
Chapter 16
Appendix

16.1 Units of Measurement for Electromagnetic Phenomena

The units of measurement relative to electromagnetic phenomena have been intro-
duced through a long and complex historical process. Without going into the details
of this process, we try here to summarise the fundamental points in light of a mod-
ern vision of the phenomena themselves. We stress that these notes are aimed at a
reader who is already familiar with the basic phenomenology of electromagnetism.

Within electrostatics, the fundamental law is Coulomb’s law which is written, in
vacuum, in the general form

F = kC
q1q2

r2
vers r,

where F is the force that a point charge q1 exerts on the point charge q2 placed at
the distance r = r2 − r1, and where kC is a constant that implicitly defines the unit
of measurement of the charge (assuming, of course, that the units of measurement
of the mechanical quantities have already been set). We note that kC can be chosen
to be dimensional or dimensionless. The electric field vector E is defined in an
arbitrary point using the equation

E = F
qp

,

where F is the electric force exerted on the “test” charge qp placed at the same
location. From this definition and Coulomb’s law we can deduce the expression of
the electric field due to a point charge q , which is

E = kC
q

r2
vers r,

from which the Gauss theorem (in its integral form) follows

Φ(E) =
∫

Σ

E · n dS = 4πkCQ,
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where Q is the charge contained within the surface Σ . In its differential form, we
have

div E = 4πkCρ,

where ρ is the density of the electric charge (the charge contained within the unit
volume).

Regarding the definition of the electric field vector, we note that it is not the only
possible one, since we could have defined the electric field created by the charge q

as

E = kCδ
q

r2
vers r,

with δ an arbitrary constant (possibly dimensional), as long as the electric force that
the field exerts on the test charge qp is written in the form

F = 1

δ
qpE.

Fortunately, the constant δ has (historically) always been set to unity. The same is
not true for magnetic phenomena.

Regarding magnetostatics, we have equations that are similar to those of electro-
statics. In these equations, for historical reason, the fictitious concept of “magnetic
mass” (or “magnetic pole”) is introduced. The equations corresponding to those pre-
viously written are the following ones (the symbol m denoting the magnetic mass):

Gilbert’s law1 (analogous to Coulomb’s law)

F = kG
m1m2

r2
vers r.

Definition of the vector of the magnetic induction generated from the magnetic
mass m

B = kGγ
m

r2
vers r,

where γ is an arbitrary constant (possibly dimensional).
Force acting on the test magnetic mass mp

F = 1

γ
mpB. (16.1)

Equivalent of the Gauss theorem (integral form)

Φ(B) = 0,

1This law is not universally attributed to Gilbert. In fact, this law was discovered experimentally
by Coulomb himself and could therefore be rightly called the “second Coulomb’s law”. William
Gilbert (1564–1603) was an English physician who lived well before Coulomb. He is remembered
for his studies on the terrestrial magnetism and by the fact that he realised that the magnetic force
should increase with decreasing distance.
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since isolated magnetic masses (magnetic monopoles) do not exist.
Equivalent of the Gauss theorem (differential form)

div B = 0.

The first quantitative relations between electric and magnetic phenomena were
established with experiments based on electric currents.2 The intensity of the elec-
tric current i flowing in a conductor is defined by the simple equation

i = dq

dt
,

from which we can define the current density j as a vector directed along the direc-
tion of motion of the (positive) charges of magnitude

j = i

σ
,

where σ is the cross-sectional area of the conductor. The experiments performed
during the first half of the nineteenth century especially by Ørsted, Ampère, and
Faraday, led to the idea that electric currents create magnetic fields in their sur-
roundings and that, at the same time, a magnetic field is able to exert a force on
electric currents. During the same period, a new idea clearly emerged: that per-
manent magnets contain, at the microscopic level, a large number of elementary
electric currents. These currents would be responsible, ultimately, for magnetostatic
phenomena.

In modern terms, the magnetic properties of the currents can be summarised by
a single law that is expressed by saying that, in stationary conditions, the current
element of an elementary circuit (microscopic or macroscopic) i1 d�1 acts on the
current element of another elementary circuit, i2 d�2, with an infinitesimal force dF
given by

dF = kAi2 d�2 ×
(

i1 d�1 × vers r
r2

)
,

where kA is a new constant (which cannot be independent of those already intro-
duced), and where r is the radius vector that goes from the current element i1 d�1

to the current element i2 d�2. This law allows the introduction of the magnetic in-
duction vector. The definition of this vector is somewhat arbitrary and it is assumed,
in general, that the current element i d� creates the elementary induction vector dB
given by (first law of Laplace or Biot and Savart’s law)

dB = kAβi d� × vers r
r2

, (16.2)

2These experiments were made possible thanks to the discovery of the electric battery by Alessan-
dro Volta.
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and that a current element i d� is subject, in the presence of an induction vector B,
to a force dF given by (second law of Laplace)

dF = 1

β
i d� × B.

The quantity β introduced in these equations is arbitrary.
Let’s see the mathematical consequences of Eq. (16.2) for a closed circuit. The

magnetic induction vector is given by

B = kAβ

∮
C

i d� × vers r
r2

,

where C is the curve describing the closed circuit. Using standard mathematical
methods, one finds the following equations

div B = 0,

which confirms the analogous equation for magnetostatics, and

rot B = 4πkAβj,

where j is the current density.
This equation, known as Ampère’s law, applies only to stationary phenomena.

As shown by Maxwell, it can be transformed into a more general equation that is
also valid for phenomena that are variable in time. To do this we observe that, taking
the divergence of both sides, we have

div j = 0,

while, in general, the continuity equation must hold

div j + ∂ρ

∂t
= 0,

ρ being the charge density. In order to rearrange things, we take the derivative (with
respect to time) of the differential expression of Coulomb’s law

∂ρ

∂t
= 1

4πkC

∂

∂t
(div E),

so that in general the following equation holds

div

(
j + 1

4πkC

∂E
∂t

)
= 0.

The second term in parentheses is the so-called displacement current density. With
its introduction, the equation for rot B, corrected to include non-stationary phenom-
ena, is

rot B − kAβ

kC

∂E
∂t

= 4πkAβj.
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Finally, we need to consider the phenomena of magnetic induction. The law that
describes them can be deduced, at least in a particular case, from the second law of
Laplace. We have

rot E = − 1

β

∂B
∂t

,

so that, in summary, the laws governing the electromagnetic phenomena can all be
enclosed in the following four Maxwell’s equations

div E = 4πkCρ,

rot B − kAβ

kC

∂E
∂t

= 4πkAβj,

div B = 0,

rot E + 1

β

∂B
∂t

= 0.

We now consider Maxwell’s equations in vacuum. Taking the curl of the third
equation and substituting the fourth, we obtain the wave equation

∇2B = kA

kC

∂2B
∂t2

.

On the other hand we know that electromagnetic waves propagate in vacuum with
velocity c, so that we must have

kA

kC
= 1

c2
,

or

kA = kC

c2
,

that is, a relation between the quantities kA and kC that is independent of the unit
system under consideration.

Let’s see how we proceed in the two more common systems of units, the cgs sys-
tem of Gauss (sometimes also called the Gauss-Hertz system) and the International
System of Units (SI). In the cgs system, we assume kC = 1, so that the unit of charge
is defined as the charge that repels an equal charge, at a distance of one centimeter,
with the force of one dyne. Such unit of charge is called Franklin or statcoulomb.
Since kC = 1, it follows that kA = 1/c2. Within this system we also assume that
β = c, so that Maxwell’s equations are written as

div E = 4πρ,

rot B − 1

c

∂E
∂t

= 4π
j
c
,

div B = 0,

rot E + 1

c

∂B
∂t

= 0.



374 16 Appendix

Moreover, the first and the second law of Laplace, together with the law that sum-
marises them, can be written in the form

dB = i

c
d� × vers r

r2
, dF = i

c
d� × B,

dF = i2

c
d�2 ×

(
i1

c
d�1 × vers r

r2

)
.

Within the International System, instead, two new constants are introduced. They
are the vacuum permittivity (also called dielectric permittivity of the vacuum) ε0 and
the vacuum permeability (magnetic permeability of the vacuum) μ0, such that

ε0μ0 = 1

c2
.

Using these quantities, we put

kC = 1

4πε0
,

so that we have

kA = kC

c2
= 1

4πε0c2
= μ0

4π
.

Within this system we also put β = 1, so that Maxwell’s equations are written as

div E = ρ

ε0
,

rot B − 1

c2

∂E
∂t

= μ0j,

div B = 0,

rot E + ∂B
∂t

= 0.

Moreover, the first and the second law of Laplace and the law that summarises them
are written, respectively, in the form

dB = μ0

4π
i d� × vers r

r2
, dF = i d� × B,

dF = μ0

4π
i2 d�2 ×

(
i1 d�1 × vers r

r2

)
.

(16.3)

With respect to the numerical values of ε0 and μ0, the Ampère (unit of measure-
ment of the current) is defined as the current that, flowing along an infinite straight
wire of negligible thickness in vacuum, attracts an equal wire, located at a distance
of one meter, with a force per unit length equal to 2×10−7 N m−1. Using Eq. (16.3)
we deduce that in such a geometry the force per unit length that acts on one of the
two conductors is attractive and has a magnitude given by the following expression

dF

dl
= 2

μ0

4π

i2

r
,
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so we must have3

μ0 = 4π × 10−7 N A−2 = 1.256637 × 10−6 N A−2,

and then, recalling that the Coulomb is the charge transported in one second by a
current of one Ampère

ε0 = 1

μ0c2
= 8.854188 × 10−12 C2 N−1 m−2.

Finally, it remains to analyse the relation between magnetic masses and currents.
We can infer from Laplace’s laws that a filiform planar circuit of area σ and current
i behaves, at distances much larger than its size, as a magnetic dipole directed along
the unit vector n perpendicular to the plane of the circuit. The direction of n is
specified by the rule of the corkscrew (or the right screw). This is the so-called
Ampère principle of equivalence, which is expressed by the formula

μ = kPiσn,

where kP is a new constant to be related to those previously introduced. To estab-
lish this relation, we evaluate, for example, the moment of the forces acting on an
elementary dipole located at a point in space where the field B is present. Using
Eq. (16.1), we have

M = 1

γ
μ × B = 1

γ
kPiσn × B.

Instead, from the second law of Laplace we have

M = 1

β

∮
ir × (d� × B),

which can be rewritten as

M = 1

β
iσn × B.

Equating the two expressions for M we have

kP = γ

β
.

Finally, considering the force exerted between two infinitesimal circuits, treated in
the first instance as elementary dipoles and then as coils carrying a current, we
obtain the relation

kGk2
P = kA,

3With the introduction of capacity and inductance, together with their units, the Farad (F) and the
Henry (H), the units in which μ0 and ε0 are expressed are, respectively, H m−1 and F m−1.
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which allows to write kG in the form

kG = kA

k2
P

= kCβ2

c2γ 2
.

In the cgs system, since kC = 1 and β = c, and assuming γ = 1, we obtain

kP = 1

c
, kG = 1.

Ampère’s principle of equivalence is therefore

μ = i

c
σn,

and Gilbert’s law

F = m1m2

r2
vers r.

In the International System, instead, since kC = 1/(4πε0) and β = 1, assuming4

γ = μ0 and recalling that c2 = 1/(ε0μ0), we obtain

kP = μ0, kG = 1

4πμ0
.

In this case Ampère’s principle of equivalence is

μ = μ0iσn,

and Gilbert’s law is

F = 1

4πμ0

m1m2

r2
vers r.

Finally, we note that, besides the two systems introduced here, there are other
ones that have been used for the electromagnetic phenomena. In particular, it is
worth mentioning the electrostatic cgs system, the electromagnetic cgs system and
the cgs system of Heavyside.

