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In memory of Enrico Magenes

Enrico Magenes (courtesy of the family)



Preface

On November 2nd 2010 Enrico Magenes passed away.
One year later, some of his friends, collaborators and former students organized

a three-day conference, in order to celebrate his memory and give a first assessment
of his deep influence on contemporary Mathematics. All the speakers were experts
in the analysis and numerics of partial differential equations, who had directly inter-
acted with Magenes, during his long career.

The present volume is a direct offshoot of that meeting, and it collects the main
contributions offered in that occasion, properly revised and expanded. It consists
of two parts: the first one gives a wide historical perspective of Magenes’ work;
the second one contains original research or survey papers, and shows how ideas,
methods, and techniques introduced by Magenes and his collaborators still have an
impact on the current research in Mathematics. As agreed between Springer and
UMI (Unione Matematica Italiana), some of the papers appearing in the second part
will be fully published on Bollettino UMI as well.

Although it is still too early to fully appreciate Magenes’ legacy, nonetheless
the volume is a first attempt to present a comprehensive survey of his activity in
Mathematics. At the same time, from Magenes’ peculiar point of view, it is a broad
perspective of the research in partial differential equations and their applications
developed in Italy in the period 1950–2000.

The editors are grateful to Francesca Bonadei of Springer Italy for the unique
opportunity offered with the publication of this volume, and for her constant support
during its preparation.

Franco Brezzi
Piero Colli Franzone

Ugo Gianazza
Gianni Gilardi

Pavia, Italy
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Part I
A Historical Perspective



Personal Memories

Franco Brezzi

Abstract Few personal memories about Enrico Magenes as scientific mentor, chair-
man of the Institute of Numerical Analysis, President of the Italian Mathematical
Union.

Enrico Magenes taught me A LOT, both as a mathematician and as a man.
This is not obviously the place to tell what I learned in Mathematics. It is a

fact, however, that I tried to learn, at least in part, many of his human gifts: his
commitment at work, his sincerity, his love for the talent, his warm-heartedness,
a lot of things. Maybe the most important thing that I tried to learn from him, was
“not to hate.” As a matter of fact, I saw him a lot of times losing patience, but I never
had the impression he hated anybody. There were things he disapproved of. There
were persons he did not think much of. However, he never hated anybody, not even
those, who had put him in a concentration camp.

For me, this was particularly important, and I did my best, in order to learn it.
Under a more general point of view, for us, his students, he was an example and

a stimulus. In my opinion, his best scientific talent was one of those gifts, which are
not frequently extolled. However, still in my opinion, it is perhaps the most impor-
tant talent in a mentor: the ability to recognize the important problems. He could
sense the scientific directions, that would generate a lot of important developments,
and those that would extinguish after a couple of papers. It is in this way, with ex-
treme far-sightedness, that he could open new ways, combining mathematical rigor
with interest for applications, and starting a lot of fruitful collaborations with en-
gineers, biologists and physicians. These are things, that at the time were almost
revolutionary.

As a matter of fact, he never forced anybody to work on a specific topic. He just
limited himself to suggesting the problems he considered important enough to be
solved. All of us were obviously EXTREMELY careful in following his advices.

F. Brezzi (B)
Istituto di Matematica Applicata e Tecnologie Informatiche “E. Magenes”, Consiglio Nazionale
delle Ricerche, via Ferrata 1, 27100, Pavia, Italy
e-mail: brezzi@imati.cnr.it

F. Brezzi et al. (eds.), Analysis and Numerics of Partial Differential Equations,
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4 F. Brezzi

I was his (unworthy) successor in two positions, which I consider important: the
chairmanship of the Institute of Numerical Analysis of the Italian Research Council
(CNR) (later on merged in the current Institute of Applied Mathematics and In-
formation Technologies, still of the CNR) which I took in 1992, immediately after
he finished his term, and the Presidency of the Italian Mathematical Union, which
I took thirty years later (he finished his term in 1976, I started mine in 2006).

In the first instance, notwithstanding my commitment, the comparison was mer-
ciless. I try and console myself, telling me that nobody could possibly rival his
enthusiasm, his rigor, his vision about Mathematics, and his humanity. Moreover,
I tell myself that few would have been able, so to speak, to lose by a narrow margin.
Anyway, the comparison was really hard, and I was lucky that he was there, always
at disposal for suggestions, advices, warnings. As a matter of fact, also through the
activities of the Institute (which originally was called Laboratory), Magenes could
give birth to a large part of the Italian Applied Mathematics (in particular, Numerical
Analysis), placing it among the highest ranking international positions: just preserv-
ing this ranking was very difficult.

The Italian Mathematical Union (UMI) owes him a lot, not only for the work
done as a member of the Scientific Committee (from 1967 to 1979) and then as
President in difficult and stormy times (from 1973 to 1976). For UMI Magenes was
always a stimulus, a source of ideas and initiatives, and at the same time a balanced
and wise presence, witness of a clear and solid vision, of what was important, and
what not. Even when he did not hold any institutional office, at national level, all
the same he was a reference point, somebody who could encourage or warn, a sort
of Guardian Angel.

With him a large piece of history passes away, an important piece, not only for
Mathematics. Good Bye Enrico!



Some Aspects of the Research of Enrico
Magenes in Partial Differential Equations

Giuseppe Geymonat

Abstract The author traces the initial stage of Enrico Magenes’s research, with a
particular emphasis on his work in Partial Differential Equations. The very fruitful
collaborations with G. Stampacchia and J.-L. Lions are clearly presented.

1 The Beginnings in Modena

The first researches of Enrico Magenes in Partial Differential Equations date to
1952, [14, 15] (and in the same year he became professor of Mathematical Analysis
at the University of Modena). Their argument is the application to the heat equation
of a method that in the Italian School is called “Picone’s Method”. The basic idea
of the method is to transform the boundary value problem into a system of integral
equations of Fischer-Riesz type. This idea was introduced by Picone around 1935
and then deeply applied by Amerio, Fichera, and many others to elliptic equations.
For simplicity, we present the method in the simplest case of a non-homogeneous
Dirichlet problem in a smooth, bounded domain Ω ⊂R

N :

A(u)= f in Ω, γ0u= g on Γ := ∂Ω (1)

where A(u) is a second order linear elliptic operator with smooth coefficients and
γ0u denotes the trace of u on Γ ; for simplicity one can also assume that uniqueness
holds true for this problem. Let A� be the formal adjoint of A and let ∂

∂ν
denote the

so-called co-normal derivative (when A=�, then A� =� and ν = n, the outgoing
normal to Γ ). The Green formula states∫

Ω

A(u)wdx −
∫
Ω

uA�(w)dx =
∫
Γ

(
∂u

∂ν
w− u∂w

∂ν

)
dΓ. (2)

Hence, if one knows a sequence wn of smooth enough functions, such that A�(wn)
and γ0(wn) both converge, then, thanks to (2), the determination of the vector

G. Geymonat (B)
LMS, Laboratoire de Mécanique des Solides UMR 7649, École Polytechnique, Route de Saclay,
91128 Palaiseau Cedex, France
e-mail: giuseppe.geymonat@lms.polytechnique.fr

F. Brezzi et al. (eds.), Analysis and Numerics of Partial Differential Equations,
Springer INdAM Series 4, DOI 10.1007/978-88-470-2592-9_2,
© Springer-Verlag Italia 2013
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6 G. Geymonat

(u, ∂u
∂ν
) with u the solution of (1) is reduced to the solution of a system of linear

equations of Fischer-Riesz type.
The difficulty was naturally to find such a sequence, to prove its completeness (in

a suitable functional space) and hence the space where the corresponding system is
solvable and so the problem (1).

Following Amerio [1], let the coefficients of A be smoothly extended to a do-
main Ω̂ ⊃ Ω and for every fixed R ∈ Ω̂ let F(P,R), as a function of P , be the
fundamental solution of A�(w)= 0 (moreover, such a fundamental function can be
chosen so that, as a function of R, it also satisfies A(u)= 0). Then from (1) and (2)
it follows that for every Q ∈ Ω̂ \Ω

0=
∫
Γ

(
u(x)

∂F (x,Q)

∂ν
− ∂u(x)

∂ν
F (x,Q)

)
dΓ −

∫
Ω

f (x)F (x,Q)dx. (3)

This equation gives a necessary compatibility condition between γ0u and ∂u(x)
∂ν

.

Moreover, if ϕn is a sequence of “good” functions defined in Ω̂ \Ω , then one can
take wn(P )=

∫
Ω̂\Ω ϕn(x)F (P,x)dx. Two problems remain:

(i) the choice of the sequence ϕn, in order that the procedure can be applied;
(ii) the determination of the good classes of data f,g,Ω , and solutions u to which

the procedure can be applied.

In this context it is also useful to recall that for every P ∈Ω it holds

2πN/2

Γ (N/2)
u(P )=

∫
Γ

(
u(x)

∂F (x,P )

∂ν
− ∂u(x)

∂ν
F (x,P )

)
dΓ −

∫
Ω

f (x)F (x,P )dx.

(4)

In order to study the previous problems, one has to study the fine properties of
the simple and double layer potentials, appearing in (3) and (4). See for instance
Fichera’s paper [3], where many properties are studied, and in particular results of
completeness are proved. (The modern potential theory studies the fine properties
of the representation (4) for general Lipschitz domains and in a Lp framework.)

Magenes applied the method to the heat operator E(u)= �u− ∂u
∂t

inΩ× (0, T ),
whose formal adjoint is E�(u)= �u+ ∂u

∂t
; the Green formula (2) becomes

∫ T

0

∫
Ω

E(u)wdxdt −
∫ T

0

∫
Ω

uE�(w)dxdt

=
∫ T

0

∫
Γ

(
∂u

∂n
w− u∂w

∂n

)
dΓ dt

+
∫
Ω

u(T )w(T )dx −
∫
Ω

u(0)w(0)dx. (5)

Following the approach of Amerio and Fichera, Magenes used the fundamental so-
lution of the heat equation, defined by F(x, t;x′, t ′)= 1

t ′−t exp(−‖x′−x‖
4(t ′−t) ) for t ′ > t

and F(x, t;x′, t ′) = 0 for t ′ ≤ t . He also defined a class of solutions of the heat
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equation E(u)= f , assuming the boundary value in a suitable way and represented
by potentials of simple and double layer.

These researches were followed [17] by the study of the so-called mixed prob-
lem, where the boundary is splitted in two parts: in the first one the boundary condi-
tion is of Dirichlet type, and in the other one the datum is the co-normal derivative.
This problem was of particular difficulty for the presence of discontinuity in the
data, even in the stationary case: see [16] (where the results are stated for N = 2,
although they are valid for arbitrary N ) and has stimulated many researches using
potential theory not only of Magenes (see e.g. [18, 19]) but also of Fichera, Miranda,
Stampacchia, . . .

2 The Years in Genoa with G. Stampacchia

From the historical point of view, these researches show the change of perspective
that occurred in Italy at that time in the study of these problems with the use of

• some first type of trace theorems (e.g. inspired by the results of Cimmino [2]);
• the introduction of the concept of weak solution;
• the use of general theorems of functional analysis (see e.g. [4]).

Under this point of view, the following summary of a conference of Magenes gives
a typical account (see [20]). Breve esposizione e raffronto dei più recenti sviluppi
della teoria dei problemi al contorno misti per le equazioni alle derivate parziali
lineari ellittiche del secondo ordine, soprattutto dal punto di vista di impostazioni
“generalizzate” degli stessi (A short presentation and comparison of the most re-
cent developments in the theory of mixed boundary value problems for second order
elliptic linear partial differential equations, mainly from the point of view of “gen-
eralized” approaches to them).

At the end of 1955 Magenes left the University of Modena for the University of
Genoa, where he had G. Stampacchia as colleague. Stampacchia was a very good
friend of Magenes from their years as students at Scuola Normale, since both where
antifascist. Moreover, Magenes and Stampacchia were well aware of the fundamen-
tal change induced by the distribution theory and the Sobolev spaces in the calculus
of variations and in the study of partial differential equations, particularly in the
study of boundary value problems for elliptic equations (see for instance the bibli-
ography of [20]).

They studied the works of L. Schwartz and its school, and specially the results
on the mixed problem in the Hadamard sense. At the first Réunion des mathémati-
ciens d’expression latine, in September 1957, Magenes and Stampacchia met J.-L.
Lions. It was the beginning of a friendship, that would never stop. During the Spring
1958, J.-L. Lions gave at Genoa a series of talks on the mixed problems [5, 6], and
in June 1958 Magenes and Stampacchia completed a long paper [22], that would
have a fundamental influence on the Italian researches on elliptic partial differential
equations. Indeed, that paper gives a general presentation of the results obtained up
to that moment in France, United States, Sweden, Soviet Union by N. Aronszajn,
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F.E. Browder, G. Fichera, K.O. Friedrichs, L. Gårding, O. Ladyzenskaja, J.-L. Li-
ons, S.G. Mikhlin, C.B. Morrey Jr., L. Nirenberg, M.I. Visik, . . . .

It is worth giving the titles of the four chapters: I General notions, II Boundary
value problems for linear elliptic equations, methods with finite “Dirichlet integral,”
III Problems of regularization, IV Other approaches to boundary value problems.
Then, in the following few years Magenes tried to increase the audience of this
methodology in the Italian mathematical community, giving lectures in various uni-
versities (see e.g. [21]), for instance organizing with Stampacchia a CIME course
on distribution theory in 1961, . . .

At the end of 1959 Magenes left Genoa and went to the University of Pavia.
During the year 1959, the collaboration with J.-L. Lions became more active and
they started a long series of joint works [7–10], whose results were summarized
and fully developed in a series of books [11–13] translated in Russian, English and
Chinese.

3 The Collaboration with J.-L. Lions in the Study of Boundary
Value Problems

Following an idea of J. Hadamard, Courant and Hilbert (Methods of Mathematical
Physics, volume II, Interscience, 1962, p. 227) state that a mathematical problem,
which must correspond to a physical reality, should satisfy the following basic re-
quirements:

1. The solution must exist.
2. The solution should be uniquely determined.
3. The solution should depend continuously on the data (requirement of stability).

In order to satisfy these requirements, one has to identify the functional spaces
where the problems are well-posed. The distribution theory and the Sobolev spaces
give a natural framework and the instruments to study partial differential equations.
The results collected in the first three chapters of [22] allow to prove that the el-
liptic boundary value problems with homogeneous boundary data are well posed
in Sobolev spaces Wm,2(Ω) with m big enough. For non-homogeneous boundary
data, the situation was more difficult, since at first it was necessary to give a good
definition of the trace γ0u of an element u ∈ Wm,p(Ω) on Γ := ∂Ω . The good
definitions and the corresponding characterizations were given (under various con-
ditions on p ≥ 1, on m > 1 − 1

p
and on the regularity of the domain Ω , i.e. of

its boundary Γ ) by E. Gagliardo, J.-L. Lions, and P.I. Lizorkin, G. Prodi, . . . . In
particular it was proved that the trace operator cannot be continuously defined on
L2(Ω).

However, for many problems coming from the applications (e.g. mechanics, en-
gineering, . . .) the natural setting is in Sobolev spaces of low order and sometimes
of negative order. Therefore, it is necessary to define a weak or generalized solution
of a non-homogeneous boundary value problem and hence, to give a good definition
of trace in a weak sense.
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Inspired by the theory of distributions, Lions and Magenes [7–10] tackled the
problem by duality. More precisely let us consider the map u→Au := {Au,Bγ0u},
where A is a linear elliptic operator with smooth coefficients defined in a domain
Ω ⊂ RN with smooth boundary Γ , and Bγ0 is a linear differential operator with
smooth coefficients, defined on Γ , and compatible with A in a suitable sense.

Such a general framework is a “natural” extension of the Dirichlet problem (1).
Thanks to known regularity results (described for instance in Chap. III of [22]), the
map A :E(Ω)→ F(Ω)×G(Γ ) is an isomorphism (for simplicity, and in general a
finite index operator) between the Sobolev spaces E(Ω) and F(Ω)×G(Γ ), where
these spaces are of big enough positive order.

In the case of (1), one can take for instance E(Ω)=Hm+2(Ω)(=Wm+2,2(Ω))

with m ≥ 0, and then F(Ω)=Hm(Ω) and G(Γ )=Hm+3/2(Γ ). By restriction to
the case of homogeneous boundary data and to the space F0(Ω) (closure of D(Ω)
into F(Ω)), it is possible to define the isomorphism A
 : X(Ω)→ F0(Ω), where
X(Ω) is a subspace of E(Ω).

By transposition, for every linear and continuous form L(v) on X(Ω), there
exists u ∈ (F0(Ω))

′ such that〈
u,A
(v)

〉= L(v) for all v ∈X(Ω). (6)

Let us point out that (F0(Ω))
′ is a Sobolev space of negative order (in the case of

(1) F0(Ω)=Hm
0 (Ω) and (F0(Ω))

′ =H−m(Ω)). In order to get the wanted result,
Lions and Magenes chose L = L1 + L2 in such a way that L1 gives rise to the
equation A�u = f , where A� is the linear elliptic operator formally adjoint to A,
and L2 corresponds to the non-homogeneous boundary conditions B�u = g in the
most natural way.

Perhaps the most interesting contribution of Lions and Magenes was the optimal
choice of L2. It was obtained thanks to a clever use of the Green formula, that allows
to naturally define the traces of every element u ∈ (F0(Ω))

′, such that A�u belongs
to a suitable distribution space on Ω .

For instance, in the case of (1) with A = A� = �, Bγ0 = ∂
∂n := γ1 and m = 0,

one can define the trace γ0u ∈ H−1/2(Γ ) for every u ∈ L2(Ω), such that A�u =
�u ∈ L2(Ω). The main steps of the proof are the following:

1. One proves the density of D(Ω) into the space Y(Ω) := {u ∈ L2(Ω);�u ∈
L2(Ω)}, equipped with the natural graph norm.

2. Let us define X(Ω) = {v ∈ H 2(Ω);γ0u = 0} and let us remark that the map
v −→ γ1v is a linear and continuous map of X(Ω) onto H 1/2(Γ ), whose kernel
is H 2

0 (Ω).
3. For every (u,φ) ∈ Y(Ω)×H 1/2(Γ ), one defines the bilinear and bi-continuous

map L2(u,φ) with

L2(u,φ)=
∫
Ω

u�vφdx −
∫
Ω

�uvφdx,
where vφ ∈ X(Ω) is such that γ1vφ = φ (it is easy to verify that indeed
L2(u,φ) = 0 when vφ ∈ H 2

0 (Ω) and hence, L2(u,φ) does not depend on the
particular choice of vφ).
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4. One can do the identification

L2(u,φ)= 〈T u,φ〉,
where 〈•,•〉 denotes the duality pairing between H−1/2(Γ ) and H 1/2(Γ ), and
u−→ T u is linear and continuous from Y(Ω) to H−1/2(Γ ).

5. When u ∈D(Ω), then the Green formula (2) implies

L2(u,φ)=
∫
Γ

uφdΓ

and hence, the map T can be identified with the trace map.

The books [11] and [12] present the general theory, not only for elliptic operators,
but also for linear evolution equations of parabolic type, both in distributions spaces
and also [13] in ultra-distributions of Gevrey classes.
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Enrico Magenes and the Dam Problem

Claudio Baiocchi

Abstract In a very vivid way, the author describes how Magenes was introduced to
the Dam Problem, and how the group around Magenes, made up by pure analysts,
numerical analysts, mathematical physicists, worked hard to provide a solution that
could be satisfactory both from a theoretical and practical point of view.

Enrico Magenes, Director of the Institute of Numerical Analysis of the Italian Re-
search Council (IAN), which he had founded, was always looking out for new prob-
lems, that might inspire the Institute research.

In 1970 the School of Engineering of the University of Pavia hired Ugo Maione,
an engineer, as professor of Hydraulics. Maione had a very good reputation, and
Magenes immediately seized the opportunity: he contacted the new professor, and
suggested a meeting, in order to examine the possibility of starting a collaboration
between the two Institutes.

Maione gladly accepted, and at the first meeting, that took place in Magenes’s
office, amongst others were present also Valeriano Comincioli, as numerical analyst,
and Luciano Guerri, as mathematical physicist; as for me, I was supposed to be the
pure mathematician: indeed, one of Magenes’s strongest conviction was always the
idea, that within the Institute research activities, the numerical treatment of every
single problem should come together and rely upon a deep theoretical analysis.

Maione commenced saying that he had several irons in the fire, but at the mo-
ment, the topic he was most interested in was the numerical treatment of a Hy-
draulics problem, that can be summarized in this way: a pile of dirt separates two
water basins at different heights; due to the gravity force, water flows through the
pile and, by inserting a proper concrete bulkhead (omitted in Fig. 1), one wants to
reduce the dam flow.
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Fig. 1 A dam separates two
water basins at different
heights

The real problem, which had to do with some dams in Sudan, if I remember cor-
rectly, was obviously much more complicated, but Maione was willing to postpone
the main difficulties for the moment: for example, assuming the dirt to be homoge-
neous, the dam vertical section to be constant and geometrically simple, that capil-
larity and viscosity are negligible, that after a short transient state, the evolution of
the phenomenon reaches a steady state, and therefore the Darcy Law can be applied
. . .

Thus, we got to a two-dimensional problem, whose mathematical statement reads
in this way (see Fig. 2): the two basins and the rectangular dam, which separates
them, lie on a horizontal waterproof basis (the x axis); the curve ϕ (the so-called
free surface) bounds from above the wet section Ω of the dam; in such a set, one
looks for a function (the so-called piezometric height), which must satisfy both the
equations in Fig. 2 and further qualitative properties (for example u > 0 in Ω); as
a matter of fact, from a purely applicative point of view, it suffices to estimate the
function ϕ, as one can easily deduce all the other relevant quantities (pressure, flow,
etc.) from it.

The only “complication” Maione was not willing to get rid of, was the presence
of the waterproof concrete bulkhead: indeed, he claimed that without it, the prob-
lem was largely studied (mainly in the Russian literature) by means of conformal
transforms, and there was no need to reinvent the wheel.

Somehow we succeeded in convincing him, that starting with the problem with-
out the bulkhead was worth the effort: the numerical results obtained by means of
conformal transforms could be a test for a numerical treatment of a different kind,
which we could then hopefully adapt to the problem with the bulkhead . . .

As a matter of fact, still during the first meeting, a possible numerical approach
was sketched by Comincioli and Guerri: on a domain bounded by a “first approx-
imation” y = ϕo(x) of the unknown boundary, one solves (obviously numerically)
the problem just with the Neumann condition on the portion ϕo of such a boundary;
the other condition, namely u(x,ϕo(x)) = ϕo(x), in general will not be satisfied,
but one can define the quantity ϕ1(x)= u(x,ϕo(x)) as a new approximation of the
unknown function; one then iterates, and hopefully the numerical procedure con-
verges. Such a convergence should actually suggest the possibility that a fixed point
theorem provides both an existence result and a numerical justification of the nu-
merical treatment.
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Fig. 2 The two-dimensional,
simplified dam problem

Few days later, while I was struggling with the papers that made use of the con-
formal transform, suddenly I remembered an episode that had taken place a couple
of years before: in 1968 Magenes had “invited” me (so to say), one of his young
students, to go to Rome with him, in order to take part to a Symposium organized
by the Institute of Higher Mathematics.

It is still very fresh in my memory the lecture hall that hosted the symposium:
it was filled up with a number of sacred cows (not only Italian) of Mathematics;
amongst the names that I can remember, let me mention Felix Browder, Ennio De
Giorgi, Gaetano Fichera, Jacques Louis Lions, Enrico Magenes, Carlo Miranda,
Louis Nirenberg, Laurent Schwartz, Guido Stampacchia, . . .

In particular, a communication presented by Carlo Miranda was about a problem
he had been suggested by a colleague of Hydraulics, Russo Spena, and he had dealt
with some time before in collaboration with Renato Caccioppoli.

More or less, Miranda started in this way:

In a domain whose boundary is given by four rectifiable arcs, we look for a harmonic
function, which is constant on two noncontiguous arcs; on the remaining two, the normal
derivative vanishes, and finally, on one of the two, a Dirichlet-type condition is given . . .

At that point, from the first row, at the same time two voices called loud, and
stopped the presentation: Fichera turned towards his student De Vito, and asked him
to take detailed notes; Magenes cried out: “You cannot do that, you have already
imposed a different condition on that curve.” Miranda replied: “If you let me finish,
you will understand,” and explained that the said curve was not given, but it was one
of the unknowns of the problem . . .

When this episode came back to my mind, I rushed to the library and I found
Miranda’s work printed in the proceedings of the symposium. At a first reading,
I realized it was exactly our problem, although without the bulkhead.

In Miranda’s approach, the existence result relied on a fixed-point-type theorem,
exactly as we hoped we could do with the numerical treatment we had devised in our
first meeting; in the meantime, under the guidance of Comincioli and Guerri, this
problem had been assigned to a very smart student, Giampiero Volpi, as his thesis
dissertation. Let me say here that the student was indeed so smart, that later on IBM
stole him from us and hired him . . .



16 C. Baiocchi

Magenes was very happy he had a theoretical basis, on which the numerical
treatment could rest, and Maione was immediately summoned, in order to give him
the good news, but . . . disaster: in Miranda’s approach, there was no room for the
suspended source! In other words, because of unavoidable physical reasons, the
unknown curve must end at a point that lies strictly above the lower basin, whereas
in Miranda’s work the curve ended exactly at the height of the lower basin.

We were in a deadlock: Magenes was keen to agree with Miranda, not only for
the deep esteem he had for him, but also because it was a redrafting of an idea origi-
nally due to Caccioppoli; on the other hand, Maione invited us to visit his Hydraulics
laboratory; there, we saw an analogical device, where the Hydraulics physical phe-
nomenon was simulated by means of a capillarity phenomenon (Hele-Shaw effect),
and the suspended source was clearly visible!

A couple of months later, an idea, that turned out to be very fruitful, allowed
me to give a weak formulation to the problem, and independently of the existence
or not of the suspended source, everything was recast as a variational inequality;
in turn, this provided an existence and uniqueness result for the solution. Then,
relying on ideas that were already present in the Russian literature, and by means
of a particular technique that Miranda himself had used, I succeeded in proving that
the weak solution was indeed a strong solution, and that the suspended source had
to exist . . .

We were all excited, as the tool represented by variational inequalities lent it-
self to a numerical approach of the problem, which was at the same time extremely
simple under the point of view of programming (an aspect I will talk about in a
moment), and offered the possibility to provide a priori estimates for the error; Ma-
genes considered this particular possibility an essential condition in every single
numerical approach. However, we were left with a sort of “diplomatic” problem:
how could we tell Miranda that his paper contained a mistake? And where exactly
was this mistake?

I have to confess that even nowadays I cannot answer the second question, as
some points of Miranda’s work were somehow confusing; as for the first question,
it was Magenes who, with special care, told Miranda what was going on. Miranda’s
reaction was extremely reasonable: probably Caccioppoli had kept those ideas in
the drawer, as some of the details still needed to be polished; Miranda’s decision
to publish these results, should not damage his Master’s reputation! On the other
hand, I had used some ideas from that paper, and I wanted to cite it. Promising
himself to get back to the problem later on, Miranda begged me to limit myself
to an unspecific citation, of the kind “for a similar problem, see . . .,” and I gladly
accepted this suggested solution.

From Maione’s point of view, although still not completely satisfactory, as the
bulkhead was not there, the result was very much appreciated: even if he did not
have the necessary expertise to appreciate the correctness of the approximation, he
quickly realized that there was no more any need to discretize the differential equa-
tion on a sequence of domains, in each of whom the shape of the domain depended
on the solution of the previous problem: the solution on the whole rectangle of a sin-
gle variational inequality provided all the looked-for quantities, free-surface curve
included!
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Moreover, the comparison with the discretization on variable domains was ex-
tremely favorable under every point of view; besides largely improving the memory
management and the processing time, the new approach cut the programming com-
plexity down to the bone: even I could write down such a program!

We were all euphoric for this achievement, and the argument looked very promis-
ing; it was therefore time to devote ourselves to the study of more sophisticated
problems (primarily the bulkhead). Magenes and Maione quickly agreed on a se-
ries of joint seminars: we would explain Sobolev spaces to engineers, and engineers
would present us the main points one needs to know in the study of the motion of
fluids. Unfortunately, in a short time, the number of engineers quickly shrank just
to Maione; on the contrary, probably because Magenes had been extremely clear in
inviting us to take part to the seminars, the mathematicians’ group remained com-
pact. Frankly speaking, I cannot say how many of the notions Maione explained
us really entered the participants’ heads (in my case I have some vague remem-
brances about Bernoulli’s law and the water hammer effect), but from the point of
view of scientific productivity, the results were noteworthy, and achieved in a very
short time: indeed, we had to scoop the competition, because Magenes, as he used
to do, had set up a real advertising campaign (organization of a CIME Summer
course, a set of seminars at SISSA, talks at meetings and conferences . . .), so that
in a short time this research topic was brought to the attention of the Italian mathe-
matical community; this was particularly easy, because variational inequalities and
their applications were at that time a peak topic.

I cannot mention here all the names of the persons that gave a contribution to
this enterprise, and I strongly apologize for this with all the colleagues; I will limit
myself to say that the “Pavia School” quickly succeeded in getting rid of many
of the initial “simplifications”, providing in this way a solution to almost all the
problems, we had originally set apart: not only the insertion of a bulkhead, but also
the presence of capillarity, the lack of homogeneity of the building material, the
evolution phenomenon . . .

Amongst the problem we solved, one, which was particularly valued by Maione,
was the extraction of fresh water from a stratum close to the coast (see Fig. 3):
the salty water seeps below the fresh water stratum (which is lighter); however, the
difference in density of the two fluids is so small, that a small perturbation runs the
risk to mix them together, making the precious good unusable.

It is interesting to remark that the context where these results can be applied is
much larger: when I presented this problem in an American university, I heard the
audience noisily grumbling, till one of the presents raised her hand and asked me:
“Where is oil?”

Amongst all the problems Maione has suggested us, only the case of a more
complicated geometry took more time to be solved: variational inequalities did not
suffice here, and we had to resort to “quasi-variational inequalities” a tool that the
French School headed by Jacques Louis Lions was introducing and developing right
at that time.

I am going to conclude, mentioning two episodes, that I still remember with great
pleasure.
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Fig. 3 A fresh water stratum
close to the coast

At a Hydraulics meeting, Maione gave a talk, and presented our results: in order
to give a more thorough, mathematical description, he registered me too. Nobody
knew me there, and therefore, during Maione’s seminar, mixed among the partici-
pants, I could hear some nipping comments about the importance of mathematical
theorems, without which water could not flow . . . However, when Maione presented
all the details of the numerical simulations and the comparison with different meth-
ods, sarcasm disappeared, and also my seminar was listened to, with great attention.

The second episode took place during a mathematical meeting, where I got the
following comment by Ennio De Giorgi:

It is really true that Mathematics is changing; once upon a time 90 % of the speakers
started drawing a potato-like object, and continued saying “Let us consider a domain D
. . .” Nowadays almost everybody starts, talking about a given domain D, but then she
draws half a potato!



Inverse Problems in Electrocardiology

Piero Colli Franzone

Abstract The author outlines from an historical point of view the mathematical
problems, which were the main topics of his scientific collaboration with Enrico
Magenes. A full account of the joint work on mathematical models for electrocar-
diology is given. The paper ends commenting few original letters Magenes wrote to
the author: it gives a clear description of the work method, and also of the “gentle”
pressure to which Magenes’s collaborators were exposed.

1 Introduction

In this work, I will outline from an historical point of view the mathematical prob-
lems which were the main topics of my scientific collaboration with Enrico Ma-
genes. I must first recall and emphasize Enrico Magenes’ crucial role as promoter
and organizer of research activities in the fields that today are known as Scientific
Computing, Applied Mathematics, and in particular of Biomedical Applications. He
carried out this role in particular during his tenure as Director of the Laboratorio di
Analisi Numerica (LAN, Laboratory of Numerical Analysis), from 1970 to 1993.

Peculiar qualities of Enrico Magenes, shared with Jacques-Louis Lions, were the
scientific open-mindedness and the curiosity toward interesting mathematical mod-
els formulated as systems of partial differential equations having a strong impact in
significant applications. After having productively collaborated on several impor-
tant research projects, both scientists reached beyond their own fields of expertise,
with the objective to set up and develop the numerical analysis of partial differential
equations (PDEs) in a modern functional framework.

Starting from 1970 as the Director of LAN, Magenes encouraged the initiation
of research activities on:
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• the analysis of Finite Element FE method for the approximation of second order
elliptic boundary value problems and of control problems of distributed systems;

• the implementation of FE methods and the planning of numerical simulations
on bi-dimensional test problems (with simple structured meshes on rectangular
domains), in order to evaluate the optimality of the theoretical estimates related
to the FE order of convergence.

2 Cardiac Body Surface Maps and Inverse Potential Problems

During the mid-seventies, the Italian Research National Council (CNR) launched
a set of feasibility studies focused on thematic research projects between C.N.R.
Laboratories, Universities and various Industries.

In 1976, the first so-called Progetti Finalizzati del CNR (i.e. Goal-Oriented
Projects) were started and Magenes was appointed member of the Scientific Coun-
cil of the Progetto Finalizzato Tecnologie Biomediche 1976–1980, coordinated by
Prof. Luigi Donato, Director of the CNR Institute of Clinical Physiology in Pisa.

Magenes encouraged Luciano Guerri, Carla Viganotti and myself to elaborate a
project concerning the relationship between electrocardiograms and the excitation
process of the heart. As a first step, we considered the so-called Inverse Problem
of Electrocardiography, consisting in computing the electric potential map on a
surface near and surrounding the heart volume from the electric potential measured
in various points distributed on the body surface.

The main goal of the project submitted by the LAN research team, was to develop
numerical algorithms for solving the inverse problem and subsequently to apply
the inverse procedure to data measured in experiments on animals. The data were
collected by Prof. Bruno Taccardi in experiments on isolated dog hearts using an
advanced electrical and digital equipment conceived and designed by Prof. Emilio
Gatti of the Politecnico di Milano and assembled at the Centro C.I.S.E.. At that time,
the results of two experiments on animals were available, performed on two dogs
called Tristano and Isotta.

The research proposal was accepted and included in the subproject Bio-
Immagini 2 concerning the analysis of Cardiac Body Surface Maps. The achieve-
ment of the LAN project goals entailed reaching new methodological and compu-
tational goals:

• the development of finite element numerical codes for solving second order ellip-
tic problem on three-dimensional domains;

• the numerical solution of ill-posed minimum problems related to quadratic func-
tional subjected to distributed constraints;

• the analysis and application of numerical FE codes to synthetic data associated
to test problems, in order to estimate the accuracy of the results and subsequently
the application to large experimental data sets.
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Fig. 1 Epicardial electric
equipotential lines in
millivolts, drawn manually on
a projected anterior and
posterior heart surface in dog
experiments

Facing these demanding and challenging tasks, at that time I expressed my per-
plexity to Magenes regarding the team effective capability to reach the project goals
but, as people acquainted with Magenes would have known, his expected answer
was: “Senta, Colli, non faccia la solita mammoletta (i.e. Listen, Colli, do not be-
have as the usual shrinking violet).”

The data handling of the measured potential body and heart surface maps re-
quired, for its analysis and interpretation, the drawing of equipotential lines. At that
time, these level lines were drawn manually on the printed potential values in milli-
volt; an example is displayed in Fig. 1. Subsequently, the LAN laboratory acquired
a Tektronix 4010 graphical equipment for automatically tracing the equipotential
lines on the projected body and heart surfaces, see Fig. 2.

At this point, I would like to insert a letter, which Prof. Bruno Taccardi sent me
few years ago, containing several memories about Enrico Magenes:

“Dear Piero, it is my pleasure to acknowledge the important role played by
Professor Magenes and his school, in the 70’s and subsequent years, in promot-
ing advances in mathematics and computer science in the area of normal and
pathological cardiac electrophysiology. Our group of electrophysiologists, first at
the Free University of Brussels (1951–1959), then at the Simes Institute in Mi-
lano and at the Universities of Pavia and Parma (Taccardi, De Ambroggi, Mac-
chi, Musso et al.) had observed that the classical 12-lead electrocardiogram, uni-
versally used in clinical cardiology, contained only a fraction of the electrical in-
formation that is present on the surface of the human body. Meticulous investi-
gations in experimental animals had shown that it was possible to obtain maps
that depict the distribution of the electric potential generated by the heart in extra-
cardiac volume conductors (Brussels, 1951, 1958) and on the entire body sur-
face (1962, 1963, Circulation Research). These maps revealed heart abnormali-
ties even in patients with normal 12-lead electrocardiograms. Unfortunately, hun-
dreds of measurements were necessary to obtain the maps, involving a month of
manual work for every patient. The measurements were then automated, thanks to
the electronic instruments developed at the CISE Institute, under the direction of
Prof. Emilio Gatti. Furthermore, to convert the signals collected from 240 body
surface sites into images readable by a clinician, we needed advanced computing
and graphic methods that were not available in any electrophysiological labora-
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Fig. 2 Epicardial electric equipotential lines in millivolts automatically drawn on a projected an-
terior and posterior heart surface in a dog experiments using a Tektronix 4010 graphical equipment

tory. Through the intervention of Prof. Casella (University of Pavia) we were intro-
duced to Prof. Magenes, who gave a decisive impulse to our research. Professor
Magenes understood that it was important to move from the body-surface infor-
mation to the knowledge of the intracardiac electrical events that trigger the me-
chanical heart beat. The theoretical feasibility of this transition, predicted by Prof.
Pilkington (Duke University, 1968), see [12], was confirmed by Prof. Magenes’s
group (Colli Franzone et al.) who published the first cardiac maps obtained with
the “inverse” procedure. The cooperation between our group of physiologists and
the bio-mathematicians in Pavia continued for about 40 years, and resulted in a
number of publications. Prof. Magenes’s group is still active and productive in the
field.”

Let me now state the Forward or Direct Problem of Electrocardiography:
given the potential at the surface Γh bounding the heart and close to it, compute the
potential map on the body surface Γt .

For simplicity, we assume that the body volume Ω outside the heart H is an
isotropic and homogeneous conductor, see Fig. 3. Since the current sources lie only
in the heart muscle and the body surface Γt in contact with air is insulated, then, at
any time instant t of the heart beat, the potential field U(x, t), under the quasi-static
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Fig. 3 Sketch of the
geometrical domains

assumption, satisfies the following elliptic problem with mixed boundary condi-
tions: ⎧⎨

⎩
−�U(x, t)= 0 in Ω, ⇒ z=U|ΓtU(x, t)= v(x, t) on Γh,
nT∇U(x, t)= 0 on Γt .

For any time instant t and v =U(x, t) on Γh, let z be the trace on the thorax surface
Γt of the solution of the previous mixed problem.

We then have a Transfer Operator relating the heart to the body surface poten-
tials:

T : v =U|Γh → z=U|Γt .
The Inverse Potential Problem of Electrocardiography consists in finding the po-
tential distribution on a surface near and surrounding the heart surface, correspond-
ing to a given body surface potential map z on Σ ⊂ Γt , where Σ denotes the part
of the torso surface where the potential U(x, t) is measured. This inverse problem
consists in solving the following Cauchy problem for the elliptic operator:⎧⎨

⎩
−�U(x, t)= 0, in Ω, ⇒ v =U|ΓhU(x, t)= z(x, t) on Σ,
nT∇U(x, t)= 0 on Γt .

For t fixed, we have a corresponding potential v =U(x, t) on a surface Γh encircling
the heart and very close to it, which I call epicardial potential. Since Γh is close to
the heart surface, the potential v =U|Γh for a sequence of time instants, yields more
detailed information on the bioelectric activity of the heart than z= U|Γt . Unfortu-
nately, the problem is known to be strongly ill-conditioned, i.e. for compatible data
the inverse operator of T is unbounded in the usual Sobolev spaces.

The inverse problem can be solved by means of suitable regularization tech-
niques, but a first step of any stabilization technique consists in building an ap-
proximation of the transfer operator T . Two approaches are available:

• one based on the FE method for solving the 3D direct problem;
• another based on Boundary Element methods applied to a surface integral rep-

resentation of the direct problem, usually adopted by the biomedical engineering
community, see e.g. [12].
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For a given time instant t , the vector z(t)=UT (t) represents the potential measured
on a set of M points lying on the thorax surface and v(t) = UH (t) represents the
corresponding potential on N points located on the heart surface Γh.

The transfer matrix T : UH (t)→ UT (t) approximating the operator T can be
built either:

• by solving the following N three-dimensional elliptic mixed problems assigning
elementary potentials vi(x) on the cardiac surfaceUΓh(x, t)=

∑N
i=1U

i
Γh
(t)vi(x):

−�Ti(x)= 0, Ti = vi on Γh,
∂Ti

∂n
= 0 on Γt , T= {Ti(xj )},

or
• by solving a surface potential formulation of the forward problem consisting of

a system of two surface integral equations on the heart and body surfaces. For
instance, using the double Green formula, the following integral representation
of the solution of the Direct problem holds:

U(x, t;ψ,φ)=−
∫
Γh

v(ξ, t)
∂s(x, ξ)
∂nξ

dσξ

+
∫
Γh

Ψ (ξ, t)s(x, ξ)dσξ −
∫
Γt

φ(ξ, t)
∂s(x, ξ)
∂nξ

dσξ ,

with v := U|Γh , Φ := U|Γt , ψ := ∂U
∂n |Γh and s(x, ξ) = 1

‖x−ξ‖ . Applying the limit
formulae for the traces on Γh and Γt , we obtain the following surface integral
system:

∫
ΓH

Ψ (y, t)s(x, ξ)dσξ −
∫
ΓT

φ(ξ, t)
∂s(x, ξ)
∂nξ

dσξ

= v(x, t)
2

+
∫
ΓH

v(ξ, t)
∂s(x, ξ)
∂ny

dσy, in H 1/2(Γh),

φ(x, t)
2

+
∫
ΓT

φ(ξ, t)
∂s(x, ξ)
∂nξ

dσξ −
∫
ΓH

Ψ (ξ, t)s(x, ξ)dσξ

=−
∫
ΓH

v(ξ, t)
∂s(x, ξ)
∂nξ

dσξ , in H 1/2(Γt ).

In the years 1976–1978, Nedelec and collaborators, see e.g. [13], developed vari-
ational formulations of exterior and interior harmonic problems with Dirichlet or
Neumann boundary conditions, in two- or three-dimensional domains based on
integral representations of the solution, different from the classical simple or dou-
ble layer potentials. Following this approach, Magenes and I considered various
variational formulations of the direct problem with their boundary element ap-
proximations and the results were reported in [1]. For instance for the previous in-
tegral system in the unknowns (φ = ∂U

∂n |Γh,Ψ =U|Γt ) in H−1/2(Γh)×H 1/2(Γt ),
a-priori error estimates for boundary element approximations were established.
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The results of these integral approaches were collected in [1], in the thesis of Ste-
fania Tentoni [16], and in a work presented at the Italy-France-Russia workshop
in Moscow, published in Cyrillic (see [7]). The transfer matrix T, approximating
the transfer operator T , was derived by block solving the linear system associ-
ated with the discretization of the surface integral system.

Both approaches 3D-FE and 2D-BE yielded transfer matrices exhibiting a ra-
tio between the greatest and smallest non zero singular values of the order of 107,
indicating a strong ill-conditioning of the inverse problem.

A new Goal-oriented Project of the C.N.R., called Tecnologie Biomediche e
Sanitarie, i.e. Biomedical and Health Technologies, lasted from 1982 until 1987,
still coordinated by Prof. Luigi Donato, Director of the CNR Institute of Clini-
cal Physiology in Pisa. Once more, Enrico Magenes was appointed member of
the Scientific Board of this project. A new research unit of the Istituto di Analisi
Numerica (IAN, Institute of Numerical Analysis), the new name for the LAN lab-
oratory, composed by Luciano Guerri, Stefania Tentoni, Carla Viganotti and my-
self, submitted a project included in the subproject on Elettromappe Cardiache,
i.e. Cardiac Body Surface Maps. During this project, the inverse problem in term
of epicardial potential was carried out by applying the inverse procedure to new
experimental data on animals collected by Prof. Bruno Taccardi at the Univer-
sity of Parma, see Fig. 4 and subsequently also to human body surface maps
related both to normal subjects and to subjects with the Wolff-Parkinson-White
syndrome, see Figs. 5–6. These figures display examples of the epicardial poten-
tial distributions inversely computed from body surface maps. Equipotential lines
are trace using a Tektronix 4010 graphical computer; later on, the IAN acquired
the new 3D graphical workstation Tektronix 4330 released in 1988, see Fig. 7.

3 Cardiac Excitation Sources Models and Inverse Excitation
Wavefront Problems

Another research topic in my collaborations with Magenes, was related to the
macroscopic representation of the cardiac electric sources during the excitation
phase of the ventricular myocardium. During this phase, a moving layer with thick-
ness less than 1 mm, sweeps all the ventricular wall. Disregarding the layer thick-
ness, we have an excitation wavefront surface separating the resting tissue from the
activated one. The classical model of the excitation sources is the uniform dipole
layer source distributed on the excitation wavefront. In 1976, experimental mea-
surements [6] disproved the classical model, showing the important role played
by anisotropic cardiac fibers of the ventricular wall in determining the features of
the potential patterns. Thus, we began to develop models of the anisotropic cardiac
sources. In [2], predictions of the oblique dipole layer model were compared with
experimental data and a first mathematical investigation of this anisotropic source
model was performed in [3].
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Fig. 4 Inverse problem: comparison between measured and inversely computed epicardial poten-
tial maps related to a time instant of the QRS complex
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Fig. 5 Body and epicardial heart surface mesh. Measured body surface map and the inversely
computed epicardial potential map for a time instant in the QRS complex of a normal human
subject
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Fig. 6 Body and epicardial heart surface mesh. Measured body surface map and the inversely
computed epicardial potential map for a time instant in the QRS complex of a human subject with
WPW syndrome
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Fig. 7 Inverse problem: comparison between measured and inversely computed epicardial poten-
tial maps displayed on a Tektronix 4330 3D graphical terminal

Given the excitation wavefront S at the time instant t , assumed embedded in
an infinite homogeneous Ohmic conductor medium with conductivity σ , and given
the intracellular tensor Mi(x) related to the fiber structure of the cardiac tissue, the
cardiac electric field at point x can be derived from the following integral represen-
tation:

U(x, t)= vJ

4πσ

∫
S

nTξ Mi(ξ)∇ξ s(x, ξ)dξ, x ∈R3 − S, with s(x, ξ)= 1

‖x− ξ‖ ,

where n denotes the unit vector normal to S pointing toward the resting tissue, vJ is
the jump of the transmembrane potential from the excited tissue to the resting one,
and Mi is the intracellular conductivity tensor.

The presence of the conductivity tensor Mi takes into account the anisotropic
structure of the ventricular tissue due to the fiber structure. Assuming axisymmetric
anisotropy, the intracellular tensor is given by Mi(x)= σ it I+ (σ il −σ it )al (x)al (x)T ,
where the unit vector al is parallel to the local fiber direction. This yields an
anisotropic cardiac sources model composed by oblique dipoles, i.e. directed as
Min and distributed on the excitation wavefront S.
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Let Ω be the body volume with boundary Γ = ∂Ω , which is insulated, since it is
in contact with the air. Assuming for simplicity that the body conductor is isotropic
and homogeneous, the potential field generated by the previous oblique dipole layer
sources is the solution of the following boundary value problem:

�U = 0 in Ω − S, ∂U

∂n
= 0 on Γ,

[[U ]]S = α,
[[
∂U

∂n

]]
S

= divS β, (1)

with α = nTMin and β =Min− αn.

In collaboration with Magenes, we established in [4] the following first result
for the well-posedness of the direct problem (1) in terms of the excitation cardiac
sources:

For any open and regular surface S, there exits a unique solutionU(x, t) of (1) in

H
1
2−ε , ∀ε > 0, up to an additive constant; moreover, any bounded solution admits

a surface integral representation.
The uniqueness of the inverse problem in term of sources was also investigated

in [4] and under some technical geometrical assumptions the following result was
obtained:

Given the intracellular tensor Mi related to the fiber structure and a body surface
potential map z on Σ ⊂ Γt generated by the excitation wavefront S, S is the unique
surface able to elicit the body surface potential map z.

During last year Spring, I decided to repaint some rooms in my house, and I
substituted a bookcase, thus transferring a lot of paper sheets in some boxes. At the
end of July 2011, I examined the paper sheets before finally discarding them, and
I rediscovered three letters sent to me by Magenes in the summer of 1982. During
the 80s, I used to spend my holidays at the seashore in Liguria, in the last weeks of
July. Indeed, the dates of two letters are July 29 and 30, and the third is August 14.
All the letters are related to the initial phase of the work on the macroscopic models
of the cardiac electric sources.

I begin from the last letter, written in the days before the mid-August holiday, in
which the direct and inverse problem in term of the cardiac sources are discussed:

• Cari Colli e Guerri, Pavia 14-8-82
spero siate tornati riposati e “pimpanti” dalle vacanze.
Io ho preso un raffreddore molto forte appena arrivato e per una settimana sono
rimasto istupidito e non ho certo riposato. Comunque in attesa di giorni migliori,
nei pochi momenti di lucidità ho ripensato ai nostri problemi, arrivando a queste
conclusioni per ora. (solite notazioni)
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Mi sembra utile introdurre una definizione dicendo che dato Ω (torace), una
terna (H,M,F ) è ammissibile se (mi riferisco al modello semplice):
(a) il problema differenziale (vedi (1)) ammette una ed una sola soluzione in un
opportuno senso,
(b) il problema inverso ammette unicità, cioè se u1 e u2 sono le soluzioni di (a)
relative ad S1 e S2 ∈F allora:

u1(x)= u2(x), x ∈ Γ → S1 = S2.

Per quanto riguarda (a) non abbiamo più problemi nel senso che (a) vale in
ipotesi molto larghe su (H,M,F ).
Per quanto riguarda (b) sono arrivato a concludere così un Teorema possibile e
ormai quasi dimostrato.
Teorema: (H,M,F ) è ammissibile se . . . 7 dense pages follow.

• Dear Colli and Guerri, Pavia 14-8-82
I hope you came back from the holidays rested and jaunty.
I caught a strong cold upon my arrival and for a week I remained dazed and cer-
tainly I did not rest. However, waiting for better days, in the few lucid moments,
I have looked back to our problems, reaching for the moment the following con-
clusions (in the usual notations).
I think it would be useful to introduce the following definition, stating that given
Ω (the torax), a triple (H,M,F ) is admissible if (I refer here to the simple
model):
(a) the differential problem (see (1)) admits one and only one solution in a proper
sense,
(b) the inverse problem admits uniqueness, i.e. if u1 and u2 are solutions of (a)
associated with the surfaces S1 and S2 ∈F then:

U1(x)=U2(x), x ∈ Γ → S1 = S2.

Concerning (a), we no longer have problems, meaning that (a) holds under weak
hypotheses on (H,M,F ).
Concerning (b), I have reached a formulation of the following possible Theorem,
by now almost proved.
Theorem: (H,M,F ) is an admissible triple if . . . 7 dense pages follow.

The first letter begins with

• Caro Colli, Pavia 29-7-82
prima di partire per la montagna ti invio quel poco che ho potuto fare, per lo più
con il Guerri nel giorno in cui è passato da Pavia tra (beato lui che può!) il mare
e la montagna.
Anzitutto con Guerri abbiamo chiarito le ipotesi su M e sulla famiglia di super-
ficie S ammissibili nel caso del modello semplificato . . .
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A translation attempt is:

• Dear Colli, Pavia 29-7-82
before leaving for the mountains, I send you the little material that I have pro-
duced, mostly with Guerri during the day when he stopped by in Pavia, while
traveling from the seaside to the mountains (lucky him, as he can do that!).
First of all, with Guerri we clarified the hypotheses on M and on the family of
admissible surfaces S for the simplified model . . .

and the following letter:

• Caro Colli, Pavia 30-7-82
questa è proprio l’ultima volta. Stamattina ho avuto un pò di tempo per ripensare
alla questione dell’orientazione delle superficie S di F e mi sarei deciso per
evitare difficoltà ed equivoci a vedere le cose così, correggendo quanto finora
detto a proposito di H (cuore).
Io vedrei il cuore (semplificato) H come il trasformato attraverso un isomorfismo
. . . di un cilindro circolare retto . . .
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Then Magenes goes on writing:
Nel caso del modello completo direi che H dovrebbe essere il trasformato di un
cilindro circolare retto con un buco circolare retto . . .
il buco dovrebbe rappresentare le cavità intracardiache Ωo. Ovviamente allo
schema tuo dovrà essere aggiunta una condizione di trasmissione sulle due basi
di H̄ , cosa che non dà fastidio.
Con la tua nomenclatura (H ↔Ω1) si avrebbe una figura del tipo:
che non mi sembra “surrealista”.

A translation attempt is:

• Dear Colli, Pavia 30-7-82
this is really the last time. This morning I had some time to think again about
to the issue concerning the orientation of the surface S of the family F and, in
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order to avoid difficulties and misunderstandings, I decided to view things in the

following way, correcting what we have introduced so far about H (heart).

I would suggest to see the heart H (simplified) as the image through an isomor-

phism . . . of a right circular cylinder . . .

Then Magenes goes on writing:

For the full model, I think that H should be a right circular cylinder with a right

circular hole . . .

the hole could represent the intracardiac cavities Ωo. Obviously, a transmission

condition on the two basis of H̄ should be added to your scheme, which does not

create any trouble.

With your notation (H lef trightarrowΩ1), we would have a picture of the fol-

lowing type:

which does not seem “surrealist” to me.

The solution of the inverse problem was in part based on the study of regular oblique

derivative elliptic problems. This research topic had been tackled by Magenes in the

Fifties when he was a professor at the University of Modena and subsequently at the

University of Genoa in the papers [8–10].

The uniqueness results for the inverse problem, developed in the first paper [3]

on the Oblique double layer Sources, were indeed based on uniqueness results con-

cerning regular oblique derivative elliptic problems.

Moreover, a deeper analysis of the uniqueness of the inverse problem in two

dimensions was developed by Magenes in [11].

A final excerpt from the end of the letter of August 14:

• . . . A me così, almeno adesso le cose tornano più chiare e probabilmente anche la

congettura potrà essere formulata meglio. Devo dire che ho tirato ancora qualche

moccolo al vostro lavoro. Non dite mai che ipotesi fate su H ! A pag. 6 orientate

le fibre in funzione della superficie considerata e non viceversa come mi sembra

si debba fare (ad es. come ora ho suggerito io).

Stammi ancora bene e ancora tanti saluti.

Queste lettere mi ricordano i bei tempi in cui lavoravo con Lions, ma allora non

c’erano le fotocopiatrici e bisognava scrivere con la carta carbone!

Ciao Enrico Magenes

P.S. Lascio ovviamente copia della lettera anche sul tavolo di Guerri, con tanti

saluti anche a lui, che molto astutamente non mi ha dato il suo indirizzo, onde

poter stare tranquillo!
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A translation attempt is:

• . . . From my point of view, now things are clearer and probably also the conjec-
ture could be better formulated. I must say that I still swore your work. You do
not state clearly the hypothesis on H ! On page 6, you assign the fiber orientation
as a function of the chosen surface and not vice-versa, as I think it should be (for
example as I have suggested).
Take care and again best regards.
These letters remind me of the good old times, when I worked with Lions, but
back then we did not have xerox machines and we had to write duplicates with
carbon copy!

ciao Enrico Magenes
P.S. I leave a copy of the letter also on Guerri’s desk, with many regards also for
him (who, very cleverly, did not leave me his address so as not to be disturbed!).

Dear Enrico, thanks for all.
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Stefan Problems and Numerical Analysis

Claudio Verdi

Abstract We outline the main contributions of Prof. Enrico Magenes to the analysis
and numerical approximation of mathematical models of phase transition processes.
Starting from the 1980’s, a semigroup approach to Stefan problems, optimal rates
of convergence for the nonlinear Chernoff formula, regularity properties of solu-
tions, theoretical and numerical aspects of Stefan models in a concentrated capacity,
were investigated by Enrico Magenes. His expertise was fundamental for develop-
ing numerical analysis of evolutionary free boundary problems and applications in
a modern framework.

1 Stefan Problems and Semigroups: Analysis and Numerical
Approximation

Phase transitions occur in many relevant processes in natural sciences and industrial
applications. The basic Stefan model represents phase transitions in a rather sim-
plified way by coupling heat diffusion and exchange of latent heat between phases.
It has been extensively studied in the last 60 years: the existing literature includes
tenths of thousand of papers and a number of meetings has been devoted to this
model and its extensions. Following the International Seminar on Free Boundary
Problems held in Pavia in September–October 1979 [33], a regular series of Interna-
tional Symposium on Free Boundary Problems: Theory and Applications took place
in: Montecatini, 1981 [23]; Maubuisson, 1983 [5]; Irsee, 1987 [27]; Montreal, 1990
[11]; Toledo, 1993 [17]; Zakopane, 1995 [58]; Hiraklion, 1997 [1]; Chiba, 1999
[31]; Trento, 2002 [13]; Coimbra, 2005 [25]; etc. A series of conferences focusing
on numerical methods and applications started with the Workshop on Generalized
Stefan Problems: Analysis and Numerical Methods held in Pavia in 1995 and took
place in: Freiburg, 1995; Lamoura, 1996; Faro, 1996; Berlin, 1996; Ittingen, 1997;
Madeira, 1998; Braga, 1998; Hiraklion, 1999; etc.

C. Verdi (B)
Dipartimento di Matematica “F. Enriques”, Università di Milano, via Saldini 50, 20133 Milan,
Italy
e-mail: claudio.verdi@unimi.it

F. Brezzi et al. (eds.), Analysis and Numerics of Partial Differential Equations,
Springer INdAM Series 4, DOI 10.1007/978-88-470-2592-9_5,
© Springer-Verlag Italia 2013

37

mailto:claudio.verdi@unimi.it
http://dx.doi.org/10.1007/978-88-470-2592-9_5


38 C. Verdi

Existence, uniqueness, and regularity properties of the solution of Stefan prob-
lems were obtained by L. Rubinstein [79], S. Kamin [30], O. Oleinik [75], A. Fried-
man [26], D. Kinderlehrer and L. Niremberg [32], L.A. Caffarelli [8] and L.C. Evans
[10], E. Di Benedetto [16], A.M. Meirmanov [54], A. Damlamian [15], A. Visintin
[89], M. Niezgodka and I. Pawlow [57], A. Fasano and M. Primicerio [20–22], and
many others (we refer to the monographs [55, 80, 91–93]; a huge bibliography can
be found in [83]). Numerical analysis and applications were developed by G. Meyer
[56], J. Nitsche [59], J.F. Ciavaldini [12], J.W. Jerome and M.E. Rose [29], C.M.
Elliott [19], R.H. Nochetto [63] among others (see the survey [86]).

The interest of Enrico Magenes for the Stefan model and its numerical approx-
imation received an impulse during the International Seminar on Free Boundary
Problems held in Pavia in 1979 and yielded a series of seminars that he delivered at
the V Seminario di Analisi Funzionale e Applicazioni held in Catania on September
17–24, 1981 (these lecture notes were published in [34], an interesting overview
of the state of the art for the multidimensional two-phase Stefan problem). Enrico
Magenes worked on this subject for twenty years, with many original contributions
but, more relevantly, by stimulating his students and collaborators with continuous
discussions and suggestions.

The enthalpy formulation, a fixed domain formulation were the interface or free
boundary can be recovered a posteriori as level-set of temperature variable, reads in
weak or variational form as follows:⎧⎪⎨

⎪⎩

∂u

∂t
−�β(u)= 0 in Ω × (0, T ),

β(u)= 0 on ∂Ω × (0, T ),
u(·,0)= u0(·) in Ω,

(1)

where Ω ⊂ Rd and β(s) = (s − 1)+ − s− is the constitutive relation between en-
thalpy u and temperature θ = β(u). Existence and uniqueness of the solution can
be proved in suitable functional spaces. The interest of Magenes was focused on
the possibility to formulate the Stefan problem (1) as an m-accretive semigroup of
contraction in L1(Ω) in the sense of M.G. Crandall and T. Ligget [14], and Ph.
Bénilan [3], which allows to numerically approximate (1), either by backward finite
differences (here τ denotes the time-step)

Un −Un−1 − τ�β(Un
)= 0, (2)

or by the nonlinear Chernoff formula, as observed by A.E. Berger, H. Brézis, and
J.C.W. Rogers [4] {

V n − τ�V n = β(Un−1),
Un =Un−1 − β(Un−1)+ V n.

(3)

In many significant applications, the boundary condition β(u)= 0 on ∂Ω × (0, T )
could be replaced by nonlinear flux conditions (e.g. Stefan-Boltzmann law) [88]

∂β(u)

∂ν
+ g(β(u))= 0 on ∂Ω × (0, T ).
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In [48], Magenes et al. extended the semigroup approach to the Stefan problem with
nonlinear flux conditions, by proving that the operator A : w→−�β(w) with do-
main D(A) = {w ∈ L1(Ω) : β(w) ∈ L1(Ω),�β(w) ∈ L1(Ω),

∂β(w)
∂ν

+ g(β(w)) =
0 on ∂Ω} is m-accretive in L1(Ω), whence the solution exists and is unique in a
suitable weak sense. This results was a theoretical step for justifying the conver-
gence properties of the numerical algorithms studied in [49, 84].

The backward Euler method (2) requires the solution of a nonlinear elliptic PDE
at each time-step. Combined with a finite element method for spatial approximation
and numerical quadrature, it leads to an effective numerical scheme. Stability and a
priori error estimates under minimal regularity properties on data have been proved
in [65, 85] (see [67, 68] for a posteriori error estimates and an adaptive implemen-
tation). On the other hand, the nonlinear Chernoff formula (3) requires the solution
of a linear elliptic PDE at each time step followed by an algebraic correction to re-
cover discrete enthalpy. It turns out that Chernoff is a stable linearization procedure
in the spirit of the Laplace-modified forward Galerkin method for non-degenerate
parabolic problems introduced by J. Douglas and T. Dupont [18]. Despite conver-
gence was guaranteed by the theory of nonlinear contraction semigroups in Banach
space [6], error estimates remained open until the paper by Magenes et al. [50]. The
key argument is a combination of the following three features:

• the use of a variational technique first applied by R.H. Nochetto [60, 61];
• the possibility of dealing with minimal regularity properties u0 ∈ L2(Ω) as

shown in [65];
• the relationship between the nonlinear Chernoff formula and the discrete-time

scheme studied in [87] for the approximation of Stefan problems with phase re-
laxation introduced by A. Visintin [90].

By denoting θ = β(u) the temperature and χ = u− θ the phase variable, the PDE
in (1) reads

∂(θ + χ)
∂t

−�θ = 0, χ ∈H(θ), (4)

where H stands for the Heaviside graph. Being ε > 0 a time-relaxation parame-
ter, the constitutive relation in (4) can be approximated with the phase relaxation
equation introduced by A. Visintin [90]

ε
∂χ

∂t
+H−1(χ) � θ. (5)

After coupling this equation (5) with the PDE in (4), and discretizing in time [87]
we get the following algorithm⎧⎨

⎩
(
Θn −Θn−1)+ (Xn −Xn−1)− τ�Θn = 0,
ε

τ

(
Xn −Xn−1)+H−1(Xn

) �Θn−1,
(6)

with stability constraint τ ≤ ε. Now it is not difficult to see that this scheme (6)
reduces to (3) by choosing ε = τ and setting Un =Θn +Xn. With the tools above,
Magenes et al. [50] completely answered the question of how accurate the nonlinear
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Chernoff formula is both for degenerate and non-degenerate parabolic problems.
Let Eτ = ‖θ −Θn‖L2(Ω×(0,T )) be the error for temperature in energy norm, then
the following optimal a priori error estimates were proved for Stefan problems:
Eτ =O(τ 1/4) if u0 ∈ L2(Ω) or Eτ =O(τ 1/2) if u0 ∈D(A)∩L∞(Ω).

Combined with a finite element method for spatial approximation, the Chernoff
formula (3) leads to a very efficient numerical algorithm [64, 66] (see [69, 70] for
a posteriori error estimates and an adaptive implementation). See also [28] for a
refinement of the stabilization parameter in the Chernoff formula.

In a series of papers [35–38] Magenes addressed various extensions of the previ-
ous results for the nonlinear Chernoff formula to more general operators and prob-
lems, in particular to evolutionary equations on the boundary of a domain. In [51]
Magenes et al. proved new regularity results in Nikolskiı̌ spaces for the multidimen-
sional two-phase Stefan problem with general source terms and, as a consequence,
error estimates for enthalpy in energy spaces for the implicit Euler algorithm.

2 Stefan Problems in a Concentrated Capacity

The Stefan problems in a concentrated capacity [24] arise in heat diffusion phenom-
ena involving phase changes in two adjoining bodies Ω and Γ , when assuming that
the thermal conductivity along the direction normal to the boundary of Ω is much
greater than in the others, whence Γ can be considered as the boundary of Ω . The
mathematical model describing phase change process in both bodies reads [42]:{

∂u

∂t
−�gβ(u)= ∂β(u)

∂ν
on ∂Ω × (0, T ),

u(·,0)= u0(·) on ∂Ω,⎧⎪⎪⎨
⎪⎪⎩

∂v

∂t
−�γ (v)= 0 in Ω × (0, T ),

v(·,0)= v0(·) in Ω,

γ (v)= β(u) on ∂Ω × (0, T ),

(7)

where �g is the Laplace-Beltrami operator on ∂Ω with respect to the Riemannian
structure g inferred by the tangential conductivity, β and γ are the constitutive rela-
tions between enthalpies u and v and temperature θ = β(u)= γ (v). Existence and
uniqueness of the solution of (7) was proved in suitable functional spaces [42]. In
a series of papers [39–41, 43–46] Magenes addressed the theory of heat conduction
with phase change in a concentrated capacity for various operators; see also [82].
The relevance of these models in a number of physical applications motivates their
numerical analysis, which was developed in [47]. The implicit Euler scheme reads:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

β
(
Un
)= γ (V n

)
on ∂Ω,∫

∂Ω

(
Un −Un−1)ϕ + τ(dβ(Un

)
, dϕ
)
g

+
∫
Ω

(
V n − V n−1)η+ τ

∫
Ω

∇γ (V n
) · ∇ϕ = 0 ∀ϕ.

(8)
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The linear scheme based on the nonlinear Chernoff formula reads:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ξn =Θn on ∂Ω,∫
∂Ω

Ξnϕ + τ(dΞn,dϕ
)
g
+
∫
Ω

Θnη+ τ
∫
Ω

∇Θn · ∇ϕ

=
∫
∂Ω

β
(
Un−1)ϕ +

∫
Ω

γ
(
V n−1)ϕ ∀ϕ,

Un =Un−1 − β(Un−1)+Ξn on ∂Ω,

V n = V n−1 − γ (V n−1)+Θn in Ω.

(9)

Both algorithms (8) and (9) are well posed. The latter is linear in the unknowns Ξn

and Θn, the nonlinearity reducing to pointwise corrections for Un and V n, whence
it is expected to be more efficient than (8) from a numerical viewpoint. Stability and
error estimates in the natural energy spaces were proved for both schemes in [47].

3 Approximation of Interfaces, Adaptivity and Applications

Optimality of error estimates for the proposed algorithms was one of the main as-
pects attracting Magenes’ interest; in this direction let me mention [74], where R.H.
Nochetto et al. proved optimal a posteriori error estimates for variable time-step
discretizations of nonlinear evolution equations; see also [81].

Thanks to stimulating discussions with E. Magenes, C. Baiocchi, F. Brezzi, and
L.A. Caffarelli, [2, 7, 9] convergence and accuracy estimates for the approximation
of the free boundary of parabolic phase-change problems under suitable condition
of non-degeneracy at the interface were proved [62, 78].

The intense interest of Enrico Magenes for the numerical approximation of
phase-change models and their applications involved the Istituto di Analisi Numer-
ica of the CNR in Pavia and his collaborators in various national and international
projects focused on phase transition problems; I will mention, e.g., the European
projects “Phase Transition Problems” (1986–1988), “Mathematical Treatment of
Free Boundary Problems” (1993–1996), “Phase Transition and Surface Tension”
(1995–1997), “Viscosity Solutions and their Applications” (1998–2000). Within the
framework of the national projects of the CNR “Software: Ricerche di Base e Ap-
plicazioni; Software Matematico” (1986–1987) and “Sistemi Informatici e Calcolo
Parallelo: Calcolo Scientifico per Grandi Sistemi” (1988–1993), a computational
code for solving general parabolic free boundary problems with the finite elements
algorithms studied above was implemented [77]; some interesting collaborations
took place with Himont (Ferrara), a leading factory in polymer production [52], and
Istituto Ortopedico Rizzoli (Bologna) [53].

Numerical approximation of geometric motion of interfaces, a first step for the
approximation of more complex phase transitions problems including surface ten-
sion effects, was addressed by R.H. Nochetto et al. [71–73, 76], also thanks to help-
ful discussions and suggestions of E. De Giorgi, L.A. Caffarelli, A. Visintin, and
Magenes himself.
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Enrico Magenes and the Teaching
of Mathematics

Mario Ferrari

Abstract It rarely happens that a mathematician of international value, as it was
the case for Enrico Magenes, devotes a large part of his time and his interest to
Mathematics Education. That is exactly what Enrico Magenes did, and not occa-
sionally, but systematically. First of all, his commitment was at university level with
the courses of Complementary Mathematics, specifically devoted to the education
of future teachers, assigning graduation thesis on educational topics, and with an
active participation in order to give birth to a Mathematics Education Seminar in
the School of Sciences. In second place, Magenes spent his time for the Teaching
of Mathematics in middle and high schools, working along three different direc-
tions: he put forth specific proposals about the teaching programs; during his term
as president of the Italian Mathematical Union, he founded the Research Units for
Mathematics Education, which initiated the research activity on this topic in Italy;
he committed himself directly in the Project “Mathematics as a Discovery,” writing
the Mathematical Analysis volume with the late Giovanni Prodi.

1 Introduction

Enrico Magenes is internationally known as a researcher in Mathematical Analy-
sis. His contributions were dealt with in the paper published in the December 2010
issue of the Notices of the Italian Mathematical Union, and are presented in the
other chapters of the first part of this volume. I would just like to remember, as it
seems to me that nobody else has already done it, that towards the end of the Fifties
of the last century, Magenes, Pucci, Stampacchia and others founded the CONARM
(Comitato Nazionale Ricercatori Matematici, National Committee of Researchers in
Mathematics), with the explicit aim of rejuvenating Italian Mathematics, and rein-
serting it in the framework of international Mathematics, after the twenty years of
Fascism. I mention this, because the CONARM took an interest in Mathematics
Education in a broad sense, organizing math contests for high school students in a
number of Italian cities.
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Here my task is to briefly discuss Magenes’s contribution to the research on the
Teaching of Mathematics.

2 Magenes and the Teaching of Mathematics: A Constant
Commitment

From Genoa, where he was full professor of Mathematical Analysis, Magenes ar-
rived in Pavia in 1959, where he had been called as full professor of Complementary
Mathematics: in two years this discipline would become a characteristic subject of
the course of studies in Mathematics Education. Since he was a novice in the field,
in order to define the contents of the two courses he was going to teach, Com-
plementary Mathematics I and II, Magenes followed the examples of well-known
experts.

For the course that had more specific geometric contents, he adopted the book
“Lessons of Complementary Mathematics: Geometry” by Francesco Cecioni, who
had taught the same subject in Pisa; it was a very rich text, largely based on the
Hilbert’s “Grundlagen der Geometrie,” (Foundations of Geometry). Before long,
Magenes added a new chapter, inspired by G. Choquet’s ideas, based on geometrical
transforms.

For the course with arithmetic-algebraic contents, he used two manuals: “Devel-
opment of mathematical thesis for qualifying exams in middle and high schools”
by Rocco Serini from Pavia, and the second volume of “Elementary Mathematics”
by Modesto Dedò; moreover, he added a long chapter devoted to Galois theory, for
which he used a booklet by Postnikov.

It was Magenes, who initiated in Pavia the course of studies in Mathematics
Education in the context of the Degree in Mathematics: he strongly believed in such
a program, and worked very hard for it, even after handing on to me the baton of
the Complementary Mathematics course in 1970. Here I limit myself to recall the
following:

• His full adhesion to the idea of assigning thesis in Mathematics Education. To be
honest, at the beginning they were not of experimental kind, that is, with direct
practice in schools, but rather based on the critical exam of manuals or of new
types of approach to the Teaching of Mathematics in middle and high schools.

• His regular participation to the activities of the Pavia section of the Mathesis
Society: these activities were aimed at the constant education of teachers.

• His involvement in the formulation of the so-called “Programs of Frascati,” in
1967 for high schools. Even though at that time these programs were not officially
accepted by the Italian Ministry of Education, nevertheless they were the starting
point for future programs prepared by the same ministry later on. The group from
Pavia was made up by Enrico Magenes and Agostino Savaré. De Finetti, who
took part to the discussions and to the preparation of the final report with Prodi
and others, wrote a long commentary on the journal Periodico di Matematiche.
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• His fundamental contribution, so that the School of Sciences started the “Seminar
in Mathematics Education” in the framework of the same School, and his active
participation to the Conference organized in 1975 in Salice Terme with the title
“Sciences in Middle and High Schools and the role of University.”

• His attendance to the many conferences organized by CIIM (Commissione Ital-
iana per l’Insegnamento della Matematica, Italian Committee for the Teaching of
Mathematics), even when he did not have to be there as President of the Italian
Mathematical Union, or as one of the keynote speakers.

• Finally, the fact of being from the mid seventies of the last century a member of
the “Center for Research in Education Ugo Morin,” with a regular subscription
to its journal “L’Insegnamento della Matematica e delle Scienze Integrate,” “The
Teaching of Mathematics and of Integrated Sciences.”

3 Magenes and the Research in Mathematics Education

Strictly speaking, Magenes never carried out a specific research activity in Mathe-
matics Education, but I think it is right to say that he originated all, or almost all, the
Italian research in the Teaching of Mathematics. The reason for this is simple. These
scientific activities were carried out in Italy by the Units of Research in Education,
at least starting from 1975. Now, the interesting fact is that all these units were born
with a large financial endowment from the Italian Research Council, whose math-
ematical committee was at that time chaired by C. Pucci, during Magenes’s tenure
as President of the Italian Mathematical Union. The birth was not painless, as it can
be clearly seen from the minutes of the Special Assembly of the Italian Mathemat-
ical Union, which took place in Alghero on September 27th 1975, and as all the
participants to the Tenth Congress of the Union in Cagliari–Alghero probably still
remember.

The birth of these units was the natural product of one of the two main guiding
lines, which characterized Magenes’s Presidency of the Union, that is, as he himself
underlined, “Initiatives for problems of schools” (the other one was “Initiatives for
the development and strengthening of research”) (see [2]).

Answering the critics put forth by G. Stampacchia during the Alghero Assembly,
Magenes recalls the Union position, as it was defined during the Assembly that took
place on April 4th 1975: “The Assembly . . .

• Notices the strong connection between the issue of the teachers’ updating and
the problem of rejuvenating the teaching of Mathematics both in contents and
methodology;

• Recognizes the urgency that CIIM fosters the birth of groups where experts in
Mathematics Education closely collaborate with teachers of middle and high
schools on different programs; moreover, these groups should work out detailed
plans and present reports, in such a way they can be positively used;

• Thinks that this first experience paves the way to a right statement of the problem
of the training and updating of teachers.”
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For some years the units, with their reports and regular updating of the ongoing ac-
tivities, were the protagonists of the yearly CIIM meetings. The one that took place
in 1976 had the very significative title “Experiments in Mathematics Education, with
regards to the ongoing discussion about the reform of High School, and the revision
of Middle School in Italy.”

Later on some of these units started organizing “domestic meetings”, although
open to the contributions coming from other units. For example, the units in Pavia,
Pisa, Trieste, that were working on the G. Prodi’s Project “Mathematics as a Dis-
covery” organized about ten of these meetings.

Then, so-called Inter-Units were born, in order to link the different school levels.
Nowadays there are few units, which still maintain this definition, as the research in
Education, even in Italy, has taken new roads, at the time unthinkable: it has opened
up to the comparison with the international research in Education, it has become an
independent discipline, with its own research subject and its own language, it has
deepened the study and the use of other disciplines, such as psychology, pedagogy,
linguistics. However, we can say that everything had its origin in Magenes’s brave
and far-sighted decision.

4 Magenes and the Research Unit in Pavia: The Project
“Mathematics as a Discovery”

I just want to say few things, mainly in order to avoid any form of parochialism.
The Pavia Unit was initiated by Magenes and was founded in 1975, one of the

first in Italy. Since its beginning, the unit worked together with the units of Pisa
and Trieste, in order to test the project “Mathematics as a Discovery,” worked out
by Giovanni Prodi. Pavia was the administrative base of the three units. I would
like to underline the constant and active participation by Magenes to the weekly
meetings of the unit. They were not of purely academic interest, but they were rather
working meetings, in which suggestions from the Pisa Unit were discussed (mainly
due to Prodi and Checcucci), problems and exercises to be inserted in the manual
were proposed, new arguments (at least for many members of the Pavia Unit) were
studied. Moreover, Magenes did not miss any single meeting, which the three units
organized in turns in Pavia, Pisa, Trieste. This is particularly remarkable, as he had
a lot of other things to do!

The Project “Mathematics as a Discovery,” meant for Liceo Scientifico (an Italian
High School program with a specific scientific curriculum), is without any doubt the
most organic and well-known, among the ones developed by the Research Units. It
is mainly due to Giovanni Prodi, who entirely wrote the first two volumes. Magenes
contributed to the third one, G. Prodi and E. Magenes, Elementi di analisi matema-
tica per il triennio delle scuole secondarie superiori, G. D’Anna, 1982, (Elements
of Mathematical Analysis for the Second Level of High Schools), see [7].

Even though it is the result of a joint work, the first six chapters are mainly due
to G. Prodi, whereas the seventh (Differential Calculus) and the eighth (Integral
Calculus) are mostly due to Magenes.
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These three volumes are endowed with teachers’ guides. The guides to the first
(1977) and second (1978) volumes, joint work of the three research units, fit, as it
is written in the introduction, “amongst the initiatives of the Italian Mathematical
Union for the improvement of the teaching of Mathematics at various levels.” The
Italian Mathematical Union edited the volumes (see [3, 4]). The third guide, au-
thored by L. Bazzini, A. Pesci and M. Reggiani and published in 1985, is the fruit
of the Pavia Unit, with the precious collaboration of Prodi and Magenes (see [1]).

In order to complete the description, I would like to add that part of the project
were also a “Workbook # 3,” devoted to solid Geometry and some complements of
plane Geometry, mainly due to V. Checcucci and M.A. Mariotti, and a “Workbook
Probability and Statistics,” written by L. Piccinato and N. Pintacuda.

The Project “Mathematics as a Discovery” evolved and later became “Discover
Mathematics,” with a new publisher (Ghisetti & Corvi), a lot of new material, a num-
ber of nimble booklets, and even new authors. Magenes personally contributed
to this project too. In 2006 it was published the volume G. Prodi, E. Magenes,
M.R. Magenes, A. Pesci and M. Reggiani, Calcolo Differenziale e Integrale, Ghisetti
& Corvi, (Differential and Integral Calculus), see [8].

The preface underlines that “the third part of the volume is devoted to com-
plements, which are somewhat unusual, but nonetheless equally stimulating,” such
as “Algorithms and Numerical Methods” and “Expansion in Fourier Series and
Wavelets.” In writing them, Magenes benefited from the contributions of V. Comin-
cioli and G. Savaré.

5 Two Talks as Keynote Speaker

I would like to recall, without going into details, two talks, which Magenes held in
two conferences devoted to topics in education. I reread them, and I found them still
topical, even though they are dated.

The first one dates back to 1976, and it was delivered during the Conference
“Experiments in Mathematics Education and the Reform of High School” held in
Bologna and organized by the Italian Mathematical Union, of which at the time Ma-
genes was still President. The title of the talk was “Present Problems in the Teaching
of Mathematics” and it was intended both for mathematics teachers and for a larger
audience, namely the visitors of the “Book Fair.” The talk was published in the pro-
ceedings of the conference, edited by the Italian Mathematical Union (see [5]).

The second one dates back to 1985, and it was delivered at the “Tenth Confer-
ence in Mathematics Education: High School,” held in Salsomaggiore. The topic
of the conference was “New Contents and New Methodologies for the Teaching
of Mathematics in High Schools.” Magenes talked about “Mathematical Bases for
Everybody,” with a detailed program proposal, which maintains its validity even
nowadays (see [6]).
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6 Conclusion

I am well aware that what I have written is a sheer description of facts. Relying on
them, every single reader can make up her own mind about Magenes’s commitment
for the development of the research in Mathematics Education. The research Unit in
Pavia, who had Magenes as its guardian angel, will never forget him.
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List of Mathematical Works Authored or Edited
by Enrico Magenes

Ugo Gianazza

This is a list of mathematical works authored or edited by Enrico Magenes in his
long career; it has been compiled relying on a number of different sources, and it is
probably the first one ever prepared.
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Part II
Recent Developments



Heat Flow and Calculus on Metric Measure
Spaces with Ricci Curvature Bounded
Below—The Compact Case

Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré

Abstract We provide a quick overview of various calculus tools and of the main
results concerning the heat flow on compact metric measure spaces, with applica-
tions to spaces with lower Ricci curvature bounds. Topics include the Hopf-Lax
semigroup and the Hamilton-Jacobi equation in metric spaces, a new approach to
differentiation and to the theory of Sobolev spaces over metric measure spaces, the
equivalence of the L2-gradient flow of a suitably defined “Dirichlet energy” and
the Wasserstein gradient flow of the relative entropy functional, a metric version of
Brenier’s Theorem, and a new (stronger) definition of Ricci curvature bound from
below for metric measure spaces. This new notion is stable w.r.t. measured Gromov-
Hausdorff convergence and it is strictly connected with the linearity of the heat flow.

1 Introduction

Aim of these notes is to provide a quick overview of the main results contained in
[4] and [6] in the simplified case of compact metric spaces (X,d) endowed with
a reference probability measure m. The idea is to give the interested reader the
possibility to get as quickly as possible the key ideas behind the proofs of our recent
results, neglecting all the problems that appear in a more general framework (as a
matter of fact, no compactness assumption is made in [4, 6] and finiteness of m is
assumed only in [6]). Passing from compact spaces to complete and separable ones
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(and even to a more general framework which includes the so-called Wiener space)
is not just a technical problem, meaning that several concepts need to be properly
adapted in order to achieve such generality. Hence, in particular, the discussion here
is by no means exhaustive, as both the key statements and the auxiliary lemmas are
stated in the simplified case of a probability measure in a compact space.

Apart some very basic concepts about optimal transport, Wasserstein distance
and gradient flows, this paper pretends to be self-contained. All the concepts that
we need are recalled in the preliminary section, whose proofs can be found, for
instance, in the first three chapters of [1] (for an overview on the theory of gradi-
ent flows, see also [3], and for a much broader discussion on optimal transport, see
the monograph by Villani [32]). For completeness reasons, we included in our dis-
cussion some results coming from previous contributions which are potentially less
known, in particular: the (sketch of the) proof by Lisini [22] of the characterization
of absolutely continuous curves w.r.t. the Wasserstein distance (Proposition 4.13),
and the proof of uniqueness of the gradient flow of the relative entropy w.r.t. the
Wasserstein distance on spaces with Ricci curvature bounded below in the sense of
Lott-Sturm-Villani (CD(K,∞) spaces in short) given by the second author in [12]
(Theorem 5.9).

In summary, the main arguments and results that we present here are the follow-
ing.

(1) The Hopf-Lax formula produces subsolutions of the Hamilton-Jacobi equation,
and solutions on geodesic spaces (Theorem 3.2 and Theorem 3.3).

(2) A new approach to the theory of Sobolev spaces over metric measure spaces,
which leads in particular to the proof that Lipschitz functions are always dense
in energy in W 1,2(X,d,m) (Theorem 4.7).

(3) The uniqueness of the gradient flow w.r.t. the Wasserstein distance W2 of the
relative entropy in CD(K,∞) spaces (Theorem 5.9).

(4) The identification of the L2-gradient flow of the natural “Dirichlet energy” and
the W2-gradient flow of the relative entropy in CD(K,∞) spaces (see also [15]
for the Alexandrov case, a paper to which our paper [4] owes a lot).

(5) A metric version of Brenier’s theorem valid in spaces having Ricci curvature
bounded from below in a sense slightly stronger than the one proposed by Lott-
Sturm-Villani. If this curvature assumption holds (Definition 7.11) and μ,ν are
absolutely continuous w.r.t. m, then “the distance traveled is uniquely deter-
mined by the starting point”, i.e. there exists a map D : X→ R such that for
any optimal plan γ it holds d(x, y) = D(x) for γ -a.e. (x, y). Moreover, the
map D is nothing but the weak gradient (according to the theory illustrated in
Sect. 4) of any Kantorovich potential. See Theorem 7.11.

(6) A key lemma (Lemma 8.7) concerning “horizontal” and “vertical” differenti-
ation: it allows to compare the derivative of the squared Wasserstein distance
along the heat flow with the derivative of the relative entropy along a geodesic.

(7) A new (stronger) definition of Ricci curvature bound from below for metric
measure spaces which is stable w.r.t. measured Gromov-Hausdorff convergence
and rules out Finsler geometries (Theorem 9.12 and the discussion thereafter).
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2 Preliminary Notions

As a general convention, we will always denote by (X,d) a compact metric space
and by m a Borel probability measure on X; we will always refer to the structure
(X,d,m) as a compact and normalized metric measure space. We will use the sym-
bol (Y,dY ) for metric spaces when the compactness is not implicitly assumed.

2.1 Absolutely Continuous Curves and Slopes

Let (Y,dY ) be a complete and separable metric space, J ⊂ R an interval with
nonempty interior and J � t �→ γt ∈ Y . We say that γt is absolutely continuous
if

dY (γs, γt )≤
∫ s

t

g(r)dr, ∀s, t ∈ J, t < s

for some g ∈ L1(J ). It turns out that, if γt is absolutely continuous, there is a mini-
mal function g with this property, called metric speed and given for a.e. t ∈ J by

|γ̇t | = lim
s→t

dY (γs, γt )

|s − t | .

See [3, Theorem 1.1.2] for the simple proof. Notice that the absolute continuity
property of the integral ensures that absolutely continuous functions can be extended
by continuity to the closure of their domain.

We will denote by C([0,1], Y ) the space of continuous curves on [0,1] with val-
ues in Y endowed with the sup norm. The set AC2([0,1], Y )⊂ C([0,1], Y ) consists
of all absolutely continuous curves γ such that

∫ 1
0 |γ̇t |2dt <∞: it is easily seen to

be equal to the countable union of the closed sets {γ : ∫ 1
0 |γ̇t |2dt ≤ n}, and thus it is a

Borel subset of C([0,1], Y ). The evaluation maps et : C([0,1], Y )→ Y are defined
by

et (γ ) := γt ,
and are clearly 1-Lipschitz.

