
Chapter 7

Non-Linearly Variable Thickness Disks

7.1 General Differential Equations and Variable Thickness

Profile Geometry

The topic discussed here goes well beyond those normally addressed in courses on

mechanical design. However, it is advisable to provide complete coverage of the

mathematical basics of the method for integrating the differential equations that

govern the displacement field of rotating disks whose thickness varies according to

a two-parameter linear function, and thus make it possible to determine their stress

and strain states. With this approach, which is a generalization of the conical disk

problem covered in the preceding Chapter (the conical disk can be obtained as a

particular case of this non-linearly variable thickness disk), we can analyse disk

profile configurations of undoubted design interest.

The theory presented here can be used to solve any problem involving a disk

whose thickness varies according to relation (7.1), with developments entailing the

same degree of complexity found in Chap. 6 for the conical disk. From the

standpoint of the analytical developments and the complexity of the calculations

involved, it is advisable to use this approach where strictly necessary (convergent

and/or divergent solid disks with concave and/or convex profile, convergent annular

disks with convex profile, divergent annular disks with concave profile) for which,

from the purely technical point of view, secundum non datur!
When dealing with (Fig. 4.1a) annular disks with divergent conical profile,

tapered disks with concave profile, or divergent disks with convex profile, it is

advisable to use Stodola’s relations (4.1) or (4.2), which characterize the hyperbolic

disk. In fact, once the disk’s radii ri and re have been established together with the

corresponding thicknesses hi and he, it will almost always be possible – with the

exceptions indicated in Chap. 4 – to find a value of exponent a appearing in

relations (4.1) and (4.2), with which the profile geometry can be correctly
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described. It will thus be possible to proceed much more simply on the basis of the

hyperbolic disk theory, which as we have seen makes it possible to arrive at closed

form solutions for the differential equations governing the displacement field.

The disks analysed here are characterized by a non-linearly variation of thick-

ness with the radius expressed by a power of a two-parameter linear function

according to relation (7.1), also used by other researchers (see, for example,

G€uven [32]). As will be discussed below, this relation can define the geometry of

a fourfold infinity of profiles, including convergent and divergent conical profiles;

the only profiles that cannot be simulated are those with an inflection point, such as

uniform strength disks. This family of variable thickness disks was investigated in

the elastic field by Eraslan and Argeşo [14] as part of a study addressing the limit

angular velocity where, consequently, the rotor is stressed beyond the elastic limit.

Here it is assumed that the disk always has a plane of symmetry perpendicular to

the axis, which bisects the thickness, and that the thickness variation function

h ¼ h(r) ¼ h(r) ¼ h(t) has any one of the following equivalent expressions:

h ¼ h0 � 1� m � rð Þk ¼ h0 � 1� n � rð Þk ¼ h0 � 1� tð Þk; (7.1)

where: h0 is the thickness at the axis of the disk (which is real for the solid disk

and fictitious for the annular disk); re is the outer radius; R, for the profiles of

interest to us here (see below) is the distance of the axis from apex V (the term

apex is used here even if the disk does not feature a pointed tip, e.g., in convex

profiles – Fig. 7.1d) where the two symmetrical sides of the profile intersect

(Fig. 7.1a, c, d); m, n ¼ m·re and k are constant geometrical parameters, r is the
radius; r ¼ r/re and t ¼ r/R ¼ n·r are dimensionless radii relative to re and R
respectively. The domains of variables r and t are 0 � r � 1 and 0 � t � n for

solid disks, and b ¼ ri/re � r � 1 and ri /R � t � n for annular disks respectively,
ri being the inner radius. The two domains coincide only for disks profiled in order

to feature nil thickness at radius re (in this case n ¼ 1).

By carefully selecting parameters k and m (and therefore n), the above functions
can be used to describe a fourfold infinity of disk profiles. Indeed, with function

h ¼ h(r) we have:

• For k ¼ 0, with any value of n, and for n ¼ 0, with any value of k, the disk

shows constant thickness (see profiles shown with a horizontal dashed line in

Fig. 7.1a–d);

• For k ¼ 1 and 0 < n < 1, the disk shows a converging conical profile

(Fig. 7.1a), with no limitations for 0 < n·r � 1 (with n ¼ 1, the conical disk

ends with a pointed tip at the apex, i.e., for re ¼ R and r ¼ 1); also for k ¼ 1 and

n > 1, we have the limitation 0 � r � 1/n (if the disk outer radius re is a design
datum, such profiles have no physical meaning); again for k ¼ 1, but with

n < 0, the disk shows a diverging conical profile (Fig. 7.1a), with no limitations;

• For k < 0, the disk profile is always concave (d2h/dr2 > 0), but with n < 0

(dh/dr < 0), the disk is always converging, whereas with n > 0 (dh/dr > 0) the
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Fig. 7.1 Profiles of solid or annular non-linearly variable thickness disks: (a) converging and

diverging conical disk (k ¼ 1 and positive and negative n); (b) converging and diverging concave
disk (k <0 and positive and negative n); (c) converging and diverging concave disk (k >1 and

positive and negative n); (d) converging and diverging convex disk (0 < k < 1 and positive and

negative n)
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disk is always diverging, though with a limitation, for n > 1, 0 � r � 1/n
(Fig. 7.1b shows several profiles for k ¼ �1 and different values of n);

• For k > 1, the disk profile is always concave (d2h/dr2 > 0), but with n < 0

(dh/dr > 0) the disk is always diverging, whereas with n > 0 the disk is

converging (dh/dr < 0), though with a limitation, for n > 1, 0 � r � 1/n
(Fig. 7.1c shows several profiles for k ¼ 1.5 and different values of n);

• For 0 < k < 1, the disk profile is always convex (d2h/dr2 < 0), but with n < 0

(dh/dr > 0) the disk is always diverging, whereas with n > 0 the disk is

converging (dh/dr < 0), though with a limitation, for n > 1, 0 � r � 1/n
(Fig. 7.1d shows several profiles for k ¼ 0.5 and different values of n);

• For n ¼ �1 and k ¼ a, we have the generalized Stodola disk whose profile, as

indicated in Sect. 1.3 and in note 2 to Sect. 3.1, is defined by the relation h ¼ h0·
1þ rð Þa and which, unlike the Stodola profile in the strict sense as given by

relations (4.2) or (4.3), does not show a singularity at the axis;

• For n ! 1 e k ffi a, we have the true Stodola disk. Bearing in mind (7.1) written

in terms of variable r together with (4.2) and establishing that the inner, mean

and outer radii ri, rm and re coincide with the corresponding thicknesses hi, hm
and he, we obtain three equalities from which the following relations can be

obtained (Calderale et al., 2012):

ln b
ln rm

¼
ln 1�nb

1�n

� �
ln

1�nrm
1�n

� � ; k ¼ a ln b

ln
1�nrm
1�n

� � ; h0 ¼ he

1� nð Þk : (7.2)

Solved in succession, these relations make it possible to calculate n, k and h0. Solved
iteratively, the first relation (7.2) gives very high values for the modulus of parameter n,

tending to infinity. Thus, the limit for n ! 1 for the second member of the first relation

(7.2) is lnb lnrm= . Consequently, the second relation (7.2) yields k ffi a, as the limit for

n ! 1 of the denominator is ln b. The third relation (7.2) then gives h0 ¼ 1, confirming

the singularity of the hyperbola at the disk’s rotational axis.

The same conclusions are reached if thickness functions h ¼ h(r) and h ¼ h(t)

are considered. As Manna [47] noted for only rotating disks, if we set t ¼ r R=ð Þ2 q=

¼ nrð Þ2 q=
in the last relation (7.1), the family of disk profiles that can be analysed

can be extended to include, as shown in Fig. 7.2, those with an inflection point, such

as uniform strength disks, as well as those that have geometrical singularities at

radius R (zero thickness or infinite thickness). The following treatment applies

equally to the profile defined by a power of a linear function and a power of a

nonlinear function. For the latter, in the relations written in terms of t, we will have t

¼ r R=ð Þ2 q= ¼ nrð Þ2 q=
rather than t ¼ r R= ¼ nr, while in the relations written in

terms of r, we will have r ¼ 1 n=ð Þtq 2= instead of r ¼ t n= .

The terms converging (tapered is a synonym) and diverging are used here

to express thickness variation from the axis (or the inner radius) to the outer
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Fig. 7.2 Various profiles of solid or annular non-linear variable thickness disks according to (7.1)

and with t ¼ r R=ð Þ2 q= ¼ nrð Þ2 q=
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radius. From the application standpoint, interest is limited to converging disks,

given that diverging disks, with their unfavourable rotating mass distribution,

involve high rotational inertia and equally unfavourable stress and strain states.

For manufacturing and design reasons (and, above all, because of functional

requirements for current turbine disks, where the axial dimensions of the surface

coupling with the shaft must be limited in order to control vibration behaviour for

any given distance between bearings), the ratio h0/he must be lower than, or at the

most equal to, 3 and thickness h0 at the axis must not be higher than (0.25 � 0.30)re.
The outer radius re is also a design datum.

