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Abstract We provide a quick overview of various calculus tools and of the main
results concerning the heat flow on compact metric measure spaces, with applica-
tions to spaces with lower Ricci curvature bounds. Topics include the Hopf-Lax
semigroup and the Hamilton-Jacobi equation in metric spaces, a new approach to
differentiation and to the theory of Sobolev spaces over metric measure spaces, the
equivalence of the L2-gradient flow of a suitably defined “Dirichlet energy” and
the Wasserstein gradient flow of the relative entropy functional, a metric version of
Brenier’s Theorem, and a new (stronger) definition of Ricci curvature bound from
below for metric measure spaces. This new notion is stable w.r.t. measured Gromov-
Hausdorff convergence and it is strictly connected with the linearity of the heat flow.

1 Introduction

Aim of these notes is to provide a quick overview of the main results contained in
[4] and [6] in the simplified case of compact metric spaces (X,d) endowed with
a reference probability measure m. The idea is to give the interested reader the
possibility to get as quickly as possible the key ideas behind the proofs of our recent
results, neglecting all the problems that appear in a more general framework (as a
matter of fact, no compactness assumption is made in [4, 6] and finiteness of m is
assumed only in [6]). Passing from compact spaces to complete and separable ones
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(and even to a more general framework which includes the so-called Wiener space)
is not just a technical problem, meaning that several concepts need to be properly
adapted in order to achieve such generality. Hence, in particular, the discussion here
is by no means exhaustive, as both the key statements and the auxiliary lemmas are
stated in the simplified case of a probability measure in a compact space.

Apart some very basic concepts about optimal transport, Wasserstein distance
and gradient flows, this paper pretends to be self-contained. All the concepts that
we need are recalled in the preliminary section, whose proofs can be found, for
instance, in the first three chapters of [1] (for an overview on the theory of gradi-
ent flows, see also [3], and for a much broader discussion on optimal transport, see
the monograph by Villani [32]). For completeness reasons, we included in our dis-
cussion some results coming from previous contributions which are potentially less
known, in particular: the (sketch of the) proof by Lisini [22] of the characterization
of absolutely continuous curves w.r.t. the Wasserstein distance (Proposition 4.13),
and the proof of uniqueness of the gradient flow of the relative entropy w.r.t. the
Wasserstein distance on spaces with Ricci curvature bounded below in the sense of
Lott-Sturm-Villani (CD(K,∞) spaces in short) given by the second author in [12]
(Theorem 5.9).

In summary, the main arguments and results that we present here are the follow-
ing.

(1) The Hopf-Lax formula produces subsolutions of the Hamilton-Jacobi equation,
and solutions on geodesic spaces (Theorem 3.2 and Theorem 3.3).

(2) A new approach to the theory of Sobolev spaces over metric measure spaces,
which leads in particular to the proof that Lipschitz functions are always dense
in energy in W 1,2(X,d,m) (Theorem 4.7).

(3) The uniqueness of the gradient flow w.r.t. the Wasserstein distance W2 of the
relative entropy in CD(K,∞) spaces (Theorem 5.9).

(4) The identification of the L2-gradient flow of the natural “Dirichlet energy” and
the W2-gradient flow of the relative entropy in CD(K,∞) spaces (see also [15]
for the Alexandrov case, a paper to which our paper [4] owes a lot).

(5) A metric version of Brenier’s theorem valid in spaces having Ricci curvature
bounded from below in a sense slightly stronger than the one proposed by Lott-
Sturm-Villani. If this curvature assumption holds (Definition 7.11) and μ,ν are
absolutely continuous w.r.t. m, then “the distance traveled is uniquely deter-
mined by the starting point”, i.e. there exists a map D : X → R such that for
any optimal plan γ it holds d(x, y) = D(x) for γ -a.e. (x, y). Moreover, the
map D is nothing but the weak gradient (according to the theory illustrated in
Sect. 4) of any Kantorovich potential. See Theorem 7.11.

(6) A key lemma (Lemma 8.7) concerning “horizontal” and “vertical” differenti-
ation: it allows to compare the derivative of the squared Wasserstein distance
along the heat flow with the derivative of the relative entropy along a geodesic.

(7) A new (stronger) definition of Ricci curvature bound from below for metric
measure spaces which is stable w.r.t. measured Gromov-Hausdorff convergence
and rules out Finsler geometries (Theorem 9.12 and the discussion thereafter).
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2 Preliminary Notions

As a general convention, we will always denote by (X,d) a compact metric space
and by m a Borel probability measure on X; we will always refer to the structure
(X,d,m) as a compact and normalized metric measure space. We will use the sym-
bol (Y,dY ) for metric spaces when the compactness is not implicitly assumed.

2.1 Absolutely Continuous Curves and Slopes

Let (Y,dY ) be a complete and separable metric space, J ⊂ R an interval with
nonempty interior and J � t �→ γt ∈ Y . We say that γt is absolutely continuous
if

dY (γs, γt ) ≤
∫ s

t

g(r)dr, ∀s, t ∈ J, t < s

for some g ∈ L1(J ). It turns out that, if γt is absolutely continuous, there is a mini-
mal function g with this property, called metric speed and given for a.e. t ∈ J by

|γ̇t | = lim
s→t

dY (γs, γt )

|s − t | .

See [3, Theorem 1.1.2] for the simple proof. Notice that the absolute continuity
property of the integral ensures that absolutely continuous functions can be extended
by continuity to the closure of their domain.

We will denote by C([0,1], Y ) the space of continuous curves on [0,1] with val-
ues in Y endowed with the sup norm. The set AC2([0,1], Y ) ⊂ C([0,1], Y ) consists
of all absolutely continuous curves γ such that

∫ 1
0 |γ̇t |2dt < ∞: it is easily seen to

be equal to the countable union of the closed sets {γ : ∫ 1
0 |γ̇t |2dt ≤ n}, and thus it is a

Borel subset of C([0,1], Y ). The evaluation maps et : C([0,1], Y ) → Y are defined
by

et (γ ) := γt ,

and are clearly 1-Lipschitz.
We say that a subset D of Y is geodesic if for any x, y ∈ D there exists a curve

(γt ) ⊂ D on [0,1] such that γ0 = x, γ1 = y and dY (γt , γs) = |t − s|dY (x, y) for
all s, t ∈ [0,1]. Such a curve is called constant speed geodesic, or simply geodesic.
The space of all geodesics in Y endowed with the sup distance will be denoted by
Geo(Y ).

Given f : Y → R ∪ {±∞} we define the slope (also called local Lipschitz con-
stant) at points x where f (x) ∈R by

|Df |(x) := lim
y→x

|f (y) − f (x)|
dY (y, x)

.
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We shall also need the one-sided counterparts of the slope called respectively de-
scending slope and ascending slope:

∣∣D−f
∣∣(x) := lim

y→x

[f (y) − f (x)]−
dY (y, x)

,
∣∣D+f

∣∣(x) := lim
y→x

[f (y) − f (x)]+
dY (y, x)

,

(1)
where [·]+ and [·]− denote respectively the positive and negative part. Notice the
change of notation w.r.t. previous works of the authors: the slopes and its one-sided
counterparts were denoted by |∇f |, |∇±f |. Yet, as remarked in [13], these notions,
being defined in duality with the distance, are naturally cotangent notions, rather
than tangent ones, whence the notation proposed here.

It is not difficult to see that for f Lipschitz the slopes and the local Lipschitz
constant are upper gradients according to [18], namely

∣∣∣∣
∫

∂γ

f

∣∣∣∣ ≤
∫

γ

∣∣D±f
∣∣

for any absolutely continuous curve γ : [0,1] → Y ; here and in the following we
write

∫
∂γ

f for f (γ1) − f (γ0) and
∫
γ

g for
∫ 1

0 g(γs)|γ̇s |ds.
Also, for f,g : Y → R Lipschitz it clearly holds

∣∣D(αf + βg)
∣∣ ≤ |α||Df | + |β||Dg|, ∀α,β ∈ R; (2a)∣∣D(fg)
∣∣ ≤ |f ||Dg| + |g||Df |. (2b)

2.2 The Space (P(X),W2)

Let (X,d) be a compact metric space. The set P(X) consists of all Borel probability
measures on X. As usual, if μ ∈ P(X) and T : X → Y is a μ-measurable map with
values in the topological space Y , the push-forward measure T�μ ∈ P(Y ) is defined
by T�μ(B) := μ(T −1(B)) for every set Borel set B ⊂ Y .

Given μ,ν ∈ P(X), we define the Wasserstein distance W2(μ, ν) between them
as

W 2
2 (μ, ν) := min

∫
d2(x, y)dγ (x, y), (3)

where the minimum is taken among all Borel probability measures γ on X2 such
that

π1
� γ = μ, π2

� γ = ν; here πi : X2 → X, πi(x1, x2) := xi.

Such measures are called admissible plans or couplings for the couple (μ, ν); a plan
γ which realizes the minimum in (3) is called optimal, and we write γ ∈ OPT(μ, ν).
From the linearity of the admissibility condition we get that the squared Wasserstein
distance is convex, i.e.:

W 2
2

(
(1 −λ)μ1 +λμ2, (1 −λ)ν1 +λν2

) ≤ (1 −λ)W 2
2 (μ1, ν1)+λW 2

2 (μ2, ν2). (4)
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It is also well known (see e.g. Theorem 2.7 in [1]) that the Wasserstein distance
metrizes the weak convergence of measures in P(X), i.e. the weak convergence
with respect to the duality with C(X); in particular (P(X),W2) is a compact metric
space.

An equivalent definition of W2 comes from the dual formulation of the transport
problem:

1

2
W 2

2 (μ, ν) = sup
ψ

∫
X

ψdμ +
∫

X

ψcdν, (5)

the supremum being taken among all Lipschitz functions ψ , where the c-transform
in this formula is defined by

ψc(y) := inf
x∈X

d2(x, y)

2
− ψ(x).

A function ψ : X → R is said to be c-concave if ψ = φc for some φ : X → R. It
is possible to prove that the supremum in (5) is always achieved by a c-concave
function, and we will call any such function ψ a Kantorovich potential. We shall
also use the fact that c-concave functions satisfy

ψcc = ψ. (6)

The (graph of the) c-superdifferential ∂cψ of a c-concave function ψ is the subset
of X2 defined by

∂cψ :=
{
(x, y) : ψ(x) + ψc(y) = d2(x, y)

2

}
,

and the c-superdifferential ∂cψ(x) at x is the set of y’s such that (x, y) ∈ ∂cψ .
A consequence of the compactness of X is that any c-concave function ψ is Lips-
chitz and that the set ∂cψ(x) is non empty for any x ∈ X.

It is not difficult to see that if ψ is a Kantorovich potential for μ,ν ∈ P(X) and
γ is a coupling for (μ, ν) then γ is optimal if and only if supp(γ ) ⊂ ∂cψ .

If (X,d) is geodesic, then so is (P(X),W2), and in this case a curve (μt )

is a constant speed geodesic from μ0 to μ1 if and only if there exists a mea-
sure π ∈ P(C([0,1],X)) concentrated on Geo(X) such that (et )�π = μt for all
t ∈ [0,1] and (e0, e1)�π ∈ OPT(μ0,μ1). We will denote the set of such measures,
called optimal geodesic plans, by GeoOpt(μ0,μ1).

2.3 Geodesically Convex Functionals and Their Gradient Flows

Given a geodesic space (Y,dY ) (in the following this will always be the Wasserstein
space built over a geodesic space (X,d)), a functional E : Y → R ∪ {+∞} is said
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K-geodesically convex (or simply K-convex) if for any y0, y1 ∈ Y there exists a
constant speed geodesic γ : [0,1] → Y such that γ0 = y0, γ1 = y1 and

E(γt ) ≤ (1 − t)E(y0) + tE(y1) − K

2
t (1 − t)d2

Y (y0, y1), ∀t ∈ [0,1].

We will denote by D(E) the domain of E i.e. D(E) := {y : E(y) < ∞}: if E is
K-geodesically convex, then D(E) is geodesic.

An easy consequence of the K-convexity is the fact that the descending slope
defined in (1) can de computed as a sup, rather than as a limsup:

|D−E|(y) = sup
z �=y

(
E(y) − E(z)

dY (y, z)
+ K

2
dY (y, z)

)+
. (7)

What we want to discuss here is the definition of gradient flow of a K-convex
functional. There are essentially two different ways of giving such a notion in a met-
ric setting. The first one, which we call Energy Dissipation Equality (EDE), ensures
existence for any K-convex and lower semicontinuous functional (under suitable
compactness assumptions), the second one, which we call Evolution Variation In-
equality (EVI), ensures uniqueness and K-contractivity of the flow. However, the
price we pay for these stronger properties is that existence results for EVI solutions
hold under much more restrictive assumptions.

It is important to distinguish the two notions. The EDE one is the “correct one”
to be used in a general metric context, because it ensures existence for any initial
datum in the domain of the functional. However, typically gradient flows in the EDE
sense are not unique: this is the reason of the analysis made in Sect. 5, which ensures
that for the special case of the entropy functional uniqueness is indeed true.

EVI gradient flows are in particular gradient flows in the EDE sense (see Propo-
sition 2.2), ensure uniqueness, K-contractivity and provide strong a priori regular-
izing effects. Heuristically speaking, existence of gradient flows in the EVI sense
depends also on properties of the distance, rather than on properties of the func-
tional only. A more or less correct way of thinking at this is: gradient flows in the
EVI sense exist if and only if the distance is Hilbertian on small scales. For instance,
if the underlying metric space is an Hilbert space, then the two notions coincide.

Now recall that one of our goals here is to study the gradient flow of the relative
entropy in spaces with Ricci curvature bounded below (Definition 5.9), and recall
that Finsler geometries are included in this setting (see page 926 of [32]). Thus, in
general we must deal with the EDE notion of gradient flow. The EVI one will come
into play in Sect. 9, where we use it to identify those spaces with Ricci curvature
bounded below which are more ‘Riemannian like’.

Note: later on we will refer to gradient flows in the EDE sense simply as “gradient
flows”, keeping the distinguished notation EVI-gradient flows for those in the EVI
sense.
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Energy Dissipation Equality

An important property of K-geodesically convex and lower semicontinuous func-
tionals (see Corollary 2.4.10 of [3] or Proposition 3.19 of [1]) is that the de-
scending slope is an upper gradient, that is: for any absolutely continuous curve
yt : J ⊂ R → D(E) it holds

∣∣E(yt ) − E(ys)
∣∣ ≤

∫ s

t

|ẏr |
∣∣D−E

∣∣(yr )dr, ∀t ≤ s. (8)

An application of Young inequality gives that

E(yt ) ≤ E(ys) + 1

2

∫ s

t

|ẏr |2dr + 1

2

∫ s

t

|D−E|2(yr )dr, ∀t ≤ s. (9)

This inequality motivates the following definition:

Definition 2.1 (Energy Dissipation Equality definition of gradient flow) Let E be
a K-convex and lower semicontinuous functional and let y0 ∈ D(E). We say that
a continuous curve [0,∞) � t �→ yt is a gradient flow for E in the EDE sense (or
simply a gradient flow) if it is locally absolutely continuous in (0,∞), it takes values
in the domain of E and it holds

E(yt ) = E(ys) + 1

2

∫ s

t

|ẏr |2dr + 1

2

∫ s

t

|D−E|2(yr )dr, ∀t ≤ s. (10)

Notice that, due to (9), the equality (10) is equivalent to

E(y0) ≥ E(ys) + 1

2

∫ s

0
|ẏr |2dr + 1

2

∫ s

0
|D−E|2(yr )dr, ∀s > 0. (11)

Indeed, if (11) holds, then (10) holds with t = 0, and then by the additivity of the
integral (10) holds in general.

It is not hard to check that if E :Rd →R is a C1 function, then a curve yt : J →
R

d is a gradient flow according to the previous definition if and only if it satisfies

y′
t = −∇E(yt ), ∀t ∈ J,

so that the metric definition reduces to the classical one when specialized to Eu-
clidean spaces.

