
Chapter 13
Non-equilibrium Plasmas

In laboratory and astrophysical plasmas, the conditions of excitation of the atoms
are determined not only by their interaction with the electromagnetic field, but also
by collisional processes between the atoms and the particles of the plasma. In this
chapter we show how it is possible to describe this type of processes and what is
their impact on atomic populations.

13.1 The Kinetic Temperature of the Electrons

We have seen in Chap. 10 that at thermodynamic equilibrium the electrons of an
electrically neutral plasma have a velocity distribution described by a Gaussian
function (the so-called Maxwellian distribution of velocities). The condition of ther-
modynamic equilibrium is, however, an idealized condition that, in practice, can be
realized only with a certain degree of approximation. Both astrophysical and labora-
tory plasmas that are commonly observed for spectroscopic applications must—just
for the fact that they are observable—emit radiation towards the external environ-
ment, which necessarily implies a situation of non-equilibrium, at least for their
more exterior layers. In such situations, the concept of temperature loses its mean-
ing, as do all the laws of thermodynamic equilibrium. For example, the distribution
of the populations of an atomic species between the different states of ionisation and
excitation cannot be determined anymore by the Saha-Boltzmann law but must be
determined by solving the statistical equilibrium equations. In principle it is there-
fore to be expected that under non-equilibrium conditions the distribution of the
velocities of the electrons differs from the Maxwellian distribution.

However, there is a wide range of physical conditions in which, despite an overall
non-equilibrium, the velocity distribution of the electrons is effectively Maxwellian.
This is due to the fact that the collisional processes, which cause the redistribution
of kinetic energy between the various electrons and therefore tend to establish a con-
dition of equilibrium, are much more effective than the processes that are opposed
to the establishment of the condition of equilibrium.
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The processes of the first type are the elastic electron-electron collisions (and
also the elastic electron-atom collisions that are, however, less effective). The pro-
cesses of the second type are the inelastic electron-atom collisions, in which an
electron transfers part of its kinetic energy which is converted into internal energy
(excitation or ionisation) of the atomic system, or the superelastic electron-atom col-
lisions in which the inverse processes occur (the electron gains kinetic energy due to
de-excitation or recombination of the atom). Without pretending to give a rigorous
proof of this fact, we simply develop some order of magnitude considerations to
show that, in general, the mean free times between two successive processes of the
first type are much shorter than the mean free times of the processes of the second
type. This justifies, albeit not quite rigorously, that the velocity distribution of the
electrons can be considered as Maxwellian to within a good approximation.

Denoting by Ne the electron density and by σE the cross section for elastic
electron-electron collisions, the mean free time between two elastic collisions τE

is given by

τE � 1

NeσEv
,

where v is the typical velocity of the electrons. Similarly, denoting by Na the density
of the atoms and by σA the cross section for inelastic (or superelastic) electron-atom
collisions, the mean free time between two collisions of this type is given by

τA � 1

NaσAv
.

From the two previous equations we obtain

τE

τA
� NaσA

NeσE
.

The cross section σE can be estimated in the following way. Suppose that an electron
having kinetic energy ε approaches another electron at rest. We can assume that the
two electrons collide only if the incident electron will have a distance from the other
electron less than a critical value bc given by the equation

e2
0

bc
= ε.

In this case, in fact, the energy due to the Coulomb repulsion becomes comparable
to the kinetic energy and we have an appreciable exchange of energy between the
two particles. Solving for bc and averaging over the energy of the particles we get

σE � b2
c � e4

0

〈ε2〉 � e4
0

〈ε〉2
.

Now we introduce the parameter Te, the kinetic temperature of the electrons (or
electron temperature), with the relation

〈ε〉 � kBTe.
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By substitution we obtain, as an order of magnitude,

σE � e4
0

k2
BT 2

e

� 2.8 × 10−6T −2
e cm2,

with Te in K. If we consider for example a temperature range typical of stellar atmo-
spheres (4 × 103 K < Te < 2 × 104 K), the cross section σE varies between 10−13

and 10−14 cm2. The actual calculation of the cross section σA is more complex and
has to be performed by means of a quantum-mechanical approach. The result is
that, for the same temperature range, the value of σA is approximately of the order
of 10−21 or 10−22 cm2. We therefore obtain, as an order of magnitude

τE

τA
� 10−8 Na

Ne
,

and even in the presence of a weakly ionised plasma with Ne/Na = 10−4, we still
obtain a value of the order of 10−4 for this ratio.

We can conclude that an electron undergoes a large number of elastic collisions
before suffering an inelastic (or superelastic) one, so that such collision will not be
able to alter appreciably the Maxwellian distribution of velocity. The above consid-
erations lead us to the conclusion that at a given point of a typical stellar atmosphere
we can uniquely define a parameter Te (kinetic temperature of the electrons) that
characterizes the velocity distribution of the electrons. This parameter maintains a
well defined operational definition, unlike the thermodynamic temperature T that
completely loses its significance in non-equilibrium conditions.