We say that a subset D of Y is geodesic if for any x, y ∈D there exists a curve
(γt ) ⊂ D on [0,1] such that γ0 = x, γ1 = y and dY (γt , γs) = |t − s|dY (x, y) for
all s, t ∈ [0,1]. Such a curve is called constant speed geodesic, or simply geodesic.
The space of all geodesics in Y endowed with the sup distance will be denoted by
Geo(Y ).

Given f : Y → R ∪ {±∞} we define the slope (also called local Lipschitz con-
stant) at points x where f (x) ∈R by

|Df |(x) := lim
y→x

|f (y)− f (x)|
dY (y, x)

.
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We shall also need the one-sided counterparts of the slope called respectively de-
scending slope and ascending slope:

∣∣D−f
∣∣(x) := lim

y→x

[f (y)− f (x)]−
dY (y, x)

,
∣∣D+f

∣∣(x) := lim
y→x

[f (y)− f (x)]+
dY (y, x)

,

(1)
where [·]+ and [·]− denote respectively the positive and negative part. Notice the
change of notation w.r.t. previous works of the authors: the slopes and its one-sided
counterparts were denoted by |∇f |, |∇±f |. Yet, as remarked in [13], these notions,
being defined in duality with the distance, are naturally cotangent notions, rather
than tangent ones, whence the notation proposed here.

It is not difficult to see that for f Lipschitz the slopes and the local Lipschitz
constant are upper gradients according to [18], namely

∣∣∣∣
∫
∂γ

f

∣∣∣∣≤
∫
γ

∣∣D±f
∣∣

for any absolutely continuous curve γ : [0,1] → Y ; here and in the following we
write

∫
∂γ
f for f (γ1)− f (γ0) and

∫
γ
g for

∫ 1
0 g(γs)|γ̇s |ds.

Also, for f,g : Y →R Lipschitz it clearly holds
∣∣D(αf + βg)∣∣≤ |α||Df | + |β||Dg|, ∀α,β ∈R; (2a)∣∣D(fg)∣∣≤ |f ||Dg| + |g||Df |. (2b)

2.2 The Space (P(X),W2)

Let (X,d) be a compact metric space. The set P(X) consists of all Borel probability
measures on X. As usual, if μ ∈P(X) and T :X→ Y is a μ-measurable map with
values in the topological space Y , the push-forward measure T
μ ∈P(Y ) is defined
by T
μ(B) := μ(T −1(B)) for every set Borel set B ⊂ Y .

Given μ,ν ∈P(X), we define the Wasserstein distance W2(μ, ν) between them
as

W 2
2 (μ, ν) :=min

∫
d2(x, y)dγ (x, y), (3)

where the minimum is taken among all Borel probability measures γ on X2 such
that

π1

 γ = μ, π2


 γ = ν; here πi :X2 →X, πi(x1, x2) := xi.
Such measures are called admissible plans or couplings for the couple (μ, ν); a plan
γ which realizes the minimum in (3) is called optimal, and we write γ ∈ OPT(μ, ν).
From the linearity of the admissibility condition we get that the squared Wasserstein
distance is convex, i.e.:

W 2
2

(
(1−λ)μ1+λμ2, (1−λ)ν1+λν2

)≤ (1−λ)W 2
2 (μ1, ν1)+λW 2

2 (μ2, ν2). (4)
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It is also well known (see e.g. Theorem 2.7 in [1]) that the Wasserstein distance
metrizes the weak convergence of measures in P(X), i.e. the weak convergence
with respect to the duality with C(X); in particular (P(X),W2) is a compact metric
space.

An equivalent definition of W2 comes from the dual formulation of the transport
problem:

1

2
W 2

2 (μ, ν)= sup
ψ

∫
X

ψdμ+
∫
X

ψcdν, (5)

the supremum being taken among all Lipschitz functions ψ , where the c-transform
in this formula is defined by

ψc(y) := inf
x∈X

d2(x, y)

2
−ψ(x).

A function ψ : X→ R is said to be c-concave if ψ = φc for some φ : X→ R. It
is possible to prove that the supremum in (5) is always achieved by a c-concave
function, and we will call any such function ψ a Kantorovich potential. We shall
also use the fact that c-concave functions satisfy

ψcc =ψ. (6)

The (graph of the) c-superdifferential ∂cψ of a c-concave functionψ is the subset
of X2 defined by

∂cψ :=
{
(x, y) : ψ(x)+ψc(y)= d2(x, y)

2

}
,

and the c-superdifferential ∂cψ(x) at x is the set of y’s such that (x, y) ∈ ∂cψ .
A consequence of the compactness of X is that any c-concave function ψ is Lips-
chitz and that the set ∂cψ(x) is non empty for any x ∈X.

It is not difficult to see that if ψ is a Kantorovich potential for μ,ν ∈P(X) and
γ is a coupling for (μ, ν) then γ is optimal if and only if supp(γ )⊂ ∂cψ .

If (X,d) is geodesic, then so is (P(X),W2), and in this case a curve (μt )

is a constant speed geodesic from μ0 to μ1 if and only if there exists a mea-
sure π ∈ P(C([0,1],X)) concentrated on Geo(X) such that (et )
π = μt for all
t ∈ [0,1] and (e0, e1)
π ∈ OPT(μ0,μ1). We will denote the set of such measures,
called optimal geodesic plans, by GeoOpt(μ0,μ1).

2.3 Geodesically Convex Functionals and Their Gradient Flows

Given a geodesic space (Y,dY ) (in the following this will always be the Wasserstein
space built over a geodesic space (X,d)), a functional E : Y → R ∪ {+∞} is said
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K-geodesically convex (or simply K-convex) if for any y0, y1 ∈ Y there exists a
constant speed geodesic γ : [0,1]→ Y such that γ0 = y0, γ1 = y1 and

E(γt )≤ (1− t)E(y0)+ tE(y1)− K

2
t (1− t)d2

Y (y0, y1), ∀t ∈ [0,1].

We will denote by D(E) the domain of E i.e. D(E) := {y : E(y) <∞}: if E is
K-geodesically convex, then D(E) is geodesic.

An easy consequence of the K-convexity is the fact that the descending slope
defined in (1) can de computed as a sup, rather than as a limsup:

|D−E|(y)= sup
z �=y

(
E(y)−E(z)

dY (y, z)
+ K

2
dY (y, z)

)+
. (7)

What we want to discuss here is the definition of gradient flow of a K-convex
functional. There are essentially two different ways of giving such a notion in a met-
ric setting. The first one, which we call Energy Dissipation Equality (EDE), ensures
existence for any K-convex and lower semicontinuous functional (under suitable
compactness assumptions), the second one, which we call Evolution Variation In-
equality (EVI), ensures uniqueness and K-contractivity of the flow. However, the
price we pay for these stronger properties is that existence results for EVI solutions
hold under much more restrictive assumptions.

It is important to distinguish the two notions. The EDE one is the “correct one”
to be used in a general metric context, because it ensures existence for any initial
datum in the domain of the functional. However, typically gradient flows in the EDE
sense are not unique: this is the reason of the analysis made in Sect. 5, which ensures
that for the special case of the entropy functional uniqueness is indeed true.

EVI gradient flows are in particular gradient flows in the EDE sense (see Propo-
sition 2.2), ensure uniqueness, K-contractivity and provide strong a priori regular-
izing effects. Heuristically speaking, existence of gradient flows in the EVI sense
depends also on properties of the distance, rather than on properties of the func-
tional only. A more or less correct way of thinking at this is: gradient flows in the
EVI sense exist if and only if the distance is Hilbertian on small scales. For instance,
if the underlying metric space is an Hilbert space, then the two notions coincide.

Now recall that one of our goals here is to study the gradient flow of the relative
entropy in spaces with Ricci curvature bounded below (Definition 5.9), and recall
that Finsler geometries are included in this setting (see page 926 of [32]). Thus, in
general we must deal with the EDE notion of gradient flow. The EVI one will come
into play in Sect. 9, where we use it to identify those spaces with Ricci curvature
bounded below which are more ‘Riemannian like’.

Note: later on we will refer to gradient flows in the EDE sense simply as “gradient
flows”, keeping the distinguished notation EVI-gradient flows for those in the EVI
sense.
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Energy Dissipation Equality

An important property of K-geodesically convex and lower semicontinuous func-
tionals (see Corollary 2.4.10 of [3] or Proposition 3.19 of [1]) is that the de-
scending slope is an upper gradient, that is: for any absolutely continuous curve
yt : J ⊂R→D(E) it holds

∣∣E(yt )−E(ys)∣∣≤
∫ s

t

|ẏr |
∣∣D−E

∣∣(yr )dr, ∀t ≤ s. (8)

An application of Young inequality gives that

E(yt )≤E(ys)+ 1

2

∫ s

t

|ẏr |2dr + 1

2

∫ s

t

|D−E|2(yr )dr, ∀t ≤ s. (9)

This inequality motivates the following definition:

Definition 2.1 (Energy Dissipation Equality definition of gradient flow) Let E be
a K-convex and lower semicontinuous functional and let y0 ∈ D(E). We say that
a continuous curve [0,∞) � t �→ yt is a gradient flow for E in the EDE sense (or
simply a gradient flow) if it is locally absolutely continuous in (0,∞), it takes values
in the domain of E and it holds

E(yt )=E(ys)+ 1

2

∫ s

t

|ẏr |2dr + 1

2

∫ s

t

|D−E|2(yr )dr, ∀t ≤ s. (10)

Notice that, due to (9), the equality (10) is equivalent to

E(y0)≥E(ys)+ 1

2

∫ s

0
|ẏr |2dr + 1

2

∫ s

0
|D−E|2(yr )dr, ∀s > 0. (11)

Indeed, if (11) holds, then (10) holds with t = 0, and then by the additivity of the
integral (10) holds in general.

It is not hard to check that if E :Rd →R is a C1 function, then a curve yt : J →
R
d is a gradient flow according to the previous definition if and only if it satisfies

y′t =−∇E(yt ), ∀t ∈ J,
so that the metric definition reduces to the classical one when specialized to Eu-
clidean spaces.

The following theorem has been proved in [3] (Corollary 2.4.11):

Theorem 2.1 (Existence of gradient flows in the EDE sense) Let (Y,dY ) be a com-
pact metric space and letE : Y →R∪{+∞} be aK-geodesically convex and lower
semicontinuous functional. Then every y0 ∈D(E) is the starting point of a gradient
flow in the EDE sense of E.
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It is important to stress the fact that in general gradient flows in the EDE sense
are not unique. A simple example is Y := R

2 endowed with the L∞ norm, and E
defined by E(x,y) := x. It is immediate to see that E is 0-convex and that for any
point (x0, y0) there exist uncountably many gradient flows in the EDE sense starting
from it, for instance all curves (x0 − t, y(t)) with |y′(t)| ≤ 1 and y(0)= y0.

Evolution Variational Inequality

To see where the EVI notion comes from, notice that for a K-convex and smooth
function f on R

d it holds y′t =−∇f (y) for any t ≥ 0 if and only if

d

dt

|yt − z|2
2

+ K

2
|yt − z|2 + f (yt )≤ f (z), ∀z ∈R

d, ∀t ≥ 0. (12)

This equivalence is true because K-convexity ensures that v =−∇f (y) if and only

〈v, y − z〉 + K

2
|y − z|2 + f (y)≤ f (z), ∀z ∈R

d .

Inequality (12) can be written in a metric context in several ways, which we collect
in the following statement (we omit the easy proof).

Proposition 2.1 (Evolution Variational Inequality: equivalent statements) Let
(Y,dY ) be a complete and separable metric space, E : Y → (−∞,∞] a lower
semicontinuous functional, and (yt ) a locally absolutely continuous curve in Y .
Then the following properties are equivalent:

(i) For any z ∈D(E) it holds

d

dt

d2
Y (yt , z)

2
+ K

2
d2
Y (yt , z)+E(yt )≤E(z), for a.e. t ∈ (0,∞).

(ii) For any z ∈D(E) it holds ∀0< t < s <∞
d2
Y (ys, z)− d2

Y (yt , z)

2h
+ K

2

∫ s

t

d2
Y (yr , z)dr +

∫ s

t

E(yr)dr ≤ (s − t)E(z).

(iii) There exists a setA⊂D(E) dense in energy (i.e., for any z ∈D(E) there exists
(zn)⊂ A converging to z such that E(zn)→ E(z)) such that for any z ∈ A it
holds

lim
h↓0

d2
Y (yt+h, z)− d2

Y (yt , z)

2
+ K

2
d2
Y (yt , z)+E(yt )≤E(z), ∀t ∈ (0,∞).

Definition 2.2 (Evolution Variational Inequality definition of gradient flow) We say
that a curve (yt ) is a gradient flow of E in the EVI sense relative to K ∈R (in short,
EVIK -gradient flow), if any of the above equivalent properties are true. We say that
yt starts from y0 if yt → y0 as t ↓ 0.
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This definition of gradient flow is stronger than the one discussed in the previous
section, because of the following result proved by the third author in [29] (see also
Proposition 3.6 of [1]), which we state without proof.

Proposition 2.2 (EVI implies EDE) Let (Y,dY ) be a complete and separable
metric space, K ∈ R, E : Y → (−∞,∞] a lower semicontinuous functional and
yt : (0,∞)→ D(E) a locally absolutely continuous curve. Assume that yt is an
EVIK -gradient flow for E. Then (10) holds for any 0< t < s.

Remark 2.1 (Contractivity) It can be proved that if (yt ) and (zt ) are gradient flows
in the EVIK sense of the l.s.c. functional E, then

dY (yt , zt )≤ e−KtdY (y0, z0), ∀t ≥ 0.

In particular, gradient flows in the EVI sense are unique. This contractivity property,
used in conjunction with (ii) of Proposition 2.1, guarantees that if existence of gra-
dient flows in the EVI sense is known for initial data lying in some subset S ⊂ Y ,
then it is also known for initial data in the closure S of S.

We also point out the following geometric consequence of the EVI, proven in
[10].

Proposition 2.3 Let E : Y → (−∞,∞] be a lower semicontinuous functional on
a complete space (Y, dY ). Assume that every y0 ∈D(E) is the starting point of an
EVIK -gradient flow of E. Then E is K-convex along all geodesics contained in
D(E).

As we already said, gradient flows in the EVI sense do not necessarily exist, and
their existence depends on the properties of the distance dY . For instance, it is not
hard to see that if we endow R

2 with the L∞ norm and consider the functional
E(x,y) := x, then there re is no gradient flow in the EVIK -sense, regardless of the
constant K .

3 Hopf-Lax Formula and Hamilton-Jacobi Equation

Aim of this subsection is to study the properties of the Hopf-Lax formula in a metric
setting and its relations with the Hamilton-Jacobi equation. Here we assume that
(X,d) is a compact metric space. Notice that there is no reference measure m in the
discussion.

Let f :X→R be a Lipschitz function. For t > 0 define

F(t, x, y) := f (y)+ d2(x, y)

2t
,
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and the function Qtf :X→R by

Qtf (x) := inf
y∈XF(t, x, y)=min

y∈X F(t, x, y).

Also, we introduce the functions D+,D− :X× (0,∞)→R as

D+(x, t) :=max d(x, y),

D−(x, t) :=min d(x, y),
(13)

where, in both cases, the y’s vary among all minima of F(t, x, ·). We also set
Q0f = f and D±(x,0) = 0. Thanks to the continuity of F and the compactness
of X, it is easy to check that the map [0,∞)×X � (t, x) �→Qtf (x) is continuous.
Furthermore, the fact that f is Lipschitz easily yields

D−(x, t)≤D+(x, t)≤ 2t Lip(f ), (14)

and from the fact that the functions {d2(·, y)}y∈Y are uniformly Lipschitz (because
(X,d) is bounded) we get that Qtf is Lipschitz for any t > 0.

Proposition 3.4 (Monotonicity of D±) For all x ∈X it holds

D+(x, t)≤D−(x, s), 0≤ t < s. (15)

As a consequence,D+(x, ·) andD−(x, ·) are both nondecreasing, and they coincide
with at most countably many exceptions in [0,∞).

Proof Fix x ∈X. For t = 0 there is nothing to prove. Now pick 0< t < s and choose
xt and xs minimizers of F(t, x, ·) and F(s, x, ·) respectively, such that d(x, xt ) =
D+(x, t) and d(x, xs)=D−(x, s). The minimality of xt , xs gives

f (xt )+ d2(xt , x)

2t
≤ f (xs)+ d2(xs, x)

2t
,

f (xs)+ d2(xs, x)

2s
≤ f (xt )+ d2(xt , x)

2s
.

Adding up and using the fact that 1
t
≥ 1

s
we deduce

D+(x, t)= d(xt , x)≤ d(xs, x)=D−(x, s),

which is (15).
Combining this with the inequality D− ≤D+ we immediately obtain that both

functions are nondecreasing. At a point of right continuity of D−(x, ·) we get

D+(x, t)≤ inf
s>t

D−(x, s)=D−(x, t).

This implies that the two functions coincide out of a countable set. �
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Next, we examine the semicontinuity properties of D±. These properties im-
ply that points (x, t) where the equality D+(x, t)=D−(x, t) occurs are continuity
points for both D+ and D−.

Proposition 3.5 (Semicontinuity ofD±) The mapD+ is upper semicontinuous and
the map D− is lower semicontinuous in X× (0,∞).

Proof We prove lower semicontinuity of D−, the proof of upper semicontinuity of
D+ being similar. Let (xi, ti) be any sequence converging to (x, t) and, for every i,
let (yi) be a minimum of F(ti , xi, ·) for which d(yi, xi) =D−(xi, ti). For all i we
have

f (yi)+ d2(yi, xi)

2ti
=Qti f (xi).

Moreover, the continuity of (x, t) �→Qtf (x) gives that limi Qti f (xi) =Qtf (x),
thus

lim
i→∞f (yi)+

d2(yi, x)

2t
=Qtf (x).

This means that (yi) is a minimizing sequence for F(t, x, ·). Since (X,d) is com-
pact, possibly passing to a subsequence, not relabeled, we may assume that (yi)
converges to y as i→∞. Therefore

D−(x, t)≤ d(x, y)= lim
i→∞d(x, yi)= lim

i→∞D
−(xi, ti). �

Proposition 3.6 (Time derivative of Qtf ) The map t �→ Qtf is Lipschitz from
[0,∞) to C(X) and, for all x ∈X, it satisfies

d

dt
Qtf (x)=−[D

±(x, t)]2
2t2

, (16)

for any t > 0 with at most countably many exceptions.

Proof Let t < s and xt , xs be minima of F(t, x, ·) and F(s, x, ·). We have

Qsf (x)−Qtf (x)≤ F(s, x, xt )− F(t, x, xt )= d2(x, xt )

2

t − s
ts

,

Qsf (x)−Qtf (x)≥ F(s, x, xs)− F(t, x, xs)= d2(x, xs)

2

t − s
ts

,

which gives that t �→ Qtf (x) is Lipschitz in (ε,+∞) for any ε > 0 and x ∈ X.
Also, dividing by (s − t) and taking Proposition 3.4 into account, we get (16). Now
notice that from (14) we get that | d

dt Qtf (x)| ≤ 2 Lip2(f ) for any x and a.e. t , which,
together with the pointwise convergence of Qtf to f as t ↓ 0, yields that t �→
Qtf ∈ C(X) is Lipschitz in [0,∞). �
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Proposition 3.7 (Bound on the local Lipschitz constant of Qtf ) For (x, t) ∈ X ×
(0,∞) it holds:

|DQtf |(x)≤ D+(x, t)
t

. (17)

Proof Fix x ∈X and t ∈ (0,∞), pick a sequence (xi) converging to x and a corre-
sponding sequence (yi) of minimizers for F(t, xi, ·) and similarly a minimizer y of
F(t, x, ·). We start proving that

lim
i→∞

Qtf (x)−Qtf (xi)

d(x, xi)
≤ D+(x, t)

t
.

Since it holds

Qtf (x)−Qtf (xi)≤ F(t, x, yi)− F(t, xi, yi)

≤ f (yi)+ d2(x, yi)

2t
− f (yi)− d2(xi, yi)

2t

≤ d(x, xi)

2t

(
d(x, yi)+ d(xi, yi)

)

≤ d(x, xi)

2t

(
d(x, xi)+ 2D+(xi, t)

)
,

dividing by d(x, xi), letting i→∞ and using the upper semicontinuity of D+ we
get the claim. To conclude, we need to show that

lim
i→∞

Qtf (xi)−Qtf (x)

d(x, xi)
≤ D+(x, t)

t
.

This follows along similar lines starting from the inequality

Qtf (xi)−Qtf (x)≤ F(t, xi, y)− F(t, x, yi). �

Theorem 3.2 (Subsolution of HJ) For every x ∈X it holds

d

dt
Qtf (x)+ 1

2
|DQtf |2(x)≤ 0 (18)

with at most countably many exceptions in (0,∞).

Proof The claim is a direct consequence of Proposition 3.6 and Proposition 3.7. �

We just proved that in an arbitrary metric space the Hopf-Lax formula produces
subsolutions of the Hamilton-Jacobi equation. Our aim now is to prove that if (X,d)
is a geodesic space, then the same formula provides also supersolutions.
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Theorem 3.3 (Supersolution of HJ) Assume that (X,d) is a geodesic space. Then
equality holds in (17). In particular, for all x ∈X it holds

d

dt
Qtf (x)+ 1

2
|DQtf |2(x)= 0,

with at most countably many exceptions in (0,∞).

Proof Let y be a minimum of F(t, x, ·) such that d(x, y) = D+(x, t). Let γ :
[0,1]→X be a constant speed geodesic connecting x to y. We have

Qtf (x)−Qtf (γs) ≥ f (y)+ d2(x, y)

2t
− f (y)− d2(γs, y)

2t

= d2(x, y)− d2(γs, y)

2t
= (D+(x, t))2(2s − s2)

2t
.

Therefore we obtain

lim
s↓0

Qtf (x)−Qtf (γs)

d(x, γs)
= lim

s↓0

Qtf (x)−Qtf (γs)

sD+(x, t)
≥ D+(x, t)

t
.

Since s �→ γs is a particular family converging to x we deduce

∣∣D−Qtf
∣∣(x)≥ D+(x, t)

t
.

Taking into account Proposition 3.6 and Proposition 3.7 we conclude. �

4 Weak Definitions of Gradient

In this section we introduce two weak notions of ‘norm of the differential’, one
inspired by Cheeger’s seminal paper [9], that we call minimal relaxed slope and
denote by |Df |∗, and one inspired by the papers of Koskela-MacManus [20] and
of Shanmugalingam [30], that we call minimal weak upper gradient and denote by
|Df |w . Notice that, as for the slopes, the objects that we are going to define are
naturally in duality with the distance, thus are cotangent notion: that’s why we use
the ‘D’ instead of the ‘∇’ in the notation. Still, we will continue speaking of upper
gradients and their weak counterparts to be aligned with the convention used in the
literature (see [13] for a broader discussion on this distinction between tangent and
cotangent objects and its effects on calculus).

We compare our concepts with those of the original papers in Sect. 4.4, where
we show that all these approaches a posteriori coincide. As usual, we will adopt the
simplifying assumption that (X,d,m) is compact and normalized metric measure
space, i.e. (X,d) is compact and m ∈P(X).
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4.1 The “Vertical” Approach: Minimal Relaxed Slope

Definition 4.3 (Relaxed slopes) We say that G ∈ L2(X,m) is a relaxed slope of
f ∈ L2(X,m) if there exist G̃ ∈ L2(X,m) and Lipschitz functions fn :X→R such
that:

(a) fn→ f in L2(X,m) and |Dfn| weakly converges to G̃ in L2(X,m);
(b) G̃≤G m-a.e. in X.

We say that G is the minimal relaxed slope of f if its L2(X,m) norm is minimal
among relaxed slopes. We shall denote by |Df |∗ the minimal relaxed slope.

Using Mazur’s lemma and (2a) (see Proposition 4.8) it is possible to show that
an equivalent characterization of relaxed slopes can be given by modifying (a) as
follows: G̃ is the strong limit in L2(X,m) of Gn ≥ |Dfn|. The definition of relaxed
slope we gave is useful to show existence of relaxed slopes (as soon as an approxi-
mating sequence (fn) with |Dfn| bounded in L2(X,m) exists) while the equivalent
characterization is useful to perform diagonal arguments and to show that the class
of relaxed slopes is a convex closed set. Therefore the definition of |Df |∗ is well
posed.

Lemma 4.1 (Locality) Let G1,G2 be relaxed slopes of f . Then min{G1,G2} is a
relaxed slope as well. In particular, for any relaxed slope G it holds

|Df |∗ ≤G m-a.e. in X.

Proof It is sufficient to prove that if B ⊂X is a Borel set, then χBG1 + χX\BG2 is
a relaxed slope of f . By approximation, taking into account the closure of the class
of relaxed slopes, we can assume with no loss of generality that B is an open set. We
fix r > 0 and a Lipschitz function φr :X→[0,1] equal to 0 on X \Br and equal to
1 on B2r , where the open sets Bs ⊂ B are defined by

Bs :=
{
x ∈X : dist(x,X \B) > s

}⊂ B.
Let now fn,i , i = 1,2, be Lipschitz andL2 functions converging to f inL2(X,m) as
n→∞, with |Dfn,i | weakly convergent to Gi and set fn := φrfn,1+ (1−φr)fn,2.
Then, |Dfn| = |Dfn,1| on B2r and |Dfn| = |Dfn,2| on X \ Br ; in Br \ B2r , by
applying (2a) and (2b), we can estimate

|Dfn| ≤ |Dfn,2| + Lip(φr)|fn,1 − fn,2| + φr
(|Dfn,1| + |Dfn,2|).

Since Br ⊂ B , by taking weak limits of a subsequence, it follows that

χB2rG1 + χX\BrG2 + χB\B2r (G1 + 2G2)

is a relaxed slope of f . Letting r ↓ 0 gives that χBG1 + χX\BG2 is a relaxed slope
as well.
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For the second part of the statement argue by contradiction: let G be a relaxed
slope of f and assume that B = {G< |Df |∗} is such that m(B) > 0. Consider the
relaxed slope GχB + |Df |∗χX\B : its L2 norm is strictly less than the L2 norm of
|Df |∗, which is a contradiction. �

A trivial consequence of the definition and of the locality principle we just proved
is that if f :X→R is Lipschitz it holds:

|Df |∗ ≤ |Df | m-a.e. in X. (19)

We also remark that it is possible to obtain the minimal relaxed slope as strong
limit in L2 of slopes of Lipschitz functions, and not only weak, as shown in the next
proposition.

Proposition 4.8 (Strong approximation) If f ∈ L2(X,m) has a relaxed slope, there
exist Lipschitz functions fn convergent to f in L2(X,m) with |Dfn| convergent to
|Df |∗ in L2(X,m).

Proof If gi → f in L2 and |Dgi | weakly converges to |Df |∗ in L2, by Mazur’s
lemma we can find a sequence convex combinations

Gh =
Nh+1∑

i=Nh+1

αh,i |Dgi |, with αi,h ≥ 0,
Nh+1∑

i=Nh+1

αh,i = 1, Nh→∞

of |Dgi | strongly convergent to |Df |∗ in L2; the corresponding convex combina-
tions of gi , that we shall denote by fh, still converge in L2 to f and |Dfh| is domi-
nated by Gh. It follows that

lim
h→∞

∫
X

|Dfh|2dm≤ lim
h→∞

∫
X

G2
hdm=

∫
X

|Df |2∗dm.

This implies at once that |Dfh| weakly converges to |Df |∗ (because any limit point
in the weak topology is a relaxed slope with minimal norm) and that the convergence
is strong. �

Theorem 4.4 The Cheeger energy functional

Ch(f ) := 1

2

∫
X

|Df |2∗dm, (20)

set to +∞ if f has no relaxed slope, is convex and lower semicontinuous in
L2(X,m).

Proof A simple byproduct of condition (2a) is that αF + βG is a relaxed slope of
αf + βg whenever α,β are nonnegative constants and F,G are relaxed slopes of
f,g respectively. Taking F = |Df |∗ and G = |Dg|∗ yields the convexity of Ch,
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while lower semicontinuity follows by a simple diagonal argument based on the
strong approximation property stated in Proposition 4.8. �

Proposition 4.9 (Chain rule) If f ∈ L2(X,m) has a relaxed slope and φ : R→ R

is Lipschitz and C1, then |Dφ(f )|∗ = |φ′(f )||Df |∗ m-a.e. in X.

Proof We trivially have |Dφ(f )| ≤ |φ′(f )||Df |. If we apply this inequality to
the “optimal” approximating sequence of Lipschitz functions given by Proposi-
tion 4.8 we get that |φ′(f )||Df |∗ is a relaxed slope of φ(f ), so that |Dφ(f )|∗ ≤
|φ′(f )||Df |∗ m-a.e. in X. Applying twice this inequality with φ(r) := −r we get
|Df |∗ ≤ |D(−f )|∗ ≤ |Df |∗ and thus |Df |∗ = |D(−f )|∗ m-a.e. in X.

Up to a simple rescaling, we can assume |φ′| ≤ 1. Let ψ1(z) := z− φ(z), notice
that ψ ′1 ≥ 0 and thus m-a.e. on f−1({φ′ ≥ 0}) it holds

|Df |∗ ≤
∣∣D(φ(f ))∣∣∗ +

∣∣D(ψ1(f )
)∣∣∗ ≤ φ′(f )|Df |∗ +ψ ′1(f )|Df |∗ = |Df |∗,

hence all the inequalities must be equalities, which forces |D(φ(f ))|∗ = φ′(f )|Df |∗
m-a.e. on f−1({φ′ ≥ 0}). Similarly, let ψ2(z)=−z− φ(z) and notice that ψ ′2 ≤ 0,
so that m-a.e. on f−1({φ′ ≤ 0}) it holds

|Df |∗ =
∣∣D(−f )∣∣∗ ≤

∣∣D(φ(f ))∣∣∗ +
∣∣D(ψ2(f )

)∣∣∗
≤ −φ′(f )|Df |∗ −ψ ′2(f )|Df |∗ = |Df |∗.

As before we can conclude that |D(φ(f ))|∗ = −φ′(f )|Df |∗ m-a.e. on
f−1({φ′ ≤ 0}). �

Still by approximation, it is not difficult to show that φ(f ) has a relaxed slope if
φ is Lipschitz, and that |Dφ(f )|∗ = |φ′(f )||Df |∗ m-a.e. in X. In this case φ′(f ) is
undefined at points x such that φ is not differentiable at f (x), on the other hand the
formula still makes sense because |Df |∗ = 0 m-a.e. on f−1(N) for any Lebesgue
negligible set N ⊂R. Particularly useful is the case when φ is a truncation function,
for instance φ(z)=min{z,M}. In this case

∣∣Dmin{f,M}∣∣∗ =
{
|Df |∗ if f (x) <M

0 iff (x)≥M.

Analogous formulas hold for truncations from below.

Laplacian: Definition and Basic Properties

Since the domain of Ch is dense in L2(X,m) (it includes Lipschitz functions),
the Hilbertian theory of gradient flows (see for instance [3, 8]) can be applied to
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Cheeger’s functional (20) to provide, for all f0 ∈ L2(X,m), a locally Lipschitz con-
tinuous map t �→ ft from (0,∞) to L2(X,m), with ft → f0 as t ↓ 0, whose deriva-
tive satisfies

d

dt
ft ∈−∂Ch(ft ) for a.e. t. (21)

Here ∂Ch(g) denotes the subdifferential of Ch at g ∈D(Ch) in the sense of convex
analysis, i.e.

∂Ch(g) :=
{
ξ ∈ L2(X,m) : Ch(f )≥ Ch(g)+

∫
X

ξ(f − g)dm ∀f ∈ L2(X,m)

}
.

Another important regularizing effect of gradient flows of convex l.s.c. functionals
lies in the fact that for every t > 0 (the opposite of) the right derivative − d

dt+ ft =
limh↓0

1
h
(ft − ft+h) exists and it is actually the element with minimal L2(X,m)

norm in ∂Ch(ft ). This motivates the next definition:

Definition 4.4 (Laplacian) The Laplacian �f of f ∈ L2(X,m) is defined for those
f such that ∂Ch(f ) �= ∅. For those f , −�f is the element of minimal L2(X,m)

norm in ∂Ch(f ). The domain of � is defined as D(�).

Remark 4.2 (Potential lack of linearity) It should be observed that in general the
Laplacian—as we just defined it—is not a linear operator: the potential lack of lin-
earity is strictly related to the fact that potentially the space W 1,2(X,d,m) is not
Hilbert, because f �→ ∫ |Df |2∗dm need not be quadratic. For instance if X =R

2, m
is the Lebesgue measure and d is the distance induced by the L∞ norm, then it is
easily seen that

|Df |2∗ =
(∣∣∣∣∂f∂x

∣∣∣∣+
∣∣∣∣∂f∂y
∣∣∣∣
)2

.

Even though the Laplacian is not linear, the trivial implication

v ∈ ∂Ch(f ) ⇒ λv ∈ ∂Ch(λf ), ∀λ ∈R,

ensures that the Laplacian (and so the gradient flow of Ch) is 1-homogeneous.

We can now write

d

dt
ft =�ft

for gradient flows ft of Ch, the derivative being understood in L2(X,m), in accor-
dance with the classical case. The classical Hilbertian theory of gradient flows also
ensures that

lim
t→∞Ch(ft )= 0 and

d

dt
Ch(ft )=−‖�ft‖2

L2(X,m)
, for a.e. t ∈ (0,∞). (22)
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Proposition 4.10 (Integration by parts) For all f ∈D(�), g ∈D(Ch) it holds

∣∣∣∣
∫
X

g�f dm

∣∣∣∣≤
∫
X

|Dg|∗|Df |∗dm. (23)

Also, let f ∈D(�) and φ ∈ C1(R) with bounded derivative on an interval contain-
ing the image of f . Then

∫
X

φ(f )�f dm=−
∫
X

|Df |2∗φ′(f )dm. (24)

Proof Since −�f ∈ ∂Ch(f ) it holds

Ch(f )−
∫
X

εg�f dm≤ Ch(f + εg), ∀g ∈ L2(X,m), ε ∈R.

For ε > 0, |Df |∗ +ε|Dg|∗ is a relaxed slope of f +εg (possibly not minimal). Thus
it holds 2Ch(f + εg)≤ ∫

X
(|Df |∗ + ε|Dg|∗)2dm and therefore

−
∫
X

εg�f dm ≤ 1

2

∫
X

(|Df |∗ + ε|Dg|∗)2 − |Df |2∗dm

= ε

∫
X

|Df |∗|Dg|∗dm+ o(ε).

Dividing by ε, letting ε ↓ 0 and then repeating the argument with −g in place of g
we get (23).

For the second part we recall that, by the chain rule, |D(f + εφ(f ))|∗ = (1+
εφ′(f ))|Df |∗ for |ε| small enough. Hence

Ch
(
f + εφ(f ))−Ch(f )= 1

2

∫
X

|Df |2∗
((

1+ εφ′(f ))2 − 1
)
dm

= ε
∫
X

|Df |2∗φ′(f )dm+ o(ε),

which implies that for any v ∈ ∂Ch(f ) it holds
∫
X
vφ(f )dm= ∫

X
|Df |2∗φ′(f )dm,

and gives the thesis with v =−�f . �

Proposition 4.11 (Some properties of the gradient flow of Ch) Let f0 ∈ L2(X,m)

and let (ft ) be the gradient flow of Ch starting from f0. Then the following proper-
ties hold.

Mass preservation.
∫
ftdm=

∫
f0dm for any t ≥ 0.

Maximum principle. If f0 ≤ C (resp. f0 ≥ c) m-a.e. in X, then ft ≤ C (resp ft ≥ c)
m-a.e. in X for any t ≥ 0.
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Entropy dissipation. Suppose 0 < c ≤ f0 ≤ C <∞ m-a.e. Then t �→ ∫ ft logftdm
is absolutely continuous in [0,∞) and it holds

d

dt

∫
X

ft logftdm=−
∫
X

|Dft |2∗
ft

dm, for a.e. t ∈ (0,∞).

Proof Mass preservation. Just notice that from (23) we get
∣∣∣∣ d

dt

∫
X

ftdm

∣∣∣∣=
∣∣∣∣
∫
X

1 ·�ftdm
∣∣∣∣≤
∫
X

|D1|∗|Dft |∗dm= 0, for a.e. t ∈ (0,∞),

where 1 is the function identically equal to 1, which has minimal relaxed gradient
equal to 0.
Maximum principle. Fix f ∈ L2(X,m), τ > 0 and, according to the implicit Euler
scheme, let f τ be the unique minimizer of

g �→ Ch(g)+ 1

2τ

∫
X

|g − f |2dm.

Assume that f ≤ C. We claim that in this case f τ ≤ C as well. Indeed, if this is not
the case we can consider the competitor g :=min{f τ ,C} in the above minimization
problem. By Proposition 4.9 (with the choice φ(r) := min{r,C}) we get Ch(g) ≤
Ch(f τ ) and the L2 distance of f and g is strictly smaller than the one of f and f τ

as soon as m({f τ > C}) > 0, which is a contradiction.
Starting from f0, iterating this procedure, and using the fact that the implicit

Euler scheme converges as τ ↓ 0 (see [3, 8] for details) to the gradient flow we get
the conclusion.

The same arguments applies to uniform bounds from below.
Entropy dissipation. The map z �→ z log z is Lipschitz on [c,C] which, together
with the maximum principle and the fact that t �→ ft ∈ L2(X,m) is locally abso-
lutely continuous, yields the claimed absolute continuity statement. Now notice that
we have d

dt

∫
ft logftdm = ∫ (logft + 1)�ftdm for a.e. t . Since by the maximum

principle ft ≥ c m-a.e., the function log z+ 1 is Lipschitz and C1 on the image of
ft for any t ≥ 0, thus from (24) we get the conclusion. �

4.2 The “Horizontal” Approach: Weak Upper Gradients

In this subsection, following the approach of [4, 5], we introduce a different no-
tion of “weak norm of gradient” in a compact and normalized metric measure space
(X,d,m). This notion of gradient is Lagrangian in spirit, it does not require a re-
laxation procedure, it will provide a new estimate of entropy dissipation along the
gradient flow of Ch, and it will also be useful in the analysis of the derivative of the
entropy along Wasserstein geodesics.

While the definition of minimal relaxed slope was taken from Cheeger’s work [9],
the notion we are going to introduce is inspired by the work of Koskela-MacManus
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[20] and Shanmugalingam [30], the only difference being that we consider a differ-
ent notion of null set of curves.

Negligible Sets of Curves and Functions Sobolev Along a.e. Curve

Recall that the evaluation maps et : C([0,1],X)→ X are defined by et (γ ) := γt .
We also introduce the restriction maps restrst : C([0,1],X)→ C([0,1],X), 0≤ t ≤
s ≤ 1, given by

restrst (γ )r := γ((1−r)t+rs), (25)

so that restrst restricts the curve γ to the interval [t, s] and then “stretches” it on the
whole of [0,1].

Definition 4.5 (Test plans and negligible sets of curves) We say that a probability
measure π ∈P(C([0,1],X)) is a test plan if it is concentrated on AC2([0,1];X),∫∫ 1

0 |γ̇t |2dtdπ <∞, and there exists a constant C(π) such that

(et )
π ≤ C(π)m for every t ∈ [0,1]. (26)

A Borel set A ⊂ AC2([0,1],X) is said negligible if for any test plan π there
exists a π -negligible set N such that A ⊂ N . A property which holds for every
γ ∈AC2([0,1],X), except possibly a negligible set, is said to hold for almost every
curve.

Remark 4.3 An easy consequence of condition (26) is that if two m-measurable
functions f,g :X→R coincide up to a m-negligible set and T is an at most count-
able subset of [0,1], then the functions f ◦ γ and g ◦ γ coincide in T for almost
every curve γ .

Moreover, choosing an arbitrary test plan π and applying Fubini’s Theorem to the
product measure L 1 ×π in (0,1)×C([0,1];X) we also obtain that f ◦ γ = g ◦ γ
L 1-a.e. in (0,1) for π -a.e. curve γ ; since π is arbitrary, the same property holds
for almost every curve.

Coupled with the definition of negligible set of curves, there are the definitions
of weak upper gradient and of functions which are Sobolev along a.e. curve.

Definition 4.6 (Weak upper gradients) A Borel function g :X→ [0,∞] is a weak
upper gradient of f :X→R if

∣∣∣∣
∫
∂γ

f

∣∣∣∣≤
∫
γ

g <∞ for a.e. γ. (27)

Definition 4.7 (Sobolev functions along a.e. curve) A function f : X → R is
Sobolev along a.e. curve if for a.e. curve γ the function f ◦ γ coincides a.e. in
[0,1] and in {0,1} with an absolutely continuous map fγ : [0,1]→R.
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By Remark 4.3 applied to T := {0,1}, (27) does not depend on the particular
representative of f in the class of m-measurable function coinciding with f up to a
m-negligible set. The same Remark also shows that the property of being Sobolev
along almost every curve γ is independent of the representative in the class of m-
measurable functions coinciding with f m-a.e. in X.

In the following remarks we will make use of this basic calculus lemma:

Lemma 4.2 Let f : (0,1)→ R Lebesgue measurable, q ∈ [1,∞], g ∈ Lq(0,1)
nonnegative be satisfying

∣∣f (s)− f (t)∣∣≤
∣∣∣∣
∫ t

s

g(r)dr

∣∣∣∣ for L 2-a.e. (s, t) ∈ (0,1)2.

Then f ∈W 1,q (0,1) and |f ′| ≤ g a.e. in (0,1).

Proof We start by proving the Lemma in the case q = 1. It is immediate to check
that f ∈ L∞(0,1). Let N ⊂ (0,1)2 be the L 2-negligible subset where the above
inequality fails. By Fubini’s theorem, also the set {(t, h) ∈ (0,1)2 : (t, t + h) ∈N ∩
(0,1)2} is L 2-negligible. In particular, by Fubini’s theorem, for a.e. h we have
(t, t + h) /∈N for a.e. t ∈ (0,1). Let hi ↓ 0 with this property and use the identities

∫ 1

0
f (t)

φ(t + h)− φ(t)
h

dt =−
∫ 1

0

f (t − h)− f (t)
−h φ(t)dt

with φ ∈ C1
c (0,1) and h= hi sufficiently small to get

∣∣∣∣
∫ 1

0
f (t)φ′(t)dt

∣∣∣∣≤
∫ 1

0
g(t)
∣∣φ(t)∣∣dt.

It follows that the distributional derivative of f is a signed measure η with finite
total variation which satisfies

−
∫ 1

0
f φ′dt =

∫ 1

0
φdη,

∣∣∣∣
∫ 1

0
φdη

∣∣∣∣≤
∫ 1

0
g|φ|dt for every φ ∈ C1

c (0,1);

therefore η is absolutely continuous with respect to the Lebesgue measure with
|η| ≤ gL 1. This gives the W 1,1(0,1) regularity and, at the same time, the inequal-
ity |f ′| ≤ g a.e. in (0,1). The case q > 1 immediately follows by applying this
inequality when g ∈ Lq(0,1). �

With the aid of this lemma, we can prove that the existence of a weak upper
gradient implies Sobolev regularity along a.e. curve.

Remark 4.4 (Restriction and equivalent formulation) Notice that if π is a test plan,
so is (restrst )
π . Hence if g is a weak upper gradient of f then for every t < s in
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[0,1] it holds

∣∣f (γs)− f (γt )∣∣≤
∫ s

t

g(γr)|γ̇r |dr for a.e. γ.

Let π be a test plan: by Fubini’s theorem applied to the product measure L 2×π in
(0,1)2 ×C([0,1];X), it follows that for π -a.e. γ the function f satisfies

∣∣f (γs)− f (γt )∣∣≤
∣∣∣∣
∫ s

t

g(γr)|γ̇r |dr
∣∣∣∣∣ for L 2-a.e. (t, s) ∈ (0,1)2.

An analogous argument shows that
{
|f (γs)− f (γ0)| ≤

∫ s
0 g(γr)|γ̇r |dr

|f (γ1)− f (γs)| ≤
∫ 1
s
g(γr)|γ̇r |dr for L 1-a.e. s ∈ (0,1). (28)

Since g ◦ γ |γ̇ | ∈ L1(0,1) for π -a.e. γ , by Lemma 4.2 it follows that f ◦ γ ∈
W 1,1(0,1) for π -a.e. γ , and

∣∣∣∣ d

dt
(f ◦ γ )

∣∣∣∣≤ g ◦ γ |γ̇ | a.e. in (0,1), for π-a.e. γ. (29)

Since π is arbitrary, we conclude that f ◦ γ ∈W 1,1(0,1) for a.e. γ , and therefore it
admits an absolutely continuous representative fγ ; moreover, by (28), it is immedi-
ate to check that f (γ (t))= fγ (t) for t ∈ {0,1} and a.e. γ .

Remark 4.5 (An approach with a non explicit use of negligible set of curves) The
previous remark could be used to introduce the notion of weak upper gradients with-
out speaking (explicitly) of Borel sets at all. One can simply say that g ∈ L2(X,m)

is a weak upper gradient of f :X→R provided for every test plan π it holds

∫ ∣∣f (γ1)− f (γ0)
∣∣dπ(γ )≤

∫∫ 1

0
g(γs)|γ̇s |dsdπ(γ )

(this has been the approach followed in [13]).

Proposition 4.12 (Locality) Let f :X→R be Sobolev along almost all absolutely
continuous curves, and letG1,G2 be weak upper gradients of f . Then min{G1,G2}
is a weak upper gradient of f .

Proof It is a direct consequence of (29). �

Definition 4.8 (Minimal weak upper gradient) Let f : X→ R be Sobolev along
almost all curves. The minimal weak upper gradient |Df |w of f is the weak upper
gradient characterized, up to m-negligible sets, by the property

|Df |w ≤G m-a.e. in X, for every weak upper gradient G of f. (30)
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Uniqueness of the minimal weak upper gradient is obvious. For existence, we
take |Df |w := infn Gn, where Gn are weak upper gradients which provide a mini-
mizing sequence in

inf

{∫
X

tan−1Gdm :G is a weak upper gradient of f

}
.

We immediately see, thanks to Proposition 4.12, that we can assume with no loss of
generality that Gn+1 ≤Gn. Hence, by monotone convergence, the function |Df |w
is a weak upper gradient of f and

∫
X

tan−1Gdm is minimal at G = |Df |w . This
minimality, in conjunction with Proposition 4.12, gives (30).

Theorem 4.5 (Stability w.r.t. m-a.e. convergence) Assume that fn are m-measu-
rable, Sobolev along almost all curves and that Gn are weak upper gradients of fn.
Assume furthermore that fn(x)→ f (x) ∈R for m-a.e. x ∈X and that (Gn) weakly
converges to G in L2(X,m). Then G is a weak upper gradient of f .

Proof Fix a test plan π . By Mazur’s theorem we can find convex combinations

Hh :=
Nh+1∑

i=Nh+1

αh,iGi with αh,i ≥ 0,
Nh+1∑

i=Nh+1

αh,i = 1, Nh→∞

converging strongly to G in L2(X,m). Denoting by f̃h the corresponding con-
vex combinations of fh, Hh are weak upper gradients of f̃h and still f̃h→ f m-
a.e. in X.

Since for every nonnegative Borel function ϕ : X→ [0,∞] it holds (with C =
C(π))

∫ (∫
γ

ϕ

)
dπ =

∫ (∫ 1

0
ϕ(γt )|γ̇t |dt

)
dπ

≤
∫ (∫ 1

0
ϕ2(γt )dt

)1/2(∫ 1

0
|γ̇t |2dt

)1/2

dπ

≤
(∫ 1

0

∫
ϕ2d(et )
πdt

)1/2(∫∫ 1

0
|γ̇t |2dtdπ

)1/2

≤
(
C

∫
ϕ2dm

)1/2(∫∫ 1

0
|γ̇t |2dtdπ

)1/2

, (31)

we obtain, for C̄ := √C(∫∫ 1
0 |γ̇t |2dtdπ)1/2,

∫ (∫
γ

|Hh −G| +min
{|f̃h − f |,1}

)
dπ

≤ C̄(‖Hh −G‖L2 + ∥∥min
{|f̃h − f |,1}∥∥L2

)→ 0.
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By a diagonal argument we can find a subsequence h(n) such that
∫
γ
|Hh(n)−G| +

min{|f̃h(n)− f |,1}→ 0 as n→∞ for π -a.e. γ . Since f̃h converge m-a.e. to f and
the marginals of π are absolutely continuous w.r.t. m we have also that for π -a.e. γ
it holds f̃h(γ0)→ f (γ0) and f̃h(γ1)→ f (γ1).

If we fix a curve γ satisfying these convergence properties, since (f̃h(n))γ are
equi-absolutely continuous (being their derivatives bounded by Hh(n) ◦ γ |γ̇ |) and
a further subsequence of f̃h(n) converges a.e. in [0,1] and in {0,1} to f (γs), we
can pass to the limit to obtain an absolutely continuous function fγ equal to f (γs)
a.e. in [0,1] and in {0,1} with derivative bounded by G(γs)|γ̇s |. Since π is arbitrary
we conclude that f is Sobolev along almost all curves and that G is a weak upper
gradient of f . �

Remark 4.6 (|Df |w ≤ |Df |∗) An immediate consequence of the previous proposi-
tion is that any f ∈D(Ch) is Sobolev along a.e. curve and satisfies |Df |w ≤ |Df |∗.
Indeed, for such f just pick a sequence of Lipschitz functions converging to f in
L2(X,m) such that |Dfn| → |Df |∗ in L2(X,m) (as in Proposition 4.8) and recall
that for Lipschitz functions the local Lipschitz constant is an upper gradient.

A Bound from Below on Weak Gradients

In this short subsection we show how, using test plans and the very definition of
minimal weak gradients, it is possible to use |Df |w to bound from below the
increments of the relative entropy. We start with the following result, proved—
in a more general setting—by Lisini in [22]: it shows how to associate to a
curve μ ∈ AC2([0,1]; (P(X),W2)) a plan π ∈P(C([0,1],X)) concentrated on
AC2([0,1];X) representing the curve itself (see also Theorem 8.2.1 of [3] for the
Euclidean case). We will only sketch the proof.

Proposition 4.13 (Superposition principle) Let (X,d) be a compact space
and let μ ∈ AC2([0,1]; (P(X),W2)). Then there exists π ∈ P(C([0,1],X))
concentrated on AC2([0,1];X) such that (et )
π = μt for any t ∈ [0,1] and∫ |γ̇t |2dπ(γ )= |μ̇t |2 for a.e. t ∈ [0,1].
Proof If π ∈P(C([0,1],X)) is any plan concentrated on AC2([0,1],X) such that
(et )
π = μt for any t ∈ [0,1], since (et , es)
π ∈ ADM(μt ,μs), for any t < s it
holds

W 2
2 (μt ,μs)≤

∫
d2(γt , γs)dπ(γ )≤

∫ (∫ s

t

|γ̇r |dr
)2

dπ(γ )

≤ (s − t)
∫∫ s

t

|γ̇r |2drdπ(γ ),

which shows that |μ̇t |2 ≤
∫ |γ̇t |2dπ(γ ) for a.e. t . Hence, to conclude it is sufficient

to find a plan π ∈P(C([0,1],X)), concentrated on AC2([0,1],X), with (et )
π =
μt for any t ∈ [0,1] such that

∫ |μ̇t |2dt ≥ ∫∫ 1
0 |γ̇t |2dtdπ(γ ).
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To build such a π we make the simplifying assumption that (X,d) is geodesic
(the proof for the general case is similar, but rather than interpolating with piece-
wise geodesic curves one uses piecewise constant ones, this leads to some technical
complications that we want to avoid here—see [22] for the complete argument). Fix
n ∈N and use a gluing argument to find γ n ∈P(Xn+1) such that (πi,πi+1)
γ

n ∈
OPT(μ i

n
,μ i+1

n
) for i = 0, . . . , n− 1. By standard measurable selection arguments,

there exists a Borel map T n : Xn+1 → C([0,1],X) such that γ := T n(x0, . . . , xn)

is a constant speed geodesic on each of the intervals [i/n, (i + 1)/n] and γi/n = xi ,
i = 0, . . . , n. Define πn := T n
 γ n. It holds

∫∫ 1

0
|γ̇t |2dtdπn(γ )= 1

n

∫ n−1∑
i=0

d2(γ i
n
, γ i+1

n
)dπ(γ )= 1

n

n−1∑
i=0

W 2
2 (μ i

n
,μ i+1

n
)

≤
∫ 1

0
|μ̇t |2dt . (32)

Now notice that the map E : C([0,1],X)→ [0,∞] given by E(γ ) := ∫ 1
0 |γ̇t |2dt if

γ ∈ AC2([0,1],X) and +∞ otherwise, is lower semicontinuous and, via a simple
equicontinuity argument, with compact sublevels. Therefore by Prokorov’s theorem
we get that (πn)⊂P(C([0,1],X)) is a tight sequence, hence for any limit measure
π the uniform bound (32) gives the thesis. �

Proposition 4.14 Let [0,1] � t �→ μt = ftm be a curve in AC2([0,1], (P(X),

W2)). Assume that for some 0 < c < C <∞ it holds c ≤ ft ≤ C m-a.e. for any
t ∈ [0,1], and that f0 is Sobolev along a.e. curve with |Df0|w ∈ L2(X,m). Then

∫
X

f0 logf0dm−
∫
X

ft logftdm≤ 1

2

∫ t

0

∫
X

|Df0|2w
f 2

0

fsdsdm+ 1

2

∫ t

0
|μ̇s |2ds,

∀t > 0.

Proof Let π ∈P(C([0,1],X)) be a plan associated to the curve (μt ) as in Propo-
sition 4.13. The assumption ft ≤ C m-a.e. and the fact that

∫∫ 1
0 |γ̇t |2dtdπ(γ ) =∫ |μ̇t |2dt <∞ guarantee that π is a test plan. Now notice that it holds |D logft |w =

|Dft |w/ft (because z �→ log z is C1 in [c,C]), thus we get
∫
X

f0 logf0dm−
∫
X

ft logftdm

≤
∫
X

logf0(f0 − ft )dm

=
∫
(logf0 ◦ e0 − logf0 ◦ et )dπ

≤
∫∫ t

0

|Df0|w(γs)
f0(γs)

|γ̇s |dsdπ(γ )
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≤ 1

2

∫∫ t

0

|Df0|2w(γs)
f 2

0 (γs)
dsdπ(γ )+ 1

2

∫∫ t

0
|γ̇s |2dsdπ(γ )

= 1

2

∫ t

0

∫
X

|Df0|2w
f 2

0

fsdsdm+ 1

2

∫ t

0
|μ̇s |2ds. �

4.3 The Two Notions of Gradient Coincide

Here we prove that the two notions of “norm of weak gradient” we introduced co-
incide. We already noticed in Remark 4.6 that |Df |w ≤ |Df |∗, so that to conclude
we need to show that |Df |w ≥ |Df |∗.

The key argument to achieve this is the following lemma, which gives a sharp
bound on the W2-speed of the L2-gradient flow of Ch. This lemma has been intro-
duced in [15] to study the heat flow on Alexandrov spaces, see also Sect. 6.

Lemma 4.3 (Kuwada’s lemma) Let f0 ∈ L2(X,m) and let (ft ) be the L2-gradient
flow of Ch starting from f0. Assume that for some 0< c ≤ C <∞ it holds c ≤ f0 ≤
C m-a.e. in X, and that

∫
X
f0dm= 1. Then the curve t �→ μt := ftm is absolutely

continuous w.r.t. W2 and it holds

|μ̇t |2 ≤
∫
X

|Dft |2∗
ft

dm, for a.e. t ∈ (0,∞).

Proof We start from the duality formula (5) with ϕ =−ψ : taking into account the
factor 2 and using the identity Q1(−ψ)=ψc we get

W 2
2 (μ, ν)

2
= sup

ϕ

∫
X

Q1ϕdν −
∫
X

ϕdμ (33)

where the supremum runs among all Lipschitz functions ϕ.
Fix such a ϕ and recall (Proposition 3.6) that the map t �→Qtϕ is Lipschitz with

values in L∞(X,m), and a fortiori in L2(X,m).
Fix also 0≤ t < s, set �= (s − t) and recall that since (ft ) is the Gradient Flow

of Ch in L2, the map [0, �] � τ �→ ft+τ is absolutely continuous with values in L2.
Therefore the map [0, �] � τ �→Qτ

�
ϕft+τ is absolutely continuous with values in

L2. The equality

Qτ+h
�
ϕft+τ+h −Qτ

�
ϕft+τ

h
= ft+τ

Qτ+h
�
ϕ −Qτ

�
ϕ

h
+Qτ+h

�
ϕ
ft+τ+h − ft+τ

h
,

together with the uniform continuity of (x, τ ) �→Qτ
�
ϕ(x) shows that the derivative

of τ �→Qτ
�
ϕft+τ can be computed via the Leibniz rule.
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We have:
∫
X

Q1ϕdμs −
∫
X

ϕdμt =
∫
X

Q1ϕft+�dm−
∫
X

ϕftdm

=
∫
X

∫ �

0

d

dτ
(Qτ

�
ϕft+τ )dτdm

≤
∫
X

∫ �

0

(
−|DQ

τ
�
ϕ|2

2�
ft+τ +Qτ

�
ϕ�ft+τ

)
dτdm, (34)

having used Theorem 3.2. Observe that by inequalities (23) and (19) we have
∫
X

Qτ
�
ϕ�ft+τdm≤

∫
X

|DQτ
�
ϕ|∗|Dft+τ |∗dm≤

∫
X

|DQτ
�
ϕ||Dft+τ |∗dm

≤ 1

2�

∫
X

|DQτ
�
ϕ|2ft+τdm+ �

2

∫
X

|Dft+τ |2∗
ft+τ

dm. (35)

Plugging this inequality in (34), we obtain

∫
X

Q1ϕdμs −
∫
X

ϕdμt ≤ �

2

∫ �

0

∫
X

|Dft+τ |2∗
ft+τ

dm.

This latter bound does not depend on ϕ, so from (33) we deduce

W 2
2 (μt ,μs)≤ �

∫ �

0

∫
X

|Dft+τ |2∗
ft+τ

dm.

Since fr ≥ c for any r ≥ 0 and r �→ Ch(fr) is nonincreasing and finite for every
r > 0, we immediately get that t �→ μt is locally Lipschitz in (0,∞). At Lebesgue
points of t �→ ∫

X
|Dft |2∗/ftdm we obtain the stated pointwise bound on the metric

speed. �

Theorem 4.6 Let f ∈ L2(X,m). Assume that f is Sobolev along a.e. curve and
that |Df |w ∈ L2(X,m). Then f ∈D(Ch) and |Df |∗ = |Df |w m-a.e. in X.

Proof Up to a truncation argument and addition of a constant, we can assume that
0< c ≤ f ≤ C <∞ m-a.e. in X for some c,C. Let (ft ) be the L2-gradient flow of
Ch starting from f and recall that from Proposition 4.11 we have

∫
X

f logf dm−
∫
X

ft logftdm=
∫ t

0

∫
X

|Dfs |2∗
fs

dsdm<∞ for every t > 0.

On the other hand, from Proposition 4.14 and Lemma 4.3 we have

∫
X

f logf dm−
∫
X

ft logftdm≤ 1

2

∫ t

0

∫
X

|Df |2w
f 2

fsdsdm+ 1

2

∫ t

0

∫
X

|Dfs |2∗
fs

dsdm.

(36)
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Hence we deduce
∫ t

0
4Ch(

√
fs)ds = 1

2

∫ t

0

∫
X

|Dfs |2∗
fs

dsdm≤ 1

2

∫ t

0

∫
X

|Df |2w
f 2

fsdsdm.

Letting t ↓ 0, taking into account the L2-lower semicontinuity of Ch and the fact—
easy to check from the maximum principle—that

√
fs →√

f as s ↓ 0 in L2(X,m),
we get Ch(

√
f ) ≤ limt↓0

1
t

∫ t
0 Ch(

√
fs)ds. On the other hand, the bound f ≥ c >

0 ensures |Df |2w
f 2 ∈ L1(X,m) and the maximum principle again together with the

convergence of fs to f in L2(X,m) when s ↓ 0 grants that the convergence is also

weak∗ in L∞(X,m), therefore
∫
X

|Df |2w
f

dm= limt↓0
1
t

∫ t
0

∫
X

|Df |2w
f 2 fsdmds.

In summary, we proved

1

2

∫
X

|Df |2∗
f

dm≤ 1

2

∫
X

|Df |2w
f

dm,

which, together with the inequality |Df |w ≤ |Df |∗ m-a.e. in X, gives the conclu-
sion. �

We are now in the position of defining the Sobolev spaceW 1,2(X,d,m). We start
with the following simple and general lemma.

Lemma 4.4 Let (B,‖ · ‖) be a Banach space and let E : B → [0,∞] be a
1-homogeneous, convex and lower semicontinuous map. Then the vector space
{E <∞} endowed with the norm

‖v‖E :=
√
‖v‖2 +E2(v),

is a Banach space.

Proof It is clear that (D(E),‖ · ‖E) is a normed space, so we only need to prove
completeness. Pick a sequence (vn) ⊂ D(E) which is Cauchy w.r.t. ‖ · ‖E . Then,
since ‖ · ‖ ≤ ‖ · ‖E we also get that (vn) is Cauchy w.r.t. ‖ · ‖, and hence there
exists v ∈ B such that ‖vn − v‖ → 0. The lower semicontinuity of E grants that
E(v)≤ limn E(vn) <∞ and also that it holds

lim
n→∞‖vn − v‖E ≤ lim

n,m→∞‖vn − vm‖E = 0,

which is the thesis. �

Therefore, if we want to build the space W 1,2(X,d,m) ⊂ L2(X,m), the
only thing that we need is an L2-lower semicontinuous functional playing the
role which on R

d is played by the L2-norm of the distributional gradient of
Sobolev functions. We certainly have this functional, namely the map f �→
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‖|Df |∗‖L2(X,m) = ‖|Df |w‖L2(X,m). Hence the lemma above provides the Banach
space W 1,2(X,d,m). Notice that in general W 1,2(X,d,m) is not Hilbert: this is not
surprising, as already the Sobolev spaceW 1,2 built over (Rd ,‖ ·‖,Ld) is not Hilbert
if the underlying norm ‖ · ‖ does not come from a scalar product.

4.4 Comparison with Previous Approaches

It is now time to underline that the one proposed here is certainly not the first def-
inition of Sobolev space over a metric measure space (we refer to [17] for a much
broader overview on the subject). Here we confine the discussion only to weak no-
tions of (modulus of) gradient, and in particular to [9] and [20, 30]. Also, we discuss
only the quadratic case, referring to [5] for general power functions p and the inde-
pendence (in a suitable sense) of p of minimal gradients.

In [9] Cheeger proposed a relaxation procedure similar to the one used in
Sect. 4.1, but rather than relaxing the local Lipschitz constant of Lipschitz func-
tions, he relaxed upper gradients of arbitrary functions. More precisely, he defined

E(f ) := inf lim
n→∞

‖Gn‖L2(X,m),

where the infimum is taken among all sequences (fn) converging to f in L2(X,m)

such that Gn is an upper gradient for fn. Then, with the same computations done in
Sect. 4.1 (actually and obviously, the story goes the other way around: we closely
followed his arguments) he showed that for f ∈ D(E) there is an underlying no-
tion of weak gradient |Df |C , called minimal generalized upper gradient, such that
E(f )= ‖|Df |C‖L2(X,m) and

|Df |C ≤G m-a.e. in X,

for any G weak limit of a sequence (Gn) as in the definition of E(f ).
Notice that since the local Lipschitz constant is always an upper gradient for

Lipschitz functions, one certainly has

|Df |C ≤ |Df |∗ m-a.e. in X, for any f ∈D(Ch). (37)

Koskela and MacManus [20] introduced and Shanmugalingam [30] further studied
a procedure close to ours (again: actually we have been inspired by them) to produce
a notion of “norm of weak gradient” which does not require a relaxation procedure.
Recall that for Γ ⊂AC([0,1],X) the 2-Modulus Mod2(Γ ) is defined by

Mod2(Γ ) := inf

{
‖ρ‖2

L2(X,m)
:
∫
γ

ρ ≥ 1 ∀γ ∈ Γ
}

for every Γ ⊂AC([0,1],X).
(38)
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It is possible to show that the 2-Modulus is an outer measure on AC([0,1],X).
Building on this notion, Koskela and MacManus [20] considered the class of func-
tions f which satisfy the upper gradient inequality not necessarily along all curves,
but only out of a Mod2-negligible set of curves. In order to compare more prop-
erly this concept to Sobolev classes, Shanmugalingam said that G :X→ [0,∞] is
a weak upper gradient for f if there exists f̃ = f m-a.e. such that

∣∣f̃ (γ0)− f̃ (γ1)
∣∣≤
∫
γ

G for every γ ∈ AC
([0,1],X) \N with Mod2(N )= 0.

Then, she defined the energy Ẽ : L2(X,m)→[0,∞] by putting

Ẽ(f ) := inf‖G‖2
L2(X,m)

,

where the infimum is taken among all weak upper gradient G of f according to the
previous condition. Thanks to the properties of the 2-modulus (a stability property
of weak upper gradients analogous to ours), it is possible to show that Ẽ is indeed
L2-lower semicontinuous, so that it leads to a good definition of the Sobolev space.
Also, using a key lemma due to Fuglede, Shanmugalingam proved that E = Ẽ on
L2(X,m), so that they produce the same definition of Sobolev space W 1,2(X,d,m)
and the underlying gradient |Df |S which gives a pointwise representation to Ẽ(f )
is the same |Df |C behind the energy E.

Observe now that for a Borel set Γ ⊂ AC2([0,1],X) and a test plan π , inte-
grating w.r.t. π the inequality

∫
γ
ρ ≥ 1 ∀γ ∈ Γ and then minimizing over ρ, we

get

[
π(Γ )

]2 ≤ C(π)Mod2(Γ )

∫∫ 1

0
|γ̇ |2dsdπ(γ ),

which shows that any Mod2-negligible set of curves is also negligible according to
Definition 4.5. This fact easily yields that any f ∈D(Ẽ) is Sobolev along a.e. curve
and satisfies

|Df |w ≤ |Df |C, m-a.e. in X. (39)

Given that we proved in Theorem 4.6 that |Df |∗ = |Df |w , inequalities (37) and
(39) also give that |Df |∗ = |Df |w = |Df |C = |Df |S (the smallest one among the
four notions coincides with the largest one).

What we get by the new approach to Sobolev spaces on metric measure spaces
is the following result.

Theorem 4.7 (Density in energy of Lipschitz functions) Let (X,d,m) be a compact
normalized metric measure space. Then for any f ∈ L2(X,m) with weak upper
gradient in L2(X,m) there exists a sequence (fn) of Lipschitz functions converging
to f in L2(X,m) such that both |Dfn| and |Dfn|w converge to |Df |w in L2(X,m)

as n→∞.
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Proof Straightforward consequence of the identity of weak and relaxed gradients
and of Proposition 4.8. �

Let us point out a few aspects behind the strategy of the proof of Theorem 4.7,
which of course strongly relies on Lemma 4.3 and Proposition 4.14. First of all, let
us notice that the stated existence of a sequence of Lipschitz function fn converging
to f with |Dfn| → |Df |w in L2(X,m) is equivalent to show that

lim
n→∞Y1/n(f )≤

∫
X

|Df |2wdm, (40)

where, for τ > 0, Yτ denotes the Yosida regularization

Yτ (f ) := inf
h∈Lip(X)

{
1

2

∫
X

|Dh|2dm+ 1

2τ

∫
X

|h− f |2dm

}
.

In fact, the sequence fn can be chosen by a simple diagonal argument among the
approximate minimizers of Y1/n(f ). On the other hand, it is well known that the
relaxation procedure we used to define the Cheeger energy yields

Y1/n(f )= min
h∈D(Ch)

{
Ch(h)+ n

2

∫
X

|h− f |2dm

}
, (41)

and therefore (40) could be achieved by trying to estimate the Cheeger energy of the
unique minimizer f̃n of (41) in terms of |Df |w .

Instead of using the Yosida regularization Y1/n, in the proof of Theorem 4.6 we
obtained a better approximation of f by flowing it (for a small time step, say tn ↓ 0)
through the L2-gradient flow ft of the Cheeger energy. This flow is strictly related
to Yτ , since it can be obtained as the limit of suitably rescaled iterated minimizers
of Yτ (the so called Minimizing Movement scheme, see e.g. [3]), but has the great
advantage to provide a continuous curve of probability densities ft , which can be
represented as the image of a test plan, through Lisini’s Theorem. Thanks to this
representation and Kuwada’s Lemma, we were allowed to use the weak upper gra-
dient |Df |w instead of |Df |∗ to estimate the Entropy dissipation along ft (see (36))
and to obtain the desired sharp bound of |Dfs |∗ at least for some time s ∈ (0, tn). In
any case, a posteriori we recovered the validity of (40).

This density result was previously known (via the use of maximal functions and
covering arguments) under the assumption that the space was doubling and sup-
ported a local Poincaré inequality for weak upper gradients, see [9, Theorem 4.14,
Theorem 4.24]. Actually, Cheeger proved more, namely that under these hypotheses
Lipschitz functions are dense in the W 1,2 norm, a result which is still unknown in
the general case. Also, notice that another byproduct of our density in energy result
is the equivalence of local Poincaré inequality stated for Lipschitz functions on the
left hand side and slope on the right hand side, and local Poincaré inequality stated
for general functions on the left hand side and upper gradients on the right hand side;
this result was previously known [19] under much more restrictive assumptions on
the metric measure structure.
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5 The Relative Entropy and Its W2-Gradient Flow

In this section we study the W2-gradient flow of the relative entropy on spaces with
Ricci curvature bounded below (in short: CD(K,∞) spaces). The content is essen-
tially extracted from [12]. As before the space (X,d,m) is compact and normalized
(i.e. m(X)= 1).

Recall that the relative entropy functional Entm :P(X)→[0,∞] is defined by

Entm(μ) :=
{∫

X
f logf dm if μ= fm,

+∞ otherwise.

Definition 5.9 (Weak bound from below on the Ricci curvature) We say that
(X,d,m) has Ricci curvature bounded from below by K for some K ∈ R if the
Relative Entropy functional Entm is K-convex along geodesics in (P(X),W2).
More precisely, if for any μ0,μ1 ∈D(Entm) there exists a constant speed geodesic
μt : [0,1]→P(X) between μ0 and μ1 satisfying

Entm(μt )≤ (1− t)Entm(μ0)+ t Entm(μ1)− K

2
t (1− t)W 2

2 (μ0,μ1) ∀t ∈ [0,1].

This definition was introduced in [23] and [31]. Its two basic features are: com-
patibility with the Riemannian case (i.e. a compact Riemannian manifold endowed
with the normalized volume measure has Ricci curvature bounded below by K

in the classical pointwise sense if and only if Entm is K-geodesically convex in
(P(X),W2)) and stability w.r.t. measured Gromov-Hausdorff convergence.

We also recall that Finsler geometries are included in the class of metric measure
spaces with Ricci curvature bounded below. This means that if we have a smooth
compact Finsler manifold (that is: a differentiable manifold endowed with a norm—
possibly not coming from an inner product—on each tangent space which varies
smoothly on the base point) endowed with an arbitrary positive C∞ measure, then
this space has Ricci curvature bounded below by some K ∈ R (see the theorem
stated at page 926 of [32] for the flat case and [24] for the general one).

The goal now is to study the W2-gradient flow of Entm. Notice that the general
theory of gradient flows of K-convex functionals ensures the following existence
result (see the representation formula for the slope (7) and Theorem 2.1).

Theorem 5.8 (Consequences of the general theory of gradient flows) Let (X,d,m)
be a CD(K,∞) space. Then the slope |D− Entm | is lower semicontinuous w.r.t.
weak convergence and for any μ ∈ D(Entm) there exists a gradient flow (in the
EDE sense of Definition 2.1) of Entm starting from μ.

Thus, existence is granted. The problem is then to show uniqueness of the gra-
dient flow. To this aim, we need to introduce the concept of push forward via a
plan.
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Definition 5.10 (Push forward via a plan) Let μ ∈P(X) and let γ ∈P(X2) be
such that μ� π1


 γ . The measures γ μ ∈P(X2) and γ 
μ ∈P(X) are defined as:

dγ μ(x, y) :=
dμ

dπ1

 γ

(x)dγ (x, y), γ 
μ := π2

 γ μ.

Observe that, since γ μ � γ , we have γ 
μ � π2

 γ . We will say that γ has

bounded deformation if there exist 0 < c ≤ C <∞ such that cm ≤ πi
γ ≤ Cm,

i = 1,2. Writing μ= fπ1

 γ , the definition gives that

γ 
μ= ηπ2

 γ with η given by η(y)=

∫
f (x)dγ y(x), (42)

where {γ y}y∈X is the disintegration of γ w.r.t. its second marginal.
The operation of push forward via a plan has interesting properties in connection

with the relative entropy functional.

Proposition 5.15 The following properties hold:

(i) For any μ,ν ∈P(X), γ ∈P(X2) such that μ,ν� π1

 γ it holds

Entγ 
ν(γ 
μ)≤ Entν(μ).

(ii) For μ ∈D(Entm) and γ ∈P(X2) with bounded deformation, it holds γ 
μ ∈
D(Entm).

(iii) Given γ ∈P(X2) with bounded deformation, the map

D(Entm) � μ �→ Entm(μ)− Entm(γ 
μ),

is convex (w.r.t. linear interpolation of measures).

Proof (i). We can assume μ� ν, otherwise there is nothing to prove. Then it is
immediate to check from the definition that γ 
μ� γ 
ν. Let μ = f ν, ν = θπ1


 γ ,
γ 
μ= ηγ 
ν, and u(z) := z log z. By disintegrating γ as in (42), we have that

η(y)=
∫
f (x)dγ̃ y(x), γ̃ y =

(∫
θ(x)dγ y(x)

)−1

θγ y.

The convexity of u and Jensen’s inequality with the probability measures γ̃ y yield

u
(
η(y)
)≤
∫
u
(
f (x)

)
dγ̃ y(x).

Since {γ̃ y}y∈X is the disintegration of γ̃ = (θ ◦ π1)γ with respect to its second
marginal γ 
ν and the first marginal of γ̃ is ν, by integration of both sides with
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respect to γ 
ν we get

Entγ 
ν(γ 
μ)=
∫
u
(
η(y)
)
dγ 
ν(y)≤

∫ (∫
u
(
f (x)

)
dγ̃ y(x)

)
dγ 
ν(y)

≤
∫
u
(
f (x)

)
dγ̃ (x, y)=

∫
u
(
f (x)

)
dν(x)= Entν(μ).

(ii). Taking into account the identity

Entν(μ)= Entσ (μ)+
∫

log

(
dσ

dν

)
dμ, (43)

valid for any μ,ν,σ ∈P(X) with σ having bounded density w.r.t. ν, the fact that
γ 
(π

1

 γ ) = π2


 γ and the fact that cm ≤ π1

 γ ,π

2

 γ ≤ Cm, the conclusion follows

from

Entm(γ 
μ) ≤ Entπ2

 γ (γ 
μ)+ logC

≤ Entπ1

 γ (μ)+ logC ≤ Entm(μ)+ logC − log c.

(iii). Let μ0,μ1 ∈D(Entm) and define μt := (1− t)μ0+ tμ1 and νt := γ 
μt . A di-
rect computation shows that

(1− t)Entm(μ0)+ t Entm(μ1)− Entm(μt )= (1− t)Entμt (μ0)+ t Entμt (μ1),

(1− t)Entm(ν0)+ t Entm(ν1)− Entm(νt )= (1− t)Entνt (ν0)+ t Entνt (ν1),

and from (i) we have that

Entμt (μi)≥ Entγ 
μt (γ 
μi)= Entνt (νi), ∀t ∈ [0,1], i = 0,1,

which gives the conclusion. �

In the next lemma and in the sequel we use the short notation

C(γ ) :=
∫
X×X

d2(x, y)dγ (x, y).

Lemma 5.5 (Approximability in Entropy and distance) Let μ,ν ∈ D(Entm).
Then there exists a sequence (γ n) of plans with bounded deformation such that
Entm(γ n
μ)→ Entm(ν) and C(γ nμ)→W 2

2 (μ, ν) as n→∞.

Proof Let f and g respectively be the densities of μ and ν w.r.t. m; pick γ ∈
OPT(μ, ν) and, for every n ∈N, let An := {(x, y) : f (x)+ g(y)≤ n} and

γ n := cn
(

γ |An +
1

n
(Id, Id)
m

)
,
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where cn→ 1 is the normalization constant. It is immediate to check that γ n is of
bounded deformation and that this sequence satisfies the thesis (see [12] for further
details). �

Proposition 5.16 (Convexity of the squared slope) Let (X,d,m) be a CD(K,∞)

space. Then the map

D(Entm) � μ �→ |D− Entm |2(μ)

is convex (w.r.t. linear interpolation of measures).

Notice that the only assumption that we make is the K-convexity of the entropy
w.r.t. W2, and from this we deduce the convexity w.r.t. the classical linear interpola-
tion of measures of the squared slope.

Proof Recall that from (7) we know that

∣∣D− Entm
∣∣(μ)= sup

ν∈P2(X)
ν �=μ

[Entm(μ)− Entm(ν)− K−
2 W 2

2 (μ, ν)]+
W2(μ, ν)

.

We claim that it also holds

∣∣D− Entm
∣∣(μ)= sup

γ

[Entm(μ)− Entm(γ 
μ)− K−
2 C(γ μ)]+√

C(γ μ)
,

where the supremum is taken among all plans with bounded deformation (where the
right hand side is taken 0 by definition if C(γ μ) > 0).

Indeed, Lemma 5.5 gives that the first expression is not larger than the second.
For the converse inequality we can assume C(γ μ) > 0, ν = γ 
μ �= μ, and K < 0.
Then it is sufficient to apply the simple inequality

a, b, c ∈R, 0< b ≤ c ⇒ (a − b)+√
b

≥ (a − c)+√
c

,

with a := Entm(μ)− Entm(γ 
μ), b := K−
2 W 2

2 (μ,γ 
μ) and c := K−
2 C(γ μ).

Thus, to prove the thesis it is enough to show that for every γ with bounded
deformation the map

D(Entm) � μ �→ [(Entm(μ)− Entm(γ 
μ)− K−
2 C(γ μ))

+]2
C(γ μ)

,

is convex w.r.t. linear interpolation of measures.
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Clearly the map

D(Entm) � μ �→ C(γ μ)=
∫ (∫

d2(x, y)dγ x(y)

)
dμ(x),

where {γ x} is the disintegration of γ w.r.t. its first marginal, is linear. Thus, from
(iii) of Proposition 5.15 we know that the map

μ �→ Entm(μ)− Entm(γ 
μ)−
K−

2
C(γ μ),

is convex w.r.t. linear interpolation of measures. Hence the same is true for its pos-
itive part. The conclusion follows from the fact that the function Ψ : [0,∞)2 →
R∪ {+∞} defined by

Ψ (a, b) :=

⎧⎪⎨
⎪⎩
a2

b
if b > 0,

+∞ if b= 0, a > 0

0 if a = b= 0,

is convex and it is nondecreasing w.r.t. a. �

The convexity of the squared slope allows to prove uniqueness of the gradient
flow of the entropy:

Theorem 5.9 (Uniqueness of the gradient flow of Entm) Let (X,d,m) be a
CD(K,∞) space and let μ ∈ D(Entm). Then there exists a unique gradient flow
of Entm starting from μ in (P(X),W2).

Proof We recall (inequality (4)) that the squared Wasserstein distance is convex
w.r.t. linear interpolation of measures. Therefore, given two absolutely continuous

curves (μ1
t ) and (μ2

t ), the curve t �→ μt := μ1
t +μ2

t

2 is absolutely continuous as well
and its metric speed can be bounded from above by

|μ̇t |2 ≤ |μ̇1
t |2 + |μ̇2

t |2
2

, for a.e. t ∈ (0,∞). (44)

Let (μ1
t ) and (μ2

t ) be gradient flows of Entm starting from μ ∈D(Entm). Then we
have

Entm(μ)= Entm
(
μ1
T

)+ 1

2

∫ T

0

∣∣μ̇1
t

∣∣2dt + 1

2

∫ T

0
|D− Entm |2

(
μ1
t

)
dt, ∀T ≥ 0,

Entm(μ)= Entm
(
μ2
T

)+ 1

2

∫ T

0

∣∣μ̇2
t

∣∣2dt + 1

2

∫ T

0
|D− Entm |2

(
μ2
t

)
dt, ∀T ≥ 0.

Adding up these two equalities, using the convexity of the squared slope guaranteed
by Proposition 5.16, the convexity of the squared metric speed given by (44) and the
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strict convexity of the relative entropy, we deduce that for the curve t �→ μt it holds

Entm(μ) > Entm(μT )+ 1

2

∫ T

0
|μ̇t |2dt + 1

2

∫ T

0

∣∣D− Entm
∣∣2(μt )dt,

for every T such that μ1
T �= μ2

T . This contradicts inequality (9). �

6 The Heat Flow as Gradient Flow

It is well known that on R
d the heat flow can be seen both as gradient flow of the

Dirichlet energy in L2 and as gradient flow of the relative entropy in (P2(R
d),W2).

It is therefore natural to ask whether this identification between the two a priori
different gradient flows persists or not in a general compact and normalized metric
measure space (X,d,m).

The strategy consists in considering a gradient flow (ft ) of Ch with nonnegative
initial data and in proving that the curve t �→ μt := ftm is a gradient flow of Entm(·)
in (P(X),W2): by the uniqueness result of Theorem 5.9 this will be sufficient to
conclude.

We already built most of the ingredients needed for the proof to work, the only
thing that we should add is the following lemma, where the slope of Entm is bounded
from above in terms of the notions of “norm of weak gradient” that we discussed in
Chap. 4. Notice that the bound (47) for Lipschitz functions was already known to
Lott-Villani [23], so that our added value here is the use of the density in energy of
Lipschitz functions to get the correct, sharp inequality (45) (sharpness will be seen
in (48)).

Lemma 6.6 (Fisher bounds slope) Let (X,d,m) be a compact and normalized
CD(K,∞) metric-measure space and let f be a probability density which is
Sobolev along a.e. curve. Then

∣∣D− Entm
∣∣2(fm)≤

∫
X

|Df |2w
f

dm= 4
∫
X

|D√f |2wdm. (45)

Proof Assume at first that f is Lipschitz with 0< c ≤ f , and let (fn) be a sequence
of probability densities such that W2(fnm, fm)→ 0 and where the slope of Entm
at fm is attained. Choose γ n ∈ OPT(fm, fnm) and notice that

∫
X

f logf dm−
∫
X

fn logfndm

≤
∫
X

(f − fn) logf dm

=
∫ (

logf (x)− logf (y)
)
dγ n(x, y)
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≤
√∫

(logf (x)− logf (y))2

d2(x, y)
dγ n(x, y)

√∫
d2(x, y)dγ n(x, y)

=
(∫ (∫

L2(x, y)dγ n,x(y)

)
f (x)dm(x)

)1/2

W2(fm, fnm), (46)

where γ n,x is the disintegration of γ n with respect to fm, and L is the bounded
Borel function

L(x, y) :=
{ | logf (x)−logf (y)|

d(x,y) if x �= y,
|D logf |(x)= |Df |(x)

f (x)
ifx = y.

Notice that for every x ∈ X the map y �→ L(x, y) is upper-semicontinuous; since∫
(
∫

d2(x, y)dγ n,x)f (x)dm→ 0 as n→∞, we can assume without loss of gener-
ality that

lim
n→∞

∫
d2(x, y)dγ n,x(y)= 0 for fm-a.e. x ∈X.

Fatou’s Lemma then yields

lim
n→∞

∫
L2(x, y)dγ n(x, y)≤

∫
X

L2(x, x)f (x)dm(x)=
∫
X

|Df |2
f

dm,

hence (46) gives

∣∣D− Entm
∣∣(fm)= lim

n→∞
(Entm(fm)− Entm(fnm))+

W2(fm, fnm)
≤
√∫

X

|Df |2
f

dm. (47)

We now turn to the general case. Let f be any probability density Sobolev along a.e.
curve such that

√
f ∈D(Ch) (otherwise is nothing to prove). We use Theorem 4.7

to find a sequence of Lipschitz functions (
√
fn) converging to

√
f in L2(X,m) and

such that |D√fn| → |D√f |w in L2(X,m) and m-a.e. Up to summing up positive
and vanishing constants and multiplying for suitable normalization factors, we can
assume that 0 < cn ≤ fn and

∫
X
fndm= 1, for any n ∈ N. The conclusion follows

passing to the limit in (47) by taking into account the weak lower semicontinuity of
|D− Entm | (formula (7) and discussion thereafter). �

Theorem 6.10 (The heat flow as gradient flow) Let f0 ∈ L2(X,m) be such that
μ0 = f0m ∈P(X) and denote by (ft ) the gradient flow of Ch in L2(X,m) starting
from f0 and by (μt ) the gradient flow of Entm in (P(X),W2) starting from μ0.
Then μt = ftm for any t ≥ 0.

Proof Thanks to the uniqueness result of Theorem 5.9, it is sufficient to prove that
(ftm) satisfies the Energy Dissipation Equality for Entm in (P(X),W2). We as-
sume first that 0 < c ≤ f0 ≤ C <∞ m-a.e. in X, so that the maximum principle
(Proposition 4.11) ensures 0< c ≤ ft ≤ C <∞ for any t > 0. By Proposition 4.11
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we know that t �→ Entm(ftm) is absolutely continuous with derivative equal to

− ∫
X

|Dft |2w
ft

dm. Lemma 4.3 ensures that t �→ ftm is absolutely continuous w.r.t.

W2 with squared metric speed bounded by
∫
X

|Dft |2w
ft

dm, so that taking into account
Lemma 6.6 we get

Entm(f0m)≥ Entm(ftm)+ 1

2

∫ t

0
| ˙fsm|2ds + 1

2

∫ t

0

∣∣D− Entm
∣∣2(fsm)ds,

which, together with (9), ensures the thesis.
For the general case we argue by approximation, considering

f n0 := cn min
{
n,max{f0,1/n}

}
,

cn being the normalizing constant, and the corresponding gradient flow (f nt ) of Ch.
The fact that f n0 → f0 in L2(X,m) and the convexity of Ch implies that f nt → ft

in L2(X,m) for any t > 0. In particular, W2(f
n
t m, ftm)→ 0 as n→∞ for every t

(because convergence w.r.t. W2 is equivalent to weak convergence of measures).
Now notice that we know that

Entm
(
f n0 m

)= Entm
(
f nt
)+ 1

2

∫ t

0

∣∣ ˙f ns m
∣∣2ds + 1

2

∫ t

0

∣∣D− Entm
∣∣2(f ns )ds, ∀t > 0.