The following theorem has been proved in [3] (Corollary 2.4.11):

Theorem 2.1 (Existence of gradient flows in the EDE sense) Let (Y,dY ) be a com-
pact metric space and let E : Y → R∪{+∞} be a K-geodesically convex and lower
semicontinuous functional. Then every y0 ∈ D(E) is the starting point of a gradient
flow in the EDE sense of E.
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It is important to stress the fact that in general gradient flows in the EDE sense
are not unique. A simple example is Y := R

2 endowed with the L∞ norm, and E

defined by E(x,y) := x. It is immediate to see that E is 0-convex and that for any
point (x0, y0) there exist uncountably many gradient flows in the EDE sense starting
from it, for instance all curves (x0 − t, y(t)) with |y′(t)| ≤ 1 and y(0) = y0.

Evolution Variational Inequality

To see where the EVI notion comes from, notice that for a K-convex and smooth
function f on R

d it holds y′
t = −∇f (y) for any t ≥ 0 if and only if

d

dt

|yt − z|2
2

+ K

2
|yt − z|2 + f (yt ) ≤ f (z), ∀z ∈ R

d, ∀t ≥ 0. (12)

This equivalence is true because K-convexity ensures that v = −∇f (y) if and only

〈v, y − z〉 + K

2
|y − z|2 + f (y) ≤ f (z), ∀z ∈ R

d .

Inequality (12) can be written in a metric context in several ways, which we collect
in the following statement (we omit the easy proof).

Proposition 2.1 (Evolution Variational Inequality: equivalent statements) Let
(Y,dY ) be a complete and separable metric space, E : Y → (−∞,∞] a lower
semicontinuous functional, and (yt ) a locally absolutely continuous curve in Y .
Then the following properties are equivalent:

(i) For any z ∈ D(E) it holds

d

dt

d2
Y (yt , z)

2
+ K

2
d2
Y (yt , z) + E(yt ) ≤ E(z), for a.e. t ∈ (0,∞).

(ii) For any z ∈ D(E) it holds ∀0 < t < s < ∞
d2
Y (ys, z) − d2

Y (yt , z)

2h
+ K

2

∫ s

t

d2
Y (yr , z)dr +

∫ s

t

E(yr)dr ≤ (s − t)E(z).

(iii) There exists a set A ⊂ D(E) dense in energy (i.e., for any z ∈ D(E) there exists
(zn) ⊂ A converging to z such that E(zn) → E(z)) such that for any z ∈ A it
holds

lim
h↓0

d2
Y (yt+h, z) − d2

Y (yt , z)

2
+ K

2
d2
Y (yt , z) + E(yt ) ≤ E(z), ∀t ∈ (0,∞).

Definition 2.2 (Evolution Variational Inequality definition of gradient flow) We say
that a curve (yt ) is a gradient flow of E in the EVI sense relative to K ∈ R (in short,
EVIK -gradient flow), if any of the above equivalent properties are true. We say that
yt starts from y0 if yt → y0 as t ↓ 0.
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This definition of gradient flow is stronger than the one discussed in the previous
section, because of the following result proved by the third author in [29] (see also
Proposition 3.6 of [1]), which we state without proof.

Proposition 2.2 (EVI implies EDE) Let (Y,dY ) be a complete and separable
metric space, K ∈ R, E : Y → (−∞,∞] a lower semicontinuous functional and
yt : (0,∞) → D(E) a locally absolutely continuous curve. Assume that yt is an
EVIK -gradient flow for E. Then (10) holds for any 0 < t < s.

Remark 2.1 (Contractivity) It can be proved that if (yt ) and (zt ) are gradient flows
in the EVIK sense of the l.s.c. functional E, then

dY (yt , zt ) ≤ e−KtdY (y0, z0), ∀t ≥ 0.

In particular, gradient flows in the EVI sense are unique. This contractivity property,
used in conjunction with (ii) of Proposition 2.1, guarantees that if existence of gra-
dient flows in the EVI sense is known for initial data lying in some subset S ⊂ Y ,
then it is also known for initial data in the closure S of S.

We also point out the following geometric consequence of the EVI, proven in
[10].

Proposition 2.3 Let E : Y → (−∞,∞] be a lower semicontinuous functional on
a complete space (Y, dY ). Assume that every y0 ∈ D(E) is the starting point of an
EVIK -gradient flow of E. Then E is K-convex along all geodesics contained in
D(E).

As we already said, gradient flows in the EVI sense do not necessarily exist, and
their existence depends on the properties of the distance dY . For instance, it is not
hard to see that if we endow R

2 with the L∞ norm and consider the functional
E(x,y) := x, then there re is no gradient flow in the EVIK -sense, regardless of the
constant K .

3 Hopf-Lax Formula and Hamilton-Jacobi Equation

Aim of this subsection is to study the properties of the Hopf-Lax formula in a metric
setting and its relations with the Hamilton-Jacobi equation. Here we assume that
(X,d) is a compact metric space. Notice that there is no reference measure m in the
discussion.

Let f : X →R be a Lipschitz function. For t > 0 define

F(t, x, y) := f (y) + d2(x, y)

2t
,
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and the function Qtf : X →R by

Qtf (x) := inf
y∈X

F(t, x, y) = min
y∈X

F(t, x, y).

Also, we introduce the functions D+,D− : X × (0,∞) → R as

D+(x, t) := max d(x, y),

D−(x, t) := min d(x, y),
(13)

where, in both cases, the y’s vary among all minima of F(t, x, ·). We also set
Q0f = f and D±(x,0) = 0. Thanks to the continuity of F and the compactness
of X, it is easy to check that the map [0,∞) × X � (t, x) �→ Qtf (x) is continuous.
Furthermore, the fact that f is Lipschitz easily yields

D−(x, t) ≤ D+(x, t) ≤ 2t Lip(f ), (14)

and from the fact that the functions {d2(·, y)}y∈Y are uniformly Lipschitz (because
(X,d) is bounded) we get that Qtf is Lipschitz for any t > 0.

Proposition 3.4 (Monotonicity of D±) For all x ∈ X it holds

D+(x, t) ≤ D−(x, s), 0 ≤ t < s. (15)

As a consequence, D+(x, ·) and D−(x, ·) are both nondecreasing, and they coincide
with at most countably many exceptions in [0,∞).

Proof Fix x ∈ X. For t = 0 there is nothing to prove. Now pick 0 < t < s and choose
xt and xs minimizers of F(t, x, ·) and F(s, x, ·) respectively, such that d(x, xt ) =
D+(x, t) and d(x, xs) = D−(x, s). The minimality of xt , xs gives

f (xt ) + d2(xt , x)

2t
≤ f (xs) + d2(xs, x)

2t
,

f (xs) + d2(xs, x)

2s
≤ f (xt ) + d2(xt , x)

2s
.

Adding up and using the fact that 1
t
≥ 1

s
we deduce

D+(x, t) = d(xt , x) ≤ d(xs, x) = D−(x, s),

which is (15).
Combining this with the inequality D− ≤ D+ we immediately obtain that both

functions are nondecreasing. At a point of right continuity of D−(x, ·) we get

D+(x, t) ≤ inf
s>t

D−(x, s) = D−(x, t).

This implies that the two functions coincide out of a countable set. �
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Next, we examine the semicontinuity properties of D±. These properties im-
ply that points (x, t) where the equality D+(x, t) = D−(x, t) occurs are continuity
points for both D+ and D−.

Proposition 3.5 (Semicontinuity of D±) The map D+ is upper semicontinuous and
the map D− is lower semicontinuous in X × (0,∞).

Proof We prove lower semicontinuity of D−, the proof of upper semicontinuity of
D+ being similar. Let (xi, ti) be any sequence converging to (x, t) and, for every i,
let (yi) be a minimum of F(ti , xi, ·) for which d(yi, xi) = D−(xi, ti). For all i we
have

f (yi) + d2(yi, xi)

2ti
= Qti f (xi).

Moreover, the continuity of (x, t) �→ Qtf (x) gives that limi Qti f (xi) = Qtf (x),
thus

lim
i→∞f (yi) + d2(yi, x)

2t
= Qtf (x).

This means that (yi) is a minimizing sequence for F(t, x, ·). Since (X,d) is com-
pact, possibly passing to a subsequence, not relabeled, we may assume that (yi)

converges to y as i → ∞. Therefore

D−(x, t) ≤ d(x, y) = lim
i→∞ d(x, yi) = lim

i→∞D−(xi, ti). �

Proposition 3.6 (Time derivative of Qtf ) The map t �→ Qtf is Lipschitz from
[0,∞) to C(X) and, for all x ∈ X, it satisfies

d

dt
Qtf (x) = −[D±(x, t)]2

2t2
, (16)

for any t > 0 with at most countably many exceptions.

Proof Let t < s and xt , xs be minima of F(t, x, ·) and F(s, x, ·). We have

Qsf (x) − Qtf (x) ≤ F(s, x, xt ) − F(t, x, xt ) = d2(x, xt )

2

t − s

ts
,

Qsf (x) − Qtf (x) ≥ F(s, x, xs) − F(t, x, xs) = d2(x, xs)

2

t − s

ts
,

which gives that t �→ Qtf (x) is Lipschitz in (ε,+∞) for any ε > 0 and x ∈ X.
Also, dividing by (s − t) and taking Proposition 3.4 into account, we get (16). Now
notice that from (14) we get that | d

dt
Qtf (x)| ≤ 2 Lip2(f ) for any x and a.e. t , which,

together with the pointwise convergence of Qtf to f as t ↓ 0, yields that t �→
Qtf ∈ C(X) is Lipschitz in [0,∞). �
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Proposition 3.7 (Bound on the local Lipschitz constant of Qtf ) For (x, t) ∈ X ×
(0,∞) it holds:

|DQtf |(x) ≤ D+(x, t)

t
. (17)

Proof Fix x ∈ X and t ∈ (0,∞), pick a sequence (xi) converging to x and a corre-
sponding sequence (yi) of minimizers for F(t, xi, ·) and similarly a minimizer y of
F(t, x, ·). We start proving that

lim
i→∞

Qtf (x) − Qtf (xi)

d(x, xi)
≤ D+(x, t)

t
.

Since it holds

Qtf (x) − Qtf (xi) ≤ F(t, x, yi) − F(t, xi, yi)

≤ f (yi) + d2(x, yi)

2t
− f (yi) − d2(xi, yi)

2t

≤ d(x, xi)

2t

(
d(x, yi) + d(xi, yi)

)

≤ d(x, xi)

2t

(
d(x, xi) + 2D+(xi, t)

)
,

dividing by d(x, xi), letting i → ∞ and using the upper semicontinuity of D+ we
get the claim. To conclude, we need to show that

lim
i→∞

Qtf (xi) − Qtf (x)

d(x, xi)
≤ D+(x, t)

t
.

This follows along similar lines starting from the inequality

Qtf (xi) − Qtf (x) ≤ F(t, xi, y) − F(t, x, yi). �

Theorem 3.2 (Subsolution of HJ) For every x ∈ X it holds

d

dt
Qtf (x) + 1

2
|DQtf |2(x) ≤ 0 (18)

with at most countably many exceptions in (0,∞).

Proof The claim is a direct consequence of Proposition 3.6 and Proposition 3.7. �

We just proved that in an arbitrary metric space the Hopf-Lax formula produces
subsolutions of the Hamilton-Jacobi equation. Our aim now is to prove that if (X,d)

is a geodesic space, then the same formula provides also supersolutions.
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Theorem 3.3 (Supersolution of HJ) Assume that (X,d) is a geodesic space. Then
equality holds in (17). In particular, for all x ∈ X it holds

d

dt
Qtf (x) + 1

2
|DQtf |2(x) = 0,

with at most countably many exceptions in (0,∞).

Proof Let y be a minimum of F(t, x, ·) such that d(x, y) = D+(x, t). Let γ :
[0,1] → X be a constant speed geodesic connecting x to y. We have

Qtf (x) − Qtf (γs) ≥ f (y) + d2(x, y)

2t
− f (y) − d2(γs, y)

2t

= d2(x, y) − d2(γs, y)

2t
= (D+(x, t))2(2s − s2)

2t
.

Therefore we obtain

lim
s↓0

Qtf (x) − Qtf (γs)

d(x, γs)
= lim

s↓0

Qtf (x) − Qtf (γs)

sD+(x, t)
≥ D+(x, t)

t
.

Since s �→ γs is a particular family converging to x we deduce

∣∣D−Qtf
∣∣(x) ≥ D+(x, t)

t
.

Taking into account Proposition 3.6 and Proposition 3.7 we conclude. �

4 Weak Definitions of Gradient

In this section we introduce two weak notions of ‘norm of the differential’, one
inspired by Cheeger’s seminal paper [9], that we call minimal relaxed slope and
denote by |Df |∗, and one inspired by the papers of Koskela-MacManus [20] and
of Shanmugalingam [30], that we call minimal weak upper gradient and denote by
|Df |w . Notice that, as for the slopes, the objects that we are going to define are
naturally in duality with the distance, thus are cotangent notion: that’s why we use
the ‘D’ instead of the ‘∇’ in the notation. Still, we will continue speaking of upper
gradients and their weak counterparts to be aligned with the convention used in the
literature (see [13] for a broader discussion on this distinction between tangent and
cotangent objects and its effects on calculus).

We compare our concepts with those of the original papers in Sect. 4.4, where
we show that all these approaches a posteriori coincide. As usual, we will adopt the
simplifying assumption that (X,d,m) is compact and normalized metric measure
space, i.e. (X,d) is compact and m ∈ P(X).



76 L. Ambrosio et al.

4.1 The “Vertical” Approach: Minimal Relaxed Slope

Definition 4.3 (Relaxed slopes) We say that G ∈ L2(X,m) is a relaxed slope of
f ∈ L2(X,m) if there exist G̃ ∈ L2(X,m) and Lipschitz functions fn : X →R such
that:

(a) fn → f in L2(X,m) and |Dfn| weakly converges to G̃ in L2(X,m);
(b) G̃ ≤ G m-a.e. in X.

We say that G is the minimal relaxed slope of f if its L2(X,m) norm is minimal
among relaxed slopes. We shall denote by |Df |∗ the minimal relaxed slope.

Using Mazur’s lemma and (2a) (see Proposition 4.8) it is possible to show that
an equivalent characterization of relaxed slopes can be given by modifying (a) as
follows: G̃ is the strong limit in L2(X,m) of Gn ≥ |Dfn|. The definition of relaxed
slope we gave is useful to show existence of relaxed slopes (as soon as an approxi-
mating sequence (fn) with |Dfn| bounded in L2(X,m) exists) while the equivalent
characterization is useful to perform diagonal arguments and to show that the class
of relaxed slopes is a convex closed set. Therefore the definition of |Df |∗ is well
posed.

Lemma 4.1 (Locality) Let G1,G2 be relaxed slopes of f . Then min{G1,G2} is a
relaxed slope as well. In particular, for any relaxed slope G it holds

|Df |∗ ≤ G m-a.e. in X.

Proof It is sufficient to prove that if B ⊂ X is a Borel set, then χBG1 + χX\BG2 is
a relaxed slope of f . By approximation, taking into account the closure of the class
of relaxed slopes, we can assume with no loss of generality that B is an open set. We
fix r > 0 and a Lipschitz function φr : X → [0,1] equal to 0 on X \ Br and equal to
1 on B2r , where the open sets Bs ⊂ B are defined by

Bs := {
x ∈ X : dist(x,X \ B) > s

} ⊂ B.

Let now fn,i , i = 1,2, be Lipschitz and L2 functions converging to f in L2(X,m) as
n → ∞, with |Dfn,i | weakly convergent to Gi and set fn := φrfn,1 + (1 − φr)fn,2.
Then, |Dfn| = |Dfn,1| on B2r and |Dfn| = |Dfn,2| on X \ Br ; in Br \ B2r , by
applying (2a) and (2b), we can estimate

|Dfn| ≤ |Dfn,2| + Lip(φr)|fn,1 − fn,2| + φr

(|Dfn,1| + |Dfn,2|
)
.

