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Abstract The aim of this note is to describe geometric conditions under which a
Riemannian manifold enjoys the Feller property and to show how the validity of
the Feller property in combination with stochastic completeness provides a new
viewpoint to study qualitative properties of solutions of semilinear elliptic PDE’s
defined outside a compact set.

Keywords Feller property · Stochastic completeness · Comparison results

Mathematics Subject Classification (2010) Primary 58J05 · 31B35 ·
Secondary 58J65

1 Introduction

The asymptotic behavior of the heat kernel of a Riemannian manifold gives rise to
the classical concepts of parabolicity, stochastic completeness (or conservative prop-
erty) and Feller property (or C0-diffusion property). Both parabolicity and stochas-
tic completeness have been subject to a systematic study which led to the discovery
not only of sharp geometric conditions for their validity but also of an incredibly
rich family of tools, techniques and equivalent concepts ranging from maximum
principles at infinity, function theoretic tests (Khas’minskii criterion), comparison
techniques and so on. The purpose of this note is twofold. First we describe geo-
metric conditions that ensure that a manifold enjoys the Feller property, for short,
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is Feller. We will see that, although there are similarities with the case of stochastic
completeness, their situation is indeed quite different.

Our second goal is to describe the consequences of the Feller property on the
behavior of solutions of PDE’s involving the Laplacian. It is well understood that
stochastic properties of a Riemannian manifold (M, 〈 , 〉), like parabolicity and
stochastic completeness have important counterparts on the behavior of solutions of
PDE’s defined on the manifold. Indeed, M is parabolic, respectively stochastically
complete, if every subharmonic function bounded from above is constant, respec-
tively if every non-negative bounded solution of the differential inequality Δu � λu

for λ > 0 is constant, and therefore vanishes identically. It is apparent by the very
definition of these stochastic properties that global solutions must be considered.
The introduction of the Feller property, that is the property that the heat semigroup
maps the space of continuous functions vanishing at infinity into itself, in combina-
tion with stochastic completeness, will enable us to get important information even
in the case of solutions at infinity.

In fact, using a suitable comparison theory, we are going to show that manifolds
which are both stochastically complete and Feller do represent a natural environ-
ment where solutions of PDE’s at infinity can be studied.

Sections 2–4 contain foundational material and the results recently obtained
in [20]. In Sect. 5 we present application of the Feller property to geometry and
PDE’s taken from [3].

2 Stochastic Completeness vs. the Feller Property

In what follows, (M, 〈 , 〉), often abbreviated by M , denotes a connected complete
Riemannian manifold of dimension m, and d vol, ∇ , Δ are the Riemannian measure,
the gradient and the Laplace operator of M . We denote by B(x, r) and ∂B(x, r) the
geodesic ball of radius r centered at x and its boundary. Let gij be the components
of the metric 〈 , 〉 in local coordinates xi , gij the components of the inverse matrix,
and g = detgij . Recall that

d vol = √
g dx, ∇f = gij ∂f

∂xi

∂

∂xj
, Δf = 1√

g

∂

∂xi

(√
ggij ∂f

∂xj

)
.

The heat kernel pt(x, y) of M is the minimal positive solution of the problem
{

Δpt = ∂pt

∂t
,

p0+(x, y) = δy(x),
(1)

and can be obtained as limit of the Dirichlet heat kernels p
Ωn
t (x, y) of any smooth,

relatively compact exhaustion Ωn ↗ M (see details in [10]). We recall the following
properties:

(i) pt (x, y) > 0 is a symmetric function of x and y.
(ii)

∫
M

pt(x, z)ps(z, y) d vol(z) = pt+s(x, y) for every t, s > 0 and x, y ∈ M .
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(iii)
∫
M

pt(x, y) d vol(y) � 1, for every t > 0 and x ∈ M .
(iv) For every bounded continuous function u on M , if we set

Ptu(x) =
∫

M

pt(x, y)u(y) d vol(y),

then Ptu(x) satisfies the heat equation on M × (0,+∞). Moreover, by (ii)
and (iii), Pt extends to a contraction semigroup on every Lp , called the heat
semigroup of M .

