfactual definiteness (MCFD), which is refuted by the EPR-Bell ex-
periments, while it is as noted weaker than that of microscopic realism, is stronger
than the postulate of macroscopic realism. MCFD is a statement about a macro-
scopic event which “would have” happened (or not) in a situation which did not
in fact arise; by contrast, macroscopic realism is a statement about what actually
happens in a situation which is realized. Of course, the hypothesis of macroscopic
realism does presumably imply that a second macroscopic object, set up explicitly
as a measuring device, “would have,” had it been activated at time ti , have given the
output corresponding to Q(ti), and thus, one could, if desired, replace postulate (1)
by an MCFD formulation similar to the one given in the microscopic case. How-
ever, it is clear that MCFD is a situation where the measured object is macroscopic
is a much weaker assertion than MCFD in the microscopic (e.g. EPR-Bell) case,
and thus its denial is a much stronger statement. Hence the experiment proposed in
Ref. [12], should it be done and come out according to the predictions of QM, will
be a considerably stronger denial of realism than follows from the existing EPR-Bell
work.
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Chapter 3
Each Instant of Time a New Universe

Yakir Aharonov, Sandu Popescu, and Jeff Tollaksen

Abstract We present an alternative view of quantum evolution in which each mo-
ment of time is viewed as a new “universe” and time evolution is given by correla-
tions between them. [Editors note: for a video of the talks given by Prof. Aharonov
at the Aharonov-80 conference in 2012 at Chapman University, see quantum.
chapman.edu/talk-3 and quantum.chapman.edu/talk-30 and by Prof. Popescu, see
quantum.chapman.edu/talk-31.]

3.1 Introduction

Since the dawn of civilization, mankind tried to understand the meaning of the in-
exorable flow of time. One of the philosophical ideas, whose origins can be traced
back to Eraclitus from Ephesus, states that the universe gets re-created again and
again, at every instant of time. “You never bathe twice in the same river” said Era-
clitus. Every instant new water, every instant a new universe. This idea, of course,
is different from the usual one in which we view the universe as unique, and the
objects which inhabit it as just changing their state in time.

Going from philosophy to physics, the way physics is presently formulated is
based on the idea of unique universe and evolving objects. But is it possible to re-
formulate physics to incorporate the idea of a new universe for each instant? As far
as classical physics is concerned, the reformulation is rather trivial. We find however
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Fig. 3.1 An artistic illustration of our central idea of this chapter: an alternative view of quantum
evolution in which each moment of time is viewed as a new “universe” and time evolution is given
by correlations between them

that quantum mechanically things are more complicated. The standard formalism of
quantum mechanics appears not to allow such a reformulation. It turns out never-
theless that the reformulation is possible if we use the two-states formalism [1, 2].

3.2 Toy Models: The Difficulty

In preparation for discussing the time evolution from this alternative point of view,
let us start by asking a much simpler question. Consider first classical mechanics.
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Fig. 3.2 (a) A single classical particle at N moments in time, (b) N classical particles at a given
time τ . The position of particle i is the same as the position of the original particle at time ti (see
part (a))

Suppose a particle evolves such that its trajectory is x(t) (Fig. 3.2.a). Consider now
a set of N time moments, t1, t2,. . . , tN . Is it possible to prepare instead of this
single particle a set of N particles such that if we perform at some given time τ
measurements on theseN particles we’ll get the same information as we would have
obtained by making measurements at t1, t2, . . . , tN on the original single particle
considered before?

The solution is quite simple: One has to prepare the N particles (Fig. 3.2.b) such
that

x1(τ )=x(t1)
x2(τ )=x(t2)

...

xN(τ)=x(tN).
(3.1)

When N increases and the time intervals ti+1 − ti decrease, we could say that the N
particles lay down, at a single moment of time (at τ ) the entire history of the original
particle. One particle at N times is thus equivalent to N particles at one time.

Can we do the same for a quantum mechanical particle?
Consider the simple case of a spin 1/2 particle, prepared in some initial state |ψ〉

and having the Hamiltonian H = 0. In this case the time evolution of the particle is
trivial,

|ψ(t)〉 = |ψ〉. (3.2)

Could we now prepareN spin 1/2 particles such that if we perform measurements
on them at some time τ we get the same information as we could get by measuring
the state of the original particle at N different time moments, t1, t2, . . . , tN ? Since
the state of the original particle at all these moments is |ψ〉, one would suppose that
this task can be accomplished (Fig. 3.3) by preparing the N particles each in the
same state |ψ〉, that is

|Ψ 〉1|Ψ 〉2 · · · |Ψ 〉N. (3.3)
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Fig. 3.3 N spin 1/2 particle
at time τ , each prepared in
the state ψ . They do not
constitute however an
appropriate mapping of N
time moments of a single spin
1/2 particle

But this mapping is not appropriate for many reasons. First of all, the state (3.3)
contains too much information. Indeed, suppose somebody prepared the original
particle in state ψ and gave it to us without telling us what the state is. Then, as we
have a single particle (i.e. a single copy of an unknown state ψ ), there is no way
of learning what its state is. However, in (3.3) we have N particles, all in the same
state—by making different measurements on the different copies and looking at the
statistics of the results we can learn the state (better and better asN becomes larger).

Second, the time evolution (3.2) contains subtle correlations, which usually are
not noticed, and which do not appear in the state (3.3). Suppose, for example, that
the state |ψ〉 = |σz = 1〉, i.e. the spin is polarized “up” along the z axis. It is gen-
erally considered that since the particle is at every moment in a definite state of
the z-spin component, the z-spin component is the only thing we know with cer-
tainty about the particle—no other spin component commutes with σz hence it is
not well-defined. However, there are multi-time variables whose values are known
with certainty, given the evolution (3.2). For example, although the x spin compo-
nent is not well defined when the spin is in the |σz = 1〉 state, we know that it is
constant in time, since the Hamiltonian is zero. Thus, in particular, the two-time
observable

σx(t2)− σx(t1)= 0. (3.4)

As described in [2, 3], this observable can be measured in the following way. Fol-
lowing von Neuman’s measuring formalism, consider a measuring device whose
pointer position is denoted by q and its canonical conjugate momentum p and let
the interaction between the spin and the measuring device be described by the inter-
action Hamiltonian

Hint = −δ(t − t1)pσx + δ(t − t2)pσx. (3.5)

We also assume that the Hamiltonian of the measuring device at all other times is
zero (i.e. the pointer doesn’t move by itself). Due to the strong coupling between the
spin and the measuring device during the measurement (the delta function coupling)
we can neglect during the measurement any other interaction affecting the spin.
From the Heisenberg equations of motion we obtain

dq

dt
= i[q,Hint ] = (δ(t − t2)− δ(t − t1)

)
σx(t). (3.6)

The equation can be integrated easily, by noting that σx doesn’t change in the two
(infinitesimally) short interaction times (t1 − ε to t1 + ε and t2 − ε to t2 + ε) when
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the measuring interaction takes place since it commutes with the interaction Hamil-
tonian. Hence, integrating (3.6) we obtain

q(t2 + ε)− q(t1 − ε)= σx(t2)− σx(t1), (3.7)

in other words, the difference between the final and initial positions of the pointer
indicates the value of the two-time observable σx(t2) − σx(t1). Crucially, this is
a measurement which tells only the value of σx(t2) − σx(t1) but not the value of
σx(t1) or σx(t2) separately. Now, when the Hamiltonian acting on the spin is zero,
σx(t1)= σx(t2) and therefore the measuring device will indicate

q(t2 + ε)− q(t1 − ε)= σx(t2)− σx(t1)= 0. (3.8)

It is also important to note that, given that the spin Hamiltonian is zero, after the
measurement is finished, i.e. after t2, the spin is brought back in the initial state,
regardless of what this state is. Indeed, suppose that the initial state of the spin
is |ψ〉. By decomposing |ψ〉 in the x-basis, in the Schrodinger representation the
evolution of the spin and measuring device is given by

|ψ〉|q = 0〉 = (α| ↑〉 + β| ↓〉)|q = 0〉
→ α| ↑〉|q = −1〉 + β| ↓〉|q = 1〉 (3.9)

→ α| ↑〉|q = 0〉 + β| ↓〉|q = 0〉 = |Ψ 〉|q = 0〉

where the two right pointing arrows describe the evolution of the spin and measuring
device at t1 and t2 respectively. (Note that the first interaction shifts the pointer with
the value −σx while the second shifts the pointer with +σx .)

Coming back to the N spins in the state (3.3), there is no correlation whatsoever
in between the x components of, say, particles 1 and 2 which were intended to
describe the original particle at times t1 and t2. More over, it is not only the x spin
component for which the original particle presents such multi-time correlations, but
all spin components. That is, (3.4) generalizes to

σn̂(t1)= σn̂(t2)= · · · = σn̂(tN ) (3.10)

for any direction n̂. (Following the above procedure, we would then obtain σn̂(ti)−
σn̂(tj ) = 0 for any i and j .) Obviously, the n̂ spin components of the N spins in
state (3.3) (except for the z components) are not correlated in this way.

We reached thus the conclusion that the N particles in the state (3.3) do not
describe faithfully the behavior of the original particle at t1, . . . , tN . The question
is now whether there exists any state of N particles that could be such a faithful
representation? It is easy to see that the answer is “no”. Indeed, there is no state of
N spins such that

σ 1
n̂

= σ 2
n̂

= · · · = σN
n̂

(3.11)
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for every direction n̂. At best, one may find a two particle state—the singlet state-
for which the spins are anti-correlated instead of correlated i.e.

σ 1
n̂

= −σ 2
n̂

(3.12)

for every n̂. And even anti-correlation cannot be extended to more than two particles.
It appears thus that we reached a dead end.

It is tempting to think that the reason we arrived at this dead end is that we didn’t
take into account that quantum mechanically measurements modify the state of the
measured system. We could say that the state of the original particle is constant in
time, (3.2), and thus it is modeled by the N spins in state (3.3) only if no mea-
surements are performed. If measurements are performed, the time evolution of the
original particle is no longer given by (3.2), so we shouldn’t expect to model it by
(3.3). But this is actually not the true reason for our difficulties. Indeed, even if
we don’t actually measure σx(t2)− σx(t1) but merely compute it for the evolution
(3.2), we see that it has not the same value as if we compute it for the state (3.3).
So problems arise already at this stage—the state (3.3) simply doesn’t contain the
correlations which the free evolution of the original particle prescribes.

3.3 Toy Models: The Solution

We now arrived at a crucial point. Although a state ofN spin 1/2 particles with com-
plete correlations among all their spin components as required by (3.11) doesn’t ex-
ist in the usual sense, there exist pre- and post-selected states [2] with this property.
As we show now, N spin 1/2 particles in a suitably prepared pre- and post-selected
state can, at one time, τ , mimic N moments of time in the evolution of a single spin
1/2 particle.

The procedure we will use has three steps. At time τ − ε we prepare an initial
state. At time τ we perform the measurements that are supposed to simulate the
evolution of the original single spin. At time τ + ε we perform an additional mea-
surement; only if this measurement is successful, we deem our simulation procedure
to have succeeded. Specifically, consider 2N − 1 spin 1/2 particles. N of them will
be used as “spins”, and we denote them by S0, S1, . . . , SN . They will simulate N
time moments of the evolution of our original spin. For example, a measurement at
time τ on the spin Sk should simulate the measurement on the original spin at time
t = tk . Furthermore a two time measurement on the original spin, say at tk and tl
will be simulated by a measurement on spins Sk and Sl and so on. The other N − 1
spins are ancillas, which we denote by A1,A2, . . . ,AN . They are used for helping
in our procedure, however, no measurements will be performed on them at τ . We
arrange the “spins” and ancillas as illustrated in Fig. 3.4.

At τ − ε we prepare the particles in the initial state

|ψ〉S0 |Φ〉A1,S1 · · · |Φ〉AN,SN (3.13)
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Fig. 3.4 N + 1 “spins” and N ancillas. At time τ − ε spin S0 is prepared in state ψ while an-
cilla Ak is maximally entangled with spin Sk (the maximal entanglement is represented by the
continuous line connecting the ancilla with the spin.) At time τ + ε a “Bell state” measurement
(BSM) is performed on spin Sk−1 and ancilla Ak . The experiment is deemed successful if and
only if each of the BSMs yields the outcome corresponding to the maximally entangled state
|Φ〉Sk−1,Ak = 1√

2

∑1
i=0 |i〉Sk−1 |i〉Ak . In case of a successful experiment, if measurements were

performed on spins S0 . . . SN−1 at time τ , their results simulate measurements performed at N
moments of time on a single spin prepared in state ψ and evolving with a Hamiltonian equal to
zero

where |Φ〉 is a maximally entangled state of the ancilla Ak and the associated spin,
Sk , namely |Φ〉Ak,Sk = 1√

2

∑1
i=0 |i〉Ak |i〉Sk and where |i〉, i = 0,1 represent some

arbitrary base vectors. At a later time, τ + ε we subject the pairs of spins com-
posed by spin Sk−1 and ancilla Ak to a measurement of an operator that has the
maximally entangled state |Φ〉Sk−1,Ak = 1√

2

∑1
i=0 |i〉Sk−1 |i〉Ak as one of its nonde-

generated eigenstates (for example the “Bell” operator). Now, as it is easy to directly
verify, in the case when all these measurements performed at τ + ε yield the out-
come corresponding to this state, then measurements performed at τ on the “spins”
reproduce the same statistics as measurements on the original single spin.

The above procedure may seem rather convoluted. However, it has a very simple
interpretation in the language of pre- and post-selected states [2, 3]. The procedure
simply prepared a particular pre- and post-selected state of the N spins S1, . . . , SN .
The defining characteristic of this state is that the post-selected state of one parti-
cle is completely correlated to the pre-selected state of the next particle as illus-
trated in Fig. 3.5. Technically this is possible because post-selected states propagate
backwards in time and behave as complex conjugates of pre-selected states. This
accounts for the correlations that cannot be created when we consider a pre-selected
only state (i.e. a state prepared at τ − ε).

The idea of pre- and post-selected states and the above way of preparing them
was discussed in detail in [2]. Using the notationΦτ−,τ+k+1,k for the maximally entangled
two-time state

Φ
τ−,τ+
k+1,k =

∑

i

|i〉τ−Sk+1

τ+
Sk

〈i| (3.14)

where τ± = τ ± ε, from the results in [2] it follows that in our case the pre-and
post-selected state of the spins is

Φ
τ−,τ+
N,N−l · · ·Φτ−,τ+2,1 Φ

τ−,τ+
1,0 |Ψ 〉τ−S0

. (3.15)
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Fig. 3.5 Correlation between the spins S0 . . . SN . The post-selected state of one particle is cor-
related to the pre-selected state of the next particle. Upward arrows denote “pre-selected” state,
which point towards the future while downward arrows denote “post-selected” states that point
towards the past

Note that this pre-and post-selected state refers solely to the spins; the ancillas were
there only to help prepare this state.

The pre- and post-selected state (3.15) explicitly shows the two main character-
istics of the time evolution of the original spin. On one hand, at the initial time t0 the
original spin was prepared in the state |Ψ 〉. To this corresponds the fact that in (3.15)
the pre-selected state of S0 is the same as that of the original spin. On the other hand,
we also know (3.10) that the spin components along any direction, although unde-
fined, are constant in time, that is, they are fully correlated. These correlations are
realised in (3.15) via the complete correlations between the post-selected state of
one spin and the pre-selected state of the next (3.14). (Indeed, it is easy to verify
that the maximally entangled state (3.14) is invariant under a simultaneous change
of basis for Sk+1 and Sk .)

3.4 Every Moment of Time a New Universe

Up to this point we only dealt with a toy model. We now come to the main question,
namely how to interpret the time evolution of a quantum particle from the point of
view of the philosophical idea of “each moment of time a new universe”. As far as
classical physics is concerned, we could formalize this idea by associating a sep-
arate configuration-space to each moment of time. A moving particle would then
correspond to one particle in each space, having their positions appropriately corre-
lated. In effect, this would mean associating a different configuration space to each
of the N particles in Fig. 3.2.b and “stacking” them one on top of the other along
the time axis. Naively, one would expect that quantum mechanically this would cor-
respond to associating to each moment of time a separate Hilbert space. The total
Hilbert space would be therefore H = H0 ⊗H1 ⊗· · ·⊗HN . The problem however,
as we saw before, is that no state in such a Hilbert space can account for the desired
correlations. The solution follows from the above described mapping between the
time evolution of the spin 1/2 particle and N spin 1/2 particles: we have to associate
two Hilbert spaces to each moment of time and“stack” them on top of each other
along the time axis (see Figs. 3.5 and 3.6.a).

We consider time as being discrete, made out of finite time intervals, stacked
one on top of the other like little bricks. To each moment of time we associate two
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Fig. 3.6 (a) Each moment of time is a little “brick”. The Hilbert space at the future boundary
of one time moment is maximally entangled—with complete correlation—with the Hilbert space
at the past boundary of the next time moment (straight line). The state ψ is associated only to
the moment t0 where it was prepared. (b) A more general time evolution. A measurement with
a collapse on state φ disentangles the two subsequent moment of time. Non-trivial unitary time
evolution at all other time is represented by maximal entanglement but between appropriately
rotated bases (squiggled line)

Hilbert spaces: a Hilbert space of ket vectors at the time boundary towards the past
and a Hilbert space of bra vectors at the time boundary towards the future. The total
Hilbert space is therefore of the form HN ⊗ · · · ⊗H†

1 ⊗H1 ⊗H†
0 ⊗H0. The state

of a quantum system during each instant of time is thus determined by two wave-
functions. One of them is fixed at the past time boundary of the time interval and is
“evolving” towards the future, the other one is fixed at the future boundary of the
time interval and it is “evolving” towards the past. We shall call these two states
“pre-selected” and “post-selected”.

Consider now the example we presented at the beginning of this paper: At time t0
the spin was prepared in state |Ψ 〉 and then the evolution is trivial, i.e. the Hamilto-
nian is zero. In our new formalism the preparation at time t0 corresponds to having
at time t0 the forward evolving state |Ψ 〉t0 ∈ H0. At all other moments of time we
know that all spin components are completely correlated. We describe this by tak-
ing the wavefunctions at the common boundary of two subsequent moments (i.e.
the post-selected state of the earlier moment and the pre-selected state of the later
moment) to be maximally entangled and completely correlated:

∑
i |i〉t1 t0〈i| and so

on at all times. Here the vectors |i〉t1 and t0〈i| form arbitrary orthonormal bases in
H1 and H†

0 respectively and represent the same physical state (such as |σz = 1〉 and
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〈σz = 1|). Since all time moments are correlated this way, the time evolution now
looks like a chain of connected time intervals. Hence the total state is

∑

k

|k〉tN tN−1〈k| · · ·
∑

i

|j 〉t2 t1〈j |
∑

i

|i〉t1 t0〈i| |Ψ 〉t0 . (3.16)

The example above can be easily generalized to arbitrary quantum evolutions
which consist of unitary evolutions and measurement induced collapses (Fig. 3.6.b).
When the Hamiltonian is non-zero subsequent moments of time continue to be max-
imally entangled, but the correlation is now “skewed”. That is, the correlation be-
tween two moments of time is now of the form

∑

i

|ui〉t2 t1〈i| (3.17)

where

|ui〉t2 =U2,1|i〉t2 . (3.18)

Here U2,1 represents a unitary transformation acting on H2, the pre-selected Hilbert
space at time t2, numerically equal to U(t2, t1), the unitary that describes the evolu-
tion of the particle from t1 to t2 in the standard quantum description.

Note that, similarly to
∑
i |i〉t1 t0〈i| the state (3.17) is also a maximally entangled

state between the two moments of time, and also leads to full correlations. The only
difference is that the correlations are now not between an arbitrary vector t1〈ξ | and
the corresponding vector |ξ 〉t2 but between t1〈ξ | and U2,1|ξ 〉t2 .

On the other hand when a measurement occurs it completely disturbs all the
observables that do not commute with the measured observable—their values be-
fore the measurement are no longer correlated with their values after the measure-
ment. At the same time a collapse means the introduction of a new boundary con-
dition for times following the collapse as well as a post-selection for times pre-
vious to the collapse. Suppose an instantaneous ideal von Neuman measurement
took place at time tk and let |φ〉 be the eigenstate corresponding to the observed
eigenvalue. In our alternative formalism this collapse is implemented simply by
|φ〉tk+1 tk 〈φ|.

We have now reached our desired alternative description of time evolution. To
summarize:

• Each moment of time is indeed one “Universe” but it has associated to it not one
but two Hilbert spaces, one corresponding to the “past” boundary of this time
moment and one to its “future” boundary

• Time evolution is represented by correlations between subsequent moments of
time, more precisely between the “future” boundary of the earlier time moment
and the “past” boundary of the later time moment.

• Unitary time evolution is implemented by maximal entanglement between subse-
quent moments of time.
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• A measurement induced collapse destroys the entanglement and effectively de-
couples the entire time evolution up to that moment by what happens later; tech-
nically, the state before the moment of collapse is in a direct product with the
state after it.

• A partial collapse, such as one due to an incomplete measurement will result in
entanglement but less than maximal.

3.5 Probabilities

In the above section we described the time evolution of a quantum system in the
“each moment of time a new universe” paradigm. To complete our description there
is one more item to address: how to calculate probabilities for the different events.

The probability for a particular history to happen can be computed from the “his-
tory” state in a straightforward way, with one subtlety. As it stands now, the history
is open ended, both towards the remote past and the remote future; without putting
boundary conditions at those two end, nothing can be said about the overall proba-
bility of the history. The standard experimental questions however remove the need
for these “cosmological” implications by completely separating a piece of time from
its past and future by making complete measurements. The most well-known case
is preparing at initial time t0 the system in some state |Ψ 〉 and then performing a
measurement at the final time tf and asking what is the probability to find the sys-
tem in state |φ〉. Looking at our description above, we see that indeed these two
measurements cut out a piece of time, i.e. the state starting at t1 and ending at t2 is
completely disentangled from the rest. For example, if the Hamiltonian is zero, this
piece is:

tf 〈φ|
∑

k

|k〉tN tN−1〈k| · · ·
∑

i

|j 〉t2 t1〈j |
∑

i

|i〉t1 t0〈i| |Ψ 〉t0 . (3.19)

To find the probability to obtain |φ〉 when the system was prepared in |Ψ 〉 all we
do is the following: for each moment of time we contract the vectors belonging to
the past and future boundary conditions, i.e. we take the scalar product between the
bra and ket vectors corresponding to the same time t . The result is the scalar product
〈φ|Ψ 〉; the absolute value of this, |〈φ|Ψ 〉|2 is the probability we are looking for. It
is also immediate to show that in case the Hamiltonian is non-zero, our recipe leads
to |〈φ|U(tf , t0)|Ψ 〉|2, the expected result.

3.6 Discussion

We would like to emphasize what is arguably the most important property of this
alternative view of time evolution, namely that there is a complete harmony in be-
tween the actions to which the system is subjected and their representation: If a
measurement and its associated collapse occur at time t it is there and only there
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that this information is present—the state Φ prepared by the collapse appears only
at this time. When there are more measurements, each measurement and the state
associated to its outcome appear at the time of measurement and only there. At other
times, when no measurement is performed all we know is that the time correlations
are preserved, and this is what our formalism shows.

Our description is in stark contrast with the usual one in which once we prepare a
system in a state |ψ〉 and we leave it undisturbed, then at every subsequent moment
of time the state continues to be |ψ〉. As far as we are concerned however, the
state |ψ〉 doesn’t characterize directly any other moment of time except when it
was prepared; it does influence the physics at these other moments, but it does so
only indirectly, via a chain of time correlations. What does directly characterize a
time when no measurement is performed is that it is an unbroken link in a chain of
correlations, nothing more than this; what propagates along the chain is a completely
independent issue.

It is very interesting to ponder more carefully the difference between a mea-
surement and a unitary evolution from our point of view. What we see is a certain
complementarity between kinematics and dynamics. When a measurement is per-
formed we know the state at each of the two subsequent moments of time when the
measurement took place:

|φ〉tk+1 tk 〈φ|. (3.20)

On the other hand, when a unitary evolution takes place, the state at each of the two
subsequent moments of time is completely uncertain, the state at one moment being
entangled with the state at the next moment

∑

i

|ui〉tk+1 tk 〈i|. (3.21)

Furthermore, we note that every measurement is effectively an uncertain time
evolution. This is a fact that, as far as we know, is very rarely mentioned in dis-
cussions about quantum measurements. Yet, it is quite obvious. Indeed, as is well
known all the observables that do not commute with the measured one are random-
ized up to some extent, hence their Heisenberg equations of motion must show an
uncertain evolution. In its turn, this is due to the fact that during the measurement
the Hamiltonian of the system is uncertain. Indeed, in the standard von Neumann
measurement formalism (as used above in (3.5)) in order to measure an observ-
able A and register its value in the indication q of a pointer we use an interaction
Hamiltonian of the form

Hint = δ(t)Ap (3.22)

where p is the canonical momentum conjugate to the position q of the pointer. Since
the initial state of the pointer is well defined, say |q = 0〉, the momentum of the
pointer, p has a large uncertainty�p = ∞. In its turn, since p enters the interaction
Hamiltonian, it means that as far as the system is concerned, its Hamiltonian is
uncertain during the measurement.
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The above observations, although not very commonly known, are nevertheless
rather straightforward. What our new formalism shows however, is something more
subtle: although a measurement is equivalent to an uncertain evolution, the collapse
on a particular eigenstate of the measured observable is equivalent to a well-defined
superposition of different time evolutions1. Indeed, take for example a measurement
of the σx , the x component of the spin of a spin 1/2 particle performed at tk . Suppose
we found σx = 1. According to our formalism the quantum state at the time of
measurement is

| ↑〉tk+1 tk 〈↑ |. (3.23)

This can be viewed as the superposition of two unitary time evolutions

| ↑〉tk+1 tk 〈↑ | = 1

2

(| ↑〉tk+1 tk 〈↑ | + | ↓〉tk+1 tk 〈↓ |)

+ 1

2

(| ↑〉tk+1 tk 〈↑ | − | ↓〉tk+1 tk 〈↓ |). (3.24)

Hence our picture suggests a new kind of complementarity between having in-
formation about the state of a system versus having information about the dynamics:
if one does not know the state, then our picture describes the dynamics as complete
correlation. If one obtains information about the state, then the multi-time corre-
lations between conjugate operators are made uncertain, i.e. one loses information
about the dynamics in that interval of time. And as for a proper conjugacy rela-
tionship, there is a continuous graduation between the extremes. To see this com-
plementarity, consider a partial measurement of σx in which the measuring device
gives the correct answer (i.e. σx = ±1) with probability |α|2 and the wrong answer
with probability |β|2 and does this in a way which minimizes the disturbance to
the state. This is obtained when the measuring device interacts with the spin via the
unitary evolution

| ↑〉|0〉M → | ↑〉(α|1〉M + β| − 1〉M)
| ↓〉|0〉M → | ↓〉(α| − 1〉M + β|1〉M)

(3.25)

where |0〉M , |1〉M and | − 1〉M are different states of the measuring device. Obtain-
ing the value +1 corresponds in our picture to partially destroying the complete
correlation between the moments when the measurement occurred and leading to
only non-maximal correlations2:

α| ↑〉t2 t1〈↑ | + β| ↓〉t2 t1〈↓ |, . (3.26)

1In a completely different context, superpositions of time evolutions were discussed in [4] and
experimentally verified in [5].
2In the standard language this outcome corresponds to the Krauss operator α| ↑〉〈↑ | + β| ↓〉〈↓ |.



34 Y. Aharonov et al.

Fig. 3.7 Two entangled spin
1/2 particles. Entanglement
characterizes solely time t0
where entanglement is
produced. All other times are
characterized by trivial time
evolution, i.e. maximal
entanglement between
subsequent moments of time;
there is however no
entanglement between the
particles associated to these
times. Alice’s measurement
disentangles the time
moments of her particle but
have no effect on Bob’s
particle

We see that in the case α = β , we have complete correlation, thus modeling the
dynamics. As α → 1 and β → 0 we obtain more and more knowledge about the
state, while the entanglement, i.e. the dynamics, becomes more and more uncertain.

3.7 Measurements on EPR States

It is very interesting to analyze using our point of view the time evolution of two
spin 1/2 particles in a singlet state. The evolution is illustrated in Fig. 3.7. At t0 the
two particles A and B are prepared in the singlet state

|S〉AB,t0 = 1√
2
| ↑〉A,t0 | ↓〉B,t0 − 1√

2
| ↓〉A,t0 | ↑〉B,t0 . (3.27)

Then each particle evolves separately. That is, the time moments describing parti-
cle A are maximally entangled with each other and the time moments describing the
evolution of B are maximally entangled with each other. There is however no entan-
glement between particles A and B at any other subsequent moment. This situation
continues until we disturb the particles.

Suppose now that at time T Alice performs a measurement on particle A. For
example, suppose she measures σAx and finds the value +1. According to our point
of view, for particleA the entanglement between the moments of time T and T +ε is
broken and in its place we have a direct product state | ↑〉A,T+ε A,T 〈↑ |. On the other
hand, nothing happens to particle B—its time moments continue to be maximally
entangled.
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Fig. 3.8 Two independent
“lives” lived in parallel by the
same particle

This conclusion seems to contradict the standard quantum mechanical descrip-
tion. Indeed, in the usual description the state is |S〉AB from time t0 until time T
and at time T the state collapses into the direct product state | ↑〉A| ↓〉B . In partic-
ular, the collapse is symmetric with respect to who produces it: The time evolution
is the same whether Alice measured σAx and found +1 or Bob measured σBx and
found −1. In our description however, if Alice performs the measurement, the time
evolution of her particle is affected and nothing happens to Bob’s, while the oppo-
site would be true if Bob were to perform the measurement. One can check directly
however that all observational consequences, i.e. the probabilities for all measure-
ments, are the same in both descriptions. Our point of view however has two main
advantages.

First of all, it is relativistically covariant at the level of states. Of course, both
views are relativistically covariant at the level of observed results. The standard
way however is non-covariant as far as the state description is concerned. Indeed,
the collapse occurs both at Alice and at Bob at time T , i.e. simultaneously in the
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reference frame in which we chose to work. Had we chosen a different reference
frame, the moment at which the collapse occurs for Bob’s particle could have been
different. On the other hand, in our description, nothing happens to Bob’s particle
when Alice performs a measurement, so no covariance problems arise.

We would like to emphasize however that the relativistic covariance at the level
of wave-functions does not necessarily require to consider each moment of time
a new universe; it is already present in a simpler version of time evolution, with
a “single universe” but with two wave-functions, one propagating forward and the
other backward in time [6, 7].

A second interesting feature of our description is that it makes it clear that the
evolution of Alice’s particle is different from Bob’s particle, while in the standard
description they looked the same. Indeed, in the standard description they appear
symmetric—they are in a singlet until time T and then they collapse together on a
direct-product state. In our description is clear that for particle A the time moments
before and after T are not maximally entangled while for particle B they are. This
difference could be checked if in addition to the measurement at time T Alice also
measures a two-time variable, say σAz (t1)− σAz (t2) for t0 < t1 < T < t2. Since the
spin components along the z direction before and after T are not correlated, Alice
could obtain +2, 0 or −2. On the other hand, if Bob were to measure σBz (t1) −
σBz (t2) he would obtain with certainty the value 0.

3.8 Extensions

Many more interesting situations are possible. An amusing one is illustrated in
Fig. 3.8. Here every moment of time is fully correlated with the second next. In
effect this particle has a “double life”—the even time moments describe a parti-
cle whose time evolution is |ψ(t)〉 = |ψ1〉 and the odd moments describe a particle
whose time evolution is |ψ(t)〉 = |ψ2〉. As long as we do not take any action to
connect them, such as a two-time measurement involving an odd and an even mo-
ment, the two lives of this particle do not interact with each other. It is interesting to
speculate if such things exist in nature, and what their meaning would be.
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Chapter 4
The Brout-Englert-Higgs Mechanism and
Its Scalar Boson

Francois Englert

Abstract The Brout-Englert-Higgs (BEH) mechanism extending spontaneous sym-
metry breaking to gauge fields had a considerable impact on both theoretical and
experimental elementary particle physics. It is corroborated by the discovery of the
Z and the W, and by the precision electroweak tests. The recent detection by the
LHC at CERN of a particle identifiable to its massive BEH scalar boson not only
constitutes a direct verification of the mechanism, but detailed analysis of its dif-
ferent decay processes may yield indications on the world hitherto hidden beyond
the Standard Model. These topics are discussed with emphasis on conceptual is-
sues. [Editors note: for a video of the talk given by Prof. Englert at the Aharonov-80
conference in 2012 at Chapman University, see quantum.chapman.edu/talk-2.]

To my friend Yakir.

4.1 Spontaneous Breaking of a Global Symmetry

4.1.1 Chiral Symmetry Breaking

Spontaneous symmetry breaking was introduced in relativistic quantum field theory
by Nambu in analogy with the BCS theory of superconductivity [1]. The problem
studied by Nambu [2] and Nambu and Jona-Lasinio [3, 4] is the spontaneous break-
ing of the chiral U(1) symmetry of massless fermions resulting from the arbitrary
relative (chiral) phase between their decoupled right and left constituent neutrinos.
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Fig. 4.1 Spontaneous
symmetry breaking in the
Goldstone model

They then generalize to include isospin. Fermion mass cannot be generated from
a chiral invariant interaction in a perturbation expansion but may arise through a
(non-perturbative) self-consistent fermion condensate: this breaks the chiral sym-
metry spontaneously. Nambu [2] showed that such spontaneous symmetry breaking
(SSB) is accompanied by a massless pseudoscalar. This is interpreted as the chiral
limit of the (tiny on the hadron scale) pion mass. Such interpretation of the pion
constituted a breakthrough in our understanding of strong interaction physics. In the
model of Refs. [3, 4], it is shown that SSB also generates a massive scalar boson.

4.1.2 The Simple Goldstone U(1) Model

The significance of the massless boson(s) and of the massive scalar boson(s) occur-
ring in SSB is well illustrated in a simple model devised by Goldstone [5]. A com-
plex scalar field φ experiences a potential V (φ∗φ). The Lagrangian density,

L = ∂μφ∗∂μφ − V (φ∗φ) with V (φ∗φ)= −μ2φ∗φ + λ(φ∗φ)2, λ > 0, (4.1)

is invariant under the U(1) group φ→ eiαφ. The U(1) symmetry is spontaneously
broken by the expectation value of the φ-field acquired, at the classical level, at the
minimum of the potential V (φ∗φ) depicted in Fig. 4.1.

Writing φ = 〈φ〉 + ϕ and φ = (φ1 + iφ2)/
√

2, the U(1) symmetry breaking is
revealed by selecting the expectation value 〈φ〉 to lie in some direction, say φ1, of
the (φ1, φ2) plane. The quadratic terms in ϕ1 and ϕ2 yield the mass squared of their
respective fields, namely, using the condition 〈φ〉2 = μ2/2λ at the minimum,

m2
ϕ1

= 2μ2 m2
ϕ2

= 0. (4.2)

Thus ϕ2 describes a massless boson, ϕ1 a massive one, and the “order parameter”
〈φ1〉 may be viewed as a condensate of ϕ1 bosons. Their significance is brought to
light in Figs. 4.2 and 4.3 depicting respectively classical ϕ1 and ϕ2 waves on the
background 〈φ1〉.
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Fig. 4.2 Massless
Nambu-Goldstone mode ϕ2

Fig. 4.3 Massive scalar
mode ϕ1

Figure 4.2a represents schematically a lowest energy state (a “vacuum”) of the
system: a constant non-zero value of the field φ1 = 〈φ1〉 pervades space-time. Fig-
ure 4.2b depicts the excitation resulting from the rotation of half the fields in the
(φ1, φ2) plane. This costs only an energy localized near the surface separating the
rotated fields from the chosen vacuum. SSB implies indeed that rotating all the fields
would cost no energy at all: one would merely trade the initial chosen vacuum for
an equivalent one with the same energy. This is the characteristic vacuum degener-
acy of SSB. Figure 4.2c mimics a wave of ϕ2. Comparing Fig. 4.2c with Fig. 4.2b,
we see that as the wavelength of the wave increases indefinitely, its energy tends to
zero. The wave generates in that limit a motion along the valley of Fig. 4.1. Quantum
excitations carried by the wave reach thus zero energy at zero momentum and the
mass mϕ2 is zero, in agreement with Eq. (4.2). Figure 4.2 can easily be generalized
to more complex spontaneous symmetry breaking of continuous symmetries. Mass-
less bosons are thus a general feature of such SSB already revealed by Nambu’s
discovery of the massless pion resulting from spontaneous chiral symmetry break-
ing. They will be labeled massless Nambu-Goldstone (NG) bosons. Formal proofs
corroborating the above simple analysis can be found in the literature [6].

Figure 4.3 depicts similarly a classical wave corresponding to a stretching of the
vacuum fields. These excitations in the φ1 direction describe fluctuations of the order
parameter 〈φ1〉. They are volume effects and their energy does not vanish when the
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wavelength becomes increasingly large. They correspond in Fig. 4.1 to a climbing of
the potential. The quantum excitations ϕ1 are thus now massive, in agreement with
Eq. (4.2). These considerations can be again extended to more general SSB (even
to discrete ones) to account for order parameter fluctuations. Lorentz invariance
imposes that such massive excitations are necessarily scalar particles. They were
also already present in Refs. [3, 4] and will be denoted in general as massive scalar
bosons.

The above considerations are restricted to spontaneous symmetry breaking of
global continuous symmetries. Global means that the symmetry acts everywhere in
space-time: for instance in the U(1) Goldstone model the parameter α in φ→ eiαφ

is independent of the space-time point x. We now discuss the extension from global
to local symmetries.

4.2 The Symmetry Breaking Mechanism for Gauge Fields

4.2.1 From Global to Local Symmetry

The globalU(1) symmetry in Eq. (4.1) is extended to a local one φ(x)→ eiα(x)φ(x)

by introducing a vector “gauge field” Aμ(x) transforming under such local “gauge
transformations” as Aμ(x)→ Aμ(x) + (1/e)∂μα(x). The Lagrangian density be-
comes

L =Dμφ∗Dμφ − V (φ∗φ)− 1

4
FμνF

μν, (4.3)

where in Eq. (4.1) one replaces ∂μ by the “covariant derivative” Dμφ = ∂μφ −
ieAμφ and introduces the gauge invariant field strength Fμν = ∂μAν − ∂νAμ to
account for the kinetic energy of the gauge field.

Local invariance under a semi-simple Lie group G is realized by extending the
Lagrangian Eq. (4.3) to incorporate “non-abelian” Yang-Mills gauge vector fields
Aaμ. These transform under infinitesimal transformations of the group as δAaμ(x)=
εc(x)facbA

b
μ(x)+ (1/e)∂μεa(x) where facb are structure constants. One gets

LG = (Dμφ)∗A(Dμφ)A − V − 1

4
FaμνF

aμν,

(Dμφ)
A = ∂μφA − eAaμT aABφB (4.4)

Faμν = ∂μAaν − ∂νAaμ − ef abcAbμAcν.
Here, (Dμφ)A are covariant derivatives, Faμν are field strengths and φA belongs to
the representation of G generated by T aAB . The potential V is invariant under G.

The local abelian or non-abelian gauge invariance of Yang-Mills theory hinges
apparently upon the massless character of the gauge fields Aμ, hence on the long-
range character of the forces they transmit, as the addition of a mass term for Aμ in
the Lagrangian Eq. (4.3) or (4.4) destroys gauge invariance. But short-range forces
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such as the weak interaction forces seem to be as fundamental as the electromagnetic
ones. To reach a basic description of such forces one is tempted to link this fact
to gauge fields masses arising from spontaneous broken symmetry. However the
problem of SSB is very different for global and for local symmetries.

4.2.2 The BEH Mechanism

This section is based on the field-theoretic approach of Ref. [7]. In view of slips
often made about the content and the dates of the 1964 papers quoted in this section,
references to these papers are detailed.1

4.2.2.1 Breaking by Scalars

Let us first examine the abelian case U(1) as realized by the complex scalar field φ
exemplified in Eq. (4.3). The interaction between the complex scalar field φ and the
gauge field Aμ is

−ie (∂μφ∗φ − φ∗∂μφ
)
Aμ + e2AμA

μφ∗φ. (4.5)

As in the Goldstone model of Sect. 4.1.2, the SSB Yang-Mills phase is realized by
a non vanishing expectation value for φ = (φ1 + iφ2)/

√
2, which we choose to be

in the φ1-direction. Thus

φ = 〈φ〉 + ϕ, (4.6)

with φ1 = 〈φ1〉 + ϕ1 and φ2 = ϕ2, where as previously ϕ2 and ϕ1 are respectively
the NG massless boson and the massive scalar boson.

In the covariant gauges, the free propagator of the field Aμ is

D0
μν = gμν − qμqν/q2

q2
+ ηqμqν/q

2

q2
, (4.7)

1Detailed references of all the 1964 papers quoted in the text:

Article Reception date Publication date

1 F. Englert and R. Brout [7]
Phys. Rev. Lett. 13(9) (1964) 321

26/06/1964 31/08/1964

2 P.W. Higgs [9]
Phys. Lett. 12 (1964) 132

27/07/1964 15/09/1964

3 P.W. Higgs [13]
Phys. Rev. Lett. 13(16) (1964) 508

31/08/1964 19/10/1964

4 G.S. Guralnik, C.R. Hagen and T.W.B. Kibble [10]
Phys. Rev. Lett. 13(20) (1964) 585

12/10/1964 16/11/1964
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Fig. 4.4 Tadpole graphs of
SSB. Abelian gauge theory

where η is a gauge parameter. In what follows, we shall choose the Landau gauge
defined by η= 0.

The polarization tensorΠμν of the gauge field in lowest order perturbation theory
around the self-consistent vacuum is given by the tadpole graphs of Fig. 4.4,

We see that, as a consequence of the contribution from the NG boson, the polar-
ization tensor is transverse

Πμν = (gμνq2 − qμqν)Π(q2), (4.8)

and yields a singular polarization scalar Π(q2) at q2 = 0,

Π(q2)= e2〈φ1〉2

q2
. (4.9)

From Eqs. (4.7), (4.8) and (4.9), the dressed gauge field propagator becomes

Dμν = gμν − qμqν/q2

q2 −M2
V

, (4.10)

which shows that the Aμ-field gets a massMV ,

M2
V = e2〈φ1〉2. (4.11)

The transversality of the polarization tensor Eq. (4.8) results from the contribution
of the NG boson and agrees with a Ward identity which guarantees that gauge in-
variance is preserved. Thus the mass of the gauge field Aμ acquired through the
absorption of the NG boson is gauge invariant.

The generalization of these results to the non-abelian case described by the action
Eq. (4.4) is straightforward. Writing the generators in terms of the real components
of the fields, one gets the mass matrix

(M2
V )
ab = −e2〈φB〉T aBCT bCA〈φA〉, (4.12)

and the dressed gauge boson propagators have the same form as Eq. (4.10) in terms
of the diagonalized mass matrix. As in the abelian case, the would-be NG bosons are
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absorbed by the gauge fields and generate gauge invariant masses in G/H . Long-
range forces only survive in the subgroup H of G which leaves invariant the non-
vanishing expectation values 〈φA〉.

The introduction of gauge fields and hence local symmetries resulted in the ab-
sorption of the NG boson in the gauge field propagator and in the generation of
gauge field mass. These results are encoded in Eqs. (4.8), (4.11) and (4.12). Such
consequences of local symmetry seems at odd with the appearance of massless NG
bosons in global symmetries and calls for an elucidation of the concepts involved in
extending the symmetry from global to local. This will now be done by unraveling
the significance of the results of Sect. 4.2.2.1 for the NG boson and for the scalar bo-
son. To avoid notational complications, I shall mostly consider the U(1) extension
from the global Goldstone model to its local counterpart, although the discussion in
the Sections below apply in general to the non-abelian case as well .

4.2.2.2 The Fate of the Massless NG Boson

The diagrams of Fig. 4.4 show that the NG boson is absorbed in the gauge field
propagator. This yields the required longitudinal polarization of the massive gauge
field encoded in the numerator of Eq. (4.10) on the mass shell q2 =M2

V . The mass-
less NG boson actually disappears entirely from the physical spectrum. This is an
immediate consequence of gauge invariance. Consider indeed Fig. 4.2. As explained
in Sect. 4.1.2, the massless NG mode originates in global SSB from the vacuum de-
generacy: the energy of the excitations depicted in Fig. 4.2b and 4.2c tend to zero in
the limit of infinite wavelength because they generate in that limit a vacuum equiva-
lent to the original one under a symmetry operation. But local symmetry means that
the configurations of Fig. 4.2b and 4.2c carry no energy at all! They are thus simply
redundant description of the same gauge invariant vacuum, a redundancy not un-
expected when fields are described by potentials Aμ. Therefore there is no vacuum
degeneracy, no spontaneous symmetry breaking and thus no massless NG boson!2

An apparent symmetry breaking, akin to the Goldstone modelU(1) SSB, appears
when one chooses a fixed orientation of the average scalar field 〈φ〉, e.g. 〈φ〉 = 〈φ1〉.
But this description is only a convenient gauge choice. It allows for the conventional
assignment of group quantum numbers (such as isospin) to particles in perturbation
theory. I shall therefore qualify also as SSB the mechanism generating mass for
gauge fields but one should keep in mind that the symmetry is not intrinsically bro-
ken, a fact that renders the disappearance of massless NG bosons obvious. Their
degrees of freedom are recovered in the longitudinal polarization of the massive
gauge fields.3

2A more detailed description of the distinctive features of global and local SSB can be found in
Ref. [8]. Formal proofs for the absence of massless NG bosons were given by Higgs [9], and then
by Guralnik, Hagen and Kibble [10]. These proofs do not make use explicitly of the unicity of the
gauge invariant vacuum.
3A non relativistic precursor of this effect was found by Anderson [11] in condensed matter
physics. Namely in superconductivity the massless mode of the broken U(1) symmetry disap-
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Fig. 4.5 Coupling of the BEH scalar boson ϕ1 to massive gauge bosons

4.2.2.3 The Fate of the Massive Scalar Boson

A glance at Fig. 4.3 shows that the stretching of (classical) scalar fields are indepen-
dent of local rotations of the φ-field in the (φ1, φ2) plane. This translates the fact that
the modulus of the φ-field is gauge invariant. Hence the scalar bosons survives the
gauging and their classical analysis is identical to the one given for the Goldstone
model in Sect. 4.1.2.

The coupling of the BEH scalar boson to the massive gauge bosons follows from
the graphs in Fig. 4.4. Using Eq. (4.6) one gets the two tree-level vertices of Fig. 4.5
where the heavy wiggly lines on the right hand side represent (tree-level) dressed
massive gauge propagators. The vertex couplings follow from Eq. (4.11).

4.2.2.4 Dynamical Symmetry Breaking

The symmetry breaking giving mass to gauge vector bosons may also arise from
a fermion condensate. If a spontaneously broken global symmetry is extended to a
local one by introducing gauge fields, the massless NG bosons disappear as previ-
ously from the physical spectrum and their absorption by gauge fields renders these
massive.

4.2.2.5 The Renormalization Issue

The interest in the symmetry breaking mechanism stems from the fact that it pro-
vides, as does quantum electrodynamics, a taming of quantum fluctuations. This
allows the computation of the quantum effects necessary to cope with precision ex-
periments. In other words, the theory is “renormalizable”, in contradistinction to the
theory of genuine non-abelian massive vector fields.

The massive vector propagator Eq. (4.10), which is also valid in the non-abelian
case by diagonalizing the mass matrix Eq. (4.12), differs from a conventional free
massive vector propagator. The numerator of the former is transverse for all mo-
menta while the numerator of the latter, gμν − qμqν/M2

V , is only transverse on the

pears by being absorbed by electron density oscillations, namely by the longitudinal “massive”
plasma mode.
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mass shell q2 =M2
V . The soft behavior at large q2 of the propagator Eq. (4.10) and

the gauge invariance condition Eq. (4.8) are reminiscent of quantum electrodynam-
ics. This suggested that the SSB mechanism renders charge vector meson theories
renormalizable [12].

However there is a catch. The pole at q2 = 0 in Eq. (4.10) has a negative residue
and therefore is potentially violating unitarity. A glimpse into the solution of the
problem appears from comparing our approach to the one of Higgs [13]. Higgs
obtained most of our results from the classical equations of motion. In addition, he
showed how to eliminate all contributions of the massless NG boson in that limit by
the following field transformation

Aμ − 1

e〈φ1〉∂μφ2 = Bμ, (4.13)

where Bμ satisfies the conventional classical equations of motion of a massive vec-
tor field. In terms of propagators Eq. (4.13) becomes the identity

gμν − qμqν/q2

q2 −M2
V

− 1

M2
V

qμqν

q2
= gμν − qμqν/M2

V

q2 −M2
V

. (4.14)

The term in the right hand side of Eq. (4.14) is indeed the conventional massive
vector propagator of Higgs Bμ-field which displays no unwanted pole at q2 = 0. It
constitutes a “unitary gauge” propagator. It does not share the soft high q2 behav-
ior of the “renormalizable gauge” propagator Eq. (4.10). Gauge invariance should
allow the use of either propagator, and the theory is thus expected to be both renor-
malizable and unitary. How can this happen?

The answer lies in the second term of Eq. (4.14). Let us couple Eq. (4.10) to
an external (non-conserved) current associated to the SSB gauge symmetry. The
second term in Eq. (4.14) describes the coupling of the Goldstone boson to its di-
vergence. Note that the pole contribution of the Goldstone is cancelled on-shell by
the unphysical q2 pole of the propagator Eq. (4.10), leaving only off-shell contribu-
tions in agreement with the fact that the massless Goldstone boson has to disappear
from the physical spectrum. Thus the identity Eq. (4.14) indicates that the off-shell
contributions of the Goldstone are needed to restore unitarity in the renormalizable
gauge. As an example, one easily verifies at the tree level that, taking into account
the Goldstone contribution, the identity Eq. (4.14) ensures the equivalence of the
renormalizable and the unitary gauges in the electroweak theory discussed below.

Although these arguments suggest that the mechanism can be consistent, it is a
highly non trivial affair to show that the fully interacting theory is renormalizable
and unitary. This was proven by ’t Hooft and Veltman [14, 15], who thereby estab-
lished the quantum consistency of the SSB mechanism.4

4See also Refs. [16–18].
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Fig. 4.6 Coupling of the BEH scalar boson ϕ to massive gauge bosons and to elementary fermions

4.3 The Electroweak Theory and the Standard Model

The Fermi theory of weak interactions, formulated in terms of a four Fermi point-
like current-current interaction, was well-defined in lowest order perturbation theory
and successfully confronted many experimental data. However, it is clearly incon-
sistent in higher orders because of uncontrollable divergent quantum fluctuations.
In order words, in contradistinction to quantum electrodynamics, the Fermi theory
is not renormalizable. This difficulty could not be solved by smoothing the point-
like interaction by a massive, and therefore short-range, charged vector particle ex-
change (the W+ and W− bosons): theories with massive charged vector bosons are
not renormalizable either. The solution to the problem came from the electroweak
theory for weak and electromagnetic interactions [19–21], based on the SSB mech-
anism applied to the chiral group SU(2)×U(1) with SU(2) acting on left-handed
fermions only. Together with the colour SU(3) theory of strong interactions, this is
the “Standard Model” of elementary particles.

The generators and coupling constants are gAaμ T
a and g′Bμ Y/2. The scalar

field φ is a doublet of SU(2) and its U(1) charge is Y = 1. Breaking follows
from a Goldstone type potential. It is characterized by 〈φ〉 = 1/

√
2 {0, v} and

Q = T 3 + Y/2 generates the unbroken subgroup. Q is identified with the electro-
magnetic charge operator. The only residual massless gauge boson is identified with
the photon and the electric charge e is usually expressed in terms of the mixing an-
gle θ as g = e/ sin θ, g′ = e/ cos θ . The expectation value 〈φ〉 generates the masses
of all known elementary fermions through Yukawa couplings.

Using Eqs. (4.11) and (4.12) one gets the mass matrix

|μ2| = v2

4

g2 0 0 0
0 g2 0 0
0 0 g′2 −gg′
0 0 −gg′ g2

(4.15)
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Fig. 4.7 Coupling of the BEH scalar boson ϕ to photons

whose diagonalization yields the eigenvalues

M2
W+ = v2

4
g2 M2

W− = v2

4
g2 M2

Z = v2

4
(g′2 + g2) M2

A = 0. (4.16)

The discovery of the Z and W bosons in 1983 and the precision experiments
testing the quantum consistency of the theory corroborate the validity of the BEH
mechanism. The couplings of the BEH scalar to the massiveW and Z bosons follow
from Fig. 4.5 and are depicted in Fig. 4.6a. Its coupling to elementary fermions sim-
ilarly follows from the Yukawa couplings and are shown in Fig. 4.6b. The coupling
to the massless photons occur at the loop level as indicated in Fig. 4.7.

4.4 The CERN Discovery

The recent discovery at the Large Hadron Collider (LHC) at CERN of a particle with
mass 125 GeV consistent with the Standard Model scalar boson is a direct proof of
the correctness of the BEH mechanism. In addition it will (and probably already
does) shed light on a fundamental question with deep implications on the structure
of the constituents of our universe: is this boson an elementary particle (at least to
testable scales) or is it a phenomenological description of a composite object?

The SSB mechanism described in Sect. 4.2 could be realized by an elementary
scalar condensate (Sect. 4.2.2.1) or dynamically (Sect. 4.2.2.4) in which case the
scalar boson would, at best, be a bound state.

At first sight, the absence of previously known elementary scalar particle and
the fact that a neutral scalar condensate could be, as is often the case in condensed
matter physics, only a phenomenological description of a more complex dynamics,
might have suggested a dynamical realization of the mechanism. This was com-
forted by the fact that simple dynamical models, such as Technicolor, can be con-
structed. Technicolor generate gauge vector boson masses, but its extension to pro-
duce elementary fermion masses is more problematic: giving mass to the fermions
dynamically, which is natural in this perspective, might require additional groups
which have then to confront many experimental constraints. As a rule, full dynam-
ical symmetry breaking is very laborious and the corresponding phenomenological
scalar(s) may have higher masses.5 As there seems to be no indication in the CERN

5For a review on dynamical electroweak symmetry breaking see Ref. [22].
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experiment of such different origins for fermion and gauge boson masses, dynami-
cal origin for the scalar boson appears highly unlikely. In addition the relatively low
mass (� 125 GeV) of this boson in a region where there appear to be no new funda-
mental constituents needed to generate it dynamically reinforces the conviction that
the 125 GeV boson should be viewed as an elementary particle, at least in the same
sense as all other known “elementary” objects.

This means that the complexity at high energy expected in dynamical models
should not be present. On the other hand the simplicity of the Standard Model
scalar is marred by the introduction of an elementary scalar not directly related
to the fermionic content of the theory and submitted to the ad hoc Goldstone-type
potential. These drawbacks could to some extend be avoided if some hidden su-
persymmetry, broken at larger energy scales, would be present. It would ensure,
independent of the usual rather weak argument of “naturalness”, that elementary
scalars do appear and are accompanied by fermions at different masses. Although
there is at present no indication of these supersymmetric partners, we cannot yet ex-
clude their existence even at energies available at the LHC. Only future experiments
will tell.

It is of course important to detect any possible extension of the Standard Model.
A first glimpse on new physics could already appear in the detailed analysis of the
different decay processes of the BEH boson into known particles. Quantum loop
effects, such as those already responsible in lowest order for its decay into two
photons, may indeed be sensitive to the possible existence of particles beyond the
Standard Model ones.
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Chapter 5
NET = T.O.E.?

Shmuel Nussinov

Abstract We suggest a picture where all of physical reality is restricted to one
connected net consisting of a huge number of points, links, and gauge fluxes on the
latter. [Editors note: for a video of the talk given by Prof. Nussinov at the Aharonov-
80 conference in 2012 at Chapman University, see quantum.chapman.edu/talk-24.]

5.1 Introduction

Local quantum (gauge) field theories: QED, its SU(2)× U(1) electroweak gener-
alization and QCD have been remarkably successful and may unify at high ener-
gies into one simple gauge theory with a common gauge couplings. Yet the the-
ory does not explain the number, spectrum and mixing of the quarks and leptons.
Also quantum gravity is non-renormalizable, bringing in a fundamental length scale
�p = G1/2

Newton ≈ 10−33 cm or energy mp ≈ �−1
p ≈ 1019 GeV. Space-time and the

underlying degrees of freedom could drastically change below �p . Super-strings
may provide a fundamental Planck scale theory where (Super) space-time coordi-
nates are (fermionic) bosonic fields on the string. In the following we sketch a very
different approach which we term the “net”.

5.2 Motivations for NET

Much of modern (and ancient) science is an ongoing clash between the atomistic and
continuum points of view. Molecular theory and quantum mechanics were victories
of the first, but field theories are connected with the second approach. Indeed Local
fields φα(x, t) with time evolution determined by local φn(x, t) interactions and
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“almost local” Laplacians, guarantee causal wave propagation and special relativity.
However all continuum theories appear to have an inherent difficulty connected with
the infinite number of degrees of freedom DOF. Thus consider a local field theory
where an ultraviolet cutoffΛc has been introduced. For renormalizable theories this
does not change physics at energies much lower than the cut-off. Still when embeded
in an expanding universe the introduction of a cutoff is problematic.

If all momenta K ≤Λc are discarded and all others are kept, then the total num-
ber of field degrees of freedom (free field modes) in a given volume V = L3 is:

NDOF (in V )= (κmaxL)3 =Λ3
cV (5.1)

The volume of a co-moving large region expands between the present time tHubble
and later time t by:

V (tH )→ V (t)= [a(t)/a(tH )]3V (tH ). (5.2)

This expansion preserves the number of particles of each species (protons, photons,
neutrinos, etc.) and red shifts (by atH /at ) their momenta.

However, mass parameters of the microscopic theory, such as me, mμ, m(0)qi ,
ΛQCD , mW and mPlanck ≈ (GNewton)−1/2 (which is the natural candidate for the
ultimate cutoff), do not scale with a(t)−1. Indeed severe experimental lower bounds
on

τG = (ĠN/GN)−1; τe = ((ṁ)e/me)−1; τα(em) = [α̇em/αem]−1 (5.3)

stating that all these times vastly exceed tH , have been established. Consequently,
the cutoffΛc should also not change with a(t) and hence the total number of degrees
of freedom in the local fields in a fixed, co-moving volume increases according to
Eqs. (5.1), (5.2) like a(t)3. This, however, may lead to an inconsistency. Suppose
we consider a hypothetical co-moving large volume which is isolated from the rest
of the universe at some epoch when a(t)� ct = horizon size, and that we want to
describe it completely in a quantum mechanical framework. This description could
be extremely complicated, involving a functional which depends on the fields Φa at
all points in a very fine and large lattice:

x(n)=Λ−1
c (nx êx + nyêy + nzêz)−LΛc ≤ nx,ny, nz ≤ LΛc (5.4)

inside the volume of interest:

−L≤ x, y, z≤ L. (5.5)

However, no such unitary, quantum mechanical description is possible in principle:
As the universe expands, so does the dimensionality of the Hilbert space with more
and more degrees of freedom being continuously generated.

The Holographic principle stating that the maximal number of degrees of free-
dom in the volume L3 is proportional to the area NDF ≈ (L/�p)2 rather than the
volume ameliorates, but does not resolve, this difficulty. Another alternative which
we will not pursue is that the underlying theory is truly conformal allowing only for
angular variables but no mass or length parameters. While a most elegant and useful
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idealization for many field theories at high energies it does not seem to be realized
in nature.

Lacking a quantum theory with multiplying degrees of freedom we are left with
two alternative “extreme continuum” and “extreme atomistic” approaches.

The first approach, adopted in string theories, disallows any discretization or in-
troduction of cutoffs which is redundant if the complete theory is finite. Indeed
any such discretization destroys reparametrization invariance—a vast “gauge group”
whose strict preservation is crucial-just like that of usual gauge invariance in ordi-
nary renormalizable gauge theories.

Our present suggestion is based on the other, extremely “discrete” approach
where all physical reality consists of a finite and fixed number of degrees of free-
dom: the vertices and links of a “net”. These degrees of freedom evolve according to
simple “local” rules. Hopefully the resulting evolution (of our finite number of de-
grees of freedom) will give rise to a 3-D space, to (general) covariance and gravity,
to the observed fields and to a correct cosmology.

As noted above, a strong motivation for superseding local field theories are the
difficulties associated with sub-Planckian (gravitational) physics. We resolve this by
postulating that the Planck length �p , time tp , and mass, mp , are the minimal length
and time possible, and the maximal energy that can be associated with one elemen-
tary degree of freedom [1]. Thus�x ≤ �p, �t ≤ tp and elementary excitations with
K ≥mp do not exist.

We demand that the theory be quantum mechanical at all levels. Indeed, the desire
to have a Hilbert space of fixed dimensionality motivated our model to start with.

While gravity and the 3-D space itself are derived concepts in our net some form
of gauge interactions is taken to be fundamental. Indeed, the basic forms in gauge
theories:

∫
Aμdx

μ,
∫ ∫
Fμνdx

μdxν do not depend on the existence of metric and
can be defined for discrete lattices or even general networks of Links.

Cosmology strongly motivates searches for new alternative schemes. Astropar-
ticle physics, combining the Standard Big Bang (SBB) and standard particle mod-
els, successfully predicts Helium and other light element abundances. Field theories
with spontaneous symmetry breakings can generate phase transitions in the early
universe and induce inflation which, in turn, explained the horizon, Flatness, and
Entropy puzzles. However the tiny positive cosmological constant, the nature of
dark matter and the lack of good models for the baryon asymmetry and for infla-
tion remain outstanding puzzles. Conventionally, we first develop a microscopical
theory which is as complete as possible, and then apply it to macrophysics and cos-
mology. This constrains the microphysics parameters as manifested e.g. in bounds
on neutrino masses or neutrino species required in order to avoid overclosure or too
rapid expansion at the time of nucleosynthesis. It is however conceivable that a sat-
isfactory theory of both microphysics and cosmology can only emerge jointly from
a common underlying structure which incorporates a novel form of Planck scale
physics.
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5.3 The Net

The primitive degrees of freedom of our “net” are taken to be a set of Nv = N
vertices, NL links, and some “gauge connections” along these links. The resulting
connected network (or graph) is our toy model universe. The various connected nets
define an (orthogonal) set of states in Hilbert space. and the wave function of the
universe is a linear superposition of those:

|Ψuniverse〉 =
∑

nets

A
ψ
net |net〉 (5.6)

As for the gauge degrees of freedom we allow only the fundamental k× k repre-
sentations of an SU(k) gauge group to reside on each link—maintaining a discrete
finite number of degrees of freedom.

We first specify the kinematics of our net: the allowed vertices and links and the
definition of “length” along the net. We then proceed to the dynamics—the rules of
evolution of the gauge degrees of freedom which are the conventional rules and the
evolution of the net itself.

A priori both the kinematics and dynamics of the net could be very complex:
any vertex could be joined to any number of other vertices and the evolution of the
system could involve arbitrary link switchings.

Many very complex systems evolve towards a “fixed point” of a second-order
phase transition that the renormalizable four-dimensional field theories are in its
“long-wavelength universality class.”

We will not adopt this point of view and assume that well-defined kinematics
and dynamics exist. Since these embody the fundamental degrees of freedom and
the basic laws of physics, respectively, we cannot attempt to specify them. Rather,
we will describe general constraints on and guesses of rules which make the net
evolve in the desired manner.

5.3.1 Kinematics

First we specify the valency i.e., the number of links incident on each vertex. As-
suming an underlying SU(K) gauge group we allow someK fold vertices on which
we can place K “incoming” inwardly-directed “electric” fluxes, or K “outgoing”
fluxes. The fluxes are analogous to those in QCD which emanate from quarks and
terminate on antiquarks. In particular, baryons in SU(K) contain a baryonic junc-
tion point where the K fluxons emanating from the K quarks meet, coupling them
to a gauge singlet via an ε symbol.

B = εαi ...αKΨ α1 · · ·Ψ αK (5.7)

We will introduce fermions later but for now assume that we have no “free links”
i.e. external lines. In addition to the K-fold “baryonic” vertices (Fig. 5.1). It is nat-
ural to have mostly four-fold vertices. Indeed junctions of three links where each
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Fig. 5.1 K-fold “baryonic
vertex”

Fig. 5.2 Four-fold “mesonic vertex”

carries the fundamental K representation of SU(K) are forbidden by the K color
conservation whereas four fold vertices allow for two incoming α1α2 and two out-
going ᾱ3ᾱ4 directed links so that the relevant “color” coupling is:

δα1α3δα2α4 + δα1α4δα2α3 (5.8)

We next define the distance dab between two vertices Va and Vb as the minimal
number of links along a path connecting the two vertices a definition which satisfies
the triangular inequality:

dab + dbc ≥ dac (5.9)

To conform with the assumption of the preceding chapter the physical distance be-
tween neighboring vertices is taken to be the minimal-Planck length.

Planck length = �p = 10−33 cm (5.10)

Points in ordinary physical space are usually separated by a vast number of
Planck lengths and hence there should be a correspondingly large number of links
on the shortest path connecting them. Certain “pathologies” arise when, with the
exception of one or few very short paths joining two vertices on the net, all other
joining paths have a very large number of links. A more stable definitions of �ab
accounts not only for the shortest path but also for the number of relatively shot
paths.

Next we address time and evolution. Intrinsic local times associated with the
“physical” rates of evolution in almost “flat regions” to be defined later of the net
may allow four-dimensional Lorentz invariance in those regions. On cosmological
scales and particularly near “creation” (t = 0), space and time are radically different
and an overall “net” time may be useful.

Let us use discrete “updating” of the net, as in Monte Carlo calculations with a
fixed, short time interval, �t , between consecutive updates which we take to be the
Planck time,

�t = tp = �p/c≈ 10−44 sec. (5.11)



58 S. Nussinov

Fig. 5.3 An elementary
operation of switching two
equal orientation links which
originate from two n.n.
vertices and terminate on two
n.n. vertices

5.3.2 Dynamics

The “update rules” or the transfer matrix T (or the Hamiltonian H ) of our quantum
mechanical net:

T ≡ ei�tH/� ≈ 1 − itpH/� (5.12)

constitute the dynamics. Consider first the link-switching dynamics of the net. In
the {net} basis, 〈{n′}|T |{n}|〉 is the probability amplitude that a net {n} at time t will
transform into a net {n′} at time t ′ = t+ tp . The wave function of the net (=universe)
starts at t = 0 in a state Ψ0〉 and after a large number τ = t/tp of evolutions becomes

|Ψt 〉 = T τ |Ψ0〉 = eiH t/�|Ψ0〉(17) (5.13)

The dimension of the vector Ψ or matrices T (H) is huge, equaling the number of
all allowed nets which grows with N , the total number of vertices, at least as N !.

To describe the present (or future!) three-dimensional universe, the net must con-
tain, as we show in the following, a very large number of vertices:

N =Nv ≥ 10180 (or 10250) (5.14)

so that N ! is truly huge.
The allowed 〈{net ′}|T |{net}〉 = Tnn′ are restricted by demanding “locality”. Dis-

tances and nearest neighbors (n.n.) and next-to-nearest neighbors (n.n.n.), etc. are
defined for vertices in a single net but we can use them to define neighboring nets.
Thus consider the particular “elementary” links switch illustrated in Fig. 5.3 for the
case when these links emanate from and terminate on n.n. four-valent vertices of
Eq. (5.8).

We will allow in T only transitions of this type, namely only matrix elements
connecting a given net to nets which are “nearest in net space,” i.e., obtainable by
one operation of the kind shown. (Clearly T will have also diagonal matrix elements
connecting identical nets.)

An important advantage of such “local evolution” is that it avoids faster than light
signals.

To demonstrate this, and for many other reasons, we introduce a special net
{Net(vac)} characterizing the “vacuum” state of our theory. In general the physical
states of the universe need not be diagonal in the {net} basis and any such state, and
|Ψ (vac)〉 in particular is a superposition of nets of the general form of Eq. (5.6). The
superposition is often dominated by a specific net and by neighboring nets obtained
by local flippings of links. This is motivated by the vacuum of ordinary interacting
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Fig. 5.4 The “bubble chain”
as a 1-d {Net(vac)}

Fig. 5.5 Cubic 3-d lattice

quantum field theories which is a superposition of the “true” empty vacuum, and
states with various local “vacuum fluctuations”.

The vacuum has no special points or regions differing from others and is therefore
translational and rotational invariant. Like all other states describing the evolving net
(or physical universe), it cannot be eigenstate of the net hamiltonian as it would then
evolve just by picking up overall phases.

We define {Net(vac)} by requiring maximal symmetry and following the above
discussion all vertices in the closed net are taken to be 4-valent.

Such completely symmetric nets with one-, two- and three-dimensional features
are the bubble chain shown in Fig. 5.4, the square lattice and the diamond lattice
(which for ease of drawing in Fig. 5.5 was replaced by the simple cubic 3-d lattice)
respectively. All lattices are closed in a toroidal fashion as shown for the 1-d bubble
chain.

Generic nets may have arbitrary Hausdorf dimensions and could be fractal. Such
nets are not translationally invariant and have lower symmetries than the integer
dimensional nets discussed here. Such a completely symmetric net is postulated to
be the dominant component of the vacuum-the state to which the universe ultimately
evolves.

The size of the 3-d universe in this final vacuum state is:

L=N1/3 �p ≈ 10−33N1/3 cm (5.15)

At the present time, say, t ≈ 1010 years ≈ 3 ·1017 sec, the size of the universe is L≈
RHubble ∝ ct ≈ 1028 cm. If we would identify the present state of the universe with
{Net(vac)}, then from Eq. (5.15) N1/3 ≈ 60 and N ≈ 10180. However, the present
universe is very different from the ultimate vacuum. It is still expanding and even
accelerating a bit. Also, there are inhomogenities and structures such as the baryons,
which, by direct experiments, have a very long lifetime;

τproton ≥ 1032 cm yrs. (5.16)

Conceivably, the “true” vacuum can be achieved only after all the baryons decay;
namely, at time t > τproton. (The preferred decay mode being from a bound hydro-
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Fig. 5.6 A causal propagation—at a speed of one link length �p per one updating time tp—of a
lattice imperfection (in this case a quartet of anomalous “5-fold” vertices) via local link flips

gen atom: p + e− → two neutrinos so as to get rid also of the electrons.) At such
time, R = ct ≈ 1050 cm and Eq. (5.11) implies we find the large number of degrees
of freedom quoted above in Eq. (5.10).

Let us consider now a local disturbance of {Net(vac)} where the latter is depicted
as a two-dimension square lattice. This disturbance, say, some locally “discon-
nected” or “anomalous” set of vertices, can “travel” along the lattice of {Net(vac)}
by having at each updating (i.e., at each time interval �t = tp) some n.n. pairs of
vertices disconnect and reconnect at the location of the disturbance. See Fig. 5.6.

Thus the “perturbation” can travel one link length �p in one updating time in-
terval δt = tp , namely at a velocity which, be definition, never exceeds c ≡ �p/tp
ensuring causal propagation.

Had the link switching in the net been a classical “cellular automata type” pro-
cess, the resulting shifting in both the vertical and horizontal direction leads to “dif-
fusion” rather than proper wave propagation, and/or relativistic motion of particles
(wave packets). To ensure the latter we need to multiply the various propagation
paths by appropriate phases and then superpose the paths. This is consistent with
our choice of a quantum mechanical evolution (5.13).

The updating of the net could be done by switching one pair of links at a time in
the whole net. This is not consistent with the Q.M. evolution (Eq. (5.13)) where all
transitions are tried at any updating, i.e., during each time interval and also is too
slow. Just as in the case of ordinary computers, we can, in general, do “parallel com-
putations”. In the present context this means simultaneously flipping links in various
parts of the net. Such simultaneous flipping can be done freely in disjoint regions
of the regular vacuum net. Suppose, however, that we proceed with two sets of con-
secutive, local, link switches representing the propagation of two wave packets or
“particles” which simultaneously approach a particular link, or pair of n.n.n. links.
We then encounter a “conflict” or “frustration” as different link switches would best
serve to propagate the first or second “disturbance”. A computational analogy of
this is the conflict between two parallel processors trying to simultaneously address
the same memory unit. This conflict would slow down the evolution at this point.
If physical time is fixed by the local “rate of evolution” this appear to slow down
or red-shifted, due to interactions. More generally “matter”, unlike empty space, is
unstreched, crumpled regions of the net—that gradually mesh with the regular and
flat remaining regions of the net that constitute the “vacuum”. If the dislocation of
Fig. 5.6 hits a disordered region it will meanders around and slow down in the disor-
dered region. This is a-fortiori the case in quantum mechanics due to Anderson like
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localization. Fermat’s principle that light follows the path of minimal time—a corol-
lary of its stationary phase and maximal coherence—then implies the gravitational
light bending and consequent time delays.

5.3.3 The Initial State

Specifying the initial conditions for a classical system or the initial quantum state
is important, particularly when the system in question is the whole universe. Thus,
in the standard big bang (SBB) the universe expands, despite gravity which tends to
halt the expansion, due to “initial conditions”. In the present case, the final state of
the universe is dominated by the symmetric translational invariant |net(vac)〉.

Quantum mechanics allows for a time symmetric formulation [2] where both ini-
tial and final states are specified. If, these two states are almost orthogonal to each
other, then the ensemble of pre—and post-selected systems exhibits unusual behav-
ior at intermediate times. It was shown that “weak measurements” of the usual her-
mitian observables can yield values lying outside the spectral range of the operator
considered. These reflect the novel “potentials and forces of pre- and post-selection”
required in order to guide the system along its unusual path. We may have to resort
to this formulation in which the “destiny state” of the universe is also prescribed [3].

The conventional alternative is to specify only the initial state |Ψ (0)〉 and
[prove??/assume?/hope] that the dynamics encoded in 〈n′|T |n〉, evolves after a suf-
ficiently long time, |Ψ (0)〉 to ‖Psivac〉.

While |Ψ vac〉 was chosen by maximal symmetry considerations, the initial state
(or rather the net configuration dominating it) will be highly hierarchical and with
partial symmetry. An example of such a net is the “doubled tree” of Fig. 5.7.
It is obtained by first constructing a tree: the “root” vertex V0 connects to four
first-generation vertices, V (i)1 i = 1 . . .4; each of the V (i)1 vertices “grows” three

second-generation vertices, V (i)2 i = 1 . . .12, etc. This process repeats for g gener-
ation. There are 4 · 3g vertices of the g′th generation. We connect them via 4 · 4g

links to an image, inverted tree. This yields then one connected net with altogether
N > 4 · 3g+1 − 2 vertices and 2N links.

{net(0)} is remarkably compact. The maximal distances between the antipodal
vertices, V0,V

′
0, is only d(V0,V

′
0)≡ L({net(0)})= 2g + 1. Thus, the complete size

of the initial net (or universe) is

L({net(0)})= L(t = 0)≈ 2(�g3N)�p ≈ 104�p (5.17)

and all the N ≈ 10250 degrees of freedom are nestled within this tiny volume.

5.3.4 “Toy Scenario”

A basic feature of our toy net universe is its ongoing fantastic expansion from the
microscopic, almost Planckian, initial size to present (and future) cosmological di-



62 S. Nussinov

Fig. 5.7 Net(0). The folded-over tree diagram. For convenience of drawing we used 3-fold rather
than 4-fold vertices

mensions achieving Inflation “for free”. Indeed the horizon and flatness problems
are resolved right away by our postulated initial state {net(0)} and (hopefully to be
derived) final state |net(vac)〉, respectively. Thus the extreme smallness, ≈ 103 �p
of the initial universe (not to mention the existence of one overall wave function,
|Ψt=0〉 of the net and its gauge degrees of freedom, i.e., of the universe), avoids the
first problem. The final completely stretched and flat vacuum state—out of which
not only “monopole-like” wrinkles have been ironed out but possibly all baryons as
well—would resolve the second issue, if we can show that on a coarse grained scale
the present universe is close to {net(vac)}.

It is important however, that gravity be of a secondary, induced nature. Indeed,
in ordinary space-time-gravity, the initial {net(vac)} encounters right away fatal dif-
ficulties.

We have a huge number of degrees of freedom, N ≈ 10250 packed within a
tiny, almost Planckian, volume. Endowing each degree of freedom (link of the net)
with a small energy (w) causes, if gravity exists at t = 0, an immediate collapse of
{net(vac)} into a black hole.

To avoid then gravity from nipping, so to speak, our emergent universe in the bud,
it should not be there at t = 0! This is quite consistent with the fact that 3-d space did
not exist at t = 0 either. We will have to demonstrate that eventually (or even rather
soon) the “partially stretched” net will possess gravity and Robertson-Walker-like
cosmology.

Whatever effects gravity will have it should not overcome the “primary” drive
of expansion of the net universe towards {net(vac)}. Still gravity should generate all
fairly stable and long lived gravitationally bound structures—a highly non trivial
issue which we revisit towards the end of this section.

In some way we can view the initial highly hierarchical state {Net(0)} as
the “false vacuum” in inflationary scenarios whereas the final flat symmetric net
|Net(vac)〉 is, by its very definition, the “true vacuum”. Inflation is driven here not
by “negative pressure”, but rather by the net evolving towards a more symmetric
state. We cannot use energy considerations, not only because energy-momentum is
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not yet defined. Indeed had |Ψ (0)〉 or any later state, e i
H
κ
t |Ψ (0)〉 been an eigenstate

of the net Hamiltonian H, it evolves only via an overall phase factors. Still the final
“vacuum” like net is far more stable than the initial doubled over tree state. As elab-
orated in the next section we need to allow cutting of fluxon carrying links in order
to naturally incorporate fermions. Cutting the initial very hierarchical double tree
net just at two symmetric locations near each of the two antipodal roots separates
it into almost two equal parts and a whole giant “baby universe” will then separate
and float away. This is definitely not the case for the final vacuum net—or even for
intermediate sufficiently stretched nets where any such cutting is just a “vacuum”
fluctuation corresponding to the creation of Fermion anti fermion pair.

Note that we have achieved eternal inflation without finely-tuned special “In-
flation Theories”. Inflation is driven by the peculiar connections in the initial net
and hence can be viewed as Planck time/Quantum era inflation. Despite the overall
tiny 103lP size of the initial “doubled tree” net—the line separating the two mir-
ror trees cuts across a huge O(N(V)) number of links. Thus in another loose sense
one may be tempted to identify the two trees with the two colliding branes in some
models [4]. Such niceties aside, the on-going expansion in the net scenario can lead
to a very serious difficulty. While on cosmological scales we observe (accelerat-
ing/Hubble +) expansion, objects or structures on all scale ∼ 102–103 times smaller
than R(Hubble) do not expand. At the higher end starting with clusters of galaxies
this is due to gravity. Once the escape velocity (GM/R)1/2 from a structure of size
R massM exceedsHR, the differential Hubble expansion across the structure, it be-
comes “Autonomous” and no longer participates in the cosmological expansion. In
particular the well measured solar system and other multi-stellar configuration have
to a very high accuracy fixed sizes. Lower size structures like rocks, grains, atoms
and nuclei are held together by the electric U(1) and the SU(3) QCD gauge groups.
The latter were introduced into the net via “small” Wilson loops—which in the limit
of a regular 3 d net should become essentially the Wilson action/Kogut Susskind
Hamiltonian. In the continuum limit of the theory i.e. on scales (far!) larger than
lplanck we assume that the original SU(K) theory breaks down leaving the direct
product of the confined SU(3) color and the (hard to get Xiral) −SU(2)LXU(1)
E.W. gauge group and the resulting local field theories yield the above electric and
nuclear/QCD forces.

However gravity is generated in the net framework by local changes of the metric
i.e. the inter-vertex distances as defined above, by flipping near-by links. Since this
involves two links each of which is a vector-spin 1 object, in a symmetric manner,
we expect the resulting gravitons to carry spin 2 or 0. The latter scalar/dilaton part
corresponds to local change of scale which is absent in the final ideal symmetric
vacuum net. A proper continuum limit is expected to generate à-la Feynman the
theory of GR by exchanging gravitons.

As in the standard approach gravity reflects the changing metric/topology of the
net via link flips. In particular a set of flips forced by the pre and post selected, ini-
tial and final, nets is driving the early and present inflation. Furthermore matter is
identified here as a region of space where fermions and gauge fields reside and with
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a substantial deficit of the standard, valence = 4, vertices and hence is far from be-
ing a part of ideal regular vacuum like net. This then suggests that the gravitational
binding of two (or more) chunks of matter manifest via some special connections
between vertices of the net in each of the two regions. These connections corre-
spond to irregular “deviant” links which “jump” over the vast number of links in
the relatively flat and regular region of “empty space” separating the two bodies in
question. The number of such connections emanating from region A is roughly the
number of special vertices in say region A which very crudely is correlated with the
“total gravitational mass of A”. since such connections of A to the rest of the net
tends to fix this region and impede its motion which cannot be achieved by local
flips of links we have here—in an extremely “Machian” fashion the equivalence of
inertial and gravitational mass. When diluted by the many regular and long paths
between vertices in A and those outside A the fewer deviant links emanating out
of A smoothly modify the metric around it by a small amount. If matter around A
is spherically symmetric or if A is surrounded by vacuum we expect—just like for
the electrostatic field lines around a charge—that the special outgoing lines will be
distributed in a spherically symmetric manner and hence the 1/R2 law.

5.3.5 Introducing the Fermions

Scalar fields are naturally discretized by placing them at the vertices of a, say, square
lattice Φ(x)→Φ(n). The kinetic (derivative) part of the Hamiltonian:

∑
(Φn −Φn+î )

2 + (Φn −Φn+î )
2 ≈
∫
(∇Φ(x))2d3x (5.18)

allows, via ΦnΦ
+
n+î , the scalar particle to hope from a vertex n to its nearest neigh-

bors n + î. In lattice gauge theories the Ai fields or the corresponding connections

U
n,n+î = exp i(Ai�xi) (5.19)

lie along the link connecting n and n+ î. Φn Un,n+î Φn+i is then the gauge invariant

hopping term, reflecting the gauge invariant, continuum kinetic term
∫
(DμΦ)

2. In
this formulation we naturally associate the field strength Fij (x) ≡ (Di,Dj ) with
plaquettes.

Un,i,j =U
n,n+î Un+î,n+ĵ U

+
n+î+ĵ ,n+î; ,U

+
n+ĵ ,n (5.20)

The plaquettes in turn allow theU ’s to hope from a link to a neighboring link. Higher
order antisymmetric forms Fμνλ(x), if appearing in the theory can be associated
with three, etc., dimensional volume elements.

Spin 1/2 fermions have no such natural locations on static lattices. Our dynamic
net which allows motion of links by rearrangements may offer such a location by
identifying fermions with cut links. Specifically we will allow cutting links which
carry the SU(K) flux thereby mimicking the production of say quark-anti-quark
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Fig. 5.8 A “half link”
Fermion F and anti-Fermion
F̄ generated by cutting one
link of our net. The arrows
indicate SU(K) κ, k̄
(fundamental and
anti-fundamental)

pair in a chromoelectric flux tube which then separates into two smaller parts. (See
Fig. 5.8.)

Each member of the pair can then be viewed as “an external line” incident on our
original vacuum diagram carrying into (or out of) it the gauge quantum numbers of
the SU(K) fundamental representation K .

The odd statistics of “half link” fermions is suggested by reversing the original
argument for QCD color [5]. If both are at the same baryonic vertex, then it is man-
ifest in the εai ...ak couplings (Eq. (5.7)). In general the two half-links, or fermions,
F and F ′, are at different vertices and we “parallel transport” F to some baryonic
K-fold vertex, B , along a path P connecting F to B and F ′ to the same B along the
path P ′. The structure of the bosonic vertices (Eq. (5.8) and Fig. 5.1.B) ensures that
this transporting of F yields an U(P) factor which is the path ordered product of the
U matrices along the path P :

U(P) =Πn1 U(1)U(2) . . .U(n) (5.21)

Similarly, F ′ picks up a

U(P ′) =Πn′
1 U

′
(1)U

′
(2) . . .U

′
(n′) (5.22)

factor. After exchanging F,F ′, thereby obtaining the (−1) factor due to the ε sym-
bol at B , we transport F backtracking along the path P ′ to the vertex where the
half-link F ′ was originally incident collecting a U+(P ′) factor. Likewise, we trans-
ports F ′ backwards along P to the original location of F collecting U+(P ). This
completes the exchange of F and F ′ the U factors cancel leaving just the required
overall minus sign:

U+(P )U+(P ′)(−1)U(P ′)U(P )= −1 (5.23)

Until we demonstrate that (locally) our net possesses Lorentz and, in particular,
rotation invariance, the spin of the half-link fermion cannot be ascertained. The
following suggests that the spin should be 1/2.

We can join a half-link and its “conjugate” half-link on a neighboring vertex by
“welding together” the free endpoints of the two so as to re-form the original full
link-as indicated in Fig. 5.9.

If we allow the additional operation of disconnecting a half-link from its original
vertex of incidence we have yet an alternative way of combining the two half-links.
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Fig. 5.9 The two ways of adding the spin of FF̄ corresponding to 1/2 ⊗ 1/2 → 1 + 0

We can then disconnect and flip backward one half-link so as to retrace backward
the other half-link flux and annihilate it. In the end, we have transformed the original
two n.n. three valent vertices which have no direct, one-link connection (Fig. 5.9(b)).
To match SU(K) quantum numbers we will have to assume that scalar fields in the
fundamental representative of SU(K) are now located at the amputated vertices. We
may eventually try to associate these with “Higgs” scalar fields.

Recalling that links (vertices) are associated with spin s = 1(0), the two opera-
tions of “parallel” and “backward” joining of half-links could have a simple inter-
pretation as addition of angular momenta,

1/2 × 1/2 = 1 ⊕ 0 (5.24)

if indeed the half-links carry spin-1/2.

5.4 Further Comments and Summary

To make the Net scenario viable we need to indicate how it can yield Lorentz invari-
ance,relativistic dynamics, gravity, the observed pattern of gauge interactions and
the three families of quarks and leptons and mimic the SBB cosmology over most
of its history. The present rather crude picture cannot achieve or even meaningfully
address most of these goals. In this last section we recall beside the glaring faults
some nice features that the net picture may offer. Specifically we comment on:

• The unsatisfactory introduction of non-gravitational gauge + matter parts. and a
possible way for obtaining Einstein Maxwell (or YM) interaction.

• The lack of satisfactory simple beginning—the need to multiply degrees of free-
dom (DOF) early on.

• The primary role of entropy/computationability, possible connection with the sug-
gestion of T. Toffoli re the emergence of Lorentz Invariance and also of the prin-
ciples of minimal action in the limit of a large number of degrees of freedom.

• a suggestive picture of black holes
• a possible understanding of the direction of time and of the Non-unitary collapse

in the NET.
• The merging of space and matter and their common origin in the net.
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I. While gravity and even space-time are supposed to emerge from the pattern of
flipping near-by links in the net—most of particle/field dynamics was grafted onto
the net by allowing Yang-Mills fluxes to reside on closed loops. To keep a finite
number of degrees of freedom we allowed only the fundamental fluxes of say an
SU(K) gauge group. This implied that vertices of valence four are needed to allow
non zero fluxes in all directions. with most vertices of this type we can have the nice
feature that 3 dimensional approximately flat space naturally arises as the one with
the highest dimension in which a regular -diamond like—lattice is allowed. Still the
simple rules for the flux flow of minimal fluxes along the basic links illustrated in
Fig. 5.2 above are actually of a U(1)K so that specific “colors” red, blue, etc can
be continuously traced and conserved (or circulate in a closed loop). On a bigger
coarser scale we can have color a and anti-color flowing along parallel links and
thus generate fluxes in the adjoint of U(K), or thanks to the baryonic vertices, of
SU(K). Still lacking the encoding of the specific group via the Clebsch-Gordan
coefficients at the vertices as e.g in the Penrose spin nets, we can only hope that the
correct group structure will emerge. All the above strongly suggest that we should
look for a more natural construction of the gauge DOF replacing the above Wilson
ex-machina introduction. It is still encouraging that the gauge DOF—the closed flux
loops on the net—naturally interact with gravity namely the dynamical topology of
the net as follows. The need to conserve SU(K) limits our freedom in flipping
links. Since the maximal stability under the local link flips was the criterion for
selecting the symmetric lattice shape as the “lowest most stable, vacuum state” this
contributes an extra energy. More generally, the presence of matter such a gauge
loops and/or fermions i.e., flux carrying half links does prevent achieving in their
local vicinity the ideal net—or equivalently “curves” space.

II. The basic principle underlying the net—that the total number of DOF is finite
and fixed does imply that the starting net (aka the universe) already possess a huge
number (∼ 10250) of DOF’s i.e vertices/links. This is very artificial though in the
spirit of the “landscape” one can argue that it is needed to create our habitable
universe. Still the very special tree structure of each half of the nascent universe
suggests that at the time of “creation” we abandon unitary evolution and allow a
tree like exponential growth not just of the physical size but also of the total number
of DOF’s.

