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Abstract The set of solutions of a parameter-dependent linear partial differential
equation with smooth coefficients typically forms a compact manifold in a Hilbert
space. In this paper we review the generalized reduced basis method as a fast com-
putational tool for the uniform approximation of the solution manifold.

We focus on operators showing an affine parametric dependence, expressed as
a linear combination of parameter-independent operators through some smooth,
parameter-dependent scalar functions. In the case that the parameter-dependent op-
erator has a dominant term in its affine expansion, one can prove the existence of
exponentially convergent uniform approximation spaces for the entire solution man-
ifold. These spaces can be constructed without any assumptions on the paramet-
ric regularity of the manifold—only spatial regularity of the solutions is required.
The exponential convergence rate is then inherited by the generalized reduced basis
method. We provide a numerical example related to parametrized elliptic equations
confirming the predicted convergence rates.
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1 Introduction

Reduced order models (ROMs) are a crucial ingredient of many applications of in-
creasing complexity in scientific computing related e.g. to parameter estimation,
sensitivity analysis, optimal control, and design or shape optimization. In this pa-
per we consider the reduced basis method for the numerical approximation of
parameter-dependent partial differential equations (μ-PDEs). The set of solutions
of such an equation depends on a finite-dimensional vector of parameters related
e.g. to physical coefficients, geometrical configuration, source terms, and boundary
conditions. Solving the μ-PDE for many different values of the parameters entails
the exploration of the manifold of solutions, and is not affordable if each μ-PDE
requires an expensive numerical approximation, such as the one built over the finite
element method. Suitable structural assumptions about the parametrization enable
one to decouple the computational effort into two stages. A (very expensive) pre-
processing step that is performed once (“offline”)—consisting in the construction of
a reduced basis for the representation of the manifold of solutions, followed by very
inexpensive calculations performed “online” for each new input-output evaluation
required. In the reduced basis method, numerical solutions for certain parameters
values are computed offline by a classical discretization technique. These solutions
give a basis for approximating online the PDE solution (for a large number of new
parameter values) as a linear combination of the basis elements. The rational of this
approach stands on the very fast (often exponential) convergence—with respect to
the number of basis—is exhibited by approximation spaces. We point out that in the
real-time or many-query contexts, where the goal is to achieve a very low marginal
cost per input-output evaluation, we can accept an increased “offline” cost—not
tolerable for a single or few evaluations—in exchange for greatly decreased “on-
line” cost for each new/additional input-output evaluation. In previous works (see
e.g. [18–20]) a priori exponential convergence with respect to the number of ba-
sis functions is proved in the case of elliptic PDEs depending on one-dimensional
parameters; several computational tests shown e.g. in [28] provide a numerical as-
sessment of this behavior, also for larger parameter space dimensions. Several new
results, such as the ones presented in [4], address an a priori convergence analysis
in the more general case where a greedy algorithm is employed to build the reduced
space in an automatic, adaptive way. A further improvement has been proposed in
[3], where an error estimate for the greedy algorithm has been developed in terms of
the Kolmogorov n-width. After recalling the basic features of a generalized version
of the reduced basis method, and the main convergence results in this field, the goal
of this paper is to provide both a convergence analysis for the greedy algorithm and
a numerical proof of this behavior, in order to extend the a priori convergence re-
sults presented in [19, 20]. To do this, we rely on the introduction of a fundamental
basis, a suitable error representation formula and an upper bound estimate for the
n-width of the solution set of an elliptic parametric PDE under suitable assumptions
on its parametric form.

We proceed to describe the functional setting of our problems. Let Ω ⊂ R
d ,

d ∈ {1,2,3}, be a bounded domain and X = X(Ω) a Hilbert space of functions
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defined on Ω with inner product (·,·)X and induced norm ‖ · ‖X = √
(·,·)X . We

consider the following problem: given a vector of parameters μ ∈ D from a compact
parameter set D ⊂ R

P , find u(μ) ∈ X s.t.

a
(
u(μ), v;μ) = f (v;μ) for all v ∈ X, (1)

where the parameters can enter in the bilinear form a(·,·;μ) in several possible
ways: as variable coefficients, as coefficient entering in the parametrization of the
domain Ω ⊂ R

d of the problem, in the definition of the right-hand side f that
account for either forcing terms and/or boundary conditions. We denote the P -
manifold of solutions

K := {
u(μ) ∈ X : μ ∈D ⊂ R

P
}

in the space X. In many applications K is a differentiable manifold. We also al-
low the case of a manifold that is not locally smooth at some isolated points,
e.g. the parametric Helmholtz equation ∇ · (a(·;μ)∇u) + u = 0, which has a
smooth solution manifold except at the eigenvalues of the parametric Laplacian,
−∇ · (a(·;μ)∇u) = λ(μ)u. We considered this problem in [17]. A typical objective
in applications is to provide a numerical approximation ũ(μ) for u(μ) ∈ K that is
uniform1 over the entire manifold K. To fulfill this request, a necessary condition is
that, for any ε > 0, we find a linear subspace XN ⊂ X of dimension N s.t.

inf
ũ∈XN

∥∥u(μ) − ũ
∥∥

X
< ε for all μ ∈D,

where the dimension N is as small as possible. The question is: how small can we
expect N to be?

