
Chapter 3

Thermal Loads and Fictitious Density Variation

Along the Radius

3.1 Annular Disk, Subjected to Thermal Load

Here again, the general solution of (2.3) can be found by adding the solution of the

associated homogeneous equation (2.4) to a particular solution of the complete

equation. As the general solution of the associated homogeneous equation (2.4) is

already known, the problem of the disk subject to a non-zero temperature gradient

along the radius is reduced to determining a particular integral of (2.3). Note that the

derivative dT/dr appears in this latter equation. It follows that a constant temperature

resulting from slow, uniform heating or cooling of the disk does not cause stresses,

but only expansion. This observation is valid in general, regardless of the disk’s

shape, provided the material is isotropic and its elastic and thermophysical

properties are independent of the radius.

To calculate this particular integral, it is necessary to know the function T ¼ T(r)
of temperature distribution along the radius. Frequently, the temperature does not

depend only on radius r, but varies according to a more complex function. In many

current design applications (disks for gas and steam turbines, for example), however,

the assumption that temperature varies only as a function of the radius is a suffi-

ciently close approximation from the engineering standpoint, and can thus be

profitably used by the structural designer because of the simplifications that it

permits.

In this context, we will consider three functions of temperature variation with the

radius, viz.:

T ¼ T0 þ k � rn ; (3.1)

T ¼
Xn
i¼0

ki � ri ; (3.2)

T ¼ TðrÞ : (3.3)
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The first two, which are taken from the literature, express T ¼ T(r) through an

n-th degree function and a polynomial of degree n respectively, while with the third,
any function T ¼ T(r) whatsoever is assumed. In the latter case, it should be noted

that the function T ¼ T(r) need not necessarily be restricted to functions that can be
integrated analytically; for those that cannot, it is possible to proceed with numerical

integration, as the results thus obtained, though approximate, are acceptable for

design purposes.

In function (3.1), k and n are constant, with n being any real exponent, whether

positive or negative, an integer or a fraction, while T0, which is also constant, is the
reference temperature, and in general coincides with the ambient temperature or the

assembly temperature. In function (3.2), ki are constant and i ¼ 0, 1, 2, . . ., n (for this
function, k0 ¼ T0 is the reference temperature, again coinciding with the ambient

temperature or the assembly temperature). In even more general terms, the

function T ¼ T(r) given by (3.2) can be expressed in the form T ¼ T0 þ
Pn

i¼1 ki � rmi,

where ki are constants and m1, m2, . . ., mn are exponents that are not necessarily

integers.

3.1.1 Function T Given by an n-th Degree Function

Where function T ¼ T(r) is expressed by (3.1), relation (3.4) written in the following
form can be used:

d

dr

1

r
� d
dr

u � rð Þ
� �

¼ 1þ nð Þ � a � dT
dr

: (3.4)

Given that dT/dr ¼ k � n � rn�1, performing two successive integrations (here again,

we have chosen for demonstration purposes to proceed with direct integration)

followed by a derivation operation yields:

u ¼ 1þ nð Þ � a � k � rnþ1

nþ 2
þ C1 � r

2
þ C2

r
du

dr
¼ 1þ nð Þ � a � k � nþ 1

nþ 2
� rn þ C1

2
� C2

r2
:

8>><
>>: (3.5)

It should be noted that the first term in the second member of the first of these

relations is the particular integral of the non-homogeneous second order differential

equation (3.4); also it can be deduced with the usual procedure that applies to this

type of differential equation, i.e., by setting u ¼ C� r n+1, substituting this relation

together with its first and second derivatives in (3.4), where dT/dr ¼ k � n � rn�1 and

then calculating constant C, once the coefficient of the power function rn�1 has been

equated to zero.
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Substituting expressions (3.5) in relations (1.27), where it is established that

a�T ¼ a � k � rn, given that, as indicated above, a�T0 makes no contribution to

stresses, yields the following expressions of sr and st as a function of radius r:

sr ¼ E � C1

2 � 1� nð Þ �
E � C2

1þ nð Þ �
1

r2
� E � a � k

nþ 2
� rn

st ¼ E � C1

2 � 1� nð Þ þ
E � C2

1þ nð Þ �
1

r2
� E � a � k � nþ 1

nþ 2
� rn:

8>><
>>: (3.6)

Subsequently, by multiplying and dividing the second and third term of the

second member of expressions (3.6) by re
2 and by re

n respectively, introducing the

dimensionless variable r, using relations (2.9) and taking

C0 ¼ E � a � k
nþ 2

� rne e D0 ¼ E � a � k � nþ 1

nþ 2
� rne ; (3.7)

we arrive at the following relations, which express radial and hoop stresses as a

function of r:

sr ¼ A� B=r2 � C0 � rn
st ¼ Aþ B=r2 � D0 � rn:

(
(3.8)