From the probabilistic viewpoint, the heat kernel pt (x, y) represents the transition
probability density of the Brownian motion t → Xt of M . In this respect, property
(iii) stated above means that t → Xt is, in general, sub-Markovian.

Definition 2.1 We say that M is stochastically complete if heat is conserved, i.e., if
for all t > 0 and some (and therefore all) x ∈ M

∫
M

pt(x, y) d vol(y) = 1.

Stochastic completeness has a number of equivalent formulations. For instance,

• solutions of the heat equation with bounded initial data are unique;
• for some (and therefore all) λ > 0, bounded nonnegative solutions on M of the

differential inequality Δu � λu, vanish identically. See [13].

For the purposes of this note the most useful equivalent formulation is in terms of
the weak maximum principle at infinity:

Definition 2.2 We say that the weak maximum principle at infinity holds on M if,
for every u ∈ C2(M) with supM u = u∗ < +∞, there exists a sequence {xk} along
which

(i) u(xk) > u� − 1

k
, (ii) Δu(xk) <

1

k
.

It was proved in [17] (see also [18]) that

• M is stochastically complete if and only if the weak maximum principle at infinity
holds on M .

The geometric conditions which imply stochastic completeness are subsumed either
by a lower bound on the Ricci curvature Ricc of the underlying manifold or by an
upper bound on the volume growth of geodesic balls.

Theorem 2.3 Let M be a complete Riemannian manifold and r(x) = dist(o, x)

denote the geodesic distance function from a reference point o. Then M is stochas-
tically complete provided one of the following conditions hold:
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(i) the Ricci curvature satisfies Ricc(x) � −G2(r(x)), where G is a positive, con-
tinuous increasing function satisfying

∫ +∞ 1
G(r)

dr = +∞ [14, 22];

(ii)
∫ +∞ r

log(volB(o,r))
dr = +∞ [11].

These two conditions are essentially sharp, and although Ricci curvature lower
bounds imply volume upper bounds, by the Bishop–Gromov volume comparison
theorem, the conditions are related but independent. Note that heuristically, the ob-
struction to stochastic completeness is the fact that the manifold grows too fast at
infinity.

We recall for comparison that M is parabolic if positive superharmonic func-
tions are necessarily constant. This is equivalent to the non-existence of a positive
minimal Green’s kernel, and to the recurrence of Brownian motion. We also recall
that a geodesically complete manifold is parabolic provided it has at most quadratic
volume growth. Indeed, a sufficient condition for parabolicity is that

∫ +∞ 1

vol ∂B(o, r)
dr = +∞.

Let us now turn to the Feller condition.

Definition 2.4 We say that M satisfies the Feller condition, (for short, that M is
Feller), if the heat semigroup Pt maps C0(M) into itself, that is, if

Ptu(x) =
∫

M

pt(x, y)u(y) d vol(y) → 0, as x → +∞ (2)

for every u ∈ C0(M) = {u : M → R continuous : u(x) → 0 as x → ∞}.

Since pt(x, ·) is uniformly integrable, using a cut-off argument, one can easily
prove the following

Lemma 2.5 Assume that M is geodesically complete. Then M is Feller if and only
if it satisfies one of the following equivalent conditions:

(i) the limit in (2) holds for every non-negative function u ∈ Cc(M);
(ii) for some (and therefore all) p ∈ M and for every R > 0,

∫
B(p,R)

pt (x, y) d vol(y) → 0 as x → +∞.

According to R. Azencott [1], the Feller property can be characterized in terms
of asymptotic properties of solutions of exterior boundary value problems. We
write

Ω � M if Ω is compact and contained in M.
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Given a smooth open set Ω � M and λ > 0, the problem
⎧⎨
⎩

Δh = λh on M �Ω,

h = 1 on ∂Ω,

h > 0 on M �Ω

(3)

has a (unique) minimal smooth solution h : M �Ω → R. By the maximum princi-
ple 0 < h � 1 and h is obtained as the limit h(x) = limn→+∞ hn(x), where Ωn is a
smooth exhaustion of M and hn solves Δhn = λhn on Ωn � Ω and has boundary
values hn = 1 on ∂Ω and h = 0 on ∂Ωn.

