
Chapter 9

Design of Rotating Disks and Stress
Concentrations

9.1 Failure Criteria

With the usual assumptions of a plane stress state (sz ¼ 0) made for rotating disks,

the stress field is generally biaxial. Uniaxial stress conditions can only occur

locally: at the inner edge of non-rotating disks loaded at the outer edge (Figs. 2.1

and 2.2) and of only rotating disks (Fig. 2.6), and at the outer edge of non-rotating

disks loaded at the inner edge (Figs. 2.3 and 2.4), of rotating annular disks (Fig. 2.6)

and rotating solid disks (Fig. 2.15). Biaxial tensile, tensile-compressive and tensile

or compressive stress occur respectively at the centre of only rotating disks

(Fig. 2.15), at the inner edge of non-rotating annular disks loaded at the inner

edge (Figs. 2.3 and 2.4) and at the outer edge of non-rotating annular disks loaded at

the outer edge (Figs. 2.1 and 2.2). Biaxial tensile, compressive or tensile-

compressive stress conditions occur in the intermediate sections of the disk.

From this overview of stress conditions, we can conclude that strength evalua-

tion of rotating disks calls for the use of a failure criterion. In this area, the criteria in

current use are the maximum normal stress criterion (smax), the maximum strain

criterion (emax), the maximum shear stress criterion (tmax) and the maximum

distortion energy criterion.

With these criteria, bearing in mind that radial stress sr and hoop stress st are
principal stresses, the equivalent or ideal stress se is given by:

• smax criterion (Coulomb or Rankine criterion):

se ¼ max stj j; srj j; szj jð Þ : (9.1)

• emax criterion (Saint Venant criterion):

se ¼ max st � n � sr þ szÞð j; sr � n � st þ szð Þj j; sz � n � sr þ szð Þj jj � :½ (9.2)
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• tmax criterion (Tresca or Guest criterion):

se ¼ max st � srj j; st � szj j; sr � szj jð Þ: (9.3)

• Maximum distortion energy criterion (Maxwell or Von Mises criterion):

s2e ¼ s2t þ s2r þ s2z � st � sr � sr � sz � sz � st: (9.4)

To understand which failure criterion best interprets the experimental results, a

few words are in order concerning the latter. Most available experimental results

involve biaxial stress states. To compare data calculated with theoretical models

and experimental data, it is necessary to consider plane sr; stð Þ . For the sake of

convenience, it is also advisable to make stresses dimensionless by relating them to

the equivalent stress se, so that plane sr; stð Þ becomes sr se= ;st se=ð Þ.
The formulation of the maximum distortion energy criterion (the Von Mises

criterion) in plane sr; stð Þ translates into the equation of an ellipse, with semi-major

and semi-minor diameters equal to se
ffiffiffi
2

p�
and se

ffiffiffiffiffiffiffiffi
2 3=

p
respectively, positioned so

that they bisect dihedra sr; stð Þ and sr;�stð Þ. This ellipse is represented in Fig. 9.1
on coordinates sr se= ; st se=ð Þ.

As can be seen from the curve in Fig. 2.4, stress st in an annular disk subjected

only to negative internal pressure sri ¼ �pi is always tensile, while stress sr is
always compressive, except at the outer radius where it is zero. At any radius, the

values assumed by hoop stress are always greater than the absolute value of radial

stress, or in other words the ratio st srj j= is above unity at all times. Consequently,

the arc of ellipse of interest to us here is that between the line bisecting dihedron

�sr se= ; st se= Þð and the axis of stresses st se= i.e., the arc cBC whose correspondent

in the fourth quadrant is arc dB0C0.
As the curve in Fig. 2.2 shows, both stressessr andst in a radial thick-walled disk

subjected only to external pressure sre ¼ �pe are compressive (an exception is

radial stress at the inner radius, which is zero). Here again, at any radius, the

absolute value of hoop stress is always greater than the absolute value of radial

stress, or in other words the ratio stj j srj j= is above unity at all times. In this case, the

arc of ellipse of interest to us here is that between the line bisecting dihedron

�sr se= ;�st se= Þð and the negative part of the st se= axis, i.e., the arc dA0B0, whose
correspondent in the first quadrant is arc cAB.