Introducing relations (3.8) in the second (1.25) and bearing in mind that, given

the second relation (1.14), u ¼ r�et, yields the following expression of radial

displacement u ¼ u(r) for the configuration at reference temperature T ¼ T0,
which in general is assumed to be the assembly temperature Ta:

u¼ re
E
� r � A � 1� nð Þ þ B

r2
� 1þ nð Þ � D0 � n � C0 � E � a � k � rne

� � � rn� �
¼

¼ re
E
� r � A � 1� nð Þ þ B

r2
� 1þ nð Þ þ E � a � k � 1þ nð Þ

nþ 2
� rne � rn

� �
:

(3.9)

Obviously, where the assembly temperature to differ from the reference temper-

ature, the further term a� E� (Ta � T0) would appear within the square brackets in

expression (3.9). Relations (3.8) and (3.9) describe the distribution of radial and

hoop stresses and radial displacement versus r in a disk subjected to a non-zero

temperature gradient along the radius expressed by (3.1). In these relations, as the

temperature variation along the radius is known, C0 and D0 represent known terms

for a given material and for an assigned outer radius re, while A and B are the

integration constants to be determined by imposing boundary conditions.

It should be noted that if the function of temperature variation with the radius

expressed by (3.1) were to be characterized by exponent n ¼ �1, we would have
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dT/dr ¼ �k∙r�2 at the second member of relation (3.4). As a result, the solution of

this equation would no longer be independent of that of the associated non-

homogeneous equation, as two terms in r�2 would appear in relation (3.4). Never-

theless, a solution is still possible, but it will not be given here as it is of little design

interest. The difficulty is purely mathematical and can be readily circumvented,

with results that provide an excellent approximation, by using an exponent n which
is close to but not equal to �1 (for example, n ¼ � 0.999 or n ¼ � 1.001).

In the case considered here of an annular disk subjected only to thermal load, the

boundary conditions to be imposed are:

sr ¼ 0 for r ¼ 1

sr ¼ 0 for r ¼ b:

(
(3.10)

Accordingly, the system obtained from the first of relations (3.8) gives:

A ¼ E � k � a
nþ 2

� rne �
1� bnþ2

1� b2

B ¼ E � k � a
nþ 2

� rne �
1� bn

1� b2
� b2:

(3.11)

Substituting the values of the constants thus found in relations (3.8) and (3.9)

gives the following expressions for sr, st and uwhich provide a univocal solution of
the problem:

sr ¼ E � a � k
nþ 2

� rne �
1� bnþ2

1� b2
� 1� bn

1� b2
� b

2

r2
� rn

� �

st ¼ E � a � k
nþ 2

� rne �
1� bnþ2

1� b2
þ 1� bn

1� b2
� b

2

r2
� nþ 1ð Þ � rn

� �

u ¼ r � a � k
nþ 2

� rnþ1
e � 1� bnþ2

1� b2
� 1� nð Þ þ 1� bn

1� b2
� 1þ nð Þ � b

2

r2
þ 1þ nð Þ � rn

� �
:

8>>>>>>>><
>>>>>>>>:

(3.12)

3.1.2 Function T Given by an n Degree Polynomial

By contrast, where function T ¼ T(r) is expressed by (3.2), relation (3.4) can again

be used, given that dT dr= ¼ Pn
i¼1 i � ki � ri�1 , thus, performing two successive

integrations followed by a derivation operation yields:
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u ¼ a � 1þ nð Þ �
Xn
i¼1

ki � r
iþ1

iþ 2
þ C1 � r

2
þ C2

r

du

dr
¼ a � 1þ nð Þ �

Xn
i¼1

iþ 1

iþ 2
� ki � ri þ C1

2
� C2

r2
:

(3.13)

It should also be noted that integrating relation (3.4) withdT dr= ¼ Pn
i¼1 i � ki � ri�1

is also possible using the principle of superposition: in this case, the total stress state in

the disk will be given by the sum of the stress states for the n terms of the summation

appearing in function (3.2), each calculated by imposing the same boundary

conditions. It should also be observed that if function (3.2) were characterized by a

termwith exponent i ¼ �1, the latter would give rise to the same integration problem

indicated for function (3.1), to which the reader is referred.