III. The above asymmetric treatment of time and space makes Lorentz invari-
ance in locally flat regions of the net hard to achieve. This and the lack of co-
herent dynamics are obvious and serious deficiencies. In this connection we note
that in his work on “Action, or the fungibility of computations” Tommaso Toffoli
[6] suggested a new principle of maximal number of “Computations” that the sys-
tem can perform underlies the action principles of physics. This would reduce not
just thermodynamics—but all of physics to basic “laws of large numbers”. He then
showed how this yields Lorentz invariance. We have noted that the principles un-
derlying the evolution of the net from its initial hierarchical to the final regular form
involve maximizing the number of possible near-by variants—or if the system is
endowed with some temperature—the entropy or (the negative of the) free energy.
Since furthermore, the actual step by step evolution seems to require non-trivial
computations Toffoli’s philosophy and its results may apply in the net approach.
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Fig. 5.10 Two-dimensional
illustration of a black-hole

IV. Having gravitational binding manifest via “irregular” links connecting net
vertices which are far apart in an almost regular back-ground suggests the following
picture for the most tightly bound structure—the black holes. It obtains by having
the inward pointing links emanating from half of all the N = A/l2p vertices on the
surface of a black hole of some radius R connect at random to the remaining half.
Clearly this construct has:

(1) Entropy proportional to its area.
(2) no small closed loops and hence cannot accommodate gauge particles and mat-

ter in general—apart of coarse from conserved charge.
(3) while macroscopic (or even astrophysical R ∼ 108–109 km for galactic BH’s),

2πR perimeter and 4πR2 area of the B.H. obtain by walking around it, the B.H.
has a one Planck thickness and no “inside”—realizing in a most extreme fashion
the Fire-wall paradigm (see Fig. 5.10).

(4) After many local flips the deviant internal “Spaghetti” like links may wind up
with both ends terminating at near-by points and eventually be emitted as ∼N
hawking photons.

It would be nice to have reliable estimates of the mass lifetime and external grav-
itational fields of B.H’s. Still the above few points are very suggestive.

V. The evolution in the above scenario of the net/universe from the initial nascent
Planckian state to the final regular vacuum—is clearly very directional—and pro-
vides an “arrow of time”. Also constructing fermions by cutting links yields, if an
appropriate set of links are cut, a non-unitary evolution by having one or more ver-
tices leave the net. Since cutting happens only for flux carrying links i.e in regions
where matter resides and is more likely for macroscopic systems this may underlie
a possible mechanism for the collapse of the wave function.
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VI. The distinction between space and matter fade away in the net picture. There
is no qualitative difference but rather a matter of the degree to which we have “ir-
regularities” in the underlying net and “physical” matter is replaced by the abstract
connections between points realizing Wheelers’ “it from bit” concept.

Prolog: The following proverb suggests the importance of recognizing the over-
all frame-work before making up theories. On the skin of a giant elephant, in the
neighborhood of one of it’s many scars lives a colony of intelligent ticks which
can make only very tiny excursions within the immediate vicinity of their home
scar. Still by ingeniously measuring the distances to other scars they found that the
universe is a) curved and b) expanding. While these are sound conclusions, out-side
observers have a much simpler explanation.
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Chapter 6
The Limits of Black Hole Complementarity

Leonard Susskind

Abstract Black hole complementarity, as originally formulated in the 1990’s by
Preskill, ’t Hooft, and myself is now being challenged by the Almheiri-Marolf-
Polchinski-Sully firewall argument. The AMPS argument relies on an implicit
assumption—the “proximity” postulate—which says that the interior of a black hole
must be constructed from degrees of freedom that are physically near the black hole.
The proximity postulate manifestly contradicts the idea that interior information is
redundant with information in Hawking radiation, which is very far from the black
hole. AMPS argue that a violation of the proximity postulate would lead to a con-
tradiction in a thought-experiment in which Alice distills the Hawking radiation and
brings a bit back to the black hole. According to AMPS the only way to protect
against the contradiction is for a firewall to form at the Page time. But the mea-
surement that Alice must make, is of such a fine-grained nature that carrying it out
before the black hole evaporates may be impossible. Harlow and Hayden have found
evidence that the limits of quantum computation do in fact prevent Alice from car-
rying out her experiment in less than exponential time. If their conjecture is correct
then black hole complementarity may be alive and well. My aim here is to give an
overview of the firewall argument, and its basis in the proximity postulate; as well as
the counterargument based on computational complexity, as conjectured by Harlow
and Hayden.

6.1 Introductory Remarks

I have known Yakir for a very long time, and whenever I get confused about quantum
mechanics, my first reaction is to ask how he would think about the problem. I am
very confused right now. A puzzle has come up involving quantum mechanics that
threatens to undermine everything we thought we know about black holes. I offer it
in hopes that Yakir will figure out what is going on.

L. Susskind (B)
Stanford Institute for Theoretical Physics and Department of Physics, Stanford University,
Stanford, CA 94305-4060, USA
e-mail: susskind@stanford.edu
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The claim of black hole complementarity (BHC) [1] is that information is not
invariantly localized. Under certain conditions a bit can appear to be “here” to one
observer, and far away to another. The ambiguous nature of localization was cod-
ified in BHC and the holographic principle. John Preskill, Gerard ’t Hooft, and I
championed this view in the early and mid 1990’s. Since then it has become an
accepted principle, particularly after gauge-gravity dualities were discovered.

BHC has been challenged by Almheiri, Marolf, Polchinski and Sully (AMPS)
[2] who argued that the postulates of BHC are mutually inconsistent; in particular,
they claim that the purity postulate, the assumption of semiclassical QFT outside
the black hole, and the no-drama postulate lead to a contradiction.

If the firewall argument is correct then it may represent a step backward to a
more traditional idea of information-localization, but at the cost of a breakdown in
the concept of a smooth horizon [3].

6.1.1 Postulate 5

When asked if BHC means that information behind the horizon is meaningless I’ve
generally answered no; information in the interior of a black hole is meaningful,
but it is redundant with information in the exterior of the black hole. At early time,
before there’s been much evaporation, the redundancy is between the interior and
the stretched horizon. Later, after a great deal of evaporation, the redundancy is
between the interior and the Hawking radiation. The interior is meaningful, but it,
and the Hawking radiation, should not be counted as independent.

One implicit assumption of the AMPS papers explicitly contradicts the above
statement of BHC. The authors assume, as in the original BHC paper, that the de-
grees of freedom of the interior must be constructed from exterior degrees of free-
dom. But they also assume that those exterior degrees of freedom are physically
near the black hole. In other words AMPS assume that the interior is constructed
from the near-horizon degrees of freedom, and that the far-away Hawking radiation
is not involved. Just to give the assumption a name, I will call it Postulate 5: the
proximity postulate.

The proximity postulate directly contradicts the statement that “after a great deal
of evaporation, the redundancy is between the interior and the Hawking radiation.”
AMPS were of course aware of this, and an important part of their argument is
devoted to justifying the proximity postulate.

6.2 Aspects of Entanglement

In order to make the written version of this lecture self-contained I have included a
section on various aspects of entanglement.

There are two situations in which large amounts of entanglement are known to
occur. The first has to do with the properties of the ordered ground states of quantum
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Fig. 6.1 Dividing space into
two entangled half-planes.
The entanglement of a
conformal theory can be
envisioned in terms of
mirror-image Bell pairs
formed from cells on the right
and left side

field theories including condensed matter systems. The second is almost the com-
plete opposite; it involves entanglement that occurs as a result of complete random-
ness. The first case is fairly familiar; nearby subsystems tend to be highly entangled
as a result of energy considerations. This type of entanglement leads to the area
law for entanglement entropy, the reason being elementary; the number of lattice
points adjacent to a given region is proportional to the surface area of the region. If
one thinks of entanglement as the sharing of Bell pairs, then the Bell pairs in this
first type of entanglement are well localized and the components of a pair are not
distantly separated.

6.2.1 Ordered Ground States

A typical example of an ordered ground state is the vacuum of a conformal field
theory. If we divide space into a left and right half, the two halves will be entan-
gled with an divergent entanglement entropy proportional to the area of the dividing
plane.

S = A

l2
(6.1)

where l is an ultraviolet cutoff. A rough picture of the entanglement can be provided
by dividing the space on either side into cells in a scale-invariant way, as in Fig. 6.1.
The purple line in the figure representing the boundary between the entangled re-
gions has been drawn thickened to represent the cutoff length l.

In each cell a degree of freedom can be defined by averaging the field over the
cell. The degree of freedom in a cell at a distance ρ from the dividing-surface are
therefore field-modes with wavelength of order ρ. The entanglement across the sur-
face can be approximated by saying that mirror image cells are entangled. The lo-
cality and scale-invariant character of the entanglement can be roughly modeled by
thinking of the cells as qubits which are entangled in Bells pairs, Ai entangled with
Bi , as in Fig. 6.1. Each entangled Bell pair contributes a single bit of entanglement
entropy.



76 L. Susskind

Fig. 6.2 On the left side an N -qubit system is divided into a small subsystem with M qubits and
a big subsystem with N −M qubits. On the right side the big subsystem is further divided into a
second subsystem with N qubits and a remainder of N − 2M qubits

6.2.2 Scrambled Systems

The other less familiar situation is entirely different in character; it occurs when
energy is not a consideration at all. It is the entanglement of a scrambled system [4–
7]. The shared Bell pairs in this type of entanglement are extremely de-localized;
they are diffused over the entire system. Since it plays a large role in what follows, I
will spend some time explaining scrambling entanglement. A good example is based
on a random system of a large number,N , of qubits. In a particular basis (sometimes
called the computational basis) each qubit has two basis states labeled 0 or 1.

Begin with a highly non-typical state such as

|Ψ0〉 = |0000000 . . .00〉. (6.2)

To scramble the state, randomly pick a unitary operator U from some ensemble
of 2N × 2N unitary matrices. A simple ensemble is the maximally random Haar
ensemble which indeed scrambles, but it is also overkill—a point we will come
back to.

The scrambled state is defined by,

|Ψ 〉 =U |Ψ0〉 (6.3)

With overwhelming probability |Ψ 〉 has the scrambled property; namely, any small
subsystem has essentially no information. A small subsystem means any subset of
qubits fewer than half the total number. If M < N/2, then a system of M qubits
is small. In the left side of Fig. 6.2 an N -qubit system is divided into an M-qubit
subsystem, and an (N −M)-qubit subsystem.

The remarkable property of scrambled systems is that with overwhelming prob-
ability the amount of information in a small subsystem is negligible. The precise
meaning of this statement is that for almost all matrices U the entanglement en-
tropy a small subsystemM is very close to maximal,

SM =M log 2. (6.4)
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(From now on I will drop the factor log 2 and measure entropy in bits.) The equality
sign in (6.4) is not quite exact but the error is less than a single bit, and generally
much less than that. I will ignore this small discrepancy in what follows.

Another way to say the same thing is that the density matrix of the small subsys-
temM is extremely close to the maximally mixed density matrix,

ρM = 2−MI (6.5)

where I is the unit matrix in the state-space of the M qubit system. Again, the
equality sign is correct up to negligible errors in the large N limit.

It follows that the scrambled state |Ψ 〉 in (6.3) can be written in the form,

|Ψ 〉 =
∑

i

|i〉s |φi〉b (6.6)

where the states
∑
i |i〉s represent a basis for the small M-qubit system, and the

|φi〉b represent states in big subsystem of (N −M) qubits. Moreover, the fact that
the density matrix of the small subsystem is maximally mixed implies that the |φi〉b
are orthonormal.

The |φi〉b are not a complete basis for the big (N −M)-qubit system. They only
span a subspace of dimension 2M . We can think of the |φi〉b as the basis states
for a subsystem ofM qubits that lives in the larger (M −N) qubit subsystem. This
subsystem is most certainly not a collection of the original defining qubits. However,
it is unitarily equivalent to such a subsystem. To make this precise we can take any
M-qubit subsystem from the (N −M) system. This is shown in the right side of
Fig. 6.2. Thus we have three subsystems. The first is the original small M-qubit
subsystem. Next is a second small subsystem which belongs to the (M −N) qubit
system. Finally there are the left over N − 2M qubits, also belonging to the big
subsystem. The point is that any vector of the form (6.6) is close to a vector that
can be expressed by a two step process. First define a state in which the two small
subsystems are maximally entangled, and the third subsystem factors off.

|Φ〉 =
∑

i

|i〉s |i〉s′ |00000 . . .〉 (6.7)

where s′ refers to the second small subsystem, and |00000 . . .〉 denotes the state of
the remaining (N − 2M) qubits. In such a state the small subsystem is manifestly
maximally entangled with a subsystem of the big subsystem.

To obtain |Ψ 〉 from |Φ〉 we apply a unitary scrambling operator V on the big
(N −M) qubit subsystem.

|Ψ 〉 = V |Φ〉. (6.8)

The operator V is the product of a scrambling operator on the big subsystem
and the unit operator in the small subsystem. What V does is to scramble the M
qubits, that are entangled with the small subsystem, and hide them among the larger
(N −M) qubits of the big subsystem. One point to bear in mind is that the matrix
V depends on the state |Ψ 〉. In other words V is a function of U .
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States of this type are not special. Almost all states of the originalN -qubit system
will have this behavior, however they are divided into a small and big subsystems.

I suggested earlier that the matrix U may be drawn from an ensemble which is
less random than the uniform Haar measure. A Haar-random matrix will certainly
produce scrambled states, but it is very difficult to achieve Haar-randomness; indeed
it can only be done by an exponential number of operations (exponential in N ).
However, scrambling can typically be achieved by a polynomial number of steps; a
weaker type of randomness is sufficient. The matrix U need only be drawn from the
ensemble of unitary 2-designs, U2. U2-randomness is equivalent to Haar random-
ness for any quadratic function of the density matrix of the system, and is enough to
scramble. The main point about U2 is that it is much easier to average over U2 than
to average over the Haar ensemble. Averaging over the Haar-measure typically takes
exponential time, while U2 averaging can be accomplished in polynomial time.

On the face of it, the two situations in which large amounts of entanglement
occur; namely highly ordered ground states, and highly random scrambled states,
seem to have little to do with each other. However, in black hole physics the two
come together in a surprising way. The highly ordered ground state seen by a freely
falling observer at the horizon is “dual” to a highly scrambled state seen by an ob-
server who stays outside the black hole. Moreover, the entanglements of the ordered
infalling state are dual to the entanglements of the random thermal state of the exte-
rior description.

In some ways scrambled states resemble maximally mixed states (density ma-
trices proportional to the unit matrix), but there are subtle fine-grained differences.
For each scrambled state there are observables which distinguish it both from other
scrambled states, and from mixed states. I will refer to them as fine-grained proper-
ties, by contrast with coarse-grained properties that do not encode such distinctions.

Consider a maximally impure state for the entire system described by the density
matrix

ρ = 2−NI (6.9)

where I is the 2N -dimensional unit matrix. The maximally impure state ρ shares
the property with |ψ〉 that small subsystems have no information, but in the impure
case, large subsystems also have no information. Moreover ρ does not give rise to
massive entanglement. No two subsystems are entangled in ρ.

6.2.3 Coarse-Grained and Fine-Grained

In the theory of large chaotic systems there are quantities that are so ridiculously
hard to keep track of that we are inclined to think of them as completely meaning-
less. An example would be the memory of the initial position x(0) of a particular
particle in a sealed box of gas, after an exponentially long time t . The principles of
classical mechanics imply that x(0) can be expressed in terms of the coordinates and
momenta of all the particles at time t , but this information is of no practical value.
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It is so fine-grained that the tiniest perturbation in either the initial conditions or the
Hamiltonian of the box will radically alter the connection between the degrees of
freedom at time 0 and time t . We call such quantities fine-grained. Coarse-grained
quantities are the opposite; they are relatively insensitive to such tiny perturbations.
For example the number of particles in a small sub-volume averaged over a one-
second interval is coarse-grained. It will be important to realize that the quantities
that the AMPS argument deals with are analogous to the very fine-grained details of
a box of gas.

Properties of a scrambled qubit system fall into two classes, coarse-grained prop-
erties are sensitive to the difference between |Ψ 〉 and ρ; and fine-grained properties
which are not. All quantities that are made out of fewer than half the qubits are
coarse grained. Fine grained observables are always made out of more than half the
qubits. Any test of the entanglement between small and large subsystems is fine-
grained.

For the simple qubit systems we’ve discussed, typical fine-grained quantities are
trivial. Each qubit can be described by the usual Pauli operators σ(n) where n label
the qubit. Any operator in the entire system can be expressed as a sum of products
these Pauli operators. Suppose we consider an operator made out theM qubits of a
small subsystem. Since the density matrix of any small subsystem is proportional to
the identity, the expectation value of any product of the M qubit operators is zero.
This is true for both a scrambled pure state and the maximally mixed state.

On the other hand when we come to operators involving more than half the
qubits, things change. Consider a particular qubit—say qubit 1—in the small sub-
system of M qubits that we discussed earlier. In the scrambled state that qubit is
entangled with a hidden qubit in the big subsystem. Suppose we call the Pauli op-
erators for the hidden qubit τ(1). By an appropriate choice of conventions we can
assume that σ(1) and τ(1) are, to a high approximation, in a singlet state, Therefore

〈Ψ |σ(1) · τ(1)|Ψ 〉 = −3 (6.10)

But in the maximally mixed state

〈Ψ |σ(1) · τ(1)|Ψ 〉 = 0. (6.11)

By measuring σ(1) · τ(1) and obtaining a number far from −3 one could distin-
guish1 |Ψ 〉 from ρ.

The operator τ(1) is not one of the original qubit operators. It is an extremely
complicated combination of all (N −M) qubits of the big subsystem, and therefore
the operator in (6.10) is made out of more than half the original qubits. From the
fact that the expectation value is different in the scrambled and mixed states we
recognize it as representing a fine-grained property.

1One can distinguish the maximally mixed state from a particular scrambled state in this manner.
But one could not distinguish whether the state was pure without specifying the particular state. In
other words this is not a one-shot method to determine purity.
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Fine-grained operators are extremely dependent on the scrambled state in the
following sense. If we pick the particular combination of original qubit operators
that define σ(1) · τ(1) for the state |Ψ 〉 and evaluate it in another scrambled state
|Ψ ′〉 the result will be negligible (exponentially small) [8, 9]. So to test out if a state
is pure by measuring a fine-grained operator, one has to know in advance exactly
what scrambling dynamics has taken place.

Fine grained quantities for large systems generally don’t play any role in practical
many-body physics. The quantities that interest us usually don’t depend on whether
a large system is in a pure state or a thermal ensemble unless the system is in the
ground state. Fine-grained observables are much too difficult to measure. Thus we
have very little experience with fine-grained physics, but the questions that will
occupy us in this lecture are of the most fine-grained kind.

6.2.4 Distillable Entanglement

6.2.4.1 Pure States

It’s important to have a quantitative concept of how entangled two subsystems are.
We imagine a system of qubits and consider two subsystems will be denoted by B
and H . To define the amount of entanglement between B and H I will introduce
a concept from quantum information theory called distillable entanglement [10]
represented by the symbol D. I will not attempt to be too precise in its definition; in
essence it is the number of Bell pairs shared by two subsystems.

First of all, if we insist on exactly maximal entanglement, then the generic answer
is zero, but if we relax the tolerance a bit, the generic answer is lots. An exact Bell
pair is a pair of qubits, B and HB , such that:

(1) The density matrix of the union of the two is pure. In other words the Von
Neumann entropy of the union B ∪HB is exactly zero.

(2) The density matrices of the individual subsystems B andH are each maximally
random, i.e., proportional to the identity matrix. We can also say that the Von
Neumann entropy of each subsystem is maximal and equal to 1.

To relax these conditions we can introduce a small parameter ε and require that:

(1′) The density matrix of the union of the two is almost pure. In other words the
Von Neumann entropy of the union B ∪HB is less than ε.

(2′) The density matrices of the individual subsystems are almost maximally ran-
dom. The Von Neumann entropy of each subsystem is almost maximal and
greater than 1 − ε.

This defines a regulated version of a Bell pair.
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Fig. 6.3 The Page curve for
distillable entanglement

6.2.4.2 The Page Transition

Consider a scrambled system of N qubits, and divide it into two subsystems withM
and (N−M) qubits. The following is true: Given any small ε, there is anN(ε), such
that if the total number of qubits is greater than N(ε), then the number of regulated
Bell pairs is equal to the smaller ofM and (N −M). A more general way to express
this is that the number of approximate Bell pairs is equal to the entanglement entropy
of the subsystems. For a large black hole the numbers are so big that the difference
between regulated and exact Bell pairs is not important.

In Fig. 6.3 the distillable entanglement is plotted as a function of M . As M in-
creases from zero, the number of Bell pairs increases linearly until it reaches a max-
imum at M = N/2. At that point the curve exhibits a sudden change in the slope,
and by symmetry, it decreases to zero when M =N . This sharp transition or cusp-
like behavior was first observed by Page [4, 5] and the curve is sometimes referred
to as the Page curve.

6.2.4.3 Mixed States

Let’s consider the distillable entanglement between H and B, assuming the total
system is not in a pure state. Counting the distillable entanglement is more difficult
if the bipartite system under consideration is not pure, because the concept of en-
tanglement entropy does not exist. Nevertheless the distillable entanglement D is
defined, for our purposes as follows:

Consider a unitary operator U constructed as the tensor product of a 2NH × 2NH

matrix in the Hilbert space of the subsystem H , and the identity matrix in B. Apply
it to the density matrix ρBH of the H B system. The result is ρ̂BH .

ρ̂BH =U†ρBHU (6.12)

Next, pair the B-qubits with a subset of the H -qubits and count the number of
regulated Bell pairs. Finally maximize that number with respect to all 2NH × 2NH

unitary transformations. Basically what we are doing is unscrambling the H system
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and counting the Bell pairs. The process is called distilling and the resulting number
of Bell pairs is the distillable entanglement.2

The distillable entanglement is very difficult to compute but we can bound it, and
in some situations of interest the bound is almost saturated. The useful bound on D
is given in terms of the mutual information of the H B system. If SB,SH , and SBH
are the Von Neumann entropies of B, H , and H B (the union of H and B) we
define

μ= 1

2
(SB + SH − SBH ) (6.13)

(Note that μ is defined to be half the usual mutual information.)
Suppose that the H B subsystem is purified by a third subsystem R. Then it

follows that SBH = SR and we can write

μ= 1

2
(SB + SH − SR) (6.14)

It is known that distillable entanglement is bounded by μ [10],

D ≤ μ. (6.15)

Another simple fact that helps in computing μ is that for a scrambled system the
Von Neumann entropy of a small subsystem is always maximal [4, 5]. This means
that for any subsystem ofM qubits, its entropy is given byM as long asM <N/2.

Finally, there are two situations in which D equals μ or is very close to it. The
first case is μ= 0. Since both μ and D are never negative it follows that if μ van-
ishes, so does D.

The second less trivial case is when μ is maximal or close to it. This happens
when μ≈M . In that case D ≈M .

These facts will be helpful in explaining the firewall argument.

6.3 Complementarity and the Firewall Argument

6.3.1 Degrees of Freedom

Let’s begin with an account of the firewall argument as described in [3]. The argu-
ment, which assumes the proximity postulate, is based on a simplified model of a
black hole that starts by dividing the black hole geometry into four regions as in
Fig. 6.4. The first three called R, B, and H form the exterior of the black hole;

2There are several notions of distillable entanglement including various “one-shot” definitions.
Generally they all allow transformations on both subsystems. Since the definition I am using re-
stricts the search for Bell Pairs by allowing only transformations on H , it gives a smaller answer
than other definitions.
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Fig. 6.4 The Black hole
geometry is divided into four
regions, R, B, H , and A .
Region B is shown divided
into thermal cells, each with a
single bit of entropy

in other words the regions outside the horizon. The most distant region lies beyond
the photon sphere at r = 3Rs

2 (Rs is the Schwarzschild radius). This outer region
is called R for radiation. Detectors in R unambiguously detect Hawking radia-
tion. The degrees of freedom in R are very low energy and low angular momentum
massless quanta.

Moving inward, the zone labeled B is the next region, which lies between
the photon sphere and the stretched horizon. This region is well-approximated by
Rindler Space. The degrees of freedom of B are quantum fields but with a short-
distance cutoff at the string scale ls , where string effects become important. The
zone lies between the photon sphere and a proper distance ls from the horizon.

The remaining portion of the black hole exterior is the stretched horizon labeled
H . The degrees of freedom of H are not field theoretic; the main thing I will
assume is that they are fast scramblers [4–7]. Possibly they form a matrix system as
in Matrix theory [11–14].

In the static Schwarzschild frame, unlike the infalling frame, the zone B and
the stretched horizon H are in thermal equilibrium at a non-zero temperature. The
dimensionless coordinate temperature is 1

2π and the local proper temperature, in the
zone, varies according to

T = 1

2πρ
.

Here ρ is the proper distance from the horizon. At the stretched horizon the proper
temperature is 1

2πls
.

The fact that the H B system is thermalized is the basis for the random qubit
model. Pure states of a complex system which have a finite energy per degree of
freedom are a lot like scrambled states. To make the connection explicit, one can
subdivide a thermal system into cells, in such a way that each cell has about one bit
of entropy. For low temperature systems the thermal cells are large, while for hot
systems they are small. If the system is rescaled so that there is one thermal cell per
unit volume, then the temperature will be rescaled to order unity, and each thermal
cell can be thought of as a single qubit of a scrambled system.

As we will see, the similarity between one side of Fig. 6.1 and the cells of Fig. 6.4
represent the duality between the ground-state entanglements of a pure state and the
scrambled entanglements of the thermal state describing the H B system.

The total entropy of the black hole includes the entropy in H as well as that in
B. The entropy in field-modes of B can be computed. It would be divergent without
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the cutoff, but with a cutoff at ρ = ls it’s of order

SB ∼ R2
s

l2s
. (6.16)

We can also write it as [15],

SB = g2SBH (6.17)

where g is of order the four-dimensional string coupling constant, and SBH is the to-
tal black hole (Bekenstein Hawking) entropy. If we assume g� 1 then zone entropy
is a small numerical fraction of SBH .

If the black hole is formed by collapse, then while it is young the radiation de-
grees of freedom can be ignored. But as it evaporates entropy is transferred from the
H B system to R. For simplicity we can assume that the total entropy is conserved
although in practice it increases by a factor of about 3/2 [16].

In visualizing the field theory modes in the zone, it’s helpful to transform from
proper distance ρ to the tortoise coordinate u where

u= log
ρ

ls
.

The horizon is at u= −∞ but the stretched horizon is at u= 0. Thus in the zone the
physical range of u is from zero to the photon sphere at u= log 2MG

ls
. For simplicity

consider a massless scalar field φ. If the field is weakly interacting then we can
express it in terms individual angular momentum modes in which case the wave
equation in the zone takes the form

∇2φ + l2s

R2
s

L2e2uφ = 0 (6.18)

where: RS is the Schwarzschild radius of the black hole: ls is the string length scale:

L is the angular momentum of the mode. The expression l2s
R2
s
L2e2u is the usual

centrifugal barrier which inside the photon sphere is attractive.
In tortoise coordinates the dimensionless coordinate temperature is 1

2π and the
thermal wavelength �u is order 1. The modes that are excited in the equilibrium
state of the black hole can be classified by angular momentum, and by the radial
tortoise coordinate u. The u-axis can be coarse-grained into thermal cells with a
spread of order �u= 1.

For a given angular momentum the range of u runs from u = 0 at the stretched
horizon, to a value determined by the centrifugal barrier. Using the fact that the
temperature is of order unity, the modes become frozen out of the thermal ensemble
when eu > Rs

Lls
. Thus each L mode lives in a “box” defined by

0< u< log
Rs

lsL
(6.19)
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It follows that for each total angular momentum L there are (2L+ 1) log Rs
lsL

effec-
tive field modes in the zone, and each field mode carries about a single bit of entropy.
Roughly speaking each of these modes is a qubit. The qubits can be thought of as
each inhabiting a thermal cell as in Fig. 6.4.

The simplified model represents the black hole as a system of N qubits where N
is the Bekenstein-Hawking entropy shortly after collapse. The qubits are assigned
to the subsystems H , B, and R according to,

N =NH +NB +NR. (6.20)

At any given time the black hole entropy is

SBH =NH +NB (6.21)

and the entropy in the radiation is3

SR =NR. (6.22)

The fraction of the black hole degrees of freedom carried by B is

NB

SBH
= g2. (6.23)

We can assume that the black hole is formed in a pure state and that the internal
dynamics quickly scrambles it, long before any appreciable amount of radiation has
been emitted.

These qubit modes do not describe everything that can happen in the zone. For
example, a particle can have an energy much higher than the thermal energy ∼ 1

ρ
.

Such modes describe infalling particles that fall in from infinity with energy larger
than the Hawking temperature, but they contribute a negligible amount to the en-
tropy of the black hole. When a particle with high energy falls in, in the static frame
it disturbs the equilibrium for a short time. But in the scrambling time of order
Rs logRs the energy is distributed into the thermalized modes of the stretched hori-
zon H .

The model that I’ll use for evaporation is very simple. One by one, qubits are
transferred from the black hole subsystem (H B) to the radiation subsystem. The
entire system remains in a pure state but the H B subsystem loses its purity. Even-
tually all the qubits are transferred to R and the black hole disappears. The final
state of the radiation is pure, but it is highly scrambled.

The fourth region of the black hole is the interior—the region behind the
horizon—called A . As long as we keep away from the singularity, the degrees of
freedom in A are similar to those in B; they are field theoretic with a cut-off at
ls . However, the main point of BHC is that they are not new independent degrees
of freedom. The degrees of freedom in A are constructions built out of the exterior
degrees of freedom in H , B, and R.

3This formula is correct for the coarse-grained entropy of the radiation. For the fine-grained Von
Neumann entropy, it is correct up to the Page time.
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Fig. 6.5 The pairing of A
and B modes can be carried
out on a space-like surface in
an infalling frame

6.3.2 Entanglement of A and B

To make their argument AMPS take the perspective of a freely infalling observer
passing from the zone to the interior. According to BHC such an observer sees “no
drama” at the horizon, meaning that she sees the ordered Minkowski vacuum of a
field theory like the one in Sect. 2.1. The field modes in A and B must be entangled
in approximate Bell pairs—an example of the ground-state entanglement dictated
by energy considerations. Breaking the entanglements would lead to a large energy
density in the infalling frame.

As we have seen, a mode in B can be characterized by a spherical harmonic
and a radial tortoise coordinate, uncertain to about �u= 1. The same is true of the
modes in A . In fact the B modes and A modes come in matched pairs of opposite
angular momentum and similar tortoise distance from the horizon. This pairing can
is displayed in Fig. 6.5.

Let’s denote a particular mode in B by the notation Bi and the corresponding
partner in A by Ai . The entanglement that AMPS assumes is between Ai and Bi .
For simplicity I will follow AMPS’s idealized assumption that the A and B can be
treated as qubits and that in the infalling frame Ai is maximally entangled with its
partner Bi . In other words, in the infalling frame the A B system consists of a col-
lection of g2N maximally entangled Bell pairs. AMPS explain that any significant
disturbance to the entanglement of these Bell pairs constitutes a violent perturbation
of the infalling vacuum, and would certainly destroy an infalling observer. There-
fore the no-drama postulate [2] of BHC requires that the A,B pairs remain in a state
of maximal entanglement as the black hole evaporates.4

This discussion of A,B entanglement in the infalling frame must be translatable
to the language of the exterior degrees of freedom, since by assumption, the inte-
rior degrees of freedom are constructed from the exterior degrees of freedom. The
exterior description is thermal, and by appropriately defining thermal cells, it can
be thought of as a scrambled system. That is why I said earlier that the ordered
entanglement of a ground state is dual to the scrambled entanglement of a random

4Entanglement is a necessary requirement but not sufficient. There are many entangled states but
only one of them has the correct form to describe a smooth space between A and B .
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(thermal) system. Duality between infalling ground state and exterior thermal state
is of course not new, but the point I want to emphasize is the duality of two kinds
of entanglement: the entanglement of ordered ground states, and the entanglement
implicit in scrambled states.

Since most of the exterior degrees of freedom are in H , we can assume that the
Ai are constructs made of the H qubits. Identifying Ai in H is a matter of finding
a unique subsystem of H which is maximally entangled with Bi (the partner of
Ai ). In general there is no guarantee that such a subsystem of H exists. However,
for the case of a relatively young black hole we can be sure that it does.

By relatively young I mean that the black hole has already scrambled, but the
evaporation is negligible. In that case the H B system is in a pure but scrambled
state. In other words; to a high degree of approximation, every small subsystem is
described by a random density matrix proportional to the identity, but the overall
state is pure.

Given that the state of H B system is pure, there is an important consequence
of this fact; namely, that to an equally high degree of approximation, every small
subsystem is maximally entangled with the rest of the system. Since B is a small
subsystem of the H B system, it follows that B is maximally entangled with H .
Furthermore each qubit of B is almost exactly maximally entangled with a unique
subsystem of H .

H may be given to us as some sort of recognizable quantum system, such as
matrix quantum mechanics [11–14]. But the subsystem of H that Bi is entangled
with is unlikely to be easily recognizable from the defining degrees of freedom
of H . Scrambled systems hide their entanglements in extremely difficult codes.
Typically the code involves a unitary descrambling transformation acting on the
H subsystem. The transformation descrambles the hidden qubits that are entangled
with specific qubits of B. Nevertheless, the purity and scrambled nature of the H B
state is enough to insure that each Bi is partnered with a subsystem, HBi , of the
stretched horizon. (The notation means that HBi is a subsystem of H , and that it is
maximally entangled with Bi .) By the monogamy of entanglement HBi is unique.

The conclusion of this line of argument is obvious.

(1) In the infalling frame Bi and Ai are maximally entangled.
(2) In the exterior frame Bi and HBi are maximally entangled.
(3) Maximal entanglement is monogamous.

Therefore it follows thatAi andHBi must be the same thing. The formal equation

A=HB (6.24)

expresses this identification.
Perhaps another way to say this is that H is the hologram at the horizon, that

represents the interior A . It is evident that the relation between the interior and
exterior of the black hole is extremely fine-grained from the point of view of the
exterior degrees of freedom. I’ll refer to it as the H ⇐⇒ A mapping.
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6.3.3 Non-linearity of H ⇐⇒ A Mapping

An issue that is bound to come up, is the non-linearity of the H ⇐⇒ A mapping.5

By non-linear I mean that the relation between Ai and operators in H depends on
the initial state |Ψ0〉. That’s because the particular form of HBi is state-dependent.
Although this does not imply an observable non-linear violation of quantum me-
chanics in either the exterior or infalling frames, it does seem to violate the linear
spirit of quantum mechanics.

Such non-linearity of the H ⇐⇒ A mapping is not completely new. It occurs
in the simple pull-back–push-forward strategy [17–20] for young black holes [3].
Suppose that the black hole is made by sending in a shell of a particular composition.
The shell could be a coherent electromagnetic wave, a similar gravitational wave, or
a mix of the two.

To carry out the pull-back–push-forward procedure, the operator Ai has to be
pulled back to the remote past using the low energy equations of motion in the
infalling frame. Since the equations of motion have to be pulled back through the
shell, the operator one obtains in the remote past will depend on the nature of the
shell. That dependence will also be present after the operator is pushed forward.
Therefore the dictionary between interior operators and operators in the Hawking
radiation depends on the initial state through the dependence on the state of the
shell. This is a mild form of the same kind of non-linear dependence.

Non-linear dependence in the H ⇐⇒ A mapping is probably inevitable. How-
ever, linearity can be restored by embedding the system in a larger system. For
example, if the Hilbert space is big enough to include the operators which create the
shell, then instead of saying the map depends on the state, we would say that the
operator Ai maps to an exterior operator in the joint Hilbert space of H and the
additional factor describing the shell.

6.3.4 Evaporation

Assuming the proximity postulate, a necessary condition for an uncorrupted black
hole interior is that the distillable entanglement between B and H should be equal
to the number of qubits in A . If the number is less than that, then there is not
enough of an entanglement resource to define all the interior modes. Even worse, if
D = 0 it is impossible to define any vacuum modes in A . That’s the case in which
AMPS argue that the geometry is terminated at the horizon by a firewall. The AMPS
argument can be formulated as a calculation which shows that the H B distillable
entanglement goes to zero before the black hole has evaporated.

I will adopt the very simple model of evaporation as in Page’s description [4, 5],
and the one used by Hayden and Preskill [6]. Represent the collection of N qubits

5I thank Raphael Bousso and Douglas Stanford for discussions about this point.



6 The Limits of Black Hole Complementarity 89

Fig. 6.6 Initially N qubits are distributed into boxes H (blue) and B (purple). As time evolves
qubits get transferred to R (pink)

by a box, subdivided into three boxes H , B, and R. At first the R-box is empty
and the N qubits occupy the boxes B and H . The B-box has g2N qubits and the
H -box has (1 − g2)N . The total box is scrambled.

As the evaporation proceeds the B and H boxes shrink, while retaining the
same relative size. The decreasing number of qubits is compensated by a growing
number in the R-box, the total number being kept fixed. Schematically this is shown
in Fig. 6.6.

Obviously the state of the H B system does not remain pure as qubits are trans-
ferred to R. The question is what happens to the entanglements between B and H ?
Does the existence of matched Bell pairs persist so that we can continue to identify
the Ai with HBi ?

6.3.5 Loss of H , B Entanglement

In the infalling frame A , B entanglement is essential for the no-drama postulate,
i.e., for the existence of a smooth horizon. Translated to the exterior description,
H , B entanglement is essential. How much entanglement? In the infalling frame
the number of Bell pairs is equal to g2SBH . As we will see, that amount of entan-
glement persists for a long time as the black hole evaporates. But at some point the
entanglement begins to diminish, and by the Page time it vanishes. This is the crux
of the AMPS argument.

Armed with the facts of Sect. 2.3, it is easy to prove the following:

• As the black hole evaporates and NR increases, the distillable entanglement be-
tween B and H remains maximal and equal to NB , until a specific “cusp” time
tc . As a proportion of the black hole entropy the fractional distillable entangle-
ment satisfies

D

SBH
= g2 (t < tc) (6.25)
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To prove this we use (6.14) and observe that as long as H is greater than half
the system, then

SB =NB
SR =NR
SH = SB + SR

(6.26)

which gives

μBH =NB (6.27)

Since this is the maximal value for μBH we can also write

DBH =NB
or

D

SBH
= NB

NB +NH (6.28)

which is equivalent to (6.25).
• This behavior continues until the point where NH is half the total number of

qubits. The cusp time tc is defined by the condition that NH is half the total
number of qubits N . One may also write that at the cusp time NR =Nc ≡NH −
NB .

Note that the cusp time is earlier than the Page time tp at which NR becomes
half the system.

• After the time tc the fractional distillable entanglement decreases linearly with
time. It vanishes at tp and stays equal to zero until the black hole evaporates. To
see this we note that between the cusp time and the Page time all three subsystems
have less than half the total number of qubits. Therefore SB =NB , SH =NH , and
SR =NR . It follows that

μBH = 1

2
(NB +NH −NR) (6.29)

which can be written in the form

μBH =NB − NR −Nc
2

(6.30)

In other words the mutual information begins to decrease relative to NB once the
cusp is passed. It is easy to see that it vanishes when NR =NH +NB , i.e., at the
Page time.

From the fact that μ bounds D we see that the distillable entanglement be-
tween H and B also decreases to zero at the Page time.

The evolution of the H B distillable entanglement is illustrated in Fig. 6.7.
The first fact indicates thatD remains large enough so that the interior degrees of

freedom can be defined for a long time. Indeed for small g the value of tc is almost
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Fig. 6.7 The H B fractional
distillable entanglement stays
constant until the cusp time.
It then decreases until it
vanishes at the Page time

the Page time. This is good news for a long-lived interior geometry, but we should
be clear: distillable entanglement is a necessary condition for an uncorrupted region
A , but it may not be sufficient. It is quite possible for Ai and Bi to be maximally
entangled but in the wrong Bell state.

But after the Page time there is no hope; the fine-grained quantities associated
with H B entanglement have disappeared altogether. As long as we insist that
the interior be built from near-horizon degrees of freedom the evaporation will de-
stroy the necessary entanglements and the space-time behind the horizon will be
destroyed, at least if the proximity postulate is correct.

How this happens is a mystery, but one suggestion is that as the entanglement of
B and H disappear, the singularity expands until, at the Page time, it intersects the
horizon, so that an infalling observer will hit a brick wall instead of sailing past a
locally undramatic point-of-no-return.

6.4 A = RB?

6.4.1 Redundancy of A and R

One can argue that AMPS did not prove that the standard postulates of comple-
mentarity are inconsistent, but only that they are inconsistent with the proximity
postulate. Turning it around, they proved that the first four postulates predict that
the proximity postulate must be wrong, and that information in A must eventually
become redundant with information in R.

R does provide a resource for entangled Bell pairs. Indeed, after the Page time
the degrees of freedom Bi continue to be entangled but with a subsystem of R
instead of H . It is not hard to prove that the distillable entanglement between B
and the union H B remains large enough to define partner modes for Bi . In Fig. 6.8
the fractional distillable entanglement of RB is plotted alongside that of H B. The
total is in fact conserved. Before the cusp time the Bell pairs are shared between H
and B. After the Page time they are shared between R and B. Between the cusp
and Page times they are partly shared with H and partly with R, but the number of
Bell pairs shared by B is constant.
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Fig. 6.8 As the H B
distillable entanglement
decreases, it is compensated
by RB entanglement

After the Page time the degree of freedom that is maximally entangled with Bi
lives in R and can be called RBi . The hypothesis that at late times A becomes
redundant with the Hawking radiation would replace the H ⇐⇒ A mapping by
an R ⇐⇒ A mapping,

Ai =RBi . (6.31)

The relation between Bi and RBi is very fine-grained and depends in detail on the
precise initial state and dynamics of the black hole.

An identification such as (6.31) would imply a radically greater localization-
ambiguity than

A=HB
(and would also eliminate the need for firewalls). Note however that such large scale
delocalization of information is already present in any holographic theory.

Now let’s turn to the reasons that AMPS rejected (6.31).

6.4.2 Time Travel

AMPS argued against (6.31) by invoking a thought experiment that leads to an ap-
parent contradiction. The experiment involves an observer Alice, who is equipped
with a very powerful quantum computer (QC). The input to the QC is the early
half of the Hawking radiation. The output is a specific hidden qubit that Alice can
hold and manipulate. It is assumed that Alice or her computer knows the exact initial
state of the black hole, and the precise laws of evolution of allN degrees of freedom
comprising the system.

Furthermore, according to the AMPS argument, she can collect the radiation and
use her quantum computer to distill RBi , which by hypothesis is equal to Ai . If
Ai refers to a field degree of freedom well after the Page time, then Alice knows
information about Ai long before Ai has even happened. Alice then jumps into the
black hole, carrying RBi , in time to meet the original Ai and its partner Bi .

The problem is that Alice can check whether her version of Ai (namely RBi ) is
entangled with Bi . If it is then, by the monogamy of entanglement, Bi cannot also
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Fig. 6.9 Alice’s causal patch
is shown as the light blue
region. The green spacelike
surface asymptotes to the
light-like boundary of Alice’s
causal patch. It encompasses
A, B , and the early half of the
Hawking radiation

be entangled with the original Ai , and thus a firewall must exist. In fact there is no
need for her to check since she is already sure the quantum computer has accurately
distilled RBi .

Another way to express the paradox is that Alice’s experiment is analogous to
past time-travel. The degree of freedom Ai has somehow appeared long in the past
as RBi , and then traveled back to meet itself atAi . In this form the firewall is playing
the role of Hawking’s chronology protection agent.

In [3] an possible alternative chronology protection agent was remarked on; “It
may simply be physically impossible to distill RB out of the Hawking radiation in
time to bring it back to meet A.” The same idea had also been expressed by Bousso
and by Harlow.6

The decoding part of the experiment is clearly impractical. However, unless it
violates a principle of physics such as locality, or the uncertainty principle, it must
be allowed as a legitimate part of the AMPS argument. Therefore, to be consistent,
the postulates of complementarity predict that the laws of physics absolutely forbid
the distillation of RBi in less than the evaporation time.

6.4.3 Strong Complementarity

There is a formal version of the Alice’s argument [21, 22]. As Bousso and Harlow
discuss, we can follow Alice to the end of her world-line at point p on the singularity.
The causal past of p defines Alice’s causal patch shown in Fig. 6.9.

Her causal patch can be sliced by a family of space-like surfaces, one of which
passes through the modes A, B , and asymptotes to the light-like boundary of the

6The possibility that Alice’s experiment could not be carried out in the required length of time
came up repeatedly in conversations between Raphael Bousso, Daniel Harlow, myself, and several
others, soon after the AMPS paper appeared. The feeling at that time was that while difficult or
impossible in practice, the principles of quantum mechanics do not forbid the experiment.
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Fig. 6.10 This figure is the
same as the previous figure
with Bob’s causal patch
superimposed. The dotted
surface is a space-like
hypersurface that asymptotes
to light-like infinity

Fig. 6.11 Both Alice and Bob have stretched horizons but they are not at the same place

Alice’s causal patch. Complementarity requires entanglement between B and A in
Alice’s infalling frame. Assuming that A and B are well after the Page time, the
space-like slice passing through them also intersects more than half the outgoing
Hawking radiation.

On the other hand the causal patch of Bob, who stays outside the black hole,
contains B , as well as the outgoing radiation that was seen from Alice’s patch (see
Fig. 6.10), but it does not contain A. On Bob’s space-like slice B must be entangled
with the outgoing radiation, i.e., with RB

The apparent contradiction is that photons (of the first half of the radiation) which
pass through Alice’s surface, also pass through Bob’s. Thus it would seem that if B
and RB are entangled on Bob’s space-like slice, the same must be true on Alice’s,
and this leads to the unallowed polygamous entanglement that AMPS base their
argument on. However, things may be more subtle than this.

Consider Fig. 6.11 which is the same as (6.10) except that stretched horizons have
been drawn in. Bob’s quantum description is from the outside of the black hole and
the radiation region, the zone, and his stretched horizon. These degrees of freedom
are coupled and Bob’s stretched horizon is dynamically involved in the production
of Hawking radiation. On the other hand, in Alice’s infalling frame Bob’s stretched
horizon is absent; it is replaced by a displaced stretched horizon that is shifted to the
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left. What is clear is that the two descriptions of the production of radiation cannot
be exactly the same.

At the level of coarse grained properties of the radiation, the descriptions must
match in the overlap region of the causal patches, out beyond the photon sphere
where it is well understood that infalling and stationary observers see the same pho-
tons. The question is whether the two descriptions must match at the fine-grained
level. In fact, Bousso and Harlow [21, 22] suggest that they do not. B is a coarse-
grained object and therefore Alice and Bob should agree about it, but RB is ex-
tremely fine-grained. Since in Alice’s frame there cannot be multiple entanglement,
RB must not exist in her quantum description. In other words the radiation should
not have the large-scale entanglements of a pure but scrambled state in her frame.

In Bob’s frame purity requires those entanglements, but Bob’s description does
not include A.

But now it may be objected that we have an observable contradiction: Bob studies
the photons that he sees and concludes that there is (B,RB) entanglement. Alice
studies the same photons and says there is not (B,RB) entanglement.

Bousso and Harlow [21, 22] have argued against this conclusion, advocating a
strong form of complementarity that can be described by saying each causal patch
has its own quantum description. In Alice’s quantum mechanics B is entangled with
A and not with the outgoing radiation. In Bob’s description B is entangled with RB .

In fact we will see that the Harlow-Hayden conjecture protects against any real
contradiction and allows the Bousso-Harlow strong complementarity to be consis-
tent.

6.4.4 The Harlow-Hayden Conjecture

Hayden and Harlow (HH) have presented evidence suggesting that the Alice exper-
iment does, in fact, violate fundamental physical principles [23]. They conjectured
that the distillation of RBi in less than exponential time (exponential in N ) is im-
possible with a QC that satisfies the principles of quantum mechanics and relativity.
Satisfying quantum mechanics is, of course, part of being a quantum computer,
but special and general relativity also impose limitations such as locality and holo-
graphic limitations on information.

If the HH conjecture is correct, then the operational limitation on Alice’s exper-
iment are shown in Fig. 6.12. If the extraction of RBi takes exponential time, then
an observer can only distill RBi after she has reached the corner in the diagram
where the black hole has already evaporated. In other words whatever mechanism
implements the HH conjecture serves as a chronology protection agent.

The Harlow Hayden argument is technical [23] but let me discuss the issues.
Here is the problem Alice faces: To begin with, the system of N qubits starts in
a known pure state, schematically representing the initial state of the black hole.
As an example the initial state could be |Ψ0〉 = |00000000 . . .〉. Subsequently the
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Fig. 6.12 If the HH
conjecture is true, RB cannot
be distilled until the black
hole has evaporated. The
distillation can only be done
by the time Alice arrives in
the uppermost corner of the
Penrose diagram

internal dynamics of the black hole, represented by a unitary scrambling operator
U , scrambles the state,

|Ψ 〉 =U |Ψ0〉 (6.32)

The matrix U is drawn from a statistical ensemble which is not strictly random.
Scrambling does not require the state |Ψ 〉 to be typical, but only that the density ma-
trices of small subsystems be random (proportional to the identity to high accuracy).
In the quantum-information jargon, it is sufficient that U be a unitary 2-design.

The unitary 2-design ensemble (U2) is very far from the Haar-random ensemble
that would ordinarily define random matrices. To see how different they are, we can
compare the number of 2-body interactions that must take place to implement U2,
and the number needed to Haar-randomize. The answer is that the lower bound to
obtain U2 randomness is N logN interactions (the bound is achievable), while Haar
randomness requires an exponential number of interactions [6]. However, although
U2 and Haar-randomness are very different, they lead to the same statistical prop-
erties for small subsystems, and for that reason U2 matrices scramble, and they can
do so in the scrambling time of order N logN .

Once the system is scrambled, evaporation separates (N −M) qubits into R.
The case of interest is when (N −M) is of order N and somewhat larger than N/2.
The remaining black hole (H ∪ B) is represented byM qubits.

Select one qubit from the remaining black hole and let it represent Bi . To be
precise, the symbol Bi represents the set of operators that act on the qubit in the
same sense that the symbol σ represents the three Pauli spin operators acting on a
spin. The partner qubit RBi is hidden among the (N −M) qubits in R, and Alice’s
job is to isolate or distill it, and convert it to a qubit that she can hold and manipulate.
To do that, she can make use of her QC to physically implement an unscrambling
unitary V operator that acts on the subsystem of (N −M) qubits. The purpose of
V is to act on RBi and convert it to a particular qubit, for example the last qubit, q0
which Alice is waiting to grab. Thus V is defined by

V †RBV = q0 (6.33)
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The operator V is of course not unique but this is not too important.
Alice does not have to search through all unitary operators V until she finds

one that accomplishes the task. Knowing the initial state, and the scrambling ma-
trix U , she can calculate V . In fact she could have done this long before the black
hole formed. She has all of infinite past time to prepare for the experiment. Alice’s
limitation is not the difficulty of determining V , but of actually using her QC to
implement V , in other word to physically apply it to the system ofM qubits.

The original scrambling operator U is drawn from the U2 ensemble forN qubits,
and only takes polynomial time to implement. If Alice had allN qubits to work with
she could unscramble the system with the inverse matrix U† which can be imple-
mented in polynomial time. Because Alice has only (N −M) qubits to work with,
the matrix V is much more generic than a unitary 2-design, and more difficult to
implement. This is analogous to the classical problem of time-reversing a complex
chaotic system if even a small amount of information is lost before reversing it.

If V is sufficiently generic it will take an exponential number of gates (expo-
nential in (N −M)) to implement V . Parallel computing does not help much. HH
argue from experience with similar problems in quantum information theory, that
the number of gates that have to operate in order to implement V is indeed expo-
nentially in (N −M). Therefore, they conjecture that it takes exponential time for
Alice to distill RBi . (The exponential time is analogous to the recurrence time for a
classical system.)

Given that the internal dynamics of a black hole can scramble in a short time,
why then does it take so long to de-scramble? There is a close classical analog from
the dynamics of complex chaotic systems. Consider a gas ofN molecules in a sealed
box. (N − 1) of the molecules are identical of type a, and one is different of type b.
Now start the system in some very non-generic state; for example all (N−1) a-type
molecules at rest in one corner of the box, and the single b-type molecule at some
other location xb with a very large energy. Let the system evolve for a (polynomial)
time until it appears to be in thermal equilibrium. The goal of the exercise is for
Alice to recover xb.

Alice is equipped with an incredibly powerful computer, which can if necessary
integrate the equations backward, but her eyesight is somewhat blurry. The input
to the computer is the final particles at some time after the system looks to be in
equilibrium. The question is how long must it take the computer to recover the
initial location of b?

The answer is—no longer than it took to come to equilibrium. If the computer
is powerful enough it can simply reverse the process and bring the system back
to its initial state. From that configuration, which is after all, special and easily
recognizable, Alice just reads off xb . By assumption that can be done in polynomial
time.

One might ask why can’t Alice look carefully at the system at the final time, and
recognize what the initial state was? She can’t because she is a bit myopic; the phase
point is a bit blurry; and any small error will, if run backward, exponentially grow.
But if the system is run all the ways back, the initial state is sufficiently distinct that
Alice’s vision is good enough, and she can recover xb in polynomial time.
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But now lets suppose that just before the system is run backward, we change
the hamiltonian by dynamically decouplingM a-type particles. The computer must
work with the remaining (N −M) particles. Then running backward will not result
in a distinctive configuration that allows Alice to read off the information we are
looking for in polynomial time. Instead the system will stay in scrambled equilib-
rium for a recurrence time of order exp(N). Only after such a long time will the
system fluctuate to a highly non-generic state, which Alice can read.

One might argue that the limitations of Alice’s eyesight are irrelevant; she can
just buy a better pair of eyeglasses. That’s where quantum mechanics comes in. The
uncertainty principle means that the fuzzyness is fundamental.

In the real case of decoding RB , if Alice had all the degrees of freedom of H ,
B, and R, she could run U backward in polynomial time (less than the evaporation
time). But because she only gets to look at the qubits in R her job is much harder,
and the guess is that it takes exponential time to distill RB .

Considerations of this type led Harlow and Hayden to the following conjecture:

The minimum time that it takes to distill qubit RBi , is exponentially grows withN .

At the time of writing this talk, the Harlow-Hayden conjecture is still a conjec-
ture. However, if true, it implies a fundamental physical constraint—call it compu-
tational complexity—that would prevent Alice from carrying out her experiment.
For an ordinary Schwarzschild black hole the total time before it evaporates is of
only of order N3. Thus the truth of the HH conjecture would undermine the thought
experiment designed to prove the existence of firewalls.

A possible way out of the computational complexity constraint was suggested in
[3] and probably by several other people. Alice may try to slow down the evapora-
tion process while her quantum computer is distillingRBi . One way to do that would
be to surround the black hole by mirrors to keep it from radiating. But as Harlow
and Hayden argue, this might not help Alice if the decoding time is exponential.
An exponential time scale has multiple meanings for a complex closed system. For
one thing the time scale for resolving tiny energy differences between neighboring
states is of order �t = 1

�E
. For a system of entropy S this is equal to eS ∼ eN . Of

greater relevance, over such time scales Poincare recurrences will repeatedly occur,
undoing and re-collapsing the black hole. It is unlikely that the identity of a mode
Ai has any meaning over such long times.

Now let’s return to Alice and Bob’s Disagreement: Alice says no B , RB entan-
glement in her frame. Bob says that there is B , RB entanglement in his frame. That’s
of course the nature of complementarity, but can their disagreement lead to an ob-
servational conflict? The answer is no if the HH conjecture is correct; the difference
between states with massive entanglement like |Ψ 〉 and those with none like ρ can
only be detected long after it is too late for Alice and Bob to communicate.

6.5 Conclusion

The AMPS paradox is currently forcing a rethinking of how, and where, informa-
tion is stored in quantum gravity. The possible answers range from more or less
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conventional localization (proximity and firewalls) to the radical delocalization of
A=RB .

The argument in favor of the proximity postulate assumes the possibility of an
“Alice experiment”, which in some respects resembles time travel to the past. From
this perspective, the firewall would function as a chronology protection agent, but at
the cost of the destruction of the interior of the black hole. The Harlow-Hayden con-
jecture opens an entirely new perspective on chronology protection. It is based on
the extreme fine-grained character of information that Alice needs to distill before
“returning to the present.”

Fine-grained information is something that has never been of much use in the
past, given how hard it is to extract. But there is clearly a whole world of fine-
grained data stored in the massive entanglements of scrambled pure states. That
world is normally inaccessible to us, but if BHC is correct, it is accessible to an
observer who passes through the horizon of a black hole. Thus complementarity
implies a duality:

Ordinary coarse-grained information in an infalling frame is dual to the fine-
grained information in the exterior description.

Or, as expressed earlier:

Ground-state entanglements in the infalling Minkowski vacuum, are dual to
scrambled entanglements of the exterior thermal description.

The HH conjecture also represent a new principle, based on quantum-mechanical
computational complexity:

Extracting fine-grained information cannot be done in less than exponential time,
comparable to the time scale for Poincare recurrences. Therefore it cannot be com-
municated back to the black hole before it evaporates.

Whether the Harlow-Hayden conjecture and A = RB provide a way out of the
AMPS puzzle, or lead to new contradictions is unknown as I write this.
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Chapter 7
Quantum Weak Measurements and Cosmology

P.C.W. Davies

Abstract The indeterminism of quantum mechanics generally permits the indepen-
dent specification of both an initial and a final condition on the state. Quantum pre-
and post-selection of states opens up a new, experimentally testable, sector of quan-
tum mechanics, when combined with statistical averages of identical weak measure-
ments. In this paper I apply the theory of weak quantum measurements combined
with pre- and post-selection to cosmology. Here, pre-selection means specifying
the wave function of the universe or, in a popular semi-classical approximation, the
initial quantum state of a subset of quantum fields propagating in a classical back-
ground spacetime. The novel feature is post-selection: the additional specification
of a condition on the quantum state in the far future. I discuss “natural” final con-
ditions, and show how they may lead to potentially large and observable effects at
the present cosmological epoch. I also discuss how pre- and post-selected quan-
tum fields couple to gravity via the DeWitt-Schwinger effective action prescription,
in contrast to the expectation value of the stress-energy-momentum tensor, resolv-
ing a vigorous debate from the 1970s. The paper thus provides a framework for
computing large-scale cosmological effects arising from this new sector of quantum
mechanics. A simple experimental test is proposed. [Editors note: for a video of
the talk given by Prof. Davies at the Aharonov-80 conference in 2012 at Chapman
University, see quantum.chapman.edu/talk-13.]

7.1 Quantum State Post-selection Combined with Weak Value
Measurements

One of Yakir Aharonov’s most significant contributions to quantum mechanics has
been to uncover the hitherto neglected sector of weak measurements combined with
post-selection. In this tribute to Aharonov’s pioneering work, I wish to extend his
ideas to cosmology, drawing inspiration from his paper with Gruss [1]. All cosmo-
logical observations and measurements are necessarily weak in the quantum sense.
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For example, the red shift of a galaxy will be measured by observing the light of
a very large number of photons emanating from a very large number of sources
within the galaxy. Although the emission of a given photon by a given atom can-
not be considered as a weak process as far as the atom is concerned, the use of a
large ensemble of photons to measure a property of the entire galaxy does constitute
a weak measurement. The quantum back-reaction of the photons on the relevant
physical variable of the whole galaxy (in this case its momentum) is negligible.

Quantum weak measurements become more interesting when combined with
pre- and post-selection. (For a review of this field, with references to earlier work,
see [2].) In a typical laboratory quantum weak measurement experiment, a system is
prepared in a well-defined initial state |in〉 at time t = tin, for example, by making
strong (projective) measurements of some observable A on an ensemble and select-
ing those members with the desired eigenstate. The system is then allowed to evolve,
and at time tout another strong measurement is made, of an observable B (B is not
necessarily the same as A). If this procedure is repeated for a large ensemble {E} of
identically-prepared systems, i.e. systems all of which are in the same pre-selected
eigenstate at t = tin, and all of which are allowed to evolve with identical Hamil-
tonians H , then in general the final measured states will not be the same. Rather,
they will be distributed over the set of eigenvalues of B with relative probabilities
assigned by the Born rule. The experimenter then has the option of post-selecting,
at time tout , a sub-ensemble {e} of the total ensemble for which all the members are
in a particular eigenstate of B; call this state |out〉. The freedom to both pre- and
post-select the state of a system is a key property of quantum mechanics, stemming
from its indeterminism. (In a closed classical Hamiltonian system, the initial state
plus the Hamiltonian suffices to completely determine the final state.) If, now, the
experimenter carries out weak quantum measurements of some observable C on ev-
ery member of the ensemble {E} at one or more times t in the interval tin < t < tout ,
then the combined results of these weak measurements for the sub-ensemble {e},
satisfying both the pre- and post-selection criteria, when expressed as a statistical
average, is the so-called weak value, given by

w(t)= 〈out |U†(t − tout )CU(t − tin)|in〉
〈out |U†(t − tout )U(t − tin)|in〉 (7.1)

where U is the evolution operator e−iH t . Weak values are not eigenvalues. Rather,
they may be regarded as members of a decomposition of eigenvalues, weighted by
the relative probabilities of finding the out states among {E}, and must be under-
stood always in terms of statistical averages over large sub-ensembles: individual
weak measurement results have no objective physical meaning. A good way to think
about Eq. (7.1) is that the initial state is evolved forward in time from tin to t , while
the final state is evolved backward in time from tout to t , and w is evaluated at time
t as a composite of the forward- and backward-evolving wave functions. Note that
w in general is not a real number, but both the real and imaginary parts have physi-
cal meaning [2]. Special interest attaches to the case that the denominator is small,
which can occur if

Re(〈out |U†(t − tout )U(t − tin)|in〉)� 1 (7.2)
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In that case, the weak values lie well outside the spectrum of eigenvalues, and can
be interpreted in some cases as an amplification process.

7.2 The Wave Function at the End of the Universe:
Post-selection in Cosmology

The concept of weak values has a clear operational meaning in a laboratory context,
when the intervention of the experimenter is used to select and define appropriate
in and out states. In this paper I wish to consider whether weak values with post-
selection are physically meaningful in a cosmological context. In Sect. 7.1, I pointed
out that cosmological observations necessarily involve weak measurements. Fur-
thermore, observational values are derived by taking statistical averages over a large
ensemble (e.g. one billion photons emanating from the same galaxy), thus producing
a weak value in the quantum sense. Turning now to post-selection, in the cosmolog-
ical case, the problem, expressed poetically, is who or what plays the role of “The
Great Selector”? That is, how are the states |in〉 and |out〉 to be determined?

Questions of this sort are not new in quantum cosmology. There are many pro-
posals for defining the initial quantum state of the universe, |in〉. Most appeal in
one way or another to simplicity. A much-discussed example is the Hartle-Hawking
so-called no-boundary wave function [3]. Other examples are to be found within the
framework of the theory of quantum fields propagating in a classical background
spacetime—a semi-classical approximation to a full theory of quantum cosmology.
It is customary in this theory to take the initial quantum state to be a vacuum state of
one form or another, e.g. the conformal vacuum (see, for example, [4]). The appeal
to initial quantum state simplicity follows from the assumption that the universe
started out physically simple and has evolved to states of greater complexity over
time. Although it is far from obvious that this trend is correct [5], quantum cosmol-
ogy has been practiced as a theoretical discipline for three decades without a serious
challenge to the assumption of a simple initial quantum state. Often, such a state is
described as “natural”.

So much for pre-selection: what about post-selection—the wave function at the
end of the universe, so to speak? Is there a natural |out〉 state too? Here we encounter
a fundamental prejudice that runs through all of physics. Whereas it is “natural” to
suppose that the universe started out in a “special” state, few physicists consider
imposing a “natural” or “special” final condition on the universe. (Some exceptions
are [6, 7]). The time asymmetry implicit in the discrimination between initial and
final cosmological states has been the basis of much debate [8, 9, 11]. Attempts have
been made [10] to construct explicitly time symmetric models of quantum cosmol-
ogy, but these are considered little more than curiosities. However, in the context of
weak values, there is no obligation when making a final state selection to impose
time symmetry: the final state can be anything at all, so long as it is not orthogo-
nal to the initial state evolved to the future spacetime boundary. One is therefore
free to explore a number of “natural” final states in addition to the mirror image of
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the initial state. A proposal along these lines has been presented by Aharonov and
Gruss [1].

The standard (asymmetric) treatment in quantum cosmology is to simply evolve
the (simple, natural) |in〉 state into the (usually complicated) |out〉 state with the
appropriate evolution operator:

|out〉 =U(tout − tin)|in〉 (7.3)

If (7.3) is substituted into Eq. (7.1), then the weak value reduces to the expectation
value for observable C at time t . But suppose, within the context of the proposal to
impose pre- and post-selection criteria independently, that

|out〉 �=U(tout − tin)|in〉 (7.4)

then w(t) will in general not coincide with 〈C〉 at time t . Indeed, it may differ from
it dramatically in the case that condition (7.2) obtains.

By way of illustration, consider the two spacetime dimensional toy model of a
scalar field with massm propagating in an expanding universe with scale factor a(t)
and metric

ds2 = dt2 − a2(t)dx2 (7.5)

Defining the conformal time η by

t =
∫ t

dt ′ =
∫ η

a(η′)dη′ (7.6)

and the conformal scale factor C as

C(η)= a2(η) (7.7)

it follows that

ds2 = a2(η)(dη2 − dx2) (7.8)

The specific choice

C(η)=A+B tanh(ρη); A,B,ρ constants (7.9)

C(η)→A±B, η→ ±∞ (7.10)

describes an expanding universe that is asymptotically Minkowskian in both the far
past and far future, but with different scale factorsA−B andA+B . The wave equa-
tion for the massive scalar field may be explicitly solved in terms of hypergeometric
functions [12]. A complete set of modes is given by

uink (η, x)= (4πωin)−1 exp (ikx − iω+η− (iω−/ρ) ln[2 cosh(ρη)])
2F1

(
1 + (iω−/ρ), iω−/ρ;1 − (iωin/ρ); 1

2 (1 + tanhρη)
)

→ (4πωin)
−1/2eikx−iωinη, η→ −∞ (7.11)

These modes coincide with standard exponential field modes in the asymptotic past.
Therefore one may define a vacuum state using them. These modes will coincide
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with the standard quantum vacuum as t → −∞. Let us choose this vacuum state to
be the “in” state of the field (|in〉) and denote it by |0in〉. It corresponds to a quantum
state in which there are no particles present in the “in” region (i.e. in the asymptotic
past). Another complete set of field modes is given by

uoutk (η, x)= (4πωout )−1 exp (ikx − iω+η− (iω−/ρ) ln[2 cosh(ρη)])
2F1

(
1 + (iω−/ρ), iω−/ρ;1 − (iωout /ρ); 1

2 (1 + tanhρη)
)

→ (4πωout )
−1/2eikx−iωout η, η→ ∞ (7.12)

This second set of modes coincides with standard exponential field modes in the
asymptotic future, t → ∞, and may be used to define a second vacuum state |0out 〉,
corresponding to a quantum state in which there are no particles present in the
asymptotic future (the out region). These two sets of modes are not the same, so

|0in〉 �= |0out 〉. (7.13)

That is, the two vacuum states, |0in〉 and |0out 〉, are inequivalent: each corresponds
to a no-particle state in its respective region, as determined by the (null) response
of an inertially-moving particle detector adiabatically switched on and off again in
that region. If the quantum state of the universe is chosen to be the “in” vacuum
|0in〉, then although there will be no particles present in the “in” region, there will
be a non-zero probability for particles to be present in the “out” region. Physically,
(7.13) corresponds to particles being created by the expanding universe (see, for
example, [4]). (Because we work in the Heisenberg representation and there are no
interactions, the evolution is contained in the time-dependence of the field modes,
so the operator U is trivial, and will be omitted in what follows.) The spectrum
of created particles may readily be evaluated using the Bogoliubov transformation
between the in and out modes

uink (η, x)= αkuoutk (η, x)+ βkuout∗−k (η, x) (7.14)

αk =
(
ωout

ωin

)1/2
Γ (1 − iωin/ρ)Γ (−iωout /ρ)
Γ (−iω+/ρ)Γ (1 − iω+/ρ)

(7.15)

βk =
(
ωout

ωin

)1/2
Γ (1 − iωin/ρ)Γ (iωout /ρ)
Γ (iω−/ρ)Γ (1 + iω−/ρ)

(7.16)

αkk′ = αkδkk′ , βkk′ = βkδ−kk′ (7.17)

from which it follows that

|αk|2 = sinh2(πω+/ρ)
sinh(πωin/ρ) sinh(πωout/ρ)

(7.18)

|βk|2 = sinh2(πω−/ρ)
sinh(πωin/ρ) sinh(πωout/ρ)

(7.19)

where the number of particles in mode k in the out region is given by Eq. (7.19).
In the foregoing treatment, the state |0in〉 defines the pre-selection. In the Heisen-

berg representation, the state remains |0in〉 throughout, including in the out region



106 P.C.W. Davies

t → ∞. Thus, the choice of post-selected state is the same as the pre-selected
state. However, we may readily generalize the treatment to the case where the post-
selected state differs from the pre-selected state evolved forward to the “out” region.
A natural choice of post-selected state is |0out 〉 . We may then consider weak val-
ues of observables at times between in and out. For example, consider the particle
number operator

Ni =�ia†
i ai , (7.20)

where a†
i and ai are creation and annihilation operators respectively for particles in

mode i. The weak value of this quantity is then given by

wN = 〈0out |�ia†
i (t)ai(t)|0in〉/〈0out |0in〉 (7.21)

To give wN a well-defined meaning, the modes corresponding to the operators a†
i

and ai need to be specified. One way to do this is to use the procedure of Hamil-
tonian diagonalization to define instantaneous modes and associated creation and
annihilation operators at time t during the expansion [13]. The excitations of such
modes are often referred to as quasiparticles. These modes will reduce to (7.11)
and (7.12) in the in and out regions respectively. It therefore follows directly from
Eq. (7.21) that wN will reduce to zero in both the “in” region (because the state is
|0in〉 there) and the “out” region (because the state is |0out 〉 there). Observers mea-
suring the weak values of instantaneous particle numbers present at time t will thus
observe the values to rise from zero, peak around the time of maximum expansion
rate, and fall towards zero again at late times. Explicit expressions for the weak
values may be calculated from the mode functions and Bogoliubov transformations
derived by Pavlov [13] using Hamiltonian diagonalization for a massive scalar field
in an expanding universe.

The toy model serves to illustrate the key issue, within the theory of quantum
fields propagating in a classical background spacetime, concerning weak measure-
ments combined with post-selection in a cosmological context, namely, the choice
of final state. In the example given, it seems very natural to choose the vacuum state
in the “out” region, as well as the (different) vacuum state in the “in” region. In part
this is due to the fact that the spacetime is asymptotically Minkowskian in both the
far past and far future. In the context of the real universe, which is (presumably)
not asymptotically Minkowskian, the choice is less clear. However, it is widely ac-
cepted that the very early universe was characterized by a period of inflation, when
the spacetime was a very close approximation to de Sitter space, and for which a
de-Sitter invariant vacuum state is a natural choice for the initial quantum state (a
popular example is the so-called Bunch-Davies vacuum state; see [14]). In addition,
it is now widely accepted that the universe is dominated by dark energy, and will
approach a (different, slower) de Sitter like spacetime in the far future. Therefore, it
is natural to choose the final state of the universe to be the corresponding de Sitter-
invariant vacuum too. If the quantum field of interest is a conformally invariant free
field, then the out vacuum is merely the in vacuum evolved into the out region, and
quantum post-selection will be trivial, that is, weak values will coincide with expec-
tation values. In general, however, the fields will not be a conformally invariant, and
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will involve particle-creating interactions, so the in and out vacuum states will not
be equivalent. In that case quantum post-selection of a de Sitter vacuum will result
in non-trivial large weak values. Depending on the specifics, there could be weak
values at the present cosmological epoch (corresponding to a small denominator in
Eq. (7.1)). These would show up as cosmological anomalies—what Aharonov has
referred to as “quantum miracles”.

To explore these quantum miracles further, I shall consider the case of anomalies
in the gravitational field. To investigate this, we need to consider the back-reaction
of the quantum fields on the gravitational field of the universe, in the case that we
impose both pre- and post-selection on the quantum state.

7.3 Gravitational Back-reaction

In a semi-classical theory in which the background gravitational field is treated clas-
sically, and the quantum state is both pre- and post-selected, the appropriate source
term to place on the right hand side of the gravitational field equations will be the
weak value of the stress-energy-momentum tensor Tμν . In the case we choose vac-
uum states in the “in” and “out” regions, denoted in what follows by |0in〉 and |0out 〉,
the gravitational equation will be

Gμν + higher order terms in curvature = 〈0out |Tμν |0in〉/〈0out |0in〉 (7.22)

where Gμν is the Einstein tensor and the source term on the right hand side of
Eq. (7.22) is seen to be the weak value of Tμν . Equation (7.22) was originally de-
rived by DeWitt by adapting the Schwinger effective action theory of quantum elec-
trodynamics to the gravitational case [15]. The effective action is defined as

W = i ln (〈0out |0in〉) (7.23)

from which it follows by variation of W with respect to the metric tensor gμν that

2

(−g)1/2
δW

δgμν
= 〈0out |Tμν |0in〉

〈0out |0in〉 (7.24)

Applications of Eq. (7.22) were widespread in the literature in the 1970s (see, for
example, [16–18]). In the case that there is pre-selection (of state |0in〉) but no post-
selection, the appropriate source term to use on the right hand side of the semi-
classical gravitational field equations is the expectation value 〈0in|Tμν |0in〉:

Gμν + higher order terms in curvature = 〈0in|Tμν |0in〉 (7.25)

(see, for example, [4]). It is important to note that the source terms on the right hand
sides of both Eqs. (7.22) and (7.25) are formally divergent and must be renormal-
ized [4]. It is well known that the divergent terms of both expressions are identical.
However, the finite residue will in general differ, and in the case that the denom-
inator of the right hand side of Eq. (7.22) is very small, this difference could be
extremely large. The upshot is that the cosmological gravitational field of a universe
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in which both the initial and final states are selected could be dramatically different
from one in which only the initial state is selected, the difference amounting to a
gravitational quantum miracle, and being perceived by an observer as a major de-
parture in the cosmological dynamics from what might be expected on the basis of a
natural initial state alone (such as the aforementioned Bunch-Davies vacuum of in-
flationary cosmology). On a historical note, there was much confused debate in the
1970s about which source term, (7.22) or (7.25), to use in the semi-classical gravi-
tational field equations. Some leading researchers (for example, [16–19]) advocated
what we would now term the weak value 〈0out |Tμν |0in〉/〈0out |0in〉 derived from the
effective action. However, the use of the expectation value 〈0in|Tμν |0in〉 eventually
prevailed. With the benefit of hindsight, we can now see that both camps were cor-
rect. When both pre- and post-selection are involved, the weak value is indeed the
appropriate source term, but if there is only pre-selection then the expectation value
should be used.

The (finite) difference between the weak value and the expectation value may be
formally cast in terms of the Bogoliubov coefficients α and β between the states
|0in〉 and |0out 〉, as follows:

〈0out |Tμν |0in〉/〈0out |0in〉 − 〈0in|Tμν |0in〉 = −i�i,jΛijTμν(u∗
in,i , u

∗
in,j ) (7.26)

where Tμν(u∗
in,i , u

∗
in,j ) is the bilinear expression for the stress-energy-momentum

tensor, with the field amplitudes replaced by the mode expression for the “in” region
(e.g. Eq. (7.11)), while

Λij = −i�kβkjα−1
ik (7.27)

[19]. There is an extensive literature on how to calculate both Bogoliubov transfor-
mations and renormalized expectation values 〈0in|Tμν |0in〉R for a variety of quan-
tum fields in a large number of cosmological models ([4], and references contained
therein). Equation (7.26) can then in principle be used to calculate the correspond-
ing weak values. For example, for the two dimensional expanding universe model
discussed in Sect. 7.2, the renormalized expectation value of the stress-energy-
momentum tensor was worked out by Bernard and Duncan [12]. In that example,
the Bogoliubov coefficients are given by Eqs. (7.15) and (7.16). In practice, obtain-
ing explicit expressions for renormalized stress tensors and Bogoliubov coefficients
is very hard, and the manipulations involved in (7.26) and (7.27) would need to
be performed numerically. However, an order of magnitude estimate may be given
on dimensional grounds. For example, in the model of Sect. 7.2, significant parti-
cle production will take place only for large values of ρ, i.e. for rapidly expanding
spacetimes, as one may infer from Eq. (7.19). On general grounds, one would also
expect most quantum miracles to be of the same order of magnitude. In the real
universe, particle production by the expanding universe is negligible at this epoch
(typically one particle per Hubble volume per Hubble time), so gravitational anoma-
lies resulting from imposing a vacuum post-selection condition on an otherwise free
field are likely to be many orders of magnitude below observability. However, in
the very early universe, when the rate of expansion was very high, quantum post-
selection might lead to significant effects. For example, the graviton background
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generated in the very early universe would propagate freely to t → ∞, so impos-
ing a graviton vacuum post-selection condition would produce a large change in the
gravitational source term at early times. In the case of interacting fields, such as the
electromagnetic field coupled to charged matter, the resulting particle production
at the present epoch is very high, and although the situation is more complicated
and harder to analyze, it seems likely that a vacuum condition imposed at t → ∞
would produce significant effects even at the present epoch. In Sect. 7.5, I give one
suggestion for how such an effect might manifest itself.

7.4 Quantum Miracle

As a simple illustration of a gravitational quantum miracle, consider a massless
scalar field propagating in Minkowski space with pre-selected state

|ψin〉 = α|0〉 + β|1k〉 (7.28)

for some momentum k, and post-selected state

|ψout 〉 = γ |0〉 + δ|1k〉 (7.29)

where

|α|2 + |β|2 = |γ |2 + |δ|2 = 1. (7.30)

The weak value of the total particle number operator N (see Eq. (7.20)) is then
readily calculated:

wN ≡ 〈ψout |N |ψin〉/〈ψout |ψin〉 = βδ/(αγ + βδ) (7.31)

It is easy to choose values of the coefficients α,β, γ, δ to yield weird weak val-
ues for N (quantum miracles). For example, the choice α = √

3/2, β = 1/2, γ =
2/

√
7, δ = −√

3/7 gives

wN = −1. (7.32)

The concept of a negative particle number is clearly analogous to the three box
problem discussed, for example in [2]. It is certainly very strange, but in the present
example it attains a clear physical meaning when we calculate the weak values of
Tμν for the “in” and “out” states (7.28) and (7.29):

〈ψout |Tμν |ψin〉/〈ψout |ψin〉 = (αγ 〈0|Tμν |0〉 + βδ〈1|Tμν |1〉)/(αγ + βδ). (7.33)

The right hand side of Eq. (7.33) is divergent. Because the field is propagating in
Minkowski space, the divergence is readily renormalized by subtracting 〈0|Tμν |0〉,
this being the standard vacuum expectation value for the field (which is convention-
ally set to zero). The finite part is then given, for the energy density and pressure
components, by

〈ψout |T00|ψin〉R/〈ψout |ψin〉 = βδω/(αγ + βδ)= −ω (7.34)
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and

〈ψout |T11|ψin〉R/〈ψout |ψin〉 = βδk/(αγ + βδ)= −k (7.35)

where R denotes renormalized. The weak value for the energy density is negative,
as is the weak value of the pressure component, which is a measure of the mo-
mentum of the state. A negative momentum implies that if a reflecting boundary
(mirror) were introduced, then (the weak value of) the recoil of the boundary would
also be negative, i.e. a weak measurement of the momentum of the mirror would
indicate a shift toward the source of the incoming beam rather than away from
it. If Eq. (7.33) renormalized is used as the source term in the gravitational field
equations, Eq. (7.22), it will exert a negative gravitational effect, so that a weak
measurement of the gravitational force would show a repulsion.

A dramatic example of what one might now call a gravitational quantum mir-
acle has been known for nearly four decades, and was discovered by Boulware
[16], who calculated the vacuum energy of a massless scalar field round a black
hole using the Schwinger-DeWitt “in-out” effective action formalism, so that there
is no radiation emanating from the black hole. That is, the “out” state is post-
selected to be a quantum vacuum. (This contrasts with Hawking’s treatment [20] in
which the out state corresponds to a steady flux of thermal radiation—the so-called
Hawking effect.) Boulware’s treatment implies that the corresponding stress ten-
sor, 〈0out |Tμν |0in〉/〈0out |0in〉, diverges on the black hole event horizon, producing
an infinite gravitational back-reaction [4]. Thus, imposing a vacuum post-selection
condition on the universe could imply a major modification to the structure of black
holes.

7.5 Experimental Cosmology

The possibility that the quantum state of the universe might be both pre- and post-
selected represents a radical departure from standard theory, and one may legiti-
mately wonder about the possibility of experimental testing. One way is to search
for gravitational and non-gravitational quantum miracles in cosmological data. An-
other is to perform an experiment. In this section I will describe an adaptation of
an experiment performed by Partridge as a test of the time-symmetric Wheeler-
Feynman theory of electrodynamics [21].

Suppose it is the case, as proposed at the end of Sect. 7.2, that the end state of
the universe is a de Sitter vacuum state. Let us further suppose that such a state ap-
plies to the electromagnetic field. Then, irrespective of the CMB, and of the myriad
electromagnetic interactions that are currently taking place, and will subsequently
take place, throughout the universe, no photon will survive into the asymptotic fu-
ture, t → ∞. If it were the case that cosmological material along the future light
cone of the universe absorbed all emitted photons, then the future vacuum condi-
tion would have no discernible effect on electromagnetic phenomena at the current
epoch. However, it is known to be the case that the density of matter in the universe
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is too low for all photons emitted at our current epoch to eventually be absorbed;
that is, our future light cone is not a complete absorber of photons [22, 23]. If a laser
beam is directed to an empty part of the night sky, away from the galactic plane,
then there is not enough matter along the line of sight of the beam to absorb all
the photons, a state of affairs enhanced by the apparent accelerating expansion of
the universe that serves to further dilute the density of absorbing material along the
future light cone. Consider, as postulated, that the final state of the universe is an
electromagnetic vacuum. Propagate the modes of this field back in time from +∞
to the present epoch. Some modes will encounter matter, for example, in the inter-
stellar medium. But, given the non-opaqueness of our future light cone, a subset of
modes will travel relatively undisturbed back in time to encounter the laser. (There
will be no creation of photons by the expanding universe in this case on account
of the fact that the electromagnetic field is conformally invariant and a Friedmann-
Roberston-Walker universe is conformally flat.) Therefore, the laser will not create
photons in those modes of the electromagnetic field because, by post-selection, they
have photon occupation number 0. To an experimenter, it will appear that a laser
directed to an empty part of the sky will suffer a lower power drain than a laser
directed at an absorbing surface. The degree of reduction will depend on the opacity
of the future light cone. In the ideal case of perfect transparency, the laser would
emit no energy at all in the relevant direction. In practice, of course, the effect is
likely to be small, owing to the spreading of the laser beam, and hard to discern,
given the gross nature of assessing the power output of a laser by measuring its
power input. Nevertheless, an experiment of this sort was performed by Partridge
[21] using microwaves rather than a laser, with null results.

A more refined experiment to test the post-selected vacuum hypothesis would be
to use pairs of entangled photons, which I collectively label A and B , from a con-
tinuously pumped source. Photons B are directed to a counter while their entangled
partners A, traveling in the opposite direction, are permitted to leave the apparatus
undisturbed. In the first part of the experiment, the escaped photons A are inter-
cepted by an absorber (such as a black screen on the other side of the laboratory).
Maintaining this configuration, a count rate is established for photons B which, by
reason of the entanglement, also establishes the count rate for the emission of pho-
tons A. Next, the screen is retracted and photons A are permitted to escape into the
sky, at a variety of orientations away from any obvious absorbing material (such as
the dust of the Milky Way), and the count rate of photons B measured again. A test
of the post-selection hypothesis is that the count rate of photons B in the latter con-
figuration would be less than in the former, because the photon source cannot excite
modes of the electromagnetic field that propagate undisturbed to the postulated vac-
uum state at t → ∞. In a perfectly transparent universe with vacuum post-selection,
no photons B would ever be detected in the latter configuration. Cosmology is an
observational science, but this experiment, along with Partridge’s original, consti-
tutes a genuine exercise in experimental cosmology.
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Chapter 8
The Quantum Mechanical Arrows of Time

James B. Hartle

Abstract The familiar textbook quantum mechanics of laboratory measurements
incorporates a quantum mechanical arrow of time—the direction in time in which
state vector reduction operates. This arrow is usually assumed to coincide with the
direction of the thermodynamic arrow of the quasiclassical realm of everyday ex-
perience. But in the more general context of cosmology we seek an explanation of
all observed arrows, and the relations between them, in terms of the conditions that
specify our particular universe. This paper investigates quantum mechanical and
thermodynamic arrows in a time-neutral formulation of quantum mechanics for a
number of model cosmologies in fixed background spacetimes. We find that a gen-
eral universe may not have well defined arrows of either kind. When arrows are
emergent they need not point in the same direction over the whole of spacetime.
Rather they may be local, pointing in different directions in different spacetime re-
gions. Local arrows can therefore be consistent with global time symmetry. [Editors
note: for a video of the talk given by Prof. Hartle at the Aharonov-80 conference in
2012 at Chapman University, see quantum.chapman.edu/talk-15.]

8.1 Introduction

In his 1932 book [1] von Neumann summarized the quantum mechanics of a sub-
system of the universe that is sometimes measured but otherwise isolated. Two laws
of evolution for the quantum state of the subsystem were postulated. The first is the
Schrödinger equation that specifies how the state evolves in time when the subsys-
tem is isolated:

i�
d|ψ̂(t)〉
dt

=H |ψ̂(t)〉 (I). (8.1)
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The second law specifies how the state evolves when an ‘ideal measurement’ is
carried out on the subsystem at time tm. It is

|ψ̂(tm)〉 → s|ψ̂(tm)〉
‖ s|ψ̂(tm)〉 ‖ (II) (8.2)

where s is the projection onto the measurement outcome.1

The Schrödinger equation (I) is time reversible—it can be run both forward and
backward in time. The second law of evolution (II) is not reversible. It operates only
forward in time. That defines the quantum mechanical arrow of time.

It is commonly assumed that the quantum arrow of time coincides with the ther-
modynamic arrow defined by the direction in which total entropy is increasing.
This identification of a fundamental quantum arrow with a classical one must have
seemed natural in a theory which posited separate classical and quantum worlds with
a kind of movable boundary between them. A second law describing an “irreversible
act of amplification” from the quantum world to the classical one in a measurement
was naturally connected with the second law of thermodynamics describing more
general classical irreversible processes.

A thermodynamic arrow of time is not an inevitable feature of a classical world
like ours governed by time-neutral dynamical laws. The fact that presently isolated
subsystems are mostly evolving towards equilibrium in the same direction in time
cannot be a consequence of time-neutral dynamical laws. Rather our thermody-
namic arrow arises because the initial state of our universe is such that the pro-
genitors of today’s isolated subsystems were all far out of equilibrium a long time
ago. As Boltzmann wrote over a century ago: “The second law of thermodynamics
can be proved from the [time-reversible] mechanical theory, if one assumes that the
present state of the universe. . . started to evolve from an improbable [i.e. special]
state” [2]. Our thermodynamic arrow of time is an emergent feature of the particular
initial condition of our universe.

Is the quantum mechanical arrow of time a fundamental property of quantum
mechanics or can it also be seen as an emergent feature of our universe in a more
general formulation of quantum mechanics free from arrows of time? Is a quantum
mechanical arrow of time always codirectional with a thermodynamic arrow? Do
arrows always point in one direction over the whole of spacetime or can they point in
different directions in different spacetime regions? Such questions are the subject of
this essay. To answer them, as Boltzmann noted, we are naturally led to cosmology.

It is almost certain that there will not be a thermodynamic arrow of time that
points consistently in one direction over the whole of spacetime in the vast universes
contemplated by contemporary inflationary cosmology. Rather the thermodynamic
arrow may point in different directions in different regions of spacetime. A simple
example that we will discuss in this paper is illustrated in Fig. 8.1.

The figure shows a curved two-dimensional slice of a four-dimensional homo-
geneous and isotropic cosmological spacetime embedded in a (Lorentz signatured)

1von Neumann called I and II, 2 and 1 respectively, but today the given convention is more used.
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Fig. 8.1 A bouncing universe. The figure shows the geometry of a two-dimensional slice of a
four-dimensional cosmological bouncing spacetime embedded in a Lorentz signatured three-di-
mensional flat space. Time is up. The universe is spatially closed. It has a large spatial volume at
large negative times, collapses to smaller and smaller volumes until a minimum is reached (the
bounce), and then expands to larger volumes at positive times. For simplicity we have assumed
that the contraction and expansion are time symmetric. DeSitter space is a well known example

three-dimensional flat space. The universe begins at large radii at the bottom, con-
tracts to smaller and smaller radii, bounces at a minimum radius and reexpands
towards the top. DeSitter space is a classic example of such a bouncing spacetime.

Such bouncing geometries are among the classical spacetimes predicted by the
no-boundary quantum state of the universe (NBWF) in simple models using a
framework that includes quantum gravity [3–5]. In addition to predicting the behav-
ior of homogeneous and isotropic classical backgrounds the NBWF also predicts
the behavior of the quantum fluctuations in matter and geometry away from these
symmetries. The key result for the present discussion is the following: The NBWF
predicts that fluctuations are in a state of low excitation (i.e. small) at the bounce. On
either side they grow away from the bounce, become classical, collapse gravitation-
ally, and eventually create a large scale structure of galaxies, stars, and planets. The
thermodynamic arrow of time therefore points in opposite directions on opposite
sides of the bounce. The universe has two spacetime regions with opposing thermo-
dynamic arrows. We can then ask: What are the laws of quantum mechanics for the
quantum fluctuations? Do they have a quantum arrow of time, and which way does
it point in the two regions?