Accordingly, considering the values re, h0 and he as design data, and selecting

the exponent k so as to outline the actual disk profile as closely as possible, the value
of n is univocally defined. In fact, n ¼ 1 � (he/h0)

1/k at the outer radius, where

r ¼ 1 and h ¼ he, given function h ¼ h(r). This shows that any higher value of

n determines profiles of no physical meaning (see non-horizontal dashed profiles in

Fig. 7.1). From an even more general viewpoint, by accepting slight variations for

re, h0 and he from design data, both parameters n and kmay be varied, provided that

the geometrical relationships between the quantities in relation (7.1) are respected.

As usual, dimensionless radius r will be taken into consideration in order to

determine the disk size, given that re is a design datum. However, because the

solution of the homogeneous differential equation entails hypergeometric series in

terms of the variable t ¼ n�r, the more general dimensionless radius t will be
considered for analytical development. Function h ¼ h(r) shows that the local

value rV of variable r at apex V (Fig. 7.1a, c, d) where, for converging disks, the

two symmetrical surfaces of the profile meet, must necessarily be rV ¼ R/re ¼ 1/n,
given that at V the disk shows null thickness. Therefore, R ¼ re/n so that, shifting

from variable r to variable t and considering that n ¼ m·re, then m·R ¼ 1, whereas

the local value of t at radius re, where r ¼ 1, will be t ¼ re /R ¼ n. Consequently,
for converging profiles showing 0 � he/h0 � 1, domain definitions of n and t
corresponding to 0 � r � 1 are 0 � n � 1 and 0 � t � n respectively. In this

connection, it can be readily seen that, for t ¼ n, then r ¼ 1, whereas for t ¼ 1,

then r ¼ 1/n and r ¼ R.
Figure 7.1b shows that a converging concave profile can be obtained from (7.1)

by assuming negative values for both n and k. In this case, as will be seen later, of

the two independent integrals of the associated homogeneous equation of the

differential equation governing the displacement field, the first u1 is defined in the

interval 0� r� 1/n, whereas the second u2 is defined in the interval�1/n� r� 0,

so that neither is usable. Consequently, we will not consider disk profiles obtained

from (7.1) showing negative values for n and k: values for which the radius R can

only be defined conventionally. This, however, is not a limitation of the proposed

procedure, given that, as shown in Fig. 7.2d, converging concave profiles can also

be obtained with 0 < k < 1 and 0 < n < 1 respectively.

To deduce the differential equation that governs the general displacement field,

whatever the configuration of these profiles of the non-linearly variable thickness

disk, the expression of h given by (7.1) in terms of variable r, is introduced in (1.28)
together with its first derivative with respect to r, taking into account that
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d/dr ¼ (1/re)∙d/dr, d2/dr2 ¼ (1/re
2)∙d2/dr2, dh/dr ¼ �n∙h0∙k∙(1 � n∙r)k�1 and

(1/h)∙(dh/dr) ¼ �n∙k/(1 � n∙r). We thus obtain the following general solving

differential equation of the non-linearly variable thickness rotating disk according

to relation (7.1), subjected to thermal load with the generic temperature variation

function T ¼ T (r):

d2u

dr2
þ 1

r
� n � k
1� n � r

� �
� du
dr

� 1

r2
þ n � n � k
r � 1� n � rð Þ

� �
� u� 1þ nð Þ � a � re�

dT

dr
� n � k � T
1� n � r

� �
þ 1� n2ð Þ � g � o2 � r3e � r

E
¼ 0:

(7.3)

For cases in which the disk is subjected only to centrifugal load or only to

thermal load, this equation specializes in the following relations:

d2u

dr2
þ 1

r
� n � k
1� n � r

� �
� du
dr

� 1

r2
þ n � n � k
r � 1� n � rð Þ

� �
� uþ 1� n2ð Þ � g �o2 � r3e � r

E
¼ 0;

(7.4)

d2u

dr2
þ 1

r
� n � k
1� n � r

� �
� du
dr

� 1

r2
þ n � n � k
r � 1� n � rð Þ

� �

� u� 1þ nð Þ � a � re � dT

dr
� n � k � T
1� n � r

� �
¼ 0: (7.5)

General solutions of the above three non-homogeneous differential equations are

obtained by adding the solution of the common associated homogeneous equation

to particular solutions of the same complete equations.

d2u

dr2
þ 1

r
� n � k
1� n � r

� �
� du
dr

� 1

r2
þ n � n � k
r � 1� n � rð Þ

� �
� u ¼ 0: (7.6)

Like (6.6), (7.6) is also a differential equation with coefficients that are analyti-

cal functions of the independent variable r; it can also be considered as a Fuchs

class equation and, being characterized by three singular points (r ¼ 0; r ¼ 1/n,
r ¼ 1), is the classic Gauss hypergeometric differential equation. Equation 7.6

makes it possible to treat both Stodola’s hyperbolic disk and its generalization as

particular cases. For the former, bearing in mind that the limits for n ! 1 (here,

we consider n in modulus) of ratios�nk 1� nrð Þ= and�nnk r 1� nrð Þ½ �= appearing

in (7.6) are k r= and �nk r2
�

respectively, and noting that k ffi a, it is clear that this
equation reduces to the homogeneous equation associated with equations (4.4) and

(4.7), as well as to (4.11). For the generalization of the hyperbolic disk, differential

equation (7.6) must be rewritten in terms of n ¼ �1 and k ¼ a.
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7.2 Rotating Disk Having Constant Density

As indicated above, the differential equation that governs the displacement field

when the disk is subjected only to centrifugal load is (7.4), whose solution is the

sum of the associated homogeneous equation, given by (7.6), and a particular

integral of the complete equation.

7.2.1 Particular Integral and Corresponding Stress
and Strain State

To obtain the particular integral of Eq. 7.4, it is best to start from (1.28) without

thermal load. The following non-homogeneous differential equation is obtained by

introducing the thickness function (7.1) in terms of the variable r in (1.28) together
with its first derivative with respect to r, and introducing the notation (6.8):

d2u

dr2
þ 1

r
� m � k
1� m � r

� �
� du
dr

� 1

r2
þ n � m � k
r � 1� m � rð Þ

� �
� u ¼ �C � r: (7.7)

To obtain the particular integral up of differential equation (7.7), we put

up ¼ c1 � r þ c2 � r2 þ c3 � r3; (7.8)

where c1, c2 and c3 are constants that can be determined by substituting (7.8), along

with its first and second derivatives with respect to variable r, in (7.7), and by

equating to zero the coefficients of various powers in the variable r. We thus obtain:

c1 ¼ 3 � 3þ nð Þ � C
m2 � 1þ nð Þ � 8þ k � 3þ nð Þ½ � � 3þ k � 2þ nð Þ½ � ;

c2 ¼ k � 3þ nð Þ � C
m � 8þ k � 3þ nð Þ½ � � 3þ k � 2þ nð Þ½ � ; c3 ¼ � C

8þ k � 3þ nð Þ : (7.9)

By substituting (7.9) in (7.8), bearing in mind the notation (6.8), which expresses

C and by changing from variable r to r, we obtain:

up ¼ � 1� n2ð Þ
8þ k � 3þ nð Þ½ � � r

� r2 � 3þ n
3þ k � 2þ nð Þ½ � �

k � r
n

þ 3

n2 � 1þ nð Þ
� �	 


� g � o
2 � r3e
E

: (7.10)
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However, in the usual assumptions of small displacements and plane stress

(sz ¼ 0) made for disks (thickness small by respect to the outer radius re), radial
and hoop stresses are given by relations (1.27). Consequently, the following stress

state correlated to particular integral up is obtained by substituting (7.10) and its

derivative dup/dr, after changing from variable r to variable r, bearing in mind that

r ¼ re · r and dup/dr ¼ (1/re) · (dup/dr) in relations (1.27), from which temperature

terms are omitted:

sr ¼ �g � o2 � r2e � gr ¼ s0 � gr
st ¼ �g � o2 � r2e � gt ¼ s0 � gt;

(
(7.11)

where s0 ¼ g ∙ o2∙ re2 is the reference stress and gr and gt are dimensionless

functions of r n, k and n, given respectively by:

gr ¼ � 1

8þ k � 3þ nð Þ½ �
� 3þ nð Þ � r2 � 2þ nð Þ � 3þ nð Þ

3þ k � 2þ nð Þ½ � �
k

n
� r� 3 � 3þ nð Þ

3þ k � 2þ nð Þ½ � � n2
� �

gt ¼ � 1

8þ k � 3þ nð Þ½ �
� 1þ 3nð Þ � r2 � 1þ 2nð Þ � 3þ nð Þ

3þ k � 2þ nð Þ½ � � k
n
� r� 3 � 3þ nð Þ

3þ k � 2þ nð Þ½ � � n2
� �

:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(7.12)

It should be noted that relations (7.12), where t is substituted for r, are

generalizations of (6.14), obtained for the conical disk, which is thus a specific

case of the non-linearly variable-thickness disk. These relations can be used to

obtain, for n ¼ k ¼ 1, relations for the converging conical disk, and for n ¼ �1

and k ¼ 1 relations for the diverging conical disk (Fig. 7.1a).

It can be concluded from (7.10) that the particular integral up, and thus its related
stress state given by relations (7.11) and the resulting strain state given by (1.25),

from which temperature terms are omitted (after substituting relations (7.11) in

them, and bearing (7.12) in mind) largely depend on the disk’s material, geometri-

cal dimensions and rotation speed. For any given material, up is proportional to re
3

and to o2. It should be noted that, for a given disk of assigned geometry (n, k and re
fixed) and for a specific angular velocity, the structure of (7.10) shows that the

particular integral may be defined once and for all: in other words, once the disk

geometry is established, up can be determined for any other angular velocity by

means of a simple scale shift.