16.2 Tensor Algebra

In this volume, we often need to deal with vectors and tensors, together with their
differential expressions such as divergences, curls and gradients. It is therefore use-
ful to give a brief introduction to this topic in order to make the reader familiar

4This convention is not universally accepted. Some authors prefer to assume γ = 1 also in the
International System. In this case Ampère’s principle of equivalence is written as μ = iσn while
in Gilbert’s law the factor μ0 is to appear in the numerator rather than in the denominator.
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with a compact formalism that allows to easily deduce a series of vector and tensor
identities, as well as various transformation formulae.

The traditional definition of a tensor that is commonly given in physics is based
on the generalisation of the definition of a vector. In a Cartesian orthogonal reference
system, the vector v is defined as an entity with three components (vx , vy , vz) (or
v1, v2, v3) which, under an arbitrary rotation of the reference system, are modified
according to the law

v′
i =

∑
j

Cij vj ,

where the coefficients Cij are the direction cosines of the new axes with respect
to the old ones. In close analogy, we define a tensor T of rank n as an entity with
3n components (Ti...j with i, . . . , j = 1,3) which, under a rotation of the reference
system, are transformed according to the law

T ′
i...j =

∑
k,...,l

Cik · · ·CjlTk...l .

The tensor most commonly known in physics is the stress tensor that characterises
inside an elastic material the force dF that is exerted on a surface dS with normal n.
In components we have

dFi =
∑
j

Tij nj dS.

In addition to the stress tensor we can also mention, for their importance in various
fields of physics, the deformation tensor, the inertia tensor, and the dielectric tensor.

A particular tensor of rank two is the so-called dyad that is obtained from two
vectors u and v when the direct product of their components is considered. The dyad
is indicated simply by the symbol uv, and we have by definition

(uv)ij = uivj (i, j = 1,2,3).

Obviously, in general

uv �= vu.

A scalar quantity is, by definition, a tensor of rank zero, while a vector is, by def-
inition, a tensor of rank one. Tensors of higher rank may be obtained by considering
the direct product of tensors of lower rank. For example, by the direct product of
two tensors of rank two a tensor of rank four is obtained.

The tensor algebra covers all operations that can be performed on tensors. We
now provide some definitions

1. Given two tensors T and V, the first of rank n (n ≥ 1) and the second of rank n′
(n′ ≥ 1), we define the scalar product (or internal product) of the two tensors
a tensor of rank (n + n′ − 2) obtained by a sum (or saturation) which operates
over the last index of the first tensor and the first index of the second tensor. For
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example, if n and n′ are both equal to 2, defining W as the tensor obtained by the
scalar product, we have that W is also a tensor of rank two defined by

Wij =
∑

k

TikVkj .

2. Given a tensor of rank n (with n ≥ 1), the divergence of such tensor is a tensor
of rank (n − 1) obtained by saturating its first component with the formal vector
∇ (called “nabla” operator or “del” operator) defined by

∇ ≡
(

∂

∂x
,

∂

∂y
,

∂

∂z

)
.

For example, for a tensor T of rank two, div T is a vector whose components are
given by

(div T)i =
∑
j

∂

∂xj

Tji = (∇ · T)i .

3. Given a tensor of rank n (with n ≥ 0), the gradient of such tensor is a tensor of
rank (n + 1) obtained by applying to it the formal vector ∇ in such a way that
the first index of the resulting tensor is the “derivation one”. For example, for a
tensor of rank 1, i.e. for a a vector v, we have

(grad v)ij = (∇v)ij = ∂

∂xi

vj .

It should be noted that this convention is not universally adopted. Some authors
prefer to indicate with the symbol grad v the quantity

(grad v)ij = ∂

∂xj

vi .

The reader should therefore pay attention to the conventions used by each author
before using the vector identities that are found in different books. For example,
using our conventions, we have

∑
i

ui

∂vj

∂xi

= (u · grad v)j ,
∑

i

ui

∂vi

∂xj

= [
(grad v) · u

]
j
.

Using the formal vector ∇, the quantities in the right-hand side can also be writ-
ten, respectively, as [

(u · ∇)v)
]
j
,

[
(∇v) · u

]
j
.

4. Given a tensor of rank n (n ≥ 1), the curl (also known as rotor) of such a tensor is
a tensor of the same rank n with the first component being obtained by saturating
the first component of the given tensor with the completely antisymmetric tensor
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(known as the Ricci, or Ricci-Levi Civita tensor) and with the component of the
formal vector ∇. For example, for a vector v we have

(rot v)i =
∑
jk

εijk

∂vk

∂xj

= (∇ × v)i ,

and for a tensor T of rank two

(rot T)ij =
∑
kl

εikl

∂Tlj

∂xk

= (∇ × T)ij .

The antisymmetric tensor of rank three εijk , introduced in these expressions,
is defined by the equation εijk = 0 if at least two of the three indices i, j, k are
equal; by the equation εijk = 1 if the ordered triad (i, j, k) is an even permutation
of the fundamental triad (1,2,3); and by the equation εijk = −1 if the ordered
triad (i, j, k) is an odd permutation of the fundamental triad (1,2,3). Ultimately,
only 6 of the 27 components of the tensor are different from zero. Note that the
usual vector product between two vectors can be conveniently expressed through
the antisymmetric tensor. If w = u × v, we have

wi =
∑
jk

εijkuj vk.

Note also that the vector product operation and the curl operator (which involve
the antisymmetric tensor) imply a choice about the chirality of the Cartesian
orthogonal system in which the components of the vectors (and tensors) are de-
fined. The convention that is now almost universally accepted (and that we use)
is to choose a right-handed triad, i.e. to suppose that, if the axes x and y are di-
rected respectively along the thumb and index finger of the right hand, the z axis
is directed along the middle finger.

The antisymmetric tensor has a number of properties. The first concerns
the permutation of its indices. For an even permutation the tensor remains un-
changed, while for an odd permutation the tensor changes sign. In formulae

εijk = εjki = εkij = −εjik = −εikj = −εkji .

In addition, the following saturation properties hold

∑
k

εijkεlmk = δilδjm − δimδjl,

∑
jk

εijkεljk = 2δil,

∑
ijk

εijkεijk = 6,
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where δij is the so-called Kronecker delta, i.e. the symbol defined by

δij = 1 if i = j, δij = 0 if i �= j.

The above definitions and properties can be used to obtain a number of vector
identities that are listed below. In these equations, the quantities f and g are scalars,
a and b are vectors, and T is a tensor of rank 2.

• div(f a) = a · gradf + f div a. (16.4)

In fact we have

div(f a) =
∑

i

∂

∂xi

(f ai) =
∑

i

ai

∂f

∂xi

+ f
∑

i

∂ai

∂xi

.

• grad(fg) = g gradf + f gradg. (16.5)

In fact we have, for the i-th component

[
grad(fg)

]
i
= ∂

∂xi

(fg) = g
∂f

∂xi

+ f
∂g

∂xi

.

• rot(f a) = gradf × a + f rot a. (16.6)

In fact we have, for the i-th component

[
rot(f a)

]
i
=

∑
jk

εijk

∂

∂xj

(f ak) =
∑
jk

εijk

[(
∂f

∂xj

)
ak + f

∂ak

∂xj

]
=

= [
(gradf ) × a

]
i
+ f [rot a]i .

• div(a × b) = b · rot a − a · rot b. (16.7)

In fact we have

div(a × b) =
∑

i

∂

∂xi

(∑
jk

εijkaj bk

)
=

∑
ijk

εijk

[(
∂aj

∂xi

)
bk + aj

(
∂bk

∂xi

)]

=
∑
ijk

bkεkij

∂aj

∂xi

−
∑
ijk

aj εjik

∂bk

∂xi

=
∑

k

bk(rot a)k −
∑
j

aj (rot b)j .

• grad(a · b) = (grad a) · b + (grad b) · a. (16.8)

In fact we have, for the i-th component

[
grad(a · b)

]
i
= ∂

∂xi

(∑
j

aj bj

)
=

∑
j

(
∂aj

∂xi

)
bj +

∑
j

aj

(
∂bj

∂xi

)

= [
(grad a) · b

]
i
+ [

(grad b) · a
]
i
.
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• rot(a × b) = b · grad a − a · grad b + a div b − b div a. (16.9)

In fact we have, for the i-th component

[
rot(a × b)

]
i
=

∑
jk

εijk

∂

∂xj

(a × b)k =
∑
jklm

εijkεklm

∂

∂xj

(albm)

=
∑
j lm

(δilδjm − δimδjl)

[(
∂al

∂xj

)
bm + al

∂bm

∂xj

]

=
∑
ij

(
bj

∂ai

∂xj

− bi

∂aj

∂xj

+ ai

∂bj

∂xj

− aj

∂bi

∂xj

)

= [b · grad a]i − bi div a + ai div b − [a · grad b]i .

• grad(f a) = (gradf )a + f grad a. (16.10)

In fact we have, for the ij -th component

[
grad(f a)

]
ij

= ∂

∂xi

(f aj ) =
(

∂f

∂xi

)
aj + f

∂aj

∂xi

= (gradf )iaj + f (grad a)ij .

• div(ab) = b div a + a · grad b. (16.11)

In fact we have, for the i-th component

[
div(ab)

]
i
=

∑
j

∂

∂xj

(aj bi) =
∑
j

[(
∂aj

∂xj

)
bi + aj

∂bi

∂xj

]

= bi div a + [a · grad b]i .

• a × rot b = (grad b) · a − a · grad b. (16.12)

In fact we have, for the i-th component

[a × rot b]i =
∑
jk

εijkaj (rot b)k =
∑
jklm

εijkεklmaj

∂bm

∂xl

=
∑
j lm

(δilδjm − δimδjl)aj

∂bm

∂xl

=
∑
j

(
aj

∂bj

∂xi

− aj

∂bi

∂xj

)
= [

(grad b) · a
]
i
− [a · grad b]i .

• div(f T) = (gradf ) · T + f div T. (16.13)
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In fact we have, for the i-th component

[
div(f T)

]
i
=

∑
j

∂

∂xj

(f Tji) =
∑
j

[(
∂f

∂xj

)
Tji + f

∂Tji

∂xj

]

= [
(gradf ) · T

]
i
+ f (div T)i .

• rot(rot a) = grad div a − ∇2a. (16.14)

In fact we have, for the i-th component

[
rot(rot a)

]
i
=

∑
jk

εijk

∂

∂xj

(rot a)k =
∑
jklm

εijkεklm

∂

∂xj

∂

∂xl

am

=
∑
j lm

(δilδjm − δimδjl)
∂2am

∂xj ∂xl

=
∑
j

(
∂2aj

∂xj ∂xi

− ∂2ai

∂xj ∂xj

)
= [grad div a]i − [∇2a

]
i
.

There are also other vector identities that apply only in integral form. They result
from the theorems of Gauss and Stokes-Ampère, which we recall now.

Gauss theorem: If Σ is a closed surface enclosing the volume V and if n is the
normal external to the surface, Gauss theorem is expressed by the equation

•
∫

Σ

a · n dS =
∫

V

div a dV,

where a is an arbitrary vector that is a function of the position.
Stokes-Ampère theorem: if � is a closed circuit and if Σ is a surface that is

leaning on this circuit, the Stokes-Ampère theorem is stated by the equation

•
∮

�

a · d� =
∫

Σ

rot a · n dS,

where n is the normal external to the surface. We note that the validity of this equa-
tion implies a convention about the direction of integration along the circuit, which
in turn depends on the implicit convention in the definition of the curl operator.
When the (x, y, z) system used to define the vector components is a right-handed
system, then the direction of integration along the circuit follows the corkscrew (or
the right screw) rule, for which the direction of n coincides with the direction of
advancement of the corkscrew.