To address this question, we introduce e.g. the finite element (FE) approximation
of problem (1): given a vector of parameters μ ∈ D ⊂ R

P , find uh,p(μ) ∈ Xh,p =
Xh,p(Ω) s.t.

a(uh,p, vh,p;μ) = f (vh,p;μ) for all vh,p ∈ Xh,p, (2)

where Xh,p ⊂ X is a conforming FE subspace spanned by piecewise polynomial
shape functions of degree p defined on a quasi-uniform mesh of maximum ele-
ment size h. Due to classical a priori error estimates such an approximation will
eventually approximate well all the solutions on the manifold as the dimension
N := dim(Xh,p) increases, but only for quite large N we can expect a uniformly
small error in the approximation. When X = H 1(Ω) is the standard Sobolev space,
the classical a priori estimates for piecewise polynomial approximations are as fol-
lows [2]:

1The other option is to consider local or sequential approximations of the manifold, such as track-
ing a path on the manifold starting from a certain point and proceeding via a continuation method.
In such cases we are usually not interested in the global behavior of the manifold.
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∥∥u(μ) − uh,p(μ)
∥∥

1 ≤
{

C(μ)N−min{s−1,p}/d with h-refinement,
C(μ)N−(s−1−δ)/d with p-refinement,

(3)

where s > 1 denotes the number of weak derivatives of u(μ), and δ > 0 is arbitrarily
small. If the solution u is analytic (s = ∞), one obtains exponential convergence as
a result of p-refinement, i.e.

∥∥u(μ) − uh,spectral(μ)
∥∥

1 ≤ C(μ) exp(−γN),

and this leads to the study of spectral methods. It should be cautioned that even
if a spectral approximation can obtain in theory exponential convergence across
the entire parameter range, the constants in front depend on both the dimension d

and the number of parameters P of the problem. The assumption of analyticity of
solutions is also often violated.

An efficient method for the approximation of the parametric manifold K should
(i) provide exponential convergence in the dimension N of the approximation space;
(ii) have the same convergence rate irrespective of the number of parameters P ;
and (iii) entail a computational cost that scales only moderately in N . Exploiting
the structure of the manifold K is key to finding uniform approximations that sat-
isfy (i)–(iii). Our technique for proving exponentially convergent approximation es-
timates for the manifold of solutions relies on a series expansion of the solution
u(μ). Series expansion solutions, either by separation of variables or by power se-
ries expansion for PDEs with analytical coefficients, are classical tools for existence
proofs. Analytical power series expansions, such as the decomposition method of
Adomian [1], are not competitive against good numerical approximation schemes
in actually providing approximate solutions to PDEs, but they do provide an inter-
esting approach to constructing convergence estimates. The novel contribution of
this work is to consider the power series expansion method forparameter-dependent
PDEs by searching for solutions in a parametrically separable form

u(μ) =
∞∑

k=0

Θk(μ)Ψk, (4)

where the Ψk do not depend on μ and the scalar functions Θk(μ). The expansion (4)
together with standard estimates for convergent power series then provides a con-
struction of approximation spaces that are uniformly exponentially convergent over
the entire parameter range. In order to achieve separation w.r.t. to the parameters,
we must make suitable structural assumptions on the PDE. A typical assumption is
that of affine dependence on the parameter, i.e. problem (1) is assumed to be of the
form

Qa∑

q=1

Θa
q (μ)aq(u, v) =

Qf∑

q=1

	
f
q (μ)fq(v) for all v ∈ X, (5)

where every aq : X × X → R and fq : X → R are parameter-independent bilinear

and linear forms respectively, whereas Θa
q : D →R and Θ

f
q : D →R are scalar co-

efficient functions depending only on the parameter (but not necessary in a smooth
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way). We shall next describe the generalized reduced basis method (GRBM) that,
given assumption (5), satisfies (i)–(iii). We then discuss some recent theoretical ap-
proximation results linking the best possible approximation space for K with the
convergence rate obtained by the GRBM, and exhibit a model problem where, at
least in the case we have Qa = 2 and some additional special structure on bilinear
forms aq , we indeed observe in practice the exponential convergence predicted by
theory.

2 Generalized Reduced Basis Method for Uniform
Approximation of μ-PDEs

It is clear that the FE approximation uh,p(μ) of (1) can be made arbitrarily accurate
for all possible parameters μ ∈ D, but this usually require a considerable computa-
tional cost. In order to overcome this (sometimes unaffordable) difficulty, a possible
idea is to instead consider the manifold of discrete solutions uh,p(μ) given by

Kh,p := {
uh,p(μ) ∈ Xh,p : μ ∈ D ⊂ R

P
}
,

as a surrogate for K, and then to look for approximations of Kh,p that con-
verge exponentially fast (see Fig. 1 for a graphical sketch). Specifically, we con-
sider subspaces Xn ⊂ Xh,p (for n 
 N ) that are constructed by using information
coming from the snapshot solutions uh,p(μi) computed at well-chosen points μi ,
i = 1, . . . , n. More precisely, Xn is the span of the snapshot solutions uh,p(μi),
i = 1, . . . , n. This leads to the Reduced Basis (RB) method [27, 28], which is, in
brief, a Galerkin projection on an n-dimensional approximation space relying on
the parametrically induced manifold Kh,p . Assuming that the solutions uh,p satisfy
the a priori convergence estimate (3) and that the approximation un(μ) converges
exponentially to uh,p(μ), we can write the total error of the reduced solution as

∥∥u(μ) − un(μ)
∥∥

X
≤ ∥∥u(μ) − uh,p(μ)

∥∥
X

+ ∥∥uh,p(μ) − un(μ)
∥∥

X

≤ C(μ)
[
N−min{s−1,p}/d + exp(−γ n)

]
,

and for N sufficiently large the exponential term in n dominates the error. The addi-
tional strength of this method is that in the best case we only need to solve n times
the FE problem for uh,p , and that the solution for un(μ) can be done with complex-
ity depending on n but not N after some initial preprocessing steps, so that indeed N

can be chosen fairly large in order to obtain highly accurate reduced order solutions.
For notational simplicity we present here the case P = 1 and formulate the RB

method in a slightly more general form than usually given. It can be expressed in
three distinct steps:

(i) Choice of the reduced subspace. The basic idea of every reduced basis
method is to choose a finite training sample Ξtrain ⊂ D, |Ξtrain| = M , in the
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Fig. 1 (a) Low-dimensional manifold Kh,p on which the field variable resides and (b) approxi-
mation of a new solution at μnew with the “snapshots” uh,p(μm), 1 ≤ m ≤ n

parameter space and to use the information contained in the corresponding so-
lutions uh,p(μ) for each μ ∈ Ξtrain (called snapshots) to find a representative
subspace for the approximation of the manifold Kh,p . The reduced subspace
Xn of dimension n is found by solving [28]

Xn := arg inf
X∗⊂Xtrain,dim(X∗)=n

δ
(
X∗,Kh,p;X)

(6)

where Xtrain := span{uh,p(μ) : μ ∈ Ξtrain} is the space containing all the snap-
shots, and the function X∗ �→ δ(X∗,Kh,p;X) ∈ R measures the distance be-
tween any subspace X∗ ⊂ X and the manifold Kh,p and is defined by

δ(Xn,Kh,p;X) := sup
u∈Kh,p

inf
ũ∈Xn

‖u − ũ‖X.