Theorem 2.6 [1] M is Feller if and only if for some (hence any) open set Ω �
M with smooth boundary and for some (hence any) constant λ > 0, the minimal
solution h : M �Ω →R of problem (3) satisfies

h(x) → 0 as x → ∞. (4)

After the pioneering work of Azencott, the investigation has focused on finding
optimal geometric conditions ensuring that a manifold is Feller [8, 10, 14–16, 23],
and with the only exception of [8], the geometric conditions are always expressed
in terms of Ricci curvature lower bounds. The methods range from estimates of
solutions of parabolic equations [10, 16, 23] to estimates of the probability that the
Brownian motion on M be found in certain regions before a fixed time [14]. The best
known result in this direction is due to E. Hsu [14]. It uses a probabilistic approach
and relies on a result by Azencott (see also [15]) according to which M is Feller
if and only if, for every compact set K and for every t0 > 0, the probability that
Brownian motion Xt issuing from x0 enters K before the time t0 tends to zero as
x0 → ∞.

Theorem 2.7 [14] Let M be a complete, non compact Riemannian manifold of
dimension dimM = m. Assume that

Ricc � −(m − 1)G2(r(x)
)
, (5)

where r(x) = dist(x, o) is the distance function from a fixed reference point o ∈ M

and G is a positive, increasing function on [0,+∞) satisfying

1

G
/∈ L1(+∞). (6)

Then M is Feller.

It is remarkable that, to the best to our knowledge, there is no analytic proof of
this result. Note also that (6) is precisely the condition on the Ricci curvature that
ensures the stochastic completeness of M . So one may be led to believe that as in
the case of stochastic completeness “big volumes” are an obstruction to the Feller
property. In fact this is not the case: in some sense, the obstruction is given by “small
volumes”. Indeed we have the following:
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Theorem 2.8 [1] If M is a Cartan–Hadamard manifold (complete, simply con-
nected with nonpositive sectional curvature), then M is Feller.

3 Model Manifolds and Comparison Results

Model manifolds also shed light on the relationship between the Feller property and
the geometry of the manifold. Recall that a model manifold Mm

f is Rm = [0,∞) ×
S

m−1 with the metric given in polar coordinates by 〈 , 〉 = dr2 +f (r)2dθ2, where f

is odd and f ′(0) = 1. For instance if f (r) = r then Mm = R
m, if f (r) = sin r then

Mm = S
m and if f (r) = sinh r then Mm = H

m.
The following result holds.

Theorem 3.1 [1, 20] An m-dimensional model manifold Mm
f with warping function

f is Feller if and only if either

1

f m−1(r)
∈ L1(+∞) (7)

or

(i)
1

f m−1(r)
/∈ L1(+∞) and (ii)

∫ +∞
r

f m−1(t) dt

f m−1(r)
/∈ L1(+∞). (8)

In (8), condition (ii) is considered automatically satisfied if f m−1 �∈ L1(+∞).

Proof The proof is of elliptic nature. One easily observes that, on a model manifold,
the minimal solution of the problem

⎧⎪⎨
⎪⎩

Δh = λh on Mm
f �B(0,1),

h = 1 on ∂B(0,1),

h > 0 on Mm
f �B(0,1)

is necessarily radial.
Next, one shows that the minimal solution h(r) of the radialized 1-dimensional

problem {(
f m−1h′)′ = λf m−1h on (1,+∞),

h(1) = 1

tends to zero as r → +∞ if and only either condition (7) or condition (8) holds. �

Since vol ∂B(0, r) = cmf m−1(r), conditions (7) and (8) can be restated in more
geometrical terms by saying that M is Feller if either

1

vol(∂Br)
∈ L1(+∞) (9)
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or

(i)
1

vol(∂Br)
/∈ L1(+∞) and (ii)

vol(Mg)

vol(∂Br)
− vol(Br)

vol(∂Br)
/∈ L1(+∞). (10)

In particular, a model manifold with infinite volume is always Feller.
Note also that 1/f m−1(r) ∈ L1(+∞) is the necessary and sufficient condition

for a model manifold Mf to be non-parabolic. Indeed,

G(x,0) :=
∫ +∞

r(x)

dt

f m−1(t)

is the Green kernel with pole at 0 of the Laplace–Beltrami operator of Mm
f . Since

parabolicity implies stochastic completeness, stochastically incomplete models are
always Feller.