Since Br ⊂ B , by taking weak limits of a subsequence, it follows that

χB2r
G1 + χX\Br

G2 + χB\B2r
(G1 + 2G2)

is a relaxed slope of f . Letting r ↓ 0 gives that χBG1 + χX\BG2 is a relaxed slope
as well.
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For the second part of the statement argue by contradiction: let G be a relaxed
slope of f and assume that B = {G < |Df |∗} is such that m(B) > 0. Consider the
relaxed slope GχB + |Df |∗χX\B : its L2 norm is strictly less than the L2 norm of
|Df |∗, which is a contradiction. �

A trivial consequence of the definition and of the locality principle we just proved
is that if f : X → R is Lipschitz it holds:

|Df |∗ ≤ |Df | m-a.e. in X. (19)

We also remark that it is possible to obtain the minimal relaxed slope as strong
limit in L2 of slopes of Lipschitz functions, and not only weak, as shown in the next
proposition.

Proposition 4.8 (Strong approximation) If f ∈ L2(X,m) has a relaxed slope, there
exist Lipschitz functions fn convergent to f in L2(X,m) with |Dfn| convergent to
|Df |∗ in L2(X,m).

Proof If gi → f in L2 and |Dgi | weakly converges to |Df |∗ in L2, by Mazur’s
lemma we can find a sequence convex combinations

Gh =
Nh+1∑

i=Nh+1

αh,i |Dgi |, with αi,h ≥ 0,

Nh+1∑
i=Nh+1

αh,i = 1, Nh → ∞

of |Dgi | strongly convergent to |Df |∗ in L2; the corresponding convex combina-
tions of gi , that we shall denote by fh, still converge in L2 to f and |Dfh| is domi-
nated by Gh. It follows that

lim
h→∞

∫
X

|Dfh|2dm ≤ lim
h→∞

∫
X

G2
hdm=

∫
X

|Df |2∗dm.

This implies at once that |Dfh| weakly converges to |Df |∗ (because any limit point
in the weak topology is a relaxed slope with minimal norm) and that the convergence
is strong. �

Theorem 4.4 The Cheeger energy functional

Ch(f ) := 1

2

∫
X

|Df |2∗dm, (20)

set to +∞ if f has no relaxed slope, is convex and lower semicontinuous in
L2(X,m).

Proof A simple byproduct of condition (2a) is that αF + βG is a relaxed slope of
αf + βg whenever α,β are nonnegative constants and F,G are relaxed slopes of
f,g respectively. Taking F = |Df |∗ and G = |Dg|∗ yields the convexity of Ch,
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while lower semicontinuity follows by a simple diagonal argument based on the
strong approximation property stated in Proposition 4.8. �

Proposition 4.9 (Chain rule) If f ∈ L2(X,m) has a relaxed slope and φ : R → R

is Lipschitz and C1, then |Dφ(f )|∗ = |φ′(f )||Df |∗ m-a.e. in X.

Proof We trivially have |Dφ(f )| ≤ |φ′(f )||Df |. If we apply this inequality to
the “optimal” approximating sequence of Lipschitz functions given by Proposi-
tion 4.8 we get that |φ′(f )||Df |∗ is a relaxed slope of φ(f ), so that |Dφ(f )|∗ ≤
|φ′(f )||Df |∗ m-a.e. in X. Applying twice this inequality with φ(r) := −r we get
|Df |∗ ≤ |D(−f )|∗ ≤ |Df |∗ and thus |Df |∗ = |D(−f )|∗ m-a.e. in X.

Up to a simple rescaling, we can assume |φ′| ≤ 1. Let ψ1(z) := z − φ(z), notice
that ψ ′

1 ≥ 0 and thus m-a.e. on f −1({φ′ ≥ 0}) it holds

|Df |∗ ≤ ∣∣D(
φ(f )

)∣∣∗ + ∣∣D(
ψ1(f )

)∣∣∗ ≤ φ′(f )|Df |∗ + ψ ′
1(f )|Df |∗ = |Df |∗,

hence all the inequalities must be equalities, which forces |D(φ(f ))|∗ = φ′(f )|Df |∗
m-a.e. on f −1({φ′ ≥ 0}). Similarly, let ψ2(z) = −z − φ(z) and notice that ψ ′

2 ≤ 0,
so that m-a.e. on f −1({φ′ ≤ 0}) it holds

|Df |∗ = ∣∣D(−f )
∣∣∗ ≤ ∣∣D(

φ(f )
)∣∣∗ + ∣∣D(

ψ2(f )
)∣∣∗

≤ −φ′(f )|Df |∗ − ψ ′
2(f )|Df |∗ = |Df |∗.

As before we can conclude that |D(φ(f ))|∗ = −φ′(f )|Df |∗ m-a.e. on
f −1({φ′ ≤ 0}). �

Still by approximation, it is not difficult to show that φ(f ) has a relaxed slope if
φ is Lipschitz, and that |Dφ(f )|∗ = |φ′(f )||Df |∗ m-a.e. in X. In this case φ′(f ) is
undefined at points x such that φ is not differentiable at f (x), on the other hand the
formula still makes sense because |Df |∗ = 0 m-a.e. on f −1(N) for any Lebesgue
negligible set N ⊂ R. Particularly useful is the case when φ is a truncation function,
for instance φ(z) = min{z,M}. In this case

∣∣D min{f,M}∣∣∗ =
{

|Df |∗ if f (x) < M

0 iff (x) ≥ M.

Analogous formulas hold for truncations from below.

Laplacian: Definition and Basic Properties

Since the domain of Ch is dense in L2(X,m) (it includes Lipschitz functions),
the Hilbertian theory of gradient flows (see for instance [3, 8]) can be applied to
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Cheeger’s functional (20) to provide, for all f0 ∈ L2(X,m), a locally Lipschitz con-
tinuous map t �→ ft from (0,∞) to L2(X,m), with ft → f0 as t ↓ 0, whose deriva-
tive satisfies

d

dt
ft ∈ −∂Ch(ft ) for a.e. t. (21)

Here ∂Ch(g) denotes the subdifferential of Ch at g ∈ D(Ch) in the sense of convex
analysis, i.e.

∂Ch(g) :=
{
ξ ∈ L2(X,m) : Ch(f ) ≥ Ch(g) +

∫
X

ξ(f − g)dm ∀f ∈ L2(X,m)

}
.

Another important regularizing effect of gradient flows of convex l.s.c. functionals
lies in the fact that for every t > 0 (the opposite of) the right derivative − d

dt+ ft =
limh↓0

1
h
(ft − ft+h) exists and it is actually the element with minimal L2(X,m)

norm in ∂Ch(ft ). This motivates the next definition:

Definition 4.4 (Laplacian) The Laplacian �f of f ∈ L2(X,m) is defined for those
f such that ∂Ch(f ) �= ∅. For those f , −�f is the element of minimal L2(X,m)

norm in ∂Ch(f ). The domain of � is defined as D(�).

Remark 4.2 (Potential lack of linearity) It should be observed that in general the
Laplacian—as we just defined it—is not a linear operator: the potential lack of lin-
earity is strictly related to the fact that potentially the space W 1,2(X,d,m) is not
Hilbert, because f �→ ∫ |Df |2∗dm need not be quadratic. For instance if X = R

2, m
is the Lebesgue measure and d is the distance induced by the L∞ norm, then it is
easily seen that

|Df |2∗ =
(∣∣∣∣∂f∂x

∣∣∣∣ +
∣∣∣∣∂f∂y

∣∣∣∣
)2

.

Even though the Laplacian is not linear, the trivial implication

v ∈ ∂Ch(f ) ⇒ λv ∈ ∂Ch(λf ), ∀λ ∈R,

ensures that the Laplacian (and so the gradient flow of Ch) is 1-homogeneous.

We can now write

d

dt
ft = �ft

for gradient flows ft of Ch, the derivative being understood in L2(X,m), in accor-
dance with the classical case. The classical Hilbertian theory of gradient flows also
ensures that

lim
t→∞ Ch(ft ) = 0 and

d

dt
Ch(ft ) = −‖�ft‖2

L2(X,m)
, for a.e. t ∈ (0,∞). (22)
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Proposition 4.10 (Integration by parts) For all f ∈ D(�), g ∈ D(Ch) it holds

∣∣∣∣
∫

X

g�f dm

∣∣∣∣ ≤
∫

X

|Dg|∗|Df |∗dm. (23)

Also, let f ∈ D(�) and φ ∈ C1(R) with bounded derivative on an interval contain-
ing the image of f . Then

∫
X

φ(f )�f dm= −
∫

X

|Df |2∗φ′(f )dm. (24)

Proof Since −�f ∈ ∂Ch(f ) it holds

Ch(f ) −
∫

X

εg�f dm ≤ Ch(f + εg), ∀g ∈ L2(X,m), ε ∈ R.

For ε > 0, |Df |∗ +ε|Dg|∗ is a relaxed slope of f +εg (possibly not minimal). Thus
it holds 2Ch(f + εg) ≤ ∫

X
(|Df |∗ + ε|Dg|∗)2dm and therefore

−
∫

X

εg�f dm ≤ 1

2

∫
X

(|Df |∗ + ε|Dg|∗
)2 − |Df |2∗dm

= ε

∫
X

|Df |∗|Dg|∗dm+ o(ε).

Dividing by ε, letting ε ↓ 0 and then repeating the argument with −g in place of g

we get (23).
For the second part we recall that, by the chain rule, |D(f + εφ(f ))|∗ = (1 +

εφ′(f ))|Df |∗ for |ε| small enough. Hence

Ch
(
f + εφ(f )

) − Ch(f ) = 1

2

∫
X

|Df |2∗
((

1 + εφ′(f )
)2 − 1

)
dm

= ε

∫
X

|Df |2∗φ′(f )dm+ o(ε),

which implies that for any v ∈ ∂Ch(f ) it holds
∫
X

vφ(f )dm = ∫
X

|Df |2∗φ′(f )dm,
and gives the thesis with v = −�f . �

Proposition 4.11 (Some properties of the gradient flow of Ch) Let f0 ∈ L2(X,m)

and let (ft ) be the gradient flow of Ch starting from f0. Then the following proper-
ties hold.

Mass preservation.
∫

ftdm= ∫
f0dm for any t ≥ 0.

Maximum principle. If f0 ≤ C (resp. f0 ≥ c) m-a.e. in X, then ft ≤ C (resp ft ≥ c)
m-a.e. in X for any t ≥ 0.
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Entropy dissipation. Suppose 0 < c ≤ f0 ≤ C < ∞ m-a.e. Then t �→ ∫
ft logftdm

is absolutely continuous in [0,∞) and it holds

d

dt

∫
X

ft logftdm = −
∫

X

|Dft |2∗
ft

dm, for a.e. t ∈ (0,∞).

Proof Mass preservation. Just notice that from (23) we get
∣∣∣∣ d

dt

∫
X

ftdm

∣∣∣∣ =
∣∣∣∣
∫

X

1 · �ftdm

∣∣∣∣ ≤
∫

X

|D1|∗|Dft |∗dm= 0, for a.e. t ∈ (0,∞),

where 1 is the function identically equal to 1, which has minimal relaxed gradient
equal to 0.
Maximum principle. Fix f ∈ L2(X,m), τ > 0 and, according to the implicit Euler
scheme, let f τ be the unique minimizer of

g �→ Ch(g) + 1

2τ

∫
X

|g − f |2dm.

Assume that f ≤ C. We claim that in this case f τ ≤ C as well. Indeed, if this is not
the case we can consider the competitor g := min{f τ ,C} in the above minimization
problem. By Proposition 4.9 (with the choice φ(r) := min{r,C}) we get Ch(g) ≤
Ch(f τ ) and the L2 distance of f and g is strictly smaller than the one of f and f τ

as soon as m({f τ > C}) > 0, which is a contradiction.
Starting from f0, iterating this procedure, and using the fact that the implicit

Euler scheme converges as τ ↓ 0 (see [3, 8] for details) to the gradient flow we get
the conclusion.

The same arguments applies to uniform bounds from below.
Entropy dissipation. The map z �→ z log z is Lipschitz on [c,C] which, together
with the maximum principle and the fact that t �→ ft ∈ L2(X,m) is locally abso-
lutely continuous, yields the claimed absolute continuity statement. Now notice that
we have d

dt

∫
ft logftdm = ∫

(logft + 1)�ftdm for a.e. t . Since by the maximum
principle ft ≥ c m-a.e., the function log z + 1 is Lipschitz and C1 on the image of
ft for any t ≥ 0, thus from (24) we get the conclusion. �

4.2 The “Horizontal” Approach: Weak Upper Gradients

In this subsection, following the approach of [4, 5], we introduce a different no-
tion of “weak norm of gradient” in a compact and normalized metric measure space
(X,d,m). This notion of gradient is Lagrangian in spirit, it does not require a re-
laxation procedure, it will provide a new estimate of entropy dissipation along the
gradient flow of Ch, and it will also be useful in the analysis of the derivative of the
entropy along Wasserstein geodesics.

While the definition of minimal relaxed slope was taken from Cheeger’s work [9],
the notion we are going to introduce is inspired by the work of Koskela-MacManus



82 L. Ambrosio et al.

[20] and Shanmugalingam [30], the only difference being that we consider a differ-
ent notion of null set of curves.

Negligible Sets of Curves and Functions Sobolev Along a.e. Curve

Recall that the evaluation maps et : C([0,1],X) → X are defined by et (γ ) := γt .
We also introduce the restriction maps restrst : C([0,1],X) → C([0,1],X), 0 ≤ t ≤
s ≤ 1, given by

restrst (γ )r := γ((1−r)t+rs), (25)

so that restrst restricts the curve γ to the interval [t, s] and then “stretches” it on the
whole of [0,1].

Definition 4.5 (Test plans and negligible sets of curves) We say that a probability
measure π ∈ P(C([0,1],X)) is a test plan if it is concentrated on AC2([0,1];X),∫∫ 1

0 |γ̇t |2dtdπ < ∞, and there exists a constant C(π) such that

(et )�π ≤ C(π)m for every t ∈ [0,1]. (26)

A Borel set A ⊂ AC2([0,1],X) is said negligible if for any test plan π there
exists a π -negligible set N such that A ⊂ N . A property which holds for every
γ ∈ AC2([0,1],X), except possibly a negligible set, is said to hold for almost every
curve.

Remark 4.3 An easy consequence of condition (26) is that if two m-measurable
functions f,g : X →R coincide up to a m-negligible set and T is an at most count-
able subset of [0,1], then the functions f ◦ γ and g ◦ γ coincide in T for almost
every curve γ .

Moreover, choosing an arbitrary test plan π and applying Fubini’s Theorem to the
product measure L 1 × π in (0,1) × C([0,1];X) we also obtain that f ◦ γ = g ◦ γ

L 1-a.e. in (0,1) for π -a.e. curve γ ; since π is arbitrary, the same property holds
for almost every curve.

Coupled with the definition of negligible set of curves, there are the definitions
of weak upper gradient and of functions which are Sobolev along a.e. curve.

Definition 4.6 (Weak upper gradients) A Borel function g : X → [0,∞] is a weak
upper gradient of f : X →R if

∣∣∣∣
∫

∂γ

f

∣∣∣∣ ≤
∫

γ

g < ∞ for a.e. γ. (27)

Definition 4.7 (Sobolev functions along a.e. curve) A function f : X → R is
Sobolev along a.e. curve if for a.e. curve γ the function f ◦ γ coincides a.e. in
[0,1] and in {0,1} with an absolutely continuous map fγ : [0,1] →R.
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By Remark 4.3 applied to T := {0,1}, (27) does not depend on the particular
representative of f in the class of m-measurable function coinciding with f up to a
m-negligible set. The same Remark also shows that the property of being Sobolev
along almost every curve γ is independent of the representative in the class of m-
measurable functions coinciding with f m-a.e. in X.

In the following remarks we will make use of this basic calculus lemma:

Lemma 4.2 Let f : (0,1) → R Lebesgue measurable, q ∈ [1,∞], g ∈ Lq(0,1)

nonnegative be satisfying

∣∣f (s) − f (t)
∣∣ ≤

∣∣∣∣
∫ t

s

g(r)dr

∣∣∣∣ for L 2-a.e. (s, t) ∈ (0,1)2.