Substituting expressions (3.13) in relations (1.27), where it is established that

a � T ¼ a �Pn
i¼0 ki � ri ¼ a �Pn

i¼1 ki � ri, given that a·k0 is a constant term and thus

makes no contribution to stresses, yields the following expressions of sr and st as a
function of radius r:

sr ¼ E � C1

2 � 1� nð Þ �
E � C2

1þ nð Þ �
1

r2
� a � E �

Xn
i¼1

ki � ri

iþ 2

st ¼ E � C1

2 � 1� nð Þ þ
E � C2

1þ nð Þ �
1

r2
� a � E �

Xn
i¼1

iþ 1

iþ 2
� ki � ri:

8>>>><
>>>>:

(3.14)

Subsequently, by multiplying and dividing the second and third term of the

second member of expressions (3.14) by re
2 and by re

i respectively, introducing the

dimensionless variable r as well as the constants A and B given by relations (2.9),

we arrive at the following relations, which express radial and hoop stresses as a

function of r:

sr ¼ A� B

r2
� a � E �

Xn
i¼1

ki � rie �
ri

iþ 2

st ¼ Aþ B

r2
� a � E �

Xn
i¼1

iþ 1

iþ 2
� ki � rie � ri:

8>>>><
>>>>:

(3.15)

Relations (3.15) are more general than relations (3.8), which are a particular case

thereof. It is sufficient to consider the n-th term of polynomial (3.2) alone, or in

other words, it is sufficient to set i ¼ n, k1 ¼ k2 ¼ . . . kn�1 ¼ 0 in the latter

polynomial to reduce relations (3.15) to relations (3.8).

Introducing relations (3.15) in the second (1.25) and noting that, given the

second relation (1.14), u ¼ r·et, we obtain the following expression for radial

displacement u ¼ u(r) for the configuration at reference temperature T0 ¼ k0
(this coincides with the first term of the series expansion of relation (3.2)), which

here again is in general assumed to be the assembly temperature Ta:
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u ¼ re
E
� r � A � 1� nð Þ þ B

r2
� 1þ nð Þ þ a � E � 1þ nð Þ �

Xn
i¼1

ki � rie � ri
iþ 2

" #
: (3.16)

Once again, it is obvious that if the assembly temperature were to differ from the

reference temperature T0 ¼ k0, the further term a� E� (Ta � T0) would appear within
the square brackets in expression (3.16). Relation (3.16) is more general than

relation (3.9), which is a particular case thereof, and it is again sufficient to consider

the n-th term of polynomial (3.2) alone, for (3.16) to be reduced to (3.9). Relations

(3.15) and (3.16) describe the distribution of radial and hoop stresses and radial

displacement versus r in a disk subjected to a non-zero temperature gradient along

the radius expressed by (3.2), while A and B are the integration constants to be

determined by imposing boundary conditions.

With the boundary conditions for the annular disk subjected only to thermal load

(sr ¼ 0 for both r ¼ 1 and for r ¼ b), the resulting system obtained from the first

(3.15) yields:

A ¼ a � E
1� b2

�
Xn
i¼1

ki � rie
iþ 2

� 1� biþ2
� �

B ¼ a � E
1� b2

� b2 �
Xn
i¼1

ki � rie
iþ 2

� 1� bi
� �

:

(3.17)

Substituting the values of the constants thus found in relations (3.15) and (3.16)

gives the following expressions for sr, st and u:

sr ¼ a � E �
Xn
i¼1

ki � rie
iþ 2

� 1� biþ2

1� b2
� 1� bi

1� b2
� b

2

r2
� ri

� �

st ¼ a � E �
Xn
i¼1

ki � rie
iþ 2

� 1� biþ2

1� b2
þ 1� bi

1� b2
� b

2

r2
� iþ 1ð Þ � ri

� �

u ¼ r � a �
Xn
i¼1

ki � riþ1
e

iþ 2
� 1� biþ2

1� b2
� 1� nð Þ þ 1� bi

1� b2
� 1þ nð Þ � b

2

r2
þ 1þ nð Þ � ri

� �
:

8>>>>>>>>><
>>>>>>>>>:

(3.18)

3.1.3 General Function T

Finally, in the most general possible case in which the function of temperature

variation with the radius is expressed by (3.3), relation (3.4) can again be used, and

performing two successive integrations followed by a derivation operation yields:
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u ¼ a � 1þ nð Þ � 1
r
�
ðr
ri

T � r � dr þ C1 � r
2
þ C2

r

du

dr
¼ �a � 1þ nð Þ � 1

r2
�
ðr
ri

T � r � dr þ a � 1þ nð Þ � T þ C1

2
� C2

r2
:

(3.19)

Substituting expression (3.19) in relations (1.27) yields the following expressions

of sr and st as a function of radius r:

sr ¼ E � C1

2 � 1� nð Þ �
E � C2

1þ nð Þ �
1

r2
� a � E � 1

r2
�
ðr
ri

T � r � dr

st ¼ E � C1

2 � 1� nð Þ þ
E � C2

1þ nð Þ �
1

r2
þ a � E � 1

r2
�
ðr
ri

T � r � dr � T

0
@

1
A:

8>>>>>>><
>>>>>>>:

(3.20)