Various identities can be obtained from the Gauss and Stokes-Ampère theorems.
Some of them are collected below.

•
∮

�

f d� =
∫

Σ

n × gradf dS.
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This identity can be proven by noting that, if c is an arbitrary constant vector, we
have

c ·
∮

�

f d� =
∮

�

(f c) · d�,

and, applying the Stokes-Ampère theorem

c ·
∮

�

f d� =
∫

Σ

rot(f c) · n dS.

Recalling the vector identity of Eq. (16.6), and taking into account that c is a con-
stant vector, we have

c ·
∮

�

f d� =
∫

Σ

[
(gradf ) × c

] · n dS = c ·
∫

Σ

n × gradf dS.

The identity therefore follows, because c is an arbitrary vector.
With entirely similar procedures and taking into account the vector identities

demonstrated previously, we obtain the additional identities

•
∮

�

a × d� =
∫

Σ

[
n div a − (grad a) · n

]
dS.

•
∫

Σ

n × a dS =
∫

V

rot a dV.

•
∫

Σ

f n dS =
∫

V

gradf dV.

In particular, if we put f = 1 in this last identity, we get

•
∫

Σ

n dS = 0,

which is an important geometrical relation valid for an arbitrary closed surface.

16.3 The Dirac Delta Function

The Dirac delta function, traditionally indicated by the symbol δ(x), can be thought
of as a function which is null for any value of x, except for an infinitesimal interval
centered at the origin where the function has a very high peak which tends to infinity,
but such that the integral of the function in dx is equal to 1. Obviously, it is not a
function in strict mathematical sense, but can be thought of as the limit of a family
of functions depending on a suitable parameter. For example, if we consider the
family of functions f (x, a)

f (x, a) =
{

1
a

for |x| ≤ a
2 ,

0 for |x| > a
2 ,
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we have that

δ(x) = lim
a→0

f (x, a).

Similarly, if we consider the family

g(x, a) = 1√
2πa

e−(x/a)2
,

we also have

δ(x) = lim
a→0

g(x, a).

There are endless possibilities to represent the Dirac delta as the limit of suitable
families of functions. The most common representations in mathematical physics
are the following ones

δ(x) = lim
Ω→∞

1

π

sin(Ωx)

x
,

δ(x) = lim
Ω→∞

1

π

sin2(Ωx)

Ωx2
.

The fundamental property of the Dirac delta is summarised in the following ex-
pression, which constitutes its formal definition

∫ ∞

−∞
F(x)δ(x)dx = F(0),

and from which, by means of simple changes of variable, the following two relations
are found ∫ ∞

−∞
F(x)δ(x − x0)dx = F(x0),

∫ ∞

−∞
F(x)δ(ax)dx = 1

|a|F(0),

where a is any real number different from zero. From these equations we can get an
important generalisation concerning the Dirac delta whose argument is an arbitrary
real function g(x). Denoting this quantity by the symbol δ[g(x)] and denoting by
xi the zeroes (if any) of the function g(x), we have

∫ ∞

−∞
F(x)δ

[
g(x)

]
dx =

∑
i

1

|g′(xi)|F(xi),

where g′(x) is the derivative of the function g(x) with respect to its argument. Fur-
ther generalisations to the case of the three-dimensional Dirac delta are described
directly in the text (see Sect. 3.2).
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Finally, we can give a meaning to the derivative of the Dirac delta function, δ′(x),
defined by the usual relation

δ′(x) = lim
�x→0

δ(x + �x) − δ(x)

�x
.

Using this definition we have, for an arbitrary function F(x)

∫ ∞

−∞
F(x)δ′(x)dx = lim

�x→0

∫ ∞

−∞
F(x)

δ(x + �x) − δ(x)

�x
dx,

from which we obtain
∫ ∞

−∞
F(x)δ′(x)dx = lim

�x→0

F(−�x) − F(0)

�x
= −F ′(0).

16.4 Recovering the Elementary Laws of Electromagnetism

In Chap. 3, starting from the Liénerd and Wiechart potentials, we calculated the ex-
pressions of the electric and magnetic field at an arbitrary point in space, due to a
single moving charge. The results are contained in Eqs. (3.19) and (3.20). We are
now going to show how the basic equations of electromagnetism valid for station-
ary phenomena can be derived from these equations in the non-relativistic limit.
The purpose of this appendix is a simple consistency check, since it is obvious that
the equations from which we start, being a consequence of Maxwell’s equations,
must already contain those results that, even historically, are the basis of Maxwell’s
equations themselves.

Consider a particle with electric charge e, moving within an electric conductor
having a constant transverse section. Its velocity is much lower than the velocity of
light. To fix ideas, we can think that the velocity is of the order of 10−2 cm s−1,
which represents the order of magnitude of the drift velocities of electrons inside
a conductor in a typical macroscopic electric circuit. The corresponding value of
β is of the order of 10−12, so that the approximation β2 � 1 is certainly verified.
Furthermore, the effects of the curvature of the conductor (causing very small accel-
erations) can certainly be neglected so that we can assume that the electric field is
given only by the Coulomb term of Eq. (3.19). Neglecting terms of the order of β2,
such field is written in the form

E(r, t) = e

κ3R2
(n − β),

where κ , R, n are the quantities introduced in Chap. 3 and that need to be calculated
at the retarded time t ′. The magnetic field is then given by Eq. (3.20), i.e.

B(r, t) = n × E(r, t).
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Fig. 16.1 We want to
evaluate the electric field in
the point P at time t . Pt is the
position of the particle at the
same time, while Pt ′ is the
position of the particle at the
retarded time

We can immediately notice that, if we put β = 0 (i.e. we consider an electric
charge at rest), obviously we do not need to consider the difference between real
time and retarded time, so we obtain, being κ = 1

E(r) = en
R2

, B(r) = 0.

These are the ordinary equations of electrostatics which represent, in terms of fields,
Coulomb’s law.

We are now going to see what we get at first order in β . With simple consid-
erations it can be shown that the electric field E(r, t) is exactly equal to what one
would calculate using Coulomb’s law and assuming, hypothetically, that the velocity
of light were infinite (i.e. neglecting the difference between real and retarded time).
In fact, referring to Fig. 16.1 and denoting by a single quote the quantities measured
at the retarded time t ′ and without superscript the same quantities at time t , we have

t ′ = t − R′

c
, R′ = R + (

t − t ′
)
v = R + R′β,

from which it follows, dividing by R′

n′ − β = R
R′ . (16.15)

Introducing the new notations in the expression for the electric field and recalling
that β is constant we obtain

E(r, t) = e

κ ′3R′2
(
n′ − β

) = eR
κ ′3R′3 .

On the other hand we have by definition that

κ ′ = 1 − β · n′,
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and applying Carnot’s theorem to the triangle PPt ′Pt

R = R′
√

1 − 2β · n′ + β2. (16.16)

Substituting in the expression of the electric field, we obtain the result we antici-
pated. In fact we obtain, apart from terms of the order of β2

E(r, t) = eR(1 − 2β · n′ + β2)3/2

R3(1 − β · n′)3
� en

R2
.

It remains to evaluate the contribution of the magnetic field. We have

B(r, t) = n′ × E(r, t) = en′ × n
R2

.

On the other hand, also apart from terms of the order of β2, we have, from
Eqs. (16.15) and (16.16)

n′ = β + n(1 − β · n),

so that

B(r, t) = eβ × n
R2

.

Now we apply this equation to the case of an element of a conductor, of length d�.
Denoting by N the number density of the moving charged particles and with S the
transverse section of the conductor, the element contains a number of particles given
by NS d� with velocity v = cβ parallel to d�. There is an equal number of fixed
particles of opposite charge, so the resulting electric field is null for the property
previously demonstrated. For the magnetic field we have instead

B(r, t) = e
NSv

c
d� × n

R2
.

On the other hand, if we denote by i the intensity of the current flowing in the
conductor

i = eNSv,

so that the equation for the magnetic field is written

B(r, t) = i

c
d� × n

R2
.

This is just the Biot and Savart law expressing the magnetic field generated by a cur-
rent element. As is clear from our deduction, although electric charges move within
the conductor at very low speed, they are nevertheless able to create a relativistic
effect which is manifested by the presence of the magnetic field.
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16.5 The Relativistic Larmor Equation

Within the radiation zone, Eqs. (3.18) and (3.20) provide the expressions for the
electric and magnetic field due to a moving charge

E(r, t) = e

c2κ3R
n × [

(n − β) × a
]
, B(r, t) = n × E(r, t),

where e is the value of the electric charge, c is the speed of light, n is the unit
vector along the direction of R, the vector that goes from the charge to the point of
coordinates r, β = v/c is the velocity of the charge in units of the speed of light, a
is the acceleration, and κ is defined by the equation

κ = 1 − n · β.

We recall that the quantities R, κ , n, β , and a that appear in the previous equations
must be evaluated at the retarded time t ′, related to the time t by the equation

t ′ = t − R

c
.

Expanding the double vector product, we obtain

E(r, t) = e

c2κ3R

[
(n · a)(n − β) − κa

]
.

On the other hand, we know that the Poynting vector is given by

S(r, t) = c

4π
E2(r, t)n,

and expanding the square of the electric field we obtain with simple algebra

S(r, t) = e2

4πc3R2

[
a2

κ4
+ 2

(n · a)(β · a)

κ5
− (1 − β2)(n · a)2

κ6

]
n.

This expression shows that, in the general case, the angular distribution of the emit-
ted radiation (i.e. the radiation diagram) is quite complex. The special cases where
the acceleration is either parallel or perpendicular to the velocity have been dis-
cussed in the text. Here, it is sufficient to emphasize the fact that, for any velocity
and acceleration, there are always two directions where the Poynting vector is zero.
This can be shown simply from the expression of the electric field. The electric field
is obviously zero along the directions characterised by those unit vectors n0 such
that the vector n0 − β is parallel to the vector a. The same holds for the Poynting
vector. The directions n0 are then contained in the plane defined by the vectors β

and a, and are given by the solutions of the equation

(n0 − β) × a = 0.
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Denoting by α the angle between the velocity and the acceleration vectors, the unit
vectors n0 are defined by the angles θ± (which start from the acceleration vector
and increase in the same direction as α) given by

θ+ = arcsin(β sinα), θ− = π − arcsin(β sinα).

For example, if α = 45◦ and β = 0.8, we have θ+ = 34◦.45 and θ− = 145◦.55.
Let us now move on to the calculation of the power. We note that if the integral

I =
∮

S(r, t) · nR2 dΩ, (16.17)

were simply executed over a sphere of radius R centred on the position of the charge
at the retarded time (t − R/c), we would obtain the ratio between the energy that
flows across the sphere in a time interval dt and the dt itself. This quantity is how-
ever of not much interest. It is more interesting to obtain the power emitted by the
charged particle. In order to do this, we need to take into account the fact that the
energy that flows across the sphere in a time dt was emitted by the particle in the
time dt ′ which depends on the direction and is related to dt by

dt = κ dt ′.

To find the power W emitted by the charged particle we therefore need to calculate
the integral

W =
∮

S(r, t) · n
dt

dt ′
R2 dΩ =

∮
S(r, t) · nκR2 dΩ.

Substituting the above expression of the Poynting vector, we find

W = e2

4πc3

∮ [
a2

κ3
+ 2

(n · a)(β · a)

κ4
− (1 − β2)(n · a)2

κ5

]
dΩ.