Then f ∈ W 1,q (0,1) and |f ′| ≤ g a.e. in (0,1).

Proof We start by proving the Lemma in the case q = 1. It is immediate to check
that f ∈ L∞(0,1). Let N ⊂ (0,1)2 be the L 2-negligible subset where the above
inequality fails. By Fubini’s theorem, also the set {(t, h) ∈ (0,1)2 : (t, t + h) ∈ N ∩
(0,1)2} is L 2-negligible. In particular, by Fubini’s theorem, for a.e. h we have
(t, t + h) /∈ N for a.e. t ∈ (0,1). Let hi ↓ 0 with this property and use the identities

∫ 1

0
f (t)

φ(t + h) − φ(t)

h
dt = −

∫ 1

0

f (t − h) − f (t)

−h
φ(t)dt

with φ ∈ C1
c (0,1) and h = hi sufficiently small to get

∣∣∣∣
∫ 1

0
f (t)φ′(t)dt

∣∣∣∣ ≤
∫ 1

0
g(t)

∣∣φ(t)
∣∣dt.

It follows that the distributional derivative of f is a signed measure η with finite
total variation which satisfies

−
∫ 1

0
f φ′dt =

∫ 1

0
φdη,

∣∣∣∣
∫ 1

0
φdη

∣∣∣∣ ≤
∫ 1

0
g|φ|dt for every φ ∈ C1

c (0,1);

therefore η is absolutely continuous with respect to the Lebesgue measure with
|η| ≤ gL 1. This gives the W 1,1(0,1) regularity and, at the same time, the inequal-
ity |f ′| ≤ g a.e. in (0,1). The case q > 1 immediately follows by applying this
inequality when g ∈ Lq(0,1). �

With the aid of this lemma, we can prove that the existence of a weak upper
gradient implies Sobolev regularity along a.e. curve.

Remark 4.4 (Restriction and equivalent formulation) Notice that if π is a test plan,
so is (restrst )�π . Hence if g is a weak upper gradient of f then for every t < s in
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[0,1] it holds

∣∣f (γs) − f (γt )
∣∣ ≤

∫ s

t

g(γr)|γ̇r |dr for a.e. γ.

Let π be a test plan: by Fubini’s theorem applied to the product measure L 2 ×π in
(0,1)2 × C([0,1];X), it follows that for π -a.e. γ the function f satisfies

∣∣f (γs) − f (γt )
∣∣ ≤

∣∣∣∣
∫ s

t

g(γr)|γ̇r |dr

∣∣∣∣∣ for L 2-a.e. (t, s) ∈ (0,1)2.

An analogous argument shows that
{

|f (γs) − f (γ0)| ≤
∫ s

0 g(γr)|γ̇r |dr

|f (γ1) − f (γs)| ≤
∫ 1
s

g(γr)|γ̇r |dr
for L 1-a.e. s ∈ (0,1). (28)

Since g ◦ γ |γ̇ | ∈ L1(0,1) for π -a.e. γ , by Lemma 4.2 it follows that f ◦ γ ∈
W 1,1(0,1) for π -a.e. γ , and

∣∣∣∣ d

dt
(f ◦ γ )

∣∣∣∣ ≤ g ◦ γ |γ̇ | a.e. in (0,1), for π-a.e. γ. (29)

Since π is arbitrary, we conclude that f ◦ γ ∈ W 1,1(0,1) for a.e. γ , and therefore it
admits an absolutely continuous representative fγ ; moreover, by (28), it is immedi-
ate to check that f (γ (t)) = fγ (t) for t ∈ {0,1} and a.e. γ .

Remark 4.5 (An approach with a non explicit use of negligible set of curves) The
previous remark could be used to introduce the notion of weak upper gradients with-
out speaking (explicitly) of Borel sets at all. One can simply say that g ∈ L2(X,m)

is a weak upper gradient of f : X → R provided for every test plan π it holds

∫ ∣∣f (γ1) − f (γ0)
∣∣dπ(γ ) ≤

∫∫ 1

0
g(γs)|γ̇s |dsdπ(γ )

(this has been the approach followed in [13]).

Proposition 4.12 (Locality) Let f : X → R be Sobolev along almost all absolutely
continuous curves, and let G1,G2 be weak upper gradients of f . Then min{G1,G2}
is a weak upper gradient of f .

Proof It is a direct consequence of (29). �

Definition 4.8 (Minimal weak upper gradient) Let f : X → R be Sobolev along
almost all curves. The minimal weak upper gradient |Df |w of f is the weak upper
gradient characterized, up to m-negligible sets, by the property

|Df |w ≤ G m-a.e. in X, for every weak upper gradient G of f. (30)
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Uniqueness of the minimal weak upper gradient is obvious. For existence, we
take |Df |w := infn Gn, where Gn are weak upper gradients which provide a mini-
mizing sequence in

inf

{∫
X

tan−1 Gdm : G is a weak upper gradient of f

}
.

We immediately see, thanks to Proposition 4.12, that we can assume with no loss of
generality that Gn+1 ≤ Gn. Hence, by monotone convergence, the function |Df |w
is a weak upper gradient of f and

∫
X

tan−1Gdm is minimal at G = |Df |w . This
minimality, in conjunction with Proposition 4.12, gives (30).

Theorem 4.5 (Stability w.r.t. m-a.e. convergence) Assume that fn are m-measu-
rable, Sobolev along almost all curves and that Gn are weak upper gradients of fn.
Assume furthermore that fn(x) → f (x) ∈ R for m-a.e. x ∈ X and that (Gn) weakly
converges to G in L2(X,m). Then G is a weak upper gradient of f .

Proof Fix a test plan π . By Mazur’s theorem we can find convex combinations

Hh :=
Nh+1∑

i=Nh+1

αh,iGi with αh,i ≥ 0,

Nh+1∑
i=Nh+1

αh,i = 1, Nh → ∞

converging strongly to G in L2(X,m). Denoting by f̃h the corresponding con-
vex combinations of fh, Hh are weak upper gradients of f̃h and still f̃h → f m-
a.e. in X.

Since for every nonnegative Borel function ϕ : X → [0,∞] it holds (with C =
C(π))

∫ (∫
γ

ϕ

)
dπ =

∫ (∫ 1

0
ϕ(γt )|γ̇t |dt

)
dπ

≤
∫ (∫ 1

0
ϕ2(γt )dt

)1/2(∫ 1

0
|γ̇t |2dt

)1/2

dπ

≤
(∫ 1

0

∫
ϕ2d(et )�πdt

)1/2(∫∫ 1

0
|γ̇t |2dtdπ

)1/2

≤
(

C

∫
ϕ2dm

)1/2(∫∫ 1

0
|γ̇t |2dtdπ

)1/2

, (31)

we obtain, for C̄ := √
C(

∫∫ 1
0 |γ̇t |2dtdπ)1/2,

∫ (∫
γ

|Hh − G| + min
{|f̃h − f |,1

})
dπ

≤ C̄
(‖Hh − G‖L2 + ∥∥min

{|f̃h − f |,1
}∥∥

L2

) → 0.
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By a diagonal argument we can find a subsequence h(n) such that
∫
γ

|Hh(n) − G| +
min{|f̃h(n) − f |,1} → 0 as n → ∞ for π -a.e. γ . Since f̃h converge m-a.e. to f and
the marginals of π are absolutely continuous w.r.t. m we have also that for π -a.e. γ

it holds f̃h(γ0) → f (γ0) and f̃h(γ1) → f (γ1).
If we fix a curve γ satisfying these convergence properties, since (f̃h(n))γ are

equi-absolutely continuous (being their derivatives bounded by Hh(n) ◦ γ |γ̇ |) and
a further subsequence of f̃h(n) converges a.e. in [0,1] and in {0,1} to f (γs), we
can pass to the limit to obtain an absolutely continuous function fγ equal to f (γs)

a.e. in [0,1] and in {0,1} with derivative bounded by G(γs)|γ̇s |. Since π is arbitrary
we conclude that f is Sobolev along almost all curves and that G is a weak upper
gradient of f . �

Remark 4.6 (|Df |w ≤ |Df |∗) An immediate consequence of the previous proposi-
tion is that any f ∈ D(Ch) is Sobolev along a.e. curve and satisfies |Df |w ≤ |Df |∗.
Indeed, for such f just pick a sequence of Lipschitz functions converging to f in
L2(X,m) such that |Dfn| → |Df |∗ in L2(X,m) (as in Proposition 4.8) and recall
that for Lipschitz functions the local Lipschitz constant is an upper gradient.

A Bound from Below on Weak Gradients

In this short subsection we show how, using test plans and the very definition of
minimal weak gradients, it is possible to use |Df |w to bound from below the
increments of the relative entropy. We start with the following result, proved—
in a more general setting—by Lisini in [22]: it shows how to associate to a
curve μ ∈ AC2([0,1]; (P(X),W2)) a plan π ∈ P(C([0,1],X)) concentrated on
AC2([0,1];X) representing the curve itself (see also Theorem 8.2.1 of [3] for the
Euclidean case). We will only sketch the proof.

Proposition 4.13 (Superposition principle) Let (X,d) be a compact space
and let μ ∈ AC2([0,1]; (P(X),W2)). Then there exists π ∈ P(C([0,1],X))

concentrated on AC2([0,1];X) such that (et )�π = μt for any t ∈ [0,1] and∫ |γ̇t |2dπ(γ ) = |μ̇t |2 for a.e. t ∈ [0,1].
Proof If π ∈ P(C([0,1],X)) is any plan concentrated on AC2([0,1],X) such that
(et )�π = μt for any t ∈ [0,1], since (et , es)�π ∈ ADM(μt ,μs), for any t < s it
holds

W 2
2 (μt ,μs) ≤

∫
d2(γt , γs)dπ(γ ) ≤

∫ (∫ s

t

|γ̇r |dr

)2

dπ(γ )

≤ (s − t)

∫∫ s

t

|γ̇r |2drdπ(γ ),

which shows that |μ̇t |2 ≤ ∫ |γ̇t |2dπ(γ ) for a.e. t . Hence, to conclude it is sufficient
to find a plan π ∈ P(C([0,1],X)), concentrated on AC2([0,1],X), with (et )�π =
μt for any t ∈ [0,1] such that

∫ |μ̇t |2dt ≥ ∫∫ 1
0 |γ̇t |2dtdπ(γ ).
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To build such a π we make the simplifying assumption that (X,d) is geodesic
(the proof for the general case is similar, but rather than interpolating with piece-
wise geodesic curves one uses piecewise constant ones, this leads to some technical
complications that we want to avoid here—see [22] for the complete argument). Fix
n ∈ N and use a gluing argument to find γ n ∈ P(Xn+1) such that (πi,πi+1)�γ

n ∈
OPT(μ i

n
,μ i+1

n
) for i = 0, . . . , n − 1. By standard measurable selection arguments,

there exists a Borel map T n : Xn+1 → C([0,1],X) such that γ := T n(x0, . . . , xn)

is a constant speed geodesic on each of the intervals [i/n, (i + 1)/n] and γi/n = xi ,
i = 0, . . . , n. Define πn := T n

� γ n. It holds

∫∫ 1

0
|γ̇t |2dtdπn(γ ) = 1

n

∫ n−1∑
i=0

d2(γ i
n
, γ i+1

n
)dπ(γ ) = 1

n

n−1∑
i=0

W 2
2 (μ i

n
,μ i+1

n
)

≤
∫ 1

0
|μ̇t |2dt . (32)

Now notice that the map E : C([0,1],X) → [0,∞] given by E(γ ) := ∫ 1
0 |γ̇t |2dt if

γ ∈ AC2([0,1],X) and +∞ otherwise, is lower semicontinuous and, via a simple
equicontinuity argument, with compact sublevels. Therefore by Prokorov’s theorem
we get that (πn) ⊂ P(C([0,1],X)) is a tight sequence, hence for any limit measure
π the uniform bound (32) gives the thesis. �

Proposition 4.14 Let [0,1] � t �→ μt = ftm be a curve in AC2([0,1], (P(X),

W2)). Assume that for some 0 < c < C < ∞ it holds c ≤ ft ≤ C m-a.e. for any
t ∈ [0,1], and that f0 is Sobolev along a.e. curve with |Df0|w ∈ L2(X,m). Then

∫
X

f0 logf0dm−
∫

X

ft logftdm ≤ 1

2

∫ t

0

∫
X

|Df0|2w
f 2

0

fsdsdm+ 1

2

∫ t

0
|μ̇s |2ds,

∀t > 0.

Proof Let π ∈ P(C([0,1],X)) be a plan associated to the curve (μt ) as in Propo-
sition 4.13. The assumption ft ≤ C m-a.e. and the fact that

∫∫ 1
0 |γ̇t |2dtdπ(γ ) =∫ |μ̇t |2dt < ∞ guarantee that π is a test plan. Now notice that it holds |D logft |w =

|Dft |w/ft (because z �→ log z is C1 in [c,C]), thus we get
∫

X

f0 logf0dm−
∫

X

ft logftdm

≤
∫

X

logf0(f0 − ft )dm

=
∫

(logf0 ◦ e0 − logf0 ◦ et )dπ

≤
∫∫ t

0

|Df0|w(γs)

f0(γs)
|γ̇s |dsdπ(γ )
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≤ 1

2

∫∫ t

0

|Df0|2w(γs)

f 2
0 (γs)

dsdπ(γ ) + 1

2

∫∫ t

0
|γ̇s |2dsdπ(γ )

= 1

2

∫ t

0

∫
X

|Df0|2w
f 2

0

fsdsdm+ 1

2

∫ t

0
|μ̇s |2ds. �

4.3 The Two Notions of Gradient Coincide

Here we prove that the two notions of “norm of weak gradient” we introduced co-
incide. We already noticed in Remark 4.6 that |Df |w ≤ |Df |∗, so that to conclude
we need to show that |Df |w ≥ |Df |∗.

The key argument to achieve this is the following lemma, which gives a sharp
bound on the W2-speed of the L2-gradient flow of Ch. This lemma has been intro-
duced in [15] to study the heat flow on Alexandrov spaces, see also Sect. 6.

Lemma 4.3 (Kuwada’s lemma) Let f0 ∈ L2(X,m) and let (ft ) be the L2-gradient
flow of Ch starting from f0. Assume that for some 0 < c ≤ C < ∞ it holds c ≤ f0 ≤
C m-a.e. in X, and that

∫
X

f0dm = 1. Then the curve t �→ μt := ftm is absolutely
continuous w.r.t. W2 and it holds

|μ̇t |2 ≤
∫

X

|Dft |2∗
ft

dm, for a.e. t ∈ (0,∞).

Proof We start from the duality formula (5) with ϕ = −ψ : taking into account the
factor 2 and using the identity Q1(−ψ) = ψc we get

W 2
2 (μ, ν)

2
= sup

ϕ

∫
X

Q1ϕdν −
∫

X

ϕdμ (33)

where the supremum runs among all Lipschitz functions ϕ.
Fix such a ϕ and recall (Proposition 3.6) that the map t �→ Qtϕ is Lipschitz with

values in L∞(X,m), and a fortiori in L2(X,m).
Fix also 0 ≤ t < s, set � = (s − t) and recall that since (ft ) is the Gradient Flow

of Ch in L2, the map [0, �] � τ �→ ft+τ is absolutely continuous with values in L2.
Therefore the map [0, �] � τ �→ Qτ

�
ϕft+τ is absolutely continuous with values in

L2. The equality

Qτ+h
�

ϕft+τ+h − Qτ
�
ϕft+τ

h
= ft+τ

Qτ+h
�

ϕ − Qτ
�
ϕ

h
+ Qτ+h

�
ϕ

ft+τ+h − ft+τ

h
,

together with the uniform continuity of (x, τ ) �→ Qτ
�
ϕ(x) shows that the derivative

of τ �→ Qτ
�
ϕft+τ can be computed via the Leibniz rule.
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We have:
∫

X

Q1ϕdμs −
∫

X

ϕdμt =
∫

X

Q1ϕft+�dm−
∫

X

ϕftdm

=
∫

X

∫ �

0

d

dτ
(Qτ

�
ϕft+τ )dτdm

≤
∫

X

∫ �

0

(
−|DQτ

�
ϕ|2

2�
ft+τ + Qτ

�
ϕ�ft+τ

)
dτdm, (34)

having used Theorem 3.2. Observe that by inequalities (23) and (19) we have
∫

X

Qτ
�
ϕ�ft+τ dm≤

∫
X

|DQτ
�
ϕ|∗|Dft+τ |∗dm≤

∫
X

|DQτ
�
ϕ||Dft+τ |∗dm

≤ 1

2�

∫
X

|DQτ
�
ϕ|2ft+τ dm+ �

2

∫
X

|Dft+τ |2∗
ft+τ

dm. (35)

Plugging this inequality in (34), we obtain

∫
X

Q1ϕdμs −
∫

X

ϕdμt ≤ �

2

∫ �

0

∫
X

|Dft+τ |2∗
ft+τ

dm.

