
12.1 Drugs and Clinical Pharmacology of Central Blocks 
in Infants and Children

Even though more than 100 years have passed since the first description of the use
of central blocks in children (Bier, 1899, Tyrell-Gray, 1909), there are still new and
important things to learn within this particular field of anesthesia. Therefore, to per-
form safe and effective regional anesthesia in infants and children, a solid knowl-
edge of the age-related pharmacology of both local anesthetics and their adjuncts
is an absolute prerequisite. Although not as extensive as in adults, the published lit-
erature within the field of clinical pharmacology of local anesthetics and their ad-
juncts in infants and children is quite substantial at this point in time.

To avoid redundant publications and the repetition of already published materi-
al within this field, I have refrained from producing yet another text on this topic.
Instead, the current chapter provides a synopsis of the current knowledge and in-
corporates the reproduction of a review article by Professor Jean-Xavier Mazoit, ti-
tled Local Anesthetics and their Adjuncts, which was recently published in Pediatric
Anesthesia (http://onlinelibrary.wiley.com/doi/10.1111/j.1460-9592.2011.03692.x/
pdf). This has been made possible by the kind permission of Professor Mazoit, the
editor-in-chief Neil Morton, and by Wiley-Blackwell Publishing Ltd. For informa-
tion on the toxicity aspects, the reader is referred to another review from the same
themed issue of Pediatric Anesthesia [1] (works cited in paragraph 12.1 have been
kept separately in the first group of references listed at the end of the chapter).

Following the publication of the review article reproduced herein, further in-
formation and discussion has been published with regard to the use of ketamine as
an adjunct in newborns and infants. Thus, in rodent experiments, Walker and col-
leagues have been able to show that the application of clinically relevant doses of
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intrathecal ketamine in young rodents does result in apoptosis of spinal neurons as
previously shown for cortical neurons [2]. This is in sharp contrast to findings from
similar studies for morphine and clonidine, both appearing to be associated with a
comfortable margin of safety with regard to programmed spinal cord cell death [3,4].
Based on these findings, a recent editorial in the British Journal of Anaesthesia ques-
tioned the use of ketamine as an adjunct to caudal and epidural blocks in newborns
and infants and instead recommended the use of clonidine in a situation when an
adjunct drug is deemed necessary in this age group [5].

Therefore, the key points are:
1. Due to the reduced toxicity risk compared to racemic bupivacaine, the regular

use of ropivacaine or levobupivacaine is advocated in infants and children (with
the exception of intrathecal blockade).

2. There is little evidence for the efficacy of the use of opioids as adjuncts to cen-
tral blocks in children (with the exception of preservative-free morphine). With-
in this context, it should also be remembered that opioids, apart from being as-
sociated with a risk of respiratory depression, are also associated with a num-
ber of less serious but still very distressing side effects (e.g., postoperative nausea
and vomiting, pruritus, urinary retention, and interference with gastrointestinal
motility) [6].

3. For a single-injection caudal block in children above 1 year of age, the use of
ketamine appears the most effective adjunct in prolonging the duration of the
block.

4. Clonidine is associated with a good safety profile and can be used as an ad-
junct drug in all age groups. It can also be used as an adjunct for both central
and peripheral nerve blocks [7].

5. The use of adjuncts other than preservative-free solutions of clonidine, ketamine,
and morphine must still be seen as experimental and should not be used rou-
tinely [8].
When reading the review by Professor Mazoit which follows, the reader should

be mindful of a typographical error. With regard to the dosing of the lipid rescue,
mL (milliliters) rather than mg (milligrams), should have been used throughout.
The initial dose of Intralipid is 2–5 mL/kg-1 and can be repeated up to a total of
10 mL/kg-1, rather than 10 mg/kg-1.