If the failure criterion used is that of maximum shear stress (the Tresca or Guest

criterion), instead of having the Von Mises ellipse on coordinates sr; stð Þ, we will
have the failure polygon (hexagon) as shown on coordinates sr se= ; st se=ð Þ in

Fig. 9.1. With the same approach as used for the maximum-distortion-energy

failure criterion, we can conclude that the parts of this failure polygon of interest

in the rotors and disks design are respectively the straight-line BF , which

corresponds to straight-line DF0 , and straight-line A0B0 corresponding to straight-

line AB.
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It should be noted that the maximum distortion energy failure criterion can be

regarded as the generalization of the tmax criterion, in that it also considers the

influence exerted by the third principal stress on yielding. To be handled as a

generalization of the tmax criterion, it must be seen as a maximum octahedral

shear stress criterion toct,max. As we know from continuum mechanics, the stresses

acting in the eight octahedral planes, each of which is obtained by cutting across

one of the corners of a principal element (a cubical element stressed by the three

principal stresses s1; s2; s3), have interesting and significant properties. In fact, the

same normal stress acts on each of the eight octahedral planes delimiting the

octahedron thus obtained. This stress state, a hydrostatic stress state, tends to

compress or enlarge the octahedron homothetically, without distorting it, with a

consequent variation in volume but not in shape. The shear stresses acting on each

of the eight octahedral planes are also equal, but they tend to distort the octahedron

without changing its volume. Although the octahedral shear stress is less than the
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Fig. 9.1 Plane stress failure curves of maximum-distortion energy ellipse, maximum-shear-stress

hexagon, maximum-normal-stress square and maximum-normal-strain rhombus on coordinates

(sr/se, st/se)
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maximum principal shear stress (in this connection, it should be borne in mind that

in Mohr’s plane t ¼ t (s), the octahedral stresses are represented by the points

outside the two smaller Mohr’s circles and inside the principal Mohr’s circle, or in

other words lie in the area between these circles), it is a single value which depends

on all three principal stresses s1; s2; s3ð Þ.
The following relations express the octahedral normal stress and the octahedral

shear stress as a function of the three principal stresses.

soct ¼ 1

3
s1 þ s2 þ s3ð Þ (9.5)

toct ¼ 1

3
s1 � s2ð Þ2 þ s2 � s3ð Þ2 þ s3 � s1ð Þ2

h i1=2
: (9.6)

The octahedral-shear-stress can also be expressed as a function of the three

principal-shear-stresses t1,2, t1,3, t2,3 (i.e., the maximum values of the shear stresses

correlated with the three Mohr’s circles in Mohr’s plane) as follows:

toct ¼ 2

3
t21;2 þ t21;3 þ t22;3
h i1=2

: (9.7)

According to the maximum octahedral shear stress criterion, the strength limit

condition will be reached when

s1 � s2ð Þ2 þ s2 � s3ð Þ2 þ s3 � s1ð Þ2 ¼ 2s2e : (9.8)

This relation, wheres1 ¼ st,s2 ¼ sz ands3 ¼ sr, is linked to relation (9.4), or in
other words to the maximum distortion energy failure criterion.

Figure 9.1 also shows the geometric loci which represent the other two failure

criteria considered, viz., the smax and the emax criteria, on coordinates sr se= ; st se=ð Þ.
In this plane, the maximum-normal-stress yield criterion translates into the

failure square obtained by extending, pairwise, sides AB and A0B0 and sides AD
and A0D0 until they meet. Lastly, the maximum normal strain failure criterion

translates into the failure rhombus whose major and minor diagonals are

superimposed on the semi-major and semi-minor diameters of the failure ellipse,

and whose four sides pass through points B, D, B0 and D0 and converge pairwise on

the points lying on the major diagonal having coordinates 1 1� nð Þ= ; 1 1� nð Þ=½ �
and �1 1� nð Þ= ;�1 1� nð Þ=½ � respectively.

