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Abstract We outline the main contributions of Prof. Enrico Magenes to the analysis
and numerical approximation of mathematical models of phase transition processes.
Starting from the 1980’s, a semigroup approach to Stefan problems, optimal rates
of convergence for the nonlinear Chernoff formula, regularity properties of solu-
tions, theoretical and numerical aspects of Stefan models in a concentrated capacity,
were investigated by Enrico Magenes. His expertise was fundamental for develop-
ing numerical analysis of evolutionary free boundary problems and applications in
a modern framework.

1 Stefan Problems and Semigroups: Analysis and Numerical
Approximation

Phase transitions occur in many relevant processes in natural sciences and industrial
applications. The basic Stefan model represents phase transitions in a rather sim-
plified way by coupling heat diffusion and exchange of latent heat between phases.
It has been extensively studied in the last 60 years: the existing literature includes
tenths of thousand of papers and a number of meetings has been devoted to this
model and its extensions. Following the International Seminar on Free Boundary
Problems held in Pavia in September–October 1979 [33], a regular series of Interna-
tional Symposium on Free Boundary Problems: Theory and Applications took place
in: Montecatini, 1981 [23]; Maubuisson, 1983 [5]; Irsee, 1987 [27]; Montreal, 1990
[11]; Toledo, 1993 [17]; Zakopane, 1995 [58]; Hiraklion, 1997 [1]; Chiba, 1999
[31]; Trento, 2002 [13]; Coimbra, 2005 [25]; etc. A series of conferences focusing
on numerical methods and applications started with the Workshop on Generalized
Stefan Problems: Analysis and Numerical Methods held in Pavia in 1995 and took
place in: Freiburg, 1995; Lamoura, 1996; Faro, 1996; Berlin, 1996; Ittingen, 1997;
Madeira, 1998; Braga, 1998; Hiraklion, 1999; etc.
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Existence, uniqueness, and regularity properties of the solution of Stefan prob-
lems were obtained by L. Rubinstein [79], S. Kamin [30], O. Oleinik [75], A. Fried-
man [26], D. Kinderlehrer and L. Niremberg [32], L.A. Caffarelli [8] and L.C. Evans
[10], E. Di Benedetto [16], A.M. Meirmanov [54], A. Damlamian [15], A. Visintin
[89], M. Niezgodka and I. Pawlow [57], A. Fasano and M. Primicerio [20–22], and
many others (we refer to the monographs [55, 80, 91–93]; a huge bibliography can
be found in [83]). Numerical analysis and applications were developed by G. Meyer
[56], J. Nitsche [59], J.F. Ciavaldini [12], J.W. Jerome and M.E. Rose [29], C.M.
Elliott [19], R.H. Nochetto [63] among others (see the survey [86]).

The interest of Enrico Magenes for the Stefan model and its numerical approx-
imation received an impulse during the International Seminar on Free Boundary
Problems held in Pavia in 1979 and yielded a series of seminars that he delivered at
the V Seminario di Analisi Funzionale e Applicazioni held in Catania on September
17–24, 1981 (these lecture notes were published in [34], an interesting overview
of the state of the art for the multidimensional two-phase Stefan problem). Enrico
Magenes worked on this subject for twenty years, with many original contributions
but, more relevantly, by stimulating his students and collaborators with continuous
discussions and suggestions.

The enthalpy formulation, a fixed domain formulation were the interface or free
boundary can be recovered a posteriori as level-set of temperature variable, reads in
weak or variational form as follows:

⎧
⎪⎨

⎪⎩

∂u

∂t
− �β(u) = 0 in Ω × (0, T ),

β(u) = 0 on ∂Ω × (0, T ),

u(·,0) = u0(·) in Ω,

(1)

where Ω ⊂ Rd and β(s) = (s − 1)+ − s− is the constitutive relation between en-
thalpy u and temperature θ = β(u). Existence and uniqueness of the solution can
be proved in suitable functional spaces. The interest of Magenes was focused on
the possibility to formulate the Stefan problem (1) as an m-accretive semigroup of
contraction in L1(Ω) in the sense of M.G. Crandall and T. Ligget [14], and Ph.
Bénilan [3], which allows to numerically approximate (1), either by backward finite
differences (here τ denotes the time-step)

Un − Un−1 − τ�β
(
Un

) = 0, (2)

or by the nonlinear Chernoff formula, as observed by A.E. Berger, H. Brézis, and
J.C.W. Rogers [4]

{
V n − τ�V n = β

(
Un−1),

Un = Un−1 − β
(
Un−1) + V n.