Figure 7.3 shows functions gr and gt versus r, for two steel disks (n ¼ 0.3) with

h0/he ffi 3, one of which has a convex profile (k ¼ 0.5 and n ¼ 0.89), while the

other has a concave profile (k ¼ 1.5 and n ¼ 0.52). Through s0, functions gr and gt
are proportional to the radial and hoop stresses sr and st related to particular

integral up, which as will be demonstrated below has an inherent physical meaning:
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it represents radial displacement in a solid disk whose thickness varies according to

a power of a linear function, with concave or convex profile, extended to its apex V

where r ¼ R and r ¼ 1/n. It should be noted that functions gr and gt assume finite

values throughout the interval 0 � r � 1/n (0 � t � 1); only gr becomes null at

the right edge of the interval, i.e., for r ¼ 1/n (t ¼ 1).

It should also be noted that relations (7.12) are only valid in the interval of the

variable r showing physical meaning (0 � r � 1). To extend their validity from

r ¼ 1 to r ¼ 1/n, to calculate functions gr and gt as well as related stresses, it

would be necessary to reconsider the actual value of the outer radius which, in this

case, shifts from re to R (this entails considering a scale factor equal to n2). Clearly,
the same consideration applies to calculating displacement up, as obtained by

relation (7.10). For the sake of completeness, the curve of functions gr and gt in
the interval 1 < r � 1/n is also shown in Figure 7.3, although said scale factor

should be considered for calculation purposes. This interval is represented with a

dashed line in the figure.
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Fig. 7.3 Curves of gr and gt as a function of r within the interval 0 � r � 1/q, for two steel disks
(n ¼ 0.3), with ratio h0/he ffi 3 and with variable profile according to (7.1): (a) convex profile

(k ¼ 0.5 and n ¼ 0.89); (b) concave profile (k ¼ 1.5 and n ¼ 0.52)
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7.2.2 Solution of Homogeneous Differential Equation
and Corresponding Stress and Strain State

To solve (7.6), which is the common homogeneous equation associated with the

three complete differential equation (7.3), (7.4) and (7.5), it is best to introduce

variable t ¼ n·r, whereby, as dr ¼ dt/n and dr2 ¼ dt2/n2, (7.6) becomes:

d2u

dt2
þ 1

t
þ k

t� 1

� �
� du
dt

þ 1

t
þ n � k � 1ð Þ

� �
� u

t � t� 1ð Þ ¼ 0: (7.13)

Like (6.15), this is a hypergeometric differential equation, showing three singu-

lar points (t ¼ 0; t ¼ 1; t ¼ 1) and corresponding to the general Papperitz form

given by (6.16), again with:

aþ a0 þ bþ b0 þ gþ g0 ¼ 1: (7.14)

The following relations can be deduced from a comparison of (7.13) with (6.16),

taking (7.14) into account:

1� a� a0 ¼ 1; 1� g� g0 ¼ k; b � b0 ¼ n � k � 1;�a � a0 ¼ 1;

g � g0 ¼ 0; bþ b0 ¼ k
(7.15)

Consequently, for the case examined here we obtain:

a ¼ �1; a0 ¼ 1; g ¼ 1� k; g0 ¼ 0; b ¼ k

2
þ x; b0 ¼ k

2
� x;

with x ¼ 1

2
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 4 � 1� n � kð Þ

q
:

(7.16)

According to the general theory mentioned in Sect. 6.2.2, (7.13), which is

equivalent to (6.16), allows for two independent integrals, chosen from the four

given by relations (6.20). However, in the case examined here, and taking (7.16)

into account, relations (6.20) become:

u1 ¼ t � 1� tð Þ1�k � F 2� k

2
þ x; 2� k

2
� x; 3; t

� �

u10 ¼ t � F 1þ k

2
þ x; 1þ k

2
� x; 3; t

� �

u2 ¼ t�1 � 1� tð Þ1�k � F � k

2
þ x; � k

2
� x; � 1; t

� �

u20 ¼ t�1 � F �1þ k

2
þ x; � 1þ k

2
� x; � 1; t

� �
: (7.17)
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For convergence, the same considerations made for relations (6.21) also apply

here.

In this context, it is necessary to select as the first integral of (7.13) the one

deriving from the second relation (7.17), which is here designated u1 and tran-

scribed as:

u1 ¼ ta
0 � 1� tð Þg � F a;b; c; tð Þ ¼ t � F 1þ k

2
þ x; 1þ k

2
� x; 3; t

� �
(7.18)

where, for the sake of brevity, the following notation is used:

a ¼ a0 þ bþ g ¼ 1þ k

2
þ x; b ¼ a0 þ b0 þ g ¼ 1þ k

2
� x; c ¼ 1þ a0 � a ¼ 3;

(7.19)

whereas F(a, b, c, t) indicates the infinite hypergeometric series of the kind (6.24).

This hypergeometric series slowly converges for | t | ¼ | n�r | < 1, which implies

0 < n < 1. In other words, n is always lower than 1, as the actual disk profile

mostly develops in the interval 0 � r � 1. More specifically, the hypergeometric

series F(a, b, c, t) is divergent if the real part < c� a� bð Þ � �1 , absolutely

convergent if < c� a� bð Þ > 0 and, excluding the singularity point t ¼ 1, condi-

tionally convergent if � 1<< c� a� bð Þ � 0. Here, given that, a, b and c are real
coefficients and (c � a � b) ¼ 1 � k, for tapered disks, we have divergence for k
	 2, absolute convergence for 0 < k < 1 and conditional convergence for 1 � k
< 2. In the case of convergent disks, the range of variability of parameters n and k
featured in (7.1) is thus limited, given that 0 < n < 1, with 0 < k < 1 for absolute

convergence and 1 � n < 2 for conditional convergence.

Given that the first derivative of the radial displacement u ¼ u(r) must be

calculated in order to determine stress and strain states (in this regard, see (1.27)

and (1.25)), it should be borne in mind that the first derivative with respect to

variable t in series (6.24) is given by relation (6.26).

It is now necessary to find a second integral of differential equation (7.13) which

is independent of that given by relation (7.18). In this respect, it should be noted

that, here as earlier, the series appearing in the last two relations (7.17), featuring

infinite terms from a certain value onwards, actually become finite when the

interfering negative integer factors are freely increased by a small quantity e,
which, however, will need to be minimized by multiplying it by a suitable constant

coefficient so as to prevent sensible terms from tending to infinity.

Therefore, given that relations (6.27), (6.28), (6.29) and (6.30) are still valid,

developing the calculations with respect to the first and third of expressions (7.17)

and with the necessary changes with respect to the conical disk (i.e., substituting

notations (6.20) for the corresponding notations (6.23)), it can be shown that the

following relations apply instead of relations (6.31):
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u
1 ¼ t � F 1þ k

2
þ x; 1þ k

2
� x; 3� e; t

� �

u
2 ¼ t�1þe � F �1þ k

2
þ xþ e; � 1þ k

2
� xþ e; � 1þ e; t

� �

m 2;eð Þ ¼ e � e� 1ð Þ
k

2
þ xþ e

� �
� k

2
� xþ e

� �
� �1þ k

2
þ xþ e

� �
� �1þ k

2
� xþ e

� � :

8>>>>>>>>>><
>>>>>>>>>>:

(7.20)

and that the second independent integral of (7.13) is given by relation:

u2 ¼ 2

k

2
þ x

� �
� k

2
� x

� � � 1� t�1

�1þ k

2
þ x

� �
� �1þ k

2
� x

� �
2
664

3
775þ u1 � ln t

þ t �
X1
i¼1

Ci � ti

(7.21)

with

Ci ¼
Qi
m¼1

1þ k

2
þ xþ m� 1

� �
� 1þ k

2
� xþ m� 1

� �

i! � Qi
m¼1

3þ m� 1ð Þ

�
Xi�1

m¼0

1

1þ k

2
þ xþ m

þ

0
B@ 1

1þ k

2
� xþ m

� 1

1þ m
� 1

3þ m

1
CA: (7.22)

Thus, the second independent integral of the hypergeometric differential equa-

tion (7.13) is determined. Figure 7.4a, b show the two independent integrals u1 and
u2 versus r within the interval 0 � r � 1/n for two convergent disks with profile

according to (7.1), the first being a convex disk falling in the range of absolute

convergence (k ¼ 0.5 and n ¼ 0.89), and the second a concave disk falling in

the range of conditional convergence (k ¼ 1.5 and n ¼ 0.52). Here, too, it should

be noted that, outside the interval where variable r has physical meaning, i.e., for

1 < r � 1/n (see Fig. 7.4a, b, to the right of the vertical dashed line, r ¼ 1), the

scale factor indicated in the previous section must be introduced for calculation

purposes. In Fig. 7.4c, the curves of integrals u1 and u2 are shown for a concave

converging disk for which both parameters n and k are negative (k ¼ �1 and

n ¼ �1); in this case, integral u2, by contrast with integral u1, is not defined in
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Fig. 7.4 Curves of u1 and u2 as a function of r, within the interval 0 � r � 1/n, for

three converging steel disks (n ¼ 0.3) with profile varying according to (7.1): (a) convex

profile (k ¼ 0.5 and n ¼ 0.89); (b) concave profile (k ¼ 1.5 and n ¼ 0.52); (c) concave profile

(k ¼ �1 and n ¼ �1); (d) profiles of the three disk types
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the interval 0� r� 1/n considered here, so that it is not usable. However, this does
not restrict the generality of this theoretical analysis, given that concave converging

profiles (the same can be said for diverging disks, which are of no interest with

regard to rotors) can be obtained with 0 < n < 1 and 1 � k < 2 (Fig. 7.4c), instead

of with both n and k negative (Fig. 7.1b).
From Fig. 7.4a, b, as well as from the structure of relations (7.18) and (7.21),

while considering (7.22), we can conclude that u1!1 for r!1/n, whereas u2!1
for r!0. It should also be noted that, if the profile at the apex V does not feature a

pointed tip, as is the case for convex profiles (Fig. 7.1d), u1 has a finite value for

r ¼ 1/n, i.e., there is no singularity.