This latter bound does not depend on ϕ, so from (33) we deduce

W 2
2 (μt ,μs) ≤ �

∫ �

0

∫
X

|Dft+τ |2∗
ft+τ

dm.

Since fr ≥ c for any r ≥ 0 and r �→ Ch(fr) is nonincreasing and finite for every
r > 0, we immediately get that t �→ μt is locally Lipschitz in (0,∞). At Lebesgue
points of t �→ ∫

X
|Dft |2∗/ftdm we obtain the stated pointwise bound on the metric

speed. �

Theorem 4.6 Let f ∈ L2(X,m). Assume that f is Sobolev along a.e. curve and
that |Df |w ∈ L2(X,m). Then f ∈ D(Ch) and |Df |∗ = |Df |w m-a.e. in X.

Proof Up to a truncation argument and addition of a constant, we can assume that
0 < c ≤ f ≤ C < ∞ m-a.e. in X for some c,C. Let (ft ) be the L2-gradient flow of
Ch starting from f and recall that from Proposition 4.11 we have

∫
X

f logf dm−
∫

X

ft logftdm=
∫ t

0

∫
X

|Dfs |2∗
fs

dsdm< ∞ for every t > 0.

On the other hand, from Proposition 4.14 and Lemma 4.3 we have

∫
X

f logf dm−
∫

X

ft logftdm≤ 1

2

∫ t

0

∫
X

|Df |2w
f 2

fsdsdm+ 1

2

∫ t

0

∫
X

|Dfs |2∗
fs

dsdm.

(36)
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Hence we deduce
∫ t

0
4Ch(

√
fs)ds = 1

2

∫ t

0

∫
X

|Dfs |2∗
fs

dsdm≤ 1

2

∫ t

0

∫
X

|Df |2w
f 2

fsdsdm.

Letting t ↓ 0, taking into account the L2-lower semicontinuity of Ch and the fact—
easy to check from the maximum principle—that

√
fs → √

f as s ↓ 0 in L2(X,m),
we get Ch(

√
f ) ≤ limt↓0

1
t

∫ t

0 Ch(
√

fs)ds. On the other hand, the bound f ≥ c >

0 ensures |Df |2w
f 2 ∈ L1(X,m) and the maximum principle again together with the

convergence of fs to f in L2(X,m) when s ↓ 0 grants that the convergence is also

weak∗ in L∞(X,m), therefore
∫
X

|Df |2w
f

dm= limt↓0
1
t

∫ t

0

∫
X

|Df |2w
f 2 fsdmds.

In summary, we proved

1

2

∫
X

|Df |2∗
f

dm ≤ 1

2

∫
X

|Df |2w
f

dm,

which, together with the inequality |Df |w ≤ |Df |∗ m-a.e. in X, gives the conclu-
sion. �

We are now in the position of defining the Sobolev space W 1,2(X,d,m). We start
with the following simple and general lemma.

Lemma 4.4 Let (B,‖ · ‖) be a Banach space and let E : B → [0,∞] be a
1-homogeneous, convex and lower semicontinuous map. Then the vector space
{E < ∞} endowed with the norm

‖v‖E :=
√

‖v‖2 + E2(v),

is a Banach space.

Proof It is clear that (D(E),‖ · ‖E) is a normed space, so we only need to prove
completeness. Pick a sequence (vn) ⊂ D(E) which is Cauchy w.r.t. ‖ · ‖E . Then,
since ‖ · ‖ ≤ ‖ · ‖E we also get that (vn) is Cauchy w.r.t. ‖ · ‖, and hence there
exists v ∈ B such that ‖vn − v‖ → 0. The lower semicontinuity of E grants that
E(v) ≤ limn E(vn) < ∞ and also that it holds

lim
n→∞‖vn − v‖E ≤ lim

n,m→∞‖vn − vm‖E = 0,

which is the thesis. �

Therefore, if we want to build the space W 1,2(X,d,m) ⊂ L2(X,m), the
only thing that we need is an L2-lower semicontinuous functional playing the
role which on R

d is played by the L2-norm of the distributional gradient of
Sobolev functions. We certainly have this functional, namely the map f �→
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‖|Df |∗‖L2(X,m) = ‖|Df |w‖L2(X,m). Hence the lemma above provides the Banach
space W 1,2(X,d,m). Notice that in general W 1,2(X,d,m) is not Hilbert: this is not
surprising, as already the Sobolev space W 1,2 built over (Rd ,‖ ·‖,Ld) is not Hilbert
if the underlying norm ‖ · ‖ does not come from a scalar product.

4.4 Comparison with Previous Approaches

It is now time to underline that the one proposed here is certainly not the first def-
inition of Sobolev space over a metric measure space (we refer to [17] for a much
broader overview on the subject). Here we confine the discussion only to weak no-
tions of (modulus of) gradient, and in particular to [9] and [20, 30]. Also, we discuss
only the quadratic case, referring to [5] for general power functions p and the inde-
pendence (in a suitable sense) of p of minimal gradients.

In [9] Cheeger proposed a relaxation procedure similar to the one used in
Sect. 4.1, but rather than relaxing the local Lipschitz constant of Lipschitz func-
tions, he relaxed upper gradients of arbitrary functions. More precisely, he defined

E(f ) := inf lim
n→∞

‖Gn‖L2(X,m),

where the infimum is taken among all sequences (fn) converging to f in L2(X,m)

such that Gn is an upper gradient for fn. Then, with the same computations done in
Sect. 4.1 (actually and obviously, the story goes the other way around: we closely
followed his arguments) he showed that for f ∈ D(E) there is an underlying no-
tion of weak gradient |Df |C , called minimal generalized upper gradient, such that
E(f ) = ‖|Df |C‖L2(X,m) and

|Df |C ≤ G m-a.e. in X,

for any G weak limit of a sequence (Gn) as in the definition of E(f ).
Notice that since the local Lipschitz constant is always an upper gradient for

Lipschitz functions, one certainly has

|Df |C ≤ |Df |∗ m-a.e. in X, for any f ∈ D(Ch). (37)

Koskela and MacManus [20] introduced and Shanmugalingam [30] further studied
a procedure close to ours (again: actually we have been inspired by them) to produce
a notion of “norm of weak gradient” which does not require a relaxation procedure.
Recall that for Γ ⊂ AC([0,1],X) the 2-Modulus Mod2(Γ ) is defined by

Mod2(Γ ) := inf

{
‖ρ‖2

L2(X,m)
:
∫

γ

ρ ≥ 1 ∀γ ∈ Γ

}
for every Γ ⊂ AC

([0,1],X)
.

(38)
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It is possible to show that the 2-Modulus is an outer measure on AC([0,1],X).
Building on this notion, Koskela and MacManus [20] considered the class of func-
tions f which satisfy the upper gradient inequality not necessarily along all curves,
but only out of a Mod2-negligible set of curves. In order to compare more prop-
erly this concept to Sobolev classes, Shanmugalingam said that G : X → [0,∞] is
a weak upper gradient for f if there exists f̃ = f m-a.e. such that

∣∣f̃ (γ0) − f̃ (γ1)
∣∣ ≤

∫
γ

G for every γ ∈ AC
([0,1],X) \N with Mod2(N ) = 0.

Then, she defined the energy Ẽ : L2(X,m) → [0,∞] by putting

Ẽ(f ) := inf‖G‖2
L2(X,m)

,

where the infimum is taken among all weak upper gradient G of f according to the
previous condition. Thanks to the properties of the 2-modulus (a stability property
of weak upper gradients analogous to ours), it is possible to show that Ẽ is indeed
L2-lower semicontinuous, so that it leads to a good definition of the Sobolev space.
Also, using a key lemma due to Fuglede, Shanmugalingam proved that E = Ẽ on
L2(X,m), so that they produce the same definition of Sobolev space W 1,2(X,d,m)

and the underlying gradient |Df |S which gives a pointwise representation to Ẽ(f )

is the same |Df |C behind the energy E.
Observe now that for a Borel set Γ ⊂ AC2([0,1],X) and a test plan π , inte-

grating w.r.t. π the inequality
∫
γ

ρ ≥ 1 ∀γ ∈ Γ and then minimizing over ρ, we
get

[
π(Γ )

]2 ≤ C(π)Mod2(Γ )

∫∫ 1

0
|γ̇ |2dsdπ(γ ),

which shows that any Mod2-negligible set of curves is also negligible according to
Definition 4.5. This fact easily yields that any f ∈ D(Ẽ) is Sobolev along a.e. curve
and satisfies

|Df |w ≤ |Df |C, m-a.e. in X. (39)

Given that we proved in Theorem 4.6 that |Df |∗ = |Df |w , inequalities (37) and
(39) also give that |Df |∗ = |Df |w = |Df |C = |Df |S (the smallest one among the
four notions coincides with the largest one).

What we get by the new approach to Sobolev spaces on metric measure spaces
is the following result.

Theorem 4.7 (Density in energy of Lipschitz functions) Let (X,d,m) be a compact
normalized metric measure space. Then for any f ∈ L2(X,m) with weak upper
gradient in L2(X,m) there exists a sequence (fn) of Lipschitz functions converging
to f in L2(X,m) such that both |Dfn| and |Dfn|w converge to |Df |w in L2(X,m)

as n → ∞.
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Proof Straightforward consequence of the identity of weak and relaxed gradients
and of Proposition 4.8. �

Let us point out a few aspects behind the strategy of the proof of Theorem 4.7,
which of course strongly relies on Lemma 4.3 and Proposition 4.14. First of all, let
us notice that the stated existence of a sequence of Lipschitz function fn converging
to f with |Dfn| → |Df |w in L2(X,m) is equivalent to show that

lim
n→∞Y1/n(f ) ≤

∫
X

|Df |2wdm, (40)

where, for τ > 0, Yτ denotes the Yosida regularization

Yτ (f ) := inf
h∈Lip(X)

{
1

2

∫
X

|Dh|2dm+ 1

2τ

∫
X

|h − f |2dm

}
.

In fact, the sequence fn can be chosen by a simple diagonal argument among the
approximate minimizers of Y1/n(f ). On the other hand, it is well known that the
relaxation procedure we used to define the Cheeger energy yields

Y1/n(f ) = min
h∈D(Ch)

{
Ch(h) + n

2

∫
X

|h − f |2dm

}
, (41)

and therefore (40) could be achieved by trying to estimate the Cheeger energy of the
unique minimizer f̃n of (41) in terms of |Df |w .

Instead of using the Yosida regularization Y1/n, in the proof of Theorem 4.6 we
obtained a better approximation of f by flowing it (for a small time step, say tn ↓ 0)
through the L2-gradient flow ft of the Cheeger energy. This flow is strictly related
to Yτ , since it can be obtained as the limit of suitably rescaled iterated minimizers
of Yτ (the so called Minimizing Movement scheme, see e.g. [3]), but has the great
advantage to provide a continuous curve of probability densities ft , which can be
represented as the image of a test plan, through Lisini’s Theorem. Thanks to this
representation and Kuwada’s Lemma, we were allowed to use the weak upper gra-
dient |Df |w instead of |Df |∗ to estimate the Entropy dissipation along ft (see (36))
and to obtain the desired sharp bound of |Dfs |∗ at least for some time s ∈ (0, tn). In
any case, a posteriori we recovered the validity of (40).

This density result was previously known (via the use of maximal functions and
covering arguments) under the assumption that the space was doubling and sup-
ported a local Poincaré inequality for weak upper gradients, see [9, Theorem 4.14,
Theorem 4.24]. Actually, Cheeger proved more, namely that under these hypotheses
Lipschitz functions are dense in the W 1,2 norm, a result which is still unknown in
the general case. Also, notice that another byproduct of our density in energy result
is the equivalence of local Poincaré inequality stated for Lipschitz functions on the
left hand side and slope on the right hand side, and local Poincaré inequality stated
for general functions on the left hand side and upper gradients on the right hand side;
this result was previously known [19] under much more restrictive assumptions on
the metric measure structure.
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5 The Relative Entropy and Its W2-Gradient Flow

In this section we study the W2-gradient flow of the relative entropy on spaces with
Ricci curvature bounded below (in short: CD(K,∞) spaces). The content is essen-
tially extracted from [12]. As before the space (X,d,m) is compact and normalized
(i.e. m(X) = 1).

Recall that the relative entropy functional Entm : P(X) → [0,∞] is defined by

Entm(μ) :=
{∫

X
f logf dm if μ = fm,

+∞ otherwise.

Definition 5.9 (Weak bound from below on the Ricci curvature) We say that
(X,d,m) has Ricci curvature bounded from below by K for some K ∈ R if the
Relative Entropy functional Entm is K-convex along geodesics in (P(X),W2).
More precisely, if for any μ0,μ1 ∈ D(Entm) there exists a constant speed geodesic
μt : [0,1] → P(X) between μ0 and μ1 satisfying

Entm(μt ) ≤ (1 − t)Entm(μ0) + t Entm(μ1) − K

2
t (1 − t)W 2

2 (μ0,μ1) ∀t ∈ [0,1].

This definition was introduced in [23] and [31]. Its two basic features are: com-
patibility with the Riemannian case (i.e. a compact Riemannian manifold endowed
with the normalized volume measure has Ricci curvature bounded below by K

in the classical pointwise sense if and only if Entm is K-geodesically convex in
(P(X),W2)) and stability w.r.t. measured Gromov-Hausdorff convergence.

We also recall that Finsler geometries are included in the class of metric measure
spaces with Ricci curvature bounded below. This means that if we have a smooth
compact Finsler manifold (that is: a differentiable manifold endowed with a norm—
possibly not coming from an inner product—on each tangent space which varies
smoothly on the base point) endowed with an arbitrary positive C∞ measure, then
this space has Ricci curvature bounded below by some K ∈ R (see the theorem
stated at page 926 of [32] for the flat case and [24] for the general one).

The goal now is to study the W2-gradient flow of Entm. Notice that the general
theory of gradient flows of K-convex functionals ensures the following existence
result (see the representation formula for the slope (7) and Theorem 2.1).

Theorem 5.8 (Consequences of the general theory of gradient flows) Let (X,d,m)

be a CD(K,∞) space. Then the slope |D− Entm | is lower semicontinuous w.r.t.
weak convergence and for any μ ∈ D(Entm) there exists a gradient flow (in the
EDE sense of Definition 2.1) of Entm starting from μ.

Thus, existence is granted. The problem is then to show uniqueness of the gra-
dient flow. To this aim, we need to introduce the concept of push forward via a
plan.
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Definition 5.10 (Push forward via a plan) Let μ ∈ P(X) and let γ ∈ P(X2) be
such that μ � π1

� γ . The measures γ μ ∈ P(X2) and γ �μ ∈ P(X) are defined as:

dγ μ(x, y) := dμ

dπ1
� γ

(x)dγ (x, y), γ �μ := π2
� γ μ.

Observe that, since γ μ � γ , we have γ �μ � π2
� γ . We will say that γ has

bounded deformation if there exist 0 < c ≤ C < ∞ such that cm ≤ πi
�γ ≤ Cm,

i = 1,2. Writing μ = f π1
� γ , the definition gives that

γ �μ = ηπ2
� γ with η given by η(y) =

∫
f (x)dγ y(x), (42)

where {γ y}y∈X is the disintegration of γ w.r.t. its second marginal.
The operation of push forward via a plan has interesting properties in connection

with the relative entropy functional.