(3)

In many significant applications, the boundary condition β(u) = 0 on ∂Ω × (0, T )

could be replaced by nonlinear flux conditions (e.g. Stefan-Boltzmann law) [88]

∂β(u)

∂ν
+ g

(
β(u)

) = 0 on ∂Ω × (0, T ).
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In [48], Magenes et al. extended the semigroup approach to the Stefan problem with
nonlinear flux conditions, by proving that the operator A : w → −�β(w) with do-
main D(A) = {w ∈ L1(Ω) : β(w) ∈ L1(Ω),�β(w) ∈ L1(Ω),

∂β(w)
∂ν

+ g(β(w)) =
0 on ∂Ω} is m-accretive in L1(Ω), whence the solution exists and is unique in a
suitable weak sense. This results was a theoretical step for justifying the conver-
gence properties of the numerical algorithms studied in [49, 84].

The backward Euler method (2) requires the solution of a nonlinear elliptic PDE
at each time-step. Combined with a finite element method for spatial approximation
and numerical quadrature, it leads to an effective numerical scheme. Stability and a
priori error estimates under minimal regularity properties on data have been proved
in [65, 85] (see [67, 68] for a posteriori error estimates and an adaptive implemen-
tation). On the other hand, the nonlinear Chernoff formula (3) requires the solution
of a linear elliptic PDE at each time step followed by an algebraic correction to re-
cover discrete enthalpy. It turns out that Chernoff is a stable linearization procedure
in the spirit of the Laplace-modified forward Galerkin method for non-degenerate
parabolic problems introduced by J. Douglas and T. Dupont [18]. Despite conver-
gence was guaranteed by the theory of nonlinear contraction semigroups in Banach
space [6], error estimates remained open until the paper by Magenes et al. [50]. The
key argument is a combination of the following three features:

• the use of a variational technique first applied by R.H. Nochetto [60, 61];
• the possibility of dealing with minimal regularity properties u0 ∈ L2(Ω) as

shown in [65];
• the relationship between the nonlinear Chernoff formula and the discrete-time

scheme studied in [87] for the approximation of Stefan problems with phase re-
laxation introduced by A. Visintin [90].

By denoting θ = β(u) the temperature and χ = u − θ the phase variable, the PDE
in (1) reads

∂(θ + χ)

∂t
− �θ = 0, χ ∈ H(θ), (4)

where H stands for the Heaviside graph. Being ε > 0 a time-relaxation parame-
ter, the constitutive relation in (4) can be approximated with the phase relaxation
equation introduced by A. Visintin [90]

ε
∂χ

∂t
+ H−1(χ) � θ. (5)

After coupling this equation (5) with the PDE in (4), and discretizing in time [87]
we get the following algorithm

⎧
⎨

⎩

(
Θn − Θn−1) + (

Xn − Xn−1) − τ�Θn = 0,
ε

τ

(
Xn − Xn−1) + H−1(Xn

) � Θn−1,
(6)

with stability constraint τ ≤ ε. Now it is not difficult to see that this scheme (6)
reduces to (3) by choosing ε = τ and setting Un = Θn + Xn. With the tools above,
Magenes et al. [50] completely answered the question of how accurate the nonlinear
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Chernoff formula is both for degenerate and non-degenerate parabolic problems.
Let Eτ = ‖θ − Θn‖L2(Ω×(0,T )) be the error for temperature in energy norm, then
the following optimal a priori error estimates were proved for Stefan problems:
Eτ = O(τ 1/4) if u0 ∈ L2(Ω) or Eτ = O(τ 1/2) if u0 ∈ D(A) ∩ L∞(Ω).

Combined with a finite element method for spatial approximation, the Chernoff
formula (3) leads to a very efficient numerical algorithm [64, 66] (see [69, 70] for
a posteriori error estimates and an adaptive implementation). See also [28] for a
refinement of the stabilization parameter in the Chernoff formula.

In a series of papers [35–38] Magenes addressed various extensions of the previ-
ous results for the nonlinear Chernoff formula to more general operators and prob-
lems, in particular to evolutionary equations on the boundary of a domain. In [51]
Magenes et al. proved new regularity results in Nikolskiı̌ spaces for the multidimen-
sional two-phase Stefan problem with general source terms and, as a consequence,
error estimates for enthalpy in energy spaces for the implicit Euler algorithm.