Subsequently, proceeding as for the passage from relations (3.14) to (3.15),

yields the following relations which express radial and hoop stresses as a function

of r:

sr ¼ A� B

r2
� a � E � 1

r2
�
ðr
b

T � r � dr

st ¼ Aþ B

r2
þ a � E � 1

r2
�
ðr
b

T � r � dr� T

0
B@

1
CA:

8>>>>>>>><
>>>>>>>>:

(3.21)

Introducing relations (3.21) in the second (1.25) and noting that, given the

second relation (1.14), u ¼ r·et, we obtain the following expression for radial

displacement u ¼ u(r):

u ¼ re
E
� r � A � 1� nð Þ þ B

r2
� 1þ nð Þ þ a � E � 1þ nð Þ

r2
�
ðr
b

T � r � dr

2
64

3
75: (3.22)

Relations (3.21) and (3.22) describe the distribution of radial and hoop stresses

and radial displacement versus r in a disk subjected to a non-zero temperature

gradient along the radius expressed by (3.3), while A and B are the integration

constants to be determined by imposing boundary conditions.

With the usual boundary conditions for the annular disk subjected only to

thermal load (sr ¼ 0 for both r ¼ 1 and for r ¼ b), the resulting system obtained

from the first relation (3.21) yields:
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A ¼ a � E
1� b2

�
ð1
b

T � r � dr

B ¼ a � E � b2
1� b2

�
ð1
b

T � r � dr:
(3.23)

Substituting the values of the constants thus found in relations (3.21) and (3.22)

gives the following expressions for sr, st and uwhich provide a univocal solution of
the problem:

sr ¼ a � E � 1

1� b2
� 1� b2

r2

� �
�
ð1
b

T � r � dr� 1

r2
�
ðr
b

T � r � dr

2
64

3
75

st ¼ a � E � 1

1� b2
� 1þ b2

r2

� �
�
ð1
b

T � r � drþ 1

r2
�
ðr
b

T � r � dr� T

2
64

3
75

u ¼ a � re
r

� r2 � 1� nð Þ þ b2 � 1þ nð Þ
1� b2
� � �

ð1
b

T � r � drþ 1þ nð Þ �
ðr
b

T � r � dr

2
64

3
75:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

(3.24)

In the literature, (3.24) are also found written in terms of variable r, i.e., in the

form:

sr ¼ a � E
r2e � r2i

� 1� r2i
r2

� �
�
ðre
ri

T � r � dr � a � E
r2

�
ðr
ri

T � r � dr

st ¼ a � E
r2e � r2i

� 1þ r2i
r2

� �
�
ðre
ri

T � r � dr þ a � E � 1

r2
�
ðr
ri

T � r � dr � T

0
@

1
A

u ¼ a
r � r2e � r2i

� � r2 � 1� nð Þ þ r2i � 1þ nð Þ� 	 � ð
re

ri

T � r � dr þ a � 1þ nð Þ
r

�
ðr
ri

T � r � dr:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(3.25)
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3.1.4 Example

We will now consider an annular disk of constant thickness made of unquenched

AISI 1060 steel, with sy ¼ 480MPa and having outside and inside radius re ¼ 1.0m

and ri ¼ 0.5 m. Let the disk be subjected to centripetal heat flow characterized by a

linear temperature distribution along the radius described by function T ¼ T0 þ kr,
with T0 (reference temperature) and k constant, and let Te ¼ 120�C and Ti ¼ T0
¼ 20�C be the temperatures at the outer and inner radii.

We will also consider another disk, again annular and of constant thickness,

having the same outer radius as the previous disk, but with ri ¼ 0.1 m and subjected

to the same temperature differential DT ¼ Te � Ti across the outer and inner radii,
and a linear temperature distribution along the radius.

Assuming that the material’s thermophysical and mechanical properties remain

unchanged up to temperature Te, we will calculate the distribution of stresses due to

thermal loading in the two disks when stationary, andwewill determine themaximum

values and their locations, discussing how variation in b influences the stress field.

From the problem data, we thus have: a ¼ 12·10�6 �C�1; n ¼ 0.3; E ¼ 210 GPa;

b ¼ 0.5 and k ¼ (Te � Ti)/(re � ri) ¼ 200�C/m for the first disk; b ¼ 0.1 and

k ¼ (Te � Ti)/(re � ri) ¼ 111.11�C/m for the second disk. Data for constant

k appearing in linear function T ¼ T(r) are deduced from relation T ¼ Ti +
[(Te� Ti)/(re � ri)]�(r � ri) which expresses the temperature function in explicit

form.