We will answer these questions in the context of a family of generalizations of
textbook quantum theory that are time-neutral—not preferring one time direction
over another and without any built in quantum arrows of time. In a pioneering paper
Aharonov, Bergmann, and Lebovitz [6] showed how to use initial and final condi-
tions to construct such a time-neutral quantum mechanics of measured subsystems.
We will answer these questions, not in this context, but in the more general time-
neutral quantum mechanics of closed systems that are suitable for cosmology [7].

In a time-neutral formulation no arrows of any kind are built in. Arrows of time
of a particular universe emerge from the conditions that specify it. As we have dis-
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cussed, the thermodynamic arrow of time in our universe emerges from a special
initial condition (and a final condition of indifference). We will show that quantum
mechanical arrows of time can emerge in a similar way.

For the simple example illustrated in Fig. 8.1, we will find that in a suitable
generalization of quantum mechanics there is both a quantum and thermodynamic
arrow of time pointing away from the bounce on each side. The overall situation is
time symmetric.

More generally we will conclude that quantum mechanical arrows of time are
not an inevitable feature of quantum mechanics. Quantum mechanics can be formu-
lated without them. The arrows of time that characterize the approximate quantum
mechanics of measured subsystems obeying laws I and II in our universe arise in
particular spacetime regions from the conditions that specify the universe and the
region.

The paper is organized as follows: In Sect. 8.2 we review the work of Aharonov,
Bergmann, and Lebovitz [6]. Section 8.3 introduces a time-neutral quantum me-
chanics of closed systems with initial and final conditions. All arrows of time arise
from asymmetries between these two. Section 8.4 introduces the class of generalized
quantum theories of which the one in Sect. 8.3 is but one example. Section 8.5 con-
structs a time-neutral generalized quantum theory for the quantum fluctuations in a
bouncing universe illustrated in Fig. 8.1. Section 8.6 draws some brief conclusions.

8.2 Time-Neutrality in the Quantum Mechanics of Measured
Subsystems

In a seminal paper Aharonov, Bergmann, and Lebovitz [6] showed how the quan-
tum mechanics of measured subsystems could be formulated without an intrinsic
arrow of time by allowing for final states as well as initial ones. We summarize the
essence of their argument here in a notation that is analogous to that we will use for
cosmology in subsequent sections.

Consider a subsystem of the universe whose states are vectors in a Hilbert space
Hsub. Alternatives at a moment of time can be reduced to a set of yes/no questions.
For instance asking for the position of a particle is equivalent to taking an exhaustive
set of position intervals and asking whether the particle is in the first interval (yes or
no), then the second interval (yes or no), etc. In the Heisenberg picture such yes/no
alternatives at a time t are represented by an exhaustive set of exclusive projection
operators {sα(t)}. For instance, the these might be projections onto an exhaustive set
of ranges of position as discussed above. These operators satisfy

sα(t)sα′(t)= δαα′sα(t),
∑

α

sα(t)= I. (8.3)

showing that they are projections, that they are exclusive, and that they are ex-
haustive. The projection operators representing the same alternative at two different
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times t1 and t2 are connected by the Heisenberg equations of motion

sα(t2)= e
+ih(t2−t1)

� sα(t1)e
−ih(t2−t1)

� , (8.4)

where h is the Hamiltonian of the subsystem in isolation.
Suppose a sequence of ideal measurements2 is carried out on the subsystem by

another subsystem at a sequence of times t1, t2, . . . tn. The measurements are de-
scribed by a sequence of sets of projections {skαk (tk)}, k = 1,2, . . . n. The upper
index allows for the contingency that the measurements might be of different quan-
tities at different times—a measurement of position at time t1, of momentum at time
t2, etc.

Suppose that the subsystem is in a (Heisenberg picture) state |ψi〉 in H . Then
the joint probability for a history of outcomes α1, α2, . . . αn is [8, 9]

p(αn, . . . , α1)= ‖snαn(tn) . . . s1
α1
(t1)|ψi〉‖2. (8.5)

It is easy to work out that this compact formula for the joint probability for a
sequence of ideal measurement outcomes follows from the two laws of evolution
(8.1) and (8.2)—evolve, reduce, evolve, reduce, evolve. . . . The formula can be made
more compact by defining α ≡ (α1, α2, . . . αn) and

cα ≡ snαn(tn) . . . s1
α1
(t1). (8.6)

Then

p(α)= ‖cα|ψi〉‖2 = ‖snαn(tn) . . . s1
α1
(t1)|ψi〉‖2. (8.7)

A quantum mechanical arrow of time is manifest in (8.5) and (8.7). On one end
of the chain of projections there is the state, and on the other end there is noth-
ing.3 Aharonov, Bergmann, and Lebovitz noticed that if one added a final state ψf
corresponding to post-selection then the formula for the probabilities becomes

p(α)=N |〈ψf |cα|ψi〉|2, N ≡ |〈ψf |ψi〉|−2. (8.8)

These formulae are symmetric in the initial and final states, in particular one can
write (8.8) as

p(α)=N |〈ψf |cα|ψi〉|2 =N |〈ψi |c†
α|ψf 〉|2. (8.9)

That is, the probabilities are the same when the order of the projections is reversed
and the notion of initial and final interchanged.

2An ideal measurement, sometimes called a projective measurement, is one that disturbs the sub-
system as little as possible so that after the measurement its (Schrödinger picture) state is given by
(8.2).
3The quantum mechanical arrow of time does not arise from the time-ordering of the projections.
That could be reversed by a CPT transformation since field theory is invariant under CPT . But
there would still be the state on one end and nothing on the other.



118 J.B. Hartle

From this perspective, the quantum mechanical arrow of time arises from not
specifying a final state. As Aharonov and Rohrlich say [10], “By imposing an initial
and not a final condition we have already sent the arrow of time flying.”

8.3 A Time-Neutral Formulation of the Quantum Mechanics
of Closed Systems

8.3.1 A Model Quantum Universe

Cosmology provides not only the most general context for a discussion of arrows
of time but also the most relevant one. That is because the observed arrows oper-
ate on cosmological scales and can be explained by cosmological conditions. For
instance, as far as we know, the thermodynamic arrow of time extends over the
whole of the visible universe and holds from the time of the big bang to the distant
future. The evidence of the observations is that the universe was more ordered ear-
lier than now and that disorder has been increasing ever since [11, 12]. That is the
thermodynamic arrow of time. Similarly the electromagnetic arrow—the retarda-
tion of electromagnetic radiation—arises because the early universe has very little
free electromagnetic radiation that today would be at readily accessible wavelengths
[13]. The psychological arrow of time can be seen to follow from the other two [13].

To keep the discussion manageable, we consider a closed quantum system in the
approximation that gross quantum fluctuations in the geometry of spacetime can be
neglected.4 closed system can then be thought of as a large (say � 20,000 Mpc),
perhaps expanding, box of particles and fields in a fixed, flat, background spacetime
(Fig. 8.2). Everything is contained within the box, in particular galaxies, planets, ob-
servers and observed, measured subsystems, and any apparatus that measures them.
This is the most general physical context for prediction.

8.3.2 Time-Neutral Decoherent Histories Quantum Theory

The quantum mechanics of this model universe is formulated in a Hilbert space H
that is vastly larger than the Hilbert space of any isolated subsystem it contains.
However, the kinematics of the prediction of probabilities for histories bears many
similarities to the quantum mechanics of measured subsystems as presented in the
previous section.

The most general objective of a quantum mechanics of the universe is the pre-
diction of the probabilities for sets of alternative coarse-grained time histories of its

4For the further generalizations that are needed for quantum spacetime see e.g. [14, 15]. For dis-
cussions of the arrows of time in contexts that include quantum spacetime see [5] and the earlier
references therein especially [16].
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Fig. 8.2 A simple model of a closed quantum system is a universe of quantum matter fields inside
a large closed box (say, 20,000 Mpc on a side) with fixed flat spacetime inside. Everything is a
physical system inside the box—galaxies, stars, planets, human beings, observers and observed,
measured and measuring. The most general objectives for prediction are the probabilities of the
individual members of decoherent sets of alternative coarse grained histories that describe what
goes on in the box. That includes histories describing any measurements that take place there.
There is no observation or other intervention from outside

contents. Alternatives at one moment of time are described by an exhaustive set of
exclusive projection operators {Pα(t)} acting in H . These satisfy [cf. (8.3)]

Pα(t)Pα′(t)= δαα′Pα(t),
∑

α

Pα(t)= I. (8.10)

A set of alternative coarse-grained histories is specified by a sequence of such
sets at a series of times t1, t2, . . . tn. An individual history corresponds to a particular
sequence of events α ≡ (α1, α2, . . . , αn) and is represented by the corresponding
chain of projections:

Cα ≡ Pnαn(tn) . . . P 1
α1
(t1). (8.11)

An immediate consequence of this and (8.10) is that
∑

α

Cα = I, (8.12)

showing that the set of histories is exhaustive.
This description of histories is analogous to those in the quantum mechanics of

measured subsystems [cf. (8.6)]. However, there are at least two crucial differences.
First, there is no posited separate classical world. It’s all quantum. Second, the al-
ternatives represented by the P ’s are not restricted to measurement outcomes. They
might, for example, refer to the orbit to the Moon when no one is looking at it, or to
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Fig. 8.3 The two-slit experiment. An electron gun at left emits an electron which is detected at
a point y on a screen after passing through another screen with two slits. Because of quantum
interference, it is not possible to assign probabilities to the alternative histories in which the elec-
tron arrives at y having gone through the upper or lower slit. The probability to arrive at y should
be the sum of the probabilities of the two histories. But in quantum mechanics probabilities are
squares of amplitudes and |ψL(y)+ψU(y)|2 �= |ψL(y)|2 + |ψU(y)|2. In a different physical situ-
ation where the electron interacts with apparatus that measures which slit it passed through, then
quantum interference is destroyed and consistent probabilities can be assigned to these histories

the magnitude of density fluctuations in the early universe when there were neither
observers nor apparatus to measure them. Laboratory measurements can of course
be described in terms of correlations between two particular kinds of subsystems
of the universe—one being measured the other doing the measuring. But laboratory
measurements play no central role in formulating the theory, and are just a small
part of what it can predict.5

A time-neutral decoherent histories quantum mechanics of our model universe
with both initial and final conditions was formulated by Gell-Mann and the author
in [7]. The formula for the probabilities for histories is

p(α)=NT r(ρf CαρiC†
α), N−1 ≡ T r(ρf ρi). (8.13)

Here, ρi and ρf are density matrices representing initial and final conditions. There
is a clear analogy with (8.8). This expression is time-neutral because initial and final
density matrices can be interchanged and the order of times in the Cα’s reversed
using the cyclic property of the trace.

However, (8.13) does not supply probabilities for all sets of alternative histo-
ries. The resulting probabilities might not be consistent with the usual sum rules of
probability theory. Generally probabilities cannot be assigned to interfering alterna-
tives in quantum theory. The two-slit experiment described in Fig. 8.3 is a simple
example.

5Indeed, the quantum mechanics of measured subsystems in Sect. 8.2 is an approximation appro-
priate for measurement situations to the more general quantum mechanics of closed systems. See,
e.g. [17] Sect. II.10.
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In decoherent (or consistent) histories quantum theory probabilities are assigned
only a set of alternative histories if the quantum interference between members of
the set is negligible as a consequence of the initial and final conditions and the
dynamics. The measure of quantum interference is provided by the decoherence
functional:

D(α,α′)=NT r(ρf CαρiCα′ †) (8.14)

where N−1 = T r(ρf ρi). A set decoheres when the off diagonal elements of D are
negligible. The diagonal elements then give probabilities (8.13) that are consistent
with all the rules of probability theory.6 Like (8.13), the decoherence functional
(8.14) is time neutral.

In the quantum mechanics of closed systems decoherence replaces ‘measured’
as the criterion for when a set of histories can be consistently assigned probabilities.
Measured histories decohere, but histories do not have to be of measurement out-
comes in order to decohere. Decoherence is a more precise, more general, and more
objective criterion than ‘measured’ and certainly more useful in cosmology.

8.3.3 Emergent Arrows of Time

As already mentioned, the expressions both for probabilities (8.13) and interference
(8.14) are time-neutral. There is thus no distinction between ‘initial’ and ‘final’ that
is not conventional. This formulation of quantum theory for our model universe is
therefore free from any built in arrow of time.

If there is no arrow of time in the basic formulation of quantum theory, then the
observed arrows of time observed in our particular universe can only arise from dif-
ferences between the ρf and ρi that characterize it. We will then say that arrows of
time emerge for our particular universe from ρf and ρi . We will discuss only quan-
tum arrows and thermodynamic arrows, since, as already mentioned, other arrows
are connected to these.

Our observations of the universe from laboratory to cosmological scales are con-
sistent (so far) with one special condition that might be a pure state ρi = |Ψ 〉〈Ψ |
and a second condition of indifference7 ρf ∝ I . It is conventional to call the spe-
cial condition ‘initial’, as we have done here, the second one ‘final’, and define the
direction of increasing time from initial to final.

With these initial and final conditions the formula for the decoherence functional
defining quantum mechanics in the box becomes

D(α,α′)= T r(CαρiC†
α′). (8.15)

6For more complete expositions of decoherent histories quantum theory than the brief synopsis
given here the reader can consult the classic expositions [18–20], a short tutorial in [21], or a
review in [22].
7For some discussions of the observable information about the final condition, see, e.g. [7, 23–25].
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In particular the probabilities for the histories in a decoherent set are:

p(αn, . . . , α1)= ‖Cα|Ψ 〉‖2 = ‖Pnαn(tn) . . . P 1
α1
(t1)|Ψ 〉‖2. (8.16)

This has a state on one end of the chain and nothing on the other. Thus, for ρi =
|Ψ 〉〈Ψ | and ρf ∝ I a quantum mechanical arrow of time emerges [cf. (8.7)]. It is not
an arrow that is associated just with histories of measurement situations but more
generally with any set of alternative histories of the universe.

With further assumptions on ρi we also recover the thermodynamic arrow. Sup-
pose the usual entropy of chemistry and physics8 is low for ρi . It will be maximal
for ρf ∝ I . It will therefore tend to increase from the time of the initial condition
to that of the final one. That is the simplest characterization of the thermodynamic
arrow.

However if both ρi and ρf are non-trivial then there is generally no clear defini-
tion of either a global thermodynamic or quantum mechanical arrow. For instance
when ρi and ρf have comparable low entropies classical analyses [7, 27] suggests
that the entropy could first rise and after a time decrease leading to a thermodynamic
arrow that is local in time first pointing one way and then another.9

There is no clear meaning to a local quantum mechanical arrow but also no phys-
ical need for one. With non-trivial initial and final ρ’s there is no notion of a single
state at a moment of time from which either the future or the past could be predicted
[7]. The theory is fully four-dimensional.10

8.4 Generalized Quantum Theory

The time-neutral formulation of quantum mechanics in the previous section is as
notable for its simplicity as it is for its freedom from a built in quantum arrow
of time. Formulating quantum theory has been reduced to just two specifications:
(1) The sets of possible alternative coarse-grained histories {Cα}, and (2) a deco-
herence functional (8.14) that measures the quantum interference between histories
and specified their probabilities when the set decoheres.

8Entropy depends on coarse graining. The usual entropy is defined in terms of a coarse graining
expressed in the variables that occur in the deterministic equations of classical physics like the
Navier-Stokes equation. For more on its construction and its relation to the quasiclassical realms
that are features of our universe see, e.g. [26].
9There will also generally not be a notion of state at a moment of time. However there might be a
way of expressing the probabilities in terms of two state vectors similarly to [28].
10Advanced civilizations with large laboratories and enough money could in principle reverse the
thermodynamic arrow of time over a region of spacetime in a universe like ours by pre- and post-
selection of quantum states. If they selected initial states at one time indifferently, and states at a
later time distributed according to a low entropy set of probabilities, they would have effectively
have reversed both the quantum mechanical and thermodynamic arrows (e.g. [17], Fig. 8).
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The decoherence functional of time-neutral quantum mechanics (8.14) is a gen-
eralization of that for usual quantum mechanics (8.15). But it is not the only gen-
eralization. The essential features of quantum mechanics are captured by any com-
plex valued decoherence functional D(α,α′) that satisfies the following conditions
[14, 29]:

i. Hermiticity: D(α,α′)=D∗(α′, α),
ii. Normalization:

∑
αα′D(α,α′)= 1,

iii. Positivity: D(α,α)≥ 0,

and, most importantly, consistency with the principle of superposition. This means
the following: Partitioning a set of histories {Cα} into bigger sets {Cᾱ} is an oper-
ation of coarse graining. Every history Cα is in one and only one of the sets Cᾱ a
fact that we indicate schematically by α ∈ ᾱ. Then consistency with the principle of
superposition means11:

iv. Principle of superposition:

D(ᾱ, ᾱ′)=
∑

α∈ᾱ

∑

α′∈ᾱ′
D(α,α′).

Given a decoherence functional satisfying i-iv, the central formula of quantum
mechanics which specifies both which sets of histories {Cα} decohere and their
probabilities p(α) is:

D(α,α′)≈ δαα′p(α). (8.17)

Interference between histories vanishes when the decoherence functional is diagonal
and the diagonal elements are the probabilities of the histories in a decoherent set.
These probabilities satisfy all the usual rules of probability theory as a consequence
of i–iv.

The decoherence functional of usual quantum mechanics (8.15) satisfies i–iv. All
the other ways of satisfying these conditions give generalizations of usual quantum
theory—generalized quantum theories. The decoherence functional (8.14) of the
time-neutral formulation is one example. We will see another in the next section.

8.5 Bouncing Universe Models

The universe of quantum matter fields in a closed box that has been at the center of
our discussion so far is a much oversimplified model for cosmology. It’s chief defi-
ciency is that it ignores gravity. A better, still manageable, kind of model describes
quantum matter fields moving in a fixed, classical, cosmological background such

11The is just the usual superposition of amplitudes applied to a quantity D that is bilinear in am-
plitudes.



124 J.B. Hartle

as the bouncing universe shown in Fig. 8.1. What kind of decoherence functional
should we assume for such a model to study classical and quantum arrows of time?
A model problem in quantum cosmology suggests the answer.

In [3, 4] both spacetime geometry and matter fields were treated quantum me-
chanically. Probabilities for different homogeneous and isotropic classical back-
ground spacetimes and the behavior of quantum matter fields in them were predicted
from the no-boundary quantum state of the universe [30, 31] in a simple minisuper-
space model. There were two key results that are relevant for the present discussion:
(1) Some bouncing classical background spacetimes like that in Fig. 8.1 were pre-
dicted with non-zero probability.12 (2) The predicted matter fields were small and
simple at the bounce where the spatial volume is the least, and not at one or the
other of the infinite volume ends of the spacetime [5]. That suggests that the quan-
tum mechanics of matter fields in such spacetimes should not have initial and final
density matrices but rather one density matrix ρ0 at the bounce. We now produce a
generalized quantum theory with this property.

Before starting on quantum mechanics it is worthwhile to consider the thermo-
dynamic arrow of time in this model.13 As discussed above, the matter field fluctua-
tions are small near the bounce. They will therefore grow in the two time directions
away from the bounce. Eventually fluctuations may grow large enough to collapse
and dissipate giving rise to a large scale structure of galaxies, stars, planets, biota,
IGUSes, civilizations, etc on both sides of the bounce.14 The thermodynamic arrow
of time is thus bidirectional in this model—pointing away from the bounce on both
sides.

Generalized quantum mechanics for quantum fields in a bouncing universe can
be constructed by specifying first the histories and then a decoherence functional
obeying properties i-iv in the previous section. There will be many ways of doing
this such as simply generalizing the time-neutral formulation of Sect. 8.3.2 with
initial and final density matrices at the large ends of the expansion. But motivated by
the quantum cosmology model described above, we are looking for a decoherence
functional with a density matrix at the bounce.15

To specify the histories we arbitrarily label the two sides of the bounce as A
and B as in Fig. 8.4. A given history will generally have a part on the A side and
a part on the B side—generally different. On each side the parts of histories can
be represented by chains of projections—{CAα } and {CBβ }. We make the convention

12Backgrounds that are not time symmetric were also predicted, but for simplicity we are focusing
on time symmetric ones.
13See [5] for a more detailed discussion within quantum cosmology and also [32, 33] for not
unrelated ones outside of quantum cosmology.
14This large scale structure will generally not be the same on both sides of the bounce. Individual
histories do not have to be time-symmetric. It is the ensemble of possible histories predicted by
quantum mechanics that is time symmetric [5, 16].
15We should stress that we are not deriving this decoherence functional from the more general
quantum cosmological model that includes quantum spacetime, but using that as a motivation to
posit a particular kind of model.
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Fig. 8.4 A bouncing universe like that described in Fig. 8.1 divided into two sides A and B at
the minimum volume three surface (the bounce). When the quantum mechanics of matter fields is
described by a decoherence functional (8.19) each side has a coincident quantum and thermody-
namic arrow. But the arrows point in opposite directions on opposite sides of the bounce. This is
an example whose quantum mechanics is globally time neutral but with local arrows of time

that the projections in the chains are time-ordered away from the bounce. We have
separately [cf. (8.12)]

∑

α

CAα = I,
∑

β

CBβ = I. (8.18)

The following decoherence functional then suggests itself

D(β,α;β ′, α′)= T r(CBβ
√
ρ0C

A†
α C

A
α′

√
ρ0C

B†
β ′
)
. (8.19)

It is not difficult to verify that this satisfies requirements i–iv.
The generalized quantum theory defined by (8.19) is time neutral. The deco-

herence functional D is symmetric under interchanging A and B . It is perhaps the
simplest generalized quantum theory with this property.16

Familiar results emerge if we consider histories just on one side, say B . The ap-
propriate decoherence functional DB results from coarse-graining (summing) over
alternatives on the A side. Using (8.18) we find

DB(β,β ′)= T r(Cβρ0C
†
β ′). (8.20)

But this is just the expression (8.15). There will thus be a quantum mechanical
arrow of time on side B and a coincident thermodynamic arrow. Similar results are
obtained by following histories on side A and ignoring those on side B .

16It is not, however, the only one. For instance initial and final conditions represented by density
matrices ρi and ρf at the large ends could have been incorporated in addition to ρ0 in analogy with
(8.14).
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Thus the generalized quantum theory defined by the decoherence functional
(8.19) exhibits local thermodynamic and quantum mechanical arrows that are
codirectional on either side but point in opposite directions on opposite sides of
the bounce. There are no global arrows—either quantum mechanical or thermo-
dynamic—pointing consistently in one direction over the whole of the spacetime.

If we live in a bouncing universe questions naturally arise as to how much present
events on our side are influenced by what occurred before the bounce and what we
can infer about events on the far side from observations on our side. The answers
to such questions are contained in the joint probabilities p(β,α) for correlations
between histories on the far side of the bounce and histories on the far side.

We can anticipate that it will be difficult to find causal correlations between the
two sides because the thermodynamic arrow points in opposite directions on oppo-
site sides of the bounce [5]. The two sides are in each other’s pasts as determined by
the thermodynamic arrow. There is as much chance of events on the far side of the
bounce influencing us, as we have of influencing events in our past by actions taken
now.

In the simple case where the density matrix ρ0 in (8.19) is pure, mutual influence
is impossible. To see this write

ρ0 = |Ψ 〉〈Ψ | = √
ρ0. (8.21)

Then

D(β,α;β ′, α′)= 〈Ψ |CB†
β ′ CBβ |Ψ 〉〈Ψ |CA†

α′ CAα |Ψ 〉. (8.22)

The immediate consequence is that the joint probabilities of a decoherent set of
histories factor

p(β,α)= pB(β)pA(α), (8.23)

and there is no correlation between events on one side and the events on the other.
The far side might as well not exist.

8.6 Conclusions

Cosmology is the natural context for understanding the origin of the arrows of time
our universe. Arrows operate over cosmological distances and can be explained by
cosmological conditions.

No arrows of time need be built into a fundamental formulation of quantum me-
chanics of closed systems like the universe. Rather quantum mechanics can be for-
mulated time-neutrally. The observed arrows of time are then emergent features of
the asymmetries between conditions that specify our particular universe among the
possibilities that the time-neutral theory allows. This general perspective allows a
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discussion of the different ways arrows to time can be exhibited by different uni-
verses specified by different conditions. In particular it allows a discussion of the
connections between arrows that follow from those conditions.

This essay exhibited a number of cosmological models with different possibilities
for the quantum mechanical and thermodynamic arrows in the framework of time-
neutral generalized quantum theory in fixed background spacetimes. From these
examples we can conclude that a given universe may not exhibit well defined arrows
of either kind. Further, when arrows do emerge they need not consistently point
in one direction over the whole of spacetime. Rather they may point in different
directions in different regions of spacetime as the bouncing universe model cleanly
illustrates. Local arrows can be consistent with global time-symmetry [5, 33].

In some examples there was a local thermodynamic arrow defined by the di-
rection of local entropy increase but no obvious quantum mechanical arrow. In all
examples, where both arrows were available locally they coincided in direction. (Of
course, a few examples do not make a general result.)

From this perspective, other features of quantum mechanics such as states on
spacelike surfaces, their unitary evolution and their reduction may also emerge
only locally in a more general framework for quantum theory that is fully four-
dimensional and time neutral [14].
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Universe as a Wavefunction



Chapter 9
Collapse Miscellany

Philip Pearle

Abstract An introduction to the CSL (Continuous Spontaneous Localization) the-
ory of dynamical wave function collapse is provided, including a derivation of CSL
from two postulates, a new result. There follows a review of applications to a free
particle, or to a ‘small’ rigid cluster of free particles, in a single wave-packet and in
interfering packets: the latter result is new. [Editors note: for a video of the talk given
by Prof. Pearle at the Aharonov-80 conference in 2012 at Chapman University, see
quantum.chapman.edu/talk-11.]

9.1 Introduction

Standard quantum theory is readily applied to measurement situations. This requires
additional (ad hoc—for this case only) information be supplied for each situation.
One may hope the theory could be extended to describe reality independent of ex-
periment and without the need for ad hoc information. Given a state vector for any
physical system, no matter how large or complex, one may hope for a theory that
specifies the state vectors corresponding to the possible realizable states of nature,
and their probabilities of realization.

Why can’t this be done with standard quantum theory? Given a state vector,

|ψ, t〉 =
∑

n

|an〉〈an|ψ, t〉, (9.1)

one would like to say that the |an〉 correspond to the possible realizable states of
nature, and that |〈an|ψ, t〉|2 are their probabilities of realization.

There are two problems with this. The first is the preferred basis problem. Why
|an〉 and not another orthonormal basis |bn〉? No one has been able to specify the
needed preferred basis. Of course, in experimental situations and special model sit-
uations this is possible, but it has not been possible in general.
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The second I like to call the hopping problem. If |〈an|ψ, t〉|2 is the probability
of |an〉 being realized in nature at time t , and |〈am|ψ, t〉|2 is the probability of |am〉
(m �= n) being realized in nature at time t + dt , then

|〈an|ψ, t〉|2|〈am|ψ, t + dt〉|2

is the probability of occurrence of both these events which, of course, is not seen.
The difficulty is that quantum theory just gives the probabilities of these events: it
does not give the probability of transitions between these events.

The resolution chosen by the Founding Fathers was to restrict quantum theory to
experimental situations, with empirically defined preferred bases, and to adopt the
‘collapse postulate,’ to ensure that a preferred basis state, once chosen by nature,
would remain chosen. They thereby relinquished the hope to describe reality.

An alternative resolution, described here, does not give up on this hope. It alters
quantum theory so that it may be realized. The Schrödinger equation is modified by
adding a randomly fluctuating term to the Hamiltonian, to account for the proba-
bilistic behavior of nature. There is a preferred basis built into this term. The state
vector dynamically collapses toward one of these basis states, very slowly for micro-
objects, very rapidly for macro-objects.

The preferred basis is essentially the mass density basis. This choice could not be
made for standard quantum theory, since collapse to position eigenstates gives the
particles infinite energy. It works here because the collapse never goes all the way.
First, it would take infinite time for that to occur. Second, it doesn’t happen because
of the interaction of the usual Hamiltonian dynamics with the collapse dynamics
(e.g., the example in Sect. 9.6.2).

9.2 Deriving CSL

For collapse dynamics, one wants the following behavior.
Given the state vector Eq. (9.1) at time t = 0, the squared amplitudes xn(t) ≡

|〈an|ψ, t〉|2 should fluctuate until eventually one amplitude becomes equal to 1, and
the rest equal to 0: that is the collapse.

Moreover, with repeated evolutions, the nth amplitude should eventually reach 1
for a fraction xn(0) of the evolutions: that is the Born rule.

9.2.1 Gambler’s Ruin Game

There is a rather precise analogy to this behavior, the ‘gambler’s ruin game’ [1, 2].
Consider two gamblers, with $100 between them. Gambler 1 starts with $X1(0),
gambler 2 with $ X2(0) = $100 − X1(0). They toss a fair coin: ‘fair’ is crucial,
making the game what mathematicians call a ’Martingale.’ Heads, gambler 1 gives a
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dollar to gambler 2, tails, the reverse. The amount each possesses,Xn(tk), fluctuates.
Eventually, the game ends, with one gambler in possession of all the money.

Define P(X1) as the conditional probability that gambler 1 eventually wins,
given that he possesses $X1 at any time. Then,

P(X1)= 1

2
P(X1 − 1)+ 1

2
P(X1 + 1).

That is, when the coin is tossed, gambler 1 can either lose the toss but win from
there, or win the toss and win from there. The solution of this difference equation
is P(X1)=AX1 +B (A and B are constants). With boundary conditions P(0)= 0
and P(100)= 1, the solution is P(X1)=X1/100.

Define xn(tk)≡Xn(tk)/100. Thus, if gambler 1 starts out with a fraction x1(0) of
the total amount of money, that is the probability he wins it all, i.e., the probability
that x1(∞)= 1 (and, of course, likewise for gambler 2).

This is just the behavior we want for the squared amplitudes xn(t) characterizing
a state vector which is the sum of two basis vectors |a1〉, |a2〉. Thus, the two basis
vectors may be thought of as competing in a continuous version of the gambler’s
ruin game.

For, the gambler’s ruin game is a zero-sum, discrete, fair, random walk with
absorbing barriers (at xi = 0,1) in discrete time, for xn(tk)≡Xn(tk)/100.

Collapse is a zero-sum, continuous, fair, random walk with absorbing barriers in
continuous time, for xn(t)≡ |〈an|ψ, t〉|2.

The continuous limit of discrete random walk is Brownian motion. Thus, it is
natural to regard the xn(t) as undergoing some kind of Brownian motion. We shall
replace the probabilities associated with a single coin toss, and with a sequence of
coin tosses respectively by

P(dB)≡ 1√
2πλdt

e−dB2/2λdt , (9.2a)

P
(
B(t)

)≡ 1√
2πλt

e−B(t)2/2λt (9.2b)

where λ is a constant diffusion rate. Just as the gambler’s ruin dollar count Xn(tk)
depends upon a sequence of coin tosses, so we shall take the collapse xn(t) to de-
pend upon B(t).

9.2.2 Postulates

We shall derive the CSL collapse dynamics from two postulates:

1) gambler’s ruin behavior.
2) a linear, real, Schrödinger equation.
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2) could use some explanatory remarks.
In order to achieve the linearity part of 2), it shall be necessary to relinquish the

condition that the state vector norm is 1. The derivation shows that a state vector
evolution free from the unit-norm restriction is unique.

In standard quantum theory, the unit-norm condition is mandatory, since it en-
sures that probabilities add up to 1. Here there is no need for the unit-norm condi-
tion: probabilities are provided by B(t)’s probabilities. Physical information is car-
ried by a state vector’s direction in Hilbert space, not its norm. Thus, the invariance
of standard quantum theory to multiplication of the state vector by a phase factor
is generalized to invariance under multiplication by any complex number. To calcu-
late expectation values, one can always normalize a state vector. The un-normalized
state vector shall be denoted |φ, t〉.

Regarding the real part of 2), we wish to consider a different dynamics from
the usual Hamiltonian dynamics d|ψ, t〉 = −iHdt |ψ, t〉. That utilizes a hermitian
hamiltonian H , so we shall consider dynamics of the form d|ψ, t〉 = Hcdt |ψ, t〉
where the ‘collapse hamiltonian’ Hc is hermitian (we note that the most general
linear equation is of the form d|ψ, t〉 = −i(H + iHc)dt |ψ, t〉).

Now, for the purposes of this derivation, for simplicity and appropriate to the
generalization of a classical game, we shall further restrict all quantities to be real
numbers. Thus, we restrict Hc to be a real symmetric operator in the chosen basis
|an〉. Once we find the unique form of Hc that allows postulate 1), it may readily be
seen that complex state vector components and the most general hermitian Hc also
allow postulate 1). Because the state vector components are real, we may write

xn(t)= 〈an|φ, t〉2

〈φ, t |φ, t〉 = 〈an|φ, t〉2
∑
m〈am|φ, t〉2

. (9.3)

Also in order to achieve the linearity part of 2), the Schrödinger equation shall
be linear in a Brownian motion B ′(t). However, the relation assumed between B ′(t)
and B(t) is allowed to be non-linear in the state vector:

dB ′(t)= dB(t)+ f (x)dt, (9.4)

where f is an arbitrary real function of the xn(t). For, collapse violates the super-
position principle, and this somehow requires a non-linearity. What 2) really means,
then, is that we look to have a linear Schrödinger equation and isolate all the non-
linearity in the probability [3].

The derivation, which is presented in the next few sections, is rather lengthy, and
it involves stochastic differential equations—but the result does not. Some readers
may wish to move immediately to Sect. 9.3 where the results obtained here are
utilized.

Postulate 1) is implemented by an Itô equation for xn(t):

dxn(t)= bn(x)dB(t), (9.5)

where bn is an arbitrary real function of the xm(t)’s.
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We shall denote by an overline the ensemble average of a quantity, e.g., from
Eq. (9.2a), dB = ∫∞

−∞ d(dB)P (dB)= 0.

It immediately follows from Eq. (9.5) that dxn(t)= 0. This says that it is a ‘fair
game’ for each ‘player’ which, as we have said, is crucial for gambler’s ruin behav-
ior [4]. This is why Eq. (9.5) is chosen to be an Itô equation.

The other necessary condition for gambler’s ruin behavior is the end-game con-
dition, that bn(x) = 0 when one xn(t) is equal to 1 and the rest vanish. However,
that does not need to be separately imposed since it automatically occurs, as shall
be seen.

Postulate 2) is implemented by the Stratonovich Schrödinger equation for the
un-normalized state vector amplitudes:

d|φ, t〉 = [RdB ′ + Sdt]|φ, t〉
where R and S are arbitrary symmetric real operators, as discussed above. This
is chosen to be a Stratonovich equation because the calculus manipulations (e.g.,
derivative of the product of functions) are the usual ones, which would not be the
case for an Itô equation.

However, a rather tedious calculation (Appendix A) shows that R and S have to
be diagonal in the |an〉 basis if postulate 2) is to imply postulate 1). Therefore, we
shall write this equation as

d〈an|φ, t〉 = [αndB ′ + βndt]〈an|φ, t〉 (9.6)

where αn,βn are real constants.

9.2.3 Derivation

We proceed to find dxn(t) from Eq. (9.3). With use of Eqs. (9.4), (9.6), we obtain
the Stratonovich equation

dxn(t) = 2
{
(αn − α · x)xn(t)dB

+ [(αn − α · x)f + (βn − β · x)
]
dt
}
xn(t). (9.7)

where α · x ≡∑m αmxm(t)

Now we may use the rule for converting a Stratonovich equation to an Itô equa-
tion, which in this case means adding

λdt

2

∑

m

2(αm − α · x)xm(t)
∂

∂xm
2(αn − α · x)xn(t)

to the right side of Eq. (9.7). The result is

dxn(t) = 2
{
(αn − α · x)dB
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+ [(αn − α · x)f + (βn − β · x)
]
dt

+ [−α2 · x + (α · x)2 + (αn − α · x)2
]
λdt
}
xn(t), (9.8)

where α2 · x ≡∑m α
2
mxm(t). In order that the Itô Eq. (9.8) (consequence of postu-

late 2) agree with the Itô Eq. (9.5) (consequence of postulate 1), the coefficient of
dB and the coefficient of dt in both equations must be equal, so

bn(x)= 2(αn − α · x)xn(t), (9.9a)

(αn − α · x)f + (βn − β · x)= λ[α2 · x − (α · x)2 − (αn − α · x)2
]
. (9.9b)

To find f and βn, operate on Eq. (9.9b) with
∑
n xn∂

2/∂x2
m. Remembering that∑

n xn = 1, we obtain

2αm
∂

∂xm
f = 4λα2

m, or f = 2λα · x + c, (9.10)

where c is an arbitrary constant. Putting Eq. (9.10) back into Eq. (9.9b) gives

(βn − β · x)= −c(αn − α · x)− λ(α2
n − α2 · x

)
, or βn = −cαn − λα2

n, (9.11)

the last step following from applying ∂/∂xi to the first. Putting f from Eq. (9.10)
and βn from Eq. (9.11) into Eq. (9.7), we find that the latter is independent of c.
Therefore, c has no physical effect. Its only effect is to add a constant drift to B ′(t)
(see Eq. (9.4)), and since we are free to choose B ′(t) to be as simple as possible, we
may take c= 0.

This concludes our derivation. We have found that postulates 1) and 2) lead to
the Schrödinger equation (9.6) and the Probability Rule (9.4), in the forms

d〈an|φ, t〉 = [αndB ′ − λα2
ndt
]〈an|φ, t〉, (9.12a)

dB ′(t)= dB(t)+ 2λα · xdt, (9.12b)

where the αn are completely arbitrary constants and x is given by Eq. (9.3).

9.2.4 Schrödinger Equation

We may introduce an operator A defined by A|an〉 = αn|an〉, in terms of which the
Schrödinger equation (9.12a) may be written in basis-independent form,

d|φ, t〉 = [AdB ′ − λA2dt
]|φ, t〉 or |φ, t〉 = eAB ′(t)−A2λt |φ,0〉. (9.13)

Since the |an〉 are eigenstates of A with eigenvalues αn, we could instead label them
|αn〉. However, we shall rather replace αn by an.
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9.2.5 Probability Rule

Equation (9.12b) is the same form whether an Itô or Stratonovich equation. It may
be written as

dB ′(t)= dB(t)+ 2λdt〈A〉(t) where 〈A〉(t)≡ 〈φ, t |A|φ, t〉
〈φ, t |φ, t〉 . (9.14)

We shall use it to find the expression for the probability of B ′(t).
It follows from Eq. (9.14) that dB ′(t) = 2λdt〈A〉(t), (dB ′(t))2 = λdt , and all

higher moments of dB ′(t) can be neglected as they are of higher order than dt .
Therefore, dB ′(t) is a gaussian process, characterized by just these two moments.
One may immediately check that the probability density, variously written as

P
[
dB ′(t)

]= 1√
2πλdt

e−
(dB′(t))2

2λdt
〈φ, t |e2AdB ′(t)−2A2λdt |φ, t〉

〈φ, t |φ, t〉

= 1√
2πλdt

〈φ, t |e− (dB′(t)−2λdtA)2
2λdt |φ, t〉

〈φ, t |φ, t〉 (9.15a)

= 1√
2πλdt

e−
(dB′(t))2

2λdt
〈φ, t + dt |φ, t + dt〉

〈φ, t |φ, t〉 (9.15b)

has these two moments.
DefineN ≡ t/dt . We multiply Eq. (9.15b) by itselfN+1 times with successively

smaller values of t , obtaining the joint probability of the independent increments dB
at successive values of t :

N∏

n=0

P
[
dB ′(t − ndt)] =

N∏

n=0

1√
2πλdt

e−
(dB′(t−ndt))2

2λdt

· 〈φ, t + dt |φ, t + dt〉
〈φ,0|φ,0〉 . (9.16)

Since 〈φ,0|φ,0〉 = 1, and using Eq. (9.13) to write

〈φ, t + dt |φ, t + dt〉 = 〈φ,0|e2AB ′(t+dt)−2A2λ(t+dt)|φ,0〉

= 〈φ,0|
N∏

n=0

e2A(B ′(t+dt−ndt)−B ′(t−ndt)−2A2λdt)|φ,0〉

(9.17)

(taking B(0)= 0), it follows from Eqs. (9.16), (9.17) that the joint probability of the
values of B at successive values of t is

P
[
B ′(t + dt),B ′(t), . . . ,B ′(dt)

]
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=
N∏

n=0

1√
2πλdt

〈φ,0|e− (B′(t+dt−ndt)−B′(t−ndt)−2λdtA)2
2λdt |φ,0〉. (9.18)

We have written dB ′(t − ndt) = B ′(t + dt − ndt) − B ′(t − ndt). We have also
written P as the joint probability of {B ′(t + dt),B ′(t), . . . ,B ′(dt)}, instead of the
joint probability of {dB ′(t), dB ′(t − dt), . . . dB ′(0)}, which we can do since the
Jacobian determinant for the change of variables is 1.

Now, we are interested in finding the probability P [B ′(t + dt)], regardless of
what Brownian path leads to the value of B ′(t + dt). To obtain this, we integrate
Eq. (9.18) over all B ′’s except B ′(t + dt). These integrals are easily done, since
each B ′(mdt) appears in just two (adjacent) gaussians in the product, and

∫ ∞

−∞
dB

1√
2πc1

e
− (B−a1)2

2c1
1√

2πc2
e
− (B−a2)2

2c2

= 1√
2π(c1 + c2)

e
− (a1−a2)2

2(c1+c2) .

The result for P [B ′(t + dt)] is

P = 1√
2πλ(t + dt) 〈φ,0|e− (B′(t+dt)−2λ(t+dt)A)2

2λdt |φ,0〉

= 1√
2πλ(t + dt)e

− (B′(t+dt))2
2λdt 〈φ, t + dt |φ, t + dt〉. (9.19)

9.3 CSL

We have arrived at CSL’s two equations in the form of the Schrödinger equation
(9.13) and the Probability Rule (9.19). It is useful to incorporate the exponential
factor in (9.19) in the Schrödinger equation (and un-prime B , and replace t + dt by
t), so that its solution then becomes

|φ, t〉 = e− 1
4λt [B(t)−2λtA]2 |φ,0〉, (9.20)

leaving the Probability Rule in the simple form

P
[
B(t)

]
dB(t)= dB(t)√

2πλt
〈φ, t |φ, t〉. (9.21)

Equations (9.20), (9.21) define CSL. Everything that follows is based upon these
two equations.
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9.3.1 Collapse Mechanism

Let’s see how they contrive to collapse the state vector. Suppose the initial state
vector is

|φ,0〉 =
∑

n

cn|an〉. (9.22)

|φ,0〉 is assumed normalized to 1, so
∑
n |cn|2=1. Equations (9.20), (9.21) then

become

|φ, t〉 =
∑

n

cn|an〉e− 1
4λt [B(t)−2λtan]2

(9.23)

and

P
[
B(t)

]
dB(t)= dB(t)√

2πλt

∑

n

|cn|2e− 1
2λt [B(t)−2λtan]2

. (9.24)

Now, assume all the an are unequal. Then, Eq. (9.24) describes a bunch of gaus-
sians whose centers at 2λtan drift further and further apart, while their widths

√
λt

spread much more slowly. As t increases, the gaussians have less and less overlap.
Then, for the set of B(t)’s which lie within the mth gaussian, the state vector and

probability are, to an excellent approximation (which becomes exact for t → ∞),

|φ, t〉 ≈ cm|am〉e− 1
4λt [B(t)−2λtam]2

(9.25)

and

P
[
B(t)

]
dB(t)≈ dB(t)√

2πλt
|cm|2e− 1

2λt [B(t)−2λtam]2
. (9.26)

For this set of B(t)’s, the integrated probability in (9.26) is ≈ |cm|2, giving the
Born Rule.

For any B(t) in this set, the normalized state vector is

|ψ, t〉 ≡ |φ, t〉√〈φ, t |φ, t〉 ≈ |am〉 (9.27)

giving the collapsed state vector.

9.3.2 Refinements: Density Matrix

The density matrix, as usual, is constructed from the state vectors and their associ-
ated probabilities, here given by Eqs. (9.20), (9.21):

ρ(t) ≡
∫ ∞

−∞
P
[
B(t)

]
dB(t)

|φ, t〉〈φ, t |
〈φ, t |φ, t〉
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=
∫ ∞

−∞
dB(t)√

2πλt
〈φ, t |φ, t〉 |φ, t〉〈φ, t |〈φ, t |φ, t〉

=
∫ ∞

−∞
dB(t)√

2πλt
e−

1
4λt [B(t)−2λtA]2 |φ,0〉〈φ,0|e− 1

4λt [B(t)−2λtA]2

= e− λt
2 [AL−AR]2 |φ,0〉〈φ,0|. (9.28)

In Eq. (9.28), AL,AR mean that these operators act on the left or the right respec-
tively of the initial density matrix |φ,0〉〈φ,0|.

With the initial density matrix (9.22), the matrix elements of the density matrix
at time t is found from (9.28) to be

〈an|ρ(t)|am〉 = cnc∗me−
λt
2 [an−am]2

, (9.29)

showing how the off-diagonal elements decay while the diagonal elements remain
constant, the collapse rate increasing as the eigenvalue differences increase.

According to Eq. (9.28), the differential equation satisfied by the density matrix
is

dρ(t)

dt
= −λ

2

[
A,
[
A,ρ(t)

]]
, (9.30)

which is the simplest possible Lindblad equation [5–7].

9.3.3 Refinements: Hamiltonian

To add the Hamiltonian to the state vector dynamics, consider the evolution over an
infinitesimal time interval: it and the probability rule become

|φ, t〉 = e−iHdt− 1
4λdt [dB(t)−2λdtA]2 |φ, t − dt〉

= e−dt[iH+ 1
4λ [w(t)−2λA]2 |φ, t − dt〉 (9.31a)

P(w)dw = 〈φ, t |φ, t〉
〈φ, t − dt |φ, t − dt〉

dw(t)√
2πλ/dt

(9.31b)

where w(t)≡ dB(t)/dt is called white noise.
Over a finite time interval, Eqs. (9.31a), (9.31b) imply

|φ, t〉 = T e−
∫ t

0 dt
′{iH(t ′)+ 1

4λ [w(t ′)−2λA]2}|φ,0〉 (9.32a)

P(w)Dw = 〈φ, t |φ, t〉
t−dt∏

t ′=0

dw(t ′)√
2πλ/dt

(9.32b)

where T is the time-ordering operator.
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To summarize, for each white noise function w(t) there is a corresponding state
vector |φ, t〉 given by Eq. (9.32a), one of which is supposed to be realized in na-
ture with probability (9.32b). Generally, the hamiltonian evolution and the collapse-
hamiltonian evolution compete against each other. This can give rise to effects which
suggest experimental tests of the collapse theory vis-à-vis standard quantum the-
ory/collapse postulate.

‘White noise’ was named after the sound which has all frequencies in equal
amounts, in analogy to white light. It was named in a paper on the acoustics in
airplanes [8], where the authors wrote:

That white noise is annoying needs little argument. No one has been found who really
enjoys it.

However, here it is enjoyed, in its role as the “chooser” of the collapsed state.

9.3.4 Refinements: More Collapse-Generating Operators

It is a straightforward generalization to describe collapse to a joint basis of operators
Aα which commute, [Aα,Aβ ] = 0. This requires one white noise function wα for
each Aα . The state vector evolution is

|φ, t〉 = T e−
∫ t

0 dt
′{iH(t ′)+ 1

4λ

∑
α[wα(t ′)−2λAα]2}|φ,0〉 (9.33)

and the corresponding density matrix evolution is

dρ(t)

dt
= −i[H,ρ(t)]− λ

2

∑

α

[
Aα,

[
Aα,ρ(t)

]]
. (9.34)

The ensemble average of an operator O shall be denoted O(t) ≡ TrOρ(t), where
Tr is the trace operation. Then, Eq. (9.34) gives

dO(t)
dt

= −i[O,H ](t)− λ

2

∑

α

[
Aα,

[
Aα,O

]]
(t). (9.35)

9.3.4.1 Nonlocality

We can illustrate, with two local operators AL and AR , where nonlocality enters
the theory. This nonlocality, for example, is responsible for the violation of Bell’s
inequality, that is, responsible for giving the quantum theory result instead of the
local realism result.

Consider an object, a cluster of N particles, in a superposition of two places, L
and R. At L, there are two possible states, |0〉L which describes nothing at L and
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|N〉L which describes the object at L. We define AL|0〉L = 0, AL|N〉L = N |N〉L.
Similar relations hold for R. Then, the initial state vector is

|φ,0〉 = 1√
2
|0〉L|N〉R + 1√

2
|N〉L|0〉R.

The state vector and probability rule for this example are respectively

|φ, t〉 = 1√
2
e−

1
4λt {B2

L+[BR−2λtN ]2}|0〉L|N〉R

+ 1√
2
e−

1
4λt {[BL−2λtN ]2+B2

R}|N〉L|0〉R,

PdBLdBR = dBLdBR

2πλt

1

2

[
e−

1
2λt {B2

L+[BR−2λtN ]2} + e− 1
2λt {[BL−2λtN ]2+B2

R}].

We see that there are two probable ranges of BL, BR . If BL lies within a number
of standard deviations of 0 and BR lies within a number of standard deviations of
2λNt , then |φ, t〉 ∼ |0〉L|N〉R , and the integrated probability of this occurring is
1/2: similarly for L↔R.

Thus, the Probability Rule demands of BL, BR that they cooperate in order
to achieve a high probability of occurrence. Although they represent values of B
at widely separated places, nonetheless they must have correlated values. So, the
Schrödinger equation is local while all the nonlocality is vested in the Probability
Rule.

It is easy to check from Eq. (9.34) that:

d

dt
R〈0|L〈N |ρ(t)|0〉L|N〉R = −λN2

R〈0|L〈N |ρ(t)|0〉L|N〉R,

so the collapse rate is λN2.

9.4 Non-relativistic CSL

Finally, here is the CSL proposal to describe the non-relativistic world [3, 9]. The
index α in Eq. (9.33) is changed to a continuum index x, so the ‘chooser’ w(x, t),
rather than being a set of random functions, is a random field:

|φ, t〉 = T e−i
∫ t

0 dt
′H(t ′)− 1

4λ

∫ t
0 dt

′ ∫ dx′[w(x′,t ′)−2λA(x′)]2 |φ,0〉. (9.36)

The set of collapse-generating operators are mass-density operators, ‘smeared’ over
a sphere of radius a:

A(x)≡
∑

n

mn

M

1

(πa2)3/4

∫
dze−

1
2a2 [x−z]2

ξ†
n (z)ξn(z). (9.37)
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Here, ξ†
n (z) is the creation operator for a particle of type n at z. mn is the mass of

this particle and M is the mass of a nucleon (say, the neutron). Thus, in ordinary
matter, it is the nucleons which are mostly responsible for collapse. Experimental
results [10–13] have dictated that the effective collapse rate in Eq. (9.36) be mass-
proportional, ∼ λmn.

Assuming the theory is correct, the parameter values of λ,a should be deter-
mined by experiment [14]. Until then, we shall provisionally adopt the parameter
values chosen by Ghirardi, Rimini and Weber [15–17] in their instantaneous col-
lapse theory, λ≈ 10−16 sec−1, a ≈ 10−5 cm. However, it should be mentioned that
Adler [18] has given an argument for λ to be as large as ≈ 10−8 sec−1.

One might very well extend this theory to include massless particles by replacing
mass-density of A(x) in Eq. (9.37) by energy-density/c2. One might then regard it
as holding in the co-moving frame of the universe [20], or as the limit of a relativistic
CSL.1

The density matrix evolution equation (9.34) becomes, using (9.37),

dρ(t)

dt
= −i[H,ρ(t)]− λ

2

∑

k,n

mkmn

M2

· 1

(πa2)3/2

∫
dx
∫
dz
∫
dz′e−

1
2a2 [x−z]2

e
− 1

2a2 [x−z′]2

· [ξ†
k (z)ξk(z)

[
ξ†
n

(
z′)ξn

(
z′), ρ(t)

]]

= −i[H,ρ(t)]− λ

2

∑

k,n

mkmn

M2

·
∫
dz
∫
dz′e−

1
4a2 [z−z′]2[

ξ
†
k (z)ξk(z)

[
ξ†
n

(
z′)ξn

(
z′), ρ(t)

]]
. (9.38)

9.5 Free Small Clump

In the rest of this paper, we shall illustrate CSL by discussing the force-free behavior
of the center of mass (cm) of a small (dimensions< a) clump of ordinary matter.2

For simplicity we shall neglect the electrons, and take there to be N nucle-
ons, regarded as a single type of particle, of mass m = M , which are very good

1Attempts to make a relativistic CSl have had a long and unsuccessful history: [21], [22], [23], [24]
. . . until the recent successful work by D.J. Bedingham [25].
2The internal excitation of the matter is not discussed here. Collapse narrows wave packets, re-
sulting in atomic and nuclear ‘anomalous’ excitation (i.e., collapse-generated, not predicted by
standard quantum theory) [10–13]. Experimental limits on such excitation strongly suggests the
effective mass-proportionality of the collapse rate, as we have mentioned. Incidentally, it can be
argued [19] that the increasing particle energy entails a concomitant decrease in the w-field energy,
so total energy is conserved.
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approximations for our calculations. Then, in the particle position basis, |x〉 ≡
|x1, . . . .xi , . . .xN 〉, using ξ†

k (z)ξk(z)|x〉 =∑N
i=1 δ(z − xi )|x〉, Eq. (9.38) becomes

d〈x|ρ(t)|x′〉
dt

= −i〈x|[H,ρ(t)]|x′〉 − 〈x|ρ(t)|x′〉

· λ
2

N∑

i,j=1

[
e
− 1

4a2 [xi−xj ]2 + e− 1
4a2 [x′

i−x′
j ]2 − 2e

− 1
4a2 [xi−x′

j ]2]
. (9.39)

Define the center of mass coordinate X ≡ N−1∑N
i=1 xi and the relative coor-

dinates yi ≡ xi − X. Because it is a ‘small’ clump, exp−[yi − yj ]2/4a2 ≈ 1 and
exp−[X + yi − X′ − y′

j ]2/4a2 ≈ exp−[X − X′]2/4a2. With the density matrix as-
sumed to have the form of the direct product of cm and internal coordinate density
matrices, we can take the trace over the internal coordinates in Eq. (9.39) to obtain
the equation for the evolution of 〈X|ρ(t)|X′〉.

It is useful to express this equation in operator form, writing the cm operator as
X̂, and its conjugate cm momentum as P̂:

dρ(t)

dt
= −i

[
P̂2

2MN
,ρ(t)

]
− λN2[1 − e− 1

4a2 [X̂L−X̂R]2]
ρ(t). (9.40)

The associated state vector evolution equation (9.36) is

|φ, t〉 = T e−i
∫ t

0 dt
′ 1

2MN P̂2− 1
4λ

∫ t
0 dt

′ ∫ dx′[w(x′,t ′)−2λNA(x′)]2 |φ,0〉, (9.41)

where

A
(
x′)≡ 1

(πa2)3/4
e
− 1

2a2 [x′−X̂]2

. (9.42)

To illustrate the use of the collapse part of Eq. (9.40), consider the initial wave
function

|φ,0〉 = 1√
2
[|L〉 + |R〉], (9.43)

where the states describe the clump to the left or right, with the two wave packet
cm’s separated by the distance D. Then (ignoring the kinetic energy),

d〈L|ρ(t)|R〉
dt

= −λN2[1 − e− D2

4a2
]〈L|ρ(t)|R〉. (9.44)

Thus, for D� a, the collapse is described by exponential decay of the off-diagonal
density matrix element with characteristic time λ−1 = 1016 sec for a single nucleon.
For a 10−5 cm cube of gold, where N ≈ 108, the characteristic collapse time is
1/λN2 = 1 sec.
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9.6 Collapse of a Packet

We shall consider how a single wave packet undergoes collapse.

9.6.1 Big Packet

Consider a spread-out, real, positive, initial wave function such as

〈X|φ,0〉 = 1

(2πD2)3/4
e
− X2

4D2 , (9.45)

where D� a. We shall neglect the effect of the Hamiltonian. We shall see that the
wave function collapses fairly rapidly to an approximately spherical wave function
of size a, center location consistent with the Born Rule, and thereafter collapses
more and more slowly to a smaller and smaller radius.

First we calculate the ensemble average of the operator O ≡ |X〉〈X|, so O is
the ensemble probability density at X. For any density matrix, it follows from the
collapse part of Eq. (9.40), using Eq. (9.35), that

d|X〉〈X|
dt

= −λN2〈X|[1 − e− 1
4a2 [X̂L−X̂R]2]

ρ(t)|X〉 = 0. (9.46)

This, of course, doesn’t say that collapse occurs but, if there is collapse, it says
that the ensemble position probability distribution does not change from the initial
distribution (Born Rule).

In order to see that there is indeed collapse, consider the ensemble average of the
modular momentum [26] operator O ≡ cos P̂ · nL, where n is a unit vector pointing
in some direction. This is 1/2 the sum of two operators, one which translates the
wave function by distance L in the n direction and the other in the −n direction.
Thus, its expectation value gives the overlap of the wave function with itself (all the
wave functions are real and positive) when so translated. For any density matrix, it
follows from the collapse part of Eq. (9.40) that

dcos P̂ · nL
dt

= −λN2[1 − e− L2

4a2
]
cos P̂ · nL (9.47)

Thus, for L� a, the ensemble average of the overlap rate of the collapsing wave
functions decreases as ≈ λN2 but then it slows, e.g., for L= a, the collapse rate is
≈ .2λN2.

9.6.2 Small Packet

If the size of the wave function is less than a, one can utilize an approximate den-
sity matrix evolution equation obtained by expanding the exponential in Eq. (9.40),
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retaining only the leading term:

dρ(t)

dt
= −i

[
P̂2

2MN
,ρ(t)

]
− λN2

4a2

3∑

1=1

[
X̂i,
[
X̂i , ρ(t)

]]
. (9.48)

The state vector evolution which yields this density matrix evolution is3

|φ, t〉 = T e−i
∫ t

0 dt
′ 1

2MN P̂2
e−

1
4λ

∫ t
0 dt

′∑3
i=1[wi(t ′)−

√
2λNa−1X̂i ]2 |φ,0〉. (9.49)

When the initial wave function is a gaussian, such as Eq. (9.45) withD < a, since
the Schrödinger equation is quadratic in P̂ and X̂, the solution is a gaussian. The
exact solution to this problem can be found [27–29]. We shall arrive at it here using
the formalism we have presented. It suffices to solve the one-dimensional problem
since, with initial wave function (9.45), Eq. (9.49) is the product of three terms, one
for each dimension.

We assume that the wave function at any time has the form

ψ(X, t)= e−A(t)X2+B(t)X+C(t), (9.50)

and proceed to solve the Schrödinger equation which follows from the time deriva-
tive of (9.49):

∂

∂t
ψ(X, t) = i

2m

∂2

∂X2
ψ(X, t)

−
[

1

4λ
w2(t)− λ̃

λ
w(t)X+ λ̃2

λ
X2
]
ψ(X, t), (9.51)

where m≡NM and λ̃≡ λN/√2a. Inserting (9.50) into (9.51) we obtain

Ȧ= −2i

m
A2 + λ̃2

λ
, (9.52a)

Ḃ = −2i

m
AB + λ̃

λ
w(t). (9.52b)

Equation (9.52a) is a Ricatti equation, and can be solved by the ansatz A =
(m/2i)Ḟ /F . It follows from (9.52a) that F̈ = F(2iλ̃2/mλ). Thus, F = exp±α(1 +
i)t , where α ≡ λ̃/√mλ and

A= mα(1 − i)
2

eα(1+i)t −Ke−α(1+i)t

eα(1+i)t +Ke−α(1+i)t , (9.53)

3How can Eq. (9.49), where w is just a function of t , arise from Eq. (9.41), where w is a field,
depending upon x as well as t? As far as I am aware, this has not been discussed before, so we treat
it in Appendix B. More generally, it involves changing the collapse-generating operators Aα to a
new, equivalent set, with concomitant change of white noise functions wα(t) to a new, equivalent
set.
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where K is a constant depending upon D.
We see that A, which characterizes the squared standard deviation of X, is the

same for all w(t). Thus, the wave function approaches an equilibrium size, inde-
pendently of its initial spread D. The equilibrium occurs because the Schrödinger
evolution tends to spread the wave function while the collapse evolution tends to nar-
row it. This takes place in characteristic time α−1 ≈ 5×104/N sec. The equilibrium
spread in X (its standard deviation) is 1/

√
2(A+A∗)= 1/

√
2mα ≈ 4/N1/2 cm.

We shall henceforth assume either that the collapse process starts at negative
times so that equilibrium is reached at time 0, or that A initially has its equilibrium
value. Putting that value into (9.52b) gives

Ḃ = −α(1 + i)B + λ̃

λ
w(t), (9.54)

with solution

B(t)= λ̃

λ

∫ t

0
dt ′w

(
t ′
)
e−α(1+i)(t−t ′). (9.55)

Knowing A and B , the expectation values of position and squared position can be
found from (9.50):

〈X〉 ≡ 〈ψ, t |X|ψ, t〉
〈ψ, t |ψ, t〉 = B +B∗

2(A+A∗)

= α

λ̃

∫ t

0
dt ′w

(
t ′
)
e−α(t−t ′) cosα

(
t − t ′), (9.56a)

〈X2〉 ≡ 〈ψ, t |X2|ψ, t〉
〈ψ, t |ψ, t〉 = 〈X〉2 + 1

2(A+A∗)
. (9.56b)

To complete the solution, we need to find C(t) but, since it is used to find the
probability density 〈ψ, t |ψ, t〉, it is best that we calculate that directly from the
Schrödinger equation:

d

dt
〈ψ, t |ψ, t〉 = −w

2(t)

2λ
〈ψ, t |ψ, t〉 + 2

λ̃

λ
w(t)〈ψ, t |X|ψ, t〉 − 2

λ̃2

λ
〈ψ, t |X2|ψ, t〉

= − 1

2λ

[
w(t)− 2λ̃〈X〉]2〈ψ, t |ψ, t〉 − λ̃2

λ

1

A+A∗ 〈ψ, t |ψ, t〉.
(9.57)

Therefore, omitting the time-dependent factor arising from the last term of (9.57)
(which is absorbed in the normalization of the probability), and defining a new set
of white noise functions

v(t)≡w(t)− 2λ̃〈X〉 =w(t)− 2α
∫ t

0
dt ′w

(
t ′
)
e−α(t−t ′) cosα

(
t − t ′), (9.58)



148 P. Pearle

the probability density is simply

〈ψ, t |ψ, t〉 = e− 1
2λ

∫ t
0 dt

′v2(t ′). (9.59)

We note that Dw =Dv, since it follows from (9.58) that the Jacobian of the trans-
formation from w’s to v’s has 1’s on the diagonal and 0’s above the diagonal.

In order to use (9.59), it is necessary to obtain the inverse of the transformation
(9.58). This can be done by taking the second derivative of (9.58), with the result

d2w(t)

dt2
= d2v(t)

dt2
+ 2α

dv(t)

dt
+ 2αv(t). (9.60)

Defining v(t)’s Brownian motion B̃(t) by v(t) = dB̃(t)/dt . It then follows from
(9.60) that w(t) can variously be written as

w(t)= v(t)+ 2α
∫ t

0
dt1v(t1)

+ 2α2
∫ t

0
dt1

∫ t1

0
dt2v(t2), (9.61a)

= v(t)+ 2α
∫ t

0
dt1v(t1)

[
1 + α(t − t1)

]
, (9.61b)

= v(t)+ 2αB̃(t)+ 2α2
∫ t

0
dt ′B̃

(
t ′
)
. (9.61c)

It then follows from the first equation in (9.58) that 〈X〉 can be written as

〈X〉 = 1√
mλ

[
B̃(t)+ α

∫ t

0
dt ′B̃

(
t ′
)
]
. (9.62)

One can then show, using (9.50), (9.55), (9.61a)–(9.61c) and (9.62), that

〈P 〉 = 2iA〈X〉 − iB(t)= λ̃

λ
B̃(t). (9.63)

This problem is completely solved. We see from Eqs. (9.62), (9.63) that, after
the equilibrium packet size is achieved, the momentum expectation value undergoes
Brownian motion and the position expectation value undergoes a motion that can be
described as Brownian+.

Any expectation value can be calculated, and any ensemble average expectation
value can be calculated. For example, although it can readily be found using the den-
sity matrix, the ensemble average of the squared position expectation value can be
found from Eq. (9.56b), using 〈X〉 = (1/2λ̃)[w(t)− v(t)] (Eq. (9.58)), Eq. (9.61b),
and v(t)v(t ′)= λδ(t − t ′) (which follows from (9.59)):

〈X2〉 = 1

2mα
+ 1

mλ

[∫ t

0
dt ′v

(
t ′
)[

1 + α(t − t ′)]
]2
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= 1

2mα
+ 1

m

∫ t

0
dt ′
[
1 + α(t − t ′)]2

= 1

2mα
+ 1

m

[
t + αt2 + α2t3/3

]
. (9.64)

X
2 ∼ t behavior occurs for classical Brownian motion, modeled as a particle

undergoing Newtonian dynamics with a random force and a viscous damping force.
In this case, the average Brownian ‘step’ size is constant in time.

X
2 ∼ t3 behavior occurs for classical Brownian motion when the viscous damp-

ing is removed. This is essentially because the average Brownian ‘step’ size in-
creases with time.

This ‘anomalous’ ∼ t3 behavior is also the quantum behavior of an object larger
than a and, since it grows larger than the ∼ t random walk predicted by standard
quantum theory, it can be used to experimentally test CSL [28].

So, we have the picture of the final result of collapse, a wave packet of equilib-
rium size which undergoes classical random walk without viscous damping, with
momentum generally increasing as it undergoes classical random walk.

9.7 Collapse of Interfering Packets

It follows from the density matrix evolution Eq. (9.40) that the interaction picture
density matrix ρ̃(t)≡U†(t)ρ(t)U(t) (U(t)≡ exp(−iP̂2/2m)) satisfies

dρ̃(t)

dt
= −λN2U†(t)

[
1 − e− 1

4a2 [X̂L−X̂R]2]
U(t)ρ̃(t), (9.65)

with solution

ρ̃(t)= T e−λN2
∫ t

0 dt
′U†(t ′)[1−e−

1
4a2 [X̂L−X̂R ]2 ]U(t ′)ρ(0) (9.66)

or, going back to the density matrix ρ(t),

ρ(t)= T e−λN2
∫ t

0 dt
′U(t−t ′)[1−e−

1
4a2 [X̂L−X̂R ]2 ]U†(t−t ′)ρ0(t), (9.67)

where ρ0(t)≡ exp(−iH t)ρ(0) exp(iH t) is the density matrix without collapse. In
the position representation, Eq. (9.67) is

〈X|ρ(t)|X′〉 = T e−λN2
∫ t

0 dt
′[1−e−

Z2(t−t ′)
4a2 ]〈X|ρ0(t)|X′〉, (9.68a)

Z
(
t − t ′)≡

(
X − t − t ′

mi
∇
)

−
(

X′ + t − t ′
mi

∇′
)
. (9.68b)

We now note that, because [Xi − X′
i ,∇j + ∇′

j ] = 0, it follows that [Z(t −
t ′),Z(t − t ′′)] = 0, and so the time-ordering operation T may be removed from



150 P. Pearle

Eq. (9.68a). Also because this commutator vanishes, any product of powers of Z’s
can be written in ‘normal-ordered form,’ by which we mean that the X’s are to the
left of the ∇’s. Denoting the normal ordered form by : :, Eq. (9.68a) becomes

〈X|ρ(t)|X′〉 = :e−λN2
∫ t

0 dt
′[1−e−

Z2(t−t ′)
4a2 ]:〈X|ρ0(t)|X′〉 (9.69)

We shall apply Eq. (9.69) to the case where the uncollapsed density matrix ρ0(t)

is constructed from a number of wave packets,

〈X|ρ0(t)|X′〉 =
∑

n,n′
cnc

∗
n′φn(X, t)φ∗

n′
(
X′, t

)
. (9.70)

The wave packets φn(X, t) are to have well-defined momenta kn(X) at (almost)
each point of the wave packet, which itself has dimensions large compared to the
wavelength. Thus, a wave packet could be a laboratory ‘plane wave,’ a good approx-
imation to an eigenstate of momentum k. It could be a cylindrical wave packet or
a spherical wave packet of momentum magnitude k such as might be obtained by
putting the ‘plane’ wave packet through a slit or a circular hole.

An important feature of such a packet φj (X, t) is that

〈X|P̂|φn, t〉 = 1

i
∇φn(X, t)≈ kn(X)φj (X, t) (9.71)

is a very good approximation. Another important feature of such a packet is that
(almost) each point in each wave packet can be considered as moving on a straight-
line trajectory with constant velocity kn(X)/m.

Putting together Eqs. (9.68b), (9.69), (9.70), we obtain for the ensemble’s prob-
ability density at X:

〈X|ρ(t)|X〉 =
∑

n,n′
cnc

∗
n′φn(X, t)φ∗

n′(X, t)

·e−λN2
∫ t

0 dt
′[1−e−

1
4a2 [Xn(t−t ′)−X

n′ (t−t ′)]2 ], (9.72)

where

Xn
(
t − t ′)≡ X − kn(X)

m

(
t − t ′). (9.73)

That is, consider a point on the nth packet which is located at X at time t . Then,
Xn(t − t ′) is the location that point had on the nth packet at the earlier time t ′.

To summarize, we have seen in Eq. (9.40) or (9.44) that, when a clump is put into
a superposition of two places with constant separation D, the two states play the
gambler’s ruin game, so that the off-diagonal elements of the density matrix decay
at the rate λN2[1 − exp−(D2/4a2)]. Equation (9.72) says that, for a superposition
of packets, the points on the packets, which end up at the same place X at time t ,
may be thought of as playing the gambler’s ruin game with each other on the way
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to X, with the above-mentioned distance-determining rate now varying with time,
governing the collapse all along the way.

Although it is not of concern here, we mention that, of course, the spatially
separated points of a single packet, or of multiple packets, likewise mutually play
the gambler’s ruin game, and that description is obtained by considering the off-
diagonal elements of the density matrix.

9.7.1 Mach-Zender Interference

As is well known, the Mach-Zender interferometer has a rectangular shape, say,
with half-silvered beam-splitters at the lower left and upper right corners, and fully-
silvered mirrors at the other two corners. An incoming wave packet splits into two
equal packets at the first beam splitter. The packet going →, ↑ has its sign reversed
when it reflects at 90o from the front-surfaced mirror. The packet going ↑, →, ↑
gets no net sign change: one sign change at the first, front-surfaced, beam splitter,
one at the front-surfaced mirror, none at the second, back-surfaced, beam splitter.
Thus, without collapse, there is no output in the ↑ direction.

Although there are certainly velocity changes of the packets, they take place over
a relatively brief time interval, so Eq. (9.72) may be applied seriatim. Let t be the
time interval separating emergence from the two beam splitters. At time 0, the two
packets start off with c1 = c2 = 1/

√
2. Thereafter, |X1(t − t ′) − X2(t − t ′)| � a.

Moreover, the collapse rate is unaffected if a packet changes sign. Finally, at time t ,
the second beam splitter has just made the amplitudes c1 = c2 = 1/2 and, if packet
1 is φ1(X, t), then packet 2 is −φ1(X, t).

Therefore, in Eq. (9.72), since exp−[Xn − Xn]2/4a2 = 1, exp−[X1 − X2]2/

4a2 ≈ 0, for a point X in the superposed wave packets,

〈X|ρ(t)|X〉 = 1

4
|φ1(X, t)|22

[
1 − e−λN2t

]
, (9.74)

and the probability that the clump emerges in the upward direction is

P↑ =
∫
dX〈X|ρ(t)|X〉 = 1

2

[
1 − e−λN2t

]
. (9.75)

We see that, as time spent in the interferometer increases, P↑ → 1/2 since, asymp-
totically, only one packet survives to hit the second beam splitter, and that packet
has equal likelihood of going ↑ or →.

9.7.2 Two Slit Interference

It should be clear that Eq. (9.72) can be applied to any interference or diffraction
problem. Here we shall just consider the effect of collapse on the two-slit Fraunhofer
interference pattern, with neglect of single-slit diffraction.
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Take the two slits to be located at x = ±b and parallel to the z-axis. The pattern is
observed at a point X on a screen located at y = L� b. The vectors from the slits to
the point on the screen are r1,2 ≡ X ± ib. Defining θ as the angle X makes with the
y-axis, and working only to first order in θ , then X ≈ L[iθ + j], and r1,2 ≈ |X|±bθ .

The two cylindrical packets φ1,2 have wave number k, and are of equal amplitude
c1,2 = 1/

√
2 when they emanate from the two slits. They reach the screen at point

X at time t , where their amplitudes are A exp±ikbθ . We are to consider the parts of
the two packets traveling with speed k/m on a straight line, each from its slit to the
screen. Their separation at any time t ′ is |X1(t − t ′)− X2(t − t ′)| = 2b[1 − (t ′/t)].
Putting this into Eq. (9.72) yields

〈X|ρ(t)|X〉 = A2

2

[
2 + (e2ikbθ + e−2ikbθ )e−λN2[t−∫ t0 dt ′e−(

b
a )

2(1− t ′t )2 ]]

= A2[1 + cos(2kbθ)e−λtN2[1− a
b

∫ b
a

0 dve−v2 ]]

= 2A2 cos2(kbθ)e−λtN2[1−
√
πa

2b χ(b/a)]

+A2[1 − e−λtN2[1−
√
πa

2b χ(b/a)]] (9.76)

where χ(b/a)≡ erf(b/a).
Since t is the time to reach the screen, then t ≈ Lm/k. Thus, we see that the two-

slit two-packet interference pattern decays while the single packet non-interference
pattern builds up as the screen is put further and further away. For b� a, the packet
separation is � a for almost all the time of travel, and the collapse rate is λN2, as
in the previous section. For b� a, the collapse rate is λN2b2/3a2.

This concludes our discussion of free particle collapse dynamics, and this paper.

Appendix A: Proof That R and S Must be Diagonal

We prove here that the real symmetric operators R and S in the Stratonovich
Schrödinger equation for the un-normalized state vector,

d|φ, t〉 = [RdB ′ + Sdt]|φ, t〉 (9.77)

must be diagonal in the |an〉 basis. This is in order that Eq. (9.77) give rise to the Itô
gambler’s ruin condition Eq. (9.5),

dxn(t)= bn(x)dB(t). (9.78)

After putting Eq. (9.4), dB ′ = dB + f dt , into Eq. (9.77), we convert that
Stratonovich equation to an Itô equation, with the result

d|φ, t〉 = [RdB + V dt]|φ, t〉 where V ≡ S +Rf + λ

2
R2. (9.79)
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We note that V is also a real symmetric operator and, if we show R and V must be
diagonal, then S must also be diagonal.

Using the rules for manipulating Itô equations, it is straightforward to find

d|φ, t〉〈φ, t | = {[RdB + V dt], |φ, t〉〈φ, t |}+ λdtR|φ, t〉〈φ, t |R, (9.80a)

d〈φ, t |φ, t〉 = 2[〈φ, t |R|φ, t〉dB + 〈φ, t |V |φ, t〉dt] + λdt〈φ, t |R2|φ, t〉, (9.80b)

where {M,N} ≡ MN + NM . Defining the density matrix ρ(t) ≡ |φ, t〉〈φ, t |/
〈φ, t |φ, t〉 and M ≡ TraceMρ, we obtain from Eqs. (9.80a)–(9.80b) and the Itô
rules:

dρ = [{R,ρ} − 2ρR
]
dB + dt[{V,ρ} − 2ρV

]

+ λdt[[RρR− ρR2
]− 2R

[{R,ρ} − 2ρR
]]
. (9.81)

Now, xn(t) = 〈an|ρ(t)|an〉. Thus, in order that the diagonal elements of
Eq. (9.81) agree with Eq. (9.78), we see that the diagonal elements of Eq. (9.81)
which do not multiply dB must vanish for arbitrary ρ:

0 = [{V,ρ}nn − 2ρnnV
]+ λ[[(RρR)nn − ρnnR2

]− 2R
[{R,ρ}nn − 2ρnnR

]]
,

(9.82)
whereMnm ≡ 〈an|M|am〉

First, suppose that ρmm = 1, where m �= n, and all other matrix elements of ρ
vanish. It follows from Eq. (9.82) that

0 = (RρR)nn = (Rnm)2. (9.83)

That is, all the off-diagonal elements of R vanish, so R is diagonal.
Second, choose a density matrix for which ρnn, ρmm = 1 − ρnn, ρnm do not

vanish, but all other matrix elements of ρ do vanish. Then, using the diagonal nature
of R, Eq. (9.82) may be written as

0 = 2Vnmρnm[1 − 2ρnn]
+ ρnn[1 − ρnn][2(Vnn − Vmm)
+ λ(Rnn −Rmm)

[
(Rnn +Rmm)

− 4
(
Rnnρnn +Rmm(1 − ρnn)

)]
. (9.84)

For fixed ρnn, a viable density matrix (non-negative eigenvalues which add up to 1)
exists for |ρnm| ≤ √

ρnn(1 − ρnn). But, as ρnm is varied, the first term in Eq. (9.84)
varies while the rest of the terms remain fixed. Thus, the first term must vanish, and
this means that Vnm = 0 for n �=m, i.e., V is diagonal as well as R.
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Appendix B: Transformation of Operators and White Noise

Consider the general CSL form for the evolution of the state vector, Eq. (9.33)

|φ, t〉 = T e−
∫ t

0 dt
′{iH(t ′)+ 1

4λ

∑
α[wα(t ′)−2λAα]2}|φ,0〉 (9.85)

We introduce a real orthonormal set of vectors uαβ , i.e.,
∑
α u
α
βu
α
β ′ = δββ ′ ,

∑
β u

α
βu
α′
β = δαα′ . Defining white noise functions vβ(t) and complete commuting

set of operators Zβ by wα(t)≡∑β u
α
βv
β(t) and Aα(t)≡∑β u

α
βZ

β(t), one readily
sees that, in the exponent of Eq. (9.85),

∑

α

[
wα(t)− 2λAα

]2 =
∑

β

[
vβ(t)− 2λZβ

]2
. (9.86)

The Jacobian of the transformation from w’s to v’s is 1 so, in using the Probability
Rule (9.32b), Dw =Dv.

We wish to apply such a transformation to Eqs. (9.41), (9.42) which, for simplic-
ity, we limit to one-dimensional space:

|φ, t〉 = T e−i
∫ t

0 dt
′ 1

2MN P̂
2
e−

1
4λ

∫ t
0 dt

′ ∫ dx′[w(x′,t ′)−2λNA(x′)]2 |φ,0〉, (9.87a)

A
(
x′)≡ 1

(πa2)1/4
e
− 1

2a2 [x′−X̂]2

. (9.87b)

We shall use as orthonormal functions the harmonic oscillator wave functions

un(x)≡ CnHn(x/a)e−
1

2a2 x
2

where Cn ≡ 1√
π1/22nn!a . (9.88)

With the definitions vn(t)≡
∫
dxw(x, t)un(x) and Ẑn ≡ ∫ dxA(x)un(x), the expo-

nent in Eq. (9.87a) may be written as

− 1

4λ

∫ t

0
dt ′
∫
dx′[w

(
x′, t ′

)− 2λNA
(
x′)]2

= − 1

4λ

∞∑

n=0

∫ t

0
dt ′
[
vn
(
t ′
)− 2λNẐn

]2
. (9.89)

Thus, we see how a white-noise field gets converted to an equivalent sum of white
noise functions.

Using the identity exp(−t2 + 2tz) = ∑∞
n=0 t

nHn(z)/n!, with t ≡ X̂/2a, z ≡
x′/a, we find

Ẑn =
∫
dx

1

(πa2)1/4
e
− 1

2a2 [x′−X̂]2

un(x)
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= 1

Cn(πa2)1/4
e
− 1

4a2 X̂
2

∞∑

m=0

(X̂/2a)m

m!
∫
dxum(x)un(x)

= e− 1
4a2 X̂

2 (X̂/
√

2a)n√
n! . (9.90)

This leads to the density matrix evolution equation

dρ(t)

dt
= −i

[
P̂ 2

2MN
,ρ(t)

]

− λN2

2

∞∑

n=0

[
e
− 1

4a2 X̂
2 (X̂/

√
2a)n√
n! ,

[
e
− 1

4a2 X̂
2 (X̂/

√
2a)n√
n! , ρ(t)

]]
.

(9.91)

If we expand exp−X̂2/4a2, we see that the n= 0 term goes as (X̂/a)4 and the rest
of the terms go as (X̂/a)n to lowest order. Therefore, the lowest order term comes
from n = 1. Upon neglect of the higher order terms, this gives the density matrix
evolution equation

dρ(t)

dt
= −i

[
P̂ 2

2MN
,ρ(t)

]
− λN2

4a2

[
X̂,
[
X̂, ρ(t)

]]
, (9.92)

which is identical to the one-dimensional version of Eq. (9.48).
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Chapter 10
Many Worlds, the Born Rule, and Self-Locating
Uncertainty

Sean M. Carroll and Charles T. Sebens

Abstract We provide a derivation of the Born Rule in the context of the Everett
(Many-Worlds) approach to quantum mechanics. Our argument is based on the idea
of self-locating uncertainty: in the period between the wave function branching via
decoherence and an observer registering the outcome of the measurement, that ob-
server can know the state of the universe precisely without knowing which branch
they are on. We show that there is a uniquely rational way to apportion credence
in such cases, which leads directly to the Born Rule. [Editors note: for a video of
the talk given by Prof. Carroll at the Aharonov-80 conference in 2012 at Chapman
University, see quantum.chapman.edu/talk-14.]

10.1 Introduction

A longstanding puzzle in the Many-Worlds or Everett approach to quantum me-
chanics1 (EQM) is the origin of the Born Rule: the probability of finding a post-
measurement system in an eigenstate |a〉 of an observable A, given that the system
is prepared in state |ψ〉, is given by |〈a|ψ〉|2. Here we summarize and discuss the
resolution of this problem that we recently developed [3], in which the Born Rule is
argued to be the uniquely rational way of dealing with the self-locating uncertainty
that inevitably accompanies branching of the wave function. A similar approach has
been advocated by Vaidman [4]; our formal manipulations closely parallel those of
Zurek [5].

Ours is certainly not the first attempt to derive the Born Rule within EQM. One
approach is to show that, in the limit of many observations, branches that do not
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1Everett’s original paper is [1]. A comprehensive introduction to the theory in its modern version
can be found in [2].
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obey the Born Rule have vanishing measure [6–8]. A more recent twist is to use
decision theory to argue that a rational agent should act as if the Born Rule is true
[9–12]. Another approach is to argue that the Born Rule is the only well-defined
probability measure consistent with the symmetries of quantum mechanics [5, 13].

While all of these ideas have some degree of merit, they don’t seem to have
succeeded in convincing a majority of experts in the field. Our purpose here is not
to criticize other approaches (there may be many valid ways to derive a correct
answer), but to provide a simple and hopefully transparent alternative derivation that
is physics-oriented while offering a clear answer to the question of how probabilities
arise in EQM, a deterministic theory.

The main idea we use is that of self-locating uncertainty [14]: the condition of
an observer who knows that the environment they experience occurs multiple times
in the universe, but doesn’t know which example they are actually experiencing.
We argue that such a predicament inevitably occurs in EQM, during the “post-
measurement/pre-observation” period between when the wave function branches
and when the observer registers the affect of the branching. A naive analysis might
indicate that, in such a situation, each branch should be given equal likelihood; here
we demonstrate that a more careful treatment leads us inevitably to the Born Rule
for probabilities.

10.2 Everettian Quantum Mechanics

In EQM, the quantum state is described by a vector |Ψ 〉 in a Hilbert space H, evolv-
ing under the influence of a self-adjoint Hamiltonian H according to Schrödinger’s
equation

H |Ψ 〉 = i�∂t |Ψ 〉. (10.1)

This smooth unitary evolution is supposed to account for absolutely all the quan-
tum dynamics; there is no separate rule governing “wave function collapse.” Rather,
we model the observer as well as the system as part of the quantum state, and uni-
tary evolution causes the state of the universe to split into multiple non-interacting
branches, each associated with a possible measurement outcome.

Consider an example in which the “system” is a single qubit initially in a state
|ψ〉 = (1/√2)(|↑〉 + |↓〉), where the arrow denotes the value of the spin along the
z-axis. The observer is initially uncorrelated with the spin, in a ready state |O0〉. The
measurement process is described via the following form of unitary evolution:

|Ψ 〉 = 1√
2
|O0〉 (|↑〉 + |↓〉) (10.2)

→ 1√
2

(|O↑〉|↑〉 + |O↓〉|↓〉) . (10.3)

Here, |O↑〉 and |O↓〉 represent states in which the observer has measured spin-up
and spin-down, respectively. The wave function has not collapsed, but the observer
is now described by a superposition of different measurement outcomes.
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The first challenge for such an approach is obvious: in the real world, it never
feels like we are in a superposition of measurement outcomes. We see the spin up
or down, Schrödinger’s Cat alive or dead—never a superposition of different pos-
sibilities. Everett’s insight was that, if a measurement of a spin that was originally
in either of the eigenstates |↑〉 or |↓〉 leaves the observer with the impression of
a definite measurement outcome, then the linearity of quantum mechanics implies
that a superposition of such states should lead to two definite experiences. The wave
function in Eq. (10.3) represents two agents seeing two different outcomes, not one
agent somehow experiencing an indeterminate outcome.

This story becomes more plausible once decoherence is understood as a crucial
part of quantum mechanics. In a realistic situation, the observer and system do not
constitute the entire universe; there is also an environment, generally with many
more degrees of freedom. Initially the environment, like the observer, is in a state
|ω0〉 that is unentangled with the system under consideration. But if the system and
the environment are allowed to interact—as is practically inevitable if the system is
a macroscopic object like Schrödinger’s Cat, constantly radiating and breathing (or
failing to) and so forth—then entanglement with the environment quickly ensues
(typically before entanglement with the observer):

|Ψ 〉 = 1√
2
|O0〉 (|↑〉 + |↓〉) |ω0〉

→ 1√
2
|O0〉

(|↑〉|ω↑〉 + |↓〉|ω↓〉) . (10.4)

In a generic situation, the entangled environment states will be nearly orthogonal:
〈ω↑|ω↓〉 ≈ 0. In that case, the component describing the up spin will no longer be
able to interfere with the component describing the down spin. We say that decoher-
ence has occurred, and the wave function has branched. Decoherence helps explain
how EQM is a theory of distinct causally well-isolated “worlds.”2

A popular objection to EQM is that it is ontologically extravagant—an incredi-
ble number of unobservable worlds are invoked to help explain observations within
the single world to which we have access. This objection is misplaced. Any viable
version of quantum mechanics involves a Hilbert space H of very high dimensional-
ity. The holographic principle suggests that the dimensionality of the Hilbert space
describing our observable universe is at least exp(10120) [15], and there is good rea-
son to believe it is infinite [16]. In EQM, the size of Hilbert space remains fixed, but
the state vector describes an increasing number of distinct worlds as it evolves. The
potential for describing many worlds was always there; the objection that there are
too many universes is really an objection that Hilbert space is too big, which would
apply equally well to any approach to quantum mechanics which includes a state
vector. A proper measure of ontological extravagance relies on the number of types
of fundamental entities proposed by the theory (like the wave function) and laws

2EQM is time-symmetric, but branching occurs toward the future, and not toward the past, because
the low-entropy early universe was relatively free of entanglements between subsystems.
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that govern them, not the number of large scale structures (like quantum worlds)
which emerge from them. EQM, which requires only a vector in a Hilbert space and
a single evolution law, is ontologically quite restrained.

A more pressing concern is that the formalism of EQM offers little guidance to
the preferred basis problem—why do we collapse onto certain states and not others?
We do not address this question in this paper, but there has been significant progress
in understanding the origin of “pointer states” which arise from decoherence and
are robust under macroscopic perturbations [17, 18]. Philosophically, there has been
progress made in understanding how the many worlds of quantum mechanics can be
emergent, arising dynamically from unitary evolution and not requiring the addition
of new laws to govern their creation [19].

Our concern here is with the origin of the Born Rule. In an equation such as
(10.4), it is unclear what role the coefficients multiplying each branch should play
for an observer living within the wave function. We will argue that they play a
crucial role in justifying a probability calculus that leads us to the Born Rule. Along
the way, we will see how probability can arise in a deterministic theory as agents
evolve from perfect knowledge to self-locating uncertainty.

10.3 Self-Locating Uncertainty

Modern theories of cosmology often invoke “large universes”—ones in which any
given local situation (such as a particular observer, in a particular macroscopic quan-
tum state, with particular data about their surroundings) is likely to occur multiple
times [20–22]. The setting could be something as dramatic as an inflationary mul-
tiverse, or as relatively pedestrian as an homogeneous cosmology with sufficiently
large spatial sections. If the likely number of such duplicate observers is infinite,
we face the cosmological measure problem. Even if it is finite, however, any one
such observer finds themselves in a situation of self-locating uncertainty. They can
know everything there is to know about the state of the universe and an arbitrary
amount about their local environment, but still not be able to determine which such
instantiation of that data they are experiencing.

This situation has been extensively studied in the philosophical literature (see
e.g. [23–25]), often in the case of hypothetical exact duplications of existing persons
rather than large universes. One intuitively obvious principle for assigning probabil-
ities in the face of such uncertainty is “indifference,” roughly: if all you know is
that you are one of N occurrences of a particular set of observer data, you should
assign equal credence (a.k.a. “degree of belief” or just “probability”) 1/N to each
possibility. Elga [26] has given convincing arguments in favor of indifference in the
case of identical classical observers. Crucially, this result is not simply postulated as
the simplest approach to the problem, but rather derived from seemingly innocuous
principles of rational reasoning.

