
Chapter 5

Disk of Uniform Strength

5.1 Profile Definition

In general, a disk of uniform strength is defined as one in which the radial and hoop

stresses resulting from centrifugal loading are constant and equal to each other at all

points. Consequently, the following relation applies throughout the disk:

sr ¼ st ¼ s ¼ const; (5.1)

where s is the stress at which the disk material works, which is obviously equal to

the permissible stress sam for that material. This configuration, where disk profile

varies according to an exponential function, was first introduced by De Laval in the

late 1800s.

For a disk consisting of isotropic material subjected only to centrifugal load

(zero thermal gradient along the radius), the above relations satisfies compatibility

equations (1.23) or (1.24). A disk with these properties is thus possible from the

standpoint of compatibility of the stress field. However, as a turbine disk is also

always subjected to thermal load, the condition of uniform strength given by

relation (5.1) can never be ensured, as it would not respect the compatibility

equation. The following treatment thus applies to a hypothetical disk subjected

only to centrifugal load. Although the uniform strength profile can be considered as

a starting point in designing actual turbine disks, it is better to start from the profiles

that will be discussed in the following chapters, as they can ensure an optimal

distribution of principal stresses even when thermal loading is involved.

Introducing relation (5.1) in the first equilibrium equation (1.10) yields the

following relation, which is the solving equation for the uniform strength disk:

s � r � dh
dr

þ g � o2 � r2 � h ¼ 0: (5.2)
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This is a first order differential equation with separable variables which can be

written in the following form:

dh

h
¼ � g � o2

s
� r � dr: (5.3)

Integrated, this relation gives:

ln h ¼ � g � o2

2 � s � r2 þ lnC; (5.4)

where C is the integration constant, which can be determined by establishing that

the disk thickness assumes an assigned value at a given radius. Passing from the

logarithm to the function, relation (5.4) gives:

h ¼ C � e�
g � o2

2 � s � r2
: (5.5)

Independently of constant C, the profile thus defined features an inflection point

at the radius

r ¼
ffiffiffiffiffiffiffiffiffiffiffi
s

g � o2

r
; (5.6)

which can be found by equalling the second derivative of relation (5.5) to zero. For

values of radius r lesser or greater than that given by this relation, the profile’s

concavity will face inward or outward respectively as viewed by an observer

located on the mid-plane bisecting the disk’s thickness.

On the basis of relation (5.5), and depending on whether we impose the

condition

h ¼ he for r ¼ re (5.7)

or the condition

h ¼ h0 for r ¼ 0; (5.8)

the integration constant C will be given by:

C ¼ he � e
g�o2
2�s �r2e (5.9)

or

C ¼ h0: (5.10)
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Consequently, the variation function for thickness h with radius r can be

expressed respectively with the following two equivalent relations:

h ¼ he � e
g � o2

2 � s r2e � r2
� �

: (5.11)

or

h ¼ h0 � e
� g � o2

2 � s � r2
: (5.12)

Finally, after collecting the term re
2 in the exponent in relation (5.11),

multiplying and dividing the exponent appearing in relation (5.12) by re
2 and

introducing the usual reference stress s0 ¼ g·o2·re
2 as well as the dimensionless

variable r, relations (5.11) and (5.12) can be rewritten in the following form:

h ¼ he � e
s0
2 � s 1� r2

� �
: (5.13)

h ¼ h0 � e
� s0
2 � s � r2

: (5.14)

Both relations (5.12) and (5.14) define a solid disk with thickness h0 at the axis
and thickness h decreasing rapidly from the axis outwards according to a one-

parameter exponential function1 given by the ratio s0/2s; the first relation describes
this disk in terms of r, and the second in terms of r. From both relations (5.12) and

(5.14), we can conclude that the outer radius is not defined, and could thus be

regarded as virtually infinite (Fig. 5.1a). If the disk were to be cut off at a given

outer radius re (as is in any case necessary for design and construction reasons, as

the geometrical dimensions of the interface on which the blades act are generally

fixed), the condition (5.1) would not be respected on the cylindrical surface of

radius r ¼ 1, since we would necessarily have sr ¼ 0 on this surface.