Proposition 5.15 The following properties hold:

(i) For any μ,ν ∈ P(X), γ ∈ P(X2) such that μ,ν � π1
� γ it holds

Entγ �ν(γ �μ) ≤ Entν(μ).

(ii) For μ ∈ D(Entm) and γ ∈ P(X2) with bounded deformation, it holds γ �μ ∈
D(Entm).

(iii) Given γ ∈ P(X2) with bounded deformation, the map

D(Entm) � μ �→ Entm(μ) − Entm(γ �μ),

is convex (w.r.t. linear interpolation of measures).

Proof (i). We can assume μ � ν, otherwise there is nothing to prove. Then it is
immediate to check from the definition that γ �μ � γ �ν. Let μ = f ν, ν = θπ1

� γ ,
γ �μ = ηγ �ν, and u(z) := z log z. By disintegrating γ as in (42), we have that

η(y) =
∫

f (x)dγ̃ y(x), γ̃ y =
(∫

θ(x)dγ y(x)

)−1

θγ y.

The convexity of u and Jensen’s inequality with the probability measures γ̃ y yield

u
(
η(y)

) ≤
∫

u
(
f (x)

)
dγ̃ y(x).

Since {γ̃ y}y∈X is the disintegration of γ̃ = (θ ◦ π1)γ with respect to its second
marginal γ �ν and the first marginal of γ̃ is ν, by integration of both sides with
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respect to γ �ν we get

Entγ �ν(γ �μ) =
∫

u
(
η(y)

)
dγ �ν(y) ≤

∫ (∫
u
(
f (x)

)
dγ̃ y(x)

)
dγ �ν(y)

≤
∫

u
(
f (x)

)
dγ̃ (x, y) =

∫
u
(
f (x)

)
dν(x) = Entν(μ).

(ii). Taking into account the identity

Entν(μ) = Entσ (μ) +
∫

log

(
dσ

dν

)
dμ, (43)

valid for any μ,ν,σ ∈ P(X) with σ having bounded density w.r.t. ν, the fact that
γ �(π

1
� γ ) = π2

� γ and the fact that cm ≤ π1
� γ ,π2

� γ ≤ Cm, the conclusion follows
from

Entm(γ �μ) ≤ Entπ2
� γ (γ �μ) + logC

≤ Entπ1
� γ (μ) + logC ≤ Entm(μ) + logC − log c.

(iii). Let μ0,μ1 ∈ D(Entm) and define μt := (1 − t)μ0 + tμ1 and νt := γ �μt . A di-
rect computation shows that

(1 − t)Entm(μ0) + t Entm(μ1) − Entm(μt ) = (1 − t)Entμt (μ0) + t Entμt (μ1),

(1 − t)Entm(ν0) + t Entm(ν1) − Entm(νt ) = (1 − t)Entνt (ν0) + t Entνt (ν1),

and from (i) we have that

Entμt (μi) ≥ Entγ �μt (γ �μi) = Entνt (νi), ∀t ∈ [0,1], i = 0,1,

which gives the conclusion. �

In the next lemma and in the sequel we use the short notation

C(γ ) :=
∫

X×X

d2(x, y)dγ (x, y).

Lemma 5.5 (Approximability in Entropy and distance) Let μ,ν ∈ D(Entm).
Then there exists a sequence (γ n) of plans with bounded deformation such that
Entm(γ n

�μ) → Entm(ν) and C(γ n
μ) → W 2

2 (μ, ν) as n → ∞.

Proof Let f and g respectively be the densities of μ and ν w.r.t. m; pick γ ∈
OPT(μ, ν) and, for every n ∈ N, let An := {(x, y) : f (x) + g(y) ≤ n} and

γ n := cn

(
γ |An + 1

n
(Id, Id)�m

)
,
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where cn → 1 is the normalization constant. It is immediate to check that γ n is of
bounded deformation and that this sequence satisfies the thesis (see [12] for further
details). �

Proposition 5.16 (Convexity of the squared slope) Let (X,d,m) be a CD(K,∞)

space. Then the map

D(Entm) � μ �→ |D− Entm |2(μ)

is convex (w.r.t. linear interpolation of measures).

Notice that the only assumption that we make is the K-convexity of the entropy
w.r.t. W2, and from this we deduce the convexity w.r.t. the classical linear interpola-
tion of measures of the squared slope.

Proof Recall that from (7) we know that

∣∣D− Entm
∣∣(μ) = sup

ν∈P2(X)

ν �=μ

[Entm(μ) − Entm(ν) − K−
2 W 2

2 (μ, ν)]+
W2(μ, ν)

.

We claim that it also holds

∣∣D− Entm
∣∣(μ) = sup

γ

[Entm(μ) − Entm(γ �μ) − K−
2 C(γ μ)]+√

C(γ μ)
,

where the supremum is taken among all plans with bounded deformation (where the
right hand side is taken 0 by definition if C(γ μ) > 0).

Indeed, Lemma 5.5 gives that the first expression is not larger than the second.
For the converse inequality we can assume C(γ μ) > 0, ν = γ �μ �= μ, and K < 0.
Then it is sufficient to apply the simple inequality

a, b, c ∈R, 0 < b ≤ c ⇒ (a − b)+√
b

≥ (a − c)+√
c

,

with a := Entm(μ) − Entm(γ �μ), b := K−
2 W 2

2 (μ,γ �μ) and c := K−
2 C(γ μ).

Thus, to prove the thesis it is enough to show that for every γ with bounded
deformation the map

D(Entm) � μ �→ [(Entm(μ) − Entm(γ �μ) − K−
2 C(γ μ))+]2

C(γ μ)
,

is convex w.r.t. linear interpolation of measures.
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Clearly the map

D(Entm) � μ �→ C(γ μ) =
∫ (∫

d2(x, y)dγ x(y)

)
dμ(x),

where {γ x} is the disintegration of γ w.r.t. its first marginal, is linear. Thus, from
(iii) of Proposition 5.15 we know that the map

μ �→ Entm(μ) − Entm(γ �μ) − K−

2
C(γ μ),

is convex w.r.t. linear interpolation of measures. Hence the same is true for its pos-
itive part. The conclusion follows from the fact that the function Ψ : [0,∞)2 →
R∪ {+∞} defined by

Ψ (a, b) :=

⎧⎪⎨
⎪⎩

a2

b
if b > 0,

+∞ if b = 0, a > 0

0 if a = b = 0,

is convex and it is nondecreasing w.r.t. a. �

The convexity of the squared slope allows to prove uniqueness of the gradient
flow of the entropy:

Theorem 5.9 (Uniqueness of the gradient flow of Entm) Let (X,d,m) be a
CD(K,∞) space and let μ ∈ D(Entm). Then there exists a unique gradient flow
of Entm starting from μ in (P(X),W2).

Proof We recall (inequality (4)) that the squared Wasserstein distance is convex
w.r.t. linear interpolation of measures. Therefore, given two absolutely continuous

curves (μ1
t ) and (μ2

t ), the curve t �→ μt := μ1
t +μ2

t

2 is absolutely continuous as well
and its metric speed can be bounded from above by

|μ̇t |2 ≤ |μ̇1
t |2 + |μ̇2

t |2
2

, for a.e. t ∈ (0,∞). (44)

Let (μ1
t ) and (μ2

t ) be gradient flows of Entm starting from μ ∈ D(Entm). Then we
have

Entm(μ) = Entm
(
μ1

T

) + 1

2

∫ T

0

∣∣μ̇1
t

∣∣2
dt + 1

2

∫ T

0
|D− Entm |2(μ1

t

)
dt, ∀T ≥ 0,

Entm(μ) = Entm
(
μ2

T

) + 1

2

∫ T

0

∣∣μ̇2
t

∣∣2dt + 1

2

∫ T

0
|D− Entm |2(μ2

t

)
dt, ∀T ≥ 0.

Adding up these two equalities, using the convexity of the squared slope guaranteed
by Proposition 5.16, the convexity of the squared metric speed given by (44) and the
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strict convexity of the relative entropy, we deduce that for the curve t �→ μt it holds

Entm(μ) > Entm(μT ) + 1

2

∫ T

0
|μ̇t |2dt + 1

2

∫ T

0

∣∣D− Entm
∣∣2

(μt )dt,

for every T such that μ1
T �= μ2

T . This contradicts inequality (9). �

6 The Heat Flow as Gradient Flow

It is well known that on R
d the heat flow can be seen both as gradient flow of the

Dirichlet energy in L2 and as gradient flow of the relative entropy in (P2(R
d),W2).

It is therefore natural to ask whether this identification between the two a priori
different gradient flows persists or not in a general compact and normalized metric
measure space (X,d,m).

The strategy consists in considering a gradient flow (ft ) of Ch with nonnegative
initial data and in proving that the curve t �→ μt := ftm is a gradient flow of Entm(·)
in (P(X),W2): by the uniqueness result of Theorem 5.9 this will be sufficient to
conclude.

We already built most of the ingredients needed for the proof to work, the only
thing that we should add is the following lemma, where the slope of Entm is bounded
from above in terms of the notions of “norm of weak gradient” that we discussed in
Chap. 4. Notice that the bound (47) for Lipschitz functions was already known to
Lott-Villani [23], so that our added value here is the use of the density in energy of
Lipschitz functions to get the correct, sharp inequality (45) (sharpness will be seen
in (48)).

Lemma 6.6 (Fisher bounds slope) Let (X,d,m) be a compact and normalized
CD(K,∞) metric-measure space and let f be a probability density which is
Sobolev along a.e. curve. Then

∣∣D− Entm
∣∣2

(fm) ≤
∫

X

|Df |2w
f

dm= 4
∫

X

|D√
f |2wdm. (45)

Proof Assume at first that f is Lipschitz with 0 < c ≤ f , and let (fn) be a sequence
of probability densities such that W2(fnm, fm) → 0 and where the slope of Entm
at fm is attained. Choose γ n ∈ OPT(fm, fnm) and notice that

∫
X

f logf dm−
∫

X

fn logfndm

≤
∫

X

(f − fn) logf dm

=
∫ (

logf (x) − logf (y)
)
dγ n(x, y)
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≤
√∫

(logf (x) − logf (y))2

d2(x, y)
dγ n(x, y)

√∫
d2(x, y)dγ n(x, y)

=
(∫ (∫

L2(x, y)dγ n,x(y)

)
f (x)dm(x)

)1/2

W2(fm, fnm), (46)

where γ n,x is the disintegration of γ n with respect to fm, and L is the bounded
Borel function

L(x, y) :=
{ | logf (x)−logf (y)|

d(x,y)
if x �= y,

|D logf |(x) = |Df |(x)
f (x)

ifx = y.

Notice that for every x ∈ X the map y �→ L(x, y) is upper-semicontinuous; since∫
(
∫

d2(x, y)dγ n,x)f (x)dm → 0 as n → ∞, we can assume without loss of gener-
ality that

lim
n→∞

∫
d2(x, y)dγ n,x(y) = 0 for fm-a.e. x ∈ X.

Fatou’s Lemma then yields

lim
n→∞

∫
L2(x, y)dγ n(x, y) ≤

∫
X

L2(x, x)f (x)dm(x) =
∫

X

|Df |2
f

dm,

hence (46) gives

∣∣D− Entm
∣∣(fm) = lim

n→∞
(Entm(fm) − Entm(fnm))+

W2(fm, fnm)
≤

√∫
X

|Df |2
f

dm. (47)

We now turn to the general case. Let f be any probability density Sobolev along a.e.
curve such that

√
f ∈ D(Ch) (otherwise is nothing to prove). We use Theorem 4.7

to find a sequence of Lipschitz functions (
√

fn) converging to
√

f in L2(X,m) and
such that |D√

fn| → |D√
f |w in L2(X,m) and m-a.e. Up to summing up positive

and vanishing constants and multiplying for suitable normalization factors, we can
assume that 0 < cn ≤ fn and

∫
X

fndm = 1, for any n ∈ N. The conclusion follows
passing to the limit in (47) by taking into account the weak lower semicontinuity of
|D− Entm | (formula (7) and discussion thereafter). �

Theorem 6.10 (The heat flow as gradient flow) Let f0 ∈ L2(X,m) be such that
μ0 = f0m ∈ P(X) and denote by (ft ) the gradient flow of Ch in L2(X,m) starting
from f0 and by (μt ) the gradient flow of Entm in (P(X),W2) starting from μ0.
Then μt = ftm for any t ≥ 0.

Proof Thanks to the uniqueness result of Theorem 5.9, it is sufficient to prove that
(ftm) satisfies the Energy Dissipation Equality for Entm in (P(X),W2). We as-
sume first that 0 < c ≤ f0 ≤ C < ∞ m-a.e. in X, so that the maximum principle
(Proposition 4.11) ensures 0 < c ≤ ft ≤ C < ∞ for any t > 0. By Proposition 4.11
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we know that t �→ Entm(ftm) is absolutely continuous with derivative equal to

− ∫
X

|Dft |2w
ft

dm. Lemma 4.3 ensures that t �→ ftm is absolutely continuous w.r.t.

W2 with squared metric speed bounded by
∫
X

|Dft |2w
ft

dm, so that taking into account
Lemma 6.6 we get

Entm(f0m) ≥ Entm(ftm) + 1

2

∫ t

0
| ˙fsm|2ds + 1

2

∫ t

0

∣∣D− Entm
∣∣2

(fsm)ds,

which, together with (9), ensures the thesis.
For the general case we argue by approximation, considering

f n
0 := cn min

{
n,max{f0,1/n}},

cn being the normalizing constant, and the corresponding gradient flow (f n
t ) of Ch.

The fact that f n
0 → f0 in L2(X,m) and the convexity of Ch implies that f n

t → ft

in L2(X,m) for any t > 0. In particular, W2(f
n
t m, ftm) → 0 as n → ∞ for every t

(because convergence w.r.t. W2 is equivalent to weak convergence of measures).
Now notice that we know that

Entm
(
f n

0 m
) = Entm

(
f n

t

) + 1

2

∫ t

0

∣∣ ˙f n
s m

∣∣2ds + 1

2

∫ t

0

∣∣D− Entm
∣∣2(

f n
s

)
ds, ∀t > 0.

Furthermore, it is immediate to check that Entm(f n
0 m) → Entm(f0m) as n → ∞.

The pointwise convergence of f n
t m to ftm w.r.t. W2 easily yields that the terms

on the right hand side of the last equation are lower semicontinuous when n → ∞
(recall Theorem 5.8 for the slope). Thus it holds

Entm(f0m) ≥ Entm(ft ) + 1

2

∫ t

0
| ˙fsm|2ds + 1

2

∫ t

0

∣∣D− Entm
∣∣2

(fs)ds, ∀t > 0,

which, by (11), is the thesis.
We know, by Theorem 5.9, that there is at most a gradient flow starting from μ0.

We also know that a gradient flow f ′
t of Ch starting from f0 exists, and part (i) gives

that μ′
t := f ′

t m is a gradient flow of Entm. The uniqueness of gradient flows gives
μt = μ′

t for all t ≥ 0. �

As a consequence of the previous Theorem 6.10 it would not be difficult to prove
that the inequality (45) is in fact an identity: if (X,d,m) is a compact and normalized
CD(K,∞) space, then |D− Entm |(fm) < ∞ if and only if the probability density
f is Sobolev along a.e. curve and

√
f ∈ D(Ch); in this case

∣∣D− Entm
∣∣2

(fm) =
∫

X

|Df |2w
f

dm = 4
∫

X

|D√
f |2wdm. (48)
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7 A Metric Brenier Theorem

In this section we state and prove the metric Brenier theorem in CD(K,∞) spaces
we announced in the introduction. It was recently proven in [14] that under an addi-
tional non-branching assumption one can really recover an optimal transport map,
see also [7] for related results, obtained under stronger non-branching assumptions
and weaker convexity assumptions.