To calculate this integral, we introduce a system of polar coordinates (ψ,χ) with
the polar axis directed along the velocity vector and the azimuth χ measured from
the plane containing the velocity and the acceleration. With obvious notations, the
three vectors β , a, and n in this system of coordinates are given by

β = βk, a = a⊥i + a‖k, n = sinψ cosχ i + sinψ sinχj + cosψk,

so that the integrand can be written in the form

a2‖ + a2⊥
(1 − β cosψ)3

+ 2βa‖
sinψ cosχa⊥ + cosψa‖

(1 − β cosψ)4

− (
1 − β2) sin2 ψ cos2 χa2⊥ + 2 sinψ cosψ cosχa⊥a‖ + cos2 ψa2‖

(1 − β cosψ)5
,
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and dΩ is given by sinψ dψ dχ . By integrating in dχ within the interval (0,2π),
the factors that do not contain any function of χ result in 2π , those containing cosχ

produce zero, while the factor containing cos2 χ gives π . In summary we have

W = e2

2c3

∫ π

0

[
a2‖ + a2⊥

(1 − β cosψ)3
+ 2β cosψa2‖

(1 − β cosψ)4

− (
1 − β2) 1

2 sin2 ψa2⊥ + cos2 ψa2‖
(1 − β cosψ)5

]
sinψ dψ.

The integrals in dψ appearing in this expression are simple and can be evaluated
either by integrating by parts or by changing the integration variable from ψ to
x = 1 − β cosψ . We obtain

1

2

∫ π

0

1

(1 − β cosψ)3
sinψ dψ = 1

(1 − β2)2
,

1

2

∫ π

0

cosψ

(1 − β cosψ)4
sinψ dψ = 4

3

β

(1 − β2)3
,

1

2

∫ π

0

sin2 ψ

(1 − β cosψ)5
sinψ dψ = 2

3

1

(1 − β2)3
,

1

2

∫ π

0

cos2 ψ

(1 − β cosψ)5
sinψ dψ = 1

3

1 + 5β2

(1 − β2)4
.

Substituting these expressions and grouping separately the terms in a2‖ and in a2⊥,
we get

W = e2

2c3

{
a2‖

[
1

(1 − β2)2
+ 8

3

β2

(1 − β2)3
− 1

3

1 + 5β2

(1 − β2)3

]

+ a2⊥
[

1

(1 − β2)2
− 1

3

1

(1 − β2)2

]}
,

or, expanding,

W = 2e2

3c3

[
a2‖

(1 − β2)3
+ a2⊥

(1 − β2)2

]
.

Recalling the definition of the relativistic factor γ

γ = 1√
1 − β2

,

the expression for the power emitted by a relativistic charge in accelerated motion
can also be written in the more representative form

W = 2e2

3c3

(
γ 6a2‖ + γ 4a2⊥

)
.
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This formula is a generalisation of the Larmor equation (3.23) to the relativistic
case. Obviously, for γ = 1 we find Larmor equation since a2‖ + a2⊥ = a2.

To conclude, we note that, if we had executed the integral of the Poynting vector
on the sphere without taking into account the difference between the dt and the dt ′
(i.e. the integral I of Eq. (16.17)), we would have obviously obtained a different
expression. Taking into account that

1

2

∫ π

0

1

(1 − β cosψ)4
sinψ dψ = 1

3

3 + β2

(1 − β2)3
,

1

2

∫ π

0

cosψ

(1 − β cosψ)5
sinψ dψ = 1

3

β(5 + β2)

(1 − β2)4
,

1

2

∫ π

0

sin2 ψ

(1 − β cosψ)6
sinψ dψ = 2

15

5 + β2

(1 − β2)4
,

1

2

∫ π

0

cos2 ψ

(1 − β cosψ)6
sinψ dψ = 1

15

5 + 38β2 + 5β4

(1 − β2)5
,

we have, in fact, that

I = 2e2

3c3

[
γ 8

(
1 + 1

5
β2

)
a2‖ + γ 6

(
1 + 2

5
β2

)
a2⊥

]
.

This difference between the power emitted by the particle (W ) and the power
received on the sphere (I) is a simple kinematic effect and has nothing to do with
relativity. A similar effect occurs in the case of acoustic waves emitted, for example,
by an airplane travelling at a speed close to the velocity of sound. While the power
emitted by the plane into acoustic waves is fixed, the received power can be very
large and, at the limit, almost infinite if the plane travels for a long time at exactly
the speed of sound (the so-called sonic bang is precisely due to this phenomenon).

16.6 Gravitational Waves

The equations that we have obtained for the radiation of electromagnetic waves
can also be applied, with some slight modifications, to treat gravitational radiation.
Obviously, this is not rigorous, since the laws of gravitational radiation should be
derived from the general theory of relativity. The approach followed here is however
sufficient to describe the fundamental properties of the mechanisms for the gener-
ation of gravitational waves and leads to formulae that are substantially correct (as
can be verified a posteriori).

We start by performing a formal transformation to the equations for electromag-
netic radiation described in Sect. 3.10

ei → mi (i = 1, . . . ,N),
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i.e. we replace, for each particle, the charge with the mass. Furthermore, in the
equations that express the Poynting vector (i.e. in those which express the radiated
power), we multiply the right-hand side by the universal gravitational constant G.
We note, incidentally, that in these equations the dimensional factor [e2] is replaced
by the dimensional factor [Gm2] having the same dimensions. The various quan-
tities introduced in Sect. 3.10, i.e. the electric dipole moment D (Eq. (3.31)), the
magnetic dipole moment M (Eq. (3.32)), and the symmetric tensor of order two (re-
lated to the electric quadrupole moment) /Q (Eq. (3.33)) are transformed in as many
quantities for which we use, respectively, the symbols DG, MG, and /QG, i.e.

D =
N∑

i=1

eisi → DG =
N∑

i=1

misi ,

M = 1

2c

N∑
i=1

eisi × vi → MG = 1

2c

N∑
i=1

misi × vi ,

/Q =
N∑

i=1

eisisi → /QG =
N∑

i=1

misisi .

We now note that the quantity DG, the analogous of the electric dipole, is, by
definition, the coordinate of the centre of mass of the system of N particles rG
multiplied by the total mass. We therefore have

DG =
N∑

i=1

misi =MrG,

where

M =
N∑

i=1

mi.

We then have, for an isolated system,

D̈G =M d2

dt2
rG = 0.

Furthermore, the analogous of the magnetic dipole, the quantity MG, is proportional
to the total angular momentum of the system J, since

2cMG =
N∑

i=1

misi × vi = J.

We then obtain, for an isolated system,

ṀG = d

dt
J = 0,
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and therefore also

M̈G = 0.

According to our analogy, we can then conclude that for gravitational waves there is
neither the analogue of electric dipole radiation, nor the analogue of magnetic dipole
radiation. It therefore only remains the analogue of the electric quadrupole radiation
(in addition, obviously, to the radiation due to higher multipoles). The tensor /QG

is traditionally denoted by the symbol /I , because it is essentially an inertia tensor.
It is however not to be confused with the ordinary inertia tensor I that is used to
describe the dynamics of a rigid body, and that is defined as

I =
N∑

i=1

mi

(
s2
i U − sisi

)
,

where U is the unitary tensor. We have, obviously,

/I = −I + 1

2
(TrI)U,

since, recalling the definition of the trace of a tensor

TrI =
∑

i

mi

(
3s2

i − x2
i − y2

i − z2
i

) = 2
∑

i

mis
2
i .

The two tensors I and /I differ by a quantity which is proportional to the unitary
tensor. This property is strictly analogous to the one that exists between the tensors
Q and /Q in electrodynamics. Therefore, within our analogy, the power emitted in
gravitational waves at the lowest order (of the multipolar expansion) can be obtained
from Eq. (3.34) and is given by

WG = G

20c5

∑
jk

(
...
I jk)

2.

This formula is correct in all respects, aside from the numerical factor. The cal-
culations based on general relativity produce a similar result, where the factor 1

20 is
replaced by the factor 1

5 . Intuitively, one can justify this multiplication by a factor of
four noting that an electromagnetic wave is described by two vectors E and B that
are not independent and are perpendicular to the direction of propagation, say z.
Only two components of one of the two fields, such as Ex and Ey , are sufficient
to describe the wave. A gravitational wave is instead described by two independent
tensors also perpendicular to the direction of propagation. If we denote these tensors
by the traditional symbols e+ and e×, the wave is described by the eight components
(e+

xx, e
+
xy, e

+
yx, e

+
yy, e

×
xx, e

×
xy, e

×
yx, e

×
yy ). The factor of four is therefore associated with,

say, the degrees of freedom of the polarisation. The correct formula for the power
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emitted in gravitational waves is then

WG = G

5c5

∑
jk

(
...
I jk)

2.

Finally, we note that if we change the origin of coordinates putting

s′
i = b + si ,

with b a constant vector, we obtain that the new inertia tensor I ′ is

I ′ = I +M
[(

2b · rG + b2)U − bb − brG − rGb
]
,

so that, for an isolated system,

Ï ′ = Ï,

and, all the more so,
...
I ′ = ...

I . This equation allows to calculate the inertia tensor
in a coordinate system having an arbitrary origin in order to determine the power
emitted in gravitational waves.

16.7 Calculation of the Thomas-Fermi Integral

Some applications of atomic physics based on the Thomas-Fermi model require the
calculation of the following integral

I =
∫ ∞

0

(1 + χ)χ3/2

x1/2
dx,

where χ(x) is the solution of the Thomas-Fermi equation

x1/2χ ′′ = χ3/2,

which satisfies the boundary condition

χ(0) = 1, lim
x→∞χ(x) = 0.

The integral is split into the sum of two integrals

I = I1 + I2, (16.18)

where

I1 =
∫ ∞

0

χ3/2

x1/2
dx, I2 =

∫ ∞

0

χ5/2

x1/2
dx.
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The first integral is trivial since, taking into account the Thomas-Fermi equation and
the boundary conditions of the function χ , we have

I1 =
∫ ∞

0
χ ′′ dx = −χ ′(0). (16.19)

The calculation of the second integral is more complex. It can be done in the fol-
lowing way. On one hand, we have

I2 =
∫ ∞

0

χ5/2

x1/2
dx =

∫ ∞

0
χχ ′′ dx,

and, integrating by parts and taking into account that χ(0) = 1

I2 = −χ ′(0) −
∫ ∞

0
χ ′2 dx. (16.20)

On the other hand, considering the quantity x−1/2 dx as a differential factor, by
integrating again by parts and recalling the Thomas-Fermi equation, we obtain

I2 =
∫ ∞

0

χ5/2

x1/2
dx = −5

∫ ∞

0
x1/2χ3/2χ ′ dx = −5

∫ ∞

0
xχ ′χ ′′ dx.

Now we note that the product χ ′χ ′′ can be expressed in the form

χ ′χ ′′ = 1

2

dχ ′2

dx
,

and integrating again by parts we get

I2 = 5

2

∫ ∞

0
χ ′2 dx.

Comparing this expression with Eq. (16.20), we obtain
∫ ∞

0
χ ′2 dx = −2

7
χ ′(0), or, I2 = −5

7
χ ′(0).

Finally, recalling Eqs. (16.18) and (16.19) we get

I =
∫ ∞

0

(1 + χ)χ3/2

x1/2
dx = −12

7
χ ′(0). (16.21)

16.8 Energy of the Ground Configuration of the Silicon Atom

As an application of the results obtained in Chap. 8, we evaluate the energy of the
ground configuration of the silicon atom, i.e. of the 1s22s22p63s23p2 configuration.
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Before performing these calculations, we need to evaluate some 3-j symbols. By
means of the analytical formula given in Eq. (7.16), we have

(
0 0 0
0 0 0

)2

= 1,

(
0 1 1
0 0 0

)2

= 1

3
,

(
1 1 2
0 0 0

)2

= 2

15
.