To respect the above condition, the disk must feature a peripheral crown ring

whose dimensions are such as to develop the radial stress s at the disk interface.

Usually, in fact, the outer blades are not sufficient in order to have sr ¼ st ¼ s at

radius r ¼ re; in a disk featuring an array of blades spaced at equal angles on the

1 Eraslan and Orçan [15] considered a profile with thickness varying according to a two-parameter

exponential function, defined by the relation h ¼ h0 � e�n�rk where, with the meaning of the other

symbols remaining the same, n and k are geometric parameters controlling thickness at the outer

edge relative to that at the axis and the profile shape respectively. This relation makes it possible to

describe solid and annular disks with concave, convex and inflection point profiles, but not conical

disks; with this relation, differential equation (1.28) can be integrated by means of the linear

combination of two mutually independent hypergeometric functions. From the application stand-

point, it should be noted that an optimization process for the two geometric parameters n and k
leads, as would be expected, to the De Laval uniform strength disk. Consequently, this relation is

of purely mathematical interest.
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outer radius having total mass mp and centre of gravity at a distance rp from the

rotational axis, this condition would be respected only if mass mp were:

mp ¼ p � g � r3e � h0 � e�s0=2s

s0=2sð Þ � rp : (5.15)

This value of mp is determined by establishing that the total centrifugal force

Fc ¼ mp·o
2·rp to which the blades are subjected is evenly distributed on the outer

periphery of the disk, having a surface area of 2p·re·he. However, as relation (5.15)

is not generally satisfied in a bladed disk, it is necessary to provide a crown ring of

appropriate dimensions.

r

0
h0

a

b c

Fig. 5.1 (a) Uniform strength disk, unlimited at outer radius; (b) solid uniform strength disk with

lateral flanges for connection to two flanges at the ends of a multi-pieces shaft; (c) uniform strength

disk with annular hub to be shrunk onto a one-piece shaft
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Similarly, if the disk were to feature a central hole, condition (5.1) would not be

respected on the cylindrical surface of radius ri, as here again radial stress would be
zero. For this condition to be respected, the disk would have to be solid and integral

with the shaft, or would have to feature a solid or annular central portion of constant

thickness and blended with the uniform-strength portion, In this latter case, the

central portion is a hub to be designed in such a way as to generate a tensile stress

equal to s at the interface with the variable-thickness portion. Connection to the

shaft is generally accomplished by means of bolts or screws which secure the disk

to flanges on the shaft.

5.2 Technical Solutions

In turbines, disks with profile as described by relation (5.14) occasionally have no

central hole and are secured at both sides to two flanged piece of a multi-pieces

shafts by means of threaded connections (Fig. 5.1b). More frequently, however,

disks with a central hole are used, and are shrunk onto a one-piece shaft (Fig. 5.1c).

In this case, the central portion of the disk is configured to form a long hub whose

profile is very far from that of the uniform strength disk defined by relations (5.13)

and (5.14). Figure 5.2a shows the design solution actually used in both the medium/

low-pressure section and the convergent double-flow low-pressure section, which

are mounted on the same shaft, of a steam turbine for a thermonuclear power plant.

As can be seen, the solid disks also serve as the drive shaft, as they are torsionally

and flexurally connected to each other by means of welded joints on the mating

faces of the two consecutive disks’ crown rings. On a larger scale, Fig. 5.2b shows a

design solution similar to that represented in Fig. 5.1a. In other designs by the same

manufacturer (see Fig. 5.3a, illustrating the four-flow low-pressure section of a

thermonuclear power plant steam turbine), the disks are torsionally coupled, not at

the frontal surfaces of the crown rings carrying seats for the blade attachments on

their periphery, but at the frontal surfaces of two dummy crown rings at a smaller

radius. In any case, turbine disks always feature a crown ring housing the blades on

their outer periphery (Fig. 5.1b, c).