Using the first two relations (3.12) which express the stress field due to heat flow in

the annular disk, in which n ¼ 1, we obtain the two pairs of dashed-line and solid-line

curves shown in Fig. 3.1, which apply respectively to the disk with the larger diameter

hole (b ¼ 0.5) and the disk with the smaller diameter hole (b ¼ 0.1). As can be seen

from these curves, the radial stress for any value ofb remains positive at all times, with

a maximum value that, if the temperature variation function is (3.1), occurs at r ¼
2b2 1� bnð Þ n 1� b2

� �
� 	1 nþ2ð Þ=
, and, in the case of interest to us here with n ¼ 1,

occurs at r ¼ 2b2 1þ bð Þ=
� 	1 3=

. Hoop stress assumes a positive absolute maximum

value at the inner radius, decreases from the inner radius to the outer radius as r
increases, becoming null for the value of r at which the term in square brackets

appearing in the second (3.12) is zero. It then changes sign, becoming a compression

stress, and again increases in absolute value until reaching its negative absolute

maximum value at the outer radius.

It can thus be concluded that the material is at greatest risk at the inner radius,

and that the absolute maximum value of the stress field at the inner radius is heavily

influenced by ratio b and, for any given temperature difference DT ¼ Te � Ti and
with all other conditions remaining equal, increases as b decreases. Conversely, the

absolute value of compressive hoop stress at the outer radius drops as b decreases.
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3.2 Solid Disk, Subjected to Thermal Load

For the solid disk subjected to a temperature gradient along the radius, we will again

consider the three functions T ¼ T (r) given by (3.1), (3.2) and (3.3) respectively.

3.2.1 Function T Given by an n-th Degree Function

If the function of temperature variation with the radius is expressed by (3.1), we

must impose the condition that radial displacement at the centre is zero, as was done

for the rotating solid disk. From the first relation (3.5), for r ¼ 0, we obtain C2 ¼ 0

and thus, given the second relation (2.9), B ¼ 0. As a result, expressions (3.8)

become:

sr ¼ A� C0 � rn
st ¼ A� D0 � rn: (3.26)

Fig. 3.1 Distribution curves of principal stresses sr and st in two annular disks with the same

outer radius and different inner radii, subjected to the same temperature differential across inner

radius (Ti ¼ 20�C) and outer radius (Te ¼ 120�C). Reference temperature T0 ¼ 20�C
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Here again, we will have sr ¼ st ¼ A at the disk axis, where r ¼ 0. But as

stress sr is zero at the outer radius, where r ¼ 1, we can conclude from the first

relation (3.26) that A ¼ C0. Accordingly, at the centre of the disk we have:

sr ¼ st ¼ A ¼ C0 ¼ E � a � k
nþ 2

� rne : (3.27)

For the solid disk, (3.12) become:

sr ¼ E � a � k
nþ 2

� rne � 1� rnð Þ

st ¼ E � a � k
nþ 2

� rne � 1� nþ 1ð Þ � rn½ �

u ¼ a � k � rnþ1
e

nþ 2
� r � 1� nð Þ þ 1þ nð Þ � rn½ �:

8>>>>>><
>>>>>>:

(3.28)

These equations express the radial and hoop stresses and radial displacement as a

function of r. Equation (3.28) can also be derived from (3.12) by setting b ¼ 0 in

the latter.

3.2.2 Function T Given by an n Degree Polynomial

If function T ¼ T(r) is expressed by (3.2), and again imposing the condition that

radial displacement at the centre is zero, the first relation (3.13) yields C2 ¼ 0 for

r ¼ 0, and thus, given the second relation (2.9), B ¼ 0. Accordingly, relations

(3.15) become:

sr ¼ A� a � E �
Xn
i¼1

ki � rie �
ri

iþ 2

st ¼ A� a � E �
Xn
i¼1

iþ 1

iþ 2
� ki � rie � ri:

8>>>><
>>>>:

(3.29)

Obviously, at the disk axis, where r ¼ 0, we will again have sr ¼ st ¼ A. But
as stress sr is zero at the outer radius, where r ¼ 1, we can conclude from the first

relation (3.29) that:

A ¼ a � E �
Xn
i¼1

ki � rie
iþ 2

: (3.30)

3.2 Solid Disk, Subjected to Thermal Load 61

http://dx.doi.org/10.1007/978-88-470-2562-2_2


Accordingly, at the centre of the disk we have:

sr ¼ st ¼ A ¼ a � E �
Xn
i¼1

ki � rie
iþ 2

: (3.31)

For the solid disk, relations (3.18) become:

sr ¼ a � E �
Xn
i¼1

ki � rie
iþ 2

� 1� ri
� �

st ¼ a � E �
Xn
i¼1

ki � rie
iþ 2

� 1� iþ 1ð Þ � ri� 	

u ¼ r � a �
Xn
i¼1

ki � riþ1
e

iþ 2
� 1� nð Þ þ 1þ nð Þ � ri� 	

:

8>>>>>>>>><
>>>>>>>>>:

(3.32)

These equations can be derived from (3.18) by setting b ¼ 0 in the latter. Here

again, relations (3.32) are more general than relations (3.28), which are a particular

case thereof. It is sufficient to consider the n-th term of polynomial (3.2) alone, or in

other words, it is sufficient to set i ¼ n, k1 ¼ k2 ¼ . . . kn�1 ¼ 0 in the latter

polynomial to reduce relations (3.32) to relations (3.28).