2 Stefan Problems in a Concentrated Capacity

The Stefan problems in a concentrated capacity [24] arise in heat diffusion phenom-
ena involving phase changes in two adjoining bodies Ω and Γ , when assuming that
the thermal conductivity along the direction normal to the boundary of Ω is much
greater than in the others, whence Γ can be considered as the boundary of Ω . The
mathematical model describing phase change process in both bodies reads [42]:

{
∂u

∂t
− �gβ(u) = ∂β(u)

∂ν
on ∂Ω × (0, T ),

u(·,0) = u0(·) on ∂Ω,⎧
⎪⎪⎨

⎪⎪⎩

∂v

∂t
− �γ (v) = 0 in Ω × (0, T ),

v(·,0) = v0(·) in Ω,

γ (v) = β(u) on ∂Ω × (0, T ),

(7)

where �g is the Laplace-Beltrami operator on ∂Ω with respect to the Riemannian
structure g inferred by the tangential conductivity, β and γ are the constitutive rela-
tions between enthalpies u and v and temperature θ = β(u) = γ (v). Existence and
uniqueness of the solution of (7) was proved in suitable functional spaces [42]. In
a series of papers [39–41, 43–46] Magenes addressed the theory of heat conduction
with phase change in a concentrated capacity for various operators; see also [82].
The relevance of these models in a number of physical applications motivates their
numerical analysis, which was developed in [47]. The implicit Euler scheme reads:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

β
(
Un

) = γ
(
V n

)
on ∂Ω,

∫

∂Ω

(
Un − Un−1)ϕ + τ

(
dβ

(
Un

)
, dϕ

)

g

+
∫

Ω

(
V n − V n−1)η + τ

∫

Ω

∇γ
(
V n

) · ∇ϕ = 0 ∀ϕ.

(8)
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The linear scheme based on the nonlinear Chernoff formula reads:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ξn = Θn on ∂Ω,∫

∂Ω

Ξnϕ + τ
(
dΞn,dϕ

)

g
+

∫

Ω

Θnη + τ

∫

Ω

∇Θn · ∇ϕ

=
∫

∂Ω

β
(
Un−1)ϕ +

∫

Ω

γ
(
V n−1)ϕ ∀ϕ,

Un = Un−1 − β
(
Un−1) + Ξn on ∂Ω,

V n = V n−1 − γ
(
V n−1) + Θn in Ω.

(9)

Both algorithms (8) and (9) are well posed. The latter is linear in the unknowns Ξn

and Θn, the nonlinearity reducing to pointwise corrections for Un and V n, whence
it is expected to be more efficient than (8) from a numerical viewpoint. Stability and
error estimates in the natural energy spaces were proved for both schemes in [47].

3 Approximation of Interfaces, Adaptivity and Applications

Optimality of error estimates for the proposed algorithms was one of the main as-
pects attracting Magenes’ interest; in this direction let me mention [74], where R.H.
Nochetto et al. proved optimal a posteriori error estimates for variable time-step
discretizations of nonlinear evolution equations; see also [81].

Thanks to stimulating discussions with E. Magenes, C. Baiocchi, F. Brezzi, and
L.A. Caffarelli, [2, 7, 9] convergence and accuracy estimates for the approximation
of the free boundary of parabolic phase-change problems under suitable condition
of non-degeneracy at the interface were proved [62, 78].

The intense interest of Enrico Magenes for the numerical approximation of
phase-change models and their applications involved the Istituto di Analisi Numer-
ica of the CNR in Pavia and his collaborators in various national and international
projects focused on phase transition problems; I will mention, e.g., the European
projects “Phase Transition Problems” (1986–1988), “Mathematical Treatment of
Free Boundary Problems” (1993–1996), “Phase Transition and Surface Tension”
(1995–1997), “Viscosity Solutions and their Applications” (1998–2000). Within the
framework of the national projects of the CNR “Software: Ricerche di Base e Ap-
plicazioni; Software Matematico” (1986–1987) and “Sistemi Informatici e Calcolo
Parallelo: Calcolo Scientifico per Grandi Sistemi” (1988–1993), a computational
code for solving general parabolic free boundary problems with the finite elements
algorithms studied above was implemented [77]; some interesting collaborations
took place with Himont (Ferrara), a leading factory in polymer production [52], and
Istituto Ortopedico Rizzoli (Bologna) [53].

Numerical approximation of geometric motion of interfaces, a first step for the
approximation of more complex phase transitions problems including surface ten-
sion effects, was addressed by R.H. Nochetto et al. [71–73, 76], also thanks to help-
ful discussions and suggestions of E. De Giorgi, L.A. Caffarelli, A. Visintin, and
Magenes himself.
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