12.2 Local Anesthetics and Their Adjuncts: A Review Article 
by Jean-Xavier Mazoit

Local anesthetics (LA) block propagation of impulses along nerve fibers by inac-
tivation of voltage-gated sodium channels, which initiate action potentials [1]. They
act on the cytosolic side of phospholipid membranes. Two main chemical compounds
are used, amino esters and amino amides. Amino esters are degraded by pseudo-
cholinesterases in plasma. Aminoamides are metabolized exclusively by the liver.
Only amide LAs will be considered in this article.
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12.2.1 Pharmacokinetics

Local anesthetics (LAs) are small molecules with molecular weights ranging from
220 to 288 [2]. They contain an aromatic ring, an intermediate chain (amide group),
and a hydrophilic residue with a tertiary amine. They are weak bases with pKas be-
tween 7.6 (mepivacaine) and 8.1 (bupivacaine and ropivacaine). At a pH of 7.40,
60–85% of the molecules are ionized and diffuse in hydric compartments. LAs are
also soluble in lipids and then easily cross cell membranes. Bupivacaine is ten times
more liposoluble than lidocaine; ropivacaine is four times as soluble as lidocaine
(partition coefficient from XlogP) (Table 12.1). With the exception of lidocaine, all
amide LAs possess an asymmetric carbon. Although the physiochemical properties
(pKa, distribution coefficient) of the isomers are identical, the enantiomers have
different affinities for the biological effectors (channels, receptors, proteins) [3].
Ropivacaine and levobupivacaine are pure S-(–) enantiomers. LAs are marketed as
hydrochloride salts in water at pH of 4–5 to prevent them from precipitation [4].
Plain solutions of amide LAs are preservative-free; only epinephrine-containing so-
lutions include metabisulfite.
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Table 12.1 Physicochemical properties of local anesthetics

Drug Molecular pKab Partitionc Protein Onset of Duration Potencyd

weighta (Da) coefficient binding (%) action of action

Amides
Lidocaine 234 7.8 234 65 Short 1 h 30 min–2 h 1
Prilocaine 220 8.0 126 55 Short 1 h 30 min–2 h 1
Mepivacaine 246 7.7 79 75 Short 1 h 30 min–2 h 1
Bupivacainee 288 8.1 2512 95 Intermediate 3 h–3 h 30 min 4
Ropivacaine 274 8.1 794 96 Intermediate 2 h 30 min–3 h 3.3

aFree base.
bpKa at 37°C.
cOctanol/buffer partition calculated from XlogP.
dPotency is relative to lidocaine.
eLevobupivacaine has similar physicochemical properties with a slightly lower potency.

12.2.1.1 Binding to Blood Components

Amide LAs distribute in red cells (20–30% depending on the hematocrit) and bind
to serum proteins [2,5]. Like most weak bases, amide LAs bind to both a1-acid gly-
coprotein (AGP) and to human serum albumin (HSA). The stereospecificity of this
binding is insignificant, at least on a clinical point of view [6]. Despite its low con-
centration in serum (< 1 g/L-1 in adults), AGP is the major protein that binds LAs.
AGP concentration is very low at birth and progressively increases during the first
year of life [5,7]. It is why neonates and young infants have a much higher free
fraction of LAs than adults. AGP is an acute phase protein, and its concentration
increases rapidly in inflammatory states like in the postoperative period [7]. LAs
also bind to HSA, but with a very low affinity. It is only because HSA is the most
abundant protein in serum that its binding capacity is significant.



12.2.1.2 Absorption
After applying topical anesthesia to the upper airway, LAs are rapidly absorbed.
This may induce toxicity, particularly in young children. This is why it is impor-
tant to use nozzles that deliver no more than 10 mg with each squeeze [8]. The EM-
LA (Eutectic Mixture of Local Anesthetics) cream is absorbed in significant amounts
in premature babies and neonates [9]. The cream contains prilocaine, which pro-
duces methemoglobinemia in neonates and infants, especially if they are also treat-
ed with trimethoprim-sulfamethoxazole [10]. The efficacy of the cream has been
questioned in premature babies because of a high skin blood flow [9].

After injection, amide LAs have a bioavailability of one (metabolism is exclu-
sively hepatic) [11]. They bind to tissues, which delays their absorption. This de-
lay varies depending on the site of injection. In adults, 3 h after an epidural injec-
tion, only 70% of a dose of lidocaine and 50% of a dose of bupivacaine or of ropi-
vacaine are absorbed, which are safety factors [11]. From adult studies, it is clear
that the speed of drug absorption decreases from head to foot and from the tho-
racic to the caudal portion of the epidural space. Lidocaine and bupivacaine con-
centrations peak about 30 min after caudal or lumbar injection in infants and adults
[5,12–17]. The Tmax for ropivacaine is much longer in infants than in children
[18,19] and possibly in children than in adults [18–26]. CYP1A2, which metabo-
lizes lidocaine and ropivacaine, is immature before 4–7 years of age [27].