Here, these integrals are used directly in the following developments, as was

done for the conical disk (see Sect. 6.2.2). By using the integrals directly, the

solution of the associated homogeneous equation (7.13) can be expressed by means

of relation (6.34), where C1 and C2 are new integration constants that can be

evaluated from the boundary conditions.

Subsequently, the following relations are obtained by replacing relation (6.34),

written in terms of r, and its first derivative, in relations (1.27) from which

temperature terms are omitted, and by considering that d/dr ¼ (1/re)d/dr. These
relations express sr and st as a function of dimensionless radius r:

sr ¼ E

re � 1� n2ð Þ � C1 � du1
dr

þ n � u1
r

� �
þ C2 � du2

dr
þ n � u2

r

� �� �

st ¼ E

re � 1� n2ð Þ � C1 � u1
r
þ n � du1

dr

� �
þ C2 � u2

r
þ n � du2

dr

� �� �
: (7.23)

These relations can be expressed in the compact form given by (6.36), where,

however

ar ¼ du1
dr

þ n � u1
r
; br ¼ du2

dr
þ n � u2

r
; at ¼ u1

r
þ n � du1

dr
and bt ¼ u2

r
þ n � du2

dr
(7.24)

are functions of r, n, k and n, whereas:

A ¼ E � C1

re � 1� nð Þ e B ¼ E � C2

re � 1þ nð Þ (7.25)

are the dimensional integration constants, to be determined by imposing boundary

conditions. Derivatives du1 dr= and du2 dr= are obtained by taking relation (6.26),

written in terms of r, into consideration once functions u1 and u2 have been

determined. Calculating functions ar, br, at and bt, each of which is related to

different hypergeometric functions (u1 or u2), presents no difficulties.
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Figures 7.5 and 7.6 show these functions ar, br, at and bt versus dimensionless

variable r, for both steel disks (n ¼ 0.3), whose independent integrals u1 and u2 are
shown in Fig. 7.4a, b respectively. These diagrams make it possible to calculate

these functions rapidly for 0 < r < 1, which is the range of variation of r for both

converging disks of potential technical interest, which may be solid or annular, one
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Fig. 7.5 Curves of ar and at as a function of r within the interval 0 � r � 1/n, for two steel disks
(n ¼ 0.3) with profile varying according to (7.1): (a) convex profile (k ¼ 0.5 and n ¼ 0.89);

(b) concave profile (k ¼ 1.5 and n ¼ 0.52)
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Fig. 7.6 Curves of br and bt as a function of r within the interval 0 � r � 1/n, for two steel disks
(n ¼ 0.3) with profile varying according to (7.1): (a) convex profile (k ¼ 0.5 and n ¼ 0.89);

(b) concave profile (k ¼ 1.5 and n ¼ 0.52)
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being convex and the other concave. It should be noted that, with the exception of

the convex profile, for which ar, like u1, has a finite value for r ¼ 1/n, ar and at tend
to infinity for r! 1/n for all other cases of technical interest, given that u1 !1 at

the outer edge of the pointed-tip disk (r ¼ R, r ¼ 1/n), whereas br and bt, tend to

infinity for r ! 0, i.e., at the disk axis, given that u2! 1 for r ! 0 (r ! 0).

The strain state related to the stress state given by relations (6.36), written in

terms of r, is then obtained from (1.25) from which temperature terms are omitted.

Radial displacement can then be determined immediately, as u ¼ r�et.
Finally, it should be noted that all of the above relations are generalizations of

those obtained for the conical disk, which is thus a specific case of the variable-

thickness disk according to (7.1). These relations can be used to obtain, for n ¼ k
¼ 1, relations for the converging conical disk, and for n ¼ �1 and k ¼ 1, relations

for the diverging conical disk.

7.2.3 General Integral and Corresponding Stress and Strain State

As was specified at the beginning of this paragraph, the general solution of the non-

homogeneous differential equation (7.4) governing the displacement field of the

rotating disk without thermal load is the sum of the solution of its associated

homogeneous equation (7.6), given by (6.34), with u1 and u2 given respectively

by (7.18) and (7.21), and of the particular integral up, previously obtained and given
by (7.10). Thus, radial displacement u at the generic dimensionless radius t will be
obtained from relation (6.39) written in terms of r.

By using the method of superposition in calculating total strains and stresses and

by considering relations (7.23) as well as relations (7.11), where gr and gt are
obtained from relations (7.12), we find that radial and hoop stresses in a rotating

disk having variable profile described by means of a power of a linear function, and

also subjected to surface force distribution at inner and outer radii, are still

expressed by means of relations (6.40), where s0 ¼ g ·o ·re
2.

Here again, the strain distributions related to the stress distributions given by

(6.40) are obtained from (1.25) from which temperature terms are omitted, after

substituting (6.40) in them. We will then have u ¼ r�et.

7.3 Non-Linearly Variable Thickness Disks Having Constant

Density and Subjected to Thermal Load

We will now consider a variable thickness disk of constant density and subjected to

thermal load only; this disk features a temperature gradient distribution along its

radius expressed by relation (4.6) deriving from the function T ¼ T(r) given by

(4.5). In this case, passing to variable r, the solving differential equation (7.5)

becomes:
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d2u

dr2
þ 1

r
� n � k
1� n � r

� �
� du
dr

� 1

r2
þ n � n � k
r � 1� n � rð Þ

� �
� u� a � 1þ nð Þ � re

�
Xn
i¼1

i � ki � ri�1 � n � k
1� n � r

Xn
i¼1

ki � ri
 !

¼ 0: (7.26)

The general integral of this equation is the sum of the solution of the homoge-

neous equation, which is already known, and of a particular integral of the non-

homogeneous equation. Using the superposition method, the latter can be obtained

as the linear combination of contributions deriving from component n terms ki � ri
(with i ¼ 1, 2, . . ., n, as the constant term k0 does not contribute to the stress state)

of the function T ¼ T(r); thus, by considering the i-th term of this function equation

(7.26) becomes:

d2u

dr2
þ 1

r
� n � k
1� n � r

� �
� du
dr

� 1

r2
þ n � n � k
r � 1� n � rð Þ

� �
� uþ a � 1þ nð Þ � re � ki

� n � iþ kð Þ � ri � i � ri�1

1� n � r ¼ 0:

(7.27)

To obtain a particular integral u0p of differential eqaution (7.27), we first put

u0p ¼ aiþ1 � riþ1 þ ai � ri þ ai�1 � ri�1 þ :::: ; (7.28)

whereaiþ1; ai; ai�1; :::: are constants; by substituting this relation, along with its first
and second derivatives, in (7.27) and by equalling to zero the coefficients of various

powers in the variable r, the following relations are obtained:

aiþ1 ¼ a � re � ki � iþ kð Þ � 1þ nð Þ
iþ 1ð Þ � iþ 1þ kð Þ � 1� n � kð Þ

ai ¼ a � re � ki � i � k � 1� n2ð Þ
n � i � iþ kð Þ � 1� n � kð Þ½ � � iþ 1ð Þ � iþ 1þ kð Þ � 1� n � kð Þ½ � ;

(7.29)

while for the subsequent coefficients ai�p , with p ¼ 1, 2, . . ., we can derive the

general relation

ai�p ¼ ai�pþ1 � i� pð Þ � i� pþ 2ð Þ
n � i� pð Þ � i� pþ kð Þ � 1� n � kð Þ½ � : (7.30)

Ifwe take i ¼ p in relation (7.30),weobtaina0 ¼ 0.On the basis of the same relation,

all coefficients after a0 related to all negative powers ofr are thus zero. Therefore, given i
as any positive integer, the polynomial (7.28), within the first (i þ 1) terms starting from

the linear term a1 � r, always represents a particular integral of (7.27).
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By substituting the series expansion (7.28) and its first derivative in (1.27), while

considering (7.29) and (7.30) as well as the i-th term of the function T ¼ T (r), i.e.,
T ¼ ki� ri, we obtain the following expressions of the corresponding stresses sr and
st as polynomials of grade i in r, with a constant, non-zero term, which are valid for

any value of i:

sr ¼ E � a � ki � Ai � ri þ Ai�1 � ri�1 þ ::::þ A2 � r2 þ A1 � rþ A0

� 

¼ E � a � ki � ’i rð Þ

st ¼ E � a � ki � Bi � ri þ Bi�1 � ri�1 þ ::::þ B2 � r2 þ B1 � rþ B0

� 

¼ E � a � ki � ci rð Þ:

8>>>><
>>>>:

(7.31)

The coefficients A and B appearing in expressions (7.31) are obtained from the

following relations:

Ai ¼ � i

iþ 1ð Þ � iþ 1þ kð Þ � 1� n � kð Þ
Ai�1 ¼ k � i � iþ nð Þ

n � iþ 1ð Þ � iþ 1þ kð Þ � 1� n � kð Þ½ � � i � iþ kð Þ � 1� n � kð Þ½ �
Bi ¼ � i � iþ 1þ kð Þ

iþ 1ð Þ � iþ 1þ kð Þ � 1� n � kð Þ
Bi�1 ¼ k � i � 1þ n � ið Þ

n � iþ 1ð Þ � iþ 1þ kð Þ � 1� n � kð Þ½ � � i � iþ kð Þ � 1� n � kð Þ½ � ; (7.32)

while all the subsequent coefficients Ai�1�p and Bi�1�p, with p ¼ 1, 2, . . ., (i � 1),

are derived progressively through the relations:

Ai�1�p ¼ Ai�p � i� pþ nð Þ
i� pþ 1þ nð Þ �

i� pð Þ � i� pþ 2ð Þ
n � i� pð Þ � i� pþ kð Þ � 1� n � kð Þ½ �

Bi�1�p ¼ Bi�p � 1þ n � i� pð Þ
1þ n � i� pþ 1ð Þ �

i� pð Þ � i� pþ 2ð Þ
n � i� pð Þ � i� pþ kð Þ � 1� n � kð Þ½ � ;

(7.33)

These relations are obtained by means of simple proportions between the

coefficients of the powers in ri�p�1 and ri�p. Given that coefficients Ai�1 and

Bi�1 are known, as directly defined from the second and the fourth expressions

(7.32) respectively, relations (7.33) can be used to progressively determine all other

coefficients present in (7.31). It can be readily seen that, for a specific value of i,Pn
i¼0 Ai ¼ 0. These relations, in any case, clearly show that coefficients A and B

appearing in polynomials ’i(r) and ci(r), are simply functions of i, n, k and n.
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In general terms, for any value of i, the relations whereby functions ’i(r) and
ci(r) appearing in expression (7.31) can be calculated are as follows

’i rð Þ ¼ � i � ri
i2 þ 2iþ k � 1þ iþ nð Þ þ

i �Qi
j¼2

j2 � 1ð Þ

ni �Qi
j¼1

j2 þ 2jþ k � 1þ jþ nð Þ½ �

þ i �
Yi
j¼2

j2 � 1
� 
" #

�
Xi�1

m¼1

mþ 1þ nð Þ � k � rm

ni�m � Qm
j¼1

j2 þ 2jð Þ
" #

� Qi
j¼m

j2 þ 2jþ k � 1þ jþ nð Þ½ �
;

ci rð Þ ¼ � i � kþ iþ 1ð Þ � ri
i2 þ 2iþ k � 1þ iþ nð Þ þ

i �Qi
j¼2

j2 � 1ð Þ

ni �Qi
j¼1

j2 þ 2jþ k � 1þ jþ nð Þ½ �

þ i �
Yi
j¼2

j2 � 1
� 
" #

�
Xi�1

m¼1

1þ mþ 1ð Þ � n½ � � k � rm

ni�m � Qm
j¼1

j2 þ 2jð Þ
" #

� Qi
j¼m

j2 þ 2jþ k � 1þ jþ nð Þ½ �:

(7.34)

These general relations derived by the authors [78] can be used to obtain several

others of greater technical relevance for engineering calculations, viz.: i ¼ 1 (linear

variation of temperature with radius); i ¼ 2 (temperature variation with radius

according to a second-order function); i ¼ 3 (temperature variation with radius

according to a third-order function). Indeed, almost all functions T ¼ T(r) found in
commonly used disks can be satisfactorily approximated with a third-order polyno-

mial. The explicit relations whereby ’i(r) and ci(r) can be calculated for i ¼ 1, 2, 3,

are as follows

(a) For i ¼ 1, T ¼ k1� r and, hence:

’1 rð Þ ¼ 1� n � r
n � 3þ k � 2þ nð Þ½ � ; c1 rð Þ ¼ 1� 2þ kð Þ � n � r

n � 3þ k � 2þ nð Þ½ � ; (7.35)

(b) For i ¼ 2, T ¼ k2� r2 and, hence:

’2 rð Þ ¼ 2 � �n2r2 � 3þ k � 2þ nð Þ½ � þ 2þ nð Þ � n � k � rþ 3
� �

n2 � 8þ k � 3þ nð Þ½ � � 3þ k � 2þ nð Þ½ � ;

c2 rð Þ ¼ 2 � �n2r2 � k þ 3ð Þ � 3þ k � 2þ nð Þ½ � þ 1þ 2nð Þ � n � k � rþ 3
� �

n2 � 8þ k � 3þ nð Þ½ � � 3þ k � 2þ nð Þ½ � ;

(7.36)
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(c) For i ¼ 3, T ¼ k3� r3 and, hence:

’3 rð Þ¼3 � k �n2r2 � 3þnð Þ � 3þk � 2þnð Þ½ �þ8 �k �n �r � 2þnð Þþ24
� �

n3 � 15þk � 4þnð Þ½ � � 8þk � 3þnð Þ½ � � 3þk � 2þnð Þ½ �

� 3 � n3r3 � 8þk � 3þnð Þ½ � � 3þk � 2þnð Þ½ �� �
n3 � 15þk � 4þnð Þ½ � � 8þk � 3þnð Þ½ � � 3þk � 2þnð Þ½ �;

c3 rð Þ¼3 � k �n2r2 � 1þ3nð Þ � 3þk � 2þnð Þ½ �þ8 �k �n �r � 1þ2nð Þþ24
� �

n3 � 15þk � 4þnð Þ½ � � 8þk � 3þnð Þ½ � � 3þk � 2þnð Þ½ �

� 3 � n3r3 � kþ4ð Þ � 8þk � 3þnð Þ½ � � 3þk � 2þnð Þ½ �� �
n3 � 15þk � 4þnð Þ½ � � 8þk � 3þnð Þ½ � � 3þk � 2þnð Þ½ �:

(7.37)

Figure 7.7a, b show functions ’i(r) and ci(r) up to i ¼ 10 versus dimensionless

variable r for two steel disks (n ¼ 0.3), one convex (k ¼ 0.5 and n ¼ 0.89), and the

other concave (k ¼ 1.5 and n ¼ 0.52).

On the basis of the foregoing considerations and expressions (6.36) written in

terms of r, the stress state can be expressed as follows where a non-zero tempera-

ture gradient is present along the radius given by relation (4.6):

sr ¼ A � ar þ B � br þ E � a � k1 � ’1 þ k2 � ’2 þ k3 � ’3 þ ::::ð Þ
¼ A � ar þ B � br þ E � a � ’ rð Þ

st ¼ A � at þ B � bt þ E � a � k1 � c1 þ k2 � c2 þ k3 � c3 þ ::::ð Þ
¼ A � at þ B � bt þ E � a � c rð Þ;

8>>><
>>>:

(7.38)

with ’i ¼ ’i (r) and ci ¼ ci (r).
Here again, the strain state associated with the stress state given by relations (7.38)

is obtained from (1.25), after substituting (7.38) in them; we will then have u ¼ r�et.
Here as elsewhere, it should be noted that all of the above relations for thermal

load are generalizations of those obtained for the conical disk, which is thus a specific

case of the variable-thickness disk according to (7.1). Written in terms of variable t,
these relations can be used to obtain, for n ¼ k ¼ 1, relations for the converging

conical disk, and for n ¼ �1 and k ¼ 1 relations for the diverging conical disk.

7.4 Non-Linearly Variable Thickness Disks Having Density

Variation on Radius

We will now consider a disk having variable profile described by means of a power

of a linear function, subjected to centrifugal load and featuring density variation

along its radius expressed by the polynomial relation:

g ¼ g0 þ g1 � rþ g2 � r2 þ ::: ¼
Xn
i¼0

gi � ri (7.39)
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Fig. 7.7 Distribution of ’i(r) and ci(r), as functions of r, within the interval 0 � r � 1/n, up to

i ¼ 10, for two steel disks (n ¼ 0.3) having variable thickness according to (7.1): (a) convex

profile (k ¼ 0.5 and n ¼ 0.89); (b) concave profile (k ¼ 1.5 and n ¼ 0.52)
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in whose series g0 is the density of the rotor material, while g1, g2, . . . are constants,
and i ¼ 1, 2, . . ., n. Function (7.39) is similar to (3.44), except that the dimension-

less variable r takes the place of the radial coordinate r. Thus, by considering (7.39)
and by applying it to solve differential equation (7.4), we obtain:

d2u

dr2
þ 1

r
� n � k
1� n � r

� �
� du
dr

� 1

r2
þ n � n � k
r � 1� n � rð Þ

� �
� u

þ 1� n2
� 
 � o2 � r3e � r

E
�
Xn
i¼0

gi � ri ¼ 0: (7.40)

In this case too, the general integral of (7.40) is the sum of the solution of the

homogeneous equation, which is already known, and of a particular integral of the

non-homogeneous equation. The latter can be obtained as the linear combination of

contributions deriving from component n terms gi � ri (with i ¼ 0, 1, 2, . . ., n) of the
function g ¼ g (r); thus, by considering the i-th term of this function, (7.40)

becomes:

d2u

dr2
þ 1

r
� n � k
1� n � r

� �
� du
dr

� 1

r2
þ n � n � k
r � 1� n � rð Þ

� �
� u

þ 1� n2
� 
 � o2 � r3e

E
� gi � riþ1 ¼ 0: ð7:41Þ

Relation (7.41), with i ¼ 0, can be used to calculate the displacement u ¼ u(r)
related to density g0 of the non-linearly profile disk’s basic material; the same

equation, with i ¼ 1, 2, . . ., n, makes it possible to determine the contributions

related to the fictitious variation of density along the radius deriving from radial

blades on lateral surfaces.