In EQM, self-locating uncertainty is inevitable: not with respect to different loca-
tions in space, but with respect to different branches of the wave function. Consider



10 Many Worlds, the Born Rule, and Self-Locating Uncertainty 161

again the branching process described in Eq. (10.4), but now we include an explicit
measuring apparatus A (which might represent an electron microscope, a Geiger
counter, or other piece of experimental equipment). Imagine that we preserve quan-
tum coherence in the system long enough to perform a measurement with the ap-
paratus, which then (as a macroscopic object) rapidly becomes entangled with the
environment and causes decoherence. Only then does the observer record the out-
come of the measurement (normalizations have been omitted for convenience):

|Ψ 〉 = |O0〉 (|↑〉 + |↓〉) |A0〉|ω0〉 (10.5)

→ |O0〉
(|↑〉|A↑〉 + |↓〉|A↓〉) |ω0〉 (10.6)

→ |O0〉
(|↑〉|A↑〉|ω↑〉 + |↓〉|A↓〉|ω↓〉) (10.7)

= |O0〉|↑〉|A↑〉|ω↑〉 + |O0〉|↓〉|A↓〉|ω↓〉 (10.8)

→ |O↑〉|↑〉|A↑〉|ω↑〉 + |O↓〉|↓〉|A↓〉|ω↓〉. (10.9)

Each line represents unitary time evolution except for (10.8), in which we have
merely distributed the observer state for clarity. That is the moment we describe as
post-measurement/pre-observation. At that step, the wave function has branched—
decoherence has occurred, as indicated by the different environment states. The ob-
server is still described by a unique state |O0〉, but there are two copies, one in each
branch. Such an observer (who by construction doesn’t yet know the outcome of the
measurement) is in a state of self-locating uncertainty.

A particularly clear example of such uncertainty would be a real-world version
of the Schrödinger’s Cat experiment. An actual cat interacts strongly with its en-
vironment and would not persist in a coherent superposition of alive and dead for
very long; the wave function would branch long before a human experimenter opens
the box. But in fact such uncertainty is generic. The timescale for decoherence for a
macroscopic apparatus is extremely short, generally much less than 10−20 sec. Even
if we imagine an experimenter looking directly at a quantum system, the state of
the experimenter’s eyeballs would decohere that quickly. The timescale over which
human perception occurs, however, is tens of milliseconds or longer. Even the most
agile experimenter will experience some period of self-locating uncertainty in which
they don’t know which of several branches they are on, even if it is too brief for them
to notice. Although the experimenter may not be quick-thinking enough to reason
during this period, there are facts about what probabilities they ought to assign be-
fore they get the measurement data.

Naively, the combination of indifference over indistinguishable circumstances
and self-locating uncertainty when wave functions branch is a disaster for EQM,
rather than a way forward. Consider a case in which the amplitudes are unequal for
two branches:

|Ψ 〉 =
√

1

3
|O0〉|↑〉|ω↑〉 +

√
2

3
|O0〉|↓〉|ω↓〉. (10.10)

The conditions of the two observers would seem to be indistinguishable from the
inside; there is no way they can “feel” the influence of the amplitudes multiplying
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their branches of the wave function. Therefore, one might be tempted to conclude
that Elga’s principle of indifference implies that probabilities in EQM should be cal-
culated by branch-counting rather than by the Born Rule—every branch should be
given equal weight, regardless of its amplitude. In this case, Eq. (10.10), that means
assigning equal 50/50 probability to up and down even though the branch weights
are unequal. This would be empirically disastrous, as real quantum measurements
don’t work that way. We will now proceed to show why such reasoning is incor-
rect, and in fact a proper treatment of self-locating uncertainty leads directly to the
empirically desirable conclusion.3

10.4 The Epistemic Separability Principle

We base our derivation of the Born Rule on what we call the Epistemic Separability
Principle (ESP), roughly: the outcome of experiments performed by an observer on
a specific system shouldn’t depend on the physical state of other parts of the uni-
verse (for a more careful discussion see [3]). If I set out to measure the z-component
of a spin in my laboratory, the probability of a particular outcome should be inde-
pendent of the quantum state of some other spin in a laboratory on an alien planet
around a distant star in the Andromeda galaxy. An essentially equivalent assump-
tion is made by Elga in his discussion of classical self-locating uncertainty [26].4

The ESP applies in both quantum and classical contexts. In classical contexts, the
ESP is compatible with Elga’s indifference principle (see [3]). In quantum contexts,
it mandates the Born rule. In EQM, the ESP amounts to the idea that the state of the
environment shouldn’t affect predictions that are purely about the observer/system
Hilbert space.

Consider a Hilbert space that describes an observer, a system, and an environ-
ment:

H = HO ⊗HS ⊗HE. (10.11)

We consider general states of the universe, described by a state vector

|Ψ 〉 =
∑

a,i,μ

Ψa,i,μ|ψa〉|φi〉|ωμ〉, (10.12)

where {ψa}, {φi}, and {ωμ} are bases for the observer, system, and environment re-
spectively, all of which are orthonormal: 〈ψa|ψb〉 = δab etc. Consider unitary trans-

3Page has recently argued that the prospect of classical self-locating uncertainty in large universes
poses a crisis for quantum mechanics, as the Born Rule becomes insufficient for calculating the
probability of measurement outcomes [8, 27–30]. Our approach provides a unified treatment of
classical and quantum self-locating uncertainties, defusing the would-be crisis.
4The ESP is implicit in Elga’s discussion of his TOSS & DUPLICATION thought experiment,
where he notes that the outcome of an additional coin toss should not affect the credence we assign
to being either an original or a duplicated person with identical experiences.
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formations that act only on the environment, which we can write as

T = IOS ⊗UE, (10.13)

where UE is a unitary matrix that acts on HE . Then we can formulate the ESP
in the context of EQM as the statement that probabilities in the observer/system
subspace are unchanged by such transformations (here s is a possible outcome of a
measurement of the system S):

P(O measures s|Ψ )= P(O measures s|T [Ψ ]). (10.14)

In [3] we also offer a version of this principle using density matrices rather than
directly in terms of transformations on states; roughly, the outcome of an experiment
depends only on the reduced density matrix of the observer/system subspace. The
two formulations are equivalent if we are comparing states with identical Hilbert
spaces for the environment.

A key motivation behind EQM is that no additional assumptions should be added
to the basic structure of the Hilbert space and unitary evolution. While the ESP
might seem like an additional assumption, we believe it simply reflects the structure
of a quantum theory in which the space of states can be factorized. Note that we
are not assuming the absence of interactions between the system and environment
(which would make decoherence impossible); only that changing the environment
without changing the observer or system should leave experimental predictions un-
altered.

10.5 Deriving the Born Rule

Consider a specific example where we have an observer, a spin with equal ampli-
tudes to be up or down, and an environment (again omitting the overall normaliza-
tion):

|Ψ 〉 = |O〉|↑〉|ω1〉 + |O〉|↓〉|ω2〉. (10.15)

Like Eq. (10.8), this is a state in which the observer has yet to observe the outcome
and thus ought to be uncertain which branch they are on. The environment states are
assumed to be orthonormal (by decoherence), and without loss of generality we can
take them to be the first two elements of an orthonormal basis {|ωμ〉}.

We can write any environment unitary UE in the form

UE =
∑

μ

|ω̃μ〉〈ωμ|, (10.16)

where the states |ω̃μ〉 are another set of orthonormal vectors. We decompose the
environment into a tensor product of two subsystems, one of which we will label
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as a “coin” (although it could be of arbitrary dimension) and the other includes
everything else:

HE = HC ⊗HÊ . (10.17)

Then we can construct an orthonormal basis {|ω̃μ〉} for the environment HE in
which the first two basis vectors take the form

|ω̃1〉 = |H 〉 ⊗ |Ω〉, (10.18)

|ω̃2〉 = |T 〉 ⊗ |Ω〉, (10.19)

where |H 〉 (heads) and |T 〉 (tails) are two orthonormal vectors in HC , and |Ω〉 ∈
HÊ .

Now we can construct two specific environment unitaries:

U
(1)
E =

∑

μ

|ω̃μ〉〈ωμ|, (10.20)

U
(2)
E = |ω̃2〉〈ω1| + |ω̃1〉〈ω2| +

∑

μ>2

|ω̃μ〉〈ωμ|. (10.21)

Acting on our state (10.15) we get

|Ψ1〉 ≡ (IOS ⊗U(1)E
)|Ψ 〉

= |O〉|↑〉|H 〉|Ω〉 + |O〉|↓〉|T 〉|Ω〉 (10.22)

and

|Ψ2〉 ≡ (IOS ⊗U(2)E
)|Ψ 〉

= |O〉|↑〉|T 〉|Ω〉 + |O〉|↓〉|H 〉|Ω〉. (10.23)

In the |Ψ1〉, the spin and the “coin” have become entangled so that the coin is heads
if the particle was spin up, in |Ψ2〉 the coin is heads if the particle was spin down.

By the ESP, Eq. (10.14), the probability that the observer will measure spin up or
spin down is equal in all of these states, since they are related by unitary transfor-
mations on the environment:

P(↑|Ψ )= P(↑|Ψ1)= P(↑|Ψ2), (10.24)

P(↓|Ψ )= P(↓|Ψ1)= P(↓|Ψ2). (10.25)

However, we can also consider the coin to be “the system,” and the spin as part of
the environment. In that case, the two environments are related by a unitary trans-
formation on the spin:

US = |↑〉〈↓| + |↓〉〈↑|. (10.26)
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Therefore, by analogous logic, the probability of the observer measuring heads or
tails is equal in the two states |Ψ1〉 and |Ψ2〉:

P(H |Ψ1)= P(H |Ψ2), (10.27)

P(T |Ψ1)= P(T |Ψ2). (10.28)

Looking at the specific states in (10.22) and (10.23), we notice that the branch of
the wave function in which the coin is heads is the same as the one where the spin
is up in |Ψ1〉, but the one where the spin is down in |Ψ2〉. So, in |Ψ1〉 the particle is
spin up if and only if the coin is heads, and in |Ψ2〉 the particle is spin down if and
only if the coin is heads. (See Fig. 10.1.) We therefore have

P(↑|Ψ1)= P(H |Ψ1), (10.29)

P(↓|Ψ2)= P(H |Ψ2). (10.30)

Comparing with (10.27) we immediately get

P(↑|Ψ1)= P(↓|Ψ2), (10.31)

and comparing that with (10.24) and (10.25) reveals

P(↑|Ψ )= P(↓|Ψ )= 1/2. (10.32)

This is, of course, the result we expect from the Born Rule: when the components
of the wave function have equal amplitudes, they get assigned equal probabilities.
This shouldn’t be surprising, as it is also what we would expect from naive branch-
counting. However, notice that the equality of the amplitudes was crucially impor-
tant, rather than merely incidental; had they not been equal, we would have been
unable to fruitfully compare results from different unitary transformations on the
environment.

It is therefore crucial to consider branches with unequal amplitudes. Here our
logic follows that of Zurek [5]. Start with a state where one branch has an amplitude
greater than the other by a factor of

√
2:

|Ψ 〉 = |O〉|↑〉|ω1〉 + √
2|O〉|↓〉|ω2〉. (10.33)

We can change to a new environment basis {|ω̂μ〉}, defined by

|ω1〉 = |ω̂1〉

|ω2〉 = 1√
2
|ω̂2〉 + 1√

2
|ω̂3〉

|ω3〉 = 1√
2
|ω̂2〉 − 1√

2
|ω̂3〉

|ωμ〉 = |ω̂μ〉, μ > 3.

(10.34)
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Fig. 10.1 A schematic representation of the setup behind our derivation of the Born Rule. The
states |Ψ1〉 and |Ψ2〉 are on the left and right, respectively. Factors denote the observer, the spin,
the coin, and the rest of the environment. Thin diagonal lines connecting the spin and coin rep-
resent entanglement within different branches of the wave function. The horizontal/vertical boxes
made from dotted/dashed lines show two different ways of carving out the “Observer+System”
subsystem from the “Environment.” The ESP implies that the probability of the system being in a
particular state is independent of the state of the environment. Applying that rule to both the spin
and coin systems implies the Born Rule as the uniquely rational way of assigning credences

Then our state is

|Ψ 〉 = |O〉|↑〉|ω̂1〉 + |O〉|↓〉|ω̂2〉 + |O〉|↓〉|ω̂3〉. (10.35)

This reduces the problem of two branches with unequal amplitudes to that of three
branches with equal amplitudes.

Following our previous logic, we construct a new orthonormal environment ba-
sis involving both a coin and a playing card, the latter of which has basis vectors
{|♥〉, |♦〉, |♠〉, |♣〉}. In terms of these we write a third set of environment basis vec-
tors {|ω̃μ〉} as:

|ω̃1〉 = |H 〉 ⊗ |♥〉 ⊗ |Ω〉, (10.36)

|ω̃2〉 = |T 〉 ⊗ |♥〉 ⊗ |Ω〉 (10.37)

|ω̃3〉 = |H 〉 ⊗ |♦〉 ⊗ |Ω〉, (10.38)

|ω̃4〉 = |T 〉 ⊗ |♦〉 ⊗ |Ω〉 (10.39)

|ω̃5〉 = |H 〉 ⊗ |♣〉 ⊗ |Ω〉 (10.40)

. . . (10.41)

Again we construct environment unitaries

U
(1)
E =

∑

μ

|ω̃μ〉〈ω̂μ|, (10.42)

U
(2)
E = |ω̃4〉〈ω̂1| + |ω̃1〉〈ω̂2| + |ω̃5〉〈ω̂3| + |ω̃2〉〈ω̂4| + |ω̃3〉〈ω̂5| +

∑

μ>5

|ω̃μ〉〈ω̂μ|.

(10.43)
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Acting on our state (10.35) we get

|Ψ1〉 = |O〉|↑〉|H 〉|♥〉|Ω〉 + |O〉|↓〉|T 〉|♥〉|Ω〉 + |O〉|↓〉|H 〉|♦〉|Ω〉 (10.44)

and

|Ψ2〉 = |O〉|↑〉|T 〉|♦〉|Ω〉 + |O〉|↓〉|H 〉|♥〉|Ω〉 + |O〉|↓〉|H 〉|♣〉|Ω〉 (10.45)

From the form of |Ψ2〉, in particular the first term in the superposition, it is easy to
see that

P(↑ |Ψ2)= P(T |Ψ2)= P(♦|Ψ2). (10.46)

From treating different combinations of spin/coin/card as parts of the environment,
we also derive

P(↑ |Ψ1) = P(↑ |Ψ2), (10.47)

P(T |Ψ1) = P(T |Ψ2), (10.48)

P(♦|Ψ1) = P(♦|Ψ2). (10.49)

From Eqs. (10.46)–(10.49), we can safely conclude that each of the three branches
represented in (10.44) have equal probability, one-third each. Since |Ψ1〉 is related
to the original |Ψ 〉 by a unitary transformation on the environment, the ESP implies

P(↑ |Ψ )= 1

2
P(↓ |Ψ )= 1

3
. (10.50)

This is precisely the Born Rule prediction for this particular case of unequal ampli-
tudes. The spin-down component of the original state was greater than the spin-up
component by a factor of

√
2, and ends up with twice the probability. Other possi-

bilities follow by straightforward extension of the above method. Admittedly, this
reasoning only strictly applies when the ratio of different amplitudes is the square
root of a rational number; however, since this is a dense set, it seems reasonable to
conclude that the Born Rule is established.

This route to the Born Rule has a simple physical interpretation. Take the wave
function and write it as a sum over orthonormal basis vectors with equal amplitudes
for each term in the sum (so that may terms may contribute to a single branch). Then
the Born Rule is simply a matter of counting—every term in that sum contributes
an equal probability.

10.6 Discussion

We have proposed that self-locating uncertainty is generic in the process of quantum
measurement, and that a proper treatment of such uncertainty leads us directly to the
Born Rule [3]. In spirit our approach is similar to that of Vaidman [4], although we
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have carried the program through in more explicit detail. The result has the virtue of
being relatively physically transparent. The wave function of the universe branches,
and initially you don’t know which branch you are on; close investigation reveals
that the only rational way to apportion credence to the different possibilities is to
use the Born Rule.

Formally, our derivation bears a close resemblance to the envariance program
of Zurek [5], although we believe there are some conceptual advantages. Most im-
portantly, while envariance helps us understand why the Born Rule is a sensible
prescription if one thinks of EQM as a probabilistic theory at all, our emphasis on
self-locating uncertainty provides a direct explanation for how such probabilities
can arise in a perfectly deterministic theory. In a fundamentally stochastic theory,
one thinks of probability as the answer to a question of the form “how likely is it
that this particular outcome will occur?” That philosophy fails in EQM, where it is
clear that every outcome with nonvanishing support in the wave function will occur
(in some branch) with probability one. The Born Rule does not tell you the proba-
bility that you will end up as “the observer who measures spin up” (for example);
rather, you know with certainty that you will evolve into multiple observers with
different eventual experiences. In our approach, the question is not about which ob-
server you will end up as; it is how the various future selves into which you will
evolve should apportion their credences. Since every one of them should use the
Born Rule, it is justified to talk as if future measurement outcomes simply occur
with the corresponding probability. It is the journey from perfect knowledge to in-
evitable self-locating uncertainty that is the basis of probability talk in quantum
mechanics.

Another advantage of our approach is that it provides a unified framework in
which to discuss classical and quantum self-locating uncertainty. This has become
an important issue in modern cosmology, in which models of the universe very often
predict “large” spacetimes with multiple copies of various observers. Our formal-
ism only provides unambiguous guidance in cases where the number of classical
observers is finite, so it does not directly address the cosmological measure problem
as it appears in models of eternal inflation—but it seems reasonable that getting the
finite case right is an important step towards understanding the infinite case.
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Chapter 11
Physics and Narrative

David Albert

Abstract I present a very simple thought experiment—which has somehow been
overlooked in the literature—that has surprising consequences about the Lorentz-
transformation properties of the quantum states of multiple-particle systems. [Edi-
tors note: for a video of the talk given by Prof. Albert at the Aharonov-80 conference
in 2012 at Chapman University, see quantum.chapman.edu/talk-29.]

Thirty years ago, when I was in my late twenties, and I had a post-doctoral position
with Yakir in the Physics department at Tel Aviv University, I was asked to give a
toast at a celebration for Yakir’s 50th birthday. And what I remember saying is that
I couldn’t think of any of my contemporaries at the time—that I couldn’t think of
anybody (that is) in their twenties—who were even remotely as brave, or as open,
or as creative, or as experimental, or as overcome with wonder, or as bursting with
life, or as constantly and resolutely expecting the impossible, or (in brief) as young,
as Yakir. But even I could not have imagined at the time that thirty years later he
would turn out to be younger still.

I cannot begin to catalogue my debts to Yakir here. I owe him—to put it simply—
everything. And it is a great honor and pleasure to be able to celebrate with him
today. And I thought it might be fun to remind him of some thoughts that he and
I had together thirty years or so ago—and to tell a little about what has become of
them, in my own imagination, since.

Consider a system of four distinguishable quantum-mechanical spin-1/2 parti-
cles. Call it S. And suppose that the complete history of the motions of those parti-
cles in position-space—as viewed from the perspective of some particular Lorentz-
frame K—is as follows: Particle 1 is permanently located in the vicinity of some
particular spatial point, and particle 2 is permanently located in the vicinity of some
other spatial point, and particles 3 and 4 both move with uniform velocity along
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Fig. 11.1 Situation in
Lorentz-inertial system K

parallel trajectories in space-time.1 The trajectory of particle 3 intersects the tra-
jectory of particle 1 at space-time point P—as in Fig. 11.1—and the trajectory of
particle 4 intersects the trajectory of particle 2 at space-time point Q. And P and Q
are simultaneous, from the perspective of K.

And suppose that the state of the spin degrees of freedom of S, at t = −∞, is
|ϕ〉12|ϕ〉34, where

|ϕ〉AB = 1√
2
|↑〉A|↓〉B − 1√

2
|↓〉A|↑〉B (11.1)

I want to compare the effects of two different possible Hamiltonians on this sys-
tem. In one, S evolves freely throughout the interval from t = −∞ to t = +∞. The
other includes an impulsive contact interaction term that exchanges spins—a term
(that is) which is zero except when two of the particles occupy the same point, and
which (when it isn’t zero) generates precisely the following unitary evolution:

|↑〉A|↓〉B → |↓〉A|↑〉B
|↓〉A|↑〉B → |↑〉A|↓〉B
|↑〉A|↑〉B → |↑〉A|↑〉B
|↓〉A|↓〉B → |↓〉A|↓〉B

(11.2)

A minute’s reflection will show that the entire history of the quantum state of
this system, from the perspective of K—the entire history (that is) of the quantum-
mechanical wave-function of this system, even down to the overall phase, from the
perspective of K—will be identical on these two scenarios. On both scenarios (that
is) the state of S, from the perspective of K, throughout the interval from t = −∞
to t = +∞, will be precisely |ϕ〉12|ϕ〉34.

And what’s interesting is that the situation is altogether different from the per-
spective of every other frame. On the first scenario—the scenario in which S evolves
freely—the state of S is going to be precisely |ϕ〉12|ϕ〉34, in every frame, throughout

1This sort of permanent localization can be accomplished, say, by placing the particles in boxes,
or by making their masses large.
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the interval from t ′ = −∞ to t ′ = +∞.2 But on the second scenario, when viewed
from the perspective of frames other than K, the interactions at P and Q occur at
different times. In those other frames, then, throughout the interval between P and
Q, the state of S is going to be |ϕ〉14|ϕ〉23.

And it follows immediately that the complete history of the quantum state of S
in frames other that K cannot be deduced, either by means of the application of
a geometrical space-time point-transformation or in any other way, from the com-
plete history of the quantum state of S in K—because transformation in question
would need (per impossible!) to map precisely the same history in K into one of two
entirely distinct histories in K′, depending on which one of the above two Hamilto-
nians obtains.

All of this is as easy as can be. And all of it has been taken note of, on a number
of different occasions, in the literature of the foundations of quantum mechanics. It
was pointed to in a 1984 [1] paper by Yakir Aharonov and myself—for example—
and in a paper by Wayne Myrvold from 2002 [2], and it must at least have occurred
in passing to a great many people.3 But nobody seems to have been able to look it
straight in the face, nobody seems to have entirely taken it in.4

Let’s back up (then) and slow down, and see if we can figure out what it
means.

2I am going to be supposing, throughout, that the velocities of these other frames with respect to K
are small compared to the speed of light, so that the effects of Lorentz-transformations on the spins
can be neglected. The effects of transforming to other frames that are going to interest us here can
all be made as large as one likes, even at small relative velocities, by separating the two particles
from one another by a great spatial distance.
3The example presented here, however, is a good deal cleaner and more perspicuous than either the
one discussed by Aharonov and I in 1984 or the one discussed by Myrvold in 2002. The example
cited in the paper by Aharonov and myself involves measurement-type interactions, and the one
Myrvold presents involves an external field that violates Poincare-invariance. Neither of those sorts
of distractions come up, however, in the example presented here.
4What Yakir and I had to say about it—in the 1984 paper—was that in so far as frame K is con-
cerned, the interaction “disrupts (as it were) the transformation properties of the state and disrupts
its covariance, without in any way disrupting the history of the state itself”. But precisely how it
is that the transformation properties of something can be disrupted without in any way disrupting
the history of the thing itself I confess I can no longer imagine. It seems panicked—looking back
on it now—and incoherent, and mad.

Professor Myrvold (on the other hand) thinks it shows that the Lorentz-transformation of
quantum-mechanical wave-functions is not so much a geometrical or even a kinematical matter
as it is a matter of dynamics, a matter of the Hamiltonian of the system whose wave-function
is being transformed. According to Professor Myrvold, the business of performing a Lorentz-
transformation on the complete temporal history of the wave-function of an isolated system is
in general going to require that we know, and are able to solve, the system’s dynamical equations
of motion. But if we go that route, nothing whatever is going to remain of the intuition that carrying
out such a transformation is merely a matter of looking at precisely the same set of physical events
from two different perspectives, from two different points of view. Dynamics—after all—is not the
business of changing one’s perspective on already existing events, but of generating entirely new
ones!
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Call a world narratable if the entirety of what there is to say about it can be
presented as a single story, if the entirety of what there is to say about it can be
presented as a single temporal sequence of instantaneous global physical situations.

The possible worlds of Newtonian Mechanics can each be presented, in its en-
tirety, by means of a specification of the local physical conditions at every point in a
four-dimensional manifold. And there is a way of slicing that manifold up into a one-
parameter collection of infinite three-dimensional hyperplanes such that the dynam-
ical significance of the parameter in question—the dynamical role of the parameter
in question—is precisely that of a time.5 A Newtonian-Mechanical instantaneous
global physical situation, then, is a specification of the local physical conditions
at each one of the points on any particular one of those infinite three-dimensional
hyperplanes. And since all of those instantaneous global Newtonian-Mechanical
physical situations taken together amount—by construction—to a specification of
the local physical conditions at every point in the manifold, the possible worlds
of Newtonian Mechanics are invariably narratable. Moreover, they are uniquely
narratable, in the sense that the number of different ways of slicing the manifold
up in such a way as to satisfy the conditions described above—in a Newtonian-
Mechanical world—is invariably, precisely, one.

The possible worlds of Non-Relativistic Quantum Mechanics can each be
presented, in its entirety, by means of a specification of the values of a real
two-component field—a specification, that is, of the quantum-mechanical wave-
function—at every point in a 3N + 1 dimensional manifold (where N is the number
of particles in the world in question). And there is a way of slicing that manifold up
into a one-parameter collection of infinite 3N -dimensional hyperplanes such that
the dynamical role of the parameter in question is precisely that of a time. A Non-
Relativistic Quantum-Mechanical instantaneous global physical situation, then, is a
specification of the local physical conditions at each one of the points on any par-
ticular one of those infinite 3N -dimensional hyperplanes. And since all of those in-
stantaneous global Non-Relativistic Quantum-Mechanical physical situations taken
together amount to a specification of the local physical conditions at every point
in the manifold, the possible worlds of Non-Relativistic Quantum-Mechanics are
invariably narratable. And the narratability here is again unique, in the sense that
the number of different ways of slicing the manifold up in such a way as to satisfy
the conditions described above is invariably, precisely, one.

The possible worlds of Classical Relativistic Maxwellian Electrodynamics—
just like those of Newtonian Mechanics—can each be presented, in its entirety, by

5It means a host of things, by the way, to speak of the parameter in question here as “playing the
dynamical role of a time”. It means (for example) that the trajectory of every particle in the world
intersects every one of the three-dimensional hyperplanes in question here exactly once, and it
means that the total energy on any one of these hypersurfaces is the same as the total energy on
any other one of them, and it means (principally and fundamentally and in sum) that the equation

F =m(∂2x/∂ρ2),

where ρ is the parameter in question, is true.
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means of a specification of the local physical conditions at every point in a four-
dimensional manifold. And there is, again, a way of slicing that manifold up into a
one-parameter collection of infinite three-dimensional hyperplanes such that the dy-
namical significance of the parameter in question is precisely that of a time. And so a
Classical Relativistic Maxwellian instantaneous global physical situation is a spec-
ification of the local physical conditions at each one of the points on any particular
one of those infinite three-dimensional hyperplanes. And since all of those instan-
taneous global Classical Maxwellian physical situations taken together amount to a
specification of the local physical conditions at every point in the manifold, the pos-
sible worlds of Classical Relativistic Maxwellian Electrodynamics are narratable.
But in this case the narratability is manifestly not unique—Classical Relativistic
Maxwellian Electrodynamics is (rather) multiply narratable. In the case of Classical
Relativistic Maxwellian Electrodynamics, each different Lorentz-frame is plainly
going to correspond to a different way of slicing the manifold up in so as to satisfy
the conditions described above.

But Relativistic Quantum Theories are an altogether different matter. In both
the non-relativistic and the relativistic cases, an instantaneous Quantum-Mechanical
state of the world—an instantaneous Quantum-Mechanical global physical situa-
tion—is a specification if the expectation-values of all of the local and non-local
quantum-mechanical observables that refer exclusively to the time in question. And
the lesson of the example we went through above is that the entirety of what there
is to say about a Relativistic Quantum-Mechanical world can not be presented as
a one-parameter family of situations like that. The lesson of the example we went
through above (more particularly) is that any one-parameter family of situations
like that is necessarily going to leave the expectation-values of non-local Quantum-
Mechanical observables that refer to several different times—the expectation-values
of non-local Quantum-Mechanical observables (that is) which are instantaneous
from the perspective of other Lorentz-frames—unspecified. In order to present the
entirety of what there is to say about a Relativistic Quantum-Mechanical world, we
need to specify, separately, the Quantum-Mechanical state of the world associated
with every separate space-like hypersurface. If the theory is to be relativistic in the
sense of Einstein, in the sense of Minkowski, nothing less is going to do.

The relationship between the quantum-mechanical states of the world associ-
ated with any set of space-like hypersurfaces and the quantum-mechanical states
of the world associated with any other set of space-like hypersurfaces is therefore,
invariably, a matter of dynamical evolution—even (for example) if one of those sets
happens to be the complete family of equal-time hyperplanes for K and the other
one of those sets happens to be the complete family of equal-time hyperplanes for
K′.6

6In this respect, then, Professor Myrvold (see note 4) is perfectly right. Where Myrvold goes wrong
is in imagining that a relationship like that is consistent with the claim that an assignment of a
quantum state of the system in question to every one of the equal-time hyperplanes of K can
amount to a complete history of that system—where he goes wrong (that is) is in imagining that a
relationship like that can leave the world narratable.
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Fig. 11.2

Fig. 11.3

Moreover, the elementary unit of dynamical evolution here is plainly not an in-
finitesimal translation in time (which is generated by the global Hamiltonian of the
world H, as in Fig. 11.2a) but an arbitrary infinitesimal deformation, an arbitrary
infinitesimal undulation, of the space-like hypersurface (which is generated by the
local Hamiltonian density of the world δH , as in Fig. 11.2b).

The dynamical laws of the evolutions of relativistic quantum-mechanical systems
therefore have a much richer mathematical structure than the laws of the evolutions
of non-relativistic quantum-mechanical systems do. Suppose (for example) that we
should like to calculate the wave-function of some particular isolated quantum-
mechanical system on hypersurface b, given the wave-function of that system on
some other hypersurface a—where a may be either in the past of b or in its future. In
the non-relativistic case, which is depicted in Fig. 11.3a, there is always exactly one
continuous one-parameter family of hypersurfaces—the continuous one-parameter
family of absolute simultaneities between a and b—along which a calculation like
that is going to have to proceed, along which the system in question can be pictured
as evolving. In the relativistic case, on the other hand, there is invariably an infinity
of continuous one-parameter families of space-like hypersurfaces along which such
a calculation can proceed, and along which the system in question can be pictured
as evolving. Two such families are displayed in Figs. 11.3b and 11.3c.

And one of the necessary conditions of the existence of a solution to the dynam-
ical equations of motion of a theory like this, one of the necessary conditions of
the internal consistency of the dynamical equations of motion of a theory like this,
is that the calculation that proceeds along the route pictured in Fig. 11.3b and the
calculation that proceeds along the route pictured in Fig. 11.3c, so long as they both
start out with precisely the same wave-function at a, will both necessarily produce
precisely the same wave-function at b. And while there can be no such thing as a
Lorentz-transformation of the complete temporal sequence of the quantum states of
any isolated system S in frame K into the complete temporal sequence of quantum
states of that system in frame K′, there is nonetheless a perfectly clear and perfectly
explicit idea of the Lorentz-transformation of any comprehensive summary of the
world; there is a perfectly clear and perfectly explicit idea (that is) of the Lorentz
transformation of any assignment of states to every space-like hypersurface. Given
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Fig. 11.4

any such assignment, the way to Lorentz-transform it is just to assign the same set
of states to a Lorentz-transformed set of hypersurfaces, and we speak of a set of
dynamical laws of the evolutions of wave-functions as Lorentz Invariant just in case
any Lorentz-transformation of any comprehensive summary of the world which is in
accord with those laws yields another comprehensive summary of the world which
is in accord with those laws.

Here are two stories—which pull in very different directions—about where all
this might leave us:

11.1 Story 1

This story is about the collapse of the wave-function. And it will work best—for the
moment—to tell it in the language of the old-fashioned and idealized and unscien-
tific and altogether outmoded postulate of collapse on which collapses are brought
about by means of the intervention of localized, external, un-quantum-mechanical
measuring-devices. On this picture, collapses involve a discontinuous and prob-
abilistic projection of the wave-function of the measured system, the quantum-
mechanical system, onto an eigenfunction of some particular one of its local observ-
ables (the observable, that is, which the external device in question is designed to
measure) at some particular space-time point (the so-called ‘measurement-event’—
the point at which the measured system interacts with the measuring-device). The
probability of a projection onto this or that particular eigenfunction of the measured
observable is determined, in the familiar way, by the Born rule.

On the non-relativistic version of the collapse postulate (which is depicted
in Fig. 11.4a) the collapse occurs as the ‘now’ sweeps forwards across the
measurement-event—the collapse (that is) affects the wave-function of the system
in question in the future of that event, but not in its past. And twenty or so years ago,
I wrote a paper with Yakir Aharonov which proposed a manifestly Lorentz-invariant
relativistic version of that postulate (which is depicted in Fig. 11.4b) on which the
collapse occurs as an undulating space-like hypersurface, any undulating space-like
hypersurface, deforms forwards across the measurement-event—on which (that is)
the collapse affects the wave-function of the system in question on those space-like
hypersurfaces that intersect the future light-cone of measurement-event, but not on
those space-like hypersurfaces that intersect its past light-cone.
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Fig. 11.5

Suppose (then) that we are given the wave-function of some isolated relativistic
quantum-mechanical system S along some space-like hypersurface a, and suppose
that we are given the addresses of all of the space-time points in the future of a
at which measurements of local observables of S are to be carried out, and sup-
pose that we are told what particular local observable of S each particular one of
those measurements is to be a measurement of. The relativistic postulate of collapse
just described—together with the deterministic laws of the ordinary dynamical evo-
lutions of the wave-functions of isolated relativistic quantum-mechanical systems
under infinitesimal deformations of the space-like hypersurface—will assign a def-
inite probability to any particular assignment of outcomes to those measurements,
and it will assign a definite probability to any particular assignment of a quantum-
mechanical wave-function to any particular space-like hypersurface b which is en-
tirely in the future of a, and (moreover) it will do both of those things uniquely—
completely independent (that is) of which one of the above-mentioned routes the
calculation of those probabilities take.

The trouble here—or so I imagined until now—is that the possible worlds of
this sort of a theory aren’t going to be narratable. Suppose (for example) that the
momentum of a free particle is measured along the hypersurface marked t = 0 in
Fig. 11.5, and that later on a collapse leaves the particle localized at P. Then the
projection-postulate that Aharonov and I proposed is going to stipulate (among other
things) that the wave-function of the particle along hypersurface h is an eigenstate of
momentum, and that the wave-function of the particle along hypersurface j is (very
nearly) an eigenstate of position. And so the quantum-mechanical wave-functions
associated with hypersurfaces h and j, in this example, are going to disagree with one
another even about the expectation-values of local quantum-mechanical observables
at points like Q, where they intersect.7 And that (of course) puts narratability quite
decisively out of the question.

7Note, however, that the expectation-values of all local observables at Q given the state along
t= 0 will still be completely independent of the route by which one chooses to calculate from
t = 0 to Q. On certain routes (for example) Q is going to come up as an element of h, and on
certain others it will come up as an element of j . If Q comes up as an element of h, then the
expectation-values of all local observables at Q, given the state along t = 0, will be determined—in
the familiar way—by the state at h. But if Q comes up as an element of j , then the expectation-
values of all local observables at Q, given the state along t = 0, will be determined by a probability-
distribution over various different possible states at j—corresponding to the different possible
outcomes of the measurement at P. The Lorentz-invariance of the dynamical equations of motion
and the collapse-postulate, however, will guarantee that those two sets of expectation-values will
invariably be identical.
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But a case might be made that the example we went through at the outset of this
paper sheds a very different light on all this. We can now see—it might be argued—
that the narratability of Relativistic Quantum Theories is dead before the measure-
ment problem ever even comes up, before the non-locality that Bell discovered ever
even enters the picture. Adding a postulate of the collapse of the wave-function
to a Relativistic Quantum Theory, on this view, solves the measurement problem,
and costs nothing. The Lorentz-invariance of the theory is preserved perfectly in-
tact, and as for the failure of narratability, that price turns out to have been paid,
unbeknownst to us, long before the question of measurement ever arose.

If all this is right, then many-worlds and many-minds and many-histories theo-
ries have no advantage whatever—in so far as questions of Lorentz-invariance are
concerned—over collapse theories. The Lorentz-invariance of the theories of many-
worlds and many-minds and many-histories comes, after all, at the price of non-
narratability—just as that of collapse theories does.

Moreover, there is now reason to hope that these considerations may turn out not
to depend all that sensitively on the unrealistic idealizations of the measurement-
process I described a few paragraphs back. A talented young German physicist
named Roderich Tamulka has recently published a fully relativistic version of the
GRW collapse-theory for non-interacting particles a theory (as it turns out) that fits
around the schematic general principles that Yakir and I laid out twenty years ago
like skin. It still remains and it may turn out to be a highly non-trivial business—to
generalize Tamulka’s theory to the case of interacting particles and to fields. We
shall have to wait and see. But what Tamulka has already accomplished represents
an immense and encouraging step in the right direction.

11.2 Story 2

This is a story about the linear, unitary, deterministic evolution of the wave-functions
of quantum-mechanical systems, altogether un-adorned by any mechanism of col-
lapse. Consider a Relativistic Quantum-Mechanical world W in which the free
Hamiltonian of a certain pair of electrons is identically zero, and in which the wave-
function of that pair, along every space-like hypersurface whatever, is precisely the
wave-function |ϕ〉12 of Eq. (11.1). And let t ′ = α be a flat space-like hypersurface all
of whose points are simultaneous with respect to some particular Lorentzian frame
of reference K′. And imagine an experiment designed to measure and record the to-
tal spin of that pair of electrons along t ′ = α. The experiment involves two localized
pieces of apparatus, which have previously been brought together, and prepared in
a state in which certain of their internal variables are quantum-mechanically entan-
gled with one another, and then separated in space. One of those pieces of apparatus
then interacts with particle 1 at point L (in Fig. 11.6) and the other interacts with par-
ticle 2 at point Q. And the positions of the relevant pointers on those two pieces of
apparatus, at the conclusions of those interactions, are measured, and the values of
those positions are transmitted to F, and those values are mathematically combined
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Fig. 11.6

with one another in such a way as to determine the outcome of the measurement
of the total spin of the pair of electrons along t ′ = α, and (finally) that outcome is
recorded, in ink (say), in English, on a piece of paper, at G.8 No such experiment is
actually carried out in W—mind you—but it is a fact about W that if such an ex-
periment were to have been carried out, it would with certainty have been recorded
at G that the total spin of that pair along t ′ = α was zero.

Now, the most obvious and most straightforward way of accounting for that fact,
the most obvious and most straightforward way of explaining that fact, is to point
out (1) that the state of the electron-pair, along the hypersurface t ′ = α, is |ϕ〉12,
and (2) that |ϕ〉12 is an eigenstate of the total spin of that pair, with eigenvalue zero,
and (3) that a measurement of the total spin of that pair along t ′ = α—if it had
been carried out—would therefore, with certainty, have found that the total spin of
that pair is zero. Note that this explanation depends only on the state of the pair of
electrons at t ′ = α, and not at all on the dynamical laws by which that state evolves.9

But another explanation—or rather a continuous infinity of other explanations—
have plainly got to be available as well. If (for example) we trace out the devel-
opment of the world exclusively along the continuous one-parameter family of hy-
persurfaces of simultaneity in K , the experiment in question is going to look not
so much like an instantaneous measurement as an extended sequence of dynamical
interactions. At t = 0, state of the electron-pair is |ϕ〉12, and the pair of apparatuses
are in the specially prepared quantum-mechanically entangled state—call it | 〉-
alluded to above. Then—at L—electron 1 interacts with one of the localized pieces
of apparatus, and this interaction leaves the electron-pair quantum-mechanically
entangled with the pair of apparatuses. Then—at Q—electron 2 interacts with the
other localized piece of apparatus in precisely such a way as to undo that latter

8Detailed instructions for the construction and preparation of measuring-apparatuses like these—
using only local interactions—can be found in an old paper of Yakir Aharonov’s and mine [3].
9The account does depend on the dynamics of the two pieces of measuring-apparatus—of
course—and on the dynamics of the mechanism whereby the positions of the relevant pointers
on those two pieces of apparatus are transmitted to F, and on the dynamics of the mechanism
whereby those position-values are mathematically combined with one another in such a way as to
determine the outcome of the total-spin measurement, and (finally) on the dynamics of the mecha-
nism whereby that outcome is recorded at G—but it doesn’t depend at all on the dynamics of the
pair of electrons themselves.
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entanglement—leaving the electron-pair once again in the state |ϕ〉12 and the pair
of apparatuses once again in the state | 〉. Thereafter, the various transmitters and
receivers and compilers and recorders go to work, and the end-product of all this
activity—the end-product (that is) which is entailed with certainty by the state of
the world along t = 0 and the deterministic quantum-mechanical equations of mo-
tion, no matter which continuous one-parameter family of space-like hypersurfaces
the intervening calculation traces through—is a sheet of paper at G, bearing the
inscription “total spin equals Zero”.

This particular experiment’s having this particular outcome, then, can be given
a complete and satisfactory and deterministic explanation which traces out the de-
velopment of the world exclusively along the continuous one-parameter family of
hypersurfaces of simultaneity in K , and which makes no mention whatsoever of the
state of the pair of electrons—or of anything else—at t ′ = α.

And we are plainly going to be able to produce very much the same sort of
an explanation—very much the same continuous infinity of explanations—of the
outcome any hypothetical experiment whatsoever.

And this suggests a way of picturing relativistic quantum-mechanical worlds—
for a price—as narratable. All that needs to be given up is the Einsteinian insis-
tence that the unfolding of the world in every separate Lorentz-frame and along
every continuous one-parameter family of space-like hypersurfaces all be put on an
equal metaphysical footing. Suppose—on the contrary—that it is stipulated that an
assignment of a quantum state of the world to every one of the hypersurfaces of
simultaneity of (say) K—and to no other space-like hypersurfaces—amounts in and
of itself to a complete and exhaustive and unaugmentable account of the world’s
history. Then there would be no facts at all about the ‘state of the world’ along,
say, t ′ = α. And all talk of such ‘facts’ in the physical literature would need to be
re-interpreted as shorthand for counterfactual talk about how this or that hypotheti-
cal experiment—if it were to be performed—would come out. The world would be
narratable—and (moreover) uniquely so.

On this way of thinking, the impulse away from an Einsteinian understanding
of special relativity—the impulse (that is) towards a Lorentzian understanding of
special relativity—would arise not (in the first instance) from the non-locality of
the collapse, but earlier and farther down, from the geometry of the Hilbert space
and the demand for narratability. And the way would seem to be open to trying out
new fundamental theories of the world which violate Lorentz-invariance—a little
bit—even in their empirical predictions.
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Chapter 12
Quantum Correlations in Newtonian Space and
Time:

Faster than Light Communication or Nonlocality

Nicolas Gisin

Abstract We investigate possible explanations of quantum correlations that satisfy
the principle of continuity, which states that everything propagates gradually and
continuously through space and time. In particular, following (Bancal et al. in Nat.
Phys., 2012) we show that any combination of local common causes and direct
causes satisfying this principle, i.e. propagating at any finite speed, leads to sig-
nalling. This is true even if the common and direct causes are allowed to propagate
at a supraluminal-but-finite speed defined in a Newtonian-like privileged univer-
sal reference frame. Consequently, either there is supraluminal communication or
the conclusion that Nature is nonlocal (i.e. discontinuous) is unavoidable. [Editor’s
note: for a video of the talk given by Prof. Gisin at the Aharonov-80 conference in
2012 at Chapman University, see quantum.chapman.edu/talk-28.]

It is an honor to dedicate this article to Yakir Aharonov, the master of quantum
paradoxes.

12.1 Introduction

Correlations cry out for explanations [1]. This is true in all sciences, from corre-
lations between measurement results in quantum physics to correlations between
earthquakes and tsunamis in geophysics, and correlations between tides and the
moon’s positions in classical physics, to name but a few examples. Once a correla-
tion has been identified, the next task of science consists in developing a theoretical
model explaining the correlation. Such models take the form of a story supported
by mathematical equations. Particularly challenging is the search of an explanation
for quantum correlations when considering several measurements per party on two
or more distant systems initially in an entangled state.
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In all sciences besides quantum physics, all correlations are explained by a com-
bination of only two basic mechanisms. Either a first system influences a second
one, i.e. Direct Causation (DC), as for example the earthquake that causes the
tsunami. Or the correlated events share a local Common Cause (CC) in their com-
mon past as two readers of this text whose readings are highly correlated. Sometimes
the common or direct causes may be subtle and not easy to detect, as twins that look
extraordinarily alike thanks to common genes (local variables, i.e. CC), or as one’s
yawning triggers others to yawn, thanks to delicate influences (i.e. DC).

Many correlations involve a combination of the two basic mechanisms, common
and direct causes, like for instance the correlations between hockey players: they
trained together, hence share common causes, and, during games, influence each
other.

Formally a correlation between two parties A and B is a conditional probability
distribution p(a, b|x, y), where a, b denote the measurement results collected by
A and B, and x, y the measurement settings freely (i.e. independently from each
other and from all CC and DC) chosen by A and B, respectively. This generalizes
straightforwardly to n parties. If A’s marginal p(a|x, y)≡∑b p(a, b|x, y) depends
explicitly on B’s choice y, then A can get information about B’s choice by merely
observing her local statistics. This is called signalling. The no-signalling principle
states that A’s marginal is independent of B’s choice, p(a|x, y)≡∑b p(a, b|x, y)=
p(a|x), and B’s marginal is independent of A’s choice, p(b|x, y) = p(b|y). Note
that all physical communication should be carried by some physical object (atoms,
photons, energy, waves, etc). Hence, assuming only local Common Causes carried
by the (localized) physical systems in Alice and Bob’s hands, signalling would be
non-physical communication. But Direct Cause may allow signalling as discussed
in Sect. 12.8.

This paper is organized as follows. In the next section, we present the intuition
behind our result [2]. Next, in Sect. 12.3, we define formally v-causal models. Then,
before presenting the main result in Sect. 12.5, we analyze the case of DC (without
additional variables) in Sect. 12.4. Finally, we discuss experiments that could test
our results in Sect. 12.6 and discuss the interpretation of our results.

12.2 Explanations of Correlations

First attempts at explaining correlations between distant quantum measurement re-
sults assumed that the source producing the entangled quantum systems produces
additional variables, hidden to today’s physics, which would locally (i.e. continu-
ously) determine the probabilities of the measurement results. This would provide
a local Common Cause explanation. Such local hidden variable models must obey
the famous Bell inequalities. But quantum theory predicts and experiments confirm
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that Bell inequalities can be violated; hence all explanations based only on local
common causes have been experimentally refuted.1

Direct Cause explanations of quantum correlations received relatively little atten-
tion, compared to CC explanations (up to some noticeable exceptions, in particular
Eberhard who proposed an explicit model already in 1989 [3]). This is due to the
fact that Bell inequality violations have been convincingly demonstrated between
space-like separated measurements [4–6], hence a DC explanations would require
influences that propagate faster than light.

The assumption of faster than light influences does not respect the spirit of rel-
ativity. However, the assumption of a universal privileged reference frame with re-
spect to which a faster than light influence can be defined, is not in contradiction
with relativity.2 Think for example of the reference frame in which the micro-wave
back ground radiation, residue of the big bang, is isotropic; our Earth propagates
with respect to this universal frame at the well defined speed of 369 km/s in a direc-
tion known at each moment [7].

There is thus no definite reason not to investigate the possibility of explaining
quantum correlation with a combination of DC and CC. Actually, many authors
who thought seriously about quantum non-locality noticed that correlation between
distant events strongly suggest that “something is going on behind the scene”, using
John Bell’s words [8, 9]. David Bohm and Basil Hiley, for example, have been very
explicit when writing “it is quite possible that quantum nonlocal connections might
be propagated, not at infinite speeds, but at speeds very much greater than that of
light. In this case, we could expect observable deviations from the predictions of
current quantum theory (e.g. by means of a kind of extension of the Aspect-type
experiment)” [10]. Let us also note that most (non relativistic) text books tell a story
like “first measurement collapses the entire wavefunction, hence changes (influ-
ences) the state of all systems entangled with the measured system”. Consequently,
it is good scientific practice to study the assumption that quantum correlations are
caused by faster than light influences propagating in a hypothetical universal privi-
leged reference frame and analyze its consequences.

We call v-causal all explanations that combine local Common Causes and
Direct Causes where the influence (describing the direct cause) propagates at a
supraluminal-but-finite speed v defined in a hypothetical universal privileged ref-
erence frame: c < v <∞. Note that such a universal privileged reference frame
would be quite similar to Newton’s space and time, but with a given fixed maximal
velocity v. It is thus quite familiar to physicists,3 see Fig. 12.1. When two events can

1Up to some combinations of loopholes that seem highly implausible; however, this being science,
this logical possibility should be addressed experimentally.
2One could also consider the history-fiction case that quantum theory would have been developed
before the discovery of relativity. In such a case, quantum nonlocality would have been equally
surprising and fascinating and physicists would naturally have been led to search for explanations
of these extraordinary correlations in terms of delicate influences yet to be discovered.
3Though this strongly contrasts with ideas in quantum gravity where space-time is sometimes
thought of as an emergent concept, as e.g. in loop quantum gravity.
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Fig. 12.1 Space-time
diagram in the privileged
reference frame. The shaded
light cone is delimited by
solid lines. Points inside the
v-cone (hatched), e.g. K2 and
K3, are v-connected to K1;
while points outside the
v-cone, like K4, are
not-v-connected to K1.
(Taken with permission from
Nature [2])

be connected by a hidden influence at speed v, we say that they are v-connected;
otherwise we say that the events are not-v-connected.

The kind of experiment that Bohm and Hiley had in mind to test such a DC or
v-causal explanation is quite intuitive: if the influence carrying the DC propagates
at finite speed, it should be possible to arrange an experiment between distant quan-
tum systems with good enough synchronization (in the universal privileged refer-
ence frame), so that the influence doesn’t arrive on time to establish the correlation.
Thus, in such situations, the measured correlation should necessarily be local, i.e.
satisfy all Bell inequalities, even in cases where quantum theory predicts a violation
of some Bell inequality. Hence, v-causal explanations can’t reproduce all quantum
predictions. Accordingly, they can be tested experimentally against quantum theory.

Such experiments face two intrinsic difficulties. First, since today we don’t know
the hypothetical privileged reference frame, it is not clear in which reference frame
the synchronization should be optimized. Indeed, if two events are simultaneous
in one frame, e.g. the laboratory frame, then, according to special relativity, they
are not simultaneous with respect to others frames, e.g., to the cosmic microwave
background radiation frame. Second, within an assumed privileged reference frame,
perfect synchronization is impossible in practice; hence if nonlocal correlations are
observed, this only sets a lower bound on the speed of the hypothetical hidden in-
fluence. Nevertheless, experiments have been carried out, setting stringent lower
bounds of this speed, assuming the lab frame [11–14], the microwave background
radiation frame [15] and even scanning all possible privileged reference frames
[16, 17]. These experiments have excluded speeds up to about 50’000 times the
speed of light.

At this point the case for a definite experimental test of DC explanation may
seem quite hopeless: two-party experiments can only hope to increase the lower
bound of the speed of the hypothetical hidden influence or to find the breakdown of
quantum theory. But in 2002 Valerio Scarani and myself noticed that the situation
changes dramatically when analyzing situations with more than two parties [18, 19].
The original scenario we considered involves 3 parties (see also Ryff [20] whose
argument is recalled in Sect. 12.4). The general idea is the following. If two out of all
parties measure simultaneously, e.g. Bob and Charlie are not-v-connected, then their
correlation must be local. If moreover, the correlations between the other pairs of
parties, those whose measurements are v-connected, allow one to guarantee that Bob
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and Charlie share nonlocal correlations, then one could infer a contradiction with
any v-causal explanation without the need for any demanding synchronization. That
one can infer the nonlocality between Bob and Charlie without ever measuring them
in the same run of an experiment is quite counterintuitive, though it is known that
sometimes one can infer a property of some quantum state or probability distribution
from only the knowledge of some of their marginals [21–23].

The next step was made by Stefan Wolf and colleagues who introduced the
concept of transitivity of nonlocality [24]. They showed that, assuming only no-
signalling, there are examples of 3-party correlations, p(a, b, c|x, y, z), such that if
both marginals A-B and A-C are nonlocal, then the third marginal B-C is necessarily
also nonlocal. This beautifully illustrates the idea Scarani and myself had in 2002.
But unfortunately, Wolf and colleagues’s example uses correlations that can’t be
achieved with measurements on quantum systems and, today, no quantum example
of transitivity of nonlocality has been found. This is why the example we present in
this paper doesn’t use the concept of transitivity of nonlocality, but the theorem [2]
recalled in Sect. 12.5.

To conclude this introduction let us consider some consequences of the assump-
tion that v-causality is the explanation of all quantum correlations. As already men-
tioned, this would imply that some predictions of quantum theory are wrong: if
two events are not-v-connected, then their correlation would be local even in cases
where quantum theory predicts a violation of some Bell inequality. But could this
departure from quantum predictions be used to communicate, in particular to com-
municate faster than light? In the 2-party case, Alice and Bob could arrange to be
just at the border of being v-connected. So, if Bob makes his measurement early
enough, the hidden influence doesn’t arrive on time and they observe local corre-
lations; but if Bob delays a little bit his measurement, then the influence arrives on
time and they observe quantum correlations. This, however, can’t be used by Alice
and Bob to communicate. Indeed, their local statistics would be identical in both
cases, whether the hidden influence arrives on time or not; it is only later, once they
compare their data, that Alice and Bob can notice whether or not they violated some
Bell inequality. Consequently, with only two parties, the hidden influence could re-
main hidden for ever: there would be a hidden layer at which faster than light hidden
influences carry Direct Causes and thus establish correlations that appear nonlocal,
but at our higher level nothing travels faster than light. In this paper, following [2],
we prove that such a peaceful coexistence between relativity and faster than light
hidden influences can’t exist. But for this we’ll need to consider more than two
parties.

12.3 v-Causality

In this section we define formally local Common Cause, Direct Cause and v-causal
explanations. Readers who feel they understand CC, DC and v-causality may like
to jump to Sect. 12.4.
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Consider a 2-party scenario, denoted Alice and Bob, with measurement settings
x and y and measurement results a and b, respectively. The generalization to more
parties is straightforward, as summarized at the end of this section. The conditional
probability distribution, or in short correlation, p(a, b|x, y), is the probability of
results a, b when the settings x, y are chosen.

A pure local Common Cause explanation of p(a, b|x, y) assumes additional
variables, traditionally labeled λ, such that:

p(a, b|x, y)=
∑

λ

ρ(λ)p(a|x,λ)p(b|y,λ) (12.1)

where ρ(λ) denotes the probability that the additional variable assumes the value λ
(note that λmay include the quantum state ρ). For a justification see, e.g. [1, 25–28].
In a v-causal model, the information carried by the variable λ propagates gradually
and continuously from some common v-past of Alice and Bob. If v would be the
speed of light, this would merely be the usual intersection between the past light
cones. But here the common v-past is the intersection of wider, more open, cones,
see Fig. 12.1. Important in a common cause explanation is that p(a|x,λ) doesn’t
depend on y and symmetrically p(b|y,λ) is independent of x. Hence all correlations
are due to the common local variable λ.

A pure Direct Cause explanation of p(a, b|x, y) assumes that there is an abso-
lute time ordering of the events at Alice and Bob (defined in the hypothetical uni-
versal privileged reference frame). For example, assume Alice is first to chose her
measurement settings x and collect her result a. Direct cause4 assumes that as soon
as Alice performed her measurement, a signal—which we call a hidden influence—
informs the rest of the universe, in particular Bob, of her measurement setting x and
result a. In this case there are two possibilities:

1. The information reaches Bob’s system before it produces the result b, i.e. Alice
and Bob are v-connected. In this case:

p(a, b|x, y, v-connected)= p(a|x)p(b|y, x, a) (12.2)

For example, quantum correlations between v-connected events can be described
as due to DC: p(a|x) = T r(AxaρA) where ρA Alice’s partial trace quantum
state and Axa the projector representing her measurement, and p(b|y, x, a) =
T r(B

y
b ρ
x
a ) where ρxa = AxaρA

x
a

T r(Axaρ)
is Bob’s reduced state that depends on Alice’s

measurement setting x and result a. Note that in this case direct cause exactly re-
produces the quantum prediction: p(a, b|x, y, v-connected)= T r(Axa ⊗Byb · ρ).

4Standard text book descriptions of measurements collapsing the quantum state is an explicit ex-
ample of a hidden influences explanation; however, in such descriptions the influence propagates at
infinite speed. Hence it is more a direct action at a distance than an influence propagating in space
and time. Note that because of the infinite speed, all parties are v-connected. Such descriptions
also require a universal privileged reference frame.
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2. Bob’s system has to produce the result b before the information carried by the
hidden influences arrives from Alice’s system, i.e. Alice and Bob are not-v-
connected:

p(a, b|x, y, not-v-connected)= p(a|x)p(b|y) (12.3)

In the case that Bob’s probability depends only on his local quantum state ρB =
T rA(ρ), one has:

p(a, b|x, y, not-v-connected)= T r(Axa · ρA) · T r(Byb · ρB) (12.4)

In general, for entangled states ρ, this prediction differs from the quantum pre-
diction.

A v-causal explanation of p(a, b|x, y) combines additional local variables and
hidden influences,5 all propagating at a speed v (or lower) defined in the univer-
sal privileged reference frame. This frame defines an absolute time ordering, as for
direct cause explanations. Here again one has to distinguish two possibilities de-
pending on whether Alice and Bob are v-connected or not:

1. The information reaches Bob’s system before it produces the result b, i.e. Alice
and Bob are v-connected. In this case:

p(a, b|x, y, v-connected)=
∑

λ

ρ(λ)p(a|xλ)p(b|y,λ, x, a) (12.5)

Since we look for an explanation of quantum correlations, one expects that, in
the case of v-connected events, quantum correlations are reproduced.

2. Bob’s system has to produce the result b before the information carried by the
hidden influences arrives from Alice’s system, i.e. Alice and Bob are not-v-
connected:

p(a, b|x, y, not-v-connected)=
∑

λ

ρ(λ)p(a|x,λ)p(b|y,λ) (12.6)

where λ includes the quantum state ρ. Consequently, in any v-causal model,
unconnected events must satisfy all Bell inequalities.

The generalization to an arbitrary number of parties should be straightforward:
when a system undergoes a measurement it takes into account all the information it
received, whether additional local variables or hidden influences, and sends out in-
formation about itself in all directions by hidden influences propagating at speed v.

5The De-Broglie-Bohm pilot wave model is an explicit example of a v-causal explanation; how-
ever, in this model the influence propagates at infinite speed. Hence it is more a direct action at a
distance than an influence propagating in space and time. Note that because of the infinite speed,
all parties are v-connected, hence Bohm’s model recovers all quantum predictions. This model also
requires a universal privileged reference frame.
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Fig. 12.2 Spacial configuration of the 3-party scenario discussed in Sect. 12.4 to show that pure
Direct Cause leads to signalling

Since we are looking for an explanation of quantum correlations, one expects that,
whenever possible, v-connected events reproduce quantum correlations. However,
unconnected events necessarily produce local correlations, hence correlations that
may differ from the quantum predictions. This constraint is what limits the power
of v-causal explanations and makes experimental tests possible.

Note that the speed of light c doesn’t appear in the definitions of local Common
Cause and Direct Cause, nor v-causality.6

12.4 No Direct Cause Explanation

In this section we study the assumption that correlations between quantum measure-
ment results are due to DC carried by hidden influences propagating at a finite but
supraluminal speed v. More precisely, we consider hidden influence plus the usual
quantum state, but no additional local variables. This section is greatly inspired by
[20] (note that Eberhard published a related argument also involving 3 parties [3]).

Consider a 3-party scenario, Alice, Bob and Charlie, where Alice is far away
from both Bob and Charlie. Bob and Charlie are relatively close to each other, but
distant enough (in the hypothetical universal reference frame) so that they can syn-
chronize their measurements well enough to be not-v-connected, see Fig. 12.2. Al-
ice, Bob and Charlie know the relative positions of each other and at what time
Bob and Charlie perform their measurements. Assume they share a GHZ state
Ψ = |0,0,0〉 + |1,1,1〉 and all measure σz. Quantum theory predicts that all three
collect the same result: a = b= c. We shall see that if this correlation is due to some
supraluminal hidden influence (without additional variables, i.e. pure DC), then Al-
ice could communicate faster than light to Bob and Charlie (Bob and Charlie need
to collaborate).

The argument runs as follows. First, if Alice chooses to communicate “yes”, she
performs her measurement early enough that the hidden influence arrives on time
to Bob and Charlie. In this case the hidden influence tells Bob and Charlie’s system
which result a Alice obtained, hence Bob and Charlie’s system produce that same

6Nor does c appear in the definition of “Bell locality” (12.1). Nevertheless, physicists have always
been interested in tests of Bell inequalities between space-like separated events, i.e. between events
not-c-connected. This illustrates that v-causal models were always in the back of the mind of those
physicists, though with v = c.
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result: b = a and c = a. Next, if Alice chooses to communicate “no”, she doesn’t
perform any measurement, or only too late for the hidden influence to arrive on time.
In this case Bob and Charlie obtain random and independent results (recall that they
are not-v-connected, hence their result are produced independently of each other),
whence half the time b �= c. Consequently, once Bob and Charlie compared their
results (which they can do in a time very short relative to the time light would
take to propagate from Alice to them), they can infer with good probability Alice’s
message.

This is faster than light communication from Alice to Bob-Charlie. By elongating
the triangle the speed of this communication gets arbitrarily close to the speed v of
the hidden influence. Hence, the hidden influence doesn’t remain hidden, but can be
activated.

This simple example shows that with 3 parties one can activate the hidden influ-
ence, something impossible with only 2 parties. However, this example also shows
that there is a simple way around the argument. Indeed, the correlation is a simple
and local one: a = b= c. Hence, one could merely supplement the DC explanation
with a shared random bit r and assume that in the case the hidden influence doesn’t
arrive on time, all systems produce the result r . This motivates the investigation of
v-causality, where DC is combined with additional local variables as explained in
Sect. 12.3 and analyzed in the next section.

12.5 No v-Causal Explanation

At this stage of the search for an explanation of quantum correlations, local com-
mon causes and hidden influences are both individually excluded. The first one pre-
dicts Bell inequalities that have been violated, while the second one can’t remain
hidden as recalled in the previous section. Let us thus analyse the hypotheses that
v-causality, i.e. an arbitrary combination of Direct and Common Causes, is the ex-
planation of all correlations. This might sound bizarre. But quantum correlations are
bizarre and there is simply no other type of explanations that satisfy the principle
of continuity (we discuss this principle in more detail in Sect. 12.7). This section is
greatly inspired by [2].

Consider the 4-party configuration of Fig. 12.3, represented in the hypotheti-
cal privileged reference frame. Alice, Bob, Charlie and Dave have a choice be-
tween two measurement settings, labeled x, y, z and w and collect binary results
a, b, c, d ∈ {−1,+1}, respectively. Alice measures first, hence is not influenced by
any of the other parties. Next, Dave measures at a time such that the hypothetical
influence from Alice arrives on time to Dave. Finally, Bob and Charlie measure
quasi-simultaneously, i.e. Bob and Charlie are not-v-connected, but such that the
hypothetical influences from Alice and Dave arrive on time both to Bob and to
Charlie.
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Fig. 12.3 Space-time
configuration in the
privileged reference frame of
the 4-party scenario discussed
in Sect. 12.5 to show that all
v-causal models lead to
signalling. (Taken with
permission from Nature from
[2])

If we were considering only DC, the joined probability would read:

p(a, b, c, d|x, y, z,w)=p(a|x) · p(d|w,x, a) · p(b|y, x, a,w,d)
· p(c|z, x, a,w,d) (12.7)

It is not difficult to see that the correlation (12.7) leads to signalling from Alice to
Bob-Charlie-Dave (who need to cooperate). But in this configuration, contrary to
the triangular configuration of the previous section, we can exclude the possibility
that additional variables allow one to avoid the activation of the hypothetical hidden
influence.

The idea is to find an inequality satisfied by all no-signalling correlations where
the not-v-connected parties are local with the following two properties:

1. all terms in the inequality involve only v-connected parties (hence, to evaluate
the inequality one never has to measure in a same round of the experiment not-
v-connected parties, one thus avoids the synchronization difficulty),

2. the n-party correlation can be violated by quantum correlations (i.e. quantum
theory predicts a violation of the inequality).

The technical difficulty of this strategy is that, first one has to study the inter-
section of the n-party no-signalling polytope with the local polytope of the not-v-
connected parties. Next, one has to project this intersection polytope on the subspace
of correlations containing only terms corresponding to v-connected parties.

This strategy can obviously not work with only two parties (both would either be
v-connected or both not-v-connected). Hence, with my co-authors of [2] we spent
a long time searching for an example involving 3 parties, one pair being not-v-
connected and two pairs v-connected. But no example has been found, though the
search continues, varying the number of inputs (measurements settings) and out-
come for each party [29]. The breakthrough came when Jean-Daniel Bancal and Ste-
fano Pironio had the courage to consider 4 parties in the configuration of Fig. 12.3.
After heavy numerical search they found the following [2].
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Theorem Let p(a, b, c, d|x, y, z,w) be a correlation, i.e. a conditional proba-
bility distribution, with binary inputs x, y, z,w ∈ {0,1} and outcomes a, b, c, d ∈
{−1,+1}.

If

1. The correlation p(a, b, c, d|x, y, z,w) is non-signalling, and
2. p(b, c|y, z, a, x, d,w) is local7 for all a, x, d,w,

then S ≤ 7, where

S = −3〈A0〉 − 〈B0〉 − 〈B1〉 − 〈C0〉 − 3〈D0〉
− 〈A1B0〉 − 〈A1B1〉 + 〈A0C0〉
+ 2〈A1C0〉 + 〈A0D0〉 + 〈B0D1〉
− 〈B1D1〉 − 〈C0D0〉 − 2〈C1D1〉
+ 〈A0B0D0〉 + 〈A0B0D1〉 + 〈A0B1D0〉
− 〈A0B1D1〉 − 〈A1B0D0〉 − 〈A1B1D0〉
+ 〈A0C0D0〉 + 2〈A1C0D0〉 − 2〈A0C1D1〉 (12.8)

In (12.8) 〈A1B0〉 denotes the average of the product of Alice and Bob’s outcomes
when Alice chooses x = 1 and Bob y = 0 and similarly for the other terms.

The above inequality S is remarkable because none of its 23 terms involves both
Bob and Charlies, hence it can be evaluated without ever measuring Bob and Charlie
in the same run of an experiment. Nevertheless,

1. Assuming no-signalling, a violation implies that Bob and Charlie share nonlocal
correlations, i.e. correlations that can’t be explained by Common Causes, and

2. Assuming that Bob and Charlie are local, as they are in any v-causal model, a
violation implies that p(a, b, c, d|x, y, z,w) is signalling.

It is not difficult to check that the inequality S ≤ 7 can be violated by the follow-
ing 4 qubit state [2]

|Ψ 〉 = 17

60
|0000〉 + 1

3
|0011〉 − 1√

8
|0101〉 + 1

10
|0110〉

+ 1

4
|1000〉 − 1

2
|1011〉 − 1

3
|1101〉 + 1

2
|1110〉 (12.9)

with the measurements

Â0 = −UσxU† Â1 =UσzU† (12.10)

7I.e. satisfy the Clauser-Horn inequality: p(b = c = 0|0,0, a, x, d,w) + p(b = c = 0|
0,1, a, x, d,w)+ p(b= c= 0|1,0, a, x, d,w)− p(b= c= 0|1,1, a, x, d,w)− p(b= 0|y = 0,
a, x, d,w) − p(c = 0|z = 0, a, x, d,w) ≤ 0 and all its symmetric forms obtained by permuting
the inputs and outcomes.
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B̂0 =H B̂1 = −σxHσx (12.11)

Ĉ0 = −D̂0 = σz Ĉ1 = D̂1 = −σx (12.12)

where U = cos( 4π
5 )σz − sin( 4π

5 )σx , the σ ’s denote the Pauli matrices and H the
Hadamard matrix. Quantum theory predicts for these state and measurement settings
S ≈ 7.2.

Accordingly, the supraluminal hidden influence in any v-causal model can be
activated. Indeed, in any v-causal model Bob and Charlie are local, hence, one can
deduce from the quantum prediction that the 4-party correlation is signalling (re-
call that the 4-party correlation is not quantum, because Bob and Charlie are not-
v-connected, only the 3-party marginals A-B-D and A-C-D are quantum, but this
suffices to evaluate S).

Consequently, at least one of the four 3-party marginals depends on the fourth’s
input. Consider first the A-B-D 3-party marginal; since A-B-D are all v-connected,
p(a, b, d|x, y,w) is quantum and thus non-signalling (it doesn’t depend on Char-
lie’s input z). Moreover, the A-B-D correlation can’t depend on Charlie’s input z,
because z is chosen outside of A-B-D past v-cones. Similarly for the A-C-D 3-party
marginal. Consequently, it must be either A-B-C that depends on Dave’s input w or
B-C-D that depends on Alice’s input x (or both). Both cases are similar; let us thus
consider the case that p(b, c, d|y, z,w,x) depends explicitly on x. This is signalling
from Alice to Bob-Charlie-Dave. Moreover, this can be used for faster than light
communication: it suffices that Bob and Charlie send (at the speed of light) their in-
puts y, z and outcomes b, c to Dave so that Dave can evaluate their 3-party marginal
B-C-D. Since this marginal depends on Alice’s measurement setting choice x, Al-
ice can communicate to Dave. Figure 12.4 shows that this communication can be
faster than light. By moving B-C-D away from A, but such that the hidden influence
from Alice still arrives on time to all of them, one can make this faster than light
communication tend to the speed v of the hidden influence.

In summary, the hidden influence of any v-causal explanation of quantum corre-
lation can never remain hidden: it necessarily allows for faster than light communi-
cation. We’ll come back to this remarkable conclusion in Sect. 12.8.

12.6 Experiment

In this section we consider how experiments could test the contradiction we have
established between quantum theory, v-causality and no faster than light communi-
cation. At first, one may wonder whether such an experiment is necessary at all. In-
deed, quantum correlations have been measured abundantly. Hence, it seems highly
likely that the state (12.9) and the quantum measurements (12.10)–(12.12) can be
realized with good enough approximation to violate inequality (12.8). Moreover, the
very assumption that quantum correlations are explained by v-causality implies that
the ABD and the ACD correlation predicted by any v-causal model are identical to
the quantum prediction, hence that any v-causal model violates the inequality. If not,
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Fig. 12.4 In the 4-party
scenario, signalling leads to
faster than light
communication. Here we
illustrate the case where the
signalling goes from A to
BCD; the case D→ABC is
similar (the other cases don’t
happen, because they are
quantum, see text). (Taken
with permission from Nature
from [2])

the v-causal model would not be an explanation for the quantum correlation.8 Fur-
thermore, if it would turn out impossible to violate inequality (12.8), then quantum
theory would fail even in cases were the events are v-connected. This would be very
difficult to explain and v-causality might not be of much help. This is in sharp con-
trast to Bell’s inequality: had it turn out impossible to violate Bell’s inequality, local
CC would have been vindicated. Hence, whether or not one eventually observes a
violation of the inequality (12.8), in both cases explanations based on v-causality
seem difficult to maintain!

But, physics being an experimental science, one should check that correlations
violating the inequality we used in the previous section to derive our conclusion can
indeed be realized.

So, imagine a source producing a state close to the 4 qubit state (12.9) and dis-
tributing each qubit to Alice, Bob, Charlie and Dave. Alice is first to choose her
measurement setting x, measure her qubit and collect her outcome a. Alice and her
qubit may be aware of the locations of her partners, who may perform some mea-
surement, or are measuring quasi simultaneously, such that the corresponding hid-
den influence did not reach her yet. However, Alice can’t know when such possible
measurements will be performed by her partners, or whether they will be performed
at all (the so-called “free-will” assumption). Accordingly, Alice (more precisely her
qubit) has to send out her hidden influence at speed v independently of when Bob,
Charlie and Dave may measure (or not measure) their qubits.

Dave should be second to measure, but not too early, so as to make sure that Al-
ice’s hidden influence reaches him on time. This can be guaranteed by merely letting
Dave measure his qubit at a time such that even light would arrive on time. Since the
hidden influence propagates faster than light, it will necessarily also arrive on time,
irrespectively of which reference frame is the privileged one. Here we assume that
Alice’s hidden influence always propagates at the same speed v, independently of
the protocol of the experiment. This is a standard assumption in science: one never

8Though, if quantum theory is falsified, then one would no longer be looking for an explanations
of all quantum correlations.
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assumes that the experimental protocol changes the laws one is testing. In summary,
it is easy to guarantee that Dave measures far enough in the future to respect the
time ordering of Fig. 12.3.

This just leaves Bob and Charlie. They should both measure in the future of Dave
so that its hidden influence arrives on time. This can again be achieved by setting
Bob and Charlie in the future light cone of Dave (and thus also of Alice). However,
according to the configuration depicted in Fig. 12.3, Bob and Charlie should be
well enough synchronized to guarantee that no hidden influence from one can reach
the other. This is impossible without knowing an upper bound on the speed of the
hidden influence and the privileged frame. This difficulty is circumvented, as already
explained in the previous section, by the observation that in the inequality (12.8),
no term involves both Bob and Charlie. Hence, one doesn’t need to ever measure
them in a same round of the experiment. It suffices that, after Dave measured his
qubit, a random choice is made by the experimentalist to measure either Bob or
Charlie’s qubit. In each case, another, fourth (independent) random choice is made
to select the measurement setting. Both these choices are made in the future light
cone of Dave. Again, we assume that the qubit chosen to be measured, whether it
is Bob’s or Charlie’s, produces a result that is independent of the protocol. In other
words, in case Bob’s qubit is chosen to be measured, the probability of the result
b is the same as if Charlie’s qubit would be measured simultaneously: Bob’s result
probability can’t depend on when Charlie’s qubit is measured as long as Charlie
qubit can’t influence Bob’s. And if Charlie’s qubit is not measured at all, Bob’s
result probability can’t depend on “when Charlie’s qubit is not measured”.

In summary, a first random bit decides Alice’s measurement setting x, next in
the absolute future a second random bit chooses Dave’s setting w, finally, again in
the absolute future, a third random bit decides whether Bob’s or Charlie’s qubit is
measured and a fourth random bit decides the measurement setting y or z. Note that
all these 4 random bits must be independent of the hypothetical additional variables
and hidden influences, as in Bell inequality analysis (this is sometimes called the
“free will” or the “measurement independence” assumption [30, 31]).

In this way, the experimental test of quantum predictions for the configuration
depicted in Fig. 12.3 can be realized. If a violation is observed, as one expects from
quantum theory, then one has to conclude that

1. either the hypothetical hidden influence can’t remain hidden, but necessarily
leads to signalling and to faster than light communication,

2. or, all v-causal explanations are ruled out, i.e. no combination of Direct Cause
and local Common Cause can explain the experimental result.

Both these alternatives are fascinating and will be discussed in the conclusion sec-
tion.

One might be surprised that the proposed experiment doesn’t involve any space-
like separated measurements. But, as mentioned at the end of Sect. 12.3, the speed of
light doesn’t appear in the definition of v-causality. Hence, according to v-causality,
one doesn’t expect any difference when measurements are time-like or space-like
separated. Furthermore, signalling between time-like separated events would be
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about as bizarre as between space-like separated events. Indeed, imagine that Al-
ice is located in a safe, e.g. in the basement of the Swiss national bank. One expects
that this would not affect the correlations between her measurements and those of
her partners, wherever they are located. In particular they could be in the future
light-cone of Alice, somewhere outside of the bank. But then, signalling from Alice
to BCD, as v-causality and the violation of (12.8) predict, implies that Alice could
communicate to her partners, whatever physical security measures and isolation one
imposes on Alice9!

12.7 Newton and the Principle of Continuity

It is not the first time in history that physics is confronted with nonlocality. Actually,
physics almost always presented a nonlocal world-view of nature, first with New-
ton’s theory of universal gravitation, then with quantum nonlocality. Only during a
short time window of about 10 years did physics present a local world-view.

Newton was very concerned by the nonlocal predictions of his theory of univer-
sal gravitation. Indeed, he noticed that his theory predicts that any change in the
local configuration of matter would have an immediate effect on the entire universe.
Hence, by moving to the left or to the right a stone on the moon,10 one could, in
principle, signal at arbitrary speed to Earth and to any place in the universe. Let us
read how the great man described the situation [32]:

That Gravity should be innate, inherent and essential to Matter, so that one Body may act
upon another at a Distance through a Vacuum, without the mediation of any thing else, by
and through which their Action and Force may be conveyed from one to another, is to me
so great an Absurdity, that I believe no Man who has in philosophical Matters a competent
Faculty of thinking, can ever fall into it. Gravity must be caused by an Agent acting con-
stantly according to certain Laws, but whether this Agent be material or immaterial, I have
left to the Consideration of my Readers.

Accordingly, “no action at a distance” is not a principle of relativity nor of Ein-
stein, but is part of Newtonian space-time. Let us emphasize that “no action at a
distance” implies that nothing propagates at infinite speed, in particular there are no
infinite speed influences nor ∞-causality.

Usually, quantum correlations are seen as being in tension with (special) rela-
tivity, remember Shimony’s statement about the peaceful coexistence of quantum
theory and relativity. But it is natural to go beyond these tensions and investigate
the consequences of assuming that the correct interpretation of Lorentz transforma-
tion is not mere geometry of space-time, but real Fitzgerald contractions of lengths
and Larmor dilation of time intervals, as Lorentz and Poincaré themselves thought

9This would be similar to signalling using gravitation—no way to prevent it—but at the speed v.
10To move the stone one shouldn’t take support on the moon, as this would not move the center of
mass of the moon-&-stone, but use a small rocket.
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and as John Bell considered [9, 33]. Hence, the interest for studying quantum cor-
relations in Newtonian space-time, or, equivalently for that matter, in a universal
privileged reference frame.

Notice that all v-causal explanations of correlations satisfy a principle of con-
tinuity that states that everything (mass, energy and information) propagates grad-
ually and continuously through space as time passes, i.e. nothing jumps instanta-
neously from here to there. In other worlds, there is no action at a distance. Recip-
rocally, all explanations of correlations that satisfy the principle of continuity are
v-causal. Hence, Newton and Einstein would have bet on a v-causal explanation of
all correlations, including quantum correlations.

An experimental violation of the inequality S ≤ 7 either implies a violation of
the principle of continuity or implies faster than light communication.

12.8 No-signalling in v-Causality

No-signalling is generally considered as a fundamental principle that has to hold in
any meaningful physical theory. However, if the correlations between some events
are due to hidden influences, then there is no reason to assume that the influences
don’t allow one to signal (at the speed of the hidden influence or slower). This is
for example the case with gravity. Had someone before Einstein had the technology
to check the correlation between the displacement of a stone on the moon and the
weight of some mass on Earth, even when displaced and measured simultaneously,
he would have observed a null correlation (at least for good enough synchronization)
and thus have falsified Newton’s theory of universal gravitation. He could also have
observed that the correlation establishes when the weight measurement is performed
about a second after the displacement of the mass on the moon. This would have
allowed him to signal at the speed of what was then a hidden influence, i.e. the
speed of gravitons that, according to general relativity, carry the cause of the change
in the weight of the mass on Earth. This is a typical Direct Cause explanation. Note
that one could have used this hidden influence to signal even without knowing the
theory of general relativity.

Similarly, if the speed of the hidden influence that explains quantum correlations
propagates faster than the speed of light, then the corresponding signalling would
equally be faster than the speed of light. Consequently, there are only two possibili-
ties:

1. either the hidden influence remains hidden for ever, i.e. is intrinsically hidden,11

hence doesn’t allow for signalling, or
2. the hidden influence can be used to communicate at a speed equal or lower than

the speed of the hidden influence, i.e. the hidden influence doesn’t remain hidden.

11I am quite suspicious of explanations relying on intrinsically hidden stuff, hence I dislike this
part of the alternative.
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In Sect. 12.5 we demonstrated that the hypothetical hidden influence of all v-causal
model can’t remain hidden, but on the contrary leads to faster than light communi-
cation at the level of the classical measurement settings and results. Hence, the first
of the above two alternative is excluded.

12.9 Conclusion

The main conclusion of this paper is that an experimental violation of the inequality
S ≤ 7 would imply

1. either a violation of the principle of continuity (that states that everything prop-
agates gradually and continuously through space as time passes as discussed, in
Sect. 12.7), i.e. the falsification of all v-causal models, or

2. the possibility of faster than light communication at the level of the classical
measurement settings and results.

It is unlikely that many physicists will contemplate seriously the second alterna-
tive.12 However, one should realize that the first alternative is about as difficult to
swallow as the second one. A violation of the principle of continuity implies that
the world is truly and definitively not local, i.e. Nature is not continuous, but non-
local. This conclusion has already been claimed by many physicists (including this
author), though only based on the violation of Bell inequality between space-like
separated events. These physicists made the (admittedly highly plausible) assump-
tion that space-time is described by relativity. In this paper we have extended the
conclusion: even if one is willing to consider a Newtonian-type privileged reference
frame, but without faster than light communication, the conclusion that Nature is
nonlocal is unavoidable.

Should then Physicists give up the great Enterprize of explaining how Nature
does it [37]? Certainly not! But physicists have only two options:

1. Pursue the search for the speed of v-causal explanations by improving the
“Salart-type” experiments [16, 17]. Note that the finding of such a speed would
falsify both quantum theory and relativity, a result not many physicists are willing
to envisage. However, the tension between these two pillars of today’s physics
may well dissolve not merely by saving one of them at the cost of the other, but

12One recent exception is B. Cocciaro [34]. In this paper the author also recalls that faster than light
communication in one universal global privileged reference frame, as consider in this paper, doesn’t
lead to the “grand father” time paradox. Indeed, for time paradoxes one should communicate to
one’s own past; this requires a go-&-return communication. But if both the go and the return signal
are defined in the same reference frame and at the same—possibly supraluminal—speed v, then
the “return” signal will necessarily arrive in the absolute future of the start of the “go” signal.
It is straightforward to see this in the privileged frame. But then, the start of the “go” and the
arrival of the “return” signals are necessarily also time-like in all other reference frames, hence
the impossibility to communicate to one’s own past. This is not new and was emphasized, e.g., in
[26, 34–36]. Consequently, supraluminal communication might not have said it’s last word.
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by finding the limits of both theories. Accordingly, “Salart-type” experiments are
still needed, but the result of [2]—recalled in this paper—shows that a positive
result would definitively lead to faster than light communication, hence it would
not only falsify quantum theory but also falsify relativity.

2. Accept quantum nonlocality and enlarge our story tool-box by inventing new
tools—necessarily nonlocal—to tell explanatory stories. Possibly something like
“one random event can manifest itself at several locations”.
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Chapter 13
PR-Box Correlations Have No Classical Limit

Daniel Rohrlich

Abstract One of Yakir Aharonov’s endlessly captivating physics ideas is the con-
jecture that two axioms, namely relativistic causality (“no superluminal signalling”)
and nonlocality, so nearly contradict each other that a unique theory—quantum
mechanics—reconciles them. But superquantum (or “PR-box”) correlations imply
that quantum mechanics is not the most nonlocal theory (in the sense of nonlo-
cal correlations) consistent with relativistic causality. Let us consider supplement-
ing these two axioms with a minimal third axiom: there exists a classical limit in
which macroscopic observables commute. That is, just as quantum mechanics has
a classical limit, so must any generalization of quantum mechanics. In this classical
limit, PR-box correlations violate relativistic causality. Generalized to all stronger-
than-quantum bipartite correlations, this result is a derivation of Tsirelson’s bound
without assuming quantum mechanics. [Editors note: for a video of the talk given
by Dr. Rohrlich at the Aharonov-80 conference in 2012 at Chapman University, see
quantum.chapman.edu/talk-10.]

I first met Yakir Aharonov when I was a post-doc at Tel Aviv University, more than
two decades ago. I discovered that he could answer questions about quantum me-
chanics that no one had answered to my satisfaction, not even Nobel Prize-winning
physicists. I wanted to understand what he understood about quantum mechanics,
and gladly accepted his offer to write a book together [1]. Around that time, he told
me an idea that has fascinated me ever since. What follows is the story of that idea.

Of course quantum mechanics is baffling, he said. Look at its axioms: “Physi-
cal states are normalized vectors in Hilbert space”; “Measurable physical quantities
correspond to self-adjoint operators”; the Born rule; etc. Are these statements about
the physical world, or statements about applied mathematics? By contrast, special
relativity has an exemplary logical structure: two axioms, each with a clear physical
meaning—a fundamental physical constant (the speed of light) and a fundamental
invariance (the equivalence of inertial reference frames)—are so nearly incompat-
ible that a unique kinematics reconciles them. Suppose we tried to derive special
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relativity from the wrong axioms, e.g. “Fast objects contract in the direction of their
motion” and “Moving clocks slow down.” How could we understand the theory? If
the analogy seems far-fetched, note that as late as 1909, Henri Poincaré gave a lec-
ture entitled “La méchanique nouvelle” (“The new mechanics”). The lecture, after
mentioning the two axioms of special relativity, goes on to mention the FitzGer-
ald contraction: “One needs to make still a third hypothesis, much more surprising,
much more difficult to accept, one which is of much hindrance to what we are cur-
rently used to. A body in translational motion suffers a deformation in the direction
in which it is displaced [2].” The phrase “of much hindrance”—wouldn’t it apply
to any of the axioms of quantum mechanics?! The point here is that for Poincaré,
the FitzGerald contraction was an axiom and therefore hard to accept; for us, the
FitzGerald contraction is a logical consequence of clear physical axioms and there-
fore not so hard to accept.

But, Aharonov continued, quantum mechanics, too, reconciles two nearly in-
compatible physical statements. On the one hand, quantum mechanics has to obey
relativistic causality, the constraint that no signal can travel faster than light. On the
other hand, quantum mechanics is nonlocal, in at least two different ways. There are
the Aharonov-Bohm [3] and related effects, in which the motions of particles de-
pend on nonlocal relative phases; and there are nonlocal quantum correlations that
violate a Bell inequality [4, 5]. Quantum nonlocality is action at a distance: a cause
here has an immediate effect there. How can action at a distance be compatible with
relativistic causality? The only way to reconcile them is via uncertainty. If the effect
there of a cause here is uncertain, it may not lead to superluminal signalling. Thus
we can obtain uncertainty as a logical consequence of axioms of relativistic causal-
ity and nonlocality. It is hard to accept uncertainty as an axiom (the Born rule); it
leaves us asking, “Why does God play dice?” But it is not so hard to accept uncer-
tainty as a logical consequence of relativistic causality and nonlocality; we can say,
“God plays dice because it is the only way for nonlocality and relativistic causality
to coexist.”

Is this derivation of quantum uncertainty only qualitative, or is it also quantita-
tive? To answer this question, we must specify what we mean by quantum nonlo-
cality. Aharonov defined “modular” quantum variables that are nonlocal in space
or time. The nonlocality of modular variables arises from nonlocal relative phases.
He showed that there is always just enough uncertainty in measurements of mod-
ular variables to prevent their use for noncausal signalling [6, 7]. Independently,
Shimony noted that quantum mechanics is remarkable in reconciling relativistic
causality with the nonlocality implicit in nonlocal quantum correlations. He gave
this coexistence the apt name “passion at a distance” [8, 9]. But can we say any-
thing quantitative about the nonlocality of quantum correlations?

Let two physicists, Alice and Bob, share many identical pairs of particles with
a common origin. Alice measures a or a′ on her particles and Bob measures b or
b′ on his, where a, a′, b and b′ are observables taking values ±1. Their respective
measurements on any given pair are spacelike separated. At some point they pool
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their data and calculate the correlation functions C(a, b), C(a, b′), C(a′, b) and
C(a′, b′). By definition,

C(a, b)= pab(1,1)+ pab(−1,−1)− pab(1,−1)− pab(−1,1), (13.1)

where pab(i, j) is the probability that measurements of a and b on a given pair yield
a = i and b = j . If the correlations are local, then a certain linear combination of
correlations,

SCHSH = C(a, b)+C(a, b′)+C(a′, b)−C(a′, b′), (13.2)

is bounded by 2 in absolute value [5]. Quantum mechanics, however, obeys—
and saturates—“Tsirelson’s bound” [10], namely |SCHSH | ≤ 2

√
2. The quantum

correlations that saturate this bound are C(a, b) = C(a, b′) = C(a′, b) = √
2/2 =

−C(a′, b′), and they are nonlocal. But it is easy to define correlations that yield
SCHSH = 4: let C(a, b)= C(a, b′)= C(a′, b)= 1 = −C(a′, b′). Since these corre-
lations violate Tsirelson’s bound, which is a theorem of quantum mechanics, they
are not quantum correlations; we call them “superquantum” or “PR-box” corre-
lations. Now the ideas of Aharonov and Shimoney inspire a conjecture: quantum
correlations obey relativistic causality, while superquantum correlations do not. It
sounds like a plausible conjecture; if Alice measures a and obtains a = 1, quantum
correlations do not tell her the result of Bob’s measurement on his paired particle;
but superquantum correlations tell her that Bob’s result was 1 whether he measured
b or b′. Apparently, superquantum correlations give too much information about
a spacelike-separated event (Bob’s measurement) to be consistent with relativis-
tic causality. Alas, the conjecture fails, and fails straightforwardly. Suppose that
whether Alice measures a or a′, the results ±1 are equally probable (whatever Bob
measures); and whether Bob measures b or b′, the results ±1 are equally probable
(whatever Alice measures). Then Bob and Alice cannot send each other superlumi-
nal signals, or even subluminal signals, because Bob’s only choice—what to mea-
sure, b or b′, on his paired particle—does not affect the statistics of Alice’s results,
and vice versa. It is straightforward to check that these local probabilities (for Alice
and Bob on their own) are compatible with both nonlocal quantum correlations and
superquantum correlations, and therefore relativistic causality is compatible with
both [11]. What a disappointment! It should not be so easy to disprove such a lovely
conjecture!