Levobupivacaine is principally metabolized by the CYP3A4/7, which has full
enzymatic capacity by the age of 1 year [28].

12.2.1.3 Distribution
The volume of distribution of LAs at steady state (Vss) is slightly < 1 L/kg-1 (Table
12.2) [5,11–26]. Because of delayed drug absorption leading to the ‘flip-flop’ ef-
fect,1 terminal half-lives and volumes calculated after non-intravenous (i.v.) routes
of administration are markedly overestimated [11,20,29–31]. Only total body clear-
ance of the drug is measured accurately following extravascular administration (but
sampling must take place over a prolonged period of time). It is highly probable
that LAs distribute in a larger volume in neonates and in infants than in adults, thus
preventing high serum drug concentrations from occurring after a single injection,
but not following several injections. The volume of distribution of ropivacaine is
smaller than that of bupivacaine in adults and probably in pediatric patients [2].

12.2.1.4 Elimination
All amide LAs are metabolized by the liver cytochrome P450 enzymes. Bupiva-
caine is predominantly metabolized into pipecoloxylidide (PPX) by CYP3A4/7 [28].
Ropivacaine is predominantly metabolized to 3’- and 4’-OH-ropivacaine by CYP1A2
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1 Because compartmental pharmacokinetics are based on the assumption of linearity, concentra-
tion is described by a sum of exponentials with the assumption that absorption is faster than dis-
tribution and distribution is faster than elimination. If absorption is longer than elimination, it is
not possible to distinguish between the phases. In other words, if absorption continues during elim-
ination, the terminal phase appears falsely prolonged.



and to a minor extent to PPX by CYP3A4 [27]. These enzymes are not fully ma-
ture at birth and have important differences in their developmental expression. Con-
trary to lidocaine, bupivacaine and ropivacaine have a relatively low hepatic ex-
traction ratio (0.30–0.35) and are considered rate limited for their elimination. Thus,
the intrinsic hepatic clearance and the free fraction are the major determinants of
total clearance. After surgery, serum AGP concentrations increase, which increas-
es protein binding. A parallel decrease in total clearance is observed [7]. However,
this only leads to a resetting in total serum concentration, and the unbound con-
centration remains constant. Bupivacaine clearance is low at birth and increases
slightly during the first 6–9 months of life (Fig. 12.1). Ropivacaine clearance, which
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Table 12.2 Bupivacaine, levobupivacaine, and ropivacaine pharmacokinetics after different routes
in infants and children compared with adults

Free Vss
a CLT/f CLU/f T1/2a (h)

fraction (L/kg-1) (mL/min-1/kg-1) (mL/min1/kg-1)

Bupivacaine
i.v. adults 0.05 0.85–1.3 4.5–8.1 100 1.8
Epidural adults 4–5.6 5.1–10.6
Infants caudal single 0.16 (0.05–0.35) 3.9 7.1
shot children
(5–10 years) 2.7 10

Infants epidural (0.06–0.24)b 5.5–7.5b 36–73
prolonged (0.03–0.18)c 3.5–4c 36–73

Levobupivacaine

i.v. adults 0.045 0.72 4.2 116 2.6
Caudal, infants 0.13 2.87 6.28 51.7
0.6–2.9 months

Ropivacaine

i.v. adults 0.05 0.5–0.6 4.2–5.3 100 1.7
Epidural adults 4.0–5.7 70 2.9–5.4

Caudal single shot

Neonates 0.07 50–58
Infants 0.05–0.10 2.1 5.2
Children 5.2 (1.3–7.3) 2.4 7.4 151

Epidural prolonged

Neonates 2.4 4.26
Infants 2.4 6.15
Children 0.04 8.5 220

Vss, volume of distribution at steady state, CLU/f, total body clearance over bioavailability (T, to-
tal fraction; U, unbound fraction), T1/2, terminal half-life.
For adults, a mean body weight (BW) of 75 kg has been assumed. Injections are overestimated
because of a flip-flop effect (i.e., because absorption last longer than elimination).
aApparent value, T1/2 and volumes measured after non-i.v.
bAfter 3-h infusion.
cAfter 48-h infusion, CLT decreases with time because protein binding increases.



is also low in neonates and infants, increases during the first 2–6 years of life [19].
This is likely the cause of the delayed ropivacaine Cmax observed in the younger
patients after caudal injection.