Mohr’s failure criterion assumes that the strength limit conditions occurs when

the stress state is represented by the points in Mohr’s plane t ¼ t (s) that lie on the
envelope of the infinite Mohr’s circles for stress states at the limit of failure onset. In

Mohr’s plane, this envelope is represented by two nonlinear curves that are sym-

metrical with respect to the axis of the abscissas (s axis) and converge on a point of

the latter with a positive abscissa, where the material breaks as a result of cohesive

failure (Fig. 9.2). These curves become two straight lines (simplified Mohr’s

criterion), again symmetrical with respect to the s axis and converging on a point
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of the latter having coordinates (s > 0, t ¼ 0), in the case where the experimental

data used are provided by two uniaxial tests, the first uniaxial tension test and the

second uniaxial compression test (Fig. 9.3). From this standpoint, Mohr’s criterion

can be considered as a modification of the tmax criterion.
In plane (s1, s2), Mohr’s criterion for the biaxial stress state results in two

nonlinear curves that are symmetrical with respect to the diagonal bisecting the

dihedra of the first and third quadrants. The points where these two curves (Fig. 9.4)

intersect the coordinate axes and the shear diagonal (the straight-line bisecting the

dihedra of the second and fourth quadrants) can be readily identified by means of

uniaxial tension and compression data and pure shear data. The upper curve will

thus intersect the axis of the abscissa at the point whose coordinates are (�sf,c, 0),
the axis of the ordinate at the point whose coordinates are (0, sf,t) and the shear

diagonal at the point whose coordinates are (sf,ta, sf,ta), where sf,t, sf,c and sf,ta are
the failure limit stresses in uniaxial tension test, compression test and pure shear

test, respectively. For the lower curve, the points of intersection with the three

straight lines can be identified through the symmetry indicated above.

Fig. 9.2 Mohr’s criterion for

biaxial stress represented on

Mohr plane t ¼ t (s)

s
ss,tss,c

tFig. 9.3 Simplified Mohr’s

criterion for biaxial stress

represented on Mohr plane

t ¼ t (s)
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Just as the two straight lines in Fig. 9.3, which are symmetrical with respect to

the axis of the abscissa, are an approximate representation of the two curves in

Fig. 9.2 for Mohr’s criterion in Mohr’s plane, in plane (s1, s2), the two curves in

Fig. 9.4 can be represented by a closed irregular hexagon, whose sides differ in the

first and third quadrants (Fig. 9.5). This is the strength limit hexagon for Mohr’s

simplified criterion. From this standpoint as well, Mohr’s criterion can be consid-

ered as a modification of the tmax criterion.
In other words, the t ¼ t (s) and s2 ¼ s2(s1) curves for Mohr’s criterion can be

obtained starting from the corresponding curves for the tmax criterion, considering
and including the effect of internal friction. For this reason Mohr’s criterion is also

called the internal-friction-criterion. Proposed in 1897 by Reyto, this criterion

assumes that sliding along the slip planes is inhibited by the friction forces

associated with the compressive forces acting orthogonally to said planes.
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Fig. 9.4 Mohr’s criterion for

biaxial stress represented on

coordinates (s1, s2)

s2

sf,t

sf,c

sf,c

sf,t s1

45°

shear
diagonal

Fig. 9.5 Failure strength

closed irregular polygon of

the simplified Mohr’s

criterion for biaxial stress

represented on coordinates

(s1, s2)

198 9 Design of Rotating Disks and Stress Concentrations



In plane (s1, s2), Mohr’s criterion in its generalized formulation, i.e., that using

comprehensive experimental data, leads to a closed curve like the failure strength

ellipse, but asymmetrical with respect to the shear diagonal. It is thus an ovoid,

larger in the third quadrant and smaller in the first quadrant, but still symmetrical

with respect to the straight-line bisecting the first and third quadrants. Mohr’s

criterion is thus more general than the maximum distortion energy criterion, in

that it can account for and simulate the material’s differing behaviour in compres-

sion and tension.