For comparison, it may be interesting to notice that a model manifold Mm
f is

stochastically complete if

∫ +∞ ∫ r

0 f m−1(s) ds

f m−1(r)
dr = +∞ ,

that is if and only if

r → volB(0, r)

vol ∂B(0, r)
�∈ L1(+∞).

Indeed, the function

u(x) =
∫ r(x)

0

∫ r

0 f m−1(s) ds

f m−1(r)
dr

satisfies Δu = 1. Therefore, if it is bounded, it violates the weak maximum principle
at infinity and Mm

f is not stochastically complete. The other implication follows
from a comparison argument.

However, neither parabolicity nor, a fortiori, stochastic completeness imply the
Feller property. Indeed, fix β > 2 and α > 0, and let f (t) : R → R be any smooth,
positive, odd function satisfying f ′(0) = 1 and f (r) = exp(−αrβ) for r � 10. Then,

1

f (r)
= exp

(
αrβ

)
/∈ L1(+∞) and

∫ +∞
r

f (t) dt

f (r)

 r1−β ∈ L1(+∞)

and the 2-dimensional model M2
f is parabolic and therefore stochastically complete,

but it is not Feller. Actually we shall see in Sect. 4 below that, using a gluing tech-
nique, one can construct Feller manifolds which are neither parabolic nor stochasti-
cally complete.

Parabolicity and stochastic completeness of a general manifold can be deduced
from those of a model manifold via curvature comparisons (see, e.g., [13]). We are
going to describe how this technique may be extended to the Feller property.
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To this goal, recall that the minimal solution h of the exterior problem (3) is the
limit of solutions hn which vanish on the boundary ∂Ωn of an exhaustion of M .
Therefore standard comparison results show that, if u is a supersolution of (3), that
is {

Δu � λu on M �Ω,

u � 1 on ∂Ω,

then

h � u, on M �Ω.

In particular, if u(x) → 0 as x → ∞, then M is Feller.
In the case where the manifold M is stochastically complete we obtain a some-

what complementary result.

Theorem 3.2 Let M be stochastically complete, and let u be a bounded solution
u > 0 of

Δu � λu

outside a smooth domain Ω � M . If h > 0 is the minimal solution of
{

Δh = λh on M �Ω,

h = 1 on ∂Ω,

then there is a constant c > 0 such that

u(x) � ch(x) on M �Ω.

Proof Let c = sup∂Ω u. Then, for every ε > 0, Δ(u − ch − ε) � λ(u − ch) �
λ(u − ch − ε) on M \ Ω and u − ch − ε � −ε on ∂Ω . Therefore the function
vε = max{0, u − ch − ε} is bounded, non-negative and satisfies Δvε � λvε . Since
M is stochastically complete vε ≡ 0, that is, u � ch + ε. The conclusion follows
letting ε → 0. �

In particular, if h(x) → 0 as x → ∞, we can deduce that the same holds for the
original function u. This leads to the following

Corollary 3.3 [20] Let M be stochastically complete. If M is Feller, then every
bounded solution v > 0 of

Δv � λv on M �Ω

satisfies

v(x) → 0 as x → ∞.

To state the announced result of comparison with models, given a smooth even
function G : R → R, we let f : [0,+∞) → [0 + ∞) be the unique solution of the
Cauchy problem
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{
f ′′ + Gf = 0,

f (0) = 0, f ′(0) = 1.
(11)

Then we have:

Theorem 3.4 [20] Let M be a complete Riemannian m-manifold.