Concentrations leading to toxicity are largely unknown. In adult volunteers, the
threshold of toxicity is about 0.2–0.3 mg/L-1 of unbound bupivacaine and
0.4–0.6 mg/L-1 of unbound ropivacaine or levobupivacaine [32–35]. Neonates and
infants seem to be more prone to develop toxicity [36,37] because of a higher serum
free fraction, a lower clearance, and an increased susceptibility to cardiac toxicity.
During prolonged administration of LAs for postoperative pain relief, it is assumed
that the intrinsic unbound clearance is unaffected during the whole period of ad-
ministration and the unbound concentration reaches a steady level 12–18 h after
the initiation of infusion. Because of the inflammatory process leading to increased
serum binding capacity, the plasma concentrations of total (levo) bupivacaine and
ropivacaine tend to increase postoperatively during more than 2–4 days.

12.2.2 Pharmacodynamics

Local anesthetics block the propagation of impulses along nerve fibers because
of the inactivation of voltage-gated sodium channels. LAs cross membranes as
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Fig. 12.1 Bupivacaine plasma concentrations measured in two groups of infants receiving contin-
uous bupivacaine infusion by the caudal route for postoperative analgesia. Dosing was calculated to
maintain steady concentrations in the older patients (> 9 months old). The bupivacaine concentra-
tions increased with infusion time in the younger infants (< 4 months old), thus demonstrating that
clear¬ance was markedly lower in the younger patients. Reproduced from Luz G, Innerhofer I, Bach-
mann B et al. Bupivacaine plasma concentrations during continuous epidural anesthesia in infants
and children. Anesth Analg 1996; 82: 231–234. February 1, Lippincott Williams & Wilkins [78]
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free bases (unionized). Inside the cells, they become ionized and bind to specif-
ic amino acids within the channel pore, thus mechanically blocking the pore [1].
LAs also block potassium and calcium channels at slightly higher drug concen-
trations than those needed to block sodium channels [38,39]. Voltage-gated potas-
sium channels initiate repolarization in the nerve. In the myocardium, some of
these channels [including the human ether-à-go-go related gene (hERG) channel]
are responsible for genetically induced arrhythmias, such as the long-QT, short-
QT, or Brugada syndromes. These channels are blocked by LA concentrations just
slightly higher than those needed to block sodium channels [38,39]. Unlike the
central nervous system (CNS) and heart, peripheral nerves only express a small
number of potassium channels. Both sodium and potassium channel blockades are
stereospecific [38–40]. The S enantiomers induce less block than R enantiomers.
LAs bind to the myocardial ryanodine receptor and L-type calcium channels
[41,42], but it is unclear if blockade of these channels affect the cardiotoxicity of
long-lasting LAs.

Nerve fibers are either myelinated or unmyelinated. After initial depolarization,
the sodium channels become unreceptive to stimulation (refractory period), which
prevents backward propagation of impulses. The action potential of unmyelinated
fibers propagates continuously.

Myelin insulates myelinated fibers, and this layer is interrupted regularly by
the nodes of Ranvier. The sudden depolarization of the node induces an electrical
field, which extends to 2–3 nodes. Action potentials “jump” rapidly from one node
to the next. Because the distance between nodes is greater in heavily myelinated
fibers (there are 3–4 nodes per cm in Aa fibers and 20–30 nodes per cm in Ad
fibers), the conduction velocity is faster in motor than in small sensory fibers and
faster in small sensory fibers than in high threshold fibers that conduct pain  signals
[43]. Small unmyelinated or lightly myelinated fibers–the fibers that conduct pain
signals–are blocked by lower concentrations of drug and during a longer period
of time than heavily myelinated fibers. Myelinization begins during the third
trimester of pregnancy and is incomplete at birth. After birth, myelinization in-
creases rapidly and is almost complete by 3–4 years of age [44,45]. In rats, the
nodes of Ranvier are fully mature at 2–3 weeks of age. Interestingly, the intern-
ode distance is similar  between 2-week-old and adult rats. This may explain why
infants and young children need larger volumes per kg of LAs than older children
or adults (Fig. 12.2) [46].