Furthermore, it is immediate to check that Entm(f n0 m)→ Entm(f0m) as n→∞.
The pointwise convergence of f nt m to ftm w.r.t. W2 easily yields that the terms
on the right hand side of the last equation are lower semicontinuous when n→∞
(recall Theorem 5.8 for the slope). Thus it holds

Entm(f0m)≥ Entm(ft )+ 1

2

∫ t

0
| ˙fsm|2ds + 1

2

∫ t

0

∣∣D− Entm
∣∣2(fs)ds, ∀t > 0,

which, by (11), is the thesis.
We know, by Theorem 5.9, that there is at most a gradient flow starting from μ0.

We also know that a gradient flow f ′t of Ch starting from f0 exists, and part (i) gives
that μ′t := f ′tm is a gradient flow of Entm. The uniqueness of gradient flows gives
μt = μ′t for all t ≥ 0. �

As a consequence of the previous Theorem 6.10 it would not be difficult to prove
that the inequality (45) is in fact an identity: if (X,d,m) is a compact and normalized
CD(K,∞) space, then |D− Entm |(fm) <∞ if and only if the probability density
f is Sobolev along a.e. curve and

√
f ∈D(Ch); in this case

∣∣D− Entm
∣∣2(fm)=

∫
X

|Df |2w
f

dm= 4
∫
X

|D√f |2wdm. (48)
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7 A Metric Brenier Theorem

In this section we state and prove the metric Brenier theorem in CD(K,∞) spaces
we announced in the introduction. It was recently proven in [14] that under an addi-
tional non-branching assumption one can really recover an optimal transport map,
see also [7] for related results, obtained under stronger non-branching assumptions
and weaker convexity assumptions.

Definition 7.11 (Strict CD(K,∞) spaces) We say that a compact normalized met-
ric measure space (X,d,m) is a strict CD(K,∞) space if for any μ0,μ1 ∈D(Entm)
there exists π ∈ GeoOpt(μ0,μ1) with the following property. For any bounded
Borel function F :Geo(X)→[0,∞) such that

∫
Fdπ = 1, it holds

Entm
(
μFt
)≤ (1− t)Entm

(
μF0
)+ t Entm

(
μF1
)− K

2
t (1− t)W 2

2

(
μF0 ,μ

F
1

)
,

where μFt := (et )
(Fπ), for any t ∈ [0,1].

Thus, the difference between strict CD(K,∞) spaces and standard CD(K,∞)

ones is the fact that geodesic convexity is required along all geodesics induced by
the weighted plans Fπ , rather than the one induced by π only. Notice that the nec-
essary and sufficient optimality conditions ensure that (e0, e1)
π is concentrated on
a c-monotone set, hence (e0, e1)
(Fπ) has the same property and it is optimal, rel-
ative to its marginals. (We remark that recent results of Rajala [28] suggest that it is
not necessary to assume this stronger convexity to get the metric Brenier theorem—
and hence not even a treatable notion of spaces with Riemannian Ricci curvature
bounded from below—see [2] for progresses in this direction.)

It is not clear to us whether the notion of being strict CD(K,∞) is stable or not
w.r.t. measured Gromov-Hausdorff convergence and, as such, it should be handled
with care. The importance of strict CD(K,∞) bounds relies on the fact that on
these spaces geodesic interpolation between bounded probability densities is made
of bounded densities as well, thus granting the existence of many test plans.

Notice that non-branching CD(K,∞) spaces are always strict CD(K,∞)

spaces, indeed let μ0,μ1 ∈D(Entm) and pick π ∈GeoOpt(μ0,μ1) such that Entm
is K-convex along ((et )
π). From the non-branching hypothesis it follows that for
F as in Definition 7.11 there exists a unique element in GeoOpt(μFt ,μ

F
1 ) (resp.

in GeoOpt(μFt ,μ
F
0 )). Also, since F is bounded, from μt ∈ D(Entm) we deduce

μFt ∈D(Entm). Hence the map t �→ Entm(μFt ) is K-convex and bounded on [ε,1]
and on [0,1− ε] for all ε ∈ (0,1), and therefore it is K-convex on [0,1].

Proposition 7.17 (Bound on geodesic interpolant) Let (X,d,m) be a strict
CD(K,∞) space and let μ0,μ1 ∈ P(X) be with bounded densities. Then there
exists a test plan π ∈ GeoOpt(μ0,μ1) so that the induced geodesic μt = (et )
π
connecting μ0 to μ1 is made of measures with uniformly bounded densities.
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Proof Let M be an upper bound on the densities of μ0,μ1, π ∈ GeoOpt(μ0,μ1)

be a plan which satisfies the assumptions of Definition 7.11 and μt := (et )
π . We
claim that the measures μt have uniformly bounded densities. The fact that μt �m

is obvious by geodesic convexity, so let ft be the density of μt and assume by
contradiction that for some t0 ∈ [0,1] it holds

ft0(x) >MeK
−D2/8, ∀x ∈A, (49)

where m(A) > 0 and D is the diameter of X. Define π̃ := cπ |e−1
t0
(A)

, where c is the

normalizing constant (notice that π̃ is well defined, because π(e−1
t0
(A))= μt0(A) >

0) and observe that the density of π̃ w.r.t. π is bounded. Let μ̃t := (et )
π̃ and f̃t its
density w.r.t. m. From (49) we get f̃t0 = cft0 on A and f̃t0 = 0 on X \A, hence

Entm(μ̃t0)=
∫

log(f̃t0 ◦ et0)dπ > log c+ logM + K−

8
D2. (50)

On the other hand, we have f̃0 ≤ cf0 ≤ cM and f̃1 ≤ cf1 ≤ cM and thus

Entm(μ̃i)=
∫

log(f̃i ◦ ei )dπ̃ ≤ log c+ logM, i = 0,1. (51)

Finally, it certainly holds W 2
2 (μ̃0, μ̃1) ≤ D2, so that (50) and (51) contradict the

K-convexity of Entm along (μ̃t ). Hence (49) is false and the ft ’s are uniformly
bounded. �

An important consequence of this uniform bound is the following metric version
of Brenier’s theorem.

Theorem 7.11 (A metric Brenier theorem) Let (X,d,m) be a strict CD(K,∞)

space, let f0, f1 be probability densities and ϕ any Kantorovich potential for the
couple (f0m, f1m). Then for every π ∈GeoOpt(f0m, f1m) it holds

d(γ0, γ1)= |Dϕ|w(γ0)=
∣∣D+ϕ

∣∣(γ0), for π -a.e. γ . (52)

In particular,

W 2
2 (f0m, f1m)=

∫
X

|Dϕ|2∗f0dm.

If moreover f0, f1 ∈ L∞(X,m) and π is a test plan (such a plan exists thanks to
Proposition 7.17) then

lim
t↓0

ϕ(γ0)− ϕ(γt )
d(γ0, γt )

= ∣∣D+ϕ
∣∣(γ0) in L2(Geo(X),π

)
. (53)

Proof ϕ is Lipschitz, therefore |D+ϕ| is an upper gradient of ϕ, and hence |Dϕ|w ≤
|D+ϕ| m-a.e. Now fix x ∈ X and pick any y ∈ ∂cϕ(x). From the c-concavity of ϕ
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we get

ϕ(x)= d2(x, y)

2
− ϕc(y),

ϕ(z)≤ d2(z, y)

2
− ϕc(y) ∀z ∈X.

Therefore

ϕ(z)− ϕ(x)≤ d2(z, y)

2
− d2(x, y)

2
≤ d(z, x)

d(z, y)+ d(x, y)

2
.

Dividing by d(x, z) and letting z→ x, by the arbitrariness of y ∈ ∂cϕ(x) and the
fact that supp((e0, e1)
π)⊂ ∂cϕ we get

∣∣D+ϕ
∣∣(γ0)≤ min

y∈∂cϕ(γ0)
d(γ0, y)≤ d(γ0, γ1) for π-a.e. γ.

Since

∫
X

|Dϕ|2wf0dm≤
∫ ∣∣D+ϕ

∣∣2(γ0)dπ and

∫
d2(γ0, γ1)dπ(γ )=W 2

2 (f0m, f1m),

to conclude it is sufficient to prove that

W 2
2 (f0m, f1m)≤

∫
X

|Dϕ|2wf0dm. (54)

Now assume that f0 and f1 are bounded from above and let π̃ ∈GeoOpt(f0m, f1m)

be a test plan (such π̃ exists thanks to Proposition 7.17). Since ϕ is a Kantorovich
potential and (e0, e1)
π̃ is optimal, it holds γ1 ∈ ∂cϕ(γ0) for any γ ∈ supp(π̃).
Hence arguing as before we get

ϕ(γ0)− ϕ(γt )≥ d2(γ0, γ1)

2
− d2(γt , γ1)

2
= d2(γ0, γ1)

(
t − t2/2). (55)

Dividing by d(γ0, γt )= td(γ0, γ1), squaring and integrating w.r.t. π̃ we obtain

lim
t↓0

∫ (
ϕ(γ0)− ϕ(γt )

d(γ0, γt )

)2

dπ̃(γ )≥
∫

d2(γ0, γ1)dπ̃(γ )=W 2
2 (f0m, f1m). (56)
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Using Remark 4.4 and the fact that π̃ is a test plan we have

∫ (
ϕ(γ0)− ϕ(γt )

d(γ0, γt )

)2

dπ̃(γ )≤
∫

1

t2

(∫ t

0
|Dϕ|w(γs)ds

)2

dπ̃(γ )

≤ 1

t

∫∫ t

0
|Dϕ|2w(γs)dsdπ̃(γ )

= 1

t

∫∫ t

0
|Dϕ|2wdsd(et )
π̃

= 1

t

∫∫ t

0
|Dϕ|2wfsdsdm, (57)

where fs is the density of (es)
π̃ . Since (et )
π̃ weakly converges to (e0)
π̃ as t ↓ 0
and Entm((et )
π̃) is uniformly bounded (by the K-geodesic convexity), we con-
clude that ft → f0 weakly in L1(X,m) and since |Dϕ|w ∈ L∞(X,m) we have

lim
t↓0

1

t

∫∫ t

0
|Dϕ|2wfsdsdm=

∫
X

|Dϕ|2wf0dm. (58)

Equations (56), (57) and (58) yield (54).
In order to prove (54) in the general case of possibly unbounded densities,

let us fix a Kantorovich potential ϕ, π ∈ GeoOpt(f0m, f1m) and for n ∈ N de-
fine πn := cnπ |{γ :f0(γ0)+f1(γ1)≤n}, cn→ 1 being the normalization constant. Then
πn ∈ GeoOpt(f n0 m, f

n
1 m), where f ni := (ei )
πn, ϕ is a Kantorovich potential for

(f n0 m, f
n
1 m) and f n0 , f

n
1 ∈ L∞(X,m). Thus from what we just proved we know that

it holds

d(γ0, γ1)= |Dϕ|w(γ0)=
∣∣D+ϕ

∣∣(γ0), for πn-a.e. γ.

Letting n→∞ we conclude.
Concerning (53), we can choose π̃ = π and obtain by (55) and (52)

ϕ(γ0)− ϕ(γt )
d(γ0, γt )

≥ 0, lim inf
t↓0

ϕ(γ0)− ϕ(γt )
d(γ0, γt )

≥ ∣∣D+ϕ
∣∣(γ0) for π -a.e. γ.

On the other hand (57) and (58) yield

lim sup
t↓0

∫ (
ϕ(γ0)− ϕ(γt )

d(γ0, γt )

)2

dπ(γ )≤
∫ ∣∣D+ϕ

∣∣2(γ0)dπ(γ ),

so that, by expanding the square and applying Fatou’s Lemma, we obtain

lim sup
t↓0

∫ (
ϕ(γ0)− ϕ(γt )

d(γ0, γt )
− ∣∣D+ϕ

∣∣(γ0)

)2

dπ(γ )≤ 0. �
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8 More on Calculus on Compact CD(K,∞) Spaces

8.1 On Horizontal and Vertical Derivatives Again

Aim of this subsection is to prove another deep relation between “horizontal” and
“vertical” derivation, which will allow to compare the derivative of the squared
Wasserstein distance along the heat flow with the derivative of the relative entropy
along a geodesic (see the next subsection). This will be key in order to understand
the properties of spaces with Riemannian Ricci curvature bounded from below, il-
lustrated in the last section.

In order to understand the geometric point, consider the following simple exam-
ple.

Example 8.1 Let ‖ · ‖ be a smooth, strictly convex norm on R
d and let ‖ · ‖∗ be the

dual norm. Denoting by 〈·, ·〉 the canonical duality from (Rd)∗ × R
d into R, let L

be the duality map from (Rd,‖ · ‖) to ((Rd)∗,‖ · ‖∗), characterized by

〈
L(u),u

〉= ∥∥L(u)∥∥∗‖u‖ and
∥∥L(u)∥∥∗ = ‖u‖ ∀u ∈R

d,

and let L∗ be its inverse, equally characterized by

〈
v,L∗(v)

〉= ‖v‖∗∥∥L∗(v)∥∥ and
∥∥L∗(v)∥∥= ‖v‖∗ ∀v ∈ (Rd)∗.

Using the fact that ε �→ ‖u‖‖u+ εu′‖ − 〈Lu,u+ εu′〉 attains its minimum at ε = 0
and the analogous relation for L∗, one obtains the useful relations

〈
L(u),u′

〉= 1

2
du‖ · ‖2(u′), 〈

v′,L∗(v)
〉= 1

2
dv‖ · ‖2∗

(
v′
)
. (59)

For a smooth map f : Rd → R its differential dxf at any point x is intrinsically
defined as cotangent vector, namely as an element of (Rd)∗. To define the gradient
∇f (x) ∈ R

d (which is a tangent vector), the norm comes into play via the for-
mula ∇f (x) := L∗(dxf ). Now, given two smooth functions f,g, the real number
dxf (∇g(x)) is well defined as the application of the cotangent vector dxf to the
tangent vector ∇g(x).

What we want to point out, is that there are two very different ways of obtaining
dxf (∇g(x)) from a derivation. The first one, which is usually taken as the definition
of dxf (∇g(x)), is the “horizontal derivative”:

〈dxf,∇g〉 = dxf
(∇g(x))= lim

t→0

f (x + t∇g(x))− f (x)
t

. (60)

The second one is the “vertical derivative”:

Df (∇g)(x)= lim
ε→0

1
2‖dx(g + εf )‖2∗ − 1

2‖dxg‖2∗(x)
ε

. (61)
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It is not difficult to check that (61) is consistent with (60): indeed (omitting the x
dependence), recalling the second identity of (59), we have

‖dg+ εdf ‖2∗ = ‖dg‖2∗ + 2ε
〈
L∗(dg),df

〉+ o(ε)= ‖∇g‖2 + 2ε〈∇g,df 〉 + o(ε).

The point is that the equality between the right hand sides of formulas (61) and
(60) extends to a genuine metric setting. In the following lemma (where the plan π

plays the role of −∇g) we prove one inequality, but we remark that “playing with
signs” it is possible to obtain an analogous inequality with ≤ in place of ≥.

Lemma 8.7 (Horizontal and vertical derivatives) Let f be a Sobolev function along
a.e. curve with |Df |w ∈ L2(X,m), let g : X→ R be Lipschitz and let π be a test
plan concentrated on Geo(X). Assume that

lim
t↓0

g(γ0)− g(γt )
d(γ0, γt )

= |Dg|w(γ0) in L2(Geo(X),π
)
. (62)

Then

lim
t↓0

∫
f (γt )− f (γ0)

t
dπ(γ )

≥ 1

2

∫ |Dg|2w(γ0)− |D(g + εf )|2w(γ0)

ε
dπ(γ ) ∀ε > 0. (63)

Proof Define the functions Ft ,Gt :Geo(X)→R∪ {±∞} by

Ft (γ ) := f (γ0)− f (γt )
d(γ0, γt )

,

Gt (γ ) := g(γ0)− g(γt )
d(γ0, γt )

.

By (62) it holds ∫
|Dg|2w ◦ e0dπ(γ )= lim

t↓0

∫
G2
t dπ . (64)

Since the measures (et )
π → (e0)
π weakly in duality with C(X) as t ↓ 0 and their
densities with respect to m are uniformly bounded, we obtain that the densities are
weakly∗ convergent in L∞(X,m). Therefore, using the fact that |D(g + εf )|2w ∈
L1(X,m) and taking into account Remark 4.4 we obtain

∫ ∣∣D(g + εf )∣∣2
w
◦ e0dπ(γ ) =

∫ ∣∣D(g + εf )∣∣2
w

d(e0)
π

= lim
t↓0

1

t

∫ t

0

∫
X

∣∣D(g + εf )∣∣2
w

d(es)
πds
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= lim
t↓0

1

t

∫∫ t

0

∣∣D(g + εf )∣∣2
w
(γs)dsdπ(γ )

≥ lim
t↓0

∫ ∣∣∣∣ (g + εf )(γ0)− (g + εf )(γt )
td(γ0, γ1)

∣∣∣∣
2

dπ(γ )

≥ lim
t↓0

∫
G2
t + 2εGtFtdπ .

Subtracting this inequality from (64) and dividing by 2ε we get

1

2

∫ |Dg|2w(γ0)− |D(g + εf )|2w(γ0)

ε
dπ(γ )≤ lim

t↓0
−
∫
Gt(γ )Ft (γ )dπ(γ ).

We know that Gt → |Dg|w ◦ e0 in L2(Geo(X),π) and that |Dg|w(γ0)= d(γ0, γ1)

for π -a.e. γ . Also, by Remark 4.4 and the fact that π is a test plan we easily get
supt∈[0,1] ‖Ft‖L2(π) <∞. Thus it holds

lim
t↓0
−
∫
Gt(γ )Ft (γ )dπ(γ )= lim

t↓0
−
∫

d(γ0, γ1)Ft (γ )dπ(γ )

= lim
t↓0

∫
f (γt )− f (γ0)

t
dπ(γ ),

which is the thesis. �

8.2 Two Important Formulas

Proposition 8.18 (Derivative of 1
2W

2
2 along the heat flow) Let (ft )⊂ L2(X,m) be

a heat flow made of probability densities. Then for every σ ∈ P(X), for a.e. t ∈
(0,∞) it holds:

d

dt

1

2
W 2

2 (ftm, σ )=
∫
X

ϕt�ftdm, for any Kantorovich potential ϕ from ft to σ.

(65)

Proof Since t �→ ftm is an absolutely continuous curve w.r.t. W2 (recall Theo-
rem 6.10), the derivative at the left hand side of (65) exists for a.e. t ∈ (0,∞). Also,
for a.e. t ∈ (0,∞) it holds limh→0

1
h
(ft+h − ft )=�ft , the limit being understood

in L2(X,m).
Fix t0 such that the derivative of the Wasserstein distance exists and the above

limit holds and choose any Kantorovich potential ϕt0 for (ft0m, σ ). We have
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W 2
2 (ft0m, σ )

2
=
∫
X

ϕt0ft0dm+
∫
ϕct0dσ

W 2
2 (ft0+hm, σ )

2
≥
∫
X

ϕt0ft0+hdm+
∫
ϕct0dσ.

Therefore, since ϕt0 ∈ L∞(X,m) we get

W 2
2 (ft0+hm, σ )

2
− W 2

2 (ft0m, σ )

2
≥
∫
X

ϕt0(ft0+h − ft0)dm= h
∫
X

ϕt0�ft0 + o(h).

Dividing by h < 0 and h > 0 and letting h→ 0 we get the thesis. �

Proposition 8.19 (Derivative of the Entropy along a geodesic) Let (X,d,m) be a
strict CD(K,∞) space. Let μ0,μ1 ∈ P(X), π ∈ GeoOpt(μ0,μ1) and ϕ a Kan-
torovich potential for (μ0,μ1). Assume that π is a test plan and that μ0 ≥ cm from
some c > 0 and denote by ht the density of μt := (et )
π . Then

lim
t↓0

Entm(μt )− Entm(μ0)

t
≥ lim

ε↓0

Ch(ϕ)−Ch(ϕ + εh0)

ε
. (66)

Proof The convexity of Ch ensures that the limit at the right hand side exists. From
the fact that ϕ is Lipschitz, it is not hard to see that h0 /∈ D(Ch) implies Ch(ϕ +
εh0) = +∞ for any ε > 0 and in this case there is nothing to prove. Thus, we
assume that h0 ∈D(Ch).

The convexity of z �→ z log z gives

Entm(μt )− Entm(μ0)

t
≥
∫
X

logh0
ht − h0

t
dm=

∫
log(h0 ◦ et )− log(h0 ◦ e0)

t
dπ .

(67)
Using the trivial inequality given by Taylor’s formula

logb− loga ≥ b− a
a

− |b− a|2
2c2

,

valid for any a, b ∈ [c,∞), we obtain

∫
log(h0 ◦ et )− log(h0 ◦ e0)

t
dπ ≥

∫
h0 ◦ et − h0 ◦ e0

th0 ◦ e0
dπ

− 1

2tc2

∫
|h0 ◦ et − h0 ◦ e0|2dπ . (68)

Taking into account Remark 4.4 and the fact that |γ̇t | = d(γ0, γ1)≤ diam(X) for a.e.
t ∈ (0,1) and π -a.e. γ , the last term in this expression can be bounded from above
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by

1

2tc2

∫ (∫ t

0
diam(X)|Dh0|w ◦ es

)2

dsdπ ≤ diam(X)2

2c2

∫ ∫ t

0
|Dh0|2w ◦ esdsdπ ,

(69)

which goes to 0 as t→ 0.
Now let S : Geo(X)→ R be the Borel function defined by S(γ ) := h0 ◦ γ0 and

define π̃ := 1
S
π . It is easy to check that (e0)
π̃ = m, so that in particular π̃ is a

probability measure. Also, the bound h0 ≥ c > 0 ensures that π̃ is a test plan. By
definition we have∫

h0 ◦ et − h0 ◦ e0

th0 ◦ e0
dπ =

∫
h0 ◦ et − h0 ◦ e0

t
dπ̃ .

The latter equality and inequalities (67), (68) and (69) ensure that to conclude it is
sufficient to show that

lim
t↓0

∫
h0 ◦ et − h0 ◦ e0

t
dπ̃ ≥ lim

ε↓0

Ch(ϕ)−Ch(ϕ + εh0)

ε
. (70)

Here we apply the key Lemma 8.7. Observe that Theorem 7.11 ensures that

|Dϕ|w(γ0)= lim
t↓0

ϕ(γ0)− ϕ(γt )
t

= d(γ0, γ1)

where the convergence is understood in L2(π). Thus the same holds for L2(π̃) and
the hypotheses of Lemma 8.7 are satisfied with π̃ as test plan, g := ϕ and f := h0.
Equation (63) then gives

lim
t↓0

∫
h0 ◦ et − h0 ◦ e0

t
dπ̃ ≥ lim

ε↓0

1

2

∫ |Dϕ|2w(γ0)− |D(ϕ + εh0)|2w(γ0)

ε
dπ̃(γ )

= lim
ε↓0

1

2

∫
X

|Dϕ|2w(x)− |D(ϕ + εh0)|2w(x)
ε

dm(x),

which concludes the proof. �

9 Riemannian Ricci Bounds

We say that (X,d,m) has Riemannian Ricci curvature bounded below by K ∈R (in
short, it is a RCD(K,∞) space) if any of the 3 equivalent conditions stated in the
following theorem is true.

Theorem 9.12 Let (X,d,m) be a compact and normalized metric measure space
and K ∈R. The following three properties are equivalent.
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(i) (X,d,m) is a strict CD(K,∞) space (Definition 7.11) and the L2-gradient
flow of Ch is linear.

(ii) (X,d,m) is a strict CD(K,∞) space (Definition 7.11) and Cheeger’s energy
is quadratic, i.e.

2
(
Ch(f )+ Ch(g)

)= Ch(f + g)+ Ch(f − g), ∀f,g ∈ L2(X,m). (71)

(iii) supp(m) is geodesic and for any μ ∈D(Entm)⊂P(X) there exists an EVIK -
gradient flow for Entm starting from μ.

Proof (i) ⇒ (ii). Since the heat semigroup Pt in L2(X,m) is linear we obtain that
� is a linear operator (i.e. its domain D(�) is a subspace of L2(X,m) and � :
D(�)→ L2(X,m) is linear). Since t �→ Ch(Pt (f )) is locally Lipschitz, tends to 0
as t→∞ and ∂tCh(Pt (f ))=−‖�Pt(f )‖2

L2 for a.e. t > 0 (see (22)), we have

Ch(f )=
∫ ∞

0

∥∥�Pt(f )∥∥2
L2(X,m)

dt .

Therefore Ch, being an integral of quadratic forms, is a quadratic form. Specifically,
for any f,g ∈ L2(X,m) it holds

Ch(f + g)+Ch(f − g)

=
∫ ∞

0

∥∥�Pt(f + g)∥∥2
L2(X,m)

+ ∥∥�Pt(f − g)∥∥2
L2(X,m)

dt

=
∫ ∞

0

∥∥�Pt(f )+�Pt(g)∥∥2
L2(X,m)

+ ∥∥�Pt(f )−�Pt(g)∥∥2
L2(X,m)

dt

=
∫ ∞

0
2
∥∥�Pt(f )∥∥2

L2(X,m)
+ 2
∥∥�Pt(g)∥∥2

L2(X,m)
dt

= 2Ch(f )+ 2Ch(g).

(ii) ⇒ (iii). By [31, Remark 4.6(iii)] (supp(m),d) is a length space and therefore it
is also geodesic, since X is compact.

Thanks to Remark 2.1 it is sufficient to prove that a gradient flow in the EVIK
sense exists for an initial datum μ0 � m with density bounded away from 0 and
infinity. Let f0 be this density, (ft ) the heat flow starting from it and recall that
from the maximum principle 4.11 we know that the ft ’s are far from 0 and infinity
as well for any t > 0. Fix a reference probability measure σ with density bounded
away from 0 and infinity as well. For any t ≥ 0 pick a test plan π t optimal for
(ftm, σ ). Define σ st := (es)
πt .

We claim that for a.e. t ∈ (0,∞) it holds

d

dt

1

2
W 2

2 (ftm, σm)≤ lim
s↓0

Entm(σ st )− Entm(σ 0
t )

s
. (72)
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Let ϕt be a Kantorovich potential for ftm, σm. By Proposition 8.18 we know that
for a.e. t ∈ (0,∞) it holds

d

dt

1

2
W 2

2 (ftm, σm)=
∫
X

ϕ�ftdm≤ lim
ε↓0

Ch(ft − εϕt )−Ch(ft )

ε
,

while from Proposition 8.19 we have that for any t > 0 it holds

lim
s↓0

Entm(σ st )− Entm(σ 0
t )

s
≥ lim

ε↓0

Ch(ϕt )−Ch(ϕt + εft )
ε

.

Here we use the fact that Ch is quadratic. Indeed in this case simple algebraic ma-
nipulations show that

Ch(ft − εϕt )− Ch(ft )

ε
= Ch(ϕt )−Ch(ϕt + εft )

ε
+O(ε), ∀t > 0,

and therefore (72) is proved.
Now notice that the K-convexity of the entropy yields

lim
s↓0

Entm(σ st )− Entm(σ 0
t )

s
≤ Entm(σ )− Entm(ftm)− K

2
W 2

2 (ftm, σ ),

and therefore we have

d

dt

1

2
W 2

2 (ftm, σm)+ Entm(ftm)+ K

2
W 2

2 (ftm, σ )≤ Entm(σ ),

for a.e. t ∈ (0,∞).

By Proposition 2.1 we conclude.
(iii) ⇒ (i). Since (supp(m),d) is geodesic, so is (D(Entm),W2), which together

with existence of EVIK -gradient flows for Entm yields, via Proposition 2.3, K-
geodesic convexity of Entm along all geodesics in D(Entm). In particular, (X,d,m)
is a strict CD(K,∞) space.

We turn to the linearity. Let (μ0
t ), (μ

1
t ) be two EVIK -gradient flows of the relative

entropy and, for λ ∈ (0,1) fixed, define μλt := (1− λ)μ0
t + λμ1

t .
We claim that (μt ) is an EVIK -gradient flow of Entm. To prove this, fix ν ∈

P(X), t > 0 and an optimal plan γ ∈ OPT(μλt , ν). Since μit � μλt = π1

 γ for i =

0,1 we can define, as in Definition 5.10, the plans γ μit
∈P(X2) and the measures

νi := γ 
μ
i
t , i = 0,1. Since supp(γμit ) ⊂ supp(γ ), we have that γμit ∈ OPT(μit , ν

i),
therefore from γ = (1− λ)γ μ0

t
+ λγ μ1

t
we deduce

W 2
2

(
μλt , ν

)= (1− λ)W 2
2

(
μ0
t , ν

0)+ λW 2
2

(
μ1
t , ν

1). (73)

On the other hand, from the convexity of the squared Wasserstein distance we im-
mediately get that

W 2
2

(
μλt+h, ν

)≤ (1− λ)W 2
2

(
μ0
t+h, ν0)+ λW 2

2

(
μ1
t+h, ν1), ∀h > 0. (74)
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Furthermore, recalling (iii) of Proposition 5.15, we get

Entm
(
μλt
)
m− Entm(ν)≤ (1− λ)

(
Entm

(
μ0
t

)− Entm
(
ν0))

+ λ(Entm
(
μ1
t

)− Entm
(
ν1)). (75)

The fact that (μ0
t ) and (μ1

t ) are EVIK -gradient flows for Entm (see in particular the
characterization (iii) given in Proposition 2.1) in conjunction with (73), (74) and
(75) yield

lim
h↓0

W 2
2 (μ

λ
t+h, ν)−W 2

2 (μ
λ
t , ν)

2
+ K

2
W 2

2

(
μλt , ν

)+ Entm
(
μλt
)≤ Entm(ν). (76)

Since t > 0 and ν ∈P(X) were arbitrary, we proved that (μλt ) is a EVIK -gradient
flow of Entm (see again (iii) of Proposition 2.1).

Thus, recalling the identification of gradient flows, we proved that the L2-heat
flow is additive in D(Entm). Since the heat flow in L2(X,m) commutes with
additive and multiplicative constants, it is easy to get from this linearity in the
class of bounded functions. By L2 contractivity, linearity extends to the whole of
L2(X,m). �

We conclude by discussing some basic properties of the spaces with Riemannian
Ricci curvature bounded from below.

We start observing that Riemannian manifolds with Ricci curvature bounded be-
low by K are RCD(K,∞) spaces, as they are non branching CD(K,∞) spaces and
the heat flow is linear on them. Also, from the studies made in [25, 27, 33] and [16]
we also know that finite dimensional Alexandrov spaces with curvature bounded
from below are RCD(K,∞) spaces as well. On the other side, Finsler manifolds
are ruled out, as it is known (see for instance [26]) that the heat flow is linear on a
Finsler manifold if and only if the manifold is Riemannian.

The stability of the RCD(K,∞) notion can be deduced by the stability of EVIK -
gradient flows w.r.t. Γ -convergence of functionals, which is an easy consequence of
the integral formulation in (ii) of Proposition 2.1.

Hence RCD(K,∞) spaces have the same basic properties of CD(K,∞) spaces,
which gives to this notion the right of being called a synthetic (or weak) notion of
Ricci curvature bound.

The point is then to understand the additional analytic/geometric properties of
these spaces, which come mainly by the addition of linearity condition. A first con-
sequence is that the heat flow contracts, up to an exponential factor, the distance W2,
i.e.

W2(μt , νt )≤ e−KtW2(μ0, ν0), ∀t ≥ 0,

whenever (μt ), (νt )⊂P2(X) are gradient flows of the entropy.
By a duality argument (see [6, 15, 21]), this property implies the Bakry-Emery

gradient estimate
∣∣Dht (f )

∣∣2
w
(x)≤ e−2Ktht

(|Df |2w)(x), for m-a.e. x ∈X,
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for all t > 0, where ht : L2(X,m)→ L2(X,m) is the heat flow seen as gradient flow
of Ch. If (X,d,m) is doubling and supports a local Poincaré inequality, then also the
Lipschitz regularity of the heat kernel is deduced (following an argument described
in [15]).

Also, since in RCD(K,∞) spaces Ch is a quadratic form, if we define

E(f, g) := Ch(f + g)−Ch(f )−Ch(g), ∀f,g ∈W 1,2(X,d,m),

we get a closed Dirichlet form on L2(X,m) (closure follows from the L2-lower
semicontinuity of Ch). Hence it is natural to compare the calculus on RCD(K,∞)

spaces with the abstract one available for Dirichlet forms (see [11]). The picture
here is pretty clear and consistent. Recall that to any f ∈ D(E) one can associate
the energy measure [f ] defined by

[f ](ϕ) := −E(f,f ϕ)+ E
(
f 2/2, ϕ

)
.

Then it is possible to show that the energy measure coincides with |Df |2∗m. Also,
the distance d coincides with the intrinsic distance dE induced by the form, defined
by

dE (x, y) := sup
{∣∣g(x)− g(y)∣∣ : g ∈D(E)∩C(X), [g] ≤m

}
.

Taking advantage of these identification and of the locality of E (which is a conse-
quence of the locality of the notion |Df |∗), one can also see that on RCD(K,∞)

spaces a continuous Brownian motion with continuous sample paths associated to
ht exists and is unique.

Finally, for RCD(K,∞) spaces it is possible to prove tensorization and global-
ization properties which are in line with those available for CD(K,∞) spaces.
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Spaces of Finite Element Differential Forms

Douglas N. Arnold

Abstract We discuss the construction of finite element spaces of differential forms
which satisfy the crucial assumptions of the finite element exterior calculus, namely
that they can be assembled into subcomplexes of the de Rham complex which admit
commuting projections. We present two families of spaces in the case of simplicial
meshes, and two other families in the case of cubical meshes. We make use of the
exterior calculus and the Koszul complex to define and understand the spaces. These
tools allow us to treat a wide variety of situations, which are often treated separately,
in a unified fashion.

1 Introduction

The gradient, curl, and divergence are the most fundamental operators of vector cal-
culus, appearing throughout the differential equations of mathematical physics and
other applications. The finite element solution of such equations requires finite el-
ement subspaces of the natural Hilbert space domains of these operators, namely
H 1, H(curl), and H(div). The construction of subspaces with desirable properties
has been an active research topic for half a century. Exterior calculus provides a
framework in which these fundamental operators and spaces are unified and gen-
eralized, and their properties and inter-relations clarified. Each of the operators is
viewed as a particular case of the exterior derivative operator d = dk taking differ-
ential k-forms on some domain Ω ⊂R

n to differential (k+ 1)-forms. We regard dk

as an unbounded operator between the Hilbert spaces L2Λk and L2Λk+1 consisting
of differential forms with L2 coefficients. The domain of dk is the Hilbert space

HΛk = {u ∈ L2Λk |du ∈ L2Λk+1 }, (1.1)
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and all the dk and their domains combine to form the L2 de Rham complex

0→HΛ0 d0−→HΛ1 d1−→ · · · dn−1−−→HΛn→ 0.

Differential 0-forms and n-forms may be identified simply with functions on Ω and
differential 1-forms and (n− 1)-forms may be identified with vector fields. In three
dimensions, we may use these proxies to write the de Rham complex as

0→H 1 grad−−→H(curl)
curl−−→H(div)

div−→ L2 → 0.

The finite element exterior calculus (FEEC) is a theory developed in the last
decade [1, 5, 6] which enables the development and analysis of finite element spaces
of differential forms. One major part of FEEC is carried out in the framework of
Hilbert complexes, of which the L2 de Rham complex is the most canonical exam-
ple. One important outcome of FEEC is the realization that the finite dimensional
subspaces Λk

h ⊂ HΛk used in Galerkin discretizations of a variety of differential
equations involving differential k-forms should satisfy two basic assumptions, be-
yond the obvious requirement that the spaces have good approximation properties.
The first assumption is that the subspaces form a subcomplex of the de Rham com-
plex, i.e., that dΛk

h ⊂Λk+1
h . The second is that there exist projection operators πkh

from HΛk to Λk
h which commute with d in the sense that the following diagram

commutes:

HΛ0
d

π0
h

HΛ1
d

π1
h

· · · d

HΛn−1

πn−1
h

d

HΛn

πnh

Λ0
h

d

Λ1
h

d · · · d

Λn−1
h

d

Λn
h

The second major part of FEEC, into which the present exposition falls, is con-
cerned with the construction of specific finite element spaces Λk

h of differential
forms. A special role is played by two families of finite element spaces P−r Λk(Th)
and PrΛk(Th), defined for any dimension n, any simplicial mesh Th, any polyno-
mial degree r ≥ 1, and any form degree 0≤ k ≤ n. Both these spaces are subspaces
ofHΛk(Ω). The P−r Λk spaces with increasing k and constant r form a subcomplex
of L2 de Rham complex which admits commuting projections. The same is true of
the PrΛk family, except in that case the polynomial degree r decreases as the form
degree k increases.

We also discuss cubical meshes. In this case, there is a well-known family of
elements, denoted by Q−

r Λ
k in our notation, obtained by a tensor product construc-

tion. As for the P−r Λk family, the Q−
r Λ

k spaces with constant degree r combine
to form a de Rham subcomplex with commuting projections. We also discuss a re-
cently discovered second family on cubical meshes, the SrΛk family of [3]. Like
the PrΛk family, the de Rham subcomplexes for this family are obtained with de-
creasing degree. Moreover for large r , the dimSrΛk(Th) is much smaller dimension
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than dimQ−
r Λ

k . The finite element subspaces ofH 1,H(curl), andH(div) from this
family in three dimensions are new.

The remainder of the paper is organized as follows. In the next section we cover
some preliminary material (which the more expert reader may wish to skip). We
recall the construction of finite element spaces from spaces of shape functions and
unisolvent degrees of freedom. To illustrate we discuss the Lagrange elements and
carry out the proof of unisolvence in a manner that will guide our treatment of
differential form spaces of higher degree. We also give a brief summary of those
aspects of exterior calculus most relevant to us. In Sect. 3 we discuss the two pri-
mary families of finite element spaces for differential forms on simplicial meshes
mentioned above. A key role is played by the Koszul complex, which is introduced
in this section. Then, in Theorem 3.5, we give a proof of unisolvence for the P−r
family which we believe to be simpler than has appeared heretofore (a similar proof
could be given for the Pr family as well). In the final section we review the two
families mentioned for cubical meshes, including a description, without proofs, of
the recently discovered Sr family.

2 Preliminaries

2.1 The Assembly of Finite Element Spaces

Recalling the definition of a finite element space [11], we assume that the domain
Ω ⊂R

n is triangulated by finite elements, i.e., its closure is the union of a finite set
Th of closed convex polyhedral elements with nonempty interiors such that the in-
tersection of any two elements is either empty or is a common face of each of some
dimension. We denote by �d(T ) the set of faces of T of dimensions d , so, for ex-
ample, �0(T ) is the set of vertices of T , and �n(T ) is the singleton set whose only
element is T . We also define �(T ) =⋃0≤d≤n �d(T ), the set of all faces of T . In
this paper we consider the two cases of simplicial elements, in which each element
T of the triangulation is an n-simplex, and cubical elements, in which element is an
n-box (i.e., the Cartesian product of n intervals). To define a finite element space
Λk
h ⊂HΛk(Ω), we must supply, for each element T ∈ Th,

(1) A finite dimensional space V (T ), called the space of shape functions, consisting
of differential k-forms on T with polynomial coefficients. The finite element
space will consist of functions u which belong to the shape function spaces
piecewise in the sense that u|T ∈ V (T ) for all T ∈ Th (allowing the possibility
that u is multiply-valued on faces of dimension < n).

(2) A set of functionals V (T )→ R, called the degrees of freedom, which are uni-
solvent (i.e., which form a basis for the dual space V (T )∗) and such that each
degree of freedom is associated to a specific face of f ∈�(T ).

It is assumed that when two distinct elements T1 and T2 intersect in a common
face f , the degrees of freedom of T1 and T2 which are associated to f are in a spe-
cific 1-to-1 correspondence. If u is a function which belongs to the shape function
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spaces piecewise, then we say that the degrees of freedom are single-valued on u
if whenever two elements T1 �= T2 meet in a common face, then the corresponding
degrees of freedom associated to the face take the same value on u|T1 and u|T2 ,
respectively. With these ingredients, the finite element space Λk

h associated to the
choice of triangulation Th, the shape function spaces V (T ), and the degrees of free-
dom, is defined as the set of all k-forms on Ω which belong to the shape function
spaces piecewise and for which all the degrees of freedom are single-valued.

The choice of the degrees of freedom associated to faces of dimension d < n de-
termine the interelement continuity imposed on the finite element subspace. The use
of degrees of freedom to specify the continuity, rather than imposing the continuity
a priori in the definition of the finite element space, is of great practical significance
in that it assures that the finite element space can be implemented efficiently. The
dimension of the space is known (it is just the sum over the faces of the triangula-
tion of the number of degrees of freedom associated to the face) and it depends only
on the topology of the triangulation, not on the coordinates of the element vertices.
Moreover, the degrees of freedom lead to a computable basis for Λk

h in which each
basis element is associated to one degree of freedom. Further, the basis is local, in
that the basis element for a degree of freedom associated to a face f is nonzero only
on the elements that contain f .

The finite element space so defined does not depend on the specific choice of
degrees of freedom in V (T )∗, but only on the span of the degrees of freedom asso-
ciated to each face f of T , and we shall generally specify only the span, rather than
a specific choice of basis for it.

2.2 The Lagrange Finite Element Family

To illustrate these definitions and motivate the constructions for differential forms,
we consider the simplest example, the Lagrange family of finite element subspaces
of H 1 =HΛ0. The Lagrange space, which we denote PrΛ0(Th) in anticipation of
its generalization below, is defined for any simplicial triangulation Th in R

n and any
polynomial degree r ≥ 1. The shape function space is V (T )= Pr (T ), the space of
all polynomial functions on T of degree at most r . For a face f of T of dimension
d , the span of the associated degrees of freedom are the functionals

u ∈Pr (T ) �→
∫
f

(trf u)q, q ∈Pr−d−1(f ), f ∈�(T ). (2.1)

In interpreting this, we understand the space Ps(f ) to be the space R of constants
if f is 0-dimensional (a single vertex) and s ≥ 0. Also the space Ps(f )= 0 if s < 0
and f is arbitrary. The notation trf u denotes the trace of u on f , i.e., its restriction.
Thus there is one degree of freedom associated to each vertex v, namely the evalua-
tion functional u �→ u(v). For r ≥ 2 there are also degrees of freedom associated to
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Fig. 1 Degrees of freedom
for the Lagrange quartic
space P4Λ

0 in 3 dimensions

the edges e of T , namely the moments of u on the edge of degree at most r − 2:

u �→
∫
e

(tre u)q, q ∈Pr−2(e).

For r ≥ 3 there are degrees of freedom associated to the 2-faces, namely moments
of degree at most r − 3, etc. This is often indicated in a degree of freedom diagram,
like that of Fig. 1, in which the number of symbols drawn in the interior of a face is
equal to the number of degrees of freedom associated to the face.

A requirement of the definition of a finite element space is that the degrees of
freedom be unisolvent. We present the proof for Lagrange elements in detail, since
it will guide us when it comes to verifying unisolvence for more complicated spaces.

Theorem 2.1 (Unisolvence for the Lagrange elements) For any r ≥ 1 and any n-
simplex T , the degrees of freedom (2.1) are unisolvent on V (T )=Pr (T ).

Proof It suffices to verify, first, that the number of degrees of freedom proposed for
T does not exceed dimV (T ), and, second, that if all the degrees of freedom vanish
when applied to some u ∈ V (T ), then u ≡ 0. For the first claim, we have by (2.1)
that the total number of degrees of freedom is at most

n∑
d=0

#�d(T )dimPr−d−1
(
R
d
)=

n∑
d=0

(
n+ 1

d + 1

)(
r − 1

d

)
=
(
n+ r
n

)
= dimPr (T ),

where the second equality is a binomial identity which comes from expanding in the
equation (1+ x)n+1(1+ x)r−1 = (1+ x)n+r and comparing the coefficients of xn

on both sides.
We prove the second claim by induction on the dimension n, the case n = 0

being trivial. Suppose that u ∈ Pr (T ) for some simplex T of dimension n and that
all the degrees of freedom in (2.1) vanish. We wish to show that u vanishes. Let
F ∈�n−1(T ) be a facet of T , and consider trF u, which is a polynomial function of
at most degree r on the (n− 1)-dimensional simplex F , i.e., it belongs to Pr (F ).
Moreover, if we replace T by F and u by trF u in (2.1), the resulting functionals
vanish by assumption (using the obvious fact that trf trF u= trf u for f ⊂ F ⊂ T ).
By induction we conclude that trF u vanishes on all the facets F of T . Therefore,
u is divisible by the barycentric coordinate function λi which vanishes on F , and,
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since this holds for all facets, u = (
∏n
i=0 λi)p for some p ∈ Pr−n−1(T ). Taking

f = T and q = p in (2.1) we conclude that

∫
T

(
n∏
i=0

λi

)
p2 = 0,

which implies that p vanishes on T , and so u does as well. �

Let us note some features of the proof, which will be common to the unisolvence
proofs for all of the finite element spaces we discuss here. After a dimension count
to verify that the proposed degrees of freedom are correct in number, or at least
no more than required, the proof proceeded by induction on the number of space
dimensions. The inductive step relied on a trace property of the shape function space
V (T ) = Pr (T ) for the family, namely that trF V (T ) ⊂ V (F). Moreover, it used a
similar trace property for the degrees of freedom: if ξF ∈ V (F)∗ is a degree of
freedom for V (F), then the pullback ξF ◦ trF ∈ V (T )∗ is a degree of freedom for
V (T ). The induction reduced the unisolvence proof to verifying that if u ∈ V̊ (T ),
the space of functions in V (T ) whose trace vanishes on the entire boundary, and
if the interior degrees of freedom (those associated to T itself) of u vanish, then u
itself vanishes, which we showed by explicit construction.

Finally, we note that the continuity implied by the degrees of freedom is exactly
what is required to insure that the Lagrange finite element space is contained in H 1:

PrΛ0(Th)=
{
u ∈H 1(Ω) | u belongs to Pr (T ) piecewise

}
. (2.2)

Indeed, a piecewise smooth function belongs to H 1(Ω) if and only if its traces on
faces are single-valued. Thus if a function inH 1(Ω) belongs piecewise to Pr (T ), its
traces are single-valued, so the degrees of freedom are single-valued, and the func-
tion belongs to PrΛ0(Th). On the other hand, if the function belongs to PrΛ0(Th),
its traces on faces are single-valued, since, as we saw in the course of the unisolvence
proof, they are determined by the degrees of freedom. Thus the function belongs to
H 1(Ω).

2.3 Exterior Calculus

For the convenience of readers less familiar with differential forms and exterior cal-
culus we now briefly review key definitions and properties. We begin with the space
of algebraic k-forms on V : Altk V = {L : V k → R | k-linear, skew-symmetric},
where the multilinear form L is skew-symmetric, or alternating, if it changes sign
under the interchange of any two of its arguments. The skew-symmetry condition
is vacuous if k < 2, so Alt1 V = V ∗ and, by convention, Alt0 V = R. If ω is any
k-linear map V k→R, then skwω ∈Altk V where

(skwω)(v1, . . . , vk)= 1

k!
∑
σ

sign(σ )ω(vσ1, . . . , vσk ),
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with the sum taken over all the permutations of the integers 1 to k. The wedge
product Altk V ×Altl V →Altk+l V is defined

ω ∧μ=
(
k+ l
k

)
skw(ω⊗μ), ω ∈Altk V , μ ∈Altl V .

Let v1, . . . , vn form a basis for V . Denoting by

Σ(k,n)= {(σ1, . . . , σk) ∈N
k | 1≤ σ1 < · · ·< σk ≤ n

}
,

an element of Altk V is completely determined by the values it assigns to the k-
tuples (vσ1, . . . , vσk ), σ ∈ Σk . Moreover, these values can be assigned arbitrar-
ily. In fact, the k-form μσ1 ∧ · · · ∧ μσk , where μ1, . . . ,μn is the dual basis to
v1, . . . , vn, takes the k-tuple (vσ1, . . . , vσk ) to 1, and the other such k-tuples to 0.
Thus dim Altk V = (n

k

)
, where n= dimV .

We define differential forms on an arbitrary manifold, since we will be using
them both when the manifold is a domain in R

n and when it is the boundary of such
a domain. A differential k-form on a manifold Ω is a map ω which takes each point
x ∈Ω to an element ωx ∈ Altk TxΩ , where TxΩ is the tangent space to Ω at x. In
other language, ω is a skew-symmetric covariant tensor field on Ω of order k. In
particular, a differential 0-form is just a real-valued function on Ω and a differential
1-form is a covector field. In the case Ω is a domain in R

n, then each tangent space
can be identified with R

n, and a differential k-form is simply a map Ω→ Altk Rn.
In this context, it is common to denote the dual basis to the canonical basis for Rn by
dx1, . . . , dxn, so dxk applied to a vector v = (v1, . . . , vn) ∈R

n is its kth component
vk . With this notation, an arbitrary differential k-form can be written

u(x)=
∑

σ∈Σ(k,n)
aσ (x) dx

σ1 ∧ · · · ∧ dxσk ,

for some coefficients aσ :Ω→R.
Three basic operations on differential forms are the exterior derivative, the form

integral, and the pullback. The exterior derivative dω of a k-form ω is a (k + 1)-
form. In the case of a domain in R

n, it is given by the intuitive formula

d
(
aσ dx

σ1 ∧ · · · ∧ dxσk)=
n∑
j=1

∂aσ

∂xj
dxj ∧ dxσ1 ∧ · · · ∧ dxσk .

It satisfies (in general) the identity dk+1 ◦ dk = 0 and the Leibniz rule d(ω ∧ μ)=
(dω)∧μ+ (−1)kω ∧ (dμ) if ω is a k-form.

The definition of the form integral requires that the manifold Ω be oriented. In
this case we can define

∫
Ω
ω ∈ R for ω an n-form with n = dimΩ . The integral

changes sign if the orientation of the manifold is reversed.
Finally, if F : Ω → Ω ′ is a differentiable map, then the pullback F ∗ takes a

k-form on Ω ′ to one on Ω by
(
F ∗ω

)
x
(v1, . . . , vk)= ωF(x)(dFxv1, . . . , dFxvk), x ∈Ω, v1, . . . , vk ∈ TxΩ.
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The pullback respects the operations of wedge product, exterior derivative, and form
integral:

F ∗(ω ∧μ)= (F ∗ω)∧ (F ∗μ), F ∗(dω)= d(F ∗ω),
∫
Ω

F ∗ω=
∫
Ω ′
ω,

for ω and μ differential forms on Ω ′. The last relation requires that F be a diffeo-
morphism of Ω with Ω ′ which preserves orientation.

An important special case of pullback is when F is the inclusion of a submanifold
Ω into a larger manifold Ω ′. In this case the pullback is the trace operator taking
a k-form on Ω ′ to a k-form on the submanifold Ω . All these operations combine
elegantly into Stokes’ theorem, which says that, under minimal hypothesis on the
smoothness of the differential (n− 1)-form ω and the n-manifold Ω ,

∫
∂Ω

trω=
∫
Ω

dω.

If V is an inner product space, then there is a natural inner product on Altk V .
Thus for a Riemannian manifold, such as any manifold embedded in R

n, the in-
ner product 〈ωx,μx〉 ∈ R is defined for any k-forms ω, μ and any x ∈ Ω . An
oriented Riemannian manifold also has a unique volume form, vol, a differential
n-form which at each point assigns the value 1 to a positively oriented orthonormal
basis for the tangent space at that point. For a subdomain of Rn the volume form
is the constant n-form with the value dx1 ∧ · · · ∧ dxn at each point. Combining
these notions, we see that on any oriented Riemannian manifold we may define the
L2-inner product of k-forms:

〈ω,μ〉L2Λk(Ω) =
∫
Ω

〈ωx,μx〉 vol.

The space L2Λk is of course the space of k-forms for which ‖ω‖L2Λk :=√〈ω,ω〉L2Λk <∞, and then HΛk is defined as in (1.1).

3 Families of Finite Element Differential Forms on Simplicial
Meshes

Our goal now is to create finite element subspaces of the spaces HΛk which fit to-
gether to yield a subcomplex with commuting projections. In this section the spaces
will be constructed for a simplicial triangulation Th of the domain Ω ⊂ R

n. Thus,
for a simplex T , we must specify a space V (T ) of polynomial differential forms and
a set of degrees of freedom for it.
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3.1 The Polynomial Space PrΛ
k

An obvious choice for V (T ) is the space

PrΛk(T )=
{ ∑
σ∈Σ(k,n)

pσ dx
σ
∣∣∣ pσ ∈Pr (T )

}
,

of a differential k-forms with polynomial coefficients of degree at most r . It is easy
to compute its dimension:

dimPrΛk(T )= #Σ(k,n)× dimPr (T )=
(
n

k

)(
n+ r
n

)
=
(
n+ r
n− k

)(
r + k
r

)
.

(3.1)
Note that dPrΛk ⊂ Pr−1Λ

k+1, i.e., the exterior derivative lowers the polynomial
degree at the same time as it raises the form degree. Therefore, for each r we have
a subcomplex of the de Rham complex:

PrΛ0 d−→Pr−1Λ
1 d−→ · · · d−→ Pr−nΛn→ 0. (3.2)

This complex is exact (we have left off the initial 0 since the first map, d = grad act-
ing on PrΛ0 has a 1-dimensional kernel, consisting of the constant functions). That
is, if ω ∈ PsΛk and dω= 0 then ω= dμ for some μ ∈Ps+1Λ

k−1. We prove this in
Corollary 3.2 below, using an elementary but powerful tool called the Koszul com-
plex. The same tool will also be used to define the degrees of freedom for PrΛk(T ),
and to define an alternative space of shape functions.

3.2 The Koszul Complex

For a domain in Ω ⊂ R
n (but not a general manifold), the identity map may be

viewed as a vector field. It assigns to an arbitrary point x ∈Ω ⊂ R
n the point itself

viewed as a vector in R
n and so an element of the tangent space TxΩ . Contracting

a k-form ω with this identity vector field gives a (k − 1)-form κω:

(κω)x(v1, . . . , vk−1)= ωx(x, v1, . . . , vk−1), x ∈Ω, v1, . . . , vk−1 ∈R
n.

Since ωx is skew-symmetric, κκω= 0, that is, κ is a differential. It satisfies a Leib-
niz rule:

κ(ω ∧μ)= (κω)∧μ+ (−1)kω ∧ (κμ),
for a k-form ω and a second form μ. In particular κ(f ω)= f κω if f is a function.
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Also κdxi = xi . These properties fully determine κ . Thus

κ
(
dxi ∧ dxj ) = xi dxj − xj dxi,

κ
(
dxi ∧ dxj ∧ dxk) = xi dxj ∧ dxk − xj dxi ∧ dxk + xk dxi ∧ dxj ,

and so forth. If we identify 1-forms with vector fields, then κ corresponds to the dot
product of the vector field with x (or, more properly, with the identity vector field).
On 2-forms in 3-D, κ is the cross product with x, and on 3-forms it is the product
of a scalar field with x to get a vector field.

The Koszul differential κ maps the space PrΛk of differential k-forms with co-
efficients in Pr (Ω) to Pr+1Λ

k−1, exactly the reverse of d . Thus both κd and dκ
map PrΛk to itself. The following theorem points to an intimate relation between
κ and d , called the homotopy formula. In it we write HrΛ

k for the k-forms with
homogeneous polynomial coefficients of degree r .

Theorem 3.1 (Homotopy formula)

(κd + dκ)ω= (k + r)ω, ω ∈HrΛ
k.

Remarks on the proof The case k = 0 is Euler’s identity x · gradp = r p for p
a homogeneous polynomial of degree r . Using it, we can verify the theorem by
direct computation. Alternatively, one may use Cartan’s homotopy formula from
differential geometry. For details on both proofs, see Theorem 3.1 of [5]. �

Corollary 3.2 The polynomial de Rham complex (3.2) and the Koszul complex

0→ Pr−nΛn κ−→ Pr−n+1Λ
n−1 κ−→ · · · κ−→ PrΛ0

are both exact.

Proof For the de Rham complex, it suffices to establish exactness of the homoge-
neous polynomial de Rham complex

HrΛ
0 d−→Hr−1Λ

1 d−→ · · · d−→Hr−nΛn→ 0,

since then we can then just sum to get the result. We must show that if ω ∈HsΛ
k

and dω= 0 then ω is in the range of d . Indeed, by the homotopy formula

ω= (s + k)−1(dκ + κd)ω= (s + k)−1dκω.

A similar proof holds for the Koszul complex. �

Another important consequence is a direct sum decomposition:

Corollary 3.3 For r ≥ 1, 0≤ k ≤ n,

HrΛ
k = κHr−1Λ

k+1 ⊕ dHr+1Λ
k−1. (3.3)
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Proof By the homotopy formula, any element of HrΛ
k belongs to κHr−1Λ

k+1 +
dHr+1Λ

k−1. Moreover the intersection of these two spaces is zero, since if ω be-
longs to the intersection, then dω = 0, κω = 0, so ω = 0 by the homotopy for-
mula. �

3.3 The Polynomial Space P−
r Λk

We now define a second space of polynomial differential forms which can be used
as shape functions. We have

PrΛk =Pr−1Λ
k ⊕HrΛ

k =Pr−1Λ
k ⊕ κHr−1Λ

k+1 ⊕ dHr+1Λ
k−1.

If we drop the last summand, we get a space intermediate between Pr−1Λ
k and

PrΛk :

P−r Λk :=Pr−1Λ
k + κHr−1Λ

k+1. (3.4)

Note that P−r Λ0 = PrΛ0 and P−r Λn = Pr−1Λ
n, but for 0 < k < n, P−r Λk is con-

tained strictly between Pr−1Λ
k and PrΛk . We may compute the dimension of

κHrΛ
k , using the exactness of the Koszul complex and induction (see [5, Theo-

rem 3.3]). This then yields a formula for the dimension of P−r Λk :

dimP−r Λk =
(
n+ r
n− k

)(
r + k − 1

k

)
.

Comparing this with (3.1), we have

dimP−r Λk = r

r + k dimPrΛk

(showing again that the spaces coincide for 0-forms).
Now

dP−r Λk ⊂ dPrΛk ⊂Pr−1Λ
k+1 ⊂P−r Λk+1,

so we obtain another subcomplex of the de Rham complex:

P−r Λ0 d−→ P−r Λ1 d−→ · · · d−→P−r Λn→ 0. (3.5)

Note that, in contrast to (3.2), in this complex the degree r is held constant. However,
like (3.2), the complex (3.5) is exact. Indeed,

dP−r Λk = d
(
P−r Λk + dPr+1Λ

k−1)= dPrΛk

=N
(
d|Pr−1Λ

k+1)=N
(
d|P−r Λk+1),

where the penultimate equality follows from Corollary 3.2 and the last equality is a
consequence of the definition (3.4) and the homotopy formula Theorem 3.1.
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3.4 The P−
r Λk(Th) Family of Finite Element Differential Forms

Let r ≥ 1, 0≤ k ≤ n, and let Th be a simplicial mesh of Ω ⊂R
n. We define a finite

element subspace P−r Λk(Th) of HΛk(Ω). As shape functions on a simplex T ∈ Th
we take V (T )=P−r Λk(T ). As degrees of freedom we take

u ∈P−r Λk(T ) �→
∫
f

(trf u)∧ q, q ∈Pr+k−d−1Λ
d−k(f ), f ∈�d(T ), d ≥ k.

(3.6)
Note that, in the case k = 0, V (T ) = Pr (T ) and (3.6) coincides with (2.1), so the
space P−r Λk(Th) generalizes the Lagrange finite elements to differential forms of
arbitrary form degree. We shall prove unisolvence for arbitrary polynomial degree,
form degree, and space dimension at once. The proof will use the following lemma,
which is proved via a simple construction using barycentric coordinates.

Lemma 3.4 Let r ≥ 1, 0 ≤ k ≤ n, and let T be an n-simplex. If u ∈ P̊r−1Λ
k(T )

and ∫
T

u∧ q = 0, q ∈Pr+k−n−1Λ
n−k(T ), (3.7)

then u≡ 0.

Proof Any element of Pr−1Λ
k(T ) can be written in terms of barycentric coordi-

nates as

u=
∑

σ∈Σ(k,n)
uσ dλσ1 ∧ · · · ∧ dλσk , uσ ∈Pr−1(T ).

Now let 1 ≤ i ≤ n, and consider the trace of u on the face given by λi = 0. By the
assumption that u ∈ P̊r−1Λ

k(T ), the trace vanishes. This implies that λi divides uσ
for any σ ∈Σ(k,n) whose range does not contain i. Thus

uσ = pσλσ ∗1 · · ·λσ ∗n−k for some pσ ∈Pr+k−n−1(T ),

where σ ∗ ∈Σ(n− k,n) is the increasing sequence complementary to σ . Thus

u=
∑

σ∈Σ(k,n)
pσ λσ ∗1 · · ·λσ ∗n−k dλσ1 ∧ · · · ∧ dλσk , pσ ∈Pr+k−n−1(T ).

Choosing

q =
∑

σ∈Σ(k,n)
(−1)sign(σ,σ ∗)pσ dλσ ∗1 ∧ · · · ∧ dλσ ∗n−k

in (3.7), we get

0=
∫
T

u∧ q =
∫
T

∑
σ∈Σ(k,n)

p2
σ λσ ∗1 · · ·λσ ∗n−k dλ1 ∧ · · · ∧ dλn.
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However, the λi are positive on the interior of T and the n-form dλ1 ∧ · · · ∧ dλn
is a nonzero multiple of the volume form. Thus each pσ must vanish, and so u

vanishes. �

Theorem 3.5 (Unisolvence for P−r Λk(Th)) For any r ≥ 1, 0 ≤ k ≤ n, and n-
simplex T , the degrees of freedom (3.6) are unisolvent for V (T )=P−r Λk(T ).

Proof First we do the dimension count. The number of degrees of freedom is at
most

∑
d≥k

#�d(T )dimPr+k−d−1Λ
k
(
R
d
)=∑

d≥k

(
n+ 1

d + 1

)(
r + k − 1

d

)(
d

k

)

=
∑
j≥0

(
n+ 1

j + k+ 1

)(
r + k− 1

j + k
)(

j + k
j

)
.

Simplifying with the binomial identities,

(
a

b

)(
b

c

)
=
(
a

c

)(
a − c
a − b

)
,
∑
j≥0

(
a

b+ j
)(

c

j

)
=
(
a + c
a − b

)
,

the right-hand side becomes

(
r + n
r + k

)(
r + k − 1

k

)
= dimP−r Λk(T ).

It remains to show that if u ∈ P−r Λk(T ) and the degrees of freedom in (3.6)
vanish, then u vanishes. Since trf P−r Λk(T ) = P−r Λk(f ), we may use induction
on dimension to conclude that trf u vanishes on each facet f , so u ∈ P̊−r Λk(T ).
Therefore du ∈ P̊r−1Λ

k+1(T ). Moreover,
∫
T

du∧ p =±
∫
T

u∧ dp = 0, p ∈Pr+k−nΛn−k−1(T ),

where the first equality comes from Stoke’s theorem and the Leibniz rule, and the
second from the hypothesis that the degrees of freedom for u vanish. We may now
apply the lemma (with k replaced by k + 1) to du to conclude that du vanishes.
But the homotopy formula implies that for u ∈ P−r Λk with du = 0, u ∈ Pr−1Λ

k .
Using the interior degrees of freedom from (3.6), we may apply the lemma to u, to
conclude that u vanishes. �

It is easy to check that the degrees of freedom imply single-valuedness of the
traces of elements of P−r Λk(Th), so that they indeed belong to HΛk . Moreover, it
is easy to see that the complex (3.5) involving the shape functions, leads to a finite
element subcomplex of the L2 de Rham complex on Ω :
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P−r Λ0(Th)
d−→P−r Λ1 d−→ (Th)

d−→ · · · d−→P−r Λn(Th).

Using the degrees of freedom to define projection operators πkh into P−r Λk(Th) (the
domain of πkh consists of all continuous k-forms inHΛk(Ω)), we obtain projections
that commute with d (this can be verified using Stokes’ theorem), which is crucial
to the analysis of the element via FEEC.

3.5 The PrΛ
k(Th) Family of Finite Element Differential Forms

We may also use the full polynomial space PrΛk(T ) as shape functions for a finite
element space. The corresponding degrees of freedom are

u ∈ PrΛk(T ) �→
∫
f

(trf u)∧ q, q ∈P−r+k−dΛ
d−k(f ), f ∈�d(T ), d ≥ k.

(3.8)
Note that in this case the degrees of freedom involve P−r spaces, defined through
the Koszul complex. The analysis of these spaces is very parallel to that of the last
subsection, and we will not carry it out here. Again, we obtain unisolvence, and a
finite element subcomplex of the de Rham complex

PrΛ0(Th)
d−→Pr−1Λ

1(Th)
d−→ · · · d−→Pr−nΛn(Th),

which admits a commuting projection defined via the degrees of freedom.

3.6 Historical Notes

In the case k = 0, the two shape function spaces P−r Λk and PrΛk coincide, as do the
spaces Pr−d−1Λ

d−k(f ) and P−r−dΛd−k(f ), f ∈ �d(T ), entering (3.6) and (3.8).
Thus the two finite element families coincide for 0-forms, and provide two distinct
generalizations of the Lagrange elements to differential forms of higher degree.

In n dimensions, n-forms may be viewed as scalar functions and the space
HΛn(Ω) just corresponds to L2(Ω). The finite element subspace PrΛn(Th) is sim-
ply the space of all piecewise polynomial functions of degree r , with no interelement
continuity required. The space P−r Λn(Th) coincides with Pr−1Λ

n(Th).
In two dimensions, the remaining spaces P−r Λ1(Th) and PrΛ1(Th) can be iden-

tified, via vector proxies, with the Raviart–Thomas spaces [20] and the Brezzi–
Douglas–Marini spaces [10]. In three dimensions, the P−r Λ1(Th) and P−r Λ2(Th)
spaces are the finite element subspaces of H(curl,Ω) and H(div,Ω), respec-
tively, called the Nédélec edge and face elements of the first kind [18]. The spaces
PrΛ1(Th) and PrΛ2(Th) are the Nédélec edge and face elements of the second kind
[19]. Diagrams for the two-dimensional and three-dimensional elements are shown
in Figs. 2 and 3.
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Fig. 2 The P−r Λk(Th) and PrΛk(Th) spaces in two dimensions

The lowest order spaces P−1 Λk(Th) are very geometric, possessing precisely one
degree of freedom per face of dimension k, and no others (see the top rows of Figs. 2
and 3). In fact these spaces first appeared in the geometry literature in the work of
Whitney in 1957 [24] long before their first appearance as finite elements. In the
1970s, they were used by Dodziuk [13] and Dodziuk and Patodi [14] as a theoret-
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Fig. 3 The P−r Λk(Th) and PrΛk(Th) spaces in three dimensions

ical tool to approximate the eigenvalues of the Hodge Laplacian on a Riemannian
manifold. This then played an essential role in Müller’s proof of the Ray–Singer
conjecture [17]. The spaces PrΛk(Th) also appeared in the geometry literature, in-
troduced by Sullivan [22, 23]. In an early, largely overlooked paper bringing finite
element analysis techniques to bear on geometry Baker [7] named these Sullivan–
Whitney forms, and analyzed their convergence for the eigenvalue problem for the
Hodge Laplacian. In 1988 Bossavit made the connection between Whitney forms
and the mixed finite elements in use in electromagnetics [8], in part inspired by the
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thesis of Kotiuga [16]. The first unified treatment of the P−r Λk spaces, which was
based on exterior calculus and included a unisolvence proof, was in a seminal pa-
per of Hiptmair [15] in 1999. In the 2006 paper of Arnold, Falk, and Winther [5],
in which the term finite element exterior calculus first appeared, the Koszul com-
plex was first applied to finite elements, simplifying many aspects and resulting in a
simultaneous treatment of both the P−r Λk and PrΛk spaces.

4 Families of Finite Element Differential Forms on Cubical
Meshes

We now describe two families of spaces of finite element differential forms, which
we denote Q−

r Λ
k(Th) and SrΛk(Th), defined for cubical meshes Th, i.e., meshes in

which each element is the Cartesian product of intervals. In some sense, the Q−
r Λ

k

family can be seen as an analogue of the P−r Λk family for simplicial meshes, and the
SrΛk family an analogue of the PrΛk family. The Q−

r Λ
k family can be constructed

from the one-dimensional case by a tensor product construction, and is long known.
By contrast, the SrΛk family first appeared in recent work of Arnold and Awanou
[3]. Even in two and three dimensions, the spaces in this family were for the most
part not known previously.

4.1 The Q−
r Λk Family

We describe this family only very briefly. A more detailed description will be in-
cluded in a forthcoming study of the approximation properties of these spaces under
non-affine mappings [4]. Suppose we are given a subcomplex of the de Rham com-
plex on an element S ⊂ R

m and a second such subcomplex on an element T ⊂R
n:

V 0(S)
d−→ V 1(S)

d−→ · · · d−→ Vm(S), V 0(T )
d−→ V 1(T )

d−→ · · · d−→ V n(T ).

We may then construct a subcomplex of the de Rham complex on S×T by a tensor
product construction which is known in the theory of differential forms; see, e.g.,
[21, p. 61]. The canonical projection πS : S × T → S determines a pullback of i-
forms on S to i-forms on S × T , so π∗SV i(S) is a space of i-forms on S × T and,
similarly, π∗T V j (T ) is a space of j -forms on S × T . Thus we may define a space of
k-forms on S × T by

V k(S × T )=
⊕
i+j=k

π∗SV i(S)∧ π∗T V j (T ).

We take the space V k(S × T ) as the shape functions for k-forms on S × T . The
construction of degrees of freedom for V k(S × T ) is simple. If η ∈ V i(S)∗ is a
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degree of freedom associated to a face f of S, and ρ ∈ V j (T )∗ is associated to a
face g of T , we define

η ∧ ρ ∈ [π∗SV i(S)∧ π∗T V j (T )
]∗ ⊂ V k(S × T )∗,

by

(η ∧ ρ)(π∗s u∧ π∗T v)= η(u)ρ(v),
and associate the degree of freedom η ∧ ρ to f × g, which is a face of S × T .

The Q−
r family is defined by applying this tensor product repeatedly, starting

with a finite element de Rham complex on an interval in one dimension. In one
dimension the P−r and Pr de Rham subcomplexes coincide. On an interval I , the
shape functions for 0-forms are V 0(I )=Pr (I ) with degrees of freedom at each end
point, and moments of degree at most r−1 in the interior. The shape function for 1-
forms are V 1(I )= Pr−1(I ) with all degrees of freedom in the interior. Repeatedly
using the tensor product construction just outlined, we obtain polynomial spaces
and degrees of freedom on a box I1 × · · · × In ⊂R

n. We denote the shape function
space so obtained by Q−

r Λ
k(I1 × · · · × In). In n= 2 dimensions, for example,

Q−
r Λ

0(I1 × I2)=Qr (I1 × I2)=Pr (I1)⊗Pr (I2),

Q−
r Λ

1(I1 × I2)=
[
Pr−1(I1)⊗Pr (I2)

]× [Pr (I1)⊗Pr−1(I2)
]
,

Q−
r Λ

2(I1 × I2)=Qr−1(I1 × I2).

Diagrams for these elements in two and three dimensions are shown in Fig. 4. The
space Q−

r Λ
0(Th) is the standard Qr finite element subspace ofH 1(Ω) and the space

Q−
r Λ

n(Th) is the discontinuous Qr−1 subspace of L2(Ω). The space Q−
r Λ

1(Th)
goes back to Raviart and Thomas [20] in two dimensions, and the Q−

r Λ
1(Th) and

Q−
r Λ

2(Th) were given by Nédélec in [18]. The spaces with r held fixed combine to
create a finite element de Rham subcomplex,

Q−
r Λ

0(Th)
d−→Q−

r Λ
1(Th)

d−→ · · · d−→Q−
r Λ

n(Th),

and the degrees of freedom determine commuting projections.
Recently, Cockburn and Qiu [12] have published a different family of finite el-

ement spaces in two and three dimensions, that seems to be related to these. They
begin with the complex formed by the full spaces QrΛ

k , which lie between Q−
r Λ

k

and Q−
r+1Λ

k . That complex (which was discussed in [19]) does not admit commut-
ing projections. Cockburn and Qiu define a small space of bubble functions that can
be added to each of the spaces so that the resulting spaces remain inside Q−

r+1Λ
k

but also form a de Rham subcomplex (with constant r) which admits commuting
projections.
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Fig. 4 The Q−
r Λ

k(Th) spaces in two and three dimensions

4.2 A Second Family of Finite Element Differential Forms on
Cubes

The SrΛk family presented in this section was derived recently in [3]. It seems
to be complementary to the Q−

r Λ
k family much as the PrΛk family complements
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the P−r Λk family. To describe the new family we require some notation. A k-form
monomial in n variables is the product of an ordinary monomial and a simple alter-
nator:

m= (x1)α1 · · · (xn)αn dxσ1 ∧ · · · ∧ dxσk ,
where α is a multi-index and σ ∈ Σ(k,n). We define the degree of m to be the
polynomial degree of its coefficient: degm=∑i αi . The linear degree of m is more
complicated:

ldegm= #
{
i | αi = 1, αi /∈ {σ1, . . . , σk}

}
,

that is, the number of variables that enter the coefficient linearly, not counting the
variables that enter the alternator. For example, ifm= x1x2(x3)5 dx1, then degm=
7, ldegm= 1.

We now define the space of shape functions we shall use for k-forms on an n-
dimensional box, T . Viewing monomial forms as differential forms on T , we define
Hr,lΛ

k(T )⊂HrΛ
k(T ) to be the span of all monomial k-formsm such that degm=

r and ldegm≥ l. Using this definition and the Koszul differential, we then define

JrΛk(T )=
∑
l≥1

κHr+l−1,lΛ
k+1(T )⊂Pr+n−k−1Λ

k(T ).

Finally, we define the shape functions on T by

SrΛk(T )=PrΛk(T )+JrΛk(T )+ dJr+1Λ
k−1(T ),

defined for all r ≥ 1, 0≤ k ≤ n.
As the definition of the shape functions takes a while to absorb, we describe the

spaces in more elementary terms in the case of three dimensions.

• The space SrΛ0, the polynomial shape functions for the H 1 space, consists of
all polynomials u with superlinear degree sdegu≤ r . The superlinear degree of
a monomial is its degree ignoring any variable that enters to the first power, and
the superlinear degree of a polynomial is the maximum over its monomials. The
criterion sdegu ≤ r was introduced in [2] to generalize the serendipity elements
from 2 to n-dimensions.

• The space SrΛ1, the shape functions for the H(curl) space, consists of vector
fields of the form
(
v1, v2, v3)+ (x2x3(w2 −w3), x3x1(w3 −w1), x1x2(w1 −w2))+ gradu,

with polynomials vi , wi , and u for which degvi ≤ r , degwi ≤ r − 1, sdegu ≤
r + 1, and wi is independent of the variable xi .

• The H(div) space uses shape functions SrΛ2, which are of the form
(
v1, v2, v3)+ curl

(
x2x3(w2 −w3), x3x1(w3 −w1), x1x2(w1 −w2)),

with degvi ≤ r , degwi ≤ r , and wi independent of the variable xi .
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Fig. 5 The SrΛk(Th) spaces in two and three dimensions

• Finally the L2 space SrΛ3 simply coincides with Pr .

In [3] we establish the following properties of these spaces (in any dimension):

• degree property: PrΛk(I n)⊂ SrΛk(In)⊂Pr+n−kΛk(In);
• inclusion property: SrΛk(I n)⊂ Sr+1Λ

k(In);
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Table 1 Dimension of Q−
r Λ

k(In) and SrΛk(In)

k r r

1 2 3 4 5 6 1 2 3 4 5 6

n= 1

0 2 3 4 5 6 7 2 3 4 5 6 7

1 1 2 3 4 5 6 2 3 4 5 6 7

n= 2

0 4 9 16 25 36 49 4 8 12 17 23 30

1 4 12 24 40 60 84 8 14 22 32 44 58

2 1 4 9 16 25 36 3 6 10 15 21 28

n= 3

0 8 27 64 125 216 343 8 20 32 50 74 105

1 12 54 144 300 540 882 24 48 84 135 204 294

2 6 36 108 240 450 756 18 39 72 120 186 273

3 1 8 27 64 125 216 4 10 20 35 56 84

n= 4

0 16 81 256 625 1296 2401 16 48 80 136 216 328

1 32 216 768 2000 4320 8232 64 144 272 472 768 1188

2 24 216 864 2400 5400 10 584 72 168 336 606 1014 1602

3 8 96 432 1280 3000 6048 32 84 180 340 588 952

4 1 16 81 256 625 1296 5 15 35 70 126 210

• trace property: for each face f of I n, trf SrΛk(In)⊂ SrΛk(f );
• subcomplex property: dSrΛk(I n)⊂ Sr−1Λ

k+1(I n).

The degrees of freedom for SrΛk(T ) are quite simple:

u ∈ SrΛk(T ) �→
∫
f

(trf u)∧ q, q ∈Pr−2(d−k)Λd−k(f ), f ∈�d(T ), d ≥ k.
(4.1)

These are illustrated in Fig. 5. Notice that weighting function q is sought in a Ps
space, not a Qs space. Moreover, as the face dimension d increases by 1, the degree
s of the space used for q decreases by 2. A major result of [3] is a proof that the
degrees of freedom are unisolvent. Further, we show there that the resulting finite
element spaces combine into de Rham subcomplexes with commuting projections:

SrΛ0(Th)
d−→ Sr−1Λ

1(Th)
d−→ · · · d−→ Sr−nΛn(Th),

in which the degrees r decrease, as for the PrΛK(Th) spaces on simplices.
For n-forms, the space SrΛn(Th) is simply the discontinuous Pr space (but de-

fined on boxes, rather than simplices). In 2-dimensions, the 0-form space SrΛ0(Th)
is the well-known serendipity space, and the 1-form space is the rectangular BDM
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space defined in [10]. Hence these spaces were all known in 2 dimensions. How-
ever, in 3 and more dimensions they were not. The 0-form space is the appropriate
generalization of the serendipity space to higher dimensions, a space first defined in
2011 [2]. The space SrΛ2 in 3-D is, we believe, the correct analogue of the BDM
elements to cubical meshes. It has the same degrees of freedom as the space in [9]
but the shape functions have better symmetry properties. For 1-forms in 3-D, SrΛ1

is a finite element discretization of H(curl). To the best of our knowledge, neither
the degrees of freedom nor the shape functions for this space had been proposed pre-
viously. Finally, we note that the dimension of S−r Λk(T ) tends to be much smaller
than that of Q−

r Λ
k(T ), especially for r large, as can be observed in Table 1.
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A Priori Bounds for Solutions of a Nonlocal
Evolution PDE

Luis Caffarelli and Enrico Valdinoci

Abstract We obtain L∞ bounds, independent of ε for the equation

u
(ε)
t =�(u(ε) + f (u(ε)))− εL(�u(ε)).

Here, f is supposed to be constant outside a bounded interval and L is a suitable
nonlocal operator, such as the fractional Laplacian.

1 Introduction

Given ε > 0, we consider the evolution PDE
{
u
(ε)
t =�(u(ε) + f (u(ε)))− εL(�u(ε)),
u(ε)(x,0)= u(ε)0 (x).

(1)

Here above u = u(x, t), x ∈ R
n, t ∈ (0,+∞). As usual, ut = ∂tu is the derivative

with respect to the time variable t , and � is the Laplace operator in the space vari-
able x (that is, the sum of the pure second derivatives). We suppose that f ∈ C2(R)

and that L is an integral operator of the type that we now describe. Equation (1)
may be seen as a nonlocal variant of the classical Cahn-Hilliard phase coexistence
model. In the classical (i.e., local case) the model deals with a chemical mixture
that, while cooling down, separates into two different phases.
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The modification in (1) takes into account a nonlocal operator that drives the
phase segregation (this may be due, for instance, to long-range particle interactions
or to boundary effects of the container).

The recent literature has taken into consideration several types of nonlocal ver-
sions of the Cahn-Hilliard equation, also for concrete applications, such as the de-
noising, segmentation and reconstruction of signals in image processing, in order to
reduce the unpleasant effect of the white noises, see e.g. [5]. Other applications also
occur in fluid dynamics, see [2, 3] and references therein. In this paper we consider
quite a severe type of nonlocal feature of the equation, namely the one driven by
a fractional Laplacian type operator. When ε = 0, the equation in (1) may be ill-
posed, so the nonlocal operator plays also a stabilising effect (though oscillations
may increase as ε→ 0+). Fixed

a ∈
(

1

2
,1

)
, (2)

we consider a measurable, (n+ 2a)-positive homogeneous kernel K : Rn \ {0} →
(0,+∞) that is bounded and bounded from zero on Sn−1: hence

K(λx)= K(x)

λn+2a
(3)

for any λ > 0 and any x ∈R
n \ {0}, and

c

|x|n+2a
�K(x)� C

|x|n+2a
(4)

for suitable C � c > 0. The study of this type of kernels is very popular in singular
integrals (see, e.g., [6]) and the fractional Laplacian is a particular case of interest
(in such a case, K(y)= |x|−n−2a , up to normalisation factors). In relation with the
PDE in (1), such kernels play an important role for long-range interaction systems
in statistical mechanics (see, e.g., [4]).

We consider the spaces

D :=
{
v ∈ C2(

R
n
)

s.t.
v(x)

1+ |x|n+2a
∈ L1(

R
n
)}

and, for any � ∈N,

D� :=
{
v :Rn→R s.t. Dβv ∈D for any β ∈N

n with β1 + · · · + β� � �
}
.

Notice that D0 =D . For any v ∈D , we define

(Lv)(x) :=
∫
Rn

(
v(x + y)+ v(x − y)− 2v(x)

)
K(y)dy. (5)

Notice that the definition in (5) is well-posed, thanks to (4). We also define
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W := {v ∈ C0(
R
n × [0,+∞)

)
s.t.

x �→ v(x, t) ∈D2 for any fixed t > 0 and

t �→ v(x, t) ∈ C1((0,+∞)
)

for any fixed x ∈R
n
}
.

The main result we prove here is the following uniform bound, independent of ε,
for solutions1 of (1):

Theorem 1.1 Suppose that

f ′(r)= 0 if |r|� 1. (6)

Let u(ε) ∈W be a sequence of solutions of (1) with

sup
x∈Rn
ε>0

∣∣u(ε)0 (x)
∣∣+ ε1/(2a)

∣∣∇u(ε)0 (x)
∣∣<+∞. (7)

Then, there exists C > 0 such that
∣∣u(ε)(x, t)∣∣� C

for any x ∈R
n and any t ∈ [0,+∞).

Of course, the C in the statement of Theorem 1.1 is not universal, but it depends
on the quantity in (7) (as well as on n, a and the structural constants of K).

We will obtain Theorem 1.1 from scaling: if we set

v(ε)(x, t) := u(ε)(ε1/(2a)x, ε1/at
)

and v(ε)0 (x) := v(ε)(x,0), we deduce from (3) that

�
[
v(ε)(x, t)+ f (v(ε)(x, t))]−L(�v(ε))(x, t)
= ε1/a[�u(ε)(ε1/(2a)x, ε1/at

)+ (�f (u(ε)))(ε1/(2a)x, ε1/at
)

− εL(�u(ε))(ε1/(2a)x, ε1/at
)]

= ε1/au
(ε)
t

(
ε1/(2a)x, ε1/at

)

= v(ε)t (x, t).

That is, v(ε) solves the PDE in (1) with ε := 1. Also, by (7),

sup
x∈Rn
ε>0

∣∣v(ε)0 (x)
∣∣+ ∣∣∇v(ε)0 (x)

∣∣<+∞.

1For concreteness, in this paper, the solutions are taken in the classical sense (e.g. they are smooth,
according to the definition of W ).
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Consequently, Theorem 1.1 would easily follow by scaling the following result:

Theorem 1.2 Suppose that (6) holds and let u ∈W be a solution of
{
ut =�

(
u+ f (u))−L(�u),

u(x,0)= u0(x),
(8)

with u0 ∈W 1,∞(Rn).
Then, there exists C > 0 such that

∣∣u(x, t)∣∣� C (9)

for any x ∈R
n and any t ∈ [0,+∞).

The proof of Theorem 1.2 relies on some techniques developed in [1], with the
suitable modifications needed here to take into account the nonlocal operator L.

Roughly speaking, the main idea borrowed from [1] is to split u into two terms,
one, say u1, which is driven by the heat equation, and a remainder u2. The kernel
representing u2 behaves like the heat kernel for large t , but the nonlocal operator
plays a role for small t . The contribution of the kernel are studied via Fourier anal-
ysis in order to obtain the desired bounds.

The organisation of the paper is as follows. Sections 2 and 3 are devoted to the
Fourier analysis of the operator, which will be applied in Sect. 4 to obtain several
useful bounds on the kernel.

The gradient of the solution will be estimated in Sect. 5 (in fact, the gradient
bound of Theorem 5.3 may be of interest in itself).

The proof of Theorem 1.2 is contained in Sect. 6 and it is obtained by first con-
trolling the size of u2, thanks to the kernel estimates, and then the one of u1, ex-
ploiting the gradient bound of Sect. 5 and the standard maximum principle for the
heat equation (assumption (6) makes it possible to reduce to it).

2 Fourier Multipliers of K

As usual, the Schwartz space of rapidly decreasing functions will be denoted by S.
Given φ ∈ S, its Fourier transform will be denoted by either φ̂ or Fφ, and the

anti-Fourier transform by either φ̌ or F−1φ.
Given v, w ∈ L2(Rn,C), we define

〈v,w〉 :=
∫
Rn

v(x)w(x)dx.

Given a tempered distribution T ∈ S�, we also denote by 〈T ,φ〉 its action on a test
function φ ∈ S: of course, no ambiguity should arise from the use of the notation 〈·,·〉
in the two settings.
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As usual, ifw ∈ L1
loc(R

n), its Fourier transform is meant in the distribution sense,
i.e.

〈ŵ,φ〉 := 〈w, φ̂〉 for any φ ∈ S.

Also, if f = f (x, y) :X× Y →R we write
∫
X

∫
Y

f (x, y)dydx

to mean
∫
X

(∫
Y

f (x, y)dy

)
dx.

With this notation, we can perform a Fourier analysis on the operator L. We start
by finding an explicit representation of the symbol of L in Fourier space and by
observing its natural scaling properties.

Lemma 2.1 For any v ∈D ,

Lv ∈ L1
loc

(
R
n
)

(10)

and

F (Lv)= Sv̂ with S(ξ) := 1

2(2π)n

∫
Rn

(
cos(y · ξ)− 1

)
K(y)dy � 0. (11)

Also,

−S(ξ)� 1

C�
|ξ |2a for any ξ ∈R

n \B1, (12)

and, for any β ∈N
n,
∣∣DβS(ξ)

∣∣� C�|ξ |2a−(β1+···+βn) for any ξ �= 0, (13)

for a suitable C� � 1.