(i) Assume that M has a pole at o and that the radial sectional curvature with
respect to o satisfies

M Secrad � G
(
r(x)

)
on M (12)

for some smooth even function G : R → R. If the m-dimensional model Mm
f is

Feller then M is Feller.
(ii) Assume that the radial Ricci curvature of M satisfies

M Ricc(∇r,∇r) � (m − 1)G
(
r(x)

)
,

where r(x) = dist(x, o).

If the m-dimensional model Mm
f is not Feller (thus, it has finite volume) then also

M is not Feller.

Proof We give only an outline of the proof. In case (i), one shows that the minimal
radial solution α of the exterior problem on Mf �BMf (0,1) is decreasing and since
Mm

f is Feller it tends to zero at infinity.
Let u(x) = α(r(x)). Then the curvature condition and the Laplacian Comparison

Theorem imply that Δr � (m − 1)f ′/f , hence

Δu = α′′(r(x)
) + α′(r(x)

)
Δr � α′′(r(x)

) + (m − 1)
f ′

f
α′(r(x)

) = λu.

By the comparison result, the minimal solution of the exterior Dirichlet problem h

satisfies h � u. Since u(r(x)) → 0 as r(x) → ∞, M is Feller.
To prove (ii), let us note that since Mf is not Feller, by Theorem 3.1, f m−1 ∈

L1(+∞), 1/f m−1 �∈ L1(+∞) and
∫ +∞
r

f m−1(t) dt

f m−1(r)
∈ L1(+∞).

Define

α(r) =
∫ +∞

r

∫ +∞
s

f m−1(t) dt

f m−1(s)
ds.

A direct computation shows that

Mf Δα = 1.

Now consider

v(x) = α
(
r(x)

) + 1 on M �B1.
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Clearly, v is a positive bounded function, and since α′ � 0, by Laplacian comparison
we have

Δv � 1 � λv,

where λ = 1/ supv. Since v(x) → 1 as x → ∞, by Corollary 3.3 M is not Feller. �

Note that in (i) above the (sectional) curvature is bounded from above. This is
the opposite of the inequality assumed in Hsu’s result, and it shows that, in contrast
with what happens for stochastic completeness, Hsu’s result is a genuine estimation
result, and does not follow from a comparison argument.

4 Ends and Further Geometric Conditions for the Feller
Property

It is clear that the Feller property is affected only by the properties of M outside a
compact set Ω . The set M � Ω has a finite number of unbounded connected com-
ponents Ei , called the ends of M with respect to Ω . Thus, the minimal solution h

of ⎧⎨
⎩

Δh = λh on M �Ω,

h = 1 on ∂Ω,

h > 0 on M �Ω,

restricts to the minimal solution hj of the same Dirichlet problem on Ej with respect
to the compact boundary ∂Ej . Furthermore, h tends to zero at infinity in M if and
only if each function hj (x) tends to 0 as Ej � x → ∞.

This suggests that the property of being Feller may be localized at the ends of M .
We say that an end E is Feller if, for some λ > 0, the minimal solution g : E →

(0,1] of the Dirichlet problem
{

Δg = λg on int(E),

g = 1 on ∂E

satisfies g(x) → 0 as x → ∞. The usual exhausting procedure shows that g actually
exists. The following statement holds:

Proposition 4.1 Let (M, 〈 , 〉) be a complete Riemannian manifold and let E1, . . . ,Ek

be the ends of M with respect to the smooth compact domain Ω . Then, the following
are equivalent:

(i) M is Feller;
(ii) each end Ej has the Feller property;

(iii) the double D(Ej ) of each end has the Feller property.

Using this observation, one can easily construct new Feller or non-Feller mani-
folds from old ones by adding suitable ends. For instance, consider complete Rie-
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mannian manifolds M and N of the same dimension m and form their connected
sum M#N . This latter is Feller if and only if both M and N has the Feller prop-
erty.

Since the same property also holds for parabolicity and stochastic completeness
(for the latter see [2]), one may then construct examples of manifolds which show
that are no obvious implications between stochastic completeness and the Feller
property. By way of example, consider the warped product M = R ×f S

m−1 with
warping function f (t) such that

f (t) =
{

et4
if t � 1,

e−t4
if t � −1.