Definition 7.11 (Strict CD(K,∞) spaces) We say that a compact normalized met-
ric measure space (X,d,m) is a strict CD(K,∞) space if for any μ0,μ1 ∈ D(Entm)

there exists π ∈ GeoOpt(μ0,μ1) with the following property. For any bounded
Borel function F : Geo(X) → [0,∞) such that

∫
Fdπ = 1, it holds

Entm
(
μF

t

) ≤ (1 − t)Entm
(
μF

0

) + t Entm
(
μF

1

) − K

2
t (1 − t)W 2

2

(
μF

0 ,μF
1

)
,

where μF
t := (et )�(Fπ), for any t ∈ [0,1].

Thus, the difference between strict CD(K,∞) spaces and standard CD(K,∞)

ones is the fact that geodesic convexity is required along all geodesics induced by
the weighted plans Fπ , rather than the one induced by π only. Notice that the nec-
essary and sufficient optimality conditions ensure that (e0, e1)�π is concentrated on
a c-monotone set, hence (e0, e1)�(Fπ) has the same property and it is optimal, rel-
ative to its marginals. (We remark that recent results of Rajala [28] suggest that it is
not necessary to assume this stronger convexity to get the metric Brenier theorem—
and hence not even a treatable notion of spaces with Riemannian Ricci curvature
bounded from below—see [2] for progresses in this direction.)

It is not clear to us whether the notion of being strict CD(K,∞) is stable or not
w.r.t. measured Gromov-Hausdorff convergence and, as such, it should be handled
with care. The importance of strict CD(K,∞) bounds relies on the fact that on
these spaces geodesic interpolation between bounded probability densities is made
of bounded densities as well, thus granting the existence of many test plans.

Notice that non-branching CD(K,∞) spaces are always strict CD(K,∞)

spaces, indeed let μ0,μ1 ∈ D(Entm) and pick π ∈ GeoOpt(μ0,μ1) such that Entm
is K-convex along ((et )�π). From the non-branching hypothesis it follows that for
F as in Definition 7.11 there exists a unique element in GeoOpt(μF

t ,μF
1 ) (resp.

in GeoOpt(μF
t ,μF

0 )). Also, since F is bounded, from μt ∈ D(Entm) we deduce
μF

t ∈ D(Entm). Hence the map t �→ Entm(μF
t ) is K-convex and bounded on [ε,1]

and on [0,1 − ε] for all ε ∈ (0,1), and therefore it is K-convex on [0,1].

Proposition 7.17 (Bound on geodesic interpolant) Let (X,d,m) be a strict
CD(K,∞) space and let μ0,μ1 ∈ P(X) be with bounded densities. Then there
exists a test plan π ∈ GeoOpt(μ0,μ1) so that the induced geodesic μt = (et )�π

connecting μ0 to μ1 is made of measures with uniformly bounded densities.
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Proof Let M be an upper bound on the densities of μ0,μ1, π ∈ GeoOpt(μ0,μ1)

be a plan which satisfies the assumptions of Definition 7.11 and μt := (et )�π . We
claim that the measures μt have uniformly bounded densities. The fact that μt � m

is obvious by geodesic convexity, so let ft be the density of μt and assume by
contradiction that for some t0 ∈ [0,1] it holds

ft0(x) > MeK−D2/8, ∀x ∈ A, (49)

where m(A) > 0 and D is the diameter of X. Define π̃ := cπ |e−1
t0

(A)
, where c is the

normalizing constant (notice that π̃ is well defined, because π(e−1
t0

(A)) = μt0(A) >

0) and observe that the density of π̃ w.r.t. π is bounded. Let μ̃t := (et )�π̃ and f̃t its
density w.r.t. m. From (49) we get f̃t0 = cft0 on A and f̃t0 = 0 on X \ A, hence

Entm(μ̃t0) =
∫

log(f̃t0 ◦ et0)dπ > log c + logM + K−

8
D2. (50)

On the other hand, we have f̃0 ≤ cf0 ≤ cM and f̃1 ≤ cf1 ≤ cM and thus

Entm(μ̃i) =
∫

log(f̃i ◦ ei )dπ̃ ≤ log c + logM, i = 0,1. (51)

Finally, it certainly holds W 2
2 (μ̃0, μ̃1) ≤ D2, so that (50) and (51) contradict the

K-convexity of Entm along (μ̃t ). Hence (49) is false and the ft ’s are uniformly
bounded. �

An important consequence of this uniform bound is the following metric version
of Brenier’s theorem.

Theorem 7.11 (A metric Brenier theorem) Let (X,d,m) be a strict CD(K,∞)

space, let f0, f1 be probability densities and ϕ any Kantorovich potential for the
couple (f0m, f1m). Then for every π ∈ GeoOpt(f0m, f1m) it holds

d(γ0, γ1) = |Dϕ|w(γ0) = ∣∣D+ϕ
∣∣(γ0), for π -a.e. γ . (52)

In particular,

W 2
2 (f0m, f1m) =

∫
X

|Dϕ|2∗f0dm.

If moreover f0, f1 ∈ L∞(X,m) and π is a test plan (such a plan exists thanks to
Proposition 7.17) then

lim
t↓0

ϕ(γ0) − ϕ(γt )

d(γ0, γt )
= ∣∣D+ϕ

∣∣(γ0) in L2(Geo(X),π
)
. (53)

Proof ϕ is Lipschitz, therefore |D+ϕ| is an upper gradient of ϕ, and hence |Dϕ|w ≤
|D+ϕ| m-a.e. Now fix x ∈ X and pick any y ∈ ∂cϕ(x). From the c-concavity of ϕ
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we get

ϕ(x) = d2(x, y)

2
− ϕc(y),

ϕ(z) ≤ d2(z, y)

2
− ϕc(y) ∀z ∈ X.

Therefore

ϕ(z) − ϕ(x) ≤ d2(z, y)

2
− d2(x, y)

2
≤ d(z, x)

d(z, y) + d(x, y)

2
.

Dividing by d(x, z) and letting z → x, by the arbitrariness of y ∈ ∂cϕ(x) and the
fact that supp((e0, e1)�π) ⊂ ∂cϕ we get

∣∣D+ϕ
∣∣(γ0) ≤ min

y∈∂cϕ(γ0)
d(γ0, y) ≤ d(γ0, γ1) for π-a.e. γ.

Since

∫
X

|Dϕ|2wf0dm≤
∫ ∣∣D+ϕ

∣∣2
(γ0)dπ and

∫
d2(γ0, γ1)dπ(γ ) = W 2

2 (f0m, f1m),

to conclude it is sufficient to prove that

W 2
2 (f0m, f1m) ≤

∫
X

|Dϕ|2wf0dm. (54)

Now assume that f0 and f1 are bounded from above and let π̃ ∈ GeoOpt(f0m, f1m)

be a test plan (such π̃ exists thanks to Proposition 7.17). Since ϕ is a Kantorovich
potential and (e0, e1)�π̃ is optimal, it holds γ1 ∈ ∂cϕ(γ0) for any γ ∈ supp(π̃).
Hence arguing as before we get

ϕ(γ0) − ϕ(γt ) ≥ d2(γ0, γ1)

2
− d2(γt , γ1)

2
= d2(γ0, γ1)

(
t − t2/2

)
. (55)

Dividing by d(γ0, γt ) = td(γ0, γ1), squaring and integrating w.r.t. π̃ we obtain

lim
t↓0

∫ (
ϕ(γ0) − ϕ(γt )

d(γ0, γt )

)2

dπ̃(γ ) ≥
∫

d2(γ0, γ1)dπ̃(γ ) = W 2
2 (f0m, f1m). (56)
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Using Remark 4.4 and the fact that π̃ is a test plan we have

∫ (
ϕ(γ0) − ϕ(γt )

d(γ0, γt )

)2

dπ̃(γ ) ≤
∫

1

t2

(∫ t

0
|Dϕ|w(γs)ds

)2

dπ̃(γ )

≤ 1

t

∫∫ t

0
|Dϕ|2w(γs)dsdπ̃(γ )

= 1

t

∫∫ t

0
|Dϕ|2wdsd(et )�π̃

= 1

t

∫∫ t

0
|Dϕ|2wfsdsdm, (57)

where fs is the density of (es)�π̃ . Since (et )�π̃ weakly converges to (e0)�π̃ as t ↓ 0
and Entm((et )�π̃) is uniformly bounded (by the K-geodesic convexity), we con-
clude that ft → f0 weakly in L1(X,m) and since |Dϕ|w ∈ L∞(X,m) we have

lim
t↓0

1

t

∫∫ t

0
|Dϕ|2wfsdsdm =

∫
X

|Dϕ|2wf0dm. (58)

Equations (56), (57) and (58) yield (54).
In order to prove (54) in the general case of possibly unbounded densities,

let us fix a Kantorovich potential ϕ, π ∈ GeoOpt(f0m, f1m) and for n ∈ N de-
fine πn := cnπ |{γ :f0(γ0)+f1(γ1)≤n}, cn → 1 being the normalization constant. Then
πn ∈ GeoOpt(f n

0 m, f n
1 m), where f n

i := (ei )�π
n, ϕ is a Kantorovich potential for

(f n
0 m, f n

1 m) and f n
0 , f n

1 ∈ L∞(X,m). Thus from what we just proved we know that
it holds

d(γ0, γ1) = |Dϕ|w(γ0) = ∣∣D+ϕ
∣∣(γ0), for πn-a.e. γ.

Letting n → ∞ we conclude.
Concerning (53), we can choose π̃ = π and obtain by (55) and (52)

ϕ(γ0) − ϕ(γt )

d(γ0, γt )
≥ 0, lim inf

t↓0

ϕ(γ0) − ϕ(γt )

d(γ0, γt )
≥ ∣∣D+ϕ

∣∣(γ0) for π -a.e. γ.

On the other hand (57) and (58) yield

lim sup
t↓0

∫ (
ϕ(γ0) − ϕ(γt )

d(γ0, γt )

)2

dπ(γ ) ≤
∫ ∣∣D+ϕ

∣∣2
(γ0)dπ(γ ),

so that, by expanding the square and applying Fatou’s Lemma, we obtain

lim sup
t↓0

∫ (
ϕ(γ0) − ϕ(γt )

d(γ0, γt )
− ∣∣D+ϕ

∣∣(γ0)

)2

dπ(γ ) ≤ 0. �
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8 More on Calculus on Compact CD(K,∞) Spaces

8.1 On Horizontal and Vertical Derivatives Again

Aim of this subsection is to prove another deep relation between “horizontal” and
“vertical” derivation, which will allow to compare the derivative of the squared
Wasserstein distance along the heat flow with the derivative of the relative entropy
along a geodesic (see the next subsection). This will be key in order to understand
the properties of spaces with Riemannian Ricci curvature bounded from below, il-
lustrated in the last section.

In order to understand the geometric point, consider the following simple exam-
ple.

Example 8.1 Let ‖ · ‖ be a smooth, strictly convex norm on R
d and let ‖ · ‖∗ be the

dual norm. Denoting by 〈·, ·〉 the canonical duality from (Rd)∗ × R
d into R, let L

be the duality map from (Rd,‖ · ‖) to ((Rd)∗,‖ · ‖∗), characterized by

〈
L(u),u

〉 = ∥∥L(u)
∥∥∗‖u‖ and

∥∥L(u)
∥∥∗ = ‖u‖ ∀u ∈ R

d,

and let L∗ be its inverse, equally characterized by

〈
v,L∗(v)

〉 = ‖v‖∗
∥∥L∗(v)

∥∥ and
∥∥L∗(v)

∥∥ = ‖v‖∗ ∀v ∈ (
R

d
)∗

.

Using the fact that ε �→ ‖u‖‖u + εu′‖ − 〈Lu,u + εu′〉 attains its minimum at ε = 0
and the analogous relation for L∗, one obtains the useful relations

〈
L(u),u′〉 = 1

2
du‖ · ‖2(u′), 〈

v′,L∗(v)
〉 = 1

2
dv‖ · ‖2∗

(
v′). (59)

For a smooth map f : Rd → R its differential dxf at any point x is intrinsically
defined as cotangent vector, namely as an element of (Rd)∗. To define the gradient
∇f (x) ∈ R

d (which is a tangent vector), the norm comes into play via the for-
mula ∇f (x) := L∗(dxf ). Now, given two smooth functions f,g, the real number
dxf (∇g(x)) is well defined as the application of the cotangent vector dxf to the
tangent vector ∇g(x).

What we want to point out, is that there are two very different ways of obtaining
dxf (∇g(x)) from a derivation. The first one, which is usually taken as the definition
of dxf (∇g(x)), is the “horizontal derivative”:

〈dxf,∇g〉 = dxf
(∇g(x)

) = lim
t→0

f (x + t∇g(x)) − f (x)

t
. (60)

The second one is the “vertical derivative”:

Df (∇g)(x) = lim
ε→0

1
2‖dx(g + εf )‖2∗ − 1

2‖dxg‖2∗(x)

ε
. (61)
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It is not difficult to check that (61) is consistent with (60): indeed (omitting the x

dependence), recalling the second identity of (59), we have

‖dg + εdf ‖2∗ = ‖dg‖2∗ + 2ε
〈
L∗(dg),df

〉 + o(ε) = ‖∇g‖2 + 2ε〈∇g,df 〉 + o(ε).

The point is that the equality between the right hand sides of formulas (61) and
(60) extends to a genuine metric setting. In the following lemma (where the plan π

plays the role of −∇g) we prove one inequality, but we remark that “playing with
signs” it is possible to obtain an analogous inequality with ≤ in place of ≥.

Lemma 8.7 (Horizontal and vertical derivatives) Let f be a Sobolev function along
a.e. curve with |Df |w ∈ L2(X,m), let g : X → R be Lipschitz and let π be a test
plan concentrated on Geo(X). Assume that

lim
t↓0

g(γ0) − g(γt )

d(γ0, γt )
= |Dg|w(γ0) in L2(Geo(X),π

)
. (62)

Then

lim
t↓0

∫
f (γt ) − f (γ0)

t
dπ(γ )

≥ 1

2

∫ |Dg|2w(γ0) − |D(g + εf )|2w(γ0)

ε
dπ(γ ) ∀ε > 0. (63)

Proof Define the functions Ft ,Gt : Geo(X) → R∪ {±∞} by

Ft (γ ) := f (γ0) − f (γt )

d(γ0, γt )
,

Gt (γ ) := g(γ0) − g(γt )

d(γ0, γt )
.

By (62) it holds ∫
|Dg|2w ◦ e0dπ(γ ) = lim

t↓0

∫
G2

t dπ . (64)

Since the measures (et )�π → (e0)�π weakly in duality with C(X) as t ↓ 0 and their
densities with respect to m are uniformly bounded, we obtain that the densities are
weakly∗ convergent in L∞(X,m). Therefore, using the fact that |D(g + εf )|2w ∈
L1(X,m) and taking into account Remark 4.4 we obtain

∫ ∣∣D(g + εf )
∣∣2
w

◦ e0dπ(γ ) =
∫ ∣∣D(g + εf )

∣∣2
w

d(e0)�π

= lim
t↓0

1

t

∫ t

0

∫
X

∣∣D(g + εf )
∣∣2
w

d(es)�πds
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= lim
t↓0

1

t

∫∫ t

0

∣∣D(g + εf )
∣∣2
w
(γs)dsdπ(γ )

≥ lim
t↓0

∫ ∣∣∣∣ (g + εf )(γ0) − (g + εf )(γt )

td(γ0, γ1)

∣∣∣∣
2

dπ(γ )

≥ lim
t↓0

∫
G2

t + 2εGtFtdπ .

Subtracting this inequality from (64) and dividing by 2ε we get

1

2

∫ |Dg|2w(γ0) − |D(g + εf )|2w(γ0)

ε
dπ(γ ) ≤ lim

t↓0
−

∫
Gt(γ )Ft (γ )dπ(γ ).