Though the hub and crown ring do not have profiles complying with the

thickness variation functions characterizing the solid disk of uniform strength, if

we bear the centrifugal forces involved and the deformability of the individual parts

(hub, disk and crown ring) in mind, we can nevertheless determine the dimensions

of these parts in such a way that the stresses s that satisfy condition (5.1) are

generated at the limit cross sections of the disk that is at outer and inner radii of the

uniform strength disk. Figures 5.3a, b show two design solutions actually uses for,

respectively, a steam turbine and a gas turbine.

With reference to relations (5.13) and (5.14), Fig. 5.4 shows ratio h/he (Fig. 5.4a)
and ratio h/h0 (Fig. 5.4b) versus r, for different values of parameter s0/2s, as can be
seen, bell shapes are heavily influenced by ratio s0/2s, with maximum thickness at

the axis. Pronounced thickness gradients do not exist only where the values of ratio
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s0/2s are not particularly high. If ratio h0/he exceeds 3, and s0/2s is thus higher than

1.1, the disk shape may be impossible to actually produce, or may be extremely

expensive both from the manufacturing standpoint and because of its axial

dimensions. As a result, the use of uniform strength disks is now limited to values

of s0/2s below 1.1 (though certain design applications involve values of s0/2s up to

(1.6–1.8), but always below 2) and, consequently, to relatively low peripheral

velocities o � re or high strength materials, i.e., materials with high permissible

stress s.
In view of the foregoing considerations, the limit often given in the literature

(Giovannozzi, [29]) for the ratio s0/2s ¼ 3.22, which applies to disks having a

thickness at the outer radius equal to 1/25 of the thickness at the axis, must be

regarded as quite far from that imposed by current manufacturing and functional

requirements. It should also be specified that, when designing the disk, thickness at

the axis must not exceed (0.25–0.30) � re.

Fig. 5.2 (a) Uniform strength disks in the medium/low-pressure and double-flow low-pressure

sections of a Brown Boveri steam turbine for a thermonuclear power plant, with disks connected at

the crown rings; (b) detail of a similar steam turbine design
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Fig. 5.3 (a) Uniform strength disks in the four flow low-pressure section of a Brown Boveri steam

turbine for a thermonuclear power plant, with disks connected at dummy crown rings at a smaller

radius than that of the bladed crown rings; (b) longitudinal section of a Westinghouse-Fiat gas

turbine
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Fig. 5.4 (a) Distributions of ratio h/he; (b) ratio h/h0 versus radius r for different values of

parameter s0/2s in uniform strength disks
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5.3 Crown Ring Design

To determine (Fig. 5.1b, c) the radial thickness (rec � red) of the crown ring which,
together with the blades at its outer radius, can guarantee condition (5.1) at the

interface with the disk, we will consider a uniform strength disk with no central hole

and with a crown ring of constant thickness, featuring the geometry shown in

Fig. 5.5. Let b ¼ red/rec and d ¼ hec/hed; the crown ring’s outer radius rec and its

axial thickness hec are generally known, as they are determined beforehand when

designing the blades and the associated seats in the crown ring.

For a rough calculation, we can consider the crown ring to be a disk of constant

thickness stressed at the outer radius rec by a radial stress sre due to the blades, and
at the inner radius red by a radial stress sri ¼ s/d due to the disk. Stress sri is
justified by the fact that, for there to be equilibrium, the product (sr�h) must remain

constant at the disk/ring interface. At this interface, in any case, there is a disconti-

nuity in function h ¼ h(r) if d 6¼ 1 or in its first derivative if d ¼ 1.

Assuming a plane stress state in this area is thus a very rough approximation.

With this interface regarded as part of the crown ring, there would be a redistribu-

tion of stress sri for d 6¼ 1 in areas that are not in fact loaded. Nevertheless, this

approximation is indispensable if we wish to use the relations of the mono-

dimensional thin disk theory, and in any case leads to results that are acceptable

from the design standpoint, given that, according to Saint Venant’s principle, if a

system of forces acting on a small portion of the surface of an elastic body is

replaced by another statically equivalent system of forces acting on the same

portion of the surface, the redistribution of loading produces substantial changes

in the stresses only at the local level, but has negligible effects on the stress state at

distances which are large by comparison with the linear dimensions of the surface

to which the equivalent system of loads was applied.