Since the exact distance of the subspace to the manifold is usually unknown, we
must resort to computable surrogates to solve (6). Nonetheless, we mention that
the exact distance is used in the so-called strong greedy algorithm introduced in
[3] for the theoretical analysis of convergence rates of reduced basis methods.
Thus we replace (6) with

Xn := arg inf
X∗⊂Xtrain,dim(X∗)=n

MKh,p

(
X∗), (7)

where X∗ �→ MK(X∗) ∈ R is an approximate distance between any subspace
X∗ ⊂ X and the manifold Kh,p . The choice of the function MK to be used
for the approximation of δ(·,·; ·) defines which algorithm we use to choose
the subspace. This is by far the most common way of constructing reduced
subspaces, and we call these approaches Lagrange ROMs. In the GRBM we
consider also the parametric sensitivities up to a suitable order, say K −1 (with
K ≥ 1) as part of the snapshot set

Xtrain := span

{
∂kuh,p

∂μk
(μ) : μ ∈ Ξtrain, k = 0, . . . ,K − 1

}
,
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giving a total number of MK snapshots. They can be computed from the dis-

crete sensitivity equation(s): find wk(μ) = ∂kuh,p

∂μk (μ) ∈ Xh,p s.t.

a
(
wk(μ), vh,p;μ) = ∂kf

∂μk
(vh,p;μ) −

k∑

�=1

(
k

k − �

)
∂�a

∂μ�

(
wk−l (μ), vh,p

)

for all vh,p ∈ Xh,p, (8)

for all k = 1, . . . ,K . Only the right-hand side of the system changes with k and
thus any preconditioners or matrix decompositions used for the primal problem
can be reused. The information contained in these snapshots is then used to
build the reduced space Xn with dimension dim Xn = n 
 MK in what can
also be understood as a data compression problem. If K = 2 and M > 1 we
have a Hermite ROM,2 and if K > 1 and M = 1 we have a Taylor ROM.3

Two standard choices for MK are:
1. the proper orthogonal decomposition (POD), where

MK(Xn) = 1

M

M∑

i=1

∥∥uh,p(μi) − ΠXn

(
uh,p(μi)

)∥∥2
X
, (9)

and ΠXn : X → Xn is the orthogonal projection w.r.t. the inner product
of X. In this case, we choose the basis by minimizing the �2(Ξtrain) er-
ror in parameter space. It turns out that the optimal bases are hierarchical
and are spanned by the leading n eigenvectors of the correlation matrix

Cij = 1

M

(
uh,p(μj ) − ū, uh,p(μi) − ū

)
X
, 1 ≤ i, j ≤ M,

where we have subtracted the mean of the snapshots

ū = 1

M

M∑

i=1

uh,p(μ̄).

2Ito and Ravindran [16] were perhaps the first ones to suggest using a Hermite ROM in a uniform
approximation context, rather than in a pure continuation method. The Lagrange and Hermite
ROMs were compared on a driven cavity problem, where the Hermite approach was somewhat
superior. No stability problems were reported and the Hermite basis with only two basis functions
was able to extrapolate solutions to much larger Reynolds numbers.
3In one of the pioneering works on RBM, Noor [24] used a Taylor ROM to build a local reduced
space that was used to trace the post-buckling behavior of a nonlinear structure. The continuation
idea was used also by Peterson [25] to compute Navier-Stokes solutions with increasing Reynolds
number flow over a forward facing step. Again a Taylor ROM was constructed and used to extrap-
olate an initial guess for the Newton method at a slightly higher Reynolds number.
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The eigenpairs (λj ,ψj )
M
j=1 of C (with the eigenvalues ordered in the de-

creasing order) are the solutions of

Cψj = λjψj , j = 1, . . . , |Ξtrain|.
Then, the optimal basis for the n-th dimensional space Xn generated by
minimizing (9) is given by

χ0 = ū, χj =
M∑

i=1

[ψj ]i
(
uh,p(μi) − ū

)
, 1 ≤ j ≤ n,

being [ψj ]i the i-th component of the j -th eigenvector. Extensions of the
standard POD basis to incorporate parametric sensitivities (8) were pre-
sented in [6, 12, 13] and are not discussed in detail here;4,5

2. the greedy algorithm, where

MK(Xn) = sup
μ∈Ξtrain

∥∥uh,p(μi) − ΠXn

(
uh,p(μi)

)∥∥
X

(10)

i.e. minimization of the �∞(Ξtrain) error in parameter space. In practice
no efficient algorithm exists to solve (6) for large-scale problems, so we
approximate it by its relaxation

MK(Xn) = sup
μ∈Ξtrain

Δn

(
ũ(μ)

)
(11)

where Δn(̃u(μ)) is a computationally inexpensive a posteriori error estima-
tor for the quantity ‖uh,p(μ) − ũ(μ)‖X that should satisfy

C1Δn

(
ũ(μ)

) ≤ ∥
∥u(μ) − ũ(μ)

∥
∥

X
≤ C2Δn

(
ũ(μ)

)
, ∀μ ∈ D (12)

for some constants C1 > 0, C2 ≥ 1. This corresponds to the approximate
minimization of the �∞(Ξtrain) error in parameter space. In this case we
have a weak greedy algorithm as defined in [3].