9.2 General Considerations on the Use of Failure Criteria

The main failure criteria applied in the design sector of interest to us here were

discussed in the preceding section. To choose the best criterion for use, however,

they must be re-examined in the light of the experimental results obtained by the

various researchers who have addressed this topic. To achieve the desired biaxial

stress state, many of these researchers have used thin-walled steel, copper and

aluminium tubes subjected simultaneously to internal pressure and to axial and

torsional loading, or tubes under combined tensile and torsional loading. Most of

the results obtained, all from tests at ambient temperature, consist of points

representing stress states in the first and fourth quadrants, and which are denser

around the maximum-distortion-energy failure ellipse or, at most, fall in the zones

between the straight lines of the strength limit hexagon and the corresponding curve

segments of the strength limit ellipse. The location of these experimental points,

which are shown in Fig. 9.1, demonstrates unequivocally that the failure criterion

that best interprets experimental findings is that of maximum-distortion-energy.

For certain load combinations, several of the four main failure criteria (smax,
tmax, emax and maximum-distortion-energy) provide the same results, and are

equally advantageous. In other cases, the results of the theoretical models differ,

and the problem thus arises of selecting the criterion that best interprets the actual

risk of failure in the material. Generally speaking, it must be recognized that there is

no single criterion: we can only identify the criterion that is best for a particular

purpose. The same criterion applied in different situations may result in errors. For

example, repeated experimental tests have demonstrated that yield strength in

torsional is about 12–15 % higher than the shear strength determined through

tensile testing. This discrepancy, though it can be explained theoretically, would

not arise if the tmax criterion were correct. The maximum-distortion-energy crite-

rion does not suffer from this limitation, and its accuracy is borne out both by

theoretical considerations and experimental findings, making it the optimal choice

among the different failure criteria at least for ductile materials.

A number of tests carried out on specimens consisting of cast iron or other brittle

materials have led to the conclusion that the smax failure criterion is better for brittle
materials than the other criteria. However, data from more accurate tests conducted

in recent years have clearly demonstrated that the behaviour of brittle materials can
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be effectively interpreted by the maximum distortion energy criterion, providing

that account is made for the effects of stress concentrations resulting from the

inclusions that often cause a structural component to lose ductility.

Lastly, the emax failure criterion, widely used in the nineteenth century and the

first half of the twentieth, particularly in the design of artillery and of porcelain and

reinforced concrete components, has been largely abandoned today. Here, it is not

used.

From the general design standpoint, in any case, the smax failure criterion can

also be used with success, providing that the stress state is represented by points

falling in the first and third quadrants of Fig. 9.1. In the first quadrant, both stresses

are positive and the smax and tmax criteria lead to the same results. When the

principal stresses are all equal, the three smax, tmax and maximum distortion energy

criteria lead to the same results. If the stress state is represented by points falling in

the second and third quadrants, it is obvious that only the tmax and maximum

distortion energy criteria can be used.

In mechanical design, the material’s failure criterion is selected and used on the

basis of more general considerations. In these pages, we are dealing with operating

conditions that do not involve excessive elastic displacements, instability, creep,

impact and fatigue, all of which call for further and more specific considerations.

Notch effects and stress concentrations are considered as localised effects in the

areas affected by the geometrical irregularities. The fatigue aspects are not consid-

ered. Attention focuses here on static and quasi-static.

Where a preliminary review of actual design conditions indicates that compo-

nent failure may take place during service with modes that differ from those found

for standard specimens, it is obvious that the failure criteria discussed above cannot

be applied. To give an example, if it is suspected that brittle fracture could occur in

a component consisting of normally ductile steel, none of these criteria is capable of

linking this condition to the data obtained from standard tensile tests. In such a

situation, it will be necessary to use more advanced theoretical considerations and

experimental data from specific tests (impact tests, for instance) carried out under

conditions that approximate those encountered during actual service to the greatest

possible extent.

We will now focus attention on cases where the material failure criteria can be

correctly applied, starting from their use in predicting ductile yielding. Here, the

criterion that interprets experimental results most accurately is that of the maximum

distortion energy. It is thus recommended that it be used, though with some

reservations. For the biaxial stress state, when good experimental data are available

that go beyond those from simple tensile tests, Mohr’s criterion is to be preferred. In

this connection, however, a possible weakness of Mohr’s criterion should be noted:

as it is difficult to obtain highly accurate compression and tension data (i.e., giving

as general an idea as possible regarding the stress state in experimental conditions),

the errors may greater than those associated with the maximum distortion energy

criterion.