13.2 Electron-Atom Collisions

Consider the collision between an electron having kinetic energy ε and an atom of a
given atomic species. If the atom is, before the collision, in the energy level |ub〉, it
could be excited by the collision with the electron to the level |ua〉 of higher energy.1

For this process to occur, it is necessary that the relation ε ≥ (εa − εb) is satisfied.
After the collision, the electron is found to have a kinetic energy ε′ given by

ε′ = ε − (εa − εb).

Obviously, the inverse process can also occur, i.e. the collision is followed by the
de-excitation of the atomic level |ua〉 to the level |ub〉. In this case, the energy of the
colliding electron is given, after the collision, by

ε′ = ε + (εa − εb).

The processes of the first type are called inelastic electron-atom collisions, while
those of the second type are called superelastic electron-atom collisions (although
some authors prefer to speak of collisions of the first and of the second kind, respec-
tively).

1As in Chap. 11, we use here the index a to denote the upper level and the index b to denote the
lower level.



310 13 Non-equilibrium Plasmas

Fig. 13.1 Schematic representation of the collisional processes that contribute to the statistical
equilibrium equations of a given level (the intermediate level in the figure). (1) Inelastic collisions
from lower levels; (2) superelastic collisions from higher levels; (3) superelastic collisions to lower
levels; (4) inelastic collisions to higher levels

The effect of the collisions on the atomic populations can be conveniently de-
scribed by means of statistical equilibrium equations similar to those which we in-
troduced in Chap. 11 for the interaction of an atom with the radiation field. For the
population of a given level n, denoting by the index i the lower levels (i.e. those with
lower energy) and by the index s the upper levels (i.e. those having higher energy),
the equation describing the evolution of the system, if there are only collisions, is
written in the form

dNn

dt
=

∑

i

NiC
(A)
in +

∑

s

NsC
(S)
sn −

∑

i

NnC
(S)
ni −

∑

s

NnC
(A)
ns . (13.1)

The four terms appearing in this equation are shown in the diagram of Fig. 13.1.
The quantities C

(A)
ba and C

(S)
ab appearing in this equation are called collisional rates.

They are due, respectively, to inelastic and superelastic collisions. These quantities
are obviously proportional to the density of the colliding particles. They also depend
on the velocity distribution of the particles and on atomic properties related to the
wavefunctions of the two levels between which the transition occurs. For electronic
collisions, the rate for inelastic collisions from level b to level a can be expressed
by means of the cross section

C
(A)
ba = Ne

∫ ∞

v0

σba(v)f (v)v dv,

where Ne is the electron density, f (v) is the velocity distribution of the electrons,
and σba(v) is the cross section for collisional excitation relative to the velocity v.
The limit of integration v0 is the threshold velocity, i.e. the minimum electron ve-
locity for the electron to be able to excite the atom from level b to level a. It is given
by

1

2
mv2

0 = εa − εb.
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Similarly, the rate for superelastic collisions is given by

C
(S)
ab = Ne

∫ ∞

0
σab(v)f (v)v dv,

where σab(v) is the cross-section for collisional de-excitation.

13.3 The Einstein-Milne Relations

When the velocity distribution of the colliding electrons is Maxwellian, it can be
proved, by means of thermodynamic considerations, that the two collisional rates
introduced in the previous section are simply related. These thermodynamic consid-
erations, due to Milne, are very similar to those previously developed by Einstein
to determine the relations between the coefficients involved in the statistical equi-
librium equations for the interaction between atoms and radiation (Einstein coeffi-
cients, see Sect. 11.7). For this reason, these relations are called Milne or Einstein-
Milne relations.

Consider an atom consisting of only two levels, a and b, subject to collisions by
a plasma of electrons with density Ne. If the system is in thermodynamic equilib-
rium at the temperature T , we can invoke the so-called principle of detailed balance
to assert that the number of collisional transitions (due to the electrons) that occur
between level a and level b are exactly balanced by the number of collisional tran-
sitions (also due to the electrons) that occur between level b and level a. In other
words, at thermodynamic equilibrium conditions, a perfect balance must hold for
any process that contributes to populate or de-populate the atomic levels regardless
of the number and of the characteristics of the physical processes that are simultane-
ously in operation (radiative processes, collisional processes still with electrons, but
among other pairs of levels, collisional processes with other atomic species, etc.).
Otherwise, in fact, it would be possible to construct an ideal machine, working in
cycle, which could produce work at the expense of a single source, which would
contradict the second law of thermodynamics. If we denote then by Ña and Ñb the
populations of the levels a and b in thermodynamic equilibrium, we must have,
writing the evolution equation for the population of level a,

0 = dNa

dt
= ÑbC

(A)
ba − ÑaC

(S)
ab .

Solving this equation and using the Boltzmann equation to express the ratio Ñb/Ña

(Eq. (10.6)), we obtain, in thermodynamic equilibrium at the temperature T ,

C
(S)
ab

C
(A)
ba

= Ñb

Ña

= gb

ga

e(εa−εb)/(kBT ).