4In the works of Hay et al. [12, 13] sensitivity information was introduced into the proper or-
thogonal decomposition framework. The parametric sensitivities of the POD modes were derived
and computed. The test problems were related with channel flow around a cylindrical obstacle,
either by using a simple parametrization as the Reynolds number, or a more involved geometric
parametrization of the obstacle. The use of a Hermite ROM considerably improved the validity of
the reduced solutions away from the parametric snapshots. However, in the more involved geomet-
rical parametrization case the Hermite ROM failed completely, as it did not converge to the exact
solution even when the number of POD modes was increased.
5Carlberg and Farhat [6] proposed an approach they call “compact POD”, based on goal-oriented
Petrov-Galerkin projection to minimize the approximation error subject to a chosen output criteria,
and including sensitivity information with proper weighting coming from the Taylor-expansion and
including “mollification” of basis functions far away from the snapshot parameter. The application
was the optimization of an aeroelastic wing configuration by building local ROMs along the path
to the optimal wing configuration.
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Note that while conceptually the POD and the greedy algorithms can be cast
in a similar framework, their practical implementations are quite different. The
training set Ξtrain ⊂ D needs to be reasonably dense in the parameter space for
MKh,p

(X∗) to be a good approximation of the true distance δ(X∗,Kh,p;X)

for all subspaces X∗ ⊂ X. In the POD one needs to compute the FE approxi-
mations uh,p(μ) for all the points in Ξtrain, which amounts to a considerable
computational undertaking. In contrast, the weak greedy algorithm only needs
to compute the exact solutions (and their parametric derivatives) at the n snap-
shots comprising the RB and only the computationally inexpensive a posteriori
estimator Δn(un(μ)) needs to be evaluated over the entire training set. The dif-
ference in the norms used (�∞ for the greedy vs. �2 for the POD) also results in
slightly different approximation behavior of the resulting bases. Typically the
POD basis needed to reach a given tolerance is smaller in size but tends to be
not as robust far away from the snapshots (see e.g. [28, 29]).

(ii) (Petrov-)Galerkin projection of the equations. In the second step we perform
projection of the original problem onto the reduced trial subspace Xn using
the reduced test subspace Yn to obtain the reduced basis approximation: find
un(μ) ∈ Xn s.t.

a
(
un(μ), vn;μ

) = f (vn;μ) for all vn ∈ Yn, (13)

where Xn = span{ϕj }nj=1 and Yn = span{ψj }nj=1. If Yn = Xn this is a pure

Galerkin method, otherwise it is a Petrov-Galerkin method. The Petrov-
Galerkin approach is adopted if the underlying system is either nonsymmetric
or noncoercive and can be interpreted as a form of stabilization of the ROM.
Applying the assumption (5) to (13) leads to the discrete system

Qa∑

q=1

Θa
q (μ)An

qUn =
Qf∑

q=1

Θ
f
q (μ)Fn

q (14)

where the matrices and vectors

[
An

q
n×n

]
i,j

:= aq(ϕj ,ψi),
[
Fn

q
n×1

]
i
:= Fq(ψi), Un

n×1
the reduced solution,

(15)
are dense but only of dimension n and more importantly can be assembled once
and then stored. The system (14) is then assembled by evaluating the coefficient
functions Θa

q , Θ
f
q and summing together the weighted contributions from all

the parts of the decomposition, and solving one small dense linear system.
Assuming all the FE degrees of freedom are nodal, we can write the discrete
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projectors

[ Xn
N×n

]i,j := ϕj (xi), [ Yn
N×n

]i,j := ψj(xi) (16)

where xi are the nodal points in the full space XN . The discrete matrices and
vectors (15) can then be obtained as

An
q = YnAqX

T
n , F n

q = YnFq,

and the approximation of the solution uN(μ) is obtained as un(xi) = [XT
n Un]i

for i = 1, . . . ,N . From here on we use mainly the discrete forms of the equa-
tions.

(iii) Certification of the ROM with error bounds. A posteriori error bounds are
used to both (i) certify the GRBM solution during the online stage, and (ii) con-
struct the reduced space by means of the weak greedy algorithm. For the sake of
simplicity we treat the case of linear, elliptic and coercive μ-PDEs—extensions
to noncoercive and nonlinear problems can be found in [5, 8, 11, 21, 30]. Our
error bounds rely on two basic ingredients: the dual norm of the residual and
a lower bound of the stability factor (in this case, of the parameter-dependent
coercivity constant). The residual r(v;μ) ∈ X′

h,p is defined as

r(v;μ) ≡ f (v;μ) − a
(
un(μ), v;μ)

, ∀v ∈ Xh,p (17)

so that exploiting (2) and the bilinearity of a(·, ·;μ) we have the error repre-
sentation for e(μ) = uh,p(μ) − un(μ) ∈ Xh,p given by

a
(
e(μ), v;μ) = r(v;μ), ∀v ∈ Xh,p. (18)

As a second ingredient, we need a positive lower bound αLB
h (μ) for the (dis-

crete) coercivity constant αh(μ):

0 ≤ αLB
h (μ) ≤ αh(μ) := inf

w∈Xh,p

a(w,w;μ)

‖w‖2
Xh,p

, ∀μ ∈D, (19)

whose efficient evaluation as a function of μ is made possible thanks to the
so-called successive constraint method (see e.g. [14, 15, 17] for a general de-
scription of this procedure). By combining (18) with 19 and using the Cauchy-
Schwarz inequality, the following a posteriori error estimate in the energy
norm holds (see [28] for a proof):

(
γa(μ)

αLB
h (μ)

)−1/2 ‖r(un(μ);μ)‖X′
h,p√

αLB
h (μ)

≤ ∥∥un(μ) − uh,p(μ)
∥∥

X

≤
‖r(un(μ);μ)‖X′

h,p√
αLB

h (μ)

, (20)
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so that expression (12) is now made explicit, being

Δn(μ) :=
‖r(un(μ);μ)‖X′

h,p√
αLB

h (μ)

, C1 := inf
μ∈D

{(
γa(μ)

αLB
h (μ)

)−1/2}
,

C2 := 1.