Fortunately, the concentration of LA needed to cause the block is lower. Sur-
prisingly, infants require larger doses of LAs for spinal anesthesia, and the dura-
tion of the spinal block is shorter. Some authors have attributed this difference to
larger volumes and a more rapid turnover of cerebrospinal fluid (CSF) in neonates
and infants than in  older children and adults. However, MRI studies have shown
that the CSF volume and CSF turnover are lower in neonates and infants than in
children and adults [47,48]. The major factor responsible for this short effect seems
to depend on the number of nodes of Ranvier blocked because the distance be-
tween nodes is fixed soon after birth [44,45].
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12.2.2.1 Effects on the Central Nervous System and Cardiovascular System
Like all inhibitors of sodium channels, LAs possess anticonvulsive effects at low
dosage, which is why lidocaine is still used to treat intractable epilepsy in neonates
and infants [49]. At higher doses, LAs induce convulsions and coma. However, the
therapeutic ratio is low. In similar concentrations to those that cause convulsions, long-
lasting LAs can induce cardiac arrhythmias. With the exception of nodal conduction,
which depends on calcium channels, conduction in the heart depends on sodium chan-
nels. LAs prolong the refractory period, but the balance between the increase in ef-
fective refractory period and the decrease in the ventricular conduction velocity does
not favor LAs. Long-lasting LAs, like bupivacaine, profoundly decrease ventricular
conduction velocity [50–52]. This phenomenon is markedly amplified by tachycar-
dia–it is the phasic block. Because neonates and infants have higher heart rates than
adults, they are likely more sensitive to LA-induced blocks than adults. LAs also im-
pair myocardial contractility but without any stereospecificity [52]. The S enantiomers
(ropivacaine and levobupivacaine) have mild vasoconstrictive properties.

12.2.2.2 Stereospecificity
Mepivacaine, prilocaine, bupivacaine, and ropivacaine have an asymmetric carbon.
Protein binding, pharmacokinetics, and nerve blocks have little stereoselectivity,
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Fig. 12.2 Duration of sciatic nerve motor block in infant rats according to the dose of bupiva-
caine used. Rats aged 5 days had a prolonged block as compared to the other two groups. Two-
week¬-old rats had a similar duration of block as compared to 10-week-old rats despite an 8–10
times difference in body weight: The same dose gave the same duration of block likely because
the internode distance is fixed after the age of 1–2 weeks [drawn from the data of Kohane DS,
Sankar WN, Shubina M et al. Sciatic nerve blockade in infant, adolescent, and adult rats: a com-
parison of ropivacaine with bupivacaine. Anesthesiology 1998; 89: 1199–1208. November, Lip-
pincott Williams & Wilkins [46]
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which is why levobupivacaine has almost the same blocking properties as its racemic
counterpart. In the heart, the effect on cardiac conduction is stereospecific (ropi-
vacaine and levobupivacaine induce much less block than their corresponding 
R (+) enantiomer or the racemic mixture), whereas contractility is unaffected by
stereoselectivity [51,52].

LAs have anti-inflammatory properties and inhibit platelet aggregation [53],
 decrease leukocyte priming and the production of free radicals [54–56]. Systemi-
cally administered lidocaine has antinociceptive effects, particularly on neuropath-
ic pain [57]. Consequently, LAs are now used preoperatively to prevent postoper-
ative hyperalgesia in adults [58]. Interestingly, LAs can prevent and even treat com-
plex regional pain syndrome in adults and children by limiting the neuropathic
inflammatory processes [59,60].

12.2.2.3 Toxicity of Local Anesthetics
At the site of injection, the minimum concentration required to produce a nerve
blockade is 300–1500 μM for lidocaine and 100–500 μM for bupivacaine [61]. These
concentrations (in the millimolar range) impair mitochondrial function and may be
responsible for the observed nerve and muscle toxicity. Care should be taken when
regional anesthesia is provided for eye surgery in adults, for children with myopathies
(bupivacaine is an in vitro model of Duchene’s myopathy), and perhaps for chil-
dren with mitochondrial cytopathy [62,63]. With that respect, the site of injection
for central blocks is far from any muscle.