We know that Gt → |Dg|w ◦ e0 in L2(Geo(X),π) and that |Dg|w(γ0) = d(γ0, γ1)

for π -a.e. γ . Also, by Remark 4.4 and the fact that π is a test plan we easily get
supt∈[0,1] ‖Ft‖L2(π) < ∞. Thus it holds

lim
t↓0

−
∫

Gt(γ )Ft (γ )dπ(γ ) = lim
t↓0

−
∫

d(γ0, γ1)Ft (γ )dπ(γ )

= lim
t↓0

∫
f (γt ) − f (γ0)

t
dπ(γ ),

which is the thesis. �

8.2 Two Important Formulas

Proposition 8.18 (Derivative of 1
2W 2

2 along the heat flow) Let (ft ) ⊂ L2(X,m) be
a heat flow made of probability densities. Then for every σ ∈ P(X), for a.e. t ∈
(0,∞) it holds:

d

dt

1

2
W 2

2 (ftm, σ ) =
∫

X

ϕt�ftdm, for any Kantorovich potential ϕ from ft to σ.

(65)

Proof Since t �→ ftm is an absolutely continuous curve w.r.t. W2 (recall Theo-
rem 6.10), the derivative at the left hand side of (65) exists for a.e. t ∈ (0,∞). Also,
for a.e. t ∈ (0,∞) it holds limh→0

1
h
(ft+h − ft ) = �ft , the limit being understood

in L2(X,m).
Fix t0 such that the derivative of the Wasserstein distance exists and the above

limit holds and choose any Kantorovich potential ϕt0 for (ft0m, σ ). We have
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W 2
2 (ft0m, σ )

2
=

∫
X

ϕt0ft0dm+
∫

ϕc
t0

dσ

W 2
2 (ft0+hm, σ )

2
≥

∫
X

ϕt0ft0+hdm+
∫

ϕc
t0

dσ.

Therefore, since ϕt0 ∈ L∞(X,m) we get

W 2
2 (ft0+hm, σ )

2
− W 2

2 (ft0m, σ )

2
≥

∫
X

ϕt0(ft0+h − ft0)dm = h

∫
X

ϕt0�ft0 + o(h).

Dividing by h < 0 and h > 0 and letting h → 0 we get the thesis. �

Proposition 8.19 (Derivative of the Entropy along a geodesic) Let (X,d,m) be a
strict CD(K,∞) space. Let μ0,μ1 ∈ P(X), π ∈ GeoOpt(μ0,μ1) and ϕ a Kan-
torovich potential for (μ0,μ1). Assume that π is a test plan and that μ0 ≥ cm from
some c > 0 and denote by ht the density of μt := (et )�π . Then

lim
t↓0

Entm(μt ) − Entm(μ0)

t
≥ lim

ε↓0

Ch(ϕ) − Ch(ϕ + εh0)

ε
. (66)

Proof The convexity of Ch ensures that the limit at the right hand side exists. From
the fact that ϕ is Lipschitz, it is not hard to see that h0 /∈ D(Ch) implies Ch(ϕ +
εh0) = +∞ for any ε > 0 and in this case there is nothing to prove. Thus, we
assume that h0 ∈ D(Ch).

The convexity of z �→ z log z gives

Entm(μt ) − Entm(μ0)

t
≥

∫
X

logh0
ht − h0

t
dm =

∫
log(h0 ◦ et ) − log(h0 ◦ e0)

t
dπ .

(67)
Using the trivial inequality given by Taylor’s formula

logb − loga ≥ b − a

a
− |b − a|2

2c2
,

valid for any a, b ∈ [c,∞), we obtain

∫
log(h0 ◦ et ) − log(h0 ◦ e0)

t
dπ ≥

∫
h0 ◦ et − h0 ◦ e0

th0 ◦ e0
dπ

− 1

2tc2

∫
|h0 ◦ et − h0 ◦ e0|2dπ . (68)

Taking into account Remark 4.4 and the fact that |γ̇t | = d(γ0, γ1) ≤ diam(X) for a.e.
t ∈ (0,1) and π -a.e. γ , the last term in this expression can be bounded from above
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by

1

2tc2

∫ (∫ t

0
diam(X)|Dh0|w ◦ es

)2

dsdπ ≤ diam(X)2

2c2

∫ ∫ t

0
|Dh0|2w ◦ esdsdπ ,

(69)

which goes to 0 as t → 0.
Now let S : Geo(X) → R be the Borel function defined by S(γ ) := h0 ◦ γ0 and

define π̃ := 1
S
π . It is easy to check that (e0)�π̃ = m, so that in particular π̃ is a

probability measure. Also, the bound h0 ≥ c > 0 ensures that π̃ is a test plan. By
definition we have∫

h0 ◦ et − h0 ◦ e0

th0 ◦ e0
dπ =

∫
h0 ◦ et − h0 ◦ e0

t
dπ̃ .

The latter equality and inequalities (67), (68) and (69) ensure that to conclude it is
sufficient to show that

lim
t↓0

∫
h0 ◦ et − h0 ◦ e0

t
dπ̃ ≥ lim

ε↓0

Ch(ϕ) − Ch(ϕ + εh0)

ε
. (70)

Here we apply the key Lemma 8.7. Observe that Theorem 7.11 ensures that

|Dϕ|w(γ0) = lim
t↓0

ϕ(γ0) − ϕ(γt )

t
= d(γ0, γ1)

where the convergence is understood in L2(π). Thus the same holds for L2(π̃) and
the hypotheses of Lemma 8.7 are satisfied with π̃ as test plan, g := ϕ and f := h0.
Equation (63) then gives

lim
t↓0

∫
h0 ◦ et − h0 ◦ e0

t
dπ̃ ≥ lim

ε↓0

1

2

∫ |Dϕ|2w(γ0) − |D(ϕ + εh0)|2w(γ0)

ε
dπ̃(γ )

= lim
ε↓0

1

2

∫
X

|Dϕ|2w(x) − |D(ϕ + εh0)|2w(x)

ε
dm(x),

which concludes the proof. �

9 Riemannian Ricci Bounds

We say that (X,d,m) has Riemannian Ricci curvature bounded below by K ∈R (in
short, it is a RCD(K,∞) space) if any of the 3 equivalent conditions stated in the
following theorem is true.

Theorem 9.12 Let (X,d,m) be a compact and normalized metric measure space
and K ∈R. The following three properties are equivalent.
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(i) (X,d,m) is a strict CD(K,∞) space (Definition 7.11) and the L2-gradient
flow of Ch is linear.

(ii) (X,d,m) is a strict CD(K,∞) space (Definition 7.11) and Cheeger’s energy
is quadratic, i.e.

2
(
Ch(f ) + Ch(g)

) = Ch(f + g) + Ch(f − g), ∀f,g ∈ L2(X,m). (71)

(iii) supp(m) is geodesic and for any μ ∈ D(Entm) ⊂ P(X) there exists an EVIK -
gradient flow for Entm starting from μ.

Proof (i) ⇒ (ii). Since the heat semigroup Pt in L2(X,m) is linear we obtain that
� is a linear operator (i.e. its domain D(�) is a subspace of L2(X,m) and � :
D(�) → L2(X,m) is linear). Since t �→ Ch(Pt (f )) is locally Lipschitz, tends to 0
as t → ∞ and ∂tCh(Pt (f )) = −‖�Pt(f )‖2

L2 for a.e. t > 0 (see (22)), we have

Ch(f ) =
∫ ∞

0

∥∥�Pt(f )
∥∥2

L2(X,m)
dt .

Therefore Ch, being an integral of quadratic forms, is a quadratic form. Specifically,
for any f,g ∈ L2(X,m) it holds

Ch(f + g) + Ch(f − g)

=
∫ ∞

0

∥∥�Pt(f + g)
∥∥2

L2(X,m)
+ ∥∥�Pt(f − g)

∥∥2
L2(X,m)

dt

=
∫ ∞

0

∥∥�Pt(f ) + �Pt(g)
∥∥2

L2(X,m)
+ ∥∥�Pt(f ) − �Pt(g)

∥∥2
L2(X,m)

dt

=
∫ ∞

0
2
∥∥�Pt(f )

∥∥2
L2(X,m)

+ 2
∥∥�Pt(g)

∥∥2
L2(X,m)

dt

= 2Ch(f ) + 2Ch(g).

(ii) ⇒ (iii). By [31, Remark 4.6(iii)] (supp(m),d) is a length space and therefore it
is also geodesic, since X is compact.

Thanks to Remark 2.1 it is sufficient to prove that a gradient flow in the EVIK
sense exists for an initial datum μ0 � m with density bounded away from 0 and
infinity. Let f0 be this density, (ft ) the heat flow starting from it and recall that
from the maximum principle 4.11 we know that the ft ’s are far from 0 and infinity
as well for any t > 0. Fix a reference probability measure σ with density bounded
away from 0 and infinity as well. For any t ≥ 0 pick a test plan π t optimal for
(ftm, σ ). Define σ s

t := (es)�πt .
We claim that for a.e. t ∈ (0,∞) it holds

d

dt

1

2
W 2

2 (ftm, σm) ≤ lim
s↓0

Entm(σ s
t ) − Entm(σ 0

t )

s
. (72)
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Let ϕt be a Kantorovich potential for ftm, σm. By Proposition 8.18 we know that
for a.e. t ∈ (0,∞) it holds

d

dt

1

2
W 2

2 (ftm, σm) =
∫

X

ϕ�ftdm ≤ lim
ε↓0

Ch(ft − εϕt ) − Ch(ft )

ε
,

while from Proposition 8.19 we have that for any t > 0 it holds

lim
s↓0

Entm(σ s
t ) − Entm(σ 0

t )

s
≥ lim

ε↓0

Ch(ϕt ) − Ch(ϕt + εft )

ε
.

Here we use the fact that Ch is quadratic. Indeed in this case simple algebraic ma-
nipulations show that

Ch(ft − εϕt ) − Ch(ft )

ε
= Ch(ϕt ) − Ch(ϕt + εft )

ε
+ O(ε), ∀t > 0,

and therefore (72) is proved.
Now notice that the K-convexity of the entropy yields

lim
s↓0

Entm(σ s
t ) − Entm(σ 0

t )

s
≤ Entm(σ ) − Entm(ftm) − K

2
W 2

2 (ftm, σ ),

and therefore we have

d

dt

1

2
W 2

2 (ftm, σm) + Entm(ftm) + K

2
W 2

2 (ftm, σ ) ≤ Entm(σ ),

for a.e. t ∈ (0,∞).

By Proposition 2.1 we conclude.
(iii) ⇒ (i). Since (supp(m),d) is geodesic, so is (D(Entm),W2), which together

with existence of EVIK -gradient flows for Entm yields, via Proposition 2.3, K-
geodesic convexity of Entm along all geodesics in D(Entm). In particular, (X,d,m)

is a strict CD(K,∞) space.
We turn to the linearity. Let (μ0

t ), (μ
1
t ) be two EVIK -gradient flows of the relative

entropy and, for λ ∈ (0,1) fixed, define μλ
t := (1 − λ)μ0

t + λμ1
t .

We claim that (μt ) is an EVIK -gradient flow of Entm. To prove this, fix ν ∈
P(X), t > 0 and an optimal plan γ ∈ OPT(μλ

t , ν). Since μi
t � μλ

t = π1
� γ for i =

0,1 we can define, as in Definition 5.10, the plans γ μi
t
∈ P(X2) and the measures

νi := γ �μ
i
t , i = 0,1. Since supp(γμi

t
) ⊂ supp(γ ), we have that γμi

t
∈ OPT(μi

t , ν
i),

therefore from γ = (1 − λ)γ μ0
t
+ λγ μ1

t
we deduce

W 2
2

(
μλ

t , ν
) = (1 − λ)W 2

2

(
μ0

t , ν
0) + λW 2

2

(
μ1

t , ν
1). (73)

On the other hand, from the convexity of the squared Wasserstein distance we im-
mediately get that

W 2
2

(
μλ

t+h, ν
) ≤ (1 − λ)W 2

2

(
μ0

t+h, ν
0) + λW 2

2

(
μ1

t+h, ν
1), ∀h > 0. (74)
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Furthermore, recalling (iii) of Proposition 5.15, we get

Entm
(
μλ

t

)
m− Entm(ν) ≤ (1 − λ)

(
Entm

(
μ0

t

) − Entm
(
ν0))

+ λ
(
Entm

(
μ1

t

) − Entm
(
ν1)). (75)

The fact that (μ0
t ) and (μ1

t ) are EVIK -gradient flows for Entm (see in particular the
characterization (iii) given in Proposition 2.1) in conjunction with (73), (74) and
(75) yield

lim
h↓0

W 2
2 (μλ

t+h, ν) − W 2
2 (μλ

t , ν)

2
+ K

2
W 2

2

(
μλ

t , ν
) + Entm

(
μλ

t

) ≤ Entm(ν). (76)

Since t > 0 and ν ∈ P(X) were arbitrary, we proved that (μλ
t ) is a EVIK -gradient

flow of Entm (see again (iii) of Proposition 2.1).
Thus, recalling the identification of gradient flows, we proved that the L2-heat

flow is additive in D(Entm). Since the heat flow in L2(X,m) commutes with
additive and multiplicative constants, it is easy to get from this linearity in the
class of bounded functions. By L2 contractivity, linearity extends to the whole of
L2(X,m). �

We conclude by discussing some basic properties of the spaces with Riemannian
Ricci curvature bounded from below.

We start observing that Riemannian manifolds with Ricci curvature bounded be-
low by K are RCD(K,∞) spaces, as they are non branching CD(K,∞) spaces and
the heat flow is linear on them. Also, from the studies made in [25, 27, 33] and [16]
we also know that finite dimensional Alexandrov spaces with curvature bounded
from below are RCD(K,∞) spaces as well. On the other side, Finsler manifolds
are ruled out, as it is known (see for instance [26]) that the heat flow is linear on a
Finsler manifold if and only if the manifold is Riemannian.

The stability of the RCD(K,∞) notion can be deduced by the stability of EVIK -
gradient flows w.r.t. Γ -convergence of functionals, which is an easy consequence of
the integral formulation in (ii) of Proposition 2.1.

Hence RCD(K,∞) spaces have the same basic properties of CD(K,∞) spaces,
which gives to this notion the right of being called a synthetic (or weak) notion of
Ricci curvature bound.

The point is then to understand the additional analytic/geometric properties of
these spaces, which come mainly by the addition of linearity condition. A first con-
sequence is that the heat flow contracts, up to an exponential factor, the distance W2,
i.e.

W2(μt , νt ) ≤ e−KtW2(μ0, ν0), ∀t ≥ 0,

whenever (μt ), (νt ) ⊂ P2(X) are gradient flows of the entropy.
By a duality argument (see [6, 15, 21]), this property implies the Bakry-Emery

gradient estimate
∣∣Dht (f )

∣∣2
w
(x) ≤ e−2Ktht

(|Df |2w
)
(x), for m-a.e. x ∈ X,
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for all t > 0, where ht : L2(X,m) → L2(X,m) is the heat flow seen as gradient flow
of Ch. If (X,d,m) is doubling and supports a local Poincaré inequality, then also the
Lipschitz regularity of the heat kernel is deduced (following an argument described
in [15]).

Also, since in RCD(K,∞) spaces Ch is a quadratic form, if we define

E(f, g) := Ch(f + g) − Ch(f ) − Ch(g), ∀f,g ∈ W 1,2(X,d,m),

we get a closed Dirichlet form on L2(X,m) (closure follows from the L2-lower
semicontinuity of Ch). Hence it is natural to compare the calculus on RCD(K,∞)

spaces with the abstract one available for Dirichlet forms (see [11]). The picture
here is pretty clear and consistent. Recall that to any f ∈ D(E) one can associate
the energy measure [f ] defined by

[f ](ϕ) := −E(f,f ϕ) + E
(
f 2/2, ϕ

)
.

Then it is possible to show that the energy measure coincides with |Df |2∗m. Also,
the distance d coincides with the intrinsic distance dE induced by the form, defined
by

dE (x, y) := sup
{∣∣g(x) − g(y)

∣∣ : g ∈ D(E) ∩ C(X), [g] ≤ m
}
.

Taking advantage of these identification and of the locality of E (which is a conse-
quence of the locality of the notion |Df |∗), one can also see that on RCD(K,∞)

spaces a continuous Brownian motion with continuous sample paths associated to
ht exists and is unique.

Finally, for RCD(K,∞) spaces it is possible to prove tensorization and global-
ization properties which are in line with those available for CD(K,∞) spaces.
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