3 Approximation Theoretical Basis for the Generalized Reduced
Basis Method

We now turn to the convergence analysis of approximations in the reduced sub-
spaces that are obtained by (7) and the choice (11) for MKh,p

. We recall some recent
theoretical results and provide an extension through an exponential convergence re-
sult. To do this, we rely on the introduction of a fundamental basis and on an intu-
itive error representation formula, which will be exploited in the numerical example
discussed in the following section. We define the best approximation error of Kh,p

obtained by the greedy algorithm (6) as

σn(Kh,p;X) := sup
uh,p∈Kh,p

inf
ũ∈Xn

∥∥uh,p − ΠXn(uh,p)
∥∥

X
.

A priori convergence estimates for reduced basis approximations have been demon-
strated in simple cases, such as in [19], where it was found that for a specific problem
exponential convergence was achieved

σn(Kh,p;X) ≤ C exp
(−nα

)
, for some α > 0.

Recently much interest has been devoted to understanding why the weak greedy
method (11) is able to give an approximation space Xn that exhibits exponential
convergence in n. To express how well we are able to uniformly approximate a given
manifold of solutions Kh,p with a finite-dimensional subspace, we recall the notion
of n-width [22, 26] that is used to measure the degree in which we can uniformly
approximate a subset of the space X using finite-dimensional subspaces Xn. The
Kolmogorov n-width is defined as

dn(Kh,p;X) := inf
Xn⊂X

sup
uh,p∈Kh,p

inf
ũ∈Xn

‖uh,p − ũ‖X (21)

where the first supremum is taken over all linear subspaces Xn ⊂ X of dimension n.
We also define the discrepancy between the subspace Xn and the manifold Kh,p as

δ(Xn,Kh,p;X) = sup
uh,p∈Kh,p

inf
ũ∈Xn

‖uh,p − ũ‖X.

The subspace Xn is said to be optimal if δ(Xn,Kh,p;X) = dn(Kh,p;X). In general,
the optimal subspace w.r.t. the Kolmogorov n-width (21) is not spanned by elements
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of the set Kh,p being approximated, so that possibly dn(Kh,p;X) 
 σn(Kh,p;X).
In the recent work [3] it was shown that

σn(Kh,p;X) ≤ 2n+1

√
3

dn(Kh,p;X),

and that this estimate cannot in general be improved. However, it was also
shown that if the n-width converges at an exponential rate, say dn(Kh,p;X) ≤
C exp(−cnβ) for all n > 0 and some C̃, c > 0, then

σn(Kh,p;X) ≤ C̃ exp
(−αnβ/(β+1)

)
. (22)

A tighter estimate was proved for the case of algebraic convergence: if
dn(Kh,p;X) ≤ CMn−α for all n > 0 and some M,α > 0, then also

σn(Kh,p;X) ≤ CMn−α. (23)

The fast (exponential) convergence of numerical approximations is often linked
to spectral approximations. In this way, the reduced basis method can be understood
as a spectral method, where instead of using generic global polynomial basis func-
tions we use problem-dependent global smooth approximation basis. The analyticity
of the solutions of elliptic PDEs was exploited e.g. in a recent work [7] in the special
case where Kh,p is an analytic manifold. Using complex analysis techniques and a
Taylor expansion approximation of the solution uh,p and its parametric derivatives
wm,k for k = 1,2, . . ., the authors obtained a convergence rate for a reduced basis
approximation as

∥∥uh,p(μ) − ũ(μ)
∥∥

X
≤ C(μ)n−(1/p−1),

where 0 < p < 1 is the �p-summability exponent of a sequence related only to the
diffusion coefficients of the problem. In particular, the convergence rate was inde-
pendent of the spatial dimension d and the number of parameters P . In general,
the reduced basis approximation of solutions of elliptic equations with regular co-
efficients has indeed been very successful. We would however like to convince the
reader that analytic regularity of the solution manifold Kh,p is not necessary in order
to successfully apply the reduced basis method.

Unfortunately, very little seems to be known about the n-width of manifolds of
solutions of μ-PDEs. Very specific results concern special subspaces [10, 23]. For
instance, if Y ⊂ X is a dense, compactly embedded, and bounded subspace with
inner product (·,·)Y then the n-width of a ball BY ⊂ Y ⊂ X of finite radius is

dn(BY ;X) = √
λn+1,

where λn are the eigenvalues of the problem
{

λ ∈ R, u ∈ V, u �= 0,

(u, v)Y = λ(u, v)X
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sorted in descending order (see [10], Theorem 4.5). We then obtain an algebraic
decay rate for the n-width of BY

dn(BY ;X) = Cn−s/d ,

where s ≥ 1 similarly to (3). Provided that Kh,p ⊂ BY we obtain also an upper
bound for the n-width of Kh,p , since then dn(BY ;X) ≥ dn(Kh,p;X), consequently
only algebraic convergence of the reduced basis method is predicted by (23). Such
results can be misleadingly pessimistic compared to practical experiences with re-
duced basis methods because they do not take into account the structure of the man-
ifold Kh,p nor the fact that approximation (4) inherits in some sense the structure of
the manifold Kh,p .