After both local and regional anesthesia, neurological or cardiac toxicity re-
lated to excessive blood concentration may occur [64,65]. Because of their low
protein binding and intrinsic clearance, infants are more prone to LA toxicity
than adults. General anesthesia may conceal the early signs of LA toxicity in
children. In addition to pharmacokinetic factors, the rapid heart rate of children
may increase the risk of cardiac toxicity induced by LA toxicity. Ropivacaine
and levobupivacaine [S-())-enantiomers] are less toxic than racemic bupivacaine
[32–35]. Even if toxic events occur with ropivacaine, small doses of epineph-
rine should produce rapid recovery. Impaired ventricular conduction is the pri-
mary manifestation of LA toxicity. QRS widening, bradycardia, and torsades de
pointe are followed by either ventricular fibrillation and/or asystole [65]. The
slight decrease in myocardial contractility caused by LAs is usually not a major
problem. Treatment includes oxygenation, cardiac massage, and epinephrine,
which is given in small incremental boluses beginning with 1–2 μg/kg-1 [66]. If
ventricular fibrillation persists, defibrillation (2–4 J/kg-1) is performed. Although
resuscitation measures must be initiated immediately, the specific treatment of
LA toxicity is rapid administration of Intralipid (Kabivitrum Inc., Stockholm,
Sweden). Numerous case reports have shown that rapid bolus injections of a lipid
emulsion reverse the toxic effects of LAs [66–69]. Because 1 mole of Intralipid
(Kabivitrum Inc.) binds > 3000 times more molecules of bupivacaine than a mole
of buffer, the volume of distribution suddenly increases [70]. The  recommended
dose of 20% Intralipid (Kabivitrum Inc.) for pediatric patients is 2–5 mL/kg-1

by i.v. bolus. If cardiac function does not return, this dose (up to 10 mg/kg-1) is
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repeated. The lipid emulsion decreases LA elimination; thus, the cardiac effects
may recur later.

12.2.2.4 Adjuvants
Adjuvants are often used to prolong the duration of analgesia.

Adrenaline (5 μg/mL-1 = 1/200,000) decreases bupivacaine Cmax, without af-
fecting the time to peak concentration. In < 6-month-old infants, 2.5 μg/mL-1 1/400,000
epinephrine has been recommended [71]. However, the drug is less efficacious with
long-acting S-())- enantiomers and has limited use with these solutions. Plain solu-
tions of LAs must be used for penile, interdigital, and eye blocks. Adrenaline also
slightly increases the duration of postoperative analgesia after caudal anesthesia. Cloni-
dine 1–2 μg/kg-1, either i.v. or in the epidural space, prolongs the duration of caudal
blocks [72]. Clonidine also enhances the efficacy of dilute long-acting agents (e.g.,
0.1% ropivacaine). More than 2 g/kg-1 may lead to  hypotension.

Clonidine is not recommended for infants < 3 months of age because it can cause
apnea in this age group. It has been shown that clonidine injected i.v. has a simi-
lar effect than when epidurally injected [73].

Ketamine is also used as an adjuvant for epidural block [74]. The pure preser-
vative-free S(+) ketamine is preferable because it is less toxic for the nervous struc-
tures than the racemic mixture. However, some authors recommend avoiding the
use of ketamine because of its potential toxicity [75,76]. The usual dose injected
caudally is 1 and 0.5 mg/kg-1 for the S(+) and racemic ketamine, respectively.

Opioids are often used as adjuvants for epidural block. After 6–9 months of age,
adding opioids to LAs prolongs epidural analgesia for up to 24 h. Hydrophobic agents
(fentanyl, sufentanil) must be placed at the metameric level where the pain will oc-
cur [77]. Preservative-free morphine easily spreads rostrally and can be placed at
a lower metameric level. The bolus dose of morphine is 25–30 μg/kg-1 in the epidur-
al space, which is followed by a continuous infusion of 1 μg/kg-1/h-1. When con-
tinuous epidural administration of fentanyl or sufentanil is combined with LAs, the
doses are 0.2 and 0.1 μg/kg-1/h-1, respectively. Morphine 5–10 μg/kg-1 can be used
as the sole agent for spinal analgesia during general anesthesia. In case of urinary
retention, naloxone 1 μg/kg-1 or nalbuphine 0.1 mg/kg-1 can be injected as an i.v
bolus. An i.v. bolus of naloxone 1–2 μg/kg-1 followed by a continuous infusion of
1–2 μg/kg-1/h-1 is usually efficacious in case of pruritus.
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