The configuration contains four closed subshells and one open subshell. We start
by evaluating the degenerate contribution to the energy. The Hamiltonian H0 (de-
fined in Eq. (7.3)) and the F part of the Hamiltonian H1 (defined in Eqs. (8.2)
and (8.3)) produce five terms, one for each subshell (open or closed). The corre-
sponding energy (that we denote by E1) is obtained from Eq. (8.7) and is given by

E1 = 2W0(1s) + 2W0(2s) + 6W0(2p) + 2W0(3s) + 2W0(3p)

+ 2I (1s) + 2I (2s) + 6I (2p) + 2I (3s) + 2I (3p),

where W0 is defined by Eq. (7.11) and I (n, l) is the integral defined in Eq. (8.6). The
energy of the Coulomb interaction (i.e. the part G of the Hamiltonian H1) resulting
from closed subshells contributes four terms. Denoting by E2 the corresponding
energy, we have, using Eq. (8.17),

E2 = F 0(1s,1s) + F 0(2s,2s) + 15F 0(2p,2p) − 6

5
F 2(2p,2p) + F 0(3s,3s),

where the quantities Fk(nala, nnlb) are defined in Eq. (8.9). Considering the en-
ergy of the Coulomb interaction between different closed subshells, we have six
contributions, as many as the number of the distinct pairs that can be formed with
the four closed subshells. Denoting by E3 the corresponding energy, we have, using
Eqs. (8.14) and (8.16)

E3 = 4F 0(1s,2s) − 2G0(1s,2s) + 12F 0(1s,2p) − 2G1(1s,2p) + 4F 0(1s,3s)

− 2G0(1s,3s) + 12F 0(2s,2p) − 2G1(2s,2p) + 4F 0(2s,3s) − 2G0(2s,3s)

+ 12F 0(2p,3s) − 2G1(2p,3s),

where the quantities Gk(nala, nnlb) are defined in Eq. (8.10). Finally, we need to
evaluate the contribution of the Coulomb interaction between the open subshell 3p

and the four closed subshells. Denoting by E4 the corresponding energy, we have,
using Eqs. (8.13) and (8.15),

E4 = 4F 0(1s,3p) − 2

3
G1(1s,3p) + 4F 0(2s,3p) − 2

3
G1(2s,3p) + 12F 0(2p,3p)

− 2G0(2p,3p) − 4

5
G2(2p,3p) + 4F 0(3s,3p) − 2

3
G1(3s,3p).

The four contributions to the energy that we have calculated are degenerate with
respect to all the states of the configuration. For the degenerate part of the energy of
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the ground configuration of the silicon atom, E , we then have

E = E1 + E2 + E3 + E4.

What remains to calculate is given by Eq. (8.11), with the sum extended to the only
pair of electrons belonging to the open subshell 3p. The explicit computation is
done in Sect. 8.6. The two 3p electrons give rise to three terms that, in order of
increasing energy, are 3P , 1D, and 1S. The ratio between the intervals (1S − 1D) and
(1D − 3P) is equal to 3/2.

16.9 Calculation of the Fine-Structure Constant of a Term

The calculation of the constant ζ(α,LS), which characterises the fine-structure in-
tervals of the terms belonging to a given configuration, can be carried out with a
process based on the diagonal sum rule. A similar process was followed in Sect. 8.1
to determine the energy of the terms. The starting point is Eq. (9.8) which, in the
case of diagonal matrix elements, is

∑
i

〈αLSMLMS |ξ(ri)�i · si |αLSMLMS〉 = ζ(α,LS)MLMS.

On the other hand, for any eigenstate of the configuration of the form Ψ A(a1, a2,

. . . , aN) of Eq. (7.1), the diagonal matrix element of the same operator is given by

∑
i

〈
Ψ A(a1, a2, . . . , aN)

∣∣ξ(ri)�i · si

∣∣Ψ A(a1, a2, . . . , aN)
〉 = ∑

i

ζni li mimsi,

where ζni li is the quantity defined in Eq. (9.10).
We now consider the particular case of the pf configuration which, as shown in

Table 7.3, gives rise to the six terms 1D, 1F , 1G, 3D, 3F , and 3G. We start from a
state having the highest values of the quantum numbers ML and MS , i.e. ML = 4,
MS = 1. This state can only originate from the 3G term. Considering instead single
particle states, this state is of the type m1 = 1, ms1 = 1

2 , m2 = 3, ms2 = 1
2 , where the

indices 1 and 2 refer, respectively, to the p and f electron. Using the same notations
as in Sect. 8.1 we can write the equality5

[4,1] = (
1+,3+)

,

5The symbol [ML,MS ] means the sum of the diagonal matrix elements of the Hamiltonian of the
spin-orbit interaction over all the states Ψ A for which ML and MS are the eigenvalues of Lz and Sz ,
respectively. Similarly, the notation (m±

1 ,m±
2 ) is used to denote the diagonal matrix element of the

same Hamiltonian on the state where the electron 1 has the magnetic quantum number m1 and spin
quantum number +1/2 or −1/2 and, similarly, the electron 2 has the magnetic quantum number
m2 and spin quantum number +1/2 or −1/2.
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that, according to the previous equation, is6

4ζ
(3G

) = 1

2
ζnp + 3

2
ζnf .

We therefore obtain the result

ζ
(3G

) = 1

8
ζnp + 3

8
ζnf .

We then proceed by lowering the value of ML (maintaining MS = 1). We obtain the
equations

[3,1] = (
0+,3+) + (

1+,2+)
, [2,1] = (−1+,3+) + (

0+,2+) + (
1+,1+)

,

from which we have, noting that the combination [ML = 3, MS = 1] can originate
from the 3G and 3F terms, and that the combination [ML = 2, MS = 1] can originate
from the 3G, 3F , and 3D terms,

3
[
ζ
(3G

) + ζ
(3F

)] = 3

2
ζnf + 1

2
ζnp + ζnf ,

2
[
ζ
(3G

) + ζ
(3F

) + ζ
(3D

)] = −1

2
ζnp + 3

2
ζnf + ζnf + 1

2
ζnp + 1

2
ζnf .

By solving the system, we arrive at the following expressions (which can also be
obtained from Eq. (9.11))

ζ
(3F

) = 1

24
ζnp + 11

24
ζnf , ζ

(3D
) = −1

6
ζnp + 2

3
ζnf .

In principle, we could also consider the values of MS = 0. For example,

[4,0] = (
1+,3−) + (

1−,3+)
.

However, in so doing we obtain equations of the form 0 = 0 and the value of ζ(1G)

is undetermined. This is entirely consistent, since the singlet states do not have fine
structure and the constant ζ is not defined.

The cases of the configurations of equivalent electrons are also interesting, be-
cause, by repeating the same arguments, we obtain directly the third Hund’s rule.
For example, consider the configuration p2 which produces, as shown in Table 7.4,
the three terms 1S, 1D, and 3P . For the singlet terms, the fine structure constant
remains undetermined, as usual. For the triplet term we have instead

[1,1] = (
0+,1+)

,

6We note that even if there are electrons in the closed subshells they do not produce any contribu-
tion to the equation.
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from which we obtain

ζ
(3P

) = 1

2
ζnp.

If we consider the complementary configuration p4, we get the same structure of
terms. This time, to find the fine structure constant of the 3P , term, we need to
consider the equation7

[1,1] = (
1+,1−,0+,−1+)

,

and we obtain

ζ
(3P

) = −1

2
ζnp,

i.e. a value that is exactly the same (but opposite in sign) to the one of the con-
figuration p2. These arguments can be repeated for any configuration of equivalent
electrons and for the corresponding complementary configuration and lead to the
third Hund’s rule. In the particular case of configurations that fill half of a subshell
(such as p3, d5, and f 7), the configuration coincides with the complementary one,
and the fine structure constant is zero for all the terms.

16.10 The Fundamental Principle of Statistical Thermodynamics

Consider, in all generality, a macroscopic physical system. We suppose that the sys-
tem is in thermal equilibrium with an ideal heat reservoir having temperature T

(canonical ensemble). We also suppose to identify with the index i all possible mi-
croscopic states of the system and we denote by Ei the energy of the i-th state.
Macroscopically, the system is in a steady state. On the other hand, from the micro-
scopical point of view, we can think that it constantly evolves from one microscopic
state to another. We can then introduce a statistical description denoting by pi the
probability that the system is in the i-th microscopic state. The following normali-
sation property should obviously be valid

∑
i

pi = 1.

We now need to relate the probability pi with the energy Ei . To do so, we give a
definition of the entropy by putting, according to an hypothesis originally due to
Boltzmann

S = −kB

∑
i

pi lnpi,

7The quantity (1+,1−,0+,−1+), relative to the configuration p4, is obtained from the correspond-
ing quantity (0+,1+), relative to the configuration p2, taking the “complementary” of the latter,
i.e. (−1+,−1−,0−,1−), and then changing sign to all the values of m and ms .
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where kB is the Boltzmann constant.
This definition can be justified by considering that the entropy of a system mea-

sures the amount of “disorder” contained in the system itself and noting that the
function defined above has the mathematical property of assuming its maximum
value when all the probabilities pi are equal to one another, and take the minimum
value (which is equal to 0) when a single pi is equal to 1 and all the others are equal
to 0. The proof of the second property is trivial. To prove the first property we note
that giving an arbitrary variation δpi to the probabilities, the corresponding change
δS of the entropy is

δS = −kB

∑
i

(lnpi + 1)δpi.

On the other hand, being
∑

i

δpi = 0,

it follows that if lnpi is constant (i.e. independent of i), δS is null and therefore the
entropy presents an extreme. It is then easy to verify that such an extreme is actually
a maximum, since

d2S

dp2
i

= −kB
1

pi

< 0.

Having justified the definition of the entropy, we now take into account that the
internal energy of the system is given by the expression

U =
∑

i

piEi.

If we consider an infinitesimal thermodynamical transformation of the system, the
internal energy will vary, in general, because both the probabilities pi and the ener-
gies Ei change. We then have

δU =
∑

i

(δpi)Ei +
∑

i

pi(δEi).

If, however, the external conditions of the system are not varied, the quantities Ei

remain fixed to the initial value and the second term of the right hand side is null.
On the other hand, to keep constant the external conditions of the system means that
the system does not accomplish mechanical work on the ambient medium, so we
can write, according to the first principle of thermodynamics

δU =
∑

i

(δpi)Ei = δQ = T δS,
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where δQ is the heat exchanged with the reservoir, and taking into account that

δS = −kB

∑
i

(δpi) lnpi,

we obtain the equation

∑
i

(δpi)Ei = −kBT
∑

i

(δpi) lnpi.

This equation must be satisfied for an arbitrary thermodynamic transformation (as
long as no work is done). The following relation therefore must hold

Ei = −kBT lnpi + const.,

which leads to the relation

pi = Ae−βEi ,

where A is a constant and where we have put

β = 1

kBT
.

The constant A is determined by imposing the normalisation condition. Since we
must have ∑

i

pi =
∑

i

Ae−βEi = 1,

it follows that

A = 1

Z ,

where the quantity Z , known as the sum over states, is given by

Z =
∑

i

e−βEi .

The expression of pi can therefore be written in its final form

pi = 1

Z e−βEi = e−βEi∑
j e−βEj

. (16.22)

This expression, often referred to as Gibbs principle, is of extreme generality
and can rightly be considered the basis of all statistical thermodynamics. It can
be written in an alternative form by assuming that the microscopic states of the
system are not discrete (and therefore countable) but are identified by the rep-
resentative point in the phase space of the system having dimension 2N , where
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N is the number of degrees of freedom of the system itself. In this case, denot-
ing by dP the probability that the representative point of the system is in the cell
dΓ = dq1 dq2 · · ·dqN dp1 dp2 · · ·dpN of the phase space centered around the val-
ues (qi,pi), and denoting by H(qi,pi) the Hamiltonian of the system, we have

dP = 1

Z e−βH(qi ,pi ) dΓ = e−βH(qi ,pi ) dΓ∫
e−βH(qi ,pi ) dΓ

, (16.23)

where the integral is over the entire volume of the phase space available to the
system. Equations (16.22) and (16.23) coincide, respectively, with Eqs. (10.2)
and (10.1) which we have assumed as the basic principles for the deduction of the
various laws of thermodynamical equilibrium in Chap. 10.