4 An Extended Result of Exponential Convergence

Let us now give an example of a μ-PDE where the explicit dependence of the so-
lution manifold on the parameters can be exhibited. Let us consider the parameter-
dependent problem after discretization:

(
Θa

1 (μ)A1 + Θa
2 (μ)A2

)
u =

Qf∑

q=1

Θ
f
q (μ)Fq. (24)

We assume that (i) the operator A1 is invertible; (ii) the problem satisfies a global
condition for the spectral radius ρ being

ρ

(
Θa

2 (μ)

Θa
1 (μ)

A−1
1 A2

)
< 1 for all μ ∈ D, (25)

which we interpret as meaning that the term Θa
1 (μ)A1 dominates the original differ-

ential operator. Such a problem can arise for example from a discretized advection-
diffusion or reaction-diffusion problem, where A1 contains the (dominant) diffusion
operator and A2 contains all the other terms. We proceed to write explicitly the so-
lution of this problem as

u =
(

I + Θa
2 (μ)

Θa
1 (μ)

A−1
1 A2

)−1(
Θ1(μ)A1

)−1

( Qf∑

q=1

Θ
f
q (μ)Fq

)

,

which by exploiting the global spectral condition (25) leads to the series expansion
for the solution

u =
∞∑

k=0

Qf∑

q=1

(−1)kΘk
2 (μ)Θ

f
q (μ)

Θk+1
1 (μ)

[
A−1

1 A2
]k

A−1
1 Fq.
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By defining the fundamental basis vectors Ψk,q := [A−1
1 A2]kA−1

1 Fq , for k =
0,1, . . . and q = 1, . . . ,Qf , we can write the solution as a series

u =
∞∑

k=0

Qf∑

q=1

(−1)k[Θa
2 (μ)]kΘf

q (μ)

[Θa
1 (μ)]k+1

Ψk,q . (26)

Several remarks can be made about formula (26):

1. In the special case A2 = 0 the parametric dependence enters only through the
r.h.s. and as a consequence the series (26) truncates to a finite one

u =
Qf∑

q=1

Θ
f
q (μ)

Θa
1 (μ)

Ψ0,q , (27)

and so the greedy algorithm will always terminate after Qf steps.
2. If the decay of the series coefficients in (26) is rapid, the solutions u can be

well approximated by only the first few fundamental basis functions Ψk,q , k =
0,1, . . . ,K and q = 1, . . . ,Qf . They can be computed according to an iterative
procedure

Ψ0,q = A−1
1 Fq, Ψk+1,q = A−1

1 A2Ψk,q for all q = 1, . . . ,Qf

requiring at each step one matrix multiplication and one backward substitution
after obtaining once and for all the LU-decomposition of A1.

3. In general the Ψk,q are not linear combinations of solutions of (24) so that they
do not constitute a reduced basis approximation. They are, however, useful for
estimating the n-width of the solution set. Provided that there exist positive se-
quences {γk,q}∞k=1 s.t. ‖Ψk,q‖X ≤ γk,q for each q = 1, . . . ,Qf , we obtain an
upper bound estimate for the n-width of the solution set U of (24)

dm(U;X) ≤ sup
μ∈D

∞∑

k=n

Qf∑

q=1

∣∣∣∣
[Θa

2 (μ)]kΘf
q (μ)

[Θa
1 (μ)]k+1

∣∣∣∣γk,q (28)

by using the definition of the n-width, estimating upwards, and using formula
(26) as
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dm(U;X) = inf
Xm⊂X

sup
μ∈D

inf
ũ∈Xm

∥∥uh,p(μ) − ũ
∥∥

X
≤ sup

μ∈D
inf

ũ∈XΨ
m

∥∥uh,p(μ) − ũ
∥∥

X

≤ sup
μ∈D

∥∥
∥∥∥
uh,p(μ) −

n−1∑

k=0

Qf∑

q=1

(−1)k[Θa
2 (μ)]kΘf

q (μ)

[Θa
1 (μ)]k+1

Ψk,q

∥∥
∥∥∥

X

= sup
μ∈D

∥∥∥∥∥

∞∑

k=n

Qf∑

q=1

(−1)k[Θa
2 (μ)]kΘf

q (μ)

[Θa
1 (μ)]k+1

Ψk,q

∥∥∥∥∥
X

≤ sup
μ∈D

∞∑

k=n

Qf∑

q=1

∣∣∣∣
[Θa

2 (μ)]kΘf
q (μ)

[Θa
1 (μ)]k+1

∣∣∣∣‖Ψk,q‖X,

where m := Qf ·n and XΨ
m := span{Ψk,q : k = 0, . . . , n− 1, q = 1, . . . ,Qf }, i.e.

the first m fundamental basis vectors. We have in fact decomposed the descrip-
tion of the manifold of solutions U into two parts: the parametric regularity is
carried by the coefficients Θ1, Θ2, Θ

f
q , which can be taken just in L∞(D) with-

out affecting the n-width, and the spatial regularity, which is contained in the
norm estimates γk,q for the fundamental basis functions.

4. If the solution of (24) is approximated by the projection-based ROM in (14), i.e.

Yn

[
Θa

1 (μ)A1 + Θa
2 (μ)A2

]
X

T
n Un =

Qf∑

q=1

Θ
f
q (μ)YnFq,

where the projectors were defined in (16), we obtain a similar formula for the
reduced solution

un(μ) =
∞∑

k=0

Qf∑

q=1

(−1)k[Θa
2 (μ)]kΘf

q (μ)

[Θa
1 (μ)]k+1

Ψ n
k,q,

but now with the reduced fundamental basis functions Ψ n
k,q defined as

Ψ n
0,q = (

YnA1X
T
n

)−1
YnFq, Ψ n

k+1,q = (
YnA1X

T
n

)−1
YnA2X

T
n Ψ n

k,q .

As a result, we obtain immediately the error representation formula

εn(μ) := [
uh,p −X

T
n un

]
(μ) =

∞∑

k=0

Qf∑

q=1

(−1)k[Θa
2 (μ)]kΘf

q (μ)

[Θa
1 (μ)]k+1

(
Ψk,q −X

T
n Ψ n

k,q

)
.