The particular integrals of differential equation (7.41) can be obtained using the

same procedure as that adopted for equations (7.26) and (7.27) governing thermal

loading. For the sake of brevity, the analytical developments will not be specified

here. Through these developments, the stress state for a non-linearly variable

thickness disk with a fictitious density variation along its radius is expressed as

the sum of the partial contributions of the particular integrals, and thus in the

following form:

sr ¼ o2 � r2e � g0 � gr þ g1 � �1 þ g2 � �2 þ :::ð Þ
st ¼o2 � r2e � g0 � gt þ g1 � z1 þ g2 � z2 þ :::ð Þ;

(
(7.42)

where gr, gt, �1, z1, �2, z2, . . . are functions of t, n, k and n. Functions gr and gt related
to the particular integral in (7.41) with i ¼ 0 are obtained from relations (7.12).

In general terms, for any value of i, the relations whereby functions �i(r) and
zi(r) appearing in expressions (7.42) can be calculated are as follows:

7.4 Non-Linearly Variable Thickness Disks Having Density Variation on Radius 157

http://dx.doi.org/10.1007/978-88-470-2562-2_3


�i rð Þ ¼� iþ 3þ nð Þ � riþ2

iþ 4ð Þ � iþ 2ð Þ þ k � iþ 3þ nð Þ þ n� iþ2ð Þ �
iþ 3þ nð Þ � Qiþ1

j¼1

j2 þ 2jð Þ

Qiþ2

j¼1

j2 þ 2jþ k � 1þ jþ nð Þ½ �

þ iþ 3þ nð Þ �
Xiþ1

m¼1

mþ 1þ nð Þ � k � rm � nm�i�2 � Qiþ1

j¼mþ1

j2 þ 2jð Þ

Qiþ2

j¼m

j2 þ 2jþ k � 1þ jþ nð Þ½ �
;

zi rð Þ ¼� 1þ iþ 3ð Þ � n½ � � riþ2

iþ 4ð Þ � iþ 2ð Þ þ k � iþ 3þ nð Þ þ n� iþ2ð Þ �
iþ 3þ nð Þ � Qiþ1

j¼1

j2 þ 2jð Þ

Qiþ2

j¼1

j2 þ 2jþ k � 1þ jþ nð Þ½ �

þ iþ 3þ nð Þ �
Xiþ1

m¼1

1þ mþ 1ð Þ � n½ � � k � rm � nm�i�2 � Qiþ1

j¼mþ1

j2 þ 2jð Þ

Qiþ2

j¼m

j2 þ 2jþ k � 1þ jþ nð Þ½ �
:

(7.43)

These general relations, which were also derived by the authors [78], can be used

to obtain several others of greater technical relevance for engineering calculations,

viz.: i ¼ 1, i ¼ 2 and i ¼ 3. Indeed, almost all functions g ¼ g (r) found in

commonly used disks can be satisfactorily approximated with a third-order

polynomial.

The explicit relations whereby �i(r) and zi(r) can be calculated for i ¼ 1 are as

follows (explicit expressions of �2(r), z2(r) and �3(r), z3(r) are omitted because

they are very long):

(a) For i ¼ 1, g ¼ g1� r and, hence:

�1 rð Þ ¼ 4þ nð Þ � 3þ nð Þ � 3þ k � 2þ nð Þ½ � � k � n2r2 þ 8 � 2þ nð Þ � k � n � rþ 24
� �
n3 � 15þ k � 4þ nð Þ½ � � 8þ k � 3þ nð Þ½ � � 3þ k � 2þ nð Þ½ �

� 4þ nð Þ � 8þ k � 3þ nð Þ½ � � 3þ k � 2þ nð Þ½ � � n3r3� �
n3 � 15þ k � 4þ nð Þ½ � � 8þ k � 3þ nð Þ½ � � 3þ k � 2þ nð Þ½ � ;

z1 rð Þ ¼ � 1þ 4nð Þ � 8þ k � 3þ nð Þ½ � � 3þ k � 2þ nð Þ½ � � n3r3
n3 � 15þ k � 4þ nð Þ½ � � 8þ k � 3þ nð Þ½ � � 3þ k � 2þ nð Þ½ �

þ 4þ nð Þ � 1þ 3nð Þ � 3þ k � 2þ nð Þ½ � � k � n2r2 þ 8 � 1þ 2nð Þ � k � n � rþ 24
� �
n3 � 15þ k � 4þ nð Þ½ � � 8þ k � 3þ nð Þ½ � � 3þ k � 2þ nð Þ½ �

(7.44)
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Fig. 7.8 Distribution of �i(r) and zi(r), as functions of r, within the interval 0 � r � 1/n, up to

i ¼ 10, for two steel disks (n ¼ 0.3) having variable thickness according to (7.1): (a) convex

profile (k ¼ 0.5 and n ¼ 0.89); (b) concave profile (k ¼ 1.5 and n ¼ 0.52)
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Figure 7.8a, b show functions �i(r) and zi(r) up to i ¼ 10 versus dimensionless

variable r for two steel disks (n ¼ 0.3), one convex (k ¼ 0.5 and n ¼ 0.89), and the

other concave (k ¼ 1.5 and n ¼ 0.52).

On the basis of (6.40), with s0 ¼ g ·o2 ·re
2, and ar, br, at and bt given by (6.26),

and (7.42), the stress state in a rotating disk having variable thickness according to a

power of a linear function and featuring a fictitious density variation along the

radius can be expressed as follows:

sr¼ A � ar þ B � br þ o2 � r2e � g0 � gr þ g1 � �1 þ g2 � �2 þ g3 � �3 þ :::ð Þ
st ¼A � at þ B � bt þ o2 � r2e � g0 � gt þ g1 � z2 þ g2 � z2 þ g3 � z3 þ :::ð Þ: (7.45)

Here again, the strain state associated with the above stress state is obtained from

(1.25) from which temperature terms are omitted, after substituting relations (7.45)

in them; we will then have u ¼ r�et.
Likewise, it should be noted that all of the above relations for density variation

along the radius are generalizations of those obtained for the conical disk, which is

thus a specific case of the variable-thickness disk according to (7.1). Written in

terms of variable t, these relations can be used to obtain, for n ¼ k ¼ 1, relations

for the converging conical disk, and for n ¼ �1 and k ¼ 1 relations for the

diverging conical disk.

7.5 Non-Linearly Variable Thickness Disks with Density

Variation and Subjected to Thermal and Centrifugal Loads

Lastly, we will consider a non-linearly variable thickness rotating disk subjected to

thermal load and having density variation along its radius. It will be assumed that

the functions T ¼ T(r) and g ¼ g(r) are the polynomials given by (4.5) and (7.39)

respectively. Since the principle of superposition applies in the linear elastic field, it

is obvious that, taking (7.31) and (7.38) into account, the stress state will be given

by the relations:

sr ¼ A � ar þ B � br þ o2 � r2e � g0 � gr þ g1 � �1 þ g2 � �2 þ g3 � �3 þ :::ð Þ
þ E � a � ’ rð Þ

st ¼ A � at þ B � bt þ o2 � r2e � g0 � gt þ g1 � z2 þ g2 � z2 þ g3 � z3 þ :::ð Þ
þ E � a � c rð Þ;

8>>><
>>>:

(7.46)

while the associated strain state will be given by (1.25) after substituting the above

relations in them. Radial displacement, on the other hand, will be derived from the

usual relation u ¼ r�et.
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7.6 Examples of Non-Linear Variable Thickness Disks

A number of numerical examples will be given below which illustrate how to

proceed in calculating the stress and strain states in steel disks (n ¼ 0.3;

E ¼ 204 GPa, g ¼ 7,800 kg/m3, a ¼ 12�10�6 �C�1) with thickness varying

according to relation (7.1) and having profiles of interest for actual applications,

with the exception of those discussed in Sects. 7.6.1 and 7.6.2, which are of

conceptual interest: the first makes it possible to give physical meaning to the

particular integral up.
Here again, the results for these examples are compared with those obtained

using finite element models. All of the considerations presented in Sect. 6.6 apply in

this connection.

7.6.1 Rotating Solid Disk with Apex Singularity and Having
Constant Density

This type of disk, although of little technical interest because of its pointed tip at

outer radius r ¼ re ¼ R deserves attention inasmuch as it makes it possible to

assign inherent physical significance to particular integral up, which directly

represents radial displacement in the solid disk having non-linearly variable thick-

ness, extended to its apex R. Indeed, as was indicated earlier, given that u1 tends to
infinity at the disk apex (r ¼ R, t ¼ 1), whereas u2 tends to infinity at the disk axis

(r ¼ 0, t ¼ 0), the constants appearing in (6.39) must be zero in order to have finite

values for displacement u. In other words, it is necessary that C1 ¼ C2 ¼ 0.