16.11 Transition Probability for the Coherences

In Chap. 11, we have introduced the so-called random phase approximation and
we have determined the kinetic equations for the diagonal matrix elements ρα of
the density matrix operator of the physical system. The result that we found is the
kinetic equation (9.11), which is interpreted by introducing the transition probability
per unit time between different states of the system. This probability is given by
Fermi’s golden rule, expressed by Eq. (11.10). We now want to generalise these
results by determining the kinetic equations for the so-called coherences, i.e. for the
non-diagonal matrix elements of the density matrix operator.

We start again from Eq. (8.11) and introduce the hypothesis, less restrictive than
that of the random phases, that in the physical system there might exist coherences,
even if only within pairs of states, |α〉 and |α′〉, having the same energy eigenvalue
(degenerate states) and such that the matrix element of the interaction Hamiltonian
between them, HI

αα′ , is zero. Taking into account this approximation, when evalu-
ating the product cα(t)c∗

α′(t) we obtain, considering only the terms that are at most
quadratic in the matrix elements of HI,

cα(t)c∗
α′(t) = cα(0)c∗

α′(0)

+ 1

�2

∑
ββ ′

HI
αβHI

β ′α′cβ(0)c∗
β ′(0)

eiωαβ t − 1

ωαβ

e−iωα′β′ t − 1

ωα′β ′

+ 1

�2

[∑
βγ

HI
αβHI

βγ cγ (0)c∗
α′(0)

(
eiωαγ t − 1

ωαγ ωβγ

− eiωαβ t − 1

ωαβωβγ

)

+ C.C.
(
α ↔ α′)],

where the symbol [· · · + C.C.(α ↔ α′)] means that we need to add to the term in
brackets its complex conjugate (with the exchange of the indices α and α′).
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We now need to recall the approximation we have introduced in that the states
between which coherences exist are iso-energetic. As regards the second line of the
previous equation, this implies that ωαβ = ωα′β ′ and so the two temporal factors are
one the complex conjugate of the other. Regarding the third line, we can consider
the limit (ωαγ → 0) and the temporal function between round brackets, which we
indicate with F(t), is equal to

F(t) = eiωαγ t − 1

ωαγ ωβγ

− eiωαβ t − 1

ωαβωβγ

= − it

ωαβ

+ eiωαβ t − 1

ω2
αβ

= −2 sin2(ωαβt/2)

ω2
αβ

+ i
sin(ωαβt) − ωαβt

ω2
αβ

.

We now proceed by evaluating the statistical average over the physical system. We
introduce the notation of the density matrix by putting8 ραα′ = 〈cα(t)c∗

α′(t)〉. Chang-
ing the index of the sum γ in α′′, the kinetic equation for the coherences becomes

ραα′(t) = ραα′(0) + 1

�2

∑
ββ ′

HI
αβHI

β ′α′ρββ ′(0)
4 sin2(ωαβt/2)

ω2
αβ

+ 1

�2

[∑
βα′′

HI
αβHI

βα′′ρα′′α′(0)F(t) + C.C.
(
α ↔ α′)]. (16.24)

We consider the limit of this equation for t → ∞. As we have seen on various
occasions within the text (cf. Fig. 11.1)

lim
t→∞

4 sin2(ωαβt/2)

ω2
αβ

= 2πtδ(ωαβ) = 2π�tδ(Eα − Eβ),

where we have used the definition of the Bohr frequencies in terms of the energies
of the states of the physical system. Regarding the function F(t), while its real part
produces again a Dirac delta over the energy, the imaginary part behaves, at the limit
of t → ∞, as shown in Fig. 16.2. It can rigorously be shown within the distribution
theory that we have

lim
t→∞F(t) = −πtδ(ωαβ) − itPP

1

ωαβ

= −π�t

[
δ(Eα − Eβ) + i

π
PP

1

Eα − Eβ

]
,

where the symbol PP means the Cauchy principal value.
We are now able to write the kinetic equation that generalises Eq. (11.9), valid

for the diagonal elements of the density matrix, to the case of coherences. Starting

8We note that in Chap. 11 we only introduced the diagonal elements of the density matrix, denoted
for simplicity by the symbol ρα instead of ραα .
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Fig. 16.2 The imaginary part
of F(t) is plotted as a
function of ωαβ for a fixed
time t . As t increases, the
behaviour of the function
becomes more and more
similar to that one of the
function −t/ωαβ (dotted
line), except in the origin
where it is zero

with Eq. (16.24) and noting that all the terms in the right hand side behave linearly
with t , we can write, for t → ∞

d

dt
ραα′ =

∑
ββ ′

Tαα′ββ ′ρββ ′ −
∑
α′′

(
Rαα′′ρα′′α′ + R∗

α′α′′ραα′′
)
, (16.25)

where Tαα′ββ ′ , the rate of transfer from the coherence ρββ ′ to the coherence ραα′ , is
given by

Tαα′ββ ′ = 2π

�
HI

αβHI
β ′α′δ(Eα − Eβ),

and where Rαα′′ , the relaxation rate that relates the coherence ραα′ to the coherence
ρα′′α′ , is given by

Rαα′′ = π

�

∑
β

HI
αβHI

βα′′

[
δ(Eα − Eβ) + i

π
PP

1

Eα − Eβ

]
.

It is easy to show that Eq. (16.25) coincides with Eq. (11.9) in the case of the
random phase approximation, i.e. when we consider only the diagonal elements of
the density matrix. We have, in fact,

Tααββ = 2π

�

∣∣HI
αβ

∣∣2
δ(Eα − Eβ) = Pαβ,

where Pαβ is the transition probability per unit time between the states |α〉 and
|β〉 (or between the states |β〉 and |α〉) given by Eq. (11.10) (Fermi’s golden rule).
Similarly,

Rαα + R∗
αα = 2π

�

∑
β

∣∣HI
αβ

∣∣2
δ(Eα − Eβ) =

∑
β

Pαβ.
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Equation (16.25) can therefore be rightly considered the generalisation of Fermi’s
golden rule to the case of coherences. It is important to stress the presence of the
imaginary factor in the relaxation rates. Such factor is responsible for some phenom-
ena typical of the interaction between material systems and the radiation field such
as, in particular, the anomalous dispersion phenomena that occur in the propagation
of polarised radiation in an anisotropic medium (Faraday effect, Macaluso-Corbino
effect, etc.).

16.12 Sums over the Magnetic Quantum Numbers

Here, we want to prove Eq. (11.17). That is, we want to show that, for any polari-
sation unit vector e, having defined the averages of the square moduli of the dipole
matrix elements A and A′ over the magnetic quantum numbers by the equations

A = 1

gagb

∑
α,β

|rbβ,aα · e|2,

A′ = |rba|2 = 1

gagb

∑
α,β

|rbβ,aα|2 = 1

gagb

∑
α,β

〈ubβ |r|uaα〉 · 〈uaα|r|ubβ〉,

we have

A= 1

3
A′.

The indices a and b in the previous equations denote any two energy levels of the
atomic system while the indices α and β denote the respective magnetic sublevels,
which are degenerate with respect to the energy. To demonstrate the equation, we
need to introduce a more detailed notation which takes into account the fact that
the atomic levels are normally characterised not only by a set of internal quantum
numbers γ (which specify the configuration and the term), but also by the quan-
tum number for the angular momentum J and the magnetic quantum number M .
Applying the formal substitutions

|uaα〉 → |γaJaMa〉, |ubβ〉 → |γbJbMb〉,
ga → 2Ja + 1, gb → 2Jb + 1,

we obtain

A=
∑

MaMb

|〈γbJbMb|r · e|γaJaMa〉|2
(2Ja + 1)(2Jb + 1)

,

A′ =
∑

MaMb

〈γbJbMb|r|γaJaMa〉 · 〈γaJaMa|r|γbJbMb〉
(2Ja + 1)(2Jb + 1)

.
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To calculate A we apply the Wigner-Eckart theorem, noting that the scalar product
r · e can be expressed in terms of the spherical components of the two vectors. We
have in fact (cf. Eq. (9.5))

r · e =
∑
q

(−1)qrqe−q .

Using Eq. (9.4) we have

〈γbJbMb|rq |γaJaMa〉

= (−1)Ja+Mb+1
√

2Jb + 1

(
Jb Ja 1

−Mb Ma q

)
〈γbJb‖r‖γaJa〉,

and we obtain

A=
∑
qq ′

(−1)q+q ′
e−q(e−q ′)∗

×
∑

MaMb

(
Jb Ja 1

−Mb Ma q

)(
Jb Ja 1

−Mb Ma q ′
) |〈γbJb‖r‖γaJa〉|2

2Ja + 1
.

The sum over Ma and Mb of the product of the two 3-j symbols can be calculated
using the property of the 3-j symbols of Eq. (7.18). We have

∑
MaMb

(
Jb Ja 1

−Mb Ma q

)(
Jb Ja 1

−Mb Ma q ′
)

= 1

3
δqq ′ ,

and we obtain, being
∑

q eq(eq)∗ = 1

A= 1

3

|〈γbJb‖r‖γaJa〉|2
2Ja + 1

.

To calculate the quantity A′ we proceed in a similar way first noting that
〈γaJaMa|r|γbJbMb〉 = 〈γbJbMb|r|γaJaMa〉∗. We obtain

A′ =
∑
q

∑
MaMb

(
Jb Ja 1

−Mb Ma q

)(
Jb Ja 1

−Mb Ma q ′
) |〈γbJb‖r‖γaJa〉|2

2Ja + 1
,

and using the same property of the 3-j symbols and summing over q we arrive at the
result that we wanted to prove, i.e.

A′ = |〈γbJb‖r‖γaJa〉|2
2Ja + 1

= 3A.

The above results can be used to express the quantity |rba |2 that we introduced
within the text in terms of the reduced matrix elements of the spherical tensor r.
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Since |rba|2 =A′, we have

|rba |2 = |〈γbJb‖r‖γaJa〉|2
2Ja + 1

.

On the other hand, being |rba |2 = |rab|2, we obtain by symmetry

|rba |2 = |rab|2 = |〈γbJb‖r‖γaJa〉|2
2Ja + 1

= |〈γaJa‖r‖γbJb〉|2
2Jb + 1

,

an equation that relates the reduced matrix elements under the exchange of the bra
with the ket.

In spectroscopy, the concept of line (or transition) strength is commonly used.
Such quantity is invariant with respect to the exchange of the lower and upper level,
and is defined by

S = gb

∣∣〈γbJb‖d‖γaJa〉
∣∣2 = ga

∣∣〈γaJa‖d‖γbJb〉
∣∣2

,

where d = −e0r is the electric dipole operator. The quantities introduced in the text
are therefore related to the line strength via the relation

|rba |2 = |rab|2 = 1

e2
0

S
gagb

.

These relations can then be used to express the Einstein coefficients in terms of
the line strength instead of in terms of the dipole matrix elements. For example,
recalling Eq. (11.20), the Einstein coefficient Aab can be written in the form

gaAab = 64π4ν3
ab

3hc3
S.