On the other hand, the two collisional rates depend only on atomic factors and on
the velocity distribution of the electrons. The result that we have obtained thus con-
tinues to be valid even outside thermodynamic equilibrium, as long as the velocity
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distribution of the electrons is Maxwellian. If we are under these conditions, far less
restrictive than the thermodynamic equilibrium, and if we denote by Te the kinetic
temperature of the electrons, we obtain the Einstein-Milne relation

C
(S)
ab

C
(A)
ba

= gb

ga

e(εa−εb)/(kBTe). (13.2)

13.4 The Two-Level Atom in Non-equilibrium Conditions

Consider a two-level atom that interacts with a radiation field having, at the fre-
quency ν corresponding to the transition, the mean intensity Jν . Let the atom be
subject to collisions with a population of electrons having kinetic temperature Te.
Taking into account both collisional processes (Eq. (13.1)) and radiative processes
(Eq. (11.29)), the statistical equilibrium equation for the population of the upper
level is

dNa

dt
= −Na

(
Aab + BabJν + C

(S)
ab

) + Nb

(
BbaJν + C

(A)
ba

)
.

In stationary conditions, solving the equation we obtain

Nb

Na

= Aab + BabJν + C
(S)
ab

BbaJν + C
(A)
ba

.

We now substitute this result into the expression for the source function given by
Eq. (11.36). Taking into account the relations between the Einstein coefficients
(Eqs. (11.27) and (11.28)) and the Einstein-Milne relations between the collisional
rates (Eq. (13.2)), with some algebra we obtain

Sν = Jν + εBν(Te)

1 + ε
, (13.3)

where Bν is the Planck function and where we have introduced the quantity ε de-
fined by

ε = C
(S)
ab (1 − e−hν/(kBTe))

Aab

.

Apart from a correction factor of the order of unity, ε represents the ratio between
the number of de-excitations of the upper level due to superelastic collisions and
the number of de-excitations due to spontaneous emission. The general expression
that we have found for Sν allows us to write, inverting Eq. (11.36), the ratio of the
populations Nb/Na in the form

Nb

Na

= gb

ga

(
2hν3

c2Sν

+ 1

)
.

If we introduce n̄ν = Jνc
2/(2hν3) as the average number of photons per mode at

frequency ν, and n̄ν(Te) = Bν(Te)/(2hν3) as the average number of photons per
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mode relative, at the same frequency, to the blackbody radiation of temperature Te,
we obtain

Nb

Na

= gb

ga

(
1 + ε

n̄ν + εn̄ν(Te)
+ 1

)
. (13.4)

The above expressions (Eqs. (13.3) and (13.4)) assume a special form in three
limiting cases of particular importance.

(a) The first case is when ε � 1. Substituting in the expressions for the source
function and for the ratio between the populations we get

Sν = Bν(Te),
Nb

Na

= gb

ga

ehν/(kBTe).

In this case the collisions are extremely effective and are able to thermalise
the atomic populations at the kinetic temperature. For the ratio of populations
we obtain the Boltzmann equation (Eq. (10.6)), while for the source function
we obtain the Planck function, both relative to the temperature Te. This limiting
case is known as local thermodynamic equilibrium (LTE).

(b) The second case is when ε 	 1 and, at the same time, εBν(Te) 	 Jν . Substitut-
ing in the same equations we get

Sν = Jν,
Nb

Na

= gb

ga

(
1

n̄ν

+ 1

)
.

This time the collisions have a completely negligible role and the source func-
tion is just the average over the solid angle of the incoming radiation. The atom
simply behaves as a scattering centre of the radiation. For the atomic popula-
tions, defining a suitable “radiation temperature” Tr through the equation

n̄ν = 1

ehν/(kBTr) − 1
,

we obtain
Nb

Na

= gb

ga

ehν/(kBTr),

which shows that the atomic populations are in equilibrium with the radiation
temperature. The parameter Tr that we have so defined is however a completely
ad hoc parameter. Indeed, for an arbitrary radiation field, there is a different Tr
value for each frequency.

(c) Finally, the third case is when the inequalities ε 	 1 and εBν(Te) � Jν hold.
Again substituting we obtain

Sν = εBν(Te),
Nb

Na

= gb

ga

(
1

εn̄ν(Te)
+ 1

)
.

This is an intermediate case in which, although the collisions are not very ef-
fective in de-populating the upper level, the kinetic temperature is so high and
the radiation field is so diluted that actually the collisions (and not the radiative
processes) are populating the upper level.
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The three cases that we have schematically described here are suitable to de-
scribe, in a qualitative way, the conditions of excitation of an atom which is located,
respectively, in the photosphere, in the chromosphere and in the solar corona. For
laboratory plasmas, the most common physical situations are those described by
case (a) (plasma with high densities, as discharge lamps) or by case (b) (plasmas of
low densities, for experiments of optical pumping with lasers).
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