Proof We start by proving (10). For this, fix R > 0.
We observe that if z ∈R

n \B2R and x ∈ BR , then

|z± x|� |z| − |x| = |z|
2
+ |z|

2
− |x|� |z|

2
+ 2R

2
−R = |z|

2
.

Therefore, recalling (4), we see that, if z ∈R
n \B2R and x ∈ BR ,

K(z− x)+K(z+ x)+ 2K(z)� C0

|z|n+2a
,

for a suitable C0 > 0.
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Consequently,

∫
BR

∫
Rn\B3R

∣∣v(x + y)+ v(x − y)− 2v(x)
∣∣K(y)dydx

�
∫
BR

∫
Rn\B3R

∣∣v(x + y)∣∣K(y)dydx +
∫
BR

∫
Rn\B3R

∣∣v(x − y)∣∣K(y)dydx

+ 2
∫
BR

∫
Rn\B3R

∣∣v(y)∣∣K(y)dydx

=
∫
BR

∫
Rn\B3R(x)

∣∣v(z)∣∣K(z− x)dzdx +
∫
BR

∫
Rn\B3R(−x)

∣∣v(z)∣∣K(z+ x)dzdx

+ 2
∫
BR

∫
Rn\B3R

∣∣v(z)∣∣K(z)dzdx

�
∫
BR

∫
Rn\B2R

∣∣v(z)∣∣(K(z− x)+K(z+ x)+ 2K(x)
)
dzdx

�
∫
BR

∫
Rn\B2R

C0|v(z)|
|z|n+2a

dzdx

� CR,

for a suitable CR > 0, since v ∈D .
Accordingly, using (4) once more,

‖Lv‖L1(BR)
�
∫
BR

∫
B3R

∣∣v(x + y)+ v(x − y)− 2v(x)
∣∣K(y)dydx

+
∫
BR

∫
Rn\B3R

∣∣v(x + y)+ v(x − y)− 2v(x)
∣∣K(y)dydx

�
∫
BR

∫
B3R

‖v‖C2(B4R)
|y|2K(y)dydx +CR

� C′R
(∫

B3R

|y|2−(n+2a) + 1

)

� C′R
(
ωn−1(3R)2(1−a)

2(1− a) + 1

)
,

for a suitable C′R > 0, and this proves (10).
Now, we prove (11). If v ∈ S, a direct computation (see, e.g., Sect. 2 of [7])

proves (11).
Let us now check that (11) holds for any v ∈D . For this, first notice that F (Lv)

is well-defined, in the distribution sense, thanks to (10).
Given a function w, we define w̃(x) :=w(−x) and we observe that L̃v = Lṽ.
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Take any φ ∈ S and let ψ := φ̌. We remark that F (Lψ) = Sψ̂ , since we know
that (11) holds in S, and so

〈S v̂,φ〉 = 〈̂v,Sφ〉 = 〈̂v,Sψ̂〉
= 〈̂v,F (Lψ)

〉= 〈v,F 2(Lψ)
〉= 〈v, L̃ψ〉

= 〈̃v,Lψ〉 = 〈Lṽ,ψ〉 = 〈L̃v,ψ〉
= 〈Lv, ψ̃〉 = 〈Lv,F 2ψ

〉= 〈Lv,F 2φ̌
〉

= 〈Lv,Fφ〉 = 〈F (Lv),φ
〉
.

This completes the proof of (11) when v ∈D .
Now we consider ξ �= 0, we set %ξ := ξ/|ξ |, we take a rotation R such that

%ξ = Re1, and we change variable w := RT (|ξ |y): since dw = |ξ |ndy, we obtain
in (11) that

−2(2π)nS(ξ) =
∫
Rn

(
1− cos(y · ξ))K(y)dy

=
∫
Rn

(
1− cos

(
y|ξ | · (Re1)

))
K(y)dy

= |ξ |−n
∫
Rn

(
1− cos(w1)

)
K
(|ξ |−1Rw

)
dy

= c�|ξ |2a, with c� :=
∫
Rn

(
1− cos(w1)

)
K(Rw)dy. (14)

Noticed that we have used (3) here, and that c� ∈ (0,+∞) thanks to (4). Then, (12)
and (13) follow from (14). �

3 Fourier Analysis

This is the most technical part of the paper, in which some techniques of [1] need
to be adapted to our case by taking into account the different natural scaling of the
operator. The estimates obtained will be uniform in time, and this requires a different
analysis for the short and long times asymptotics.

Lemma 3.2 Let S be as in (11). Let P :Rn→R be a polynomial. Given γ ∈ {0, a},
we define the interval Iγ as

Iγ :=
{
[1,+∞) if γ = 0,

(0,1] if γ = a. (15)
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Then, there exists C� > 0 such that

sup
t∈Iγ

∫
Rn

∣∣∣∣
∫
Rn

P (η)e−tγ /(γ+1)|η|2(1−S(t−1/(2(γ+1))η))eiη·zdη
∣∣∣∣dz� C�. (16)

Proof Let

λ= λγ := 1

2(γ + 1)
.

We observe that

sup
t∈Iγ

t2(γ−a)λ � max
{

sup
t∈[1,+∞)

t−a, sup
t∈(0,1]

t0
}
= 1. (17)

Also, a direct computation shows that

et
2γ λ|η|2(1−S(t−λη)) ·

∑
β∈Nn

β1+···+βn�2n

∣∣∣∣
(
∂

∂η

)β
e−t2γ λ|η|2(1−S(t−λη))

∣∣∣∣

is bounded by an appropriate polynomial in the variables |η|, t2γ λ and t (2γ−m)λ ×
|∂βS(t−λη)|, for m= β1 + · · · + βn � 2n.

That is, recalling (13), it is bounded by a polynomial in the variables |η|, t2γ λ
and t2(γ−a)λ.

Accordingly, due to (15) and (17), for any t ∈ Iγ , it is bounded by a polynomial
in the variable |η|, and so

sup
t∈Iγ

∑
β∈Nn

β1+···+βn�2n

∣∣∣∣
(
∂

∂η

)β
e−t2γ λ|η|2(1−S(t−λη))

∣∣∣∣� C̄
(
1+ |η|C̄)e−t2γ λ|η|2(1−S(t−λη)),

for a suitable C̄ > 0.
Hence, if P is as in the statement of Lemma 3.2,

sup
t∈Iγ

∑
β∈Nn

β1+···+βn�2n

∣∣∣∣
(
∂

∂η

)β(
P(η)e−t2γ λ|η|2(1−S(t−λη))

)∣∣∣∣

� C̃
(
1+ |η|C̃)e−t2γ λ|η|2(1−S(t−λη)), (18)

for some C̃ > 0.
We now localise the integral in (16). For this, we fix a function φ ∈ C∞(R, [0,1])

such that φ = 1 in [−1,1] and φ = 0 outside [−2,2]. We set ψ := 1− φ and we
write

1=
n∏
j=1

(
ψ(zj )+ φ(zj )

)
.
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So the integrand in (16) becomes

∫
Rn

n∏
j=1

(
ψ(zj )+ φ(zj )

)∣∣∣∣
∫
Rn

P (η)e−tγ /(γ+1)|η|2(1−S(t−1/(2(γ+1))η))eiη·zdη
∣∣∣∣dz.

After expanding the sums in the product, we see (by possibly reordering the coordi-
nates) that the “typical” term has the form

∫
Rn

k∏
j=1

ψ(zj )

n∏
�=k+1

φ(z�)

∣∣∣∣
∫
Rn

P (η)e−tγ /(γ+1)|η|2(1−S(t−1/(2(γ+1))η))eiη·zdη
∣∣∣∣dz,

for k = 0, . . . , n, with the obvious notation that
∏q
j=m equals 1 whenever q <m.

We integrate by parts 2k-times, concluding that the above quantity equals to
∫
Rn

∣∣∣∣
∫
Rn

P (η)e−tγ /(γ+1)|η|2(1−S(t−1/(2(γ+1))η))

×
k∏

j=1

(
ψ(zj )e

iηj zj
) n∏
�=k+1

φ(z�)e
iη�z�dη

∣∣∣∣dz

=
∫
Rn

∣∣∣∣
∫
Rn

P (η)e−tγ /(γ+1)|η|2(1−S(t−1/(2(γ+1))η))

×
k∏

j=1

(
ψ(zj )

(izj )2

(
∂

∂ηj

)2

eiηj zj
) n∏
�=k+1

φ(z�)e
iη�z�dη

∣∣∣∣dz

=
∫
Rn

∣∣∣∣
∫
Rn

(
∂

∂η1

)2

. . .

(
∂

∂ηk

)2[
P(η)e−tγ /(γ+1)|η|2(1−S(t−1/(2(γ+1))η))

]

×
k∏

j=1

(
ψ(zj )

(izj )2
eiηj zj

) n∏
�=k+1

φ(z�)e
iη�z�dη

∣∣∣∣dz

=
∫
Rn

k∏
j=1

ψ(zj )

|zj |2
n∏

�=k+1

φ(z�)

×
∣∣∣∣
∫
Rn

(
∂

∂η1

)2

. . .

(
∂

∂ηk

)2[
P(η)e−tγ /(γ+1)|η|2(1−S(t−1/(2(γ+1))η))

]
eiη·zdη

∣∣∣∣dz.
This and (18) imply that, for any t ∈ Iγ , the integrand in (16) is bounded by

∫
Rn

∫
Rn

k∏
j=1

ψ(zj )

|zj |2
n∏

�=k+1

φ(z�)
(
1+ |η|C̃)e−t2γ λ|η|2(1−S(t−λη))dηdz, (19)

where the multiplicative constant has been neglected.
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Now, we claim that

t2γ λ|η|2(1− S(t−λη))� 1

C∗
|η|2(1+γ ), (20)

for a suitable C∗ > 0.
Indeed, if t−λ|η|� 1 we use (11) and we obtain

t2γ λ|η|2(1− S(t−λη))� t2γ λ|η|2 � |η|2(1+γ ),
proving (20) in this case. If, conversely, t−λ|η|> 1, we exploit (12) and we obtain

t2γ λ|η|2(1− S(t−λη))�−t2γ λ|η|2S(t−λη)� t2λ(γ−a)|η|2(1+a)
C�

� |η|2(1+γ ),

which is (20) in this case.
As a consequence of (19) and (20), for any t ∈ Iγ , we control the integrand in (16)

with

C

∫
Rn

∫
Rn

k∏
j=1

ψ(zj )

|zj |2
n∏

�=k+1

φ(z�)
(
1+ |η|C̃)e−|η|2(1+γ )/C∗dηdz,

for a suitable C > 0. This plainly yields the desired result, by exploiting the supports
of φ and ψ . �

As an immediate consequence of (16), we have that:

Corollary 3.1 If P,Q :Rn→R are polynomials,

sup
t∈(0,1]

∫
Rn

∣∣∣∣
∫
Rn

P (η)e−ta/(a+1)|η|2(1−S(t−1/(2(a+1))η))eiη·zdη
∣∣∣∣dz

+ sup
t∈[1,+∞)

∫
Rn

∣∣∣∣
∫
Rn

Q(η)e−|η|2(1−S(t−1/2η))eiη·zdη
∣∣∣∣dz <+∞. (21)

Also, a useful variation of Lemma 3.2 is given by the following result:

Lemma 3.3 Let S be as in (11). Let P : Rn → R be a polynomial. Then, there
exists C0 > 0 such that, for any t � 1,

∫
Rn

∣∣∣∣
∫
Rn

P (η)e−|η|2
(
e|η|2S(t−1/2η) − 1

)
eiη·zdη

∣∣∣∣dz� C0

ta
. (22)

Proof Though the proof is a simple variation of the one given in Lemma 3.2, we
give the technical details for the facility of the reader.

For any (η, t) ∈R
n × [1,+∞), let

g(η, t) := e|η|2S(t−1/2η) − 1.
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We observe that, from (11), S(t−1/2η)� 0 and so, from (13),

∣∣g(η, t)∣∣ = 1− e|η|2S(t−1/2η) =
∫ 0

|η|2S(t−1/2η)

esds �
∫ 0

|η|2S(t−1/2η)

1ds

= −|η|2S(t−1/2η
)
� |η|2(1+a)

ta
. (23)

We take φ and ψ as in the proof of Lemma 3.2 and we follow the same arguments as
there to see that, after expanding the sums in the product, the “typical” term obtained
from the integral in (22) has the form

∫
Rn

k∏
j=1

ψ(zj )

n∏
�=k+1

φ(z�)

∣∣∣∣
∫
Rn

P (η)e−|η|2
(
e|η|2S(t−1/2η) − 1

)
eiη·zdη

∣∣∣∣dz

=
∫
Rn

∣∣∣∣∣
∫
Rn

P (η)e−|η|2g(η, t)
(

k∏
j=1

ψ(zj )e
iηj zj

)(
n∏

�=k+1

φ(z�)e
iη�z�

)
dη

∣∣∣∣∣dz

=
∫
Rn

∣∣∣∣∣
∫
Rn

P (η)e−|η|2g(η, t)
(

k∏
j=1

ψ(zj )

(izj )2

(
∂

∂ηj

)2

eiηj zj

)

×
(

n∏
�=k+1

φ(z�)e
iη�z�

)
dη

∣∣∣∣∣dz

=
∫
Rn

∣∣∣∣∣
∫
Rn

(
∂

∂η1

)2

. . .

(
∂

∂ηk

)2[
P(η)e−|η|2g(η, t)

]

×
(

k∏
j=1

ψ(zj )

(izj )2
eiηj zj

)(
n∏

�=k+1

φ(z�)e
iη�z�

)
dη

∣∣∣∣∣dz, (24)

where 2k integrations by parts have been performed.
Now, an explicit computation gives that

e|η|2
∑
β∈Nn

β1+···+βn�2n

∣∣∣∣
(
∂

∂η

)β[
P(η)e−|η|2g(η, t)

]∣∣∣∣ (25)

is bounded by

P0(η)
∣∣g(η, t)∣∣+ e|η|2S(t−1/2η)

2n∑
q=1

Pq(η)

∣∣∣∣
∑
β∈Nn

β1+···+βn=q

(
∂

∂η

)β[|η|2S(t−1/2η
)]∣∣∣∣,
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for suitable polynomials P0, P1, . . . ,P2n, and so, recalling (13), it is bounded by

P0(η)
∣∣g(η, t)∣∣+ P̃ (η)

ta
,

for a suitable polynomial P̃ .
That is, in the light of (23), the quantity in (25) is bounded by

M(1+ |η|M)
ta

,

for a suitably large M ∈N.
This and (24) imply that the integral in (22) is bounded by

M

ta

∫
Rn

∫
Rn

k∏
j=1

ψ(zj )

z2
j

n∏
�=k+1

φ(z�)
(
1+ |η|M)e−|η|2dηdz.

Using the supports of φ and ψ , we obtain the estimate claimed in (22). �

4 Kernel Estimates

Here, we perform useful estimates on the kernel of the homogeneous equation as-
sociated to (8).

For this, we define

N(x, t) := 1

(2π)n

∫
Rn

e−t |ξ |2(1−S(ξ))eiξ ·xdξ,

where S is the one introduced in (11).
We will also exploit the following standard notation, for 1 � p �∞:

‖ · ‖Lpx := ‖ · ‖Lp(Rn) and

‖ · ‖Lpt := ‖ · ‖Lp((0,+∞)).

Also, ∂j will be a short notation for the spatial derivative ∂
∂xj

, for j = 1, . . . , n.
We observe that N is the fundamental solution of the linearised equation:

Nt =�N −L(�N) for t > 0, lim
t→0+

N(x, t)= δ0.

Scope of these pages is to point out the following integral bound on N :

sup
t>0

∥∥N(·, t)∥∥
L1
x
+
∫ 1

0
‖�N‖L1

x
dt + sup

j∈{1,...,n}

∫ +∞

0
‖∂j�N‖L1

x
dt <+∞.
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This will be achieved in the following Lemmata 4.4 and 4.5. From the estimate
above, we will obtain a gradient bound via convolution in the forthcoming Theo-
rem 5.3. This and a control on the long-time behaviour will finally provide the proof
of Theorem 1.2.

Lemma 4.4

sup
t>0

∥∥N(·, t)∥∥
L1
x
<+∞.

Proof Let

ω(t) :=
{
t1/(2(a+1)) if t ∈ (0,1),
t1/2 if t ∈ [1,+∞).

(26)

It is useful to observe that if P,Q :Rn→R are polynomials and

P(η, t) :=
{
P(η) if t ∈ (0,1),
Q(η) if t ∈ [1,+∞),

then (21) says that

sup
t∈(0,+∞)

∫
Rn

∣∣∣∣
∫
Rn

P(η, t)e−t (|η|/|ω(t)|)2(1−S(η/ω(t)))eiη·zdη
∣∣∣∣dz

� sup
t∈(0,1)

∫
Rn

∣∣∣∣
∫
Rn

P (η)e−ta/(a+1)|η|2(1−S(t−1/(2(a+1))η))eiη·zdη
∣∣∣∣dz

+ sup
t∈[1,+∞)

∫
Rn

∣∣∣∣
∫
Rn

Q(η)e−|η|2(1−S(t−1/2η))eiη·zdη
∣∣∣∣dz

<+∞. (27)

Now, we use the substitution

η := ω(t)ξ, z := x/(ω(t)) (28)

to conclude that

∥∥N(·, t)∥∥
L1
x
= 1

(2π)n

∫
Rn

∣∣∣∣
∫
Rn

e−t |ξ |2(1−S(ξ))eiξ ·xdξ
∣∣∣∣dx

= 1

(2π)n

∫
Rn

∣∣∣∣
∫
Rn

e−t (|η|/|ω(t)|)2(1−S(η/ω(t)))eiη·zdη
∣∣∣∣dz.

This and (27) (applied here with P := 1) readily give the desired result. �

A useful result, analogous to Lemma 4.4 is the following:
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Lemma 4.5

∫ 1

0
‖�N‖L1

x
dt <+∞ (29)

and

sup
j∈{1,...,n}

∫ +∞

0
‖∂j�N‖L1

x
dt <+∞. (30)

Proof The proof is an appropriate modification of the one of Lemma 4.4. Let us
first deal with (30). Fix j ∈ {1, . . . , n}. We have that

∣∣∣∣∣
n∑
k=1

∂jkkN(x, t)

∣∣∣∣∣=
∣∣∣∣ 1

(2π)n

∫
Rn

ξj |ξ |2e−t |ξ |2(1−S(ξ))eiξ ·xdξ
∣∣∣∣.

Thus, we use once more the substitution introduced in (26) and (28) to obtain that

∥∥∥∥∥
n∑
k=1

∂jkkN(·, t)
∥∥∥∥∥
L1
x

� 1

(ω(t))3(2π)n

∫
Rn

∣∣∣∣
∫
Rn

ηj |η|2e−t (|η|/|ω(t)|)2(1−S(η/ω(t)))eiη·zdη
∣∣∣∣dz

� C(j)

(ω(t))3
,

for a suitable C(j) > 0, thanks to (27), applied here with

P(η, t) := ηj |η|2.

As a consequence,

∫ +∞

0

∥∥∥∥∥
n∑
k=1

∂jkkN

∥∥∥∥∥
L1
x

dt �
∫ +∞

0

C(j)dt

(ω(t))3

=
∫ 1

0

C(j)dt

t3/(2(a+1))
+
∫ +∞

1

C(j)dt

t3/2
� C̃(j),

for a suitable C̃(j) > 0. Notice that here we used the fact that 3/(2(a + 1)) < 1,
thanks to (2). The above estimate implies (30).

The proof of (29) is analogous and, in fact, much simpler: just consider in
this case only the integral in t ∈ (0,1), drop ηj , and replace ω3(t) with ω2(t) =
t1/(a+1). �
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5 Gradient Bounds

Now, we apply the previous estimates to deduce a uniform gradient bound:

Theorem 5.3 Let u ∈W be a solution of

{
ut =�(u+ g)−L(�u),
u(x,0)= u0(x),

(31)

with g = g(x, t) ∈ L∞(Rn × [0,+∞)), g(·, t) ∈ C2(Rn) for any t > 0, and ∇u0 ∈
(L∞x )n.

Then,

sup
t∈(0,+∞)

∥∥∇u(·, t)∥∥
(L∞x )n

� C�
(‖∇u0‖(L∞x )n + ‖g‖L∞(Rn×(0,+∞))

)

for a suitable C� > 0.

Proof Let h(x, t) :=�(g(x, t)) and h0(x) := h(x,0). We remark that, for fixed t >
0, all the terms of the PDE in (31) are in L1

loc(R
n), because of (10). Consequently,

by Fourier transforming (31),

ût =−κû+ ĥ,
with

κ(ξ) := |ξ |2(1− S(ξ)),
thanks to (11).

So, by solving the ODE,

û(ξ, t)=
∫ t

0
ĥ(ξ, s)e−κ(ξ)(t−s)ds + û0(ξ)e

−κ(ξ)t

and then, by antitransforming,

u=N ∗∗h+N ∗ u0,

where ∗ denotes the convolution in x ∈ R
n and ∗∗ the convolution in x ∈ R

n and t
(up to a finite time).

As a consequence,

∂ju= ∂jN ∗∗h+N ∗ ∂ju0. (32)

Now, we recall Lemma 4.4, according to which ‖N(·, t)‖L1
x
� C, for any t > 0, for

a suitable C > 0.
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Therefore, for any x ∈R
n and any t > 0,

∣∣(N ∗ ∂ju0)(x, t)
∣∣� ∥∥N(·, t)∥∥

L1
x
‖∂ju0‖L∞x � C‖∇u0‖(L∞x )n . (33)

Moreover, possibly renaming C, by (30),

∫ +∞

0
‖∂j�N‖L1

x
dt � C,

and so, for any x ∈R
n and any t > 0,

∣∣(∂jN ∗∗h)(x, t)∣∣ = ∣∣(∂j�N)∗∗g(x, t)∣∣

�
∫ +∞

0

[∫
Rn

∣∣(∂j�N)(y, s)∣∣∣∣g(x − y, t − s)∣∣dy
]
ds

�
∫ +∞

0
‖∂j�N‖L1

x
‖g‖L∞(Rn×(0,+∞))ds

� C‖g‖L∞(Rn×(0,+∞)). (34)

Then, the desired claim follows from (32), (33) and (34). �

6 Proof of Theorem 1.2

Let g(x, t) := f (u(x, t)) and h = h(x, t) :=�g. We observe that, for fixed t > 0,
all the terms of the PDE in (8) are in L1

loc(R
n), due to (10). Therefore, we may

Fourier transform (8) and solve the associated ODE (in analogy with what we did
in the beginning of the proof of Theorem 5.3), to obtain that

u=N ∗∗h+N ∗ u0,

where ∗ denotes the convolution in x ∈ R
n and ∗∗ the convolution in x ∈ R

n and t
(up to a finite time).

Hence, if we define the heat kernel

H(x, t) := 1

(2
√
πt)n

e−|x|2/4t

and

G :=N −H,
we obtain that

u= u1 + u2,
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with

u1 =H ∗∗h+H ∗ u0 (35)

and

u2 =G∗∗h+G ∗ u0.

We remark that

1

(2π)n

∫
Rn

e−|η|2
(
e|η|2S(t−1/2η) − 1

)
eiη·xdη

=
(√

t

2π

)n ∫
Rn

e−t |ξ |2
(
et |ξ |2S(ξ) − 1

)
eiξ ·(t1/2x)dξ

= tn/2(N(t1/2x, t)−H (t1/2x, t))

= tn/2G(t1/2x, t),

thanks to the substitution ξ := t−1/2η and to the standard Fourier transform property
of H .

Therefore, for any t � 1, by (22),

∥∥�G(·, t)∥∥
L1
x
=
∫
Rn

tn/2
∣∣�G(t1/2z, t)∣∣dz

= 1

(2π)nt

∫
Rn

∣∣∣∣
∫
Rn

|η|2e−|η|2(e|η|2S(t−1/2η) − 1
)
eiη·zdη

∣∣∣∣dz

� C0

t1+a
, (36)

for a suitable C0 > 0.
Now, we give a uniform bound for u2. For this, first we use Lemma 4.4 (together

with a standard property of the heat kernel) to obtain that

sup
x∈Rn
t>0

∣∣G ∗ u0(x, t)
∣∣ � sup

x∈Rn
t>0

∣∣N ∗ u0(x, t)
∣∣+ sup

2
x∈Rn t>0

∣∣H ∗ u0(x, t)
∣∣

� sup
t>0

∥∥N(·, t)∥∥
L1
x
‖u0‖L∞x + sup

t>0

∥∥H(·, t)∥∥
L1
x
‖u0‖L∞x

� C1‖u0‖L∞x , (37)

for a suitable C1 > 0.
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On the other hand,

∫ 1

0

∥∥∂kH(·, s)∥∥L1
x
ds = 1

2n+1πn/2

∫ 1

0

∣∣∣∣
∫
Rn

xke
−|x|2/(4s)

s(n/2)+1
dx

∣∣∣∣ds

� 1

2n+1πn/2

∫ 1

0

∫
Rn

|z|e−|z|2/4√
s

dzds � C2,

for some C2 > 0, where the change of variable z= x/√s was used.
Accordingly, making use also of Theorem 5.3,

sup
x∈Rn
t∈(0,1]

∣∣H ∗∗h(x, t)∣∣ = sup
x∈Rn
t∈(0,1]

∣∣H ∗∗�g(x, t)∣∣

� sup
x∈Rn
t∈(0,1]

∫ t

0

∣∣∣∣
∫
Rn

H(y, s)�g(x − y, t − s)dx
∣∣∣∣ds

� sup
x∈Rn
t∈(0,1]

∫ t

0

∣∣∣∣
∫
Rn

∇H(y, s) · ∇g(x − y, t − s)dx
∣∣∣∣ds

�
n∑
k=1

∫ 1

0

∥∥∂kH(·, s)∥∥L1
x
‖∂kg‖L∞x ds

�
n∑
k=1

C2
∥∥f ′∥∥

L∞([−1,1]) sup
x∈Rn
t>0

|∇u|

� C3,

for a suitable C3 > 0, and so, recalling (29),

sup
x∈Rn
t∈(0,1]

∣∣G∗∗h(x, t)∣∣ � C3 + sup
x∈Rn
t∈(0,1]

∣∣N ∗∗h(x, t)∣∣

� C3 + sup
x∈Rn
t∈(0,1]

∫ t

0

∣∣∣∣
∫
Rn

N(y, s)�g(x − y, t − s)dx
∣∣∣∣ds

� C3 + sup
x∈Rn
t∈(0,1]

∫ t

0

∣∣∣∣
∫
Rn

�N(y, s)g(x − y, t − s)dx
∣∣∣∣ds

� C3 +
∫ 1

0

∥∥�N(·, s)∥∥
L1
x
‖g‖L∞(Rn×(0,+∞))ds

� C3 +C4‖f ‖L∞([−1,1])
� C5, (38)
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for suitable C4, C5 > 0.
From (37) and (38), we conclude that

sup
x∈Rn
t∈(0,1]

∣∣u2(x, t)
∣∣� sup

x∈Rn
t∈(0,1]

∣∣G∗∗h(x, t)∣∣+ sup
x∈Rn
t∈(0,1]

∣∣G ∗ u0(x, t)
∣∣� C6, (39)

for a suitable C6 > 0, and our goal is now to bound u2 when t � 1.
For this, we use again (38) to obtain the following estimate:

sup
x∈Rn
t�1

∣∣G∗∗h(x, t)∣∣ = sup
x∈Rn
t�1

∣∣∣∣
∫ t

0

(∫
Rn

G(y, s)h(x − y, t − s)dy
)
ds

∣∣∣∣

� sup
x∈Rn
t�1

∣∣∣∣
∫ 1

0

(∫
Rn

G(y, s)h(x − y, t − s)dy
)
ds

∣∣∣∣

+
∣∣∣∣
∫ t

1

(∫
Rn

G(y, s)h(x − y, t − s)dy
)
ds

∣∣∣∣

� C5 + sup
x∈Rn
t�1

∣∣∣∣
∫ t

1

(∫
Rn

�G(y, s)g(x − y, t − s)dy
)
ds

∣∣∣∣.

As a consequence, recalling (36),

sup
x∈Rn
t�1

∣∣G∗∗h(x, t)∣∣ � C5 + ‖f ‖L∞([−1,1]) sup
t�1

∫ t

1

∥∥�G(·, s)∥∥
L1
x
ds

� C5 + ‖f ‖L∞([−1,1])
∫ +∞

1

C0

s1+a ds

� C7, (40)

for a suitably large C7.
This and (37) imply that

sup
x∈Rn
t�1

∣∣u2(x, t)
∣∣� sup

x∈Rn
t�1

∣∣G∗∗h(x, t)∣∣+ sup
x∈Rn
t�1

∣∣G ∗ u0(x, t)
∣∣� C8,

for some C8 > 0, and so, in the light of (39),

sup
x∈Rn
t>0

∣∣u2(x, t)
∣∣� C6 +C8. (41)

Having completed the uniform bound on u2, our goal is now to bound u1. Though
this will be obtained by following almost verbatim the argument on pages 141–143
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of [1], we provide full details for the convenience of the reader. Exploiting (41), we
can define

m := 1+ sup
x∈Rn
∣∣u0(x)

∣∣+ sup
x∈Rn
t>0

∣∣u2(x, t)
∣∣.

We claim that

sup
x∈Rn
t>0

∣∣u1(x, t)
∣∣� 2m+ 1. (42)

The proof of (42) is by contradiction, hence we assume, say, that

sup
x∈Rn
t>0

u1(x, t) > 2m+ 1.

Therefore, there exists T > 0 for which

S := {(x, t) ∈R
n × [0, T ) s.t. u1(x, t) > 2m+ 1

}

is not empty.
Notice that

inf
S
|u|� inf

S
|u1| − sup

S

|u2|� (2m+ 1)−m=m+ 1> 1.

So, if (x, t) ∈ S, we have that h(x, t) =�f (u(x, t)) = 0, thanks to (6), and there-
fore, by (35),

u1 =H ∗ u0 in S. (43)

That is, since H is the heat kernel,

∂tu1 =�u1 in S. (44)

Moreover, since u ∈W , we have that the map t �→ u(0, t) belongs to C0([0,+∞))

⊆ L∞([0, T ]), hence

sup
t∈[0,T ]

∣∣u(0, t)∣∣� C̃(T ),

for a suitable C̃(T ), and therefore, exploiting (41) and Theorem 5.3,

sup
x∈Rn
t∈[0,T ]

∣∣u1(x, t)
∣∣ � sup

x∈Rn
t∈[0,T ]

∣∣u2(x, t)
∣∣+ sup

x∈Rn
t∈[0,T ]

∣∣u(x, t)∣∣

� C6 +C8 + sup
t∈[0,T ]

(∣∣u(0, t)∣∣+C9|x|
)

� C(T )
(
1+ |x|), (45)

for a suitable C(T ) > 0.
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For any δ ∈ (0,1), we define

uδ(x, t) := u1(x, t)− δ
( |x|2

2n
+ t
)

and

Sδ :=
{
(x, t) ∈R

n × [0, T ) s.t. uδ(x, t) > 2m+ 1
}
.

It is easily seen that

Sδ ⊆ S, (46)

and so, from (44),

∂tuδ =�uδ in Sδ. (47)

Notice also that

uδ = 2m+ 1 on ∂
(
Sδ ∩ {t = t0}

)
, for any t0 � T . (48)

Furthermore,

Sδ ⊆ B(2+4nC(T ))/δ × [0, T ]. (49)

To prove (49), just take (x, t) ∈ Sδ with |x| � 4nC(T )/δ, and use (45) to deduce
that

0 � 2m+ 1 � uδ(x, t)�
∣∣u1(x, t)

∣∣− δ
( |x|2

2n
+ t
)

� C(T )
(
1+ |x|)− δ|x|2

2n
� C(T )− C(T )|x|

2
,

hence |x|� 2, which proves (49).
In fact, (49) can be improved as follows:

Sδ ⊆ B(2+4nC(T ))/δ × [μ,T ], (50)

for a suitable μ> 0.
To prove (50), we argue by contradiction, supposing that there exists a se-

quence (xj , tj ) ∈ Sδ , with tj → 0+ as j → +∞. By (49), we may suppose
that xj → x∞ as j→+∞. Since, recalling (43) and (46), we have that u1(xj , tj )=
H ∗ u0(xj , tj ), we obtain that

2m+ 1 � lim
j→+∞uδ(xj , tj )� lim

j→+∞u1(xj , tj )

= H ∗ u0(x∞,0)= u0(x∞)�m.
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This contradiction proves (50).
Now, we show that

Sδ is empty, for any δ ∈ (0,1). (51)

Suppose the contrary, hence Sδ is nonempty for some fixed δ ∈ (0,1). For any j ∈N,
j � 10, let

uj (x, t) := uδ(x, t)− t

j
.

By (50), we can take (xj , tj ) ∈ Sδ such that

uj (xj , tj )=max
Sδ

uj . (52)

Up to subsequence, we may and do suppose that

(xj , tj ) lies in the interior of Sδ ∩ {t = tj }, (53)

otherwise (48) would give that

2m+ 1= lim
j→+∞uj (xj , tj )� lim

j→+∞uj (x, t)= uδ(x, t) for any (x, t) ∈ Sδ,

which would say that Sδ is void.
Analogously, up to subsequence, we may and do suppose that for any j there

exists τj > 0 such that

(xj , tj − s) ∈ Sδ for any s ∈ [0, τj ], (54)

otherwise, for fixed j , we would have that (xj , tj − η�) /∈ Sδ for a suitable infinites-
imal sequence η�, and so, recalling (50), uδ(xj , tj − η�)� 2m+ 1, hence

2m+ 1 � lim
j→+∞ lim

�→+∞uδ(xj , tj − η�)

= lim
j→+∞uδ(xj , tj )= lim

j→+∞uj (xj , tj )+
tj

j

� lim
j→+∞uj (x, t)= uδ(x, t) for any (x, t) ∈ Sδ,

which, once more, would say that Sδ is void.
As a consequence of (52) and (53), we have that

�uj (xj , tj )� 0,

while the use of (54) gives that

∂tuj (xj , tj )� 0.
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Therefore,

0 � ∂tuj (xj , tj )−�uj (xj , tj )= ∂tuδ(xj , tj )−�uδ(xj , tj )− 1

j
.

This is in contradiction with (47), and so (51) is proved.
Since

S =
⋃

δ∈(0,1)
Sδ,

we obtain that S has to be empty as well. This contradiction proves (42).
Then, (41) and (42) imply (9) and the proof of Theorem 1.2 is thus completed.
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On the Numerical Analysis of Adaptive
Spectral/hp Methods for Elliptic Problems

Claudio Canuto and Marco Verani

The transcendental is not infinite and unattainable tasks,
but the neighbor who is within reach in any given situation.

(D. Bonhoeffer)

Abstract We provide an overview of the state of the art of adaptive strategies for
high-order hp discretizations of partial differential equations; at the same time, we
draw attention on some recent results of ours concerning the convergence and com-
plexity analysis of adaptive algorithm of spectral and spectral-element type. Com-
plexity is studied under the assumption that the solution belongs to a sparsity class
of exponential type, which means that its best N -term approximation error in the
chosen piecewise polynomial basis decays at an exponential rate with respect to N .

1 Introduction

The present authors are some generations apart, yet both of them have been deeply
influenced by the gigantic human and professional figure of Enrico Magenes; this
paper is a modest yet heartfelt tribute to his memory.

On the scientific ground, professor Magenes not only gave outstanding contri-
butions to the mathematical theory of partial differential equations, but he was a
pioneer in fostering the development of a Computational Mathematics at the same
time soundly tied to functional analysis and strongly immersed in real-life appli-
cations. The “Laboratorio di Analisi Numerica”, that he founded in Pavia in the
Seventies and directed for several decades, had a paramount impact on the Italian

C. Canuto (B)
Dipartimento di Scienze Matematiche, Politecnico di Torino, Corso Duca degli Abruzzi 24,
10129 Turin, Italy
e-mail: claudio.canuto@polito.it

M. Verani
MOX-Dipartimento di Matematica, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133
Milan, Italy
e-mail: marco.verani@polimi.it

F. Brezzi et al. (eds.), Analysis and Numerics of Partial Differential Equations,
Springer INdAM Series 4, DOI 10.1007/978-88-470-2592-9_11,
© Springer-Verlag Italia 2013

165

mailto:claudio.canuto@polito.it
mailto:marco.verani@polimi.it
http://dx.doi.org/10.1007/978-88-470-2592-9_11


166 C. Canuto and M. Verani

Applied Mathematics community, and soon become a recognized reference for the
whole international community.

Enrico Magenes was able to create, and maintain over the years, a scientific en-
vironment extremely open and favorable to the development and exchange of new
ideas. Many young researchers have been attracted by that atmosphere; some of
them, such as the senior author (CC), had the chance to become members of that
institution, and bring everlasting gratitude for the opportunity they had of being ex-
posed day by day to the charismatic personality of the founder; some others, such
as the junior author (MV), have remained fascinated and deeply influenced by his
human and scientific legacy.

Enrico Magenes was always very careful in granting freedom of research to the
members of his group, the only conditions to respect being the quality and the in-
terest of the undertaken investigations. Good projects pushed forward by younger
collaborators had the chance of being supported as more mature lines of research.
The onset of interest for spectral methods, which are the object of the present contri-
bution, at the “Laboratorio” in the early Eighties is precisely an example of this fa-
vorable environment. Influenced by a stimulating visit at the “Laboratoire d’Analyse
Numérique” (created in Paris by Magenes’ coworker and friend Jacques-Louis Li-
ons), Alfio Quarteroni initiated a fruitful and long-lasting collaboration with the
present senior author on the numerical analysis of spectral and high-order methods
for boundary-value problems; while in the early stage the scientific guidance was
provided by Franco Brezzi, the full and continuous strategic and logistic support
granted by professor Magenes was certainly a key ingredient for the success of that
research.

Since then, high-order methods such as spectral(-element) methods or the hp-
version of finite element methods (the two categories being often hardly distinguish-
able from each other) have reached their maturity, both in the full understanding of
their theoretical properties and in the penetration into the scientific computing prac-
tices, in various applicative environments (see, e.g., [12, 13, 50]). Yet, some relevant
aspects of these methods are still far from being in a satisfactory shape, and deserve
further investigations. An example is given by the so-called hp-adaptivity; indeed,
even for steady problems, a full and rigorous understanding of the selection strate-
gies between h-refinement and p-enrichment, and their influence on the complexity
and optimality of the related algorithms, is still lacking.

The purpose of the present paper is to provide a soft overview of the state of the
art of adaptive strategies for high-order discretizations of partial differential equa-
tions; at the same time, we aim at drawing attention on some recent results of ours
concerning the convergence and complexity analysis of adaptive algorithm of spec-
tral and spectral-element type.

We begin by recalling various approximation results which show that a proper
choice of the mesh and the polynomial degree distribution over the mesh guarantees
an exponential decay of the error even if the solution of the equation exhibits singu-
larities inside the domain or at the boundary, provided their position is known. The
free parameter is the cardinality of the set of active degrees of freedom. An elemen-
tary derivation is detailed, in the case of algebraic singularity or piecewise analytic-
ity. Obviously, such results on optimal “a-priori adaptivity” constitute a benchmark
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for the “a-posteriori” adaptive strategies, which need to detect the singularities and
properly allocate the degrees of freedom around them. Thus, we are led to review
the main error estimators proposed in the literature for hp methods, and the various
adaptation strategies which exploit their information. While the number of different
strategies is fairly large, with different mathematical sources and different practical
performances, very few algorithms can be rigorously proven to be convergent, with
a precise estimate of their rate of convergence. The situation becomes even worse if
complexity or cost issues are to be taken into account.

In this respect, we devote the second part of the paper to illustrate some recent
results we have obtained in collaboration with Ricardo H. Nochetto; we consider
adaptive spectral methods of Legendre type, and actually we extend them to cover
the case of spectral-element discretizations (or p-type finite elements). A represen-
tative algorithm (out of several possible variants) is described, and its convergence
properties are discussed. Furthermore, we investigate its complexity, by comparing
the output of the algorithm with the best possible approximation of the exact solu-
tion in the chosen piecewise polynomial basis, for the same accuracy—this point
of view being related to the so-called “best N -term approximation” of a function.
The novelty of the analysis, compared to the available results in the literature, is that
optimality is discussed with respect to an assumed exponential (or sub-exponential)
decay of the best N -approximation error; this assumption appears indeed to be co-
herent with the use of spectral-type methods in the discretization of the boundary-
value problem.

Notation Throughout the paper, by A � B we mean that the quantity A can be
bounded by a multiple of B , the multiplicator being independent of those parameters
A and B may depend on. LikewiseA' B meansA� B and B �A, whereasA∼ B
means A= B + o(B), with o(B) negligible with respect to B .

2 From Approximation Theory to a-Priori Adaptive hp Methods

We begin by recalling some classical results concerning the approximation of a
univariate function having Sobolev or analytical regularity, by means of algebraic
polynomials. These estimates will be useful in the subsequent analysis of piecewise
polynomial approximation.

Let I denote the reference interval (−1,1). If v belongs to the Sobolev space
Hm(I), m≥ 0, then

inf
w∈Pp(I )

‖v−w‖L2(I ) ≤ C(v,m)p−m, (1)

where the positive constant C(v,m) can be bounded by the norm of v inHm(I) (ac-
tually, the bound holds under weaker assumptions, see, e.g., [12, 50]). On the other
hand, if v can be extended to an analytic function on the closed ellipse E(−1,1;σ)
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in the complex plane having foci at z=±1 and semiaxes’ sum σ > 1, then setting
η= logσ one has

inf
w∈Pp(I )

‖v−w‖L2(I ) ≤ C(v,η)p−1/2e−ηp (2)

(see, e.g., [30, 50]). A different estimate involves the maximum modulus of v over
the ellipse E(−1,1;σ) and reads as follows:

inf
w∈Pp(I )

‖v−w‖L2(I ) ≤ C
1

sinhη
e−ηp max

z∈E(−1,1;σ)
∣∣v(z)∣∣ (3)

(see, e.g., [12]).
The previous results can be easily combined to provide bounds of the approxi-

mation error for piecewise smooth functions on a finite partition of the domain by
piecewise polynomials; in such cases, the estimates involve not only the polynomial
degrees but also the sizes of the subdomains. Less trivial is the problem of express-
ing the error in terms of the total number, say N , of employed degrees of freedom,
and, even more, of optimizing the allocation of degrees of freedom for a given target
accuracy. This is precisely the crucial problem of hp adaptivity.

The earliest attempts to study the adaptive approximation of a univariate function,
having a finite number of singularities and otherwise smooth, by means of piecewise
polynomials of variable degree dates back to the late Seventies, with the pioneering
works [20] and [24] (see also [21] and the references therein).

In [20], the best N -term approximation of a univariate function in the maximum
norm by piecewise polynomials of variable degree is studied, and in particular it is
proven that for certain classes of analytic functions the best N -term approximation
is achieved by a single polynomial over the entire domain. On the other hand, [24]
deals with functions with singularities of the type xα near the origin, and proves
that a proper combination of graded mesh and linear increase of polynomial degrees
(see below) yields exponential decay of the best N -term approximation error, with
exponent proportional to

√
N .

This result influenced Gui and Babuška [30] in their study of the convergence
rate of the hp approximation to a model elliptic problem in 1D. As usual, a Céa
Lemma argument reduces the problem to estimate the best N -term approximation
error in the energy norm. Let us give some detail.

Let Ω = (0,1). Suppose that the solution u of the underlying elliptic PDE is real
analytic in (0,1] and behaves like u(x)= xα for some α > 1/2. Consider a partition
of Ω into contiguous intervals Kj (0≤ j ≤ J ) and a corresponding distribution of
polynomial degrees pj ≥ 1. Define the subspace

Vδ =
{
v ∈H 1(Ω) : v|Kj ∈ Ppj (Kj ),0≤ j ≤ J

}
. (4)

Let us assume that the mesh is geometrically graded towards 0, i.e., there exists
0< ρ < 1 such that

Kj =
[
ρj+1, ρj

]
for 0≤ j < J, KJ =

[
0, ρJ

]
, (5)
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whereas the polynomial degrees grow linearly away from 0, i.e.,

pj =max
(
1,
[
λ(J − j)]) (6)

for some λ > 0. Under these assumptions, there exists λ such that one has for N =
dimVδ

inf
vδ∈Vδ

‖u− vδ‖H 1(Ω) ≤ Ce−b
√
N, (7)

where the constants C > 0 and b > 0 are independent of N . In particular, the choice
ρ∗ = (√2− 1)2 for the grading factor is optimal for any α.

The result can be extended to more general functions; in particular, to those be-
longing to the class B�β(Ω) for �= 1,2 and some β ∈ (0,1); these are the functions

u ∈H�−1(Ω) such that, setting Φγ (x)= |x|γ , the functions Φβ+k−�Dku belong to
L2(Ω) for any k ≥ �, and there exist constants C > 0 and d ≥ 1 for which

∥∥Φβ+k−�Dku
∥∥
L2(Ω)

≤ Cdk−l(k − l)!. (8)

Based on the previously described a-priori analysis, Gui and Babuška [31] pro-
posed what is probably the first hp adaptive algorithm (see also Sect. 3.2 below).
Given an elemental error estimator satisfying suitable assumptions, the elements of
the partition on which the error estimator is larger than a fixed fraction of the largest
estimator are marked for refinement/enrichment; by inspecting the ratio between
two error estimators on the marked interval with two consecutive polynomial de-
grees, it is decided whether to divide the interval into two parts carrying the same
polynomial degree as before, or to keep the interval unchanged but increase the
polynomial degree by one. The algorithm is proven to be convergent, with a pre-
dicted rate. However, the assumptions on the admissible error estimators appear to
be overly restrictive, essentially they are taylored on the xα-type singularity, for
which indeed the algorithm produces a nearly optimal discretization.

In 2D, the counterpart of the previous a-priori analysis is as follows. Consider
a bounded polygon Ω , having the origin 0 as a vertex. Let u be the solution of an
elliptic problem in Ω , which is real analytic in Ω \ {0} and behaves like |x|α as
|x| → 0. Consider a conforming and regular partition of Ω by J layers of elements
around the origin; all the elements in the j -th layer have diameter of the order of ρj

for some fixed 0< ρ < 1. Assume that all elements in the j -th layer carry polyno-
mial degrees of the order of pj , with pj =max(1, [λ(J − j)]) for some λ > 0. Let
the subspace Vδ ⊂H 1(Ω) be defined in the standard way, and let againN = dimVδ .
Then, the following error bound is proven in [32, 33]:

inf
vδ∈Vδ

‖u− vδ‖H 1(Ω) ≤ Ce−b
3√
N, (9)

with C > 0 and b > 0 independent of N . The result extends to solutions in the class
B2
β(Ω), locally defined in a neighborhood of each vertex in a manner similar as

above. This is relevant, since the solution of elliptic problems in Ω with data having
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suitable piecewise-analytic regularity can be shown to belong to such a class, see
[5].

The situation in 3D is more complex, since in polyhedra singularities occur not
only at vertices, but also along edges. Thus, an adapted mesh has a different struc-
ture in different regions of the domain, to accommodate for the local structure of
the solution: it is quasi-uniform away from the boundary, it is isotropically graded
towards a vertex, it is anisotropically graded towards the central part of an edge (be-
ing quasi-uniform in the tangential direction), and finally it has a transitional nature
near the portion of an edge that gets close to a vertex. Then, a proper distribution of
the polynomial degrees over such a mesh guarantees the following behavior of the
best-approximation error vs the dimension N of the corresponding subspace Vδ , for
the solution u of an elliptic problem in a polyhedron, with piecewise analytic data:

inf
vδ∈Vδ

‖u− vδ‖H 1(Ω) ≤ Ce−b
5√
N, (10)

again with C > 0 and b > 0 independent of N . The result (that should be compared
to (7) in 1D and (9) in 2D) was first asserted by Guo and Babuška [6]; for the
proof, we refer to [48, 49], where both Continuous- and Discontinuous-Galerkin
hp discretizations are considered. The analysis relies on very accurate estimates of
suitable weighted norms of the solution, of the type (8); we refer to [34] and to the
more recent and comprehensive result [19].

2.1 An Elementary Analysis of hp Approximations over Dyadic
Partitions

Herafter, we use elementary arguments based on the repeated application of the
error estimate (3) in order to establish the exponential convergence of suitable hp
approximations over dyadic partitions to singular functions or piecewise-analytic
functions in one space dimension.

To this end, given real numbers r < s and σ > h := s − r , let E(r, s;σ) denote
the closed ellipse in the complex plane having foci at z = r, s and semiaxes’ sum
σ ; let us set c= (r + s)/2 and f = h/2. Let v be a function defined on the interval
(r, s) of the real line, that can be extended to an analytic function on the closed
ellipse E(r, s;σ). Then, if we apply the change of variable

x̂ = x − c
f

, ŷ = y

f
,

it is easily seen that the function v̂ such that v̂(x̂) = v(x) = v(c + f x̂) is defined
on the reference interval I = (−1,1) and can be extended to an analytic function
on the closed ellipse E(−1,1; σ̂ ) with σ̂ = σ/f . Thus, we can apply the bound (3)
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with η= log σ̂ = logσ − logf , to obtain

inf
w∈Pp((r,s))

‖v−w‖L2((r,s)) = h1/2 inf
ŵ∈Pp(I )

‖v̂− ŵ‖L2(I )

≤ Ch1/2 1

sinhη
e−ηp max

z∈E(−1,1;σ̂ )
∣∣v̂(z)∣∣

= Ch1/2 1

sinhη
e−ηp max

z∈E(r,s;σ)
∣∣v(z)∣∣. (11)

The Case of an Algebraic Singularity

Let Ω = (0,1). Suppose again that the solution u is real analytic in (0,1] and be-
haves like u(x) = xα for some α > 1/2. Let us consider the subspace of L2(Ω)

defined similarly to (4), i.e.,

Vδ =
{
v ∈ L2(Ω) : v|Kj ∈ Ppj (Kj ), 0≤ j ≤ J}, (12)

where the Kj are defined in (5) with ρ = 1
2 and the pj are to be determined in the

sequel. If vδ denotes any function in Vδ , we split the approximation error as

‖u− vδ‖2
L2(Ω)

=
J∑
j=0

‖uj − vj‖2
L2(Kj )

with uj = u|Kj and vj = vδ|Kj . For j = J , we take as vJ the linear interpolant of
uJ . This yields, with hJ = 2−J ,

‖uJ − vJ ‖2
L2(KJ )

'
∫ hJ

0

(
sα − hα−1

J s
)2
ds ' h2α+1

J ' 2−(2α+1)J .

Consider now any interval Kj with 0 ≤ j < J and set hj = 2−(j+1). We can think
uj as a real analytic function in Kj which can be extended to an analytic function in
any closed ellipse E(ρj+1ρj ;σ) with σ < σj = 3

2hj . Hence, setting σ̂j = σj/fj =
( 3

2hj )/(
1
2hj ) = 3 and ηj = log σ̂j = log 3, we can apply (11) in Kj and find vj ∈

Ppj (Kj ) such that

‖uj − vj‖2
L2(Kj )

≤ Chj e−2ηpj max
z∈E(ρj+1ρj ;σj )

∣∣uj (z)∣∣2

≤ C(u)hj e−2ηpj = C(u)2−(j+1+η∗pj ),

with η∗ = 2(log2 e) η.
Let λ,μ be fixed constants ≥ 0 such that λ+μ= 1. Then,

‖u− vδ‖2
L2(Ω)

≤ C
J−1∑
j=0

2−λj2−(μj+1+η∗pj ) + 2−(2α+1)J .
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Let us enforce that

‖u− vδ‖2
L2(Ω)

≤ C2−2M

for any given M . The bound on the error given above suggests to choose J ∼
2M/(2α + 1) as well as μj + η∗pj ∼ 2M , i.e., pj ∼ (2M − μj)/η∗. With such
choices, it is readily seen that the total number N of activated degrees of freedom
satisfies

N =
J∑
j=0

pj 'M2,

i.e., M '√N . We conclude that the best approximation error satisfies

inf
vδ∈Vδ

‖u− vδ‖L2(Ω) ≤ Ce−b
√
N (13)

for some b > 0, i.e., a bound of the same type as (7). Note that the definition of pj
given above is of the same type as (6).

The best approximation error in the H 1(Ω)-norm can be estimated in a similar
manner.

The Case of a Piecewise-Analytic Function

Assume now that u is a piecewise analytic function in Ω . It is not restrictive to
assume the existence of just one singular point, say xs ∈Ω . Thus, both ul := u|[0,xs ]
and ur := u|[xs ,1] can be extended to analytic functions in a neighborhood of their
intervals of definition in the complex plane.

With the aim of mimiking an adaptive algorithm which detects the position of
the singularity by some error indicator, we consider the approximation procedure
that generates a dyadic partition of Ω by recursively halving the subinterval which
contains the singular point xs . Obviously, if xs itself is a dyadic point, the procedure
stops after a finite number of subdivisions, and we are just required to approximate
by polynomials a finite number of analytic functions over a partitions of Ω ; then, it
is enough to apply (11) to each of them. If xs is not a dyadic point, then at iteration
J ≥ 0 of the recursive algorithm we have a partition of the domain into J + 1 subin-
tervals Kj , such that hj := |Kj | = 2−j for 0≤ j ≤ J , and such that KJ is the only
interval containing xs . Let us set uj := u|Kj .

If uJ is of class C� In the interval KJ , for some � ≥ −1 (�= −1 meaning that
uJ has a jump at xs ), then we can find a polynomial vJ of degree �+ 1 such that

‖uJ − vJ ‖2
L2(KJ )

' h2�+3
J ' 2−(2�+3)J .

On the other hand, in any interval Kj with 0≤ j < J , uj is a real analytic function
which can be extended to an analytic function in some closed ellipse E(rj , sj ;σj )
where Kj = [rj , sj ] and σj ' 1 depending on the size of the ellipse of analyticity of
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either ul or ur . In view of applying (11) inKj we observe that fj = hj/2= 2−(j+1),
so that ηj = log(σj /fj )' a + bj and sinhηj ∼ 1

2 eηj ' 2j . Hence,

‖uj − vj‖2
L2(Kj )

≤ Chj e−2ηjpj max
z∈E(rj ,sj ;σj )

∣∣uj (z)∣∣2

≤ C(u)2−3j e−2(a+bj)pj = C(u)2−(3j+(a∗+b∗j)pj )

with a∗ = a log2 e and b∗ = b log2 e. Summing-up, we obtain

‖u− vδ‖2
L2(Ω)

≤ C
J−1∑
j=0

2−j2−(2j+(a∗+b∗j)pj ) + 2−(2�+3)J .

Let us enforce that

‖u− vδ‖2
L2(Ω)

≤ C2−2M

for any given M . The bound on the error given above suggests to choose J ∼
2M/(2�+ 3) as well as 2j + (a∗ + b∗j)pj ∼ 2M , i.e., pj ∼ 2(M − j)/(a∗ + b∗j).
With such choices, it is readily seen that the total number N of activated degrees of
freedom satisfies

N =
J∑
j=0

pj '
J−1∑
j=0

M − j
a∗ + b∗j 'M logJ 'M logM,

i.e., M ' φ(N), where x = φ(y) is the inverse function of y = x logx for x ≥ 1.
We conclude that the best approximation error satisfies

inf
vδ∈Vδ

‖u− vδ‖L2(Ω) ≤ Ce−bφ(N) (14)

for some b > 0. The result indicates that the behavior of the best approximation
error in the presence of piecewise analyticity is only marginally worse than the one
in the case of full analyticity, see (7).

Again, the best approximation error in the H 1(Ω)-norm can be estimated in a
similar manner.

3 hp Adaptivity

Over the last few decades, adaptive algorithms have become a standard technique
for solving partial differential equations via the finite element method. The general
form of an adaptive algorithm can be stated as follows:

· · · → SOLVE→ ESTIMATE→ MARK→ ENRICH→ SOLVE→ ·· · .
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Generally speaking, the algorithm starts computing the discrete solution (SOLVE)
employing a low-dimensional approximation space. Thereafter, in order to improve
the accuracy of the approximation, an error indicator is employed (ESTIMATE) to
obtain information about the error distribution. Based on this error distribution, a
set of elements are flagged (MARK) to be enriched and a suitable enrichment of the
approximation space is chosen (ENRICH). A new approximation of higher accuracy
is computed and a new adaptive iteration is performed in case the approximation is
not sufficiently accurate. In the adaptive h-FEM, the enrichment of the finite ele-
ment space is simply done by subdividing into smaller elements all those elements
with a large error indicator. However, in the hp-FEM one has the option to split an
element or to increase its approximation order. Thus, as already pointed out, a main
difficulty in hp-adaptivity is to decide whether to increase the approximation order
p or to split an element whose error is large. The importance of making the correct
decisions is highlighted by the a priori results mentioned in Sect. 2, from which it is
evident that for a large class of problems an exponential rate of convergence can be
achieved if the mesh and the polynomial degree distribution are chosen suitably.

Although considerable progress has been made in the context of adaptive h-FEM
on both the a posteriori error analysis and the theoretical and computational assess-
ment of the convergence properties of the adaptive refinement strategies (see, e.g.,
[43] for a comprehensive introduction), in contrast the theory of adaptive hp-FEM
is far less advanced. Below we provide a brief review of existing a-posteriori hp
error estimates (Sect. 3.1) and hp adaptive methods (Sect. 3.2).

3.1 A-Posteriori hp Error Estimates

In the hp framework, similarly to the case of h-FEM, error indicators can be subdi-
vided into the following categories:

• Estimators based on the (approximate) solution of suitably defined local prob-
lems. This includes [1–4, 44]. The estimators of [1–4] are based on solving lo-
cal problems with Neumann type boundary conditions; a forerunner of this ap-
proach is [44]. Additionally, [44] discusses in detail other techniques known from
h-FEM that can be extended to the hp-context such as solving local Dirichlet
problems on patches, employing duality theory from convex optimization to de-
rive upper and lower bounds of the local errors and employing various interpola-
tion/postprocessing techniques to obtain more accurate approximations.

At this point, we also mention the equilibrated residual estimators introduced
in [10]. Although the method of [10] uses equilibrated fluxes, it differs from esti-
mators via local Neumann problems as the estimators are obtained by the hyper-
circle method.

• Residual based a-posteriori error estimators. In the pioneering work [8], a pos-
teriori error indicators of residual type have been considered. However, the two-
dimensional analysis of [8] is restricted to meshes consisting of axiparallel rect-
angles. In [40] the results of [8] are extended to meshes containing quadrilaterals
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and triangles and a family ηα , α ∈ [0,1], of error indicators given by weighted
residuals on the elements and on the edges is introduced. It is shown that η0 is
reliable. As in [8], the reason for considering a family of indicators is that simul-
taneous reliability and efficiency cannot be proved for any fixed α ∈ [0,1] due
to the poor p-dependence of polynomial inverse estimates. For a related residual
based a posteriori error estimate in one dimension, see also [47].

• Estimators based on more accurate approximate solutions of the global problem.
This approach is based on the following steps: (1) a reference (finer) solution
is computed by performing a global hp-refinement, i.e., breaking each element
isotropically and enriching the polynomial order of approximation by one; (2) an
error indicator is built by computing (and localizing) a suitable projection-based
interpolation error of the reference solution. Roughly speaking, the indicator is
computed by projecting the reference solution onto a finite element space em-
ploying the original mesh, but with a local polynomial degree incremented by
one, as well as on a sequence of finite element spaces corresponding to a local
h-refinement of the element that results in the same increase in the number of
degrees of freedom as the p-enrichment. This approach has been introduced in
[23] and further developed in [38].

Finally, we refer to [35] for goal-oriented hp-type error estimators.

3.2 Adaptive hp Methods

Classical h adaptive finite element methods simply subdivide elements where the
local error indicator is large, while keeping the polynomial degree fixed (at some
low value). In general, this may not be the most efficient strategy in terms of error
reduction per unit cost. For example, if the analytical solution to the underlying
partial differential equation is smooth, or at least locally smooth, an enrichment of
the polynomial degree (p-refinement) may be much more effective in reducing the
local error per unit cost than a simple element subdivision (h-refinement). Generally
speaking, a local p-refinement is expected to be more efficient on elements where
the solution is smooth, while local h-refinement is preferable for regions where the
solution is not smooth.

In the following we will briefly review existing hp adaptive strategies. In particu-
lar, we will highlight the mechanism driving the choice between h or p refinement.

1. Optimization strategy based on reference solution. In this strategy a reference
solution is computed on a finer finite element space, which is obtained by uni-
formly refining all the elements and globally incrementing the polynomial degree
by one. Then, on each element in the coarser finite element mesh, the projection-
based interpolation error of the reference solution is computed (see in the previ-
ous subsection the description of the estimators based on more accurate approxi-
mate solutions of the global problem). The optimal refinement of each element is
then chosen to be the one which leads to the smallest projection-based interpola-
tion error; elements in the mesh are then refined based on those that will lead to
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the greatest decrease in the projection error per degree of freedom. This strategy
was first introduced by [22, 44, 46]; see also [23] for more recent work.

2. Relative size of the error estimators. In this strategy (originally introduced in
[31]) it is assumed the existence of a local error indicator ηK(uh,p,hK,pK)
which depends on the element K , the approximate solution uh,p , the local mesh-
size hK and the local polynomial degree pK . Then, the choice between h and
p refinement is based on the ratio rK = ηK(uh,pK ,hK,pK)/ηK(uh,pK−1, hK,

pK − 1). In particular, if ck ≤ γ , 0 < γ < 1 then p-enrichment should be per-
formed as the error decreases when the polynomial degree is raised. On the other
hand, if cK > γ then the element K is subdivided.

3. Comparison of estimated and predicted error. This strategy has been proposed
in [40] (see also [27]) where the decision whether to subdivide an element or
to increase its polynomial degree depends on the refinement history of the ele-
ment. In particular, it is introduced a predicted local error indicator ηpred

K which
can be viewed as a simple extrapolation of the error indicators computed during
the previous refinement steps under the assumption that the solution is (locally)
smooth. If the computed error indicator (which reflects the actual error) is larger
than the predicted one, then an h-refinement is performed since the assumption
of (local) smoothness, under which the computation of the predicted indicator is
performed, is false. Conversely, if the indicated error is smaller than the predicted
one, then p-refinement is performed.

4. Analyticity check by estimating the decay rate of expansion coefficients. In [21],
the authors propose to determine whether the solution is locally smooth or non-
smooth by calculating the decay rate of the Legendre expansion coefficients of
the solution; this is performed by a least-squares best fit. More recently, a strategy
has been developed in [37] for estimating the size of the Bernstein ellipse of the
solution, thereby determining whether the solution is analytic. In the case when
it is not analytic, a second strategy, based on the work developed in [36], seeks
to directly compute the local Sobolev index of the solution.

5. Local regularity estimation. This strategy, first proposed in [4], relies on estimat-
ing in each element K the local Sobolev regularity index mk , by using a local
error indicator which is computed by solving a series of local problems with
different polynomial degrees. The local Sobolev regularity is then employed to
perform h or p refinement. In particular, if pK + 1 ≤ mK , where pK denotes
the current local polynomial order, then p-refinement is performed in K , oth-
erwise h-refinement is selected. This latter criterium relies on two ingredients:
(i) the following hp a-priori error estimate on quasi-uniform mesh of size h and
elements of uniform polynomial degree p:

‖u− uhp‖H 1(Ω) ≤ Chμp−(m−1)‖u‖Hm(Ω)

where μ=min(p,m− 1) and u ∈Hm(Ω), and (ii) the idea that if the regularity
of the solution is such that the rate of convergence of the h-type finite element
method with elements of fixed degree p turns out to be sub-optimal, then an
h refinement is needed. Recently, related ideas have been exploited in [26, 47]
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where the residual, instead of the error, has been employed to choose between
p enrichment or h refinement. More recently, an approach based on the Sobolev
embedding of H 1 into an appropriate Lp space has been proposed for the one-
dimension case in [54].

6. “Texas Three step”. This strategy was first introduced [45] and is based on a
three-step scheme where only three solutions of the problem are needed. First,
the initial mesh details as well as intermediate and final error tolerances are spec-
ified and the problem is solved. Then, the h-refinements take place in order to
guarantee that the (intermediate) error (measured in some appropriate norm) is
less than the intermediate tolerance. In the final third step, the mesh is kept fixed
and the p-refinements are carried out to achieve the final error tolerance. For
related work, we refer, e.g., to [53] and the references cited therein.

At last, we mention that a thorough comparison among various hp adaptive
strategies has been recently accomplished in [41]. Algorithms have been tested
on different kinds of representative solutions (analytic solution, corner singularity,
peak, boundary layer, wavefront, and so on) and their performance has been evalu-
ated according to different measures of efficiency, such as the number of activated
degrees of freedom or the computational time. None of the considered strategies
has emerged as the best one in all situations, although some strategies perform bet-
ter than the others for specific kinds of solutions.

3.3 Convergence of Adaptive Spectral/hp Methods

The theory of h adaptive finite element (AFEM) schemes for elliptic problems is
quite satisfactory: it started with the convergence results of [25] and [42]; the first
optimality result was derived in [9] for d = 2 and extended by [51] to any d . The
most comprehensive results for AFEM are contained in [16] for any d and L2 data,
and [18] for d = 2 and H−1 data; we refer to the survey [43]. In contrast, very little
is known on convergence and optimality properties of adaptive hp methods. The first
pioneering result goes back to [31] where an adaptive hp algorithm (see Sect. 3.2
for the description) is proven to be convergent, with a predicted rate. However, due
to the assumptions on the admissible error estimators which appear to be overly
restrictive, the results in [31] cannot be considered completely satisfactory. Only
after two decades, in [26] a contraction result of the form

‖u− un+1‖H 1 ≤ μ‖u− un‖H 1, μ < 1,

has been proven, where un and un+1 are the coarse and the enriched discrete so-
lutions built by an adaptive hp algorithm approximating a one dimensional elliptic
problem. More recently, the convergence result of [26] has been extended to higher
dimensions in [11]. In this respect, it is also worth mentioning the result in [47]
where an estimation (from above and below) of the error between the actual dis-
crete solution and its (h or p) enriched version is presented. However, to the best of
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the authors’ knowledge, there are no optimality results for hp adaptive algorithms:
this is still a completely open issue.

4 Spectral Adaptive Algorithms with Optimality Properties

Inspired by the analysis performed in the wavelet framework by [17, 29, 52] and in
the finite element framework by [9, 16, 25, 42, 43, 51], the present authors in col-
laboration with Ricardo H. Nochetto have recently initiated the study of the conver-
gence and complexity properties of adaptive Fourier Galerkin methods in arbitrary
d-dimension [14], and of adaptive Legendre-Galerkin methods in one-dimension
[15]. Hereafter, we present a short account of the latter results, which incorporates
their extension to the case of discretizations by spectral elements.

We consider the elliptic problem in Ω = (a, b)
{
Au=−D · (νDu)+ σu= f in Ω,

u(a)= u(b)= 0,
(15)

where ν and σ are sufficiently smooth real coefficients satisfying 0 < ν∗ ≤ ν(x) ≤
ν∗ <∞ and 0< σ∗ ≤ σ(x)≤ σ ∗ <∞ in Ω ; let us set

α∗ =min(ν∗, σ∗) and α∗ =max
(
ν∗, σ ∗

)
.

We formulate this problem variationally as

u ∈ V :=H 1
0 (Ω) : a(u, v)= 〈f, v〉 ∀v ∈H 1

0 (Ω), (16)

where a(u, v)= ∫
Ω
νDuDv + ∫

Ω
σuv. We denote by |||v||| = √a(v, v) the energy

norm of any v ∈H 1
0 (Ω), which satisfies

√
α∗‖v‖ ≤ |||v||| ≤

√
α∗‖v‖. (17)

Our error estimators will be of residual type. Therefore, for any w belonging
to some finite dimensional subspace VΛ of H 1

0 (Ω), we define the residual r(w)=
f −Aw ∈H−1(Ω). Then, by the continuity and coercivity of the bilinear form a,
one has

1

α∗
∥∥r(w)∥∥≤ ‖u−w‖ ≤ 1

α∗
∥∥r(w)∥∥, (18)

or, equivalently,

1√
α∗
∥∥r(w)∥∥≤ |||u−w||| ≤ 1√

α∗
∥∥r(w)∥∥. (19)
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4.1 Bases and Norm Representations

Form now on, we assume that the coefficients and data of the problem are piecewise
analytic on a finite partition T = {K} of Ω . Let us introduce the subspace of H 1

0 (Ω)

of the piecewise linear functions on T, i.e.,

VL(T)=
{
v ∈H 1

0 (Ω)
∣∣ v|K ∈ P1(K) ∀K ∈ T

};
then,

V :=H 1
0 (Ω)= VL(T)⊕

⊕
K∈T

H 1
0 (K),

where, for convenience, we assume that functions in H 1
0 (K) are extended by 0 out-

side the interval K ; indeed, for any v ∈ V , we have

v = vL +
∑
K∈T

vK,

where vL ∈ VL(T) is the piecewise linear interpolant of v on T and vK = (v −
vL)|K ∈H 1

0 (K). Since

(vL, vK)H 1
0 (Ω)

=
∫
K

v′L(v − vL)′ = v′L|K
∫
K

(v− vL)′ = 0 and

(vK, vK ′)H 1
0 (Ω)

= 0 if K �=K ′,

we have

‖v‖2
H 1

0 (Ω)
= ‖vL‖2

H 1
0 (Ω)

+
∑
K∈T

‖vK‖2
H 1

0 (K)
.

Given any F ∈ V ′ = H−1(Ω), let FL ∈ VL(T)′ denote the restriction of F to
VL(T); similarly, for each K ∈ T, let FK ∈H−1(K) denote the restriction of F to
H 1

0 (K). Then,

〈F,v〉 = 〈FL,vL〉 +
∑
K∈T

〈FK,vK 〉 ∀v ∈ V,

which easily implies

‖F‖2
H−1(Ω)

= ‖FL‖2
VL(T)′ +

∑
K∈T

‖FK‖2
H−1(K)

. (20)

Let us now introduce the Lagrangian basis functions ψq in VL(T) associated with
the internal nodes of the partition, say xq for 1≤ q ≤Q, so that

VL(T)= span{ψq | 1≤ q ≤Q}.
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On the other hand, on the reference element Î = (−1,1), we consider the Babuška-
Shen basis, made of polynomials of strictly increasing degree,

φ̂k(x̂)=
√

2k − 1

2

∫ 1

x̂

Lk−1(s) ds = 1√
4k− 2

(
Lk−2(x̂)−Lk(x̂)

)
k ≥ 2, (21)

where Lk(x̂), k ≥ 0, stands for the k-th Legendre polynomial, which satisfies
degLk = k, Lk(1)= 1 and

∫ 1

−1
Lk(x̂)Lm(x̂)dx̂ = 2

2k+ 1
δkm, m≥ 0.

It is easily seen that the basis functions satisfy

(φ̂k, φ̂m)H 1
0 (Î )

=
∫ 1

−1
φ̂′k(x̂)φ̂′m(x̂)dx̂ = δkm, k,m≥ 2,

i.e., they form an orthonormal system with respect to the H 1
0 (Î )-inner product. Go-

ing back to our partition, for any element K ∈ T of size hK , we can map the refer-
ence element to the element K via an affine transformation x = hKx̂ + c, yielding
the functions

φK,k(x)=
√
hK

2
φ̂k(x̂), k ≥ 2, (22)

which form an orthonormal system with respect to the H 1
0 (K)-inner product.

At this point, we are ready to give a representation of the norms in H 1
0 (Ω) and

H−1(Ω). Precisely, any v ∈H 1
0 (Ω) is expanded as

v =
Q∑
q=1

v̂qψq +
∑
K∈T

∞∑
k=2

v̂K,kφK,k =:
∑
λ∈L

v̂λϕλ,

so that

‖v‖2
H 1

0 (Ω)
=

Q∑
q=1

|v̂q |2 +
∑
K∈T

∞∑
k=2

|v̂K,k|2 =:
∑
λ∈L

|v̂λ|2, (23)

where the new notation on the right-most side has been introduced for subsequent
convenience. Similarly, for any F ∈H−1(Ω), we set

F̂q = 〈F,ψq〉 and F̂K,k = 〈F,φK,k〉,
and we obtain

‖F‖2
H−1(Ω)

=
Q∑
q=1

|F̂q |2 +
∑
K∈T

∞∑
k=2

|F̂K,k|2 =:
∑
λ∈L

|F̂λ|2. (24)
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The formal analogy between (23) and (24) suggests us to use the notation ‖.‖
to indicate both the H 1

0 (Ω)-norm of a function v, or the H−1(Ω)-norm of a linear
form F ; the specific meaning will be clear from the context.

Moreover, given any finite index set Λ⊂ L, we define the subspace of H 1
0 (Ω)

VΛ := span{ϕλ | λ ∈Λ};
we set |Λ| = cardΛ, so that dimVΛ = |Λ|. If g admits an expansion g =∑

λ∈L ĝλϕλ (converging in an appropriate norm), then we define its projection PΛg
onto VΛ by setting

PΛg =
∑
λ∈Λ

ĝλϕλ.

Also note that if r = r(vΛ) is a residual, then its norm is given by

‖r‖2 =
∑
λ∈L

|r̂λ|2, (25)

with r̂λ = 〈f,ϕλ〉 − a(vΛ,ϕλ).

Algebraic Representation and Properties of the Stiffness Matrix

Let us introduce the semi-infinite, symmetric and positive-definite matrix

A= (aλ,μ)λ,μ∈L with aλ,μ = a(ϕμ,ϕλ). (26)

Then, Problem (16) can be equivalently written as

Au= f, (27)

where the vectors u= (ûμ) and f= (f̂λ) collect, respectively, the coefficients of the
solution u=∑μ ûμϕμ of Problem (16), and of the right-hand side f .

For any element K ∈ T, let us denote by AK the square block of A associated
with the basis functions {φK,n} in K , i.e.,

AK = (aλ,μ)λ,μ∈L(K) where L(K)= {λ ∈ L : λ= (K, k) for some k ≥ 2
}
.

For convenience, let us write k = k(λ).
Let us assume that the restrictions to any K ∈ T of the coefficients ν and σ of the

differential operator in (16) are analytic functions, so that their (scaled) Legendre
coefficients in K decay at an exponential rate. Then, one can prove the existence of
strictly positive constants ηA and cA such that

|aλ,μ| ≤ cAe−ηA|k(λ)−k(μ)| ∀λ,μ ∈ L(K). (28)

We say that any AK belongs to the exponential class De(ηA, cA). Note that it is not
restrictive to assume ηA and cA independent of K , since the partition T has been
fixed once and for all.
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The following properties hold (see [14, 15]).

Proposition 4.1 Assume that the constant cA satisfying (28) is such that for each
K ∈ T

cA <
1

2

(
eηA − 1

)
min

λ∈L(K) aλ,λ. (29)

Then each AK is invertible and A−1
K ∈ De(η̄A, c̄A) for some η̄A ∈ (0, ηA] and

c̄A > 0.

Proposition 4.2 For any K ∈ T and any integer J ≥ 0, the truncated matrices
(AK)J such that

(
(AK)J

)
λ,μ

=
{
aλ,μ if |k(λ)− k(μ)| ≤ J,
0 elsewhere,

(30)

satisfy the inequalities ∥∥AK − (AK)J
∥∥≤ CAe−ηAJ

for some constant CA > 0. Furthermore, under the assumptions of Proposition 4.1,
there exists a constant C̄A > 0 such that

∥∥A−1
K − (A−1

K

)
J

∥∥≤ C̄Ae−η̄AJ . (31)

4.2 The Constitutive Elements of an Adaptive Algorithm

We are going to present an adaptive algorithm which implements the following re-
cursion: (i) compute a Galerkin approximation of the exact solution; (ii) compute
the corresponding residual, actually a feasible (finite-dimensional) version of it, so
that its norm can be taken as an error estimator; (iii) apply Dörfler’s marking, also
known as bulk-chasing, to the components of the residual in order to identify a set
of new basis functions to be activated for the next Galerkin solve; (iv) expand this
set using properties of the stiffness matrix of the problem; (v) compute the new
Galerkin solution on the enriched finite-dimensional subspace; (vi) get rid of the
negligible components of this solution by applying a coarsening procedure.

We anticipate that step (iv) guarantees an arbitrarily large error reduction,
whereas step (vi) assures a quasi-optimal complexity count.

We us now introduce the specific procedures, which will enter the definition of
our adaptive algorithm.

• uΛ :=GAL(Λ)
Given a finite subsetΛ⊂ L, the output uΛ ∈ VΛ is the solution of the Galerkin

problem,

uΛ ∈ VΛ : a(uΛ,vΛ)= 〈f, vΛ〉 ∀vΛ ∈ VΛ. (32)
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• r :=RES(vΛ)
Given a function vΛ ∈ VΛ for some finite index set Λ, the output r is, in an

ideal algorithm, the residual r(vΛ)= f −AvΛ. In a feasible version, the output,
say r̃ is a function with a finite expansion along the chosen basis, obtained by
suitably approximating the right-hand side f and the image AvΛ; it satisfies the
inequality

‖r − r̃‖ ≤ γ ‖r̃‖
for some fixed constant γ ∈ (0,1). In the following, we restrict ourselves to the
ideal case where the residual is assumed to be computed exactly.

• Λ∗ :=DÖRFLER(r, θ)
Given θ ∈ (0,1) and an element r ∈H−1(I ), the output Λ∗ ⊂ L is a finite set

of minimal cardinality such that the inequality

‖PΛ∗r‖ ≥ θ‖r‖ , (33)

or equivalently

‖r − PΛ∗r‖ ≤
√

1− θ2‖r‖, (34)

is satisfied. In terms of expansion coefficients, condition (33) can be equivalently
stated as ∑

λ∈Λ∗
|r̂λ|2 ≥ θ2

∑
λ∈L

|r̂λ|2. (35)

Thus, the output set Λ∗ of minimal cardinality can be immediately determined
by a greedy algorithm, i.e., by rearranging the coefficients r̂λ in non-increasing
order of modulus and retaining the largest ones until (35) is fulfilled.

• Λ∗ := ENRICH(Λ,J )
Given an integer J ≥ 0 and a finite set Λ⊂ L, the output is the set

Λ∗ := {μ= (K, k) ∈ L : there exists λ= (K,k′) ∈Λ such that
∣∣k − k′∣∣≤ J}.

Note that Λ is enriched element-by-element with respect to the fixed partition
T = {K} of Ω .

• Λ∗ := E-DÖRFLER(r, θ)
The two previous procedures are combined as follows. Given θ ∈ (0,1) and

an element r ∈H−1(I ), the output Λ∗ ⊂ L is defined by the sequence

Λ̃ :=DÖRFLER(r, θ)

Λ∗ :=ENRICH(Λ̃, Jθ ),
(36)

where, based on Proposition 4.2, Jθ is chosen as the smallest integer which satis-
fies

C̄Ae−η̄AJ ≤
√

1− θ2

α∗α∗
(37)

(see [15] for more details).
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• Λ :=COARSE(w, ε)
Given a function w ∈ VΛ∗ for some finite index set Λ∗, and an accuracy ε > 0

which is known to satisfy ‖u− w‖ ≤ ε, the output Λ ⊆ Λ∗ is a set of minimal
cardinality such that

‖w− PΛw‖ ≤ 2ε, (38)

which obviously implies ‖u− PΛw‖ ≤ 3ε.

4.3 An Adaptive Algorithm with Convergence Rate

We are ready to present our adaptive algorithm. Each iteration can be viewed as a
prediction step, based on the inspection of the current residual and the application
of (enriched) Dörfler marking, followed by a correction step, based on coarsening.
For this reason, we call it PC-ADLEG—Predictor-Corrector ADaptive LEGendre
algorithm.

Given two parameters θ ∈ (0,1) and tol ∈ [0,1), let us define
Algorithm PC-ADLEG(θ, tol)
Set r0 := f , Λ0 := ∅, n=−1
do
n← n+ 1
∂̂Λn := E-DÖRFLER(rn, θ)
Λ̂n+1 :=Λn ∪ ∂̂Λn

ûn+1 :=GAL(Λ̂n)

Λn+1 :=COARSE(̂un+1,
2
α∗
√

1− θ2‖rn‖)
un+1 :=GAL(Λn+1)

rn+1 :=RES(un+1)

while ‖rn+1‖> tol

The following convergence result can be proven, by adapting the arguments given
in [15] for the single-element case.

Theorem 4.1 Let 0< θ < 1 be chosen so that

ρ = ρ(θ)= 6
α∗

α∗

√
1− θ2 < 1. (39)

If the assumptions of Proposition 4.1 are fulfilled, the sequence of errors u − un
generated for n≥ 0 by the algorithm satisfies the inequality

|||u− un+1||| ≤ ρ|||u− un||| .
Thus, for any tol > 0 the algorithm terminates in a finite number of iterations,
whereas for tol= 0 the sequence un converges to u in H 1(I ) as n→∞.



Adaptive Spectral/hp Methods for Elliptic Problems 185

Note that the rate of decay of the error can be brought as close to 0 as desired
by choosing θ close enough to 1. This is a feature stemming from the Enrichment
procedure, keeping into account the decay properties of the inverse of the stiffness
matrices AK , K ∈ T.

4.4 Nonlinear Approximation in Gevrey Spaces

In order to estimate the complexity of our algorithm, and evaluate its optimality, we
have to make assumptions on the structure of the solution u. Precisely, we have to
make assumptions on the minimal number of degrees of freedom (i.e., active basis
functions) needed to build an approximation of u within a given tolerance. This is
usually expressed as the condition that u belongs to a suitable sparsity class. Once
this is done, we can compare the number of degrees of freedom activated by our
algorithm at a certain iteration (actually, an estimate of this number) to the minimal
number of degrees of freedom needed to obtain the same accuracy; optimality usu-
ally means that the two numbers are within a constant independent of the solution
and the current iteration.

Sparsity classes typically involved in finite-order approximations such as
wavelets or h-type finite elements describe an algebraic decay of the best approx-
imation error vs the number of activated degrees of freedom. Hereafter, we will
rather consider sparsity classes describing an exponential decay of that error; this
choice is coherent with the nature of our discretization approach, which uses an
infinite-order spectral-element method, or p-type finite element method, hence pro-
viding faster-than-algebraic decay of the error whenever the solution is piecewise
smooth on the partition T of the domain.

The definition of sparsity class is based on the concept of best N -term approx-
imation error, that we now recall. Given any nonempty finite index set Λ⊂ L and
the corresponding subspace VΛ ⊂ V of dimension |Λ| = cardΛ, the best approx-
imation of v in VΛ is the orthogonal projection of v upon VΛ, i.e. the function
PΛv =∑λ∈Λ v̂λϕλ, which satisfies

‖v− PΛv‖ =
(∑
λ/∈Λ

|v̂λ|2
)1/2

.

For any integer N ≥ 1, we minimize this error over all possible choices of Λ with
cardinality N , thereby leading to the best N -term approximation error

EN(v)= inf
Λ⊂L,|Λ|=N ‖v− PΛv‖.

A way to construct a best N -term approximation vN of v consists of rearranging the
coefficients of v in decreasing order of modulus

|v̂λ1 | ≥ · · · ≥ |v̂λn | ≥ |v̂λn+1 | ≥ · · ·
and setting vN = PΛN v with ΛN = {λn : 1≤ n≤N}.
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We are ready to give the following fundamental definition.

Definition 4.1 Given two real numbers η > 0 and t ∈ (0,1], we denote by
A
η,t
G (Ω,T) the set defined as

A
η,t
G (Ω,T) :=

{
v ∈ V =H 1

0 (Ω) : ‖v‖Aη,t
G (Ω,T)

:= sup
N≥0

EN(v)e
ηNt

<+∞
}
.

As shown in [14], the set Aη,t
G (Ω,T) is not a vector space, since it may happen

that u, v belong to this set, whereas u + v does not; however, one can show that
u+ v ∈A

η̄,t
G (Ω,T) with η̄= 2−t η.

The quantity ‖v‖
A
η,t
G (Ω,T)

dictates the minimal number Nε of basis functions

needed to approximate v with accuracy ε. In fact, from the relations

ENε(v)≤ ε < ENε−1(v)≤ e−η(Nε−1)t ‖v‖
A
η,t
G (Ω,T)

, (40)

we obtain

Nε ≤ 1

η1/t

(
log

‖v‖
A
η,t
G (Ω,T)

ε

)1/t

+ 1. (41)

In order to motivate our definition, let us first assume that T = {Ω}, i.e., let us
concentrate on a single element. Then, inspired by [7], one can introduce the fol-
lowing family of spaces of Gevrey type: given any v ∈ V , let v =∑k≥2 v̂kφk be its
expansion along the Babuška-Shen basis defined as in (22) relative to the intervalΩ .
Then, we set

Aη,t (Ω)= {v ∈ V : there exists a constant C > 0 such that |v̂k| ≤ Ce−ηkt ∀k ≥ 2
}
.

It is well-known that for t = 1 we get analytic functions in a neighborhood of Ω .
A slightly stronger family of spaces is represented by the Sobolev-Gevrey spaces
(see [28]; see also [39]) defined as

Gη,t (Ω)=
{
v ∈ V : ‖v‖2

Gη,t (Ω) :=
∞∑
k=2

e2ηkt |v̂k|2 <+∞
}
. (42)

We immediately observe that Gη,t (Ω) ⊂ Aη,t (Ω). Furthermore, given any v ∈
Gη,t (Ω) and approximating it by the linear projection

PNv =
N∑
k=2

v̂kφk,

we immediately get

EN(v)≤ ‖v− PNv‖ ≤ e−ηNt ‖v‖Gη,t (Ω),
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which implies Gη,t (Ω)⊂A
η,t
G (Ω,T). Thus, the latter space contains, in particular,

analytic functions and Gevrey functions.
Let us now consider an arbitrary finite partition T of Ω . For any K ∈ T, let

v ∈H 1
0 (K); its best N -term approximation error in K is defined as

EK,N(v) := inf
Λ⊂L(K),|Λ|=N ‖v− PΛv‖H 1

0 (K)
.

Consequently, we can define the class Aη,t
G (K) by setting

A
η,t
G (K) :=

{
v ∈H 1

0 (K) : ‖v‖Aη,t
G (K)

:= sup
N≥0

EK,N(v)e
ηNt

<+∞
}
.

Given any v ∈ H 1
0 (Ω), denote by vL ∈ VL(T) its piecewise linear interpolant,

and set ṽ = v − vL, so that ṽ|K ∈ H 1
0 (K) for all K ∈ T. Now, assume that

v ∈A
η,t
G (Ω,T), and let w be a best N -term approximation of v, i.e., a linear com-

bination of at most N basis functions (we will write | suppw| ≤N ) such that

‖v−w‖ ≤ e−ηNt ‖v‖
A
η,t
G (Ω,T)

.

Writing v − w = (v − vL)− (w − wL)+ (vL − wL) = ṽ − w̃ + zL and using the
orthogonality of the basis functions, we have

‖v−w‖2 = ‖ṽ− w̃+ zL‖2 ≥ ‖ṽ− w̃‖2 =
∑
K∈T

‖ṽK − w̃K‖2
H 1

0 (K)
,

where the appended K denotes restriction of a function to K ; thus,

‖ṽK − w̃K‖H 1
0 (K)

≤ e−ηNt ‖v‖
A
η,t
G (Ω,T)

∀K ∈ T

and since | suppwK | ≤ | suppw| ≤N , we deduce that ṽK ∈A
η,t
G (K) for all K ∈ T.