We might therefore ask, “If quantum correlations are nonlocal, why aren’t they
more nonlocal than they are?” Over the years, others have shown, remarkably, that
an additional axiom of communication complexity [12–19] is sufficient to rule out
superquantum correlations, and comes close to ruling out all stronger-than-quantum
correlations. So does a stronger axiom of relativistic causality called “information
causality” [20]. However, the physical meaning of communication complexity and
information causality is unclear.

But let us take a closer look at superquantum correlations. We see that if Alice
measures a on her particle in a given pair, she knows that Bob, whether he measures
b or b′ on his particle in the same pair, gets the same result she does; if she measures
a′ on her particle, she knows that Bob gets the same result she does if he measures
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b and the opposite result if he measures b′. She can even prepare an “uncertainty-
free” ensemble for Bob, as follows. Let them share a large number of pairs, and let
Alice measure a on all her particles. If she gets −1, she tells Bob to throw out his
particle from the same pair; if she gets 1, she tells Bob to keep his particle. When
Alice is done, Bob is left with an ensemble of particles corresponding to a = 1, and
Alice already knows that if Bob measures b on any particle in the ensemble, he will
obtain 1, while if he measures b′ on any particle in the ensemble, he will obtain 1.
Thus—at least from Alice’s point of view—the observables b and b′ are not subject
to any uncertainty principle on this ensemble.

Now that is strange. Complementarity—the quantum obligation to choose from
among incompatible measurements—is intimately tied to the uncertainty principle
[21]. If superquantum correlations are not subject to any uncertainty principle, why
can’t Bob measure both b and b′ on each of his particles? The inevitable answer
is that if Bob could measure both b and b′ on even one of his particles, then Alice
could certainly send him a superluminal message. For if Alice chooses to measure
a, then b = b′. If Alice chooses to measure a′, then b = −b′. Thus Bob could read
a (one-bit) signal from Alice if he could measure both b and b′. We conclude that,
whereas complementarity is intrinsic to quantum mechanics, here in the context of
superquantum correlations it is nothing more than a fig leaf—an extraneous item
tacked onto the model to prevent us from seeing Nature’s pudenda.

It is not only strange, it is rotten. No respectable theory should contain such
an artificial, cheap fix. The PR box is rotten. Unfortunately, by proving it rotten, we
have not thereby eliminated it. What if the universe is rotten? It is logically possible.

Yet quantum mechanics has a classical limit; in the classical limit, all observables
commute. Let us define macroscopic observables B and B ′:

B = b1 + b2 + . . .+ bN
N

, B ′ = b′
1 + b′

2 + . . .+ b′
N

N
, (13.3)

where bm and b′
m represent b and b′, respectively, on the m-th pair. Alice already

knows the values of B and B ′ and, for large N , there must be “weak” measurements
[22] that Bob can make to obtain partial information about both B and B ′; for, in the
classical limit, there can be no complementarity between B and B ′. The classical
limit is an inherent constraint, a kind of boundary condition, on quantum mechan-
ics, and we should apply this constraint to any generalization of quantum mechanics.
We should not claim that superquantum correlations are more nonlocal than quan-
tum correlations unless they are subject to the same constraints. Perhaps quantum
mechanics would be more nonlocal than it is—even maximally nonlocal—if it were
not constrained to have a classical limit. In this sense, the axiom of a classical limit
is minimal: if it applies to quantum correlations, it should apply also to proposed
generalizations of quantum correlations, including superquantum correlations. Thus
superquantum correlations, too, must have a classical limit.

We therefore assume that for large enough N , there must be some measurements
Bob can make to obtain partial information about both B and B ′. And now the
game changes. It is true that a = 1 and a = −1 are equally likely, and so the average
values of B and B ′ vanish, whether Alice measures a or a′. But if she measures
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a on each pair, then typical values of B and B ′ will be ±1/
√
N (but possibly as

large as ±1) and correlated. If she measures a′ on each pair, then typical values
of B and B ′ will be ±1/

√
N (but possibly as large as ±1) and anti-correlated.

Thus Alice can signal to Bob by consistently choosing whether to measure a or
a′. This claim is delicate because the large-N limit in which B and B ′ commute
is also the limit that suppresses the fluctuations of B and B ′. To insure that Bob
has a good chance of measuring B and B ′ accurately enough to determine whether
they are correlated or anti-correlated, N may have to be large and therefore the
fluctuations in B and B ′ will be small. However, Alice and Bob can repeat this
experiment (on N pairs at a time) as many times as it takes to give Bob a good
chance of catching and measuring large enough fluctuations. They can repeat the
experiment exponentially many times. Alice and Bob’s expenses and exertions are
not our concern. Relativistic causality does not forbid superluminal signalling only
when it is cheap and reliable. Relativistic causality forbids superluminal signalling
altogether.

It might be that the errors and uncertainties in Bob’s measurements are so large
that some, or even most, of the (anti-)correlations between B and B ′ that he detects
are erroneous. We cannot specify exactly how the approach to the classical limit
depends on N . But this is no objection. What matters is only that when Bob detects
a correlation, it is more likely that Alice measured a than when he detects an anti-
correlation. If it were not more likely, it would mean that Bob’s measurements yield
zero information about B or about B ′, contradicting the fact that there is a classical
limit in which B and B ′ are jointly measurable.

As a concrete example, let us suppose Bob considers only those sets of N pairs
in which B = ±1 and B ′ = ±1. The probability of obtaining B = 1 is 2−N . But if
Alice is measuring a consistently, the probability of obtaining B = 1 and B ′ = 1 is
also 2−N , and not 2−2N , while the probability of obtaining B = 1 and B ′ = −1 van-
ishes. If Alice is measuring a′ consistently, the probabilities are reversed. Thus with
unlimited resources, Alice can send a (superluminal) signal to Bob. Superquantum
(PR-box) correlations are not consistent with relativistic causality in the classical
limit.

We have ruled out superquantum correlations. To recover quantum correlations,
however, we have to rule out all stronger-than-quantum correlations, i.e. we have to
derive Tsirelson’s bound from the three axioms of nonlocality, relativistic causality,
and the existence of a classical limit. The proof [23] is technical, but here are the
main points.

Consider sets of N pairs exhibiting superquantum correlations. No matter what
Alice measures, the averages 〈B〉, 〈B ′〉 and therefore also 〈B + B ′〉 tend towards
0. But if Alice measures a′ on all the pairs, then B + B ′ = 0 identically for each
set of N pairs, since a′ and b are perfectly correlated while a′ and b′ are perfectly
anti-correlated. If Alice measures a on all the pairs, then the values of B + B ′ on
successive sets of N pairs fall in a binomial distribution centered at 0. As long as
Bob has some information about B + B ′ and its variance, he will ultimately be
able to read Alice’s one bit of information, i.e. whether Alice measures a or a′
on all her pairs. Now suppose that the (anti-)correlations are not perfect but near-
perfect. Then the variance of B + B ′ will not vanish if Alice measures a′ on all
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her pairs, but will still be significantly smaller than if Alice measures a on all her
pairs, and Bob will still ultimately be able to read Alice’s one bit of information.
As the (anti-)correlations get weaker, however, the variances of B +B ′ and B −B ′
will approach each other, until, at some critical correlation, Bob will not be able to
read Alice’s one bit. A natural guess is that this critical correlation corresponds to
the maximum quantum correlation

√
2/2, the correlation that saturates Tsirelson’s

bound. Surprisingly, this guess fails: the critical correlation is 1/2, the correlation
that saturates the CHSH inequality! How can it be?

We arrive at a paradox: quantum correlations conform to relativistic causality,
yet the calculation of the maximal correlation consistent with relativistic causality
passes right by quantum correlations and arrives at local correlations!

The root of this paradox is that the PR box, and more generally any nonlocal
box, yields 〈B〉 and 〈B ′〉 and therefore also 〈B ± B ′〉, and yields the variances of
B and B ′; but it does not yield the variances of B ± B ′ unless we tacitly assume
that the bm and b′

m combine in a certain way. When we calculate the variances of
B ±B ′ without this assumption—that is, when we think “outside the box”—we do
indeed obtain Tsirelson’s bound. Indeed, we obtain more than Tsirelson’s bound. If
we examine the tacit assumption that led to the paradox, we see that it forces bm and
b′
m to add as scalars. If bm and b′

m are allowed to add as vectors, they can saturate
Tsirelson’s bound. So this derivation of Tsirelson’s bound shows that Hilbert space
is implicit in quantum correlations.

Acknowledgements For over two decades I have had the great good fortune to work with Profes-
sor Yakir Aharonov, learning from his penetrating questions, his mastery of quantum and statistical
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Chapter 14
A Gravitational Aharonov-Bohm Effect, and
Its Connection to Parametric Oscillators and
Gravitational Radiation

Raymond Y. Chiao, Robert W. Haun, Nader A. Inan, Bong-Soo Kang,
Luis A. Martinez, Stephen J. Minter, Gerardo A. Munoz,
and Douglas A. Singleton

Abstract A thought experiment is proposed to demonstrate the existence of a grav-
itational, vector Aharonov-Bohm effect. We begin the analysis starting from four
Maxwell-like equations for weak gravitational fields interacting with slowly moving
matter. A connection is made between the gravitational, vector Aharonov-Bohm ef-
fect and the principle of local gauge invariance for nonrelativistic quantum matter in-
teracting with weak gravitational fields. The compensating vector fields that are ne-
cessitated by this local gauge principle are shown to be incorporated by the DeWitt
minimal coupling rule. The nonrelativistic Hamiltonian for weak, time-independent
fields interacting with quantum matter is then extended to time-dependent fields, and
applied to the problem of the interaction of radiation with macroscopically coherent
quantum systems, including the problem of gravitational radiation interacting with
superconductors. But first we examine the interaction of EM radiation with super-
conductors in a parametric oscillator consisting of a superconducting wire placed at
the center of a high Q superconducting cavity driven by pump microwaves. Some
room-temperature data will be presented demonstrating the splitting of a single mi-
crowave cavity resonance into a spectral doublet due to the insertion of a central
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wire. This would represent an unseparated kind of parametric oscillator, in which
the signal and idler waves would occupy the same volume of space. We then propose
a separated parametric oscillator experiment, in which the signal and idler waves are
generated in two disjoint regions of space, which are separated from each other by
means of an impermeable superconducting membrane. We find that the threshold
for parametric oscillation for EM microwave generation is much lower for the sep-
arated configuration than the unseparated one, which then leads to an observable
dynamical Casimir effect. We speculate that a separated parametric oscillator for
generating coherent GR microwaves could also be built. [Editor’s note: for a video
of the talk given by Prof. Chiao at the Aharonov-80 conference in 2012 at Chapman
University, see quantum.chapman.edu/talk-20.]

14.1 Introduction

In this paper in honor of Yakir Aharonov’s 80th birthday we discuss three appar-
ently distinct phenomena: The gravitational Aharonov-Bohm effect, the dynamical
Casimir effect arising from parametric oscillations, and gravitational waves. The
first of these phenomena is simply the gravitational version of the electromagnetic
Aharonov-Bohm effect. There has been recent interest in the gravitational version of
the scalar Aharonov-Bohm effect [1]. Here we will discuss the gravitational version
of the vector Aharonov-Bohm effect. In the second phenomenon, i.e., the dynam-
ical Casimir effect, we propose a possible experiment in which photons could be
“pumped out of the vacuum” via a vibrating superconducting (SC) “membrane”
considered as a parametric oscillator. Finally, we discuss gravitational waves. We
speculate that a gravitational version of “pumping gravitons out of the vacuum” via
parametric amplification, and above threshold, parametric oscillation, might be pos-
sible. The analog of a laser for gravitational waves could thus be constructed. The
concept that links these three phenomena together is the use of the DeWitt minimal
coupling rule, whereby particles are coupled to both the electromagnetic and the
gravitational vector potential.

14.2 Gravitational Aharonov-Bohm Effect

A gravitational analog of the vector Aharonov-Bohm effect is depicted in Fig. 14.1
[1–5]. Aharonov-Bohm (AB) interference can occur when an incoming single-
electron wavepacket is split at point A by means of a beam splitter into two partial
waves traveling along paths 1 and 2, respectively, that go around the outside of a
“solenoid” which contains circulating mass currents (indicated by the blue arrows).

For instance, such mass currents in a cylindrical superconducting (SC) mass shell
(indicated in black in Fig. 14.1), could be produced by rotating the shell at a constant
angular frequency around its cylindrical axis. The two partial waves could then be
recombined into an outgoing single-electron wavepacket at point B by means of

http://quantum.chapman.edu/talk-20
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Fig. 14.1 (Color online) Sketch of a gravitational Aharonov-Bohm effect. A “solenoid” with cir-
culating mass currents (in blue), produces “flux” (black dots) of a certain “gravito-magnetic” field
(the Lense-Thirring field) in its interior (in yellow). In its exterior (in white), this field is zero. Nev-
ertheless, an electron wave packet (in red), which is split at point A to go around the “solenoid”
via paths 1 and 2, and then recombined at point B, will exhibit an Aharonov-Bohm fringe shift

another beam splitter. Just like in the purely electromagnetic AB effect, the “flux”
of a certain gravito-magnetic field (i.e., the Lense-Thirring field) would be confined
entirely to the interior region (indicated in yellow in Fig. 14.1) of the “solenoid,”
and would vanish at all points in its exterior (indicated in white). There results a
quantum mechanical AB fringe shift due to the “flux” that is observable at point B,
which cannot be explained classically.

To understand the thought experiment pictured in Fig. 14.1, we begin from Ein-
stein’s field equations, which, in the limit of weak gravitational fields near slowly
moving matter (i.e., in the vicinity of nonrelativistic masses), become the following
set of four Maxwell-like equations [11–15]:1

∇ · Eg = −ρg
εg

(14.1)

1In the gravitational version of Maxwell’s equations 14.1)–(14.4) and the gravitational Lorentz
force (14.7), we are following the conventions of [10]. It should be noted that in the literature,
there are several different versions of the gravitational Maxwell equations and gravitational Lorentz
equation that differ by factors of 2 in various places (see, for example, [16] and [17]). It is not clear
that the various formulations given in [11–17] are entirely consistent with one another. However,
for the regime considered here, where we will use 14.1)–(14.4) with the quasi-static approximation
in which the time derivatives of the gravito-electric and gravito-magnetic vector fields in 14.2) and
(14.4) vanish, the various conventions of [10–17] agree.

One should also point out that writing (14.1)–(14.4) in terms of vector fields is questionable,
since while electromagnetism consists of vector interactions, gravity consists of tensor interactions.
Thus, instead of vector gravito-electric and gravito-magnetic fields, it would be better to write out
the gravitational version of Maxwell’s equations and the gravitational Lorentz force equation in
terms of tensor fields. This approach has been advocated recently [6–8] in terms of tendex and
vortex fields. A recent review [9] formulates the gravitational version of Maxwell’s equations and
the gravitational version of the Lorentz force equation by contracting the tensor fields, which do
not vanish in any reference frame, to vector fields, which can transformed away by gauge choice.
However, as before, for the present goals of this paper and in the regimes under which we will use
the vector gravitational Maxwell equations, this distinction will not be necessary.
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∇ × Eg = −∂Bg
∂t

(14.2)

∇ · Bg = 0 (14.3)

∇ × Bg = μg
(

−jg + εg ∂Eg
∂t

)
(14.4)

where the gravitational analog εg of the electric permittivity ε0 of free space is2

εg = 1

4πG
= 1.19 × 109 SI units (14.5)

and where the gravitational analog μg of the magnetic permeability μ0 of free space
is3

μg = 4πG

c2
= 9.31 × 10−27 SI units (14.6)

Here G= 6.67 × 10−11 in SI units is Newton’s constant, and c= 3.00 × 108 m s−1

in SI units is the vacuum speed of light.
In the four Maxwell-like equations, (14.1)–(14.4), the electric-like field Eg is

the gravito-electric field (i.e., the local acceleration g of a freely falling test parti-
cle), which could be produced by the mass density ρg of nearby matter, via (14.1).
Likewise, the magnetic-like field Bg is the gravito-magnetic field, which could be
produced by the mass current density jg of nearby nonrelativistically moving mat-
ter, and also by the gravitational analog of the Maxwell displacement current density
εg∂Eg/∂t , via (14.4). In the case of nearby stationary nonrelativistic mass currents,
Bg can be identified with the Lense-Thirring field [18] that is generated by these
currents.

A nonrelativistic test particle with a mass m moves in the presence of the weak
fields Eg and Bg in accordance with the Lorentz-like force law [11–15]

F =mdv
dt

=m(Eg + 4v × Bg) (14.7)

where m is the mass of the test particle and v is its velocity (with v� c).
To understand the experiment pictured in Fig. 14.1, we only need the stationary

version of (14.4), i.e., the gravitational analog of Ampere’s law

∇ × Bg = −μgjg (14.8)

2The constant εg is determined by the Newtonian limit of (14.1), which must yield Newton’s law
of gravitation, with Newton’s constant G determined by Cavendish’s experiment.
3The constant μg is defined in this way in order to obtain the gravitational version of Ampere’s
law given in (14.8).
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where jg and Bg do not depend on time. This implies the following gravitational
analog of Ampere’s circuital law:

∮

C

Bg · dl = −μg(Ig)enc (14.9)

where dl is a line element of an arbitrary closed curve C, and (Ig)enc is the mass cur-
rent which is enclosed by C. Applying this Ampere’s circuital law to the “solenoid”
of Fig. 14.1, which could be a uniformly rotating SC cylindrical mass shell, and
using an appropriately chosen closed curve C, one concludes that the Bg field in the
interior to the “solenoid” is a uniform field pointing along the cylindrical axis, and
that it has a constant magnitude

Bg = μgI ′
g (14.10)

where I ′
g is the mass current per unit length of the “solenoid” flowing around the

circumference of the rotating cylindrical mass shell. Furthermore, by another ap-
propriate choice of the closed curve C, one concludes that everywhere outside the
“solenoid,” it is the case that

Bg = 0 (14.11)

i.e., that the Lense-Thirring field vanishes everywhere exterior to the “solenoid.”
This is analogous to the fact that the magnetic field vanishes at all points outside
of an electromagnetic solenoid. Hence it follows from the Lorentz-like force law
(14.7) that although the electron in Fig. 14.1 experiences a radial classical gravita-
tional force due to the mass of the “solenoid,” it could never have experienced any
azimuthal classical gravitational force on its way from point A to point B via either
path 1 or path 2 that could have caused the AB phase shift.

Put differently, if one thinks of the “solenoid” as a rotating SC cylindrical mass
shell, the experiment has two independent parameters, namely, the linear mass den-
sity, and the angular velocity of the shell. That means one could shift the interfer-
ence fringes by changing the angular velocity. Since the gravito-electric field from
the mass of the shell does not depend on the angular velocity, a fringe shift will hap-
pen despite the fact that the classical force has not changed. Hence the AB fringe
shift in the gravitational case could not have had a classical origin.

Now from the Maxwell-like equation (14.3), and from the vector identity

∇·(∇ × h)= 0 (14.12)

it follows that it is always possible to express the magnetic-like field Bg as

Bg = ∇ × h (14.13)

for some vector field h. The relationship (14.13) is formally identical to the rela-
tionship in electromagnetism between the magnetic field B and the electromagnetic
vector potential A

B = ∇ × A (14.14)
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which follows from the Maxwell equation ∇ · B = 0. Therefore we shall call h the
“gravitational vector potential.”

In the gravitational case, just as in the electromagnetic case, the gravitational
vector potential h possesses the gauge freedom

h → h + ∇μ (14.15)

where μ can be any arbitrary scalar function of position. This follows from the vec-
tor identity ∇ × ∇μ= 0, and is formally identical to the case of electromagnetism,
in which the vector potential A possesses the gauge freedom

A → A + ∇λ (14.16)

where λ can be any arbitrary scalar function of position. Again, this follows from
the vector identity ∇ × ∇λ= 0.

Now the principle of local gauge invariance in nonrelativistic quantum mechan-
ics states that the phase of the time-independent wavefunction Ψ (r) of any quantum
system must always be able to be locally transformed without affecting the physics
of the system. In other words, the transformation [19]

Ψ (r)→ Ψ (r) exp
(
iφ(r)

)
(14.17)

where the phase φ(r) can be any arbitrary real scalar function of position r, can nei-
ther change the properties of the quantum system, nor the physical laws governing
the system and its interactions with its environment. In particular, this local transfor-
mation of the phase of the wavefunction cannot change the probability distribution
of the system, since

∣∣Ψ (r)
∣∣2 → ∣∣Ψ (r) exp

(
iφ(r)

)∣∣2 = ∣∣Ψ (r)∣∣2 (14.18)

and therefore the Born probability interpretation of the wavefunction is unaffected
by this transformation.

However, gradients of Ψ (r) will be changed by the introduction of an arbitrary
scalar function φ(r), and therefore will alter the momentum of the system. If so, one
could arbitrarily alter the physical laws governing the system, including altering the
conservation of momentum of a particle in the usual exp(ip · r/�) plane wave state
of an electron within a force-free region of space, where one knows that p must be a
constant. This obviously cannot be the case. Therefore the principle of local gauge
invariance necessitates the existence of some compensating vector field (or fields),
such as the A and h fields in the DeWitt minimal coupling rule [20–22]

�

i
∇ → �

i
∇ − qA −mh (14.19)

p → p − qA −mh (14.20)

where pop = �

i
∇ is the momentum operator, q is the charge, andm is the mass of the

nonrelativistic quantum system under consideration. Here A and h are, respectively,
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the vector potentials for electromagnetism and for weak gravitation, which are being
viewed here as being the requisite “compensating vector fields,” whose existence is
necessitated by the principle of local gauge invariance. Since the vector fields A and
h have the gauge freedoms A(r)→ A(r)+ ∇λ(r) and h(r)→ h(r)+ ∇μ(r), these
freedoms can then be used to compensate for the gauge freedom in the transforma-
tion Ψ (r)→ Ψ (r) exp(iφ(r)), in just such a way that the quantum system can once
again satisfy the principle of local gauge invariance.

Thus invoking the DeWitt minimal coupling rule (14.20), we demand that the
nonrelativistic Hamiltonian of any quantum system in the presence of A and h fields
must always have the following form [20–22]:

H = 1

2m
(p − qA −mh)2 + V (14.21)

where V is the potential energy of the system. Here, in the present context of the SC
quantum systems that we are interested in, such as that of the SC “solenoid” pictured
in Fig. 14.1, q = 2e is the charge of a Cooper pair, and m= 2me is its mass.

Although one can always arbitrarily choose a gauge locally so that both vector
fields A and h are set identically equal to zero at each point exterior to the solenoid,
nevertheless the fluxes interior to the solenoid

Φ =
∮

C

A · dl (14.22)

Φg =
∮

C

h · dl (14.23)

where C is a closed curve enclosing the solenoid, cannot be arbitrarily set equal to
zero, but must instead be gauge-invariant, nonzero, globally measurable quantities.
Hence the fluxes Φ and Φg must be physical quantities.

The gravitational Aharonov-Bohm effect depicted in Fig. 14.1 is closely related
to the time holonomy which arises from the off-diagonal time-space components
of the metric tensor g0i .4 It can be shown [23] that this time holonomy �t can be
expressed as follows:

�t = −1

c

∮

C

g0i

g00
dxi (14.24)

where C is an arbitrary closed curve in space (such as the one enclosing the
“solenoid” in Fig. 14.1), and dxi is a spatial line element of this closed curve. In
light of the time holonomy given by (14.24), it is impossible in general relativity to
define a global time coordinate for an entire physical system, such as the topologi-
cally nontrivial superconductor in Fig. 14.1.

4We follow the notation and sign conventions of MTW [44], i.e., Greek indices denote space-time
indices running from 0 to 3; Latin indices denote spatial indices running from 1 to 3; repeated
indices are summed; the signature of the Minkowski metric is diag(−1,+1,+1,+1).



220 R.Y. Chiao et al.

In the weak field, slow matter approximation, in which

g0i ≈ h0i (14.25)

where h0i are the time-space components of the small-deviation metric hμν from
the Minkowski metric ημν , and in which the time-time component of the metric can
be approximated by

g00 ≈ −1 (14.26)

it follows that the time holonomy (14.24) becomes approximately

�t ≈ 1

c

∮

C

h0idx
i (14.27)

For electron waves traveling around a closed curve C enclosing a “solenoid” such
as that in Fig. 14.1, the time holonomy (14.27) becomes the phase holonomy

�φ = ωCompton�t ≈ mec
2

�

1

c

∮

C

h0idx
i �= 0 (14.28)

where ωCompton =mec2/� is the Compton frequency of the electron [1]. The phase
shift (14.28) , which is nonvanishing for the “solenoid” configuration of Fig. 14.1,
is the gravitational AB phase shift. It is closely related to Berry’s phase [24], since
both phases have a common origin in non-Euclidean geometry.

Since physically counting the number of fringes in a shift of an Aharonov-Bohm
interference pattern, such that in Fig. 14.1, must yield the same result for all ob-
servers, independent of their state of motion under a restricted set of (Galilean)
coordinate transformations, it is sufficient for the purposes of this paper to say that
the flux ΦG is a Galilean invariant, and therefore a measurable, physical quantity.
Moreover, the closed-path integral of h0idx

i in (14.27) is an intrinsic time holon-
omy which cannot vanish due to an arbitrary gauge transformation.

However, if one were to arbitrarily make the global gauge choice

h0i = 0 everywhere (14.29)

as is done, for example, in the transverse-traceless gauge, then it follows that the
phase holonomy must vanish identically, i.e.,

�φ ≈ mc2

�

1

c

∮

C

h0idx
i = 0 by setting h0i = 0 everywhere (14.30)

and the gravitational Aharonov-Bohm phase shift predicted for the electron interfer-
ence pattern in Fig. 14.1 would disappear.

However, just as in the case of the electromagnetic Aharonov-Bohm effect where

�φ = q

�

∮

C

Aidx
i = 0 by setting Ai = 0 everywhere (14.31)
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the results (14.30) and (14.31) are both unphysical whenever the closed curve C
encloses either a solenoid with a nonvanishing electromagnetic flux Φ �= 0, or a
“solenoid” with a nonvanishing Lense-Thirring flux Φg �= 0, since both of these
fluxes are gauge-invariant, measurable, physical quantities that cannot be arbitrarily
set equal to zero. Hence the transverse-traceless gauge choice (14.29) is unphys-
ical in situations that involve the gravitational Aharonov-Bohm effect depicted in
Fig. 14.1 where Φg �= 0, and also, by extension, in time-varying situations that in-
volve Φg(t) �= 0, for example, in situations where gravitational radiation is interact-
ing with superconducting systems.

The usual Aharonov-Bohm phase shift follows from DeWitt’s minimal coupling
rule (14.20) when one sets Φg = 0, for then the phase shift arising from (14.20) in
the configuration pictured in Fig. 14.1, reduces down to the usual expression

�φ = q

�

∮

C

A · dl �= 0 (14.32)

and we recover the standard form for the AB phase shift. However, if Φg �= 0,
then the total AB phase, upon integration over any closed curve C enclosing the
“solenoid,” becomes

�φtot = q

�

∮

C

A · dl + m

�

∮

C

h · dl =qΦ
�

+ mΦg

�
(14.33)

The vector potential h in (14.33) can arise either from a Lense-Thirring field, or from
rotations of a quantum system, such as from a rotating SC ring. Since experiments
with rotating SC systems are much easier to perform than experiments involving
Lense-Thirring fields, we shall confine our attention for now to these much easier
experiments.

One can check experimentally the expression given by (14.33) for a rotating SC
ring, in which case the single-valuedness of the macroscopic wavefunction of the
Cooper pairs demands that �φtot = 2πn, where n is an integer. It follows from this
that a magnetic field must be generated by rotating a superconducting ring, i.e.,
that a “London moment” must accompany this rotation. Precision measurements of
the London moment of a rotating SC ring thus provide a test for the correctness of
the expression for the total AB phase in (14.33). Cabrera and co-workers [25, 26]
performed these measurements to 100 parts per million. Thus the formula in (14.33)
for the total AB phase has been experimentally verified. In this way, the expression
in (14.20) for the DeWitt minimal coupling rule has been experimentally tested to
high precision.

So far we have been considering only the case of stationary, time-independent,
charge and mass currents, such as those in a SC magnet, or in a steadily rotating
SC ring. These quantum currents can be the quantum mechanical sources of time-
independent A and h fields that give rise to the AB effect.
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14.3 The Dynamical Casimir Effect Via Parametric Oscillations

In this section, we begin by discussing the case when the vector potentials A and h
are time dependent, i.e. A(r, t) and h(r, t). From this we will propose a version of
the dynamical Casimir effect for the electromagnetic vector potential A, in which
photons are “pumped” out of the vacuum via parametric oscillations of a SC mem-
brane.

It is natural to extend the time-independent Hamiltonian (14.21) to the following
time-dependent one:5

H = 1

2m

(
p − qA(r, t)−mh(r, t)

)2 + V (14.34)

in which the fields A(r, t) and h(r, t) are to be first treated as classical fields, but
the matter (e.g., the vibrating SC wire in Fig. 14.2) is to be treated quantum me-
chanically, in the so-called “semi-classical approximation.” Expanding the square
in (14.34), one obtains the following interaction Hamiltonian terms:

Hp·A = − q
m

p · A(r, t) (14.35)

which leads to the interaction of the quantum system with electromagnetic (EM)
radiation, such as in the stimulated emission and absorption of EM waves by the
quantum matter, and

Hp·h = −p · h(r, t) (14.36)

which leads to the interaction of the quantum system with gravitational (GR) radia-
tion, such as in the stimulated emission and absorption of GR waves by the quantum
matter, and

HA·h = +qA(r, t)·h(r, t) (14.37)

which leads to the interaction between EM and GR radiation fields mediated by the
quantum system, such as in the transduction of EM waves into GR waves mediated
by the quantum matter [27], and

HA·A = + q
2

2m
A(r, t)·A(r, t) (14.38)

which leads to Landau-diamagnetism type of interactions of the quantum sys-
tem with EM radiation, such as in the parametric amplification of EM waves by

5It should be noted that the use of the time-dependent gauge in which (h(r, t))i = ch0i (r, t) �= 0
in this context is only considered for fields within matter, and not in vacuum, where the time-
dependent transverse-traceless gauge would be more appropriate.
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a strongly driven, i.e., “pumped,” quantum system (see, for example, Figs. 14.2
and 14.5), and

Hh·h = +m
2

h(r, t)·h(r, t) (14.39)

which leads to gravitational Landau-diamagnetism type of interactions of the quan-
tum system with GR radiation, such as in the parametric amplification of GR waves,
again by a strongly driven, i.e., “pumped,” quantum system (again, see, for example,
Figs. 14.2 and 14.5).

All of the above interaction terms will be treated as small perturbations of the
unperturbed Hamiltonian

H0 = p2

2m
+ V (14.40)

and can thus be treated using standard perturbation theory.
At a fully quantum mechanical level of description, both the matter and the ra-

diation fields A and h would have to be quantized. The radiation fields could be
quantized by invoking the commutation relations

[a, a†] = 1 (14.41)

[b, b†] = 1 (14.42)

where a and a† are, respectively, the annihilation and creation operators for a quan-
tum of a single mode of the EM radiation field, and where b and b† are, respectively,
the annihilation and creation operators for a quantum of a single mode of the GR
radiation field.

For now, let us focus solely on the interactions of quantized EM radiation with
matter. The second quantized form for the EM vector potential operator Aop(r),
when summed over all the modes of a cavity enumerated by the index κ , is [28]

Aop(r)=
∑

κ

√
�

2ε0ωκ

(
aκ + a†

κ

)
Eκ(r) (14.43)

where ωκ is the frequency of mode κ , and Eκ(r) is one Cartesian component of the
classical electric field distribution associated with this mode. Therefore, when there
is a single dominant mode in the problem, the vector potential operator simplifies to
the expression

Aop(r)∝
(
a + a†) (14.44)

where the mode index κ and the proportionality constant have been suppressed.
The expansion of the square in the interaction Hamiltonian HA·A ∝ (a + a†)2 in

(14.38) will therefore contain the term [29]

Kop ∝ a†a† + hermitian adjoint (14.45)
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Fig. 14.2 (Color online) A parametric amplifier or oscillator, whose active element is the vibrating
SC wire (in red) placed in the middle of a microwave SC cavity (in grey). The moving wire can
be viewed as if it were an oscillating “semipermeable membrane,” which does work upon some
“seed” radiation initially present in the cavity, thus amplifying this radiation in a reciprocating,
piston-like action. Photons incident upon this moving “membrane” experience a Doppler shift that
changes their energy. Thus when pump microwaves enter through the left hole, an amplified signal
(Stokes) wave will exit through the right hole

The a†a† term of the operator Kop corresponds to the process of photon pair cre-
ation in the parametric amplification arising from the pumping action of some strong
“pump” wave upon a quantum system. It can be shown that (14.45) has the form of
an infinitesimal generator of a squeezed state of light [29].

Instead of enumerating all the possible resulting second quantized forms of the
above interaction Hamiltonian terms, let us just focus on one such term, namely,
HA·A in (14.38), which is associated with parametric amplification, such as that in
the setup depicted in Fig. 14.2. This Figure represents an “opto-mechanical” para-
metric amplifier, which becomes, above threshold, a parametric oscillator, whose
active element is the central vibrating SC wire (indicated in red), placed across the
middle of an extremely high-Q SC microwave cavity. Here, instead of using opti-
cal cavities, as is usual in ongoing opto-mechanical experiments [30], we shall be
using SC microwave cavities. The reason for this is that the quality factor for SC
microwave cavities has already been demonstrated by Haroche and co-workers [31]
to be on the order of

Q∼ 1010 (14.46)

which can be much higher than that of typical optical cavities.
The motion of the SC wire in the middle of the microwave cavity will modulate

the “pump” microwaves coming through the “IN” port so as to produce radiation
at new sideband frequencies via the Doppler effect. The “seed” radiation initially
in one of these sidebands, namely, the first “Stokes” sideband, can then become the
exponentially amplified. Macroscopic, easily detectable radiation in the form of a
strong Stokes wave emitted by the parametric amplifier can then leave the cavity
through the “OUT” port. This kind of strong Stokes emission would be similar to
the Stokes emission observed in the stimulated Raman effect in nonlinear optics
[32].
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Fig. 14.3 The excitation spectrum of a microwave cavity with a wire placed at its center (see
Fig. 14.2). The spectrum consists of a doublet of resonances at the “signal” mode at the “Stokes”
frequency ωS and the “pump” mode at the “pump” frequency ωp . The difference between
“pump” and “Stokes” frequencies is resonant with the frequency Ω of the vibrating wire (i.e.,
ωp − ωS =Ω). The “anti-Stokes” frequency ωA is off resonance with respect to the doublet, and
hence is suppressed. (Cf. the stimulated Raman effect in [32])

However, here we shall first analyze classically the parametric amplification pro-
cess in Fig. 14.2, in order to answer the following questions: What is the threshold
for parametric oscillation in Fig. 14.2? Is this experiment feasible to perform? The
key concept that we shall use in this classical analysis is that of the work done by the
moving wire, viewed as if the wire were a moving “piston” acting on some “seed”
radiation initially present in the cavity. This “piston-like” action of the moving wire
can also be viewed as if the wire were a partially reflecting “moving mirror,” and will
lead to the exponential amplification of the “seed” radiation at the Stokes frequency
above the threshold of parametric oscillation.

The reason for using a vibrating wire instead of a vibrating membrane is that
the wire is one dimensional, whereas the membrane is two dimensional. The mass
of a thin wire can be made much smaller than the mass of a thin membrane, and
therefore a wire can be driven more easily into motion.

However, here we shall model the vibrating wire in Fig. 14.2 as if the wire were a
vibrating “semi-permeable membrane,” for which the pressure acting on the mem-
brane can be converted into an easily calculable force. The justification for this
“membrane” model is that the scattering cross section of a thin conducting wire,
when placed symmetrically across the mouth of a waveguide, can be comparable in
size to the cross-sectional area of the waveguide, because the wire tends to “short
out” the electric field of the TE mode of a waveguide. Thus the reflection coefficient
of the wire placed across the middle of a cavity (as in Fig. 14.2), can be made quite
high. There results a splitting of a microwave cavity mode into a spectral doublet as
illustrated in Fig. 14.3 [33, 34], due to the presence of the central wire. The splitting
frequency of the doublet can typically be on the order of 1 GHz for a microwave
mode frequency of around 10 GHz.

We have observed the splitting of a microwave cavity resonance into a spectral
doublet (see Fig. 14.4). An RF cylindrical copper cavity of length L= 1.284′′ and
diameter D = 1.02′′ with two parallel conducting end plates was constructed to
support a TE 112 mode at 11.42 GHz [35]. (The mode indices l,m,n are chosen
to correspond to the number of half wavelengths along their respective axes; angu-
lar, radial, and axial respectively.) The input coupler, a short straight wire placed
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Fig. 14.4 Splitting of the TE
112 mode in cavity with a
bisecting copper wire at its
midpoint perpendicular to the
axial direction and parallel to
the input coupler. The
splitting is on the order of 400
MHz. S21 transmission
measurements (a) of a copper
cavity with TE112 resonant
frequency at 11.5 GHz and
(b) splitting due to the
placement of copper wire
placed at the center. The
vertical axes use the same
arbitrary power reference in
the conversion from
logarithmic to linear scale

perpendicular to the axial direction, was placed on the cylinder at approximately a
quarter wavelength from one end plate. The output coupler is a small loop placed at
the other end plate of the cavity.

An off-diagonal scattering matrix element S21 transmission measurement, pre-
formed with a HP 8720C network analyzer, shows the resonance of the TE 112
mode at approximately 11.50 GHz; see Fig. 14.4(a). A splitting is observed by plac-
ing a 22AWG copper wire at the midpoint of the cavity, perpendicular to the axial
direction and parallel to the input coupler. The splitting is approximately 400 MHz;
see Fig. 14.4(b).

In Fig. 14.3, the pump frequency ωp of the parametric amplifier is assumed to
be tuned to coincide with the upper member of the spectral doublet, and the signal
frequency ωS is assumed to be tuned to coincide with the lower member of this
doublet, which we shall call the “Stokes frequency,” in analogy with the stimulated
Raman effect [32]. The idler frequency ωi , i.e., the frequency of the mechanical
motion of the central wire in Fig. 14.2, is the beat frequencyΩ = ωp −ωS between
the pump and signal frequencies. Note that the parasitic, Doppler upshifted “anti-
Stokes frequency” ωA is automatically suppressed by this spectral doublet.

To calculate the force acting on the central membrane (as a model of the force
acting on the central wire) in the middle of the microwave cavity of Fig. 14.2, we
begin from the Maxwell stress tensor [36, 37]

Tij = ε0

(
EiEj − 1

2
δijE

2
)

+ 1

μ0

(
BiBj − 1

2
δijB

2
)

(14.47)
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Now starting from the electromagnetic force exerted on charges and currents
given by the Lorentz force law

F = q(E + v × B) (14.48)

it can be shown that there results the following relationship between the force F and
the total Maxwell stress tensor Tij and the Poynting vector S [36, 37]:

(F)i =
∮

S(V )

Tij · (da)j − ε0μ0
d

dt

∫

V

(S)idV (where i = 1,2,3) (14.49)

where Tij is the stress tensor evaluated at da, an infinitesimal area element of an
arbitrary surface S(V ) which encloses the volume V , dV is an infinitesimal vol-
ume element of the matter inside the volume V enclosed by the surface S(V ), and
S = E × H is the Poynting vector evaluated at dV inside V .

Now the tangential electric field must vanish at the boundary of any conduc-
tor. Hence, for all transverse electric modes of the microwave cavity pictured in
Fig. 14.2, if one chooses the surface S(V ) to be that of a small pillbox straddling
a patch of the surface of an equivalent SC membrane, the contribution to the force
(14.49) from the Poynting vector term evaluated at the pillbox enclosing the patch
of the surface, must vanish. In the case of transverse magnetic modes of the cavity,
the Poynting vector S = E × H does not vanish at the surface, since there will be
a longitudinal component of the electric field at the surface along with a tangential
component of the magnetic field. Hence there will arise a tangential component of
S at the surface of the SC membrane, but this S cannot contribute to any normal
force acting on the conducting surface.

Therefore the only contribution to the normal force acting on the equivalent SC
membrane arises solely from the Maxwell stress tensor term of (14.49), which, for
the case of transverse electric modes evaluated at the membrane, reduces down to

(Tij )= 1

2μ0

⎛

⎝
−B2

y 0 0
0 +B2

y 0
0 0 −B2

y

⎞

⎠ (14.50)

because the magnetic field of the transverse electric mode (e.g., the TE112 mode),
whose electric field is pointing in the x direction (in the Cartesian coordinate system
of Fig. 14.2), will be pointing in the y direction at the surface of the equivalent
membrane.6

If one therefore replaces the SC wire by an equivalent SC membrane, then the
diagonal terms of (14.50) can be interpreted as a “field pressure” acting on the mem-

6Note that the application of a magnetic field to any system of particles with a given charge-to-mass
ratio is equivalent, by Larmor’s theorem, to rotating the system at the Larmor angular frequency.
Thus there exists a natural connection between the A and h fields in the proposed experiments in
Figs. 14.2 and 14.5.
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brane with a maximum amplitude of

Pmax = 1

2μ0

(
B2)

max = (uB)max (14.51)

where (B2)max is the maximum of the square of the magnetic field, and (uB)max is
the maximum magnetic energy density, evaluated at the surface of the membrane.

Because the stress tensor depends quadratically on the field, there results a pres-
sure being exerted on the membrane at a beat note frequency due to the beating
between the fields at pump frequency ωp and the fields at the Stokes frequency ωS
in the spectral doublet of Fig. 14.3. This beat note can drive the membrane (or the
wire) at the beat frequencyΩ = ωp−ωS, i.e., at the splitting of the upper and lower
members of the doublet. The force in the z direction acting on the membrane (or
wire) at the beat frequency Ω will therefore have the form

FΩ = 1

μ0
BpB∗

S exp
(−i(ωp −ωs)t

) ·Aeff + c.c.

∝ exp(−iΩt)+ c.c. (14.52)

where Aeff is an effective area of the membrane (or, equivalently, the effective scat-
tering cross-section of the wire), and where

Bp = Bp exp(−iωpt)+ c.c. (14.53)

is the pump waveform, with Bp being the complex amplitude for the pump magnetic
field waveform, and where

BS = BS exp(−iωSt)+ c.c. (14.54)

is the Stokes waveform of some small amount of “seed” radiation already present
inside the cavity, with BS being the complex amplitude for the Stokes magnetic field
waveform. (Note that such “seed” radiation could in principle be vacuum fluctua-
tions of the EM field inside the cavity.) In the expression (14.52) for the force FΩ at
the beat frequencyΩ , we have assumed that the pump wave (14.53) is always much
stronger that the “seed” Stokes wave (14.54), i.e., |Bp| � |BS|.

Since the driving force FΩ at the beat frequency Ω can be made resonant with
the acoustical resonance frequency of the membrane, we shall model the resulting
motion of the membrane as that of a simple harmonic oscillator with a resonance
frequency ofΩ . Using Newton’s equation of motion for a damped simple harmonic
oscillator moving in the z direction, viz.,

m
(
z̈+ γ ż+Ω2z

)= FΩ (14.55)

where m is the mass of the membrane, and γ is its damping coefficient, and using
an ansatz of the form

z= zmax exp(−iΩt)+ c.c. (14.56)
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for the displacement of the membrane in the z direction, one finds that its maximum,
on-resonance complex displacement amplitude is

zmax = i BpB∗
S

μ0mγΩ
Aeff (14.57)

The velocity of the membrane in the z direction will then have the form

v = vmax exp(−iΩt)+ c.c. (14.58)

where the complex velocity amplitude vmax = −iΩzmax becomes, on resonance,

vmax = BpB∗
S

μ0mγ
Aeff (14.59)

There results a Doppler effect arising from the velocity of the membrane moving
in the z direction in Fig. 14.2, giving rise to upper and lower Doppler sidebands.
However, only the lower Doppler sideband will be excited, since only the lower
sideband will be resonant with lower member of the doublet in Fig. 14.3.

The maximum, on-resonance time-averaged power 〈P〉 being delivered from the
pump wave into the simple-harmonic membrane motion at the beat frequency Ω ,
and therefore into the lower Doppler sideband, i.e., into the Stokes wave (14.54), is

〈Pmax〉 = 〈FΩ · v〉max = 2|Bp|2|BS|2 1

μ2
0mγ

A2
eff (14.60)

Now invoking the conservation of energy, we find that, if we for the moment
neglect all losses, the Stokes wave will be amplified by this power transfer, such
that the power 〈Pmax〉 being transferred into the Stokes wave must equal the rate of
growth of the time-averaged Stokes energy inside the cavity

〈US〉 = 1

μ0
|BS|2Veff = 1

μ0
|BS|2AeffLeff (14.61)

where Leff is an effective length of the cavity (i.e., Veff = AeffLeff is an effective
volume of the cavity). In other words, from energy conservation it follows that

〈Pmax〉 = d

dt
〈US〉 (14.62)

Substituting in from (14.60) and (14.61), one infers that

2|Bp|2|BS|2 1

μ2
0mγ

A2
eff = d

dt

(
1

μ0
|BS|2AeffLeff

)
= κS

(
1

μ0
|BS|2AeffLeff

)

(14.63)

where κS is the exponential gain coefficient for parametric amplification of the
Stokes wave. Thus we arrive at an exponential-growth ODE for the energy stored
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(i.e. US) in the cavity at the Stokes frequency

d

dt
〈US〉 = κS〈US〉 (14.64)

Solving for the gain coefficient κS from (14.63), we conclude that

κS = 2|Bp|2Aeff

μ0mγLeff
(14.65)

Thus the gain of the Stokes wave is directly proportional to the pump power stored
in the cavity, just like in the stimulated Raman effect [32].

Like in a laser, the threshold for oscillation [38, 39] occurs when

Gain = Loss (14.66)

Above threshold, i.e., when the gain exceeds the loss, macroscopic amounts of co-
herent radiation can be produced inside the cavity by the exponential amplification
of the “seed” radiation, i.e., of vacuum fluctuations. Thus even if one were to start off
only with vacuum fluctuations as the “seed,” one can produce macroscopic amounts
of coherent radiation by the stimulated emission of radiation, just like in a laser. In
principle, this should also apply to GR radiation, as well as to EM radiation. Thus
generators of microwave frequency GR radiation should in principle be possible to
construct, as well as amplifiers and detectors for this kind of radiation. The only
remaining question is whether such devices are feasible in practice.

The loss of the Stokes wave (i.e., the “signal”) from the cavity depicted in
Fig. 14.2 can result from emission of radiation through an outcoupling hole into
the environment, or from remnant ohmic losses in the components of the cavity.
We shall call the resulting quality factor of the cavity at the Stokes frequency un-
der working conditions (i.e., including internal losses and the outcoupling into the
environment) the “loaded Q”, which is defined as follows:

QS = ωSτS (14.67)

where “S” stands for “Stokes wave” whose frequency is ωS, and whose stored en-
ergy inside the cavity decays away with a time scale τS (the so-called “cavity ring-
down time”) after the pump has been turned off.

Moreover, the loss coefficient γ in the motion of the simple harmonic oscillator
leads a decay time τΩ = 1/γ for the energy stored in the oscillator. This leads to a
mechanical oscillator quality factor QΩ , which is defined as follows:

QΩ =ΩτΩ (14.68)

It follows from the gain-equals-loss condition (14.66) that at threshold

(κS)threshold = 2|Bp|2thresholdAeff

μ0mγLeff
= 2|Bp|2thresholdQΩAeff

μ0mΩLeff
= 1

τS
= ωS

QS
(14.69)
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Since the time-averaged stored energy in the pump wave inside the cavity depicted
in Fig. 14.2 is

〈Up〉 = 1

μ0
|Bp|2AeffLeff (14.70)

we conclude from (14.69) that the threshold pump power needed for parametric
oscillation is

〈Up〉threshold = 1

2

mΩωSL2
eff

QSQΩ
(14.71)

This result is to be compared with the threshold pump power needed for paramet-
ric oscillation for exciting an elastic mode of a mirror of a Fabry-Perot resonator
obtained by Braginsky and co-workers [38]

〈Up〉Braginsky = 1

2

mω2
s L

2

QiQs
(14.72)

where m is the mass of the mirror, ωs is the frequency of the elastic mode, L is the
length of the Fabry-Perot resonator,Qi is the quality factor of a down-shifted “idler”
optical mode of the resonator, and Qs is the quality factor of the elastic mode. By
inspection of (14.71) and (14.72), we see that these thresholds are quite similar.

However, the electrodynamic Q factor of SC microwave cavities is typically on
the order of 1010 [31], whereas the typical mechanical Q factor for the best opto-
mechanical oscillators, which are composed of non-SC materials in the ongoing
opto-mechanical experiments, is at most on the order of 105 [30]. Therefore the
question naturally arises whether it is possible to replace these low-Q, non-SC me-
chanical oscillators, with high-Q SC mechanical oscillators, in which their mechan-
icalQ can approach the typical electrodynamicQ∼ 1010 of SC microwave cavities.

One possible answer to this question is the “triple SC microwave Fabry-Perot
resonator” shown in Fig. 14.5 [33], in which a charged SC membrane is extremely
tightly coupled via its electrostatic charge to the longitudinal electric fields of a
transverse magnetic mode of a high Q SC microwave cavity. The idea here is that
when the charge on the SC membrane is sufficiently large, then the mechanical dy-
namics of the membrane will be “slaved” to follow closely the electromagnetic dy-
namics of the high-Q microwave SC mode. Calculations7 show that one only needs
a charge of pico-Coulombs for this to happen. Note that as a result of the “slaved”

7If the electrostatic charge +q on the left side of the membrane were to be sufficiently large (i.e.,
greater than around 20 picocoulombs; see Appendix B of [33]), so that the membrane becomes
extremely tightly coupled to the “single” Fabry-Perot cavity mode on the left side of the mem-
brane, which would happen if this cavity were to be excited in an appropriate transverse magnetic
mode, then the mechanical dynamics of the membrane would be “slaved” to the electromagnetic
dynamics of this “signal” frequency cavity. For then the displacement of the membrane would be
completely determined by Newton’s equation of motion (14.55), so that there results a fixed re-
lationship between the instantaneous longitudinal electric field and the instantaneous membrane
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Fig. 14.5 (Color online) A “triple” SC microwave Fabry-Perot cavity [33] consists of a “single”
SC cavity separated by a vibrating SC “membrane” (in red) from a “double” SC cavity with a fixed
SC iris (in black) at its center. This separating membrane is totally impermeable to all microwaves.
The membrane is electrostatically charged on it left surface with a charge +q , and the left SC
mirror is charged on its right surface with a charge −q . “Pump” microwaves (in blue) enter into
the system through the right hole, and “signal” waves leave the system through the left hole, but
“idler” waves leave the system through the right hole

dynamics, the SC membrane will be moving at microwave, and not at acoustical,
frequencies. This means that the motion of the membrane will be essentially that of
a “free” mass, which is being driven solely by Maxwell’s stress tensor. Therefore
this microwave-frequency motion will be independent of the elastic and dissipative
mechanical properties of the membrane.

Another important feature of the configuration shown in Fig. 14.5 is that the sig-
nal and the idler waves are spatially separated into two disjoint, highQ SC cavities,
which are separated from each other by a common, vibrating SC membrane. It turns
out that this leads to two separate Q factors in its denominator of the threshold for
parametric oscillation, which arises due to this separation. We shall therefore call
the parametric oscillator configuration of Fig. 14.5 a “separated parametric oscilla-
tor,” in contrast to that in Fig. 14.2, which we shall call an “unseparated parametric
oscillator.” The threshold for the separated parametric oscillator of Fig. 14.5 will

displacement, which is given by

(εΩ)s = −q(Ez)s
mω2

s

(14.73)

where (Ez)s is the complex amplitude of the longitudinal electric field of the transverse magnetic
mode at the “signal” frequency ωs of the “single” Fabry-Perot cavity and (εΩ)s is the complex
amplitude of the displacement of the membrane, which oscillates at the same frequency ωs . In this
way, the mechanical vibration frequency Ω of the membrane would be forced to become identical
to the microwave frequency ωs of this cavity, and the kinetic energy of the mechanical vibrational
motion would be forced to become identical to the electromagnetic energy stored inside this cavity,
because these two degrees of freedom would be so tightly coupled to each other that they would
no longer be independent degrees of freedom.
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turn out to be at least a factor of 105 lower than that of the unseparated parametric
oscillator of Fig. 14.2.

We start the analysis of the separated parametric amplifier depicted in Fig. 14.5
by examining the work done by the “pump” wave on the moving SC “membrane,”
when it produces a displacement by an amount�z of the membrane to the left along
the axis of the “double” Fabry-Perot resonator on the right side of the membrane.
The work done during this displacement is

�W =
(

1

2μ0
B2
)

·Aeff�z (14.74)

where Aeff is the effective hemiconfocal spot size at the membrane, �z is the dis-
placement of this membrane, and

uB = 1

2μ0
B2 (14.75)

is the energy density of the magnetic field evaluated at the right surface of the “mem-
brane,” which is the pressure arising from the Maxwell stress tensor (14.50), i.e., a
pressure being exerted upon the membrane that can cause a change of the volume
inside the “double” Fabry-Perot resonator on the right side of the membrane

�V = Aeff�z (14.76)

where Aeff is the effective area of the membrane, which is determined by the hemi-
confocal spot size of the mode on the right side of the membrane. For simplicity, we
shall assume here that the hemiconfocal spot size of the mode on the left side of the
membrane also has the same Aeff.

The instantaneous mechanical work �W in (14.74) done by the “pump” upon
the fields of the resonator can be rewritten in the form

�W = P�V (14.77)

where the instantaneous pressure P on the “membrane” is

P = 1

2μ0
B2 (14.78)

which is equal to the instantaneous energy density uB in (14.75) evaluated at the
right surface of the membrane. It is clear from the expression for the work in (14.77)
that �W can be interpreted as if it were the work being done by a moving piston
acting on a thermodynamic system, here, the radiation fields inside a cavity.

Now we shall presently see that if energy were to be continually supplied to
the “double Fabry-Perot” resonator on the right side of the membrane by some
continuous-wave, external microwave pump waveform oscillating at a frequency
ωp (i.e., the “pump” frequency) entering through the right hole of Fig. 14.5, then
the exponential amplification of some seed “signal” waveform at a frequency of ωs
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within the “single” Fabry-Perot on the left side of the membrane, simultaneously
with the exponential amplification of some seed “idler” waveform at a frequency of
ωi within the “double” Fabry-Perot on the right side of the membrane, can occur.
This amplification effect can arise from the mutual reinforcement of the signal and
idler waves at the expense of the pump wave, in which the pump wave beats with
the idler wave via the Maxwell stress tensor to produce more of the signal wave,
and the signal wave modulates the pump wave via the Doppler effect to produce
more of the idler wave, etc. The mutual reinforcement of the two “seed” waves will
lead to an instability above a certain threshold, i.e., to the parametric oscillation of
both the signal and idler waves that produces macroscopic amounts of both kinds of
waves, which then leave the system in opposite directions via the left hole and the
right hole of Fig. 14.5, respectively, just like in a laser.

For parametric amplification to occur, the frequency-matching condition

ωp = ωs +ωi (14.79)

must be satisfied. The meaning of the relationship can be most easily seen by mul-
tiplying it by the Planck’s constant � so that one obtains the relationship

�ωp = �ωs + �ωi (14.80)

In other words, in the parametric amplification process, one signal photon �ωs is
simultaneously created along with one idler photon �ωi at the expense of one pump
photon �ωp , which is annihilated during this “photon pair-creation process.” In this
process, an entangled pair of signal and idler photons, with the signal photon ap-
pearing on the left side, and the idler photon appearing on the right side of the
membrane, respectively, will be produced in a correlated emission event inside the
“triple” Fabry-Perot resonator depicted in Fig. 14.5. This photon pair-creation pro-
cess is described by the interaction Hamiltonian

Hint ∝ apa†
s a

†
i + hermitian adjoint (14.81)

which is a generator of a two-mode squeezed state [28].
Let the microwave pump magnetic field just outside of the right surface of the

membrane have the form

Bp = Bp exp(−iωpt)+ c.c. (14.82)

where the pump magnetic field vector points transversely to the membrane immedi-
ately outside of its right surface, with Bp being the complex amplitude of the pump
magnetic field.

Similarly, let the “seed” idler magnetic field just outside of the right surface of
the membrane have the form

Bi = Bi exp(−iωi t)+ c.c. (14.83)

which is a vector parallel to the magnetic field vector of the pump wave immedi-
ately outside of its right surface, with Bi being the complex amplitude of the idler
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magnetic field. We shall assume that the pump is tuned to be on resonance with the
upper member of the spectral doublet of the “double” Fabry-Perot (see Fig. 14.3),
and that the idler is tuned to be on resonance with the lower member of this doublet.
However, the off-resonance, parasitic “anti-Stokes” (i.e., the Doppler up-shifted)
frequency component arising from the motion of the membrane will be suppressed,
and hence neglected.

To calculate the coefficient of parametric amplification, let us assume that the
pump wave is much stronger than both a very weak “seed” idler wave and a very
weak “seed” signal wave, so that |Bp| � |Bi | and |Bp| � |Bs |. It follows from
(14.79) and (14.83) that the square of the total magnetic field evaluated at the right
surface of the “membrane” will have the form

B2 = (Bp +Bi)2 = (Bp exp(−iωpt)+Bi exp(−iωi t)+ c.c.
)2 (14.84)

If we define the “beat frequency” as

Ω = ωp −ωi (14.85)

then we see that there will arise cross terms in the square of the magnetic field
(14.84) which will contain terms that vary at the beat frequency Ω , viz.,

(
B2)

Ω
= Bp exp(−iωpt)B∗

i exp(+iωi t)+ c.c.

= BpB∗
i exp(−iΩt)+ c.c. (14.86)

Therefore there will exist a pressure being exerted on the membrane that varies at
the beat frequency Ω of the form

(P )Ω = 1

2μ0

(
B2)

Ω
= 1

2μ0

(
BpB∗

i exp(−iΩt)+ c.c.
)

(14.87)

If we define the complex pressure amplitude PΩ as follows:

PΩ = 1

2μ0
BpB∗

i (14.88)

then the pressure exerted on the membrane which varies at the beat frequency Ω
will have the form

(P )Ω = PΩ exp(−iΩt)+ c.c. (14.89)

But the beat frequency Ω will be assumed to be tuned into resonance with the
signal frequency, i.e.,

Ω = ωp −ωi = ωs (14.90)

so that the membrane can be driven at the resonance frequency ωs of the “single”
Fabry-Perot resonator to the left of the membrane. Thus power from the right side of
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the membrane can be fed resonantly by the motion of the membrane into the signal
“seed” waveform on the left side.

Due to the presence of the electrostatic charge +q on the left surface of the
membrane, and the relationship

Fz(t)= qEz(t) (14.91)

where Fz(t) is the Coulomb force on the membrane exerted on the charge +q by the
longitudinal electric fieldEz(t) of a transverse magnetic mode of the “single” Fabry-
Perot resonator on the left side of the membrane [33], it follows that the motion of
the membrane in the longitudinal z direction will be “slaved” through Ez(t) to the
dynamics of this transverse magnetic mode [33, Appendix B, where it was shown
that one only needs q ≈ 20 pC for the Coulomb force to dominate the dynamics of
the membrane]. This is due to the tight coupling between �z(t) and Ez(t) which
arises from the electrostatic charge +q (see footnote 7).

Hence let us introduce an ansatz that the displacement of the membrane has the
form

(
�z(t)

)
Ω

= εΩ(t) exp(−iΩt)+ c.c. (14.92)

where εΩ(t) is some slowly-varying complex displacement amplitude of the mem-
brane, which is the slowly-varying envelope of the fast beat frequency phase factor
exp(−iΩt).

Hence the velocity of the membrane will have the form

(v)Ω = d(�z)Ω

dt
≈ νΩ(t) exp(−iΩt)+ c.c. (14.93)

where the slowly-varying complex velocity amplitude of the moving membrane is

νΩ(t)≈ −iΩεΩ(t) (14.94)

within the “slowly varying envelope approximation” [40], and the acceleration of
the membrane will have the form

(a)Ω =
(
dv

dt

)

Ω

≈ αΩ(t) exp(−iΩt)+ c.c. (14.95)

where the slowly-varying complex acceleration amplitude of the moving membrane
is

αΩ(t)≈ −Ω2εΩ(t) (14.96)

also within the slowly varying envelope approximation.
The force due to the pressure (14.87) being exerted on the membrane will have

the form

(F )Ω = FΩ(t) exp(−iΩt)+ c.c. (14.97)
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where the slowly-varying complex force amplitude acting on the membrane is

FΩ(t)= 1

μ0
BpB∗

i (t)Aeff (14.98)

where Aeff is the effective area of the membrane, and where, in the “undepleted
pump” approximation [32], we have assumed that the pump amplitude Bp is inde-
pendent of time, but that the idler amplitude B∗

i (t) can be a slowly varying function
of time due to its amplification.

Then the time-averaged mechanical power fed into the membrane’s motion from
the radiation, and hence into the signal wave of the “single” Fabry-Perot cavity of
Fig. 14.5, using (14.94) and (14.98), is
〈
dW

dt

〉

signal
= 〈F · v〉

= 〈FΩ · ν∗
Ω + c.c.〉 = 〈FΩ · iΩεΩ + c.c.〉

= −2Im
(
FΩΩε∗Ω

)= −2Im

(
1

μ0
BpB∗

i (t)Aeff ·Ωε∗Ω(t)
)

(14.99)

Let the complex amplitudes of the pump, idler, and signal waveforms have the com-
plex polar forms

Bp = |Bp| exp(iφp) (14.100)

Bi = |Bi | exp(iφi) (14.101)

εΩ = |εΩ | exp(iφs) (14.102)

By inspection of (14.99), we see that the maximum power transfer from the radiation
fields into the membrane’s motion occurs when the phases of pump, signal, and idler
waveforms (i.e., (14.100), (14.101), and (14.102)) are adjusted so as to satisfy the
condition

φp − φi − φs = −π
2

(14.103)

whereupon the maximum mechanical power fed into the membrane becomes
〈
dW

dt

〉

max ,signal
= +2AeffΩ

μ0
|Bp|

∣∣Bi (t)
∣∣∣∣εΩ(t)

∣∣ (14.104)

Neglecting for the moment all dissipative losses, the kinetic energy of the mem-
brane must grow due to this positive mechanical power being fed into it. Hence,
invoking the principle of the conservation of energy, we get the equation

〈
dW

dt

〉

max ,signal
= d

dt

(
1

2
m〈v2〉

)
= d

dt

(
mΩ2

∣∣εΩ(t)
∣∣2) (14.105)
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where we have used (14.94) and the fact that 〈v2〉 = 2|νΩ |2. Therefore

d

dt

(
mΩ2|εΩ |2)= 2mΩ2|εΩ |d|εΩ |

dt
= 2AeffΩ

μ0
|Bp||Bi ||εΩ | (14.106)

We thus arrive at an ODE for the rate of growth of the magnitude |εΩ | of the dis-
placement of the membrane

d|εΩ |
dt

= Aeff

μ0mΩ
|Bp||Bi | (14.107)

Next, we shall obtain a similar ODE for the rate of growth of the magnitude |Bi |
of the idler wave. We start from the motional EMF created by the motion of the
vibrating SC membrane, which leads to the generation of the motional electric field

E = v × B (14.108)

This relationship implies that the sinusoidal, back-and-forth motion of the mirror
at a frequency Ω will be modulating the magnetic field oscillating at the pump
frequency ωp , such that an idler electric field at the surface of the mirror oscillating
at the idler frequency ωi will be generated, i.e.,

(E)i = (v)Ω×(B)p (14.109)

This is a manifestation of the Doppler effect, in which the sinusoidal motion of the
mirror will produce Stokes and anti-Stokes sidebands around the pump frequency
ωp . However, due to the doublet spectrum depicted in Fig. 14.3 in the “double”
Fabry-Perot resonator, only the down-shifted, first-order Stokes sideband will be
resonant with the resonator. Therefore we shall neglect henceforth the anti-Stokes
sideband, and all the other higher order Doppler sidebands.

Note that when the membrane is moving towards the left in Fig. 14.5, which is
the direction in which the magnetic pressure due to the pump wave is pushing, this
pressure will deliver power into the motion of the moving membrane, and simultane-
ously, will deliver power into the red-shifted, first-order Doppler sideband, i.e., the
idler wave, via the relationship (14.109). This will lead to parametric amplification
of the membrane’s motion.

Using the Cartesian coordinate system shown in Fig. 14.5, we shall assume that
the instantaneous velocity of the mirror is pointing in the −z direction, and that the
instantaneous pump magnetic field vector Bp is pointing in +x direction, so that the
instantaneous motional E field will be pointing in the +y direction. Thus, in terms
of the complex amplitudes, (14.109) reduces down to

Ei = ν∗
ΩBp (14.110)

Now the time-averaged power delivered into the idler wave by the motional E
field acting on the current density j induced by the idler wave at the right surface of
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the SC mirror, is
〈
dW

dt

〉

idler
=
∫

〈j · E〉dV = (j∗
i Ei
)
Aeffδ + c.c. (14.111)

where j∗
i is the complex conjugate of the supercurrent density amplitude flowing

on the surface of the mirror at the idler frequency ωi , Ei is the complex motional
electric field amplitude at ωi , Aeff is the effective focal area of the membrane, and δ
is the London penetration depth, within which the supercurrents j∗

i will be flowing
near the surface of the membrane. To calculate j∗

i in (14.111), we use Ampere’s
circuital law and a rectangular loop straddling the surface of the SC mirror, to get

B∗
i = μ0j

∗
i δ (14.112)

where δ is London’s penetration depth. Solving for j∗
i from (14.112), and substitut-

ing it into (14.111) using (14.110), we get
〈
dW

dt

〉

idler
= 1

μ0

(
ν∗
ΩBpB∗

i

)
Aeff + c.c.

= 1

μ0

((
iΩε∗Ω

)
BpB∗

i

)
Aeff + c.c. (14.113)

where in the last step we used (14.94) for the complex conjugate of the complex
velocity amplitude ν∗

Ω of the membrane.
To maximize the power transferred to the idler, we again choose the phase con-

dition (14.103) between the pump, idler and signal complex amplitudes, and find
〈
dW

dt

〉

max,idler
= + 2

μ0
Ω|εΩ ||Bp||Bi |Aeff (14.114)

Assuming the absence of all dissipation, and invoking once again the principle
of the conservation of energy, but this time for the idler wave, we obtain

〈
dW

dt

〉

max,idler
= d

dt

(
1

2μ0
〈B2
i 〉
)
AeffLeff = d

dt

(
1

μ0
|Bi |2

)
AeffLeff

= + 2

μ0
Ω|εΩ ||Bp||Bi |Aeff (14.115)

where Leff is the effective length of the “double” Fabry-Perot resonator. We thus
arrive at an ODE for the rate of growth of the idler wave

d

dt
|Bi | = Ω

Leff
|εΩ ||Bp| =K2|εΩ | (14.116)

where the constant of proportionality K2 is

K2 = Ω

Leff
|Bp| (14.117)
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Note that this is of the same form as the ODE for the rate of growth of the signal
wave (see footnote 7) obtained earlier in (14.107), viz.,

d

dt
|εΩ | = Aeff

μ0mΩ
|Bp||Bi | =K1|Bi | (14.118)

where the constant of proportionality K1 is

K1 = Aeff

μ0mΩ
|Bp| (14.119)

This implies that there exists a mutual enhancement of the signal and idler waves
that leads to their exponential growth, i.e., to the parametric amplification of both
waves. To see this, let us rewrite the two equations (14.116) and (14.118) in the
following 2 × 2 matrix form:

d

dt

( |εΩ |
|Bi |

)
=
(

0 K1
K2 0

)( |εΩ |
|Bi |

)
=Λ

( |εΩ |
|Bi |

)
(14.120)

where Λ is the eigenvalue of the 2 × 2 matrix, viz.,

Λ= ±√K1K2 = ±
√
Aeff|Bp|2
μ0mLeff

(14.121)

The solution of (14.120) is
( |εΩ |

|Bi |
)

=
( |εΩ |

|Bi |
)

t=0
exp(Λt) (14.122)

The meaning of the positive root for Λ is that it represents the rate of exponential
growth of the amplitudes of the coupled signal and idler waves, when the phase
condition (14.103), φp − φi − φs = −π/2, for maximum power delivery to these
coupled waves, is satisfied, whereas the negative root for Λ is that it represents the
rate of exponential decay of the amplitudes of the coupled signal and idler waves,
when the anti-phase condition, φp − φi − φs = +π/2, for maximum power extrac-
tion from these coupled waves, is satisfied. Whether one gets exponential growth
or exponential decay of the waves thus depends on the choices of the initial phases
of the pump, signal, and idler waves. This kind of phase-dependent amplification is
the signature of the production of a squeezed state of the vacuum.

Next, let us introduce a dissipative loss phenomenologically into the ODE for the
idler (14.116) as follows:

d

dt
|Bi | − 1

2τi
|Bi | =K2|εΩ | (14.123)

where τi is the “cavity ring-down time” for the energy stored in the idler cavity
mode on the right side of the membrane after the pump wave has been suddenly
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shut off, and, similarly, into the ODE for the signal (14.118) as follows:

d

dt
|εΩ | − 1

2τs
|εΩ | =K1|Bi | (14.124)

where τs is the “cavity ring-down time” for the energy stored in the signal cavity
mode on the left side of the membrane after the pump wave has been suddenly shut
off. The relationships between the cavity ring-down times τi and τs of the two cavity
modes, and their loaded quality factors Qi and Qs , are

Qi = ωiτi (14.125)

Qs = ωsτs (14.126)

At the threshold of parametric oscillation, there is a balance between gain and
loss such that there arises a steady-state situation in which

d

dt
|Bi | = d

dt
|εΩ | = 0 (14.127)

Therefore, at threshold, the two ODE’s (14.123) and (14.124) reduce down to the
two algebraic equations

− 1

2τi
|Bi | = K2|εΩ | (14.128)

− 1

2τs
|εΩ | = K1|Bi | (14.129)

Multiplying the left sides and the right sides of these two equations together, we get

1

4τiτs
=K2K1 (14.130)

By using the relationships (14.117), (14.119), (14.125), and (14.126), we get from
(14.130) the threshold condition

ωiωs

4QiQs
= Aeff|Bp|2
μ0mLeff

= |Bp|2Veff

μ0mL2
eff

(14.131)

Since the time-averaged stored energy stored in the pump cavity mode is

〈Up〉 = 1

2μ0
〈B2
p〉Veff = 1

μ0
|Bp|2Veff (14.132)

we arrive from (14.131) at the conclusion that the threshold condition is

〈Up〉threshold = mωiωsL2
eff

4QiQs
(14.133)
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This is to be compared with Braginski’s threshold condition (14.72) [38]

〈Up〉Braginski
threshold = 1

2

mω2
s L

2

QiQs
(14.134)

The above two expressions agree as to an order-of-magnitude estimate for the
threshold of parametric oscillation for the “triple” Fabry-Perot resonator configu-
ration of Fig. 14.5.

The required threshold input pump power 〈Pp〉threshold for parametric oscillation
due to pump microwaves entering in through the right hole of the “triple” cavity
configuration of Fig. 14.5, can be found via the steady-state condition

〈Pp〉threshold = 1

τp
〈Up〉threshold (14.135)

where the quality factor for the pump cavity mode Qp is related to the pump cavity
ring-down time τp by

Qp = ωpτp (14.136)

Finally, putting this together with (14.133), we conclude that for parametric oscilla-
tion to occur in the configuration of Fig. 14.5, we need to inject a microwave pump
power into the “triple” Fabry-Perot cavity the minimum amount of

〈Pp〉threshold = mωpωiωsL2
eff

4QpQiQs
(14.137)

Numerically, if we assume that8

m= 2 mg (14.138)

ωp = 2π × 20 GHz (14.139)

ωi ≈ ωs ≈ 2π × 10 GHz (14.140)

Leff ≈ λi/2 ≈ λs/2 ≈ 3 cm (14.141)

Qp ≈Qi ≈Qs ≈ 1010 (14.142)

then we conclude that we would require a microwave pump power at a frequency of
20 GHz to be injected through the right hole of the “triple” Fabry-Perot cavity of at
least

〈Pp〉threshold ≈ 0.2 microwatts (14.143)

8Instead of a solid SC membrane, one could use a grid of fine SC wires, for example, four fine SC
wires arranged in a pattern similar to the number sign “#”, in order to reduce the mass, and thus
the threshold.
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Above this minimum power level, there would result a parametric oscillation effect
in which a macroscopic amount of signal and idler microwaves centered around
10 GHz, with powers on the order of microwatts (i.e., with powers comparable to
the pump threshold power), would be emitted in opposite directions through the left
and the right holes, respectively, of the “triple” Fabry-Perot cavity, like in a laser. If
the Q is lowered by opening the outcoupling holes, the threshold will go up, but so
will the output power of the parametric oscillator. For example, by lowering all the
Q’s to 109 instead of 1010, the threshold will be increased to 0.2 milliwatts, but the
output power of the dynamical Casimir effect will also increase by a few milliwatts.

It should be stressed that the leftmost cavity, that is, the “single” Fabry-Perot
resonator of Fig. 14.5, is initially devoid of any radiation (i.e., it is initially an empty
cavity), so that the emission of a macroscopic amount of signal microwaves through
the left hole from the left side of the apparatus, would be a dramatic manifestation
of the dynamical Casimir effect, in which the observed signal output must have
built up exponentially starting solely from vacuum fluctuations inside this initially
empty resonator. Since the dynamical Casimir effect is closely related to Hawking
radiation according to [41], an observation of parametric oscillation resulting from
the moving SC membrane in Fig. 14.5 would be a very interesting result from the
point of view of quantum field theory.

14.4 The Gravitational Dynamical Casimir Effect, and the
Generation of Coherent Gravitational Radiation

In this final section, we speculate that the above ideas can be extended to include the
case of gravitational radiation. The physical concept that ties all these ideas together
is the crucial use of the DeWitt minimal coupling rule in all of them.

In particular, we briefly comment on the possibility of extending the “separated
parametric oscillator” idea for generating EM microwaves by means of the vibrating
SC membrane placed inside the extremely highQ “triple” SC cavity, as depicted in
Fig. 14.5, to the much more speculative idea of generating GR microwaves using the
same vibrating SC membrane inside the same “triple” SC cavity. This extension is
based on the fact that the interaction Hamiltonian Hh·h in (14.39) is mathematically
identical to that of the interaction Hamiltonian HA·A in (14.38). Furthermore, we
are assuming that it is permissible for gravitational radiation fields to be second
quantized (see (14.42)).

However, for this extension of the parametric oscillator idea to work, it is cru-
cial that the walls SC cavity, including the surfaces of the moving SC membrane,
reflect GR microwaves with as high a reflectivity as in the case of EM microwaves.
In the paper “Do mirrors for gravitational waves exist?” [42], it was predicted that
even thin SC films are highly reflective mirrors for GR plane waves. This surprising
prediction was based on the DeWitt minimal coupling rule (14.20) applied to the
Ginzburg-Landau theory of superconductivity. The “off-diagonal long-range order”
(ODLRO) [43] nature of the coherent Cooper pairs causes these pairs to behave dif-
ferently from the ions in the ionic lattice, for which ODLRO does not exist. As a
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result, inside the SC thin film, the coherent Cooper pairs, which exhibit construc-
tive AB interference, do not undergo geodesic motion, in contrast to the incoherent
ions, which do undergo geodesic motion, in response to incident GR radiation. This
difference in the internal motions of the Cooper pairs and of the ions inside the SC
in the presence of GR radiation, leads to a charge separation effect induced by an
incoming GR plane wave, such that a huge back-action of the SC film on the GR
wave that causes its reflection, results.

If such SC mirrors for GR waves were indeed to exist in Nature, then moving SC
mirrors would not only be able to do work like a piston on these waves, but would
also simultaneously lead to a Doppler effect that leads to the exponential amplifi-
cation of these waves above the threshold for parametric oscillation, as explained
above. Thus, a laser-like generation of coherent GR waves starting from vacuum
fluctuations should become possible. If so, a Hertz-like experiment for GR radiation
at microwave frequencies [27] would become feasible to perform.
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Chapter 15
Paradoxes of the Aharonov-Bohm and
the Aharonov-Casher Effects

Lev Vaidman

Abstract For a believer in locality of Nature, the Aharonov-Bohm effect and
the Aharonov-Casher effect are paradoxes. I discuss these and other Aharonov’s
paradoxes and propose a local explanation of these effects. If the solenoid in the
Aharonov-Bohm effect is treated quantum mechanically, the effect can be explained
via local interaction between the field of the electron and the solenoid. I argue that
the core of the Aharonov-Bohm and the Aharonov-Casher effects is that of quantum
entanglement: the quantum wave function describes all systems together. [Editor’s
note: for a video of the talk given by Prof. Vaidman at the Aharonov-80 conference
in 2012 at Chapman University, see quantum.chapman.edu/talk-21.]

15.1 Introduction

Thirty years ago, after calculating integrals for the QCD sum rules in the M.Sc.
studies at Weitzmann Institute I went to Tel Aviv looking for a more intuitive physics
research. There I met Yakir Aharonov who suggested to look at his recent papers
on nonlocal measurements [1, 2]. I found a very different approach. Assume we
can measure a certain nonlocal variable, say a product of two variables related to
spatially separated regions. Then we can send signals faster than light: a paradox!
A paradox that led us to find measurable nonlocal variables, define new types of
measurements, construct a new formalism of nonlocal measurements [3, 4].

For Yakir, paradoxes are the main tool for developing new physics. Yakir is cer-
tain that we will have a new revolution in physics and the paradoxes we find lead
us toward it. During last thirty years I learned from Yakir how to use paradoxes
to do research. However, our philosophical approaches became different. I want to
believe that apart from some (important) details we understand Nature today. Yakir

L. Vaidman (B)
Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University,
Tel-Aviv 69978, Israel
e-mail: vaidman@post.tau.ac.il

L. Vaidman
Institute for Quantum Studies, Chapman University, Orange 92866, CA, USA

D.C. Struppa, J.M. Tollaksen (eds.), Quantum Theory: A Two-Time Success Story,
DOI 10.1007/978-88-470-5217-8_15, © Springer-Verlag Italia 2014

247

http://quantum.chapman.edu/talk-21
mailto:vaidman@post.tau.ac.il
http://dx.doi.org/10.1007/978-88-470-5217-8_15


248 L. Vaidman

taught me to use paradoxes as a powerful research tool, but instead of leading to new
directions, it leads me to correct, improve, deepen and clarify our current physical
theories.

At the beginning of the twentieth century in spite of serious paradoxes of physical
theories the view that physics is “finished” was shared by many, but the theory
of relativity and the quantum theory proved them all wrong. Today, when physics
explains almost everything we can see, physicists rarely claim that physics is close
to the final theory of the Universe. Quantum theory brings two elements which make
it very difficult to believe that we completely understand Nature: randomness and
nonlocality. Yakir accepts randomness and nonlocality: “God does plays dice to
avoid contradiction with nonlocality”. For me, accepting randomness is admitting
limits to physics. I refuse to do it. I have to pay a big price for this: the only consistent
way to avoid randomness in outcomes of quantum experiments is to accept that all
outcomes take place in Nature. Thus, I have to accept existence of numerous parallel
worlds corresponding to all possible outcomes of quantum experiments and adopt
the many-worlds interpretation of quantum mechanics (MWI) [5, 6].

The MWI avoids, together with randomness, the nonlocality of the Bell-type
correlations. In the picture of the whole Universe which incorporates all the worlds
measurement of an entangled particle causes no action at a distance. When we per-
form measurement on one of the entangled particles, we change the quantum state
of the other particle in each of the created worlds, but change nothing in local de-
scription of the other particle in the whole universe. It was a mixed state before the
measurement and remains the same mixture after it. In a particular world, created by
a quantum measurement, we experience an illusion of randomness and can observe
nonlocal correlations.

There is one type of nonlocality which the MWI does not remove, the nonlocality
of the Aharonov-Bohm (AB) effect [7]. The AB effect does not lead to “action at a
distance”, but it prevents a local explanation of the dynamics of charged particles in
particular setups. This nonlocality is what I want to analyze here.

15.2 Mach-Zehnder Interferometer

In classical physics we can explain the behavior of particles in the following local
way: Particles create fields (propagating with velocity of light or slower) and the
other particles accelerate due to local action of these fields. Wave packets of classical
electromagnetic field (which are not waves of some media made of particles) also
change their propagation due to local interaction. The interference of overlapping
wave packets is a local phenomenon too.

Consider a Mach-Zehnder interferometer (MZI), Fig. 15.1a. If the interferom-
eter is properly tuned, the wave packets split inside, but invariably reunite toward
detector A. Small shift of one of the mirrors increasing the length of one arm by a
half a wave length leads to a classical lag between the wave packets which changes
the interference after the final beam splitter such that the wave packet ends at de-
tector B , Fig. 15.1b. All this behaviour is perfectly understood by local interaction
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Fig. 15.1 Mach-Zehnder interferometer. The wave packet entering the interferometer splits in two
beam splitters creating a pair of wave packets moving toward detector A and another pair moving
toward detector B . (a) The MZI is tuned in such a way that the pair of wave packets moving toward
A interfere constructively and the pair moving toward B interfere destructively. (b) A small shift
of the upper mirror causes small shifts of one of the wave packet moving toward A and one moving
toward B . The shifts by the half of the wavelength result in destructive interference toward A and
constructive interference toward B

of the wave packets with beam splitters and mirrors and finally local interference of
the wave packets moving toward detectors.

More than thirty years ago the interference experiment with MZI has been per-
formed with single photons and, not surprisingly, showed the same results [8]. It is
natural to assume that it can be explained in the same way as above with the replace-
ment of a classical wave by the quantum wave of the photon. However, while the
evolution of the wave packets of classical electromagnetic fields in the MZI setup
can be observed locally, the evolution of the quantum wave is unobservable. The
relative phase of the wave packets of the quantum wave which controls the interfer-
ence when they finally overlap cannot be observed locally when the wave packets
are still separated. (There is a possibility of measuring the relative phase of the wave
packets using local coupling to parts of a composite measuring device [9], but then
the result depends on the definition of the relative phase of the measuring device, so
it does not provide an unambiguous measurement of the relative phase of the pho-
ton’s wave packets.) Although the phase of each wave packet could not be measured
during the propagation of the packet inside the interferometer, until the discovery of
the Aharonov-Bohm effect [7], there was no reason to suspect that it changes in a
conceptually different way from the change of phase of a classical wave packet.

To observe the AB effect, we introduce a solenoid with a flux Φ of the magnetic
field inside an electron MZI, Fig. 15.2. The interferometer is tuned in such a way that
when the flux vanishes, the electron ends at detector A with certainty. The solenoid
leads to a relative phase φAB = eΦ

c�
and choosing the flux such that φAB = π causes

the electron to change the interference and to end at detector B .
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Fig. 15.2 The Aharonov-Bohm effect. The electron MZI with a solenoid inside the interferometer
exhibits the AB effect. The wave packets are not shifted, but the solenoid leads to a relative phase
between the lower and the upper wave packets which causes the change in the interference picture
from constructive to destructive interference toward detector A, and destructive to constructive
interference toward detector B

Contrary to the case where we moved a mirror and thus locally changed the
evolution of a wave packet in one of the arms, we do not have a local explanation
of the change in the evolution of the electron wave packets in the present case: The
electromagnetic field of the solenoid vanishes at the trajectories of the wave packets
of the electron and the vector potential can be made to vanish at any point along
the trajectories by using the gauge freedom. The line integral of the vector potential
which equals the enclosed magnetic flux is gauge invariant and proportional to the
AB phase. However, this provides a topological rather than a local explanation as
we had before.

15.3 Aharonov-Casher Effect

In the following, I present an attempt to provide a local explanation of the AB ef-
fect. However, I discuss first the Aharonov-Casher (AC) effect [10] which is dual to
the AB effect, and show that Boyer’s local explanation [11] of the AC effect fails.
Aharonov and Casher noticed that there is a symmetry in the interaction between a
polarized neutron and an electron. A vertical line of vertically polarized neutrons is
equivalent to a solenoid of the AB effect. The symmetry of the interaction suggests
that the replacement electron ↔ neutron for all particles will transform the AB ef-
fect in the electron MZI with a solenoid to an analogous AC effect in the neutron
MZI with a line of charges. In the AC effect, in contrast to the AB effect, the neu-
tron wave packets do not move in the field-free region. The magnetic field is zero,
so naively the neutron does not experience an electromagnetic force, but Boyer cor-
rectly realized that a commonly used current-loop model of the neutron leads to a
non-vanishing electric dipole moment for a moving neutron and thus it experiences
the electromagnetic force due to the electric field of the line of charges. The neutron
accelerates while approaching the line of charges in one arm of the interferometer
and decelerates in the other arm, then decelerates (accelerates) to the original veloc-
ity until it leaves the vicinity of the charged line. The classical lag between the two
wave packets provides a local explanation of the AC effect.

Boyer’s paper was published when Yakir, I, and Philip Pearle were together in
South Carolina. Aharonov’s intuition was that Boyer cannot be right. He came with
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Fig. 15.3 Free energy source. According to Boyer, a polarized neutron bouncing between two
mirrors in the presence of the line of charge will experience force in the direction of its motion.
Thus it can be used as a never ending source of energy

the following paradox: Let us consider elastic mirrors for the neutron approaching
the charged line, see Fig. 15.3. Since the induced electric dipole moment d = V×μ

c
changes its direction together with the change of the direction of the velocity, the
Boyer’s force (d · ∇)E always accelerates the neutron in our setup. But nothing else
is changed in the system, so the Boyer’s force is a free source of energy!

After some time we found the resolution of the paradox [12, 13]. Boyer provides
the correct expression for the force, but in this case the Second Law of Newton is
more subtle than just F =ma. A current loop in an electric field has a “hidden” me-
chanical momentum μ×E

c
and the Boyer’s force just provides the time derivative of

this momentum. There is no acceleration, so (unfortunately) there is no free source
of energy. There is no classical lag between the wave packets and, therefore, the
AC effect exhibits the same paradoxical nonlocal feature as the AB effect. In fact,
later we learned that this hidden momentum is the core of the paradox discussed by
Shockley and James [14] almost a half century ago. (Note that apparently the hidden
momentum is not well enough understood until today, see the erroneous conclusion
published just a few months ago [15].)

15.4 Local Mechanism for the Aharonov-Bohm Effect

So, we have now two effects which have no local explanation. The wave packets
of the electron move in an identical way with or without the solenoid, or for the
neutron, with or without the charged line, but, nevertheless, the interference depends
on the electromagnetic sources. It seems that there is only global explanation of
these effects. The final interference depends on the integral on a closed trajectory
and it is apparently meaningless to ask in which part of the trajectory the influence
of the solenoid (line of charges) took place.

For me this is a paradox. At every place on the paths of the wave packets of the
particle there is no observable effect of any kind, but nevertheless, a relative phase is
generated. In an attempt to find local explanation for everything I can see, I identify a
weak point in the current descriptions of the AB and the AC effects: the fields with
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Fig. 15.4 Solvabe model of
the magnetic AB experiment.
The electron wave packet
coming directly toward a
circle splits into a
superposition of two wave
packets and after encircling
the solenoid in the center
interfere on the beam splitter
toward detectors A and B

which the quantum particles interact are considered to be classical. I believe that
everything is quantum. And indeed, considering the solenoid as a quantum object I
have found a local explanation for the AB effect [16]. I will show that the AB effect
arises from different shifts of the wave packets of the source of the magnetic flux
which experience different local electric fields created by the two wave packets of
the electron inside the MZI.

Consider the following setup. The solenoid consists of two cylinders of radius r ,
mass M , large length L and charges Q and −Q homogenously spread on their
surfaces. The cylinders rotate in opposite directions with surface velocity v. The
electron encircles the solenoid with velocity u in superposition of being in the left
and in the right sides of the circular trajectory of radius R, see Fig. 15.4.