Thus the quality of the ROM can directly be measured by observing how well it
approximates the fundamental basis vectors, i.e. by looking at ‖Ψk,q −X

T
n Ψ n

k,q‖X

for all k and q .
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5. Even if the global spectral condition (25) does not hold, we can try to expand the
solution locally around different μ∗ and obtain local approximation bases. This
leads one to consider the hp-reduced basis method [9], where different reduced
bases (analogous to p-refinement in the FEM) are constructed at different parts of
the parameter domain (analogous to h-refinement in the FEM). Let D1, . . . ,DM

be a nonoverlapping subdivision of the original parameter domain D into M

subdomains. The local spectral condition requires that in each subdomain Dm

∃i(m) : ρ

(
Θa

j(m)(μ)

Θa
i(m)(μ)

A−1
i(m)Aj(m)

)
< 1 for all μ ∈ Dm, for j (m) �= i(m),

that is to say in each parameter subdomain Dm one of the terms Aq dominates,
but the dominant part of the operator can change from subdomain to subdomain.
If such a local spectral condition holds, our results extend straightforwardly to
show the existence of local exponentially convergent approximation spaces.

With the n-width estimate (28) we can give an exponential convergence result
extending that of [19]:

Proposition 4.1 Assume that the series (26) converges, so that

∃ε > 0 s.t.

∣∣
∣∣
Θ2(μ)

Θ1(μ)

∣∣
∣∣ ≤ 1 − ε

‖A−1
1 A2‖X

for all μ ∈ D. (29)

Then the n-width of the solution set U of (24) converges exponentially, i.e.

dn(U;X) ≤ Ce−αn for some C,α > 0. (30)

Proof The n-width upper bound (28) gives for m = n · Qf

dm(U;X) ≤ sup
μ∈D

∞∑

k=n

Qf∑

q=1

∣∣∣∣
[Θa

2 (μ)]kΘf
q (μ)

[Θa
1 (μ)]k+1

∣∣∣∣
∥∥(

A−1
1 A2

)k
A−1

1 Fq

∥∥
X

≤ Qf · sup
μ,q

{∣∣∣∣
Θ

f
q (μ)

Θ1(μ)

∣∣∣∣
∥∥A−1

1 Fq

∥∥
X

}
·

∞∑

k=n

∣∣∣∣
[Θa

2 (μ)]k
[Θa

1 (μ)]k
∣∣∣∣
∥∥A−1

1 A2
∥∥k

X

= Qf · sup
μ,q

{∣
∣∣∣
Θ

f
q (μ)

Θ1(μ)

∣
∣∣∣
∥∥A−1

1 Fq

∥∥
X

}
· (1 − ε)n

∞∑

k=0

(1 − ε)k

= Qf

ε
· sup

μ,q

{∣∣∣∣
Θ

f
q (μ)

Θ1(μ)

∣∣∣∣
∥∥A−1

1 Fq

∥∥
X

}
· exp

(
log(1 − ε)

Qf

m

)
,

so that the result holds with α = − log(1 − ε)/Qf and C = Qf

ε
·

supμ,q{|Θ
f
q (μ)

Θ1(μ)
|‖A−1

1 Fq‖X}. �



RB Methods and n-Width Estimates for the Approximation of the Solution 323

Exponential convergence of the greedy reduced basis algorithm is then predicted
by [3] as in (22). It should be understood that tight n-width estimates for the rate
of exponential convergence cannot be obtained by such series expansions—indeed
the coefficient α will tend to 0 if we let ε → 0. The factor 1/Qf in the exponential
is also excessively pessimistic provided that not for all q the terms converge at
the same rate. In the next section we will demonstrate a problem where much faster
exponential convergence of the greedy algorithm is observed, even in the parametric
region when the fundamental series no longer converges rapidly.

To close this section let us briefly consider the more general case Qa > 2:

(

Θa
1 (μ)A1 +

Qa∑

r=2

Θa
r (μ)A2

)

u =
Qf∑

q=1

Θ
f
q (μ)Fq. (31)

If the global spectral condition

ρ

(
Qa∑

r=2

Θa
r (μ)

Θa
1 (μ)

A−1
1 Ar

)

< 1, (32)

is satisfied, we can write the solution as

u =
(

I +
Qa∑

r=2

Θa
r (μ)

Θa
1 (μ)

A−1
1 Ar

)−1
(
Θa

1 (μ)A1
)−1

( Qf∑

q=1

Θ
f
q (μ)Fq

)

,

and applying (32) leads to

u =
( ∞∑

k=0

(−1)k

[Θa
1 (μ)]k+1

[
Qa∑

r=2

Θa
r (μ)A−1

1 Ar

]k

A−1
1

)( Qf∑

q=1

Θ
f
q (μ)Fq

)

and finally

u =
∞∑

k=0

Qf∑

q=1

(−1)kΘ
f
q (μ)

[Θa
1 (μ)]k+1

Ψk,q(μ), (33)

but now the fundamental basis vectors

Ψ0,q = A−1
1 Fq,

Ψk+1,q (μ) =
[

Qa∑

r=2

Θa
r (μ)A−1

1 Ar

]

Ψk,q(μ) for all q = 1, . . . ,Qf (34)

depend explicitly on the parameter(s) μ. Let ρ(k) = (ρ1, ρ2, . . . , ρk) be a multi-
index of dimension k and let ρ(0) = ∅. We define a set of parameter-free basis func-
tions ϕk,q,ρ according to the recursion

ϕ0,q,ρ(0) = A−1
1 Fq, ϕk+1,q,ρ(k+1) = A−1

1 Aρk+1ϕk,q,ρ(1:k) .
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Using the parameter-free basis we can rewrite the recursion of the fundamental basis
(34) as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ψ0,q = ϕ0,q,r(0) ,

Ψ1,q (μ) =
Qa∑

r=2

Θa
r (μ)A−1

1 ArΨ0,q =
Qa∑

r=2

Θa
r (μ)ϕ1,q,(r),

Ψ2,q (μ) =
Qa∑

r ′=2

Θa
r ′(μ)A−1

1 Ar ′Ψ1,q

=
Qa∑

r ′=2

Qa∑

r=2

Θa
r ′(μ)Θa

r (μ)A−1
1 Ar ′ϕ1,q,(r)

=
Qa∑

r ′=2

Qa∑

r=2

Θa
r ′(μ)Θa

r (μ)ϕ2,q,(r ′,r),

Ψk,q(μ) =
Qa∑

r1=2

. . .