Then the “positive” end of M is Feller and stochastically incomplete, while the
“negative” end of M is parabolic and non-Feller, so that M is both non-Feller and
stochastically incomplete.

We conclude this summary of the geometric properties leading to the Feller prop-
erty with two last results.

Using heat kernel estimates in the presence of an isoperimetric inequality of
A. Grigor’yan [12] and a result of G. Carron [7] we obtain the following result.

Theorem 4.2 [20] Assume that M supports an L2-Sobolev inequality of the form

‖∇u‖L2 � S2,p‖u‖
L

2p
p−2

, for every u ∈ C1
c (M).

Then M is Feller.

Note that according to a result of Carron [6], if the L2-isoperimetric inequality
holds off a compact set then it holds everywhere and M is Feller.

Corollary 4.3 [20] Let M be isometrically immersed into a Cartan–Hadamard
manifold. If its mean curvature vector field H satisfies

‖H‖Lm(M) < +∞,

then M is Feller. In particular,

(i) every Cartan–Hadamard manifold is Feller;
(ii) every complete, minimal submanifold in a Cartan–Hadamard manifold is Feller.

The above result has been completed in the very recent paper [5], where it is
shown that bounded mean curvature hypersurfaces properly immersed in Cartan–
Hadamard manifold are Feller. The proof relies upon the comparison principle (The-
orem 3.2), by means of a suitable test function u(x).

Finally, we address the following
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Problem 4.4 Suppose we are given a Riemannian covering

π : (M̂, 〈̂ , 〉) → (
M, 〈 , 〉).

What are the relationships between the validity of the Feller property on the covering
space M̂ and on the base manifold M?

By comparison, recall that M is stochastically complete if and only if so is M̂

(see, e.g., [9]). As for parabolicity, the situation is quite different. Using subhar-
monic functions it is easy to see that if M̂ is parabolic then the base manifold M

is also parabolic. In general, the converse is not true, as shown e.g. by the twice
punctured complex plane, which is a parabolic manifold, as can be seen by us-
ing the well know Khas’minskii test [13], and which is universally covered by the
(non-parabolic) Poincaré disk.

Let us now consider the Feller property. To begin with, consider the easiest case
of coverings with a finite number of sheets.

Observe that in a finite covering one can pass from functions on M to functions
on M̂ , and vice-versa, and that a sequence of points in M̂ goes to infinity if and only
if their projections tend to infinity in M . So one has

Proposition 4.5 [20] Let π : (M̂, 〈̂ , 〉) → (M, 〈 , 〉) be a k-fold Riemannian cover-
ing, with k < +∞. Then M̂ is Feller if and only if M is Feller.

In general

M̂ Feller �=⇒ M Feller.

Consider the 2-dimensional warped product M = R×f S
1 where f (t) = et3

. Com-
bining the necessary and sufficient condition for a model to be Feller and the results
on the Feller property for manifolds with ends, we see that M is not Feller. But since
the Gaussian curvature of M is given by

K(t, θ) = −f ′′(t)
f (t)

� 0,

the universal covering M̂ is Cartan–Hadamard, and hence Feller by Azencott’s re-
sult.

However the reverse implication

M is Feller =⇒M̂ is Feller

always holds. Indeed, by means of results by M. Bordoni [4] on the relationship
between the heat kernel of M and that of its covering M̂ , we obtain

Theorem 4.6 [20] If M is Feller then so is M̂ .
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5 Applications to Geometry and PDE’s

The weak maximum principle at infinity is a powerful tool to deduce qualitative
information on the solutions of differential inequalities of the form

Δu � Λ(u). (13)

Indeed, it implies that every solution u of (13) on the whole manifold M such that
u∗ = supM u < +∞ satisfies

Λ
(
u∗) � 0.

This fact has many applications in geometric analysis. Our aim is to apply the Feller
property to investigate qualitative properties of solutions of (13) which are defined
only in a neighborhood of infinity. This section is based on [3].