On the other hand, let v ∈ H 1
0 (Ω) be such that ṽ|K ∈ A

η̃,t
G (K) for all K ∈ T,

for some η̃ > 0 to be determined later on. Then, there exist a constant C > 0 and
functions w̃K ∈H 1

0 (K) with | supp w̃K | ≤N such that

‖ṽK − w̃K‖H 1
0 (K)

≤ Ce−ηNt ∀K ∈ T.

Denoting by w̃ the function in Ω which coincides with w̃K in each K , and setting
w = vL + w̃, we have

‖v−w‖2 = ‖ṽ− w̃‖2 =
∑
K∈T

‖ṽK − w̃K‖2
H 1

0 (K)
≤ (Q+ 1)C2e−2η̃Nt

.

Now, observe that |suppw| = |suppvI | +∑K∈T |supp w̃K | ≤ Q + (Q + 1)N ≤
(Q + 2)N . Choosing η̃ = (Q + 2)tη and letting N →∞, we conclude that v ∈
A
η,t
G (Ω,T).
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4.5 Complexity Analysis of the Algorithm

We are now ready to investigate complexity issues for the sequence of approxima-
tions un = uΛn generated by PC-ADLEG, under the assumption that the solution u
belongs to a class Aη,t

G (Ω,T) for some η > 0 and t ∈ (0,1].
At first we note that each set Λn+1 of the active degrees of freedom produced by

the algorithm is generated by the procedure COARSE with a suitable tolerance εn.
A general result about coarsening (see, e.g., [52]) allows us to estimate its cardinality
|Λn+1| =Nεn according to (41). On the other hand, one can prove that ‖u−un+1‖�
εn. Thus, we obtain the following optimal result.

Theorem 4.2 Suppose that u ∈ A
η,t
G , for some η > 0 and t ∈ (0,1]. Then, there

exists a constant C > 1 such that the cardinality of the setΛn+1 of the active degrees
of freedom produced by PC-ADLEG satisfies the bound

|Λn+1| ≤ 1

η1/t

(
log

‖u‖
A
η,t
G

‖u− un+1‖ + logC

)1/t

+ 1, ∀n≥ 0.

Next, we focus on the cardinality of the intermediate set Λ̂n+1, which depends
on that of the incremental set ∂̂Λn+1; in turns, this can be bounded by 2Jθ times the
cardinality of the incremental set ∂̃Λn+1 generated by DÖRFLER with residual rn.
Although under certain assumptions on θ it is possible to estimate such cardinality
in terms of the sparsity class of the solution (see [52]), in the most general situation
as the one we want to consider here, it is the sparsity class of the residual that
influences the growth of degrees of freedom. Indeed, we recall that the step

∂Λ :=DÖRFLER(r, θ)

selects a set ∂Λ of minimal cardinality in L \ Λ for which ‖r − P∂Λr‖ ≤√
1− θ2‖r‖. In other words, it performs a best approximation of the residual for the

accuracy ε =√1− θ2‖r‖. Thus, if r belongs to a certain sparsity class Aη̄,t̄
G (Ω,T)

for some η̄ > 0 and t̄ > 0, we have by (41)

|∂Λ| ≤ 1

η̄1/t̄

(
log

‖r‖
A
η̄,t̄
G√

1− θ2‖r‖
)1/t̄

+ 1. (43)

Thus, it make sense to investigate the sparsity class of the residual. In a sparsity
class of algebraic type, this is the same as the class of the solution (see again [52]).
Unfortunately, in a sparsity class of exponential type such a property does not hold
[14], and we have to expect the generic residual to be less sparse than the exact
solution.

The best result we can expect is as follows.
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Proposition 4.3 Let v ∈ A
η,t
G (Ω,T) for some η > 0 and t ∈ (0,1]. Assume that

η < ηA, where ηA is the constant for which (28) holds. Let us set

η̄= ζ(t)η, t̄ = t

1+ t ,

where we define

ζ(t) :=
(

1+ t
2

) t
1+t ∀0< t ≤ 1. (44)

Then, one has Av ∈A
η̄,t̄
G (Ω,T), with

‖Av‖
A
η̄,t̄
G (Ω,T)

� ‖v‖
A
η,t
G (Ω,T)

. (45)

Under the sparsity assumption on the solution u made in the previous theorem,

this implies that f = Au ∈ A
η̄,t̄
G (Ω,T). On the other hand, it is possible to prove

that any Galerkin solution produced by PC-ADLEG satisfies ‖un‖Aη,t
G (Ω,T)

�
‖u‖

A
η,t
G (Ω,T)

, so that Aun ∈A
η̄,t̄
G (Ω,T). Keeping into account the remark after Def-

inition 4.1, we obtain the following result.

Proposition 4.4 Let u ∈ A
η,t
G (Ω,T) for some η > 0 and t ∈ (0,1]. There exists

η̃ ≤ η such that rn = r(un) ∈A
η̃,t̄
G (Ω,T) with

‖rn‖Aη̃,t̄
G (Ω,T)

� ‖u‖
A
η,t
G (Ω,T)

.

Using (43), we arrive at the following final estimate.

Theorem 4.3 Suppose that u ∈A
η,t
G (Ω,T) for some η > 0 and t ∈ (0,1] and that

the assumptions of Proposition 4.1 are satisfied. Then, there exist positive constants
η̃ ≤ η, t̄ ≤ t and C such that the cardinality of the intermediate sets Λ̂n+1 activated
in the predictor step of PC-ADLEG can be estimated as

|Λ̂n+1| ≤ |Λn| + 2Jθ
η̃1/t̄

(
log

‖u‖
A
η,t
G

‖u− un+1‖ + logC

)1/t̄

+ 2Jθ , ∀n≥ 0.

Keeping into account the conditions on η̃ and t̄ , we expect the cardinality of
|Λ̂n+1| to be asymptotically larger than the optimal one of |Λn+1|, estimated in
Theorem 4.2. Precisely for this reason, a coarsening step has been added at the end
of each adaptive iteration: coarsening brings complexity from the one dictated by the
sparsity class of the residual back to the one associated with the exact solution. On
the other hand, we consider such intermediate loss of optimality to be worth of being
accepted, since it should be compensated by the fast convergence of our algorithm,
guaranteed by the allowed aggressive policy of degree of freedom enrichment.
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We mention that the sparsity class of the residual influences complexity even in
other instances of the algorithm, not discussed here. For instance, this is the case
when a feasible computation of the residual-based error estimator is considered: to
avoid degradation of the contraction property of the algorithm, approximate finite-
dimensional residuals should be sufficiently close to the exact ones, which can be
obtained with a complexity related to the sparseness of the residuals themselves. We
refer to [14] for more details.
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A Theory and Challenges for Coarsening
in Microstructure

Katayun Barmak, Eva Eggeling, Maria Emelianenko, Yekaterina Epshteyn,
David Kinderlehrer, Richard Sharp, and Shlomo Ta’asan

Abstract Cellular networks are ubiquitous in nature. Most engineered materials are
polycrystalline microstructures composed of a myriad of small grains separated by
grain boundaries, thus comprising cellular networks. The grain boundary character
distribution (GBCD) is an empirical distribution of the relative length (in 2D) or
area (in 3D) of interface with a given lattice misorientation and normal. During
the coarsening, or growth, process, an initially random grain boundary arrangement
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reaches a steady state that is strongly correlated to the interfacial energy density. In
simulation, if the given energy density depends only on lattice misorientation, then
the steady state GBCD and the energy are related by a Boltzmann distribution. This
is among the simplest non-random distributions, corresponding to independent trials
with respect to the energy. Why does such simplicity emerge from such complexity?

Here we an describe an entropy based theory which suggests that the evolution
of the GBCD satisfies a Fokker-Planck Equation, an equation whose stationary state
is a Boltzmann distribution. The properties of the evolving network that character-
ize the GBCD must be identified and appropriately upscaled or ‘coarse-grained’.
This entails identifying the evolution of the statistic in terms of the recently discov-
ered Monge-Kantorovich-Wasserstein implicit scheme. The undetermined diffusion
coefficient or temperature parameter is found by means of a convex optimization
problem reminiscent of large deviation theory.

1 Introduction

Cellular networks are ubiquitous in nature. They exhibit behavior on many differ-
ent length and time scales and are generally metastable. Most technologically use-
ful materials are polycrystalline microstructures composed of a myriad of small
monocrystalline grains separated by grain boundaries, and thus comprise cellular
networks. The energetics and connectivity of the grain boundary network plays a
crucial role in determining the properties of a material across a wide range of scales.
A central problem is to develop technologies capable of producing an arrangement
of grains that provides for a desired set of material properties. Traditionally the focus
has been on distributions of geometric features, like cell size, and a preferred distri-
bution of grain orientations, termed texture. Attaining these gives the configuration
order in a statistical sense. More recent mesoscale experiment and simulation permit
harvesting large amounts of information about both geometric features and crystal-
lography of the boundary network in material microstructures, [1, 2, 43, 58, 59].
This has led us to the notion of the Grain Boundary Character Distribution.

The grain boundary character distribution (GBCD) is an empirical distribution of
the relative length (in 2D) or area (in 3D) of interface with a given lattice misorien-
tation and grain boundary normal.

A first discovery is that during the growth process, an initially random grain
boundary arrangement reaches a steady state that is strongly correlated to the inter-
facial energy density. In simulation, a stationary GBCD is always found. Moreover
there is consistency between experimental GBCD’s and simulated GBCD’s. The
boundary network of a cellular structure is naturally ordered.

A second discovery is that if the given interfacial energy depends only on lat-
tice misorientation, then the steady state GBCD and the density are related by a
Boltzmann distribution. This is among the simplest non-random distributions, cor-
responding to independent trials with respect to the density. Such straightforward
dependence between the character distribution and the interfacial energy offers evi-
dence that the GBCD is a material property. It is a leading candidate to characterize
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texture of the boundary network [43]. Why does such simplicity emerge from such
complexity?

Here we describe our recent work developing an entropy based theory that sug-
gests that the evolving GBCD satisfies a Fokker-Planck Equation, [13, 14], cf. also
[12, 15], to which we refer for a more complete exposition. Coarsening in poly-
crystalline systems is a complicated process involving details of material structure,
chemistry, arrangement of grains in the configuration, and environment. In this con-
text, we consider just two competing global features, as articulated by C.S. Smith
[60]: cell growth according to a local evolution law and space filling constraints.
We shall impose curvature driven growth for the local evolution law, cf. Mullins
[54]. Space filling requirements are managed by critical events, rearrangements of
the network involving deletion of small contracting cells and facets. The proper-
ties of this system that characterize the GBCD must be identified and appropriately
upscaled or ‘coarse-grained’. For a perspective on these issues, we recommend the
article by R.V. Kohn [45].

The general platform for this investigation is large scale computation. Numerical
simulations are well established as a major tool in the analysis of many physical
systems, see for example [22, 23, 25, 26, 29, 30, 46, 48–50, 52, 56, 61, 62, 64].
However, the idea of large scale computation as the essential method for the mod-
eling and comprehension of large complex systems is relatively new. Porous media
and groundwater flow is an important case of this, see for example [4–7, 33]. For
coarsening of cellular systems, it is a natural approach as well. The laboratory is the
venue to assess the validity of the local evolution law. Once this law is adopted, we
appeal to simulation, since we cannot control all the other elements present in the
experimental system, many of which are unknown. On the other hand, in silico we
may exercise, or at least we may attempt to exercise, precise control of the variables
appropriate to the evolution law and the constraint.

There are many large scale metastable material systems, for example, magnetic
hysteresis, [19], and second phase coarsening, [51, 66]. In these, the theory is based
on mesoscopic or macroscopic variables simply abstracting the role of the smaller
scale elements of the system. There is no general ‘multiscale’ framework for upscal-
ing from the local behavior of individual cells to behavior of the network when they
interact and change their character. So we must attempt to tease the system level
information from the many coupled elements of which it consists. This information
will be available primarily from the dissipation relation (2.6) which is implied by the
balance of forces at triple junctions (2.3), due to Herring, [34, 35]. Lax resolution
of the Herring Condition gives rise to an unreliable GBCD.

Our strategy is to introduce a simplified coarsening model that is driven by the
boundary conditions and reflects the dissipation relation of the grain growth system.
This will be more accessible to analysis. It resembles an ensemble of inertia-free
spring-mass-dashpots. For this simpler network, we learn how entropic or diffusive
behavior at the large scale emerges from a dissipation relation at the scale of local
evolution. The cornerstone is a novel implementation of the iterative scheme for
the Fokker-Planck Equation in terms of the system free energy and a Kantorovich-
Rubinstein-Wasserstein metric [39], cf. also [38], which will be summarized later in
the presentation.
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Fig. 1 An arc Γ with normal
n, tangent b, and lattice
misorientation α, illustrating
lattice elements

The network level nonequilibrium nature of the scheme leaves undetermined the
diffusion constant in the Fokker-Planck Equation, or equivalently the ‘temperature
parameter’ of the Boltzmann Distribution we are seeking. We employ the Kullback-
Leibler relative entropy, cf. (5.2), and find a convex duality problem for this parame-
ter. It has a statistical interpretation, or information theory interpretation, in terms of
an optimal prefix code, cf. e.g. [57], and moreover has evident connections to large
deviations. This suggests that had we simply asked to identify an optimal distribu-
tion via a known statistical method, we would have been led full circle to entropy
methods.

2 Reprise of Mesoscale Theory

Our point of departure is the common denominator theory for the mesoscale descrip-
tion of microstructure evolution. This is growth by curvature, the Mullins Equa-
tion (2.2) below, for the evolution of curves or arcs individually or in a network,
which we employ for our local law of evolution. Boundary conditions must be im-
posed where the arcs meet. This condition is the Herring Condition, (2.3), which is
the natural boundary condition at equilibrium for the Mullins Equation. Since their
introduction by Mullins, [54], and Herring, [34, 35], a large and distinguished body
of work has grown about these equations. Most relevant to here are [20, 32, 41, 55].
Curvature driven growth has old origins, dating at least to Burke and Turnbull [21].
Let α denote the misorientation between two grains separated by an arc Γ , as noted
in Fig. 1, with normal n = (cos θ, sin θ), tangent direction b and curvature κ . Let
ψ =ψ(θ,α) denote the energy density on Γ . So

Γ : x = ξ(s, t), 0 � s � L, t > 0, (2.1)

with

b= ∂ξ

∂s
(tangent) and n=Rb (normal),

v = ∂ξ

∂t
(velocity) and vn = v · n (normal velocity),

where R is a positive rotation of π/2. The Mullins Equation of evolution is

vn = (ψθθ +ψ)κ on Γ. (2.2)
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Fig. 2 Example of an instant
during the simulated
evolution of a cellular
network. This is from a small
simulation with constant
energy density and periodic
conditions at the border of the
configuration

We assume that only triple junctions are stable and that the Herring Condition holds
at triple junctions. This means that whenever three curves, {Γ (1),Γ (2),Γ (3)}, meet
at a point p the force balance, (2.3) below, holds:

∑
i=1,...,3

(
ψθn

(i) +ψb(i))= 0. (2.3)

It is easy to check that the instantaneous rate of change of energy of Γ is

d

dt

∫
Γ

ψ |b|ds =−
∫
Γ

v2
nds + v · (ψθn+ψb)|∂Γ . (2.4)

Consider a network of grains bounded by {Γi} subject to some condition at the
border of the region they occupy, like fixed end points or periodicity, cf. Fig. 2. The
important features of the algorithm used in the current simulation are given briefly
in the next Sect. 3. For the description of the previous algorithms the reader can
consult [42, 44]. The typical simulation consists in initializing a configuration of
cells and their boundary arcs, usually by a modified Voronoi tessellation, and then
solving the system (2.2), (2.3), eliminating facets when they have negligible length
and cells when they have negligible area, cf. Sect. 3. The total energy of the system
is given by

E(t)=
∑
{Γi }

∫
Γi

ψ |b|ds. (2.5)
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Owing exactly to the Herring Condition (2.3), the instantaneous rate of change of
the energy

d

dt
E(t)= −

∑
{Γi }

∫
Γi

v2
nds +

∑
T J

v ·
∑

(ψθn+ψb)

= −
∑
{Γi }

∫
Γi

v2
nds

� 0, (2.6)

rendering the network dissipative for the energy in any instant absent of critical
events. Indeed, in an interval (t0, t0 + τ) where there are no critical events, we may
integrate (2.6) to obtain a local dissipation equation

∑
{Γi }

∫ t0+τ

t0

∫
Γi

v2
ndsdt +E(t0 + τ)=E(t0) (2.7)

which bears a strong resemblance to the simple dissipation relation for an ensemble
of inertia free springs with friction. In the simulation, the facet interchange and cell
deletion are arranged so that (2.6) is maintained.

Suppose, for simplicity, that the energy density is independent of the normal
direction, so ψ =ψ(α). It is this situation that will concern us here. Then (2.2) and
(2.3) may be expressed

vn = ψκ on Γ, (2.8)∑
i=1,...,3

ψb(i) = 0 at p, (2.9)

where p denotes a triple junction. Equation (2.9) is the same as the Young wetting
law.

For this situation we define the grain boundary character distribution, GBCD,

ρ(α, t)= relative length of arc of misorientation α at time t,

normalized so that
∫
Ω

ρdα = 1. (2.10)

3 Discussion of the Simulation

Our simulation method involves a boundary tracking approach which is in contrast
to level set methods, for example recent work [24], and phase field methods, for
example [28, 40], used by other groups. We approximate only the network of grain
boundaries while other methods involve the interior of the grains as well. The loca-
tion of grain boundaries is implicit in these methods. The advantage of our method
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is the flexibility in applying a selected energy density on curves and the boundary
conditions at triple junctions. The evolution in our approach is based on a variational
approach for solving numerically the system (2.2), (2.3) for the network while man-
aging the critical events. It must be designed so it is robust and reliable statistics can
be harvested. Owing to the size and complexity of the network there are number of
challenges in the designing of the method. These include

• management of the data structure of cells, facets, and triple junctions, dynamic
because of critical events;

• management of the computational domain;
• initialization of the computation;
• maintaining the triple junction boundary condition (2.3) while
• resolving Eqs. (2.2) with sufficient accuracy

We will address some of these issues below. We also need some diagnostics to un-
derstand the accuracy of the physical model and of the numerical scheme. Questions
of numerical accuracy can be addressed by mesh refinement and the convergence of
the approximate solutions. For physical accuracy of the model we look at certain
properties of the solutions. For example, it is known that the average area of cells
grows linearly even in very casual simulations of coarsening, although more careful
diagnostics show that the Herring Condition (2.3) in these efforts fails. As noted in
the introduction, this will lead to an unreliable determination of the GBCD.

In view of the dissipation inequality (2.6) the evolution of the grain boundary
system may be viewed as a modified steepest descent for the energy. Therefore,
the cornerstone of our scheme which assures its stability is the discrete dissipation
inequality for the total grain boundary energy which holds when the discrete Herring
Condition is satisfied. In general, discrete dissipation principles ensure the stability
and convergence of numerical schemes to the continuous solution. The design of
our numerical scheme is based on a weak formulation, a variational principle which
avoids the additional complexity of higher order spaces. In particular, there is no
explicit use of curvature which is the case for direct discretization of Eqs. (2.2),
(2.3).

The simulation of the grain network is done in three steps by evolving first the
grain boundaries, according to Mullin’s equation (2.2), and then updating the triple
points according to Herring’s boundary condition (2.3), imposed at the triple junc-
tions, and finally managing the rearrangement events. In our numerical simulations,
grain boundaries are defined by the set of nodal points and are approximated using
linear elements. In the algorithm, we define a global mesh size, h, and uniformly
discretized grain boundaries with local mesh size (distance between neighboring
nodal points) which depends on h. Due to the frequency of critical events, we have
used a first order method in time, namely the Forward Euler method. Increasing the
order of time discretization to 2 by using a predictor corrector method did not affect
the distribution functions, which is the focus of this study.

Resolution of the Herring Condition: To satisfy the Herring Condition (2.3) one has
to solve the nonlinear equation to determine the new position of the triple junction
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[44]. We use the Newton method with line search [37] to approximate the new posi-
tion for the triple junction. As the initial guess for Newton’s method, we determine
the position of the triple point by defining the velocity of the triple junction to be
proportional to the total line stress at that point with coefficient of the proportionality
equal to the mobility. This is also dissipative for the network. The Newton algorithm
stops if it exceeds a certain tolerance on the number of the iterations. If the Newton
algorithm converges, the Herring Condition (2.3) is satisfied to machine precision
accuracy at the new position of the triple junction. If the Newton algorithm fails to
converge at some triple junctions (this happens when we work with very small cells)
we use our initial guess to update the triple junction position.

Critical events: As grain growth proceeds, critical events occur. When grain bound-
aries (GB) shrink below a certain size, they trigger one or more of the following
processes (i) short GB removal, (ii) splitting of unstable junctions (where more then
three GB meet), (iii) fixing double GB (GB that share two vertices).

Removal of short GB: A short GB whose length is decreasing is removed. If its
length is increasing, it is not removed.

Splitting unstable vertices: When a GB disappears, new vertices may appear where
more than three edges meet. These are unstable junctions which are split by intro-
ducing a new vertex and a new GB of short length. This step reduces the number of
edges meeting at the unstable junctions. This process continues until all vertices are
triple junctions. Details of each split are designed to maximally decrease the energy.

4 A Simplified Coarsening Model with Entropy and Dissipation

The coarsening process is irreversible because of its dissipative nature. Even in an
interlude when there are no rearrangement events, (2.7) shows that a configuration
cannot evolve to a former state from a later one. This could be a source of entropy for
the system. In our investigation, we view the principal source of entropy to be con-
figurational since we observe the evolution of an ‘upscaled’ ensemble represented
by a single statistic, the misorientation α, neglecting the remaining information. This
is also a source of irreversibility since we have forgotten information. We return to
this shortly.

A significant difficulty in developing a theory for the GBCD, and understanding
texture development in general, lies in the lack of understanding of consequences
of rearrangement events or critical events, facet interchange and grain deletion, on
network level properties. For example, in Fig. 3, the average area of five-faceted
grains during a growth experiment on an Al thin film and the average area of five-
faceted cells in a typical simulation both increase with time. Now the von Neumann-
Mullins Rule is that the area An of a cell with n-facets satisfies

A′n(t)= c(n− 6), (4.1)
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Fig. 3 The average area of
five-sided cell populations
during coarsening in two
different cellular systems
showing that the von
Neumann-Mullins n− 6-Rule
(4.1) does not hold at the
scale of the network. (Top) In
an experiment on Al thin
film, [8], and (bottom) a
typical simulation (arbitrary
units)

when ψ = const. and triple junctions meet at angles of 2π/3, [31, 53, 65]. This is
thought to hold approximately when anisotropy is small. The von Neumann-Mullins
Rule does not fail in the example above, of course, but cells observed at later times
had 6, 7, 8, . . . facets at earlier times. Thus in the network setting, changes which
rearrange the network play a major role.

To address these issues, we will examine a much simpler 1D model which retains
kinetics and critical events but neglects curvature driven growth of the boundaries.
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In our view, there are two important features of the coarsening system: the evo-
lution of the network by steepest descent of the surface energy and the irreversible
change/disappearance of the grain boundaries at certain discrete times, which is nec-
essary because the entire configuration is confined. Elaborating on the latter in the
two-dimensional setting of Fig. 2: at most times the evolution is smooth, but once in
a while a pair of neighboring triple points collides and the grain boundary that joins
them disappears forever.

We have used this model to develop a statistical theory for critical events, [9–
11]. It has been found to have its own GBCD as well, [12–15], which we shall now
review.

Our main idea in [12–15] is that the GBCD statistic for the simplified model
resembles the solution of a Fokker-Planck Equation via the mass transport implicit
scheme, [39]. In [12–15] the simplified model is formulated as a gradient flow which
results in a dissipation inequality analogous to the one found for the coarsening
grain network. Because of this simplicity, it will be possible to ‘upscale’ the net-
work level system description to a higher level GBCD description that accommo-
dates irreversibility. A more useful dissipation inequality is obtained by modifying
the viscous term to be a mass transport term, which now brings us to the realm
of the Kantorovich-Rubinstein-Wasserstein implicit scheme. As this changes the
ensemble, there is an entropic contribution, which we take to be proportional to
configurational entropy. This then suggests the Fokker-Planck paradigm.

However, we do not know that the statistic solves the Fokker-Planck PDE but
we can ask if it shares important aspects of Fokker-Planck behavior. We give evi-
dence for this by asking for the unique ‘temperature-like’ parameter, the factor noted
above, the relative entropy achieves a minimum over long time. The empirical sta-
tionary distribution and Boltzmann distribution with the special value of ‘temper-
ature’ are in excellent agreement. This gives an explanation for the stationary dis-
tribution and the kinetics of evolution. At this point of our investigations, we do
not know that the two dimensional network has the detailed dissipative structure
of the simplified model, but we are able to produce evidence that the same argu-
ment employing the relative entropy does suggest the correct kinetics and stationary
distribution.

4.1 Formulation

The simplified coarsening model, driven by the boundary conditions, reflects the
dissipation relation of the grain growth system. It resembles an ensemble of inertia-
free spring-mass-dashpots. It is an abstraction of the role of triple junctions in the
presence of the rearrangement events.

Let I ⊂R be an interval of length L partitioned by points xi, i = 1, . . . , n, where
xi < xi+1, i = 1, . . . , n− 1 and xn+1 identified with x1. For each interval [xi, xi+1],
i = 1, . . . , n select a random misorientation number αi ∈ (−π/4,π/4]. The inter-
vals [xi, xi+1] correspond to grain boundaries (but not the 1D “grain”) with mis-
orientations αi and the points xi represent the triple junctions. Choose an energy
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density ψ(α)� 0 and introduce the energy

E =
∑

i=1,...,n

ψ(αi)(xi+1 − xi). (4.2)

To have consistency with the evolution of the 2D cellular network, we impose gra-
dient flow kinetics with respect to (4.2), which is just the system of ordinary differ-
ential equations

dxi

dt
=− ∂E

∂xi
, i = 1, . . . , n, that is

dxi

dt
=ψ(αi)−ψ(αi−1), i = 2, . . . , n, and

dx1

dt
=ψ(α1)−ψ(αn).

(4.3)

The velocity vi of the ith boundary is

vi = dxi+1

dt
− dxi

dt
=ψ(αi−1)− 2ψ(αi)+ψ(αi+1). (4.4)

The grain boundary velocities are constant until one of the boundaries collapses.
That segment is removed from the list of current grain boundaries and the velocities
of its two neighbors are changed due to the emergence of a new junction. Each
such deletion event rearranges the network and, therefore, affects its subsequent
evolution just as in the two dimensional cellular network. Actually, since the interval
velocities are constant, this gradient flow is just a sorting problem. At any time, the
next deletion event occurs at smallest positive value of

xi − xi+1

vi
.

The length li (t) of the ith interval is linear in t until it reaches 0 or until a collision
event, when it becomes linear with a different slope. In any event, it is continuous,
so E(t), t > 0, the sum of such functions multiplied by factors, is continuous.

At any time t between deletion events,

dE

dt
=−

∑ dxi

dt

2

� 0. (4.5)

Next consider for the 1D system (4.3), a time interval (t0, t0 + τ) with no critical
events for now. Then we obtain a grain growth analog of the spring-mass-dashpot-
like local dissipation inequality,

∑
i=1...n

∫ τ

0

dx2
i

dt
dt +E(t0 + τ)=E(t0). (4.6)

With an appropriate interpretation of the sum, (4.6) holds for all t0 and almost every
τ sufficiently small. The dissipation equality (4.6) can also be rewritten in terms of
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grain boundary velocities as follows:

1

4

∑
i=1...n

∫ τ

0
v2
i dt +E(t0 + τ)�E(t0). (4.7)

The energy of the system at time t0 + τ is determined by its state at time t0. Vice
versa, changing the sign on the right hand side of (4.3) allows us to begin with the
state at time t0 + τ and return to the state of time t0: the system is reversible in an
interval of time absent of rearragement events. This is no longer the situation after
such an event. At the later time, we have no knowledge about which interval, now
no longer in the inventory, was deleted.

As explained in [12–14], we can introduce now the idea of GBCD for the simpli-
fied 1D model. Let us consider a new ensemble based on the misorientation param-
eter α where we take Ω : −π

4 � α � π
4 , for later ease of comparison with the two

dimensional network for which we are imposing “cubic” symmetry, i.e., “square”
symmetry in the plane. The GBCD or character distribution in this context is, as
expected, the histogram of lengths of intervals sorted by misorientation α scaled to
be a probability distribution on Ω . To be precise, we let

li (α, t) = xi+1(t)− xi(t)
= length of the ith interval, where explicit note has been taken of

its misorientation parameter α.

Partition Ω into m subintervals of length h= π
2

1
m

and define

ρ(α, t) :=
∑

α′∈((k−1)h,kh]
li
(
α′, t
) · 1

Lh
, for (k − 1)h < α � kh. (4.8)

For this definition of the statistic,∫
Ω

ρ(α, t)dα = 1.

One may express (4.7) in terms of the character distribution (4.8), which amounts to

μ0

∫ t0+τ

t0

∫
Ω

∣∣∣∣∂ρ∂t (α, t)
∣∣∣∣
2

dαdt +
∫
Ω

ψ(α)ρ(α, t0 + τ)dα �
∫
Ω

ψ(α)ρ(α, t0)dα,

(4.9)
where μ0 > 0 is some constant.

The expression (4.9) is in terms of the new misorientation level ensemble, up-
scaled from the local level of the original system. We now introduce, as discussed
earlier, the modeling assumption, consistent with the lack of reversibility when re-
arrangement/or critical events occur and add an entropic contribution to (4.9). We
consider a standard configurational entropy,

+
∫
Ω

ρ logρdα, (4.10)
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although this is not the only choice. Minimizing (4.10) favors the uniform state,
which would be the situation were ψ(α) = constant. A tantalizing clue to the de-
velopment of texture will be whether or not this entropy strays from its minimum
during the simulation.

Given that (4.9) holds, we assume now that there is some λ > 0 such that for any
t0 and τ sufficiently small that

μ0

∫ t0+τ

t0

∫
Ω

(
∂ρ

∂t

)2

dαdt +
∫
Ω

(ψρ + λρ logρ)dα

∣∣∣∣
t0+τ

�
∫
Ω

(ψρ + λρ logρ)dα

∣∣∣∣
t0

. (4.11)

E(t) was analogous to an internal energy or the energy of a microcanonical ensem-
ble and now

F(ρ)= Fλ(ρ)=E(t)+ λ
∫
Ω

ρ logρdα (4.12)

is a free energy. The value of the parameter λ is unknown and will be determined in
the Validation Sect. 5.

4.2 The Mass Transport Paradigm

The kinetics of the simplified problem will be understood by interpreting the dissi-
pation principle for the GBCD in terms of a mass transport implicit scheme. In fact,
(4.11) fails as a proper dissipation principle because the first term

μ0

∫ t0+τ

t0

∫
Ω

(
∂ρ

∂t

)2

dαdt (4.13)

does not represent lost energy due to frictional or viscous forces. For a deformation
path f (α, t), 0 � t � τ , of probability densities, this quantity is

∫ τ

0

∫
Ω

v2f dαdt (4.14)

where f , v are related by the continuity equation and initial and terminal conditions

ft + (vf )α = 0 in Ω × (0, τ ), and

f (α,0)= ρ(α,0), f (α, τ )= ρ(α, τ), (4.15)

by analogy with fluids [47], p. 53 et seq., and elementary mechanics. (We have set
t0 = 0 for convenience.)
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On the other hand, by a result of Benamou and Brenier [18], given two probabil-
ity densities f ∗, f on Ω , the Wasserstein distance d(f,f ∗) between them is given
by

1

τ
d
(
f,f ∗

)2 = inf
∫ τ

0

∫
Ω

v2f dξdt

over deformation paths f (ξ, t) subject to

ft + (vf )ξ = 0 (continuity equation),

f (ξ,0)= f ∗(ξ), f (ξ, τ )= f (ξ) (initial and terminal conditions).

(4.16)

Let us briefly review the notion of Kantorovich-Rubinstein-Wasserstein metric,
or simply Wasserstein metric. The reader can consult [3, 63] for more detailed ex-
position of the subject.

Let D ⊂R be an interval, perhaps infinite, and f ∗, f a pair of probability densi-
ties on D (with finite variance). The quadratic Wasserstein metric or 2-Wasserstein
metric is defined to be

d
(
f,f ∗

)2 = inf
P

∫
D×D

|x − y|2dp(x, y),

P = joint distributions for f,f ∗ on D̄ × D̄,
(4.17)

i.e., the marginals of any p ∈ P are f,f ∗. The metric induces the weak-∗ topology
on C(D̄)′. If f,f ∗ are strictly positive, there is a transfer map which realizes p,
essentially the solution of the Monge-Kantorovich mass transfer problem for this
situation. This means that there is a strictly increasing

φ :D→D such that∫
D

ζ(y)f (y)dy =
∫
D

ζ
(
φ(x)

)
f ∗(x)dx, ζ ∈ C(D̄), and

d
(
f,f ∗

)2 =
∫
D

∣∣x − φ(x)∣∣2f ∗dx.
(4.18)

In this one dimensional situation, as was known to Frechét, [27],

φ(x)= F ∗−1(F(x)), x ∈D, where

F ∗(x)=
∫ x

−∞
f ∗
(
x′
)
dx′ and F(x)=

∫ x

−∞
f
(
x′
)
dx′

(4.19)

are the distribution functions of f ∗, f . In one dimension there is only one trans-
fer map. The conditions (4.16) are in ‘Eulerian’ form. Likewise there is the ‘La-
grangian’ form which follows by rewriting (4.16) using the transfer function formu-
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lation in (4.18),

1

τ
d
(
f,f ∗

)2 = inf
∫ τ

0

∫
D

φ2
t f

∗dx

over transfer paths φ(x, t) from D to D with

φ(x,0)= x and φ(x, τ )= φ(x).

(4.20)

Therefore, our goal is to replace (4.13) with (4.14). Since the associated metrics
induce different topologies, an estimate must involve additional terms. Assume that
our statistic ρ(α, t) satisfies

ρ(α, t)� δ > 0 in Ω, t > 0. (4.21)

This is a necessary assumption for our estimates below. In fact, to proceed with
the implicit scheme introduced later, it is sufficient to require (4.21) just for the
initial data ρ0(α) since this property is inherited by the iterates. We now use the
representation (4.16) and we use the deformation path given by ρ itself to calculate
that for some cΩ > 0,

1

τ
d
(
ρ,ρ∗

)2 �
∫ τ

0

∫
Ω

v2ρdxdt � cΩ

minΩ ρ

∫ τ

0

∫
Ω

∂ρ

∂t
(x, t)2dxdt,

ρ∗(x)= ρ(x,0) and ρ(x)= ρ(x, τ ),
(4.22)

where 0 represents an arbitrary starting time and τ a relaxation time.
Thus there is a μ> 0 such that for any relaxation time τ > 0,

μ

2

∫ τ

0

∫
Ω

v2ρdαdt + Fλ(ρ)� Fλ
(
ρ∗
)
. (4.23)

We next replace (4.23) by a minimum principle, arguing that the path given by
ρ(α, t) is the one most likely to occur and the minimizing path has the highest
probability. For this step, let ρ∗ = ρ(·, t0) and ρ = ρ(·, t + τ). Observe that from
(4.16),

1

τ
d
(
ρ,ρ∗

)2 = inf
∫ τ

0

∫
Ω

v2f dαdt

over deformation paths f (α, t) subject to

ft + (vf )α = 0 (continuity equation),

f (ξ,0)= ρ∗(α), f (α, τ )= ρ(α, τ) (initial and terminal conditions),
(4.24)

where d is the Wasserstein metric. So we may express the minimum principle in the
form

μ

2τ
d
(
ρ,ρ∗

)2 + Fλ(ρ)= inf{η}

{
μ

2τ
d
(
η,ρ∗

)2 + Fλ(η)
}
. (4.25)
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For each relaxation time τ > 0 we determine iteratively the sequence {ρ(k)} by
choosing ρ∗ = ρ(k−1) and ρ(k) = ρ in (4.25) and set

ρ(τ)(α, t)= ρ(k)(α) in Ω for kτ � t < (k + 1)τ. (4.26)

We then anticipate recovering the GBCD ρ as

ρ(α, t)= lim
τ→0

ρ(τ)(α, t), (4.27)

with the limit taken in a suitable sense. It is known that ρ obtained from (4.27) is
the solution of the Fokker-Planck Equation, [39],

μ
∂ρ

∂t
= ∂

∂α

(
λ
∂ρ

∂α
+ψ ′ρ

)
in Ω,0< t <∞. (4.28)

We might point out here, as well, that a solution of (4.28) with periodic boundary
conditions and nonnegative initial data is positive for t > 0.

5 Validation of the Scheme

We now begin the validation step of our model. The procedure which leads to the
implicit scheme, based on the dissipation inequality (4.7), holds for the entire sys-
tem but does not identify individual intermediate ‘spring-mass-dashpots’. The con-
sequence is that we cannot set the temperature-like parameter σ , but in some way
must decide if one exists. Introduce the notation for the Boltzmann distribution with
parameter λ

ρλ(α)= 1

Zλ
e−

1
λ
ψ(α), α ∈Ω, with Zλ =

∫
Ω

e−
1
λ
ψ(α)dα. (5.1)

With validation we would gain qualitative properties of solutions of (4.28):

• ρ(α, t)→ ρσ (α) as t→∞, and
• this convergence is exponentially fast.

The Kullback-Leibler relative entropy for (4.28) is given by

Φλ(η)=Φ(η‖ρλ)=
∫
Ω

η log
η

ρλ
dα where

η� 0 in Ω,
∫
Ω

ηdα = 1,

(5.2)

with ρλ from (5.1). By Jensen’s Inequality it is always nonnegative. In terms of the
free energy (4.12) and (5.1), (5.2) is given by

Φλ(η)= 1

λ
Fλ(η)+ logZλ. (5.3)
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(Note: In our earlier work [13, 14], we defined relative entropy to be λ times (5.2).)
A solution ρ of (4.28) has the property that

Φλ(ρ)→ 0 as t→∞. (5.4)

Therefore, we seek to identify the particular λ = σ for which Φσ defined by the
GBCD statistic ρ tends monotonically to the minimum of all the {Φλ} as t becomes
large. We then ask if the terminal, or equilibrium, empirical distribution ρ is equal
to ρσ . Note that since

f (x, y)= x logx − x logy, x, y > 0,

is convex, Φ(η‖ρλ) is a convex function of (η,ρλ). We assign a time t = T∞ and
seek to minimize (5.2) at T∞. With

ψλ = ψ

λ
+ logZλ, (5.5)

this minimization is a convex duality type of optimization problem, namely, to find
the σ for which

∫
Ω

{ψσρ + ρ logρ}dα = inf{ψλ}

∫
Ω

{ψλρ + ρ logρ}dα. (5.6)

Note that ∫
Ω

e−ψλdα = 1

which gives the minimization in (5.6) the form of finding an optimal prefix code,
e.g. [57]. Here the potential ψλ, the code, is minimized in a family rather than the
unknown density ρ itself, which is the given alphabet. For practical purposes, note
that

Φ(ρ‖ρλ)=
∫
Ω

ρ logρdα+ 1

λ

∫
Ω

ψρdα+ logZλ (5.7)

is a strictly convex non-negative function of the ‘inverse temperature’ β = 1
λ
,β > 0,

and thus admits a unique minimum.
The information theory interpretation is that we are minimizing the information

loss among trial encodings of the alphabet represented by the statistic ρ. In this
sense we see that asking for an optimal distribution ρσ to represent our statistic ρ,
necessarily introduces (relative) entropy in our considerations, returning us, as it
were, full circle.

From a given simulation, we harvest the GBCD statistic. It is a trial. The convex-
ity of Φ(ρ‖ρλ) suggests that we can average trials. For trials {ρ1, . . . , ρN },

Φ

(
1

N

∑
i=1,...,N

ρi‖ρλ
)
� 1

N

∑
i=1,...,N

Φ(ρi‖ρλ). (5.8)
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So we can seek the optimal λ= σ by optimizing with the averaged trial. We shall
illustrate this for the validation process for the two dimensional simulation.

5.1 An Example of the Simplified Problem

For the simplified coarsening model, we consider

ψ(α)= 1+ 2α2 in Ω =
(
−π

4
,
π

4

)
, (5.9)

and shall identify a unique such parameter, which we label σ , by seeking the mini-
mum of the relative entropy (5.2), namely by inspection of plots of (5.6) and (5.7),
and then comparing ρ with the found ρσ . This ψ the development to second order
of ψ(α)= 1+ 0.5 sin2 2α used in the 2D simulation. Moreover, since the potential
is quadratic, it represents a version of the Ornstein-Uhlenbeck process. We agree
that T∞ = T (80 %)= 6.73 represents time equals infinity. This is the time at which
80 % of the segments have been deleted and corresponds to the stationary config-
uration in the two-dimensional simulation. For the simplified critical event model
we are considering, it is clear that by computing for a sufficiently long time, all
cells will be gone. This time may be quite long. For comparison, T (90 %)= 30 and
T (95 %)= 103. There may be additional criteria for choosing a T in the neighbor-
hood of T (80 %) and we may wish to discuss this later. The results are reported in
Fig. 4.

6 The Entropy Method for the GBCD

6.1 Quadratic Interfacial Energy Density

We shall apply the method of Sect. 5 to the GBCD harvested from the 2D simulation.
We consider first a typical simulation with the energy density

ψ(α)= 1+ ε(sin 2α)2, −π
4
� α � π

4
, ε = 1/2. (6.1)

Figure 5, initialized with 104 cells and normally distributed misorientation angles
and terminated when 2000 cells remain. At this stage, the simulation is essentially
stagnant. Five trials were executed and we consider the average of ρ of the empir-
ical GBCD’s. Possible ‘temperature’ parameters λ and ρλ in (5.1) for the density
(6.1) are constructed. This ρλ then defines a trial relative entropy via (5.2). We now
identify the parameter σ , which turns out to be σ ≈ 0.1, and the value of the relative
entropy Φσ (T∞)≈ 0.01, which is about 10 % of its initial value, Fig. 6. From Fig. 7
(top), we see that this relative entropy Φσ has exponential decay until it reaches
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Fig. 4 Graphical results for
the simplified coarsening
model. (Top) Relative entropy
plots for selected values of λ
with Φσ noted in red. The
value of σ = 0.0296915.
(Bottom) Empirical
distribution at time
t = T = T∞ in red compared
with ρσ in black (Color figure
online)

time about t = 1.5, after which it remains constant. The averaged empirical GBCD

is compared with the Boltzmann distribution in Fig. 7 (bottom). The solution itself

then tends exponentially in L1 to its limit ρσ by the Kullback-Leibler Inequality.
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Fig. 5 (Top) The energy
density ψ(α)= 1+ ε sin2 2α,
|α|< π/4, ε = 1

2 . (Bottom)
The entropy of ρ(α, t) as a
function of time t is
increasing, suggesting the
development of order in the
configuration

6.2 Quartic Interfacial Energy Density

Our second example is a quartic energy, Fig. 8,

ψ(α)= 1+ ε(sin 2α)4, −π
4
� α � π

4
, ε = 1/2. (6.2)
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Fig. 6 In these plots, the
GBCD ρ is averaged over 5
trials. (Top) The relative
entropy of the grain growth
simulation with energy
density (6.1) for a sequence
of Φλ vs. t with the optimal
choice σ ≈ 0.1 noted in red.
(Bottom) Relative entropy for
an indicated range of values
of temperature parameter λ at
the terminal time
t = T∞ = 2.3. The minimum
value of the relative entropy is
≈ 0.01 (Color figure online)

Again, a configuration of 104 cells is initialized with normally distributed misori-
entations and, this time, the computation proceeds until about 1000 cells remain.
The relative entropy and the equilibrium Boltzmann statistic stabilize when 2000
cells remain. Seven trials were executed and we consider the average of ρ of seven
empirical GBCD’s. Results are summarized in Fig. 9 and Fig. 10.
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Fig. 7 In these plots, the
GBCD is averaged over 5
trials. (Top) Plot of − logΦσ
vs. t with energy density
(6.1). It is approximately
linear until it becomes
constant showing that Φσ
decays exponentially.
(Bottom) GBCD ρ (red) and
Boltzmann distribution ρσ
(black) for the potential ψ of
(6.1) with parameter σ ≈ 0.1
as predicted by our theory
(Color figure online)

6.3 Remarks on a Theory for the Diffusion Coefficient σ or the
Temperature-Like Parameter

The network level nonequilibrium nature of the iterative scheme introduced in our
theory Sects. 4–5, leaves free a temperature-like parameter σ . However, as we
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Fig. 8 The energy density
ψ(α)= 1+ ε sin4 2α,
|α|< π/4, ε = 1

2

showed in Sect. 5, we can uniquely identify σ . But can we a priori determine or con-
trol this temperature-like parameter? There are different approaches to this question,
none of which have been especially successful at this point. One possible approach
is to consider a different theory that is developed for the simplified model based on
the kinetic equations description in [11]. However, this particular description [11]
would have to be improved, since it does not produce a very good result for σ at
this point. However, this method would still have only an empirical flavor: the value
of σ will be obtained once the solution of kinetic equations is computed. Another
direction to consider here is based on the statistical analysis of the data obtained
from many trials and to understand the possible connection to branching processes.

7 Closing Comments

Engineering the microstructure of a material is a central task of materials science
and its study gives rise to a broad range of basic science issues, as has been long
recognized. Central to these issues is the coarsening of the cellular structure. Here
we have outlined an entropy based theory of the GBCD which is an upscaling of
cell growth according to the two most basic properties of a coarsening network:
a local evolution law and space filling contraints. The theory accommodates the
irreversibility conferred by the critical events or topological rearrangements which
arise during coarsening. It adds to the body of evidence that the evolution of the
boundary network is the primary origin of texture development. It accounts both for
the GBCD and its kinetics.

There are many known environments where the kinetics of growth do not seem to
follow this sort of pattern. Let us briefly consider one, stagnation in the evolution of
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Fig. 9 In these plots, the
GBCD ρ is averaged over 7
trials. (Top) The relative
entropy of the grain growth
simulation with energy
density (6.2) for a sequence
of Φλ vs. t with the optimal
choice σ ≈ 0.095 noted in
red. (Bottom) Relative
entropy for an indicated range
of values of temperature
parameter σ at the terminal
time t = T∞ = 3. The
minimum value of the relative
entropy is ≈ 0.007 (Color
figure online)

metallic (Cu and Al) thin films, important for the metallization of semiconductors,
[16, 17]. Stagnation means that the growth process appears to stop even though the
material remains in the furnace. Some progress is found in [36]. A striking feature
of these films is a nearly exact log-normal distribution of the relative grain diame-
ters based on a study of 27 samples consisting of 35,000 grains prepared in different
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Fig. 10 Comparison of the
empirical distribution at time
t = T∞ = 3, when 80 % of
the cells have been deleted,
with ρσ , the Boltzmann
distribution of (5.1), with σ
extracted from Fig. 9. The
GBCD ρ is averaged over 7
trials

experiments in a wide variety of conditions. The grain diameter is, basically, the
square root of its area. This distribution is not found in any simulation of coarsening
known to us. One possible starting point for an investigation is the well known Kol-
mogorov “rock crushing” problem, which has a representation as a scaled branching
process.

The stagnation isssue is, of course, just a hint of the variety of challenges we
encounter in this exciting field.
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A Generalized Empirical Interpolation Method:
Application of Reduced Basis Techniques
to Data Assimilation

Yvon Maday and Olga Mula

Abstract This paper, written as a tribute to Enrico Magenes, a giant that has kindly
and warmly supported generations of young researchers, introduces a generalization
of the empirical interpolation method (EIM) and the reduced basis method (RBM)
in order to allow their combination with data mining and data assimilation. The
purpose is to be able to derive sound information from data and reconstruct infor-
mation, possibly taking into account noise in the acquisition, that can serve as an
input to models expressed by partial differential equations. The approach combines
data acquisition (with noise) with domain decomposition techniques and reduced
basis approximations.

1 Introduction

The representation of some physical or mechanical quantities, representing a scalar
or vectorial function that depends on space, time or both, can be elaborated through
at least two—possibly—complementary approaches: the first one, called explicit
hereafter, is based on the measurement of some instances of the quantity of inter-
est that consists in getting its value at some points from which, by interpolation or
extrapolation, the quantity is approximated in other points than where the measure-
ments have been performed. The second approach, called implicit hereafter, is more
elaborated. It is based on a model, constructed by expertise, that implicitly charac-
terizes the quantity as a solution to some problem fed with input data. The model
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can e.g. be a parameter dependent partial differential equation, the simulation of
which allows to get an approximation of the quantity of interest, and, actually, many
more outputs than the sole value of the quantity of interest. This second approach,
when available, is more attractive since it allows to have a better understanding of
the working behavior of the phenomenon that is under consideration. In turn, it fa-
cilitates optimization, control or decision making.

Nevertheless for still a large number of problems, the numerical simulation of
this model is indeed possible—though far too expensive to be performed in a rea-
sonable enough time. The combined efforts of numerical analysts, specialists of
algorithms and computer scientists, together with the increase of the performances
of the computers allow to increase every days the domains of application where
numerical simulation can be used, to such an extent that it is possible now to rigor-
ously adapt the approximation, degrade the models, degrade the simulation, or both
in an intelligent way without sacrificing the quality of the approximation where it is
required.

Among the various ways to reduce the problem’s complexity stand approaches
that use the smallness of the Kolmogorov n-width [5] of the manifold of all solu-
tions considered when the parameters varies continuously in some range. This idea,
combined with the Galerkin method is at the basis of the reduced basis method and
the Proper Orthogonal Decomposition (POD) methods to solve parameter depen-
dent partial differential equations. These approximation methods allow to build the
solution to the model associated to some parameter as a linear combination of some
precomputed solutions associated to some well chosen parameters. The precompu-
tations can be lengthy but are performed off-line, the online computation has a very
small complexity, based on the smallness of the Kolmogorov n-width. We refer to
[9, 10] for an introduction to these approaches.

Another possibility, rooted on the same idea, is the empirical interpolation
method (EIM) that allows, from values of the quantity at some interpolating points,
to build a linear combination of again preliminary fully determined quantities as-
sociated to few well chosen instances of the parameter. The linear combination is
determined in such a way that it takes the same values at the interpolating points
as the quantity we want to represent. This concept generalizes the classical—e.g.
polynomial or radial basis—interpolation procedure and is recalled in the next sec-
tion. The main difference is that the interpolating function may even, a priori, not
be known but depend on the quantity we want to represent.

In this paper we first aim at generalizing further this EIM concept by replacing
the pointwise evaluations of the quantity by more general measures, mathematically
defined as linear forms defined on a superspace of the manifold of appropriate func-
tions. We consider that this generalization, named Generalized Empirical Interpola-
tion Method (GEIM), represents already an improvement with respect to classical
interpolation reconstructions.

Bouncing on this GEIM, we propose a coupled approach based on the do-
main decomposition of the computational domain into two parts: one small do-
main Ω1 where the Kolmogorov n-width of the manifold is not small and where
the parametrized PDE will be simulated and the other subdomain Ω2, much larger
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but with a small Kolmogorov n-width because for instance the solution is driven
over Ω2 by the behavior of the solution over Ω1. The idea is then to first construct
(an approximation of) the solution from the measurements using the GEIM. In turn
this reconstruction, up to the interface between Ω1 and Ω2, provides the necessary
boundary conditions for solving the model over Ω1.

This is not the first attempt to use the small Kolmogorov n-width for another
aim than the POD or reduced basis technique which are both based on a Galerkin
approach. In [2] e.g. the smallness of the Kolmogorov width is used to post-process
a coarse finite element approximation and get an improved accuracy.

The problems we want to address with this coupled approach, stem from, e.g.,
actual industrial process or operations that work on a day-to-day basis; they can be
observed with experimental sensors that provide sound data and are able to char-
acterize part of their working behavior. We think that the numerical simulation and
data mining approaches for analyzing real life systems are not enough merged in
order to (i) complement their strength and (ii) cope for their weaknesses. This paper
is a contribution in this direction.

In the last section, we evoke the problem of uncertainty and noises in the acqui-
sition of the data, since indeed, the data are most often polluted by noises. Due to
this, statistical data acquisition methods are used to filter out the source signals so
that an improved knowledge is accessible. In many cases though, and this is more
and more the case now, the data are far too numerous to all be taken into account,
most of them are thus neglected because people do not know how to analyze them,
in particular when the measures that are recorded are not directly related to some
directly understandable quantity.

2 Generalized Empirical Interpolation Method

The rationale of all our approach relies on the possibility to approximately represent
a given set, portion of a regular manifold (here the set of solution to some PDE), as
a linear combination of very few computable elements. This is linked to the notion
of n-width following Kolmogorov [5]:

Definition 2.1 Let F be a subset of some Banach space X and Yn be a generic
n-dimensional subspace of X. The angle between F and Yn is

E(F ;Yn) := sup
x∈F

inf
y∈Yn

‖x − y‖X.

The Kolmogorov n-width of F in X is given by

dn(F,X) := inf
{
E(F ;Yn) : Yn a n-dimensional subspace of X

}
= inf

Yn
sup
x∈F

inf
y∈Yn

‖x − y‖X. (1)
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The n-width of F thus measures to what extent the set F can be approximated
by an n-dimensional subspace of X.

We assume from now on that F and X are composed of functions defined over a
domain Ω ⊂R

d , where d = 1,2,3 and that F is a compact set of X.

2.1 Recall of the Empirical Interpolation Method

We begin by describing the construction of the empirical interpolation method
[1, 3, 6] that allows us to define simultaneously the set of generating functions re-
cursively chosen in F together with the associated interpolation points. It is based
on a greedy selection procedure as outlined in [7, 10, 12]. With M being some given
large number, we assume that the dimension of the vectorial space spanned by F :
span(F ) is of dimension ≥M.

The first generating function is ϕ1 = arg maxϕ∈F ‖ϕ(·)‖L∞(Ω), the associated in-
terpolation point satisfies x1 = arg maxx∈Ω |ϕ1(x)|, we then set q1 = ϕ1(·)/ϕ1(x1)

and B1
11 = 1. We now construct, by induction, the nested sets of interpolation

points ΞM = {x1, . . . , xM},1 ≤M ≤Mmax, and the nested sets of basis functions
{q1, . . . , qM}, where Mmax ≤ M is some given upper bound fixed a priori. For
M = 2, . . . ,Mmax, we first solve the interpolation problem: Find

IM−1
[
ϕ(·)]=

M−1∑
j=1

αM−1,j [ϕ]qj , (2)

such that

IM−1
[
ϕ(·)](xi)= ϕ(xi), i = 1, . . . ,M − 1, (3)

that allows to define the αM−1,j [ϕ],1≤ j ≤M , as it can be proven indeed that the
(M − 1)× (M − 1) matrix of running entry qj (xi) is invertible, actually it is lower
triangular with unity diagonal.

We then set

∀ϕ ∈ F, εM−1(ϕ)=
∥∥ϕ − IM−1[ϕ]

∥∥
L∞(Ω), (4)

and define

ϕM = arg max
ϕ∈F εM−1(ϕ), (5)

and

xM = arg max
x∈Ω
∣∣ϕM(x)− JM−1[ϕM ](x)

∣∣, (6)

we finally set rM(x) = ϕM(x) − JM−1[ϕM(x)], qM = rM/rM(xM) and BMij =
qj (xi),1≤ i, j ≤M .
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The Lagrangian functions—that can be used to build the interpolation operator
IM in XM = span{ϕi,1 ≤ i ≤ M} = span{qi,1 ≤ i ≤ M} over the set of points
ΞM = {xi,1 ≤ i ≤ M}—verify for any given M , IM [u(·)] =∑M

i=1 u(xi)h
M
i (·),

where hMi (·)=
∑M

j=1 qj (·)[BM ]−1
ji (note indeed that hMi (xj )= δij ).

The error analysis of the interpolation procedure classically involves the
Lebesgue constant ΛM = supx∈Ω

∑M
i=1 |hMi (x)|.

Lemma 2.2 For any ϕ ∈ F , the interpolation error satisfies
∥∥ϕ − IM [ϕ]

∥∥
L∞(Ω) ≤ (1+ΛM) inf

ψM∈XM
‖ϕ −ψM‖L∞(Ω). (7)

The last term in the right hand side of the above inequality is known as the best
fit of ϕ by elements in XM .

2.2 The Generalization

Let us assume now that we do not have access to the values of ϕ ∈ F at points in
Ω easily, but, on the contrary, that we have a dictionary of linear forms σ ∈ Σ—
assumed to be continuous in some sense, e.g. in L2(Ω) with norm 1—the applica-
tion of which over each ϕ ∈ F is easy. Our extension consists in defining ϕ̃1, ϕ̃2,. . . ,
ϕ̃M and a family of associated linear forms σ1, σ2,. . . , σM such that the following
generalized interpolation process (our GEIM) is well defined:

JM [ϕ] =
M∑
j=1

βj ϕ̃j , such that ∀i = 1, . . . ,M, σi
(
JM [ϕ]

)= σi(ϕ). (8)

Note that the GEIM reduces to the EIM when the dictionary is composed of Dirac
masses, defined in the dual space of C0(Ω).

As explained in the introduction, our generalization is motivated by the fact that,
in practice, measurements provide outputs from function ϕ that are some averages—
or some moments—of ϕ over the actual size of the mechanical device that takes the
measurement.

Among the questions raised by GEIM:

• is there an optimal selection for the linear forms σi within the dictionary Σ?
• is there a constructive optimal selection for the functions ϕ̃i?
• given a set of linearly independent functions {ϕ̃i}i∈[1,M] and a set of continuous

linear forms {σi}i∈[1,M], does the interpolant (in the sense of (8)) exist?
• is the interpolant unique?
• how does the interpolation process compares with other approximations (in par-

ticular orthogonal projections)?
• Under what hypothesis can we expect the GEIM approximation to converge

rapidly to ϕ?
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In what follows, we provide answers to these questions either with rigorous
proofs or with numerical evidences.

The construction of the generalized interpolation functions and linear forms is
done recursively, following the same procedure as in the previous subsection, based
on a greedy approach, both for the construction of the interpolation linear forms
ϕ̃i and the associated forms selected in the dictionary Σ : The first interpolating
function is, e.g.:

ϕ̃1 = arg sup
ϕ∈F

‖ϕ‖L2(Ω),

the first interpolating linear form is:

σ1 = arg sup
σ∈Σ
∣∣σ(ϕ1)

∣∣.

We then define the first basis function as: q̃1 = ϕ̃1
σ1(ϕ̃1)

. The second interpolating
function is:

ϕ̃2 = arg sup
ϕ∈F
∥∥ϕ − σ1(ϕ)q̃1

∥∥
L2(Ω)

.

The second interpolating linear form is:

σ2 = arg sup
σ∈Σ
∣∣σ (ϕ̃2 − σ1(ϕ̃2)q̃1

)∣∣,
and the second basis function is defined as:

q̃2 = ϕ̃2 − σ1(ϕ̃2)q1

σ2(ϕ̃2 − σ1(ϕ̃2)q1)
,

and we proceed by induction: assuming that we have built the set of interpo-
lating functions {q̃1, q̃2, . . . , q̃M−1} and the set of associated interpolating linear
forms {σ1, σ2, . . . , σM−1}, for M > 2, we first solve the interpolation problem: find

{˜αM−1
j (ϕ)}j such that

∀i = 1, . . . ,M − 1, σi(ϕ)=
M−1∑
j=1

˜
αM−1
j (ϕ)σi(q̃j ),

and then compute:

JM−1[ϕ] =
M−1∑
j=1

˜
αM−1
j (ϕ)q̃j .

We then evaluate

∀ϕ ∈ F, εM(ϕ)=
∥∥ϕ − JM−1[ϕ]

∥∥
L2(Ω)

,

and define:

ϕ̃M = arg sup
ϕ∈F

εM−1(ϕ)



A Generalized Empirical Interpolation Method 227

and: σM = arg supσ∈Σ |σ(ϕ̃M − JM−1[ϕ̃M ])|. The next basis function is then

q̃M = ϕ̃M − JM−1[ϕ̃M ]
σM(ϕ̃M − JM−1[ϕ̃M ]) .

We finally define the matrix B̃M such that B̃Mij = σi(q̃j ), and set X̃M ≡ span{q̃j , j ∈
[1,M]} = span{ϕ̃j , j ∈ [1,M]}. It can be proven as in [7, 10, 12].

Lemma 2.3 For any M ≤Mmax, the set {q̃j , j ∈ [1,M]} is linearly independent
and X̃M is of dimension M . The matrix BM is lower triangular with unity diagonal
(hence invertible) with other entries ∈ [−1,1]. The generalized empirical interpo-
lation procedure is well-posed in L2(Ω).

In order to quantify the error of the interpolation procedure, like in the stan-
dard interpolation procedure, we introduce the Lebesgue constant in the L2 norm:

ΛM = supϕ∈F
‖JM [ϕ]‖L2(Ω)
‖ϕ‖

L2(Ω)
i.e. the L2-norm of JM . A similar result as in the previ-

ous subsection holds.

Lemma 2.4 ∀ϕ ∈ F , the interpolation error satisfies:

∥∥ϕ − JM [ϕ]
∥∥
L2(Ω)

≤ (1+ΛM) inf
ψM∈X̃M

‖ϕ −ψM‖L2(Ω).

A (very pessimistic) upper-bound for ΛM is:

ΛM ≤ 2M−1 max
i∈[1,M]

‖qi‖L2(Ω).

Proof The first part is standard and relies on the fact that, for any ψ ∈ X̃N then
JM(ψM)=ψM . It follows that

∀ψM ∈ X̃M,∥∥ϕ − JM [ϕ]
∥∥
L2(Ω)

= ∥∥[ϕ −ψM ] − JM [ϕ −ψM ]
∥∥
L2(Ω)

≤ (1+ΛM)‖ϕ −ψM‖L2(Ω).

Let us now consider a given ϕ ∈ F and its interpolant JM [ϕ] =∑M
i=1 α̃

M
i (ϕ)q̃i

in dimension M . The constants α̃Mi (ϕ) come from the generalized interpolation

problem: ∀j ∈ [1,M], σj (ϕ) =∑j−1
i=1 α̃

M
i (ϕ)σj (q̃i) + α̃Mj (ϕ)j (ψ). We infer the

recurrence relation for the constants:

∀j ∈ [1,M],

α̃Mj (ϕ)= σj (ψ)−
j−1∑
i=1

αi(ψ)σj (qi).
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Fig. 1 The domain Ω and its
mesh

Based on the properties of the entries in matrix B̃M stated in Lemma 2.3,
we can obtain, by recurrence, an upper bound for each α̃Mj (ϕ): ∀j ∈ [1,M],
|α̃Mj (ϕ)| ≤ (2j−1)‖ϕ‖L2(Ω). Then, ∀ϕ ∈ F , ∀M ≤ Mmax: ‖JM(ϕ)‖L2(Ω) ≤
[∑M

i=1(2
j−1)‖qi‖L2(Ω)]‖ϕ‖L2(Ω). Therefore: ΛM ≤ 2M−1 maxi∈[1,M] ‖qi‖L2(Ω).

Note that the norms of the rectified basis function qi verify ‖qi‖L2(Ω) ≥ 1 from
the hypothesis done on the norm of the σi . �

2.3 Numerical Results

The results that we present here to illustrate the GEIM are based on data acquired in
silico using the finite element code Freefem [4] on the domain represented in Fig. 1.

We consider over the domain Ω ∈R
2 the Laplace problem:

−�ϕ = f, in Ω
(9)

f = 1+ (α sin(x)+ β cos(γ πy)
)
χ1(x, y)

complemented with homogeneous Dirichlet boundary conditions. Here α, β and γ
are 3 parameters freely chosen in given intervals in R that modulate the forcing
term on the right hand side. We assume that the forcing term only acts on a part of
Ω named Ω1 (Ω1 = support(χ1)) and we denote as Ω2 the remaining part Ω2 =
Ω \Ω1.

The easy observation is that the solution ϕ, depends on the parameters α, β , γ :
we plot in Fig. 2 one of the possible solutions.

We also note that the restriction ϕ|Ω2 to Ω2 is indirectly dependent on these co-
efficients and thus is a candidate for building a set (when the parameters vary) of
small Kolmogorov width. This can be guessed if we look at the numerical simula-
tions obtained choices for α, β , γ (see Fig. 3).

For the GEIM, we use moments computed from the restriction of the solution
ϕ(α,β, γ ) over Ω2 multiplied by localized functions with small compact support
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Fig. 2 One of the solutions,
we note that the effect of the
forcing is mainly visible on
domain Ω1 on the left hand
side

over Ω2. The reconstructed solutions with the GEIM based on only 5 interpolating
functions is 1014 time better than the reconstructed function with 1 interpolating
function illustrating the high order of the reconstruction’s convergence.

In the next example, we choose a similar problem but the shape of domain Ω2 a
further parameter (see Fig. 4).

In order to get an idea of the Kolmogorov width of the set {ϕ|Ω2(α,β, γ,Ω2)}, we
perform two Singular Value Decompositions (one in L2, the other in H 1) over 256
values (approximated again with Freefem) and plot the decay rate of the eigenvalues
ranked in decreasing order: the results are shown in Fig. 5.

We note that after about 9 eigenvalues, the finite element error dominates the de-
cay rate of the true eigenvalues. The GEIM is built up again with captors represented
as local weighted averages over Ω2. The interpolation error is presented on the next
figure (Fig. 6) and we note that the decay rate, measured both in L2 and H 1 is again
quite fast. In order to compare with the best fit represented by the projection, in L2

or in H 1, we use the SVD eigenvectors associated with the first M eigenvalues and
compare it with JM , for various values of M . This is represented on Fig. 7.

Fig. 3 Three generic solutions restricted on the sub-domain Ω2
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Fig. 4 Two generic solutions
when shape of the
sub-domain Ω2 varies

Fig. 5 Two SVD (in L2 and
in H 1) of the set of solutions
over Ω2

The very good comparison allow to expect that the Lebesgue constant is much
better than what is announced in Lemma 2.4. A computational estimation of ΛM

(represented in Fig. 8) has been carried out:

Λ̃M = max
i∈[1,256]

‖IM [ui]‖L2(Ω)

‖ui‖L2(Ω)

.
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Fig. 6 The worse GEIM error with respect to M

Fig. 7 Evolution of the GEIM error versus the best fit error, both in L2 and in H 1-norms

Fig. 8 Evolution of the Lebesgue constant, i.e. the norm of the GEIM operator, both in L2 and
in H 1

3 Coupling of Deterministic and Assimilation Methods

3.1 The Framework

Imagine that we want to supervise a process in real-time for which we have a pa-
rameter dependent PDE. Assume that the computation of the solution over the full
domain Ω is too expensive but we are in a situation where the domain Ω can be
decomposed, as before, into two non overlapping subdomains Ω1 and Ω2 and that
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Fig. 9 Schematic
representation of the
reconstruction over Ω2

Fig. 10 Schematic
representation of the recovery
over Ω1 thanks to the
knowledge of the interface
condition

• Ω1 is small subdomain but the set of the restriction of the parameter dependent
solutions has a large Kolmogorov width.

• Ω2 is a big subdomain but the set of the restriction of the parameter dependent
solutions has a small Kolmogorov n-width.

In addition assume that it is possible to get outputs from sensors based in Ω2.
The GEIM allows to reconstruct accurately the current solution associated to some
parameters over Ω2 and thus is able to build the boundary condition necessary over
the interface between Ω1 and Ω2 that with the initially given boundary condition
over ∂Ω to be the necessary boundary condition over ∂Ω1 that complement the
original PDE set now over Ω1 and not Ω as illustrated in Figs. 9 and 10.

3.2 The Combined Approach—Numerical Results

We take over the numerical frame of the previous section and go further. We want to
apply the GEIM to have a knowledge of the solution ϕ|Ω2 and want to use the trace
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Fig. 11 Reconstructed analysis—error in H 1-norm over Ω1 and Ω2

of the reconstruction on the interface to provide the boundary condition, over ∂Ω1
to the problem

−�ϕ = f, in Ω1

f = 1+ (α sin(x)+ β cos(γ πy)
)
χ1(x, y)

derived from (9).
The results are presented in Fig. 11 where both the H 1 error on ϕ|Ω1 and ϕ|Ω2

are presented as a function of M being the number of interpolation data that are
used to reconstruct ϕ|Ω2 . This illustrates that the use of the small Kolmogorov width
of the set {ϕ|Ω2} as the parameters vary (including the shape of Ω2) can help in
determining the value of the full ϕ all over Ω .

4 About Noisy Data

In practical applications, data are measured with an intrinsic noise due to physical
limitations of the sensors. In some sense, the noisy data acquired from the sensors
are exact acquisitions from a noisy function that we consider to be a Markovian ran-
dom field with spacial values locally dependent (on the support of the sensor) and
globally independent (from one sensor to the others). An extension of the previous
development needs therefore to be done in order to take this fact under considera-
tion.

Let us assume that all the sensors are subject to the same noise, i.e. provide
averages—or some moments—computed, not from ϕ, but from a random process
ϕε ' N(ϕ, ε2). The norm of the GEIM operator being equal to ΛM the GEIM-
reconstruction forms a random process JM [ϕε] 'N(JM [ϕ],Λ2

Mε
2) due to linearity.

Even though the Lebesgue constant seems to be small in practice, we would like
to use all the data that are available in order to get a better knowledge of ϕ. For the
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definition of JM we indeed only useM data selected out of a large set of all data. For
this purpose, let us consider that, with some greedy approaches, we have determined
P independent series ofM different captors {σ (p)1 , σ

(p)

2 , . . . , σ
(p)
M }, ∀1≤ p ≤ P . For

each of these series, the GEIM applied to ϕ is noisy and each application provides

J
p
M [ϕε] ' N(J

p
M [ϕ],Λp

M

2
ε2). We shall use these P reconstructions by averaging

them and expect to improve the variance of the reconstruction.
Let λ−1 = 1

P

∑P
p=1

1
Λ
p
N

. Since the P realizations: {JpM [ϕε]}p are independent,

then the random variable JPM(ε)= λ
P

∑P
p=1

J
p
M [ϕε]
Λ
(p)
N

follows a Gaussian Markov ran-

dom field of parameters N(JN(ϕ), ε
2λ2

P
). A realization of this random process could

be chosen for an improved estimate of JM(ϕ). Indeed, the law of the error follows

N(0, ε
2λ2

P
) and its variance can be less than the size of the initial noise on the captors

(ε) provided that Λ(p)
N <

√
P , ∀1≤ p ≤ P , which, from the numerical experiments,

seems to be the case.

5 Conclusions

We have presented a generalization of the Empirical Interpolation Method, based
on ad hoc interpolating functions and data acquired from sensors of the functions
to be represented as those that can arise from data assimilation. We think that the
GEIM is already interesting per se as it allows to select in a greedy way the most
informative sensors one after the other. It can also propose, in case this is feasible,
to build better sensors in order to complement a given family of existing ones and/or
detect in which sense some of them are useless because redundant. Finally we also
explain how noise on the data can be filtered out.

The coupled use of GEIM with reduced domain simulation is also proposed
based on domain decomposition technique leading to a small portion where nu-
merical simulation is performed and a larger one based on data assimilation.

We think that the frame presented here can be used as an alternative to classi-
cal Bayesian or frequentistic statistic where the knowledge developed on the side
for building mathematical models and their simulations can be fully used for data
mining (we refer also to [8] and [11] for recent contributions in this direction).
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Analysis and Numerics of Some Fractal
Boundary Value Problems

Umberto Mosco

Abstract We describe some recent results for boundary value problems with frac-
tal boundaries. Our aim is to show that the numerical approach to boundary value
problems, so much cherished and in many ways pioneering developed by Enrico
Magenes, takes on a special relevance in the theory of boundary value problems in
fractal domains and with fractal operators. In this theory, in fact, the discrete nu-
merical analysis of the problem precedes, and indeed give rise to, the asymptotic
continuous problem, reverting in a sense the process consisting in deriving discrete
approximations from the PDE itself by finite differences or finite elements. As an
illustration of this point, in this note we describe some recent results on: the approx-
imation of a fractal Laplacian by singular elliptic partial differential operators, by
Vivaldi and the author; the asymptotic of degenerate Laplace equations in domains
with a fractal boundary, by Capitanelli-Vivaldi; the fast heat conduction on a Koch
interface, by Lancia-Vernole and co-authors. We point out that this paper has an
illustrative purpose only and does not aim at providing a survey on the subject.

1 Introduction

Very simple fractals, as the Koch curve or the Sierpiński gasket, are non-differen-
tiable sets, therefore they do not allow the explicit writing of an intrinsic differential
operator. Moreover, if the fractal is the (compact) boundary of an open domain of the
plane, the boundary trace spaces may be difficult to characterize. Merging classical
boundary value problems—even of the simple kind as those related to the Laplace
equation or the heat equation—with the theory of fractal sets and fractal operators is
a challenging task. In fact, fractal sets and operators are the result of an asymptotic
process, the one induced by the infinite iterations of a family of contractive similar-
ities. Such an asymptotic feature of fractals introduces an additional approximation
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level to those already inherent in the numerical approximation of the classical PDE
at hand.

The construction of fractal sets goes back to the early years of the twentieth cen-
tury. The construction of the Laplace and heat equations on a large class of fractals
was achieved in the late 1980’s, first by probabilistic methods, then analytically. We
refer to [25] for a brief description of this early work.

A problem related to heat conduction in a planar domain relies on the idea that
the insertion in the domain of a highly conductive material path connecting two
points of the boundary can efficiently act as a preferential fast absorbing trail for
the heat stream. An early model of the kind, with an infinitely conductive layer, was
produced by Cannon and Meyer in 1971, [5], in connection with so called fractured
oil wells. A related singular homogenization problem was later considered by Pam
Huy-Sanchez Palencia in 1974, [31], see also [2, 24].

In the simplest version of this model, the domain is a rectangle, the infinitely con-
ductive pattern is the segment connecting the middle points A and B of two opposite
sides of the rectangle, and the segment is approximated by thin highly conductive
rectangles of transversal size ε. In the two regions above and below this thin layer,
the two-dimensional heat equation, with a normalized conductivity coefficient and
with a prescribed source term, is assumed to govern the slow diffusion of heat. At
the same time, the fast diffusion of heat within the ε-layer is described by the two-
dimensional heat equation, this time with a conductivity coefficient of the order 1/ε.
The boundary condition for the temperature is zero on the boundary of the rectangle.
In the limit as ε→ 0, the thin layer shrinks to the transversal segment. In this pro-
cess, the temperature converges to a limit temperature, given by the two-dimensional
heat equation in each one of the open domains separated by the segment and by the
one-dimensional heat equation along the segment itself. These two equations—both
of second order—are coupled by a transmission condition across the segment. This
condition stipulates that the jump of the external normal derivatives from each side
of the segment acts as a source term for the one-dimensional tangential heat equa-
tion within the segment; moreover, the tangential diffusion has boundary values zero
at the end points A and B .

We note, incidentally, that the natural Sobolev space taking into account this
homogeneous boundary condition for the tangential equation is the so-called Lions-
Magenes space H 1/2

0,0 . A fractal analogue of the Lions-Magenes space occurs in the
problems that we now describe.

A big innovation into the transmission model was indeed carried out in 2002 by
M.R. Lancia, [16]. The segment connecting the points A and B of the boundary of
the domain was replaced by a fractal Koch curve, connecting again A with B . The
rationale for this new model is clear. By increasing the length of the preferential
pattern that conveys the heat stream towards the two selected points A and B , and
actually making the length of this path infinite in the limit, we expect that the cooling
effect of the layer will be increased.

As mentioned previously, in Lancia’s fractal model the transmission problem
with the fractal Koch curve is obtained in the limit of a sequence of transmission
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problems for the approximating pre-fractal polygonal curves as the number of iter-
ation increases to infinity. This model opens two related orders of problems. One
is the rigorous analytic formulation of the second order transmission condition, in
suitable fractional Besov spaces. This study was first carried out by Lancia in [16]
and we refer to this paper and to [18] for the technical details. The second problem
is the analytical and numerical study of the approximating pre-fractal equations. We
report on this study in Sect. 3.

We also report on some recent results of a joint research by Vivaldi and the author,
[29, 30], that is indeed related to the second order transmission problems discussed
so far. The object of this study is a sequence of second order elliptic operators

Anεnu=−div
(
anεn(x, y)∇u

)
(1)

in divergence form in a bounded domain Ω of R2, with discontinuous coefficients
anεn . The coefficients anεn develop an increasing number of singularities on an array
of thin fibers Σn

εn
obtained by the iterated action of a given family of contractive

similarities. The geometry and the singularity of the conductivity coefficients are
initially prescribed on an array of thin hexagonal fibers connecting the essential
fixed points of the similarities. The parameter n = 1,2, . . . indicates the level of
iteration of the similarities, the parameters εn refer to the transversal thickness of
the fiber at each nth-iteration. The detailed geometry of the fibers and the expression
of the singular coefficients anεn are described in Sect. 1. One of the main objective
of this study is to prove the convergence of the spectral measures for the elliptic
operators to the spectral measure of a limit self-adjoint operator. The limit operator
is the intrinsic Laplace operator of the fractal set defined by the given family of
similarities. We outline our main results in Sect. 1.

A related topic has been the object of a recent paper by Capitanelli and Vivaldi,
[7]. They consider the domain bounded by a square snowflake type domain, bounded
by four Koch curves, and the approximated domains obtained by replacing each side
of the pre-fractal Koch curves by a quadrilateral thin fiber of the kind mentioned
before. Differently than in the previous case, the conductivity of the fiber is now
assumed to vanish with the iterations. On such increasingly insulating boundary
layers, a homogeneous Dirichlet condition is imposed to the solution of a Laplace
equation. A characterization of the limit boundary value problem in the snowflake
domain is then given, that depends on the relative size of the thickness and the
conductivity of the boundary layer. These results are outlined in Sect. 2.

There is no space in this note to report on some other aspects of the numerics of
fractals. However, we wish to mention a new kind of interesting problems that de-
serve further research. The objective of this study is to approximate the two dimen-
sional Laplace operator (and related PDEs) in an open domain of the plane, with
a sequence of curvilinear one-dimensional Laplacians (and related ODEs), taken
along a sequence of fractal curves homeomorphic to the segment [0,1], that asymp-
totically fill the whole open domain. Such a dynamical dimensional blow up is of
theoretical interest in itself. It seems also interesting from the numerical point of
view and, in the applications, as a model for the study of invasive interfaces that
infiltrate the whole space.
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In conclusion, we may observe that introducing fractal constructions into the
classic theory of PDEs opens a vast new field of study, both theoretically and nu-
merically. With the very simple examples object of this note, and with other recent
contributions—in particular, the works by Vacca [32], Bagnerini-Buffa-Vacca [3],
Wasyk [33], Evans [10], Liang [9, 23], and the work by Achdou-Sabot-Tchou, [1]
that explores different but related problems—this new field has been only scratched.

Enough however to unveil promising new directions in applied analysis and
PDEs, and to point out how fundamental is to keep analysis and numerics in tight
contact one each other. A point of view this one to which the author was already
exposed in early years of his scientific life in Rome by his adviser Gaetano Fichera,
and that he is happy to take now also as one of the most illuminating aspects of the
scientific legacy of Enrico Magenes.

2 Elliptic Operators with Fractal Singularities

In this section we describe the recent work carried out by Vivaldi and the author
in [29, 30]. In these papers, a singular elliptic operator is submitted to the iterated
action of a family of similarities and the convergence of the spectrum is investigated.

We begin by introducing the similarities. We consider a familyΨ = {ψ1, . . . ,ψN }
of N ≥ 2 contractive similarities in R

2, with distinct fixed-points, with a common
contractive factor α−1, α > 1; a similarity, or similitude, in a Euclidean space is a
map obtained by composition of translations, orthogonal transformations, and ho-
motheties. The set of essential fixed-points of these maps will be denoted by Γ ;
a point br ∈R

2 is an essential fixed-point for the family Ψ if br =ψi(br )=ψj (bs)
for some i ∈ {1, . . . ,N}, j �= i, j ∈ {1, . . . ,N} and bs a fixed-point of a map of Ψ .

Here, for simplicity, we assume thatΨ is the so-called Koch family of similarities,
that is, the family Ψ = {ψ1, . . . ,ψ4} of the following N = 4 similitudes, each one
contractive with a factor α−1, α = 3:

ψ1(z)= z

3
, ψ2(z)= z

3
eiπ/3 + 1

3
,

ψ3(z)= z

3
e−iπ/3 + 1

2
+ i sinπ/3

3
, ψ4(z)= z+ 2

3
,

where z = x + iy ∈ C. The set of the essential fixed-points of this family is Γ =
{A,B}, where A= (0,0) and B = (1,0). The third vertex of the equilateral triangle
based on the side A,B is the point C = (1/2,√3/2).

We now define a reference fiber in the Cartesian plane R
2. This fiber is a thin

hexagon which has the segment connecting the points A= (0,0) and B = (1,0) as
its longitudinal axis. The middle point of the segment AB is denoted by AB/2. The
fiber is symmetric with respect to the x-axis and the vertical line x = 1/2, therefore,
it suffices to describe the geometry of the fiber in the region y ≥ 0, x ≤ 1/2. We con-
sider the right triangle with vertices A,AB/2,Q0 which makes the angle π/12 at
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A. Thus, Q0 = (1/2, ε0), where ε0 = h0/2, h0 = tan(π/12). For every 0< ε ≤ ε0,
we consider the two points Q1(ε)= (ε/h0, ε) and Q0(ε)= (1/2, ε) and the quadri-
lateral A,AB/2,Q0(ε),Q1(ε). We then define the set Σ0

0,2ε to be the thin hexagon
obtained by reflection of this quadrilateral across the x-axis, followed by a sym-
metry across the vertical axis x = 1/2. The vertices of Σ0

0,2ε , listed clockwise, are
the points A, Q1(ε), Q2(ε), B , Q3(ε), Q4(ε), where now Q2(ε)= (1− ε/h0, ε),
Q3(ε)= (1− ε/h0,−ε), Q4(ε)= (ε/h0,−ε). The perimeter of the hexagon Σ0

0,2ε

gives the external profile of our fiber. Inside the hexagon Σ0
0,2ε , we now insert

a smaller hexagon Σ0
0,ε . The construction of this hexagon is similar to that of

Σ0
0,2ε , by replacing the triangle A,AB/2,Q0 with the smaller right triangle with

vertices A,AB/2,P0, where P0 = (1/2, ε0/2). The angle of this triangle at A is
arctan(h0/2). The vertices of the hexagon Σ0

0,ε , again listed clockwise, are now
the points A, P1(ε), P2(ε), B , P3(ε), P4(ε), where now P1(ε) = (ε/h0, ε/2),
P2(ε)= (1− ε/h0, ε/2), P3(ε)= (1− ε/h0,−ε/2), P4(ε/h0,−ε/2).

With the notation set before, the reference fiber is given by the two co-axial thin
hexagons Σ0

0,ε ⊆Σ0
0,2ε , of largest transversal size ε and 2ε, respectively. The two

hexagons meet at the common vertices A and B , and Σ0
0,ε \ {A,B} is contained in

the interior of Σ0
0,2ε .

In the case at hand, the Koch family of similarities, the single reference fiber
Σ0

0,2ε of our construction connects the two essential fixed-points Γ = {A,B},
which, in this special case, are the only essential fixed points of the family Ψ (the
pair-wise connection of all essential fixed points of the family by means of a fiber is
a requirement of this theory).

Our next step is to submit the fiber to the iterated action of the family Ψ . We
first set a useful notation. For each integer n≥ 0, we consider arbitrary n-tuples of
indices i|n= (i1, i2, . . . , in) ∈ {1, . . . ,N}n and define ψi|n = ψi1 ◦ψi2 ◦ · · · ◦ψin if
n > 0, with ψi|n the identity map if n= 0; for every set O⊆ R

2, we define Oi|n =
ψi|n(O). With this notation at hand, for every n≥ 0, we construct the array of fibers
obtained by defining

Σn
2ε =

⋃
i|n
Σ
i|n
2ε , Σ

i|n
2ε =ψi|n

(
Σ0

2ε

)
, (2)

Σn
ε =
⋃
i|n
Σi|n
ε , Σi|n

ε =ψi|n
(
Σ0
ε

)= ⋃
br �=bs∈Γ

Σi|n
ε (br , bs), (3)

where Σ0
ε =Σ0

0,ε , Σ
0
2ε =Σ0

0,2ε .

The space R
2—actually, a bounded open domain Ω ⊂ R

2, with Ω containing

Σ
0
0,2ε , that contains the fibers Σn

2ε for every ε and every n and which will be spec-
ified later on—is now converted into a physical composite body. This is done by
defining a discontinuous conductivity matrix anε (ξ, η)Id, (ξ, η) ∈Ω , again by the it-
erated action of the similarity family. The whole iteration process is externally gov-
erned by two sequences of constants, ζn > 0 and γn > 0. The limit values assigned
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to ζn and γn as n→+∞ affect the nature and the properties of the asymptotic
effective medium.

In order to observe boundary effects, we chooseΩ in a way that Γ belongs to the
boundary ∂Ω ofΩ , namelyΩ is now the triangle with verticesD = (1/2,−√3/2),
E = (3/2,

√
3/2), F = (−1/2,

√
3/2). The domain Ω contains the interior of the

triangle of vertices A,B,C, and the vertices A, B , C belong to ∂Ω .
The matrix anε Id—for given 0< ε ≤ ε0 and n≥ 0—is defined at every (ξ, η) ∈Ω

by

anε (ξ, η) Id=
{
ζn1Ω\Σn

2ε
(ξ, η) Id+1Σn

2ε\Σn
ε
(ξ, η) Id

+ 1/2σn
∑

br �=bs∈Γ w
n
ε (ξ, η)1Σn

ε (br ,bs )
(ξ, η) Id .