The flux in the solenoid due to two cylinders is 2πr2 4π
c

Qv
2πrL = 4πQvr

cL
, and the

AB phase, i.e., the change in the relative phase between left and right wave packets
due to electromagnetic interaction is:

φAB = 4πeQvr

c2L�
. (15.1)

When the electron moves on the circular trajectory, it creates magnetic flux through
a cross section of the solenoid seen at angle θ , see Fig. 15.5,

Φ(θ)= πr2 ue cos θ

c( R
cos θ )

2
= πr2eu cos3 θ

cR2
. (15.2)

Before the electron entered the circle, it provided no flux through this section. By
entering one arm of the circle, the electron produces change in the the magnetic
flux and causes an electromotive force on charged solenoids which changes their
velocity. The change in the velocity is:

δv = 1

M

∫
πr2eu cos3 θ

c2R2

1

2πr

R

cos2 θ
2πr

Q

2πrL
dθ = uQer

c2MRL
. (15.3)
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Fig. 15.5 Magnetic field
created by the electron. The
field at the cross section of
the cylinder when the right
wave packet is seen at angle θ

The shift of the wave packet of the cylinders due to this velocity change during the
motion of the electron wave packet is

δx = δv πR
u

= πQer

c2ML
. (15.4)

We consider here motion on the circle of radius r as a linear motion. The relevant
wavelength of de Broglie wave of each cylinder is λ = h

Mv
. For calculating the

AB phase we should take into account that both cylinders are shifted and that they
shifted (in opposite directions) in both branches. This leads to factor 4 and provides
correct expression for the AB phase:

4
2πδx

λ
= 8π2Qver

hc2L
= φAB. (15.5)

The explanation of the AB effect is as follows. The electron in superposition of
two arms of the interferometer creates different fields at the location of the source
of the potential and thus the wave packet of the source is shifted differently. The
change in the wave function of the source is, essentially, the change in the relative
phase only. In the AB effect, due to topology of the circle, the envelope of the
wave packet has no any change whatsoever. Since in quantum mechanics the wave
function is for all parts of the system together, the change in the wave function of the
source leads to an observable effect in the interference experiment with the electron.

15.5 Discussion

Another manifestation of the wholeness of quantum mechanical description is en-
tanglement. In fact, during the process of observation of the AB effect, the shift in
the momentum of the source might create entanglement with the electron; it dis-
appears before the end of the experiment. But this entanglement is not necessary:
the initial uncertainty in momentum of the source might be much larger than the
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intermediate shift in the momentum due to the interaction with the electron. Thus,
although for the explanation it is crucial to understand that the quantum wave func-
tion is for all particles, the effect can appear even if the source particles and the
electron at all times are described arbitrarily well by a product state.

The pictorial explanation with spatial wave packets shifted by fields will disap-
pear when we go beyond physics of moving charges. A model for a solenoid can be
a line of polarized neutrons. If the model of each neutron is a current loop, then we
will have the picture as above, but if we describe it as a quantum spin, we will not
have a picture of charged particles kicked by the field of the electron, we should say
that the magnetic field of the electron changes the phase of the neutrons directly.
(Note, however, that viewing the polarized spin state of the neutron as a superpo-
sition of two spin states polarized in perpendicular direction, we can restore the
story of electron fields causing rotation of the spin around the axes of the solenoid.)
This is also an explanation of the AC effect: the local field acting on the neutron is
responsible for appearance of the AC phase.

One of the most revolutionary aspects of the AB effect is that contrary to clas-
sical mechanics, in quantum mechanics we cannot explain everything by action of
local fields. Potentials, which were auxiliary objects in classical physics, have direct
physical meaning in quantum mechanics. Explanation of the AB and the AC effects
in local terms allows us to entertain the idea that potentials are auxiliary concepts
after all. However, today all versions of quantum theory, and the Schrödinger equa-
tion in particular, are based on the concept of potential. There is no quantum analog
of the Second Law of Newton. This work might open the challenge of developing a
theory which will tell us how quantum particles evolve when the interaction between
them is described by local fields which have no potential.

Even before developing of such a local theory, my assertion provides one useful
corollary: If the fields vanish at locations of all particles then these fields yield no
observable effect. In the magnetic AB effect I see no variant for which all systems
move in a free-field area, but I can devise such an example for the electric AB effect.

Consider the following configuration of three charged particles on a straight line:
In the center we place an electron with charge −e. On both sides at equal distances
we place two charges 4e. Immediate calculation shows that electric field created by
any two particles at the location of the third particle vanishes. The electric potential
at location of the electron due to other charges does not vanish, but according to
my corollary it cannot cause any effect. The effect of potential might naively be
expected when we consider an electron MZI in which we bring the two charges to
the electron wave packet moving in one arm of the interferometer keeping all the
time the configuration described above, see details in reference [16]. The subtlety
here is that we have to bring the charges toward one arm of the interferometer only
in the “branch” in which the electron wave packet is there. The charges are in the
mixed quantum state of being near and far from the interferometer. The charges do
not provide classical field and this explains why the standard approach to the AB
effect fails.
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15.6 Aharonov-Bohm Effect with a Superconducting Screening

Classical mechanics has local formulation with Newton’s laws and global formula-
tion via Lagrangian and Hamiltonian. Quantum mechanics has only global formu-
lations: Hamiltonian, Feynman’s path integrals etc. In the past I also learned from
the AB effect that the potentials have direct observable effects in quantum mechan-
ics and thus quantum mechanics cannot have a local formulation [17]. But the local
explanation of the AB and the AC effects presented above give me hope for a local
quantum mechanics. I know that Yakir’s intuition is against local theory I am look-
ing for (see, however, a discussion of similar ideas in Aharonov’s recent publication
[18]). As a reply to my proposal, Yakir, as usual, presented me a challenge in the
form of a paradox: “Consider everything quantum, as you do, and explain in your
local terms the AB effect experiment by Tonomura [19] in which the solenoid was
screened by a superconductor and the AB phase (of the value of π ) was observed in
a very convincing way.” The superconductor apparently screens the field of the elec-
tron, so my proposed mechanism for the AB phase via the motion of the charges in
the solenoid fails. I guess that the phase appears due to a local action of the electron
on charges in the superconductor, but I still cannot provide an explanation. What-
ever the resolution of this paradox is, it will deepen our understanding of quantum
mechanics as many other Aharonov’s paradoxes already did in a very profound way.
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Chapter 16
Weak Values: The Progression from Quantum
Foundations to Tool

Andrew N. Jordan and Jeff Tollaksen

Abstract Since its introduction in 1988, the weak value has made a remarkable
progression within the scientific world. This article will delineate each step of this
progression, displayed in four courses. The first course is the notion of a weak value
in itself, the second is the first experiments together with theoretical challenges,
the third is acceptance as a phenomena and further experiments, and the fourth is
the use of weak values as a tool for both the further understanding of quantum
puzzles and for precision measurements. We will discuss recent developments in the
field and argue that the notion of contextual values as generalized eigenvalues of an
observable, contextualized to the measurement being done, is the next conceptual
step beyond the weak value. [Editor’s note: for a video of the talk given by Prof.
Jordan at the YA80 conference at Chapman, see quantum.chapman.edu/talk-8 and
for Prof. Howell, see quantum.chapman.edu/talk-9.]

16.1 Introduction

This proceedings article is dedicated to Yakir Aharonov, on the occasion of his be-
coming an octogenarian. And 2013 is the 25th anniversary of the first weak value
paper. As such, it is organized as a testimonial to his work on weak values over
the years. We begin with a history of the field, starting from the two-time refor-
mulation of quantum mechanics, and moving on through the introduction of weak
values, the theoretical disputes that followed and the first experiments. We will then
discuss recent developments using the weak value as an amplification mechanism,
first to detect novel physical effects, and then for the purposes of metrology. Since
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the birthday conference coincided with the creation of the Institute for Quantum
Studies, directed by Yakir Aharonov and one of the coauthors, the article concludes
with a discussion of some recent developments in weak values and a consideration
of some ways forward for the field, both fundamental and applied.

16.2 History

The story of the weak value begins with the advent of the two-time reformulation
of quantum mechanics, by Aharonov, Bergmann and Lebowitz (ABL) in 1964 [1].
The usual formulation of quantum mechanics is given in terms of an initial wave-
function or quantum state, which is then propagated forward in time according to
the Schrödinger equation. Outcomes of experiments then occur randomly upon mea-
surement with the probabilities given in terms of this forward evolved wavefunction.
Thus, while the Schrödinger equation is time reversal symmetric, the introduction of
measurements and actual recorded events spoils this feature. This time asymmetric
view of quantum mechanics can be made symmetric by realizing that the process of
preparation is actually a kind of filtering of results: only one state of many possible
states is chosen to begin with. By introducing the concept of post-selection, filter-
ing the final results by a selection criterion (just as one does in a preparation) the
theory can be made once more time-symmetric. Once two boundary conditions are
supplied, one in the past and one in the future, one can think of the past state mov-
ing forward in time, or equivalently the future state moving backwards in time (or
both). The predictions of this reformulation are the same as in conventional quan-
tum theory, as they must be in order to be the same theory. Any advantage to this
reformulation would come from deeper insight into interpretation issues [2] or in the
uncovering of new features and effects that were missed before (such as the weak
value), or in leading to new mathematics [3], stimulating discoveries in other fields
[4], or, ultimately, in suggesting generalizations of quantum mechanics [5].

While the two-time approach to quantum physics can be applied to any situa-
tion that conventional quantum physics can, perhaps its most famous flower is the
weak value. This idea was floated in a 1988 Physical Review Letter, written by
Aharonov, Albert, and Vaidman (AAV), with the provocative title, “How the result
of a measurement of a component of the spin of a spin-1/2 particle can turn out to be
100” [6]. The idea is to take a pre- and post-selected average of the weak measure-
ment results of an operator. Here, a weak measurement is simply weakly coupling
a meter to the system, usually taken to be an impulsive interaction with the meter
prepared in a Gaussian state. Without post-selection, the meter would be shifted ei-
ther up or down by a small amount, depending on which eigenstate the system is
prepared in. However, AAV show that with system post-selection, the meter can be
deflected by an amount much larger (in principle arbitrarily larger) than the shift
without post-selection. Without post-selection, the meter is shifted by the expecta-
tion value of a quantum operator Â. If on the other hand, a system is pre-selected in
an initial quantum state |ψi〉, and post-selected on a final state |ψf 〉, then the result
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of weakly measuring the operator Â is not its expectation value, but rather its weak
value (WV):

Aw = 〈ψf |Â|ψi〉
〈ψf |ψi〉 . (16.1)

This object has surprising properties, such as the fact that for a bounded operator
the weak value can wildly exceed the eigenvalue range, and unlike the expectation
value, the weak value can be complex.

16.2.1 Interpretation Issues

There are several interesting aspects of this topic to explore. First, and most im-
portantly is the interpretation of the weak value. Judging from the title of the AAV
paper, the authors interpret the meter shift as telling you something about the sys-
tem’s spin. Indeed, further papers by the Aharonov school developing these ideas
interpret the weak value as the actual value the spin takes on in a pre and post-
selected situation. (See Refs. [7–9] for reviews.) This notion was promptly taken
to task by some of the leading physicists of the day who questioned whether this
said anything at all about the particle’s spin [10, 11]. Thus began the weak value
interpretation controversy that continues to this day.

An important point of contention is that if you take literally the idea that the weak
value tells you about the value the spin takes during the weak measurement, and if
you want to stick with the eigenvalue-eigenstate paradigm, then you are forced to
view the weak value as a weighted average of the eigenvalues with probabilities
that are negative or exceed 1. While some physicists accept this consequence, in
Sect. 16.5 of this paper, we describe another way to solve this puzzle: Rather than
insist that the weak value is a weighted average of the eigenvalues of the operator
in question, we argue that when an operator is measured weakly, you should not
describe it with its eigenvalues, but rather a new set of values that depends on the
measurement context. Each possible outcome of the detector is assigned a value that
can then be averaged with the detector result probabilities in a straightforward way.
It turns out that generically these values have an expanded range, and therefore if the
weighted average of these values extends beyond the range of the operator’s eigen-
values (but not beyond the contextual value range), it is no longer mysterious. Only
when the measurement is projective do the contextual values take on the operator’s
eigenvalues in the special case (see also [12]).

One point that has come up frequently in the philosophical literature is whether
the weak value (as well as the ABL rule) implicitly uses a counter-factual inter-
pretation being used. Kastner, for example, argues that in general, the ABL rule [1]
cannot be used to calculate the probabilities of possible outcomes of observables that
have not actually been measured [13]. On the other end of the spectrum, Aharonov
and collaborators claim we should take the time-symmetry of the two-state vector
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formalism seriously, even to the point of permitting retro-causation, where future
events affect the past [14, 15]!

Despite these controversies, many puzzles in the foundations of quantum me-
chanics can be “explained” or rendered at least equally as strange as the weak value.
For example, weak values can be used as a fundamental test of quantum mechanics
by ruling out a class of macrorealistic hidden variable theories and are equivalent to
the violation of generalized Leggett-Garg inequalities [16]. Weak values have been
useful to help resolve paradoxes that a rise in quantum mechanics such as Hardy’s
paradox [17, 18], apparent superluminal travel [19], and other quantum problems
such as the three-box problem [7].

16.2.2 Counterfactuals

There has been a widespread tendency to “resolve” paradoxes of quantum mechan-
ics by pointing out that there is often an element of counter-factual reasoning in the
paradox: the contradictions arise only because inferences are made that do not refer
to actual experiments. Had the experiment actually been performed, then standard
measurement theory predicts that the system would have been disrupted so that no
paradoxical implications arises.

We have proven [18] that one shouldn’t be so quick in throwing away counter-
factual reasoning; though indeed counter-factual statements have no observational
meaning, such reasoning is actually a very good pointer towards interesting physical
situations. Without invoking counter-factual reasoning, we have shown, in general,
that the apparently paradoxical reality implied counter-factually has new, experi-
mentally accessible consequences. These observable consequences become evident
in terms of weak measurements, which allow us to test—to some extent—assertions
that have been otherwise regarded as counter-factual. For illustrative purposes, we
will consider 2 examples.

16.2.2.1 Counterfactuals and Hardy’s Paradox

Hardy’s paradox consists of two “superposed” Mach-Zehnder interferometers
(MZI) (Fig. 16.1), one with a positron and one with an electron.1 Consider a single
interferometer for the positron (labeled by +). By adjusting the arm lengths, it is
possible to arrange specific relative phases in the propagation amplitudes for paths
between the beam-splitters BS1+ and BS2+ so that the positron can only emerge
towards the detector C+. However, the phase difference can be altered by the pres-
ence of an object, for instance in the lower arm, in which case detector D+ may be
triggered.

1Adapted from [18, 20, 21].



16 Weak Values: The Progression from Quantum Foundations to Tool 263

Fig. 16.1 (a) Counterfactual resolution: D−
O disturbs the electron and the electron could end up

in the D− detector even if no positron were present in the overlapping arm, (b) N+,−
NO,NOw = −1,

spring repulses

In the double-MZI [18], things are arranged so that there is now a region where
the two particles overlap, so there is also the possibility that they will annihilate
each other. We assume that this occurs with unit probability if both particles happen
to be in this region. This overlapping region allows for a situation in which detec-
tors D− and D+ may click in coincidence (in which case, obviously, there is no
annihilation).

Suppose D− and D+ do click. (Given the overlap of the pre-selected state with
this final possibility, we can that it is indeed allowed with probability 1/12.) Trying
to “intuitively” understand this situation leads to a paradox. For example, we should
infer from the clicking of D− that the positron must have gone through the over-
lapping arm; otherwise nothing would have disturbed the electron, and the electron
couldn’t have ended in D−. Conversely, the same logic can be applied starting from
the clicking of D+, in which case we deduce that the electron must have also gone
through the overlapping arm. But then they should have annihilated, and couldn’t
have reached the detectors. Hence the paradox.

These statements, however, are counter-factual, i.e. we haven’t actually measured
the positions. Suppose we actually measured the position of the electron by inserting
a detector D−

O in the overlapping arm of the electron-MZI. Indeed, the electron is
always in the overlapping arm. But, we can no longer infer from a click at D− that
a positron should have traveled through the overlapping arm of the positron MZI in
order to disturb the electron (Fig. 16.1.a). The paradox disappears.

Weak measurements produce only limited disturbance [22] and therefore can be
performed simultaneously, allowing us to experimentally test such counter-factual
statements. Therefore we would like to test [18] questions such as “Which way
does the electron go?”, “Which way does the positron go?”, “Which way does the
positron go when the electron goes through the overlapping arm?” etc. In other
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words, we would like to measure the single-particle “occupation” operators

N̂+
NO = |NO〉p〈NO|p, N̂+

O = |O〉p〈O|p
N̂−

NO = |NO〉e〈NO|e, N̂−
O = |O〉e〈O|e

(16.2)

which tell us separately about the electron and the positron (and where NO refers
to the non-overlapping arm and O refers to the overlapping arm). We note a most
important fact, which is essential in what follows: the weak-value of a product
of observables is not equal to the product of their weak-values. Hence, we have
to measure the single-particle occupation-numbers independently from the pair
occupation-operators:

N̂
+,−
NO,O = N̂+

NON̂
−
O , N̂

+,−
O,NO = N̂+

O N̂
−
NO

N̂
+,−
O,O = N̂+

O N̂
−
O , N̂

+,−
NO,NO = N̂+

NON̂
−
NO.

(16.3)

These tell us about the simultaneous locations of the electron and positron. The re-
sults of all our weak-measurements on the above quantities, echo, to some extent,
the counter-factual statements, but go far beyond that. They are now true observa-
tional statements in the sense of reading the meter position on a calibrated detector
of repeated weak (post-selected) measurements (and such experiments have suc-
cessfully verified these results [23–25]). In addition, weak-values obey an intuitive
logic of their own which allows us to deduce them directly. While discussion of this
intuition is left to the published articles [18], we discuss the essence of the paradox
which is defined by three counterfactual statements:

• The electron is always in the overlapping arm.
• The positron is always in the overlapping arm.
• The electron and the positron are never both in the overlapping arms.

To these counterfactual statements correspond the following observational facts. In
the cases when the electron and positron end up at D− and D+ respectively and if
we perform a single ideal-measurement of:

• N̂−
O , we always find N̂−

O = 1.
• N̂+

O , we always find N̂+
O = 1.

• N̂+,−
O,O , we always find N̂+,−

O,O = 0.

The above statements seem paradoxical but, of course, they are valid only if we
perform the measurements separately (i.e. they describe the results of separate ex-
periments); they do not hold if the measurements are made simultaneously. How-
ever, a theorem [18] says that when measured weakly all these results remain true
simultaneously:

N−
Ow = 1, N+

Ow = 1. (16.4)
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The subscript ‘w’ indicates weak value (16.1). All other weak-values can be trivially
deduced [18]:

N−
NOw = 0, N+

NOw = 0, N
+,−
O,Ow = 0

N
+,−
O,NOw = 1, N

+,−
NO,Ow = 1, N

+,−
NO,NOw = −1.

(16.5)

What do all these results tell us?
First of all, the single-particle occupation numbers (16.4) are consistent with the

intuitive statements that “the positron must have been in the overlapping arm other-
wise the electron couldn’t have ended at D−” and also that “the electron must have
been in the overlapping arm otherwise the positron couldn’t have ended atD+”. But
then what happened to the fact that they could not be both in the overlapping arms
since this will lead to annihilation? We obtain a consistent result for this as well:
the pair occupation number N+,−

O,Ow = 0 shows that there are zero electron-positron
pairs in the overlapping arms!

We also feel intuitively that “the positron must have been in the overlapping arm
otherwise the electron couldn’t have ended at D−, and furthermore, the electron
must have gone through the non-overlapping arm since there was no annihilation”.
This is confirmed by N+,−

O,NO = 1. But we also have the statement “the electron must
have been in the overlapping arm otherwise the positron couldn’t have ended at D−
and furthermore the positron must have gone through the non-overlapping arm since
there was no annihilation”. This is confirmed too, N+,−

NO,Ow = 1. But these two state-
ments together are at odds with the fact that there is in fact just one electron-positron
pair in the interferometer. The paradox is resolved in a remarkable way—it tells us
that N+,−

NO,NOw = −1. The original authors of [18] suggested that this result can be
interpreted as minus one electron-positron pair in the non-overlapping arms which
brings the total down to a single pair (Fig. 16.1.b)! However, this interpretation of
−1 has indeed been controversial. Nevertheless, experiments confirmed our predic-
tions [23–25]. A meter calibrated to give 0 for no particle and 1 for a particle of
averaged weak measurements will show −1, for this post-selected average. (This
issue is discussed in greater detail in Sect. 16.5.)

16.2.2.2 Counterfactuals and Contextuality

Our 2nd example of counterfactuals involves contextuality. The importance of con-
textuality in a variety of applications, such as quantum information has been grow-
ing. Of relevance to these endeavours are new experimentally accessible implica-
tions of contextuality through the use of weak measurements [20, 21]. We have
analyzed contextuality in terms of pre- and post-selection, and have shown that
it is possible to assign definite values to observables in new and surprising ways.
We presented new physical reasons for restrictions on these assignments. Weak
measurements suggest that novel experimental aspects of contextuality can be em-
pirically demonstrated. We also proved that every Logical-pre-and-post-selection-
paradox directly implies “quantum contextuality” which is introduced as the analog
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of contextuality at the level of quantum mechanics rather than at the level of hidden-
variable theories. The proof utilizes our suggestion [18] to use weak measurements
to probe assertions that were previously regarded as counterfactual. As Mermin em-
phasized: “. . . what follows is not idle theorizing about ‘hidden variables’. It is a rock
solid quantum mechanical effort to answer a perfectly legitimate quantum mechani-
cal question” [26, 27]. Finally, we argued that certain results of these measurements
(e.g. eccentric weak values outside the eigenvalue spectrum), cannot be explained by
a “classical-like” hidden-variable theory unless disturbance of the hidden-variables
is allowed [16, 28]. However, one of us has also argued [20, 21], that even in the limit
of weak interaction, if invasive measurements are permitted in the assumed classi-
cal hidden variables, the subsequent post-selection can give rise to a post-selected
average of measurement data that falls outside of the calibrated eigenvalue bound
(in contrast to the non-postselected case) [16].

Although the outcomes of the weak measurements suggest a story which appears
to be even stranger than the original one, the situation is in fact far better. Weak
values obey a simple, intuitive, and, most important, self-consistent logic. This is
in stark contrast with the logic of the original counter-factual statements which is
not internally self-consistent and leads into paradoxes. Strangeness by itself is not
a problem; self-consistency is the real issue. In this sense the logic of the weak
values is similar to the logic of special relativity: That light has the same velocity
in all reference frames is certainly highly unusual, but everything works in a self
consistent way, and because of this special relativity is rather easy to understand.
We are convinced that, due to its self-consistency, weak measurement logic will
lead to a deeper understanding of the nature of quantum mechanics.

What is contextuality? Bell-Kochen-Specker (BKS) proved that one cannot as-
sign unique answers (i.e. a Hidden-Variable-Theory, HVT) to yes-no questions in
such a way that one can think that measurement simply reveals the answer as a
pre-existing property that was intrinsic solely to the quantum system itself. BKS
assumed that the specification of the HVT, which we call Vψ (Â), should satisfy:
Vψ (F {Â}) = F {Vψ (Â)}, i.e. F represents any functional relation of an operator
that is a member of a commuting subset of observables must also be satisfied if one
substitutes the values for the observables into the functional relations.

By way of example, we consider Mermin’s version of BKS with a set of 9 ob-
servables modeled by 2 spin-1/2 particles. It is intuitive [29] to represent all the
“functional relationships between mutually commuting subsets of the observables,”
i.e. Vψ (F {Â}) = F {Vψ (Â)}, by drawing them in Fig. 16.2.a and arranging them
so that all the observables in each row (and column) commute with all the other
observables in the same row (or column).
Vψ (F {Â}) = F {Vψ (Â)} requires that the value assigned to the product of all

three observables in any row or column must obey the same identities that the ob-
servables themselves satisfy, i.e. the product of the values assigned to the observ-
ables in each oval yields a result of +1 except in the last column which gives −1.
It is easy to see that the 9 numbers Vψ cannot satisfy all the operator constraints
because multiplying all 9 observables together gives 2 different results, a +1 when
it is done row by row and a −1 when it is done column by column. There obviously
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Fig. 16.2 (a) 4-D BKS example by Mermin, (b) some of the pre- and post-selected states for
Mermin example

Fig. 16.3 (a) Time sequence
of pre-and-post-selection
measurements for Mermin
example, (b) Measurement of
σ̂ 1
x σ̂

2
y σ̂

2
x σ̂

1
y is diagonal

is no way to do this with numbers, since they are the same 9 numbers, simply or-
dered differently. Therefore the values assigned to the observables cannot obey the
same identities that the observables themselves obey, Vψ (F {Â}) �= F {Vψ (Â)}, and
an HVT would have to assign values to observables in a way that depended on the
choice of which of 2 mutually commuting sets of observables that were also chosen
to associate the observable with, i.e. the values assigned are contextual. For exam-
ple, the assignment σ̂ 1

z σ̂
2
z = ±1 depends on whether we associate σ̂ 1

z σ̂
2
z with row-3

or with column-3.
However, it is possible to do this using pre- and post-selection, a result that Mer-

min describes as “intriguing” [26, 27]. The discovery of such situations was made
possible through the use of “unique” multiple-time states which are natural in the
2-vector language [30] (see Fig. 16.4.b).

It may be fruitful to consider an aspect of this analysis: the outcome for the prod-
uct of the first two observables in column 3 of Fig. 16.2.a with the pre-and-post-
selection of Fig. 16.2.b is σ 1

x σ
2
x σ

1
y σ

2
y = +1. However, if we measure the operators

corresponding to the first 2 observables of row 3 in Fig. 16.2.a, i.e. σ̂ 1
x σ̂

2
y σ̂

2
x σ̂

1
y ,

given this particular pre-and-post-selection shown in Fig. 16.2.b, then the sequence
of measurements interfere with each other (as represented by the slanted ovals in
Fig. 16.3.b). To see this, consider that σ̂ 1

x σ̂
2
y σ̂

2
x σ̂

1
y corresponds to the sequence of

measurements represented in Fig. 16.3.a. While the pre-selection of particle 2 is
σ̂ 2
x = 1 at tin, the next measurement after the pre-selection at t2 is for σ̂ 2

y and only

after that a measurement of σ̂ 2
x is performed at t3. Thus, there is no guarantee

that the σ̂ 2
x measurement at t3 will give the same value as the pre-selected state
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Fig. 16.4 (a) Products of observables that are not disturbed given the pre- and post-selection of
Fig. 16.2.b, (b) generalized “multiple-time” state: superpositions of 2-vectors

of σ̂ 2
x = 1 or that the σ̂ 2

y measurement will give the same value as the post-selected

state of σ̂ 2
y = 1. From our picture, this is due to the disturbance of the 2-vector

boundary conditions: the initial pre-selected vector σ̂ 2
x = 1 from tin is “destroyed”

when the σ̂ 2
y measurement at time t2 is performed and therefore cannot inform the

later σ̂ 2
x measurement at time t3. In other words, with the particular pre-and-post-

selection given in Figs. 16.2.b and 16.3.a, the operator, σ̂ 1
x σ̂

2
y σ̂

2
x σ̂

1
y depends on in-

formation from both the pre-selected vector σ̂ 1
x = 1, σ̂ 2

x = 1 and the post-selected
vector σ̂ 1

y = 1, σ̂ 2
y = 1 in a “diagonal pre- and post-selection” sense. Given the pre-

and post-selection of Fig. 16.2.b, the subset of observables circled in Fig. 16.4.a
(and the products of those circled observables) can be assigned eigenvalues in a
way that satisfies the function relation requirement. But, the product of the other ob-
servables (e.g. σ̂ 1

x σ̂
2
y and σ̂ 2

x σ̂
1
y ) can only be ascertained (given this particular pre-

and post-selection) using information from both the pre- and post-selected vector in
a diagonal sense, and will thus violate the product rule. Our picture has thus given
a physical answer for Mermin’s “intriguing” question: there will always be a di-
agonal situation for any 2 observables. The observable σ̂ 1

z σ̂
2
z is assigned different

values in different pre-and-post-selections. It is precisely because of this connection
between particular pre-and-post-selections and different values for σ̂ 1

z σ̂
2
z that the is-

sue of contextuality arises when we consider products of these observables. In other
words, the contextuality here is manifested by the fact that σ̂ 1

x σ̂
2
y σ̂

2
x σ̂

1
y = −1 (given

the pre-and-post-selection of Fig. 16.3.a) even though separately σ̂ 1
x σ̂

2
y = +1 and

σ̂ 2
x σ̂

1
y = +1. But these 3 outcomes can be measured weakly without contradiction

because the product of weak-values is not equal to the weak-value of the product.
Therefore, instead of contextuality being an aspect of a hypothetical replacement for
quantum mechanics (the HVT), we have shown that contextuality is directly part of
quantum mechanics [20, 21].

In summary, as we understand better how contextuality can be used as a resource
for quantum information tasks, the types of intuition and new empirical implications
delivered by weak values will prove to be a useful tool.
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16.2.3 First Experiments

The first experiment to investigate the weak value was an optical one by Ritchie,
Story, and Hulet [31]. The system considered was the optical polarization of a beam,
and the detector used to measure it was the translation of the laser beam perpen-
dicular to the propagation direction. They used a birefringent crystal to separate
the two polarization components of a laser beam by a distance small compared to
the laser-beam waist (this is the weak measurement). It was followed by a strong
measurement with a polarizer, which translated the centroid of the beam by a dis-
tance far larger than the birefringence-induced separation. While this experiment
was done with a classical light beam, the interference of the coherent beam gave
the same results as predicted by the quantum theory. This points to the fact that the
large deflection of the beam can be understood as a wave interference effect.

Following this and related experiments, Pryde et al. performed the first single
photon weak value experiments [32]. They used a photon’s polarization, and a weak
measurement that employed a two-photon entangling operation, and postselection.
This measurement technique is quite different than the one just discussed, and ul-
timately gives the measurement result as a “yes” or “no” answer. The weak values
cannot be explained by a semiclassical wave theory, due to the two-photon entan-
glement. They showed a weak value of a Stokes parameter of more than an or-
der of magnitude outside of the operators spectrum for the smallest measurement
strengths.

16.3 Precision Measurement

In the last line of the AAV paper, it was pointed out that for the Stern-Gerlach ap-
paratus, the anomalously large deflection of the beam was controlled by the overlap
between pre- and post-selected states, as well as the size of the magnetic field. Con-
sequently, a small change in the magnetic field would result in a huge change in
the beam displacement. Therefore, this effect could also be used to measure small
changes in magnetic field, transforming an esoteric effect in wave interference into
a novel metrological technique.

Although early optical experiments demonstrated the reality of the anomalously
large shift of the beam [31], the first use of the weak value for metrology came in
2008 in an experiment by Hosten and Kwiat [33]. They were not interested in weak
measurements or values, but rather in the optical spin Hall effect, the effect where
different polarization states of light are shifted spatially in different, polarization-
dependent directions when the beam is incident on a glass interface. However, they
faced a severe problem in the fact that the effect theoretically corresponded to a
spatial shift by an Angstrom, which is much smaller than the width of the optical
beam. In order to measure this shift, they realized that this situation is exactly the
one considered by AAV, and that by pre- and post-selecting the polarization of the
beam by polarizers, they could then measure the amplified deflection on a position
sensitive detector, with the cost of a drastically reduced intensity.
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This experiment was followed by the Rochester group [34, 35], who were also
primarily interested in the use of the weak value as a mechanism for amplification.
However, rather than being concerned with learning about new physics, they were
interested in the amplification mechanism itself. If Kwiat could use this technique
to measure a small shift resulting from the optical spin Hall effect, why couldn’t
the Rochester group not use something similar to measure any small shift, and in so
doing, introduce a new metrological technique?

One difficulty in the polarization based experiments is the fact that the source of
deflection must be polarization dependent. The Rochester group were able to gener-
alize this by switching over to an interferometer based system, where the different
paths corresponded to different directions of deflection. The preselection, and post-
selection corresponded to the optical beam entering and leaving different ports of
the interferometer, while the weak measurement corresponded to a moving mirror
slightly misaligning the interferometer. A piezo activated mirror moved the mirror
slightly back and forth a known amount, and the test was to see how small the in-
terferometric weak value technique could measure it. With an hour of integration
time, the group reported 500 frad resolution, and later found a signal to noise ratio
at the standard quantum limit. This was done with milliwatts of power in an open
air experiment.

One of the main factors that improved the performance of this detector is the im-
proved signal to noise ratio. Indeed, it is astonishing that by using only a fraction of
the light, you can do better than using all of the light. How can this be? The answer
is the fact that if you examine the signal to noise ratio—the quantity that tells you
how confident you are that the average you measure is the actual value—the am-
plification of the deflection and the loss of photons in the signal compensate each
other, so the signal to noise ratio is fundamentally the same. However, there are a
number of practical issues that come into play through either technical noise or the
feasibility of implementing noise reducing techniques where weak value techniques
give an advantage over standard techniques. For example, Kedem points out that
technical noise in the average shift of the position of the pointer does not appear in
the momentum basis, and that noise in the average momentum shift increases the
signal-to-noise ratio of the measured parameter [36]. Feizpour, Xing, and Steinberg
showed that for additional technical noise that has a long correlation time, posts-
election can help boost the signal-to-noise ratio as well [37]. These results give a
huge advantage to experiments using the signal-to-noise ratio to estimate the small
parameter.

Subsequent experiments extended this technique to measuring phase, which
turns out to be dual to the deflection measurement, and involves the inverse weak
value [38–40]. Optical frequency differences could also be sensitively measured
by putting a prism or other dispersive element into the interferometer, translating
a change in frequency into a deflection. Optical frequency differences of down to
129 ± 7 kHz/

√
Hz were also measured.
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16.4 New Directions in Precision Measurement

With these advances in applying weak value techniques to precision metrology, it
is natural to ask what the next steps are. These experiments are essentially proof of
principle type experiments, that could be further developed into commercial prod-
ucts for precision detectors. However, we should ask if 1) we can do better, and 2) in
what new directions can these ideas be taken.

In terms of improving the sensitivity of the deflection detectors, we are pursuing
several directions. The most promising is the simple realization that in a postselec-
tion based measurement technique, most of the light is simply thrown away. We saw
above that the postselection combined with the amplified deflection compensated in
the signal to noise ratio to give us the shot noise limited value. However, if we could
somehow take that extra light we are throwing away and squeeze more measurement
data out of it, we could do better.

One way of doing this is to recycle the light. In this way, the light falling on
the detector would not be a small fraction of the postselected light, it would be all
of the light, so that in principle, every photon would be postselected. In order to
recycle, one could send a pulse of light into the interferometer, with N photons
in it. A fraction pN of those photons would go to the detector with an amplified
deflection, leaving (1−p)N emerging from the other port of the interferometer. One
could then send those photons back in the interferometer (for example by switching
on a Pockels cell) and make a second pass. This would then repeated until all the
photons are gone, or a new pulse is sent in (see [41]).

With this technique, one would then boost the signal to noise ratio by the square
root of the number of passes, until losses kick in, doing significantly better than the
single pass approach. The primary advantage is simply increasing the power inci-
dent on the detector. The only difficulty with this technique is that if all of the light
eventually falls in the detector, because of the coherent addition of each pass, rather
than each pass being amplified by the same amount, the gradual subtraction of pho-
tons in the detection process from one side of the beam will move the remaining
beam in the opposite direction, leading to a walk-off effect as the recycle number
increases. Eventually, when the last photon is detected, the integrated signal in the
detector is exactly the same beam profile you started with, so the net signal (deflec-
tion) is exactly zero! To prevent this from happening, one can stabilize and recenter
the beam on each pass with the quantum Zeno effect, or allow the beam to expand
slightly [42].

Another direction to increase sensitivity is to combine this technique with other
quantum optical techniques for precision measurement, such as the use of squeezed
states. This promises to be challenging, however, since the advantages of squeezing
are very sensitive to loss, so postselection is naively a very bad idea. However, we
could mix the squeezing beam with the already postselected light as one possibility,
or another possibility is to use the recycling scheme to collect all the correlated
photons. Finally, we must address the question of what new application of these
techniques can be found, whether commercial, industrial, or military.

For these kinds of applications, it is therefore interesting to see if the techniques
can be applied to situations where there are cases of great intrinsic loss—such as
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light propagation in the atmosphere over large distances. Gisin et al. [43] point out
that the everyday physics of fiber optics telecom networks naturally exhibits pre- and
post-selected weak values through polarization-mode dispersion and polarization-
dependent losses. In order for the loss of light to aid the measurement of a system
parameter, it must somehow depend on the state of the system that is being mea-
sured; for example, the loss is greater for vertical than horizontal polarization.

Some open questions relate to what is the resolution gain that can be obtained:

• To what extent can weak value techniques help with overcoming the diffraction
limit? In fact, a broad generalization of the weak value amplification paradigm [9]
can be applied to a variety of classical and quantum applications.

• Doppler shift measurements—in comparing the frequencies on incoming and out-
going waves, is there a new weak values based technique?

• Single parameter versus many pixels imaging: If each weak value measurement
requires only a small fraction of the light, perhaps by staging the measurements,
we can obtain enhanced resolution of the overall signal or picture. Can compres-
sive sensing help?

• The Rochester interference based measurement scheme has been adapted to mea-
sure small shifts in optical frequency [44]. By using pulses instead of continuous
wave light, time-resolved measurements could also be explored. One possibility
here would be to improve the sensitivity of accelerometers that typically use the
Sagnac interferometer.

• While existing radar schemes do not exploit which-path interference, we propose
to examine schemes where there is an intrinsic loop path in the system—such
as bouncing a beam off of a concave surface. There, there will be two interfer-
ing paths that can be post-selected after a beam-splitter. This would be a single
source/detector configuration. We can also explore a situation where there is a
spatially separated source and detector, although it will be much more difficult to
align such an interferometer.

• One of the authors has proposed using “robust” weak measurements to get even
better precision out of weak value measurements [45]. (For example, “robust
weak measurements” can yield accurate weak values that are outside the eigen-
value spectrum without requiring an exponentially rare ensemble.) However, this
technique also requires the measurement of the total momentum of all of the par-
ticles, which is technically challenging. One possible laboratory solution would
be to detect the photon-induced deflection of a mirror to realize this idea.

Here, we have summarized a number of open research questions related to the
interplay between weak value amplification and quantum sensing. We view the most
promising ideas to still be incremental advances to improve the sensitivity of exist-
ing experiments, and their scaling, but we also tried to give a sense of more daring
ideas that would be of direct interest to commercial or military parties.
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16.5 Contextual Values

In addition to the application of the weak value amplification schemes, there has
been continuing work to better understand what weak values are and how to best
interpret them. The introduction of contextual values permits a much broader tool
in order to link information taken from a meter variable to the quantum system it
is measuring. Contextual values is a new approach to generalized measurements
that subsumed the weak value approach as a special case of a broader question of
reconstructing or targeting averages or correlation functions of a system operator
based on data provided to the observer from an ancillary meter or pointer variable
that is correlated with the system in question.

The basic idea is very simple and can be explained with a classical example of
detection physics that will be generalized simply to the quantum case. Consider
being locked alone in a room, and on a table in front of you is a jar of red and blue
marbles. Your job is to figure out the relative fraction of red versus blue marbles.
Now, ordinarily, you could just count all of the red marbles, all of the blue marbles,
and give the relative proportions. However, this task is complicated by the fact that
you are color blind. Color blind! Then this is not possible without consulting another
person or a color detector. However, you are not completely color blind, but only
mostly color blind. You know from prior experience that if a red marble is held in
front of you, you guess it is red 51 % of the time. If a blue marble is held in front
of you, you guess it is blue 51 % of the time. With this knowledge, is it possible to
figure out the fraction of red versus blue marbles in the jar?

Being a quantitative person, you assign numbers, or values, to the colors, red→ 1,
blue→ −1. However, your eyes only guess the right answer with some probability,
so you will record “thumbs up” (tu) if you think the marble is red, and “thumbs
down” (td) if you think it is blue. Now, you assign different numbers, a and b, to the
outcomes tu and td . This is done so you can still construct the correct color average
from your mostly colorblind eyes. The color average is defined as

〈color〉 = p(red)1 + p(blue)(−1), (16.6)

which is a weighted average of the numbers assigned with the probabilities of the
colors in the jar. Since p(blue) = 1 − p(red), knowledge of the color average is
enough to answer our question. We desire to pick the correct values of a and b, so
the color average is the same,

〈color〉 = p(tu)a + p(td)b, (16.7)

where we now use the data that is accessible to our eyes, the relative fraction of
“thumbs up” versus “thumbs down” data taken on the marble jar.

We know how to relate the thumb probabilities with the color probabilities from
your prior experience, or the “calibration” of your eyes,

p(tu)= .51p(red)+ .49p(blue), p(td)= .49p(red)+ .51p(blue). (16.8)
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Putting these relations into the color average, we find

p(red)1 + p(blue)(−1)= (.51a + .49b)p(red)+ (.49a + .51b)p(blue). (16.9)

Now, the critical point is that we desire to choose a and b, so that this relation is
true no matter what the marble probabilities are, otherwise this choice would work
only for those particular probabilities, and would be useless as a detector for a jar
of marbles you have no a priori information about. Consequently, we have two
equations for a and b, written in matrix form as,

(
1

−1

)
=
(
.51 .49
.49 .51

)(
a

b

)
.

This is easily solved to give the result a = 50, b = −50. Thus, we see we must as-
sign larger values to the thumb data to compensate for the ambiguous detection.
This choice will produce the correct color average, no matter what the distribution
of marbles is in the jar. Note that since the color average is just a weighted combi-
nation of 1,−1, it must be between these “color eigenvalues”. In this case, we call
the precise degree of color blindness of the measurement the context of the mea-
surement, while we call the values we assign to the measurement outcomes, a and
b in this case, the contextual values.

We can now take the next step, and ask about conditioned averages. For exam-
ple, as you are taking data, you notice that some of the marbles are spherical, while
others are slightly ellipsoidal. One could then ask a question, what is the color aver-
age of the jar, given that I only record data on the spherical marbles? Clearly, this
can drastically change the answer from the unconditioned average, such as the case
where there are an equal number of red and blue marbles, but where the red marbles
are all spherical and the blue marbles are all ellipsoidal.

We can calculate the conditioned average in the way described above, with the
simple change of replacing probabilities with conditional probabilities. While the
conditioning procedure can drastically change the answer from the unconditioned
average, it is still bounded between −1 and 1 since

s〈color〉 = 1p(r|s)+ (−1)p(b|s)= ap(tu|s)+ bp(td|s). (16.10)

This last step is true, provided that there is no disturbance of one property by the act
of measuring the other. For example, if in the act of recording the color of the mar-
ble, you squeeze the marble from spherical to ellipsoidal in shape, then you will in
general change the (conditioned) average of the color since the process of detection
disturbed one of the properties you were measuring. In that case, Eq. (16.8) will not
hold for the conditional probabilities.

Once we understand the contextual value approach on imperfect classical detec-
tors, it is easy to extend it to the quantum case. In exactly the same way, we calibrate
the detector by asking how the detector response is correlated with known states of
the system. We identify an observable A we would like to measure (typically its
average or expectation value), and we expand that observable in its eigendecom-
position, as well as in terms of the probabilities of detector outcomes times the
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contextual values. As before, we want it to work for any quantum state or density
matrix now, so now we get an operator equation to solve,

A =
∑

j

αjEj , (16.11)

Where Ej are the POVM elements of the measurement, that together with the initial
state ρi give the probabilities of the measurement outcomes, Pj = Tr[ρEj ]. This
operator equation is then solved for the contextual values {αj }, once we know about
the context of the measurement, {Ej}.

Conditioned averages of the operator are now defined as averages of the con-
textual values with the conditional probabilities of the detector, given a subsequent
event (usually a second measurement on the system in a new basis). In the weak
limit, the operators Ej are almost the identity up to a scale factor (since when the
measurement strength vanishes, the state is undisturbed), we find under reasonable
conditions a general expression for the conditioned average of an operator of

f 〈A〉i = Re (Tr[PfAρi]/Tr[Pf ρi]), (16.12)

where Pf is the positive operator on the state, indexed by the final result f that is
being post-selected on. In the case where ρi = |ψi〉〈ψi | and Pf = |ψf 〉〈ψf |, the
result (16.12) reduces to the real part of the weak value formula (16.1). We note
that since we are averaging real values assigned to detector outcomes with the usual
conditional probabilities, the final conditioned average must be real, which resolves
the ambiguity of which part of the weak value comes from the conditioned average.

16.5.1 Imaginary Part of Weak Value

As we saw above, the contextual values approach to conditioned averages gives
always the real part of the weak value in the weak limit, for pure pre and post
selected states. This reflects its status as an operational formalism, always giving
an answer involving detector probabilities and assigned real values. It is therefore
natural to ask what the imaginary part of the weak value means from an operational
perspective. We have come to the conclusion that, in terms of providing information
about the conditioned average of its operator, it means nothing [28]. This is not to
say it does not enter into physical expressions, say the momentum shift of a Gaussian
detector variable that is coupled to the system via a Von Neumann interaction.

We can, however, provide another interpretation of the imaginary part of the weak
value in terms of state disturbance [28, 46]. It corresponds to the rate of change of the
postselection probability, in the direction of the operator A, in its role as generator of
unitary transformations. This can be expressed concisely with the following formula
(written for pure states for simplicity),

2ImAw = lim
ε→0

∂ε log |〈ψf | exp[iεA]|ψi〉|2. (16.13)
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A simple illustration of this is the case of momentum, p. In the case where the
initial state is the wavefunction ψ(x), and the postselection is for particular position
x, the weak value is

pw = 〈x|p|ψ〉
〈x|ψ〉 = −i ∂xψ(x)

ψ(x)
= ∂xS − i∂x log r, (16.14)

where we have taken the polar decomposition, ψ(x) = r exp(iS). The real part of
the weak value corresponds to the momentum in Madelung formulation of quantum
mechanics [47], often called Bohmian mechanics today, while the imaginary part
corresponds to the rate of change of the particle density at position x, ρ(x)= r(x)2
(or postselection probability) also known as the Osmotic velocity in Nelson’s quan-
tum mechanics [48].

16.5.2 Generalizations to Wimpy Measurements

While the general expression for the conditioned average does not simplify away
from the weak measurement regime, if we restrict our attention to the case of Von
Neumann coupled detectors, we can make exact generalizations of the weak value
to any measurement strength, not weak but not yet strong: wimpy. In this way, we
will see that there is a surprising universality of the weak value, even when the weak
value is no longer weak! The universality does not refer to the particular value the
conditioned average takes, but rather to the fairly simple formula that captures a
wide class of conditioned averages.

The price we pay in doing this is the fact that the state does get finitely disturbed
away from the weak limit, however, the equations account for this in a very natural
and simple way: the state that appears for the system is simply the dephased one
after the interaction with the meter. Indeed, the weak value generalization (16.12)
holds with the small change ρ→ ρ′, where ρ′ is the post-interaction state, dephased
after the interaction with the meter. This is true even for non-Gaussian detectors as
well as arbitrary strength measurements [49].

16.6 Conclusions

The weak value, introduced by Yakir Aharonov in 1988 together with his collabora-
tors, has shown itself to be a remarkably fruitful idea. We have tracked the scientific
progress of this idea, from its first conception, its initial controversy, and the first
proof of principle experiments. This was followed by gradual acceptance of the ef-
fect, even if the interpretation controversies still go on to the present day. The next
step in this progression was the use of the weak value as a stepping stone to discover
new physical effects that could not be otherwise detected, using the weak value not
as a topic to untangle quantum mysteries, but as an amplifier. This role was soon
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stripped away from finding new physics to being used strictly as a metrological tool
to measure a wide variety of physical quantities in optical systems.

Weak values continue to attract researchers to explore its secrets, and the lively
current day activity in understanding the fundamental aspects shows no sign of stop-
ping. We have every confidence that this area of metrological research with weak
value amplification will continue to develop and further increase in precision as fur-
ther applications for metrological measurements are sought in academic, industrial
and military settings.
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Chapter 17
Entanglement and Weak Values: A Quantum
Miracle Cookbook

Alonso Botero

Abstract The concept of the weak value has proved to be a powerful and opera-
tionally grounded framework for the assignment of physical properties to a quan-
tum system at any given time. More importantly, this framework has allowed us
to identify a whole range of surprising quantum effects, or “miracles”, which are
readily testable but which lie buried “under the noise” when the results of measure-
ments are not post-selected. In all cases, these miracles have to do with the fact
that weak values can take values lying outside the conventional ranges of quan-
tum expectation values. We explore the extent to which such miracles are possible
within the weak value framework. As we show, given appropriate initial and final
states, it is generally possible to produce any set of weak values that is consistent
with the linearity of weak values, provided that the states are entangled states of the
system with some external ancillary system. Through a simple constructive proof,
we obtain a recipe for arbitrary quantum miracles, and give examples of some in-
teresting applications. In particular, we show how the classical description of an
infinitely-localized point in phase-space is contained in the weak-value framework
augmented by quantum entanglement. [Editor’s note: for a video of the talk given
by Prof. Botero at the Aharonov-80 conference in 2012 at Chapman University, see
quantum.chapman.edu/talk-27.]

17.1 Introduction

The Two-Vector Formulation of quantum mechanics, proposed by Yakir Aharonov
and his collaborators [1, 2], is a description of a quantum system at a given time be-
tween two complete measurements. The “Elements of Reality” are the weak values
of quantum-Mechanical observables:

Aw ≡ 〈ψf |A|ψi〉
〈ψf |ψi〉 . (17.1)
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One appealing aspect in this description is its non-contextual nature. Namely, from
the non-disturbance of weak measurements, weak values describe the results of
weak measurements even when the observables are jointly measured (as long as
they’re measured weakly). Therefore, the joint assignment of weak values to a set
of generally incompatible observables is operationally consistent in a sense that is
not possible in the context of strong measurements.

Our main question is then: What are the constraints on the possible joint weak
values of a set of observables {A(1),A(2), . . .A(m)}? More generally, can one find
initial and final states |ψi〉 and |ψi〉 such that a set of arbitrary complex numbers
{z(1), z(2), . . . z(m)} can be interpreted as the weak values

z(k) ≡ 〈ψf |A(k)|ψi〉
〈ψf |ψi〉 (17.2)

of the corresponding observables A(1),A(2), . . .A(m)?
There are two rather obvious constraints that one can identify: First, we note

that weak values are linear, so that C =∑k ckA
(k) implies Cw =∑k ckA

(k)
w . We

also note that the weak value of the identity operator is unity. Therefore, one must
assume that for any set of observables {A(1),A(2), . . .A(m)} one wishes to assign
arbitrary weak values to, we must demand that {Id,A(1),A(2), . . .A(m)} are linearly
independent operators.

Let us start with the trivial example of assigning weak values to a single ob-
servable A. In this case, Aw ≡ 〈ψf |A|ψi 〉

〈ψf |ψi 〉 can indeed take any complex value with
appropriate initial and final states in the system Hilbert space. For example, suppose
a and a′ are different eigenvalues of Â and |a〉 and |a′〉 corresponding eigenstates.
Then, for the initial and final (unnormalized) states

|ψf 〉 = |a〉 + |a′〉 (17.3)

|ψi〉 = (a′ − z)|a〉 + (z− a)|a′〉, (17.4)

where z can be any complex number, it is easily verified that

〈ψf |A|ψi〉
〈ψf |ψi〉 = z. (17.5)

For the case of two or more observables, to assign weak values to m linearly-
independent observables,

z(k) ≡ 〈ψf |A(k)|ψi〉
〈ψf |ψi〉 , k = 1,2, . . .m, (17.6)

it is convenient to use an identity due to Aharonov [1], namely that

A(k)|ψi〉 = 〈A(k)〉i |ψi〉 + (�A(k))i |φ(k)〉, (17.7)

where 〈φ(k)|ψi〉 = 0 and (�A(k))i is the uncertainty of A(k) for the state |ψi〉. Re-
placing in (17.6), we have
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z(k) = 〈A(k)〉i + (�A(k))i 〈ψf |φ(k)〉
〈ψf |ψi〉 . (17.8)

Thus, if the set of orthogonal states {|φ(1)〉 . . . |φ(m)〉} is linearly independent, their
overlaps with |ψf 〉 are fixed:

〈ψf |φ(k)〉 = zk − 〈A(k)〉i
(�A(k))i

〈ψf |ψi〉. (17.9)

If the Hilbert space of the system is of dimension d , then we can at most fix d−1 of
these overlaps. And thus we conclude that for a system with a d-dimensional Hilbert
space, weak values can be arbitrarily fixed for at most d − 1 linearly-independent
observables (besides the identity) using initial and final vectors in the system Hilbert
space.

It follows from the foregoing that the possible weak values that can be generated
with initial and final states in the system Hilbert space are quite constrained. Con-
sider, for instance the weak value of the spin operators for a spin-1/2 particle. We
can define the weak spin vector between two strong spin measurements

Sμ ≡ 〈n̂|σμ|m̂〉
〈n̂|m̂〉 , (17.10)

where the unit vectors m̂ and n̂ refer to the polarizations of the initial and final states
respectively. It is not hard to work out an expression for S, namely,

S = n̂+ m̂
1 + n̂ · m̂ + i n̂× m̂

1 + n̂ · m̂ . (17.11)

The possible weak spin vectors that can be generated by varying over all m̂ and n̂
are then constrained to have the form

S = xû+ iyv̂, with x2 − y2 = 1, û · v̂ = 0. (17.12)

These constraints become rather more complicated for larger dimensional Hilbert
spaces. We can think of weak values as a linear map between the Lie alge-
bra of SU(d), where d is the dimension of the system Hilbert space, and C

n.
For a d-dimensional Hilbert space, we can define a hermitian traceless basis
E1,E2, . . .Ed2−1 of the SU(d) Lie algebra with an inner product

Tr(EiEj )= δij . (17.13)

The generators obey the following algebraic relations under multiplication [3]

EiEj = δij

d
+ dijkEk + ifijkEk, (17.14)

where the fijk are the SU(d) structure constants and the dijk can be chosen to be
symmetric in the three indices. Let us then define the operator

W = |ψi〉〈ψf |
〈ψf |ψi〉 (17.15)
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so that weak values can be obtained in analogy with expectation values given a
density matrix: Aw = Tr(AW). When expanded in the Lie algebra basis, as

W = 1

d
+
d2−1∑

i=1

Ekzk, (17.16)

the coefficients zk are then given by the weak values of the Lie algebra basis ele-
ments:

zk ≡ 〈ψf |Ek|ψi〉
〈ψf |ψi〉 . (17.17)

But now notice that W is idempotent. Using the expansion (17.16), the identity
W 2 =W yields two constraints: a quadratic constraint similar to the one for spin-
1/2:

∑

i

z2
i = 1 − 1

d
, (17.18)

together with a set of cubic constraints involving the symmetric d-tensor:

zi =
∑

j,k

dijkzj zk. (17.19)

These constraints define a complicated d-dimensional submanifold of Cn in which
all the weak values must reside for pure initial and final states in the system Hilbert
space.

17.2 Entangled Two-Vectors

The are, however, more general sets of pure initial and final states that can be at-
tached to the system, if one considers it as part of a larger system S + S′, where
S′ is some ancillary system. Such conditions define what is known as a generalized
Two-Vector [2] for the system. Given initial and final states |ψi〉 and |ψi〉 on the
combined Hilbert space HS ⊗ HS′ , weak values for the system of interest can be
obtained from an operator

WS = TrS′
( |ψi〉〈ψf |

〈ψf |ψi〉
)
, (17.20)

where TrS′ denotes the partial trace over the ancilla. Agaian, we can expandWS as

W = 1

d
+
d2−1∑

i=1

Ekzk, (17.21)

where zk ≡ 〈ψf |Ek |ψi 〉
〈ψf |ψi 〉 as before. The difference with the previous situation is that

W 2
S = WS is no longer a constraint. In fact, an independent assignment of weak
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values to each of the basis operators is possible, if the Hilbert space dimension of
S’ is sufficiently large.

To see this, suppose that S′ has Hilbert space dimension d or larger. Now take
the initial and final unnormalized entangled states

|ψi〉 =
∑

i

|i〉|i〉 (17.22)

|ψf 〉 =
(

1 + d
∑

k

z∗kEk
)

|ψi〉, (17.23)

where the zk are arbitrary complex numbers. Then, taking the partial trace with
respect to the ancilla, we find

WS = 1

d
+
d2−1∑

i=1

Ekzk. (17.24)

Thus we have shown that there always exist combinations of initial and final states
on a d2 dimensional Hilbert space that realize any arbitrary assignment of the d2 −1
complex weak values of the Lie algebra basis elements.

How much entanglement is required? To define two-vector entanglement, we
note thatWS admits the singular value decomposition:

WS =
∑

j

λj |χj 〉〈ηj |, (17.25)

where the λj are positive singular values and 〈ηi |ηj 〉 = 〈χi |χj 〉 = δij . From the
condition Tr(WS)= 1, we have

∑

j

λj 〈ηj |χj 〉 = 1. (17.26)

The operator WS can then be realized with a canonical pair of equally-entangled
states:

|ψi〉 =
∑

j

√
αj |χj 〉|j 〉 (17.27)

|ψf 〉 =
∑

j

√
αj |ηj 〉|j 〉, (17.28)

where

αj = λj∑
j λj

. (17.29)

We can then define the entanglement ofWS as the entanglement entropy of either of
the canonical states, namely:

E(WS)≡H [{αi}], (17.30)

where H [{αi}] is the Shannon entropy of the αi coefficients.
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Let us work out the entanglement in the general spin-1/2, which we can now
describe by a weak spin vector

S = xû+ iyv̂ (17.31)

with arbitrary x, y, û and v̂. In this case, the singular values are of the form

λ± =
[
1 + x2 + y2 ± 2x

√
1 + y2 sin2 θ

]1/2
, (17.32)

where θ is the angle between the directions û and v̂; we see that when x2 − y2 = 1
and θ = π/2, one of the singular values vanishes, in which case no entanglement
is needed. For simplicity, let us further concentrate on the case y = 0. Then, the
required entanglement is easily found to be

E(WS)=
{
H2
( 1+x

2

)
x ≤ 1,

H2
( 1+x−1

2

)
x > 1,

(17.33)

where H2 is the binary entropy. The canonical states for x ≤ 1 and x ≥ 1 are easily
obtained. For x ≤ 1, they are indeed the same states:

|ψi〉 = |ψf 〉 = √
1 + x |û+〉|+〉 + √

1 − x |û−〉|−〉, (17.34)

whereas in the case x > 1,

|ψi〉 =
√

1 + x−1 |û+〉|+〉 +
√

1 − x−1 |û−〉|−〉, (17.35)

|ψf 〉 =
√

1 + x−1 |û+〉|+〉 −
√

1 − x−1| û−〉|−〉. (17.36)

Note that a simple 180◦ relative phase in the Schmidt components of one of the
states is all that is needed to map x to 1/x.

17.3 Applications

We have thus seen that with the use of entangled initial and final states, it is possible
to “cook up” any set of joint weak values consistent with the linearity constraints.
Let us then look at some of the quantum miracles that can be understood in terms of
these weak value assignments using entangled two-vectors.

17.3.1 Sharper Exotic Weak Values

In a weak measurement of some observable A, the wave function describing the
conditional outcome of the measuring device is given by the Fourier transform

φm(p)∝
∫
dq〈ψf |eiAq |ψi〉φi(q)eipq, (17.37)
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where p is the pointer variable, q its conjugate, and φi(q) the initial device wave
function in its conjugate representation. Roughly speaking, a weak measurement
occurs when φi(q) is sufficiently narrow around q = 0 that one can approximate
the exponential by its first order expansion in q . More generally, the spread in the
outcome distribution of a weak measurement, around the weak value, is determined
by the width of the interval in q , around q = 0, in which the approximation

〈ψf |eiAq |ψi〉 � 〈ψf |ψi〉 × eiAwq (17.38)

holds. If the interval is of order �q , we can then expect a spread of order 1/�q in
the pointer wave function around the weak value.

One situation in which this interval can be relatively wide is when for all powers
of the observable A up to some maximum power m are linearly independent. Then,
from our previous results, we know that there exist initial and final states such that

(Ak)w = (Aw)k, ∀k = 1,2, . . .m, (17.39)

thus ensuring that the approximation (17.38) holds to order qm, and hence for a
much wider range in q around q = 0, allowing for narrower pointer-variable states.
This property could be useful in enhancing the precision of experiments that exploit
the amplification properties of weak measurements [4–6]. The linear independence
conditions are satisfied by the Jz operator in a spin j representation, for all powers
of Jz up to 2j , so the accuracy of the above approximation can be quite good for
high values of j .

17.3.2 Mean King’s Problem

In the so-called “Mean King’s problem”, originally proposed by Aharonov, Albert,
and Vaidman [7], the goal is to ascertain the outcome of one of three possible pro-
jective measurements of the three orthogonal spin components, that could be per-
formed on a spin-1/2 particle, supposing one is granted access to the particle both
before and after the measurement. The solution to this problem can be recast as
the solution to a problem of simultaneous weak value assignment. To see this note
that the conditional probability of obtaining the outcomes ± in a spin component
measurement along the direction ê, with given initial and final states, is

p(±)∝ ∣∣〈ψf
∣∣(1 ± ê · σ)∣∣ψi

〉∣∣2 . (17.40)

This probability can be re-written as

p(±)∝ ∣∣1 ± ê · S
∣∣2 , (17.41)

where S is the vector of weak values introduced earlier. Definite conditional out-
comes, that is, probabilities p(±) that are either one or zero, are obtained when
each of the three components of S is either +1 or −1. Given our earlier construction
of states yielding specific weak values, we can suppose that the particle and some
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ancillary particle are prepared in the state |ψi〉 = |+〉|+〉+ |−〉|−〉, and the problem
then is to find four vectors Sα (with α = 1,2,3,4), with components that are either
+1 or −1, and such that the corresponding final states

|ψα〉 = (1 + Sα · σ)|ψi〉 (17.42)

are mutually orthogonal, so that they can be interpreted as the outcomes of a projec-
tive measurement of the particle and the ancilla. The orthogonality condition is met
when the vectors Sα lie at 120◦ from each other. Explicitly,

S1 = x̂ + ŷ + ẑ (17.43)

S2 = −x̂ − ŷ + ẑ (17.44)

S3 = −x̂ + ŷ − ẑ (17.45)

S4 = x̂ − ŷ − ẑ, (17.46)

where x̂, ŷ and ẑ are unit vectors. Note that these spin vectors are real and of length√
3, and can therefore only be realized with entangled states, according to our pre-

vious discussion.

17.3.3 Joint, Conditionally Sharp Outcomes of Canonical
Variables

In the “Mean king’s problem”, the task is to ascertain the outcome of one of three
possible intermediate projective measurements that can be performed at the exclu-
sion of the other two. Surprisingly, one can also cook up situations where one can
ascertain the simultaneous outcomes of joint strong measurements of incompatible
observables [8]. To see this, one must first define what is meant by a joint mea-
surement of two observables A1 and A2. In analogy with our previous discussion,
one can imagine coupling the system impulsively to two measuring devices, with
pointer variables p1 and p2 and canonical conjugates q1 and q2. The coupling may
be described by the effective evolution operator

Umeas = exp
[
i(q1A1 + q2A2)

]
, (17.47)

which is the natural generalization for the von Neumann scheme interaction oper-
ator. If the system is pre- and post-selected, the conditional wave function of the
device pointer variables is given by

φm(p1,p2)∝
∫
dq1dq2〈ψf | exp

[
i(q1A1 + q2A2)

] |ψi〉φi(q1, q2)e
iq·p, (17.48)

where for a strong measurement the initial device wave function φi(q1, q2) should
be understood to be very wide (ideally a constant for an infinitely sharp measure-
ment). The problem can now be cast as follows: Can we find non trivial examples
of initial and final states and non-commuting A1 and A2, such that for all values of
q1 and q2,
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〈ψf | exp
[
i(q1A1 + q2A2)

] |ψi〉 = 〈ψf |ψi〉 exp
[
i(q1a1 + q2a2)

]
, (17.49)

where a1 and a2 are some c-numbers? If such is the case, then the conditional effect
on the pointers will simply be the shift of the pointer wave function

φi(p1,p2)→ φm(p1,p2)= φi(p1 − a1,p2 − a2), (17.50)

and the conditional results of the measurement can be made arbitrarily sharp with a
correspondingly sharp initial pointer wave function φi(p1,p2). Knowing the initial
and final states, one should then be able to ascertain, precisely, the simultaneous
outcomes of an intermediate joint measurement.

Surprisingly, there exist non-trivial solutions to the above problem, and as ex-
pected, the solution involves entangled initial and final states. For the operators A1
andA2, take the canonical variablesX and P of a one-dimensional canonical degree
of freedom. Consider also an ancillary canonical system with canonical variablesX′
and P ′. Using these, we can define the collective variables X+, P+, X− and P− ac-
cording to:

X± = 1√
2

(
X±X′) , P± = 1√

2

(
P ± P ′) . (17.51)

Now we note that the linear combination q1X+ q2P can be written in terms of the
collective variables as

q1X+ q2P = 1√
2
(q1X+ + q2P−)+ 1√

2
(q1X− + q2P+) . (17.52)

As one easily verifies, the two operators

L≡ 1√
2
(q1X+ + q2P−) , and R ≡ 1√

2
(q1X− + q2P+) (17.53)

commute. Thus one can perform the factorization

exp
[
i(q1X+ q2P)

]= exp(iL) exp(iR). (17.54)

Now we note that the state |X̃−, P̃+〉, a simultaneous eigenstate of X− and P+
with eigenvalues X̃− ,P̃+ respectively, is also an eigenstate of R with eigenvalue
(q1X̃− +q2P̃+)/

√
2. Similarly, the state |X̃+, P̃−〉, a simultaneous eigenstate ofX+

and P− with eigenvalues X̃+ ,P̃−, is an eigenstate of L with eigenvalue (q1X̃+ +
q2P̃−)/

√
2. Hence, we have that

〈X̃+, P̃−| exp
[
i(q1X+ q2P)

] |X̃−, P̃+〉 = 〈X̃+, P̃−|X̃−, P̃+〉 exp
[
i(q1X̃+ q2P̃ )

]
,

(17.55)

where X̃ and P̃ are the c-numbers

X̃ = 1√
2

(
X̃+ + X̃−

)
, P̃ = 1√

2

(
P̃+ + P̃−

)
. (17.56)

So indeed we find conditions under which the outcome of a joint simultaneous mea-
surement of the two canonical variables can be inferred precisely if we are granted
access to the system before and after the measurement.
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There is also something remarkable about these initial and final conditions, when
we consider instead intermediate weak measurements of arbitrary functions of X
and P with the same boundary conditions. A correspondence between classical
functions in phase-space and quantum operators can be established via the so-called
Weyl Kernel [9]:

f̂ =
∫
dXdP �̂(X,P )fclas(X,P ), (17.57)

where

�̂(X,P )= 1

(2π)2

∫
d2q exp

[
iq1(X̂−X)+ iq2(P̂ − P)], (17.58)

and we use carets to denote quantum operators. With given initial and final states,
the function

Wif (X,P )≡ 〈ψf |�̂(X,P )|ψi〉
〈ψf |ψi〉 (17.59)

is a “weak” generalization of the well-known Wigner function, and becomes
the actual Wigner function when the initial and final states coincide. Evaluating
Wif (X,P ) with the initial and final states |X̃−, P̃+〉 and |X̃+, P̃−〉 of our previous
discussion, we readily find that

Wif (X,P )= δ(X− X̃)δ(P − P̃ ), (17.60)

where X̃ and p̃ are as defined in Eq. (17.56). Thus we can produce a “weak Wigner
function” that is a delta-function in phase space; consequently, the weak value of
any quantum operator that is a function of the canonical variables will be the cor-
responding classical function, evaluated at the phase-space point (X̃, P̃ )! In other
words, quantum entanglement allows us to reproduce, in terms of weak values, the
same observable results that would obtain for a classical system that is sharply lo-
calized in phase-space. This, indeed, is a remarkable quantum miracle!

17.4 Conclusion

We owe it to Yakir Aharonov to have shown us that buried under the noise of the
standard measurement results of quantum mechanics, lies a wealth of surprising
effects that only emerge when the ensembles are pre- and post-selected. In this con-
tribution, we have tried to show just how rich the range of possible effects can be
when the pre-and post-selections involve entangled states; namely, any assignment
of weak values that is compatible with the linearity constraint is possible with suit-
able pre- and post-selections involving entangled states.
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Chapter 18
Weak Energy: Form and Function

Allen D. Parks

Abstract The equation of motion for a time-dependent weak value of a quantum
mechanical observable contains a complex valued energy factor—the weak energy
of evolution. This quantity is defined by the dynamics of the pre-selected and post-
selected states which specify the observable’s weak value. It is shown that this en-
ergy: (i) is manifested as dynamical and geometric phases that govern the evolution
of the weak value during the measurement process; (ii) satisfies the Euler-Lagrange
equations when expressed in terms of Pancharatnam (P) phase and Fubini-Study
(FS) metric distance; (iii) provides for a PFS stationary action principle for quantum
state evolution; (iv) time translates correlation amplitudes; (v) generalizes the tem-
poral persistence of state normalization; and (vi) obeys a time-energy uncertainty
relation. A similar complex valued quantity—the pointed weak energy of an evolv-
ing quantum state—is also defined and several of its properties in PFS coordinates
are discussed. It is shown that the imaginary part of the pointed weak energy governs
the state’s survival probability and its real part is—to within a sign—the Mukunda-
Simon geometric phase for arbitrary evolutions or the Aharonov-Anandan (AA)
geometric phase for cyclic evolutions. Pointed weak energy gauge transformations
and the PFS 1-form are defined and discussed and the relationship between the PFS
1-form and the AA connection 1-form is established. [Editors note: for a video of
the talk given by Prof. Parks at the Aharonov-80 conference in 2012 at Chapman
University, see quantum.chapman.edu/talk-25.]

18.1 Preamble

It is an honor and a pleasure to speak at Yakir’s 80th birthday conference. Although
I first met Yakir about ten years ago, I have been a disciple of his work for many
more years than that. I commemorate Yakir’s birthday today by reviewing certain
aspects of my research which have been inspired by Yakir’s insights into founda-
tional quantum physics via weak measurements and weak value theory. In particu-
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lar, I will discuss the notion of weak energy—its relationships to both weak value
measurements and quantum state evolution, as well as some of the formalism asso-
ciated with it when it is expressed in terms of Pancharatnam phase and Fubini-Study
metric distance.

18.2 Weak Measurements and Weak Values

The weak value Aw of a quantum mechanical observable A was introduced by
Aharonov et al. a quarter century ago [1–3]. It is the statistical result of a standard
measurement procedure performed upon a pre-selected and post-selected (PPS) en-
semble of quantum systems when the interaction between the measurement appara-
tus and each system is sufficiently weak, i.e. when it is a weak measurement. Unlike
a strong measurement of A which significantly disturbs the measured system (i.e.,
it “collapses” the wavefunction), a weak measurement of A does not appreciably
disturb the quantum system and yields Aw as the observable’s measured value. The
peculiar nature of the virtually undisturbed quantum reality that exists between the
boundaries defined by the PPS states is revealed by the eccentric characteristics of
Aw , namely that Aw is complex valued and that the real ReAw and imaginary ImAw
parts of Aw can be extremely large and lie far outside the eigenvalue spectral limits
of Â. Although the interpretation of weak values remains somewhat controversial,
experiments have verified several of the interesting unusual properties predicted by
weak value theory [4–10].

Weak values arise in the von Neumann description of a quantum measurement
at time t0 of a time independent observable A that describes a quantum system
in an initial pre-selected state |ψi〉 at t0 and a final post-selected state |ψf 〉 at t0.
If the initial normalized measurement pointer state is |φ〉, then the pointer state
immediately after the measurement is

|Ψ 〉 = 〈ψf |e− i
�
γ Âp̂|ψi〉|φ〉,

where γ is the measurement interaction strength and p̂ is the pointer momentum
operator conjugate to the pointer position operator q̂ . When the measurement is
weak, i.e., when γ is sufficiently small and the pointer uncertainty�q is much larger
than Â’s eigenvalue separation (qualifications required for weak measurements are
discussed in [5, 11]), then the last equation becomes

|Ψ 〉 ≈ 〈ψf |ψi〉Ŝ(γAw)|φ〉.
Here

Aw = 〈ψf |Â|ψi〉
〈ψf |ψi〉 , 〈ψf |ψi〉 �= 0, (18.1)

is the weak value of observable A and Ŝ(γAw)= e− i
�
γAwp̂ is the translation oper-

ator for |φ〉 defined by the action 〈q|Ŝ(γAw)|φ〉 = φ(q − γReAw). Assuming that
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φ(q) is real valued, then after the measurement the new mean pointer position and
momentum are [12]

〈Ψ |q̂|Ψ 〉 = 〈φ|q̂|φ〉 + γReAw

and

〈Ψ |p̂|Ψ 〉 = 〈φ|p̂|φ〉 + 2γ ν(p)ImAw,

where ν(p) is the variance of the initial pointer momentum.

18.3 Weak Energy of Evolution

A fundamental aspect of weak value theory is the tenet that although the measure-
ment of Â occurs at time t0, the PPS states appearing in (18.1) are actually pre-
selected and post-selected at times ti < t0 and tf > t0, respectively. PPS states se-
lected at these times define past and future boundary conditions which influence Aw
at measurement time t0 via their unitary evolutions forward in time from ti to t0 and
backward in time from tf to t0.

Let T = [t1, t2] be a fixed closed time interval,�ti and �tf be fixed time inter-
vals, and A = {Aw(t) : t ∈ T } be a time ordered set, where (i) Aw(t) is the weak
value of Â at a measurement interaction time t ∈ T defined by a state |ψi(ti)〉 which
has been pre-selected at time ti = t −�ti and by a state |ψf (tf )〉 which has been
post-selected at time tf = t +�tf ; and (ii) these PPS states continuously change
from their initial states at ti and tf according to

d|ψi(ti)〉
dti

= − i
�
Ĥi |ψi(ti)〉, ti ∈ [t1 −�ti, t2 −�ti],

and

d|ψf (tf )〉
dtf

= − i
�
Ĥf |ψf (tf )〉, tf ∈ [t1 +�tf , t2 +�tf ].

When the Hamiltonians Ĥi and Ĥf are non-vanishing and explicitly time inde-
pendent, then the evolutions of these PPS states to the time of measurement t are

|ψi(t)〉 = e− i
�
Ĥi�ti |ψi(ti)〉 ≡ Û |ψi(ti)〉

and

|ψf (t)〉 = e i� Ĥf �tf |ψf (tf )〉 ≡ V̂ |ψf (tf )〉
so that

Aw(t)= 〈ψf (tf )|V̂ †ÂÛ |ψi(ti)〉
〈ψf (tf )|V̂ †Û |ψi(ti)〉

= 〈ψf (t)|Â|ψi(t)〉
〈ψf (t)|ψi(t)〉 , 〈ψf (t)|ψi(t)〉 �= 0.

(18.2)
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Observe that since [Û , Ĥi] = 0 = [V̂ , Ĥf ], then the actions of Ĥi and Ĥf upon the
PPS states at ti and tf are transformed into their actions upon the evolved PPS states
at the measurement time t .

If Ȧw exists at each t ∈ T , then Aw is a continuous function over T and the
equation of motion for Aw(t) is obtained by taking the time derivative of (18.2):

Ȧw = i

�
{(HfA−AHi)w −Aw(Hf −Hi)w}. (18.3)

Here it is assumed that Â is explicitly time independent. The peculiar complex val-
ued factor (Hf −Hi)w appearing in the second term of (18.3) is the weak energy of
evolution for the PPS system. This quantity is an artifact of the dynamics of the PPS
states and is contemporaneous with the measurement time t .

Although (Hf −Hi)w is not directly measured during the measurement ofAw(t),
it defines phases and phase factors which are crucial to determining Aw(t) at the
measurement time. To see this, consider the general solution to (18.3) given by

Aw = e− i
�

∫ t
t1
(Hf−Hi)wdt ′

{
Aw(t1)+ i

�

∫ t

t1

e
i
�

∫ t ′
t1
(Hf−Hi)wdt ′′(HfA−AHi)wdt ′

}
.

This solution clearly shows that the time integrated weak energy of evolution is
an intrinsic attribute of Aw(t) and that it determines and influences Aw(t) through

phase factors which have been introduced by the integrating factor e
i
�

∫ t
t1
(Hf−Hi)wdt ′ .

The argument of this integrating factor is the phase sum [13]

1

�

∫ t

t1

(Hf −Hi)wdt ′ = δf (t)− δi(t)+ βf (t)− βi(t),

where

δx(t)≡ 1

�

∫ t

t1

〈ψx(t ′)|Ĥx |ψx(t ′)〉dt ′, x ∈ {i, f },

are real valued dynamical phases and

βf (t)≡ 1

�

∫ t

t1

�Hf
〈ψ⊥
f (t

′)|ψi(t ′)〉
〈ψf (t ′)|ψi(t ′)〉 dt

′

and

βi(t)≡ 1

�

∫ t

t1

�Hi
〈ψf (t ′)|ψ⊥

i (t
′)〉

〈ψf (t ′)|ψi(t ′)〉 dt
′

are complex valued geometric phases. Here, |ψ⊥
x (t)〉 belongs to the Hilbert sub-

space which is orthogonal to the subspace containing |ψx(t)〉, x ∈ {i, f }, and sat-
isfies 〈ψ⊥

x (t)|ψx(t)〉 = 0, as well as the energy uncertainty condition �Hx =
〈ψ⊥
x (t)|Ĥx |ψx(t)〉.
That βf is a geometric phase follows from the facts that βf is invariant under

(i) local U(1) gauge transformations |ψx(t ′)〉 → eiθ(t
′)|ψx(t ′)〉, x ∈ {i, f }, (which

implies |ψ⊥
f (t

′)〉 → eiθ(t
′)|ψ⊥

f (t
′)〉) and (ii) the reparameterization |ψf (t ′)〉 =
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|ψ ′
f (τ (t

′))〉 ≡ |ψ ′
f (τ )〉 (which implies |ψ⊥

f (t
′)〉 = |ψ⊥′

f (τ )〉). Here τ(t ′) is mono-
tone increasing over the interval [τ(t1), τ (t)] with endpoints |ψ ′

f (τ (t1))〉 = |ψf (t1)〉
and |ψ ′

f (τ (t))〉 = |ψf (t)〉 [14]. Similar arguments hold for βi .
Thus, it may be concluded that the time accumulation of the forward and back-

ward time evolutions to the measurement time t of the actions of Ĥi and Ĥf upon
the associated PPS states is physically manifested at t as the sum δf (t)− δi(t)+
βf (t)− βi(t) of dynamical and geometric phases which determines and influences
Aw at t via the associated exponential phase factors.

18.4 The Weak Energy of Evolution Stationary Action Principle

Let H be Aw(t)’s Hilbert space and P be the associated projective space consist-
ing of all the rays of H . Recall that a ray is an equivalence class [ψ ] of states |ψ〉 in
H which differ only in phase. IfΠ : H → P is the projection mapΠ(|ψ〉)= [ψ],
then the evolutions of the PPS states which define Aw(t) at any time t ∈ T are rep-
resented by the two curves |ψi(t)〉 and |ψf (t)〉 in H such that their projections in
P at any t ∈ T are separated by the Fubini-Study (FS) metric distance defined by
[15, 16]

s2 ≡ s2(t)= 4
(
1 − |〈ψf (t)|ψi(t)〉|2

)
. (18.4)

Also, if at any t ∈ T the state |ψf (t)〉 is parallel transported along the unique path
in H that is the pre-image under Π of the shortest geodesic joining [ψf (t)] and
[ψi(t)] in P , then the associated Pancharatnam(P) phase χ is given by [17]

χ ≡ χ(t)= arg
〈ψf (t)|ψi(t)〉
|〈ψf (t)|ψi(t)〉| . (18.5)

Rearrangement of the time derivatives of (18.4) and (18.5) reveals that

Re(Hf −Hi)w = �χ̇

and

Im(Hf −Hi)w = �

(
s

4 − s2

)
ṡ.

This yields the following important identity which expresses the weak energy of
evolution in terms of PFS coordinates [18]:

L (s; ṡ, χ̇ )≡ (Hf −Hi)w = �χ̇ + i�
(

s

4 − s2

)
ṡ.

Since L ≡ L (s; ṡ, χ̇ ) satisfies the Euler-Lagrange equations

d

dt

(
∂L

∂ẋ

)
= ∂L

∂x
, x ∈ {χ, s}, (18.6)
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it is called the PFS Lagrangian and the first variation of the weak energy of evolution
action

∫ t2
t1

L dt vanishes, i.e.

δ

∫ t2

t1

L dt = 0.

Thus, the following weak energy of evolution stationary action principle may be
stated [19]:

The actual paths followed in H by |ψf (t)〉 and |ψi(t)〉 between their endpoint
states at t1 and t2 during the closed time interval [t1, t2] are such that the weak
energy of evolution action is stationary for all variations of χ, s, and time that
vanish at the interval endpoints t1 and t2.

18.5 Some Additional Properties of L

It is easily determined that the equation of motion for the PPS correlation amplitude

ϕt ≡ 〈ψf (t)|ψi(t)〉, t ∈ T = [t1, t2],
is given by

ϕ̇t = i

�
L ϕt

and that it has as its solution

ϕt = e
i
�

∫ t
t1

L dt ′
ϕt1 . (18.7)

Thus, L defines a complex valued exponential multiplication factor which trans-
lates correlation amplitudes in time by capturing and transferring from one ampli-
tude to another the essence of the state dynamics in H via the associated changes
in P and the phase acquired from parallel transport in H .

The transition probability at t ∈ T associated with the PPS states is the square
modulus of (18.7). This yields the identity

|ϕt |2 = e− 2
�

∫ t
t1

ImL dt ′ |ϕt1 |2
which shows that ImL defines an exponential multiplication factor which time
translates correlation probabilities and generalizes the temporal persistence of state
normalization (because when i = f , then s = 0 and |ϕt |2 = |ϕt1 |2).

Consider the equation of motion for L by setting Â= Ĥf − Ĥi in (18.3). Then

L̇ = i

�
{(H 2

f − 2HfHi +H 2
i )w − L 2}.

When this derivative vanishes, then L is a constant of the motion and it serves as a
good weak quantum number for the associated PPS system. If τ is the characteristic
time needed for L to be changed by an amount equal to the width of its statistical

distribution �wL ≡ |�2
wL | 1

2 , i.e. the weak energy uncertainty [3], then
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τ ≈ �wL

|L̇ | ,

where �2
wL = ((Ĥf − Ĥi)2)w − ((Hf −Hi)w)2 is the weak variance of L . This

indicates that appreciable differences between correlation amplitudes should be ex-
pected only for times with differences significantly greater than τ (note that τ → ∞
when L is a good weak quantum number).

For the special case that Ĥi and Ĥf are mutual constants of the motion, i.e.

[Ĥi , Ĥf ] = 0 and dĤi
dt

= 0 = dĤf
dt

, then

L̇ = i

�
�2
wL , (18.8)

and changes in L are precisely due to its weak variance (clearly, in this case L is
a constant of the motion when �2

wL = 0). Since

�wL = �
1
2 |L̇ | 1

2 , (18.9)

then the following associated time-energy uncertainty relation for L is readily ob-
tained from the substitution of the square of (18.9) into the previous expression for
τ :

τ�wL ≈ �

As a final point of interest, note from (18.6) that the generalized momentum
pχ that is conjugate to the coordinate χ is a constant of the motion for any PPS
correlation amplitude. More specifically, ṗχ = 0 since

pχ ≡ ∂L

∂χ̇
= �.

This suggests the following novel definition for Planck’s constant:

h≡ 2π
∂L

∂χ̇
,

where L is the PFS Lagrangian associated with any time dependent PPS correla-
tion amplitude ϕt , t ∈ T .

18.6 Pointed Weak Energy, Pointed Probability Current, and
Quantum Geometric Phase

Let |ψ(t)〉 be a state which is evolving in H under the action of the Hamilto-
nian Ĥ . If |ψ(0)〉 and |ψ(t)〉 are used as the initial and fixed final states, respec-
tively, and Ĥf − Ĥi is replaced by Ĥ , then the above development—with slight
modifications—generally applies for this special case, yielding

ϕt,0 ≡ 〈ψ(t)|ψ(0)〉 = e i�
∫ t

0 L0dt
′ = 1

2

√
4 − s2

0e
iχ0, 〈ψ(t)|ψ(0)〉 �= 0, (18.10)
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as the pointed correlation amplitude and

L0 ≡ L0(s0; χ̇0, ṡ0)≡ 〈ψ(t)|Ĥ |ψ(0)〉
〈ψ(t)|ψ(0)〉 = �χ̇0 + i�( s0

4 − s2
0

)ṡ0 = pχ0 χ̇0 + ps0 ṡ0

as the pointed weak energy which is also a Lagrangian. Here use is made of the fact
that px = ∂L0

∂ẋ
, x ∈ {χ0, s0}.

From (18.10) it is seen that the pointed correlation probability Pr(s) is the sur-
vival probability for the initial state |ψ(0)〉 given by

Pr(s0)≡ ϕ∗
t,0ϕt,0 = 1

4
(4 − s2

0) (18.11)

(so that ϕt,0 = √
Pr(s0)e

iχ0 ) and that it defines the associated pointed probability
current C0 as

C0 ≡ dP r(s0)

dt
= −1

2
s0ṡ0.

It is clear from this that since C0 satisfies the Euler-Lagrange equation

d

dt

(
∂C0

∂ṡ0

)
= ∂C0

∂s0

the first variation δJ0 of the pointed probability current action J0 ≡ ∫ t20 C0dt van-
ishes. This is formalized as the pointed probability current stationary action princi-
ple which states that [20]: The actual evolutionary path followed in H by the state
|ψ(t)〉 between the end points |ψ(0)〉 and |ψ(t2)〉 is such that J0 is stationary for
all variations in s0 and time that vanish at the endpoints.

The action of Ĥ upon |ψ(t)〉 can be uniquely written as [3]

Ĥ |ψ(t)〉 = 〈H 〉|ψ(t)〉 +�H |ψ⊥(t)〉, (18.12)

where 〈H 〉 = 〈ψ(t)|Ĥ |ψ(t)〉,�H =√〈H 2〉 − 〈H 〉2, and |ψ⊥(t)〉 satisfies the con-
ditions 〈ψ⊥(t)|ψ(t)〉 = 0 and �H = 〈ψ⊥(t)|Ĥ |ψ(t)〉. The following equivalent
definition for the pointed weak energy is obtained when the dual form of (18.12) is
first used to form the scalar product with the state |ψ(0)〉 and then this product is
divided by 〈ψ(t)|ψ(0)〉 �= 0:

L0 ≡ 〈H 〉 +�H 〈ψ⊥(t)|ψ(0)〉
〈ψ(t)|ψ(0)〉 .

In this case

ϕt,0 = e i�
∫ t

0 L0dt
′ = ei(δ0+β0),

where

δ0 ≡ 1

�

∫ t

0
〈H 〉dt ′

is a real valued dynamical phase and
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β0 ≡ 1

�

∫ t

0
�H

〈ψ⊥(t ′)|ψ(0)〉
〈ψ(t ′)|ψ(0)〉 dt

′

defines the complex valued pointed phase acquired by the system as a result of the
evolution of |ψ(t ′)〉 over the interval [0, t].

The pointed phase is invariant under the local U(1) gauge transformation
|ψ(t)〉 → eiθ(t)|ψ(t)〉 (which implies that |ψ⊥(t)〉 → eiθ(t)|ψ⊥(t)〉), as well as
under the reparameterization |ψ(t)〉 = |ψ ′(t ′(t))〉 (which implies that |ψ⊥(t)〉 =
|ψ⊥′(t ′(t))〉) over the interval [t ′(0), t ′(t)]. Here t ′(t) is monotone increasing with
state endpoints |ψ ′(t ′(0))〉 = |ψ(0)〉 and |ψ ′(t ′(t))〉 = |ψ(t)〉 [14]. These two in-
variance properties imply that β0 is a geometric phase [21]—the pointed geometric
phase.

Since δ0 is real valued, L0 and β0 are complex valued, and

1

�

∫ t

0
L0dt

′ = δ0 + β0,

then

Reβ0 = 1

�

∫ t

0
ReL0dt

′ − δ0 = χ0(t)− δ0
and

Imβ0 = 1

�

∫ t

0
ImL0dt

′ = ln
2

√
4 − s2

0(t)

, (18.13)

where use has been made of the fact that χ0(0)= s0(0)= 0.
It can be inferred from (18.11) and (18.13) that since

e−Imβ0 =√Pr(s0(t)),
then Imβ0 governs the survival probability for |ψ(0)〉 and comparison of the ex-
pression for Reβ0 with (4) in [22] identifies −Reβ0 as the Mukunda-Simon phase.
For the special case that the evolution of |ψ(t)〉 is cyclic, comparison of the ex-
pression for Reβ0 with (3) in [23] reveals that −Reβ0 is the Aharonov-Anandan
phase.

18.7 Some Additional Properties of L0

Consider the transformation

L θ
0 = L0 − �θ̇ (χ0, s0), (18.14)

where θ ≡ θ(χ0, s0) is a dimensionless function with continuous derivatives. Since
transformations of this form applied to Lagrangians are referred to as gauge trans-
formations in the classical mechanics literature (e.g. [24]), then (18.14) is called
a pointed weak energy gauge transformation. From (18.10) it is easy to see that
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(18.14) corresponds to the local U(1) gauge transformation |ψ(t)〉 → eiθt |ψ(t)〉,
i.e.