For the structure to satisfy compatibility conditions, the radial displacement of

the outer edge of the disk must be equal to the radial displacement of the inner edge

of the crown ring. Bearing in mind the second geometric relation (1.14) and the

Fig. 5.5 Geometry of a uniform strength disk with a crown ring of uniform thickness
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second (1.25) from which the temperature term is omitted, and considering condi-

tion (5.1), the disk’s radial displacement at radius red will be:

u ¼ red � et ¼ red
E

� st � n � srð Þ ¼ red
E

� s � 1� nð Þ: (5.16)

By applying the principle of superposition, the crown ring’s radial displacement

at the same radius red can be calculated as the sum of the displacements resulting

from centrifugal load, stress at the inner radius, and stress at the outer radius.

Consequently, the third relations of (2.34), (2.16) and (2.19) written for r ¼ b
yield:

u ¼ red
E

� b � s0
4
� 3þ nð Þ þ b2 � 1� nð Þ� �� s

d
� b2 � 1� nð Þ þ 1þ nð Þ

1� b2

� �
þ 2 � sre
1� b2

	 

;

(5.17)

where s0 ¼ g ∙ o2 ∙ rec2.
Equating (5.16) and (5.17) and solving for b, we obtain:

b ¼


2 � s
s0 � d

� d� 1ð Þ þ 2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 � d2=2s
� �

� s0=2sð Þ � 1þ n½ �
1� n2
� � þ d� 1ð Þ2

4
þ s0 � d2 � sre
2s2 � 1� nð Þ

s" #
� 1þ n
1� n

vuut
ð5:18Þ

Equation (5.18) can be used to determine the crown ring’s radial thickness once

all other parameters have been determined. The ratio of crown ring thickness hec to
thickness h0 at the centre of the disk can be readily determined by means of relation

(5.14), thus leading to the following relation:

hec=h0 ¼ d � e�s0=2s: (5.19)

In design calculations, crown ring outer radius rec and axial length hec are

imposed by manufacturing reasons, and rotor angular velocity o is assigned.

Once ratio d and permissible stress s are established as design choices (the latter

on the basis of the material to be used), (5.18) can be used to obtain ratio b and,

consequently, outer radius red of the uniform strength disk. Disk profile is then

determined by means of (5.13).

The disk profile can also be constructed via a graphic procedure, using the Rowe

diagram [16] shown in Fig. 5.6 and taken from several technical manuals. To this

end, once red has been determined, we introduce the peripheral load per unit of

tangential length P ¼ hed·s and use the diagram to find, for a selected number of

radii r, the ratio (h·s)/P for an assigned s0/s. The thicknesses corresponding to

these radii are obtained with the relation:
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h ¼ h � s
P

� �
� P

s

� �
: (5.20)

Though modern computing power might appear to have made this diagram

obsolete, it has been included here because it clarifies the influence of the various

parameters on disk profile at a glance.

Fig. 5.6 Rowe diagram for constructing the profile of a uniform strength disk via a graphic

procedure
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To conclude our discussion of the uniform strength disk, it should be borne

in mind that, from the manufacturing standpoint, the large number of design con-

straints, some of which are dictated by the process cycle, can at times make it

impracticable to employ disks which are of uniform strength in the strict sense. As a

result, it may be preferable to forego the undeniable advantages they offer in terms

of stress and strain states, and opt for hyperbolic disks (or, as we will see in Chaps. 6

and 7, conical disks and non-linearly variable thickness disks) which approximate

them within certain limits (for instance, a uniform strength disk is characterized by

an inflection point, which does not exist in hyperbolic, conical or non-linearly

variable thickness disks).