Recall that, according to Corollary 3.3, if M is stochastically complete and Feller,
then every bounded solution v > 0 of Δv � λv on M � Ω satisfies v(x) → 0 as
x → ∞. On the basis of these remarks, we prove the following:

Theorem 5.1 Let M be a stochastically complete and Feller manifold. Consider
the differential inequality

Δu � Λ(u) on M �Ω, (14)

where Ω � M and Λ : [0,+∞) → [0,+∞) is either continuous or it is a non-
decreasing function which satisfies the following conditions:

(i) Λ(0) = 0; (ii) Λ(t) > 0 for every t > 0; (iii) lim inf
t→0+

Λ(t)

tξ
> 0

for some 0 � ξ � 1. Then every bounded solution u > 0 of (14) must satisfy

lim
x→∞u(x) = 0.

Proof Suppose Λ is non-decreasing. By assumption, there exists 0 < ε < 1/2 and
c > 0 such that

Λ(t) � ctξ on (0,2ε).

As t ξ � t on (0,1], and Λ is non-decreasing, then

Λ
(
u(x)

)
� Λε

(
u(x)

) =
{

cu if u(x) < ε,

cε if u(x) � ε.

Since u > 0 is bounded, if we set u� = supM�Ω u, then

cε � cε

u�
u� � cε

u�
u.
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It follows that

Δu � Λε(u) � λu,

where

λ = c min

{
1,

ε

u�

}
> 0.

Using the Feller property we now conclude that u(x) → 0 as x → ∞. �

As shown in Theorem 5.1, using the Feller property on a stochastically complete
manifold enables one to extend the investigation of qualitative properties of solution
of PDEs to the case where these are defined only in a neighborhood of infinity.

We are going to exemplify the use of this viewpoint in various geometric and
analytic settings. We stress that the needed stochastic assumptions are enjoyed by
a very rich family of examples. For instance, as seen in Sect. 2, we have the class
of complete manifolds such that Ricc � −G2(r), where G(r) > 0 is an increas-
ing function satisfying 1/G �∈ L1(+∞). Another admissible category is given by
Cartan–Hadamard manifolds, or minimal submanifolds of Cartan–Hadamard mani-
folds (which are Feller by Corollary 4.3) with at most quadratic exponential volume
growth (to guarantee stochastic completeness).

5.1 Isometric Immersions

An application of the weak maximum principle shows that if a Riemannian mani-
fold (M, 〈 , 〉) is stochastically complete, then the mean curvature H of a bounded
isometric immersion f : M → B(O,R) ⊂ R

n must satisfy

sup
M

|H|R � 1.

In particular, a stochastically complete minimal submanifold in Euclidean space is
necessarily unbounded.

The next result extends this to the case where the complement of a compact
domain in M admits a bounded isometric immersion into R

n.

Theorem 5.2 Let the Riemannian manifold M be stochastically complete and
Feller. Assume that, outside a compact set Ω ⊂ M , there exists a bounded isometric
immersion f : M �Ω → B(O,R) ⊂ R

n. Then

sup
M�Ω

|H|R � 1.

Proof Assume by contradiction that

sup
M�Ω

|H|R < 1, (15)
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and let u(x) = |f (x) − O|2 � 0. Then

Δu � c on M �Ω,

where we have set c = 2m(1 − supM�Ω |H|R) > 0. By Theorem 5.1, u → 0 and
therefore f (x) → O as x → ∞.

Now, as strict inequality holds in (15), for R′ > R sufficiently close to R we
have supM�Ω |H|R′ < 1, and clearly f (M �Ω) ⊂ B(O ′,R′) provided |O ′ −O| <
R′ −R. Thus we can repeat the argument with u′(x) = |f (x)−O ′|2 for which again
we have

Δu′ � c

with the same value c, and then u′(x) → 0, i.e., f (x) → O ′ �= O , as x → ∞. This
yields the required contradiction and proves the theorem. �

We note that a modification of the above argument allows to consider just one of
the ends of M with respect to Ω is isometrically immersed in a ball.