ϕθt,0 = e i�
∫ t

0 L θ
0 dt

′ = e i�
∫ t

0 L0dt
′
e−i[θ]t0 = ϕt,0e−i(θt−θ0) = 〈ψ(t)|e−iθt eiθ0 |ψ(0)〉,

where θt ≡ θ(χ0(t), s0(t)) = θ . It is interesting to note from (18.14) that the PFS
1-form ω0 ≡ 1

�
L0dt transforms as a U(1) gauge potential, i.e.

ωθ0 = ω0 − dθ = ω0 + d(ilng),
where g = eiθ ∈ U(1).

Let |ψ0〉 be a distinguished state in H ,H∼⊥ ≡ {|ψ〉 ∈ H : 〈ψ |ψ0〉 �= 0},R be
the set of real numbers, and define the map Ψ0 : H∼⊥ → R × R by

Ψ0(|ψ〉)≡
(

arg
〈ψ |ψ0〉
|〈ψ |ψ0〉| ,2

√
1 − |〈ψ |ψ0〉|2

)
= (χ0, s0).

Note that Ψ0 provides an equivalence classification of the states in H∼⊥. More
specifically, |ψ〉 and |ψ ′〉 are equivalent under Ψ0, i.e. |ψ〉 ∼ |ψ ′〉, when Ψ0(|ψ〉)=
Ψ0(|ψ ′〉). PFS configuration space is the image set B ≡ imΨ0 = [0,2π)×[0,2)⊂
R × R.

If the map α : [0, τ ] → H∼⊥ defines an evolutionary path with |ψ(t)〉 = α(t),
then the composition of maps ρ ≡ Ψ0 ◦ α is the curve in B which describes
this evolution and has ρ(0) = (χ0(0), s0(0)) = (0,0) as its first point and ρ(τ) =
(χ0(τ ), s0(τ )) as its last point. The curve ρ is simple if ρ is injective and is closed if
ρ(0)= ρ(τ). The closed curve ρ is simple if the restriction of ρ to the domain (0, τ )
is injective. An evolutionary path in H over [0, τ ] for which |ψ(t)〉 ∈ H∼⊥, t ∈
[0, τ ], and for which ρ is a smooth curve is said to be proper and ρ is the proper

evolution in B. Observe that ω0 is exact since ω0 = df,f = χ0 − i
2 ln(

4−s2
0

4 ), so that
for any proper evolution ρ in B which connects (0,0) to any other point (χ ′

0, s
′
0),

∫

ρ

ω0 = f (χ ′
0, s

′
0). (18.15)

Thus, the value of
∫
ρ
ω0 is independent of the path taken between (0,0) and (χ ′

0, s
′
0)

in B.
Now suppose that |ψ(t)〉 and |ψ ′(t)〉 are proper evolutionary paths over [0, τ ] in

H such that |ψ(0)〉 = |ψ ′(0)〉, |ψ(τ)〉 ∼ |ψ ′(τ )〉, i.e. they are last point equivalent
paths, and ρ and ρ′ are their respective paths in B. If the same transformation eiθ

is applied to both of these states, then
∫

ρ

ωθ0 −
∫

ρ′
ωθ0 =

∫

ρ

ω0 −
∫

ρ′
ω0

or
∫

C
ωθ0 =

∫

C
ω0.

Here use has been made of the facts that negative signs preceding line integrals over
curves reverse the orientation of the curves and that C is the simple smooth curve
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that is the union of ρ and −ρ′. It can therefore be concluded that for any last point
equivalent paths in H the value of ω0 on C (i.e.

∫
C ω0) is invariant under pointed

weak energy gauge transformations. Furthermore, because of path independence
and since ρ and ρ′ have the same first and last points, then for any two last point
equivalent paths in H

∫

ρ

ω0 =
∫

ρ′
ω0

so that
∫

C
ω0 = 0.

Let Ω be a simple closed curve in the projective space P of H over the time
interval [0, τ ] with [ψ(0)] = [ψ(τ)] and such that its image in B is smooth and
simple. When the lift of Ω is closed, then |ψ(0)〉 = |ψ(τ)〉 and the image in B is
a loop with (0,0) as its first and last point and which intersects the χ0 and s0 axes
only at the origin. However, if the lift of Ω is not closed, then |ψ(t)〉 = eiλ|ψ(0)〉
and the image of the lift in B is a path σ which has (χ0(τ ),0) = (λ,0) as its last
point. It then follows from (18.15) that

∫

σ

ω0 = f (λ,0)= λ.
For the special case that the lift is a horizontal lift, then λ is the geometric phase and

∫

σ

ω0 =
∫

Ω

A,

where A is the associated Aharonov-Anandan connection 1-form [25]. It can there-
fore be concluded that for each such horizontal lift of anΩ in P there exists a path
σ in B for which the last equation is satisfied.
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Chapter 19
Weak Values Beyond Post-selection

Lars M. Johansen

Abstract Weak values are usually encountered in weak measurements on pre- and
post-selected systems. Here we consider experiments where a final post-selection
is replaced with an initial projector measurement. We show how weak values may
be observed both for strong and weak measurements of the projector. We also show
that the real part of the weak value emerges uniquely as a generalized conditional
expectation from a symmetry principle applied to strong measurements. [Editors
note: for a video of the talk given by Prof. Johansen at the Aharonov-80 conference
in 2012 at Chapman University, see quantum.chapman.edu/talk-26.]

19.1 Introduction

Weak values appear as a result of weak measurements with post-selection [1]. The
post-selection is essential in order to observe weak values. If one ignores the post-
selection, the same experiment simply gives the expectation value. In this note, we
will give a brief review of some other methods of observing the real part of the weak
value. We also derive the real part of the weak value from a symmetry principle.

We will first give a brief review of the standard procedure for observing weak
values. One first prepares the system in a state |ψ〉 and a probe is prepared in a state
|χ〉 (Fig. 19.1). The state of the probe |χ〉 is usually taken to be a real gaussian.

The interaction between the system and the probe is usually taken to be the im-
pulsive von Neumann interaction [2]

H = δ(t)AP, (19.1)

where A is the system observable we want to measure and P is the momentum of
the probe. This interaction produces a displacement in the probe position Q conju-
gate to the momentum P , and this displacement gives information about the system
observable A. We assume that this interaction dominates during the short interac-
tion period, so that other parts of the Hamiltonian may be ignored. Assuming that
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Fig. 19.1 Weak measurement with post-selection

Fig. 19.2 Marginal
distribution of probe position
for the interaction (19.1). The
average displacement gives
the expectation of A

Fig. 19.3 Marginal
distribution of projector
eigenvalues. In this example,
the probability of an
eigenvalue 1 is small. This
corresponds to a
post-selection being a rare
event

the position distribution of the probe is sufficiently broad, the measurement will be
weak. As a consequence, one cannot observe individual eigenvalues. Nevertheless,
if no post-selection is performed, the average displacement of the probe position Q
gives the expectation value of the observable A (see Fig. 19.2)

After the interaction, a post-selection on a state |φ〉 is performed. This is equiv-
alent to a strong measurement of a projector Πϕ = |φ〉〈φ|, where the sub-ensemble
corresponding to the eigenvalue 1 is selected (Fig. 19.3).

It then can be shown [1] that the expectation of the probe position Q after the
interaction, and conditional on a successful post-selection, is the real part of the
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Fig. 19.4 Distribution of
probe position for the
interaction (19.1) conditional
on a successful post-selection

weak value (see Fig. 19.4)

Aw = 〈ϕ|A|ψ〉
〈ϕ|ψ〉 . (19.2)

19.2 Conditional Expectations

To begin with, we give a brief derivation of an expression for conditional expecta-
tions in quantum mechanics. Consider two commuting observables X and Y with
spectral resolution

X =
∑

x

xΠx, (19.3)

Y =
∑

y

yΠy, (19.4)

where

ΠxΠx′ = δxx′Πx,
∑

x

Πx = 1, (19.5)

ΠyΠy′ = δyy′Πy,
∑

y

Πy = 1. (19.6)

By definition, the conditional expectation of X given Y = y is

E(X | Y = y)=
∑

x

xP (X = x | Y = y)=
∑

x

x
P (X = x,Y = y)
P (Y = y) . (19.7)

Since

P(Y = y) = 〈Πy〉, (19.8)

P(X = x,Y = y) = 〈ΠxΠy〉, (19.9)

we have

E(X | Y = y)=
∑
x x〈ΠxΠy〉

〈Πy〉 = 〈XΠy〉
〈Πy〉 . (19.10)
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Alternatively, we could write

E(X |Πy = 1)= 〈XΠy〉
〈Πy〉 . (19.11)

Measuring a conditional expectation of an observable X is equivalent to measuring
a correlation between X and a projector representing the condition.

The observable A that we have been considering for weak measurements does
not in general commute with the projectorΠϕ . But in a weak measurement, this ob-
servable is measured indirectly through interaction with a probe. In the Schrödinger
picture, where the time evolution is reflected in the state, all probe and system ob-
servables commute at all times.

In a weak measurement of an observable A with postselection on a state |ϕ〉, the
expectation of the probe positionQ conditional on Πϕ = 1 gives the real part of the
weak value, i.e.

〈QΠϕ〉
〈Πϕ〉 = *Aw, (19.12)

where brackets indicate averaging over the combined system + probe after the mea-
surement interaction.

It is interesting to note that the weak value (19.2) may be written as a complex
conditional expectation of A

Aw = 〈ψ |ΠϕA|ψ〉
〈ψ |Πϕ |ψ〉 . (19.13)

19.3 Weak Measurements Without Post-selection

In a weak measurement with post-selection, we use a weak interaction with a probe
to get information about the system observable A. This disturbs the system very lit-
tle, and we may afterwards get information about the projector Πϕ through a strong
measurement. But could we do it the other way around? What would be the result if
we use a weak interaction with a probe which is designed to get information about
the projector Πϕ and then measure the observable A using a strong measurement?

The measurement interaction would then take the form

H = δ(t)ΠϕP. (19.14)

This experiment is depicted in Fig. 19.5. In this case, the probe positionQ conjugate
to P will give information about the projector.

This time, if we assume that the position distribution of the probe is sufficiently
broad, we cannot observe the eigenvalues of the projector. Nevertheless, the average
displacement of the probe position Q gives the expectation value of the projector
(Fig. 19.6). However, this time we may perform a final and strong measurement of
the observable A, hence we may observe also the eigenvalues of A (Fig. 19.7).
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Fig. 19.5 Measurement where projector is measured first

Fig. 19.6 Marginal
distribution of probe position
for the interaction (19.14).
The average displacement
gives the expectation of Πϕ

Fig. 19.7 Distribution of
eigenvalues of A

But can we obtain the weak value in this experiment? Yes, in this case the weak
value emerges as a correlation between the probe and the system observable A [3],

〈QA〉
〈Q〉 = *Aw. (19.15)

So there is a symmetry here. The order of operations does not matter as long as
the first measurement is weak. We can either do a weak measurement of A or a weak
measurement of the projector. In both cases, weak values emerge from a correlation
between probe and system.
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19.4 Strong Measurements Without Post-selection

Next, we consider an experiment where the projector Πϕ is measured first, but this
time with a strong interaction [4]. This measurement disturbs the subsequent mea-
surement of A. Since we are only considering strong measurements, we don’t need
to include a description of the probe in modelling the experiment.

In this section, we need to introduce density operators in order to represent the
state after non-selective measurements. Our argument is based on the identity

*Aw = TrρsA+ 1

2

{
TrρA− TrρnA

TrρΠϕ

}
, (19.16)

which is easily verified [4]. Here we have used the notation

ρ = |ψ〉〈ψ |, (19.17)

ρs = ΠϕρΠϕ

TrρΠϕ
, (19.18)

ρn =ΠϕρΠϕ + (1 −Πϕ)ρ(1 −Πϕ). (19.19)

ρ represents the initial state, whereas ρs and ρn represent the state after a selective
and a non-selective strong measurement, respectively, of Πϕ . These measurements
should be of the Lüders type [5].

Equation (19.16) suggests a way to measure the real part of the weak value using
only strong measurements of the Lüders type [5]. A similar relation exists for the
imaginary part [4].

The first term on the r.h.s. of Eq. (19.16) is the expectation of A on a system
that has been pre-selected in the state |φ〉. The second term is proportional to the
change imposed on the expectation of A by a non-selective measurement of Πϕ .
This change will not take place in ideal classical measurements.

19.5 Derivation from a Symmetry Principle

Let us now consider the experiment in Sect. 19.4 once more, i.e., let us consider an
initial strong measurement of the Lüders type of a projectorΠϕ followed by a strong
measurement of the observable A =∑i aiΠi where ΠiΠj = δij and

∑
i Πi = 1.

But this time we shall not assume that weak values have anything to do with this
experiment. We seek to derive the conditional expectation from this experiment.

We start by analyzing a simpler experiment where the final measurement is made
only of one of the projectorsΠi in the spectral resolution of A. The joint probability
of first observing Πϕ = 1 and thereafter Πi = 1 is

Tr(ρΠϕ)Tr(ρsΠi), (19.20)
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where ρs is defined in Eq. (19.18). This joint probability contains information not
only about the initial state ρ but also the reduced state ρs . As is well known, there
does not exist any joint probability for two non-commuting projectors in quantum
mechanics. However, we may seek a “generalized probability” F which may exceed
the bounds of classical probabilities. There are many such generalized probabilities
in quantum mechanics, including the Wigner distribution [6]. We require that this
generalized probability should still satisfy a usual condition on joint probabilities,
namely that it should give the correct marginal probabilities;

F(Πϕ,Πi | ρ)+ F(Πϕ,1 −Πi | ρ) = TrρΠϕ, (19.21)

F(Πϕ,Πi | ρ)+ F(1 −Πϕ,Πi | ρ) = TrρΠi. (19.22)

F will change if the state ρ changes. In particular, F may change after a non-
selective measurement of Πϕ . Thus, we have

F(Πϕ,Πi | ρ)= F(Πϕ,Πi | ρn)+�F(Πϕ,Πi | ρ). (19.23)

This equation defines �F . A simple argument [7] shows that the first term on the
r.h.s. is determined by Eq. (19.20). Next, we shall determine �F by a symmetry
requirement, namely that �F should be invariant under orthogonal projector com-
plementation

�F(Πϕ,Πi | ρ)=�F(1 −Πϕ,Πi | ρ). (19.24)

This means that F is insensitive to whether we perform a non-selective measurement
ofΠϕ or of the orthogonal complement 1−Πϕ . Such a requirement is not unnatural,
since we obtain the same information whether we measure Πϕ or 1 −Πϕ . It may
be noted that the same invariance under non-selective measurements applies to the
state itself (including the change of the state), as reflected in Eq. (19.19).

From this requirement it follows [7] that

F(Πϕ,Πi | ρ)= *{TrρΠϕΠi
}
. (19.25)

This generalized joint probability was first studied in this general form by Dirac
[8]. We may now construct the generalized conditional probability forΠi given that
Πϕ = 1,

F(Πi |Πϕ,ρ)= F(Πϕ,Πi | ρ)
TrρΠϕ

, (19.26)

and we find that the generalized conditional expectation of A given Πϕ = 1 is

∑
aiF (Πi |Πϕ,ρ)= *Aw. (19.27)
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Chapter 20
On Superoscillations Longevity: A Windowed
Fourier Transform Approach

Y. Aharonov, F. Colombo, I. Sabadini, D.C. Struppa, and J. Tollaksen

Abstract In this paper we prove that the evolution of a superoscillating sequence
of functions YN(x), which we take as the initial value of the Schrödinger equation,
remains superoscillating for all values of the time t <

√
N . We prove this by us-

ing a windowed Fourier transform approach. [Editor’s note: for a video of the talks
given by Prof. Aharonov at the Aharonov-80 conference in 2012 at Chapman Uni-
versity, see quantum.chapman.edu/talk-3 and quantum.chapman.edu/talk-30. For
the subject of super-oscillations, the editors also recommend the video of the talk
given by Prof. Berry at the Aharonov-80 conference in 2012 at Chapman Uni-
versity, see quantum.chapman.edu/talk-6 along with the talk by Prof. Casher, see
quantum.chapman.edu/talk-21.]

20.1 Introduction

A universally accepted truth in spectral analysis is that signals, be they space depen-
dent, as in optical imaging, or time dependent, cannot have details on a scale shorter
than the shortest wavelength or shortest time period of their Fourier components.
This applies to all wave phenomenon: optical, sonic, electrical, etc. Yet, Aharonov
and his collaborators, followed shortly thereafter by Berry [1], have described a phe-
nomenon known as superoscillations which, at least apparently, seemed to violate
this principle.

This phenomenon is indeed very general. In particular, a superoscillatory func-
tion is “band-limited,” that is, its Fourier representation has a maximum wavenum-
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ber (or spatial frequency), say |kmax| ≤ 1, but it can nevertheless oscillate, over a
substantial region, at a much faster rate, say by a factor a, arbitrarily larger than 1
and therefore well outside the “allowed” spectrum. Specifically, one can show that
it is possible to approximate eiax by a sequence {∑N

j=1 cj (N)e
ikj (N,a)x}+∞

N=1 or in
brief,

∑

j

cj e
ikj x → eiax. (20.1)

At first glance, one would think that waves of the form given by the left-hand side
of Eq. (20.1) cannot distinguish features smaller than its smallest wavelength which
is about π/kmax = π , and yet a much better resolution of �x = π

a
can be achieved

within the superoscillating region. The careful reader will immediately recognize
that this apparently paradoxical phenomenon is made possible by the circumstance
that the coefficients cj and the frequencies kj all depend on N , so that the approx-
imating sequence changes its terms with the change of N . In this, one clearly sees
that this is not the usual Fourier expansion, as we discuss in more detail in [2, 3].

The superoscillation literature has been growing rapidly [4–14]. Of great interest
is the recent rapid application of superoscillations as a tool to obtain resolutions
better than allowed by the diffraction limit in a purely classical optical setting [15].
Normally, the focusing of light by a lens has limited resolution determined by about
one-half the wavelength of light used. This is not due to any imperfection in the lens,
but due to the laws of physics so that, for example, an optical microscope can only
resolve structures several hundred nanometers in size. To observe smaller structures
such as DNA, proteins, or viruses, one must use smaller wavelengths, such as X-
rays. But such probes have a variety of experimental limitations and can damage
living organisms.

In the past, attempts to achieve super-resolution of very fine features was
achieved with a very different type of phenomena, namely with evanescent waves
which only occur in the near-field. But superoscillations have many advantages over
evanescent waves: they do not require a media-substrate and can therefore penetrate
much deeper into the media than evanescent waves. The probe does not have to be
in contact with the specimen, the measurement process works very quickly, and it is
much less invasive.

These practical applications were of course preceded by many theoretical, math-
ematical developments. E.g., many of the mathematical foundations for superoscil-
lations have been clarified in a series of papers [2, 3, 16–18]. It is also known that
regions of superoscillations are typical in random fields [19], i.e. in superpositions
of plane waves with a random selection of amplitude and direction.

Superoscillations are not just an intriguing mathematical phenomenon: they have
turned out to be very useful. A recent Nature article [20] concluded that “super-
oscillation-based imaging has unbeatable advantages over other technologies. It is
non-invasive, allowing the object to be at a substantial distance from the lens, and
can operate at any wavelength from X-rays to microwaves.” New devices will al-
low for in-vivo nanometer-size imaging and manipulation of structures inside living
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cells. In this Festschrift, Chap. 21, Michael Berry has used super-oscillations to cre-
ate arbitrarily narrow radiation patterns produced by antennas.

In general, the regions of superoscillations are created at the expense of having
the function grow exponentially in other regions [1, 9, 10]. This apparently “univer-
sal” behavior thus points to one of the key disadvantages for various applications,
namely the comparatively low intensity of the super-oscillating region. With this
exponential behavior, it would therefore seem natural to expect that the superoscil-
lations would be quickly “over-taken” by tails coming from the exponential regions
and would thus be short-lived. However, it has been shown that superoscillations
are remarkably robust [15] and can last for a surprisingly long time. We have added
to this line of inquiry in a number of ways [2, 3, 16–18] and continue in this paper
by using a windowed Fourier transform approach. We have proven that the phe-
nomenon actually arises in a larger context that has never before been foreseen [17].
We have also developed a rigorous treatment of the superoscillatory phenomenon
in terms of the Taylor and the Fourier coefficients of a superoscillating sequence
[2, 3, 16–18]. We have used this treatment to deduce important properties of these
functions and have also shown how superoscillatory functions can be applied to
sequences of operators [18].

In a broader context, superoscillations are examples of unusual weak values [21]
which can be obtained for pre- and post-selected quantum systems. The impact
of weak values [21–23] and derivative works (e.g. superoscillations [24], quan-
tum random walk [25]), has been significant, with broad participation from many
physics and mathematics disciplines. More than 20 laboratories around the world
have performed experiments to verify the many novel predictions. These phe-
nomenon have proven to be very useful tools for analyzing various physical phe-
nomena, for constructing efficient devices for high precision measurements, etc.
Phenomenon which were thought to be unmeasureable, have now been seen us-
ing this new approach. As a new paradigm for the design of sensors, it is being
broadly applied to, precision Doppler frequency measurements, gravitational detec-
tors, etc.

AAV and superoscillations also led to the notion of the quantum random
walk [25]. If the coefficients for a step to the left or right were probabilities, as
would be the case in a classical random walk, then N steps of step size 1 could
generate an average displacement of

√
N , but never a distance larger than N . How-

ever when the steps are superposed with probability amplitudes, as with (20.9), then
the random walk can produce any displacement. In other words, instead of saying
that a “quantum step” is made up of probabilities, we say that a quantum step is a
superposition of the amplitude for a step “to the left” and the amplitude for a “step
to the right,” then one can superpose small Fourier components and obtain a large
shift. This has proven to be a most useful tool in quantum information. E.g., it was
recently shown that implementation of the quantum random walk would lead to a
universal quantum computer as well as a quantum simulator (to study, e.g., phase
transitions). Recent experimental realizations of the quantum random walk have
been successful (trapped atom with optical lattice and ion trap; photons in linear
optics).
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20.2 Preliminaries

20.2.1 Overview of the Mathematics of the
Aharonov-Albert-Vaidman Effect

The original insights which eventually led to superoscillations started with the ob-
servation by Aharonov, Bergmann and Lebowitz [26] (ABL) that, as a result of the
uncertainty principle, the initial boundary condition of a quantum mechanical sys-
tem can be selected independently of the final boundary conditions. Subsequently
it was demonstrated by Aharonov, Albert and Vaidman (AAV) [22, 23, 27–35] that
if non-disturbing measurements are performed on such pre- and post-selected sys-
tems, then strange outcomes will be obtained during the intermediate time. Such
outcomes depend on both the pre- and the post-selection, and can lie outside the
usually allowed eigenvalue spectrum. This was subsequently developed as the no-
tion of superoscillation [24] and by Berry as the concept of SuperFourier [1].

Traditionally, it was believed that if a measurement interaction is weakened so
that there is no disturbance on the system, then no information will be obtained.
However, it has been shown that information can be obtained even though not a
single particle (in an ensemble) was disturbed [36].

To begin with, we will recall a general theorem for Hilbert spaces. We repeat the
proof for sake of completeness.

Theorem 20.1 Let |ψ〉 be a vector in a Hilbert space H , and let Â be an operator
on H . Then

Â|ψ〉 = 〈Â〉|ψ〉 +�A|ψ⊥〉
where 〈Â〉 = 〈ψ |Â|ψ〉, �A2 = 〈ψ |(Â− 〈Â〉)2|ψ〉, and |ψ⊥〉 is a vector such that
〈ψ |ψ⊥〉 = 0.

Proof One can always write the result of any operator Â on any vector |ψ〉 as a
combination of |ψ〉 and a perpendicular vector |ψ⊥〉, i.e.

Â|ψ〉 = a|ψ〉 + b|ψ⊥〉.
In order to evaluate a we left multiply by 〈ψ | and obtain that a = 〈Â〉; as to b we
left multiply by 〈ψ |A+ and by noticing that |(A− 〈A〉)|ψ〉|2 =�A2 we conclude
the proof. �

Now, the average of any operator 〈Â〉 ≡ 〈Ψ |Â|Ψ 〉 can be measured as the “eigen-
value” of a single “collective operator,” Â(N) ≡ 1

N

∑N
i=1 Âi without causing a dis-

turbance (with Âi the same operator Â acting on the i-th particle). To see this, we
apply Theorem 20.1 to the N particle product state |Ψ (N)〉 = |ψ〉1|ψ〉2 . . . |ψ〉N
with all particles in the same state |ψ〉. We see that:

Â(N)|Ψ (N)〉 = 1

N

[
N〈Â〉|Ψ (N)〉 +�A

∑

i

|Ψ (N)⊥ (i)〉
]

(20.2)
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where 〈Â〉 is the average for any one particle and the N states

|Ψ (N)⊥ (i)〉 = |ψ〉1|ψ〉2 . . . |ψ⊥〉i . . . |ψ〉N
are mutually orthogonal. With a normalized state, |Ψ (N)⊥ 〉 =∑i

1√
N

|Ψ (N)⊥ (i)〉, the

last term of Eq. (20.2) is �A√
N

|Ψ (N)⊥ 〉 and

∣∣∣∣
�A√
N

|Ψ (N)⊥ 〉
∣∣∣∣

2

∝ 1

N
.

The probability that measuring Âi/N changes the state of the i-th system is propor-
tional to 1/N2 and therefore the probability that it changes the state of any system
is proportional to 1/N . Thus, as N → ∞, |Ψ (N)〉 becomes an eigenstate of Â(N)

with value 〈Â〉 and not even a single particle has been disturbed.
To actually make a measurement of an observable such as Â(N), we switch on

an interaction Hint = λg(t)Q̂mdÂ
(N), where Q̂md is an observable of the measuring

device (i.e. position), λ is a coupling constant which determines the strength of the
measurement, and g(t) is a normalized time profile

∫
g(t)dt = 1 which determines

the duration of the measurement (setting � = 1). We fix �Pmd = 1 for the distribu-
tion in the momentum P̂md (i.e. the pointer) which is conjugate to Q̂md. We can then
take λ� 1, in order to distinguish the shift, λ〈Â〉 from the width. In addition, fixing
λ ≤ √

N along with |Âi |< 1 ensures that the measurement does not shift any par-
ticle into an orthogonal state. While the coupling to any individual member of the
ensemble is reduced by 1

N
and therefore the probability that a measurement will dis-

turb any member of the ensemble approaches zero as 1
N

, nevertheless, information
about the average is obtained.

By adding a post-selection to these ordinary—yet weakened—von Neumann
measurements, the measuring device will register a weak value [22, 23]:

Âw = 〈Ψfin | Â | Ψin〉
〈Ψfin | Ψin〉 (20.3)

with |Ψin〉 and |Ψfin〉 the initial and final (post-selected) states. The weak-value, Âw,
is an unusual quantity and is not in general an eigenvalue of Â. Equation (20.3) can
also be motivated by inserting a complete set of states {|Ψfin〉j } into 〈Â〉

〈Â〉 = 〈Ψin|Â|Ψin〉 =
∑

j

|〈Ψfin |j Ψin〉|2 〈Ψfin |j Â | Ψin〉
〈Ψfin |j Ψin〉︸ ︷︷ ︸
A
j
w≡weak value

(20.4)

with |Ψfin〉j the states corresponding to the outcome of a final ideal measurement on
the system (i.e. the post-selection). The average 〈Â〉 over all post-selections j is thus
constructed out of pre- and post-selected sub-ensembles in which the weak value
(Ajw) is multiplied by a probability to obtain the particular post-selection |Ψfin〉j .

Having weak values outside the spectrum of the operators involved has been dis-
cussed at length in the past and has most comprehensively been investigated for
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spin-1/2 systems [1, 15, 37–42]. In addition, Berry [38] looked at superweak statis-
tics for much more general situations, and the authors proved that if the Hilbert space
is sufficiently high in dimensions, and if the pre- or post-selection are, in a sense,
‘generic’, then the existence of superweak values becomes common or typical.

We have used such limited disturbance measurements to explore many paradoxes
(see, e.g. [43–47]).

While AAV called such measurements “weak measurements” (after their non-
disturbing nature) [21], these measurements can be quite precise. Consider a large
number N of spin 1/2 particles with pre- and post-selection |Ŝz = N

2 〉 =∏Nj=1 |↑z〉j
and |Ŝx = N

2 〉 =∏Nj=1 |↑x〉j , respectively. One may measure the magnetic field with

an error of
√
N , while not disturbing more than

√
N of the spins. By way of exam-

ple, one may consider measuring the spin in a direction ξ = 45◦ relative to the x− z
plane during t ∈ [tin, tfin] using such weak measurements. This can be modeled by

a collective observable Ŝ(N)ξ ≡ 1
N

∑N
i=1{ Ŝ

i
x+Ŝiz√

2
}. In this regime, Ŝ(N)z and Ŝ(N)x can

both be measured without “disturbing” the pre- and post-selection (since they effec-
tively commute). AAV therefore predicted that the weak measurement of Ŝ(N)45 will
yield the weak value:

Ŝ45
(N)

w =
∏N
k=1〈↑z|k{Ŝ(N)z + Ŝ(N)x }∏Nj=1 |↑x〉j√

2(〈↑z|↑x〉)N

=
N
2 + N

2√
2

=
√

2

2
N ±O(√N) (20.5)

i.e. a value completely outside the spectrum of the spin operator. The possible values
for Ŝ(N)45 extend only from −N

2 to N
2 , while the weak measurement registers a result

bigger than the maximum allowed value.
We can see the phenomenon of superoscillation in this example if we focus on

the measuring device rather than the system. How can a superposition of shifts in
the pointer of the measuring device by amounts within the eigenvalue spectrum
[−N

2 ,
N
2 ] result in a shift of the pointer that is arbitrarily far outside this spectrum

(e.g.
√

2N/2)? The answer is that the pointer states of the measuring device in-
terfere constructively around the “impossible” value, and destructively for all other
values. This is a superoscillation in the Fourier transform of the pointer basis of the
measuring device. To be more precise, the final state of the measuring device is:

|ΦMD
fin 〉 =

N∏

j=1

〈↑z|j exp

{
λ

N
Q̂md

N∑

k=1

Ŝkξ

}
N∏

i=1

|↑x〉i |ΦMD
in 〉 (20.6)

= [〈↑z|↑x〉]N
{

cos
λQ̂md

N
− iαw sin

λQ̂md

N

}N
|ΦMD

in 〉 (20.7)

=
{

1 − λ2(Q̂md)
2

N2
− iλαwQ̂md

N

}N

︸ ︷︷ ︸
≡ψ(Qmd)

|ΦMD
in 〉 ≈ eiλαwQ̂md |ΦMD

in 〉 (20.8)
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where we have substituted the weak value αw ≡ (Ŝξ )w = 〈↑z|Ŝξ |↑x 〉
〈↑z|↑x 〉 . When projected

onto the pointer Pmd, we see it shifted by the weak value Ŝ(N)45 =
√

2
2 N ±O(√N).

Alternatively, we can also view the expression in the brackets of Eq. (20.8) (i.e.
ψ(Qmd)) in a very different way, by performing a binomial expansion:

ψ(Qmd)=
N∑

n=0

cn exp

{
iλQ̂md(2n−N)

N

}
(20.9)

Since the exponentials in ψ(Qmd) act as translation operators on the wavefunc-
tion of the measuring device, we see that this wavefunction is a superposition of
waves with small wavenumbers |k| ≤ 1 (k = (2n−N)

N
). For a small region (which

can include several wavelengths 2π/αw , depending on how large one chooses N ),
ψ(Qmd) appears to have a very large momentum, since αw (from Eq. (20.6)) can be
arbitrarily large. This is an example of superoscillatory phenomenon.

20.2.2 Overview of the Mathematics of Superoscillations

The work reviewed in the previous sections led to the notion of a super-oscillating
sequence [2]. Mathematically, superoscillatory sequences demonstrated that a su-
perposition of small Fourier components with a bounded Fourier spectrum, each
with modulus less or equal to 1, can nevertheless result in an oscillation by an arbi-
trarily large a, well outside the spectrum. They can be thought of as an approxima-
tion of eiax in terms of a sequence of the form

{
N∑

j=0

Cj(N,a)e
ikj (N)x

}+∞

N=0

,

where a > 1, |kj (N)| ≤ 1. The example which is usually considered prototypical
derives from the sequence of functions:

FN(x, a)=
[

cos

(
x

N

)
+ ia sin

(
x

N

)]N
=
(

1 + a
2
ei
x
N + 1 − a

2
e−i

x
N

)N
(20.10)

where a ∈R, a > 1. This sequence can be written as

N∑

j=0

Cj(N,a)e
i(1−2j/N)x

for suitable coefficients Cj (N,a). If we perform a binomial expansion of FN(x, a),
we see that the smallest wavelength in the expansion is 1. However, around |x| <√
N , FN(x, a) can be approximated as FN(x, a)≈ eiax , that is, with a wavelength

much shorter than one. This phenomenon is very general and holds for a wide range
of functions and coefficients.

Formally, we give the following definition:
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Definition 20.1 We call a sequence a superoscillating sequence if it is of the form:

YN(x, a) :=
N∑

j=0

Cj(N,a)e
ikj (N)x (20.11)

where a ∈ R, Cj (N,a) and kj (N) are real valued functions of the variables N,a
and N , respectively, and such that

• a > 1, |kj (N)| ≤ 1;
• there exists a compact subset of R, which will be called a superoscillation set, on

which YN(x, a) converges uniformly to eig(a)x where g is a continuous function
such that |g(a)| ≥ a.

In [3], we demonstrated that the evolution of a superoscillating sequence of func-
tions which are taken as the initial value of the Schrödinger equation

i
∂ψ(x, t)

∂t
=Hψ(x, t), ψ(x,0)= YN(x),

where

Hψ(x, t) := −1

2

∂2ψ(x, t)

∂x2
,

and where we have set � = m = 1, remains superoscillating for all values of the
time t <

√
N . This extends our recent results [16] where we considered the special

case in which the initial datum is ψ(x,0)= FN(x, a) as in (20.10). The arguments
we used in [16, 48] and in [3] take advantage of some refined functional analy-
sis techniques, which highlight an interesting connection between superoscillating
functions and some convolutors, which generalize infinite order differential opera-
tors.

In this paper, we prove the same result, but following a different approach which
may be considered more direct and which allows a more intuitive physical inter-
pretation. Let us briefly discuss the strategy that we will follow to prove the result.
The first step is to represent the superoscillating sequence FN(x) (we will omit
the dependence on a unless necessary) as a suitable double integral of a kernel
multiplied by a modified gaussian. This will be accomplished by means of the win-
dowed Fourier transform. The second step consists of studying an auxiliary problem,
namely the time evolution of the modified gaussians when taken as initial value for
the Schrödinger equation. The third step consists of evolving FN(x) by taking its
integral representation and evolving the modified gaussians inside it. As a final step,
we will recognize that the evolution of the modified gaussians for any fixed t and
large enough N , results again in a gaussian with asympotically the same width and
with its center translated in such a way that its tails do not interfere with the original
gaussian. In summary, the reason for the longevity of the superoscillations is the
following. The size of the tails grows at a rate proportional to aN . The exponen-
tial tails oscillate at a rate proportional to 1

a
. The exponential tail to the left of the

superoscillating region is both too slow and too far away to overcome and destroy
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the superoscillating region. The exponential tails to the right of the superoscillating
region are more of a threat to the longevity of the superoscillating region because
the faster moving superoscillating region could “catch-up” with the slower-moving
exponential tail. In this paper, we prove that the superoscillating region can survive
as long as the time t <

√
N .

Let us therefore begin by writing the functions in the superoscillating sequence as
the inverses of their windowed Fourier transform, as introduced by Gabor in [49].
According to the uncertainty principle, the energy spread of a function and of its
Fourier transform cannot be arbitrarily small simultaneously and it is well known
that the minimum of the product of these two spreads is achieved by gaussians. Mo-
tivated by this principle in quantum mechanics, in 1946 the physicist Gabor defined
what is now known as the Gabor chirp, i.e. the modified gaussian function

gu,ξ (t) := eiξ t g(t − u)
where g(t) = 1√

π
e−t2 . Using the Gabor chirp, one can define the so-called win-

dowed Fourier transform as follows:

Definition 20.2 Let f be in L2(R), then its windowed Fourier transform (also
known as the short time Fourier transform) is defined as

S(f )(u, ξ)=
∫ +∞

−∞
f (t)g(t − u)e−iξ t dt.

The following theorem is well known (see [50])

Theorem 20.2 If f is a function in L2(R) then Sf ∈ L2(R), ‖Sf ‖ = ‖f ‖ and

f (t)= 1

2π

∫ +∞

−∞

∫ +∞

−∞
Sf (u, ξ)g(t − u) exp(iξ t)dξdu.

In particular, we have:

Corollary 20.1 Let K be compact in R and let χK be its characteristic function,
then there are functions gN(x0, k0) such that

YN(x, a)=
∫

K

∫ +∞

−∞
gN(x0, k0, a) exp

(−(x − x0)
2

2�(0)2

)
exp(ik0x)dx0 dk0.

Proof After a trivial change of variable, this is an immediate consequence of Theo-
rem 20.2. �

20.3 Evolution of Superoscillations

In this section we show how to solve the auxiliary Cauchy problem for the
Schrödinger equation when the initial datum is the Gabor chirp centered at x0
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and with initially a single wave number k0, and we use this result to conclude the
longevity of superoscillations.

Specifically we consider the following problem:

i
∂φ(x, t)

∂t
= −∂

2φ(x, t)

∂x2
, φ(x,0)= exp

(
− (x − x0)

2

2�2
0

+ ik0x

)
, (20.12)

where �0 is the initial spread. We will solve this problem with a standard use of the
Fourier and anti-Fourier transforms defined by

F
[
φ(x, t)

] :=
∫

R

φ(x, t)e−ipxdx, F−1[g(p, t)
] := 1

2π

∫

R

g(p, t)eipxdp.

For simplicity we will write F[φ(x, t)] = φ̂(p, t). Taking the Fourier transform of
the Schrödinger equation we get

i
dφ̂(p, t)

dt
= p2φ̂(p, t)

and integrating we obtain

φ̂(p, t)= C(p)e−ip2t

where the arbitrary function C(p) will be determined by the initial condition. Recall
the well known Fourier transform

∫

R

e
− x2

2�2
0 e−ipx dx =

√
2π�2

0 e
−�2

0p
2

and the fact that F[g(x − x0)] = F[g(x)]e−ix0p so that we obtain

C(p)= φ̂(p,0)=
∫

R

e
− (x−x0)2

2�2
0

+ik0x

e−ipxdx =
√

2π�2
0 e

−ipx0−�2
0(p−k0)

2
.

Taking now the anti-Fourier transform F−1 we have

φ̂(p, t)= 1

2π

√
2π�2

0

∫

R

e−ipx0−�2
0(p−k0)

2
eipxdp.

Now we finally obtain (see also formula (5.4) in [51] in which we have set � =
m= 1):

φ(x, t, x0, k0)= 1

(1 + 2it)1/2
exp

(
−i k

2
0

2
t

)
exp(ik0x) exp

(
− (x − x0 − 2k0t)

2

2(�2
0 + 2it)

)

which can be written as

φ(x, t, x0, k0)= 1

(1 + 2it)1/2
exp

[
i

(
k2

0

2
t + k0x + t (x − x0 − 2k0t)

2

�4
0 + 4t2

)]

× exp

(
− (x − x0 − 2k0t)

2

2(�2
0 + 4 t

2

�2
0
)

)
.
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Since the evolution according to the Schrödinger equation of the functions in the
superoscillatory sequence is given by

YN(x, t)=
∫ ∫

gN(x0, k0)φ(x, t, x0, k0)dx0 dk0,

we are now ready to prove that the functions YN(x, t) preserve the superoscillatory
behavior of YN(x), and therefore that superoscillations persist for large values of t ,
when evolved according to the Schrödinger equation.

Theorem 20.3 Let YN(x) be a superoscillatory sequence. Then, for any fixed time t ,
its evolution YN(x, t) obtained by solving the Cauchy problem for the Schrödinger
equation with initial datum YN(x) is still a superoscillatory sequence on any arbi-
trary large set in R.

Proof For any time t we can choose an N such that t ≈ N 1
2 −ε . Now we know

that the time evolution of φ(x) is, up to the factor (1 + 2it)−1, the product of an
oscillatory function (with an amplitude of 1)

exp

[
i

(
k2

0

2
t + k0x + t (x − x0 − 2k0t)

2

�4
0 + 4t2

)]

and of a translated gaussian

exp

(
− (x − x0 − 2k0t)

2

2(�2
0 + 4 t

2

�2
0
)

)
.

We note that the spreads of these new gaussians are given by �2(t)=�2
0 + t2/�2

0

which, by the assumption on t and if we choose �0 ≈N 1
2 , are approximatively the

same at any given moment. Now observe that this wave packet has width approxi-
mately equal to

√
N and therefore if we consider it centered in the point x0 + 2k0t

and so in the interval [λ√N, (λ+ 1)
√
N ] for some λ, we see that its contribution

outside its spread does not interfere with the original superoscillatory region. �
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Chapter 21
Superoscillations, Endfire and Supergain

M.V. Berry

Abstract Superoscillatory functions vary faster than their fastest Fourier compo-
nent. Here they are employed to give an alternative description and explicit recipe
for creating endfire arrays with supergain, that is antennas with radiation pat-
terns concentrated in an arbitrarily narrow angular range and of arbitrary form.
Two examples are radiation patterns described by sinc and Gaussian functions.
[Editor’s note: for a video of the talk given by Prof. Berry (titled ‘Weak Value
Probabilities’) at the Aharonov-80 conference in 2012 at Chapman University, see
quantum.chapman.edu/talk-6.]

Dedicated to Yakir Aharonov on his 80th birthday: still quick, still deep, still subtle.

21.1 Introduction

The three elements of the title are connected. My aim here is to show how, in the
hope of giving further insight into them.

A central ingredient of Aharonov’s weak measurement scheme [1–3] is the con-
cept of superoscillations. This is a property of band-limited functions: they can os-
cillate arbitrarily faster than their fastest Fourier component, over arbitrarily long
intervals [4–6]. The price paid for this apparently paradoxical behaviour is that the
functions are exponentially larger outside the superoscillatory region than in it.

An endfire array is an antenna in the form of a set of radiating sources arranged
on a line (Fig. 21.1), the object of interest being the radiation pattern, that is, the an-
gular distribution of wave intensity in the far field. It has been known at least since
the 1940s [7–10] that if the array contains sufficiently many sources their strengths
and phases can be so arranged that the radiation pattern is confined to an arbitrarily
narrow region near the forward direction, even if the line containing all the sources

M.V. Berry (B)
H H Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, UK
e-mail: asymptotico@bristol.ac.uk

D.C. Struppa, J.M. Tollaksen (eds.), Quantum Theory: A Two-Time Success Story,
DOI 10.1007/978-88-470-5217-8_21, © Springer-Verlag Italia 2014
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Fig. 21.1 Geometry and
notation for endfire array with
N + 1 radiating sources

is arbitrarily smaller than the wavelength of the radiation. This phenomenon, appar-
ently contradicting diffraction-theory folklore about resolving power, is supergain
(also called superdirectivity). The concept, originating in radar physics, has been
applied in optics [11–17].

Section 21.2 gives a general theory of supergain in terms of superoscillations,
leading to a simple recipe for creating radiation patterns of any form, and connects
this with the traditional explanation involving complex-variable theory. Section 21.3
gives two explicit examples: radiation patterns in the form of sinc functions and
gaussians.

21.2 General Theory

Consider N + 1 sources (N even) arranged uniformly on a line of length L
(Fig. 21.1), so their spacing is l = L/N . The sources are point radiators of
monochromatic scalar waves with wave length λ and wavenumber k = 2π/λ. With
excitation amplitudes Am, the far-field angular amplitude is

ψ(θ) =
1
2N∑

m=− 1
2N

Am exp(−imkl cos θ + imkl)

=
1
2N∑

m=− 1
2N

Am exp

(
2imkl sin2 1

2
θ

)
. (21.1)

The phases imkl have been included so that if all the Am have the same phase the
sources add coherently in the forward direction θ = 0.

In this simplest case—all the Am equal—the angular distribution is

Am = 1

N + 1
, ψ(θ)= sin( (N+1)

N
kL sin2 1

2θ)

(N + 1) sin( 1
N
kL sin2 1

2θ)
≈ sin(kL sin2 1

2θ)

kL sin2 1
2θ

. (21.2)

The zero-amplitude directions (‘cones of silence’) are

θn = 2 sin−1

√
πNn

(N + 1)kL
, 1 ≤ |n| ≤ kL

π
= 2L

λ
. (21.3)
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Fig. 21.2 Radiation patterns
without supergain: polar plots
of ψ2(θ) given by (21.2) for
the indicated values of kL.
The dots indicate the origin
ψ2(θ), and the dashed lines
indicate the forward direction
θ = 0

In particular, for large N , representing a line source, and kL� 1, the first zero is

θ1 ≈ 2

√
π

kL
, (21.4)

as expected on the basis of the Rayleigh resolution criterion. As is well known, and
as Fig. 21.2 illustrates, a narrow radiation pattern requires kL� 1.

However, by suitable choice of the strengths and phases of the amplitudes Am it
is possible to create radiation patterns as narrow as desired and indeed of arbitrary
shape, even for kL� 1, i.e. L� λ—that is, to get supergain. To achieve super-
gain using superoscillatory functions, we first note that θ is not the natural variable,
because ψ(θ) in (21.1), is not band-limited. This follows from the Bessel-Fourier
relation

exp(it cos θ)=
∞∑

n=−∞
inJn(t) exp(inθ), (21.5)

indicating that each term in (21.1) contains infinitely many angular Fourier compo-
nents (i.e. angular momenta). However, defining the new variable x by

x ≡ kL sin2 1

2
θ (21.6)

gives the function

f (x)=ψ(θ)=
1
2N∑

m=− 1
2N

Am exp

(
2imx

N

)
, (21.7)

which is band-limited, with largest Fourier components proportional to exp(±ix).
It is possible to create such functions with arbitrarily fast oscillations for small

|x|, e.g.

fsuper(x, a)≈ exp(iax)
(
a > 1, |x| � 1,N � 1

)
. (21.8)
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The most familiar and much-studied [13] superoscillatory function, to be used
extensively in the following, is

fsuper(x)=
(

cos
x

N
+ ia sin

x

N

)N
. (21.9)

This is periodic in x with period N . The small-x approximation exp(iax) oscil-
lates rapidly but does not lead to a concentrated radiation pattern.

However, the simple procedure of integrating over the scale variable a, with a
suitable weight function, enables any radiation pattern to be created, including the
narrow ones corresponding to supergain. (This is a simplified variant, suggested
to me by Professor Sandu Popescu, of a procedure previously used in an acoustic
example in Sect. 4 of [4].) Let g(a) be the Fourier transform of the desired angular
amplitude, and construct the function

f (x)=
∫ ∞

−∞
dafsuper(x, a)g(a). (21.10)

Then, for |x| � 1, f (x) has, from (21.8), the desired form

f (x)≈
∫ ∞

−∞
da exp(iax)g(a). (21.11)

If g(a) is even, as it will be in the examples in Sect. 21.3, f (x) is a real function.
The radiation pattern thus constructed is

ψ(θ)= f
(
kL sin2 1

2
θ

)
. (21.12)

As θ increases, this samples f (x) from x = 0, corresponding to θ = 0, to xmax=
kL, corresponding to the backward direction θ = π . It is necessary to take N large
enough to ensure that xmax lies in the superoscillatory interval where (21.8) applies,
and this will be illustrated in Sect. 21.3. For x > xmax (‘beyond backwards’) the
values of θ given by (21.6) would be complex.

The formula (21.12) represents the far field. We will see that the coefficients
Am, whose near-cancellation is responsible for supergain, take enormously large
values (see Fig. 21.5 later). This implies that the wave intensity in the near field is
correspondingly large, a phenomenon responsible for the well-known inefficiency
of supergain antennas [8–10].

The conventional way of understanding supergain [7, 11] is via the complex vari-
able

z= exp

(
2ix

N

)
= exp

(
2ikl sin2 1

2
θ

)
, (21.13)
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and the corresponding function

F(z)=ψ(θ)= f (x)=
1
2N∑

m=− 1
2N

Amz
m. (21.14)

Physical directions −π ≤ θ ≤ π (i.e. real θ , so sin2(θ/2)≤ 1) correspond to z on
the unit circle and | arg z| ≤ 2kl; for fixed L, this region shrinks towards the forward
direction z= 1 asN increases. The zeros of F(z) correspond to the cones of silence.
In the simplest case discussed earlier, in which all Am are in phase, we have

Am = 1

N + 1
, F (z)= (zN+1 − 1)

(z− 1)
, (21.15)

whose zeros, uniformly distributed round the circle, are the (N + 1)th roots of unity
with z = 1 excluded. Supergain [11] corresponds to choosing the Am so that the
zeros, whose density increases with N , get concentrated into the physical region
near arg z� 1, that is, near the forward direction.

21.3 Examples: Sinc and Gaussian Radiation Patterns

21.3.1 Sinc Radiation Pattern

The simplest implementation of (21.10) is to make g(a) constant on a finite interval
and zero outside, that is, the Fourier transform of the sinc function. Then if the width
of the interval is 2/w, the function f (x) given by (21.10) is

f (x,w) = 2w
∫ 1/w

−1/w
dafsuper(x, a)

= w

(N + 1) sin x
N

Im

[(
cos

x

N
+ i

w
sin
x

N

)N+1]
, (21.16)

and the radiation pattern is

ψ(θ,w) = w

(N + 1) sin(kl sin2 1
2θ)

× Im

[(
cos

(
kl sin2 1

2
θ

)
+ i

w
sin

(
kl sin2 1

2
θ

))N+1]
. (21.17)

When w = 1, this reproduces the radiation pattern of a line of coherently radiat-
ing sources (Eq. (21.2)). Otherwise, the analogous relation to (21.8) for small x and
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Fig. 21.3 Radiation patterns with supergain: polar plots of the sinc-based pattern ψ2(θ) given by
(21.17) for kL= π/2 (that is, an endfire array of length L= λ/4), and w = 1/40, for the indicated
values of N . The dots indicate the origin ψ = 0, and the dashed lines indicate the forward direction
θ = 0

Fig. 21.4 Modulus of sinc-based function |f (x,1/40)| (Eq. (21.16)) for N = 100. (a) includes a
complete period |x| ≤ 50π , and the sinc function near the origin is invisible; (b) includes the much
smaller range |x| ≤ 0.2π , revealing the sinc

large N , namely

f (x,w)≈ sin(x/w)

(x/w)
(x� 1,N � 1), (21.18)

gives the approximate pattern

ψ(θ,w)≈ w sin( kL
w

sin2 1
2θ)

kL sin2 1
2θ

, (21.19)

and hence supergain if w < 1. Figure 21.3 shows how supergain emerges as N
increases, in the form of a narrow sinc radiation pattern for a short endfire array
with length L= λ/4, and the small value w = 1/40.

When N is too small, the radiation is concentrated near the backward direction
(e.g. for N = 200 in Fig. 21.3), because the limiting value xmax= kL sampled in
f (x,w) (Eq. (21.16)) is outside the region near x = 0 where the desired sinc func-
tion occurs, and instead lies in the exponentially large region beyond. Figure 21.4
illustrates the enormous disparity of values between these regions. For a quantitative
understanding, we approximate ψ(θ) in (21.17) near θ = π and for w < kL:

ψ(π −μ) ≈
(
w

kL

)
sin

(
kL

w

(
1 − 1

4
μ2
))

× exp

(
1

2N

(
kL

w

)2(
1 −w2)

(
1 − 1

2
μ2
))

(μ� 1). (21.20)
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This is exponentially large unless N exceeds a critical value Nc, which can be
defined by requiring ψ2, averaged over the oscillations near θ = π , to equal the
value ψ(θ = 0) = 1. For N > Nc, the value near θ = π is exponentially small,
corresponding to supergain. From (21.20),

Nc =
(
kL

w

)2
(1 −w2)

2 log
√

2kL
w

. (21.21)

For the parameters of Fig. 21.3, Nc = 440, in fair agreement with the crossover
to supergain.

The zeros of the radiation pattern are the directions

θn = 2 sin−1

√
N

kL
tan−1

(
w tan

nπ

N + 1

) (
1 ≤ |n| ≤ 1

2
N

)
. (21.22)

When w = 1 these cones of silence coincide with those of the equally phased
array in (21.3). For small w they cluster closer to θ = 0:

θn ≈ 2

√
wnπ

kL
(w� 1,N � 1, n�N). (21.23)

In terms of the variable z of conventional supergain theory, the zeros cluster
closer to z= 1 on the unit circle.

The remarkable superdirectivity accomplished by superoscillation is a conse-
quence of near-destructive interference between successive sources. For the pattern
(21.17), the excitation amplitudes in (21.16) are

Am(w) = wN !
2N+1( 1

2N +m)!( 1
2N −m)!

∫ 1/w

−1/w
da
(
1 − a2) 1

2N
(

1 + a
1 − a

)m

= wN !
2

1
2N−m+1( 1

2N −m)!

×
1
2N+m∑

k=0

(−1)
1
2N−m( 1

w
− 1)

1
2N−m+k+1 + (−1)k( 1

w
+ 1)

1
2N−m+k+1

2kk!( 1
2N +m− k)!( 1

2N −m+ k + 1)
.

(21.24)

(The sum can be expressed in terms of incomplete beta functions.) It is clear that
A−m(w) = Am(w), so we need study only m ≥ 0. The simplest case is w = 1, for
which Am(1) = 1/(N + 1), corresponding to all sources in phase. For general w,
the coefficients for the first few values of N are shown in Table 21.1.

The case of interest for supergain is N � 1, w < 1. Then Stirling’s formula, and
expansion of the integrands about their maxima, gives the asymptotics in terms of
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Table 21.1 Coefficients Am(w) for N = 2, 4, 6

N = 2 N = 4 N = 6

m= 0 1
6w2 (−1 + 3w2) 1

40w4 (3 − 10w2 + 15w4) 1
112w6 (−5 + 7w2(3 − 5w2 + 5w4))

m= 1 1
12w2 (1 + 3w2) 1

20w4 (−1 + 5w4) 1
448w6 (15 + 7w2(−3 − 5w2 + 15w4))

m= 2 1
80w4 (1 + 10w2 + 5w4) 1

224w6 (−3 + 7w2(−3 + 5w2 + 3w4))

m= 3 1
448w6 (1 + 7w2(3 + 5w2 +w4))

Fig. 21.5 Points: moduli of excitation coefficients Am (Eq. (21.24)) for endfire array with
N + 1 = 101 radiating sources, for (a) w = 0.7, (b) w = 0.4, (c) w = 0.2, (d) w = 0.01. The
curves show the approximation (21.25)

two Gaussians:

Am(w) ≈ (−1)
1
2N+m

N
3
2wN

√
2π(1 −w2)

[
exp

(
−2(m− 1

2Nw)
2

N(1 −w2)

)

+ exp

(
−2(m+ 1

2Nw)
2

N(1 −w2)

)]
. (21.25)

Note the alternating signs, indicating the near-cancellation responsible for su-
pergain. Figure 21.5 shows the moduli of the coefficients. The agreement with the
asymptotic formula appears excellent. However, using (21.25) instead of the exact
coefficients in (21.1) leads to numerical instability and no hint of supergain: the
interference is far too delicate to be captured by this lowest level of asymptotics.
(For w > 1, the asymptotics is different: all amplitudes are in phase and there is no
supergain.)
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Fig. 21.6 Modulus of Gaussian-based function |f (x,1/40)| (Eq. (21.26)) for N = 100. (a) in-
cludes a complete period |x| ≤ 50π , and the Gaussian near the origin is invisible; (b) includes the
much smaller range |x| ≤ 0.117π , revealing the Gaussian

Fig. 21.7 As Fig. 21.3, for
the Gaussian-based function
generated from (21.26) using
(21.12), with w = 1/20

21.3.2 Gaussian Radiation Pattern

The simplest example of a desired radiation pattern without zeros is the Gaussian,
for which (21.10) is

f (x,w)= w√
2π

∫ ∞

−∞
dafsuper(x, a) exp

(
−1

2
a2w2

)

= sinN(x/N)

(N + 1)wN2N/2

(
w√

2
cot

(
x

N

)
HN+1

(
w√

2
cot

(
x

N

))

− 1

2
HN+2

(
w√

2
cot

(
x

N

)))
, (21.26)

whereH denotes the Hermite polynomials. For small x, this gives the desired Gaus-
sian with width w, and supergain for w < 1:

f (x,w)≈ exp

(
− x2

2w2

)
(x� 1). (21.27)

(This limiting form, obvious from (21.11), can also be obtained from (21.26) by a
large N resummation of the power series for the Hermite polynomials.) As in the
case of the sinc pattern, enormous magnification is required to see the Gaussian, as
Fig. 21.6 illustrates.

Some of the corresponding radiation patterns, obtained by the substitution
(21.12), are shown in Fig. 21.7. In this case, the crossover to supergain as N in-
creases is much more sensitive than in the sinc case (cf. Fig. 21.3).
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Chapter 22
Relating Local Time Evolutions with Bipartite
States: An Exact Map Manifested by Weak
Measurements

S. Marcovitch and B. Reznik

Abstract We suggest a natural mapping between bipartite states and quantum evo-
lutions of local states, which is a Jamiolkowski map. It is shown that spatial corre-
lations of weak measurements in bi-partite systems precisely coincide with tempo-
ral correlations of local systems. This mapping has several practical and conceptual
implications on the correspondence between Bell and Leggett-Garg inequalities, the
statistical properties of evolutions in large systems, temporal decoherence and com-
putational gain, in evaluation of spatial correlations of large systems. [Editor’s note:
for a video of the talk given by Prof. Reznik at the Aharonov-80 conference in 2012
at Chapman University, see quantum.chapman.edu/talk-23.]

22.1 Introduction

The quantum mechanical nature of bipartite states is well known. Among bipartite
states the maximally entangled ones manifest maximal nonlocality, a unique prop-
erty of quantum theory. These states may be regarded as possessing the highest
degree of quantumness. One may expect that in the time domain unitary evolutions
would manifest the highest degree of quantumness too, as they describe evolutions
without environment interference. But how do we test the quantum mechanical na-
ture of evolutions? Using tomography of states at different times the evolution and
environment traces can be tracked given a known pure state to begin with. How-
ever, this method is indirect. In particular, with tomography the evolution of the
maximally mixed state cannot be tested.

The temporal correlations of observables before and after the tested dynamics,
however, provide a direct examination of the evolution. In this letter we construct
a Jamiolkowski map [1] between the space of bipartite systems ρAB ∈ HA ⊗ HB
and the space of time evolutions transforming systems from Hilbert spaces HA to
HB . In this map spatial correlations of two separated operators in bipartite systems
precisely coincide with the temporal correlations of the mapped operators in local
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Table 22.1 one-to-one map between time evolutions and bipartite states

Temporal (assuming the system is maximally
mixed ρS = I/dA)

Spatial

Pure evolution Pure bipartite system

M = √
dA
∑
ij α

∗
ji |i〉〈j | where ρS →MρSM

† |ψAB 〉 =∑ij αij |i〉 ⊗ |j〉
Tr[M†MρS ] = 1 〈ψAB |ψAB 〉 = 1

Unitary evolutionM =U, UU† = I Maximally entangled |ψAB 〉
Selective projectorM = √

dA|i〉〈j | Product state |ψAB 〉 = |i〉 ⊗ |j〉

Mixed evolution (
∑
pμ = 1) Mixed bipartite system (

∑
pμ = 1)

{Mμ, pμ} : ρS →∑
μ pμMμρSM

†
μ {|ψμAB 〉, pμ} : ρAB =∑μ pμ|ψμAB 〉〈ψμAB |

Non-selective environment
∑
μ pμM

†
μMμ = I ρA = I/dA, ρB = I/dB

Representation transformation with unitary U Representation transformation with unitary U

Ñν =Uνμ√
pμMμ (un-normalized) |φ̃νAB 〉 =Uνμ√

pμ|ψμAB 〉 (un-normalized)

Nν = Ñν/
√

Tr(Ñ†
ν ÑνρS), qν = Tr(Ñ†

ν ÑνρS) |φν〉 = |φ̃ν〉/
√

〈φ̃ν |φ̃ν〉, qν = 〈φ̃ν |φ̃ν〉
ρS →∑

ν qνNνρSN
†
ν ρAB =∑ν qν |φνAB 〉〈φνAB |

systems. Thus, the entanglement between A and B is mapped to a correlation be-
tween the past and the future, which characterize the evolutions of systems and their
quantum mechanical nature.

The suggested one-to-one map provide interesting physical consequences, as
shown schematically in Table 22.1. In particular, the maximally entangled states
are mapped to unitary evolutions—making explicit the expectation that unitary evo-
lutions in dynamical processes are as maximal entangled states in bipartite systems.
Non-maximally entangled states correspond to evolutions under the influence of se-
lective measurements wherein the environment is observed and one particular out-
come is selected. Specifically, pure product states correspond to selective projector
measurements. Mixed bipartite systems are mapped to mixtures of the correspond-
ing evolutions which are described by Kraus representation [2]. Closed systems
with non-selective environment correspond to bipartite states in which the reduced
density matrices are the maximally mixed ones.

The map we suggest has no natural generalization to the multipartite case. Nev-
ertheless, we find that this limit strengthens the physical nature of the map, as it is
sensitive to the uniqueness of the one dimensional time with respect to space. In
particular, a tripartite state has no inherent order, whereas three events in time are
not symmetric under all permutations. Another feature of multipartite states which
is not satisfied in the temporal setting is the monogamy of entanglement [3]. If two
qubitsA and B are maximally entangled, they cannot be correlated at all with a third
qubit C. In the temporal case, however, we can arrange simple scenarios in which
any pair of instances among t1, t2, t3 etc. is maximally correlated.

It may be argued that in general two sequentially measured operators do not com-
mute and effect each other due to the uncertainty principle. Therefore, the temporal
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Fig. 22.1 Mapping of bipartite states to time evolutions. (a) A local state with initial and final
boundary states ρin

S and ρfi
S respectively is weakly measured at t1 < 0 and t2 > 0 by O1 and O2 re-

spectively, where the system undergoes an instantaneous evolution given by Kraus operators {Mμ}
at t = 0. (b) A and B share a bipartite state ρAB and weakly measure it by OA and OB respec-
tively. The system has local final boundary states ρfi

A and ρfi
B . ρAB , OA(xA), OB(xB), ρfi

A and ρfi
B

are mapped to {Mμ}, O1(t1), O2(t2), ρin
S and ρfi

S , respectively. Inset. Realization of post-selection
to a mixed state by interaction with ancilla and post selecting both the system and the ancilla to
pure states

correlations are limited to the formalistic analysis, and cannot be measured. How-
ever, as is well known, there is a trade-off between the accuracy of the measurement
and the disturbance caused to the system [4]. The limit in which individual measure-
ments provide vanishing information gain was first analyzed by Aharonov et al. [5]
and was termed weak measurements. Since weak measurements only slightly disturb
the systems, they provide a non-destructive and operational method for measuring
temporal correlations by which the effect of evolutions can be measured directly.

One may have noticed that the system in the temporal setting has no counterpart
in the spatial setting—it is the evolution that maps to a bipartite system. In Table 22.1
we indeed assume a trivial initial system in the temporal setting ρinS = I/dA. To
overcome this we extend the mapping to include any initial system in the temporal
setting. Surprisingly, this state is mapped to a local final boundary condition in the
spatial setting, that is a boundary conditions of only one of the parties. Pleasantly, a
final boundary condition in the temporal setting then corresponds to a final boundary
condition of the second party in the spatial setting. This construction is illustrated
by the correspondence of Fig. 22.1 (a) and (b).

The paper is organized as follows. In the following section we set the ground
for the mapping by introducing generalized time evolutions. In Sect. 22.3 we define
the map between time evolutions and bipartite states. In this section we provide the
main result regarding the equality of temporal and spatial correlations and show that
a non-selective environment corresponds to a bipartite state in which any reduced
density matrix equals the maximally mixed state. In addition we show in Sect. 22.3
that the temporal (and spatial) correlations can be measured by utilizing weak mea-
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surements. In Sect. 22.4 we generalize the map to include boundary conditions.
In Sect. 22.5 we provide proofs of the results in Sects. 22.3–22.6. In Sect. 22.6
we suggest several implications of the suggested map: manifestation of state inde-
pendent decoherence, the correspondence between Bell [6] and Leggett-Garg [7]
inequalities, the statistical properties of evolutions in large systems, and computa-
tional gain, in evaluation of spatial correlations in large systems. We conclude in
Sect. 22.7.

22.2 Generalized Time Evolutions

To set the ground for the mapping let us first discuss generalized time evolutions.
The evolution of a system ρS , subject to interaction with a larger system, is most
generally described as a completely positive map given by Kraus operators {Mμ}:

ρS →
K∑

μ=1

MμρSM
†
μ, (22.1)

where
∑

μ

M †
μMμ = I. (22.2)

Beyond the trivial unitary evolutions ρS → UρSU
†, Kraus operators describe evo-

lutions due to the interaction with an environment.
We will adopt a normalization in which the Kraus operators Mμ are normalized

such that

Tr
(
M†
μMμ

)= dA (22.3)

transforming Eqs. (22.1, 22.2) to

ρS →
K∑

μ=1

pμMμρSM
†
μ, (22.4)

∑

μ

pμM
†
μMμ = I. (22.5)

whereMμ ≡ Mμ/
√
pμ and pμ ≡ Tr(M †

μMμ)/dA.
Equations (22.4, 22.5) (or 22.1, 22.2) provide the most general description of the

evolution of a system which is part of a larger closed system. However, these Eqs. do
not describe the scenario in which an external observer measures the environment
and selects a single outcome. In order to describe the effect of a selective measure-
ment of Kraus operator Mμ, we remove the constraint imposed in Eq. (22.5), set
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pμ = 1 and describe the evolution by ρS →M ′
μρSM

′†
μ, whereM ′

μ is normalized to

preserve the trace of the density matrixM ′
μ =Mμ/

√
Tr(M†

μMμρS).

Moreover, the selective setting can be generalized to more than a single selection
since now the pμ are not fixed by the constraint imposed in Eq. (22.5). One may
choose to selectMμ with probability pμ, and to select one or many otherMν ’s with
probabilities pν . In this case the normalization of theMμ changes according to

M ′
μ = Mμ√

Tr[∑ν pνM
†
νMνρS]

, (22.6)

in order to preserve the trace of ρS →∑
μ pμM

′
μρSM

′†
μ. Note that a set of normal-

ized Kraus operators and probabilities {Mμ,pμ} is unique, where in case Eq. (22.5)
is satisfied, the set corresponds to a non-selective environment. Otherwise one
should renormalize theMμ toM ′

μ according to Eq. (22.6).
Clearly, a set of Kraus operators and probabilities {M ′

μ, pμ} is not unique. It can
be transformed to a set {N ′

ν, qν} with a unitary transformation UK×K , producing
the un-normalized operator Ñ ′

ν =Uνμ√
pμM

′
μ. Then qν = Tr(Ñ

′†
ν Ñ

′
νρS) and N ′

ν =
Ñ ′
ν/

√
qν . Again one can represent the set {N ′

ν, qν} by the canonical set {Nν,qν} in
which the Nν are normalized according to Eq. (22.3).

22.3 The Map

In the temporal setting we assume an initially prepared system ρin
S with dimension

dA and internal Hamiltonian H0 is subject to an evolution described by Kraus op-
erators (as normalized in Eq. 22.6), which without loss of generality we take as
instantaneous at time t = 0. In addition, for clarity we assume the internal Hamilto-
nian in the spatial setting vanishes.

Following a formal definition of the map between time evolutions and bipartite
states. Any pure bipartite state is mapped to a single (normalized) Kraus operator
by

|ψμ〉 =
∑

ij

α
μ
ij |i〉 ⊗ |j 〉 ⇔ Mμ =√dA

∑

ij

αz∗ji |i〉〈j |. (22.7)

where dA is the dimension of HA, 1 ≤ i ≤ dA, and dB of HB , 1 ≤ j ≤ dB . The map
extends to mixed states/evolutions by convex combinations:

ρAB =
∑

μ

pμ|ψμ〉〈ψμ| ⇔ ρS →
∑

μ

pμM
′†
μ ρSM

′
μ, (22.8)

where M ′
μ are given by Eq. (22.6). Note that the map does not define a spatial

correspondence to the initial state in the temporal setting ρin
S . We shall assume (for
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now) that this state is maximally mixed ρS = I/dA. Nontrivial initial (and final)
boundary conditions are discussed in the following.

In Table 22.1 the correspondence between evolutions and states is given for sev-
eral cases. In particular, it is evident from Eqs. (22.7), (22.8) that maximally entan-
gled states are mapped to unitary evolutions.

Lemma 22.1 Non-selective environment in the temporal setting maps to a state ρAB
in which each of the reduced states is maximally mixed.

Lemma 22.1 strengthens the physical essence of the map. A non-selective envi-
ronment is one in which the future is still not known. This is mapped in the spatial
setting to the scenario in which locally each party is maximally ignorant regarding
her state.

Before stating our main result we would like to discuss temporal correlations.1

Let there be two Hermitian operators O1(t1), O2(t2) given in the Heisenberg repre-
sentation

Oi(ti)= eiH0tiOie
−iH0ti (taking � = 1). (22.9)

Clearly, the effect of Kraus operators Mμ on the evolution of observable O is
exactly as that of the density operator: O →∑

μMμOM †
μ . Therefore, the most

straightforward definition of the temporal correlation of two operators O1 and O2

at instances t1 and t2 respectively is given by

E
[
O2(t2)O1(t1)

]= 1

dA
Tr

[
O2(t2)

∑

μ

pμM
′
μO1(t1)M

′†
μ

]
, (22.10)

where d−1
A is a normalization factor.

Theorem 22.1 Let there be two Hermitian operators in the temporal settingO1(t1),
O2(t2), t1 < 0< t2, and in the spatial setting OA(xA), OB(xB), such that O1(t1)=
OA(xA), O2(t2) = OB(xB)∗. Given the mapping defined in Eqs. (22.7, 22.8), the
temporal and spatial correlations equal:

1

dA
Tr

[
O2

∑

μ

pμM
′
μO1M

′†
μ

]
= Tr[OA ⊗OBρAB ], (22.11)

where we omit the t and x parameters from now on. This mapping is illustrated in
Fig. 22.1, where for now we assume that in the temporal setting the state is ρS =
I/dA and no final boundary conditions are assumed.

1Throughout the paper the term correlation corresponds to the expectation of the product of op-
erators, sometimes regarded as correlator, without subtracting the first moments as required in the
statistical definition of the term.
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Corollary 22.1 The expectation values of the single operators equal as well:

E(O1)=E(OA), E(O2)=E(OB). (22.12)

Equation (22.11) is symmetric to the exchange of indices A and B , given that
we take M

′t
μ instead of M ′

μ and t → −t . That is, given a point in spacetime the
mapping is symmetric under time and space reflections. The map above has no
natural generalization to the multipartite case, as can be seen from the structure of
Eq. (22.7). Nevertheless, we find that this limit strengthens the physical nature of
the map, as it is sensitive to the uniqueness of the one dimensional time with respect
to space. In particular, a tripartite state has no inherent order, whereas three events in
time are not symmetric under all permutations. Another feature of multipartite states
which is not satisfied in the temporal setting is the monogamy of entanglement [3].
If two qubits A and B are maximally entangled, they cannot be correlated at all with
a third qubit C. In the temporal case, however, we can chooseM = I . Then any pair
of instances among t1, t2, t3 etc. is maximally correlated.

22.3.1 Measuring the Temporal Correlation with Weak
Measurements

Let us now utilize weak measurements [5] to show that the temporal correlation in
the LHS of Eq. (22.11) can be measured. We assume that the system is measured
weakly (and instantaneously) at t1 < 0 and t2 > 0 by operators O1(t1) and O2(t2)

with two pointer readings q1 and q2 respectively, as illustrated in Fig. 22.1(a).

Lemma 22.2 The correlation of the instruments’ pointers is given by:

E(q1q2)= 1

2
Tr

[
O2

∑

μ

pμM
′
μ

{
O1, ρ

in
S

}
M

′†
μ

]
, (22.13)

which includes both selective and non-selective measurements. Eq. (22.13) reduces
to the temporal correlation in the LHS of Eq. (22.11) given that ρin

S = I/dA. See re-
lated results in the context of unitary evolutions for correlations of two-level system
with continuous weak measurements [8], in the context of post-selection [9–11] and
of two sequential measurements [12, 13].

In the spatial setting we assume that the initially prepared bipartite system ρAB
is measured by parties A and B with operators OA and OB with pointers qA and
qB respectively, as illustrated in Fig. 22.1(b). Note that the spatial correlation in
the RHS of Eq. (22.11) can be measured with regular strong measurements. But an
immediate consequence of Eq. (22.13) is that given weak measurements

E
(
qweak
A qweak

B

)= Tr[OA ⊗OBρAB ]. (22.14)
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Weak measurements in the spatial setting will become essential in the following
generalization of the map to include boundary conditions.

Notice that if ρin
S is the initial state in the temporal setting andM = I , three weak

measurements O1, O2 and O3 at times t1 < t2 < t3 yield

E(q1q2q3)= 1

4
Tr
[
O3,

{
O2,

{
O1, ρ

in
S

}}]
. (22.15)

In contrast to weak measurements at two times, Eq. (22.15) implies that the corre-
lation of three depends on their order, in contradiction with the multipartite spatial
scenario.

22.4 Generalizing the Map to Include Boundary Conditions

Remarkably, the mapping above can be generalized to the case that the initial state
in the temporal setting is not maximally mixed. In this case the state corresponds
to a local final boundary condition of one of the parties in the spatial setting. In
addition, a final boundary condition in the temporal setting corresponds to a local
final boundary condition of the second party in the spatial setting. Explicitly, in the
case of an initial state ρS and a final boundary state ρfi

S with dimension dB in the
temporal setting, Eq. (22.13) generalizes to

E(q1q2)= 1

4
Tr

[
ρfi
S

{
O2,

∑

μ

pμM
′
μ

{
O1, ρ

in
S

}
M

′†
μ

}]
, (22.16)

where

M ′
μ = Mμ√

Tr[ρfi
S

∑
ν pνMνρ

in
S M

†
ν ]
. (22.17)

Physically, one can create a final mixed boundary state by post-selecting the state
and an ancilla as described in the inset of Fig. 22.1. Note that no final boundary state
is equivalent to having a maximally distributed final state ρfi

S = I/dB .
In the spatial setting, having boundary states ρfi

A in A and ρfi
B in B generalizes

Eq. (22.14) using Eq. (22.16) to

E
(
qweak
A qweak

B

)= Tr[ρfi
A ⊗ ρfi

B{IA ⊗OB, {OA ⊗ IB,ρAB}}]
4Tr[(ρfi

A ⊗ ρfi
B)ρAB ] . (22.18)

Note that given final boundary states in the spatial setting weak and strong mea-
surements provide different results, where the mapping applies only to the weak
measurement regime.

Theorem 22.2 Given that ρin
S = ρfi

A, and ρfi
S = ρf i∗B , Theorem 22.1 generalizes to

E(q1q2)=E(qweak
A qweak

B ) or explicitly,
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1

4
Tr

[
ρfi
S

{
O2,

∑

μ

M ′
μ

{
O1, ρ

in
S

}
M

′†
μ

}]

= 1

4

Tr[ρfi
A ⊗ ρfi

B{IA ⊗OB, {OA ⊗ IB,ρAB}}]
Tr[(ρfi

A ⊗ ρfi
B)ρAB ] . (22.19)

The map is fully illustrated in Fig. 22.1.

22.5 Proofs of the Results

We proceed by proving the results to the cases including the boundary conditions,
where reduction to the case of no(/totally mixed) boundary states is straightforward.
Oi in the temporal setting is given by Eq. (22.9).

Proof of Lemma 22.2 Observables O1, O2 are measured sequentially on system
ρin
S at times t1, t2 where t1 < 0 < t2. In addition, ρin

S evolves at t = 0 with Kraus
operators {Mμ}. The von-Neumann interaction measurement corresponding to O1
and O2 is

Hint = δ(t − t1)p1O1 + δ(t − t2)p2O2, (22.20)

where [qi,pi] = i (�= 1). We assume identical initial Gaussian wavepackets φ(q1)

and φ(q2) for the pointers:

ρi = φ(qi)φ
(
q ′
i

)=
∫
dqidq

′
i

√
ε

2π
e−ε(q2

i +q
′2
i )/4 (i = 1,2). (22.21)

The initial state of the system and the apparatuses ρin
S ⊗ ρ1 ⊗ ρ2, evolves to

U2

[∑

μ

pμM
′
μ

(
U1ρ

in
S ⊗ ρ1 ⊗ ρ2U

†
1

)
M

′†
μ

]
U

†
2 , (22.22)

where Ui = e−ipiOi . Each operation of p yields an order of ε, where in the limit
of weak measurements ε → 0. By expanding Ui to second order (i = 1,2) Ui =
1 − ipiOi − 1

2p
2
i O

2
i + o(ε3), one can compute the composite state of the system

and pointers:

ρin
S ⊗ ρ1 ⊗ ρ2 →

∑

μ

pμM
′
μρ

in
S ρ1ρ2M

′†
μ

−
∑

μ

pμM
′
μ

{
O1, ρ

in
S

}
M

′†
μ φ

′(q1)φ
(
q ′

1

)
ρ2

+ 1

2

∑

μ

pμM
′
μ

{
O2

1 , ρ
in
S

}
M

′†
μ φ

′′(q1)φ
(
q ′

1

)
ρ2
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−
{
O2,

∑

μ

pμM
′
μρ

in
S M

′†
μ

}
φ′(q2)φ

(
q ′

2

)
ρ1

+ 1

2

{
O2

2 ,
∑

μ

pμM
′
μρ

in
S M

′†
μ

}
φ′′(q2)φ

(
q ′

2

)
ρ1

+
{
O2,

∑

μ

pμM
′
μ

{
O1, ρ

in
S

}
M

′†
μ

}
φ′(q1)φ

(
q ′

1

)
φ′(q2)φ

(
q ′

2

)
.

(22.23)

First note that since
∫
qφ2(q)dq = 0 and

∫
φ(q)φ′(q)dq = 0, all terms in

Eq. (22.23) except the last do not contribute. By tracing out the system ρin
S and

using
∫
qφ(q)φ′(q)dq = −1/2, we obtain

E(q1q2)= 1

4
Tr

[{
O2,

∑

μ

pμM
′
μ

{
O1, ρ

in
S

}
M

′†
μ

}]
, (22.24)

which coincide with Eq. (22.13). �

Proof of Eq. (22.16) Preparation of a mixed state is realized by projecting a system
to a pure state |ψ in

S 〉 which then interacts with an ancilla in a known state. Corre-
spondingly, post selection to a mixed state ρfi

S is realized in the reversed order:

ρfi
S =U†

int |0anc〉〈0anc| ⊗ |ψfi
S 〉〈ψfi

S |Uint (22.25)

(as illustrated in the inset of Fig. 22.1). Then the proof follows the same steps as that
of Lemma 22.1 where instead of tracing out the system, one projects the system to
the final state and renormalizes the remaining state. In caseM = I the normalization
yields a factor of

1

Tr[〈0anc|〈ψfi
S |Uintρin

S ⊗ IancU†
int |ψfi

S 〉|0anc〉]
= 1

Tr[ρin
S ρ

fi
S ]
. (22.26)

The generalization to arbitrary evolution is straightforward. Note that Wizeman [14]
analyzed a similar case for a single weak measurement. �

Proof of Theorem 22.2 Let us first show the correspondence for a pure bipartite
state |ψ〉, which is mapped to a single Kraus operator M ′ (with p = 1). We show
the equality of the temporal and spatial denominators DT , DS and nominators NT
and NS of Eq. (22.16) and (22.18) respectively. From Eqs. (22.17, 22.7) up to a
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factor of 4:

DT = Tr
[
ρfi
SMρ

in
S M

†]=
∑

i,j,k,l

αijα
∗
klρ

in
Ski
ρfi
Sij
,

DS = Tr
[(
ρfi
A ⊗ ρfi

B

)|ψ〉〈ψ |]=
∑

i,j,k,l

αijα
∗
klρ

fi
Aki
ρfi
Blj
,

NT = Tr
[
ρfi
S

{
O2,M

{
O1, ρ

in
S

}
M†}]

=
∑

i,j,k,l

αijα
∗
kl

{
ρin
S ,O1

}
ki

{
ρfi
S ,O2

}
j l
,

NS = Tr
[(
ρfi
A ⊗ ρfi

B

){
IA ⊗OB, {OA ⊗ IB, |ψ〉〈ψ |}}]

=
∑

i,j,k,l

αijα
∗
kl

{
ρfi
A,OA

}
ki

{
ρfi
B,OB

}
j l
,

(22.27)

where we use the notation Aki = 〈k|A|i〉 for matrix elements. In correspondence
with the mapping defined in Theorems 22.1, 22.2, DT = DS and NT = NS . By
proving DS = DT we have explicitly confirmed that the mapping corresponds to
Jamiolkowski isomorphism [1]. To extend to a set of Kraus operators {M ′

μ,pμ}, note
that DT , DS , NT , NS become now a convex combinations of pμ, which respects
their equality. This concludes the proof of Theorems 22.1 and 22.2. �

22.6 Implications

The suggested mapping has several important implications which we discuss in
some detail.

22.6.1 State Independent Decoherence

A common framework of decoherence [15] deals with the transition of a state to
a one with higher level of mixing. By the suggested mapping one can distinguish
decoherence of states from decohering dynamics. Decohering dynamics can be ob-
served by detecting the temporal decay of correlations in case of non exact unitary
evolution, even on the maximally distributed mixed state.

Let us discuss a particular manifestation. We can write the evolution of system
ρS(t) according to the Lindblad master equation:

ρ̇S = 1

i�

[
Ĥ , ρS(0)

]+
∑

k

[
L̂kρS(0)L̂

†
k − 1

2

{
ρS(0), L̂

†
kL̂k
}]
, (22.28)
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where L̂k are Lindblad operators satisfying K̂ = − 1
2

∑
k L̂

†
kL̂k such that K̂ is Her-

mitian. For simplicity, consider a single Linbdlad operator L= σz which starts op-
erating at t = 0 where the free Hamiltonian vanishes. This simplifies Eq. (22.28) at
t > 0 to

ρ̇S = σzρSσz − ρS. (22.29)

In addition we assume ρS = I/2, thus it does not change in time.
We manifest the decoherence model by studying a Leggett-Garg inequality [7],

the Bell inequality in time. In this test a single observer measures four observables
O1, O2,O3, O4 at four instances t1, t2, t3, t4 (t1 < t2 < t3 < t4) and look on a com-
bination of their correlations, which structurally corresponds to the spatial CHSH
inequality [16]:

BLG = 1

2
Re[O1O3 +O1O4 +O2O3 −O2O4]. (22.30)

We choose to measure σz(t = t1), σx(t = t2), σπ/4(t = t3) and σ3π/4(t = t4), where

σπ
4 ,

3π
4

= 1√
2
(σx ± σz).

Given the trivial evolutionM = I BLG = 2
√

2, BLG = 2
√

2 for any initial state. But
now let us apply the evolution imposed in Eq. (22.29) at t = 0, where we assume
t1, t2 < 0 and t3, t4 > 0 so the effect of decoherence takes place in the last two
measurements. Transforming to the Heizenberg representation each Pauli operator
σ transforms as σ̇ = σzσσz − σ . Therefore off-diagonal terms decays in time as
σ12(t)= σ12e

−√
2σ12t . Using Eq. (22.13) we obtain

BLG =
√

2

2

(
2 + e−

√
2t3 + e−

√
2t4
)
. (22.31)

For t3 = t4 BLG decays to 2 as t3 ∼ 0.623. By this simple application decoherence
is manifested on the observables due to the non-unitary evolution, whereas the state
ρS is constantly the maximally mixed state.

22.6.2 The Correspondence Between Bell and Leggett-Garg
Inequalities

The temporal inequalities suggested by Leggett and Garg [7] have the same bounds
as the corresponding spatial Bell inequalities [6]. For example, CHSH inequality
[16] and the corresponding temporal inequality (Eq. 2b in [7]) are bounded by 2

√
2

[17]. In a previous paper [13] we have shown that Bell’s inequalities can be max-
imally violated using weak measurements even if all observables are measured for
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each member of the ensemble. A similar result for Leggett-Garg inequalities was
given in [18, 19]. By our mapping the correspondence between these two type of in-
equalities becomes clear. Leggett-Garg inequalities are distinguished from the Bell
inequalities as their maximal violation depends only on the measured observables
and not on the state of the system. By the mapping above we see that this is a
consequence of unitary evolutions which correspond to maximally entangled bi-
partite states. By having non unitary evolutions Leggett-Garg inequalities are less
violated.

In particular, the CHSH inequality is maximally violated by the maximally en-
tangled (Bell) state, for example |ψ〉 = 1√

2
(|00〉 + |11〉). This state is mapped in

the temporal setting to M = I (the trivial evolution). The case in which no post-
selection is performed in the spatial case corresponds in the temporal test to having
the maximally mixed initial state ρS = I/2. The 2

√
2 bound on Leggett-Garg in-

equality is then obtained by half the trace of the matrix

BLG = Re[σxσπ/4 + σxσ3π/4 + σzσπ/4 − σzσ3π/4] = 2
√

2I, (22.32)

where σπ/4,3π/4 = (σx ± σz)/
√

2. Since post-selection of a single party does not
change the bound on CHSH inequality, the same bound is obtained for any initial
state in the temporal setting.

Partial violation of CHSH inequality is obtained by non-maximally entangled
pure or mixed states. The case of pure bipartite states corresponds to having a sin-
gle non-unitary M in the temporal setting, where the initial state is I/2. Having a
different initial state corresponds to post-selection of one of the parties. The non-
entangled pure product state corresponds to a selective projector imposing “disen-
tanglement” between the past and the future.

The case of mixed states is richer. Let us discuss the example of Werner states
[20]. Since Werner states are convex combinations of Bell states, they cannot pro-
duce higher violation in case one of the parties post-selects. Therefore, the tem-
poral violation does not depend on the initial state. By explicit computation and
as a corollary of the proof of Theorem 22.1, the Werner states that violate CHSH
inequality are exactly mapped to the same mixtures of unitary evolutions which
violate Leggett-Garg inequality.

Since our mapping is exact all the results concerning bipartite Bell inequalities
are valid in the corresponding temporal inequalities. An example is the anomaly of
nonlocality in bipartite systems with dimension greater than two [21], in which there
are Bell inequalities that are not maximally violated by the maximally entangled
state. In particular, let us explore Collins-Gissin-Linden-Massar-Popescu (CGLMP)
inequality [22] (see also [23]). This generalized Bell inequality corresponds to a
setting in which every party measures two observables, each having d outcomes
(instead of the dichotomic observables in the CHSH test). In a local hidden variable
model CGLMP inequality is bounded by 2 for any d . It is maximally violated by
the non-maximally entangled state for d > 2. One can explicitly show that the same
anomaly appears in the temporal setting, where maximal violation is obtained with
the corresponding non-unitary evolution.
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Let us show this result explicitly (even though it is a corollary of the proof of The-
orem 22.1). As shown in [21] the Bell operator corresponding to CGLMP inequality
in case d = 3 is

BCGLMP =

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜
⎝

0 0 0 0 2√
3

0 0 0 2

0 0 0 0 0 2√
3

0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2√

3
0

2√
3

0 0 0 0 0 0 0 2√
3

0 2√
3

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 2√

3
0 0 0 0 0

2 0 0 0 2√
3

0 0 0 0

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟
⎠

. (22.33)

For the maximally entangled state |ψ〉 = 1√
3
(|00〉 + |11〉 + |22〉) the violation is

〈ψ |BCGLMP |ψ〉 = 4
9 (3 + 2

√
3) ∼ 2.87293. However, the maximal eigenvalue of

BCGLMP is 1
3 (3 + √

33) ∼ 2.91485 with eigenstate |ψm〉 = 1√
n
(|00〉 + γ |11〉 +

|22〉), where γ = (√11 − √
3)/2 and n= 2 + γ 2.

Correspondingly, in the temporal setting we study the case of maximally mixed
initial state I/3, as no post-selection is assumed in the spatial setting. In case the
evolution corresponds to the maximally entangled stateM = 1, we obtain

B3
LG =

⎛

⎜
⎝

2 + 2√
3

0 0

0 4√
3

0

0 0 2 + 2√
3

⎞

⎟
⎠ , (22.34)

where Tr[BLG]/3 = 4
9 (3 + 2

√
3). Now let us set the non-unitary evolution corre-

sponding to |ψm〉

Mm = η
⎛

⎝
1 0 0
0 γ 0
0 0 1

⎞

⎠ , (22.35)

where η=
√

3/(11/2 − √
33/2) such that Tr[M†M]/3 = 1. Then

B3m
LG =

⎛

⎜
⎝

1
2 + 7

2
√

33
0 0

0 4√
33

0

0 0 1
2 + 7

2
√

33

⎞

⎟
⎠ , (22.36)

such that Tr[BmLG]/3 = 1
3 (3+√

33)∼ 2.91485 with the same bound as in the spatial
setting.
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Table 22.2 Anomaly of nonlocality in the temporal and spatial settings

Temporal Spatial

ρS = I/d. LG inequality maximally
violated with non-unitary evolution

⇐ Bell inequality maximally violated with non-maximally
entangled state

⇓ ⇑
ρS general. LG inequality maximally
violated with unitary evolution

⇒ Local post-selection. Bell inequality maximally
violated with maximally entangled state

Interestingly, given a maximally entangled state in the spatial setting, post-
selection of a single party produces higher violation of CGLMP inequality for d > 2
(in contrast to the d = 2 case). This can be easily seen by checking the temporal set-
ting and having a state |ψ〉 different from the maximally mixed state I/3. Since
the evolution is unitary M = 1 one need not renormalize B3

LG. Maximal violation
corresponds to the maximal eigenvalue of B3

LG: 2 + 2√
3

∼ 3.1457, where the cor-
responding eigenstates are |0〉 or |2〉. This result shows that in the usual context
of Leggett-Garg inequalities in which only unitary evolutions are considered, the
quantum-mechanical bound is in general distinguished from the one in the corre-
sponding Bell inequality. The ordinary bound of Leggett-Garg inequalities with a
unitary evolution and an arbitrary initial state corresponds to the bound on the cor-
responding Bell inequality on the maximally entangled state given post-selection of
a single party.