An alternative quantity that is also used to characterise the strength of a line (or a
transition) is the so-called oscillator strength. This quantity is introduced in the fol-
lowing way. The absorption coefficient of a plasma of “classical” atoms, described
by the Lorentz atomic model and integrated in frequency is given by

[
k
(a)
R

]
class =N

πe2
0

mc
,

where N is the number density of atoms. Comparing this expression with that one
for k

(a)
R obtained in Sect. 11.9 (Eq. (11.33)), we see that the two quantities coincide

if we identify N with Nb and multiply the classical expression for the dimensionless
quantity fba , known as the oscillator strength of the transition, given by

fba = 8π2mνab

3h
ga|rba |2.
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The oscillator strength may be considered as a parameter measuring the effi-
ciency of the transition, since it represents a sort of “equivalent number” of classical
oscillators. Typically, it is a relatively small number that can reach values of the
order of unity only for the strongest spectral lines. The relations between oscilla-
tor strength, line strength, and Einstein coefficients are easily obtained using the
previous relations. For example, we have

gbfba = 8π2mνab

3he2
0

S, gaAab = 8π2e2
0ν

2
ab

mc3
gbfba.

16.13 Calculation of a Matrix Element

We wish to calculate the probability per unit time that the following elementary pro-
cess occurs: a non-relativistic free electron of momentum q undergoes a transition
to a free state of momentum q′ due to absorption of a photon with wave vector k.
According to Fermi’s golden rule, repeating the arguments presented in Sect. 11.4
but without introducing the dipole approximation,9 such probability is proportional
to the squared modulus of the matrix element M given by

M = 〈uf|eik·rp · e|ui〉,

where |ui〉 and |uf〉 are the eigenvectors of the atomic system (in our case of the free
electron) in the initial and final state, respectively, e is the polarisation unit vector
of the absorbed photon, and p is the momentum operator of the electron. Within the
representation of the wavefunctions, where the operator p is given by −i� grad, the
matrix element M is

M = −i�e ·
∫

ψ∗
f (r)eik·r grad

[
ψi(r)

]
d3r.

On the other hand, the eigenfunctions ψf and ψi are of the type of a plane wave, i.e.

ψf(r) = 1√
V

eiq′·r/�, ψi(r) = 1√
V

eiq·r/�,

where V is the normalisation volume. Substituting in the integral we have

M = e · q
V

∫
e−i(q′−�k−q)·r/� d3r.

9The dipole approximation is appropriate when considering the interaction between radiation and
electrons that are bound in an atom. For free electrons, described by eigenfunctions of the type of
a plane wave, the approximation cannot be applied.
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The integral is null unless the argument of the exponential is zero. This leads to the
equality q′ = (�k + q) which represents the conservation of momentum. In such
case, the integral is simply equal to V , so we obtain

M= e · q = e · (q′ − �k
)
.

16.14 Gauge Invariance in Quantum Electrodynamics

Consider the quantity Rf i defined in Eq. (15.22) of the text that we rewrite here in
the form

Rf i = P + Q,

where

P = W †
s

(
p′)(α · e′∗) Hg + ε + �ω

(ε + �ω)2 − ε2
g
(α · e)Wr (p),

Q = W †
s

(
p′)(α · e)

Hh + ε − �ω′

(ε − �ω′)2 − ε2
h

(
α · e′∗)Wr (p).

We want to demonstrate that Rf i is invariant with respect to the transformation

α · e → α · e + C(α · u − 1), (16.26)

where C is an arbitrary constant and where u is the unit vector of the direction of
the initial photon (u = k/k). Performing such transformation, the quantities P and
Q are transformed according to the equations

P → P + CP ′, Q → Q + CQ′,

where

P ′ = W †
s

(
p′)(α · e′∗) Hg + ε + �ω

(ε + �ω)2 − ε2
g

[
(α · u) − 1

]
Wr (p),

Q′ = W †
s

(
p′)[(α · u) − 1

] Hh + ε − �ω′

(ε − �ω′)2 − ε2
h

(
α · e′∗)Wr (p).

We multiply the two quantities P ′ and Q′ by the product c�k and note that

c�k
[
(α · u) − 1

] = c�(α · k) − �ω.

Recalling the kinematic relations of the Compton effect and noting that the quanti-
ties g and h, contained respectively in P ′ and Q′, are given by (see Eq. (15.15))

g = p + �k, h = p − �k′ = p′ − �k,
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we can perform the following substitution in the expression of P ′

�k = g − p,

and in the expression of Q′

�k = p′ − h.

Substituting, and recalling also that ε − �ω′ = ε′ − �ω, we obtain

c�kP ′ = W †
s

(
p′)(α · e′∗) Hg + ε + �ω

(ε + �ω)2 − ε2
g
[cα · g − cα · p − �ω]Wr (p),

c�kQ′ = W †
s

(
p′)[cα · p′ − cα · h − �ω

] Hh + ε′ − �ω

(ε′ − �ω)2 − ε2
h

(
α · e′∗)Wr (p).

Within the square brackets, we add and subtract the factor βmc2 and recall that an
expression of the type (cα ·q+βmc2), with q arbitrary, is the Dirac Hamiltonian Hq.
We obtain

c�kP ′ = W †
s

(
p′)(α · e′∗) Hg + ε + �ω

(ε + �ω)2 − ε2
g
[Hg − Hp − �ω]Wr (p),

c�kQ′ = W †
s

(
p′)[Hp′ − Hh − �ω] Hh + ε′ − �ω

(ε′ − �ω)2 − ε2
h

(
α · e′∗)Wr (p).

Now, noting that

HpWr (p) = εWr (p), W †
s

(
p′)Hp′ = ε′W †

s

(
p′),

we have

c�kP ′ = W †
s

(
p′)(α · e′∗) Hg + ε + �ω

(ε + �ω)2 − ε2
g
[Hg − ε − �ω]Wr (p),

c�kQ′ = W †
s

(
p′)[ε′ − Hh − �ω

] Hh + ε′ − �ω

(ε′ − �ω)2 − ε2
h

(
α · e′∗)Wr (p).

Finally, taking into account that

[Hg + ε + �ω][Hg − ε − �ω] = ε2
g − (ε + �ω)2,

[
ε′ − Hh − �ω

][
Hh + ε′ − �ω

] = (
ε′ − �ω

)2 − ε2
h,

we obtain

c�kP ′ = −W †
s

(
p′)(α · e′∗)Wr (p), c�kQ′ = W †

s

(
p′)(α · e′∗)Wr (p),
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from which it follows that (P ′ +Q′) = 0. This shows that the quantity Rf i is invari-
ant with respect to the transformation (16.26). In all similarity, it can be shown that
Rf i is also invariant with respect to the transformation

α · e′∗ → α · e′∗ + C′(α · u′ − 1
)
,

where C′ is an arbitrary constant and where u′ is the unit vector of the direction of
the final photon (u′ = k′/k′).

An alternative way to express these invariant properties is to formally consider
the quantity Rf i as a function of the matrix (α · e), or, alternatively, of the matrix
(α · e′∗). From the above proof it follows that

Rf i{α · e → α · u} = Rf i{α · e → 1},
Rf i

{
α · e′∗ → α · u′} = Rf i

{
α · e′∗ → 1

}
.

(16.27)

16.15 The Gamma Matrices and the Relativistic Invariants

The relation between energy εp and momentum p of a relativistic particle of mass
m is

ε2
p = c2p2 + m2c4.

In particular, for a photon (m = 0) we have

εp = cp, with p = |p|,
or, in terms of frequency and wavenumber

�ω = c�k, with k = |k|.
Such relations may be formally simplified if we adopt a unit system in which
� = c = 1. The introduction of this convention is equivalent to define the unit time
interval as the time needed by light to travel the unit of length. With this definition,
the energy, the momentum, and the mass (and similarly for a photon, the angular
frequency and the wavenumber) all assume the dimensions of the reciprocal of a
length (or a time). The relation between momentum and energy is written, in this
system of units, in the form

ε2
p = p2 + m2, or ε2

p − p2 = m2,

and for a photon

εp = p, or ω = k.

We now introduce with the symbol Pμ (μ = 0,1,2,3) the quadrivector momentum-
energy of the particle. It is an entity with four components that are defined in this
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way

P0 = εp, P1 = p1 = px, P2 = p2 = py, P3 = p3 = pz,

or, in a more compact form

P = (εp,p).

Defining the metric tensor gμν as

g00 = 1, g0i = gi0 = 0 (i = 1,2,3), gjk = −δik (j, k = 1,2,3),

the scalar product of two quadrivectors P and Q is

(PQ) =
∑
μν

gμνPμQν = εpεq − p · q.

In particular we have

P2 = (PP) =
∑
μν

gμνPμPν = ε2
p − p2 = m2.

These quantities (the scalar product of two quadrivectors defined by the above met-
ric tensor and, in particular, the square of a quadrivector) are relativistic invariants,
i.e. do not change under Lorentz transformations. We are now going to show how
the probability amplitudes of Compton scattering can be expressed in terms of these
invariants.

Consider the quantity Rf i defined in Eq. (15.22). This quantity is composed of
two terms that we denote by P and Q. For the first one we have, taking into account
the system of units we have introduced (c = � = 1)

P = W †
s

(
p′)(α · e′∗) Hg + ε + ω

(ε + ω)2 − ε2
g
(α · e)Wr (p),

where

Hg = α · g + βm,

with

g = p + k, εg =
√

g2 + m2.

Recalling that the square of the Dirac matrix β is unity, we can write

P = W †
s

(
p′)(α · e′∗)β2 Hg + ε + ω

(ε + ω)2 − ε2
g
β2(α · e)Wr (p).

If we now also recall that the Dirac matrix β anticommutes with any of the α matri-
ces, we obtain

P = W †
s

(
p′)β(

α · e′∗)β(Hg + ε + ω)

(ε + ω)2 − ε2
g

β(α · e)βWr (p).
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We now define the matrices γμ (μ = 0,1,2,3)

γ0 = β, γ1 = βα1, γ2 = βα2, γ3 = βα3.

The fundamental property of these matrices regards their anticommutator which is
(as easily derived from the properties of the α and β matrices)

{γμ, γν} = γμγν + γνγμ = 2gμν, (16.28)

where gμν is the metric tensor that we have previously defined. Moreover, given an
arbitrary quadrivector V , we define by the symbol /V the matrix

/V =
∑
μ

γμVμ.

With these definitions, the quantity P can be written in the form

P = W †
s

(
p′)/E ′∗ /G + m

G2 − m2
/Eγ0Wr(p), (16.29)

where the quadrivectors G, E and E ′ are given by

G = (ω + ε,g), E = (0, e), E ′ = (
0, e′).

We note that the quadrivector G can also be written in the form

G = P +K,

where

K = (ω,k).

If we now consider the quantity P ∗, complex conjugate of P , we need to proceed
carefully because the γ matrices (except γ0) are not Hermitian. We have in fact

γ
†
0 = β† = β = γ0,

γ
†
i = (βαi )

† = α
†
i β

† = αi β = −βαi = −γi (i = 1,2,3).

These properties can be summarised in only one relation

γ †
μ = γ0γμγ0,

which implies, for an arbitrary quadrivector

/V† = γ0/V∗γ0.

We therefore obtain

P ∗ = W †
r (p)γ0γ0/E∗γ0

γ0/Gγ0 + m

G2 − m2
γ0/E ′γ0Ws

(
p′),
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or

P ∗ = W †
r (p)/E∗ /G + m

G2 − m2
/E ′

γ0Ws

(
p′). (16.30)

Similar considerations can be repeated for the other term Q of Eq. (15.22) de-
fined by

Q = W †
s

(
p′)(α · e)

Hh + ε − ω′

(ε − ω′)2 − ε2
h

(
α · e′∗)Wr (p),

where

Hh = α · h + βm,

with

h = p − k′, εh =
√

h2 + m2.