3.2.3 General Function T

Finally, in the most general possible case in which the function of temperature

variation with the radius is expressed by (3.3), we again impose the condition that

radial displacement at the centre is zero; thus, for r ¼ ri ¼ 0, we obtain C2 ¼ 0

from the first relation (3.19), and consequently, given the second relation (2.9),

B ¼ 0.

However, rather than calculating stresses sr and st and radial displacement u by

specializing expressions (3.21) to the case considered here (B ¼ 0), calculating the

integration constant A from the first of these expressions (3.21) thus specialized,

with the condition that sr ¼ 0 at the outer radius, i.e., for r ¼ 1 and then

substituting the constant found in this way in expressions (3.21) and in relation

(3.22), we prefer here to start directly from (3.24) and (3.25), establishing that ratio

b tends to zero in (3.24) and inner radius ri tends to zero in (3.25). In this way, the

following relations are obtained from (3.24) and (3.25) respectively:
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sr ¼ a � E �
ð1
0

T � r � dr� 1

r2
�
ðr
0

T � r � dr
2
4

3
5

st ¼ a � E �
ð1
0

T � r � drþ 1

r2
�
ðr
0

T � r � dr� T

2
4

3
5

u ¼ a � re
r

� r2 � 1� nð Þ �
ð1
0

T � r � drþ 1þ nð Þ �
ðr
0

T � r � dr
2
4

3
5:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(3.33)

sr ¼ a � E � 1

r2e
�
ðre
0

T � r � dr � 1

r2
�
ðr
0

T � r � dr
2
4

3
5

st ¼ a � E � 1

r2e
�
ðre
0

T � r � dr þ 1

r2
�
ðr
0

T � r � dr � T

2
4

3
5

u ¼ a � 1� nð Þ � r
r2e

�
ðre
0

T � r � dr þ a � 1þ nð Þ
r

�
ðr
0

T � r � dr:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(3.34)

Relations (3.34) can be used to calculate stresses and displacement at the centre

of the disk. In fact, with a Taylor series expansion of T ¼T (r), such that

TðrÞ ¼ Tð0Þ þ T0ð0Þ � r þ 1

2
T00ð0Þ � r2 þ . . . (3.35)

and noting that

lim
r!0

1

r2

ðr
0

T � r � dr ¼ 1

2
� Tð0Þ

lim
r!0

1

r

ðr
0

T � r � dr ¼ 0;

(3.36)

we arrive at the conclusion, which is in any case fairly intuitive and has already

been demonstrated using other methods, that at the centre of the disk we have:

ðsrÞr¼0 ¼ ðstÞr¼0; ðuÞr¼0 ¼ 0: (3.37)

3.2 Solid Disk, Subjected to Thermal Load 63



3.3 Summary of Results for Constant Thickness Disk Subjected

to Thermal Load

In summary form, Table 3.1 shows all results obtained for annular and solid disks of

constant thickness subjected to a temperature gradient along the radius described by

three different functions T ¼ T(r). For each geometry and each of the three

functions describing thermal load, the table indicates boundary conditions and the

general relations for sr, st and u as a function of dimensionless variable r.

3.4 Constant Thickness Disk Subjected to Centrifugal

and Thermal Loads

The stress state in a constant thickness annular disk subjected simultaneously to

centrifugal and thermal loads is given by the following three pairs of general

relations:

sr ¼ A� B=r2 � C � r2 � C0 � rn
st ¼ Aþ B=r2 � D � r2 � D0 � rn:

(
(3.38)

sr ¼ A� B

r2
� C � r2 � a � E �

Xn
i¼1

ki � rie �
ri

iþ 2

st ¼ Aþ B

r2
� D � r2 � a � E �

Xn
i¼1

iþ 1

iþ 2
� ki � rie � ri:

8>>>><
>>>>:

(3.39)

sr ¼ A� B

r2
� C � r2 � a � E � 1

r2
�
ðr
b

T � r � dr

st ¼ Aþ B

r2
� D � r2 þ a � E � 1

r2
�
ðr
b

T � r � dr� T

0
B@

1
CA:

8>>>>>>>><
>>>>>>>>:

(3.40)

These relations apply in cases where the function T ¼ T(r) is expressed by

relations (3.1), (3.2) and (3.3).