Another example is the I3322 inequality suggested by Collins and Gisin [24]. In
[24] a (non-optimal) quantum mechanical bound of 1

4 is found using maximally
entangled Bell states. However, in [25, 26] it is shown that the violation is higher
for non-maximally entangled states, thus providing another example of the anomaly
of nonlocality.

Now let us discuss the corresponding temporal inequality. In case the state is
the maximally mixed state and the evolution is unitary withM = I it can be shown
that I3322 ≤ 1

4 . The bound is satisfied by taking the operators A1,A2,A3,B1,B2,B3

along the xy plane with φA1 = 0, φA2 = π/3, φA3 = −π/3, φB1 = π/3, φB2 = 0, φB3 =
2π/3. In the spatial case the bound of 1

4 does not depend on the dimension for maxi-
mally entangled states. Therefore, the same characteristic is mapped to the temporal
test.

For arbitrary initial state the optimal violation is BLG3322 ≤ 3
√

5
8 − 1

2 ∼ 0.3385,
which is satisfied already at d = 2 with φA1 = 0, φA2 = 2π/5, φA3 = −2π/5, φB1 =
π/5, φB2 = −π/5, φB3 = 3π/5. Through the map I3322 has the same bound 0.3385 in
case the state is a maximally entangled one and one of the parties post-selects to the
initial state of the temporal setting. This can be explicitly shown with the maximally
entangled state 1√

2
(|00〉 + |11〉), where φA1 = 0, φA2 = 2π/5, φA3 = −2π/5, φB1 =

−π/5, φB2 = π/5, φB3 = −3π/5.
Beyond the curiosities above being elucidated, we believe our mapping provides

a new perspective on the anomaly of nonlocality, as illustrated in Table 22.2.
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22.6.3 Statistical Characteristics of Large Systems

In the work by Hayden et al. [27] correlation properties of random high-dimensional
bipartite pure systems were examined in the context of the Haar measure. They
showed that there exist large subspaces in which almost all pure states are close to
maximally entangled. Through the mapping the space of bipartite states maps to
“pure evolutions” on local systems where a pure evolution corresponds to a single
Kraus operator. By mapping the Haar measure to the temporal setting, it follows
that there exist large subspaces of evolutions in which all pure evolutions are close
to unitary ones.

22.6.4 Computational Gain

In numerical computations of two point correlation function of bipartite states,
needed for instance in evaluating Bell inequality bounds, one can utilize the cor-
responding Leggett-Garg inequalities. For example, given dA = dB =N , instead of
manipulating N2 ×N2 matrices, one can use only N ×N matrices.

22.7 Discussion and Conclusions

We would like to remark that a notion of entanglement in time was introduced in a
different context by Brukner et al. [28], who analyze correlations of successive ±1
strong measurements. These temporal correlations violate Leggett-Garg inequali-
ties [7], the Bell inequalities [6] in time. Brukner et al. also show that there are
no genuine multi-time correlations and that the monogamy of spatial correlations
is violated in the temporal setting. However, there are crucial differences between
temporal correlations of strong and weak measurements as correlations of succes-
sive strong measurements do not depend on the state and are a particular feature of
±1 observables. The suggested mapping does not apply for strong measurements.

Leifer has shown an extension of Jamiolkowski isomorphism to include two
POVMs before and after the evolution in the temporal setting and in parallel in the
spatial setting [29], to manifests the correspondence of no cloning/no broadcasting
theorems and monogamy of entanglement (see also [30]). Jamiolkowski mapping
has also been used to analyze channel capacity [31–34]. Manifestation of “superpo-
sition of unitary operations” is given in [35].

To conclude, space and time are distinguished in the formalism of quantum the-
ory. A system that is separated in two parts of space is described by a positive semi-
definite operator that lies in a tensor product of two Hilbert spaces. The time evolu-
tion of a local system is described by a trace preserving complete positive map from
one Hilbert space to another Hilbert space. Mathematically, one can define a Jami-
olkowski map between the space of bipartite states and the space of time evolutions,
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which is defined by the Hilbert-Schmidt scalar product. We extended Jamiolkowski
map in a physical setting in which the entanglement of bipartite states finds exact
correspondence with temporal correlations between the past and future. The fact
that the mapping holds only for the bipartite case strengthens the uniqueness of the
one dimensional time which can only be bisected once to unordered parts, whereas
space may be sectioned into many parts with no internal order. We use the tool of
weak measurements to show that these correlations can be observed. One can show
that the map can be tested with a single ion and two ions in an ion-trap respectively,
where instead of the displacement operator the pointer observables correspond to the
phonon number operator. By having an exact mapping between spatial and temporal
correlations, non-relativistic quantum-mechanics manifests a structural unification
of time and space.
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Chapter 23
Anatomy of Quantum Tunneling

Neil Turok

Abstract We use complex classical solutions to provide a simple and transparent
treatment of quantum tunneling. We show that the imaginary part of the tunnel-
ing coordinate may be weakly measured, and that it yields a quantum-anomalous
contribution to the classically-conserved momentum of a classical von Neumann
“pointer.” Further developments and applications are mentioned. [Editor’s note: for
a video of the talk given by Prof. Turok at the Aharonov-80 conference in 2012 at
Chapman University, see quantum.chapman.edu/talk-19.]

23.1 Introduction and Summary

The Feynman path integral for the Schrödinger kernel,

Ψ (xf , tf )=
∫
dxiK(xf , tf ;xi, ti)Ψ (xi, ti),

K(xf , tf ;xi, ti)=
∫ xf ,tf

xi ,ti

DxeiS /�

(23.1)

where S is the classical action, provides the closest and most useful connection
between classical and quantum dynamics. In the limit as � → 0 (or, more properly,
in the limit that a corresponding dimensionless quantity tends to zero), one expects
the path integral typically to be dominated by a saddle point solution, representing a
classical path. Generically, such paths are complex: in this talk I shall describe how
these complex classical paths may be used to describe quantum tunneling.

Traditionally, tunneling processes have been described using classical instanton
solutions which are real functions of imaginary time [1, 2]. The main advantage
is that such instanton solutions take a simple analytical form. However, there are
significant limitations to their use. First, in quantum theory a metastable state is
inherently ill-defined. In the instanton approach, the initial state is defined rather
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implicitly, at imaginary time equal to minus infinity. Second, imaginary time in-
stantons do not easily provide a real-time description of the tunneling process, nor
can they describe tunneling in processes which are inherently time-dependent, such
as when the potential is time-dependent. These drawbacks underly some persistent
controversies, for example about the “tunneling time” [3].

My main claim in this talk is that when one is careful to describe tunneling using
the language of pre- and postselection, at finite real times, then in the semiclassical
(small �) limit there is a real-time description within which the tunneling coordinate
is complex. At first, it may seem strange that a real, Hermitian quantum operator be
described by a complex classical solution, but there is no contradiction. The fact
that the semiclassical approximation to the coordinate is complex may even be ex-
perimentally verified by coupling the tunneling system to a measuring device and
performing a weak measurement. The imaginary part of the tunneling coordinate
leads to a quantum anomaly in a classically conserved quantity for the combined
system, which can be measured (weakly) with arbitrary precision. My main conclu-
sion is that within the framework of pre- and post-selection, weak measurement and
classicality, the quantum world is typically described using complex numbers rather
than real ones.

23.2 Example

In this talk I shall focus on a very simple one dimensional tunneling problem, for
the coordinate x described by the classical action

S =
∫ tf

ti

(
1

2
ẋ2 − V (x)

)
, V (x)= 1

2
κx2 − 1

2
λx4. (23.2)

It is convenient to redefine t, x to be dimensionless, t → t
√
m/κ and x→ x

√
κ/λ,

so that the action becomes

S = κ
3
2m

1
2

λ

∫ tf

ti

1

2

(
ẋ2 − x2 + x4)≡ CŜ , (23.3)

where the prefactor C = κ
3
2m

1
2

λ
governs the overall value of the action but is imma-

terial to the classical equations.
The traditional approach to tunneling is based upon the following “Euclidean

bounce” instanton solution:

τ = i
(
t + π

2

)
; xB(τ)= (cosh τ)−1 = −(sin t)−1, (23.4)

which describes the particle emerging from the potential at x = 1, with zero ve-
locity, at time t = −π

2 , and running off to infinite x at t = 0. Before emerg-
ing, the solution is described in imaginary time τ , with x tending to the classical
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Fig. 23.1 The dimensionless
potential V (x)= 1

2 (x
2 − x4)

with false vacuum at x = 0
and two classically allowed
regions at |x| ≥ 1

false vacuum x = 0 at τ = −∞. The tunneling rate is exponentially suppressed

by the factor e−CŜB/�, with � Planck’s constant and the Euclidean bounce action
ŜB ≡ −iŜ = ∫∞

−∞ dτ
1
2 (x

2
B,τ − x2

B + x4
B)= 2

3 . (See Fig. 23.1.)
While this picture of tunneling is elegant, as I have already mentioned, any de-

pendence on the initial metastable state is very implicit and it is hard to answer
real-time questions such as how long the tunneling process took, or what happened
during the tunneling. It is natural to ask whether we can do better. When the action
is large in units of �, we can expect the path integral to be well-approximated by
a classical saddle point solution which, as with analogous ordinary integrals, may
well be complex.

23.3 Complex Classical Solutions in Real Time

Let us begin, then, by describing the general (complex) classical solution to the
equations of motion following from the action Ŝ . The general solution is specified
by two complex numbers: the energy E and a time delay t0. We are used to consid-
ering both to be real and in particular t0 to be a trivial shift in the time. However, for
tunneling solutions, as we shall see, both are generally complex and the imaginary
part of t0 is significant. First, consider the case of real E but complex t0. In this case,
one may show that the solutions are periodic in t , but for each E they vary as one
changes the imaginary part of t0 (see Fig. 23.2).

The general solution, for arbitrary complex E and t0, is easily obtained:

x(t)= − 1√
1 +m sn( t−t0√

1+m |m) ; E = m

2(1 +m)2 (23.5)

where sn is a Jacobi elliptic function. For an initial “false vacuum” state, i.e. the
ground state wavefunction for a harmonic oscillator with potential 1

2x
2, we shall

be interested in small imaginary energy E. The Jacobi elliptic function is doubly
periodic in the complex plane of the argument u = (t − t0)/

√
1 +m, with quarter

periods K(m) and iK ′(m), where K ′(m)=K(1 −m).
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Fig. 23.2 The general
complex solution for real
energy E = 0 is
x = −1/ sin(t − t0). In the
figure, this is plotted in the
complex x-plane for various
values of t0. The real part of
t0 gives a trivial shift in the
time t . The imaginary part is
significant, however: from the
outer curve inward, the plots
show the zero-energy
solutions for
t0 = i/200, i/8, i/4, i/2, i,2i

The solution (23.5) has a useful expansion in terms of ordinary sine functions:

x(t)= − π

2K
√

1 +m

(
1

sinu
+ 4

∞∑

0

q2n+1

1 − q2n+1
sin(2n+ 1)u

)

;

u= t − t0√
1 +m,

(23.6)

where the “nome” q = e−πK ′/K . For small m, K , K ′ and q have the expansions

K(m)≈ π

2

(
1 + m

4
+ 9m2

64
. . .

)
; K ′(m)≈ −1

2
ln
m

16
+ o(m lnm);

q ≈ m

16
+ m2

32
. . . .

(23.7)

Let us turn now to the boundary conditions on the classical solution for tunneling
from the initial false vacuum. At the initial time ti , by assumption the wavefunction
is a Gaussian centered on x = 0, so Ψi ∝ e−x2/4�x2

. This obeys

(
x

�x
+ i p
�p

)
Ψi = 0, (23.8)
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where p = −i� ∂
∂x

, and �p = �/(2�x) saturating Heisenberg’s uncertainty princi-

ple bound. For the false vacuum state in our problem, we have �x = 1/
√

2 which,
in (23.8), provides the initial condition on the classical solution. The final condi-
tion is simply that the position of the particle equals the argument xf of the final
wavefunction Ψf at time tf . The classical solution is thus determined by the two
boundary conditions:

x + iẋ = 0 at t = ti; x = xf at t = tf ≡ 0. (23.9)

Time translation invariance allows us to take the final time tf to be zero, so that all
times t of interest are negative.

We want to describe tunneling in a situation where it is rare. So, let us choose
the initial time to be large and negative, ti = −T with T � 1. The particle’s motion
will become classical when it has tunneled far from the false vacuum, so we also set
xf � 1. Noticing that the Jacobi sn function becomes infinite when t tends to t0,
it is clear that we should choose the time delay t0 to be small. In this case, we can
express xf as a series in t0, or vice versa:

t0 ≈ x−1
f + 1

6
x−3
f + 3 + 2m+ 3m2

40(1 +m)2 x−5
f · · · � 1. (23.10)

We determine the energy E from the initial condition in (23.9) as follows. Setting
m= iε, and defining z= eiu, from (23.6) we obtain

x ≈ 2i

z− z−1
+ m

8i

(
z− z−1) . . . , t � 0, (23.11)

where u ≈ (1 − 3i ε4 )(t − t0) ≈ t − 3
4 iεt for large negative t . With positive ε, z

becomes large at large negative t , so that

x ≈ −1

8
imz+ 2iz−1 + 2iz−3 . . . , t � 0, (23.12)

and the initial condition in (23.9) gives

x + iẋ ≈ −1

4
imz− 4iz−3 . . . , t � 0. (23.13)

Substituting m= iε, we obtain the transcendental relation

3εT e3εT ≈ −48iT e−4iT , with T � 1. (23.14)

The solution of this equation is given by Lambert’s function; qualitatively one has
ε ≈ ln(T )/(3T ), so that ε is indeed small and positive for large T . It is not hard to
check that the solution for ε is actually unique.

The fact that the energy E has a small imaginary part allows us to understand
qualitatively the behavior of the solution, as compared to the solutions for zero
energy shown in Fig. 23.2. The small imaginary part mediates a slow transition
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Fig. 23.3 The complex solution describing finite-time tunneling from a false-vacuum Gaussian
centered on x = 0 to a position x = xf over a time T � 1. The solution form= i/100, and xf � 1
is plotted in the complex x-plane. The left plot shows the solution for times −450 ≤ t ≤ −250, the
center plot −250 ≤ t ≤ −50 and the right plot −50 ≤ t ≤ 0. At earlier times, the solution spirals
outwards into the complex x-plane again, due to the complex periodicity of the Jacobi sn function

from the solutions for large imaginary t0 (and hence small absolute magnitude of x)
to small imaginary t0, tending to the real classical solution describing the particle
rolling down the hill to large xf at late times.

Now that we have found the two integration constants t0 and E (or m = iε),
when T and xf are both large, we can now plot the relevant classical solutions
in the complex x-plane. The pictures below show the solution following a tight
spiral around the origin at very early times, growing into a double-lobed spiral at
intermediate times and finally shooting out nearly parallel to the real x-axis to large
positive xf .

It is also interesting to understand the analytic structure of the solutions in the
complex t-plane (or u-plane). As we have already mentioned, the Jacobi sn func-
tion is doubly periodic in its argument u, considered as a complex variable. This is
illustrated in Fig. 23.4. Zeros and poles of the sn function correspond to poles and
zeros of the solution, forming a lattice in the complex u-plane, whose fundamental
domain is (0,K, iK ′,K + iK ′) (see Fig. 23.4). Considered as a function of real
time, the classical tunneling solution we have given starts near a zero and follows a
straight line path (with slope 1/

√
1 +m) towards a pole, for example the pole at the

origin.
We can now understand the relationship between the classical solution we have

found, and the instanton solution traditionally used to describe tunneling. First, no-
tice from (23.7) that as we take the time T to be large, since m tends to zero, the
quarterperiod iK ′ becomes large and imaginary. The solution is then very nearly
zero along a line of zeros related to its initial zero, and so one can deform the
time contour from the black arrow on the left of Fig. 23.4 to the series of blue
arrows shown on the right. For large T , the solution is almost zero all along the first
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Fig. 23.4 The solution
describing finite-time
tunneling shown in the
complex u-plane, where u is
the argument of the Jacobi sn
function. The latter is
doubly-periodic, with K and
iK ′ being the two
quarter-periods. The plots
show the solution and
quarter-periods for m= i/5.
The left hand plot shows the
real time solution, and the
right hand plot shows the
deformation of the contour
used to obtain the
imaginary-time instanton
description

arrow. Along the second arrow, the time is imaginary and runs from large imag-
inary value to the point t ≈ −π

2 at which x = 1. The solution along the second
arrow is therefore just the imaginary time bounce solution xB(τ) = (cosh τ)−1,
with t = −π

2 − iτ and −∞ < τ ≤ 0. The solution is nearly real along the third
arrow, for which u is nearly real (see Fig. 23.4). In the leading semiclassical ap-
proximation, the wavefunction Ψ (xf , tf ) ∼ eiS /�. Evaluating the action for the
classical solution as a contour integral along the path shown by the arrows in the
right hand diagram, the first part of the path gives S ≈ 0. The second part gives
the Euclidean bounce action, iS /� ≈ −SB/(2�). (The factor of two arises be-
cause the full bounce solution runs from −∞ < τ < +∞.) Along the third part
of the path, the solution is nearly real so that the action contributes an unim-
portant overall phase to the wavefunction. In this way, we see that for large T
and xf , we recover the usual expression for the suppression of the tunneling rate,
Ψ 2 ∝ e−SB/�.

23.4 Making Weak Measurements During Tunneling

Just as Aharonov’s concept of postselection is useful in identifying the unique clas-
sical solution responsible for finite-time tunneling, his concept of weak measure-
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ment is useful in understanding what this solution means. The basic idea is that
we would like to understand where the tunneling particle is, but without perform-
ing a strong measurement which would significantly disturb the wavefunction. As
Aharonov pointed out, we can do that by performing a weak measurement, which
in our case means allowing the particle to interact weakly with a “pointer,” and then
performing the measurement many times on identically-prepared systems to obtain
an accurate average result.

In order to measure the position of the particle x at some measurement time tm,
we introduce a simple von Neumann pointer Hamiltonian of the form

HP = P 2

2M
+ gPxδ(t), (23.15)

where P andM are the pointer momentum and mass and g is a small dimensionless
coupling. Classically, the pointer momentum P is conserved as a consequence of
translation invariance, by Noether’s theorem, and the sole effect of this Hamiltonian
is to shift the pointer position by the quantity gPx(tm). Thus, from the movement of
the pointer one can infer the position of the particle at the measurement time. Quan-
tum mechanically, the effect of the interaction is easily seen in the P -representation
of the wavefunction, in which it simply multiplies the total wavefunction by a fac-
tor,

Ψ
(
x,P, t+m

)= e−igPx/�Ψ (x,P, t−m
)
. (23.16)

If the pointer wavefunction just before the measurement is a Gaussian with width
�X, then to first order in g, in the semiclassical approximation the effect on the
average pointer position and momentum is just

〈X〉 → 〈X〉 + gRe
(
xCl(tm)

); 〈P 〉 → 〈P 〉 + g�

2�X2
Im
(
xCl(tm)

)
, (23.17)

where xCl(t) is the classical tunneling solution. For small gIm(x)/�X, the shift
in pointer momentum is a small fraction of the uncertainty in the pointer po-
sition. Nevertheless, the shift is measurable if one repeats the experiment many
times.

It would be very interesting to perform an experiment like this on a tunneling
particle, and to observe the resulting quantum shift in the pointer momentum. As
we have already mentioned, the pointer momentum is classically conserved—the
shift in the momentum proportional to the imaginary part of the measured particle’s
position is proportional to � and should thus be thought of as a quantum anomaly.
One could in principle imagine a very precise experiment which would observe the
fine structure of the complex classical tunneling solution, shown in Fig. 23.3. As an
example of universal phenomena, the classical solution at early times, t � 1, as the
particle is preparing for tunneling, exhibits exponential growth in its distance from
the origin of the complex x-plane, r ∝ et lnT/(4T ), which is presumably independent
of the details of the potential at large x.
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23.5 Further Developments and Applications

The technique described here is extremely simple, conceptually. Many possible ap-
plications and developments and applications can be anticipated.

i. I have chosen a polynomial potential x2 −x4 for which the only moveable singu-
larities in the classical solutions are simple poles. The absence of branch cuts in
the complex t-plane means that the classical solutions are single valued, consid-
erably simplifying the analysis. The same property holds for a cubic polynomial
potential x2 − x3, for which the only singularities in the classical solutions are
double poles.

ii. The classical solutions give the saddle point to the Feynman path integral with
the boundary conditions (23.9). The classical action gives the leading expo-
nential behavior of the wavefunction, Ψ ∼ e−A/�, in the semiclassical (� → 0)
limit. It is of interest to calculate the prefactor as an expansion in �. The first step
is to compute the path integral in the leading (Gaussian) approximation, giving
a functional determinant. As I shall explain elsewhere, the functional determi-
nant turns out to be given straightforwardly in terms of the complex classical
solution and its derivatives.

iii. Within the method given here, it is straightforward to vary the parameters spec-
ifying the initial quantum state such as the centre, width or momentum of the
Gaussian wavepacket. One could also vary the shape of the initial wavefunction
or include time-dependent potentials V (x, t).

iv. The method given may be extended to quantum field theory, where it describes
bubble nucleation [4] in Minkowski spacetime for a theory with a metastable
false vacuum state. One of the features of the Euclidean, imaginary-time for-
mulation is that it cannot describe the nucleation of more than one bubble since
there is no two-instanton solution. The real-time formulation given here resolves
this problem.

v. The method may similarly be extended to bubble nucleation in quantum field
theories coupled to gravity [4]. Here, it is notable that the general O(3,1)-
invariant classical solutions for certain scalar field potentials (including some
with false vacua) coupled to gravity, and describing the nucleation of bubbles,
have been recently obtained, by Bars, Chen, Steinhardt and me [5]. They can
be used to describe the nucleation of Coleman-DeLuccia bubbles in the corre-
sponding theories. The present technique may enable the resolution of certain
paradoxes about such bubbles in the context of “multiverse” scenarios for the
global structure of the universe.
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Chapter 24
Experimental Implementations of Quantum
Paradoxes

G.A.D. Briggs

Abstract Remarkable progress is being made in experiments that highlight the dis-
tinctive predictions of quantum mechanics. The Leggett-Garg inequality was de-
vised to test for macrorealism (Leggett and Garg in Phys. Rev. Lett. 54:857–860,
1985). Various experiments have been performed, including one with non-invasive
measurements in the kind of way that was originally envisaged, using spins in phos-
phorous impurities in silicon (Knee et al. in Nat. Commun. 3:606, 2012). This has
led to fresh understanding of what kind of realism is excluded by the result. The
quantum three-box paradox (Aharonov and Vaidman in J. Phys. A, Math. Gen.
24:2315–2328, 1991) provides a further test, which can be re-expressed in terms
of the Leggett-Garg inequality. This has been experimentally implemented with
projective measurements using an NV− centre in diamond, yielding results 7.8
standard deviations beyond a classical bound (George et al. in Proc. Natl. Acad.
Sci. USA 110:3777–3781, 2013). [Editor’s note: for a video of the talk given by
Prof. Briggs at the Aharonov-80 conference in 2012 at Chapman University, see
quantum.chapman.edu/talk-18.]

More than a quarter of a century ago, Yakir Aharonov published, with David Al-
bert and Susan D’Amato, a suggestion for an experiment in which a particle may
be located within any one of three small impenetrable boxes [1]. The experiment
was devised with a pre-selection of the state (|1〉 + |2〉)/√2, and post-selection of
(|2〉+ |3〉)/√2. This produced a paradox. Local measurement would lead to finding
the particle in Box 2 with certainty, whereas a nonlocal variable with eigenstates
(|1〉 + |3〉)/√2, |2〉, (|1〉 − |3〉)/√2 gives a probabilistic outcome. Subsequently he
developed with Lev Vaidman a new N -box experiment [2], now often presented
as the quantum three-box paradox. As a gift to Yakir Aharonov in celebration of
his eightieth birthday, I wish to present an implementation of that experiment and
unwrap the results [3].

The experiment provides a brilliant illustration of how a quantum state can be
described by two state vectors, one evolving forward from the past and one evolv-
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ing backward from the future [2]. This does not produce new physics which could
not be derived from conventional quantum theory, but it can lead to new insights.
It suggests a family of pre- and post-selection (PPS) experiments, in which there
is symmetry between the pre- and post-selection events, in a way that can some-
times allow remarkable conclusions to be drawn about the intermediate state. A well
known example of this arises from a weak measurement of the intermediate state,
in which the effect of the PPS can be to select preferentially measurements that lie
outside the normal range of eigenstates [4]. By using projective measurements, the
three-box paradox can provide a test of macrorealism, raising fresh questions about
how measurements disturb a quantum system.

24.1 The Three-Box Paradox and Its Implementation

Imagine a gambling game between two players, Alice and Bob, in which in the long
run if quantum theory is correct Alice will win, and if classical realism is correct
then Bob will win. The three box paradox can be expressed in those terms [5, 6].
Alice, who in this implementation is the younger and cleverer of the two, offers
Bob a wager with odds better than 50 % in Bob’s favour, that she will know when
he saw the ball in the box that he opened; Bob will win when she accepts a game
in which he did not see the ball. Alice puts a ball in one of three boxes and then
shuffles them to make it random which box the ball is in. This is the pre-selection.
She will then leave the room. While she is not watching, Bob may open either box
1 or box 2, and look to see whether the ball is in the one that he opens. This is the
intermediate measurement. If he does not see a ball, then he wins, but only if Alice
subsequently accepts the wager during this round of the game. Bob then closes the
box. There is an impartial judge to ensure that Bob does not cheat. Alice returns.
Bob does not tell Alice which box he opened or what he saw. Alice rearranges the
boxes and looks in box 3. If she finds the ball in box 3, then she accepts the game.
This is the post-selection. Bob reckons according to classical realism that at best
Alice can look in one of the two boxes which he might have opened, and therefore
at best she can know the result of his observation half the time. Alice has asserted
that she will identify the rounds in which Bob found his box empty with > 50 %
probability, so he accepts. In a perfect quantum implementation Alice would win
every time. Even in our imperfect experiment we find that Alice’s success cannot be
explained in terms of a realist interpretation.

The pre-selection is achieved by initializing the system in the state (|1〉 + |2〉 +
|3〉)/√3. The observation then projects the system into, supposing Box 1 is opened,
either |1〉 if the ball is in that box, or (|2〉 + |3〉)/√2 if not. The post-selection
is performed by testing for the state (|1〉 + |2〉 − |3〉)/√3, which is achieved by
transforming that state into |3〉 and then looking for the ball in Box 3. The state
(|2〉+|3〉)/√2, which Bob prepares if he finds Box 1 empty, has zero projection onto
(|1〉 + |2〉 − |3〉)/√3, and therefore if Alice finds the ball in Box 3, Bob must have
seen it when he looked in Box 1. Since there is symmetry between Boxes 1 and 2,
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Fig. 24.1 (a) NV− centre and solid immersion lens. (b) Spectrum of microwave transitions, and
statistics of photon counting to detect presence (top) or absence of fluorescence [3]

the same argument applies if Bob looked in Box 2. If Alice sees the ball in Box 3,
she can conclude that Bob saw it whichever Box he opened, and she can accept
the game confident of winning every time. Bob is flummoxed. One interpretation
is that between the pre- and post-selection, there was unit probability that the ball
would have been found in Box 1, and unit probability that the ball would have been
found in Box 2. If the total probability is required to sum to 1, then there must have
been a probability of −1 that the ball would have been found in Box 3. This could
alternatively be expressed as unit probability that there was −1 ball in Box 3, or
more simply the weak value of the projection on |3〉 was −1.

The practical implementation with spins is illustrated in Fig. 24.1. Previous im-
plementations with photons have used a three-path Mach-Zender interferometer or a
three-slit interference mask [7, 8]. The spin implementation used a nitrogen-vacancy
defect in a diamond crystal. The defect is charged with a single electron, to make
an NV− centre. The 14N nitrogen nucleus of the NV− has three angular momentum
eigenstates that play the role of the three boxes: A classical rotating body would
have to occupy one of these three allowed states in any given trial of the three box
protocol, whilst a quantum mechanical object may exist in superpositions between
them. The electronic structure of the NV− allows for probing the nuclear angular
momentum state via optical fluorescence. A solid immersion lens is used to achieve
a high efficiency in collecting photons during fluorescence. The centre and lens
are illustrated in Fig. 24.1(a). The spectrum of microwave transitions is given in
Fig. 24.1(b), together with examples of photon statistics from 10,000 trials in each
case, showing the difference between detecting and not detecting the corresponding
optical fluorescence. The coloured lettering in Fig. 24.1(b) relates to the transitions
between energy levels shown in Fig. 24.2, which also shows how the energy levels
map onto the quantum and classical three box states of the game.

The experiment proceeds as follows. First, the system is prepared in the |3〉 state
by an optical pulse followed by verification as in Fig. 24.1(b). When the state |3〉 is
found, it is transformed into (|1〉+ |2〉+ |3〉)/√3 by two radiofrequency pulses. Al-
ice then hands the system over to Bob, who performs a measurement M1 or M2 by
an appropriate microwave pulse followed by a fluorescence measurement, again as
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Fig. 24.2 Energy levels of the NV− centre, showing the microwave transitions between different
spin states in the spectrum of Fig. 24.1(a), and the fluorescence transition used in measurements.
The corresponding quantum (QM) and classical three box states of the game are indicated. The
experiment proceeds as follows. First, the system is prepared in the |3〉 state by an optical pulse
followed by verification as in Fig. 24.1(b). This is transformed into (|1〉 + |2〉 + |3〉)/√3 by two
radiofrequency pulses. Alice then hands the system over to Bob, who performs a measurement
M1 or M2 by an appropriate microwave pulse followed by a fluorescence measurement, again as
in Fig. 24.1(b). Bob then closes the box by an identical microwave pulse at the same frequency,
and he checks that the box is closed by a further optical measurement in which he should see no
fluorescence. Alice then uses a sequence of radiofrequency pulses which would transform the state
(|1〉+ |2〉− |3〉)/√3 into |3〉, and she performs a measurementM3. She post-selects depending on
the value which she obtains [3]

in Fig. 24.1(b). Bob then closes the box by an identical microwave pulse at the same
frequency, and he checks that the box is closed by a further optical measurement
in which he should see no fluorescence. Alice then uses a sequence of radiofre-
quency pulses which would transform the state (|1〉 + |2〉 − |3〉)/√3 into |3〉, and
she performs a measurement M3. She post-selects depending on the value which
she obtains.

In order to check that Alice is not cheating, on his own classical terms, Bob can
satisfy himself that there is one and only one ball, that it is placed at random in the
three boxes, that having seen or not seen it in one box he will get the same result
if he looks again, and that apart from the post-selection Alice has no other way of
knowing which measurement Bob performed, or even whether he measured at all.

Bob’s checks are illustrated in Fig. 24.3. Figure 24.3(a) shows that Bob finds
after Alice’s initialization, the probability of the ball being in each box are 1/3 to
within experimental error. If, having found not the ball in Box 2 Bob then looks for
it in Box 1 or 3, he finds it with probability a little less than the ideal 50 %, and
fails to see it on repeat examination of Box 2, with probability close to the ideal
of zero. If having found the ball in Box 3 Bob measures again, he gets the same
result with approximately 75 % probability. There is about 10 % probability that
the measurement will change to one of the other boxes, and about 15 % probability
that the outcome will be undetermined. The undetermined outcomes correspond to
branching to the mS = +1 levels which are not measured. Finally, in Fig. 24.3(b),
Bob sees what Alice finds in her final M3. Her overall probability, about 15 %, is
higher than the value of 1/9 which she would find in a perfect experiment, prob-
ably due to nuclear spin dephasing following heating by the radiofrequency NMR
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Fig. 24.3 (a) Bob verifies that there is one and only one ball with equal probability in each box,
and that repeated measurements give consistent results, using measurements within the mS = −1
manifold only. Bob’s measurement results when observing the state prepared by Alice in the |j〉
basis are independent of the j -value selected to within experimental error. The repeatability of a
second Mj measurement conditioned on the result M2 or on the result not-M2 is less than perfect
in each case, but is adequate for our purpose. (b) Alice’s measurementM3 cannot tell whether Bob
chose to perform measurementM1,M2, or neither (N) [3]

Fig. 24.4 In the games which Alice post-selects to play, the probability that Bob has (‘Wins’)
or has not (‘Loses’) seen state Mj , given that Alice has seen M3. Alice’s probability of winning
exceeds 50 % by much more than the experimental error regardless of whether Bob choosesM1 or
M2 [3]

pulses, but the differences between the three cases are less that the experimental un-
certainty. Alice still does not know which of Boxes 1 and 2 Bob chose, and whether
he opened it. Her probability of finding the ball in box 3, and subsequently accept-
ing the round, are unaltered when Bob choses to inspect box 1, box 2 or neither
box.

It is therefore inconceivable for Bob, on the basis of classical phenomena, that
Alice should be able to guess that he saw the ball with greater that 50 % probability.
But that is what she does, as presented in Fig. 24.4. In the cases where she accepts
to play the game, on the basis of her final measurement M3, in nearly 75 % of
the cases Bob had indeed seen the ball in his measurement. This is less than the
100 % success which would be achieved in a perfect experiment, but greater by
well over 7 standard deviations than the best that she could achieve by classical
gamesmanship.
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24.2 The Leggett-Garg Inequality and Its Significance

In the same year that Albert, Aharonov, and D’Amato published the idea that be-
came the Three Box Problem [1], Anthony Leggett and Anupam Garg published
a paper with a criterion to distinguish experimentally between quantum mechanics
and macroscopic realism [9]. Their paper was provocatively subtitled, “Is the flux
there when nobody looks?”, referring to a conversation in which Albert Einstein
asked Abraham Pais whether he really believed that the moon exists only when he
looks at it [10]. Distinctions can be made between interpretations of quantum me-
chanics which do and do not describe some external reality, and the further possi-
bility that at some level between the quantum world of the small and the apparently
classical world of our us-sized lives, other non-quantum principles may intervene
[11]. The Leggett-Garg inequality tests for the conjunction of two postulates:

1. Realism (R): the system is always in one of its available states;
2. Non-invasive measurability (NIM): it is possible in principle to determine the

state of the system without altering its subsequent evolution.

To these can be added the inductive postulate that the state cannot be affected by
subsequent intervention, which is equivalent to making the second postulate time-
symmetric. It is apparent that quantum mechanics is incompatible with both of these
postulates. The Leggett-Garg inequality can be expressed either in a CHSH-like
form [12] as a function of correlations between observations Qi of a single system
at four successive times ti , or as the sum of correlations of observations at three
times, t1, t2, t3. With the definition

〈K〉 = 〈Q1Q2〉 + 〈Q2Q3〉 + 〈Q1Q3〉
and the understanding that each realization ofQj has two possible outcomes, −1 or
+1, then for realism to be tenable

−1 ≤ 〈K〉 ≤ +3

For nearly a quarter of a century no one was able to devise a practical experiment
to implement this, but in the past few years tests have been performed in several
systems: superconducting qubits, polarized photons, and electron and nuclear spins
[13–16]. Some of these required either weak measurements or an assumption of
stationarity. The experiment of Knee et al. [16] required neither of these. It used
an ensemble in silicon of phosphorous nuclei as the system. Each nucleus had an
associated electron spin which was used as an ancilla to measure that nuclear spin
through either a CNOT (controlled NOT) or an anti-CNOT gate to perform a non-
invasive measurement. It was assumed that if the ancilla spin did not undergo a spin
flip, then the measurement was non-invasive, and it would no doubt have been pos-
sible to conduct an explicit ideal-negative-result (INR) measurement as originally
proposed by Leggett [17] and subsequently refined to close the so-called clumsi-
ness loophole [18]. Since the experiments were performed at finite temperature and
magnetic field, the ancilla electrons were imperfectly polarized. It proved possible to
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Fig. 24.5 (a) NV− centre and solid immersion lens. (b) Spectrum of microwave transitions, and
statistics of photon counting to detect presence (top) or absence of fluorescence [3]

violate the inequality in a way that would convince both a moderate realist who ac-
cepts that the thermal distribution leads to random correlations, and also an aggres-
sive realist (dubbed ‘neurotic realist’ by Serge Haroche) who asserts that by some
unidentified process all the imperfectly initialised spins conspire to give worst-case
correlations. These experiments provide a methodology to violate the inequality in
increasingly macroscopic systems, including ensembles, but they do not determine
which of the two postulates above is experimentally ruled out.

The quantum three-box experiment can be cast as a test of the Leggett-Garg in-
equality, in a way that allows a stronger conclusion to be drawn. We assign a value
Q= −1 if the ball is in Box 1 or 2, and Q= +1 if the ball is in Box 3. This is pre-
sented schematically in Fig. 24.5(a), where it can be seen that a classical sequence
entirely through the j = 3 (white) boxes yields K = +3, whereas if the ball is one
of the other boxes either when Bob looks (whether or not he sees it) or when Alice
looks inside Box 3 then K = −1. Thus in all these cases the value of K lies within
the Leggett-Garg bound. This is represented as a square in Fig. 24.5(b), in which
contours of K are plotted for values of Q2 and Q3, given that the experiments are
intitialised withQ1 = +1. Macrorealist (MR-compatible) values ofK lie within the
shaded square. The range of K permitted by quantum mechanics (QM-compatible)
is shown as the green shaded area, within the dotted red limit. This limit is

〈K〉 ≥ −13

9
= −1.44̇

The experimental results in Fig. 24.4 yielded 〈K〉 = −1.265 ± 0.023, which is
shown as the blue curves in Fig. 24.5(b). For a moderate realist assumption of fair
sampling this gives a violation of macrorealism by 11.3 sigma, and even for the
aggressive realist assumption, corresponding to Alice cheating, this still exceeds the
Leggett-Garg bound by 7.8 standard deviations.

There is a crucial difference in the non-invasive measurability (NIM) between
experiments in 2-D and 3-D Hilbert space. In the 2-D case it is not possible to
violate the Leggett-Garg inequality using three projective measurements in a single
run and still retain NIM. Defining the disturbance D as the difference in 〈K〉 if all
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three measurements are made in a single run compared with measuring the three
pairs of measurements in three runs (or six allowing for both CNOT and anti-CNOT
NIM), it can be shown that if D = 0, then inevitably −1 ≤ 〈K〉 ≤ +3 [19]. Thus
any measurement of all three values in a single experiment which violates Leggett-
Garg (L-G) also fails to satisfy NIM. The situation is different in 3-D, where all
three measurements are always made in each experiment, without even needing anti-
CNOT gates.

That Alice cannot detect the effect of Bob’s measurements statistics is evident
in Fig. 24.3(b). This may be contrasted with the 2-D case, where the act of mea-
suring the ancilla would affect the statistics of the subsequent measurement ofQ in
the same experiment. In private correspondence, Tony Leggett has described Bob’s
measurement of M1 or M2 in the three box experiment as a partial measurement of
M3, since a positive result implies that Q = −1, whereas a negative result allows
Q = −1 or Q = +1 thus corresponding to ‘no measurement’. This might suggest
an interpretation in which 〈K〉 is a weighted average of something constrained by
the inequality and something characteristic of 2-D. However, this would not affect
the game, since the post-selected runs all correspond to Bob having obtained a posi-
tive result. It remains to be investigated whether there might be adversarial games in
which the measurements might be even more robustly non-invasive, for example by
using different manipulations and larger Hilbert space. This certainly promises to be
fruitful in the further development of no-go theorems of epsistemic interpretations
of reality [20].

The consequence is profound of demonstrating that the measurements in the
quantum three box are indeed non-invasive. If the NIM postulate is tenable, and
if the L-G inequality is not satisfied, then it follows that realism, as defined here,
is not tenable. In these particular experiments that is perhaps not surprising, since
most people in the field would accept that the behaviour of an NV− centre in dia-
mond is accurately described by quantum theory. Yakir Aharonov and his colleagues
have been at pains to emphasise that while their formulation of quantum states at a
given time may provide new insights and new ways of deriving results which might
not otherwise have been foreseen, it “neither contradicts ordinary quantum theory
nor extends it in the sense of new physical laws” [2]. Nevertheless, like the earlier
2-D L-G experiments, the quantum three-box experiment provides a methodology
for more macroscopic systems where the quantum implications for reality have yet
to be established. What is meant by more macroscopic is an open question. Does
macroscopicness lie in greater numbers of atoms or photons, or in greater mass or
spatial size, or in greater complexity (if so how should that be quantified?), or in a
greater number of dimensions in Hilbert space? Each of these could be explored in
pursuit of extending the tests of macroscopic realism towards the realm of human
experience and mental processes.

I personally find it remarkable that philosophical questions about the nature of
reality are open to experimental investigation. Conventionally reality is that which is
the case, independent of the observer. Critical realism allows for a dialogue between
the observer and the observed, in a way that admits of refinement of knowledge.
There is still no consensus on how this is constrained by quantum theory. A recent
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poll of physicists, philosophers, and mathematicians revealed that the foundations
of quantum mechanics remain hotly debated in the scientific community, with a
divergence of views on some fundamental questions [21]. But the implications go
further, all the way to how concepts such as truth, morality, responsibility, and be-
lief, have their basis in reality. Yakir Aharonov has provided new ideas for exper-
iments to push the limits of ‘quantumness’ conceptually and experimentally, with
benefits both for technologies and for foundational questions. I offer these results
to him with congratulations on his 80th birthday and best wishes for many happy
returns.
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Chapter 25
Standard and Null Weak Values

Oded Zilberberg, Alessandro Romito, and Yuval Gefen

Abstract Weak value (WV) is a quantum mechanical measurement protocol, pro-
posed by Aharonov, Albert, and Vaidman. It consists of a weak measurement, which
is weighed in, conditional on the outcome of a later, strong measurement. Here we
define another two-step measurement protocol, null weak value (NVW), and point
out its advantages as compared to WV. We present two alternative derivations of
NWVs and compare them to the corresponding derivations of WVs.

25.1 Introduction

This contribution is dedicated to Yakir Aharonov, on his 80th birthday. His seminal
work in quantum mechanics, and the stimulating discussions we have had with him,
have influenced our own work in physics in a deep way. Y.G. is indebted to Yakir
Aharonov for the close interaction, and his continuous support over the years.

The von Neumann formulation of measurement in quantum mechanics invokes a
generic Hamiltonian of the form [1],

H =HS +HD +Hint, (25.1)

where HS is the Hamiltonian of the system to be measured, HD is the detector’s
Hamiltonian, and Hint represents the coupling between the two:

Hint = λg(t)p̂Â. (25.2)
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Fig. 25.1 Strong and weak measurements. When the system is in a given eigenstate, |α〉, of the
measured observable, Â, the coordinate shift in the detector, q , has a certain probability distri-
bution, Pα(q). (a) When such distributions are well peaked around different values of qα , i.e.
�� |qα′ − qα |, one can uniquely associate a value of the coordinate, qα , to each eigenstate of Â,
|α〉, which corresponds to a strong measurement. (b) In the opposite case of a weak measurement,
�� |qα′ − qα |, the small shift in the detector’s coordinate (due to the weak system-detector cou-
pling) is blurred by the distribution uncertainty. The shaded (green) area on the right represents
the part of the distribution selected by the WV protocol

Here p̂ is the momentum canonically conjugate to the position of the detector’s
pointer, q̂ , g(t) represents the time window during which the measurement (system-
detector coupling) takes place, and λ is the dimensionless strength of the measure-
ment. The measured observable is Â=∑i ai |ai〉〈ai |.

Strong measurement is associated with the collapse of the wave function dogma
[1]. In an ideal strong measurement there is a one-to-one correspondence between
the observed value of the detector’s coordinate, qα , and the eigenstates |α〉 of the
system’s measured operator, Â [cf. Fig. 25.1(a)]. In a weak measurement (λ� 1),
instead, the ranges of values of q that correspond to two distinct eigenstates of Â,
|α〉 and |α′〉, are described by two strongly overlapping probability distribution func-
tions, Pα(q) and Pα′(q), respectively. Hence the measurement of q provides only
partial information on the state of the system [cf. Fig. 25.1(b)] and changes its state
only slightly. Nonetheless the mean value of a weak measurement (averaged over
many repetition of the measurement) coincides with that of a strong measurement.

One may extend the notion of weak measurement by referring to a sequence of
correlated (especially conditional) measurements. Conditional quantum measure-
ments can lead to results that cannot be interpreted in terms of classical probabili-
ties, due to the quantum correlations between measurements. An intriguing example
for correlated quantum measurements outcome is the so called weak value (WV).
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It is the outcome of a measurement scheme originally developed by Aharonov, Al-
bert and Vaidman [2]. The WV measurement protocol consists of (i) initializing the
system in a certain pure state |i〉 (preselection; generalization to a mixed state is pos-
sible [3] but will not be discussed here), (ii) weakly measuring observable Â of the
system, (iii) retaining the detector output only if the system is eventually measured
to be in a chosen final state |f〉 (postselection). The average signal monitored by the
detector will then be proportional to the real (or imaginary) part of the complex WV,

f 〈Â〉i = 〈f|Â|i〉
〈f|i〉 , (25.3)

rather than to the standard average value, 〈i|Â|i〉 [cf. Fig. 25.1(b)]. Further discus-
sion of the context in which WVs should be understood has been provided [4–6].

Going beyond the peculiarities of WV protocols, recent series of works explored
the potential of WVs in quantum optics [7–13] and solid-state physics [14–17],
ranging from experimental observation to their application to hypersensitive mea-
surements. In the latter, a measurement, performed by a detector entangled with a
system whose states can be preselected and postselected, leads to an amplified signal
in the detector that enables sensing of small quantities [9–13, 17]. Quite generally,
within a WV-amplification protocol, only a subset of the detector’s readings, asso-
ciated with the tail of the signal’s distribution, is accounted for. Notwithstanding the
scarcity of data points, the large value of f 〈Â〉i , leads to an amplification [11, 17]
of the signal-to-noise ratio (SNR) for systems where the noise is dominated by an
external (technical) component.

The amplification originating from WV protocols is non-universal. The specifics
of such amplification are diverse and system-dependent. In fact, for statistical (in-
herent) noise, SNR amplification resulting from large WVs is generally suppressed
due to the reduction in the statistics of the collected data: postselection restricts us
to a small subset of the readings at the detector. The upside of the WV procedure
has several facets: if we try to enhance the statistics by increasing the intensity of
input signal through the system (e.g., intensity of the impinging photon beam), pos-
sibly entering a non-linear response regime, postselection will effectively reduce
this intensity back to a level accessible to the detector sensitivity [10]. Alternatively,
amplification may originate from the imaginary component of the WV [9], or from
the different effect of the noise and the measured variable on the detector’s sig-
nal [17]. However, as long as quantum fluctuations (leading to inherent statistical
noise) dominate, the large WV is outweighed by the scarcity of data points, failing
to amplify the signal-to-statistical-noise ratio [17, 18].

We have recently presented an alternative measurement protocol dubbed null
weak value (NWV), that overcomes the SNR problem of WV-protocols [19]. Like
the WV-protocol, NWV consists of a two-step conditional measurement. The recipe
goes as follows: (i) We prepare the system in a given pure state |i〉 (a generalization
to a mixed state will not be discussed here). (ii) We perform a strong measurement
of the observable Â; we arrange the setup such that the probability, p, that our detec-
tor “clicks” (hence collapse is taking place), is small (p� 1). If the detector clicks,
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the system’s state has collapsed, and we start our measurement all over again, with
a new replica of the system. If no click has occurred, |i〉 has been (by way of back-
action) modified, |i〉 → |ip〉. (iii) We now let the system evolve in time, possibly
manipulating |ip〉 in a controlled way. (iv) We perform a strong measurement of a
certain observable B̂ . Formulating the results of the first and second measurements
in an anti-causal manner, the outcome of the first measurement (the detector click-
ing) is conditional on the outcome of the second measurement (of B̂). The NWV of
Â is then

〈Â〉NWV = 〈i|Â|i〉
|〈f |i〉|2 , (25.4)

to be compared with the WV of Â, Eq. (25.3).
In principle, the derivation of standard WVs, as well as that of NWVs, can

be done by following the dynamics of the measurement process in the extended
system-detector Hilbert space. Here we discuss the derivation of NWVs and com-
pare it to the derivation of WVs, taking two different paths: (i) analyzing the the
effect of the detector on states and amplitudes in the system’s subspace. We refer
to this as “derivation in terms of quantum states”. (ii) We derive expressions for
WVs/NWVs analyzing the probabilities and conditional probabilities involved in
the various steps of the protocols.

The outline of this paper is as follows. In Sect. 25.2 we present a derivation of a
standard WV in terms of quantum states. This follows by a derivation in Sect. 25.3,
which employs conditional probabilities. Section 25.4 addresses NWV from the
viewpoint of conditional probabilities, and Sect. 25.5 presents a derivation of NWV
in terms of quantum states. In Sect. 25.6 we outline a few conclusions.

25.2 Standard WV Derivation

Weak values describe the outcome read in a detector when the measured system is
subsequently found to be in a specific state. The expression for WVs can be de-
rived most simply through an argument due to Yakir Aharonov based on a one-line
identity for the average value of an observable Â:

〈Â〉 = 〈i|Â|i〉 =
∑

n

〈 i|fn〉 〈fn|Â|i〉 =
∑

n

|〈fn|i〉 |2 〈fn|Â|i〉
〈fn|i〉 ≡

∑

n

Pi→n fn〈Â〉i .
(25.5)

The identity is obtained by inserting a complete set of states 1 = ∑n |fn〉〈fn|.
Also in the last equality we introduced the notation fn〈Â〉i ≡ 〈fn|Â|i〉/〈fn|i〉 ,
Pi→n ≡ |〈fn|i〉 |2. The reasoning goes as follows: The states {|fn〉} above can be
interpreted as the possible states obtained by measuring an observable B̂ after Â. If
one can assume that the measurement Â leaves the initial state unchanged, Pi→n

can be interpreted as the probability that the system is (finally) to be found in |fn〉.
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Equation (25.3) gives then a natural interpretation of the WV, fn〈Â〉i , as the av-
erage of Â conditional to a postselection on |fn〉. The so obtained expression for
the WV is universal in the sense that it does not depend on the the specific detec-
tor or its coupling to the system, as long as the state of the system is unaffected
by the detection process. Not modifying the state of the system has to do with the
measurement back-action and its precise meaning is what defines the weakness of
the measurement, hence the name weak value. The weakness of the measurement
can be addressed in a specific model of the system-detector coupling. One may, of
course, reproduce the correct expression for the WV in a treatment involving the
system-detector Hilbert space.

The weak coupling between a system and a detector is performed by an ideal von
Neumann measurement [1], described by the Hamiltonian in Eqs. (25.1) and (25.2)
with λ→ 0. We assume for simplicity that the free Hamiltonians of the system and
the detector vanish and that g(t)= δ(t − t0).

The system is initially prepared in the state |i〉, and the detector in the state |φ0〉.
The latter is assumed to be a Gaussian wave-packet centered at q = q0, |φ0〉 =
Ce−(q−q0)

2/4�2
. After the interaction with the detector the entangled state of the

two is

|ψ〉 = e−iλp̂Â|i〉|φ0〉. (25.6)

In a regular measurement the signal in the detector, i.e. the pointer’s position 〈q〉 =
q0 + λ〈Â〉, is read. From the classical signal, 〈q〉, one can infer the average value of
the observable Â.

In a WV protocol the signal in the detector is kept provided that the system is
successfully postselected to be in a state |f 〉. Hence, the detector ends up in the
state

|ψ〉 = |φ0〉 − iλ[〈f |Â|i〉/〈f |i〉]p̂|φ0〉 ≈ e−iλp̂f 〈Â〉i |φ0〉, (25.7)

that corresponds to a shift in the position of the pointer proportional to Re[f 〈A〉i].
Hence the expectation value of the coordinate of the pointer is given by

f 〈q̂〉i = q0 + λRe[
f
〈Â〉i

]
, (25.8)

where the conditional average value of Â is inferred from the detector’s reading.
We note that the approximation in Eq. (25.7) is valid when �� λmaxi,j |ai −

aj |. This means that the initial detector’s wave function and the shifted one due to
the interaction with the system are strongly overlapping. In turn, this means that
for any outcome of the detector the state of the system is weakly changed. This
corresponds to a weak measurement. As long as the measurement of the observable,
Â, is weak, the WV is system independent and does not depend on the details of the
coupling or the specific choice of the detector.
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25.3 Standard Weak Values in Terms of Conditional
Probabilities

In this section we provide a correspondence between a conditional probability nota-
tion and the standard state-vector notation used in most WV works.

Let us consider the case of a qubit system weakly coupled to another two-level
detector. Their respective states are initially

|i〉 = α|0〉 + β|1〉 Hilbert space of system, (25.9)

|d〉 = γ |0〉 + δ|1〉 Hilbert space of detector. (25.10)

Once the system and detector are coupled their resulting entangled state is

|i, d〉 = N
(
αγ |0,0〉 + αδ|0,1〉 + βγ̃ |1,0〉 + βδ̃|1,1〉), (25.11)

where we assumed that if the system is in state |0〉 the detector remains unaffected,
γ̃ , δ̃ represent the detector amplitudes when the system is in state |1〉, and N is a
normalization factor.

Measuring the detector state and applying calibration yields an observable of the
system:

〈i|Â|i〉 = P(Â′)− |δ|2
|δ̃|2 − |δ|2 = |β|2, (25.12)

where Â = |1〉〈1| operates in the system’s Hilbert space and Â′ = |0,1〉〈0,1| +
|1,1〉〈1,1| operates in the joint Hilbert space of system and detector.

Taking the probability of this weak measurement outcome conditional on the
outcome of a subsequent postselection, yields the detector response to a standard
WV protocol

P(Â′ |B̂)− |δ|2
|δ̃|2 − |δ|2 ∼ (|δ̃|2 − |δ|2)Re{f 〈Â〉i}, (25.13)

where B̂ = |f 〉〈f | is a strong postselection in the system space, and we used the
weakness of the first measurement |δ̃|2 − |δ|2 � 1. The counter-causal conditional
probability P(Â′|B̂) is calculated using Bayes theorem and using the causal condi-
tional probabilities appearing in the tree diagram in Fig. 25.2(a).

25.4 Null Weak Values in Terms of Conditional Probabilities

We now turn to describe our new measurement protocol (null-WV) [cf. Fig. 25.2(b)].
The qubit state is measured twice. The first measurement Â= p0|0〉〈0| + p1|1〉〈1|
is a strong (projective) measurement which is performed on the system with small
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Fig. 25.2 Tree diagrams of the state evolution during the (a) weak value protocol and (b) null
weak value protocol. The respective probabilities of events are indicated. (a) Upon the first weak

measurement the detector “clicks” [no “click”] with probability P (Â′) [P (Â′)]. Due to the mea-
surement back-action, the system evolves into the state |i+〉 [|i−〉]. Subsequently the system if
strongly measured to be in the |f 〉 [or not]. (b) The first partial-collapse measurement “clicks”

[no “click”] with probability P (Â) [P (Â)]. If a “click” occurred the system is destroyed [marked
by X (red)]. If not, due to the measurement back-action, the system evolves into the state |ip〉.
Subsequently the system if strongly measured to be in the |f 〉 [or not]

probability. Here the states {|0〉, |1〉} are measured with probabilities {p0,p1}, re-
spectively. For simplicity, hereafter, we assume that only the state |1〉 is measured
with probability p1 = p and p0 = 0. If the detector “clicks” (the measurement
outcome is positive), the qubit state is destroyed. Very importantly, having a “null
outcome” (no click) still results in a weak back-action on the system. We refer to
this stage of the measurement process as “weak partial-collapse”. Subsequently the
qubit state is (strongly) measured a second time (postselected), B̂ , to be in the state
|f 〉 (click) or |f̄ 〉 (no click).

Similarly to the previous case, readout of the number of “clicks” in this first
detector yields an observable on the system
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〈i|Â|i〉 = P(Â)

p
= |β|2. (25.14)

Studying the correlation between this first partial-collapse measurement and a “no
click” postselection yields the null value

P(Â|B̂)
p

= 〈i|Â|i〉
P(B̂)

∼ 〈i|Â|i〉
|〈f |i〉|2 , (25.15)

where the last approximation is for small p.
Our protocol takes advantage of the correlation between the two measurements.

To shed some light on its outcome we calculate explicitly the conditional probabili-
ties following the measurement procedure sketched in Fig. 25.2(b). For example, if
the first measurement results in a “click” the system’s state is destroyed and any sub-
sequent measurement on the system results in a null-result, implying P(B̂|Â)= 0,

and P(B̂|Â) = 1. This represents a classical correlation between the two mea-

surements. By contrast, P(B̂|Â) embeds non-trivial quantum correlations. The first
partial-collapse measurement of a given preselected state |i〉 results in the detector

clicking with probability P(Â)= p|β|2. If no click occurs [with probability P(Â)=
1 − P(Â)], the qubit’s state is modified by the measurement back-action into

|ip〉 = [α|0〉 + √
1 − pβ|1〉]/

√
P(Â). The second strong measurement, B̂ , yields a

click [no click] with probability P(B̂|Â)= |〈f |ip〉|2 [P(B̂|Â)= |〈f̄ |ip〉|2]. Finally,

using Bayes theorem, we can write P(Â|B̂)= P(Â)/[P(Â)+P(Â)P (B̂|Â)]. This
correlated outcome is useful in obtaining amplified SNR in a quantum state discrim-
ination problem [19].

25.5 Description of Standard and Null Weak Values in Terms of
Quantum States

The result of the NWV protocol, Eq. (25.4), though emanating from a weak mea-
surement, is different from the standard WV, Eq. (25.3). On the face of it, the deriva-
tion that leads to Eq. (25.5) appears to be universally adapted to any two-step (the
first is weak) measurement procedure. The fact that the expression for NWV is
different from that of WV may then seem paradoxical. It is therefore instructive
to understand how the NWV relates to the standard WV in the framework of the
derivation of Eq. (25.5).

The idea behind Eq. (25.5) is quite general: one writes an identity for the standard
quantum mechanical expectation value in terms of a sum of probabilities to reach the
possible postselected states. These probabilities are weighted-in with the appropriate
coefficients, namely

〈Â〉 =
∑

n

Pi→n fn〈Â〉i , (25.16)
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where Pi→n is the probability to obtain the postselected state |fn〉 given the ini-
tial (prepared) state of the system is unchanged. The coefficients fn〈Â〉i obtained
from this identity are then naturally interpreted as the conditional averages one is
after. In the (standard WV) derivation of Eq. (25.5), the first weak measurement
does not affect the state significantly, and this interpretation comes natural with
Pi→n = |〈fn|i〉|2. For NWVs, the factor |〈fn|i〉|2 can no longer be interpreted as
the probability to find the system in |fn〉, following the second strong measurement
(postselection). In fact, (without extending our Hilbert space) the partial-collapse
measurement cannot be directly described by a von Neumann-like measurement on
which Eq. (25.5) is implicitly based. Therefore, despite the fact that Eq. (25.5) is an
identity, which holds true also in the NWV case, it does not allow for an interpreta-
tion of the conditional outcome as the NWV.

Nevertheless, it is possible to write other identities in the spirit of Eq. (25.16)
which can be useful in the present case. For example, following the steps (i) using
Â =∑j aj Π̂j , where {aj } are the eigenvalues of Â and {Π̂j } the corresponding

projection operators onto the states {|j 〉}, (ii) inserting the projector identity Π̂j ≡
Π̂2
j , and (iii) inserting the identity in terms of postselected states, 1 =∑n |fn〉〈fn|,

one obtains

〈Â〉 =
∑

n

(∑

j

|〈fn|Πj |i〉|2
)∑

j aj |〈fn|Πj |i〉|2∑
j |〈fn|Πj |i〉|2 . (25.17)

If the measurement of Â is strong, the term in parenthesis in Eq. (25.17) corresponds
to the probability of postselection. Therefore the conditional average is the remain-
ing expression outside of the parenthesis. Equation (25.17) is evidently an identity,
but it does not lend itself to any physically meaningful interpretation if the protocol
involves a weak measurement.

Since partial-collapse measurements are in fact strong measurements that occur
with a small probability, Eq. (25.17) is particularly useful for NWVs. Indeed, one
may effectively describe a partial-collapse measurement as a von Neumann mea-
surement in an extended Hilbert space. To do so, we formally extend the system’s
Hilbert space to include an extra ancilla state, |R〉. The idea is to describe the partial-
collapse measurement as a combination of a weak transition to the ancilla state fol-
lowed by a strong projective measurement of this newly added state. Let us describe
this more precisely.

The initial state one is interested in is |i〉 = α|0〉 + β|1〉. Allowing the state |1〉
to be transferred to |R〉 with transition rate Γ for a time window t , evolves the
initial state into Û |i〉 = α|0〉 + √

1 − pβ|1〉 + √
pβ|R〉, where p = 1 − exp(−Γ t)

is the probability to undergo this transition over time t , and Û |i〉 is in the extended
Hilbert space spanned by |0〉, |1〉, |R〉. It is now apparent that the partial-collapse
measurement can be written as Â= Û†|R〉〈R|Û . Subsequently we postselect on |f 〉
(a state within the system’s Hilbert space, |0〉, |1〉). Hence, in the extended Hilbert
space the measurement can be formulated according to the standard measurement
theory.
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Let us adjust Eq. (25.17) to the NWV case,

〈Â〉 = 〈Â〉
p

= 1

p

∑

fn=f,f̄

( ∑

j=R̄,R
|〈fn|ΠjÛ |i〉|2

) |〈fn|ΠRÛ |i〉|2
∑
j=R̄,R |〈fn|ΠjÛ |i〉|2 (inappropriate!),

(25.18)

where ΠR̄ = |0〉〈0| + |1〉〈1| is the projector onto the Hilbert space of the original
system, i.e. the subspace orthogonal to |R〉. However, owing to the fact that the
postselection states |f 〉 and |f̄ 〉 are within the reduced Hilbert space, the numerator
on the right hand side is identically zero.

In order to harness this approach to describe the procedure at hand, we introduce
a crucial modification in our scheme. One may think of the postselection as perform-
ing an additional “partial-collapse” measurement with the state |f 〉 having probabil-
ity p ≡ 1 to become transmitted into state |R〉, i.e. the postselection is with respect to

the operator (observable) ˆ̃
B = ˆ̃

U†|R〉〈R| ˆ̃
U , with ˆ̃

U [a|f̄ 〉 + b|f 〉] = [a|f̄ 〉 + b|R〉].
Due to the specific nature of the partial-collapse measurement, the state |R〉 is not
affected by this transformation. In particular, it does not couple back to the original
Hilbert space during the second tunneling event. Note that this renders the evolution
non-unitary in the extended Hilbert space. This prescription yields,

〈Â〉 = 1

p

∑

fn=R,f̄

( ∑

j=R̄,R
|〈fn| ˆ̃

UΠjÛ |i〉|2
) |〈fn| ˆ̃

UΠRÛ |i〉|2
∑
j=R̄,R |〈fn| ˆ̃

UΠjÛ |i〉|2

≡ Pi→f

|〈R|Û |i〉|2
p Pi→f

(appropriate for NWV), (25.19)

with Pi→f ≡ |〈R| ˆ̃
UΠR̄Û |i〉|2 + |〈R|Û |i〉|2. Indeed, the expression on the left hand

side corresponds to the probability to end up in state “|f 〉”≡ ˆ̃
U†|R〉. Note that for

p� 1, the probability Pi→f reduces to the form |〈f |i〉 |2, the same as in the stan-
dard WV case [cf. Eq. (25.3)]. Last but not least, the multiplicative term in the
middle equality of Eq. (25.19) (multiplying the parenthesis), is identical to the ex-
pression for the NWV [r.h.s. of Eq. (25.15)]. Hence, we have cast the NWV in the
form of Eq. (25.16).

25.6 Conclusions

We have presented here a novel measurement protocol. Similarly to standard weak
values, the outcome of this protocol—null weak value—is the result of a first



25 Standard and Null Weak Values 387

(weaker) measurement correlated with a strong postselection. Ostensibly, as long as
a single measurement is concerned, the first measurement in both protocols yields
the same outcome. However, the substantial difference between the standard—and
null—WVs comes to show that back-action on the system is profoundly different.
Hence, involving a postselection leads to qualitatively different correlated results.
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Chapter 26
Increase of Signal-to-Noise Ratio in Weak Value
Measurements

C. Byard, T. Graham, A. Danan, L. Vaidman, A.N. Jordan, and P. Kwiat

Abstract We present a method for improving the signal-to-noise ratio of optical
weak measurement techniques by recycling the non-post selected light. We designed
a system that allows input photons to cycle through a Sagnac interferometer twice,
effectively doubling the detected intensity. A deflection as small as 20 picoradians
is discernible. The expected improvement for a shot-noise-limited system is a factor
of

√
2; however, we observed a larger signal-to-noise ratio enhancement (1.73 ±

0.46) which can occur for systems limited by technical noise. [Editor’s note: for a
video of the talk given by Prof. Kwiat at the Aharonov-80 conference in 2012 at
Chapman University, see quantum.chapman.edu/talk-5.]

26.1 Introduction

Quantitative measurement is the most basic tool for comparing expectation and real-
ity. We know from fundamental quantum mechanics that repeated measurements of
some property on a quantum system must give an average value between the largest
and smallest of its eigenvalues. With the use of weak value measurements, however,
one can manipulate the state of a system to effectively achieve an amplification of
that property. Aharonov, Albert, and Vaidman [1] first showed in 1988 the unex-
pected result that through such weak measurement techniques, one can measure a
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value that is far outside the allowed range of the system’s initial possible eigenval-
ues.

Weak measurements are possible through a pre-selection and post-selection
method [1]. The measuring device is first prepared in an initial state, |ψi〉, which
then interacts impulsively with the system operator A we wish to measure. This in-
teraction couples A with an operator (such as momentum) of the measuring device,
known as the meter. The state of the measuring device is essentially unchanged
in this process. Finally, a state |ψf 〉 nearly orthogonal to the initial state is post-
selected and the perturbation on the measuring device is monitored. The outcome
of the meter is then given by Aweak = 〈ψf |A|ψi〉/〈ψf |ψi〉 [1]. We see that the
low probability of post-selection (〈ψf |ψi〉 � 1) causes a much larger change in the
meter than would be possible with a strong measurement.

Since the first experimental demonstration [2], weak value measurements have
proven to be a powerful tool in precision metrology, as the amplifying effect makes
it possible to detect smaller changes than conventional measurements could. The
technique has been utilized to demonstrate the spin Hall effect of light [3], for ex-
ample, to an accuracy of about 1 angstrom, i.e. the system can reliably detect about
a 1-angstrom displacement of a 1-mm diameter laser beam. It has also been shown
that weak measurements can have practical applications in the telecom industry [4].

In a relevant experiment, Dixon et al. [5] used weak-value amplification in a
Sagnac interferometer to detect the tiny tilt of a mirror. Light was split with equal
probability into the clockwise (CW) or counterclockwise (CCW) directions around
the interferometer, creating the pre-selected state. A birefringent element was placed
inside the interferometer so that a controllable phase shift (ϕ) could be introduced
between the two paths, thus allowing a small amount of light to leak out of the dark
port. One mirror was equipped with a piezo-electric crystal so that it could be tilted
slightly. The small momentum shift caused by the piezo crystal acts as the weak
perturbation, shifting the relative positions of the CW and CCW beams (though
by much less than the intrinsic beam divergence). The beam profile from the dark
port is “warped” to one side by an amount determined by ϕ, and can be hundreds to
thousands of times larger than the shift caused in each individual beam by the mirror
tilt alone. Dixon et al. were able to detect an angular shift of the mirror of about 400
femtoradians, corresponding to a change in the piezo length of only 15 fm. We have
also chosen to work with a tilted mirror in a Sagnac interferometer in our current
study.

26.2 Recycling

While weak measurements do offer a significant improvement over unamplified de-
flections [6] (particularly in situations dominated by technical noise), there is still
the potential for improvement. Most of the light is discarded in the process of post-
selection, so that only a small fraction of the available light is utilized in the experi-
ment. We propose recycling the escaped light, so that some or all of it is eventually
detected.



26 Increase of Signal-to-Noise Ratio in Weak Value Measurements 391

Fig. 26.1 Double-pass scheme. A PBS passes H-polarized light incident from a fiber-coupled
laser. Light is then switched to L polarization by a QWP. After passing through the Sagnac, the
QWP switches the polarization to V. Light is now reflected at the PBS to another mirror, which
sends the beam back through the system for a second pass

As shown in Fig. 26.1, the addition of a quarter-wave plate (QWP), polarizing
beamsplitter (PBS), and recycling mirror allows the unused portion of the light that
exits the bright port of the Sagnac interferometer to be redirected back inside. Be-
cause only a small fraction of the light (ε) escapes the dark port in the first pass,
essentially the same amount exits on the second ((1 − ε) ∗ ε ∼ ε). The total number
of photons incident on the detector is then nearly doubled with this configuration.
We expect the signal, which is proportional to the number of incident photons, to
double as well. In the shot-noise-limit the noise scales as the square root of the
number of photons, and hence we expect the noise to only increase by a factor of
1.4 (= √

2) over the single-pass configuration. Thus, the SNR should also be in-
creased by a factor of 1.4. We will use the measurement operator formalism [7] to
describe in more detail how the double pass experiment changes the physics.

26.3 Theory

Such a situation can be theoretically modeled by considering an input state, |Ψ 〉 =
|w〉|χ〉|p〉, consisting of a direct product of three states; a which-path interferome-
ter state, |w〉, a transverse profile state, |χ〉, and a polarization state, |p〉. According
to our geometry in Fig. 26.1, the polarization starts in horizontal (|H 〉) polarization,
passes through the PBS, and is rotated to left circular polarization, (|L〉) by the QWP.
It then enters the interferometer creating a which-path state, |+〉 = (1/√2)(|�〉 +
i|�〉); a linear combination of clockwise and counter-clockwise propagating states
in the Sagnac interferometer. State |+〉 describes the output (post-selected) state of
the bright port of the interferometer to be discussed shortly; the dark-port of the
interferometer is described with the state |−〉 = (1/√2)(|�〉 − i|�〉). We define the
which-path operator to be W = |�〉〈�|− |�〉〈�|, noting that W squares to the iden-
tity. The action of the tilted mirror, providing transverse momentum kick k to the
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transverse state, can be expressed as unitary operator,UP = exp[−ikWx], where x
is the transverse position operator. UP acts on both which-path and transverse states.
Similarly, the birefringent element will give a relative phase shift ϕ to the clock-
wise and counter-clockwise paths, UBE = exp[iϕW/2]. Taken together, acting on
which-path and transverse states, these operators give the state after one traversal,
|Ψ1〉 = UPUBE |Ψ 〉. The light then exits the 50/50 beamsplitter, projecting the state
onto the post-selection state |+〉 or |−〉. The effect of this on the transverse beam
profile can be represented as one of two measurement operators, |χ〉 → M±|χ〉,
where M± = 〈±|UPUBE |+〉, describing post-selection on either the bright (+) or
dark port (−). For our case, the measurement operators take on the simple form,
M+ = cos(ϕ2 − kx), and, M− = i sin(ϕ2 − kx).

In the first pass, the photon can either exit through the dark port, which has
the state |Ψd,1〉 = M−|χ〉|L〉, or it can exit the bright port creating the state
|Ψb,1〉 = M+|χ〉|L〉. This bright-port photon state will subsequently pass through
the QWP (switching the polarization to vertical, (|V 〉)), reflect off the PBS, mir-
ror, PBS, pass again through the QWP (switching the polarization to right circu-
lar (|R〉)), and once again enter the interferometer with state |+〉(M+|χ〉)|R〉. This
process is now repeated again, but with the initial state profile changed to M+|χ〉
and a new polarization state. On the second round, the photon will exit to the dark
port with the state |Ψd,2〉 = (M−M+|χ〉)|R〉, and to the bright port with the state
|Ψb,2〉 = (M+M+|χ〉)|R〉, the polarization of which will be rotated back to |H 〉,
which will pass through the PBS and travel back to the laser, ending this analysis.

We are now interested in the properties of the light incident on the position-
sensitive detector from the dark port. This will be a combination of the photons
that have made one and two passes. We note that because the polarization is dif-
ferent for the two passes (either left or right circular polarization), these will not
interfere with each other, so we can simply sum the two probabilities. If the ini-
tial transverse profile is n0(x) = |〈x | χ〉|2, then the final profile on the detector is
ntot(x)= n1(x)+ n2(x), where n1 = |〈x | M− | χ〉|2, and n2 = |〈x | M−M+ | χ〉|2.
Since the measurement operators are diagonal in the position basis, we have the
following expressions for n1, n2

n1(x) = n0(x) sin2
[
ϕ

2
− kx

]
(26.1)

n2(x) = n0(x) sin2
[
ϕ

2
− kx

]
cos2

[
ϕ

2
− kx

]
(26.2)

In the weak value regime, the initial distribution n0 is usually taken to be a Gaussian
with width σ , so that the parameters are ordered as kσ � ϕ� 1. In this range, the
fraction of photons in the transverse plane that arrives at the detector is Nd/N0 =∫
dxntot/

∫
dxn0, and we have for the double pass,

Nd2/N02 = (ϕ2/2
)(

1 − ϕ2/16
)+O(ka)2 (26.3)
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as opposed to

Nd1/N01 = (ϕ2/4
)(

1 − ϕ2/12
)+O(ka)2 (26.4)

for the one pass alone. Thus, so long as the phase shift remains small, we have
an effective doubling of collected photons for a double pass. It is straightforward to
check that the split-detector signal and variance are left unchanged when normalized
to the total photon number (up to corrections of order ϕ2 as shown in Eqs. (26.3)
and (26.4) above),

〈x〉 = 2kσ 2 ImWweak = −4kσ/ϕ (26.5)

Var[x] = 〈x2〉− 〈x〉2 = σ 2 (26.6)

where the averages are taken with respect to the post-selected distribution [5]. Here,
Wweak is the weak value of the which-path operator W, where the pre- and post-
selected states are |+〉 and UBE |−〉. This leaves the doubling of photon number
N → 2N as the only important effect in this limit.

The signal-to-noise ratio (SNR) (for a split-detector signal measuring photons
that are uncorrelated in position [6]) is defined as the ratio of the average signal on
the detector, S =Nd〈x〉, to the square-root of the variance, N2 =Nd Var[x]. Thus,

SNR = S/N =√Nd〈x〉/
√

Var[x] (26.7)

As shown in Eqs. (26.5) and (26.6), both 〈x〉 and 〈x2〉 are unchanged up to cor-
rections of order ϕ2 between the single and double pass, and thus in the comparison
of SNR, we see that both signal and variance increase by a factor of 2; consequently,
for a shot-noise limited system, the SNR will increase by a factor of

√
2 ≈ 1.4 over

the single pass. If, however, the system has technical noise as the dominant noise
source, the variance will remain unchanged from single pass to double pass and the
SNR will then increase by a factor of 2.

26.4 Experiment

A 633-nm laser was coupled to a single-mode fiber and the output then collimated
to a 1/e2 radius of 1 mm. A quarter-wave plate and half-wave plate were used to
adjust the intensity. As shown in Fig. 26.1, the beam was then passed through a PBS
and QWP, switching the polarization to L. A 50–50 beamsplitter split the light into
CW and CCW arms of the Sagnac interferometer. Mirror 1 was tipped out of the
plane of the beam path, causing a slight path length difference (since the CW path
experiences the tilt first) which was used to control the relative phase. Mirror 2 was
tilted in the plane of the interferometer with a piezoelectric crystal (Thorlabs model
KC1-PZ).

Mirror 2 was driven with a 100-Hz sinusoidal voltage at a range of amplitudes.
The resulting shift was measured with a quadrant cell detector (New Focus model
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Fig. 26.2 Measured signal
for double- (triangles) and
single-pass (squares)
systems. Double-pass
measurements (when
normalized to the single-pass
power) show twice the signal
of the single pass data

2921) and the output signal filtered with a lock-in amplifier (SR830). Position shifts
were determined by normalizing the voltage difference between the left and right
photodiodes by the total voltage. Results are shown in Fig. 26.2. Light that exited
the bright port, now R polarized, again passed through the QWP and was switched
to V. At the PBS, the light was then reflected to a mirror to be sent through the
system a second time.

Measurements were taken with the interferometer in two slightly different con-
figurations. The interferometer was square with sides about 5 cm, with a path length
of 22.5 cm (26 cm) from mirror 2 to the detector. The maximum power achieved
at the detector output port of the interferometer was 1.9 mW; the minimum out-
put power was 6.3 µW (4.8 µW) corresponding to a visibility of 99.3 % (99.5 %).
When the relative phase was shifted to the chosen post-selection probability, 15 µW
(19.7 µW) exited to the quadrant cell detector for the single-pass data (correspond-
ing to a relative phase difference of 8 (10) degrees), while 29 µW (39 µW) exited
for the double-pass data.

26.5 Discussion

As expected, our measurements show that the signal of the double-pass system from
the position-sensitive detector, when normalized to the same power as a single pass,
is approximately doubled (see Fig. 26.2). Our preliminary results show that the SNR
is consistently larger for the double cycle case over the single cycle; however, we
observed an average SNR increase by a factor of 1.73±0.46. (To calculate the SNR
ratio, we normalized the double-pass signal by the total double-pass power. Because
the small deflection and uncertainty in the measurements makes the error bars on the
SNR ratio quite large, we weighted 13 measurements by the reciprocal of the stan-
dard deviation.) This effect is consistent with measurements that are not shot-noise
limited, for which we would expect an increase of only 1.4. For a system limited
by technical noise that is independent of the number of cycles (e.g., electrical noise
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from the detector itself), the doubling of the signal is not accompanied by an in-
crease in noise, and results in a doubling of the SNR. Hence, in some circumstances
recycling can give an even larger benefit than would be observed in the shot-noise
limit.

The current resolution of our system is about 20 picoradians (for comparison,
without weak measurement amplification, the smallest distinguishable deflection
for this same configuration would be about 3 nanoradians), presently limited by
electrical noise from the detector and mechanical jitter in the laser cavity. With a
shot-noise-limited system, we expect to be able to reach a resolution of about 0.5
picoradians with the current configuration, though the possibility exists to go even
lower by enlarging the beam, since the amplification increases as the square of the
radius. If we increase the number of cycles so that all of the light is eventually
detected, we anticipate increasing the SNR by an order of magnitude, thus pushing
the resolution that much lower.

26.6 Conclusion

We have demonstrated a technique for recycling light through a weak-measurement
experiment in order to increase the signal-to-noise ratio of the amplified signal. Our
results show an improvement of the SNR, and highlight the fact that the advantage
can range from a factor of 1.4 (for a shot-noise limited system) to 2 (for a technical
noise limited system). If all photons incident on the interferometer could be col-
lected, quantum states of light, such as squeezed states or entangled photons, could
be utilized along with the weak value measurements to expand the limit of detection
beyond what is possible with quantum states or weak measurements alone.
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Chapter 27
Yakir Aharonov: From A to B

A. Pines

Abstract Twenty years ago, I was accorded the privilege and pleasure of presenting
the after banquet speech—reprinted below—at a conference celebrating the sixtieth
year of my dear friend Yakir Aharonov. Does what I said then still hold today?
You bet it does . . .the now adult Yakir has maintained the same burning curiosity,
fiery enthusiasm and explosive genius for physics that characterized the life of the
adolescent sixty year old. There may be no free lunch, but Yakir is living proof
that there is free will, and he has exercised his free will to make ever more creative
contributions to quantum physics, future and present. My admiration of Yakir as a
scientist and mensch has only grown over the years. Sorry I can’t be with you all
at Chapman to participate in this marvelous eightieth year celebration. Dear Yakir,
Ditsa and I wish you, Nilli and your family many more joyous years of health,
science and friendship. . .’ til 120.

Following the dictates of David Mermin, I have prepared some spontaneous re-
marks:

Ladies and Gentiles,

You see before you a most reluctant after-dinner speaker. Someone once said
that if you took all the after-dinner speakers and laid them head-to-toe at the equa-
tor, . . . that would be a very good thing. In fact, some years ago, my friend Ana-
tole Abragam warned me—Alex, when they start asking you to give after-dinner
speeches, it might be an indication that you are no longer on the way up. So when

Reprinted with permission from “After-Banquet Talk in Honor of Aharonov’s 60th Birthday:
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I was asked to talk about Aharonov tonight, the first two words that carne to my
mind were—oy vey.

But, ladies and gentlemen, this is no
ordinary occasion—Yakir Aharonov is
not only a truly great scientist and one
of the most brilliant and stimulating
people I have ever known, he is an ex-
traordinary colleague and dear friend,
and it is a privilege and a pleasure for
me to say a few words about him. You
might well ask, why me, a chemist,
talking about a physicist.

Well, Aharonov himself once paid
me what he considers the greatest

compliment you guys can give a chemist—Come on, Alex, you’re not really a
chemist, you’re too smart, . . . you’re a physicist. Yakir, it’s your birthday, let me
return the compliment—you don’t look seventy.

Yakir Aharonov was born in 1932, in Haifa
Israel, to Russian parents. He grew up, so to
speak, in Kiryat Haim, where, already at age
five, it was abundantly clear that he was a math-
ematical prodigy. The residents of Kiryat Haim
soon became accustomed to the apparition of the
boy Aharonov accosting and threatening them
in the streets, challenging them to give him a
problem—a novel concept of mathematical mug-
ging, your problem or your life.

Because his parents were unwilling to teach
him chess (a waste of time), Aharonov traded
some strawberries from his yard to a neighbor, an
older child, who taught him the game. When not
playing with his friend, Aharonov would play by
himself, one hand against the other, one playing
white and the other black. It is not known which
hand was stronger, his left hand or his other left
hand. As many of you know, Aharonov had a
natural aptitude for the game and became a very
strong player, today an Israeli candidate master.
During his period as Miller Professor at Berke-
ley, Aharonov made an unforgettable impression
not only on the scientists, but also on the nation-
ally renowned Berkeley chess community. As a
young man, Aharonov had a gift not only for
math and chess; he was good at all sorts of games
and puzzles. He discovered, to his joy, that his

prowess at backgammon made him almost irresistible to middle-eastern women.
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The last time I played
blitz chess against Aha-
ronov, he again asked
if I wanted a handicap.
I related to him the (per-
haps apocryphal) story
told to me recently by
John Rowlinson about
Max Euwe, the former
world chess champion.
Euwe was on a train an-
alyzing a game on his
pocket chess set. A fel-
low traveler in the compartment asked him if he played chess, to which Euwe replied
that yes, he did. Would you like to play a game, asked the other fellow; sure, said
Euwe, who proceeded to set up the pieces and then removed one of his rooks. What
are you doing, asked his partner. I’m giving you a rook, replied Euwe. You’re giving
me a rook? You’ve never played against me, you don’t know who I am, how can you
give me a rook? If I couldn’t give you a rook, said Euwe, I’d know who you are.

Well, Aharonov doesn’t give me a rook, but
he does give me a differential time handicap
in order to imbue the game with some sem-
blance of balance. In other words, he beats the
hell out of me. It is because of Aharonov that I
have now resorted to playing for money against
small children. But Aharonov too is fallible—
about twenty five years ago, in New York, he
played, and lost, three games against Bobby
Fischer. Aharonov maintains that this is pretty
good; he lost only three games, so he did bet-
ter than the famous Russian, Taimanov, and the
great Dane, Larsen, who each lost six games
against Fischer.

At age eleven, Aharonov took up the violin,
an instrument that he cherishes to this very day.
He soon discovered that the best acoustics for
his instrument were in the kitchen and bathroom. It was later, after he read how
Einstein had independently made the same discovery, that Aharonov decided he
would become a physicist.

After graduation from high school, Aharonov was inducted into the army, into
the artillery division. Yes, the artillery division. He soon lost interest in experimen-
tal artillery after he proved that quantum corrections to the ballistic trajectories were
insignificant and, much to the relief of the commanding authorities, he volunteered
for an army research unit. The only legacy of Aharonov’s army experience was
his occasional, misguided tendency to force himself upon his friends as a body-
guard.
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After his discharge from the army, Aharonov studied at the Technion, the Is-
rael Institute of Technology, where he met the late David Bohm. Here Aharonov
is shown at the Technion with a co-student whom he identifies as Tsachi Gozani.
Gozani allegedly spent much of his time begging Aharonov to stay away from
the apparatus. After discussions with faculty members who feared for their lives,
Aharonov seriously contemplated becoming a theoretician. He moved with Bohm
to Bristol to do his Ph.D. and it was there that the famous Aharonov-Bohm effect
was conceived, elucidated and published.

One of the external examiners for Aharonov’s Ph.D. was Rudolph Peierls, who
claimed he did not believe some argument that Aharonov had formulated about
energy-time uncertainty, but Peierls could not find an error. He invited Aharonov to
Birmingham, where they sat and argued for days, after which Peierls was convinced
and said that he now believed. But Yakir tells me that just two years ago, Peierls was
in Israel for the Landau Symposium—he ran into Aharonov and said hey, aren’t you
Aharonov? Yes, I am. Well, said Peierls, now I don’t believe you again.

It was during his time in England that Aharonov became concerned about his
Israeli accent, because he felt that it was hindering his chances with women. He
arranged for intensive tutoring sessions in elocution, seeking to acquire not just
any old accent, but an Oxford accent, and devoting considerable time and effort to
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the enterprise. On the day of the first experiment with his new accent, an excited
Aharonov ventured into the streets of Bristol and asked for directions to go some-
where; I imagine that we can all sympathize with his frustration when the answer
came back in Hebrew.

Following his Ph.D., Aharonov spent several years at Brandeis and Yeshiva Uni-
versities in the United States. In 1962, he created a sensation when he talked about
the Aharonov-Bohm effect at the Cincinnati Conference on quantum theory (the
other participants included Dirac, Furry, Podolsky, Rosen and Wigner). The con-
ference made headlines despite the many other exciting events in Cincinnati at the
time.

In 1966, Aharonov joined the faculty at South Carolina and, in 1967, he became
Full Professor at Tel-Aviv University. He was subsequently honored with chairs in
physics both at Tel-Aviv and here in South Carolina, where, I understand, he is again
contemplating changing his accent. His colleagues here know that, for Aharonov,
physics is not just a job—it is a passion, like chess. That Tel Aviv University and
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the University of South Carolina pay him to indulge in his passion remains for him
unfathomable. Yakir, may it become yet more unfathomable.

Over the years, Aharonov has further cultivated, carefully and successfully, his
image as a shlemiel, thereby shielding him from annoying appeals to help around
the lab, the department or the house, and leaving him time to do what he loves and
does best—to think. And, as many of us know, Aharonov thinks best in an atmo-
sphere composed of ten percent oxygen, forty percent nitrogen and fifty percent
cigar smoke. What kind of cigar smoke? Well, let’s just say that many years ago,
I gave him one of my prized Montecristos from Havana, and he was able to ex-
change it for a year’s supply of his beloved White Owls. Aharonov continues with
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his tradition of visiting Berkeley whenever he runs out of cigars, much to the delight
of my children, by whom he is much admired.

Yakir Aharonov is a giant of modern physics. Prom his Ph.D. with Bohm to his
work on geometric phases, he has made monumental contributions to quantum the-
ory, and he has profoundly advanced our understanding of electromagnetism and
other gauge theories of fundamental interactions. On two occasions, John Maddox,
the editor of Nature (the science magazine), suggested, justifiably, many of us be-
lieved, that Aharonov, Bohm and Berry should get the Nobel Prize for physics. In
his first editorial on the subject, in 1989, Maddox writes about Abrahamov and
the Abrahamov-Bohm effect; in his second editorial on the subject, this year, he
makes a slightly better approximation, writing about Aharanov and the Aharanov-
Bohm effect. And listen to the perverse, yet quaint 1989 description of the effect—
Abrahamov and Bohm, independently of M. J. Berry, have shown that the suppos-
edly insignificant complex phase of Maxwell’s electromagnetic potential is measur-
able.

Well, Yakir Aharonov is no stranger to honor and to
ceremony. He is a member of the Israel and U.S. Na-
tional Academies of Sciences, and amongst his many
awards are the prestigious Israel Prize in exact sciences
and the Elliot Cresson Medal of the Franklin Institute in
Philadelphia. But Aharonov is particularly proud of the
knighthood bestowed upon him by his friends on the oc-
casion of his fiftieth birthday which, he calculates, was
ten years ago. I guess the citation reads—why is this
knight different from all other knights?

Ladies and gentlemen, I was asked to make my re-
marks either witty or brief so I must come to a close.

Yakir Aharonov is a man with a legendary
hunger for science and for life. But beyond his
genius and his accomplishments, Aharonov has
that rarest of human qualities—he is a mensch.
Dear Yakir, I am sure that I speak on behalf of
everyone here when I say that you have earned
our respect. On the occasion of your sixtieth
birthday, permit me to offer a toast to you and
your family—the Aharonovs, the Abrahamovs
and the Aharanovs—Yakir and Nilli, to another
sixty years.
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