(4)

In this expression, Id is the 2-dimensional identity matrix and 1S the indicatrix func-
tion of a set S ⊂R

2, that is, 1S(ξ, η)= 1 if (ξ, η) ∈ S, 1S(ξ, η)= 0 if (ξ, η) /∈ S.
The constants σn, which will be specified later on, are scaling factors associated

with Ψ . At each iteration n, ζn > 0 is a material constant that takes into account
how the conductivity of the surrounding medium evolves with n. Since in (4) the
conductivity of the coating region Σn

2ε \Σn
ε has been normalized to 1, the constant

ζn can be interpreted as a viscosity coefficient, that expresses the relative strength
of the conductivity of the space that surrounds the fiber Σn

2ε with respect to the
conductivity of the fiber Σn

ε itself. For every n≥ 0 and i|n, the conductivity of the

fiber Σi|n
ε (br , bs) is given by

wnε (ξ, η)1Σi|n
ε (br ,bs )

(ξ, η)= γnαnw0
ε ◦ψ−1

i|n (ξ, η)1Σ0
ε (br ,bs )

(ξ, η). (5)

This expression is obtained from the conductivity w0
ε (x, y) of the reference fiber

Σ0
ε (br , bs) by applying the map (ξ, η) = ψi|n(x, y). The function w0

ε (x, y) is de-
fined on the inner fiber Σ0

0,ε as follows:

w0
ε (x, y)=

⎧⎨
⎩

2+h2
0

4|P−P⊥| if (x, y) ∈ T

1
2|P−P⊥| if (x, y) ∈R

(6)

where R is the central rectangle in Σ0
0,ε with vertices P1, P2, P3, P4, and T is the

union of the two isosceles trianglesA, P1, P4 and P2,B , P3. For every (x, y) ∈Σ0
0,ε ,

we consider the point P⊥ = (x,0) on the longitudinal axis of Σ0
0,ε and we define

P = (x, yP ) to be the intersection of the vertical line through P⊥ = (x,0) with the
boundary ∂Σ0

0,ε of Σ0
0,ε in the half plane y ≥ 0. This boundary is the polygonal

line connecting the vertices A, P1(ε), P2(ε), B . Then |P − P⊥| is the (Euclidean)
distance between P and P⊥ in R

2.
At this stage, we are confronted with two asymptotic limits. For fixed n, the limit

as ε→ 0 gives vanishing thickness to the fibered neighborhood of the pre-fractal
polygonal curve. The limit as n→+∞ leads to the fractal set included in Ω . We
proceed diagonally, by suitably choosing for each n a value εn > 0, such that εn→ 0
as n→+∞. Then, we take the single limit as n→+∞.
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We consider the sequence of operators An = Aεn , where Aεn are the operators
given in (1). The operators An are defined as self-adjoint operators in the space
L2(Ω) (with Neumann boundary condition on ∂Ω). Our main goal is to show the
convergence of the spectral measures Pn(dλ) of the operators An to the spectral
measure of a suitable self-adjoint asymptotic operator, as n→+∞. We rely on
variational and convergence tools from [24]. In particular, by a general result in
[24], we obtain the convergence of the spectral measures of the operators An to the
spectral measure of a limit operator A as a consequence of the M-convergence of
the (extended-valued) energy forms associated with these operators.

For every n, and for the specified value of εn > 0, the energy form of the operator
Aεn in L2(Ω) is the functional

Fn[u] = Fnεn[u] =
{∫

Ω
anεn(x, y)|∇u|2dxdy if u ∈D[Fnεn]

+∞ if u ∈ L2(Ω) \D[Fnεn ]
where anεnId is the coefficient matrix defined in (4) for ε = εn, and the domain
D[Fnεn] ⊂ L2(Ω) is the completion of C1(Ω) in the norm

‖u‖D[Fnεn ] =
{∫

Ω

|u|2dxdy +
∫
Ω

|∇u|2anεndxdy
} 1

2

. (7)

As explained before, we let, simultaneously, the iteration parameter n go to +∞
and the transversal size ε of the fibers go to 0, by choosing ε = εn to be infinitesimal
as n→+∞. We must also choose the scaling constants σn. These scaling laws can
be expressed in terms of a single parameter δ > 0. The value of δ is given by the
ratio

δ := dH

dS

of the Hausdorff dimension dH of G and the spectral dimension dS of G. Here G is
the invariant (self-similar) set defined by the familyΦ . The constant δ is an effective
metric parameter that depends on the fractal G. For the Koch curve, N = 4, α = 3,
δ = ln 4/ ln 3. For the Sierpiński gasket, N = 3, α = 2, δ = ln 5/ ln 4. Note that in
both cases δ > 1. We then define

ρ = α2δ

N

and take

εn =
(
ρ

N

)n
ωn, (with ωn→ 0 as n→+∞), σn =

(
ρ

α

)n
. (8)

We also assume that the material constants ζn, γn remain finite and non-vanishing
through the iteration process:

lim ζn = ζ ∗ ∈ (0,+∞), limγn = γ ∗ ∈ (0,+∞) (9)
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as n→+∞. In [30] the following result is obtained, which extends previous results
from [27] and [28]:

Theorem 2.1 With the value of δ > 0 specified before, under the assumptions (8)
and (9) the sequence of functionals Fn M-converges in L2(Ω) to the functional

F [u] =
{
ζ ∗
∫
Ω
|∇u|2dxdy + γ ∗EG[u|G] if u ∈H 1(Ω),u|G ∈D[EG]

+∞ if u ∈ L2(Ω) \ {u : u ∈H 1(Ω),u|G ∈D[EG]}
(10)

where EG[u|G] is the energy functional on the fractal G.

In this statement, H 1(Ω)⊂ L2(Ω) is the Sobolev space obtained as the comple-
tion of C1(Ω) in the norm

‖u‖H 1(Ω) =
{∫

Ω

|u|2dxdy +
∫
Ω

|∇u|2dxdy
} 1

2

and u|G is the trace of u ∈H 1(Ω) on G, defined, e.g., as in [13, 14]. For u in C(G)
the energy functional EG[u] is obtained as the increasing limit

EG[u] = lim
n→+∞EnG[u] (11)

of the discrete energy forms

EnG[u] =
1

2

α2nδ

Nn

∑
i|n

∑
br �=bs∈Γ

(
u
(
ψi|n(br)

)− u(ψi|n(bs)))2, (12)

on the domain

D[EG] =
{
u ∈ C(G)| sup

n≥0
EnG[u|V n ]<+∞

}
.

Here for every n≥ 0 the set V n is obtained by iteration as

V n =
⋃
i|n
ψi|n(Γ ). (13)

The fractal G is the closure in R
2 of the set V∞ = ⋃+∞

n=0 V
n. We note that the

functional (10) is non trivial, because it is finite on the domain D[F ] = {u : u ∈
H 1(Ω),u|G ∈ D[E]} which is dense in L2(Ω) (see, e.g., [13]). The functional
F defines a densely defined self-adjoint operator A = −ΔG in the Hilbert space
L2(G,μG), which takes the role of intrinsic Laplace operator in G with Neumann
condition on Γ . The measure μG is the (normalized) dH -dimensional Hausdorff
measure on G, see Hutchinson [12].
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The case of Dirichlet conditions, on both ∂Ω and Γ , is covered by the next result.
The functional Fn[u] of the previous theorem is now replaced by the functional

Fn[u] = Fnε [u] =
{∫

Ω
anεn(x, y)|∇u|2dxdy if u ∈D0[Fnεn]

+∞ if u ∈ L2(Ω) \D0[Fnεn ]
(14)

where the domain D0[Fnεn] ⊂ L2(Ω) is now the completion of C1
0(Ω) in the norm

‖u‖D[Fnεn ] given in (7). The limit functional is defined on L2(Ω) by

F [u] =
{
ζ ∗
∫
Ω
|∇u|2dxdy + γ ∗E[u|G] if u ∈H 1

0 (Ω),u|G ∈D0[EG]
+∞ if u ∈ L2(Ω) \ {u : u ∈H 1

0 (Ω),u|G ∈D0[EG]}.
(15)

The functional (15) is finite on the domain D0[F ] = {u : u ∈ H 1
0 (Ω),u|G ∈

D0[EG]}, where D0[EG] is the subspace of all functions in D[EG] that vanish on Γ .
Again, this functional is non trivial, because D0[F ] is dense in L2(Ω). The self-
adjoint operator A = −ΔG, defined now in the Hilbert space L2(G,μG) by the
functional F , is the Laplace operator −ΔG in the fractal G with Dirichlet bound-
ary condition on Γ .

The result in [30] is

Theorem 2.2 Under the same scaling assumptions as in Theorem 2.1, the sequence
of functionals Fn defined in (14) M-converges in L2(Ω) to the functional F defined
in (15) as n→+∞.

The special scaling laws for the parameters imply in particular that the transversal
thickness of the fibers tends to zero while their conductivity diverges to +∞, the
product of them remaining bounded, as n→+∞. In the same paper some cases
where this condition is not satisfied are also studied.

We point out that in both theorems the asymptotic energy has two interacting
components, the standard Dirichlet integral extended to the two dimensional do-
main Ω , and a lower-dimensional fractal energy term. Globally, the limit functional
F defines a self-adjoint operatorA in the space L2(Ω). Formally, such operatorA is
given by the two dimensional Laplace operator Δ in the open set Ω \G—with Neu-
mann or Dirichlet boundary condition on ∂Ω—together with the fractal-Laplacian
ΔG on G—with Neumann or Dirichlet condition on Γ = G∩∂Ω . The two operators
are coupled by a second order transmission condition on G. The condition states that
the jump of the normal derivative of the function u from Ω across G, taken on G,
equals the Laplacian ΔG acting on the trace of u on G. In the case of Dirichlet con-
dition on Γ , a fractal analogue of the Lions-Magenes trace space, mentioned earlier,
comes into play. For a rigorous definition of the transmission problems when G is
the von Koch curve we refer to [16] and [18].

As mentioned in the introduction, the convergence of the energy functionals im-
plies the convergence of the spectral measures and of the spectral subspaces.
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Theorem 2.3 In the same assumptions of Theorem 2.1 and Theorem 2.2, for every
λ < μ which are not in the point spectrum of the operator A in L2(Ω), the projec-
tion operator Pn((λ,μ]) of the spectral resolution Pn of the operator An in L2(Ω)

converges strongly in L2(Ω) to the projection operator P((λ,μ]) of the spectral
resolution P of the operator A in L2(Ω).

This result follows from the convergence of the functionals, by applying Theo-
rem 2.4.1 and its Corollary 2.7.1 from [24].

In the problems considered so far in this section the parameter ζ ∗ is positive. This
is the case when the medium in which the fibers are embedded keeps finite positive
viscosity up to the limit. Then, as seen before, the energy is only partially absorbed
into the lower dimensional fractal inclusion. The vanishing viscosity case, when

lim ζn = ζ ∗ = 0

has been considered in [29]. In this case the limit functional is composed only by
the fractal energy term.

Such a collapse of geometry and energy on a lower dimensional fractal set is an
interesting feature, both in fractal and PDEs theories. It shows, in particular, that
fractal Laplacians can be obtained as the (spectral) limit of singular second order
elliptic operators in divergence form.

In the vanishing viscosity case, however, there is a loss of coercivity as n→+∞.
In fact, the uniformH 1 estimate that plays a basic role in the previous theorems, that
is

c‖∇u‖2
L2(Ω)

≤ Fnεn[u]
with c > 0 independent of n, now fails, due to the vanishing of the coefficient ζn as
n→+∞. The domains D[Fn] of the functionals Fn and the domain D[F ] of the
limit functional F are no more contained in the single Hilbert space H = L2(Ω),
which is the space where the convergence of the previous theorems takes place.

This difficulty has been overcome in [29], by relying on a generalization of the
M-convergence of functionals to variable Hilbert spaces, developed by Kuwae-
Shioya in [15]. Generally speaking, the convergence of the functionals takes now
place in a larger Hilbert space,

⊗∞
0 Hn.

In [29], for every n≥ 0 the following Hilbert space is considered:

Hn = L2(Ω,μnεn
)
,

where the Borel measure μnεn in Ω is defined by

μn = ζn1Ω\Σn
2εn

L+ 1Σn
2εn
\Σn

εn
L+ τnwnεn1Σn

εn
L.

Here L is the 2-dimensional Lebesgue measure; 0< ζn ≤ 1 are the viscosity pa-
rameters and τn are scaling constants, depending on the fractal, that will be specified
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later on. The functional Fn is now defined for each n in the spaces Hn as follows:

Fn[u] = Fnεn [u] =
{∫

Ω
anεn(x, y)|∇u|2dxdy if u ∈D[Fn]

+∞ if u ∈ L2(Ω,μn) \D[Fn]

where anεnId is again the coefficient matrix defined in (4) for ε = εn and now
the domain D[Fn]—D[Fn] ⊂ L2(Ω,μn) = Hn—is the space of all functions
u ∈ L2(Ω,μn) with distribution weak gradient in L2(Ω,μn). The functional Fn
defines a regular, closed Dirichlet form in Hn. The generator of such a form is a
self-adjoint operator −An densely defined in the space Hn. The operator An is the
positive-definite self-adjoint realization in the space L2(Ω,μn) of the second or-
der elliptic operator in divergence form (1), with natural Neumann conditions on
∂Ω . The spectrum of the operator An + IdHn is a point spectrum, with eigenvalues
λnk →+∞ as k→+∞.

The measures μn are the so-called speed measures of the Markov processes gen-
erated by−An. They replace, in the choice of the Hilbert space, the two dimensional
Lebesgue measure of the non-vanishing viscosity case. The transmission condition
at the interface of G and Ω is affected by this change.

We now summarize the assumptions in the present case. The coefficients anεn are
defined as previously in (4), and they depend on the two sequences of constants ζn
and γn. The constants N , α, δ and ρ—that depend on the fractal—are the same as
specified before. As before, we also take

εn =
(
ρ

N

)n
ωn, (with ωn→ 0 as n→+∞), σn =

(
ρ

α

)n
. (16)

In addition, for the Sierpiński case considered in [29], we assume that

τn = 3

(
ρ

α

)n

(for other fractals, the numerical coefficient 3 may be replaced by another numerical
constant depending on the cardinality of Γ ). With this choice of the constants τn,
it is proved in [29] that the measures μn weak* converge to the measure μG as
n→+∞, that is ∫

Ω

φdμn→
∫
Ω

φdμG

as n→+∞, for every φ ∈ C(Ω̄).
The result of [29] for the Sierpiński fractal is:

Theorem 2.4 With the scaling constants εn, σn and τn specified before, let the con-
stants 0 < ζn ≤ 1 and γn be such that lim ζn = 0 and limγn = γ ∗ ∈ (0,+∞) as
n→∞. Then the sequence of functionals Fn in Hn M-converges (in the sense of



248 U. Mosco

Kuwae-Shioya) to the functional

F [u] =
{
γ ∗EG[u] if u ∈D[F ]
+∞ if u ∈ L2(G,μG) \D[F ]

(17)

with domain D[F ] = {u ∈ L2(G,μG) : u ∈D[EG]} where EG[u] is the energy func-
tional on the fractal G with domain D[EG] ⊂ L2(G,μG).

We note that, in the present context—that is,Hn = L2(Ω,μn),H = L2(G,μG)—
theM-convergence of the functionals Fn to the functional F , in the sense of Kuwae-
Shioya, is defined as the usual M-convergence of functionals, provided strong and
weak convergence of sequences of vectors are defined in the following way: a se-
quence of vectors un ∈ Hn converges strongly to a vector u ∈ H if there exists a
sequence φm ∈ C(Ω̄), such that ‖φm − u‖H → 0 as m→ 0, and

lim
m

lim sup
n

‖φm − un‖Hn → 0, as n→+∞ and n→ 0.

The sequence un ∈Hn converges weakly to u ∈H , if the inner product (un, vn)Hn

converge to the inner product (u, v)H for every vn converging strongly to v as n→
+∞.

Similarly as before, from the convergence of the functionals we get the conver-
gence of the spectral measures, see Theorem 3.4 in [15]:

Theorem 2.5 In the same assumptions of Theorem 2.4, for every λ < μ not in the
point spectrum of the self-adjoint operator A=−ΔG in L2(G,μG), defined by F ,
the projection operator Pn((λ,μ]) of the spectral resolution Pn of the self-adjoint
operators An in L2(Ω,μn), defined by Fn, converges strongly to the projection
operator P((λ,μ]) of the spectral resolution P of the operator A, in the Kuwae-
Shioya sense.

In this statement, the strong convergence of the spectral projectors has to be in-
tended according to the following general definition: a sequence of bounded op-
erators Bn in Hn converges strongly to a bounded operator B in H if for every
un ∈Hn converging strongly to u ∈H the sequence Bnun ∈Hn converges strongly
to Bu ∈H , with the strong convergence of vectors defined as before.

3 Elliptic Operators with Fractal Degeneracy

In this section we report on the recent papers by Capitanelli and Vivaldi, [6, 7].
The problem studied in these papers is the boundary approximation with suitable
insulating fibers of Laplace equations in a domains bounded by four Koch curves.

The domain Ω0 is now the square {(x, y) : 0< x < 1,−1< y < 0}, with vertices
A= (0,0),B = (1,0),C = (1,−1) and D = (0,−1). On each one of the four sides
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a Koch curve Kj , j = 1, . . . ,4, is constructed, moving outward from the square.
At the iteration n, the domain bounded by the four pre-fractal Koch curves Kn

j is
denoted by Ωn. For each n, and for every 0 < ε ≤ ε0 < 1/2, the open set Ωn is
enlarged to become the open set

Ωn
ε = Ω̄n ∪Σn

j,ε,

where for each j the setΣn
j,ε is the open fibered neighborhood ofKn

j constructed by

similarity from the initial reference fiberΣ0
0,ε already described in Sect. 1. However,

since now the pre-fractal is on the boundary, we split the reference fiber in half, by
keeping only the (open) half fiber that lays above the x-axis. The fibered set ∪Σn

j,ε

lies then externally to the domain Ωn and is disjoint from Ω̄n.
The conductivity coefficients of the fibered set Σn

j,ε is defined, as in the previ-
ous section, in terms of the constants γn and σn and the functions wnε . However,
in the definition of wnε , a substantial change is performed: in the definition of the
conductivity of the reference fiber Σ0,ε , the factor |P − P⊥|−1 is replaced by the
factor |P − P⊥| (and the numerical coefficients are modified conveniently). With
this change, the fibers present vanishing conductivity as ε tends to 0. The conduc-
tivity anε (x, y) of the enlarged domain Ωn

ε is then defined to be equal to wnε (x, y) if
(x, y) ∈Σn

ε , and equal to 1 if (x, y) ∈ Ω̄n.
The spaces H 1(Ωn

ε ,w
n
ε ) and H 1

0 (Ω
n
ε ,w

n
ε ) are defined to be the completion of

C1(Ω̄n
ε ) and C1

0(Ω
n
ε ), respectively, in the norm

‖u‖H 1(Ωn
ε ,w

n
ε )
=
{∫

Ωn
ε

|u|2dxdy +
∫
Ωn
ε

|∇u|2wnε dxdy
} 1

2

.

By Ω∗ we denote the unit disc with center at P0 = (1/2,1/2). We then consider
the following functionals:

Fn[u] = Fnεn[u] =

⎧⎪⎨
⎪⎩

∫
Ωn
εn
anεn(x, y)|∇u|2dxdy

if u ∈ L2(Ω∗) and u|Ωn
ε
∈H 1

0 (Ω
n
ε ,w

n
ε )

+∞ if u ∈ L2(Ω∗) and u|Ωn
ε
/∈H 1

0 (Ω
n
ε ,w

n
ε ).

By μ∂Ω we denote the measure on ∂Ω such that the restriction of μ∂Ω to each
fractal component Kj of ∂Ω coincides with the Hausdorff measure μKj of Kj ,
j = 1, . . . ,4.

Then the following result is given in [6]:

Theorem 3.1 Let us assume that γn > 0 γ ∗ > 0 and γn → γ ∗ as n→+∞. Let
εn be an arbitrary sequence such that εn→ 0 as n→+∞. Then the functional Fn
M-converge to the functional

F [u] =
{∫

Ω
|∇u|2dxdy + γ ∗ ∫

∂Ω
|u|2dμ∂Ω if u ∈ L2(Ω∗) and u|Ω ∈H 1(Ω)

+∞ if u ∈ L2(Ω∗) and u|Ω /∈H 1(Ω).
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We point out that the boundary value problem for the Laplace operator in Ω

associated with the limit functional F implies, if γ ∗ > 0, a Robin type condition on
∂Ω .

In [6], the case when γn→ 0—leading to Neumann boundary condition on ∂Ω—
and the case γn→+∞ with an additional assumption on the rate of convergence of
εn→ 0—leading to a Dirichlet condition on ∂Ω—are also studied, as well the gen-
eralization of the boundaries to the irregularly scaled Koch curves, or Koch mixtures,
in the sense of [4] and [26].

4 Interfacial Heat Transmission

Two-dimensional second order transmission problems across a highly conductive
layer of Koch type have been studied by Lancia, Vernole and co-authors in a series
of recent papers, [8, 17, 19–22].

In reporting on this work in the context of this note, we confine ourselves mainly
to the papers [8, 19, 20]. In [19] the authors obtain their first results on the heat
transmission problem that we already mentioned in the Introduction. In particular,
they show the existence and uniqueness of the strict solution for both the fractal
and pre-fractal problems, moreover they study the regularity and the convergence
of the solutions of the pre-fractal problems as the pre-fractal layer converges to the
fractal set. In [8], the authors provide the finite element approximation for this kind
of problems.

The pre-fractal transmission problems studied in [20] can be formally stated as
follows:

(Pn)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dun(t,P )
dt

−Δun(t,P )= f (t,P ) in [0, T ] ×Ωi
n, i = 1,2 (i)

dun
dt
−ΔKnun(t,P )= [ ∂un(t,P )∂ν

] + f on [0, T ] ×Kn, (ii)
un(t,P )= 0 on [0, T ] × ∂Ω, (iii)
u1
n(t,P )= u2

n(t,P ) on [0, T ] ×Kn, (iv)
un(t,P )= 0 on [0, T ] × ∂Kn (v)
un(0,P )= 0 on Ω (vi)

In this problem Ω is a rectangular domain, for example the open rectangle with
vertices A = (0,−√3/2), B = (1,−√3/2), C = (1,

√
3/2) and D = (0,

√
3/2).

The source term f (t,P ) is a given function in Cδ([0, T ];L2(Ω,mn)) with δ ∈
(0,1). For a fixed n, Kn is the pre-fractal Koch curve with endpoints are (0,0) and
(1,0). The curveKn separatesΩ into two open subsets, Ω1

n and Ω2
n . The restriction

of un to Ωi
n is denoted by uin, i = 1,2. The piecewise-tangential Laplacian defined

on the polygonal curve Kn is denoted by ΔKn . The jump of the normal derivatives
across Kn is given by [

∂un

∂ν

]
= ∂u1

n

∂ν1
+ ∂u2

n

∂ν2
,

where νi is the inward normal vector to the boundary of Ωi
n.
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Let us introduce the Hilbert space L2(Ω,mn), where

dmn = dxdy + ds, (18)

with inner product (·,·)mn and norm ‖u‖2,mn = (
∫
Ωn
|u|2dxdy + ∫

Kn
|u|2ds) 1

2 and
the forms

E(n)(un,un)=
∫
Ω

|∇un|2dxdy +
∫
Kn

|∇τ γ0un|2ds, (19)

defined on the domain

V (Ω,Kn)=
{
un ∈H 1

0 (Ω) : γ0un ∈H 1
0 (Kn)

}
. (20)

In (20), H 1
0 (Ω) denotes the usual Sobolev space in Ω , H 1

0 (Kn) the trace space on
Kn and γ0un is the trace of un on Kn (denoted simply by un below). Moreover, the
second integral at the right-hand side of (19) is defined piece-wise by

∫
Kn

|∇τ γ0un|2ds =
∑
M∈Fn

∫
M

|∇τ γ0un|2ds,

where the sum is taken over the segments M that compose Kn, ∇τ is the tangential
derivative along M . The measure ds is the one-dimensional arc length measure
on Kn. This integral expresses the energy EKn(·, ·) of the curve Kn. The space
V (Ω,Kn) given by (20) is a Hilbert space under the norm

‖un‖V (Ω,Kn) =
{
E(n)(un,un)

}1/2
. (21)

Moreover, for each n ∈ N, E(n)(·, ·), with domain V (Ω,Kn), is a regular, strongly
local Dirichlet form in L2(Ω) and in L2(Ω,mn), respectively.

In [20], Problem (Pn) is dealt with by semigroup methods. More precisely, for
every fixed n the following abstract Cauchy problem is studied

(Pn)

{ dun(t)
dt =An un(t)+ f (t), 0≤ t ≤ T

un(0)= 0
(22)

where An : D(An) ⊂ L2(Ω,mn)→ L2(Ω,mn) is the generator associated to the
energy form E(n),

E(n)(un, v)=−
∫
Ω

Anunv dmn, un ∈D(An), v ∈ V (Ω,Kn).

The following existence and uniqueness result is then obtained

Theorem 4.1 Let 0< δ < 1, f ∈ Cδ([0, T ],L2(Ω,mn)), and let

un(t)= Ttu0 +
∫ t

0
Tn(t − s)f (s)ds for every n ∈N, (23)
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where Tn(t) is the analytic semigroup generated by An. Then un is the unique
“strict” solution of (Pn). Moreover,

‖un‖C1([0,T ],L2(Ω,mn))
+ ‖un‖C0([0,T ],D(An))

≤ c‖f ‖Cδ([0,T ],L2(Ω,mn))
, (24)

where c is a constant independent of n.

The solution of the abstract Cauchy problem (Pn) is the “strong” solution of
Problem (P n), as described by this result in [8]:

Theorem 4.2 Let un be the solution of Problem (Pn). For every fixed t ∈ [0, T ] we
have ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dun(t,P )
dt −Δun(t,P )= f (t,P ), for P ∈Ωi

n, i = 1,2,
∂uin
∂νi

∈ L2(Kn), i = 1,2,
dun
dt −ΔKnun|Kn = [ ∂un∂ν ] + f, in L2(Kn),

un(t,P )= 0, for P ∈ ∂Ω.

(25)

Moreover, ∂u
i
n

∂νi
∈ C([0, T ],L2(Kn)), i = 1,2.

In [19] and [20] the following regularity result is also obtained

Theorem 4.3 For any fixed t ∈ [0, T ], u1
n ∈ H 2,α1(Ω1

n) with α1 >
2
5 ; u2

n ∈
H 2,α2(Ω2

n) with α2 >
1
4 , and un ∈ C0(Ω), un|Kn ∈H 2(Kn).

The definition of the weighted Sobolev spaces H 2,αi (Ωi
n) is rather delicate. If D

is a non-convex polygonal domain in R
2 and α > 0, the space H 2,α(D) tis defined

to be the space

H 2,α(D)= {v ∈H 1(D) : rα ·Dβv ∈ L2(D), β = (β1, β2) ∈N×N s.t. |β| = 2
}
,

equipped with the norm

‖v‖H 2,α(D) :=
{
‖v‖2

H 1(D)
+
∑
|β|=2

∥∥rα ·Dβv
∥∥2
L2(D)

}1/2

.

The delicate point in this definition is the construction of the weight function r :
D→ R+, that we now describe. Let {Pj ,1 ≤ j ≤ N} be the set of vertices of D.
For j = 1, . . . ,N, let θj be the interior angle of D at Pj . Let R be the set of the
indices {j = 1, . . . ,N : π

θj
< 1} and let Q = {Pj }j∈R be the subset of the vertices

with reentrant angles θj (these are the points where the solutions are singular). We
set η := { 1

4 ·min |Pj − Pk|; j, k ∈R, j �= k} and arbitrarily choose 0< ε < η. For j
in R, we define rj (P ) := |P −Pj | for all P in Bε(Pj )= {P ∈D : |P −Pj |< ε}. We
then define the function r :D→ R+ by putting r(P ) := rj (P ), for all P ∈ Bε(Pj )
and j in R, and r(P ) := 1 for all P ∈D\⋃j∈R B2ε(Pj ).
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We conclude this section with some remarks on the numerical approximation of
these problems, reporting mainly on the papers [8] and [9].

The pre-fractal curveKn induces a natural triangulation Tn,h of the domainΩ , in
which the vertices of Kn belongs to the set of nodes of Tn,h. Starting with this trian-
gulation, a mesh refinement process is given, that generates a regular and conformal
family of finer triangulations {Tn,h}.

The need for such refined triangulations comes from the presence of reentrant
angles in the boundaries of the domains Ω1

n and Ω2
n , which were previously de-

scribed. As already mentioned, the solution un is singular at these angles, indeed
un is not in the Sobolev space H 2(Ωi

n), as it is the case of a smoothly bounded do-
main. Instead, as seen with Theorem 4.3, uin ∈H 2,αi (Ωi

n), i = 1,2, with α1 >
2
5 and

α2 >
1
4 . In view of these singularities, in order to get optimal rate of convergence

for the finite element approximations the triangulation of the domains Ωi
n must be

refined, according to the conditions introduced in this regard by Grisvard in [11].
The authors are able to implement Grisvard’s conditions by satisfying at the same

time an additional important property for their refinements. The refined meshes are
constructed as a “nested” sequence of meshes, i.e., all the nodes of Tn,h belong also
to Tn+1,h. This property is of course of great help when the numerical approximation
is carried out at various levels of the fractal iteration. We refer to [8] and [9] for more
details. We also point out that in [9] more complicated boundaries, made by suitable
mixtures of Koch curves, are also considered.

With the appropriate triangulations at hand, the numerical approximation of the
problem (Pn) is carried out in two steps. In the first step the semi-discrete problem,
obtained by discretizing with a Galerkin method only the space variable, is con-
sidered. The following a priori error estimates of the order of convergence is then
obtained

Theorem 4.4 Let un(t) be the solution of (Pn), uin(t) be the restriction to Ωi
n of

un(t), for i = 1,2, and un,h(t) be the semi-discrete solution. Then for every t ∈
[0, T ] we have

∥∥un(t)− un,h(t)∥∥2
2,mn

+
∫ t

0

∥∥un(τ)− un,h(τ )∥∥2
V (Ω,Kn)

dτ

≤ ch2
(∫ t

0

∥∥f (τ)∥∥2
2,mn

dτ

)

where c is a suitable constant independent of h.

In the second step the fully discretized problem is considered. By applying a
finite difference scheme on the time variable, the so-called θ method, an error esti-
mate between the semi-discrete solution un,h(tl) and the fully discrete solution uln,h
is obtained.

From this estimate and from Theorem 4.4, they finally get
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Theorem 4.5 Assume that f ∈ Cδ([0, T ];L2(Ω,mn)) and ∂f
∂t
∈ L2([0, T ] ×

Ω,dt × dmn). Let n be fixed and let un(t) be the solution of problem (Pn), uln,h
be the fully discretized solution, as given by the θ -method with 1

2 ≤ θ ≤ 1. Then,

∥∥un(tl)− uln,h
∥∥2

2,mn
≤ ch2

(∫ T

0

∥∥f (τ)∥∥2
2,mn

dτ

)

+Cθ�t2 ·
(∥∥f (0)∥∥2

2,mn
+
∫ T

0

∥∥∥∥∂f∂τ (τ )
∥∥∥∥

2

2,mn

dτ

)
.

A final remark about future research. In all the problems discussed in this paper
an important question remains to be investigated, namely, to obtain some quanti-
tative estimate for the asymptotic fractal limit. Such estimates should reflect the
stability properties of the problem at hand in presence of the wild changes in the
geometry. The very nature of the estimates—whether they can be stated in suitable
function spaces or they are just of scalar energy kind—must be understood, in each
one of the special cases described before.
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AFEM for Geometric PDE:
The Laplace-Beltrami Operator

Andrea Bonito, J. Manuel Cascón, Pedro Morin, and Ricardo H. Nochetto

Abstract We present several applications governed by geometric PDE, and their
parametric finite element discretization, which might yield singular behavior. The
success of such discretization hinges on an adequate variational formulation of the
Laplace-Beltrami operator, which we describe in detail for polynomial degree 1.
We next present a complete a posteriori error analysis which accounts for the usual
PDE error as well as the geometric error induced by interpolation of the surface.
This leads to an adaptive finite element method (AFEM) and its convergence. We
discuss a contraction property of AFEM and show its quasi-optimal cardinality.

1 Introduction

Besides its intrinsic interest in differential geometry [30, 31, 56], the Laplace-
Beltrami operator (or surface Laplacian) has received a great deal of attention also
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in the applied and numerical communities. Basic geometric partial differential equa-
tions (PDE) such as the mean curvature flow and surface diffusion appear naturally
in materials science modeling [54], whereas Willmore flow is a building block in
the dynamics of membranes governed by bending energy [34]. This article is about
applications, formulation, Galerkin approximation, and adaptivity for a PDE on a
surface γ governed by the Laplace-Beltrami operator Δγ , such as

−Δγ u= f. (1)

One of the major goals of this paper is the design and analysis of parametric adaptive
finite element methods (AFEM) for (1) of polynomial degree 1. Our discussion is
based on [17].

The first FEM for the Laplace-Beltrami operator on parametric surfaces is due
to G. Dziuk [35], who also developed an optimal a priori error analysis account-
ing for the approximation of the surface and PDE by piecewise linear polynomials.
This seminal work was followed by parametric FEM for time dependent problems
such as the mean curvature flow [36], capillary surfaces [2], surface diffusion [5, 7],
Willmore flow [7, 15, 37, 50], fluid biomembranes [16], and fluid membranes with
orientational order [9, 10]. The analysis of these methods is largely open, except for
graphs [4, 24–27]. We refer to the survey by K. Deckelnick, G. Dziuk, and Ch. El-
liott [26] for some of the early work, including level set and phase field approaches.

A. Demlow and G. Dziuk gave the first a posteriori error analysis for piecewise
linear polynomials [29], and later A. Demlow extended it to higher polynomial de-
gree [28]. This extension is important in light of applications in fluid dynamics [2]
and biomembrane dynamics [15, 16]. O. Lakkis and R.H. Nochetto formulated an a
posteriori error analysis for the mean curvature flow of graphs in [44].

Even though adaptivity theory for linear elliptic PDE on flat domains in any di-
mensions and the energy norm is now mature [21, 47, 48, 52], much less is known
for elliptic problems on manifolds; we refer to the survey [49] for the state of the art
of AFEM on flat domains. For the Laplace-Beltrami operator on graphs we mention
the convergence theory of K. Mekchay, P. Morin and R.H. Nochetto [46], whereas
for general parametric surfaces and polynomial degree we are only aware of [17].
We expose here results from [17] and restrict them to the particular case of polyno-
mial degree 1 for the sake of clarity.

The purpose of this paper is threefold. We first discuss in Sect. 2 several appli-
cations of the Laplace-Beltrami operator we have recently developed. This serves
as a motivation for the rest of the paper as well as illustration of the significance of
adequate formulations and discretizations of rather complex problems which look
seemingly untractable. We next discuss parametric FEM for (1) on piecewise C1

surfaces which are merely globally Lipschitz. This is inspired by singularities ob-
served in geometric flows, such as pinching [5–7, 15], point defects [9, 10], and line
tension [38]. This in turn makes it unfeasible to use the signed distance function as
in [28, 29, 35]. Our approach, developed in Sects. 3 and 4, allows for kinks aligned
with the initial mesh, and yields optimal convergence rates even for surfaces which
are not piecewise C2. Our third goal is to present a rather complete discussion of
adaptivity theory for AFEM on surfaces. The algorithm reads
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AFEM: Given an initial surface-mesh pair (Γ0, T0), and parameters ε0 > 0, 0 <
ρ < 1, and ω > 0, set k = 0 and iterate

[
T+k ,Γ

+
k

]= ADAPT_SURFACE(Tk,ωεk)

[Tk+1,Γk+1] = ADAPT_PDE
(
T+k , εk

)
εk+1 = ρεk; k = k+ 1.

AFEM consists of two main modules: ADAPT_PDE is the usual adaptive cy-
cle for flat domains driven by the a posteriori PDE error estimator, whereas
ADAPT_SURFACE is a new module that accounts for and controls surface interpo-
lation error. In Sect. 5 we discuss the a posteriori error analysis for (1) on parametric
surfaces, with emphasis on C1 parametric representations X :Ω→ R

d+1 of γ and
their piecewise linear interpolants FT :Ω→R

d+1, which describes the polyhedral
counterpart Γ = FT(Ω) of γ ; hereafter Ω ⊂ R

d is the parametric domain. This
interpolation is governed by the geometric error estimator

λΓ :=
∥∥∇(X−FT

)∥∥
L∞(Ω). (2)

The module ADAPT_SURFACE guarantees that its output satisfies λT+k
≤ ωεk , with

ω a parameter small relative to 1. This is critical for ADAPT_PDE to contract, a
fundamental property of AFEM shown in Sect. 7. We embark on the study of car-
dinality of AFEM in Sect. 8: we first prove that AFEM delivers the best asymp-
totic convergence rate possible for the given regularity of data γ,f and solu-
tion u (Theorem 8.2), and secondly we construct a greedy algorithm that realizes
ADAPT_SURFACE (Proposition 8.1). The role of ω is crucial for the theory of
Sects. 7 and 8. We conclude in Sect. 9 with a computational investigation show-
ing that ω must be small indeed to achieve optimal performance of AFEM.

2 Motivation: Geometric PDE

The Laplace-Beltrami operator is ubiquitous in applications involving surfaces that
evolve and/or are the domain of an underlying PDE. In order to motivate the study
of this operator we mention a few applications where it appears naturally.

2.1 Biomembranes: Modeling and Simulations

Predicting the shape of a cell bounded by a lipid bilayer membrane has inspired a
significant body of research in the past forty years ranging from purely mechanical
descriptions to advanced mathematical analysis. We consider the Helfrich model for
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Fig. 1 Evolution of an initial axisymmetric ellipsoid of aspect ratio 5× 5× 1. For each frame the
picture on the bottom is a 3D view of the surface mesh and that on the top is a 2D cut through a
symmetry plane. The equilibrium is characterized by the formation of an extreme depression of the
center to the point of almost pinching (red blood cell). During the evolution the thickening of the
outer circular edge occurs faster than the motion on the center, producing a depressed circular ring
in between the outer edge and the center (first frame). This in turn is responsible for the appearance
of a center bump instead of a depression. Later the evolution continues to squeeze this bump to a
depression at the expense of more thickening and rounding of the outer circular edge

geometric biomembranes [41], which associates to a closed surface γ , describing
the biomembrane, the bending (or Willmore) energy

J (γ )= 1

2

∫
γ

(H −H0)
2. (3)

HereafterH stands for the mean curvature of γ andH0 is the spontaneous curvature
induced by the surrounding medium.

Fluid Membranes

We start with H0 = 0. The first variation (or shape derivative) of J (γ ), subject to
volume and area constraints, is given in strong form by [32, 51, 56]

δγ J (γ )=
(
ΔγH + 1

2
H 3 − 2κH

)
ν + (λHν + pν), (4)

where κ is the Gaussian curvature of γ , and λ,p are the Lagrange multipliers for
the area and volume constraints, respectively. It is important to notice that δγ J (γ )
is a vector field perpendicular to γ because ν is the unit normal to γ . A (geometric)
gradient flow consists of deforming γ in the direction opposite to the shape gradient,
namely prescribing a vector velocity v to γ according to

v=−δγ J (γ ). (5)

This flow decreases the energy J (γ ) while keeping area and volume constant,
and thus leads to equilibrium configurations such as that in Fig. 1, which mimics
a red blood cell. The simulations in Fig. 1 were performed with the finite element
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Fig. 2 Evolution of a fluid membrane with initial axisymmetric ellipsoidal shape of aspect ratio
5× 5× 1 and final shape similar to a red blood cell. Each frame shows the membrane mesh and a
symmetry cut along a big axis. The fluid flow is quite complex, creating first a bump in the middle
and next moving towards the circumference and producing a depression in the center with flat
pinching profile. The inertial effects are due to unrealistic physical parameters

Fig. 3 Comparison of final configuration of the geometric biomembrane of Fig. 1 and the fluid
biomembrane of Fig. 2 with unrealistic (left) and realistic (right) physical parameters. For the
latter the inertial effects are not significant and the purely geometric evolution is similar to the
fluid driven one. The pinching on the left occurs with a much flatter and thinner neck in the center
and thicker torus outside

method of A. Bonito, R.H. Nochetto, and M.S. Pauletti [15], which replaces H in
(4) by the vector curvature H=Hν (see also Sect. 2.2).

We now consider the more physically realistic model that couples the membrane
with a fluid. In order to do this, we assume the simplest situation in which the fluid is
Newtonian, and thus is governed by the Navier-Stokes equation for incompressible
fluids in the deformable domain Ωt

ρDtv− div
(−pI +μD(v))= 0 in Ωt,

div v= 0 in Ωt,
(6)

where D(v) = 1
2 (∇v + ∇vT ) is the symmetric part of the gradient and Σ =

−pI + μD(v) is the Cauchy stress tensor. The membrane interacts with the fluid
only through the boundary condition, which represents a balance of forces at the
interface γ = γt = ∂Ωt :

Σν = kδγ J (γ ), (7)

where k is the membrane bending rigidity coefficient. In [16] A. Bonito, R.H. No-
chetto, and M.S. Pauletti couple the FEM of [15] with a Taylor-Hood discretization
of (6) in an ALE framework involving a semi-implicit Euler method in time. Fig-
ure 2 displays the complex behavior of the fluid membrane and quite noticeable
inertial effects, which lead to a more singular pinching than in Fig. 1. We give a
comparison in Fig. 3.
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Director Fields on Flexible Surfaces

The orientation of the bilipids is about 32° relative to the unit normal to γ for living
cells. In order to describe this situation we consider the simple model introduced
by S. Bartels, G. Dolzmann, R.H. Nochetto, and A. Raisch [10], which is in turn
inspired on the model by M. Laradji and O.G. Mouritsen [45] for flat membranes.
The starting point is to modify the energy (3) to incorporate the effect of a director
field n so that

J (γ,n)= 1

2

∫
γ

|divγ ν − δ divγ n|2 + λ

2

∫
γ

|∇γ n|2 + 1

2ε

∫
γ

f (n · ν), (8)

with |n| = 1 everywhere in γ . Here divγ ,∇γ stand for the tangential divergence and
gradient to γ , H =−divγ ν, and δ,λ > 0. We thus see that H0 =−δ divγ n acts as
a spontaneous curvature term induced by the director field n. The function f (x) :=
(x2 − ξ2

0 )
2 in the last term of (8) penalizes the deviation of the angle between n

and ν from arccos ξ0. It is worth stressing now that if this angle were constant
everywhere on γ , then the projection of n on γ would have a constant length, which
in turn would lead to the creation of defects (or singularities) of n. This is due to
the topological obstruction that there cannot be a smooth tangential vector field with
nonzero constant length defined on a closed surface. Therefore the study of defects
and their influence on membrane shape becomes an intriguing matter.

This is precisely what has been accomplished in [10], via an L2-gradient flow (or
relaxation dynamics) for J (γ,n):

v=−δγ J (γ,n), ∂tn=−δnJ (γ,n), (9)

where v is the velocity of γ . The expression of δγ J (γ,n), the first variation of J
with respect to γ (or shape derivative) is now much more involved than (4), whereas
δnJ (γ,n) is rather simple; we refer to [10] for details. This dynamics involves again
the Laplace-Beltrami operator Δγ .

We display in Fig. 4 the evolution of a sphere γ (first row) along with the director
field n on a plane cutting through north and south poles. The initial director field n0

has a couple of defects ±eiθ of degree +1, which persist through the evolution and
lead to the formation of cone-like singularities at the poles, one pointing inwards
(north pole) and the other outwards (south pole). This configuration shows some
analogies to echinocyte shapes observed in lab experiments [42]. We refer to [10]
for other examples and discussion, including defects of degree ±1.

2.2 The Laplace-Beltrami Operator and Curvature

The Laplace-Beltrami operator makes yet another fundamental appearance in the
definition and calculation of curvature. If x is the identity on γ , then the following
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Fig. 4 Biomembrane case with inward and outward pointing defects of positive degree one: Snap-
shots of the surface and the director field along a (deformed) geodesic through the north and south
pole after n = 50,500,1400 time steps. The surface develops inward and outward cones at the
poles while the director field remains nearly unchanged during the evolution

relation for the vector curvature H = Hν is well known in differential geometry
[30, 31]:

H=−Δγ x. (10)

This crucial formula was first used for computation by G. Dziuk [35] with piecewise
linear finite elements. In the context of geometric evolution of Sect. 2.1 we advance
in time from tn to tn+1 via a semi-implicit Euler method xn+1 = xn+ τnvn+1, which
keeps the geometry explicit,

∫
γn

Hn+1 ·Ψ − τn
∫
γn

∇γnvn+1 : ∇γnΨ =
∫
γn

∇γnxn : ∇γnΨ . (11)

This equation for Hn+1 is coupled with the equation for velocity vn+1, which comes
from the gradient flows (5) or (9), or the Navier-Stokes equations (6)–(7). Getting
separate equations for Hn+1 and vn+1 is effectively an operator splitting technique,
introduced by G. Dziuk [36], which has been used in a number of papers; see e.g.
[2–4, 6–9, 15, 16, 33, 37, 38, 50].

The mean curvature flow of a surface γ is governed by V =−H , with V being
the scalar normal velocity of γ . On the basis of (10), this geometric PDE can be
reformulated as a heat equation for the position x on γ , following a seminal idea of
G. Dziuk [36]:

∂tx= V ν =−H=Δγ x.

This allows for a simple and efficient finite element discretization [36]. The analysis
of the resulting FEM is still open, except for the case of graphs [24–26].
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Fig. 5 Pinch-of in finite time. Evolution by surface diffusion of an 8× 1× 1 prism at various time
instants leading to a dumbbell and cusp formation

Expression (10) is also a crucial building block in the approach of E. Bänsch to
Navier-Stokes equations with free capillary surfaces [2]. On the free surface γ , the
Cauchy stress tensor Σ satisfies the Young-Laplace equation

νΣ =H,

which allows for the following simple and elegant weak formulation of the boundary
term ∫

γ

νΣwT =
∫
γ

HwT =−
∫
γ

Δγ xwT =
∫
γ

∇γ x : ∇γw, (12)

where w is a suitable test function. This leads again to a simple and efficient
FEM [2].

2.3 Surface Diffusion and Epitaxial Films

Surface diffusion is a 4th order geometric driven motion of a surface with normal
velocity proportional to the surface Laplacian of mean curvature:

V =ΔγH. (13)

This PDE corresponds to the H−1 gradient flow of the area functional J (γ )= ∫
γ

1,
and has been studied by J. Cahn and J. Taylor [20] among others. E. Bänsch,
P. Morin, and R.H. Nochetto proposed a parametric FEM upon combining (11) and
(12) [5]. Other related schemes have been developed by J. Barrett, H. Garcke and
R. Nürnberg [6, 7]. The analysis of this problem is still open, except for the graph
case [4, 26].
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Fig. 6 Detailed view of the pinch-off produced by surface diffusion of the 8× 1× 1 prism. Adap-
tivity becomes essential when approaching the pinch-off configuration

Fig. 7 Domain dynamics governed by coupling surface diffusion with the Laplace operator in the
bulk. This leads to a mushroom-like free surface that gives rise to an inclusion in finite time

Surface diffusion may lead to singularity formation in finite time, depending on
the initial configuration. This is depicted in Figs. 5–6 which display the evolution of
an initial 8× 1× 1 prism [5]. This simulation shows that adaptivity is essential to
approximate singular situations produced by the flow.

Modeling the deformation of the free surface γ of stressed epitaxial films leads
to a variant of (13). The stress accounts for the misfit between the crystalline struc-
ture of the substrate and epitaxial film, and causes a plastic deformation of γ . This
morphological instability of the free surface may eventually lead to crack formation
and fracture, an issue of paramount importance in Materials Science. The dynamics
of γ is governed by

V =Δγ (H + ε),
ε being the elastic energy density of the bulk enclosed by γ (see [4, 5, 33] and the
references therein). Applications to material science are given in [3, 8].

Consider now a simplified situation where elasticity is replaced by the Laplace
operator in the bulk Ω enclosed between the free surface γ and the substrate Σ
(see Fig. 7). We let ε = |∇u|2, where u solves the problem

−Δu= 0 in Ω, ∂νu= 0 on γ,

and u= x on the bottom Σ and lateral boundary. This yields interesting configura-
tions including mushroom-like formations, thereby leading to defects in materials
such as inclusions [33].
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Fig. 8 Refinement procedures on a uniform partition of the unit circle using piecewise linear
curves. The arrows on the piecewise linear curve represent the approximation of the curvature H,
all scaled down by the same multiplicative factor 0.3. We depict the starting approximation of
the curvature (first), that after one global bisection of the surface approximation using the naive
approach (second), and that with the GCAP method (third). In contrast with them GCAP algorithm,
the standard algorithm does not preserve the accuracy of the geometric approximations. The last
picture (fourth) depicts the new approximation of curvature over the surface parametrized by the
vector X∗ obtained in step (iii) of the GCAP algorithm

2.4 Geometrically Consistent Accuracy Preserving Algorithm

The chief geometric identity (10) turns out to play an important role when per-
forming mesh modifications (refinement/coarsening/smoothing) on manifolds with
incomplete information on their geometry, yet preserving position and curvature ac-
curacy. This is typically the case when the surface γ is unknown as in the examples
provided in Sects. 2.1 and 2.3: γ is known only through its approximation Γ and
the approximation of its vector curvature H, still labeled H.

The naive approach when performing mesh modification consists of (i) apply the
mesh modification to Γ ; (ii) compute the corresponding curvature H according to
a discrete version of (10) ensuring geometric consistency (here X is the identity on
Γ ). It turns out that the last step yields loss of accuracy on the approximation of
the curvature regardless of polynomial degree, which is inherent to computing two
derivatives numerically—an unstable process.

To circumvent this issue, A. Bonito, R.H. Nochetto, and S.M. Pauletti [14] pro-
pose a Geometrically Consistent Accuracy Preserving Algorithm (GCAP) which
reverses the above process: X is dissociated from Γ itself in that it is no longer the
identity on Γ . In essence, the GCAP algorithm proceeds as follows: (i) the mesh
modifications are performed on Γ to give the new surface Γ∗; (ii) the new approx-
imation H∗ of vector curvature is obtained projecting the existing one H on Γ∗;
(iii) the approximation X∗ of the identity vector on Γ∗ is obtained by solving the
Laplace-Beltrami equation (10) discretely with the curvature H∗ given in (ii). We
stress that the concatenation of projection and inversion of (10) is numerically sta-
ble.

To compare the naive and GCAP algorithms, Fig. 8 depicts the effect of a global
refinement on a square approximation Γ of a circle γ ; here Γ∗ = Γ . We refer to [14]
for similar results for two dimensional surfaces, higher polynomial approximations,
and coarsening as well as mesh smoothing.
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3 Parametric Surfaces

In this section we discuss both how to represent and interpolate a parametric sur-
face. This is instrumental for the design, analysis, and implementation of AFEM on
parametric surfaces.

3.1 Representation of Parametric Surfaces

We assume that the surface γ is described as the deformation of a d dimensional
polyhedral surface Γ0 by a globally Lipschitz homeomorphism P0 : Γ0 → γ ⊂
R
d+1. If Γ0 =⋃I

i=1 Γ
i

0 is made up of I (closed) faces Γ i
0 , i = 1, . . . , I , we denote

by P i0 : Γ i
0 → R

d+1 the restriction of P0 to Γ i
0 . We refer to Γ i

0 as a macro-element
which induces the partition {γ i}Ii=1 of γ upon setting

γ i := P i0
(
Γ i

0

)
.

In order to avoid technicalities, we assume that all the macro-elements are sim-
plices, i.e. there is a (closed) reference simplex Ω ⊂ R

d , from now on called the
parametric domain, and an affine map Fi0 : Rd → R

d+1 such that Γ i
0 = Fi0(Ω);

Fig. 9 sketches the situation when d = 2. We thus let Xi := P i0 ◦ Fi0 :Ω→ γ i be
a local parametrization of γ which is globally bi-Lipschitz, namely there exists a
universal constant L≥ 1 such that for all 1≤ i ≤ I

L−1|x̂ − ŷ| ≤ ∣∣Xi (x̂)−Xi (ŷ)
∣∣≤ L|x̂ − ŷ|, ∀x̂, ŷ ∈Ω. (14)

This minimal regularity of γ , to be soon strengthened out locally in each macro-
element, implies the more familiar condition, valid for a.e. x̂ ∈Ω ,

L−1|w| ≤ ∣∣∇̂Xi (x̂)w∣∣≤ L|w| ∀w ∈R
d; (15)

hence L ≥ 1 is the Lipschitz constant of Xi and so of γ i . We further assume that
P0(v)= v for all vertices v of Γ0, so that Fi0 is the nodal interpolant of Xi into linear
polynomials.

The structure of the map P0 depends on the application. For instance, if γ i is
described on Γ i

0 via the distance function dist(x) to γ , then

γ i � x̃ = x − dist(x)∇ dist(x)= P0(x) ∀x ∈ Γ i
0 ,

provided dist(x) is sufficiently small so that the distance is uniquely defined. If,
instead, γ i is the zero level set φ(x)= 0 of a function φ, then

Γ i
0 � x = x̃ +

∇φ(x̃)
|∇φ(x̃)| |x − x̃| = P

−1
0 (x̃), ∀x̃ ∈ γ i,
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Fig. 9 Representation of each component γ i when d = 2 as a parametrization from a flat triangle
Γ i

0 ⊂R
3 as well as from the master triangle Ω ⊂R

2. The map Fi0 :Ω→ Γ i
0 is affine

is the inverse map of P0. In both cases, dist and φ must be C2 for P0 to be C1(Γ i
0 ).

Yet another option is to view γ i as a graph on Γ i
0 , in which case P i0 is a lift in the

normal direction to Γ i
0 and P0 is C1(Γ i

0 ) if and only if γ i is; we refer to [46]. Notice
that the inverse mapping theorem implies (P i0)

−1 ∈ C1(γ i).
The regularity of γ is expressed in terms of the regularity of the maps Xi . If

s ≥ 0, 2≤ p ≤∞, we say that γ is piecewise Ws
p , and write γ ∈Ws

p(Γ0), whenever

Xi ∈ [Ws
p(Ω)]d+1, i = 1, . . . , I . We denote the associated semi-norm by

|γ |Ws
p(Γ0) :=

(
I∑
i=1

∣∣Xi∣∣p
Ws
p(Ω)

)1/p

.

Note that this non-overlapping parametrization allows for piecewise smooth sur-
faces γ with possible kinks matched by the decomposition {γ i}Ii=1. Similarly, we
say that γ ∈ C1,α(Γ0), 0 ≤ α ≤ 1, whenever Xi ∈ [C1,α(Ω)]d+1, i = 1, . . . , I and
define

|γ |C1,α(Γ0)
:= max

i=1,...,I

∣∣Xi∣∣
C1,α(Ω)

.

Finally, we note that a function v : γ i → R defines uniquely two functions
v̂ :Ω→R and v̄ : Γ i

0 →R via the maps Xi and P0, namely

v̂(x̂) := v(Xi (x̂)) ∀x̂ ∈Ω and v̄(x̄) := v(P0(x̄)
) ∀x̄ ∈ Γ i

0 ; (16)

we set x̃ = Xi (x̂) for all x̂ ∈ Ω . Conversely, a function v̂ : Ω → R (respectively,
v̄ : Γ i

0 → R) defines uniquely the two functions v : γ i → R and v̄ : Γ i
0 → R (re-

spectively, v : γ i → R and v̂ :Ω→ R). We will always denote by v the two lifts ṽ
or v̂ of v : γ i →R.
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3.2 Interpolation of Parametric Surfaces

The initial partition of Γ0 in macro-elements (or faces) induces a conforming trian-
gulation T0 of Γ0. We only discuss the class of conforming meshes T(T0) created
by successive bisections of this initial mesh T0. However, our results remain valid
for any refinement strategy satisfying Conditions 3, 4 and 6 in [12]. In particular,
successive bisections, quad-refinement and red-refinement all with hanging nodes
are admissible refinement strategies. For more details, we refer to [12, Sect. 6].

Given T0, we define a shape regular forest T(T0), and for each T ∈ T(T0), a
piecewise affine approximation Γ = Γ (T) of γ , and a finite element space V(T) on
Γ as follows. Note first that conforming graded bisections of each macro-element
Γ i

0 induce a family of shape regular partitions Ti (Ω) of the parametric domain
Ω ⊂ R

d . Let V(Ti (Ω)) be the finite element space of C0 piecewise linear polyno-
mials on Ti (Ω), and let ITi : C0(Ω)→ V(Ti (Ω)) be the corresponding Lagrange
interpolation operator. Let FTi = ITiX

i be the interpolant of Xi in V(Ti (Ω)),
Γ i := FTi (Ω) and

Ti := {T = FTi (T̂ )
∣∣ T̂ ∈ Ti (Ω)

};
the set Γ i is a piecewise affine interpolation of γ i . The global mesh T, piecewise
affine surface Γ , and parametrization FT of Γ are given by

T :=
I⋃
i=1

Ti , Γ :=
I⋃
i=1

Γ i, FT := {FTi }Ii=1.

We need a few properties before discussing shape regularity of T(T0) = {T}. We
define

V(T) :=
{
V ∈ C0(Γ )

∣∣∣V |Γ i is the lift of some V ∈V
(
Ti (Ω)

)
via FTi ,

V = 0 on ∂Γ, or
∫
Γ

V = 0 if ∂Γ = ∅
}
,

and note that V(T) is not a subspace of V(T0), which is a lack of consistency we
must account for. Since most properties discussed below are valid independently of
the superscript i, we omit it from now on. Figure 10 depicts one bisection refinement
for d = 2.

If T̂ ∈ T(Ω) and T = FT(T̂ ) ∈ T, we define the geometric element indicator

λΓ (T ) :=
∥∥∇̂(X− FT)

∥∥
L∞(T̂ ), (17)

and the corresponding geometric estimator

λΓ :=max
T ∈T

λΓ (T ). (18)
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Fig. 10 Effect of one bisection of the macro-element F0(Ω) when d = 2 (left). The parametric
domain Ω is split into two triangles in R

2 via the affine map F−1
0 (bottom), whereas γ is inter-

polated by a new piecewise linear surface Γ = F(Ω) (right), with F = ITX the piecewise linear
interpolant of the parametrization X defined in Ω . The superscript i is omitted for simplicity

Note that two different meshes giving rise to the same surface Γ yield the same λΓ ,
which is thus of pure geometric nature; this explains the subscript Γ . Moreover,
λΓ (T ) is evaluated in T̂ , which belongs to the parametric domain Ω instead of the
polyhedral surface Γ . The geometric estimator may not decrease upon each refine-
ment, especially in the pre-asymptotic regime, but the following quasi-monotonicity
property is valid instead: there exists a constant Λ0 ≥ 1, depending on T0, and di-
mension d , such that

λΓ∗ ≤Λ0λΓ (19)

for all conforming refinements T∗ of T [17, Lemma 3.1]. This result is also valid
elementwise.

We recall that T(T0) is the forest of all conforming refinements T of T0, denoted
T ≥ T0, obtained by the aforementioned bisection procedure. We say that T(T0)

is shape regular if there is a constant C0 only depending on T0, such that for all
T̂ ∈ T(Ω)

C−1
0 |x̂ − ŷ| ≤ ∣∣FT(x̂)−FT(ŷ)

∣∣≤ C0|x̂ − ŷ| ∀x̂, ŷ ∈ T̂ . (20)

Since the forest induced by bisection on the flat parametric domain Ω is shape
regular [11, 49, 53], we observe that (20) states that the deformation of T̂ ∈ T(Ω)

leading to T ∈ T does not degenerate. We also point out that (20) implies the usual
condition on the Jacobian ∇̂FT , valid for a.e. x̂ ∈Ω

C−1
0 |w| ≤ ∣∣∇̂FT(x̂)w

∣∣≤ C0|w| ∀w ∈R
d, (21)

and that ∇̂FT happens to be constant on T̂ for an affine map FT [22].
We stress that a bi-Lipschitz parametrization satisfying (14) does not guarantee

that T(T0) is shape regular. This pathological situation is depicted in Fig. 11. This
issue has been tackled by A. Bonito and J. Pasciak [13] assuming that the surface γ
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Fig. 11 Smooth surface leading to a degenerate triangle. The point P0(m) is (almost) aligned with
p and q . When the triangle T = pqr ∈ T is split into pqm and rpm, the new elements of T∗
are T1 = pqP0(m), T2 = rpP0(m). The triangle T1 is degenerate and λΓ∗ (T̂1) > (2Λ0L)

−1, thus
violating (22). This forces ADAPT_SURFACE to refine further, which in turn opens up T1 leading
eventually to nondegenerate descendents of T1

is W 2∞ and T0 is sufficiently fine. We now present a similar result, invoking piece-
wise C1-regularity of γ , which hinges on (19): the forest T(T0) is shape-regular
with C0 = 2L provided

λΓ0 ≤
1

2Λ0L
, (22)

where L > 1 is the constant in (14) [17, Lemma 3.2]. Figure 11 illustrates an in-
termediate degenerate situation in which a triangle T ∈ T is split into two triangles
T1, T2 ∈ T∗ with λΓ∗(T1) > (2Λ0L)

−1 and (22) being violated. This thereby leads
to refinement of T1, which opens up and gives rise to nondegenerate descendents
eventually satisfying (22).

4 The Laplace-Beltrami Operator

4.1 Basic Differential Geometry

In this subsection we give a matrix formulation of some basic differential geometry
facts. We assume γ to be piecewise C1, namely γ i ∈ C1(Γ i

0 ) for all 1≤ i ≤ I , and
Γ to be piecewise affine.

Our first task is to relate the gradient ∇̂ in the parametric domain Ω with the
tangential gradient ∇γ on γ . To this end, let T ∈R

(d+1)×d be the matrix

T := Tγ := [̂∂1X, . . . , ∂̂dX],
whose ith column ∂̂iX ∈ R

d+1 is the vector of partial derivatives of X with respect
to the ith coordinate of Ω . Since X is a diffeomorphism, the set {̂∂iX}di=1 of tangent
vectors to γ is well defined, linearly independent, and expands the tangent hyper-
plane to each γ j at interior points for all 1 ≤ j ≤ I . The first fundamental form of
γ is the symmetric and positive definite matrix g ∈R

d×d defined by

g= (gγ,ij )1≤i,j≤d :=
(
∂̂iX

T ∂̂jX
)

1≤i,j≤d = TT T. (23)
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Given v̂(x̂)= v(x̃), the tangent gradient ∇γ v(x̃)=∑d
i=1 αi(x̂)̂∂iX(x̂) satisfies the

relation

∂̂i v̂(x̂)=∇γ v(x̃) ∂̂iX(x̂) for 1≤ i ≤ d,
whence

∇̂v̂ =∇γ vT (24)

and (αi)di=1 = g−1(̂∂i v̂)
d
i=1. To get the reverse relation, we augment T to the matrix

T̃ ∈R
(d+1)×(d+1) by adding the (outer) unit normal ν = (ν1, . . . , νd+1) ∈R

(d+1) to
the tangent hyperplane span{̂∂Xi}di=1 to γ as the last column, namely

T̃ := [T,νT ]= [ ∂̂1X, . . . , ∂̂dX,ν
T
]
.

Since T̃ is invertible, we let D̃= T̃−1. We thus realize that

∇γ v =∇γ vT̃D̃= [∇̂v̂,0]D̃= ∇̂v̂D, (25)

where D ∈R
d×(d+1) results from D̃ by cutting off its last row. Moreover, writing

I(d+1)×(d+1) = T̃−1T̃=
[

D
v

][
T νT

]=
[

DT DνT

vT vνT

]

with v ∈ R
d+1, we deduce DT = Id×d and vT = 0 whence v is parallel to ν and

v= ν because vνT = 1. Reverting the order of multiplication, we also infer that

I(d+1)×(d+1) = T̃T̃−1 = [T νT
][D

ν

]
= TD+ νT ν,

and TD= I(d+1)×(d+1) − νT ν. This shows that TD is symmetric and

TDDT TT = TDTD= TD= I(d+1)×(d+1) − νT ν, (26)

as well as

DDT TT T=DTDT= Id×d .

Therefore, the first fundamental form g has inverse g−1 =DDT . We let

q :=√det g (27)

be the elementary area of γ and point out the change of variables formula for ω⊂Ω
∫
ω

v̂q =
∫
X(ω)

v. (28)

The discussion above applies as well to the piecewise affine surface Γ . We denote
the corresponding matrices TΓ = ∇̂FT and DΓ associated with FT :Ω→ Γ , and
get

∇Γ v = ∇̂v̂DΓ . (29)



AFEM for Geometric PDE: The Laplace-Beltrami Operator 273

The first fundamental form GΓ of Γ and its elementary area QΓ are defined by

GΓ := TTΓ TΓ , QΓ :=
√

det GΓ . (30)

It is worth noticing that, since FT is affine, GΓ and QΓ are constant on each
T̂ ∈ T(Ω) (T ∈ T).

4.2 Variational Formulation and Galerkin Method

We now introduce basic Lebesgue and Sobolev spaces on the surface γ . Let

L2
#(γ ) :=

{
v ∈ L2(γ )

∣∣∣
∫
γ

v = 0 if ∂γ = ∅
}

be the space of L2 functions, with vanishing meanvalue whenever the surface γ is
closed, and

H 1
# (γ ) :=

{
v ∈ L2

#(γ )
∣∣∇γ v|γ i ∈ [L2(γ i)]d+1

,

v|γ i = v|γ j on γ i ∩ γ j 1≤ i, j ≤ I, v = 0 on ∂γ
}
,

where ∇γ and traces are well defined in each component γ i due to (25). We define
the weak form of the Laplace-Beltrami operator Δγ v for any function v ∈H 1

# (γ )

to be

〈−Δγ v,ϕ〉 :=
I∑
i=1

∫
γ i
∇γ v∇Tγ ϕ ∀ϕ ∈H 1

# (γ ), (31)

where 〈·,·〉 denotes the (H 1
# (γ ))

∗–H 1
# (γ ) duality product. In order to derive a strong

form of Δγ , we now assume that Xi is C2 and v ∈ H 2(γ i) for each 1 ≤ i ≤ d . In
view of (25), integrating by parts in Ω we obtain
∫
γ i
∇γ v∇Tγ ϕ =

∫
Ω

∇̂v̂DDT ∇̂ϕ̂T q =
∫
Ω

− 1

q
d̂iv
(
q∇̂v̂g−1)ϕ̂q +

∫
∂Ω

q∇̂v̂g−1n̂T ϕ̂,

where n̂ is the unit outer normal to Ω . We thus discover that inside γ i the following
expression for the Laplace-Beltrami operator holds

Δγ v = 1

q
d̂iv
(
q∇̂v̂g−1). (32)

The boundary term instead leads to jumps across the boundary ∂γ i with other pieces
γ j of γ and can be equivalently written as

∫
∂Ω

q∇̂v̂g−1n̂T ϕ̂ =
∫
∂γ i
∇γ vnT ϕ, (33)
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where n in the unit outer normal to γ i in the tangent plane to γ i . Combining (32)
with (33) yields

∫
γ i
∇γ v∇Tγ ϕ =

∫
γ i
−Δγ vϕ +

∫
∂γ i
∇γ vnT ϕ, (34)

which is the Gauss-Green formula for C2 surfaces.
Expression (33) is not obvious and, since it is quite important for the subsequent

discussion, we prove it now. Recall that Ω ⊂ R
d is the canonical unit simplex and

notice that a change of variables in Ω dictated by a rotation leaves the left-hand
side of (33) unchanged. We exploit this property to assume, for convenience, that an
arbitrary x̂ ∈ ∂Ω belongs to the (d − 1)-subsimplex Ŝ with outer normal given by
n̂= [−1,0, . . . ,0]. We observe that the affine function φ̂(x̂) = x̂n̂T vanishes on Ŝ
and ∇̂φ̂ = n̂=∇γ φT, according to (24), whence

∇γ φ∂̂1X=−1, ∇γ φ∂̂iX= 0 2≤ i ≤ d;
moreover, ∇γ φ = |∇γ φ|n. We now introduce the matrix S ∈R

(d+1)×(d−1)

S= [̂∂2X, . . . , ∂̂dX], r =
√

det
(
ST S
)
,

and point out that the quantity r is the elementary area associated with the subsim-
plex Ŝ at x̂. Since the (d − 1)-dimensional space span{̂∂iX}di=2 is tangent to the
curvilinear simplex S̃ =X(Ŝ), we can decompose ∂̂1X orthogonally as follows

∂̂1X= αn+ Sb, α ∈R, b ∈R
d−2,

where b is the least squares solution b= (ST S)−1ST ∂̂1X
T and |̂∂1X|2 = α2+|Sb|2.

Hence,

−1=∇γ φ∂̂1X= α|∇γ φ| ⇒ α =−|∇γ φ|−1.

We compute q2 = det g using the expression for block matrices

g=
[ |̂∂1X|2 ∂̂1XS

ST ∂̂1X
T ST S

]
,

namely

det g= det
(
ST S
)(|̂∂1X|2 − ∂̂1XS

(
ST S
)−1ST ∂̂1X

T
)
,

to infer that

q2 = r2α2 =⇒ |∇γ φ| = r

q
=⇒ n̂= nT

r

q
.

To finally derive (33), we recall that TD= I(d+1)×(d+1) − νT ν and observe that
∫
Ŝ

q∇̂v̂g−1n̂T ϕ̂ =
∫
Ŝ

q∇̂v̂DDT n̂T ϕ̂ =
∫
Ŝ

r∇γ vDT TT nT ϕ =
∫
S̃

∇γ vnT ϕ.
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We now build on (31) and write the weak formulation of −Δγ u= f as follows:
given f ∈ L2

#(γ ), we seek u ∈H 1
# (γ ) satisfying

I∑
i=1

∫
γ i
∇γ u∇Tγ ϕ =

∫
γ

f ϕ, ∀ϕ ∈H 1
# (γ ). (35)

Existence and uniqueness of a solution u ∈ H 1
# (γ ) is a consequence of the Lax-

Milgram theorem provided γ is Lipschitz. Combining (35) with (34) and (33) yields
for each component γ i ,

−Δγ iu= f 1≤ i ≤ I, (36)

together with vanishing jump conditions at the interfaces γ i ∩ γ j

J(u)|γ i∩γ j =∇γ i uni +∇γ j unj = 0 ∀1≤ i, j ≤ I, (37)

because f ∈ L2
#(γ ) cannot balance this singular term otherwise.

We next formulate an approximation to the Laplace-Beltrami operator on a piece-
wise affine approximation Γ of γ supported by a mesh T ∈ T(T0). If FΓ ∈ L2

#(Γ )

is a suitable approximation of f , then the finite element solution U : Γ →R solves

U ∈V(T) :
∫
Γ

∇Γ U∇TΓ V =
∫
Γ

FΓ V ∀V ∈V(T). (38)

To this end we choose FΓ to be

FΓ := f q

QΓ

, (39)

because this specific choice of FΓ satisfies the compatibility property

∫
Γ

FΓ =
∫
γ

f = 0, (40)

whenever γ is closed, and allows us to handle separately the approximation of sur-
face γ and forcing f . In particular, (38) admits a unique solution U as a conse-
quence of the Lax-Milgram theorem. Since Γ is piecewise affine, the quantities

∇̂Û ,GΓ ,QΓ are piecewise constant, whence

ΔΓ U |T = 0 ∀T ∈ T. (41)

We refer to [17] where we account for piecewise polynomial Γ and the fact that
ΔΓ U |T �= 0. The formula (34) extends to every element T ∈ T:

∫
T

∇Γ U∇TΓ V =
∫
T

−ΔΓUV +
∫
∂T

∇Γ UnTT V ∀V ∈V(T). (42)
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5 A Posteriori Error Analysis

In order to study the discrepancy between u and U we need to agree on comparing
them in a common domain, say γ . Our goal is thus to obtain a posteriori error
estimates for the energy error ‖∇γ (u − U)‖L2(γ ). This requires developing an a
priori error analysis for the interpolation error committed in replacing γ by Γ in
(38), which is a sort of consistency error, and its impact on the PDE error. We are
concerned with these issues in this section and refer to [28, 29, 46].

5.1 Geometric Error and Estimator

We now quantify the error arising from approximating γ , the so-called geometric
error. To this end we resort to the matrix formulation of Sect. 4.1 to relate the
geometric error with the geometric estimator λΓ of (17).

Given T ∈ T, we will deal with the regions T̂ ∈ T(Ω) and T̃ ∈ T(γ ) given by

T̂ := {F−1
T (x)|x ∈ T } and T̃ := {X(x̂)|x̂ ∈ T̂ }. (43)

On mapping back and forth to T̂ , and using (28), we easily see that
∫
T

v =
∫
T̃

v
QΓ

q
. (44)

We are now able to quantify the consistency error alluded to at the beginning of this
section.

Lemma 5.1 (Consistency error) For all v,w ∈H 1(γ ) there holds
∫
Γ

∇Γ v∇TΓ w−
∫
γ

∇γ v∇Tγ w =
∫
γ

∇γ vEΓ∇Tγ w,

where EΓ ∈R
(d+1)×(d+1) stands for the following error matrix

EΓ := 1

q
T
(
QΓ G−1

Γ − qg−1)TT . (45)

Proof We first note that combining (24) with (25), we get

∇γ v =∇Γ vTΓ D and ∇Γ v =∇γ vTDΓ , (46)

which together with (44) gives
∫
Γ

∇Γ v∇TΓ w =
∫
γ

∇γ vTDΓ DT
Γ TT∇Tγ w

QΓ

q
∀v,w ∈H 1(γ ). (47)
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Since (26) allows us to write
∫
γ

∇γ v∇Tγ w =
∫
γ

∇γ vTDDT TT∇Tγ w ∀v,w ∈H 1(γ ), (48)

which is a counterpart of (47), the assertion follows immediately from (23) and
(30). �

Our next task is to estimate EΓ in (45), which entails dealing with g,GΓ and
q,QΓ .

Lemma 5.2 (Properties of GΓ and QΓ ) The matrices g and GΓ have eigenvalues
in the interval [L−2,L2] and [ 1

2L
−2, 3

2L
2], respectively, provided the initial mesh

T0 satisfies

λΓ0 ≤
1

6Λ0L3
. (49)

Moreover, the forest T(T0) is shape regular, L−d � q,QΓ � Ld , and for all T ∈
T(T0)

‖q −QΓ ‖L∞(γ ) + ‖g−GΓ ‖L∞(γ ) � λΓ . (50)

Proof Since L ≥ 1, (49) yields (22), which in turn gives shape regularity of the
forest T(T0) and (21) with constant C0 = 2L. Hence, using the definitions of g and
GΓ , we deduce ‖g−GΓ ‖L∞(γ ) ≤ 3LλΓ . On the other hand, invoking (15) we see
that ξT gξ = |∇Xξ |2 for all ξ ∈R

d , whence

L−2|ξ |2 ≤ ξT gξ ≤ L2|ξ |2.
Since λΓ ≤ 1

6L3 , due to (49) and (19), then the previous estimates readily imply

1

2
L−2|ξ |2 ≤ (L−2 − 3LλΓ

)|ξ |2 ≤ ξT GΓ ξ ≤ (L2 + 3LλΓ
)|ξ |2 ≤ 3

2
L2|ξ |2,

as well as L−d � q,QΓ � Ld because q2 = det g,Q2
Γ = det GΓ are products of the

d eigenvalues of g,GΓ . Moreover, since

q −QΓ = det g− det GΓ

q +QΓ

,

it only remains to obtain an estimate for the numerator. The definition of determinant
readily yields |det g− det G|� L2d−1λΓ , and completes the proof. �

We stress that if T0 does not satisfy (49) but ε0 ≤ (6Λ0L
3ω)−1, then the algo-

rithm AFEM of Sect. 1 will first refine T0 to make it comply with (49) without ever
solving the PDE. In this sense, (49) is not a serious restriction for AFEM, although
necessary for the subsequent theory.



278 A. Bonito et al.

Corollary 5.1 (Estimate of EΓ ) If λΓ0 satisfies (49), then we have for all T ∈ T(T0)

and corresponding Γ

‖EΓ ‖L∞(T̂ ) � λΓ (T ) ∀T ∈ T,

where the hidden constant depends on T0 and the Lipschitz constant L of γ .

Proof According to (45), and ‖T‖L∞(γ ) = ‖TT ‖L∞(γ ) ≤ L, we infer that

‖EΓ ‖L∞(T̂ ) �
∥∥QΓ G−1

Γ − qg−1
∥∥
L∞(T̂ ).

The lower bounds on the eigenvalues of g and GΓ imply ‖g−1‖L∞(T̂ ),‖G−1
Γ ‖L∞(T̂ )

� L2, which together with the expression

QΓ G−1
Γ − qg−1 = (QΓ − q)G−1

Γ + qG−1
Γ (g−GΓ )g−1

and (50) gives the asserted estimate. �

We now give a constructive expression for unit normals in R
d+1, thereby gen-

eralizing the usual vector product in R
3, and next use it to derive an error estimate

for DΓ .

Lemma 5.3 (Unit normal) Let {ej }d+1
j=1 be the canonical unit vectors of Rd+1. For

each x̂ ∈Ω , and x =X(̂x) ∈ γ , let N(̂x)=∑d+1
j=1 Aj (̂x)ej , where Aj stands for the

determinant

Aj (̂x) := det
(
ej , ∂̂1X(̂x), . . . , ∂̂dX(̂x)

)
.

We then have |N(̂x)| = q(̂x) and the unit normal vector ν(x) to γ at x is given
by ν(x)= N(̂x)/|N(̂x)|. Moreover, a similar result holds true also for Γ , upon re-
placing X by FT , provided λΓ0 satisfies (49), i.e., |NΓ (̂x)| =QΓ (̂x) and νΓ (x)=
NΓ (̂x)/|NΓ (̂x)|.

Proof We fix x̂ ∈Ω and drop it from the notation. Since T is full rank, some Aj
must be non-zero whence N �= 0. Moreover, the vector N is orthogonal to the tangent
hyperplane to γ at x because

N · ∂̂iX=
d+1∑
j=1

Aj ej · ∂̂iX= det(̂∂iX, ∂̂1X, . . . , ∂̂iX, . . . , ∂̂dX)= 0.

Hence, ν = N/|N| is well defined. To prove that |N| = q recall that T =
[̂∂1X, . . . , ∂̂dX] to write

|N|2 =
d+1∑
j=1

A2
j =

d+1∑
j=1

Aj det(ej , ∂̂1X, . . . , ∂̂dX)= det(N, ∂̂1X, . . . , ∂̂dX)



AFEM for Geometric PDE: The Laplace-Beltrami Operator 279

= {det
([N,T]T [N,T])}1/2 =

{
det

[
NT N 0

0 TT T

]}1/2

= |N|q.

This implies |N| = q because |N| �= 0. The same argument applies to Γ . �

Lemma 5.4 (Error of ν and D) If (49) holds for the initial mesh T0, then for all
T ∈ T(T0)

‖ν − νΓ ‖L∞(γ ) + ‖D−DΓ ‖L∞(γ ) � λΓ . (51)

Proof Lemmas 5.2 and 5.3 imply L−d � |N(̂x)|, |NΓ (̂x)| � Ld for all x̂ ∈ Ω ,
whence

ν − νΓ = N
|N| −

NΓ

|NΓ | =
1

|N| (N−NΓ )+
(

1

|N| −
1

|NΓ |
)

NΓ

⇒ |ν − νΓ |� Ld |N−NΓ |.

To estimate N−NΓ =∑d+1
j=1(Aj −AΓ,j )ej , we observe that each Aj (resp. AΓ,j )

is a sum of factors of the form ∂̂iX · em (resp. ∂̂iFT · em), whence

|Aj −AΓ,j |� Ld−1λΓ ⇒ |ν − νΓ |� L2d−1λΓ .

For the remaining estimate for D− DΓ we recall the definition T̃ = [T,νT ] to
infer that

‖T̃− T̃Γ ‖L∞(γ ) ≤ ‖T−TΓ ‖L∞(γ ) + ‖ν − νΓ ‖L∞(γ ) � λΓ .

We now show that D̃ = T̃−1 is uniformly bounded. To see this, we write T̃w̃ =
Tw+wd+1ν

T for w̃= (w,wd+1) ∈R
d+1 and recall (15) to get

L−2|w̃|2 ≤ L−2|w|2 + |wd+1|2 ≤ |T̃w̃|2 ≤ L2|w|2 + |wd+1|2 ≤ L2|w̃|2,
as well as ‖T̃−1‖L∞(Ω),‖T̃−1

Γ ‖L∞(Ω) � L2. Since D̃− D̃Γ = T̃−1(T̃Γ − T̃)T̃−1
Γ , the

desired estimate follows immediately from the previous one for T̃− T̃Γ . �

We finally point out the equivalence of norms on γ and Γ provided (49) is valid
[17, Lemma 5.6]

‖v‖L2(T̃ ) ≈ ‖v‖L2(T ), |v|L2(T̃ ) ≈ |v|L2(T ) ∀T ∈ T. (52)

5.2 Upper and Lower Bounds for the Energy Error

We now derive an error representation formula leading to lower and upper bounds
for the energy error. Given T ∈ T(T0), we let the usual interior and jump residual
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for V ∈V(T) be

RT (V ) := FΓ |T +ΔΓ V |T = FΓ |T ∀T ∈ T,

JS(V ) := ∇Γ V +|S · n+S +∇Γ V −|S · n−S ∀S ∈ S,

where n+S and n−S are outward unit normals to S with respect to T + and T −, on
the supporting planes containing T + and T − respectively; T + and T − are elements
in T that share the side S ∈ S where S denotes the set of interior faces of T ∈ T.
We stress that, in contrast to flat domains, n+S �= n−S because the vector may have
different supporting hyperplanes. Similarly, ∇Γ V +|S = ∇̂V +DΓ |Ŝ and ∇Γ V −|S =
∇̂V −DΓ |Ŝ are tangential gradients of V on T + and T − restricted to S, respectively.
Note that, according to (36),

ΔΓ V |T =Q−1
Γ d̂iv

(
QΓ ∇̂V̂G−1

Γ

)|T̂ = 0 ∀T ∈ T,

provided V and Γ are piecewise linear. We refer to [17, 29] for the caseΔΓ V |T �= 0.
Subtracting the weak formulations (35) and (38), and employing (34) to integrate

by parts elementwise, we obtain for all v ∈H 1(γ ):
∫
γ

∇γ (u−U) · ∇γ v = I1 + I2 + I3, (53)

with

I1 :=
∑
T ∈T

∫
T

FΓ (v − V )−
∑
S∈S

∫
S

JS(U)(v − V ),

I2 :=
∫
Γ

∇Γ U · ∇Γ v−
∫
γ

∇γ U · ∇γ v =
∫
γ

∇γ UEΓ∇Tγ v,

I3 :=
∫
γ

f v−
∫
Γ

FΓ v.

The choice FΓ = q
QΓ
f of (39) implies I3 = 0 so that only I1 and I2 need to be

estimated. Observe that I1 is the usual residual term, whereas I2 is the geometry
consistency term studied in Sect. 5.1 which accounts for the discrepancy between γ
and Γ .

We focus now on I1. The PDE error indicator is defined as follows for any
V ∈V(T)

ηT(V ,T )
2 := h2

T ‖FΓ ‖2
L2(T )

+ 1

2

∑
S⊂∂T

hT
∥∥JS(V )∥∥2

L2(S)
∀T ∈ T,

where hT := |T0| 1
d and T0 is the preimage of T in the initial triangulation T0, i.e.

T0 = F0 ◦F−1
T (T ). This definition of hT guarantees the strict reduction property

hT ′ ≤ 2−b/dhT (54)
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for all T ′ obtained from T after b bisections. We also introduce the data oscillation

oscT(f,T ) := hT ‖FΓ − FΓ ‖L2(T ) ∀T ∈ T, (55)

where FΓ stands for the meanvalue of FΓ on T ∈ T. Finally, for any subset τ ⊂ T

we set

ηT(V , τ )
2 :=

∑
T ∈τ

ηT(V ,T )
2, and oscT(f, τ )

2 :=
∑
T ∈τ

oscT(f,T )
2,

and simply write ηT(V ) and oscT(f ) whenever τ = T.
Standard arguments [1, 55] to derive upper and lower bounds for the energy error

on flat domains can be extended to this case; see [17, 29, 46]. We thus sketch the
proof.

Lemma 5.5 (A posteriori upper and lower bounds) Assume that λΓ0 satisfies (49).
Let u ∈H 1(γ ) be the solution of (35), (Γ,T) an approximating surface-mesh pair,
and U ∈ V(T) be the Galerkin solution of (38). Then there exist constants C1,C2
and Λ1 depending only on T0, the Lipschitz constant of γ , and ‖f ‖L2(γ ), such that

∥∥∇γ (u−U)∥∥2
L2(γ )

≤ C1ηT(U)
2 +Λ1λ

2
Γ , (56)

C2ηT(U)
2 ≤ ∥∥∇γ (u−U)∥∥2

L2(γ )
+ oscT(f )

2 +Λ1λ
2
Γ . (57)

Proof Our departing point is (53) with v ∈H 1
# (γ ) arbitrary and V ∈V(T) its Scott-

Zhang interpolant, built over the parametric domain Ω [19]. Using interpolation
estimates and (52) yields

|I1|� ηT(U)‖∇γ v‖L2(γ ).

Since ‖∇Γ U‖L2(γ ) � ‖f ‖L2(γ ), invoking Corollary 5.1 gives

|I2|� λΓ ‖∇γ v‖L2(γ ).

Since I3 = 0 we obtain the upper bound (56). To prove (57) we resort to a local
argument due to R. Verfürth [55]. Let T ∈ T and bT be corresponding cubic bubble.
If v = FΓ bT ∈H 1

0 (T ), then

‖∇γ v‖L2(T ) � h−1
T ‖FΓ ‖L2(T ).

Therefore, inserting v into (53) and taking V = 0 leads to

‖FΓ ‖2
L2(T )

�
∫
T

FΓ v � h−1
T

(∥∥∇γ (u−U)∥∥L2(T )
+ λΓ (T )

)‖FΓ ‖L2(T ).

This combined with the triangle inequality gives part of (57). It remains to deal with
the jump, for which we select an arbitrary side S ∈ S with adjacent elements T ±. Let
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bS be a piecewise quadratic bubble with value 1 at the midpoint of S and 0 at any
other quadratic node. Let v = JS(U)bS ∈H 1

0 (ωS) where ωS = T + ∪T −. Replacing
v into (53) and taking V = 0 yields

∥∥JS(U)∥∥2
L2(S)

�
∫
S

JS(U)v

≤ (∥∥∇γ (u−U)∥∥L2(ωS)
+ hS‖FΓ ‖L2(ωS)

+ λΓ (ωS)
)‖∇γ v‖L2(ωS)

.

To conclude the proof we invoke the property ‖∇γ v‖L2(ωS)
� h

−1/2
S ‖JS(U)‖L2(S)

along with the previous estimate for hS‖FΓ ‖L2(ωS)
. �

To prove optimality of AFEM we need a localized upper bound for the dis-
tance between two discrete solutions. This bound measures ‖∇γ (U∗ − U)‖L2(γ )

in terms of the PDE estimator restricted to the refined set and geometric estimator
[17, Lemma 4.13].

Lemma 5.6 (Localized upper bound) Assume that λΓ0 satisfies (49). For (T,Γ ),
(T∗,Γ∗) pairs of mesh-surface approximations with T ≤ T∗, let R := RT→T∗ ⊂ T

be the set of elements refined in T to obtain T∗. Let U ∈ V(T) and U ∈ V(T∗) be
the corresponding discrete solutions of (38) on Γ and Γ∗, respectively. Then the
following localized upper bound is valid

∥∥∇γ (U∗ −U)∥∥2
L2(γ )

≤ C1ηT(U,R)
2 +Λ1λΓ (R)

2, (58)

with constants C1,Λ1 as in Lemma 5.5.