5.4 Example

We will now consider a uniform strength steel disk of the type shown in Fig. 5.1c,

whose geometry at the centre is defined by magnitudes re ¼ red ¼ 0.250 m,

ri ¼ 0.050 m, he ¼ hed ¼ 0.015 m and h0 ¼ 0.075 m, and rotating at angular

velocity o ¼ 750 rad/s (n � 7,160 rpm). We will determine the stress in the disk

in question and its profile. We will then consider an annular hyperbolic disk, also

consisting of steel, and also having at the central part re ¼ 0.250 m, ri ¼ 0.050 m,

he ¼ 0.015 m and hi corresponding to those of the uniform strength disk at radius

ri ¼ 0.050 m, comparing the stress states at radius ri of the two disks, as well as the
radial displacements at the same radius.

Equating relations (5.13) and (5.14), we obtain:

he
h0

¼ e
� s0
2 � s�r2

e
s0
2 � s� 1� r2

� � ¼ e
� s0
2 � s:

whereby

0:015

0:075
¼ 1

5
¼ e

� s0
2 � s �; then ln

1

5
¼ � s0

2 � s
and hence

s ¼ s0
3:219

¼ 0:310 � s0 ¼ 85:19 MPa

given that s0 ¼ g ·o2·re
2 ¼ 7.8·103·7502·0.252 ¼ 274.22 MPa.

Using relation (5.14), we can then conclude that the profile of the uniform

strength disk in question is defined by the following relation

h ¼ h0 � e
� s0
2 � s � r2 ¼ 0:075 � e�1:609 � r2
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as a function of dimensionless variable r, or as a function of variable r by the

relation

h ¼ h0 � e
� g � o2 � r2

2 � s ¼ 0:075 � e�25:751 � r2 :

From both of these relations, it can be concluded that at radius ri ¼ 0.050 m, i.e.,

for b ¼ ri/re ¼ 0.2, thickness hi of the uniform strength disk is 0.070 m.

The hyperbolic disk to be compared with that considered here is thus defined by

the following magnitudes: re ¼ 0.250 m, ri ¼ 0.050 m, he ¼ 0.015 m and

hi ¼ 0.070 m.

As b ¼ 0.2, (4.3) written for r ¼ 1 gives a ¼ �0.957. For the steel disk

(n ¼ 0.3), relations (4.14) yield the following values of roots p and q: p ¼ 1.710,

q ¼ �0.753. As b2 ¼ 0.04, bp�1 ¼ b0.710 ¼ 0.32 and bq�1 ¼ b�1.753 ¼ 16.80,

the first two relations (4.31) give:
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Fig. 5.7 (a) Profiles of the uniform strength disk and of the hyperbolic disk with the same hi;
(b) dimensionless principal stresses sr/s0 and st/s0 versus dimensionless radius r in the uniform

strength disk and in the hyperbolic disk with the same hi, both subjected only to centrifugal load
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sr ¼ 0:68 � �16:76�r0:71þ0:28�r�1:75þ16:48�r2ð Þ
�16:48ð Þ � s0

st ¼ �41:65�r0:71�1:58�r�1:75þ31:31�r2ð Þ
�79:79ð Þ � s0:

In particular, we obtain:

srð Þr¼b ¼ srð Þr¼1 ¼ 0; stð Þr¼b ¼ 0:482 � s0; stð Þr¼1 ¼ 0:149 � s0:

In comparing the stress states of the two disks, we thus see that the hoop stress at

the inner radius of the hyperbolic disk is over 55% higher than that in the uniform

strength disk (Fig. 5.7).

The radial displacement at the inner radius of the uniform strength disk is:

ðuÞr¼b ¼
re � b
E

� stð Þr¼b � n � srð Þr¼b

h i
¼ re � b

E
� s � 1� nð Þ ¼ re � b

E
� 0:217 � s0;

while that at the inner radius of the corresponding hyperbolic disk is:

ðuÞr¼b ¼
re � b
E

� stð Þr¼b � n � srð Þr¼b

h i
¼ re � b

E
� 0:482 � s0:

From the standpoint of displacements as well as that of stresses, then, there can

be no doubt that using a uniform strength disk is more advantageous, all other

conditions remaining equal, than employing a comparable hyperbolic disk.
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