5.2 Conformal Deformations

Given a Riemannian manifold (M, 〈 , 〉) of dimension m � 3 consider the confor-

mally related metric 〈 , 〉 = v
4

m−2 〈 , 〉 where v > 0 is a smooth function. Thus, the
conformality factor v obeys the Yamabe equation

c−1
m Δv − Sv = −Sv

m+2
m−2 ,

where S and S denote the scalar curvatures of 〈 , 〉 and 〈 , 〉, respectively. Assume
that M is stochastically complete and that

sup
M

S(x) � S�, inf
M

S(x) � S�,

for some constants S� � 0 and S� > 0. An application of the weak minimum prin-
ciple at infinity to the Yamabe equation shows that

(
S�

S�

)m−2
4

� v� = inf
M

v.

In particular, if S(x) � 0 on M , then v� = 0. Actually, since the infimum of v cannot
be attained, for every Ω � M

inf
M�Ω

v = 0.

Clearly, to reach these conclusions the scalar curvature bound must hold on M .
As a consequence of Theorem 5.1, we obtain the following non-existence result.
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Note that this applies e.g. to an expanding, gradient Ricci soliton M . Indeed, in this
case, the scalar curvature assumption is compatible with the restriction infM S � 0
imposed by the soliton structure.

Theorem 5.3 Let (M, 〈 , 〉) be a stochastically complete and Feller manifold of di-
mension m � 6 such that, for some relatively compact domain Ω

sup
M�Ω

S(x) � 0.

On M , one cannot perform a conformal change 〈 , 〉 = v
4

m−2 〈 , 〉 in such a way that

0 < v� � v(x) � v� < +∞
and

lim inf
x→∞ S(x) = S� > 0.

Proof Simply observe that the positive, bounded function u(x) = v(x)−1 satisfies

c−1
m Δu � −Su + Su

m−6
m−2 � Su

m−6
m−2 .

Since

0 � m − 6

m − 2
< 1,

Theorem 5.1 yields

u(x) → 0 as x → ∞. �

One may wonder if the assumption that S be nonnegative at infinity implies that
it can be made nonnegative everywhere on M with a conformal change of metric.
However this in general would require a somewhat implicit control on the positive
part of S in the set Ω (see, e.g., Proposition 1.2 in [21]).

5.3 Compact Support Property of Bounded Solutions of PDEs

We say that a certain PDE satisfies the compact support principle if all solutions
in the exterior of a compact set which are non-negative and decay at infinity must
have compact support. We are going to analyze some situations where the decay
assumption can be relaxed. This has applications to the Yamabe problem.

Theorem 5.4 Let M be a geodesically complete and stochastically complete,
Cartan–Hadamard manifold. Let u � 0 be a bounded solution of

Δu � Λ(u) on M �Ω (16)
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for some domain Ω � M and for some non-decreasing function Λ : [0,+∞) →
[0,+∞) satisfying the following conditions:

(i) Λ(0) = 0; (ii) Λ(t) > 0 for every t > 0; (iii) lim inf
t→0+

Λ(t)

tξ
> 0

(17)
for some 0 � ξ < 1. Then u has compact support.

Proof Recall that a Cartan–Hadamard manifold is Feller. By Theorem 5.1 we know
that u(x) → 0 as x → ∞. The conclusion now follows from the compact sup-
port principle, that is valid under the stated assumptions on M and Λ [19, Theo-
rem 1.1]. �

Of course for the conclusion of Theorem 5.4 to hold it suffices that M be stochas-
tically complete, Feller and that the compact support principle hold for solutions
of (16).

The above theorems can be applied to obtain nonexistence results. For instance,
combining Theorems 5.4 and 5.3 we obtain

Corollary 5.5 Let (M, 〈 , 〉) be a stochastically complete Cartan–Hadamard man-
ifold of dimension m � 6. Then the metric of M cannot be conformally de-
formed to a new metric 〈 , 〉 = v2〈 , 〉 with v∗ > 0 and scalar curvature S satisfying
lim infx→∞ S > 0.
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