In this connection, it should be pointed out that relation (7.8), expressing up as a
third-order polynomial in r, and thus relations (7.12), expressing functions gr and gt,
already fulfil the boundary conditions:

sr ¼ st for r ¼ 0 r ¼ 0ð Þ
sr ¼ 0 for r ¼ R r ¼ 1ð Þ:

(
(7.47)

Figure 7.9a, b show stress-distribution curves sr and st and displacement-

distribution curve u ¼ up as functions of r in two solid steel disks (n ¼ 0.3;

E ¼ 204 GPa, g ¼ 7,800 kg/m3), extended to the apex radius re ¼ R (R ¼ 1 m),

both rotating at angular velocity o ¼ 314 rad/s, the first showing a convex profile

(k ¼ 0.5 and n ¼ 1), the second a concave profile (k ¼ 1.5 and n ¼ 1).

The figures indicate that: (1) the curves for sr and st follow those for functions gr
and gt, differing for s0; (2) stresses sr exceed stresses st, locally though by a small

amount; (3) the maximum stress values in the concave disk, which has less mass,

are significantly below those occurring, all other conditions remaining equal, in the

convex disk.
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7.6.2 Rotating Annular Disk with Apex Singularity and Having
Constant Density

If the two rotating disks of the type considered in the preceding example are annular

(this is another case of little design interest), the constant C1 appearing in (6.39)

must be zero in order to have a finite value for radial displacement u at the outer

edge, where r ¼ R (t ¼ 1); at the inner edge, given that the disks are annular, t 6¼ 0,
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Fig. 7.9 Stress-distribution curves sr, st and displacement-distribution curve u ¼ up in two solid

rotating steel disks (n ¼ 0.3)with profile variable according to (7.1) and featuring apex singularity and

constant density: (a) convex profile (k ¼ 0.5 and n ¼ 1); (b) concave profile (k ¼ 1.5 and n ¼ 1)
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and we will thus have C2 6¼ 0, as there is no singularity correlated with u2 for t ¼ 0.

The relation whereby the displacement field can be calculated in this case is (6.39)

from which term u1 is omitted. The two boundary conditions are as follows:

sr ¼ sri for r ¼ ri r ¼ bð Þ
sr ¼ 0 for r ¼ R r ¼ 1ð Þ:

(
(7.48)

As was shown, the second boundary condition is already fulfilled by up and u2,
while integration constant C2 is obtained from the first boundary condition.

Supposing that sri ¼ 0, i.e., that the disk inner surfaces are not loaded, the value

of constant C2 is obtained by equalling to zero (for r ¼ ri) terms in square brackets

appearing in the first of (1.27), from which temperature terms are omitted, and by

introducing u ¼ C2·u2 þ up.
As this is a case of little design interest, the developments have little to add from

the conceptual standpoint and will be left to the reader.

7.6.3 Rotating Solid Disks with re < R and Having
Constant Density

In this type of disk, as u2 tends to infinity at the disk axis (r ¼ 0, r ¼ 0), constant

C2 appearing in (6.39) must be zero in order to obtain a finite value of radial

displacement u at this radius. Moreover, given that the disk is of the frustum type

(re < R), r ¼ 1 < 1/n at the disk outer radius, and as there is no u1-related
singularity for r ¼ 1/n, then C1 6¼ 0. The relation whereby the displacement field

can be calculated in this case is (6.39) from which term u2 is omitted. The boundary

conditions are as follows:

sr ¼ st for r ¼ 0 r ¼ 0ð Þ:
sr ¼ sre for r ¼ re r ¼ 1ð Þ:

(
(7.49)

The first boundary condition is already fulfilled by up and, as was shown, by u1,
while integration constant C1 is obtained from the second boundary condition.

Supposing that sre ¼ 0, i.e., that the disk outer surface is not loaded, the value of

constant C1 is obtained by equalling to zero (for r ¼ re) terms in square brackets

appearing in the first of (1.27), from which temperature terms are omitted, and by

introducing u ¼ C1·u1 þ up.
Figure 7.10a, b show stress-distribution curves sr and st and displacement-

distribution curve u as functions of r in two solid steel disks (n ¼ 0.3; E ¼ 204

GPa, g ¼ 7,800 kg/m3), extended to outer radius re ¼ 0.8 m, thickness at axis

h0 ¼ 0.1 m and thickness at periphery he ¼ h0/3, no loaded at outer radius (sre
¼ 0), both rotating at angular velocity o ¼ 314 rad/s, though the first shows a

convex profile (k ¼ 0.5 and q ¼ 0.89), and the second shows a concave profile
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(k ¼ 1.5 and q ¼ 0.52). It is clear from a comparison of the two diagrams that, for

actual disks featuring a finite thickness at the crown ring boundary (where r ¼ 1),

the differences between the concave and the convex profile are much less pro-

nounced, and also that, as regards the stress state, the concave profile is slightly

preferable to the convex profile.
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Fig. 7.10 Stress-distribution curves sr, st and displacement-distribution curve u in two solid

rotating steel disks (n ¼ 0.3) having variable profile according to (7.1) with constant density and

re < R: (a) convex profile (k ¼ 0.5 and n ¼ 0.89); (b) concave profile (k ¼ 1.5 and n ¼ 0.52)
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7.6.4 Rotating Annular Disks with re < R and Having
Constant Density

As the majority of disks used in current machinery applications feature a central

hole of inner radius ri > 0 and an outer radius re < R, problems deriving from two

singularity points t ¼ 0 and t ¼ 1 do not apply. In this case, radial displacement u is
obtained from (6.39) complete with all terms. As there are no singularity points, it is

advisable to calculate the stress field by using relations (6.40), determining integra-

tion constants A and B by establishing:

sr ¼ sri for r ¼ b

sr ¼ sre for r ¼ 1:

(
(7.50)

Constants C1 and C2 in (6.39) can be determined by using relations (7.25).

Figure 7.11a, b show stress-distribution curves sr and st and displacement-

distribution curve u as functions of r in two steel annular disks (n ¼ 0.3) with

ri ¼ 0.1 m, re ¼ 0.8 m, h0 ¼ 0.1 m, and he ¼ h0/3, both rotating at angular

velocity o ¼ 314 rad/s and not loaded either at outer or inner radius (sri ¼ 0;

sre ¼ 0), the first showing a convex profile (k ¼ 0.5 and n ¼ 0.89), and the second

a concave profile (k ¼ 1.5 and n ¼ 0.52). Here again, a comparison of the diagrams

leads to the same conclusions reached in the preceding paragraph.

7.6.5 Rotating Disks with Hub and Crown Ring and Having
Constant Density

If, as often occurs in machinery applications (Fig. 7.12), the disk features a crown

ring and a hub, both of which are considered of constant thickness, it is first

necessary to determine radial stresses sr,A and sr,B present in section A (r ¼ ri)
and in section B (r ¼ re) respectively, and which constitute two unknown hyper-

static values.

By imposing boundary conditions on the disk, constants A and B are first

determined from the first of relations (6.40), and are expressed as functions of

unknown values sr,A and sr,B. Equations (6.40) are then used to obtain relations

expressing sr and st as functions of sr,A and sr,B. Lastly, by imposing equality of

radial displacements of the interface A, first regarded as a part of the disk and

second as a part of the hub, and of the interface B, also regarded first as a part of the
disk and second as a part of the crown ring, we determine unknown hyperstatic

values sr,A and sr,B and, proceeding backwards, all other items (in this connection,

see calculation example 3 of Sect. 2.5.3).

7.6 Examples of Non-Linear Variable Thickness Disks 165

http://dx.doi.org/10.1007/978-88-470-2562-2_6
http://dx.doi.org/10.1007/978-88-470-2562-2_6
http://dx.doi.org/10.1007/978-88-470-2562-2_6
http://dx.doi.org/10.1007/978-88-470-2562-2_6
http://dx.doi.org/10.1007/978-88-470-2562-2_6
http://dx.doi.org/10.1007/978-88-470-2562-2_2


It should be noted that, by appropriately selecting the disk profile, along with

crown ring and hub, stresses sr and st can be made almost constant; in other words,

a disk of uniform strength can be approximated within certain limits.

In the practical examples in Fig. 7.12a, b, the crown ring is simulated by a

radial stress at interface B(srB ¼ 120 MPa), while the hub may assume three

configurations which differ in mass. For each of these configurations, the
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Fig. 7.11 Stress-distribution curves sr, st and displacement-distribution curve u in two annular

rotating steel disks (n ¼ 0.3) having variable profile according to (7.1) with constant density: (a)

convex profile (k ¼ 0.5 and n ¼ 0.89); (b) concave profile (k ¼ 1.5 and n ¼ 0.52)
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corresponding interface stresses sr,A are indicated, but not the geometry. Fig-

ure 7.12a, b show stress-distribution curves sr and st and displacement-distribution

curve u as functions of r for two disks, the first showing a convex profile (k ¼ 0.5

and n ¼ 0.89), and the second a concave profile (k ¼ 1.5 and n ¼ 0.52), clarifying

that the most advantageous stress distribution is obtained with the hub having

greater mass.
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Fig. 7.12 Stress-distribution curves sr, st and displacement-distribution curve u in two steel disks
(n ¼ 0.3) having variable thickness according to (7.1), with hub and crown ring, for three different

hub configurations, each showing a specific interface stress distribution sr,A: (a) convex profile

(k ¼ 0.5 and n ¼ 0.89); (b) concave profile (k ¼ 1.5 and n ¼ 0.52)
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7.6.6 Annular Disks Having Constant Density and Subjected
to Temperature Gradient

We will now examine two non-linearly variable thickness disks which, like those

analysed in Sect. 7.6.4, are of constant density and have no singularity points. Here,

however, the disks are not rotating and are subjected to thermal load only, with

temperature varying according to relation (4.5), with i ¼ 3. In this case, the stress

state is obtained from relations (7.38), while integration constants A and B are

determined by imposing boundary conditions (7.50) of Sect. 7.6.4.