We have

Q = W †
s

(
p′)/E /H + m

H2 − m2
/E ′∗

γ0Wr (p), (16.31)

where the quadrivector H is defined by

H = (
ε − ω′,h

) =P −K′,

being

K′ = (
ω′,k′).

Still in analogy to what discussed before, we also have

Q∗ = W †
r (p)/E ′ /H + m

H2 − m2
/E∗

γ0Ws

(
p′). (16.32)

We can now evaluate the square of the modulus of the quantity Rf i. It is

|Rf i|2 = (P + Q)
(
P ∗ + Q∗) = PP ∗ + PQ∗ + QP ∗ + QQ∗,

where, using Eqs. (16.29)–(16.32), the four terms are given by

PP ∗ = W †
s

(
p′)/E ′∗ /G + m

G2 − m2
/Eγ0Wr (p)W †

r (p)/E∗ /G + m

G2 − m2
/E ′

γ0Ws

(
p′),

PQ∗ = W †
s

(
p′)/E ′∗ /G + m

G2 − m2
/Eγ0Wr (p)W †

r (p)/E ′ /H+ m

H2 − m2
/E∗

γ0Ws

(
p′),

QP ∗ = W †
s

(
p′)/E /H+ m

H2 − m2
/E ′∗

γ0Wr (p)W †
r (p)/E∗ /G + m

G2 − m2
/E ′

γ0Ws

(
p′),

QQ∗ = W †
s

(
p′)/E /H+ m

H2 − m2
/E ′∗

γ0Wr (p)W †
r (p)/E ′ /H+ m

H2 − m2
/E∗

γ0Ws

(
p′).
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These expressions can be simplified when one considers the average over the
initial spin states of the electron and the sum over the final spin states of the elec-
tron. Taking into account the results we have obtained in Sect. 15.5 (Eqs. (15.18)
and (15.20)) we have

∑
r=1,2

Wr (p)W †
r (p) = εp + Hp

2εp
,

∑
s=1,2

Ws

(
p′)W †

s

(
p′) = εp′ + Hp′

2εp′
,

and defining the quadrivector

P = (εp,p), P ′ = (
εp′ ,p′),

we obtain

∑
r=1,2

γ0Wr(p)W †
r (p) = /P + m

2εp
,

∑
s=1,2

γ0Ws

(
p′)W †

s

(
p′) = /P ′ + m

2εp′
.

By denoting with the symbol 〈· · · 〉 the average over the spin states and using the
definition of the trace of a matrix, according to which a scalar product of the form
W1 XW

†
2 , with W1 and W2 arbitrary spinors and X an arbitrary matrix, can be

written in the form Tr(W2 W
†
1 X ), we have

〈
PP ∗〉 = 1

2

∑
r=1,2

∑
s=1,2

PP ∗

= 1

8εpεp′
Tr

{(
/P ′ + m

)
/E ′∗ /G + m

G2 − m2
/E(/P + m)/E∗ /G + m

G2 − m2
/E ′

}
,

with similar expressions for the other three terms 〈PQ∗〉, 〈QP ∗〉, and 〈QQ∗〉.
This last result can be greatly simplified if we sum over the polarisation states of

the final photon and we average over the polarisation states of the initial photon. The
average over the polarisation states of the initial photon, for example, is obtained by
applying to the previous formula the formal substitution

/E(/P + m)/E∗ → 1

2

∑
i=1,2

/E (i)
(/P + m)/E (i),

where

E (i) = (
0, e(i)

)
,

e(i) (i = 1,2) being two unit vectors that we can assume real, perpendicular to each
other and perpendicular to the direction of the initial photon. Taking into account
the invariance under gauge transformations described in Sect. 16.14 and, in par-
ticular, recalling Eq. (16.27), the sum can be modified by extending it to a third
“unit quadrivector” (that we denote by E (3)) and subtracting then the contribution
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from another unit quadrivector. According to special relativity, this unit quadrivec-
tor, which we denote by E (0), is of the purely temporal type. Defining

E (3) = (
0, e(3)

)
, E (0) = (1,0),

where e(3) is an unit vector directed along the direction of the incoming photon
(e(3) = k/k), and recalling the definition of the metric tensor, we apply the following
transformation

/E(/P + m)/E∗ → 1

2
S, where S = −

3∑
i,j=0

gij /E (i)(/P + m)/E (j).

We note that the sum S can also be written in the form

S = −γ0(/P + m)γ0 + (
γ · e(1)

)
(/P + m)

(
γ · e(1)

)

+ (
γ · e(2)

)
(/P + m)

(
γ · e(2)

) + (
γ · e(3)

)
(/P + m)

(
γ · e(3)

)
,

where γ is the formal vector defined by γ = (γ1, γ2, γ3). The right-hand side can
then be transformed to get

S = −γ0(/P + m)γ0 +
3∑

i,j=1

γi(/P + m)γj

[
e
(1)
i e

(1)
j + e

(2)
i e

(2)
j + e

(3)
i e

(3)
j

]
.

On the other hand, taking into account Eq. (15.7), the quantity in square brackets is
equal to the Kronecker delta δij , so we obtain

S = −γ0(/P + m)γ0 +
3∑

i=1

γi(/P + m)γi = −
∑
μ,ν

gμνγμ(/P + m)γν.

Finally, we take into account the properties of the γ matrices. From Eq. (16.28) we
have

γμγν = −γνγμ + 2gμν.

Moreover, it is easy to verify that the following relation holds
∑
μν

gμνγμγν = 4,

and that, given the properties of the metric tensor,
∑
μ

gμνgμρ = δνρ,

so that ∑
μν

gμνgμργν = γρ.
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Taking advantage of these properties, we get after some algebra

S = 2(/P − 2m).

Summarising the foregoing, the average on the states of polarisation of the initial
photon is obtained by performing the formal transformation

/E(/P + m)/E∗ → /P − 2m.

Similarly, the sum over the polarisation states the final photon is obtained by per-
forming the formal transformation

/E ′(/P ′ + m
)
/E ′∗ → 2

(
/P ′ − 2m

)
.

Now we denote by the symbol 〈〈PP ∗〉〉 the quantity obtained by taking the average
of 〈PP ∗〉 over the states of initial polarisation and the sum of the same quantity
over the states of final polarisation.10 We have

〈〈PP ∗〉〉 = 1

4εpεp′
Tr

{(
/P ′ − 2m

) /G + m

G2 − m2
(/P − 2m)

/G + m

G2 − m2

}
.

At this point it is necessary to briefly discuss the traces of the products of the
γ matrices. It is easy to verify that the trace of the product of an odd number of γ

matrices is null. When instead the number of γ matrices is zero or even, the result
is different from zero. Denoting by a an arbitrary constant, with A, B, C, and D
four arbitrary quadrivectors, and recalling the definition of the scalar product of
quadrivectors, we have

Tr{a} = 4a, Tr{/A/B} = 4(AB),

Tr{/A/B/C/D} = 4
[
(AB)(CD) − (AC)(BD) + (AD)(BC)

]
.

The first relation is obvious. For the second one we have

Tr{/A/B} =
∑
μν

Tr{γμγν}AμBν,

and using the anticommutation property of the γ matrices

Tr{γμγν} = 8gμν − Tr{γνγμ}.
From the cyclic property of the trace it then follows that

Tr{γμγν} = 4gμν,

10Recall that the first average, 〈PP ∗〉, has a similar meaning with respect to the spin states of the
electron.
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which proves by simple substitution the second relation. For the third relation we
have

Tr{/A/B/C/D} =
∑
μνρσ

Tr{γμγνγργσ }AμBνCρDσ ,

and, for the anticommutation property of the γ matrices,

Tr{γμγνγργσ } = 2gμν Tr{γργσ } − Tr{γνγμγργσ }
= 2gμν Tr{γργσ } − 2gμρ Tr{γνγσ } + Tr{γνγργμγσ }
= 2gμν Tr{γργσ } − 2gμρ Tr{γνγσ } + 2gμσ Tr{γνγρ}

− Tr{γνγργσ γμ}.
Using the cyclic property of the trace we then have

Tr{γμγνγργσ } = gμνTr{γργσ } − gμρ Tr{γνγσ } + gμσ Tr{γνγρ},
and using of the result previously obtained

Tr{γμγνγργσ } = 4gμνgρσ − 4gμρgνσ + 4gμσ gνρ.

The third relation is then finally obtained by simple substitution of this identity.
The result obtained for 〈〈PP ∗〉〉 shows that the trace contained in this quantity

can be expressed exclusively in terms of scalar products of quadrivectors, i.e. in
terms of relativistic invariants. Similar considerations can then be repeated for the
other quantities 〈〈PQ∗〉〉, 〈〈QP ∗〉〉, and 〈〈QQ∗〉〉, which, once calculated, allow one
to obtain the transition probability per unit time and the cross section. Obviously, in
the particular case in which the electron is initially at rest, one finds again for the
cross section the Klein-Nishina equation in the form of Eq. (15.37), which refers to
the average over the polarisation states of the initial photon and the sum over the
polarisation states of the final photon.

The formalism of the γ matrices presented in this chapter is very powerful and
elegant. It allows one to deal with relative ease even with the most complex problems
in quantum electrodynamics. In any case, we emphasize that the formalism that we
have used in the text to deduce the Klein-Nishina equation, which does not make
use of the γ matrices, was the first to be used in the applications.

16.16 Physical Constants

The constants are expressed in the cgs system of units with at most six significant
digits.

Constant of gravitation: G = 6.67428 × 10−8 cm3 g−1 s−2

Velocity of light in vacuum: c = 2.99792 × 1010 cm s−1

Planck constant: h = 6.62607 × 10−27 erg s
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Reduced Planck constant: � = h/(2π) = 1.05457 × 10−27 erg s
Boltzmann constant: kB = 1.38065 × 10−16 erg K−1

Charge of the electron (absolute value): e0 = 4.80320 × 10−10 esu
Electron mass: m = 9.10938 × 10−28 g
Reduced electron mass: mr = mMp/(m + Mp) = 9.10442 × 10−28 g
Atomic mass unit (amu): mH = 1.66054 × 10−24 g
Proton mass: Mp = 1.67262 × 10−24 g
Proton/electron mass ratio: Mp/m = 1.83615 × 103

Avogadro constant: NA = 6.02214 × 1023 mol−1

Fine-structure constant: α = e2
0/(�c) = 7.29735 × 10−3

Reciprocal of the fine-structure constant: 1/α = �c/e2
0 = 137.036

Classical radius of the electron: rc = e2
0/(mc2) = 2.81794 × 10−13 cm

Compton wavelength of the electron: λC = h/(mc) = 2.42631 × 10−10 cm
Radius of the first Bohr orbit: a0 = �

2/(me2
0) = 5.29177 × 10−9 cm

Rydberg constant: R = me4
0/(4πc�

3) = 1.09737 × 105 cm−1

Rydberg constant (hydrogen atom): RH = mre
4
0/(4πc�

3) = 1.09677 × 105 cm−1

Bohr magneton: μ0 = e0�/(2mc) = 9.27401 × 10−21 erg G−1

Thomson cross section: σT = 8πr2
c /3 = 6.65246 × 10−25 cm2

Stefan-Boltzmann constant:11 σ = 5.67040 × 10−5 erg cm−2 s−1 K−4

Radiation density constant:11 a = 7.56577 × 10−15 erg cm−3 K−4

First radiation constant: c1 = 2πhc2 = 3.74177 × 10−5 erg cm2 s−1

Second radiation constant: c2 = hc/kB = 1.43877 cm K

11σ = 2π5k4
B

15h3c2 , a = 4σ
c

= 8π5k4
B

15h3c3 .
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