For triaxial stress states, the amount of data available is relatively modest. The

maximum distortion energy criterion can nevertheless be applied with good results,

but there is also no lack of grounds for recommending that the more conservative
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internal-friction-criterion be used. For both biaxial and triaxial stress states, it is still

fairly common to use the simple and slightly conservative tmax criterion together

with data from standard tensile tests. Many regulations and calculation standards

are based on this criterion.

The predictive criteria for ductile fracture coincide in general with the predictive

criteria for yielding. However, the experimental data available in this connection

are not only more limited numerically, but also show greater scatter. For these

reasons, it is sometimes recommended that the internal-friction-criterion be used

instead of the maximum-distortion-energy criterion.

To predict the failure strength of materials that can be affected by brittle

fractures in simple tension and compression, it is once again necessary to have

reliable experimental data. For biaxial stress states, Mohr’s criterion can be used.

The internal-friction-criterion can be employed if uniaxial tension and compression

data are available, and is reasonably accurate. It is often recommended for this

reason, but the results obtained are in general conservative. The smax criterion is

occasionally used, but it often leads to results that, for biaxial tension-compression

stress states, can be affected by significant errors, as they are heavily skewed

towards the non-conservative side. Experimental results obtained by a number of

researchers on the basis of tests conducted on grey cast iron are clearly included

between the theoretical curves for the smax criterion and the internal-friction-

criterion, which are thus in agreement when a biaxial stress state is considered.

9.3 Effects of Stress Concentrations

It was mentioned earlier that rotors generally have irregularities in form, most

frequently because of holes provided for purposes such as retaining the rotor to the

machine, attaching parts to the disk or channeling cooling fluids. If the hole is small

by comparison with the size of the disk, or if the distance between two successive

holes is much larger than their radius, the effect of the holes can be considered as

a local disturbance of the stress field calculated assuming axisymmetry.

For an isolated hole of small diameter 2·ri centred along the axis of a thin-walled
rectangular plate, having short sides of dimension 2·re >>2·ri and stressed on the

mid-plane of the short sides by a uniform surface force distribution s (Fig. 9.6), an

elegant theoretical solution presented by Kirsch [38], which has been confirmed

experimentally through strain gauge and photoelastic analyses, can be used to

determine the stress state on the hole’s periphery through the superposition of

two stress states (Fig. 9.7) for the plate with central hole whose outer radius 2·re
is indicated by the dashed line in Fig. 9.6.

The first stress state sees the plate as subjected in its mid-plane and at its outer

radius to a uniform radial stress distribution s/2, while the second sees the same

plate as simultaneously subjected, again in its mid-plane and at its outer radius, to

a radial stress distribution (s/2)·cos 2ϑ and a shear stress distribution�(s/2)·sin 2ϑ
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(the minus sign indicates that, as illustrated in Fig. 9.6, the shear stress acts in the

opposite direction to the increasing angular coordinates ϑ).
The results obtained by Kirsch through the modelling procedure described above

enable us to express the stress state at the generic radius r and at the generic angular
coordinate ϑ with the following relations:
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Fig. 9.6 Thin rectangular sheet with central hole whose radius ri is small compared to re, stressed
on the short sides and in the mid-plane by a surface force distribution s
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Fig. 9.7 Superposition of two stress states for analysing the stress state of the circular plate take

from the rectangular plate shown in Fig. 9.6
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sr ¼ s
2
� 1� r2i

r2

� �
þ s

2
� 1þ 3 � r4i

r4
� 4 � r2i

r2

� �
� cos 2#

st ¼ s
2
� 1þ r2i

r2

� �
� s

2
� 1þ 3 � r4i

r4

� �
� cos 2#

trt ¼ � s
2
� 1� 3 � r4i

r4
þ 2 � r2i

r2

� �
� sin 2#:

8>>>>>>>><
>>>>>>>>:

(9.9)