In these relations, the coefficients C, D, C0 and D0, as well as the terms in the

summations and integrals, are zero in load conditions resulting from surface forces

acting on the inner edge and/or the outer edge. If the disk is only rotating, the

coefficients C0 and D0 and the terms in the summations and integrals are zero, while

if the disk is stationary but subject to a non-zero temperature gradient along the

radius, the coefficients C and D are zero.
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If C, D, C0, D0 and the terms making up the summations and the integrals are all

zero, strain ez in the axial direction will in accordance with the generalized form of

Hooke’s law be:

ez ¼ � n
E
� sr þ stð Þ ¼ �2 � n

E
� A ¼ const: (3.41)

For the disk subjected to surface forces acting on the inner and/or outer edges,

axial expansion will be constant, and the strain state can be considered as a

generalized plane strain state. In this case, the assumption of a plane stress state,

and that of an uniform axial translation of one generic cross section, will all lead to

the same result. It was mentioned earlier that the stress state due to surface forces in

annular disks coincides with that in thick-walled tubes; however, this is no longer

true when C, D, C0, D0 and the terms making up the summations and the integrals

are not zero (for example, in disks subjected to thermal load or to centrifugal load).

The stress state in a constant thickness solid disk subjected simultaneously to

centrifugal and thermal loads is also given by the three pairs of relations (3.38),

(3.39) and (3.40), where we set B ¼ 0.

3.5 Stresses in Rotating Disks Having a Fictitious Density

Variation Along the Radius

As was indicated in the introduction, the peripheral surface of a disk featuring

blades spaced at equal angles, the slots serving as seats for the blades and the

material between each slot and the next can be simulated by means of a fictitious,

discrete increase in the density of the material variously distributed therein. In other

design applications (impellers for centrifugal compressors, impellers for centrifugal

pumps and the like), the problem is that of evaluating the stress and strain states

arising in the disk as a result of blades evenly distributed on the two side faces

(5 and 6 in Fig. I.1). These blades produce a significant increase in centrifugal load

stresses, without contributing appreciably to the disk’s strength.

The body forces due to these blades are simulated by considering the disk

without blades and introducing a fictitious variation in the disk’s mass per unit

volume (or density) along the radius. This fictitious variation will be discrete for

peripheral blades and continuous for lateral blades. A continuous density variation

function expressed in the following form is normally used:

gðrÞ ¼ g0 � 1þ dm0 dm=ð Þ; (3.42)

where g0 is the density of the basic disk material and dm0 and dm are respectively the

elementary masses of the blades and of the portion of the disk between two coaxial

cylinders of radius r and r þ dr.
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Among the relations expressing density variation with radius that have been

introduced in the literature, mention should be made of the exponential function,

often uses in literature (see, as an example G€uven 1992):

gðrÞ ¼ ge � rm; (3.43)

where ge is the disk’s density at its outer radius and m is any exponent, and of

the most general relation, used by Giovannozzi [28], which expresses function

g ¼ g(r) as follows:

gðrÞ ¼
Xn
i¼0

gi � ri; (3.44)

or in other words through an n-th degree polynomial in r; as indicated earlier, in this
latter function g0 represents the density of the rotor material, while g1, g2, . . . are
constants and i ¼ 0, 1, 2, . . ., n. Here again, in even more general terms, the

function g ¼ g(r) can be expressed in the form g ¼ g0 þ
Pn

i¼1 gi � rmi , where gi
are constants and m1, m2, . . ., mn are exponents that are not necessarily integers.

This function was introduced by Botto [6].

Using the exponential function (3.43) and considering a constant thickness disk,

(2.2) becomes:

d

dr

1

r
� d
dr

u � rð Þ
� �

¼ � 1� n2ð Þ
E

� ge � o2 � rmþ1: (3.45)

Integrating the latter equation directly in successive passages yields:

u ¼ � 1� n2ð Þ � ge � o2 � rmþ3

E � mþ 2ð Þ � mþ 4ð Þ þ C1 � r
2
þ C2

r

du

dr
¼ � 1� n2ð Þ � ge � o2 � mþ 3ð Þ � rmþ2

E � mþ 2ð Þ � mþ 4ð Þ þ C1

2
� C2

r2
:

(3.46)

Substituting relations (3.46) in (1.27) from which temperature terms are omitted

gives the following expressions of sr and st as a function of radius r:

sr ¼ E � C1

2 � 1� nð Þ �
E � C2

1þ nð Þ �
1

r2
� ge � o2 � mþ 3þ n

mþ 2ð Þ � mþ 4ð Þ � r
mþ2

st ¼ E � C1

2 � 1� nð Þ þ
E � C2

1þ nð Þ �
1

r2
� ge � o2 � 1þ n � mþ 3ð Þ

mþ 2ð Þ � mþ 4ð Þ � r
mþ2:

8>><
>>: (3.47)

Continuing to consider radius r as an independent variable, setting B ¼ E�
C2/(1 + n) and bearing the first relation (2.9) in mind, we arrive at the following

relations expressing radial and hoop stresses as a function of r:
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sr ¼ A� B

r2
� ge � o2 � mþ 3þ n

mþ 2ð Þ � mþ 4ð Þ � r
mþ2

st ¼ Aþ B

r2
� ge � o2 � 1þ n � mþ 3ð Þ

mþ 2ð Þ � mþ 4ð Þ � r
mþ2:

8>><
>>: (3.48)

Finally, introducing relations (3.48) in the expression for et from which the

temperature term has been omitted and noting that u ¼ r � et yields the following

relation for displacement u(r) at the generic radius r:

u ¼ r

E
� A � 1� nð Þ þ B

r2
� 1þ nð Þ � 1� n2ð Þ � ge � o2

mþ 2ð Þ � mþ 4ð Þ � r
mþ2

� �
: (3.49)

Introducing the dimensionless variable r and noting that in this case the refer-

ence stress is s0 ¼ ge � o2 � r2e , relations (3.48) and (3.49) become:

sr ¼ A� B

r2
� mþ 3þ n

mþ 2ð Þ � mþ 4ð Þ � s0 � r
m
e � rmþ2

st ¼ Aþ B

r2
� 1þ n � mþ 3ð Þ

mþ 2ð Þ � mþ 4ð Þ � s0 � r
m
e � rmþ2

u ¼ re � r
E

� A � 1� nð Þ þ B

r2
� 1þ nð Þ � 1� n2ð Þ

mþ 2ð Þ � mþ 4ð Þ � s0 � r
m
e � rmþ2

� �
;

8>>>>>>><
>>>>>>>:

(3.50)

where, however, B is given by the second relation (2.9).

From this point onwards, the procedure involves steps that are entirely similar to

those described above, in the first of which integration constants A and B are

calculated by imposing boundary conditions, which will obviously differ according

to whether the disk is annular or solid. These steps will not be further illustrated

here.

If the most general polynomial function (3.44) is used and a constant thickness

disk is again considered, (2.2) becomes

d

dr

1

r
� d
dr

u � rð Þ
� �

¼ � 1� n2
� � � o2 � r

E
�
Xn
i¼0

gi � ri; (3.51)

Integrating this equation directly in successive passages yields:

u ¼ � 1� n2
� � � o2

E
�
Xn
i¼0

gi �
riþ3

iþ 2ð Þ � iþ 4ð Þ þ C1 � r
2
þ C2

r

du

dr
¼ � 1� n2

� � � o2

E
�
Xn
i¼0

gi �
iþ 3ð Þ

iþ 2ð Þ � iþ 4ð Þ � r
iþ2 þ C1

2
� C2

r2
:

(3.52)

3.5 Stresses in Rotating Disks Having a Fictitious Density Variation Along the. . . 69

http://dx.doi.org/10.1007/978-88-470-2562-2_2


Substituting relations (3.52) in (1.27) from which temperature terms are omitted

gives the following expressions of sr and st as a function of radius r:

sr ¼ E � C1

2 � 1� nð Þ �
E � C2

1þ nð Þ �
1

r2
� o2 �

Xn
i¼0

gi �
iþ 3þ nð Þ

iþ 2ð Þ � iþ 4ð Þ � r
iþ2

st ¼ E � C1

2 � 1� nð Þ þ
E � C2

1þ nð Þ �
1

r2
� o2 �

Xn
i¼0

gi �
1þ iþ 3ð Þ � n
iþ 2ð Þ � iþ 4ð Þ � r

iþ2:

8>>>><
>>>>:

(3.53)

Then, continuing to consider radius r as an independent variable, setting

B ¼ E∙C2/(1 þ n), bearing in mind the first relation (2.9) and (2.27), which

express the constant A and known terms s0, C and D respectively, and isolating

the g0 term from the summations (s0 ¼ g0 ·o
2 ·re

2), we arrive at the following

relations expressing radial and hoop stresses as a function of r:

sr ¼ A� B

r2
� C � r2 þ o2 �

Xn
i¼1

gi �
iþ 3þ nð Þ

1� iþ 3ð Þ2 � r
iþ2

st ¼ Aþ B

r2
� D � r2 þ o2 �

Xn
i¼1

gi �
1þ iþ 3ð Þ � n
1� iþ 3ð Þ2 � riþ2:

8>>>><
>>>>:

(3.54)

Finally, introducing relations (3.54) in the expression for et from which the

temperature term has been omitted and noting that u ¼ r·et yields the following

relation for displacement u(r):

u¼ r

E
� A � 1�nð Þþ B

r2
� 1þnð Þ� D�n �Cð Þ � r2þo2 � 1�n2

� � �Xn
i¼1

gi �
riþ2

1� iþ3ð Þ2
" #

:

(3.55)

Here again, from this point onwards, the procedure involves steps that are

entirely similar to those described above, in the first of which integration constants

A and B are calculated by imposing boundary conditions, which will obviously

differ according to whether the disk is annular or solid. These steps will also not be

further illustrated here.
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