Proof We start from the error representation formula (53) by replacing γ by Γ∗ and
taking as a test function v =E∗ :=U −U∗ ∈H 1

# (γ )

∥∥∇γ (U∗ −U)∥∥2
L2(γ )

'
∫
Γ∗
∇Γ∗(U∗ −U) · ∇Γ∗E∗ = I1 + I2 + I3.

To estimate I1, we proceed as in the flat case [21, 49, 52]. We first construct an
approximation V ∈V(T) of E∗ ∈V(T∗). Let ω be the union of elements of T which
are refined in T∗, and denote by ωi one of the connected components of its interior.
Let Ti be the subset of T contained in ωi and let V(Ti ) be the restriction of V(T)
to ωi . We now can construct the Scott-Zhang operator on the corresponding flat
domains ω̂i = F−1

T (ω) and then lift them to Γ via FT . We denote these lifts by
Pi : H 1(ω̂i)→ V(Ti ). Let V ∈ V(T) be the following approximation of the error
E∗ ∈V(T∗):

V := PiE∗ in ωi, V :=E∗ elsewhere.

By construction, V has conforming boundary values on ∂ωi , is continuous in Γ ,
i.e. V ∈ V(T) and is an H 1-stable approximation to E∗. Since V = E∗ in Γ \ω we
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obtain by standard argument

|I1| ≤ C1ηT(U,R)‖∇Γ E∗‖L2(Γ ).

To estimate I2, we first note that I2|Γ \ω = 0 because Γ and Γ∗ coincide in the un-
refined region Γ \ω. Adding and subtracting

∫
ω̃
∇γ U∇γ E∗, with ω̃ = X ◦ F−1

T (ω),
we obtain

I2 =
∫
ω̃

∇γ UEΓ∇Tγ E∗ −
∫
ω̃

∇γ UEΓ∗∇Tγ E∗.

Combining Corollary 5.1 with (52) and (19), in its elementwise form, we obtain

|I2|�
(
λΓ (R)+ λΓ ∗(R)

)‖∇Γ E∗‖L2(γ ) �
(
1+Λ2

0

)‖f ‖L2(γ )λΓ (R).

We note that the choice (39) of discrete forcing terms FΓ∗ and FΓ implies I3 = 0.
Finally, collecting the estimates above we conclude (58). �

5.3 Properties of the PDE Estimator and Data Oscillation

As indicated in (56)–(57), we have access to the energy error ‖∇γ (u − U)‖L2(γ )

only through the PDE estimator ηT(U), the geometric estimator λΓ , and data oscil-
lation oscT(f ). As is customary for flat domains, (55) guarantees that oscT(f ) is
dominated by ηT(U) locally:

oscT(f,T )≤ ηT(U,T ) ∀T ∈ T. (59)

The main novelty in (56)–(58) with respect to flat domains, which is also the chief
challenge of the present analysis, is the presence of λΓ . In this respect, we show
now the equivalence of ηT(U) and the total error

ET(U,f ) :=
(∥∥∇γ (u−U)∥∥2

L2(γ )
+ oscT(f )

2) 1
2 (60)

provided λΓ is small relative to ηT(U). We refer to [21] for a similar result for flat
domains.

Lemma 5.7 (Equivalence of estimator and total error) Let C1,C2,Λ1 be given in
Lemma 5.5. If

λ2
Γ ≤

C2

2Λ1
ηT(U)

2, (61)

then there exist explicit constants C3 ≥ C4 > 0, depending on C1,C2, such that

C4ηT(U)≤ ET(U,f )≤ C3ηT(U). (62)
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Proof Combining (56) with (61), we infer that

∥∥∇γ (u−U)∥∥2
L2(γ )

≤
(
C1 + C2

2

)
ηT(U)

2. (63)

This, together with (59), gives the upper bound in (62). We next resort to (57) and
(61) to obtain

C2ηT(U)
2 ≤ ∥∥∇γ (u−U)∥∥2

L2(γ )
+ oscT(f )

2 + C2

2
ηT(U)

2,

which implies the lower bound in (62) and concludes the proof. �

It turns out that the usual reduction property of ηT(U) [21, Corollary 3.4], which
is instrumental to prove a contraction property of AFEM, is also polluted by the
presence of λΓ as stated below. The following result is proved in [46, Lemma 4.2]
for any polynomial degree.

Lemma 5.8 (Reduction of residual error estimator) Let λΓ0 satisfy (49). Given a
mesh-surface pair (T,Γ ), let M⊂ T be a subset of elements bisected at least b ≥ 1

times in refining T to obtain T∗ ≥ T. If ξ := 1− 2− b
d , then there exist constants Λ2

and Λ3, solely depending on the shape regularity of T0, the Lipschitz constant L of
γ , and ‖f ‖L2(γ ), such that for any δ > 0

ηT∗(U∗)2 ≤ (1+ δ)
(
ηT(U)

2 − ξηT(U,M)2
)

+ (1+ δ−1)(Λ3
∥∥∇γ (U∗ −U)∥∥2

L2(γ )
+Λ2λ

2
Γ

)
. (64)

Proof Let S ∈ S∗ be an interior side and T +, T − ∈ T∗ be two elements sharing S.
The component of ∇Γ∗U∗ tangential to S does not jump, because U∗ is continuous
across S, whence ∣∣JS(U∗)∣∣= ∣∣∇Γ∗U+∗ −∇Γ∗U−∗

∣∣,
where U±∗ =U∗|T ± . Therefore

∣∣JS(U∗)− JS(U)
∣∣≤ ∣∣∇Γ∗(U+∗ −U+)

∣∣+ ∣∣∇Γ∗(U−∗ −U−)
∣∣

+ ∣∣∇Γ∗U+ −∇Γ U+
∣∣+ ∣∣∇Γ∗U− −∇Γ U−

∣∣.
Employing an inverse estimate together with (52), the first two terms can be bounded
as follows:

hS
∥∥∇Γ∗(U±∗ −U±)

∥∥2
L2(S)

�
∥∥∇Γ∗(U±∗ −U±)

∥∥2
L2(T ±) ≈

∥∥∇γ (U±∗ −U±)
∥∥2
L2(T̃ ±).

For the next two terms we use (29), in conjunction with (51) and (19), to write

hS
∥∥∇Γ∗U± −∇Γ U±

∥∥
L2(S)

�
∥∥∇̂Û±(DΓ∗ −DΓ )

∥∥
L2(T̂ ±) � λΓ ,
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where the hidden constant depends on ‖f ‖L2(γ ).
We now turn our attention to the interior residual. Let T∗ ∈ T∗ and T = FT ◦

F−1
T∗ (T∗), T̂ = F−1

T∗ (T∗) be the corresponding sets in Γ and Ω . Since FΓ = q
QΓ
f

we infer that
∣∣∣∣
∫
T∗
|FΓ∗ |2 −

∫
T

|FΓ |2
∣∣∣∣=
∫
T̂

|qf |2 |QΓ −QΓ∗ |
QΓQΓ∗

� λΓ ‖f ‖2
L2(T̃ )

,

because of (50) and the lower bounds for QΓ and QΓ∗ , as well as (19).
Collecting the estimates above, we realize that we have derived the bound

ηT∗(U∗)2 ≤ (1+ δ)ηT(U,T∗)2 +
(
1+ δ−1)(Λ3

∥∥∇γ (U∗ −U)∥∥2
L2(γ )

+Λ2λ
2
Γ

)
.

It remains to deal with the set M, namely to prove

ηT(U,T∗)2 ≤ ηT(U)2 − ξηT(U,M)2.

This is exactly the same argument as for flat domains because of the definition of
meshsize hT and (54) [21, Corollary 3.4]. This concludes the proof. �

Another difference with the theory of adaptivity for flat domains is the behavior
of data oscillation under refinement. The usual situation is that oscT(f ) does not
increase upon refinement from T to T∗ [47]. This is no longer true because oscT(f )
and oscT∗(f ) are defined on different domains Γ and Γ∗. Instead, we have the
following substitute.

Lemma 5.9 (Quasi-monotonicity of data oscillation) Let λΓ0 satisfy (49). Let
(T,Γ ), (T∗,Γ∗) be mesh-surface pairs with T ≤ T∗ and discrete forcing functions
defined according to (39). Then, there exists a constant C5 ≥ 1, depending only on
T0 and the Lipschitz constant L of γ , such that

oscT∗(f )≤ C5 oscT(f ). (65)

Proof Let T∗ ∈ T∗ and so in Γ∗, and let T = FΓ ◦F−1
Γ∗ (T∗) be the corresponding set

in Γ , but perhaps not in T. Using (39) and the fact that QΓ is piecewise constant,
we realize that

∫
T∗
|FΓ∗ − FΓ∗ |2 ≤

∫
T

∣∣∣∣f q

QΓ∗
− FΓ QΓ

QΓ∗

∣∣∣∣
2
QΓ∗
QΓ

=
∫
T

|FΓ − FΓ |2 QΓ

QΓ∗

≤ C2
5

∫
T

|FΓ − FΓ |2,

where C2
5 is the maximum of the ratios QΓ /QΓ∗ |T∗ for all T∗ ∈ T∗ and is bounded

by L2d . �
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6 AFEM: Design and Properties

Since λΓ and ηT(U) account for quite different effects, the algorithm AFEM
is designed to handle them separately via the modules ADAPT_SURFACE and
ADAPT_PDE:

AFEM: Given Γ0, T0, and parameters ε0 > 0, 0< ρ < 1, and ω > 0, set k = 0.

1. [T+k ,Γ +k ] = ADAPT_SURFACE(Tk,ωεk)
2. [Tk+1,Γk+1] = ADAPT_PDE(T+k , εk)
3. εk+1 = ρεk ; k = k + 1
4. Goto 1.

We notice the presence of the factor ω, which is employed to make the geometric
error small relative to the current tolerance εk . This turns out to be essential for both
contraction and optimality of AFEM, and is further discussed in Sects. 7–9.

6.1 Module ADAPT_SURFACE

Given a tolerance τ > 0 and admissible subdivision T, the call [T+,Γ +] =
ADAPT_SURFACE(T,Γ, τ ) improves the surface resolution until

λΓ + ≤ τ (66)

where λΓ is the geometric estimator introduced in (17). This module is based on a
greedy algorithm

[T+,Γ +] = ADAPT_SURFACE(T,Γ, τ )
while M := {T ∈ T|λT(T ) > τ } �= ∅

T := REFINE(T,M)

Γ := FT(Ω)

end while
return(T,Γ )

where REFINE(T,M) refines all elements in the marked set M and keeps con-
formity; more details are given in Sect. 6.2. To derive convergence rates for
AFEM, we require that ADAPT_SURFACE is t-optimal, i.e. there exists a con-
stant C such that the set M+ of all the elements marked for refinement in a call
to ADAPT_SURFACE(T,Γ, τ ) satisfies

#M+ ≤ Cτ−1/t , (67)

whenever γ belongs to a suitable approximation class, Bt with 0 < t ≤ 1/d (see
Sect. 8.1). In Sect. 8.3 we show that this assumption is satisfied provided that
γ ∈W 1+td

p (Γ0) for some tp > 1.
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6.2 Module ADAPT_PDE

Given a tolerance ε > 0 and admissible subdivision T+, the call [T,U ] =
ADAPT_PDE(T+, ε) outputs a refinement T ≥ T+ and the associated finite element
solution U ∈V(T) such that

ηT(U)≤ ε. (68)

The module ADAPT_PDE is the standard adaptive sequence:

[T,Γ ] = ADAPT_PDE(T, ε)
U = SOLVE(T)
{ηT(U,T )}T ∈T = ESTIMATE(T,U)
while ηT(U) > ε

M :=MARK(T, {ηT(U,T )}T ∈T)
T := REFINE(T,M)

Γ := FT(Ω)

U = SOLVE(T)
{ηT(U,T )}T ∈T = ESTIMATE(T,U)

end while
return(T,Γ )

We describe below the modules SOLVE,ESTIMATE,MARK and REFINE sepa-
rately.

Procedure SOLVE

This procedure solves the SPD linear system resulting for (38). For simplicity we
assume that the linear system is solved exactly. In this context, the approximate
solution of the discrete problem can be handled as in [52]. We refer to [43] for a
hierarchical basis multigrid preconditioner and to [13] for standard variational and
non-variational multigrid algorithms.

Procedure ESTIMATE

Given the Galerkin solution U ∈ V(T) of (38) ESTIMATE computes the PDE error
indicators {ηT(U,T )}T ∈T . We emphasize that this procedure does not compute the
oscillation terms, which are only needed to carry out the analysis.

The equivalence stated in Lemma 5.7 is critical to deduce that the ADAPT_PDE
strategy based on the reduction of the error indicators ηT(U) is successful in reduc-
ing the total error ‖∇γ (u−U)‖L2(γ )+oscT(f ). To see this we impose the constraint
on the parameter ω

ω ≤ ω1 :=
√

C2

2Λ2
0Λ1

, (69)
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and observe that the input T+ to ADAPT_PDE as well as all inner iterates satisfy, in
view of (19),

λ2
Γ ≤Λ2

0λ
2
Γ + ≤

C2

2Λ1
ε2
k .

Since ηT(U) > εk , we deduce the validity of (61) whence that of (62) within
ADAPT_PDE.

Procedure MARK

We rely on an optimal Dörfler’s marking strategy for the selection of elements.
Given the set of indicators {ηT(U,T )}T ∈T and a marking parameter θ ∈ (0,1],
MARK outputs a subset of marked elements M⊂ T such that

ηT(U,M)≥ θηT(U). (70)

In contrast to [46], MARK only employs the error indicators and does not use the os-
cillation nor surface indicators. We will see that quasi-optimality of AFEM requires
that M be minimal and θ sufficiently small.

Procedure REFINE

Given a triangulation T and a subset M of marked elements, the call T∗ =
REFINE(T,M) bisects all elements in M at least b ≥ 1 times while maintaining
mesh conformity, to obtain a new mesh T∗. The new surface Γ∗ is obtained by
piecewise linear interpolation of the parametrization X via FT∗ = IT∗X, namely,
Γ∗ = FT∗(Ω).

To ensure conformity of T∗ some additional elements of T \M need to be refined.
The complexity of the overall refinement algorithm is controlled in a cumulative
way, as was proved by P. Binev, W. Dahmen, and R. DeVore for d = 2 [11] and R.
Stevenson [53] for d > 2; see also the survey [49]. The precise statement of this
result is in the following lemma.

Lemma 6.10 (Complexity of REFINE) Assume that T0 is suitably labeled (condi-
tion (b) of Sect. 4 in [53]). Let {Tk}k≥0 be any sequence of meshes produced by
successive calls Tk+1 = REFINE(Tk,Mk). Then, there exists a constant C6 solely
depending on T0 and the refinement depth b such that

#Tk − #T0 ≤ C6

k−1∑
j=0

#Mj , ∀k ≥ 1. (71)

It is worth noticing that the user parameter b ≥ 1 only entails a minimal refine-
ment, which does not force an interior node property [47, 48] or an extra refinement
to improve the surface approximation [46].



AFEM for Geometric PDE: The Laplace-Beltrami Operator 289

Remark 6.1 (Alternative subdivision strategies) For simplicity we only discuss the
refinement strategy based on simplex bisection. However, all the results obtained
can be extended to any strategy satisfying Conditions 3, 4 and 6 in [12], such as
quadrilaterals with hanging nodes.

7 Conditional Contraction Property

The procedure ADAPT_PDE is known to yield a contraction property in the “flat”
case. In the present context, however, the surface approximation is responsible for
lack of consistency in that the sequence of finite element spaces is no longer nested.
This in turn leads to failure of a key orthogonality property between discrete so-
lutions, the Pythagoras property. We have, instead, a perturbation result referred
to as quasi-orthogonality below. Its proof follows the steps of that for graphs [46,
Lemma 4.4]. In this section, we use the notation

ej := ∥∥∇γ (u−Uj
)∥∥
L2(γ )

, Ej := ∥∥∇γ (Uj+1 −Uj
)∥∥
L2(γ )

,

ηj := ηTj
(
Uj
)
, ηj

(
Mj
) := ηTj (Uj ,Mj

)
, λj := λΓ j ,

where Tj are meshes obtained after each inner iteration of ADAPT_PDE, starting
with T0 = T+, and Γ j ,Uj are the corresponding discrete surfaces and Galerkin
solutions.

Lemma 7.11 (Quasi-orthogonality) Let Λ2 > 0 be the constant of Lemma 5.8,
which solely depends on the Lipschitz constant L of γ and ‖f ‖L2(γ ). Then, for
i = j, j + 1 with j ≥ 0, we have

(
ej
)2 − 3

2

(
Ej
)2 −Λ2

(
λi
)2 ≤ (ej+1)2 ≤ (ej )2 − 1

2

(
Ej
)2 +Λ2

(
λi
)2
. (72)

Proof Since the symmetry of the Dirichlet form implies

(
ej
)2 = (ej+1)2 + (Ej )2 + 2

∫
γ

∇γ
(
u−Uj+1)∇Tγ (Uj+1 −Uj

)
,

we just have to examine the last term. Combining (35), (38), and (39) with
Lemma 5.1 yields

∣∣∣∣
∫
γ

∇γ
(
u−Uj+1)∇Tγ (Uj+1 −Uj

)∣∣∣∣� ‖f ‖L2(γ )λ
jEj ,

which gives (72) after applying Young’s inequality. �

Remark 7.2 (Validity of (72)) Relation (72) is also true for any pair of triangula-
tions (T,T∗), with T∗ ≥ T, discrete solution U∗ ∈V(T∗) on the finer space, and any
discrete function V ∈V(T).
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Theorem 7.1 (Conditional Contraction Property) Let θ ∈ (0,1] be the mark-
ing parameter of MARK and let {Tj ,Γ j ,Uj }Jj≥0 be a sequence of meshes,
piecewise affine surfaces and discrete solutions generated by the procedure
ADAPT_PDE(T0, ε) within AFEM with tolerance ε, i.e. λ0 ≤ ωε. Assume that the
AFEM parameter ω satisfies

ω ≤ ω2 := ξθ2

Λ0
√

32Λ2(2Λ3 + 1)
, (73)

where ξ = 1− 2−b/d is defined in Lemma 5.8. There exist constants 0< α < 1 and
β > 0 such that

(
ej+1)2 + β(ηj+1)2 ≤ α2((ej )2 + β(ηj )2) ∀0≤ j < J. (74)

Moreover, the number of inner iterates J of ADAPT_PDE is uniformly bounded.

Proof (1) Let β > 0 be a scaling parameter to be found later. We combine (72) and
(64) to write

(
ej+1)2 + β(ηj+1)2

≤ (ej )2 +
(
−1

2
+ β(1+ δ−1)Λ3

)(
Ej
)2

+Λ2
(
1+ β(1+ δ−1))(λj )2 + β(1+ δ)((ηj )2 − ξηj (Mj

)2)
.

Here Mj is the set of elements in Tj marked for refinement at the j th subiteration.
To remove the factor of Ej we now choose β dependent on δ, to be

β
(
1+ δ−1)Λ3 = 1

2
⇒ β(1+ δ)= δ

2Λ3
, (75)

and thereby obtain

(
ej+1)2 + β(ηj+1)2 ≤(ej )2 +Λ2

(
1+ β(1+ δ−1))(λj )2

+ β(1+ δ)((ηj )2 − ξηj (Mj
)2)
.

(2) Invoking Dörfler marking (70), we deduce

(
ηj
)2 − ξηj (Mj

)2 ≤ (1− ξθ2)(ηj )2.
Since the initial mesh T0 comes from ADAPT_SURFACE we know that λ0 ≤ ωε ≤
ωηj for all inner iterations 1 ≤ j ≤ J of ADAPT_PDE. Using (19) yields λj ≤
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Λ0ωη
j , whence

(
ej+1)2 + β(ηj+1)2 ≤(ej )2 − β(1+ δ)ξθ2

2

(
ηj
)2

+ β
(
(1+ δ)

(
1− ξθ2

2

)
+Λ2

(
1+ 1

2Λ3

)
Λ2

0ω
2

β

)(
ηj
)2
.

Applying the simpler upper bound (63), which is valid for the inner iterates of
ADAPT_PDE, and replacing β according to (75), we obtain

(
ej+1)2 + β(ηj+1)2 ≤ α1(δ)

(
ej
)2 + α2(δ)β

(
ηj
)2

with

α1(δ)
2 := 1− δ ξθ2

4Λ3C3
,

α2(δ)
2 := (1+ δ)

(
1− ξθ2

2

)
+Λ2

(
1+ 1

2Λ3

)
Λ2

0ω
2

β
.

It remains to prove that δ can be chosen so that α2(δ)
2 < 1. We then fix the parameter

δ so that

(1+ δ)
(

1− ξθ2

2

)
= 1− ξθ2

4
⇒ δ = ξθ2

4− 2ξθ2
.

Now, according to (75), we obtain β = ξθ2

2Λ3(4−ξθ2)
≥ ξθ2

8Λ3
and since ω ≤ ω2 we infer

that

Λ2

(
1+ 1

2Λ3

)
Λ2

0ω
2

β
≤ 4Λ2(2Λ3 + 1)

ξθ2
Λ2

0ω
2 ≤ ξθ2

8
.

Hence α2
2 ≤ 1 − ξθ2

8 < 1, and the choice α := max{α1, α2} < 1 yields the desired
estimate (74).

(3) The contraction property (74) guarantees that ADAPT_PDE stops in a finite
number of iterations J . To show that J is independent of the iteration counter k of
AFEM, take k ≥ 1 and note that before the call ADAPT_PDE(T+k , εk) we have

ηk = ηTk (Uk)≤ εk−1 = εk

ρ
, λk = λΓk ≤Λ0λΓ +k−1

≤ Λ0ω

ρ
εk.

We next combine (64), with δ = 1, and (72) to get

ηT+k
(
U+k
)2 � η2

k + λ2
k +
∥∥∇γ (U+k −Uk

)∥∥2
L2(γ )

� η2
k + λ2

k +
∥∥∇γ (u−Uk)∥∥2

L2(γ )
,

where the hidden constants depend on Λ2,Λ3. The bounds on ηk,λk , together with
(56), yield

(
η0)2 = ηT+k

(
U+k
)2 � η2

k + λ2
k � ε2

k .
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Since the stopping condition of ADAPT_PDE is ηJ ≤ εk , (74) implies that J is
bounded independently of k, as asserted. �

That J is uniformly bounded dictates the complexity of ADAPT_PDE because
the most expensive module SOLVE is run just J times. However, this property is not
required for the study of cardinality of Sect. 8.

8 Optimal Cardinality

In this section we study the cardinality of AFEM, which is dictated by the regularity
of u,f and γ . We first discuss in Sect. 8.1 the best approximation error achievable
with piecewise linear polynomials for both surface and PDE solution. We show next
in Sect. 8.2 that AFEM delivers the best convergence rate provided the procedure
ADAPT_SURFACE is t-optimal, namely it satisfies (67). We conclude in Sect. 8.3
with a greedy algorithm for ADAPT_SURFACE that is t-optimal.

8.1 Approximation Classes

We define classes of functions and surfaces in terms of decay rate of the ap-
proximation error as a function of the number of degrees of freedom N . Let
TN ⊂ T := T(T0) be the set of all possible conforming triangulations, generated
on γ with at most N elements more than T0 by successive bisection of T0:

TN := {T ∈ T | #T − #T0 ≤N}.
Given v ∈H 1

# (γ ), f ∈ L2(γ ), the notion of total error

ET(V ,f )
2 = ∥∥∇γ (v− V )∥∥2

L2(γ )
+ oscT(f )

2

is defined in (60). In view of Lemma 5.7 and the fact that AFEM is driven by ηT(U)
and λΓ , we assess the quality of the best approximation (v, f ) with N degrees of
freedom in terms of

σ(N;v,f, γ ) := inf
T∈TN

inf
V∈V(T)

ET(V ,f ).

This is consistent with the approach taken for flat domains in [21, 49]. For s > 0,
we define the nonlinear (algebraic) approximation class As(γ ) to be

As(γ ) :=
{
(v, f )

∣∣∣ |v,f |As := sup
N≥1

(
Nsσ(N;v,f, γ ))<∞}.

We emphasize that the approximability of the surface γ only appears implicitly by
measuring the errors on γ . In fact, the definition of data oscillation (55), and in
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particular the specific choice of FΓ , implies that osc2
T(f ) entails the approximation

of f by piecewise constants on γ but does not include the approximation of γ by
Γ ; this is quite different for higher order approximations of γ , as is shown in [17].
On the other hand, the generic range of s is dictated by polynomial degree, namely
0< s ≤ 1/d .

An alternative and useful definition to (u,f ) ∈As(γ ) is as follows: given ε > 0,
there exists a mesh Tε ∈ T(T0) with Tε ≥ T0 and a discrete function Vε ∈V(Tε) so
that

∥∥∇γ (u− Vε)∥∥2
L2(γ )

+ oscTε (f )
2 ≤ ε2, #Tε − #T0 ≤ |u,f |

1
s

As
ε−

1
s ; (76)

Γε = FTε (Ω) might not be a good approximating of γ . In fact, approximations
of (u,f ) and γ are handled separately. The characterization of As(γ ) in terms of
Besov regularity is an open issue.

Similarly, for surfaces and t > 0, we define the approximation class as follows:

Bt :=
{
γ ∈W 1∞

∣∣∣ |γ |Bt := sup
N≥1

Nt inf
T∈TN

λΓ <∞
}
.

This means that surfaces in Bt are parametrized by Lipschitz maps X :Ω→ R
d+1

which can in turn be approximated with rate N−t in W 1∞ over Ω with N degrees of
freedom. In Sect. 8.3, we give a constructive greedy algorithm that realizes this rate
provided γ belong to a suitable Sobolev space in the nonlinear scale of W 1∞. The
generic range of exponents t for linear elements, or equivalently polyhedral surfaces
Γ , is 0< t ≤ 1/d .

8.2 Convergence Rates

We now prove that AFEM achieves the asymptotic decay rate min{s, t}, dictated by
the classes As(γ ) and Bt , but without ever using either s or t in its formulation.
We establish the link between the performance of AFEM and the best possible error
by adapting a clever idea of R. Stevenson [52] for the Laplace operator, further
extended by J.M. Cascón et al. [21] to general elliptic PDE, in flat domains; we
refer to the survey [49] for a thorough discussion. The insight is that

any marking strategy that reduces the total error relative to its current value
must contain a substantial portion of the error estimator, and so it can be
related to Dörfler Marking.

(77)

Exploiting next the minimality of Dörfler marking enables us to compare meshes
generated by AFEM with the best meshes within T. The approach of [21, 49, 52]
does not apply directly in the present context because of the consistency error due
to surface interpolation. We account for this discrepancy below upon making the
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parameter ω of ADAPT_SURFACE sufficiently small. Let

ω3 := C4

Λ0
√

3Λ1 + 2Λ2
, ω4 := C4

2Λ0

√(
1− θ2

θ2∗

)
1

Λ2
(78)

be two thresholds for ω to be used next and θ∗ be a threshold for the Dörfler param-
eter θ

θ∗ := C4√
2+ 3C1

; (79)

since C4 =√C2/2 and C2 ≤ C1, we see that θ∗ < 1.

Lemma 8.12 (Dörfler marking) Let λΓ0 satisfy (49), and the parameters θ and ω
satisfy

0< θ < θ∗, 0<ω ≤min{ω1,ω3}, (80)

where θ∗,ω3 are defined in (78), (79), and ω1 in (69). Let μ = 1
2 (1 − θ2

θ2∗
) and

(Γ,T,U) be the approximate surface, mesh and discrete solution produced by an
inner iterate of ADAPT_PDE. If (Γ∗,T∗,U∗) is a surface-mesh-solution triple with
T∗ ≥ T, such that the total error satisfies

ET∗(U∗, f )≤ μET(U,f ), (81)

then the refined set R :=RT→T∗ satisfies Dörfler property with parameter θ , namely

ηT(U,R)≥ θηT(U). (82)

Proof Using the notation e(U) = ‖∇γ (u − U)‖L2(γ ), we proceed as in [21,
Lemma 5.9]. Since ω ≤ ω1, we combine the lower bound of (62) with (81) to write

(1−μ)C2
4ηT(U)

2 ≤ (1−μ)(e(U)2 + oscT(f )
2)

≤ e(U)2 − e(U∗)2 + oscT(f )
2 − oscT∗(f )

2.

We now estimate separately error and oscillation terms. According to (72) and (58),
we obtain

e(U)2 − e(U∗)2 ≤ 3

2

∥∥∇γ (U∗ −U)∥∥2
L2(γ )

+Λ2λ
2
T

≤ 3

2
C1ηT(U,R)

2 +
(

3

2
Λ1 +Λ2

)
λ2
Γ .

On the other hand, the data oscillation terms verify

oscT(f )
2 − oscT∗(f )

2 ≤ oscT(f,R)
2 ≤ ηT(U,R)2
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because they coincide over T\R and the estimator dominates the oscillation locally
(see (59)). Since (Γ,T) is produced within ADAPT_PDE, we have ηT(U) > ε and
λΓ + ≤ ωε, whence

λΓ ≤Λ0λΓ + ≤Λ0ωε ≤Λ0ωηT(U).

Collecting these three estimates, and using that ω ≤ ω3, we infer that
(

1+ 3

2
C1

)
ηT(U,R)

2 ≥
(
(1−μ)C2

4 −Λ2
0ω

2
(

3

2
Λ1 +Λ2

))
ηT(U)

2

≥ (1− 2μ)
C2

4

2
ηT(U)

2.

Finally, the asserted estimate (82) is a consequence of the definition of θ∗,μ and
θ < θ∗. �

Lemma 8.13 (Cardinality of M) Let λΓ0 satisfy (49) and the procedure MARK se-
lect a set M with minimal cardinality. Let the parameters θ and ω satisfy

0< θ < θ∗, 0<ω ≤min{ω1,ω4} (83)

with θ∗,ω4,ω1 given in (79), (78), and (69), respectively. Let u be the solution of
(35), and let (Γ,T,U) be produced within ADAPT_PDE. If (u,f ) ∈As(γ ), then

#M� |u,f |
1
s
s ET(U,f )

− 1
s .

Proof We set

δ2 = μ̂ET(U,f )
2 = μ̂(e(U)2 + oscT(f )

2),
for 0 < μ̂ < μ = 1

2 (1 − θ2

θ2∗
) < 1 sufficiently small to be determined later. Since

(u,f ) ∈As(γ ), there exists a pair (Γδ,Tδ) with Tδ ≥ T0 and a Vδ ∈V(Tδ) such that

#Tδ − #T0 � |u,f |
1
s
s δ
− 1
s , e(Vδ)

2 + oscTδ (f )
2 ≤ δ2. (84)

Let T∗ = T⊕ Tδ be the overlay of T and Tδ , which satisfies [21, Lemma 3.7], [49]

#T∗ ≤ #T + #Tδ − #T0. (85)

LetU∗ ∈V(T∗) be the corresponding Galerkin solution. We observe that T∗ ≥ Tδ,T,
and invoke the upper bound of (72) in conjunction with (65) to write

e(U∗)2 + oscT∗(f )
2 ≤ e(Vδ)2 +Λ2λ

2
Γ +C2

5 oscTδ (f )
2.

We recall that λΓ ≤ Λ0λΓ + < Λ0ωε, in view of (19) and (66), and ηT(U) > ε

because of (68). Combining this with (62), we arrive at

λ2
Γ ≤

Λ2
0ω

2

C2
4

(
e(U)2 + oscT(f )

2)= Λ2
0ω

2

μ̂C2
4

δ2.
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Using the fact that C5 ≥ 1 and ω ≤ ω4, we choose μ̂= μ

2C2
5

to end up with

e(U∗)2 + oscT∗(f )
2 ≤
(
C2

5 +
Λ2

0Λ2ω
2

μ̂C2
4

)
δ2 = μ(e(U)2 + osc2

T(f )
)
.

We thus deduce from Lemma 8.12 that the subset R :=RT→T∗ ⊂ T satisfies Dörfler
property (82). Since the set M ⊂ T also satisfies this property, but with minimal
cardinality, we infer that

#M≤ #R≤ #T∗ − #T ≤ #Tδ − #T0 � |u,f |
1
s
s δ
− 1
s .

The asserted estimate finally follows upon using the definition of δ. �

The quasi-optimal cardinality of AFEM is a direct consequence of Lemma 8.13
and Theorem 7.1. We prove this next.

Theorem 8.2 (Convergence rate of AFEM) Let γ ∈ Bt and (u,f ) ∈As(γ ) for some
0 < t, s ≤ n/d . Let ε0 ≤ (6ωΛ0L

3)−1 be the initial tolerance, and the parameters
θ,ω satisfy

0< θ ≤ θ∗, 0<ω ≤ ω∗ :=min{ω1,ω2,ω3,ω4}, (86)

where θ∗,ω1, . . . ,ω4 are given in (79), (69), (73), and (78), respectively. Let
the procedure MARK select sets with minimal cardinality, and the procedure
ADAPT_SURFACE be t-optimal on the surface γ . Let u be the solution of (35) and
{Γk,Tk,Uk}k≥0 a sequence of approximate surfaces, meshes and discrete solution
generated by the outer loop of AFEM.

Then there exists a constant C, depending on the Lipschitz constant L of γ ,
‖f ‖L2(γ ), the refinement depth b, the initial triangulation T0, and AFEM parame-
ters (θ,ω,ρ) such that

e(Uk)+ oscTk (f )+ω−1λΓk ≤ C
(|u,f | rs

As
+ω−r |γ |

r
t

Bt

)
(#Tk − #T0)

−r , (87)

with r =min{s, t}.

Proof We start by noting that since

ωε0 ≤ 1

6Λ0L3

the first output of ADAPT_SURFACE fulfills λΓ +0
≤ 1

6Λ0
which is (49) and implies

that T(T+0 ) is shape regular.
There are two instances where elements are added, inside ADAPT_SURFACE and

ADAPT_PDE. For ADAPT_SURFACE we make the assumption (67) of t-optimality:

#M+
k � ω−

1
t |γ |

1
t

Bt
ε
− 1
t

k .
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For ADAPT_PDE, Lemma 8.13 yields

#Mj
k � |u,f |

1
s

As

(
e
(
U
j
k

)+ osc
T
j
k

(f )
)− 1

s 0≤ j < J,

with j denoting the inner loop iteration counter. Since the inner iterates of
ADAPT_PDE satisfy Theorem 7.1 and

e
(
U
j
k

)+ osc
T
j
k

(f )≈ e(Uj
k

)+ η
T
j
k

(
U
j
k

)
,

we deduce that

(
e
(
U
j
k

)+ osc
T
j
k

(f )
)− 1

s � α
J−j−1

s
(
e
(
UJ−1
k

)+ η
TJ−1
k
(f )
)− 1

s ≤ α J−j−1
s ε

− 1
s

k .

This implies

J−1∑
j=0

#Mj
k � |u,f |

1
s

As
ε
− 1
s

k

J−1∑
j=0

α
J−j−1

s � |u,f |
1
s

As
ε
− 1
s

k .

To do a full counting argument, we resort to the crucial estimate (71), which
combined with the estimates above and the relation εk+1 = ρεk of step 3 of AFEM
gives

#Tk − #T0 ≤ C6

k−1∑
i=0

(
#M+

i +
J−1∑
j=0

#Mj
i

)
� C6

(
ω−

1
t |γ |

1
t

Bt
+ |u,f |

1
s

As

) k−1∑
i=0

ε
− 1
r

i ,

where r = min{s, t}. Since ρ < 1, we obtain
∑k−1

i=0 ε
− 1
r

i = ε
− 1
r

k−1

∑k−1
i=0 ρ

i
r � ε

− 1
r

k ,
whence

#Tk − #T0 � C6
(
ω−

1
t |γ |

1
t

Bt
+ |u,f |

1
s

As

)
ε
− 1
r

k .

Moreover, the stopping criteria (66) and (68) guarantee that

e(Uk)+ oscTk (f )+ω−1λΓk ≤ Cεk,

which implies the desired estimate (87). �

Besides the condition ω ≤ ω∗ in (86), the right-hand side of (87) suggests that ω
should not be too small to optimize this bound. An optimal choice of ω for the case
s = t , which unfortunately is not computable, appears to be

ω=min
{
ω∗, |u,f |As |γ |−1

Bs

}
.
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8.3 Greedy Algorithm

To conclude we show that ADAPT_SURFACE is t-optimal provided γ belongs to
W 1+td
p , which is just above the nonlinear Sobolev scale of W 1∞ for polynomial de-

gree 1 in d dimensions:

sob
(
W 1∞
)= 1− d

∞ = 1< sob
(
W 1+td
p

)= 1+ td − d

p
⇒ tp > 1.

Proposition 8.1 (Greedy algorithm) Let γ be piecewise of class W 1+td
p (Γ0),

with tp > 1, t ≤ 1/d , and globally of class W 1∞. Then module [T+,Γ +] =
ADAPT_SURFACE(T,Γ, τ ) terminates in a finite number of steps and the set M+
of marked elements satisfies

#M+ ≤ C|γ |1/t
W 1+td
p (Γ0)

τ−1/t ,

where |γ |
W 1+td
p (Γ0)

= (∑I
i=1 |Xi |pW 1+tp

p (Ω)
)1/p . Moreover, γ ∈ Bt and

|γ |Bt � |γ |W 1+td
p (Γ0)

.

Proof We first observe that W 1+td
p ⊂W 1∞ ⊂ C0 so that the Lagrange interpolation

operator IT is well defined. In addition, for an approximation pair (Γ,T) local in-
terpolation estimates give

λΓ (T )� hrT |X|W 1+td
p (T̂ )

, ∀T ∈ T = T(Γ ), (88)

for r = sob(W 1+td
p )− sob(W 1∞)= td − d

p
> 0. This shows that ADAPT_SURFACE

terminates in finite number of steps, say m.
To prove that ADAPT_SURFACE is t-optimal, namely to show (67), let M+ =

M0 ∪ · · · ∪Mm−1 be the set of marked elements. We organize the elements in M+
by size in such a way that allows for a counting argument. Let Pj be the set of
elements T of M+ with size

2−(j+1) ≤ |T |< 2−j ⇒ 2−(j+1)/d ≤ hT < 2−j/d .

We recall that |T | is the measure of T , the preimage of T in the initial triangulation
T0. We proceed in several steps.

(1) We first observe that all T ’s in Pj are disjoint. This is because if T1, T2 ∈ Pj

and T̊1 ∩ T̊2 �= ∅, then one of them is contained in the other, say T1 ⊂ T2, due to
the bisection procedure. Thus |T1| ≤ 1

2 |T2|, contradicting the definition of Pj . This
implies

2−(j+1)#Pj ≤ |Γ0| ⇒ #Pj ≤ |Γ0|2j+1. (89)
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(2) In light of (88), we have for T ∈ Pj

τ ≤ λΓ (T )� 2−(j/d)r |X|
W 1+td
p (T̂ )

.

Therefore τp#Pj � 2−(j/d)rp
∑

T ∈Pj
|X|p

W 1+td
p (T̂ )

≤ 2−(j/d)rp|γ |p
W 1+td
p (Γ0)

, whence

#Pj � τ−p2−(j/d)rp|γ |p
W 1+td
p (Γ0)

. (90)

(3) The two bounds for #Pj in (89) and (90) are complementary. The first is
good for j small whereas the second is suitable for j large (think of τ � 1). The
crossover takes place for j0 such that

2j0+1|Γ0| = τ−p2−j0rp/d |X|p
W 1+td
p (Ω)

⇒ 2j0 ≈ τ−1/t
|γ |1/t

W 1+td
p (Γ0)

|Γ0|1/tp .

(4) We now compute

#M+ =
∑
j

#Pj �
∑
j≤j0

2j |Γ0| + τ−p|γ |p
W 1+t
p (Γ0)

∑
j>j0

(
2−rp/d

)j
.

Since
∑

j≤j0
2j ≈ 2j0 ,

∑
j>j0

(2−rp/d)j � 2−(rp/d)j0 = 2(1−tp)j0 we can write

#M+ �
(
τ−1/t + τ−pτ−1/t+p)|Γ0|1−1/tp|γ |1/t

W 1+td
p (Γ0)

≈ τ−1/t |Γ0|1−1/tp|γ |1/t
W 1+td
p (Γ0)

.

(5) Upon termination, λΓ + ≤ τ and #M+ � τ−1/t |γ |1/t
W 1+td
p (Γ0)

, which is valid

regardless of the input T of ADAPT_SURFACE. If we take T = T0 and invoke
Lemma 6.10 we deduce that

#T+ − #T0 � τ−1/t |γ |1/t
W 1+td
p (Γ0)

⇒ λΓ +
(
#T+ − #T0

)t � |γ |
W 1+td
p (Γ0)

,

and that γ ∈ Bt . This concludes the proof. �

9 Asymptotics: Role of ω

In order to analyze the role of ω in the convergence rate of AFEM and its perfor-
mance, we solve the problem

−Δγ u= 1, in γ, u= 0, on ∂γ,
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Fig. 12 ηk + λk/ω (left) and ηk + λk (right) versus the number of elements in logarithmic scale
for ω= 0.1,1,10. We observe that ηk + λk/ω decays as N−0.5 right from the beginning, whereas
ηk + λk shows the same decay after the meshes have some refinement, depending on the value of
ω. Our theory predicts the decay of N−0.5 for both notions of total error if ω is sufficiently small,
but the best relation between the error ηk + λk and #DOFs is obtained for w = 1, which is not so
small

where γ is the graph of class C1,α given by

z(x, y)= (0.75− x2 − y2)1+α
+ ,

over the flat domain Ω = (0,1)2, and consider two cases α = 3/5 and α = 2/5.
It turns out that z ∈W 1+2t

p (Ω) for t < (α + 1
p
)/2. Moreover, to enforce the gap

sob(W 1+2t
p )− sob(W 1∞) > 0 with sob(W 1+2t

p )= 1+ 2t − 2
p

and sob(W 1∞)= 1 we
need tp > 1. These conditions can be achieved provided (see Sect. 8.3)

α = 3/5 : t = 1/2, p > 2, ⇒ z ∈ B 1
2

α = 2/5 : t < 2/5, p > 5/2, ⇒ z ∈ Bt , ∀t < 2/5.

On the other hand (u,f ) ∈ A 1
2

in both cases. This is a consequence of the fact

that Δγ u= f can be written in the parameter domain Ω as 1
q

d̂iv(qg−1∇̂T u)= f ,

with coefficient matrix A = qg−1 ∈ Cα(Ω̄) ∩W 1
p(Ω) and 1 < p < 1

1−α ; see (47).
Extending u and qf by odd reflection and A by even reflection to the unit squares
aroundΩ , u is a solution to−div(A∇T u)= qf on the ball B centered at (1/2,1/2)
and radius 1, with coefficient A ∈ Cα and right-hand side in L∞. By Theorem 3.13
in [40] this implies ∇u ∈ Cα(B̄), and thus

A :D2u= f + div A · ∇u ∈ Lp(B).

Applying Calderón-Zygmund theory we obtain u ∈ W 2
p(Ω) [39, Theorem 9.11],

whence (u,f ) ∈A 1
2

[49, Sect. 5.4].

In the following, we use the notation ηk := ηTk (Uk), and λk := λΓk .
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Fig. 13 ηk , λk/ω and ηk + λk/ω for ω= 0.1 (left), ω= 1 (middle), and ω= 10 (right)

9.1 Case α = 3/5

We recall that in this case γ ∈ B1/2. Since the pair (u,f ) ∈A1/2 we expect a decay

of ηk + λk/ω proportional to N−1/2
k , where Nk = #Tk − #T0. In Fig. 12 we plot

ηk + λk/ω (left) and ηk + λk (right) versus the number of elements in logarithmic
scale for ω = 0.1,1,10, and observe that in the three cases both notions of error
decay (asymptotically) as N−1/2.

In Fig. 13 we show the behavior of the different indicators ηk , λk/ω and their
sum, for the three values of ω considered above. We observe the following:

ω= 0.1. At the beginning ηk� λk/ω, thus λk in ADAPT_SURFACE guides the re-
finement initially, and ηk decreases very slowly because ADAPT_PDE exits without
refining. The indicators ηk and λk/ω are of comparable size when the number of
elements is around 2 · 105, when the refinement starts to occur due to both λk and
ηk and both quantities decrease as N−0.5.
ω= 1. At the beginning ηk < λk/ω and the behavior is similar to the case ω= 0.1.
When the meshes have about 103 elements the curves for ηk and λk/ω meet and
they both start to decrease at the optimal rate N−0.5.
ω= 10. At the beginning λk/ω < ηk , and the situation is opposite to the case of ω
small. The refinement is initially guided by ηk in ADAPT_PDE, and λk decreases
very slowly because ADAPT_SURFACE exits without refining. The two curves for
ηk and λk/ω meet when the meshes have about 104 elements, and they both start
to decrease at the optimal rate N−0.5.

In Fig. 14 we show three meshes after 10, 20 and 30 refinements have been
performed, with 192, 1216 and 5564 elements, respectively.

9.2 Case α = 2/5

We recall that in this case γ ∈ B0.4, whereas the pair (u,f ) ∈A1/2. We thus expect
a decay of ηk +λk/ω proportional to N−0.4. In Fig. 15 we plot ηk +λk/ω (left) and
ηk+λk (right) versus the number of elements in logarithmic scale for ω= 0.1,1,10,
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Fig. 14 Meshes after 10, 20 and 30 refinements have been performed, C1.6-surface, with ω = 1.
They are composed of 192, 1216 and 5564 elements, respectively

Fig. 15 ηk + λk/ω (left) and ηk + λk (right) versus the number of elements in logarithmic scale
for ω= 0.1,1,10. We observe that ηk + λk/ω decays as N−0.4 right from the beginning, whereas
ηk + λk shows the same decay after the meshes have some refinement, depending on the value of
ω. Our theory predicts the decay of N−0.4 for both notions of total error if ω is sufficiently small.
The best relation between the error ηk + λk seems to occur for ω= 1 and ω= 10

and observe that in the three cases both notions of error decay (asymptotically) as
N−0.4.

In Fig. 16 we show the behavior of ηk , λk/ω and their sum, for the same values
of ω. We observe the following:

ω= 0.1. At the beginning ηk� λk/ω, thus λk in ADAPT_SURFACE guides the re-
finement initially, and ηk decreases very slowly because ADAPT_PDE exits with-
out refining. The asymptotic regime starts when both indicators have a comparable
magnitude, and both quantities decrease as N−0.4. This instance is reached when
the meshes have more than 106 elements, because λk/ω decreases more slowly
than in the previous example, and takes longer to reach the initial value of ηk .
ω= 1. This case is similar to the previous one, with the change of behavior occur-
ring when the meshes have 104 elements.
ω= 10. The situation now is opposite to the previous cases of ω small. At the be-
ginning the refinement is initially guided by ηk in ADAPT_PDE, and λk decreases
very slowly because ADAPT_SURFACE exits without refining. It is interesting to
notice that ηk decreases as N−0.5 in this transient initial phase. When the meshes
have about 103 elements both indicators are of comparable size, and the overall
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Fig. 16 ηk , λk/ω and ηk + λk/ω for ω= 0.1 (left), ω= 1 (middle), and ω= 10 (right)

rate seems to be a little bit better than N−0.4. This happens because λk is divided
by 10 and its effect is not so visible in the picture. In the long run the decay cannot
be better than N−0.4.

It is also interesting to notice that λk does not decrease monotonically, mainly
because the strongly curved part of γ is not aligned to the grid. This behavior is con-
sistent with (19) and, in fact, shows that we cannot expect monotonicity of λΓ (T)
upon refinement, thereby justifying (19).

10 Conclusions and Comments

We finish the paper with the following remarks about this and related work.

• Coupling PDE-Geometry: This is a new feature in adaptivity and leads to
separate handling of geometry and PDE resolution with specific relative toler-
ances. The current algorithm is different from that for graphs [46] studied by K.
Mekchay, P. Morin, and R.H. Nochetto. The present paper studies polynomial de-
gree 1, but the theory for parametric surfaces extends to higher polynomial degree
[17].

• Convergence rates: We show optimal convergence rates in the energy norm
∥∥∇(u−Uk)∥∥L2(γ )

� (#Tk − #T0)
−s

provided this is the rate of the best approximation of u inH 1 and that of γ inW 1∞.
This optimal result is consistent with that derived for flat domains by R. Stevenson
[52] for the Poisson equation with data in H−1 and by J.M. Cascón et al. [21] for
elliptic PDE with variable coefficients. None of them involve coarsening as the
seminal paper [11] by P. Binev, W. Dahmen and R. DeVore. The present estimates
extend those in [21] to the Laplace-Beltrami operator.

• Weaker conditions on f : We refer to A. Cohen, R. DeVore, and R.H. Nochetto
[23] for convergence rates of elliptic PDE in flat domains with f ∈ H−1 and A
piecewise constant:

div(A∇u)= f. (91)
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Paper [23] shows that approximability of u is sufficient for a complete theory.
Whether this is true for the Laplace-Beltrami operator is still an open question.

• Weaker conditions on γ : We assume γ is W 2
p with p > d , which implies γ

is C1. In the flat case, this corresponds to piecewise continuous A. We refer to
A. Bonito, R. DeVore, and R.H. Nochetto [18] for optimal convergence rates of
AFEM for (91) with weaker regularity assumptions on A. This could be espe-
cially relevant to perform adaptivity on problems where the singularity location
is not known beforehand, such as those in Sect. 2.

Acknowledgements The work of A. Bonito was partially supported by NSF Grant DMS-
0914977.

The work of J.M. Cascón was partially supported by Secretaría de Estado de Investigación,
Desarrollo e Innovación through grant: CGL2011-29396-C03-02 (Spain), and by Conserjería de
Educación (Junta de Castilla y León), through grant: SA266A12-2.

The work of P. Morin was partially supported by CONICET through grant PIP 112-200801-
02182, Universidad Nacional del Litoral through grants CAI+D 062-312, 062-309, and Agencia
Nacional de Promoción Científica y Tecnológica, through grant PICT-2008-0622 (Argentina).

The work of R.H. Nochetto was partially supported by NSF Grant DMS-1109325, and the
General Research Board of the University of Maryland.

References

1. Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Pure and
Applied Mathematics (New York). Wiley-Interscience, New York (2000), pp. xx+240

2. Bänsch, E.: Finite element discretization of the Navier-Stokes equations with a free capillary
surface. Numer. Math. 88(2), 203–235 (2001)

3. Bänsch, E., Haußer, F., Lakkis, O., Li, B., Voigt, A.: Finite element method for epitaxial
growth with attachment-detachment kinetics. J. Comput. Phys. 194(2), 409–434 (2004)

4. Bänsch, E., Morin, P., Nochetto, R.H.: Surface diffusion of graphs: variational formulation,
error analysis, and simulation. SIAM J. Numer. Anal. 42(2), 773–799 (2004)

5. Bänsch, E., Morin, P., Nochetto, R.H.: A finite element method for surface diffusion: the
parametric case. J. Comput. Phys. 203(1), 321–343 (2005)

6. Barrett, J.W., Garcke, H., Nürnberg, R.: A parametric finite element method for fourth order
geometric evolution equations. J. Comput. Phys. 222(1), 441–462 (2007)

7. Barrett, J.W., Garcke, H., Nürnberg, R.: Parametric approximation of Willmore flow and re-
lated geometric evolution equations. SIAM J. Sci. Comput. 31(1), 225–253 (2008)

8. Barrett, J.W., Garcke, H., Nürnberg, R.: Finite-element approximation of coupled surface and
grain boundary motion with applications to thermal grooving and sintering. Eur. J. Appl. Math.
21(6), 519–556 (2010)

9. Bartels, S., Dolzmann, G., Nochetto, R.H.: A finite element scheme for the evolution of ori-
entation order in fluid membranes. Modél. Math. Anal. Numér. 44(1), 1–31 (2010)

10. Bartels, S., Dolzmann, G., Nochetto, R.H., Raisch, A.: Finite element methods for direc-
tor fields on flexible surfaces. Interfaces Free Bound. 14(2), 231–272 (2012). doi:10.4171/
IFB/281

11. Binev, P., Dahmen, W., DeVore, R.A.: Adaptive finite element methods with convergence
rates. Numer. Math. 97(2), 219–268 (2004)

12. Bonito, A., Nochetto, R.H.: Quasi-optimal convergence rate of an adaptive discontinuous
Galerkin method. SIAM J. Numer. Anal. 48(2), 734–771 (2010)

13. Bonito, A., Pasciak, J.E.: Convergence analysis of variational and non-variational multigrid
algorithm for the Laplace-Beltrami operator. Math. Comput. 81, 1263–1288 (2012)

http://dx.doi.org/10.4171/IFB/281
http://dx.doi.org/10.4171/IFB/281


AFEM for Geometric PDE: The Laplace-Beltrami Operator 305

14. Bonito, A., Nochetto, R.H., Pauletti, M.S.: Geometrically consistent mesh modification. SIAM
J. Numer. Anal. 48(5), 1877–1899 (2010)

15. Bonito, A., Nochetto, R.H., Pauletti, M.S.: Parametric FEM for geometric biomembranes.
J. Comput. Phys. 229(9), 3171–3188 (2010)

16. Bonito, A., Nochetto, R.H., Pauletti, M.S.: Dynamics of biomembranes: effect of the bulk
fluid. Math. Model. Nat. Phenom. 6(5), 25–43 (2011)

17. Bonito, A., Cascón, J.M., Mekchay, K., Morin, P., Nochetto, R.H.: AFEM for the Laplace-
Beltrami operator on parametric surfaces: convergence rates (in preparation)

18. Bonito, A., DeVore, R.A., Nochetto, R.H.: Adaptive finite element methods for elliptic prob-
lems with discontinuous coefficients (in preparation)

19. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Texts in
Applied Mathematics, vol. 15, 2nd edn. Springer, New York (2002), pp. xvi+361

20. Cahn, J., Taylor, J.E.: Surface motion by surface diffusion. Acta Metall. Mater. 42, 1045–1063
(1994)

21. Cascón, J.M., Kreuzer, C., Nochetto, R.H., Siebert, K.G.: Quasi-optimal convergence rate for
an adaptive finite element method. SIAM J. Numer. Anal. 46(5), 2524–2550 (2008)

22. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Studies in Mathematics and
its Applications, vol. 4. North-Holland, Amsterdam (1978), pp. xix+530

23. Cohen, A., DeVore, R., Nochetto, R.H.: Convergence rates for AFEM with H−1 data. Found.
Comput. Math. 12(5), 671–718 (2012). doi:10.1007/s10208-012-9120-1

24. Deckelnick, K., Dziuk, G.: Discrete anisotropic curvature flow of graphs. Modél. Math. Anal.
Numér. 33(6), 1203–1222 (1999)

25. Deckelnick, K., Dziuk, G.: Error estimates for a semi-implicit fully discrete finite element
scheme for the mean curvature flow of graphs. Interfaces Free Bound. 2(4), 341–359 (2000)

26. Deckelnick, K., Dziuk, G., Elliott, C.M.: Fully discrete finite element approximation for
anisotropic surface diffusion of graphs. SIAM J. Numer. Anal. 43(3), 1112–1138 (2005)

27. Deckelnick, K., Dziuk, G.: Error analysis of a finite element method for the Willmore flow of
graphs. Interfaces Free Bound. 8(1), 21–46 (2006)

28. Demlow, A.: Higher-order finite element methods and pointwise error estimates for elliptic
problems on surfaces. SIAM J. Numer. Anal. 47(2), 805–827 (2009)

29. Demlow, A., Dziuk, G.: An adaptive finite element method for the Laplace-Beltrami operator
on implicitly defined surfaces. SIAM J. Numer. Anal. 45(1), 421–442 (2007)

30. Dierkes, U., Hildebrandt, S., Küster, A., Wohlrab, O.: Minimal Surfaces. I. Grundlehren
der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences],
vol. 295. Springer, Berlin (1992), pp. xiv+508

31. do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice-Hall, Englewood
Cliffs (1976), pp. viii+503
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n-Width Estimates for the Approximation
of the Solution Manifold of Parametric PDEs
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Abstract The set of solutions of a parameter-dependent linear partial differential
equation with smooth coefficients typically forms a compact manifold in a Hilbert
space. In this paper we review the generalized reduced basis method as a fast com-
putational tool for the uniform approximation of the solution manifold.

We focus on operators showing an affine parametric dependence, expressed as
a linear combination of parameter-independent operators through some smooth,
parameter-dependent scalar functions. In the case that the parameter-dependent op-
erator has a dominant term in its affine expansion, one can prove the existence of
exponentially convergent uniform approximation spaces for the entire solution man-
ifold. These spaces can be constructed without any assumptions on the paramet-
ric regularity of the manifold—only spatial regularity of the solutions is required.
The exponential convergence rate is then inherited by the generalized reduced basis
method. We provide a numerical example related to parametrized elliptic equations
confirming the predicted convergence rates.
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1 Introduction

Reduced order models (ROMs) are a crucial ingredient of many applications of in-
creasing complexity in scientific computing related e.g. to parameter estimation,
sensitivity analysis, optimal control, and design or shape optimization. In this pa-
per we consider the reduced basis method for the numerical approximation of
parameter-dependent partial differential equations (μ-PDEs). The set of solutions
of such an equation depends on a finite-dimensional vector of parameters related
e.g. to physical coefficients, geometrical configuration, source terms, and boundary
conditions. Solving the μ-PDE for many different values of the parameters entails
the exploration of the manifold of solutions, and is not affordable if each μ-PDE
requires an expensive numerical approximation, such as the one built over the finite
element method. Suitable structural assumptions about the parametrization enable
one to decouple the computational effort into two stages. A (very expensive) pre-
processing step that is performed once (“offline”)—consisting in the construction of
a reduced basis for the representation of the manifold of solutions, followed by very
inexpensive calculations performed “online” for each new input-output evaluation
required. In the reduced basis method, numerical solutions for certain parameters
values are computed offline by a classical discretization technique. These solutions
give a basis for approximating online the PDE solution (for a large number of new
parameter values) as a linear combination of the basis elements. The rational of this
approach stands on the very fast (often exponential) convergence—with respect to
the number of basis—is exhibited by approximation spaces. We point out that in the
real-time or many-query contexts, where the goal is to achieve a very low marginal
cost per input-output evaluation, we can accept an increased “offline” cost—not
tolerable for a single or few evaluations—in exchange for greatly decreased “on-
line” cost for each new/additional input-output evaluation. In previous works (see
e.g. [18–20]) a priori exponential convergence with respect to the number of ba-
sis functions is proved in the case of elliptic PDEs depending on one-dimensional
parameters; several computational tests shown e.g. in [28] provide a numerical as-
sessment of this behavior, also for larger parameter space dimensions. Several new
results, such as the ones presented in [4], address an a priori convergence analysis
in the more general case where a greedy algorithm is employed to build the reduced
space in an automatic, adaptive way. A further improvement has been proposed in
[3], where an error estimate for the greedy algorithm has been developed in terms of
the Kolmogorov n-width. After recalling the basic features of a generalized version
of the reduced basis method, and the main convergence results in this field, the goal
of this paper is to provide both a convergence analysis for the greedy algorithm and
a numerical proof of this behavior, in order to extend the a priori convergence re-
sults presented in [19, 20]. To do this, we rely on the introduction of a fundamental
basis, a suitable error representation formula and an upper bound estimate for the
n-width of the solution set of an elliptic parametric PDE under suitable assumptions
on its parametric form.

We proceed to describe the functional setting of our problems. Let Ω ⊂ R
d ,

d ∈ {1,2,3}, be a bounded domain and X = X(Ω) a Hilbert space of functions
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defined on Ω with inner product (·,·)X and induced norm ‖ · ‖X = √
(·,·)X . We

consider the following problem: given a vector of parameters μ ∈D from a compact
parameter set D⊂R

P , find u(μ) ∈X s.t.

a
(
u(μ), v;μ)= f (v;μ) for all v ∈X, (1)

where the parameters can enter in the bilinear form a(·,·;μ) in several possible
ways: as variable coefficients, as coefficient entering in the parametrization of the
domain Ω ⊂ R

d of the problem, in the definition of the right-hand side f that
account for either forcing terms and/or boundary conditions. We denote the P -
manifold of solutions

K := {u(μ) ∈X : μ ∈D⊂R
P
}

in the space X. In many applications K is a differentiable manifold. We also al-
low the case of a manifold that is not locally smooth at some isolated points,
e.g. the parametric Helmholtz equation ∇ · (a(·;μ)∇u) + u = 0, which has a
smooth solution manifold except at the eigenvalues of the parametric Laplacian,
−∇ · (a(·;μ)∇u)= λ(μ)u. We considered this problem in [17]. A typical objective
in applications is to provide a numerical approximation ũ(μ) for u(μ) ∈K that is
uniform1 over the entire manifold K. To fulfill this request, a necessary condition is
that, for any ε > 0, we find a linear subspace XN ⊂X of dimension N s.t.

inf
ũ∈XN

∥∥u(μ)− ũ∥∥
X
< ε for all μ ∈D,

where the dimension N is as small as possible. The question is: how small can we
expect N to be?

To address this question, we introduce e.g. the finite element (FE) approximation
of problem (1): given a vector of parameters μ ∈D ⊂ R

P , find uh,p(μ) ∈ Xh,p =
Xh,p(Ω) s.t.

a(uh,p, vh,p;μ)= f (vh,p;μ) for all vh,p ∈Xh,p, (2)

where Xh,p ⊂ X is a conforming FE subspace spanned by piecewise polynomial
shape functions of degree p defined on a quasi-uniform mesh of maximum ele-
ment size h. Due to classical a priori error estimates such an approximation will
eventually approximate well all the solutions on the manifold as the dimension
N := dim(Xh,p) increases, but only for quite large N we can expect a uniformly
small error in the approximation. When X =H 1(Ω) is the standard Sobolev space,
the classical a priori estimates for piecewise polynomial approximations are as fol-
lows [2]:

1The other option is to consider local or sequential approximations of the manifold, such as track-
ing a path on the manifold starting from a certain point and proceeding via a continuation method.
In such cases we are usually not interested in the global behavior of the manifold.
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∥∥u(μ)− uh,p(μ)∥∥1 ≤
{
C(μ)N−min{s−1,p}/d with h-refinement,
C(μ)N−(s−1−δ)/d with p-refinement,

(3)

where s > 1 denotes the number of weak derivatives of u(μ), and δ > 0 is arbitrarily
small. If the solution u is analytic (s =∞), one obtains exponential convergence as
a result of p-refinement, i.e.

∥∥u(μ)− uh,spectral(μ)
∥∥

1 ≤ C(μ) exp(−γN),
and this leads to the study of spectral methods. It should be cautioned that even
if a spectral approximation can obtain in theory exponential convergence across
the entire parameter range, the constants in front depend on both the dimension d
and the number of parameters P of the problem. The assumption of analyticity of
solutions is also often violated.

An efficient method for the approximation of the parametric manifold K should
(i) provide exponential convergence in the dimensionN of the approximation space;
(ii) have the same convergence rate irrespective of the number of parameters P ;
and (iii) entail a computational cost that scales only moderately in N . Exploiting
the structure of the manifold K is key to finding uniform approximations that sat-
isfy (i)–(iii). Our technique for proving exponentially convergent approximation es-
timates for the manifold of solutions relies on a series expansion of the solution
u(μ). Series expansion solutions, either by separation of variables or by power se-
ries expansion for PDEs with analytical coefficients, are classical tools for existence
proofs. Analytical power series expansions, such as the decomposition method of
Adomian [1], are not competitive against good numerical approximation schemes
in actually providing approximate solutions to PDEs, but they do provide an inter-
esting approach to constructing convergence estimates. The novel contribution of
this work is to consider the power series expansion method forparameter-dependent
PDEs by searching for solutions in a parametrically separable form

u(μ)=
∞∑
k=0

Θk(μ)Ψk, (4)

where the Ψk do not depend on μ and the scalar functionsΘk(μ). The expansion (4)
together with standard estimates for convergent power series then provides a con-
struction of approximation spaces that are uniformly exponentially convergent over
the entire parameter range. In order to achieve separation w.r.t. to the parameters,
we must make suitable structural assumptions on the PDE. A typical assumption is
that of affine dependence on the parameter, i.e. problem (1) is assumed to be of the
form

Qa∑
q=1

Θa
q (μ)aq(u, v)=

Qf∑
q=1

&
f
q (μ)fq(v) for all v ∈X, (5)

where every aq : X ×X→ R and fq : X→ R are parameter-independent bilinear

and linear forms respectively, whereas Θa
q :D→R and Θf

q :D→R are scalar co-
efficient functions depending only on the parameter (but not necessary in a smooth
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way). We shall next describe the generalized reduced basis method (GRBM) that,
given assumption (5), satisfies (i)–(iii). We then discuss some recent theoretical ap-
proximation results linking the best possible approximation space for K with the
convergence rate obtained by the GRBM, and exhibit a model problem where, at
least in the case we have Qa = 2 and some additional special structure on bilinear
forms aq , we indeed observe in practice the exponential convergence predicted by
theory.

2 Generalized Reduced Basis Method for Uniform
Approximation of μ-PDEs

It is clear that the FE approximation uh,p(μ) of (1) can be made arbitrarily accurate
for all possible parameters μ ∈D, but this usually require a considerable computa-
tional cost. In order to overcome this (sometimes unaffordable) difficulty, a possible
idea is to instead consider the manifold of discrete solutions uh,p(μ) given by

Kh,p :=
{
uh,p(μ) ∈Xh,p : μ ∈D⊂R

P
}
,

as a surrogate for K, and then to look for approximations of Kh,p that con-
verge exponentially fast (see Fig. 1 for a graphical sketch). Specifically, we con-
sider subspaces Xn ⊂ Xh,p (for n� N ) that are constructed by using information
coming from the snapshot solutions uh,p(μi) computed at well-chosen points μi ,
i = 1, . . . , n. More precisely, Xn is the span of the snapshot solutions uh,p(μi),
i = 1, . . . , n. This leads to the Reduced Basis (RB) method [27, 28], which is, in
brief, a Galerkin projection on an n-dimensional approximation space relying on
the parametrically induced manifold Kh,p . Assuming that the solutions uh,p satisfy
the a priori convergence estimate (3) and that the approximation un(μ) converges
exponentially to uh,p(μ), we can write the total error of the reduced solution as

∥∥u(μ)− un(μ)∥∥X ≤
∥∥u(μ)− uh,p(μ)∥∥X +

∥∥uh,p(μ)− un(μ)∥∥X
≤ C(μ)[N−min{s−1,p}/d + exp(−γ n)],

and for N sufficiently large the exponential term in n dominates the error. The addi-
tional strength of this method is that in the best case we only need to solve n times
the FE problem for uh,p , and that the solution for un(μ) can be done with complex-
ity depending on n but notN after some initial preprocessing steps, so that indeedN
can be chosen fairly large in order to obtain highly accurate reduced order solutions.

For notational simplicity we present here the case P = 1 and formulate the RB
method in a slightly more general form than usually given. It can be expressed in
three distinct steps:

(i) Choice of the reduced subspace. The basic idea of every reduced basis
method is to choose a finite training sample Ξtrain ⊂ D, |Ξtrain| =M , in the
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Fig. 1 (a) Low-dimensional manifold Kh,p on which the field variable resides and (b) approxi-
mation of a new solution at μnew with the “snapshots” uh,p(μm), 1≤m≤ n

parameter space and to use the information contained in the corresponding so-
lutions uh,p(μ) for each μ ∈ Ξtrain (called snapshots) to find a representative
subspace for the approximation of the manifold Kh,p . The reduced subspace
Xn of dimension n is found by solving [28]

Xn := arg inf
X∗⊂Xtrain,dim(X∗)=n

δ
(
X∗,Kh,p;X

)
(6)

where Xtrain := span{uh,p(μ) : μ ∈Ξtrain} is the space containing all the snap-
shots, and the function X∗ �→ δ(X∗,Kh,p;X) ∈ R measures the distance be-
tween any subspace X∗ ⊂X and the manifold Kh,p and is defined by

δ(Xn,Kh,p;X) := sup
u∈Kh,p

inf
ũ∈Xn

‖u− ũ‖X.

Since the exact distance of the subspace to the manifold is usually unknown, we
must resort to computable surrogates to solve (6). Nonetheless, we mention that
the exact distance is used in the so-called strong greedy algorithm introduced in
[3] for the theoretical analysis of convergence rates of reduced basis methods.
Thus we replace (6) with

Xn := arg inf
X∗⊂Xtrain,dim(X∗)=n

MKh,p

(
X∗
)
, (7)

where X∗ �→MK(X
∗) ∈ R is an approximate distance between any subspace

X∗ ⊂ X and the manifold Kh,p . The choice of the function MK to be used
for the approximation of δ(·,·; ·) defines which algorithm we use to choose
the subspace. This is by far the most common way of constructing reduced
subspaces, and we call these approaches Lagrange ROMs. In the GRBM we
consider also the parametric sensitivities up to a suitable order, sayK−1 (with
K ≥ 1) as part of the snapshot set

Xtrain := span

{
∂kuh,p

∂μk
(μ) : μ ∈Ξtrain, k = 0, . . . ,K − 1

}
,
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giving a total number of MK snapshots. They can be computed from the dis-

crete sensitivity equation(s): find wk(μ)= ∂kuh,p

∂μk
(μ) ∈Xh,p s.t.

a
(
wk(μ), vh,p;μ

)= ∂kf

∂μk
(vh,p;μ)−

k∑
�=1

(
k

k− �
)
∂�a

∂μ�

(
wk−l (μ), vh,p

)

for all vh,p ∈Xh,p, (8)

for all k = 1, . . . ,K . Only the right-hand side of the system changes with k and
thus any preconditioners or matrix decompositions used for the primal problem
can be reused. The information contained in these snapshots is then used to
build the reduced space Xn with dimension dim Xn = n�MK in what can
also be understood as a data compression problem. If K = 2 and M > 1 we
have a Hermite ROM,2 and if K > 1 and M = 1 we have a Taylor ROM.3

Two standard choices for MK are:
1. the proper orthogonal decomposition (POD), where

MK(Xn)= 1

M

M∑
i=1

∥∥uh,p(μi)−ΠXn

(
uh,p(μi)

)∥∥2
X
, (9)

and ΠXn : X→ Xn is the orthogonal projection w.r.t. the inner product
of X. In this case, we choose the basis by minimizing the �2(Ξtrain) er-
ror in parameter space. It turns out that the optimal bases are hierarchical
and are spanned by the leading n eigenvectors of the correlation matrix

Cij = 1

M

(
uh,p(μj )− ū, uh,p(μi)− ū

)
X
, 1≤ i, j ≤M,

where we have subtracted the mean of the snapshots

ū= 1

M

M∑
i=1

uh,p(μ̄).

2Ito and Ravindran [16] were perhaps the first ones to suggest using a Hermite ROM in a uniform
approximation context, rather than in a pure continuation method. The Lagrange and Hermite
ROMs were compared on a driven cavity problem, where the Hermite approach was somewhat
superior. No stability problems were reported and the Hermite basis with only two basis functions
was able to extrapolate solutions to much larger Reynolds numbers.
3In one of the pioneering works on RBM, Noor [24] used a Taylor ROM to build a local reduced
space that was used to trace the post-buckling behavior of a nonlinear structure. The continuation
idea was used also by Peterson [25] to compute Navier-Stokes solutions with increasing Reynolds
number flow over a forward facing step. Again a Taylor ROM was constructed and used to extrap-
olate an initial guess for the Newton method at a slightly higher Reynolds number.
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The eigenpairs (λj ,ψj )
M
j=1 of C (with the eigenvalues ordered in the de-

creasing order) are the solutions of

Cψj = λjψj , j = 1, . . . , |Ξtrain|.
Then, the optimal basis for the n-th dimensional space Xn generated by
minimizing (9) is given by

χ0 = ū, χj =
M∑
i=1

[ψj ]i
(
uh,p(μi)− ū

)
, 1≤ j ≤ n,

being [ψj ]i the i-th component of the j -th eigenvector. Extensions of the
standard POD basis to incorporate parametric sensitivities (8) were pre-
sented in [6, 12, 13] and are not discussed in detail here;4,5

2. the greedy algorithm, where

MK(Xn)= sup
μ∈Ξtrain

∥∥uh,p(μi)−ΠXn

(
uh,p(μi)

)∥∥
X

(10)

i.e. minimization of the �∞(Ξtrain) error in parameter space. In practice
no efficient algorithm exists to solve (6) for large-scale problems, so we
approximate it by its relaxation

MK(Xn)= sup
μ∈Ξtrain

Δn

(̃
u(μ)

)
(11)

where Δn(̃u(μ)) is a computationally inexpensive a posteriori error estima-
tor for the quantity ‖uh,p(μ)− ũ(μ)‖X that should satisfy

C1Δn

(̃
u(μ)

)≤ ∥∥u(μ)− ũ(μ)∥∥
X
≤ C2Δn

(̃
u(μ)

)
, ∀μ ∈D (12)

for some constants C1 > 0, C2 ≥ 1. This corresponds to the approximate
minimization of the �∞(Ξtrain) error in parameter space. In this case we
have a weak greedy algorithm as defined in [3].

4In the works of Hay et al. [12, 13] sensitivity information was introduced into the proper or-
thogonal decomposition framework. The parametric sensitivities of the POD modes were derived
and computed. The test problems were related with channel flow around a cylindrical obstacle,
either by using a simple parametrization as the Reynolds number, or a more involved geometric
parametrization of the obstacle. The use of a Hermite ROM considerably improved the validity of
the reduced solutions away from the parametric snapshots. However, in the more involved geomet-
rical parametrization case the Hermite ROM failed completely, as it did not converge to the exact
solution even when the number of POD modes was increased.
5Carlberg and Farhat [6] proposed an approach they call “compact POD”, based on goal-oriented
Petrov-Galerkin projection to minimize the approximation error subject to a chosen output criteria,
and including sensitivity information with proper weighting coming from the Taylor-expansion and
including “mollification” of basis functions far away from the snapshot parameter. The application
was the optimization of an aeroelastic wing configuration by building local ROMs along the path
to the optimal wing configuration.
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Note that while conceptually the POD and the greedy algorithms can be cast
in a similar framework, their practical implementations are quite different. The
training set Ξtrain ⊂D needs to be reasonably dense in the parameter space for
MKh,p

(X∗) to be a good approximation of the true distance δ(X∗,Kh,p;X)
for all subspaces X∗ ⊂ X. In the POD one needs to compute the FE approxi-
mations uh,p(μ) for all the points in Ξtrain, which amounts to a considerable
computational undertaking. In contrast, the weak greedy algorithm only needs
to compute the exact solutions (and their parametric derivatives) at the n snap-
shots comprising the RB and only the computationally inexpensive a posteriori
estimatorΔn(un(μ)) needs to be evaluated over the entire training set. The dif-
ference in the norms used (�∞ for the greedy vs. �2 for the POD) also results in
slightly different approximation behavior of the resulting bases. Typically the
POD basis needed to reach a given tolerance is smaller in size but tends to be
not as robust far away from the snapshots (see e.g. [28, 29]).

(ii) (Petrov-)Galerkin projection of the equations. In the second step we perform
projection of the original problem onto the reduced trial subspace Xn using
the reduced test subspace Yn to obtain the reduced basis approximation: find
un(μ) ∈Xn s.t.

a
(
un(μ), vn;μ

)= f (vn;μ) for all vn ∈ Yn, (13)

where Xn = span{ϕj }nj=1 and Yn = span{ψj }nj=1. If Yn = Xn this is a pure

Galerkin method, otherwise it is a Petrov-Galerkin method. The Petrov-
Galerkin approach is adopted if the underlying system is either nonsymmetric
or noncoercive and can be interpreted as a form of stabilization of the ROM.
Applying the assumption (5) to (13) leads to the discrete system

Qa∑
q=1

Θa
q (μ)A

n
qU

n =
Qf∑
q=1

Θ
f
q (μ)F

n
q (14)

where the matrices and vectors

[
Anq
n×n

]
i,j
:= aq(ϕj ,ψi),

[
Fnq
n×1

]
i
:= Fq(ψi), Un

n×1
the reduced solution,

(15)
are dense but only of dimension n and more importantly can be assembled once
and then stored. The system (14) is then assembled by evaluating the coefficient
functions Θa

q , Θf
q and summing together the weighted contributions from all

the parts of the decomposition, and solving one small dense linear system.
Assuming all the FE degrees of freedom are nodal, we can write the discrete
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projectors

[ Xn
N×n

]i,j := ϕj (xi), [ Yn
N×n

]i,j :=ψj(xi) (16)

where xi are the nodal points in the full space XN . The discrete matrices and
vectors (15) can then be obtained as

Anq =YnAqX
T
n , F nq =YnFq,

and the approximation of the solution uN(μ) is obtained as un(xi)= [XTn Un]i
for i = 1, . . . ,N . From here on we use mainly the discrete forms of the equa-
tions.

(iii) Certification of the ROM with error bounds. A posteriori error bounds are
used to both (i) certify the GRBM solution during the online stage, and (ii) con-
struct the reduced space by means of the weak greedy algorithm. For the sake of
simplicity we treat the case of linear, elliptic and coercive μ-PDEs—extensions
to noncoercive and nonlinear problems can be found in [5, 8, 11, 21, 30]. Our
error bounds rely on two basic ingredients: the dual norm of the residual and
a lower bound of the stability factor (in this case, of the parameter-dependent
coercivity constant). The residual r(v;μ) ∈X′h,p is defined as

r(v;μ)≡ f (v;μ)− a(un(μ), v;μ), ∀v ∈Xh,p (17)

so that exploiting (2) and the bilinearity of a(·, ·;μ) we have the error repre-
sentation for e(μ)= uh,p(μ)− un(μ) ∈Xh,p given by

a
(
e(μ), v;μ)= r(v;μ), ∀v ∈Xh,p. (18)

As a second ingredient, we need a positive lower bound αLBh (μ) for the (dis-
crete) coercivity constant αh(μ):

0≤ αLBh (μ)≤ αh(μ) := inf
w∈Xh,p

a(w,w;μ)
‖w‖2

Xh,p

, ∀μ ∈D, (19)

whose efficient evaluation as a function of μ is made possible thanks to the
so-called successive constraint method (see e.g. [14, 15, 17] for a general de-
scription of this procedure). By combining (18) with 19 and using the Cauchy-
Schwarz inequality, the following a posteriori error estimate in the energy
norm holds (see [28] for a proof):

(
γa(μ)

αLBh (μ)

)−1/2 ‖r(un(μ);μ)‖X′h,p√
αLBh (μ)

≤ ∥∥un(μ)− uh,p(μ)∥∥X

≤
‖r(un(μ);μ)‖X′h,p√

αLBh (μ)

, (20)
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so that expression (12) is now made explicit, being

Δn(μ) :=
‖r(un(μ);μ)‖X′h,p√

αLBh (μ)

, C1 := inf
μ∈D

{(
γa(μ)

αLBh (μ)

)−1/2}
,

C2 := 1.

3 Approximation Theoretical Basis for the Generalized Reduced
Basis Method

We now turn to the convergence analysis of approximations in the reduced sub-
spaces that are obtained by (7) and the choice (11) forMKh,p

. We recall some recent
theoretical results and provide an extension through an exponential convergence re-
sult. To do this, we rely on the introduction of a fundamental basis and on an intu-
itive error representation formula, which will be exploited in the numerical example
discussed in the following section. We define the best approximation error of Kh,p

obtained by the greedy algorithm (6) as

σn(Kh,p;X) := sup
uh,p∈Kh,p

inf
ũ∈Xn
∥∥uh,p −ΠXn(uh,p)

∥∥
X
.

A priori convergence estimates for reduced basis approximations have been demon-
strated in simple cases, such as in [19], where it was found that for a specific problem
exponential convergence was achieved

σn(Kh,p;X)≤ C exp
(−nα), for some α > 0.

Recently much interest has been devoted to understanding why the weak greedy
method (11) is able to give an approximation space Xn that exhibits exponential
convergence in n. To express how well we are able to uniformly approximate a given
manifold of solutions Kh,p with a finite-dimensional subspace, we recall the notion
of n-width [22, 26] that is used to measure the degree in which we can uniformly
approximate a subset of the space X using finite-dimensional subspaces Xn. The
Kolmogorov n-width is defined as

dn(Kh,p;X) := inf
Xn⊂X

sup
uh,p∈Kh,p

inf
ũ∈Xn

‖uh,p − ũ‖X (21)

where the first supremum is taken over all linear subspaces Xn ⊂X of dimension n.
We also define the discrepancy between the subspace Xn and the manifold Kh,p as

δ(Xn,Kh,p;X)= sup
uh,p∈Kh,p

inf
ũ∈Xn

‖uh,p − ũ‖X.

The subspace Xn is said to be optimal if δ(Xn,Kh,p;X)= dn(Kh,p;X). In general,
the optimal subspace w.r.t. the Kolmogorov n-width (21) is not spanned by elements
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of the set Kh,p being approximated, so that possibly dn(Kh,p;X)� σn(Kh,p;X).
In the recent work [3] it was shown that

σn(Kh,p;X)≤ 2n+1

√
3
dn(Kh,p;X),

and that this estimate cannot in general be improved. However, it was also
shown that if the n-width converges at an exponential rate, say dn(Kh,p;X) ≤
C exp(−cnβ) for all n > 0 and some C̃, c > 0, then

σn(Kh,p;X)≤ C̃ exp
(−αnβ/(β+1)). (22)

A tighter estimate was proved for the case of algebraic convergence: if
dn(Kh,p;X)≤ CMn−α for all n > 0 and some M,α > 0, then also

σn(Kh,p;X)≤ CMn−α. (23)

The fast (exponential) convergence of numerical approximations is often linked
to spectral approximations. In this way, the reduced basis method can be understood
as a spectral method, where instead of using generic global polynomial basis func-
tions we use problem-dependent global smooth approximation basis. The analyticity
of the solutions of elliptic PDEs was exploited e.g. in a recent work [7] in the special
case where Kh,p is an analytic manifold. Using complex analysis techniques and a
Taylor expansion approximation of the solution uh,p and its parametric derivatives
wm,k for k = 1,2, . . ., the authors obtained a convergence rate for a reduced basis
approximation as

∥∥uh,p(μ)− ũ(μ)∥∥X ≤ C(μ)n−(1/p−1),

where 0 < p < 1 is the �p-summability exponent of a sequence related only to the
diffusion coefficients of the problem. In particular, the convergence rate was inde-
pendent of the spatial dimension d and the number of parameters P . In general,
the reduced basis approximation of solutions of elliptic equations with regular co-
efficients has indeed been very successful. We would however like to convince the
reader that analytic regularity of the solution manifold Kh,p is not necessary in order
to successfully apply the reduced basis method.

Unfortunately, very little seems to be known about the n-width of manifolds of
solutions of μ-PDEs. Very specific results concern special subspaces [10, 23]. For
instance, if Y ⊂ X is a dense, compactly embedded, and bounded subspace with
inner product (·,·)Y then the n-width of a ball BY ⊂ Y ⊂X of finite radius is

dn(BY ;X)=
√
λn+1,

where λn are the eigenvalues of the problem
{
λ ∈R, u ∈ V, u �= 0,
(u, v)Y = λ(u, v)X
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sorted in descending order (see [10], Theorem 4.5). We then obtain an algebraic
decay rate for the n-width of BY

dn(BY ;X)= Cn−s/d ,
where s ≥ 1 similarly to (3). Provided that Kh,p ⊂ BY we obtain also an upper
bound for the n-width of Kh,p , since then dn(BY ;X)≥ dn(Kh,p;X), consequently
only algebraic convergence of the reduced basis method is predicted by (23). Such
results can be misleadingly pessimistic compared to practical experiences with re-
duced basis methods because they do not take into account the structure of the man-
ifold Kh,p nor the fact that approximation (4) inherits in some sense the structure of
the manifold Kh,p .

4 An Extended Result of Exponential Convergence

Let us now give an example of a μ-PDE where the explicit dependence of the so-
lution manifold on the parameters can be exhibited. Let us consider the parameter-
dependent problem after discretization:

(
Θa

1 (μ)A1 +Θa
2 (μ)A2

)
u=

Qf∑
q=1

Θ
f
q (μ)Fq. (24)

We assume that (i) the operator A1 is invertible; (ii) the problem satisfies a global
condition for the spectral radius ρ being

ρ

(
Θa

2 (μ)

Θa
1 (μ)

A−1
1 A2

)
< 1 for all μ ∈D, (25)

which we interpret as meaning that the termΘa
1 (μ)A1 dominates the original differ-

ential operator. Such a problem can arise for example from a discretized advection-
diffusion or reaction-diffusion problem, whereA1 contains the (dominant) diffusion
operator and A2 contains all the other terms. We proceed to write explicitly the so-
lution of this problem as

u=
(
I + Θa

2 (μ)

Θa
1 (μ)

A−1
1 A2

)−1(
Θ1(μ)A1

)−1

( Qf∑
q=1

Θ
f
q (μ)Fq

)
,

which by exploiting the global spectral condition (25) leads to the series expansion
for the solution

u=
∞∑
k=0

Qf∑
q=1

(−1)kΘk
2 (μ)Θ

f
q (μ)

Θk+1
1 (μ)

[
A−1

1 A2
]k
A−1

1 Fq.
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By defining the fundamental basis vectors Ψk,q := [A−1
1 A2]kA−1

1 Fq , for k =
0,1, . . . and q = 1, . . . ,Qf , we can write the solution as a series

u=
∞∑
k=0

Qf∑
q=1

(−1)k[Θa
2 (μ)]kΘf

q (μ)

[Θa
1 (μ)]k+1

Ψk,q . (26)

Several remarks can be made about formula (26):

1. In the special case A2 = 0 the parametric dependence enters only through the
r.h.s. and as a consequence the series (26) truncates to a finite one

u=
Qf∑
q=1

Θ
f
q (μ)

Θa
1 (μ)

Ψ0,q , (27)

and so the greedy algorithm will always terminate after Qf steps.
2. If the decay of the series coefficients in (26) is rapid, the solutions u can be

well approximated by only the first few fundamental basis functions Ψk,q , k =
0,1, . . . ,K and q = 1, . . . ,Qf . They can be computed according to an iterative
procedure

Ψ0,q =A−1
1 Fq, Ψk+1,q =A−1

1 A2Ψk,q for all q = 1, . . . ,Qf

requiring at each step one matrix multiplication and one backward substitution
after obtaining once and for all the LU-decomposition of A1.