Figure 7.13a, b show stress-distribution curves sr and st and displacement-

distribution curve u as functions of r in two annular disks, featuring the same

geometry and made of the same material (n ¼ 0.3 and a ¼ 12�10�6 �C�1) as the

ones examined in Sect. 7.6.4, not loaded at either inner or outer edge and subjected

to a temperature gradient along the radius according to function T ¼ T0 þ k1rþ
k2r

2 þ k3r
3. The same figure shows curves of the temperature distribution, T being

dimensionless relative to reference temperature T0, as well as coefficients of the
third-order polynomial function. A comparison of the diagrams shows no sub-

stantial differences between the concave and convex profile disks.

7.6.7 Rotating Annular Disks Having Density Variation
on Radius

We will now examine two rotating disks which, like those analysed in Sect. 7.6.4,

have no singularity points, are not subjected to thermal load, and have variable

density along the radius according to relation (7.39), with i ¼ 3. Here, however, the

stress state is obtained from relations (7.42), while integration constants A and B are

determined by imposing boundary conditions (7.50).

Figure 7.14a, b show stress-distribution curves sr and st and displacement-

distribution curve u as functions of r in the two annular steel disks (n ¼ 0.3)

featuring the same geometry and made of the same material as the ones examined

in Sect. 7.6.4, rotating at angular velocity o ¼ 314 rad/s, not loaded at either inner

or outer edge, but featuring variable density along the radius according to function

g ¼ g0 þ g1 � rþ g2 � r2 þ g3 � r3. The same figure shows the curve of the density

variation, g being dimensionless relative to the basic material density g0, as well as
coefficients of the third-order polynomial function.

A comparison of the diagrams shows minor differences between the concave and

the convex profile disk.
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Fig. 7.13 Stress-distribution curves sr, st and displacement-distribution curve u in two steel disks
(n ¼ 0.3) having variable thickness according to (7.1), subjected to thermal gradient only:

(a) convex profile (k ¼ 0.5 and n ¼ 0.89); (b) concave profile (k ¼ 1.5 and n ¼ 0.52)
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Fig. 7.14 Stress-distribution curves sr, st and displacement-distribution curve u in two annular

steel disks (n ¼ 0.3) having variable thickness according to (7.1), showing variable density along

the radius: (a) convex profile (k ¼ 0.5 and n ¼ 0.89); (b) concave profile (k ¼ 1.5 and n ¼ 0.52)
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Fig. 7.15 Stress-distribution curves sr, st and displacement-distribution curve u in two annular

steel disks (n ¼ 0.3) having variable thickness according to (7.1), subjected to thermal gradient

and showing variable density along the radius, and comparison with FE-obtained results:

(a) convex profile (k ¼ 0.5 and n ¼ 0.89); (b) concave profile (k ¼ 1.5 and n ¼ 0.52)
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7.6.8 Rotating Annular Disks Having Density Variation on
Radius and Subjected to Thermal Load

Here, the same disks featured in the previous two examples will be examined, but

rotating and subjected to thermal load, with temperature varying according to

relation (4.5), with i ¼ 3, and having variable density along the radius according

to expression (7.39), still with i ¼ 3. In this case, the stress state is obtained from

relations (7.46), while integration constants A and B are determined by imposing

boundary conditions (7.50).

Figure 7.15a, b show stress-distribution curves sr and st and displacement-

distribution curve u as functions of r in the two annular steel disks (n ¼ 0.3)

featuring the same geometry and made of the same material as the ones examined

in the previous two examples, not loaded at either inner or outer edge, subject to a

temperature gradient along the radius and featuring variable density along the

radius. The functions of variation for T and g are the cubical ones referred to in

the two preceding examples, and shown in the diagram in dimensionless form.

A comparison of the diagrams shows minor differences between the concave and

the convex profile disks.

The figure also compares the results obtained by applying the analytical method

proposed here and the numerical results obtained, all other conditions remaining

unchanged, through FEM. The diagrams clearly show that the results of the

numerical model and those of the analytical model match perfectly.

7.6.9 Comparing Various Disk Types

Four solid disk configurations will now be compared ceteris paribus, respectively
with conical (k ¼ 1 and n ¼ 0.67), convex (k ¼ 0.5 and n ¼ 0.89) and concave

(k ¼ 1.5 and n ¼ 0.52) profiles and the fourth with uniform strength profile. All

four rotating disks are subjected to a stress distribution sre at the outer radius re.
All four disks taken into consideration fall into the category discussed in

Sect. 7.6.3. Accordingly, the conditions indicated in said section also apply here,

the only variation being sr ¼ sre 6¼ 0 at the outer radius re. By imposing this

boundary condition and bearing in mind that C2 ¼ B ¼ 0 and u ¼ C1u1 þ up,
the value of constant A will be obtained from the first of relations (6.40) and,

consequently, the value of the constant C1 will be obtained from the first of relations

(7.25).

Figure 7.16 shows the profile geometries, as well as curves of stress-distribution

curves sr/sre, st/sre and displacement-distribution curve u/u0 as functions of r in

the four solid disks. Stress values are dimensionless relative to stress value sre,
whereas displacement values are dimensionless relative to u0 ¼ re sre (1 � n)/E.

Comparison of these diagrams shows that the convex profile most closely matches

the stress state of the uniform-strength disk, whereas the concave profile features the
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most substantial discrepancies. Behaviour of the conical profile is midway between

that of the concave and the convex profiles. As regards radial displacement, there are

no differences of design significance between the four profiles.
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7.7 Non-Linearly Variable Thickness Disks Subjected

to Angular Acceleration

If the disk has a thickness that varies according to a power of a linear function

expressed by relation (7.1) and is subjected to angular acceleration, the solution

does not involve difficulties comparable to those encountered above in analysing

equilibrium and compatibility in the radial direction. In this case, the solution of

(2.74) is as follows:

trt ¼ _or2eg
nr� 1ð Þ
r2n4

� r3n3 k þ 3ð Þ k þ 2ð Þ k þ 1ð Þ þ 3r2n2 k þ 2ð Þ k þ 1ð Þ þ 6rn k þ 1ð Þ þ 6½ �
k þ 4ð Þ k þ 3ð Þ k þ 2ð Þ k þ 1ð Þ

þ C

r2 nr� 1ð Þk ;

(7.51)

where C is an integration constant that can be determined by establishing that the

shear stress at the outer radius assumes the value (trt)e, deriving from the applica-

tion of a driving or braking torque at the rim of the disk. By setting this boundary

condition, we obtain the relation:

trt ¼ g _or2e
r2n4

� nr� 1ð Þ
kþ 4ð Þ � kþ 3ð Þ � kþ 2ð Þ � kþ 1ð Þ

�
(

r3n3 kþ 3ð Þ � kþ 2ð Þ � kþ 1ð Þ þ 3r2n2 kþ 2ð Þ � kþ 1ð Þ þ 6rn � kþ 1ð Þ þ 6
� �þ

þ n� 1ð Þkþ1

nr� 1ð Þkþ1
n3 kþ 3ð Þ � kþ 2ð Þ � kþ 1ð Þ þ 3n2 kþ 2ð Þ � kþ 1ð Þ þ 6n � kþ 1ð Þ þ 6
� �þ

þ n� 1ð Þk
nr� 1ð Þkþ1

� trtð Þe
g � _o � r2e

� n4 kþ 4ð Þ � kþ 3ð Þ � kþ 2ð Þ � kþ 1ð Þ
)
:

(7.52)

If no driving or braking torque is applied at the outer radius of a constant density

disk whose thickness varies according to (7.1), relation (7.51) gives C ¼ 0. Conse-

quently, as (trt)e ¼ 0, we will have:

trt ¼ g _or2e
r2n4

� nr� 1ð Þ
kþ 4ð Þ � kþ 3ð Þ � kþ 2ð Þ � kþ 1ð Þ

�
(

r3n3 kþ 3ð Þ � kþ 2ð Þ � kþ 1ð Þ þ 3r2n2 kþ 2ð Þ � kþ 1ð Þ þ 6rn � kþ 1ð Þ þ 6
� �þ

þ n� 1ð Þkþ1

nr� 1ð Þkþ1
n3 kþ 3ð Þ � kþ 2ð Þ � kþ 1ð Þ þ 3n2 kþ 2ð Þ � kþ 1ð Þ þ 6n � kþ 1ð Þ þ 6
� �)

:

(7.53)
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It is obvious that if we set k ¼ 1, the above relations give the shear stress

resulting from angular acceleration in a conical disk whose profile varies along

with parameter n, as shown in Fig. 7.1a.
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