These relations derive from the more general relations, neglecting the ratio ri
2/

re
2 and, even more importantly, the ratio ri

4/re
4 in the latter. It can thus be concluded

that the stress state in points A, A0, B and B0 in Fig. 9.6 is characterized by the

following values:

A r ¼ ri;# ¼ p=2ð Þ: sr ¼ 0; st ¼ 3 � s; trt ¼ 0

A0 r ¼ re;# ¼ p=2ð Þ: sr ¼ 0; st ¼ s; trt ¼ 0

B r ¼ ri;# ¼ 0ð Þ: sr ¼ 0; st ¼ �s; trt ¼ 0

B0 r ¼ re;# ¼ 0ð Þ: sr ¼ s; st ¼ 0; trt ¼ 0:

These results show that along the periphery of the hole, at the ends of the diameter

perpendicular to the direction of loading, the only non-zero stress is the hoop stress,

which is 3·s at A and s at A0. At the ends of the diameter parallel to the direction of

loading, stresses at the hole periphery, i.e., at B, are st ¼ �s and sr ¼ s at B0, while
all other stresses are zero. Figure 9.6 shows hoop stress st and radial stress sr versus
radius, both in direction A-A0 perpendicular to the loading axis, and in direction B-B0

parallel to the direction of stresses s. The curve for st shows that we have st ¼ 3·s at

A and st ¼ �s in B. The stress concentration resulting from the hole thus leads to a

threefold increase in the value of applied stress s localized at A.
For a plate subjected to uniaxial stress along the direction indicated in Fig. 9.6,

we have the result summarized in Fig. 9.8a. If the same plate is stressed at its mid-

plane, along two mutually orthogonal directions (A-A0 and B-B0 in Fig. 9.6) by

uniformly distributed surface forces s1 and s2, we can apply the principle of

superposition to obtain the result shown in Fig. 9.8b.

However, the problem of interest to us here is that of a rotating disk featuring a

small-diameter eccentric hole with axis parallel to that of the rotor and located at a

distance r from it. Once the stresses sr and st that we would have at the position

occupied by the centre of the hole if the latter did not exist have been calculated, it

is obvious that a rectangular plate element such as that represented in Fig. 9.6 can be

identified, with direction A-A0 along the radial passing through the centre of the

hole. In this case, bearing Fig. 9.8b in mind, we have s1 ¼ st and s2 ¼ sr.
Applying Kirsch’s theory to this specific case thus enables us to quantify the

maximum stresses at the periphery of the hole as follows:

st;max ¼ 3 � st � sr
sr;max ¼ 3 � sr � st; ð9:10Þ

where, as we have said, st and sr are the stresses that would occur at the position

occupied by the centre of the hole if the hole did not exist. Stresses (9.10) act
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tangentially to the edge of the hole and are found at the ends of the diameter whose

extension passes through the centre of the disk and at the ends of the diameter

perpendicular to the first.

The small-diameter central hole can be regarded as the limiting case of an

eccentric hole as the distance of its axis from the disk axis tends to zero. In this

case, sr and st tend to be equal and the value at the edge of the hole tends to a value
which is twice that which it would assume if there were no hole.

It also follows from relations (9.10) that making a hole in a uniform strength disk

(st ¼ sr ¼ s) doubles the value of the stress, regardless of point where the hole is

located.

If there is an array of holes, it should be borne in mind that the increase in stress

will be greater than that which would occur with a single hole. By way of example,

Fig. 9.9 shows the ratio (smax/sn) of maximum stress at the edge of the holes to

3·s1

-

3 · s1 - s2

3 · s2 - s1

s2

s2

s1 s1 s1 s1s1

a b

Fig. 9.8 Values of hoop stress st at points A and B indicated in Fig. 9.6: (a) uniaxial stress;
(b) biaxial stress
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Fig. 9.9 Ratio smax/sn at edge of holes versus ratio rf/p
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nominal stress s, versus ratio rf/p of hole radius to spacing for a uniform strength

disk. Consequently, it is good design practice to avoid holes in favour of other

methods of securing highly stressed disks to the shaft.

To evaluate stress concentrations in fillets, notches and any other irregularities in

form, it is necessary to use numerical discretization techniques such as the finite

element method.
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