3. In general the Ψk,q are not linear combinations of solutions of (24) so that they
do not constitute a reduced basis approximation. They are, however, useful for
estimating the n-width of the solution set. Provided that there exist positive se-
quences {γk,q}∞k=1 s.t. ‖Ψk,q‖X ≤ γk,q for each q = 1, . . . ,Qf , we obtain an
upper bound estimate for the n-width of the solution set U of (24)

dm(U;X)≤ sup
μ∈D

∞∑
k=n

Qf∑
q=1

∣∣∣∣ [Θ
a
2 (μ)]kΘf

q (μ)

[Θa
1 (μ)]k+1

∣∣∣∣γk,q (28)

by using the definition of the n-width, estimating upwards, and using formula
(26) as
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dm(U;X)= inf
Xm⊂X

sup
μ∈D

inf
ũ∈Xm

∥∥uh,p(μ)− ũ∥∥X ≤ sup
μ∈D

inf
ũ∈XΨm

∥∥uh,p(μ)− ũ∥∥X

≤ sup
μ∈D

∥∥∥∥∥uh,p(μ)−
n−1∑
k=0

Qf∑
q=1

(−1)k[Θa
2 (μ)]kΘf

q (μ)

[Θa
1 (μ)]k+1

Ψk,q

∥∥∥∥∥
X

= sup
μ∈D

∥∥∥∥∥
∞∑
k=n

Qf∑
q=1

(−1)k[Θa
2 (μ)]kΘf

q (μ)

[Θa
1 (μ)]k+1

Ψk,q

∥∥∥∥∥
X

≤ sup
μ∈D

∞∑
k=n

Qf∑
q=1

∣∣∣∣ [Θ
a
2 (μ)]kΘf

q (μ)

[Θa
1 (μ)]k+1

∣∣∣∣‖Ψk,q‖X,

where m :=Qf ·n and XΨ
m := span{Ψk,q : k = 0, . . . , n− 1, q = 1, . . . ,Qf }, i.e.

the first m fundamental basis vectors. We have in fact decomposed the descrip-
tion of the manifold of solutions U into two parts: the parametric regularity is
carried by the coefficients Θ1, Θ2, Θf

q , which can be taken just in L∞(D) with-
out affecting the n-width, and the spatial regularity, which is contained in the
norm estimates γk,q for the fundamental basis functions.

4. If the solution of (24) is approximated by the projection-based ROM in (14), i.e.

Yn

[
Θa

1 (μ)A1 +Θa
2 (μ)A2

]
X
T
n Un =

Qf∑
q=1

Θ
f
q (μ)YnFq,

where the projectors were defined in (16), we obtain a similar formula for the
reduced solution

un(μ)=
∞∑
k=0

Qf∑
q=1

(−1)k[Θa
2 (μ)]kΘf

q (μ)

[Θa
1 (μ)]k+1

Ψ n
k,q,

but now with the reduced fundamental basis functions Ψ n
k,q defined as

Ψ n
0,q =

(
YnA1X

T
n

)−1
YnFq, Ψ n

k+1,q =
(
YnA1X

T
n

)−1
YnA2X

T
n Ψ

n
k,q .

As a result, we obtain immediately the error representation formula

εn(μ) :=
[
uh,p −X

T
n un
]
(μ)=

∞∑
k=0

Qf∑
q=1

(−1)k[Θa
2 (μ)]kΘf

q (μ)

[Θa
1 (μ)]k+1

(
Ψk,q −X

T
n Ψ

n
k,q

)
.

Thus the quality of the ROM can directly be measured by observing how well it
approximates the fundamental basis vectors, i.e. by looking at ‖Ψk,q−X

T
n Ψ

n
k,q‖X

for all k and q .



322 T. Lassila et al.

5. Even if the global spectral condition (25) does not hold, we can try to expand the
solution locally around different μ∗ and obtain local approximation bases. This
leads one to consider the hp-reduced basis method [9], where different reduced
bases (analogous to p-refinement in the FEM) are constructed at different parts of
the parameter domain (analogous to h-refinement in the FEM). Let D1, . . . ,DM

be a nonoverlapping subdivision of the original parameter domain D into M

subdomains. The local spectral condition requires that in each subdomain Dm

∃i(m) : ρ

(
Θa
j(m)(μ)

Θa
i(m)(μ)

A−1
i(m)Aj(m)

)
< 1 for all μ ∈Dm, for j (m) �= i(m),

that is to say in each parameter subdomain Dm one of the terms Aq dominates,
but the dominant part of the operator can change from subdomain to subdomain.
If such a local spectral condition holds, our results extend straightforwardly to
show the existence of local exponentially convergent approximation spaces.

With the n-width estimate (28) we can give an exponential convergence result
extending that of [19]:

Proposition 4.1 Assume that the series (26) converges, so that

∃ε > 0 s.t.

∣∣∣∣Θ2(μ)

Θ1(μ)

∣∣∣∣≤ 1− ε
‖A−1

1 A2‖X
for all μ ∈D. (29)

Then the n-width of the solution set U of (24) converges exponentially, i.e.

dn(U;X)≤ Ce−αn for some C,α > 0. (30)

Proof The n-width upper bound (28) gives for m= n ·Qf

dm(U;X)≤ sup
μ∈D

∞∑
k=n

Qf∑
q=1

∣∣∣∣ [Θ
a
2 (μ)]kΘf

q (μ)

[Θa
1 (μ)]k+1

∣∣∣∣
∥∥(A−1

1 A2
)k
A−1

1 Fq
∥∥
X

≤Qf · sup
μ,q

{∣∣∣∣Θ
f
q (μ)

Θ1(μ)

∣∣∣∣
∥∥A−1

1 Fq
∥∥
X

}
·
∞∑
k=n

∣∣∣∣ [Θ
a
2 (μ)]k

[Θa
1 (μ)]k

∣∣∣∣
∥∥A−1

1 A2
∥∥k
X

=Qf · sup
μ,q

{∣∣∣∣Θ
f
q (μ)

Θ1(μ)

∣∣∣∣
∥∥A−1

1 Fq
∥∥
X

}
· (1− ε)n

∞∑
k=0

(1− ε)k

= Qf

ε
· sup
μ,q

{∣∣∣∣Θ
f
q (μ)

Θ1(μ)

∣∣∣∣
∥∥A−1

1 Fq
∥∥
X

}
· exp

(
log(1− ε)

Qf

m

)
,

so that the result holds with α = − log(1 − ε)/Qf and C = Qf

ε
·

supμ,q{|Θ
f
q (μ)

Θ1(μ)
|‖A−1

1 Fq‖X}. �
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Exponential convergence of the greedy reduced basis algorithm is then predicted
by [3] as in (22). It should be understood that tight n-width estimates for the rate
of exponential convergence cannot be obtained by such series expansions—indeed
the coefficient α will tend to 0 if we let ε→ 0. The factor 1/Qf in the exponential
is also excessively pessimistic provided that not for all q the terms converge at
the same rate. In the next section we will demonstrate a problem where much faster
exponential convergence of the greedy algorithm is observed, even in the parametric
region when the fundamental series no longer converges rapidly.

To close this section let us briefly consider the more general case Qa > 2:

(
Θa

1 (μ)A1 +
Qa∑
r=2

Θa
r (μ)A2

)
u=

Qf∑
q=1

Θ
f
q (μ)Fq. (31)

If the global spectral condition

ρ

(
Qa∑
r=2

Θa
r (μ)

Θa
1 (μ)

A−1
1 Ar

)
< 1, (32)

is satisfied, we can write the solution as

u=
(
I +

Qa∑
r=2

Θa
r (μ)

Θa
1 (μ)

A−1
1 Ar

)−1(
Θa

1 (μ)A1
)−1

( Qf∑
q=1

Θ
f
q (μ)Fq

)
,

and applying (32) leads to

u=
( ∞∑
k=0

(−1)k

[Θa
1 (μ)]k+1

[
Qa∑
r=2

Θa
r (μ)A

−1
1 Ar

]k
A−1

1

)( Qf∑
q=1

Θ
f
q (μ)Fq

)

and finally

u=
∞∑
k=0

Qf∑
q=1

(−1)kΘf
q (μ)

[Θa
1 (μ)]k+1

Ψk,q(μ), (33)

but now the fundamental basis vectors

Ψ0,q =A−1
1 Fq,

Ψk+1,q (μ)=
[
Qa∑
r=2

Θa
r (μ)A

−1
1 Ar

]
Ψk,q(μ) for all q = 1, . . . ,Qf (34)

depend explicitly on the parameter(s) μ. Let ρ(k) = (ρ1, ρ2, . . . , ρk) be a multi-
index of dimension k and let ρ(0) = ∅. We define a set of parameter-free basis func-
tions ϕk,q,ρ according to the recursion

ϕ0,q,ρ(0) =A−1
1 Fq, ϕk+1,q,ρ(k+1) =A−1

1 Aρk+1ϕk,q,ρ(1:k) .
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Using the parameter-free basis we can rewrite the recursion of the fundamental basis
(34) as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ψ0,q = ϕ0,q,r(0) ,

Ψ1,q (μ) =
Qa∑
r=2

Θa
r (μ)A

−1
1 ArΨ0,q =

Qa∑
r=2

Θa
r (μ)ϕ1,q,(r),

Ψ2,q (μ) =
Qa∑
r ′=2

Θa
r ′(μ)A

−1
1 Ar ′Ψ1,q

=
Qa∑
r ′=2

Qa∑
r=2

Θa
r ′(μ)Θ

a
r (μ)A

−1
1 Ar ′ϕ1,q,(r)

=
Qa∑
r ′=2

Qa∑
r=2

Θa
r ′(μ)Θ

a
r (μ)ϕ2,q,(r ′,r),

Ψk,q(μ) =
Qa∑
r1=2

. . .

Qa∑
rk=2

Θa
r1
(μ) . . .Θa

rk
(μ)ϕk,q,(rk,rk−1,...,r1)

and so the kth level expansion for Ψk,q will contain in general (Qa − 1)k terms, and
the size of the expansion blows up exponentially. Without some strong structural
assumptions the series expansion method is not suitable for deriving exponentially
decaying n-width estimates in the case Qa/ 1.

5 Numerical Example of a Parameter-Dependent Diffusion
Problem

In this section we shall give numerical evidence of exponential convergence of
n-width upper bounds and consequently of the GRBM approximation. As a test
problem we consider a diffusion problem in a disk with four circular subregions
Ω1, . . . ,Ω4 as depicted in Fig. 2. The parametric problem can be formulated as
follows: given μ ∈D⊂R

8, find u= u(μ) s.t.

−(1+μ1Iω)�u= μ4 IΩ\ω +
4∑

q=1

μq+4 IΩq in Ω,

u= 1 on Γ1 ∪ Γ4,
∂u

∂n
= μ2 on Γ2,

∂u

∂n
= μ3 on Γ3

where the Γk denote the four sides of the square, and ω :=⋃4
q=1Ωq is the union of

the disks. The function IΩ denotes the characteristic function of the subdomain Ω .
Thus the first parameter μ1 controls the difference between the isotropic diffusion
coefficient inside the disks versus the background conductivity, while the rest of the
parameters μ2, . . . ,μ8 enter into the boundary conditions and the source terms.
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Fig. 2 Schematic description
of the domain and boundary
conditions of the model
problem

This problem exhibits the same properties as the case discussed in the previous
Sect. 4 so that the solution can be written as the combination of the fundamental
basis vectors thanks to the formula (26). In this case the affine expansion (5) of the
problem is given by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θa
1 (μ)= 1, a1(u, v)=

∫
Ω

∇u · ∇vdΩ,

Θa
2 (μ)= μ1, a2(u, v)=

∫
ω

∇u · ∇vdΩ,
Θ
f

1 (μ)= μ2, f1(v)=
∫
Γ2

vdΩ,

Θ
f

2 (μ)= μ3, f2(v)=
∫
Γ3

vdΩ,

Θ
f

3 (μ)= μ4, f3(v)=
∫
Ω\ω

vdΩ,

Θ
f

4 (μ)= μ5, f4(v)=
∫
Ω1

vdΩ,

Θ
f

5 (μ)= μ6, f5(v)=
∫
Ω2

vdΩ,

Θ
f

6 (μ)= μ7, f6(v)=
∫
Ω3

vdΩ,

Θ
f
7 (μ)= μ8, f7(v)=

∫
Ω4

vdΩ,

so that Qa = 2, Qf = 7, and the problem satisfies the global spectral condition (25)
provided that μ1 ∈ [−(1− ε),1− ε] for some ε > 0.

In order to compare the n-width bounds with the observed convergence rates of
the weak greedy algorithm, we considered four different cases: ε = 0.1, ε = 0.5,
ε = 0.9, and ε = 0.95. Note that if ε = 1, the manifold of parametric solutions
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Fig. 3 Convergence of the fundamental series (26) coefficients for different values of ε in (29)

dimension is limited to a Qf -dimensional subspace of X as indicated by (27), and
so the greedy terminates after exactly 7 iterations. In Fig. 3 we have plotted the
convergence of the fundamental series terms supμ ‖(Θa

2 (μ)Θ
f
q (μ)/Θ

a
1 (μ))Ψk,q‖X

that dictate the convergence rate of the n-width upper bound (30). For the value
ε = 0.1 very weak convergence of the fundamental series is observed for some of
the terms, namely q = 2,3,4,5.

To obtain the GRBM approximation the weak greedy algorithm was driven by
the residual-based a posteriori error estimator (20). In both cases the greedy was
run until an absolute H 1-error below 10−3 was reached. This required n= 25 basis
functions for the case ε = 0.1, n= 21 basis functions for the case ε = 0.5, n= 15
basis functions for the case ε = 0.9, and n = 14 basis functions for the case ε =
0.95. In Fig. 4 we have plotted the corresponding convergence rates of the greedy
algorithm compared to the n-width upper bound predictions given by (30). In each
case exponential convergence of the GRBM approximation is observed. The actual
exponential decay rate depends on ε, where for ε = 0.1 the n-width estimate is much
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Fig. 4 Comparison of the n-width upper bound estimate (30) and the greedy convergence rate

too pessimistic when compared to the true rate of convergence. This is likely due
to the weak convergence of some of the fundamental series terms (see Fig. 3(a)),
and the result could be improved by considering more carefully the cutoff point for
the different series terms for different q . However, as ε→ 1 the n-width estimate
(30) becomes more and more indicative of the convergence rate observed during the
greedy algorithm. According to Fig. 3(c–d) at the limit all the fundamental series
coefficients converge at roughly the same rate, so that the bound (30) is expected to
sharpen considerably.

6 Conclusions

We have reviewed the generalized reduced basis method for the uniform approxi-
mation of manifolds of solutions of parametric partial differential equations. These
methods are typically driven by a greedy algorithm for selecting near-optimal re-
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duced approximation subspaces. It has recently been shown that the convergence
rate of the generalized reduced basis approximations is linked to the Kolmogorov
n-width of the manifold of solutions. We have exhibited a model problem where the
exact parameter-dependent solution can be expanded as a Neumann series, leading
to a constructive proof that the n-width of the solution set in this case converges ex-
ponentially. Numerical experiments confirm that the reduced basis approximation
also converges exponentially, and with a rate that is comparable to the one predicted
by our n-width upper bound estimate. The predicted convergence rate is independent
of the parametric regularity of the solution manifold and the number of parameters,
but it does depend on the size of the affine expansion of the parametric problem.
Future work involves finding more cases of parameter-dependent problems, where
explicit solution formulas could be used to prove more general n-width estimates.
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Variational Formulation of Phase Transitions
with Glass Formation

Augusto Visintin

Abstract In the framework of the theory of nonequilibrium thermodynamics, phase
transitions with glass formation in binary alloys are here modeled as a multi-
nonlinear system of PDEs. A weak formulation is provided for an initial- and
boundary-value problem, and existence of a solution is studied. This model is then
reformulated as a minimization problem, on the basis of a theory that was pioneered
by Fitzpatrick [MR 1009594]. This provides a tool for the analysis of compactness
and structural stability of the dependence of the solution(s) on data and operators,
via De Giorgi’s notion of Γ -convergence. This latter issue is here dealt with in some
simpler settings.

Foreword Enrico Magenes was an outstanding mathematician, and founded an
internationally renowned school. But to many persons he was much more than that,
and his charismatic personality influenced the Italian and the international math-
ematical world. He was a determined and efficient worker; had a great ability in
getting people motivated towards shared purposes, especially research; and was of
example in any aspect of his life.
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That started a collaboration that left me a great freedom of research. I could then
investigate some physical aspects of phase transitions, and also address the modeling
of hysteresis phenomena. It is in the spirit of those times and of that freedom that
here I wish to revisit an extension of the Stefan model, with an eye for the model
and one for some recently-developed analytical issues.

I would like to conclude this short souvenir mentioning that in the last years of
His life we met several times in the mountains near Trento, where He used to spend
a part of the Summer. In those talks I could learn about His past activity in the
anti-fascist Resistance and His experience as a Dachau deportee: this revealed to me
another aspect of His active and generous personality.

1 Introduction

This note is partially based on a talk that this author gave at a conference in mem-
ory of Professor Enrico Magenes, in Pavia in November 2011. That speech was
devoted to recent advances in Fitzpatrick’s theory on the variational representation
of maximal monotone operators, and on its use to prove the structural stability of
quasilinear PDEs. Those results are here reviewed, and are applied to some evolu-
tionary problems. In this note a variational formulation is also provided for a model
of phase transitions with glass formation in heterogeneous systems, that was pro-
posed in [67] and is here reviewed, too. The goal of proving the structural stability
of that problem is more demanding; here some features of that question are just
discussed.

Stefan-Type Problems Phase transitions occur in many relevant processes in
physics and engineering. In 1889 the physicist Josef Stefan [56–59] proposed a
one-dimensional model, that accounted for heat diffusion and exchange of latent
heat in the melting of the polar ice. The analytical formulation consisted in what is
now called a free boundary (or moving boundary) problem, for a parabolic equation.
This definition refers to the fact that the evolution of the surfaces that separate the
phases is not known a priori: the relevant PDE actually holds in a space-time set,
of which part of the boundary is free. On this unknown boundary a discontinuity
condition is then prescribed.

That model was then extended in many ways, and an intense research started
into two directions: phase transitions and free boundary problems. This involved a
large number of physicists, engineers and mathematical analysts, giving rise to tens
of monographs and tens of thousands of papers in journals. Much of those models
extend the formulation introduced by Stefan, and are often labeled under the general
denomination of Stefan-type problems.

One of the variants of the basic Stefan model concerns phase transitions in het-
erogeneous systems; in this case heat and mass diffusion are coupled. A first de-
scription simply consists in coupling the Fourier and Fick diffusion laws, and pre-
scribing appropriate conditions at the phase interfaces. This formulation however
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exhibits substantial physical and analytical shortcomings, that are strictly related
to inconsistency with the second principle of thermodynamics. A more appropriate
model stems from a neat theory that is known as nonequilibrium (or irreversible)
thermodynamics, and is based on the second principle.

Glass Formation Here we are concerned with glass formation, namely the onset
of an amorphous phase that retains (either all or at least a large part of) its latent
heat of phase transition. This is an important physical phenomenon and has relevant
industrial applications: many manufactured products are the outcome of a process
of phase transition, and a part of them either consists in or includes a glassy phase.
Polymers are also examples of amorphous materials.

A glassy phase may be formed by undercooling a liquid, because of an impres-
sive increase (up to 18 orders of magnitude) of viscosity associated to a sufficiently
deep undercooling. This requires the undercooling to be sufficiently rapid to pre-
vent crystallization: in this case the disordered atomic configuration that is typical
of the liquid phase is frozen into the solid state. The solid behavior of glasses is thus
not due to a crystal structure, but to extremely high viscosity. Amorphous phases
may persist for a long time (even millennia) in a state that is far from equilibrium.
Remarkable examples of this phenomenon are provided by the windows of ancient
cathedrals, which however in some cases exhibit traces of crystallization.

By what we just pointed out, glass formation is related to the process rather than
just the state temperature. In order to account for this phenomenon, we represent
phase transitions via a first-order dynamics, named phase relaxation, and model
glass formation by prescribing a nonmonotone kinetic function (which represents
the relation between transition rate and undercooling). This entails that the solid-
liquid transition zone is not reduced to a surface, (in the jargon of the Stefan-milieu,
this is usually labeled as the onset of a mushy region) so that the resulting model is
not a free boundary problem.

Most of the industrial applications of phase transitions involve composite mate-
rials. Here we then deal with glass formation in (noneutectic) binary alloys. In this
case the phase transition and glass formation temperatures and more generally the
kinetic law of phase relaxation depend on the concentration of the two components,
namely on the composition. The problem that here we consider is just a first step to-
wards a more detailed model; for instance, this should also account for mechanical
effects.

A Doubly Nonlinear Equation The model that we derive, see Problem 4.1, is an
initial- and boundary-value problem for a multi-nonlinear system of the form

⎧⎪⎨
⎪⎩
Θ ∈ ∂ϕ(U)
J =−γ (Θ,∇Θ)
DtU +∇ · J = f (Θ)

in Q :=Ω × ]0, T [ (Dt := ∂/∂t); (1)

here Ω is a Euclidean domain and T is a positive constant. By ∂ϕ we denote the
subdifferential of a convex potential ϕ; γ is continuous with respect to its first ar-
gument and maximal monotone with respect to the second one. Denoting by ϕ∗ the
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Fenchel conjugate function of ϕ, this system also reads as a single inclusion:

Dt∂ϕ
∗(Θ)−∇ · γ (Θ,∇Θ) � F(Θ) in Q. (2)

(By ϕ∗ we denote the Fenchel convex conjugate of ϕ.) Under suitable restrictions,
the operator H 1

0 (Ω)→H−1(Ω) :Θ �→ −∇ · γ (S,∇Θ) is maximal monotone, for
any admissible S.

Apart from the nonlinear second member, Eq. (2) may be compared with doubly
nonlinear equations of the form

Dtβ(Θ)+ α(Θ) � 0 with α and β maximal monotone. (3)

The case in which for instance β is linear is quite easier, and corresponds to a mono-
tone flow:

DtΘ + α(Θ) � 0 with α maximal monotone. (4)

Structural Stability A basic feature of modeling is that data (e.g., initial and/or
boundary conditions) and operators (e.g., ∂ϕ and γ in (1)) are known only with some
approximation. It is then of interest to devise topologies that provide the stability of
the problem in the following sense: whenever the data and the operators converge,
the corresponding solutions un weakly converge to a solution of the asymptotic
problem (up to a subsequence); this is close to the notions of G-convergence and
H -convergence.

Results have been established for the problem (4). They rest upon three main
ingredients:

(i) a variational formulation of maximal monotone operators (including evolution-
ary ones, such as those representing diffusion or phase relaxation); this is based
on a theory that was pioneered by Fitzpatrick in [30];

(ii) the definition of a suitable nonlinear notion of convergence in function spaces,
see [72];

(iii) the use of De Giorgi’s theory of Γ -convergence, see [20, 21].

Plan of Work This paper consists of two parts, that merge just in the final section,
and may thus be read independently.

The first two sections deal with a model of phase transition with glass formation
in binary alloys that was first formulated in [67]. More specifically, in Sect. 2 we
review a model of phase relaxation with glass formation, and in Sect. 3 we couple
it with heat and mass diffusion in binary alloys, along the lines of the theory of
nonequilibrium thermodynamics. Next in Sect. 4 we formulate a nonlinear problem
in the framework of Sobolev spaces; this consists in an initial- and boundary-value
problem for two quasilinear PDEs, which are coupled with a nonlinear ordinary
differential equation. We review a result of [67] on the existence of a weak solu-
tion of that problem, that is based on so-called compactness by strict convexity. Via
a compactness argument that is based on an additional a priori estimate, we then
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prove a novel existence theorem, that provides existence of a solution even if the
phenomenological laws have no potential.

The second part concerns the variational formulation and the structural stability
of first-order flows. First in Sect. 5 we state the Fitzpatrick theorem, and illustrate
how De Giorgi’s theory of Γ -convergence may be used to study the compactness
and structural stability of a wide class of monotone PDEs, along the lines of [72]. In
Sect. 6 we then apply those techniques to Eq. (4): we provide a variational formula-
tion in term of what we name a null-minimization problem, and prove its structural
stability. In Sect. 7 we extend the variational formulation to the flow (2), partially
along the lines of [69], where the structural stability is also addressed. (The results
of [69] might however be refined on the basis of the present analysis: in particular
the compactness of the family of operators might be proved; this might be illustrated
in a work apart.) In Sect. 7 we provide a variational formulation of doubly nonlinear
flows of the form (3), and then of the above model of phase transitions with glass
formation.

A large part of this paper revisits previous works, but it also includes some novel
results. These comprise a new result of existence of a weak solution for the glass
formation problem (Theorem 5.4), and the variational formulation of nonmonotone
flows (see Sects. 7 and 8). The discussion of the variational formulation of monotone
flows (see Sect. 6) also includes elements of novelty with respect to [72].

Literature Mathematical models of phase transitions have been studied in a large
number of works; see e.g. the monographs of Alexiades and Solomon [1], Brokate
and Sprekels [12], Elliott and Ockendon [29], Frémond [33], Gupta [36], V. [64],
and the survey V. [65]. Further references may be found in the comprehensive bibli-
ography of Tarzia [63]. Physical and engineering aspects of phase transitions, espe-
cially of solidification of metals, have been treated e.g. by Chalmers [16], Christian
[18], Flemings [31], Kurz and Fisher [39], Woodruff [73].

The coherent picture of the theory of nonequilibrium thermodynamics was first
formulated by Eckart [27, 28] in 1940; see e.g. the accounts of Müller and Weiss
[47–49]. That work formed the basis of a comprehensive theory that was then de-
veloped by Meixner, Prigogine, Onsager, De Groot, Mazur and other physicists;
this is now also called thermodynamics of irreversible processes. See e.g. Callen
[15], De Groot [22], De Groot and Mazur [23], Kondepudi and Prigogine [38], Pri-
gogine [53]. Some papers also applied that approach to phase transitions in hetero-
geneous systems, see e.g. Donnelly [25], Luckhaus and V. [42], Alexiades, Wilson
and Solomon [2], Luckhaus [41], V. [64]; Chap. V and [65, 67]. Nonequilibrium
thermodynamics is also at the basis of a celebrated model of phase transitions in
homogeneous materials, that was proposed by Penrose and Fife in [51, 52].

Doubly-nonlinear parabolic problems were dealt with in a number of works, see
e.g. DiBenedetto and Showalter [24] and Alt and Luckhaus [3]. Here we also use
techniques of [19] and [55]. Further references may be found e.g. in [69].

The theorem on the variational representation of maximal monotone operators
was proposed by Fitzpatrick [30] in 1988, and was then rediscovered by Martinez-
Legaz and Théra [45] and (independently) by Burachik and Svaiter [13]. This started
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an intense research, see e.g. [14, 34, 43, 44, 46], Ghossoub’s monograph [35], and
several other contributions.

The theory of Γ -convergence was pioneered by De Giorgi and Franzoni [21]
in 1975, and then extensively developed by the Pisa school and others; see e.g.
[5, 7, 8, 20]. A compactness result for a notion of nonlinear G-convergence of
quasilinear maximal monotone operators in divergence form was also proved in
[17]. This is based on a different approach from the present one, but a comparison
may be of some interest. More recently in [32] H -convergence was also applied to
the homogenization of nonlinear quasilinear elliptic operators; see also [4].

The present work is part of an ongoing research on the variational representation
of (nonlinear) evolutionary P.D.E.s, and on the application of variational techniques
to the analysis of their structural stability, see e.g. [66, 69, 71, 72]. A somehow com-
parable program, based on the use of the Fitzpatrick theory, has been accomplished
for the homogenization of quasilinear flows, see e.g. [68] and references therein.

2 Phase Relaxation and Glass Formation

Phase Relaxation Let us first consider a homogeneous liquid-solid system, and
assume that the two phases are separated by a (smooth) sharp interface S, that moves
with speed v (∈R

3). Let us denote by n the unit normal field to S oriented from the
liquid to the solid. Neglecting curvature effects, at and near equilibrium the interface
is at the absolute temperature τ = τE ; that is, setting θ := τ − τE ,

θ = 0 on S. (5)

At higher temperature rates one may instead assume a kinetic law of phase tran-
sition of the form

νv · n= g̃(θ) on S. (6)

Here by ν we denote a viscosity coefficient, and g̃ is a prescribed continuous func-
tion R→R such that

g̃(θ)θ ≥ 0 ∀θ ∈R, (7)

see Fig. 1. In the framework of a weak formulation of phase transition, we drop
the assumption of sharp interface S, and allow for the occurrence of a so-called
mushy region, namely, a fine-scale solid-liquid mixture. Denoting by ρ the liquid
concentration (which is proportional to the content of latent heat of phase transition),
we define the phase function χ := 2ρ − 1. Thus −1≤ χ ≤ 1, and

χ =−1 in the solid,

χ = 1 in the liquid,

− 1< χ < 1 in the mushy region.

(8)
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Fig. 1 Monotone kinetic
function for a crystallizing
material in (a), for the kinetic
law νv · n= g(θ)

We then replace the interface dynamics (6) by a law of phase relaxation:

νDtχ + ∂I[−1,1](χ) � g̃(θ) in Q; (9)

here

I[−1,1](ξ) :=
{

0 if ξ ∈ [−1,1],
+∞ otherwise,

(10)

and we denote by ∂ the subdifferential operator of convex analysis (see e.g. [26, 37,
54]).

It should be noticed that in general (6) and (9) are far from being equivalent: (6)
represents phase transition by displacement of the solid-liquid front, whereas (9)
accounts for phase transition by formation and growth of a mushy region; see e.g.
[64]; Sect. V.1.

Glass Formation For most of substances a liquid tends to crystallize whenever
θ < 0, and symmetrically a solid tends to melt if θ > 0. The kinetic function g̃

may accordingly be assumed to be nondecreasing. If close to the interfaces and in
the mushy region the temperature rate is sufficiently small, then g̃ may also be lin-
earized in a neighborhood of θ = 0. This applies to systems close to thermodynamic
equilibrium.

Glass formation is due to a strong increase of viscosity that impairs the mobil-
ity of particles in their migration towards the crystal sites, and thus prevents the
formation of the crystal lattice. This phenomenon is thus related to the temperature
dynamics, and requires the undercooling to be sufficiently fast as well as sufficiently
deep. In several cases the latter requirement may be expressed in the form

θ ≤ θ∗, for a material-dependent threshold θ∗ < 0. (11)

Next we provide a quantitative representation of these requirements.
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Fig. 2 Nonmonotone
function for an amorphous
material in (b), for the kinetic
law νv · n= g(θ)

As the temperature dependence of the viscosity is the main feature of the glass
behavior, in (6) and (9) we replace the constant ν by ν̂(θ), for a prescribed function
ν̂ :R→]0,+∞[ such that

ν̂(θ)/ 1, ∀θ < θ∗. (12)

Next we divide both members of (9) by ν̂(θ); notice that, as ν̂(θ) > 0,

ν̂(θ)−1I[−1,1](χ)= I[−1,1](χ).

Moreover, setting ḡ(θ) := g̃(θ)/ ν̂(θ), by (12) we have |ḡ(θ)| � 1 for any θ < θ∗.
It is then natural to assume that

ḡ(θ)θ ≥ 0 ∀θ ∈R, ḡ(θ)= 0 ∀θ < θ∗, (13)

see Fig. 2.
By (9) we then get the equivalent inclusion

Dtχ + ∂I[−1,1](χ) � ḡ(θ) in Q, (14)

which is in turn equivalent to the following variational inequality:
{
χ ∈ [−1,1]
Dtχ(χ − v)≤ ḡ(θ)(χ − v) ∀v ∈ [−1,1] in Q. (15)

(Henceforth we shall drop the tilde and the bar, and write g in place of g̃ and ḡ.)
Thus Dtχ = 0 where either

(i) θ = 0, or
(ii) θ > 0 and χ = 1, or

(iii) θ∗ < θ < 0 and χ =−1, or
(iv) θ ≤ θ∗.
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That is, there is no phase transition at equilibrium (cases (i), (ii), (iii)) as well as in
the glassy phase (case (iv)).

Dealing with heterogeneous substances this model must be amended, since the
two-phase equilibrium temperature also depends on the composition.

3 Nonequilibrium Thermodynamics

In this section we review some basic elements of the theory of nonequilibrium ther-
modynamics, and then formulate a model of glass formation.

Eckart’s Theory of Nonequilibrium Thermodynamics Next we deal with pro-
cesses of coupled heat and mass diffusion with phase transition in a binary alloy,
namely, a composite of two substances whose constituents are intermixed at the
atomic scale.

A basic model consists in coupling the Fourier and Fick laws with appropriate
conditions at the phase interface, that respectively account for heat and mass con-
servation. This approach has been used by material scientists and engineers, but
exhibits some physical and mathematical shortcomings. Actually this model does
not account for cross-effects between heat and mass diffusion. In several cases the
omitted terms are not very significant quantitatively; this explains why the above ap-
proach may produce fairly acceptable numerical results. However, this model is not
consistent with the second principle of thermodynamics, and of course this is quite
regrettable from a theoretical viewpoint. This inconvenience also has a relevant an-
alytical counterpart: the diffusive part of this model is represented by a system that
does not have the structure of a gradient flow. As far as this author knows, in the
multivariate setting no solution is known to exist even for the weak formulation.

These physical and mathematical drawbacks are overcome by a different model,
that is formulated in the framework of the theory of nonequilibrium thermodynam-
ics, that we now illustrate. This neat theory was first formulated by Eckart in 1940,
and then exploited by Meixner, Prigogine, Onsager, De Groot, Mazur and many
other physicists; see e.g. [47–49]. Here the constitutive relations are dictated by the
very exigency of fulfilling the second principle. More specifically, this method pro-
vides the entropy estimate, and with that a priori estimates that contribute to make
the analysis rather natural.

Next we confine ourselves to a composite of two constituents: a binary alloy,
that is, a homogeneous mixture of two substances, that are soluble in each other
in all proportions in each phase, outside a critical range of temperatures. We label
this mixture as homogeneous since the constituents are intermixed on the atomic
length-scale to form a single phase, either solid or liquid. We regard one of the two
components, for instance that with the lower solid-liquid equilibrium temperature,
as the solute—the other one as the solvent. We confine ourselves to a nonreacting
and noneutectic binary system, although this analysis might be extended to include
chemical reactions in multi-component systems.

The model that here we consider consists in two balance laws and appropriate
constitutive relations:
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(i) the principle of mass conservation,
(ii) the principle of energy conservation (i.e., the first principle of thermodynam-

ics),
(iii) a constitutive relation that relates the entropy density, the temperature, the so-

lute concentration, and the phase function (i.e., a Gibbs-type formula),
(iv) two constitutive relations for the energy and mass fluxes (the so-called phe-

nomenological laws),
(v) a relaxation dynamics for the phase function.

The prescriptions (iv) and (v) will account for a local formulation of the second
principle of thermodynamics. This will yield a parabolic doubly-nonlinear system
of PDEs.

Balance Laws and Gibbs-Type Formula We shall use the following notation:

u: density of internal energy,
s: density of entropy,
τ : absolute temperature,
c: concentration of the solute (per unit volume), with 0≤ c ≤ 1,
μ: difference between the chemical potentials of the two constituents,
λ: difference between the density of internal energy of the two phases (at constant

entropy and concentration),
ju: flux of energy (per unit surface), due to flux of heat and mass,
j c: flux of the solute (per unit surface),
h: intensity of a prescribed energy source or sink, due to injection or extraction of

either heat or mass.

It should be notices that λ does not coincide with the latent heat, namely the
difference between the density of internal energy of the two phases at constant tem-
perature and concentration.

Let us assume that the system under consideration occupies a domainΩ ⊂R
3 for

a time interval ]0, T [. In the absence of chemical reactions and mechanical actions,
the principles of energy and mass conservation yield

Dtu=−∇ · ju + h in Q :=Ω × ]0, T [, (16)

Dtc=−∇ · j c in Q. (17)

We shall assume that the dependence of the internal energy density u on the
primal state variables s, c,χ is prescribed; that is, u= û(s, c,χ). By this “hat nota-
tion” we shall distinguish between the physical field, u= u(x, t), and the function
that represents how it depends on other variables, u= û(s, c,χ).

Along with a standard practice of the theory of convex analysis, we then extend
û with value +∞ for (c,χ) /∈ [0,1]× [−1,1]. We may thus assume this function to
be differentiable for any (c,χ) ∈ ]0,1[× ]−1,1[, but of course not on the boundary
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of this rectangle. The (multivalued) partial subdifferentials1 ∂cû and ∂χ û, are then
reduced to the partial derivatives ∂û/∂c and ∂û/∂χ for any (c,χ) ∈ ]0,1[×]−1,1[.

Classical thermodynamics prescribes that

τ = ∂û

∂s
(s, c,χ), μ= ∂û

∂c
(s, c,χ), λ= ∂û

∂χ
(s, c,χ),

provided that the function û is differentiable. Thus2

u= û(s, c,χ),
du= τds +μdc+ λdχ ∀(s, c,χ) ∈Dom(̂u)0,

(18)

or more generally, without assuming the differentiability of the function û,

τ ∈ ∂sû(s, c,χ), μ ∈ ∂cû(s, c,χ), λ ∈ ∂χ û(s, c,χ)
∀(u, c,χ) ∈Dom(̂u).

(19)

As τ > 0, the constitutive relation u= û(s, c,χ) may also be made explicit with
respect to s. This yields the Gibbs-type formula

s = ŝ(u, c,χ),

ds = 1

τ
du− μ

τ
dc− λ

τ
dχ ∀(u, c,χ) ∈Dom(̂s)0,

(20)

with ŝ a concave function of u, for any fixed c,χ . More generally, without assuming
the differentiability of the function ŝ, we have

1

τ
∈ ∂ûs(u, c,χ), −μ

τ
∈ ∂ĉs(u, c,χ), −λ

τ
∈ ∂χ ŝ(u, c,χ)

∀(u, c,χ) ∈Dom(̂s).
(21)

The relations (19)–(21) are prescribed at equilibrium. A basic postulate of
nonequilibrium thermodynamics, assumes that (18) (and the equivalent (20)) also
apply to systems that are not too far from equilibrium. Out of lack of a better model,
here we extrapolate these relations even to the glassy phase. Actually, the limits of
validity of the whole theory strongly depend on those of the Gibbs-type formula
(20) and of the other constitutive relations that we introduce ahead.

1By ∂f we denote the subdifferential (in the sense of convex analysis) of a function f of a single
variable. On the other hand, by ∂uf , ∂vf , . . . we denote the partial subdifferentials of a function f
of a two or more variables u,v, . . .
2By Dom(̂u) we denote the domain of û, namely the set where this function is finite. By A0 we
denote the interior of any set A.
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Entropy Balance and Clausius-Duhem Inequality Let us set

j s :=
ju −μj c

τ
: entropy flux (per unit surface), (22)

π := ju · ∇
1

τ
− j c · ∇

μ

τ
− λ

τ
Dtχ : entropy production rate (per unit volume).

(23)

Denoting by q the heat flux we have ju = q+μj c , so that the two latter definitions
also read

j s =
q

τ
, π = q · ∇ 1

τ
− j c

τ
· ∇μ− λ

τ
Dtχ. (24)

Multiplying (16) by 1/τ and (17) by−μ/τ , by (21)–(23) we get the entropy balance
equation

Dts = 1

τ
Dtu− μ

τ
Dtc− λ

τ
Dtχ

= −1

τ
∇ · ju +

h

τ
+ μ

τ
∇ · j c −

λ

τ
Dtχ

= −∇ · ju −μj c
τ

+ ju · ∇
1

τ
− j c · ∇

μ

τ
− λ

τ
Dtχ + h

τ

= −∇ · j s + π +
h

τ
in Q. (25)

The quantity h/τ is the rate at which entropy is either provided to the system or
extracted from it by an external source or sink of heat.

According to the local formulation of the second principle of thermodynamics
(see e.g. [15, 22, 23, 38, 53]), the entropy production rate is pointwise nonnega-
tive, and vanishes only at equilibrium. This is tantamount to the Clausius-Duhem
inequality:

π ≥ 0 for any process, and

π = 0 if and only if ∇τ =∇μ= 0.
(26)

Moreover, π = 0 (π > 0, resp.) corresponds to a reversible (irreversible, resp.) pro-
cess.

Phenomenological Laws and Phase Relaxation The next step consists in for-
mulating constitutive laws consistent with (26). First we introduce some further
definitions:

z :=
(

1

τ
,−μ

τ
,−λ

τ

)(∈Dom(s∗)
) : dual state variables, (27)

G :=
(
∇ 1

τ
,−∇μ

τ
,−λ

τ

)
: generalized forces, (28)
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J := (ju,j c,Dtχ) : generalized fluxes. (29)

Along the lines of the theory of nonequilibrium thermodynamics, we assume that
the generalized fluxes are functions of the dual state variables and of the generalized
forces, via constitutive relations of the form

J = F (z,G) ∀z ∈Dom
(
s∗
)(⊂R

+ ×R
2). (30)

These relations must be consistent with the second principle, cf. (26). The map-
ping F must thus be positive-definite with respect to G. Close to thermodynamic
equilibrium, namely, for small generalized forces, one may also assume that this
dependence is linear. Notice that the first two components of J and G are vectors,
and the third ones are scalars. The linearized relations then uncouple, because of the
Curie principle: “generalized forces cannot have more elements of symmetry than
the generalized fluxes that they produce”. Thus, denoting by I[−1,1] the indicator
function of the interval [−1,1],

(
ju
j c

)
=L(z) ·

( ∇ 1
τ

−∇ μ
τ

)
in Q, (31)

Dtχ + ∂I[−1,1](χ) �−�(z)λ
τ

in Q. (32)

In (31) the dot denotes the rows-by-columns product of a tensor of (R3)2×2 by a
vector of (R3)2. Notice that ∂I[−1,1](−1)= ]−∞,0], ∂I[−1,1](y)= {0} for any y ∈
]− 1,1[, ∂I[−1,1](1)= [0,+∞[. The linearized constitutive relations (31) are often
called phenomenological laws; (32) is a relaxation-type dynamics. Consistently with
(26), for any z the tensor L(z) is assumed to be positive-definite, and �(z) > 0
(whereas of course λ may change sign). A fundamental result of nonequilibrium
thermodynamics due to Onsager states that the tensor L(z) is symmetric:

L=
⎛
⎝L11 L12

L21 L22

⎞
⎠ , L12(z)=L21(z)

(∈R
3) ∀z ∈Dom

(
s∗
)
. (33)

The tensor L12(z) accounts for mass flow induced by a temperature gradient, (Soret
effect), whereas L21(z) accounts for the dual phenomenon of heat flow induced by
a gradient of chemical potential (Dufour effect).

Potential Structure of the Phenomenological Laws Let us set

g :=
(
∇ 1

τ
,−∇μ

τ

)
,

Φ(z, ξ , r) := 1

2
ξ∗ ·L(z) · ξ + 1

2
�(z)r2

∀z ∈Dom
(
s∗
)
, ∀ξ ∈ (R3)2, ∀r ∈R

(34)
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(here by ξ∗ we denote the transposed of the vector ξ ). Because of the Onsager re-
lations (33), the (linearized) laws (31) and (32) may then be represented in gradient
form:

J ∈ ∂2Φ(z,G) ∀z ∈Dom
(
s∗
)
, (35)

where by ∂2 we denote the subdifferential with respect to the second argument, G.
This representation may be extended to the nonlinear case. More specifically,

within a certain range of variation of the variables, one may thus assume that the
nonlinear constitutive relations (30) also have a potential structure of the form

J ∈ ∂2Φ(z,G) with

Φ(z, ·) convex mapping
(
R

3)2 → (R3)2, ∀z ∈Dom
(
s∗
)
.

(36)

Even further from equilibrium, one may deal with (30) dropping the assumption
of existence of a potential. As we saw, this is the case for glass formation.

In conclusion, we have represented processes in two-phase composites by the
quasilinear parabolic system (16), (17), (21), coupled with phenomenological laws
either of the general form (30) or (assuming existence of a potential) of the form
(36).

4 Weak Formulation and Existence Theorems

In this section we formulate an initial- and boundary-value problem for phase relax-
ation in two-phase binary composites, and deal with existence of a weak solution.

We assume that Ω is a bounded Lipschitz domain of R
3, denote its boundary

by Γ , fix two subsets ΓDi (i = 1,2) of Γ having positive bidimensional Hausdorff
measure, and set Q :=Ω × ]0, T [ as above. We define the weighted Hilbert spaces

Vi :=
{
v ∈H 1(Ω) : γ0v = 0 on ΓDi

}
(i = 1,2), (37)

and denote by 〈·, ·〉 the pairing between Vi and the dual space V ′i for i = 1,2. By
identifying the space L2(Ω) with its dual and the latter with a subspace of V ′i , we
get two Hilbert triplets:

Vi ⊂ L2(Ω)= L2(Ω)′ ⊂ V ′i , with dense and compact injections (i = 1,2).
(38)

We assume that

ϕ :R× [0,1] × [−1,1]→R∪ {+∞}
is proper, convex and lower semicontinuous,

(39)

γ :R2 × (R3)2 → (R3)2,
γ (·,·, ξ1, ξ2) is continuous ∀(ξ1, ξ2) ∈

(
R

3)2,
γ (θ,ω, ·,·) is monotone ∀(θ,ω) ∈R

2,

(40)
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ρ :R2 →R is Lipschitz continuous. (41)

We then fix any

u0, c0, χ0 ∈ L2(Ω) such that ϕ
(
u0, c0, χ0)<+∞ a.e. in Ω,

fi ∈ L2(0, T ;V ′i ) (i = 1,2),
(42)

and introduce a weak formulation.

Problem 4.1 Find u, c,χ, θ,ω, r,ju,j c with the regularity

u ∈ L2(Q)∩H 1(0, T ;V ′1), c ∈ L2(Q)∩H 1(0, T ;V ′2),
χ ∈H 1(0, T ;L2(Ω)

)
,

(43)

θ ∈ L2(0, T ;V1), ω ∈ L2(0, T ;V2), r ∈ L2(Q), ju,j c ∈ L2(Q)3,

(44)
that fulfill the constitutive relations

(θ,ω, r) ∈ ∂ϕ(u, c,χ) a.e. in Q, (45)

(ju,j c)=−γ (θ,ω,∇θ,∇ω) a.e. in Q, (46)

as well as the equations

Dtu+∇ · ju = f1 in V ′1, a.e. in ]0, T [, (47)

Dtc+∇ · j c = f2 in V ′2, a.e. in ]0, T [, (48)

Dtχ + r = ρ(θ,ω) a.e. in Q, (49)

and the initial conditions

u(·,0)= u0 in V ′1, c(·,0)= c0 in V ′2, χ(·,0)= χ0 a.e. in Ω. (50)

It is well known that by a suitable selection of the functionals f1 and f2, (47)
and (48) respectively account for the energy balance (16) and for the mass diffusion
equation (17), each one coupled with the homogeneous Dirichlet condition on ΓDi
and with a Neumann condition on Γ \ ΓDi , for i = 1,2.

Equation (49) extends (14) to a heterogeneous system.

Theorem 4.1 (Existence of a Weak Solution—I) Assume that (39)–(42) are satis-
fied, and that

ϕ∗ :R2 × [−1,1]→R∪ {+∞} is of the form

ϕ∗(θ,ω,χ)=ψ1(θ,ω)+ψ2(θ,ω,χ) ∀(θ,ω,χ),
where: ψ1 is strictly convex and lower semicontinuous,

ψ2(·,·, χ) is convex and lower semicontinuous ∀χ ∈ [−1,1],

(51)
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∃c1, c2 > 0 : ∀(u, c,χ) ∈Dom(ϕ),∀(θ,ω, r) ∈ ∂ϕ(u, c,χ),
|θ | ≤ c1|u| + c2,

(52)

∃a1, a2 > 0 : ∀(u, c,χ) ∈Dom(ϕ),ϕ(u, c,χ)≥ a1|u|2 − a2, (53)

γ = ∂Φ, with Φ :R2 × (R3)2 →R,

Φ(·,·, ξ1, ξ2) is continuous ∀(ξ1, ξ2) ∈
(
R

3)2,
Φ(θ,ω, ·,·) is convex ∀(θ,ω) ∈R

2

(54)

(in ∂Φ the subdifferential operation is applied to the two latter arguments),

∃a3, . . . , a6 > 0 : ∀(θ,ω, ξ1, ξ2) ∈R
2 × (R3)2,

a3
(|ξ1|2 + |ξ2|2

)− a4 ≤Φ(θ,ω, ξ1, ξ2)≤ a5
(|ξ1|2 + |ξ2|2

)+ a6,
(55)

∃a7, a8 > 0 : ∀(θ,ω) ∈R
2
∣∣ρ(θ,ω)∣∣≤ a7|θ | + a8. (56)

Then Problem 4.1 has a solution such that moreover u, c ∈ L∞(0, T ;L2(Ω)).

The assumptions of this theorem are consistent with the model that we illustrated
in the previous section. Next we state another existence result.

Theorem 4.2 (Existence of a Weak Solution—II, [67]) Assume that the assump-
tions (39)–(42) are satisfied, as well as the conditions (51), (52), (56) and

∃C > 0 : ∀(ui, ci, χi) ∈Dom(ϕ), ∀(θi,ωi, ri) ∈ ∂ϕ(ui, ci, χi) (i = 1,2),

(u1 − u2)(θ1 − θ2)+ (c1 − c2)(ω1 −ω2)+ (χ1 − χ2)(r1 − r2)
≥ C(|θ1 − θ2|2 + |ω1 −ω2|2

)
,

(57)

∃a9 > 0 : ∀(θ,ω) ∈R
2, ∀(ξ1i , ξ2i ) ∈

(
R

3)2 (i = 1,2),[
γ (θ,ω, ξ11, ξ21)− γ (θ,ω, ξ12, ξ22)

] · (ξ11 − ξ12, ξ21 − ξ22)

≥ a9
(|ξ11 − ξ12|2 + |ξ21 − ξ22|2

)
,

(58)

∃a10, a11 > 0 : ∀(θ,ω) ∈R
2, ∀(ξ1i , ξ2i ) ∈

(
R

3)2 (i = 1,2),∣∣γ (θ,ω, ξ11, ξ21)− γ (θ,ω, ξ12, ξ22)
∣∣

≤ a10
(|ξ11 − ξ12| + |ξ21 − ξ22|

)+ a11.

(59)

Then Problem 4.1 has a solution such that moreover

u, c ∈ L∞(0, T ;L2(Ω)
)
, θ,ω ∈Hs

(
0, T ;L2(Ω)

) ∀s < 1/2. (60)
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The assumptions of this theorem are also consistent with the previous model.
Here we just point out the main lines of the argument, which differs from that of
Theorem 4.1 (see [67]) for an additional a priori estimate.

(i) First a priori estimate. Next we display the basic entropy estimate, which is
also used in [67]. Let us first extend the fields u, c,χ to t < 0 by setting u(·, t) =
u0, c(·, t) = c0, χ(·, t) = χ0 a.e. in Ω for any t < 0. For any m ∈ N, let us also
introduce the time step h = T/m, and define the time incremental operator δh by
setting δhv(t) := v(t + h)− v(t) for any function v of t . We may then consider the
approximation scheme

δhu+ h∇ · ju = hf1 in V ′1, a.e. in ]0, T [, (61)

δhc+ h∇ · j c = hf2 in V ′2, a.e. in ]0, T [, (62)

δhχ + hr = hρ(θ,ω) a.e. in Q, (63)

and couple this system with the constitutive relations (45) and (46). It is not difficult
to check that this problem has a solution (that we label by the index h) with the
following regularity:

uh, ch,χh, rh ∈ L2(Q),

θh ∈ L2(0, T ;V1), ωh ∈ L2(0, T ;V2), (ju)h, (j c)h ∈ L2(Q)3.
(64)

Via a standard procedure, the following uniform estimates are derived by multi-
plying Eqs. (61)–(63) respectively by θh,ωh, rh, and then integrating overΩ×]0, t[
for any t ∈ ]0, T ]:

‖uh‖L∞(0,T ;L2(Ω))∩H 1(0,T ;V ′1),‖ch‖L∞(0,T ;L2(Ω))∩H 1(0,T ;V ′2) ≤ C1, (65)

‖θh‖L2(0,T ;V1)
,‖ωh‖L2(0,T ;V2)

,‖χh‖H 1(0,T ;L2(Ω)) ≤ C2, (66)∥∥(ju)h∥∥L2(Q)3
,
∥∥(j c)h∥∥L2(Q)3

≤ C3. (67)

(By C1,C2, . . . we denote constants independent of h.) See Sect. 7 of [67] for de-
tails.

(ii) Second a priori estimate. For any k ∈ ]0, T [, further a priori estimates may
be derived by multiplying the approximate equations (61)–(63) respectively by
δkθh, δkωh, δkrh, and then integrating over Ω × ]k,T [. (The reader will notice that
we are not dividing these equations by k, and that two indices occur: h and k.) This
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yields

k−1
∫ T

k

dt

∫
Ω

[
(δkuh)(δkθh)+ (δkch)(δkωh)+ (δkχh)(δkrh)

]
dx

≤−
∫ T

k

dt

∫
Ω

[
(ju)h · ∇δkθh + (j c)h · ∇δkωh + rh(δkrh)

]
dx

+
∫ T

k

dt

∫
Ω

[
f1hδkθh + f2hδkωh + ρ(θh,ωh)δkrh

]
dx ∀t ∈ ]0, T ]. (68)

By (57), (59) and by the previous a priori estimates, it is easily checked that the
right-hand side of this inequality is uniformly bounded with respect to both h and k.
Hence by (57)

k−1
∫ T

k

dt

∫
Ω

(|δkθh|2 + |δkωh|2)dx ≤ C5. (69)

By Lemma 4.1 below, we then conclude that

the sequences {θh} and {ωh}
are bounded in Hs

(
0, T ;L2(Ω)

)
for any s < 1/2. (70)

(iii) Limit procedure. The estimates (65)–(67), (70) entail that there exist (u, c,χ),
(θ,ω, r) and (ju,j c) as in (43) and (44) such that, up to extracting subsequences,3

uh
∗
⇀u in L∞

(
0, T ;L2(Ω)

)∩H 1(0, T ;V ′1), (71)

ch
∗
⇀c in L∞

(
0, T ;L2(Ω)

)∩H 1(0, T ;V ′2), (72)

χh
∗
⇀χ in L∞(Q)∩H 1(0, T ;L2(Ω)

)
, (73)

θh ⇀ θ in L2(0, T ;V1)∩Hs
(
0, T ;L2(Ω)

) ∀s < 1/2, (74)

ωh ⇀ω in L2(0, T ;V2)∩Hs
(
0, T ;L2(Ω)

) ∀s < 1/2, (75)

rh ⇀ r in L2(Q), (76)

(ju)h ⇀ ju in L2(Q)3, (77)

(j c)h ⇀ j c in L2(Q)3. (78)

Equations (47)–(49) then follow by passing to the limit in (61)–(63). As by (74)
and (75),

θh→ θ, ωh→ ω in L2(Q), (79)

3We denote the strong, weak, and weak star convergence respectively by →, ⇀,
∗
⇀.
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the passage to the limit in the nonlinear terms may then be accomplished along the
lines of Sect. 7 of [67].

Lemma 4.1 Let {un} be a bounded sequence of functions of L2(0, T ). If
∫ T

k

|un(t)− un(t − k)|2
k

dt ≤ C6 : Constant independent of n, k, (80)

then the sequence {un} is uniformly bounded in Hs(0, T ) for any s < 1/2.

Proof For any s ∈ ]0,1/2[ we have

‖un‖2
Hs(0,T ) = ‖un‖2

L2(Q)
+
∫ ∫

]0,T [2
|un(t ′)− un(t ′′)|2
|t ′ − t ′′|1+2s

dt ′dt ′′

= ‖un‖2
L2(Q)

+ 2
∫ T

0
dt

∫ t

0

|un(t)− un(t − k)|2
k1+2s

dk

= ‖un‖2
L2(Q)

+ 2
∫ T

0
k−2sdk

∫ T

k

|un(t)− un(t − k)|2
k

dt

= ‖un‖2
L2(Q)

+ 2C6

∫ T

0
k−2sdk

(80)≤ Constant(independent of n). (81)
�

Remark 4.1 Theorems 4.1 and 4.2 essentially differ in the derivation of (79). More
specifically, we just derived (79) by compactness, because of the a priori estimates
(70). On the other hand, in the argument of Theorem 4.1 (see [67]), (79) stems from
compactness by strict convexity (in the sense of Chap. X of [64]).

5 Fitzpatrick’s Theory and Γ -Convergence

The Fitzpatrick Theorem Let V be a real Banach space, and α : V → P(V ′)
a proper (multivalued) operator. In 1988 Fitzpatrick defined the convex and lower
semicontinuous function

fα
(
v, v∗

) :=〈v∗, v〉+ sup
{〈
v∗ − v∗0 , v0 − v

〉 : v∗0 ∈ α(v0)
}

= sup
{〈
v∗, v0

〉− 〈v∗0 , v0 − v
〉 : v∗0 ∈ α(v0)

} ∀(v, v∗) ∈ V × V ′, (82)

and proved the following result.

Theorem 5.3 [30] If α : V → P(V ′) is maximal monotone, then

fα
(
v, v∗

)≥ 〈v∗, v〉 ∀(v, v∗) ∈ V × V ′, (83)

fα
(
v, v∗

)= 〈v∗, v〉 ⇔ v∗ ∈ α(v). (84)
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Along these lines, nowadays one says that a function f : V × V ′ → R ∪ {+∞}
(variationally) represents the operator α whenever f is convex and lower semicon-
tinuous and fulfills the system (83), (84). We shall denote by F(V ) the class of
these representative functions. Representable operators are necessarily monotone,
but need not be maximal monotone; e.g., the nonmaximal monotone operator with
graph A= {(0,0)} is represented by f1 = I{(0,0)}. On the other hand, not all mono-
tone operators are representable; e.g., the null mapping restricted to V \ {0} is not
representable.

For any convex and lower semicontinuous function ϕ : V → R ∪ {+∞}, the
Fenchel function

F
(
v, v∗

) := ϕ(v)+ ϕ∗(v∗) ∀(v, v∗) ∈ V × V ′ (85)

fulfills the system (83) and (84), because of the classical Fenchel inequality of con-
vex analysis (see e.g. [26, 37, 54]). Thus F represents the operator ∂ϕ. Other exam-
ples may be found e.g. in [69–72].

Γ -Compactness and Stability of Representative Functions Henceforth we
shall assume that V ′ is separable, and introduce a nonlinear notion of convergence,
which seems to be appropriate in this framework. For any sequence {(vn, v∗n)} in
V × V ′, let us set

(
vn, v

∗
n

)→̃
π

(
v, v∗

)
in V × V ′ ⇔

vn ⇀ v in V, v∗n
∗
⇀v∗ in V ′,

〈
v∗n, vn

〉→ 〈v∗, v〉,
(86)

and similarly define the convergence of π̃ -nets. (We use the term “π̃ -convergence”
since we denote by π the duality pairing between V and V ′, i.e., π(v, v∗) :=
〈v∗, v〉.)

Under the assumption of equi-coerciveness, the Γ -compactness with respect to
the product between the weak and weak star topologies of V and V ′ stems from the
classical theory, see e.g. [20]. The next statement provides the Γ -compactness with
respect to the π̃ -topology, which is especially relevant in the analysis of representa-
tive functions.

Theorem 5.4 [72] Let a sequence {ψn} in F(V ) be equi-coercive in the sense that

∀C ∈R, sup
n∈N
{‖v‖V + ∥∥v∗∥∥V ′ :

(
v, v∗

) ∈ V × V ′,ψn(v, v∗)≤ C}<+∞. (87)

Then, up to extracting a subsequence,ψn sequentially Γ -converges to some function
ψ with respect to the topology π̃ . This entails that ψ ∈ F(V ).

Moreover, denoting by αn (α, resp.) the operator V → P(V ′) that is represented
by ψn (ψ , resp.), for any sequence {(vn, v∗n)} in V × V ′,

v∗n ∈ αn(vn) ∀n, (
vn, v

∗
n

)→̃
π

(
v, v∗

)

⇒ v∗ ∈ α(v), ψn
(
vn, v

∗
n

)→ψ
(
v, v∗

)
.

(88)
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Representation in Spaces of Time-Dependent Functions Let us fix any T > 0,
any p ∈ ]1,+∞[ and set V := Lp(0, T ;V ). Let us define the convergence π̃ in V×
V′ as in (86), by replacing the space V by V and the associated duality pairing 〈v∗, v〉
by 〈〈v∗, v〉〉 := ∫ T0 〈v∗(t), v(t)〉dt for any (v, v∗) ∈ V× V′. Theorem 5.4 takes over
to time-dependent operators and to their time-integrated representative functions,
simply by replacing the space V by V.

It is promptly seen that, whenever a function ψ ∈ F(V ) is coercive in the sense
that

∀C ∈R, sup
{‖v‖V + ∥∥v∗∥∥V ′ :

(
v, v∗

) ∈ V × V ′,ψ(v, v∗)≤ C}<+∞, (89)

ψ represents an operator α : V → P(V ′) if and only if the functional

Ψ
(
v, v∗

) :=
∫ T

0
ψ
(
v(t), v∗(t)

)
dt ∀(v, v∗) ∈ V×V′ (90)

(which is an element of F(V)) represents the operator

α̂ : V→ P
(
V′
)
,

[̂
α(v)

]
(t)= α(v(t)) ∀v ∈ V, for a.e. t ∈ ]0, T [. (91)

Next we relate the π̃ -convergence in V × V ′ a.e. in ]0, T [ with the π̃ -convergence
in V×V′.

Proposition 5.1 [72] Let p ∈ ]1,+∞[, and {(vn, v∗n)} be a bounded sequence in
Wε,p(0, T ;V )×Wε,p′(0, T ;V ′) for some ε > 0. If

(
vn, v

∗
n

)→̃
π

(
v, v∗

)
in V × V ′, a.e. in ]0, T [, (92)

then (
vn, v

∗
n

)→̃
π

(
v, v∗

)
in V×V′. (93)

On the other hand, (93) does not entail (92), not even for a subsequence.

For ε = 0 the implication (92) → (93) fails. A counterexample is provided in
[72].

Compactness and Structural Stability The representation of maximal mono-
tone operators allows one to apply variational techniques to a large class of mono-
tone problems; one may then prove their structural stability via De Giorgi’s notion
of Γ -convergence. Here we briefly illustrate what we mean by structural stability in
a general topological set-up. Let us assume that

D is a set of admissible data (e.g., an initial datum and/or a source term),
O is a set of operators (e.g., a maximal monotone operator),
S is a set of admissible solutions.
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We also assume that each of these sets is equipped with a topology and that a
(possibly multivalued) solution operator R : D × O→ S is defined. We shall say
that:

(i) the class of admissible operators O is (sequentially) compact if

any sequence {on} in O accumulates at some o ∈O, (94)

(ii) the problem is structurally stable if the operator R is (sequentially) closed,
namely, for any sequence {(dn, on, sn)} in D×O× S,

sn ∈R(dn, on) ∀n, (dn, on, sn)→ (d, o, s) ⇒ s ∈R(d, o). (95)

It would also be desirable that any element s ∈R(D,O) may be retrieved as in (95),
so that the set of the limits of solutions would coincide with that of the solutions of
the asymptotic problem. In general this further property seems difficult to be proved;
however, it easily follows from (95) if the limit problem has only one solution.

6 Variational Formulation and Structural Stability of Monotone
Flows

In this section we apply the Fitzpatrick theory to monotone flows of the form Dtu+
α(u) � h, along the lines of Sects. 7 and 8 of [72].

Maximal Monotone Flows Let us assume that we are given a Gelfand triplet of
(real) Hilbert spaces

V ⊂H =H ′ ⊂ V ′ with continuous and dense injections. (96)

Let α : V → P(V ′) be a maximal monotone operator, h ∈ L2(0, T ;V ′), and con-
sider the Cauchy problem

{
u ∈X := {v ∈ L2(0, T ;V )∩H 1(0, T ;V ′) : v(0)= 0

}
,

Dtu+ α(u) � h in V ′, a.e. in ]0, T [. (97)

Here we embed the homogeneous initial condition into the space, so that

X→ L2(0, T ;V ′)(⊂X′) : v �→Dtv is monotone.

The condition u(0) = 0 is not really restrictive, since it may be retrieved by shift-
ing the unknown function u. More specifically, if u0 ∈ V then the initial condition
u(0)= u0 may be dealt with by replacing u by ũ := u−u0 and α by α̃ := α(·+u0).
(The case of u0 ∈H is more delicate.)

We shall assume that

∃a, b > 0 : ∀(v, v∗) ∈ graph(α),
〈
v∗, v

〉≥ a‖v‖2
V − b, (98)
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∃c, d > 0 : ∀(v, v∗) ∈ graph(α),
∥∥v∗∥∥

V ′ ≤ c‖v‖V + d. (99)

It is known that the problem (97) then has one and only one solution, see e.g. [6, 9,
74].

Variational Formulations Next we introduce several variational formulations
of the problem (97). Let us define the Hilbert spaces H := L2(0, T ;H) and V :=
L2(0, T ;V ), so that we have the Gelfand triplet

V⊂H=H′ ⊂ V′ with continuous and dense injections. (100)

Let the operator α be represented by a function f ∈ F(V ), and set

F
(
v, v∗

) :=
∫ T

0
f
(
v, v∗

)
dt ∀(v, v∗) ∈ V×V′. (101)

Notice that F ∈ F(V); actually, F represents the operator α̂ : V→ P(V′), cf. (91).
By (84), the inclusion (97)2 is equivalent to

f (u,h−Dtu)= 〈h−Dtu,u〉 a.e. in ]0, T [.
For any v ∈X the mapping t �→ ‖v(t)‖2

H is absolutely continuous and differentiable
a.e. in ]0, T [, and Dt‖v(t)‖2

H = 2〈Dtv, v〉 a.e. The latter equation then also reads

f (u,h−Dtu)+ 1

2
Dt‖u‖2

H = 〈h,u〉 a.e. in ]0, T [. (102)

As f fulfills (83), this is also equivalent to the family of equations that is obtained
by time integration

∫ τ

0
f (u,h−Dtu)dt + 1

2

∥∥u(τ)∥∥2
H
=
∫ τ

0
〈h,u〉dt ∀τ ∈ ]0, T [, (103)

and also to the single equation

J (u,h) := F(u,h−Dtu)+ 1

2

∥∥u(T )∥∥2
H
=
∫ T

0
〈h,u〉dt. (104)

(Notice that u(T ) ∈H , as by a standard identification X ⊂ C0([0, T ];H), see e.g.
Chap. I of [40].)

Let us next define the Hilbert spaces

H̃ :=
{
v : ]0, T [→H measurable: ‖v‖2

H̃
:=
∫ T

0
(T − t)‖v‖2

Hdt <+∞
}
, (105)

Ṽ :=
{
v : ]0, T [→ V measurable: ‖v‖2

Ṽ
:=
∫ T

0
(T − t)‖v‖2

V dt <+∞
}
, (106)
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and the corresponding Gelfand triplet

Ṽ⊂ H̃= H̃′ ⊂ Ṽ′ with continuous and dense injections. (107)

Let us next set

F̃
(
v, v∗

) :=
∫ T

0
(T − t)f (v, v∗)dt ∀(v, v∗) ∈ Ṽ× Ṽ′, (108)

which represents the operator

α̃ : Ṽ→ P
(
Ṽ′
)
,

[̃
α(v)

]
(t)= α(v(t)) ∀v ∈ Ṽ, for a.e. t ∈ ]0, T [. (109)

Notice that the system (97) is also equivalent to the twice time-integrated equation

J̃ (u,h) := F̃ (u,h−Dtu)+ 1

2

∫ T

0

∥∥u(t)∥∥2
H
dt =

∫ T

0
(T − t)〈h,u〉dt. (110)

Thus J̃ represents the operator Dt + α̃ (in a space of time dependent functions that
here we do not specify). Because of (83), (110) is equivalent to

J̃ (u,h)≤
∫ T

0
(T − t)〈h,u〉dt, (111)

and thus also to what we label as a null-minimization problem:

K̃(u,h) := J̃ (u,h)−
∫ T

0
(T − t)〈h,u〉dt = inf K̃ = 0. (112)

(The vanishing of the infimum is crucial.) It is easily seen that each of the other
equivalent equations (102), (103), (104) may also be formulated as a null-minimi-
zation problem.

Conclusion as for the Variational Formulation of (97) We exhibited four equiv-
alent variational formulations of the problem (97), namely (102), (103), (104),
(110). Each of them is tantamount to a null-minimization problem.

These formulations are only formally (i.e., nonrigorously) equivalent, since they
involve different function spaces. We shall refer to the equivalence between (97)
and (104) as the extended B.E.N. principle, since it generalizes an approach that
was pioneered by Brezis and Ekeland [10, 11] and by Nayroles [50] in 1976; see
[66]. More specifically, the original B.E.N. principle assumes that α is cyclically
monotone and selects f equal to the Fenchel function. This is here extended to any
maximal monotone operator α on the basis of Fitzpatrick’s Theorem 5.3.

Compactness of Representative Functions Let us now consider a V ×V ′-equi-
coercive sequence {fn} in F(V ), in the sense that

∀C ∈R, sup
n∈N
{‖v‖V + ∥∥v∗∥∥V ′ :

(
v, v∗

) ∈ V ×V ′, fn(v, v∗)≤ C}<+∞, (113)
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and assume that

hn→ h in V′. (114)

For any n let us define the functionals Fn, F̃n and J̃n as above, with fn in place of f .
Next we are concerned with the Γ -compactness of these sequences in the respective
function spaces with respect to the corresponding π̃ -convergence.

By (113) and the Γ -compactness Theorem 5.4, there exists f such that, up to
extracting a subsequence,

fn
Γ→ f sequentially w.r.t. the topology π̃ of V × V ′; (115)

this entails that f ∈ F(V ). Thus f represents an operator α : V → P(V ′).
By (113), the sequence {Fn} is V × V′-equi-coercive; there exists then F ∈ F

such that, up to extracting a subsequence,

Fn
Γ→ F sequentially w.r.t. the topology π̃ of V×V′; (116)

hence F ∈ F(V). Let us denote by α̂ : V→ P(V′) the operator that is represented
by F .

The same applies to the sequence {F̃n} in F(Ṽ): by (113) this sequence is Ṽ× Ṽ′-
equi-coercive. There exists F̃ then such that, up to extracting a subsequence,

F̃n
Γ→ F̃ sequentially w.r.t. the topology π̃ of Ṽ× Ṽ′, (117)

and this entails that F̃ ∈ F(Ṽ). Let us denote by α̃ : V→ P(Ṽ′) the operator that is
represented by F̃ .

We emphasize that the convergences (115)–(117) do not infer that f , F and F̃
are related as in (101) and (108), and not even that F and F̃ are integral function-
als. Thus (91) and (109) need not hold in the limit; actually, a priori [̂α(v)](t) and
[̃α(v)](t) might also depend on v(τ) for 0< τ < t , as we shall see ahead.

Besides the asymptotic behavior of the operators {αε}, we must study that of the
corresponding solutions of the monotone flow (97).

Tartar’s Example The flow (97) may not be stable with respect to variations of
the operator αn, even within the class of linear maximal monotone operators that
fulfill (98) and (99). We show this by means of a simple but illuminating exam-
ple due to Tartar [60], who also investigated the onset of long memory in (linear)
homogenization in [61] and [62], pp. 249–264. Let us assume that

an :Ω→R is measurable, ∀n,
∃c1, c2 > 0 : ∀n, c1 ≤ an ≤ c2 a.e. in Ω.

(118)

The Cauchy problem
{
Dtun + an(x)un = 0 a.e. in Ω, for t > 0,

u(x,0)= u0(x) a.e. in Ω
(119)
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is associated with a linear and continuous semigroup in H = L2(Ω):

Sn(t) : L2(Ω)→ L2(Ω) : u0 �→ un(x, t)= e−an(x)tu0(x). (120)

(Equation (97)2 might also be regarded as an O.D.E. parameterized by x, but this
would not be equivalent to the present approach.)

If an ⇀ a but an �→ a in L1
loc(Ω) (that is, an converges weakly but not strongly),

then it is easily seen that the exponential form of (120) is lost in the limit. Indeed,
for any u0 ∈ L2(Ω),

un(x, t)= e−an(x)tu0(x)
∗
⇀u(x, t) �= e−a(x)tu0(x) in BV

(
0, T ;L2(Ω)

)
. (121)

We may thus conclude that the asymptotic linear operator u0 �→ u defines no semi-
group: u does not solve any problem of the form (119), for any a(x). The same
conclusion may also be attained from a different viewpoint: as an ⇀ a and appar-
ently one cannot prove more than un(·, t) ⇀ u(·, t) in L2(Ω) for a.e. t , there is no
way to pass to the limit in Eq. (119)1.

This phenomenon may be interpreted as the onset of long memory from a se-
quence of flows with short memory.

Asymptotic Short Memory Let us assume that a sequence {αn} of operators
V → P(V ′) fulfills (98) and (99) uniformly in n. For any n let un be the solution of
(97) that corresponds to fn and hn; it is easily seen that this sequence is bounded
in the space X (which we defined in (97)). There exists then u ∈X such that, up to
extracting a subsequence,

un ⇀ u in L2(0, T ;V )∩H 1(0, T ;V ′); (122)

hence u(0)= 0, thus u ∈X. Let us now assume that

the injection V →H is compact, (123)

so that the function

q :X→R : v �→ 1

2

∫ T

0

∥∥v(t)∥∥2
H
dt is weakly continuous. (124)

The asymptotic mapping J̃ then has the form (110).
If one were able to show that (124) entails ‖un(T )‖2

H →‖u(T )‖2
H , then the form

of (104) would also be preserved in the limit—but this convergence is not obvious:
a priori, (122) just entails un(T )⇀ u(T ) in H . At this point this author is just able
to say that Eq. (110) defines a (monotone) representable relation between u and h.
This need not be representable via a short-memory monotone flow of the form (97),
since f and F need not fulfill (101), as we saw for Tartar’s example above.

In order to identify F̃ (u,f − Dtu), some further compactness property is in
order, besides (123). Let us first notice that, under further assumptions on the data,
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the sequence un is bounded in

Xs :=Hs(0, T ;V )+H 1+s(0, T ;V ′) (0< s ≤ 1). (125)

More specifically, for s = 1 this holds if the sequence {hn} is bounded in
H 1(0, T ;V ′) and {hn} and {αn} are such that the sequence {Dtun(0)} = {hn(0)−
αn(0)} is bounded in V . This rests on a standard argument, that is based on multi-
plying the inclusion Dtun + αn(un) � hn by the time increment δkun for any k > 0,
see e.g. [72]. This may easily be extended to any s ∈ ]0,1[.

By Proposition 5.1, the boundedness of {un} in Xs entails that

F(u,h−Dtu)=
∫ T

0
f (u,h−Dtu)dt

F̃ (u,h−Dtu)=
∫ T

0
(T − t)f (u,h−Dtu)dt,

(126)

as in (101) and (108). The function u thus fulfills the asymptotic gradient flow.

Conclusions as for the Compactness and Structural Stability of (97) Under the
equi-coerciveness assumption (113), a subsequence of the representative functions
F̃n Γ -converges in the sense of (117).

Under the convergences (114) and (117) of the data and of the operator, the as-
sociated solutions un weakly converge in X. The asymptotic pair (u,h) fulfills a
monotone relation, that may exhibit long memory. However, if (123) holds and the
sequence {un} is bounded in Xs for some s > 0, then the short-memory form (97)
is preserved in the limit.

Remark 6.1 (i) Onset of long memory in the limit is also excluded if, in alterna-
tive to assuming compactness, we replace the initial condition u(0) = 0 by time-
periodicity: u(0)= u(T ); see [72].

(ii) In Tartar’s example above V =H = L2(Ω). In this case the lack of compact-
ness in the injection V →H is at the basis of onset of long memory.

(iii) In a work in progress, the structural stability of Eq. (102) is directly studied
without time integration, defining a notion of time-dependent Γ -convergence.

7 Variational Formulation of a Class of Nonmonotone Flows

In this section we discuss the extension of the above analysis to some classes of
nonmonotone flows, partially along the lines of [69].

Variational Formulations of a Doubly Nonlinear Flow Let us now assume that
⎧⎪⎨
⎪⎩
α : V → P

(
V ′
)

is maximal monotone,

ψ :H →R∪ {+∞} is proper, convex and lower semicontinuous,

h ∈ L2
(
0, T ;V ′), w0 ∈H,

(127)
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and consider a problem with two nonlinearities:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u ∈ L2(0, T ;V ), w ∈ L2(0, T ;H)∩H 1
(
0, T ;V ′),

Dtw+ α(u) � h in V ′, a.e. in ]0, T [,
u ∈ ∂ψ(w) in H, a.e. in ]0, T [,
w(0)=w0.

(128)

Of course, if ψ(w) = 1
2‖w‖2

H we retrieve (97). (We might prescribe a vanishing
initial value, as we did in (97); however in this case this would not provide the
space-time monotonicity.)

If (98) and (99) are fulfilled and ψ is coercive, i.e.,

∀C ∈R,
{
v ∈H :ψ(v)≤ C} is bounded, (129)

then it is known that the above problem has a solution, see e.g. [3, 24]. Let the
operators α and ∂ψ be respectively represented by f ∈ F(V ) and by the Fenchel
function g ∈ F(H) (that is, g(v1, v2) = ψ(v1) + ψ∗(v2) for any v1, v2 ∈ H ). The
system (128) is then equivalent to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u ∈ L2(0, T ;V ), w ∈ L2(0, T ;H)∩H 1
(
0, T ;V ′),

f (u,h−Dtw)= 〈h−Dtw,u〉 a.e. in ]0, T [,
ψ(w)+ψ∗(u)= (u,w)H a.e. in ]0, T [,
w(0)=w0.

(130)

Because of (128)3, the mapping t �→ ψ(w(t)) is absolutely continuous and differ-
entiable a.e. in ]0, T [, and

Dtψ(w)= 〈Dtu, z〉 a.e. in ]0, T [, ∀z ∈ ∂ψ(w).
Equation (130)2 is then equivalent to

f (u,h−Dtw)+Dtψ(w)= 〈h,u〉 a.e. in ]0, T [. (131)

As f fulfills (83), this equality is also equivalent to
∫ τ

0
f (u,h−Dtw)dt +ψ

(
w(τ)

)−ψ(w0)=
∫ τ

0
〈h,u〉dt ∀τ ∈ ]0, T [. (132)

By the same token, the latter is equivalent to the single equation

∫ T

0
f (u,h−Dtw)dt +ψ

(
w(T )

)−ψ(w0)=
∫ T

0
〈h,u〉dt, (133)

and also to the twice time-integrated equation

∫ T

0

[
(T − t)f (u,h−Dtw)+ψ

(
w(t)
)]
dt − T ψ(w0)=

∫ T

0
〈h,u〉dt. (134)
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Defining F and F̃ as in (101) and (108), the two latter equations also read

J (u,h) := F(u,h−Dtw)+ψ
(
w(T )

)−ψ(w0)=
∫ T

0
〈h,u〉dt, (135)

J̃ (u,h) := F̃ (u,h−Dtw)+
∫ T

0
ψ
(
w(t)
)
dt − T ψ(w0)=

∫ T

0
(T − t)〈h,u〉dt.

(136)
Each one of these equations is equivalent to a null-minimization problem. For in-
stance, (136) is equivalent to

K̃(u,h) := J̃ (u,h)−
∫ T

0
(T − t)〈h,u〉dt = inf K̃ = 0. (137)

On the other hand (130)3 is equivalent to

∫ T

0

[
ψ(w)+ψ∗(u)]dt =

∫ T

0
(u,w)Hdt, (138)

which is also equivalent to a null-minimization problem:

H̃ (u,h) :=
∫ T

0

[
ψ(w)+ψ∗(u)]dt −

∫ T

0
(u,w)Hdt = inf H̃ = 0. (139)

Finally, each of these systems either of two equations or of two null-minimization
problems is equivalent to a single null-minimization problem. For instance, the sys-
tem (137), (139) is equivalent to

K̃(u,h)+ H̃ (u,h)= inf(K̃ + H̃ )= 0. (140)

(Of course, these equivalences rest on the two conditions (83) and (84) of represen-
tation.)

Conclusions as for the Variational Formulation of (128) The system (128) is
equivalent to (130), and this is tantamount to a null-minimization problem.

Each of Eqs. (131)–(134) coupled with (138) is formally equivalent to the system
of the two Eqs. (130)2 and (130)3. Each of these systems may be formulated as a
null-minimization problem.

The structural stability of the problem (128) may be proved by using tools anal-
ogous to those of Sect. 6; hopefully, this issue will be addressed in a work apart.

Remark 7.1 The present discussion may be extended to doubly-nonlinear problems
of the form ⎧⎪⎨

⎪⎩
u ∈ L2(0, T ;V )∩H 1(0, T ;H), w ∈ L2(0, T ;H),
w+ α(u) � h in V ′, a.e. in ]0, T [,
w ∈ ∂ψ(Dtu) in H , a.e. in ]0, T [.

(141)
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A variational formulation may also be given for this problem, and structural stability
may be studied.

8 Variational Formulation of the Heat and Mass Diffusion
Problem

In this section we address the variational formulation of the problem of Sect. 4.

Variational Formulation of the Single-Phase Problem Let us first consider the
problem of heat and mass diffusion without phase transition

Dtu+∇ · ju = f1 in V ′1, a.e. in ]0, T [, (142)

Dtc+∇ · j c = f2 in V ′2, a.e. in ]0, T [, (143)

(θ,ω) ∈ ∂ϕ(u, c) a.e. in Q, (144)

(ju,j c)=−γ (θ,ω,∇θ,∇ω) a.e. in Q. (145)

By setting

U := (u, c), Θ := (θ,ω),
J := (ju,j c), ΛJ := ∇ · J = (∇ · ju,∇ · j c),
V := V1 × V2, f := (f1, f2) ∈ V ′,

(146)

the system (142)–(145) also reads

Θ ∈ ∂ϕ(U) a.e. in Q, (147)

J =−γ (Θ,∇Θ) a.e. in Q, (148)

DtU +ΛJ = f in V ′, a.e. in ]0, T [. (149)

Denoting by F the Fenchel function ϕ + ϕ∗, the relation (147) is clearly equiva-
lent to

F(U,Θ)=U ·Θ a.e. in Q. (150)

Next we shall formulate the relation (148) in V × V ′ a.e. in ]0, T [, rather than
pointwise in Q. Let us first denote by gΘ a representative function of the maximal
monotone mapping γ (Θ, ·) : (R3)2 → P((R3)2), so that (148) also reads

gΘ(∇Θ,−J )=−J · ∇Θ a.e. in Q (151)

(here Θ ∈ (R3)2 just plays the role of a parameter). Let us assume that

∀C ∈R, sup
{‖S‖V + ∥∥S∗∥∥V ′ :

(
S,S∗

) ∈ V × V ′, gΘ(S,S∗)≤ C}<+∞, (152)
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uniformly with respect to Θ , and define the function

GΘ

(
S,S∗

)= inf

{∫
Ω

gΘ(∇S,Z)dx : Z ∈
(
L2(Ω)3

)2
,−∇ ·Z = S∗ in D′(Ω)2

}

∀(S,S∗) ∈ V × V ′. (153)

By (152) this infimum is attained at some Ẑ ∈ (L2(Ω)3)2. The function GΘ is
convex and lower semicontinuous, and

GΘ

(
S,S∗

)=
∫
Ω

gΘ(∇S, Ẑ)dx
gΘ∈F((R3)2)≥

∫
Ω

Ẑ · ∇Sdx =−〈∇ · Ẑ, S〉 = 〈S∗, S〉;
(154)

thus GΘ ∈ F(V ). Moreover, as gΘ(∇S, Ẑ)≥ Ẑ ·∇S pointwise in Ω , equality holds
in (154) if and only if gΘ(∇S, Ẑ)= Ẑ · ∇S a.e. in Ω . As the function gΘ represents
γ (Θ, ·), this is equivalent to Ẑ = γ (Θ,∇S) a.e. in Ω , whence

Ŝ∗ = −∇ · Ẑ =−∇ · γ (Θ,∇S) in
(
H−1(Ω)3

)2
.

Denoting by 〈·,·〉 the duality between V ′ and V , we may then replace (148) by
the equation

GΘ(Θ,∇ · J )= 〈Λ · J,Θ〉 a.e. in ]0, T [. (155)

By eliminating Eq. (149), we then infer that the system (147)–(149) is equivalent to

F(U,Θ)=U ·Θ a.e. in Q, (156)

GΘ(Θ,f −DtU)+ 〈DtU,Θ〉 = 〈f,Θ〉 a.e. in ]0, T [. (157)

By (147) (or equivalently (156)), we have Dtϕ(U)= 〈DtU,Θ〉. Assuming the ini-
tial condition U(0)=U0, Eq. (157) is then also equivalent to either of the following
equations

GΘ(J,f −DtU)dt +Dtϕ(U)= 〈f,Θ〉dt a.e. in ]0, T [, (158)
∫ T

0
GΘ(J,f −DtU)dt + ϕ

(
U(T )

)− ϕ(U0)=
∫ T

0
〈f,Θ〉dt, (159)

∫ T

0
(T − t)GΘ(J,f −DtU)dt +

∫ T

0
ϕ
(
U(T )

)
dt − T ϕ(U0)

=
∫ T

0
(T − t)〈f,Θ〉dt. (160)

Therefore the system (147)–(149) is equivalent to either of these equations coupled
with ∫ ∫

Q

F(U,Θ)dxdt =
∫ ∫

Q

U ·Θdxdt. (161)
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Each of these equations is equivalent to a null-minimization problem; therefore the
whole system is equivalent to a single null-minimization, in analogy with (140).

Variational Formulation of the Glass-Formation Problem In Sect. 3 we de-
rived the model at the basis of Problem 4.1, i.e.,

(θ,ω, r) ∈ ∂ϕ(u, c,χ) a.e. in Q, (162)

(ju,j c)=−γ (θ,ω,∇θ,∇ω) a.e. in Q, (163)

Dtu+∇ · ju = f1 in V ′1, a.e. in ]0, T [, (164)

Dtc+∇ · j c = f2 in V ′2, a.e. in ]0, T [, (165)

Dtχ + r = ρ(θ,ω) a.e. in Q. (166)

Next we replace the definitions (146) by

U := (u, c,χ), Θ := (θ,ω, r),
J := (ju,j c, r), ΛJ := (∇ · ju,∇ · j c, r),
V := V1 × V2 ×L2(Ω), f (Θ) := (f1, f2, ρ(θ,ω)

) ∈ V ′.
(167)

The system (162)–(166) then also reads:

Θ ∈ ∂ϕ(U) a.e. in Q, (168)

J =−γ (Θ,∇Θ) a.e. in Q, (169)

DtU +ΛJ = f (Θ) in V ′, a.e. in ]0, T [. (170)

Defining F and GΘ as above, we may then repeat the analysis of (150)–(161),
with the proviso of replacing the prescribed source term f by f (Θ). However,
despite of the formal analogy, this problem differs from that of the first part of this
section: for instance, this problem also includes the ODE (166).

Conclusions as for the Variational Formulation of (162)–(166) This system
is equivalent to either of Eqs. (158)–(160) coupled with (161) (here with f (Θ) in
place of f ). Each of these formulations is tantamount to a single null-minimization
problem.

The analysis of the structural stability of this problem is here left open.
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