Qa∑

rk=2

Θa
r1

(μ) . . .Θa
rk

(μ)ϕk,q,(rk,rk−1,...,r1)

and so the kth level expansion for Ψk,q will contain in general (Qa − 1)k terms, and
the size of the expansion blows up exponentially. Without some strong structural
assumptions the series expansion method is not suitable for deriving exponentially
decaying n-width estimates in the case Qa � 1.

5 Numerical Example of a Parameter-Dependent Diffusion
Problem

In this section we shall give numerical evidence of exponential convergence of
n-width upper bounds and consequently of the GRBM approximation. As a test
problem we consider a diffusion problem in a disk with four circular subregions
Ω1, . . . ,Ω4 as depicted in Fig. 2. The parametric problem can be formulated as
follows: given μ ∈ D ⊂ R

8, find u = u(μ) s.t.

−(1 + μ1Iω)�u = μ4 IΩ\ω +
4∑

q=1

μq+4 IΩq in Ω,

u = 1 on Γ1 ∪ Γ4,
∂u

∂n
= μ2 on Γ2,

∂u

∂n
= μ3 on Γ3

where the Γk denote the four sides of the square, and ω := ⋃4
q=1 Ωq is the union of

the disks. The function IΩ denotes the characteristic function of the subdomain Ω .
Thus the first parameter μ1 controls the difference between the isotropic diffusion
coefficient inside the disks versus the background conductivity, while the rest of the
parameters μ2, . . . ,μ8 enter into the boundary conditions and the source terms.
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Fig. 2 Schematic description
of the domain and boundary
conditions of the model
problem

This problem exhibits the same properties as the case discussed in the previous
Sect. 4 so that the solution can be written as the combination of the fundamental
basis vectors thanks to the formula (26). In this case the affine expansion (5) of the
problem is given by:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θa
1 (μ) = 1, a1(u, v) =

∫

Ω

∇u · ∇vdΩ,

Θa
2 (μ) = μ1, a2(u, v) =

∫

ω

∇u · ∇vdΩ,

Θ
f

1 (μ) = μ2, f1(v) =
∫

Γ2

vdΩ,

Θ
f

2 (μ) = μ3, f2(v) =
∫

Γ3

vdΩ,

Θ
f

3 (μ) = μ4, f3(v) =
∫

Ω\ω
vdΩ,

Θ
f

4 (μ) = μ5, f4(v) =
∫

Ω1

vdΩ,

Θ
f

5 (μ) = μ6, f5(v) =
∫

Ω2

vdΩ,

Θ
f

6 (μ) = μ7, f6(v) =
∫

Ω3

vdΩ,

Θ
f
7 (μ) = μ8, f7(v) =

∫

Ω4

vdΩ,

so that Qa = 2, Qf = 7, and the problem satisfies the global spectral condition (25)
provided that μ1 ∈ [−(1 − ε),1 − ε] for some ε > 0.

In order to compare the n-width bounds with the observed convergence rates of
the weak greedy algorithm, we considered four different cases: ε = 0.1, ε = 0.5,
ε = 0.9, and ε = 0.95. Note that if ε = 1, the manifold of parametric solutions
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Fig. 3 Convergence of the fundamental series (26) coefficients for different values of ε in (29)

dimension is limited to a Qf -dimensional subspace of X as indicated by (27), and
so the greedy terminates after exactly 7 iterations. In Fig. 3 we have plotted the
convergence of the fundamental series terms supμ ‖(Θa

2 (μ)Θ
f
q (μ)/Θa

1 (μ))Ψk,q‖X

that dictate the convergence rate of the n-width upper bound (30). For the value
ε = 0.1 very weak convergence of the fundamental series is observed for some of
the terms, namely q = 2,3,4,5.

To obtain the GRBM approximation the weak greedy algorithm was driven by
the residual-based a posteriori error estimator (20). In both cases the greedy was
run until an absolute H 1-error below 10−3 was reached. This required n = 25 basis
functions for the case ε = 0.1, n = 21 basis functions for the case ε = 0.5, n = 15
basis functions for the case ε = 0.9, and n = 14 basis functions for the case ε =
0.95. In Fig. 4 we have plotted the corresponding convergence rates of the greedy
algorithm compared to the n-width upper bound predictions given by (30). In each
case exponential convergence of the GRBM approximation is observed. The actual
exponential decay rate depends on ε, where for ε = 0.1 the n-width estimate is much
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Fig. 4 Comparison of the n-width upper bound estimate (30) and the greedy convergence rate

too pessimistic when compared to the true rate of convergence. This is likely due
to the weak convergence of some of the fundamental series terms (see Fig. 3(a)),
and the result could be improved by considering more carefully the cutoff point for
the different series terms for different q . However, as ε → 1 the n-width estimate
(30) becomes more and more indicative of the convergence rate observed during the
greedy algorithm. According to Fig. 3(c–d) at the limit all the fundamental series
coefficients converge at roughly the same rate, so that the bound (30) is expected to
sharpen considerably.

6 Conclusions

We have reviewed the generalized reduced basis method for the uniform approxi-
mation of manifolds of solutions of parametric partial differential equations. These
methods are typically driven by a greedy algorithm for selecting near-optimal re-
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duced approximation subspaces. It has recently been shown that the convergence
rate of the generalized reduced basis approximations is linked to the Kolmogorov
n-width of the manifold of solutions. We have exhibited a model problem where the
exact parameter-dependent solution can be expanded as a Neumann series, leading
to a constructive proof that the n-width of the solution set in this case converges ex-
ponentially. Numerical experiments confirm that the reduced basis approximation
also converges exponentially, and with a rate that is comparable to the one predicted
by our n-width upper bound estimate. The predicted convergence rate is independent
of the parametric regularity of the solution manifold and the number of parameters,
but it does depend on the size of the affine expansion of the parametric problem.
Future work involves finding more cases of parameter-dependent problems, where
explicit solution formulas could be used to prove more general n-width estimates.
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